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The Hearsay-II system, developed during the DARPA-sponsored five-year speech- 
understanding research program, represents both a specific solution to the speech- 
understanding problem and a general framework for coordinating independent processes 
to achieve cooperative problem-solving behavior. As a computational problem, speech 
understanding reflects a large number of intrinsically interesting issues. Spoken sounds 
are achieved by a long chain of successive transformations, from intentions, through 
semantm and syntactic structurmg, to the eventually resulting audible acoustic waves. As 
a consequence, interpreting speech means effectively inverting these transformations to 
recover the speaker's intention from the sound. At each step in the interpretive process, 
ambiguity and uncertainty arise. 

The Hearsay-II problem-solving framework reconstructs an intention from 
hypothetmal interpretations formulated at various levels of abstraction. In additmn, it 
allocates hmlted processing resources fwst to the most promising incremental actions. The 
final configuration of the Hearsay-II system comprises problem-solving components to 
generate and evaluate speech hypotheses, and a focus-of-control mechanism to identify 
potentml actions of greatest value. Many of these specific procedures reveal novel 
approaches to speech problems. Most important, the system successfully integrates and 
coordinates all of these independent actlwhes to resolve uncertainty and control 
combmatorms. Several adaptations of the Hearsay-II framework have already been 
undertaken in other problem domains, and it is anticipated that this trend will contmue; 
many future systems necessarily will integrate diverse sources of knowledge to solve 
complex problems cooperatively. 

Discussed m this paper are the characteristics of the speech problem in particular, the 
specml kinds of problem-solving uncertainty in that domain, the structure of the Hearsay- 
II system developed to cope with that uncertamty, and the relationship between Hearsay- 
I r s  structure and those of other speech-understanding systems. The paper is intended for 
the general computer science audience and presupposes no speech or artificial intelligence 
background. 
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INTRODUCTION 

The Hearsay-II speech-understanding sys- 
tem (SUS) developed at Carnegie-Mellon 
University recognizes connected speech in 
a 1000-word vocabulary with correct inter- 
pretations for 90 percent of test sentences. 
Its basic methodology involves the appli- 
cation of symbolic reasoning as an aid to 
signal processing. A marriage of general 
artificial intelligence techniques with spe- 
cific acoustic and linguistic knowledge was 
needed to accomplish satisfactory speech- 

T h i s  resea rch  was suppor ted  chiefly by  Defense  Ad- 
vanced  Resea r ch  Projec ts  Agency cont rac t  F44620-73- 
C-0074 to Carnegie-Mel lon Universi ty .  In  addition, 
suppor t  for the  prepara t ion  of  this  paper  was provided 
by USC/ IS I ,  Rand,  and  the  Univers i ty  of  Massachu-  
set ts .  We gratefully acknowledge their  suppor t .  Views 
and  conclusions  conta ined  m this  documen t  are those  
of  t he  au tho r s  and  shou ld  no t  be in te rpre ted  as rep- 
r e s en tmg  the  official opmlon  or policy of D A R P A ,  the  
U.S government ,  or any  o ther  person  or agency con- 
nec ted  wi th  them.  
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understanding performance. Because the 
various techniques and heuristics employed 
were embedded within a general problem- 
solving framework, the Hearsay-II system 
embodies several design characteristics 
that are adaptable to other domains as well. 
Its structure has been applied to such tasks 
as multisensor interpretation [NII78], pro- 
tein-crystallographic analysis [ENGE77], 
image understanding [HANS76], a model of 
human reading [RUME76], and dialogue 
comprehension [MANN79]. This paper dis- 
cusses the characteristics of the speech 
problem in particular, the special kinds of 
problem-solving uncertainty in that do- 
main, the structure of the Hearsay-II sys- 
tem developed to cope with that uncer- 
tainty, and the relationship between Hear- 
say-II's structure and the structures of 
other SUSs. 

Uncertainty arises in a problem-solving 
system if the system's knowledge is inade- 
quate to produce a solution directly. The 
fundamental method for handling uncer- 
tainty is to create a space of candidate 
solutions and search that space for a solu- 
tion. "Almost all the basic methods used by 
intelligent systems can be seen as some 
variation of search, responsive to the par- 
ticular knowledge available" [NEWE77, p. 
13]. In a difficult problem, i.e., one with a 
large search space, a problem solver can be 
effective only if it can search efficiently. To 
do so, it must apply knowledge to guide the 
search so that  relatively few points in the 
space need be examined before a solution is 
found. A key way of accomplishing this is 
by augmenting the space of candidate so- 
lutions with candidate partial solutions and 
then constructing a complete solution by 
extending and combining partial candi- 
dates. A candidate partial solution repre- 
sents all complete candidates that contain 
it. By considering partial solution candi- 
dates, we can often eliminate whole sub- 
spaces from further consideration and si- 
multaneously focus the search on more 
promising subspaces. 

To solve a problem as difficult as speech 
understanding, a problem solver requires 
several kinds of capabilities in order to 
search effectively: It must collect and ana- 
lyze data, set goals to guide the inferential 
search processes, produce and retain appro- 
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priate inferences, and decide when to stop 
working for a possibly better solution. 
Years ago, when AI problem solvers first 
emerged, they attempted to provide these 
capabilities through quite general domain- 
independent methods, the so-called weak 
methods [NEwE69]. A prime example of 
such a problem solver is GPS [ERNS69]. 
More recently, several major problem-solv- 
ing accomplishments, such as Dendral 
[FEIG71] and Mycin [SltoR76], have re- 
flected a different philosophy: Powerful 
problem solvers depend on extensive 
amounts of knowledge about both the prob- 
lem domain and the problem-solving strat- 
egies effective in that domain [FEIG77]. 
Much of what we view as expertise consists 
of these two types of knowledge; without 
capturing and implementing this knowl- 
edge, we could not create effective com- 
puter problem solvers. Because knowledge 
plays a crucial role in these kinds of tasks, 
many people call the corresponding prob- 
lem solvers knowledge- based systems 
[BARN77]. The design of Hearsay-II is re- 
sponsive to both concerns. While formu- 
lated as a general system-building frame- 
work that would structure and control 
problem-solving behavior involving multi- 
ple, diverse, and error-full sources of knowl- 
edge, the current Hearsay-II system con- 
sists of a particular collection of programs 
embedding speech knowledge that are ca- 
pable of solving the understanding prob- 
lem. 1 

The difficulty of the speech-understand- 
ing problem, and hence the need for pow- 
erful problem-solving methods, derives 
from two inherent sources of uncertainty or 
error. The first includes ordinary variability 
and noise in the speech waveform, and the 
second includes the ambiguous and inac- 
curate judgments arising from an applica- 
tion of incomplete and imprecise theories 
of speech. Because we cannot resolve these 
uncertainties directly, we structure the 
speech-understanding problem as a space 

in which our problem solver searches for a 
solution. The space is the set of (partial and 
complete) interpretations of the input 
acoustic signal, i.e., the (partial and com- 
plete) mappings from the signal to the pos- 
sible messages. The goal of our problem- 
solving system is to find a complete inter- 
pretation (i.e., a message and mapping) 
which maximizes some evaluation function 
based on knowledge about such things as 
acoustic-phonetics, vocabulary, grammar, 
semantics, and discourse. This resolution of 
the combined sources of uncertainty re- 
quires the generation, evaluation, and in- 
tegration of numerous partial interpreta- 
tions. The need to consider many alterna- 
tive interpretations without spawning an 
explosive combinatorial search thus be- 
comes a principal design objective. Each of 
these issues is discussed in more detail in 
the following section. 

Dimensions of the Problem: Uncertainty 
and Hypothetical Interpretations 

The first source of difficulty in the speech 
problem arises from the speaking process 
itself. In the translation from intention to 
sound, a speaker transforms concepts into 
speech through processes that introduce 
variability and noise (see Figure 1). If, for 

L S ~  ~ Speech 
Understanding 

/ System 

Ph A E 

FIGURE 1. Some of the mechanisms that affect the 
message, psychology of the speaker, semantics, rules 
of dmcourse, syntax, lexicon, prosodic system, pho- 
nemic system, speaker's arbculatory apparatus, am- 
bient environmental noise, and microphone and sys- 
tem. [After NEwE75 ] 

1 The problem of speech understanding has been ac- 
tively pursued recently [REDD75, REDD76, CMU77, 
BERN76, WALK78, WOOD76, KLAT77, MEDR78, 
LEA80]. With the exception of HARPY [LowE80], 
however, none of the other efforts has been presented 
as a structure for problem solwng m other domains 

example, we consider the semantic, syntac- 
tic, lexical, and phonemic stages, the types 
of variance introduced from one level to the 
next would correspond to errors or pecu- 
liarities of conceptualization, grammar, 
word choice, and articulation. In addition 
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to these sources of variability, speech is 
often affected by pauses, extraneous 
sounds, or unnecessary phrase repetitions. 
The effect of these factors upon the physi- 
cal sound signal is to distort it significantly 
from the ideal message, that  is, from the 
message that  would be produced if the pro- 
duction mechanisms did not introduce var- 
iability and noise. Accordingly, we speak of 
the disparity between the ideal and actual 
signals as error, and of the variety of factors 
that  contribute to such distortion as 
sources of error. Thus the first source of 
error is inherent in the speaker and his 
environment. 

The second source of error in the under- 
standing process is intrinsic to the listener. 
Just  as the speaker must transform his 
intention through successive intermediate 
levels of representation, so we presume the 
listener must accomplish the inverse of 
those transformations; from the physical 
signal the listener must detect acoustic- 
phonetic elements, syllables, words, and 
syntactic and conceptual structures corre- 
sponding to the speaker's intentions. At 
each step in this reconstruction the listener 
may introduce new errors corresponding to 
incorrect perceptual or interpretive judg- 
ments. 2 Because a machine speech-under- 
standing system must also develop inter- 
pretations of what was spoken and what 
was intended, it is likely to commit similar 
mistakes in judgment. These judgmental 
errors can be viewed as the result of apply- 
ing inadequate or inaccurate theoretical 
models to the speech-analysis task. If the 
first source of error is deviation between 
ideal and spoken messages due to inexact 
production, the second source of error is 
deviation between spoken and interpreted 
messages due to imprecise rules of compre- 
hension. 

To comprehend an utterance in the con- 
text of such errors, a speech-understanding 
system must formulate and evaluate nu- 
merous candidate interpretations of speech 
fragments. Understanding a message re- 
quires us to isolate and recognize its indi- 

2 Though the levels of representation appear to be 
hnearly ordered, the encochng and decoding processes 
do not necessarily operate sequentially through this 
ordering. 
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vidual words and parse their syntactic and 
conceptual relationships. Each intermedi- 
ate state of this process can be viewed as 
either the generation or evaluation of sym- 
bolic interpretations for portions of the spo- 
ken utterance. We use the term hypothesis 
to refer to a partial interpretation actually 
constructed. During the process of speech 
interpretation, hypotheses may vary from 
highly confident identification of particular 
words to great confusion concerning partic- 
ular portions of the utterance. Between 
these two extremes, the listener may enter- 
tain simultaneously several competing hy- 
potheses for what was said. Competing al- 
ternatives might occur at any of several 
levels of abstraction. For example, at the 
word level the listener may struggle to dis- 
tinguish whether "till" or "tell" was spoken 
in one portion of the utterance while si- 
multaneously attempting to differentiate 
the words "brings" and "rings" in another 
interval. These uncertainties derive from 
comparable uncertainties at lower levels of 
interpretation, such as syllabic and acous- 
tic, where multiple competing hypotheses 
can also exist simultaneously. Similarly, un- 
certainty among word hypotheses at the 
lexical level engenders uncertainty at 
higher levels of interpretation. Thus the 
previously discussed inability to distinguish 
between alternative words may be the un- 
derlying cause of an inability to distinguish 
between the four hypothetical phrase inter- 
pretations: 

till Bob rings 
tell Bob rings 
till Bob brings 
tell Bob brings 

Just  as this example suggests, higher 
level interpretations incorporate lower level 
ones. A phrase-level hypothesis consists of 
a selection of word hypotheses from each 
interval of time spanned by the higher level 
hypothesis. Only one lower level hypothesis 
in any time interval can be incorporated 
into the higher level interpretation. Thus a 
phrase consists of a sequence of words, a 
word consists of a sequence of syllables, a 
syllable consists of a sequence of acoustic- 
phonetic segments, and so on. An overall 
interpretation of an entire utterance would 
consist of a syntactic or semantic analysis 
that  recursively incorporated one hypoth- 
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esis from each level of interpretation for 
each temporal interval of the utterance. 

A fundamental assumption underlying 
the understanding problem is that a correct 
interpretation of an utterance should min- 
imize the difference between those proper- 
ties of the speech that the hypothetical 
interpretation would predict and those that 
are observed. This gives rise to the notion 
of the consistency between an interpreta- 
tion and its supporting data. Thus certain 
parameter values derived from an acoustic 
waveform are more or less consistent with 
various phonetic classifications, particular 
sequences of phones are more or less con- 
sistent with various monosyllabic categori- 
zations, and various syllable sequences are 
more or less consistent with particular lex- 
ical and phrase interpretations. The con- 
cept of consistency between two adjacent 
levels of interpretation can be generalized 
to permit consideration of the consistency 
between hypotheses at any two levels and, 
in particular, the consistency between an 
overall interpretation of the utterance and 
its supporting hypotheses at the lowest, 
acoustic-parametric level. A central as- 
sumption is that the greater the consistency 
between the overall interpretation and the 
acoustic data, the more likely the interpre- 
tation is to be correct. 

We refer to the likelihood that some hy- 
pothesis is correct as its credibility. As the 
preceding suggests, the credibility of each 
hypothesis is a measure of consistency be- 
tween the data generating the hypothesis 
and the expectations it engenders. A credi- 
bility calculation involves a judgment about 
the knowledge used in creating the hypoth- 
esis and therefore is itself subject to uncer- 
tainty. 

To assess the credibility of a hypothesis, 
we need basically to evaluate two things: 
all plausible alternatives to this hypothesis 
and the degree of support each receives 
from data. Consider, for example, the eval- 
uation of word hypotheses. Initially, nearly 
all words in the language are plausible can- 
didates for occurring within any time inter- 
val. As a consequence, our uncertainty at 
the outset, as approximated by the number 
of equally plausible alternatives, is maxi- 
mal. Over time we accrue evidence to elim- 
inate some of these alternatives. Moreover, 

by eliminating one particular hypothesis, 
we may logically exclude others that are in 
temporally adjacent regions and that de- 
pend directly on that hypothesis. For ex- 
ample, if we have ruled out all possible 
adjectives and nouns in a particular loca- 
tion, we can also rule out adjectives in the 
preceding interval. Conversely, if we can 
identify a particular word as an adjective, 
we can increase our belief that the follow- 
ing word will be an adjective or noun. In 
general, each individual hypothesis is 
strengthened by its apparent combinability 
with others. Thus we say uncertainty is 
reduced by detecting mutually supporting 
hypotheses that are consistent with the 
acoustic data. Equivalently, the credibility 
of hypotheses increases as a function of 
their involvement in such mutually sup- 
portive clusters. 

This technique for reducing uncertainty 
leads to the following incremental problem- 
solving method: The goal of the problem 
solver is to construct the most credible 
overall interpretation. The fundamental 
operations in the construction are hypoth- 
esis generation, hypothesis combination, 
and hypothesis evaluation. At each step in 
the construction, sources of knowledge use 
these operations to build larger partial in- 
terpretations, adding their constraints to 
the interpretation. The accrual of con- 
straints reduces the uncertainty inherent in 
the data and in the knowledge sources 
themselves. 

Three requirements must be met for such 
a problem solver to be effective: 

(1) 

(2) 

(3) 

At least one possible sequence of 
knowledge-based operations must lead 
to a correct overall interpretation. 
The evaluation procedure should assess 
the correct overall interpretation as 
maximally credible among all overall 
interpretations generated. 
The cost of problem solving must sat- 
isfy some externally specified limit. 
Usually this limit restricts the time or 
space available for computing. As a 
consequence, it leads to restrictions on 
the number of alternative partial inter- 
pretations that can be considered. Al- 
ternative partial solutions must be con- 
sidered in order to ensure that  a correct 
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one is included. The greater the uncer- 
tainty in the knowledge used to gener- 
ate and evaluate hypotheses, the 
greater the number of alternatives that 
must be considered, leading to a possi- 
ble combinatorial explosion. 

As we have seen, the speech-understand- 
ing problem is characterized by the need 
for highly diverse kinds of knowledge for its 
solution and by large amounts of uncer- 
tainty and variability in input data and 
knowledge. The diversity of knowledge 
leads to a search space of multilevel partial 
solutions. The uncertainty and variability 
mean that the operators used for searching 
the space are themselves error-prone; 
therefore many competing alternative hy- 
potheses must be generated. To avoid a 
combinatorial explosion, a powerful control 
scheme is needed to exploit selectively the 
most promising combinations of alterna- 
tives. As systems tackle more such difficult 
real-world problems, such multilevel rep- 
resentations and powerful control schemes 
will become increasingly important 
[HAYE78a]. The next section discusses how 
the Hearsay-II system copes with these rep- 
resentation and control problems. 

Hearsay-II Problem-Solving Model 

The key functions of generating, combining, 
and evaluating hypothetical interpretations 
are performed by diverse and independent 
programs called knowledge sources (KSs). 
The necessity for diverse KSs derives from 
the diversity of transformations used by the 
speaker in creating the acoustic signal and 
the corresponding inverse transformations 
needed by the listener for interpreting it. 
Each KS can be schematized as a condi- 
tion-action pair. The condition component 
prescribes the situations in which the KS 
may contribute to the problem-solving ac- 
tivity, and the action component specifies 
what that contribution is and how to inte- 
grate it into the current situation. 3 Accord- 

3 The condition and action components of a KS are 
realized as arbitrary programs. To minimize reeval- 
uating the condition programs continuously, each con- 
dition program declares to the system the primitive 
kinds of situations in which it is interested. The con- 
dition program is triggered only when there occur 
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ing to the original conception of the diverse 
stages and processes involved in speech un- 
derstanding, KSs have been developed to 
perform a variety of functions. These in- 
clude extracting acoustic parameters, clas- 
sifying acoustic segments into phonetic 
classes, recognizing words, parsing phrases, 
and generating and evaluating predictions 
for undetected words or syllables. Figure 2 
presents a schematic view of the KSs in the 
September 1976 configuration of the Hear- 
say-II speech-understanding system. Figure 
3 gives a brief functional description of 
these KSs. 

Because each KS is an independent con- 
dition-action module, KSs communicate 
through a global database called the black- 
board. The blackboard records the hy- 
potheses generated by KSs. Any KS can 
generate a hypothesis {record it on the 
blackboard) or modify an existing one. 
These actions in turn may produce struc- 
tures that  satisfy the applicability condi- 
tions of other KSs. In this framework the 
blackboard serves in two roles: It represents 
intermediate states of problem-solving ac- 
tivity, and it communicates messages (hy- 
potheses) from one KS that activate other 
KSs. 

The blackboard is subdivided into a set 
of information levels corresponding to the 
intermediate representation levels of the 
decoding processes (phrase, word, syllable, 
etc.). Each hypothesis resides on the black- 
board at one of the levels and bears a defin- 
ing label chosen from a set appropriate to 
that level (e.g., the word FLYING, the syl- 
lable ING, or the phone NG). The hypoth- 
esis contains additional information, in- 
cluding its time coordinates within the spo- 
ken utterance and a credibility rating. The 
sequence of levels on the blackboard forms 
a loose hierarchical structure: hypotheses 
at each level aggregate or abstract elements 
at the adjacent lower level. The possible 
hypotheses at a level form a search space 
for KSs operating at that level. A partial 

changes that  create such situations (and is then given 
pointers to all of them). This changes a polhng action 
into an interrupt-driven one and is more efficient, 
especially for a large number of KSs When executed, 
the condition program can search among the set of 
existing hypothetical interpretations for arbitrarily 
complex configurations of interest to its KS 
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LEVELS KNOWLEDGE SOURCES 

DATA BASE 
INTERFACE 

PH RASE 

WORD-SEQUENCE 

WORD 

SYLLABLE 

SEGMENT 

PARAMETER 

I SEMANT 

I P;RSE 

C 
J~ WORD-SEQ 

 ERIFY 

PREDICT C/~,~TOP 

~ WORD-CTL 
~ RPOL 

FIGURE 2 The levels and knowledge sources of September 1976. KSs are indicated by vertical 
arcs wzth the circled ends mdzcating the input level and the pointed ends indicating output 
level. 

FIGURE 3. Functional description of the speech-understanding KSs. 

Stgnal Acqutsttton, Parameter Extractton, Segmentatton, and Labeltng: 
• SEG' Digitizes the s,gnal, measures parameters, and produces a labeled segmentation 

Word Spotting 
• POM. Creates syllable-class hypotheses from segments. 
• MOW. Creates word hypotheses from syllable classes. 
• WORD-CTL Controls the number of word hypotheses that MOW creates. 

Phrase-Island Generatton" 
• WORD-SEQ Creates word-sequence hypotheses that represent potential phrases from word hypotheses and 

weak grammatwal knowledge. 
• WORD-SEQ-CTL Controls the number of hypotheses that WORD-SEQ creates 
• PARSE' Attempts to parse a word sequence and, if successful, creates a phrase hypothesis from it. 

Phrase Extending: 
• PREDICT: Predicts all possible words that mzght syntactically precede or follow a given phrase. 
• VERIFY' Rates the consistency between segment hypotheses and a contzguous word-phrase pmr 
• CONCAT Creates a phrase hypothesis from a verified contiguous word-phrase pair. 

Ratmg, Halttng, and Interpretatton. 
• RPOL: Rates the credibility of each new or modified hypothesis, using information placed on the hypothesis 

by other KSs 
• STOP" Decides to halt processing (detects a complete sentence with a sufficiently high rating, or notes the 

system has exhausted ~ts available resources) and selects the best phrase hypothesis or set of complementary 
phrase hypotheses as the output. 

• SEMANT: Generates an unambiguous interpretation for the reformation-retrieval system which the user has 
queried 
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interpretation at one level can constrain the 
search at another level. 

Within this framework we consider two 
general types of problem-solving behaviors. 
The first type, associated with means-ends 
analysis and problem-reduction strategies 
[ERNS69, NILS71, SACE74], attempts to 
reach a goal by dividing it into a set of 
simpler subgoals and reducing these recur- 
sively until only primitive or immediately 
solvable subgoals remain. Such a strategy 
is called top-down or analysis-by-synthesis. 
In speech understanding, where the goal is 
to find the most credible high-level inter- 
pretation of the utterance, a top-down ap- 
proach would reduce recursively the gen- 
eral sentential concept goal into alternative 
sentence forms, each sentence form into 
specific alternative word sequences, specific 
words into alternative phone sequences, 
and so forth, until the one alternative over- 
all interpretation most consistent with the 
observed acoustic parameters is identified. 
The second, or bottom-up, method at- 
tempts to synthesize interpretations di- 
rectly from characteristics of the data pro- 
vided. One type of bottom-up method 
would employ procedures to classify acous- 
tic segments within phonetic categories by 
comparing their observed parameters with 
the ideal parameter values of each phonetic 
category. Other bottom-up procedures 
might generate syllable or word hypotheses 
directly from sequences of phone hy- 
potheses, or might combine temporally ad- 
jacent word hypotheses into syntactic or 
conceptual units. For a hypothesis gener- 
ated in either the top-down or bottom-up 
mode, we would like to represent explicitly 
its relationship to the preexisting hy- 
potheses that  suggested it. Links are con- 
structed between hypotheses for this pur- 
pose. 

Both types of problem-solving behaviors 
can be accommodated simultaneously by 
the condition-action schema of a Hearsay- 
II KS. Top-down behaviors represent the 
reduction of the higher level goal as the 
condition to be satisfied and the generation 
of appropriate subgoals as the associated 
action. Bottom-up behaviors employ the 
condition component to represent the lower 
level hypothesis configurations justifying 
higher level interpretations, and employ the 
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action component to represent and gener- 
ate such hypotheses. In both cases the con- 
dition component performs a test to deter- 
mine if there exists an appropriate config- 
uration of hypotheses that would justify the 
generation of additional hypotheses pre- 
scribed by the corresponding action com- 
ponent. Whenever such conditions are sat- 
isfied, the action component of the KS is 
invoked to perform the appropriate hy- 
pothesis generation or modification opera- 
tions. For example, the action of the POM 
KS (see Figures 2 and 3) is to create hy- 
potheses at the syllable level. The condition 
for invoking the MOW KS is the creation 
of a syllable hypothesis. Thus the action of 
POM triggers MOW. The invocation con- 
dition of RPOL, the rating KS, is the crea- 
tion or modification of a hypothesis at any 
level; thus POM's actions also trigger 
RPOL. In short, control of KS activation is 
determined by the blackboard actions of 
other KSs, rather than explicit calls from 
other KSs or some central sequencing 
mechanism. This data-directed control re- 
gime permits a more flexible scheduling of 
KS actions in response to changing condi- 
tions on the blackboard. We refer to such 
an ability of a system to exploit its best 
data and most promising methods as op- 
portunistic problem solving [NII78, 
HAYF.79a]. 

While it is true that each condition-ac- 
tion knowledge source is logically indepen- 
dent of the others, effective problem-solv- 
ing activity depends ultimately on the ca- 
pability of the individual KS actions to 
construct cooperatively an overall interpre- 
tation of the utterance. This high-level hy- 
pothesis and its recursive supports repre- 
sent the solution to the understanding 
problem. Since each KS action simply gen- 
erates or modifies hypotheses and links 
based on related information, a large num- 
ber of individual KS invocations may be 
needed to construct an overall interpreta- 
tion. 

Any hypothesis that is included in the 
solution is cooperative with the others. 
Conversely, any hypothesis that is unincor- 
porated into the solution is competitive. In 
a similar way, KS invocations can be con- 
sidered cooperative or competitive depend- 
ing on whether their potential actions 
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would or would not contribute to the same 
solution. Because of the inherent uncer- 
tainty in the speech-understanding task, 
there are inevitably large numbers of plau- 
sible alternative actions in each time inter- 
val of the utterance. Before the correct 
interpretation has been found, we cannot 
evaluate with certainty the prospective 
value of any potential action. Actions ap- 
pear cooperative to the extent to which 
they contribute to the formation and sup- 
port of increasingly comprehensive inter- 
pretations. Conversely, any hypothesis oc- 
cupying the same time interval as another 
hypothesis but not part of its support set 
must be considered competitive. That  is, 
two hypotheses compete if they represent 
incompatible interpretations of the same 
portion of the utterance. As a result, KS 
invocations can be viewed as competitive if 
their likely actions would generate incon- 
sistent hypotheses, and they can be viewed 
as cooperative if their actions would com- 
bine to form more comprehensive or more 
strongly supported hypotheses. 

The major impediment to discovery of 
the best overall interpretation in this 
scheme is the combinatorial explosion of 
KS invocations that can occur. From the 
outset, numerous alternative actions are 
warranted. A purely top-down approach 
would generate a vast number of possible 
actions, if unrestrained. Because certainty 
of recognition is practically never possible 
and substantial numbers of competing hy- 
potheses must be entertained at each time 
interval of analysis, any bottom-up ap- 
proach generates a similarly huge number 
of competing possible actions. Thus addi- 
tional constraints on the problem-solving 
activity must be enforced. This is accom- 
plished by selecting for execution only a 
limited subset of the invoked KSs. 

The objective of selective attention is to 
allocate limited computing resources (pro- 
cessing cycles} to the most important and 
most promising actions. This selectivity in- 
volves three components. First, the proba- 
ble effects of a potential KS action must be 
estimated before it is performed. Second, 
the global significance of an isolated action 
must be deduced from analysis of its coop- 
erative and competitive relationships with 
existing hypotheses; globally significant 

actions are those that contribute to the 
detection, formation, or extension of com- 
binations of redundant hypotheses. Third, 
the desirability of an action must be as- 
sessed in comparison with other potential 
actions. While the inherent uncertainty of 
the speech task precludes error-free per- 
formance of these component tasks, there 
have been devised some approximate 
methods that effectively control the com- 
binatorics and make the speech-under- 
standing problem tractable. 

Selective attention is accomplished in the 
Hearsay-II system by a heuristic scheduler 
which calculates a priority for each action 
and executes, at each time, the waiting 
action with the highest priority [HAYE77a]. 
The priority calculation attempts to esti- 
mate the usefulness of the action in fulfill- 
ing the overall system goal of recognizing 
the utterance. The calculation is based on 
information provided when the condition 
part of a KS is satisfied. This information 
includes the stimulus frame, which is the 
set of hypotheses that satisfied the condi- 
tion, and the response frame, a stylized 
description of the blackboard modifications 
that the KS action is likely to perform. For 
example, consider a syllable-based word hy- 
pothesizer KS (such as MOW); its stimulus 
frame would include the specific syllable 
hypothesis which matched its condition, 
and its response frame would specify the 
expected action of generating word hy- 
potheses in a time interval spanning that of 
the stimulus frame. In addition to this ac- 
tion-specific information, the scheduler 
uses global state information in its calcula- 
tions and considers especially the credibil- 
ity and duration of the best hypotheses in 
each level and time region and the amount 
of processing required from the time the 
current best hypotheses were generated. 
The latter information allows the system to 
reappraise its confidence in its current best 
hypotheses if they are not quickly incor- 
porated into more comprehensive hy- 
potheses. 

Hearsay-II Architecture 

Figure 4 illustrates the primary architec- 
tural features of the Hearsay-II system. At 
the start of each cycle, the scheduler, in 
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accordance with the global state informa- 
tion, calculates a priority for each activity 
(KS condition program or action program) 
in the scheduling queues. The highest prior- 
ity activity is removed from the queues and 
executed. If the activity is a KS condition 
program, it may insert new instances of KS 
action programs into the scheduling 
queues. If the activity is a KS action pro- 
gram, the blackboard monitor notices the 
blackboard changes it makes. Whenever a 
change occurs that  would be of interest to 
a KS condition program, the monitor cre- 
ates an activity in the scheduling queues 
for that  program. The monitor also updates 
the global state information to reflect the 
blackboard modifications. 

1. AN EXAMPLE OF RECOGNITION 

In this section we present a detailed de- 
scription of the Hearsay-II speech system 
understanding one utterance. The task for 
the system is to answer questions about 
and retrieve documents from a collection of 
computer science abstracts (in the area of 

artificial intelligence). Example sentences: 

"Which abstracts refer to theory of computa- 
tion?" 
"List those articles." 
"What has McCarthy written since nineteen sev- 
enty-four?" 

The vocabulary contains 1011 words (in 
which each extended form of a root, e.g., 
the plural of a noun, is counted separately 
if it appears). The grammar defining the 
legal sentences is context-free and includes 
recursion. The style of the grammar is such 
that  there are many more nonterminals 
than in conventional syntactic grammars; 
the information contained in the greater 
number of nodes imbeds semantic and 
pragmatic constraint directly within the 
grammatical structure. For example, in 
place of 'Noun' in a conventional grammar, 
this grammar includes such nonterminals 
as 'Topic', 'Author', 'Year', and 'Publisher'. 
Because of its emphasis on semantic cate- 
gories, this type of grammar is called a 
semantic template grammar or simply a 
semantic grammar [HAYE75, BURT76, 
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H A Y E S 0 ] .  The grammar allows each word 
to be followed, on the average, by 17 other 
words of the vocabulary. 4 The standard de- 
viation of this measure is very high (about 
51), since some words (e.g., "about" or 
"on") can be followed by many others (up 
to 300 in several cases). 

1.1 Introduction to the Example 

We will describe how Hearsay-II under- 
stood the utterance "ARE ANY BY FEI- 
GENBAUM AND FELDMAN? ''5 Each 
major step of the processing is shown; a 
step usually corresponds to the action of a 
knowledge source. Executions of the con- 
dition programs of the KSs are not shown 
explicitly, nor do we list those potential 
knowledge-source actions which are never 
chosen by the scheduler for execution. Ex- 
ecutions of RPOL are also omitted; in order 
to calculate credibility ratings for hy- 
potheses, RPOL runs in high priority im- 
mediately after any KS action that  creates 
or modifies a hypothesis. 

The waveform of the spoken utterance is 
shown in Figure 5a. The "correct" word 
boundaries (determined by human inspec- 
tion) are shown in Figure 5b for reference. 
The remaining sections of Figure 5 contain 
all the hypotheses created by the KSs. Each 
hypothesis is represented by a box; the 
box's horizontal position indicates the lo- 
cation of the hypothesis within the utter- 
ance. The hypotheses are grouped by level: 
segment, syllable, word, word sequence, 
and phrase. Links between hypotheses are 
not shown. The processing will be described 
in terms of a sequence of time steps, where 
each step corresponds approximately to KS 
execution governed by one scheduling de- 
cision. Within each hypothesis, the number 
preceding the colon indicates the time step 
during which the hypothesis was created. 

4 Actually,  a family of g rammars ,  varying in the  num-  
ber  of  words (terminals)  and  in the  n u m b e r  and  com- 
plexity of  sen tences  allowed, was generated.  T h e  gram- 
m a r  described here  and  used m mos t  of  the  tes t ing is 
called X05. 

To  improve  clarity, the  descript ion differs f rom the  
actual  compu te r  execution of Hearsay-I I  m a few 
minor  details.  

The symbol following the colon names the 
hypothesis. At the word level and above, an 
asterisk (*) following the symbol indicates 
that  the hypothesis is correct. The trailing 
number within each hypothesis is the cred- 
ibility rating on an arbitrary scale ranging 
from 0 to 100. 

In the step-by-step description, the name 
of the KS executed at each step follows the 
step number. An asterisk following the KS 
name indicates that  the hypotheses in the 
stimulus frame of this KS instantiation are 
all correct. Single numbers in parentheses 
after hypotheses are their credibility rat- 
ings. All times given are in centisecond 
units; thus the duration of the whole utter- 
ance, which was 2.25 seconds, is marked as 
225. When begin- and end-times of hy- 
potheses are given, they appear as two 
numbers separated by a colon (e.g., 52:82). 
As in the figure, correct hypotheses are 
marked with an asterisk. 

1.2 The Example 

The utterance is recorded by a medium- 
quality Electro-Voice RE-51 close-speaking 
headset microphone in a moderately noisy 
environment (>65 dB). The audio signal is 
low-pass filtered and 9-bit sampled at 10 
kHz. All subsequent processing, including 
the control of the A/D converter, is per- 
formed digitally on a time-shared PDP-10 
computer. Four acoustic parameters (called 
ZAPDASH) are derived by simple algo- 
rithms operating directly on the sampled 
signal [GOLD77]. These parameters are ex- 
tracted in real time and are used initially to 
detect the beginning and end of the utter- 
ance. 

Step 1. KS: SEG. 
Stimulus: Creation of ZAPDASH parameters 
for the utterance. 
Action: Create segment hypotheses. 

The ZAPDASH parameters are used by 
the SEG knowledge source as the basis for 
an acoustic segmentation and classification 
of the utterance [GILL78]. This segmenta- 
tion is accomplished by an iterative refine- 
ment technique: First, silence is separated 
from nonsilence; then the nonsilence is bro- 
ken down into the sonorant and nonsonor- 
ant regions, and so on. Eventually five 
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FIGURE 5 The example utterance. (a) the waveform of "Are any by Feigenbaum and Feldman?"; (b) the 
correct words (for reference), (c) segments; (d) syllable classes; (e) words (created by MOW), (f) words 
(created by VERIFY), (g) word sequences, (h) phrases. (See facing page for Figure 5e-h.) 

225 

classes of segments are produced: silence, 
sonorant  peak, sonorant  nonpeak, fricative, 
and flap. Associated with each classified 
segment  is its duration, absolute amplitude, 
and ampli tude relative to its neighboring 
segments  (i.e., local peak, local valley, or 
plateau).  T h e  segments are contiguous and 
nonoverlapping, with one class designation 
for each. 

SEG also does a finer labeling of each 
segment,  using a reper tory  of 98 phonelike 
labels. Each  of the labels is characterized 
by  a vector  of autocorrelat ion coefficients 
[ITAK75]. These  template  vectors were gen- 
eralized from manual ly  labeled speaker- 
specific training data. The  labeling process 
matches  the central  port ion of each seg- 
ment  against each of the templates  using 
the I takura  metr ic  and produces a vector  of 
98 numbers.  T h e  i th number  is an est imate 
of the (negative log) probabil i ty tha t  the 

segment  represents  an occurrence of the i th 
al lophone in the  label set. For  each seg- 
ment ,  SEG creates a hypothesis  at  the seg- 
men t  level and associates with it the  vector  
of es t imated al lophone probabilities. Th e  
several  highest  ra ted  labels of each segment 
are shown in Figure 5c. 

Step 2. KS: WORD-CTL. 
Stimulus: Start of processing. 
Action: Create goal hypotheses at the word 
level. These will control the amount of hy- 
pothesization that MOW will do. (The goal 
hypotheses are not shown in Figure 5.) 

Step 3. KS: WORD-SEQ-CTL. 
Stimulus: Start of processing. 
Action: Create goal hypotheses at the word- 
sequence level. These will control the amount 
of hypothesization that WORD-SEQ will do. 

Step 4. KS: POM. 
Stimulus: New segment hypotheses. 
Action: Create syllable-class hypotheses. 
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PHONE CLASSES USED TO DEFINE THE 

SYLLABLE CLASSES 

Code Phone Class Phones in Class 

A A-like AE, AA, AH, AO, AX 
I I-like IY, IH, EY, EH, IX, AY 
U U-like OW, UH, U, UW, ER, AW, 

OY, EL, EM, EN 
L Liquid Y, W, R, L 
N Nasal M, N, NX 
P Stop P, T, K, B, D, G, DX 
F Fricative HH, F, TH, S, SH, V, DH, 

Z, ZH, CH, JH, WH 

Using the labeled segments as input, the 
POM knowledge source [SMIT76] generates 
hypotheses for likely syllable classes. This 
is done by first identifying syllable nuclei 
and then parsing outward from each nu- 
cleus, using a probabilistic grammar with 
production rules of the form: 

syllable-class --* segment-sequence. 

The rules and their probabilities are in- 
duced by an off-line program that trains on 
manually segmented and labeled utter- 
ances. For each nucleus position, several 
(typically three to eight} competing sylla- 
ble-class hypotheses may be generated. 

Figure 5d shows the syllable-class hy- 
potheses created. Each class name is made 
up of single-letter codes representing 
classes of phones, as given in Table 1. 

Step 5. KS: MOW. 
Stimulus: New syllable hypotheses. 6 
Action: Create word hypotheses. 

The syllable classes are used by MOW in 
step 5 to hypothesize words. Each of the 
1011 words in the vocabulary is specified by 
a pronunciation description. For word hy- 
pothesization purposes, an inverted form of 
the dictionary is kept; this associates each 
syllable class with all words whose pronun- 
ciation contains it. The M O W  KS [SMIT76] 
looks up each hypothesized syllable class in 
the dictionary and generates word candi- 
dates from among those words containing 
that syllable class. For each word that is 
multisyllabic, all of the syllables in one of 
the pronunciations must match with a rat- 
ing above a specified threshold. Typically, 

MOW will also be reinvoked upon a modification to 
the word goal hypotheses by WORD-CTL. 
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about 50 words of the 1011-word vocabulary 
are generated at each syllable nucleus po- 
sition. 

Finally, the generated word candidates 
are rated and their begin- and end-times 
adjusted by the WIZARD procedure 
[McKE77]. For each word in the vocabu- 
lary, WIZARD has a network description 
of its possible pronunciations. A word rat- 
ing is calculated by finding the one path 
through the network which most closely 
matches the labeled segments, using the 
probabilities associated with the segment 
for each label; the resultant rating reflects 
the difference between this optimal path 
and the segment labels. 7 

Processing to this point has resulted in a 
set of bottom-up word candidates. Each 
word includes a begin-time, an end-time, 
and a credibility rating. MOW selects a 
subset of these words, based on their times 
and ratings, to be hypothesized; these se- 
lected word hypotheses form the base for 
the top-end processing. Words not imme- 
diately hypothesized are retained internally 
by MOW for possible later hypothesiza- 
tion. s 

The amount of hypothesization that 
MOW does is controlled by the WORD- 
CTL (Word Control) KS. At step 2, 
WORD-CTL created initial goal hy- 
potheses at the word level; these are inter- 
preted by MOW as indicating how many 
word hypotheses to at tempt to create in 
each time area. Subsequently, WORD-CTL 
may retrigger and modify the goal hy- 
potheses (and thus retrigger MOW) if the 
overall search process stagnates; this con- 
dition is recognized when there are no wait- 
ing KS instantiations above a threshold 
priority or when the global measures of 
current state of the problem solution have 

7 WIZARD is, in effect, a miniature version of the 
HARPY speech-recognition system (see Section 2 3), 
except that ~t has a network for each word, rather 
than one network contaimng all sentences 

s Since the September 1976 version, the POM and 
MOW KSs have been replaced by N O A H  [SMIT77, 
SMIT81]. This KS outperforms, m both speed and 
accuracy, POM and MOW (with WIZARD) on the 
1011-word vocabulary and is able to handle much 
larger vocabularies; its performance degradation is 
only logarithmm m vocabulary size, in the range of 500 
to 19,000 words. 
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not improved in the last several KS execu- 
tions. 

WORD-CTL (and WORD-SEQ-CTL) 
are examples of KSs not directly involved 
in the hypothesizing and testing of partial 
solutions. Instead, these KSs control the 
search by influencing the activations of 
other KSs. These policy KSs impose global 
search strategies on the basic priority 
scheduling mechanism. For example, MOW 
is a generator of word hypotheses {from the 
candidates it creates internally) and 
WORD-CTL controls the number to be 
hypothesized. This clear separation of pol- 
icy from mechanism has facilitated experi- 
mentation with various control schemes. A 
trivial change to WORD-CTL such that 
goal hypotheses are generated only at the 
start of the utterance (left-hand end) re- 
sults in MOW creating word hypotheses 
only at the start, thus forcing all top-end 
processing to be left-to-right (see Section 
3.2). 

In this example four words (ARE, BY, 
AND, and FELDMAN) of the six in the 
utterance were correctly hypothesized; 86 
incorrect hypotheses were generated (see 
Figure 5e). The 90 words that were hypoth- 
esized represent approximately 1.5 percent 
of the 1011-word vocabulary for each one 
of the six words in the utterance. 

In addition, two unique word-level hy- 
potheses are generated before the first and 
after the last segment of the utterance to 
denote the start and end of utterance, re- 
spectively. They are denoted by [ and ]. 

Step 6. KS: WORD-SEQ. 
Stimulus: New words created bottom-up. 
Action: Create four word-sequence hy- 
potheses: 

[-ARE* (97, 0: 28), 
AND-FELDMAN-]*(90, 145: 225), 
EIGHT(85, 48 : 57). 
SHAW-AND-MARVIN(75, 72 : 157), 

The WORD-SEQ knowledge source 
[LEss77a] has the task of generating, from 
the bottom-up word hypotheses, a small set 
(about three to ten) of word-sequence hy- 
potheses. Each of these sequences, or is- 
lands, can be used as the basis for expan- 
sion into larger islands, which it is hoped 
will culminate in a hypothesis spanning the 
entire utterance. Multiword islands are 
used rather than single-word islands be- 
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cause of the relatively poor reliability of 
ratings of single words. With multiword 
islands, syntactic and coarticulation con- 
straints can be used to increase the relia- 
bility of the ratings. 

WORD-SEQ uses three kinds of knowl- 
edge to generate multiword islands effi- 
ciently: 

(1) A table derived from the grammar in- 
dicates for every ordered pair of words 
in the vocabulary (1011 × 1011) 
whether that pair can occur in sequence 
within some sentence of the defined 
language. This binary table, whose den- 
sity of ones for the X05 grammar is 1.7 
percent, defines a language-adjacent 
relation. 

(2) Acoustic-phonetic knowledge, embod- 
ied in the JUNCT (juncture) procedure 
[CRoN77], is applied to pairs of word 
hypotheses and is used to decide if that 
pair might be considered to be time- 
adjacent in the utterance. JUNCT uses 
the dictionary pronunciations, and ex- 
amines the segments at their juncture 
(gap or overlap) in making its decision. 

(3) Statistical knowledge is used to assess 
the credibility of generated alternative 
word sequences and to terminate the 
search for additional candidates when 
the chance of finding improved hy- 
potheses drops. The statistics are gen- 
erated from previously observed behav- 
ior of WORD-SEQ and are based on 
the number of hypotheses generable 
from the given bottom-up word hy- 
potheses and their ratings. 

WORD-SEQ takes the highest rated single 
words and generates multiword sequences 
by expanding them with other hypothesized 
words that are both time- and language- 
adjacent. This expansion is guided by cred- 
ibility ratings generated by using the statis- 
tical knowledge. The best of these word 
sequences (which occasionally includes sin- 
gle words) are hypothesized. 

The WORD-SEQ- CTL (Word-Se- 
quence-Control) KS controls the amount of 
hypothesization that WORD-SEQ does by 
creating "goal" hypotheses that WORD- 
SEQ interprets as indicating how many hy- 
potheses to create. This provides the same 
kind of separation of policy and mechanism 
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achieved in the MOW/WORD-CTL pair of 
KSs. WORD-SEQ-CTL fired at the start of 
processing, at step 3, in order to create the 
goal hypotheses. Subsequently, WORD- 
SEQ-CTL may trigger if stagnation is rec- 
ognized; it then modifies the word-sequence 
goal hypotheses, thus stimulating WORD- 
SEQ to generate new islands from which 
the search may prove more fruitful. 
WORD-SEQ may generate the additional 
hypotheses by decomposing word se- 
quences already on the blackboard or by 
generating islands previously discarded be- 
cause their ratings seemed too low. 

Step 6 results in the generation of four 
multiword sequences (see Figure 5g). These 
are used as initial, alternative anchor points 
for additional searching. Note that two of 
these islands are correct, each representing 
an alternative search path that potentially 
can lead to a correct interpretation of the 
utterance. This ability to derive the correct 
interpretation in multiple ways makes the 
system more robust. For example, there 
have been cases in which a complete inter- 
pretation could not be constructed from 
one correct island because of KS errors but  
was derived from another island. 

High-level processing on the multiword 
sequences is accomplished by the following 
KSs: PARSE, PREDICT,  VERIFY, CON- 
CAT, STOP, and WORD-SEQ-CTL. Since 
an execution of the VERIFY KS will often 
immediately follow the execution of the 
PREDICT KS {each on the same hypoth- 
esis), we have combined the descriptions of 
the two KS executions into one step for 
ease of understanding. 

Because the syntactic constraint used in 
the generation of the word sequences is 
only pairwise, a sequence longer than two 
words might not be syntactically accepta- 
ble. The PARSE knowledge source 
[HAYE77b] can parse a word sequence of 
arbitrary length, using the full grammatical 
constraints. This parsing does not require 
that  the word sequence form a complete 
nonterminal in the grammar or that the 
sequence be sentence-initial or sentence-fi- 
nal; the words need only occur contiguously 
in some sentence of the language. If a se- 
quence hypothesis does not parse, it is 
marked as "rejected." Otherwise a phrase 
hypothesis is created. Associated with the 
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phrase hypothesis is the word sequence 
that supports it, as well as information 
about the parse(s). 

Steps 7 through 10 show the PARSE KS 
processing each of the multiword se- 
quences. In this example all four multiword 
sequences were verified as valid language 
fragments. However, if a multiword se- 
quence had been rejected, the WORD-SEQ 
KS might have been reinvoked to generate 
additional multiword sequences in the time 
area of the rejected one. WORD-SEQ 
would generate the additional hypotheses 
by decomposing {shortening) word-se- 
quence islands already on the blackboard 
or by regenerating islands which may not 
have been hypothesized initially owing to 
low ratings. Additional word-sequence hy- 
potheses might also be generated in re- 
sponse to the modification of "goal" hy- 
potheses at the word-sequence level by the 
WORD-SEQ-CTL. Such a structuring of a 
KS as a generator is a primary mechanism 
in Hearsay-II for limiting the number of 
hypotheses created on the blackboard and 
thereby reducing the danger of a combina- 
torial explosion of KS activity in reaction 
to those hypotheses. 

The scheduling strategy is parameterized 
to delay phrase-level processing until an 
adequate number of highly rated phrase 
hypothesis islands is generated. This strat- 
egy is not built directly into the scheduler, 
but rather is accomplished by (1) appropri- 
ately setting external scheduling param- 
eters {i.e., the high setting of the priorities 
of WORD-SEQ and PARSE KS actions in 
contrast to those of PREDICT,  VERIFY, 
and CONCAT), 9 and (2) taking into ac- 
count the current state of hypotheses on 
the phrase level of the blackboard in eval- 
uating the usefulness of potential KS ac- 
tions as described by their response frames. 

Step Z KS: PARSE*. 
Stimulus: [-ARE* (word sequence). 
Action: Create phrase: [+ARE* 07, 0: 28). 

Step 8. KS: PARSE*. 
Stimulus: AND-FELDMAN-]* {word se- 
quence). 

9 These settings are determined empirically by observ- 
ing a number of training runs. They are not adjusted 
during test runs of the system 
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Action: Create phrase: 
AND+FELDMAN+]* (90, 145:225). 

Step 9. KS: PARSE. 
Stimulus: EIGHT {word sequence). 
Action: Create phrase: EIGHT (85, 48:57). 

Step 10. KS: PARSE. 
Stimulus: SHAW-AND-MARVIN {word 
sequence). 
Action: Create phrase: SHAW+AND+MAR- 
VIN (75, 72 : 157). 

Each of the four executions of the 
PARSE KS (steps 7-10) results in the cre- 
ation of a phrase hypothesis; these are 
shown in Figure 5h. Each of these hy- 
potheses causes an invocation of the PRE- 
DICT KS. 

The P R E D I C T  knowledge source [HAYE 
77b] can, for any phrase hypothesis, gen- 
erate predictions of all words which can 
immediately precede and all which can im- 
mediately follow that phrase in the lan- 
guage. In generating these predictions this 
KS uses the parsing information attached 
to the phrase hypothesis by the parsing 
component. The action of PREDICT is to 
attach a "word-predictor" attribute to the 
hypothesis which specifies the predicted 
words. Not all of these PREDICT KS in- 
stantiations are necessarily executed (and 
thus indicated as a step in the execution 
history). For instance, further processing 
on the phrases [+ARE and AND+FELD- 
MAN÷] is sufficiently positive that the 
scheduler never executes the instantiation 
of PREDICT for the phrase SHAW+ 
AND+MARVIN (created in step 10). 

The V E R I F Y  KS can attempt to verify 
the existence of or reject each such pre- 
dicted word in the context of its predicting 
phrase. If verified, a confidence rating for 
the word is also generated. The verification 
proceeds as follows: First, if the word has 
been hypothesized previously and passes 
the test for time-adjacency (by the JUNCT 
procedure), it is marked as verified and the 
word hypothesis is associated with the pre- 
diction. {Note that some word hypotheses 
may thus become associated with several 
different phrases.) Second, a search is made 
of the internal store created by MOW to 
see if the prediction can be matched by a 
previously generated word candidate which 
had not yet been hypothesized. Again, 
J U N C T  makes a judgment about the plau- 

sibility of the time-adjacency relationship 
between the predicting phrase and the pre- 
dicted word. Finally, WIZARD compares 
its word-pronunciation network with the 
segments in an attempt to verify the pre- 
diction. 

For each of these different kinds of veri- 
fication, the approximate begin-time (end- 
time if verifying an antecedent prediction) 
of the word being predicted following (pre- 
ceding) the phrase is taken to be the end- 
time (begin-time) of the phrase. The end- 
time (begin-time) of the predicted word is 
not known, and in fact one function of the 
verification step is to generate an approxi- 
mate end-time (begin-time) for the verified 
word. In general, it is possible to generate 
several different "versions" of the word 
which differ primarily in their end-times 
(begin-times); since no context following 
(preceding) the predicted word is given, 
several different estimates of the end (be- 
ginning) of the word may be plausible solely 
on the basis of the segmental information. 
These alternatives give rise to the creation 
of competing hypotheses. 

VERIFY is invoked when a KS {PRE- 
DICT) places a "word-predictor" attribute 
on a phrase hypothesis. For each word on 
the attribute list that it verifies, it creates 
a word hypothesis (if one does not already 
exist), and the word is placed on a "word- 
verification" attribute of the phrase hy- 
pothesis. Word hypotheses created by 
VERIFY are shown in Figure 5f. 

The CONCAT KS [HAYE77b] is invoked 
on phrase hypotheses which have word-ver- 
ification attributes attached. For each ver- 
ified word, the phrase and new word are 
parsed together and a new, extended phrase 
hypothesis is created (as shown in Figure 
5h). The new hypothesis receives a rating 
based on the ratings of its component 
words. If all word predictions preceding or 
following the phrase had been rejected, the 
phrase hypothesis itself would be marked 
as "rejected." Similarly, the underlying 
word-sequence hypothesis is rejected if all 
the phrase hypotheses it supports are re- 
jected. (This action would retrigger 
WORD-SEQ to generate more word se- 
quences.) 

Step 11. KS: PREDICT & VERIFY*. 
Stimulus: [+ARE* (phrase). 
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Action: Predict (from the grammar) 292 words 
following. Reject (using the acoustic informa- 
tion~ 277 of them. The four highest rated of 
the 15 verified words are 

REDDY(85, 26: 52), 
ANY*(65, 24:49), 
HUGH(55, 30:39), and 
YOU(55, 28: 39). 

Step 12. KS: CONCAT. 
Stimulus: [+ARE* (phrase), REDDY (word). 
Action: Create phrase: [+ARE+REDDY (91, 
0: 52). 

Step 13. KS: CONCAT*. 
Stimulus: [+ARE* (phrase), ANY* (word). 
Action: Create phrase: [+ARE+ANY* (86, 
0:49). 

In steps 11 through 13 the highly rated 
phrase [+ARE is extended and results in 
the generation of the additional phrases 
[ + A R E + R E D D Y  and [+ARE+ANY.  
These phrases, however, are not immedi- 
ately extended because the predicted words 
REDDY and ANY are not rated suffi- 
ciently high. Instead, the scheduler, pursu- 
ing a strategy more conservative than strict 
best-first, investigates phrases that look al- 
most as good as the best one. This sched- 
uling strategy results in the execution of 
the PREDICT and VERIFY KSs on two of 
the other initial phrase islands: AND÷ 
FELDMAN+] and EIGHT. 

Step 14. KS: PREDICT & VERIFY*. 
Stimulus: AND+FELDMAN+]* (phrase). 
Action: Predict 100 words preceding. Reject 
76 of them. The best of the verified 24 (in 
descending rating order) are 

FEIGENBAUM*(80, 72:150), 
WEIZENBAUM(70, 72:150), 
ULLMAN(70, 116:150), 
NORMAN(70, 108: 150), and 
NEWBORN(70, 108: 150). 

Step 15. KS: PREDICT & VERIFY. 
Stimulus: EIGHT (phrase). 
Action: Predict the word NINE following and 
verify it (80, 52:82). Predict SEVEN preced- 
ing, but reject this because of mismatch with 
the acoustic segments. 

The attempt to extend the phrase 
EIGHT at step 15 is not successful; none of 
the grammatically predicted words are 
acoustically verified, even using a lenient 
threshold. Thus this phrase is marked re- 
jected and is dropped from further consid- 
eration. 

Step 16. KS: CONCAT*. 
Stimulus: FEIGENBAUM* (word), AND+ 
FELDMAN+]* (phrase). 
Action: Create phrase: FEIGENBAUM+ 
AND+FELDMAN+]* (85, 72 : 225). 

Beginning with step 16, extending the 
phrase AND+FELDMAN+] with the 
highly rated word FEIGENBAUM looks 
sufficiently promising for processing to con- 
tinue now in a more depth-first manner 
along the path FEIGENBAUM+AND+ 
FELDMAN+] through step 25. l° Process- 
ing on the path [+ARE+REDDY does not 
resume until step 26. 

Step 17. KS: PREDICT & VERIFY*. 
Stimulus: FEIGENBAUM+AND+FELD- 
MAN+]* (phrase). 
Action: Predict eight preceding words. Reject 
one (DISCUSS). Find two already on the 
blackboard: 

BY*(80, 52: 72) and 
ABOUT(75, 48: 72). 

Verify five others: 
NOT(75, 49: 82), 
ED(75, 67: 72), 
CITE(70, 49: 82), 
QUOTE(70, 49: 82), 
CITES(65, 49: 82). 

In steps 18 through 24, alternative word 
extensions of F E I G E N B A U M + A N D +  
FELDMAN+] are explored. As a result of 
this exploration the phrase BY+FEIGEN- 
BAUM+AND+FELDMAN+] is consid- 
ered the most credible. 

Step 18. KS CONCAT*. 
Stimulus: BY* (word), FEIGENBAUM+ 
AND+FELDMAN+]* (phrase). 
Action: Create phrase: BY+FEIGEN- 
BAUM+AND+FELDMAN+]* (84, 52:225). 

Step 19. KS: CONCAT. 
Stimulus: ABOUT (word), FEIGENBAUM+ 
AND+FELDMAN+]* (phrase). 
Action: Create phrase: ABOUT+FEIGEN- 
BAUM+AND+FELDMAN+] (83, 48"225). 

Step 20. KS: PREDICT & VERIFY. 
Stimulus: 
ABOUT+FEIGENBAUM+AND+ FELD- 
MAN+] (phrase). 

1o The rating on a hypothesis is only one parameter 
used by the scheduler to assign priorities to waiting 
KS mstantiatlons. In particular, the length of a hy- 
pothesis 1s also important. Thus, FEIGENBAUM with 
a rating of 80 looks better than REDDY with a rating 
of 85 because it is much longer. 
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Action: Predict one preceding word: WHAT. 
Verify it (10, 20:49). 

Step 21. KS: CONCAT 
Stimulus: CITE (word), FEIGENBAUM+ 
AND+FELDMAN+] (phrase). 
Action: Create phrase: CITE+FEIGEN- 
BAUM+AND+FELDMAN+] (83, 49 : 225). 

Step 22. KS: PREDICT & VERIFY. 
Stimulus: CITE+FEIGENBAUM+AND+ 
FELDMAN+] (phrase). 
Action: Predict four preceding words. Reject 
two of them: BOOKS, PAPERS. Verify 

THESE (25, 28:49), 
YEAR (20, 30: 49). 

Step 23. KS: PREDICT & VERIFY*. 
Stimulus: BY+FEIGENBAUM+AND+ 
FELDMAN+]* (phrase). 
Action: Predict ten preceding words. Reject 
five: ABSTRACTS, ARE, BOOKS, PA- 
PERS, REFERENCED. Find two already 
on the blackboard: 

ANY* (65, 24: 49), 
THESE (25, 28: 49). 

Verify three more: 
ARTICLE (25, 9: 52), 
WRITTEN (25, 24: 52), 
ARTICLES (10, 9: 52). 

Step 24. KS: CONCAT. 
Stimulus: NOT (word), FEIGENBAUM+ 
AND+FELDMAN+]*. 
Action: Create phrase: NOT÷FEIGEN- 
BAUM+AND+FELDMAN+] (83, 49 : 225). 

Step 25. KS: CONCAT*. 
Stimulus: ANY* (word), BY+FEIGEN- 
BAUM+AND+FELDMAN+]* (phrase). 
Action: Create phrase: ANY+BY+FEIGEN- 
BAUM+AND+FELDMAN+]* (82, 24: 225). 
[+ARE+ANY+BY+FEIGENBAUM+ 
AND+FELDMAN+]* (85, 0:225) is also cre- 
ated, from [+ARE+ANY and BY+FEIGEN- 
BAUM+ AND+FELDMAN+]. 

In step 25 the word ANY is concatenated 
onto the phrase BY+FEIGENBAUM+ 
AND+FELDMAN+].  However, instead of 
only creating this new combined phrase, 
the CONCAT KS also notices that the word 
ANY is the last word of the phrase 
[+ARE+ANY; this leads the CONCAT KS 
to merge the two adjacent phrases 
[+ARE+ANY and BY+FEIGENBAUM+ 
AND÷FELDMAN+] into a single phrase, 
after first ascertaining that the resulting 
phrase is grammatical. This merging by- 
passes the several single-word PREDICT, 
VERIFY, and CONCAT actions needed to 

generate the enlarged hypothesis from 
either of the two original hypotheses in an 
incremental fashion. Thus the recognition 
process is sped up in two ways: (1) several 
single-word actions are eliminated, and (2) 
the scheduler postpones KS actions on 
competing {incorrect) hypotheses since 
these potential actions seem less attractive 
than actions on the new, enlarged hypoth- 
esis. Such mergings occur in approximately 
half of the runs on the 1011-word grammar 
with the small branching factor (X05); in 
grammars with higher branching factors, 
the merging of phrase hypotheses occurs 
with even higher frequency. 

It has been our experience that  just as a 
multiword island is more credible than the 
individual words that  compose it, so a 
merged phrase hypothesis is more credible 
than its two constituent phrases. For ex- 
ample, about 80 percent of the mergings in 
X05 runs produce correct hypotheses. In 
more complex grammars this statistic drops 
to about 35 percent, but correspondingly 
more phrase mergings occur. 

The newly created merged phrase also 
happens to be a complete sentence; i.e., it 
has begin- and end-of-utterance markers as 
its extreme constituents. Thus it is a can- 
didate for the interpretation of the utter- 
ance. 

Step 26. KS: STOP. 
Stimulus: [+ARE+ANY+BY+FEIGEN- 
BAUM+AND+FELDMAN+]* (complete 
sentence). 
Action: Deactivation of several dozen com- 
peting hypotheses. 

These start- and end-of-utterance 
"words" {denoted by [ and ]) appear in the 
syntactic specification of the language as 
the first and last terminals of every com- 
plete sentence. Thus any verified phrase 
that includes these as its extreme constitu- 
ents is a complete sentence and spans the 
entire utterance. Such a sentence becomes 
a candidate for selection as the system's 
recognition result. 

In general, the control and rating strate- 
gies do not guarantee that  the first such 
complete spanning hypothesis found will 
have the highest rating of all possible span- 
ning sentence hypotheses that  might be 
found if the search were allowed to con- 
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tinue, so the  system does not  just  stop with 
the first one generated, n However  the char- 
acteristics of such a hypothesis  are used by 
the  STOP knowledge source to prune f rom 
fur ther  consideration o ther  partial  hy- 
potheses  which, because of  their  low rat- 
ings, are unlikely to be extendible into span- 
ning hypotheses  with ratings higher than  
the best  already-discovered spanning sen- 
tence. This  heuristic pruning procedure  is 
based on the form of the ratings function 
(i.e., how the rat ing of the phrase is derived 
from its const i tuent  words). The  pruning 
procedure  considers each partial  phrase 
and uses the ratings of other  word hy- 
potheses  in the t ime areas not  covered by 
the phrase to determine if the phrase might  
be extendible to a phrase ra ted  higher than  
the spanning hypothesis;  if not, the  partial  
phrase is pruned.  This  pruning process and 
the rating and halting policies are discussed 
in MOST77. 

Of the hypotheses  not  discarded, exten- 
sions to the phrase [+ARE now appear  as 
the most  likely candidates  to produce new 
and bet te r  complete phrases. This  search 
for be t te r  complete  phrases results, in steps 
27 through 36, in the examination of nu- 
merous  al ternative extensions, each of 
which is promising. 

Step 27. KS: PREDICT & VERIFY. 
Stimulus: [+ARE+REDDY. 
Action: Predict three following words. Verify 
CITED (60, 52:86), OR (30, 52:67), AND 
(25, 52: 82). 

Step 28. KS: CONCAT. 
Stimulus: [+ARE* (phrase), HUGH (word). 
Action: Create phrase: [+ARE+HUGH (83, 
0: 39). 

Step 29. KS: CONCAT. 
Stimulus' [+ARE ,(phrase), YOU (word). 
Action: Create pl~rase: [+ARE+YOU (83, 
0: 39). 

Step 30. KS: CONCAT. 
Stimulus: [+ARE+REDDY (phrase), 
CITED (word). 

l] An alternative control strategy based on the Short- 
fall Denmty scoring function and assumptions of the 
completeness of processing at the word level can guar- 
antee that the first complete interpretation generated 
is the best possible (see Section 2.1). This results in a 
more conservative, breadth-frost search, in whwh more 
alternatives are explored 

V. R. Lesser, and D. R. Reddy 

Action: Create phrase: [+ARE+REDDY+ 
CITED (80, 0: 86). 

Step 31. KS: PREDICT & VERIFY. 
Stimulus: [+ARE+REDDY+CITED 
(phrase). 
Action: Predict two following words. Verify 
BY(75, 83: 98), IN(20, 86:114). 

Step 32. KS: CONCAT. 
Stimulus: [+ARE+REDDY+CITED 
(phrase), BY (word). 
Action: Create phrase: [+ARE+REDDY+ 
CITED+BY (80, 0: 98). 

Step 33. KS: PREDICT & VERIFY. 
Stimulus: [+ARE+REDDY+CITED+BY 
(phrase). 
Action: Predict one following word. Verify 
ANY (30, 105:126). 

Step 34. KS: PREDICT & VERIFY. 
Stimulus: [+ARE+HUGH (phrase). 
Action: Predict one following word. Verify 
NAGEL (40, 42: 63). 

Step 35. KS: PREDICT & VERIFY. 
Stimulus: [+ARE+YOU (phrase). 
Action: Predict three following words. Reject 
USUALLY. Venfy 

REGULARLY (25, 39:116), 
ALWAYS (15, 39: 72). 

Step 36. KS: CONCAT. 
Stimulus: [+ARE+REDDY (phrase), OR 
(word). 
Action: Create phrase" [+ARE+REDDY+ 
OR (79, 0 : 67). 

Step 37. KS: CONCAT. 
Stimulus: [+ARE+REDDY (phrase), AND 
(word). 
Action: Create phrase: [+ARE+REDDY+ 
AND (78, 0: 82). 

Step 38. KS" STOP. 
Stimulus: Stagnation 
Action: Stop search and accept [+ARE+ 
ANY+BY+FEIGENBAUM+AND+FELD- 
MAN+]*. 

The  recognition processing finally halts 
in one of two ways: First, there  may  be no 
more  part ial  hypotheses  left to consider for 
predict ion and extension. Because of the 
combinatorics  of the grammar  and the like- 
lihood of finding some prediction ra ted at 
least above the absolute reject ion thresh- 
old, this terminat ion happens  when the 
heuristic pruning procedure  used by S T O P  
and R P O L  has el iminated all competitors.  
Such a hal t  occurs here  as S T O P  decides 
to te rminate  the search process and accept  
the  phrase [ + A R E + A N Y + B Y + F E I G E N -  

~mputing Surveys, Vol. 12, No. 2, June 1980 



Hearsay.H Speech- Understanding System • 233 

B AUM +AND+FELDMAN+]  as the cor- 
rect interpretation. In general there might 
be more than one complete sentence hy- 
pothesis at this point; STOP would select 
the one with the highest rating. 

A second kind of halt occurs if the system 
expends its total allowed computing re- 
sources (time or space). (The actual thresh- 
olds used are set according to the past 
performance of the system on similar sen- 
tences, i.e., of the given length and over the 
same vocabulary and grammar.) In that 
case a selection of several of the highest 
rated phrase hypotheses is the result of the 
recognition process, with the selection 
biased toward the longest phrases which 
overlap (in time) the least. 

Step 39. KS: SEMANT*. 
Stimulus: Recognized utterance: [+ARE+ 
ANY+BY+FEIGENBAUM+AND+FELD- 
MAN+]*. 
Action: Generate an interpretation for the 
database retrieval system. 

The S E M A N T  knowledge source 
[Fox77] takes the word sequence(s) result 
of the recognition process and constructs 
an interpretation in an unambiguous for- 
mat for interaction with the database that 
the speaker is querying. The interpretation 
is constructed by actions associated with 
"semantically interesting" nonterminals 
(which have been prespecified for the gram- 
mar) in the parse tree(s) of the recognized 
sequence(s). In our example the following 
structure is produced: 

F: [U : ([ARE ANY BY FEIGENBAUM AND 
FELDMAN]) 

N: ($PRUNE!LIST 
S: ($PRUNE!LIST!AUTHOR K: (A: 
((FEIGENBAUM • FELDMAN)))))] 

F denotes the total message. U contains the 
utterance itself. N indicates the main type 
of the utterance (e.g., P R U N E  a previously 
specified list of citations, REQUEST, 
HELP), S the subtype (e.g., P R U N E  a list 
according to its author). K denotes the dif- 
ferent attributes associated with the utter- 
ance (e.g., A is the author, T is the topic). 

If recognition produces more than one 
partial sequence, SEMANT constructs a 
maximally consistent interpretation based 
on all of the partial sentences, taking into 

account the rating, temporal position, and 
semantic consistency of the partial sen- 
tences. 

The DISCO (discourse) knowledge 
source [HAYE77C] accepts the formatted 
interpretation of SEMANT and produces 
a response to the speaker. This response is 
often the display of a selected portion of 
the queried database. In order to retain a 
coherent interpretation across sentences, 
DISCO maintains a finite-state model of 
the ongoing discourse. 

2. COMPARISON WITH OTHER SPEECH- 
UNDERSTANDING SYSTEMS 

In addition to Hearsay-II, several other 
speech-understanding systems were also 
developed as part of the Defense Advanced 
Research Projects Agency (DARPA) re- 
search program in speech understanding 
from 1971 to 1976 [MEDR78]. As a way of 
concretely orienting the research, a com- 
mon set of system performance goals, 
shown in Figure 6, was established by the 
study committee that launched the project 
[NEWE73]. All of the systems are based on 
the idea of diverse, cooperating KSs to han- 
dle the uncertainty in the signal and pro- 
cessing. They differ in the types of knowl- 
edge, interactions of knowledge, represen- 
tation of search space, and control of the 

FIGURE 6. D A R P A  speech-under s t and ing- sys t em 
per formance  goals se t  in 1971. [After  NEWE73 and 
MEDR78.] 

T h e  s y s t e m  should  
• Accept  connec ted  speech  
• f rom m a n y  
• cooperat ive speakers  o f  the  General  Amer ican  Dia- 

lect 
• in a qme t  room 
• us ing a good-quah ty  mmrophone  
• with  shgh t  tun ing  per  speaker  
• r e q m r m g  only na tura l  adap ta t ion  by the  user  
• pe rmi t t ing  a shgh t ly  selected vocabulary  of 1000 

words 
• w~th a highly  artificial syn t ax  and  highly  cons t ra ined 

task 
• providing graceful in teract ion 
• tolerat ing less t h a n  10 percent  s e m a n t m  error 
• in a few t imes  real t ime on a 100-million-instructions- 

per-second mach ine  
• and  be demons t r ab le  in 1976 with a modera te  chance  

of success.  
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search. (They also differ in the tasks and 
languages handled, but we do not address 
those here.) In this section we describe 
three of these systems, Bolt Beranek and 
Newman's (BBN's) HWIM, Stanford Re- 
search Institute's (SRI's) system, and 
Carnegie-Mellon University's (CMU's) 
HARPY, and compare them with Hearsay- 
II along those dimensions. For consistency 
we will use the terminology developed in 
this paper in so far as possible, even though 
it is often not identical to that used by the 
designers of each of the other systems. 12 

Although the performance specifications 
had the strong effect of pointing the various 
efforts in the same directions, the back- 
grounds and motivations of each group led 
to different emphases. For example, BBN's 
expertise in natural-language processing 
and acoustic-phonetics led to an emphasis 

)2 IBM has been funding work with a somewhat differ- 
ent objective [BAHL76]. Its stated goals mandate little 
reharJce on the strong syntactic/semantic/task con- 
stramts exploited by the DARPA projects. This ori- 
entation is usually dubbed speech recognition as dis- 
tmguished from speech understanding 

on those KSs; SRI's interest in semantics 
and discourse strongly influenced its system 
design; and CMU's predilection for system 
organization placed that group in the cen- 
tral position (and led to the Hearsay-II and 
HARPY structures). 

2.1 BBN's HWlM System 
Figure 7 shows the structure of BBN's 
HWIM (Hear What I Mean) system 
[WOOD76, WOLF80]. In overall form, 
HWIM's general processing structure is 
strikingly similar to that of Hearsay-II. Pro- 
cessing of a sentence is bottom-up through 
audio signal digitization, parameter extrac- 
tion, segmentation and labeling, and a scan 
for word hypotheses; this phase is roughly 
similar to Hearsay-II's initial bottom-up 
processing up through the MOW KS. 

Following this initial phase, the Control 
Strategy module takes charge, calling the 
Syntax and Lexical Retrieval KSs as sub- 
routines: 

• The grammar is represented as an aug- 
mented transition network [WOOD70], 
and, as in Hearsay-II, includes semantic 
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and pragmatic knowledge of the domain 
(in this case, "travel planning"). The Syn- 
tax KS combines the functions of Hear- 
say-II's PREDICT and CONCAT KSs. 
Like them, it handles contiguous se- 
quences of words in the language, inde- 
pendently of the phrase structure nonter- 
minal boundaries, as well as the merging 
of phrase hypotheses (i.e., island colli- 
sion). 

• The Lexical Retriever functions in this 
phase much like Hearsay-II's VERIFY 
KS, rating the acoustic match of a pre- 
dicted word at one end of a phrase. Some 
configurations of HWIM also have a KS 
which does an independent, highly relia- 
ble, and very expensive word verification; 
that KS is also called directly by the Con- 
trol Strategy. 

• The Control Strategy module schedules 
the Syntax and Lexical Retrieval KSs op- 
portunistically. To this end it keeps a task 
agenda that prioritizes the actions on the 
most promising phrase hypotheses. The 
task agenda is initialized with single-word 
phrase hypotheses constructed from the 
best word hypotheses generated in the 
bottom-up phase. 

Given these similarities between HWIM 
and Hearsay-II, what besides the content 
of the KSs (which we do not address) are 
the differences? The most significant differ- 
ences involve the mechanisms for instan- 
tiating KSs, scheduling KSs (i.e., selective 
attention for controlling the search), and 
representing, accessing, and combining KS 
results. These differences stem primarily 
from differing design philosophies: 

• The Hearsay-II design was based on the 
assumption that a very general and flexi- 
ble model for KS interaction patterns was 
required because the type, number, and 
interaction patterns of KSs would change 
substantially over the lifetime of the sys- 
tem [LESS75, LEss77b]. Thus we rejected 
an explicit subroutine-like architecture 
for KS interaction because it reduces 
modularity. Rather, the implicit data-di- 
rected approach was taken, in which KSs 
interact uniformly and anonymously via 
the blackboard. 

• The HWIM design evolved out of an 
incremental simulation methodology 
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[WooD73]. In this methodology the over- 
all system is implemented initially with 
some combination of computer programs 
and human simulators, with the latter 
filling the role of components (i.e., KSs 
and scheduling) not fully conceptualized. 
As experience is gained, the human sim- 
ulators are replaced by computer pro- 
grams. Thus by the time the system has 
evolved into a fully operational computer 
program, the type of KSs and their inter- 
action patterns are expected to be stable. 
Modifications after this point aim to im- 
prove the performance of individual KSs 
and their scheduling, with only minor 
changes expected in KS interaction pat- 
terns. From this perspective, developing 
specific explicit structures for explicit KS 
interactions is reasonable. 

Thus HWIM has an explicit control strat- 
egy, in which KSs directly call each other, 
and in which the scheduler has built-in 
knowledge about the specific KSs in the 
system. The Hearsay-II scheduler has no 
such built-in knowledge but  rather is given 
an abstract description of each KS instan- 
tiation by its creator condition program. 

Similarly, one KS communicates with an- 
other in HWIM via ad hoc KS-specific data 
structures. The introduction of a new KS is 
expected to occur very rarely and requires 
either that it adopt some other KS's exist- 
ing data representation or that  its new for- 
mats be integrated into those KSs that will 
interact with it. Hearsay-II's blackboard, 
on the other hand, provides a uniform rep- 
resentation which facilitates experimenta- 
tion with new or highly modified KSs. 

When one KS in a hierarchical structure 
like that in HWIM calls another, it provides 
the called KS with those data it deems 
relevant. The called KS also uses whatever 
data it has retained internally plus what it 
might acquire by calling other KSs. Hear- 
say-II's blackboard, on the other hand, pro- 
vides a place for all data known to all the 
KSs; one KS can use data created by a 
previous KS execution without the creator 
of the data having to know which KS will 
use the data and without the user KS hav- 
ing to know which KS might be able to 
create the data. 

The ability to embed into the HWIM 
system a detailed model of the KSs and 
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their interaction patterns has had its most 
profound effect on the techniques devel- 
oped for scheduling. Several alternative 
scheduling policies were implemented in 
the Control Strategy module. The most 
interesting of these, the "shortfall density 
scoring strategy" [WooD77], can be shown 
formally to guarantee that the first com- 
plete sentence hypothesis constructed by 
the system is the best possible (i.e., highest 
rated) such hypothesis that it will ever be 
able to construct. Heuristic search strate- 
gies with this property are called admissi- 
ble [NILs71]. This contrasts with the ap- 
proximate Hearsay-II scheduling strategy, 
in which there is no guarantee at any point 
that a better interpretation cannot be found 
by continued search. Thus Hearsay-II re- 
quires a heuristic stopping decision, as de- 
scribed in Section 1.2. In HWIM an admis- 
sible strategy is possible because the sched- 
uler can make some strong assumptions 
about the nature of KS processing: in par- 
ticular, the algorithms used by the Lexical 
Retriever KS are such that it does not 
subsequently generate a higher rating for a 
predicted word than that of the highest 
rated word predicted in that utterance lo- 
cation by the initial, bottom-up processing. 

An admissible strategy eliminates errors 
which an approximate strategy may make 
by stopping too soon. However, even when 
an admissible strategy can be constructed, 
it may not be preferable if it generates 
excessive additional search in order to guar- 
antee its admissibility. More discussion of 
this issue in speech understanding can be 
found in WOLF80, WOOD77, MOST77, and 
HAYE80. Discussions of it in more general 
cases can be found in POHL70, HARR74, and 
POHL77. 

Given that hypotheses are rated by KSs, 
combining on a single hypothesis several 
ratings generated by different KSs is a 
problem. A similar problem also occurs 
within a KS when constructing a hypothe- 
sis from several lower level hypotheses; the 
rating of the new one should reflect the 
combination of ratings of its components. 
Hearsay-II uses ad hoc schemes for such 
rating combinations [HAYE77d]. HWIM 
takes a formal approach, using an applica- 
tion of Bayes' theorem. To implement this, 
each KS's ratings are calibrated by using 
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performance statistics gathered on test 
data. This uniform scheme for calibration 
and combination of ratings facilitates add- 
ing and modifying KSs. The issue of eval- 
uating the combination of evidence from 
multiple sources is a recurrent prob- 
lem in knowledge-based systems [SHOR75, 
DUDA78]. 

2.2 SRl's System 

The SRI system [WALK78, WALKS0], 
though never fully operational on a large 
vocabulary task, presents another interest- 
ing variant on structuring a speech-under- 
standing system. Like the HWIM system, 
it uses an explicit control strategy with, 
however, much more control being central- 
ized in the Control Strategy module. The 
designers of the system felt there was "a 
large potential for mutual guidance that 
would not be realized if all knowl- 
edge source communication was indirect" 
[WALK78, p. 84]. Part of this explicit control 
is embedded within the rules that define 
the phrases of the task grammar; each rule, 
in addition to defining the possible constit- 
uent structure for phrases in an extended 
form of BNF, contains procedures for cal- 
culating attributes of phrases and factors 
used in rating phrases. These procedures 
may, in turn, call as subroutines any of the 
knowledge sources in the system. The at- 
tributes include acoustic attributes related 
to the input signal, syntactic attributes 
(e.g., mood and number), semantic attri- 
butes such as the representation of the 
meaning of the phrase, and discourse attri- 
butes for anaphora and ellipsis. Thus the 
phrase itself is the basic unit for integrating 
and controlling knowledge-source execu- 
tion. 

The interpreter of these rules (i.e., the 
Syntax module) is integrated with the 
scheduling components to define a high- 
level Control Strategy module. Like Hear- 
say-II and HWIM, this control module op- 
portunistically executes the syntax rules to 
predict new phrases and words from a given 
phrase hypothesis and executes the word 
verifier to verify predicted words. This 
module maintains a data structure, the 
"parse-net," containing all the word and 
phrase hypotheses constructed, and the at- 
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FIGURE 8. HARPY pronunciation network for the word "Please"  
[After LOWE80.] 
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tributes and factors associated with each 
hypothesis. This data structure is similar to 
a Hearsay-II blackboard restricted to the 
word and phrase levels. Like the black- 
board, it serves to avoid redundant com- 
putation and facilitates the detection of 
possible island collisions. 

As with Hearsay-II and HWIM, the SRI 
Control Strategy module is parameterized 
to permit a number of different strategies, 
such as top-down, bottom-up, island-driv- 
ing, and left-to-right. Using a simulated 
word recognizer, SRI ran a series of exper- 
iments with several different strategies. 
One of the results, also substantiated by 
BBN experiments with HWIM, is that is- 
land-driving is inferior to some forms of 
left-to-right search. This appears to be in 
conflict with the Hearsay-II experimental 
results, which show island-driving clearly 
superior [LEss77a]. We believe the differ- 
ence to be caused by the reliability of rat- 
ings of the initial islands: Both the HWIM 
and SRI experiments used single-word is- 
lands, but Hearsay-II uses multiword is- 
lands, which produce much higher reliabil- 
ity. (See the discussion at step 6 in Section 
1.2 and in HAYE78b.) Single-word island- 
driving proved inferior in Hearsay-II as 
wel l .  

2.3 CMU's HARPY System 

In the systems described so far, knowledge 
sources are discernible as active compo- 
nents during the understanding process. 
However, if one looks at Hearsay-II, 
HWIM, and the SRI system in that order, 
there is clearly a progression of increasing 
integration of the KSs with the control 
structure. The HARPY system [LOwE76, 
LOWE80] developed at Carnegie-Mellon 
University is located at the far extreme of 
that dimension: Most of the knowledge is 

precompiled into a unified structure repre- 
senting all possible utterances; a relatively 
simple interpreter then compares the spo- 
ken utterance against this structure to find 
the utterance that matches best. The mo- 
tivation for this approach is to speed up the 
search so that a larger portion of the space 
may be examined explicitly. In particular, 
the hope is to avoid errors made when 
portions of the search space are eliminated 
on the basis of characteristics of small par- 
tial solutions; to this end, pruning decisions 
are delayed until larger partial solutions are 
constructed. 

To describe HARPY, we describe the 
knowledge sources, their compilation, and 
the match (search) process. The parame- 
tenzation and segmentation KSs are iden- 
tical to those of Hearsay-II [GOLD77, 
GILL78]; these are not compiled into the 
network but, as in the other systems, ap- 
plied to each utterance as it is spoken. As 
in Hearsay-II, the syntax is specified as a 
set of context-free production rules; 
HARPY uses the same task and grammar 
definitions. Lexical knowledge is specified 
as a directed pronunciation graph for each 
word; for example, Figure 8 shows the graph 
for the word "please." The nodes in the 
graph are names of the phonelike labels 
also generated by the labeler KS. A graph 
is intended to represent all possible pronun- 
ciations of the word. Knowledge about pho- 
netic phenomena at word junctures is con- 
tained in a set of rewriting rules for the 
pronunciation graphs. 

For a given task language, syntax and 
lexical and juncture knowledge are com- 
bined by a knowledge compiler program to 
form a single large network. First, the gram- 
mar is converted into a directed graph, the 
"word network," containing only terminal 
symbols (i.e., words); because of heuristics 
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{SENT) : :--  = [ {SS) ] 
(SS~ "'=ffi pleasehelp (M) [ pleaseshow {M~ (Q) 
(Q) ::ffiffi everythmg [ something 
(M) ::ffiffi me [ us 

FIGURE 9. A troy example grammar. [After LOWE80.] 

FIGURE 10. Word network for example language [After LOWE80.] 

used to compact this network, some of the 
constraint of the original grammar may be 
lost. Figure 9 shows a toy grammar, and 
Figure 10 the resulting word network. Next, 
the compiler replaces each word by a copy 
of its pronunciation graph, applying the 
word-juncture rules at all the word bound- 
aries. Figure 11 shows part of the network 
for the toy example. The resulting network 
has the name of a segment label at each 
node. For the same 1011-word X05 lan- 
guage used by Hearsay-II, the network has 
15,000 nodes and took 13 hours of DEC 
PDP-10(KL10) processing time to compile. 

In the network each distinct path from 
the distinguished start node to the distin- 
guished end node represents a sequence of 
segments making up a "legal" utterance. 
The purpose of the search is to find the 
sequence which most closely matches the 

segment sequence of the input spoken ut- 
terance. For any given labeled segment and 
any given node in the network, a primitive 
match algorithm can calculate a score for 
matching the node to the segment. The 
score for matching a sequence of nodes with 
a sequence of segments is just the sum of 
the corresponding primitive matches. 

The search technique used, called beam 
search, is a heuristic form of dynamic pro- 
gramming, with the input segments pro- 
cessed one at a time from left to right and 
matched against the network. At the begin- 
ning of the ith step, the first i - I segments 
have been processed. Some number of 
nodes in the network are active; associated 
with each active node is a path to it from 
the start node and the total score of the 
match between that  path and the first 
i - 1 segments of the utterance. All nodes 

FIGURE 11. Partial final network for example language [After LOWE80 ] 

, . ,  
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in the  ne twork  tha t  are successors of the 
act ive nodes  are ma tched  against  the i th  
segment  and become the new active nodes. 
T h e  score for a new active node is the best  
p a t h  score tha t  reaches  the node a t  the i th  
segment ,  i.e., the sum of the  primit ive 
m a t c h  a t  the  segment  plus the best  pa th  
score to any  of its predecessor  nodes. 

T h e  best  pa th  score among  all the  new 
active nodes  is t aken  as the target,  and any 
new active nodes with pa th  scores more  
than  some threshold am oun t  f rom the tar- 
get are p runed  away. This  pruning rule is 
the heurist ic hea r t  of the search algorithm. 
I t  reduces  the n u m b e r  of active nodes a t  
each step and thus  reduces  the am oun t  of 
processing t ime (and storage) needed in the 
search; typical ly only abou t  3 percent  of  the 
nodes  in the  net  need to be matched.  Note  
t ha t  the heurist ic does not  fix the num ber  
of  active nodes re ta ined a t  each step but  
allows it to vary  with the densi ty of com- 
pet i tors  with scores near  the best  path.  
T h u s  in highly uncer ta in  regions, m a n y  
nodes are retained,  and the search slows 
down; in places where  one pa th  is signifi- 
cant ly  be t t e r  than  mos t  others,  few com- 
pet i tors  are kept,  and the processing is 
rapid. T h e  search strategy,  therefore,  is au- 
tomat ica l ly  caut ious or decisive in response 
to the par t ia l  results. T h e  threshold,  i.e., 
the  " b e a m  width," is tuned ad hoc f rom test  
runs. 

The re  are two major  concerns abou t  the 
extensibil i ty of  H A R P Y .  First, the compi- 
lat ion process requires  all knowledge to be 
represen ted  in a highly stylized form; add- 
ing new kinds of  knowledge strains the  de- 
veloper ' s  ingenuity.  So far, however,  several  
kinds of knowledge have  been added within 
the  basic f r amework  of expanding a node 
by  replacing it with a graph. For  example,  
as ment ioned  previously, phonet ic  phenom-  
ena a t  word junctures  are handled.  Also, 
the  expected length of each segment  is 
s tored a t  each node and influences the 
m a t c h  score. The  second concern is with 
the  size and compilat ion cost of the com- 
piled network;  bo th  grow very large as the 
task language becomes  more  complex. 
The re  have  been proposals  tha t  the word 
ne twork  not  be expanded explicitly, but  
r a the r  t ha t  the word pronuncia t ion  graphs  
be  in te rpre ted  dynamical ly,  as needed. An 
al ternat ive  response to this concern is tha t  
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computer memory and processing costs 
continue to decline, so that using larger 
networks becomes increasingly feasible. 

HARPY's novel structure is also inter- 
esting in its own right and is beginning to 
have effects beyond speech-understanding 
systems. Newel] has done a speculative but 
thorough analysis of HARPY as a model 
for human speech understanding, using the 
product ion  sys tem formal ism [NEWE80]; 
Rubin  has  successfully applied the  H A R P Y  
s t ruc ture  to an  image-unders tanding task 
[RuBH8] .  

3. SYSTEM PERFORMANCE AND ANALYSIS 

3.1 Overall Performance of Hearsay-II 

Overall  pe r fo rmance  of the  Hea r say - I I  
speech-unders tanding  sys tem a t  the  end of 
1976 is summar ized  in Tab l e  2 in a form 
paralleling the  goals given in Figure 6. 

TABLE 2. HEARSAY-II PERFORMANCE 

Number of 
speakers 

Environment 

Microphone 
System speaker- 

tuning 
Speaker 

adaptation 
Task 
Vocabulary 

Language 
constraints 

Test data 

Accuracy 

Computing 
resources 

One 

Computer terminal room 
(>65 dB) 

Medium-quality, close-talking 
20-30 trmning utterances 

None required 

Document retrieval 
1011 words, with no selection for 

phonetic discriminabfllty 
Context-free semantic grammar, 

based on protocol analysis, with 
static branching factor of 10 

23 utteraxmes, brand-new to the 
system and run "blind." 7 
words/utterance average, 2.6 
seconds/utterance average, av- 
erage fanout a of 40 (maximum 
292) 

9 percent sentence semantm er- 
ror, b 19 percent sentence error 
(i.e., not word-for-word correct) 

60 MIPSS (milhon instructions 
per second of speech) on a 36- 
bit PDP-10 

The static branching factor is the average number 
of words that can follow any initial sequence as defined 
by the grammar. The fanout is the number of words 
that can follow any initial sequence in the test sen- 
tences. 
b An interpretation is semantwally correct if the query 
generated for it by the SEMANT KS is identical to 
that generated for a sentence which is word-for-word 
correct. 
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Active development of the Hearsay-II 
speech system ceased at the end of 1976 
with the conclusion of the speech-under- 
standing program sponsored by DARPA 
[MEDR78, KLAT77]. Even though the con- 
figuration of KSs at that  point was young, 
having been assembled in August 1976, the 
performance described in Table 2 comes 
close to meeting the ambitious goals, shown 
in Figure 6, established for the DARPA 
program in 1971 [NEWE73]. This overall 
performance supports our assertion that 
the Hearsay-II architecture can be used to 
integrate knowledge for resolving uncer- 
tainty. In the following sections we relate 
some detailed analyses of the Hearsay-II 
performance to the resolution of uncer- 
tainty. We finish with some comparison 
with the performances of the other systems 
described in Section 2. 

3.2 Opportunistic Scheduling 

In earlier KS configurations of the system, 
low-level processing (i.e., at the segment, 
syllable, and word levels) was not done in 
the serial, lock-step manner of steps 1, 4, 
and 5 of the example, that  is, level-to-level, 
where each level is completely processed 
before work on the next higher level is 
begun. Rather, processing was opportunis- 
tic and data-directed as in the higher levels; 
as interesting hypotheses were generated at 
one level, they were immediately propa- 
gated to and processed by KSs operating at 
higher and lower levels. We found, however, 
that  opportunistic processing at the lower 
levels was ineffective and harmful because 
the credibility ratings of hypotheses were 
insufficiently accurate to form hypothesis 
islands capable of focusing the search effec- 
tively. For example, even at the relatively 
high word level, the bottom-up hypotheses 
created by MOW include only about 75 
percent of the words actually spoken; and 
the KS-assigned ratings rank each correct 
hypothesis on the average about 4.5 as com- 
pared with the 20 or so incorrect hy- 
potheses that  compete with it (i.e., which 
overlap it in time significantly). It is only 
with the word-sequence hypotheses that 
the reliability of the ratings is high enough 
to allow selective search. 

Several experiments have shown the ef- 
fectiveness of the opportunistic search. In 

Computing Surveys, VoL 12, No. 2, June 1980 

V. R. Lesser, and D. R. Reddy 

one [HAYE77a] the opportunistic schedul- 
ing was contrasted with a strategy using no 
ordering of KS activations. Here, all KS 
precondition procedures were executed, fol- 
lowed by all KS activations they created; 
this cycle was repeated. For the utterances 
tested, the opportunistic strategy had a 29 
percent error rate (word for word), com- 
pared with a 48 percent rate for the non- 
opportunistic. Also, the opportunistic strat- 
egy took less than half as much processing 
time. 18 

In another experiment [LESs77a] the is- 
land-driving strategy, which is opportunis- 
tic across the whole utterance, was com- 
pared with a left-to-right strategy, in which 
the high-level search was initiated from 
single-word islands in utterance-initial po- 
sition. For the utterances tested, the oppor- 
tunistic strategy had a 33 percent error rate 
as compared with 53 percent for the left-to- 
right; for those utterances correctly recog- 
nized by both strategies, the opportunistic 
one used only 70 percent as much process- 
ing time. 

3.3 Use of Approximate Knowledge 

In several places the Hearsay-II system 
uses approximate knowledge, as opposed to 
its more complete form also included in the 
system. The central notion is that even 
though the approximation increases the 
likelihood of particular decisions being in- 
correct, other knowledge can correct those 
errors, and the amount of computational 
resources saved by first using the approxi- 
mation exceeds that  required for subse- 
quent corrections. 

The organization of the POM and MOW 
KSs is an example. The bottom-up syllable 
and word-candidate generation scheme ap- 
proximates WIZARD matching all words in 
the vocabulary at all places in the utter- 
ance, but in a fraction of the time. The 
errors show up as poor ratings of the can- 

~'* The performance results given here and in the fol- 
lowing sections reflect various configurations of voca- 
bularies, grammars, test data, halting cnterm, and 
states of development of the KSs and underlying sys- 
tem. Thus the absolute performance results of each 
experiment are not directly comparable to the per- 
formance reported in Section 3 1 or to the results of 
the other experiments. 
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vocabulary  
S 
250 words 

M 
500 words 

X 
1011words  

err  = 5.9 percent  

comp = 1.0 
fanout  ffi 10 

err  = 5.9 percent  

comp -- 1 1 
fanout  - 18 

err  -- 11.8 percent  
comp = 2.0 
fanout  = 36 

err  = 20.6 percent  err  = 20.6 percent  
comp = 2 7 comp -- 3.4 
fanout  ffi 17 fanout  --- 27 

err  = = semantm error ra te  
comp ffi = average rat io  of execut ion t ime to tha t  of S05 case, for correct  u t te rances  

fanout  = -- fanout  of the  tes t  sentences  (see note a of Table  2, Sect ion 3.1) 

N ~ 34 u t t e rances  

FIGURE 12. Hearsay- I I  performance under  varying vocabular ies  and g rammars  

didate words and as missing correct words 
among the candidates. The POM-MOW er- 
rors are corrected by applying WIZARD to 
the candidates to create good ratings and 
by having the PREDICT KS generate ad- 
ditional candidates. 

Another example is the WORD-SEQ KS. 
Recall that it applies syntactic and acous- 
tic-phonetic knowledge to locate sequences 
of words within the lattice of bottom-up 
words and statistical knowledge to select a 
few most credible sequences. The syntactic 
knowledge only approximates the full gram- 
mar, but takes less than 1 percent as much 
processing time to apply. The errors 
WORD-SEQ makes because of the approx- 
imation (i.e., generating some nongrammat- 
ical sequences) are corrected by applying 
the full grammatical knowledge of the 
PARSE KS, but only on the few, highly 
credible sequences WORD-SEQ identifies. 

3.4 Adaptability of the Opportunistic 
Strategy 

The opportunistic search strategy adapts 
automatically to changing conditions of un- 
certainty in the problem-solving process by 
changing the breadth of search. The basic 
mechanism for this is the interaction be- 
tween the KS-assigned credibility ratings 
on hypotheses and scheduler-assigned 
priorities of pending KS activations. When 
hypotheses have been rated approximately 
equal, KS activations for their extension 
are usually scheduled together. Thus where 

there is ambiguity among competing hy- 
potheses, the scheduler automatically 
searches with more breadth. This delays 
the choice among competing hypotheses 
until further information is brought to bear. 

This adaptiveness works for changing 
conditions of uncertainty, whether it arises 
from the data or from the knowledge. The 
data-caused changes are evidenced by large 
variations in the numbers of competing hy- 
potheses considered at various locations in 
an utterance, and by the large variance in 
the processing time needed for recognizing 
utterances. The results of changing condi- 
tions of knowledge constraint can be seen 
in Figure 12, which shows the results of one 
experiment varying vocabulary sizes and 
grammatical constraints. ~4 

3.5 Performance Comparisons 

It is extremely difficult to compare the re- 
ported performances of existing speech-un- 
derstanding systems. Most have operated 
in different task environments and hence 
can apply different amounts of constraint 

,4 Note  t h a t  Figure 12 shows imperfect  correlat ion 
be tween  fanout  and performance;  compare,  for exam- 
ple, X05 and SF Fanou t  is an approx imate  measure  of 
language complexi ty  tha t  reflects  the  average uncer- 
t a in ty  be tween ad jacent  words. Whi le  X05 has  a large 
fanout,  ~t may  be a s impler  language to in te rpre t  than  
SF because mos t  of the  fanout  is res t r ic ted  to  a few 
loci m the  language,  as  opposed to  the  lower but  more  
umform unce r t a in ty  of SF. 
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GOAL" ACCEPT CONTINUOUS SPEECH FROM MANY COOPERATIVE SPEAKERS, 

Hearsay-II:/ 122~ 1 Male 
HWIM:|  tested with /124 [ sentences from 3 Male Speakers 

SDC:} t 54~ 1 Male 

GOAL. IN A QUIET ROOM, WITH A GOOD MIC, AND SLIGHT TUNING/SPEAKER,  

Hearsay-II./ m a computer terminal room, and 20 training sentences 
HWIM:J with a close-talking mic, per speaker, 

SDC' in a quiet room, with a good mic, and 

GOAL: ACCEPTING 1000 WORDS, USING AN ARTIFICIAL SYNTAX & CONSTRAINING TASK, 
HARPY.~ ~BF = 33 t for document 

Heaxsay-II.) 1011 words, context-free grammar, [BF = 33, 46] retrieval, 

HWIM: 1097 words, restricted ATN grammar, BF = 196, for travel planning, 
SDC: 1000 words, context-free grammar, BF = 105, for data retrieval, 

GOAL" YIELDING <10% SEMANTIC ERROR, IN A FEW TIMES REAL-TIME (=300 MIPSS) 
HARPY 1 [5% 1281 million 

Hearsay'II:t / 9%,26% 180~5/ instructions per 
HWIM:] ymlding /56% semantic error, using 5 second of 

SDC:! t76% t 92~ speech (MIPSS) 

FIGURE 13. Goals and performance for final (1976) DARPA systems [After Lea79.] 

from the task language to help the problem 
solving. Although some progress has been 
made [GooD76, SOND78, BAHL78], there is 
no agreed-upon method for calibrating 
these differences. Also, the various systems 
use different speakers and recording con- 
ditions. And finally, none of the systems 
has reached full maturity; the amount that 
might be gained by further debugging and 
tuning is unknown, but  often clearly sub- 
stantial. 

LEA79 contains an extensive description 
of the systems developed in the DARPA 
speech-understanding project and includes 
the best existing performance comparisons 
and evaluations. Figures 13 and 14, repro- 
duced here from that report, show some 
comparison of the performances of Hear- 
say-II, HARPY, HWIM, and the SDC sys- 
tem [BERN76]. 15 

is Performance of the SRI system is not included be- 
cause that system was run only with a simulated 
bottom-end. Also, there axe slight differences between 
the Hearsay-II performance shown in Figure 13 and 
that of Section 3 1, the former shows results from the 
offioal end of the DARPA project in September 1976, 
while the latter reflects some slight improvements 
made in the subsequent three months. 

The Hearsay-II and HARPY results are 
directly comparable, the two systems hav- 
ing been tested on the same tasks using the 
same test data. HARPY's  performance here 
dominates Hearsay-Irs  in both accuracy 
and computation speed. And, in fact, 
HARPY was the only system clearly to 
meet and exceed the DARPA specifications 
(see Figure 6). It is difficult to determine 
the exact reasons for HARPY's  higher ac- 
curacy, but  we feel it is caused primarily by 
a combination of three factors: 

(1) Because of its highly compiled effi- 
ciency, HARPY can afford to search a 
relatively large part of the search space. 
In particular, it can continue pursuing 
partial solutions even if they contain 
several low-rated segments (and its 
pruning threshold is explicitly set to 
ensure this). Thus HARPY is less prone 
to catastrophic errors, that is, pruning 
away the correct path. Hearsay-II, on 
the other hand, cannot afford to delay 
pruning decisions as long and thus is 
more likely to make such errors. 

(2) Some knowledge sources are weaker in 
Hearsay-II than in HARPY. In partic- 
ular, Hearsay-II's J U N C T  KS has only 
a weak model of word juncture phe- 
nomena as compared with the more 
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comprehensive and sophisticated junc- 
ture rules in HARPY. This disparity is 
an accident of the systems' develop- 
ment histories; there is no major con- 
ceptual reason why HARPY's juncture 
rules could not be employed by Hear- 
say-II. 

(3) HARPY was debugged and tuned much 
more extensively than Hearsay-II (or 
any of the other DARPA SUSs, for that  
matter).This was facilitated by the 
lower processing costs for running tests. 
It was also helped by fixing the HARPY 
structure at an earlier point; Hearsay- 
II's KS configuration underwent a mas- 
sive modification very late in the 
DARPA effort, as did HWIM's. 

It seems clear that for a performance 
system in a task with a highly constrained 
and simply structured language, the 
HARPY structure is an excellent one. How- 
ever, as we move to tasks that require more 
complex kinds of knowledge to constrain 
the search, we expect conceptual difficulties 
incorporating those kinds of knowledge into 
HARPY's simple integrated network rep- 
resentation. 

4. CONCLUSIONS 

Hearsay-II represents a new approach to 
problem solving that  will prove useful in 

many domains other than speech. Thus far, 
however, we have focused on the virtues, 
and limitations, of Hearsay-II as a solution 
to the speech-understanding problem per 
se. In this section we consider what Hear- 
say-II suggests about problem-solving sys- 
tems in general. To do so, we identify as- 
pects of the Hearsay-II organization that  
facilitate development of "expert systems." 
Before concluding, we point out some ap- 
parent deficiencies of the current system 
that  suggest avenues of further research. A 
more detailed discussion of these issues can 
be found in LEss77b. 

4.1 Problem-Solving Systems 

The designer of a knowledge-based prob- 
lem-solving system faces several typical 
questions, many of which motivate the de- 
sign principles evolved by Hearsay-II. The 
designer must first represent and structure 
the problem in a way that  permits decom- 
position. A general heuristic for solving 
complex problems is to "divide and con- 
quer" them. This requires methods to fac- 
tor subproblems and to combine their even- 
tual solutions. Hearsay-II, for example, di- 
vides the understanding problem in two 
ways: It breaks the total interpretation into 
separable hypotheses, and it modularizes 
different types of knowledge that  can op- 
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erate independently and cooperatively. 
This latter attribute helps the designer ad- 
dress the second basic question, "How can 
I acquire and implement relevant knowl- 
edge?" Because knowledge sources operate 
solely by detecting and modifying hy- 
potheses on the blackboard, we can develop 
and implement each independently. This 
allows us to "divide and conquer" the 
knowledge acquisition problem. 

Two other design questions concern the 
description and use of knowledge. First, we 
must decide how to break knowledge into 
executable units. Second, we must develop 
strategies for applying knowledge selec- 
tively and efficiently. Choices for these de- 
sign issues should attempt to exploit 
sources of structure and constraint intrinsic 
to the problem domain and knowledge 
available about it. In the current context 
this means that a speech-understanding 
system should exploit many alternative 
types of speech knowledge to reduce uncer- 
tainty inherent in the signal. Moreover, the 
different types of knowledge should apply, 
ideally, in a best-first manner. That is, the 
most credible hypotheses should stimulate 
searches for the most likely adjoining hy- 
potheses first. To this end, the Hearsay-II 
focusing scheduler considers the quality of 
hypotheses and potential predictions in 
each temporal interval and then selectively 
executes only the most marginally produc- 
tive KS actions. Accomplishing this type of 
control required several new sorts of mech- 
anisms. These included explicit interlinked 
hypothesis representations, declarative de- 
scriptions of KS stimulus and response 
frames, a dynamic problem state descrip- 
tion, and a prioritized schedule of pending 
KS instantiations. 

4.2 Specific Advantages of Hearsay-II 
as a Problem-Solving System 

This paper has covered an extensive set of 
issues and details. From these we believe 
the reader should have gained an appreci- 
ation of Hearsay-II's principal benefits, 
summarized briefly as follows. 

Multiple Sources of Knowledge 

Hearsay-II provides a framework for di- 
verse types of knowledge to cooperate in 
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solving a problem. This capability espe- 
cially helps in situations characterized by 
incomplete or uncertain information. Un- 
certainty can arise from any of a number of 
causes, including noisy data, apparent am- 
bignities, and imperfect or incomplete 
knowledge. Each of these departures from 
the certainty of perfect information leads 
to uncertainty about both what the prob- 
lem solver should believe and what it 
should do next. In such situations finding a 
solution typically requires simultaneously 
combining multiple kinds of knowledge. Al- 
though each type of knowledge may rule 
out only a few alternative (competing} hy- 
potheses, the combined effect of several 
sources can often identify the single most 
credible conclusion. 

Multiple Levels of Abstraction 

Solving problems in an intelligent manner 
often requires using descriptions at differ- 
ent levels of abstraction. After first finding 
an approximate or gross solution, a problem 
solver may work quickly toward a refined, 
detailed solution consistent with the rough 
solution. In its use of multiple levels of 
abstraction, Hearsay-II provides rudimen- 
tary facilities for such variable-granularity 
reasoning. In the speech task particularly, 
the different levels correspond to separable 
domains of reasoning. Hypotheses about 
word sequences must satisfy the constraints 
of higher level syntactic phrase-structure 
rules. Once these are satisfied, testing more 
detailed or finely tuned word juncture re- 
lations would be justified. Of course the 
multiple levels of abstraction also support 
staged decision making that proceeds from 
lower level hypotheses up to higher levels. 
Levels in such bottom-up processing sup- 
port a different type of function, namely, 
the sharing of intermediate results, dis- 
cussed separately in the following para- 
graph. 

Shared Partial Solutions 

The blackboard and hypothesis structures 
allow the knowledge sources to represent 
and share partial results. This proves es- 
pecially desirable for complex problems 
where no a priori knowledge can reliably 
foretell the best sequence of necessary de- 
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cisions. Different attempts to solve the 
same problem may require solving identical 
subproblems. In the speech domain these 
problems correspond to comparable hy- 
potheses (same level, type, time). Hearsay- 
II provides capabilities for the KSs to rec- 
ognize a hypothesis of interest and to in- 
corporate it into alternative competing hy- 
potheses at higher levels. Subsequent 
changes to the partial result then propagate 
to all of the higher level constructs that 
contain it. 

Independent Knowledge Sources Limited to 
Data-Directed Interactions 

Separating the diverse sources of knowl- 
edge into independent program modules 
provides several benefits. Different people 
can create, test, and modify KSs indepen- 
dently. In addition to the ordinary benefits 
of modularity in programming, this inde- 
pendence allows human specialists (e.g., 
phoneticians, linguists) to operationalize 
their diverse types of knowledge without 
concern for the conceptual framework and 
detailed behavior of other possible mod- 
ules. Although the programming style and 
epistemological nature of several KSs may 
vary widely, Hearsay-II provides for all of 
them a single uniform programming envi- 
ronment. This environment constrains the 
KSs to operate in a data-directed manner--  
reading hypotheses from the blackboard 
when situations of interest occur, process- 
ing them to draw inferences, and recording 
new or modified hypotheses on the black- 
board for others to process further. This 
paradigm facilitates problem-oriented in- 
teractions while minimizing complicated 
and costly design interactions. 

Incremental Formatton of Solutions 

Problem solving in Hearsay-II proceeds in- 
crementally through the accretion and in- 
tegration of partial solutions. KSs generate 
hypotheses based on current data and 
knowledge. By integrating adjacent and 
consistent hypotheses into larger compos- 
ites, the system develops increasingly cred- 
ible and comprehensive partial solutions. 
These in turn stimulate focused efforts that 
drive the overall system toward the final 
goal, one most credible interpretation span- 

ning the entire interval of speech. By allow- 
ing information to accumulate in this piece- 
meal fashion, Hearsay-II provides a con- 
venient framework for heuristic problem 
solving. Diverse heuristic methods can con- 
tribute various types of assistance in the 
effort to eliminate uncertainty, to recognize 
portions of the sequence, and to model the 
speaker's intentions. Because these diverse 
methods exist in the form of independent, 
cooperating KSs, each addition to the cur- 
rent problem solution consists simply of an 
update to the blackboard. 

OpportunJsbc Problem-Solwng Behavior 

Whenever good algorithms do not exist for 
solving a problem, we must apply heuristic 
methods or "rules-of-thumb" to search for 
a solution. In problems where a large num- 
ber of data exist to which a large number of 
alternative heuristics potentially apply, we 
need to choose each successive action care- 
fully. We refer to a system's ability to ex- 
ploit selectively its best data and most 
promising methods as "opportunistic" 
problem solving [NII78, HAYE79b]. Hear- 
say-II developed several mechanisms to 
support such opportunistic behavior. In 
particular, its focus policies and prioritized 
scheduling allocate computation resources 
first to those KSs that exploit the most 
credible hypotheses, promise the most sig- 
nificant increments to the solution, and use 
the most reliable and inexpensive methods. 
Similar needs to focus intelligently will 
arise in many comparably rich and complex 
problem domains. 

Experlmentat~on in System Development 

Whenever we attempt to solve a previously 
unsolved problem, the need for experimen- 
tation arises. In the speech-understanding 
task, for example, we generated several dif- 
ferent types of KSs and experimentally 
tested a variety of alternative system 
configurations (specific sets of KSs) 
[LEss77b]. A solution to the overall prob- 
lem depended on both developing powerful 
individual KSs and organizing multiple KSs 
to cooperate effectively to reduce uncer- 
tainty. These requirements necessitated a 
trial-and-error evaluation of alternative 
system designs. Throughout these explora- 

Computing Surveys, Vol 12, No. 2, June 1980 



246 * L. D. Erman, F. Hayes-Roth, 

tions, the basic Hearsay-II structure proved 
robust and sufficient. Alternative configu- 
rations were constructed with relative ease 
by inserting or removing specific KSs. 
Moreover, we could test radically different 
high-level control concepts (e.g., depth-first 
versus breadth-first versus left-to-right 
searches) simply by changing the focus pol- 
icy KS. The need for this kind of flexibility 
will probably arise in many future state-of- 
the-art problem-solving tasks. To support 
this flexibility, systems must be able to 
apply the same KSs in different orders and 
to schedule them according to varying se- 
lection criteria. These requirements di- 
rectly motivate KS data-directed indepen- 
dence, as well as autonomous scheduling 
KSs that  can evaluate the probable effects 
of potential KS actions. Because it supports 
these needs, Hearsay-II provides an excel- 
lent environment for experimental research 
and development in speech and other com- 
plex tasks. 

4.3 Disadvantages of the Hearsay-U 
Approach 

We can identify two different but related 
weaknesses of the Hearsay-II approach to 
problem solving. One weakness derives 
from the system's generality, and the other 
concerns its computational efficiency. Each 
of these is considered briefly in turn. 

Generahty Impedes Specialization and Limits 
Power 

The Hearsay-II approach suggests a very 
general problem-solving paradigm. Every 
inference process reads data from the 
blackboard and places a new hypothesis 
also on the blackboard. Thus blackboard 
accesses mediate each decision step. While 
this proved desirable for structuring com- 
munications between different KSs, it 
proved undesirable for most intermediate 
decision tasks arising within a single KS. 
Most KSs employed private, stylized inter- 
nal data structures different from the single 
uniform blackboard links and hypotheses. 
For example, the word recognizer used spe- 
cialized sequential networks, whereas the 
word sequence recognizer exploited a large 
bit-matrix of word adjacencies. Each KS 
also stored intermediate results, useful for 
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its own internal searches, in appropriately 
distinctive data structures. Attempts to 
coerce these specialized activities into the 
general blackboard-mediated style of Hear- 
say-II either failed completely or caused 
intolerable performance degradation 
[LEss77b]. 

Interprettve Versus Comptled Knowledge 

Hearsay-If uses knowledge interpretively. 
That is, it actively evaluates alternative 
actions, chooses the best for the current 
situation, and then applies the procedure 
associated with the most promising KS in- 
stantiation. Such deliberation takes time 
and requires many fairly sophisticated 
mechanisms; its expense can be justified 
whenever an adequate, explicit algorithm 
does not exist for the same task. Whenever 
such an algorithm emerges, equal or greater 
performance and efficiency may be ob- 
tained by compiling the algorithm and ex- 
ecuting it, directly. For example, recognizing 
restricted vocabulary and grammatical spo- 
ken sentences from limited syntax can now 
be accomplished faster by techniques other 
than those in Hearsay-II. As described in 
Section 2.3, by compiling all possible inter- 
level substitutions (sentence to phrase to 
word to phone to segment) into one enor- 
mous finite-state Markov network, the 
HARPY system uses a modified dynamic 
programming search to find the one net- 
work path that most closely approximates 
the segmented speech signal. This type of 
systematic, compiled, and broad search be- 
comes increasingly desirable as problem- 
solving knowledge improves. Put another 
way, once a satisfactory specific method for 
solving any problem is found, the related 
procedure can be "algorithmetized," com- 
piled, and applied repetitively. In such a 
case the flexibility of a system like Hearsay- 
II may no longer be needed. 

4.4 Other Applications of the Hearsay-II 
Framework 

Both the advantages and disadvantages of 
Hearsay-[I have stimulated additional re- 
search. Several researchers have applied 
the general framework to problems outside 
the speech domain, and others have begun 
to develop successors to the Hearsay-II sys- 
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tem. We will briefly discuss one of these 
new applications and then mention the 
other types of activities underway. 

Although the Hearsay-II framework de- 
veloped around an understanding task, B. 
and F. Hayes-Roth et al. have extended 
many of its principal features to develop a 
model of planning [HAYE79b, HAYE79c]. 
While understanding tasks require "in- 
terpretive" or "analytic" processes, plan- 
ning belongs to a complementary set of 
"generative" or "synthetic" activities. The 
principal features of the Hearsay-II system 
which make it attractive as a problem-solv- 
ing model for speech understanding also 
suggest it as a model of planning. 

The planning application shares all the 
principal features of the Hearsay-II system 

summarized in Section 4.2, but, as Figure 
15 suggests, the planning model differs from 
the Hearsay-II framework in several ways. 
In particular, the designers found it conven- 
ient to distinguish five separate blackboard 
"planes," reflecting five qualitatively differ- 
ent sorts of decisions. The Plan plane cor- 
responds most closely to Hearsay-Irs single 
blackboard, holding the decisions that com- 
bine to form a solution to the planning 
problem, i.e., what low-level operations can 
be aggregated to achieve the high-level out- 
comes of the plan. These kinds of decisions 
in generative tasks can be thought of as the 
dual of the successively higher level, more 
aggregated hypotheses constituting the 
blackboard for interpretation tasks. In the 
speech task, corresponding hypotheses ex- 

FIGU]¢~ 15 The planning blackboard and the actlons of iUustratwe know|edge sources. [From 
HAYE79b ] 
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press how low-level segments and phones 
can be aggregated to form the high-level 
phrases and sentences intended by the 
speaker. The other four planes of the plan- 
ning blackboard hold intermediate deci- 
sions that enter into the planning process 
in various ways. For example, based on the 
Hearsay-II experience with selective atten- 
tion strategies, resource allocation strate- 
gies were formalized and associated explic- 
itly with an Executive plane. 

Although the planning model is the only 
current application of the Hearsay-II 
framework to generative tasks, several in- 
teresting applications that transfer the ap- 
proach to other interpretation problems 
have been made. Rumelhart [RUME76] has 
proposed to apply the Hearsay-II frame- 
work to model human reading behavior. In 
this application only one blackboard plane 
is used, the levels closely approximate those 
used in the speech-understanding task, and 
many additional KSs are introduced to rep- 
resent how varying amounts of linguistic 
and semantic knowledge affect reading 
skills. Engelmore [ENGE77] and Nii and 
Feigenbaum [NII78] describe other signal- 
processing applications, namely, protein 
crystallography and acoustic signal under- 
standing. These applications employ mul- 
tiple levels and planes appropriate to their 
specific domains. Soloway [SoLo77] has 
used the framework in a learning system 
that develops multilevel models of observed 
game behaviors. Hanson and Riseman 
[HANS78] and Levine [LEVI78] have devel- 
oped systems that mirror the Hearsay-II 
speech-understanding components in the 
image-understanding task. Arbib [ARBI79] 
proposes Hearsay-II-based multilevel, in- 
cremental problem-solving structures as a 
basis for neuroscience models, and Norman 
states that Hearsay-II has been a source of 
ideas for theoretical psychology and that it 
"fulfills [his]...intuitions about the form of 
a general cognitive processing structure" 
[NORM80, p. 383]. Finally, Mann [MANN79] 
has adapted the Hearsay-II structure to the 
task of interpreting human-machine com- 
munication dialogues. 

Several researchers have focused efforts 
on generalizing, refining, or systematizing 
aspects of the Hearsay-II architecture for 
wider application. As previously men- 
tioned, B. and F. Hayes-Roth have formal- 
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ized some aspects of meta-planning and 
executive control and have treated this type 
of problem solving within one uniform 
framework. Nii [NII79] has developed a 
system that assists a programmer in devel- 
oping a new special-purpose variant of a 
Hearsay-II system suitable for some partic- 
ular new task. Balzer and others [BALZ80] 
have implemented a more formalized, do- 
main-independent version of Hearsay-II 
and are applying it to an automatic-pro- 
gramming-like task. This system uses one 
blackboard for interpretation and another 
for scheduling decisions, in a manner akin 
to that proposed for the Executive decisions 
in the Hayes-Roth planning system. In a 
similar way, Stefik uses three distinct 
planes to record the plan, meta-plan, and 
executive decisions arising in a system that 
incrementally plans genetic experiments 
[ S T E F 8 0 ] .  

Lesser and Erman have used Hearsay-II 
as a central component in a model for in- 
terpretation tasks in which the problem 
solving is accomplished cooperatively by 
distributed processors, each with only a 
limited view of the problem and with 
narrow-bandwidth intercommunication; 
LESS79 describes the model and some vali- 
dating experiments using the Hearsay-II 
speech-understanding system. Hearsay-II 
has also influenced some attempts at de- 
veloping general techniques for formal de- 
scriptions of complex systems [Fox79a, 
Fox79b, LESS80]. 

We predict that in the future the Hear- 
say-II paradigm will be chosen increasingly 
as a model of heuristic, knowledge-based 
reasoning. Improved compilation tech- 
niques and increased computing power will 
further enhance its performance. In the fi- 
nal analysis, however, Hearsay-II will be 
remembered as the first general framework 
for combining multiple sources of knowl- 
edge, at different levels of abstraction, into 
a coordinated and opportunistic problem- 
solving system. Such systems seem certain 
to play a significant role in the development 
of artificial intelligence. 

APPENDIX. SYSTEM DEVELOPMENT 

On the basis of our experience with the 
Hearsay-I system [REDD73a, REDD73b], at 
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the beginning of the Hearsay-II effort in 
1973 we expected to require and evolve 
types of knowledge and interaction patterns 
whose details could not be anticipated. Be- 
cause of this, the development of the sys- 
tem was marked by much experimentation 
and redesign. This uncertainty character- 
izes the development of knowledge-based 
systems. Instead of designing a specific 
speech-understanding system, we consid- 
ered Hearsay-II as a model for a class of 
systems and a framework within which spe- 
cific configurations of that general model 
could be constructed and studied [LEss75, 
ERMA75]. 

On the basis of this approach a high-level 
programming system was designed to pro- 
vide an environment for programming 
knowledge sources, configuring groups of 
them into systems, and executing them. 
Because KSs interact via the blackboard 
(triggering on patterns, accessing hy- 
potheses, and making modifications) and 
the blackboard is uniformly structured, KS 
interactions are also uniform. Thus one set 
of facilities can serve all KSs. Facilities are 
provided for 

• defining levels on the blackboard, 
• configuring groups of KSs into executable 

systems, 
• accessing and modifying hypotheses on 

the blackboard, 
• activating and scheduling KSs, 
• debugging and analyzing the perform- 

ance of KSs. 

These facilities collectively form the Hear- 
say-II "kernel." One can think of the Hear- 
say-II kernel as a high-level system for pro- 
gramming speech-understanding systems 
of a type conforming to the underlying 
Hearsay-II model. 

Hearsay-II is implemented in the SAIL 
programming system [REIs76], an Algol-60 
dialect with a sophisticated compile-time 
macro facility as well as a large number of 
data structures (including lists and sets) 
and control modes which are implemented 
fairly efficiently. The Hearsay-II kernel 
provides a high-level environment for KSs 
at compile-time by extending SAIL's data 
types and syntax through declarations of 
procedure calls, global variables, and ma- 
cros. This extended SAIL provides an ex- 
plicit structure for specifying a KS and its 
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interaction with other KSs (through the 
blackboard). The high-level environment 
also provides mechanisms for KSs to spec- 
ify (usually in nonprocedural ways) infor- 
mation used by the kernel when configuring 
a system, scheduling KS activity, and con- 
trolling researcher interaction with the sys- 
tem. 

The knowledge in a KS is represented 
using SAIL data structures and code, in 
whatever stylized form the KS developer 
chooses. The kernel environment provides 
the facilities for structuring the interface 
between this knowledge and other KSs, via 
the blackboard. For example, the syntax 
KS contains a grammar for the specialized 
task language to be recognized; this gram- 
mar is coded in a compact network form. 
The KS also contains procedures for 
searching this network, for example, to 
parse a sequence of words. The kernel pro- 
rides facilities (1) for triggering this KS 
when new word hypotheses appear on the 
blackboard, (2) for the KS to read those 
word hypotheses (in order to find the se- 
quence of words to parse), and (3) for the 
KS to create new hypotheses on the black- 
board, indicating the structure of the parse. 

Active development of Hearsay-II ex- 
tended for three years. About 40 KSs were 
developed, each a one- or two,person effort 
lasting from two months to three years. 
The KSs range from about 5 to 100 pages 
of source code (with 30 pages typical), and 
each KS has up to about 50 kbytes of 
information in its local database. 

The kernel is about 300 pages of code, 
roughly one-third of which is the declara- 
tions and macros that create the extended 
environment for KSs. The remainder of the 
code implements the architecture: primar- 
ily activation and scheduling of KSs, main- 
tenance of the blackboard, and a variety of 
other standard utilities. During the three 
years of active development, an average of 
about two full-time-equivalent research 
programmers were responsible for the im- 
plementation, modification, and mainte- 
nance of the kernel. Included during this 
period were a half-dozen major reimple- 
mentations and scores of minor ones; these 
changes usually were specializations or se- 
lective optimizations, designed as experi- 
ence with the system led to a better under- 
standing of the usage of the various con- 
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structs. During this same period about eight 
full-time-equivalent researchers were using 
the system to develop KSs. 

Implementation of the first version of the 
kernel began in the autumn of 1973, and 
was completed by two people in four 
months. The first major KS configuration, 
though incomplete, was running in early 
1975. The first complete configuration, 
"CI," ran in January 1976. This configura- 
tion had very poor performance, with more 
than 90 percent sentence errors over a 250- 
word vocabulary. Experience with this con- 
figuration led to a substantially different 
KS configuration, "C2," completed in Sep- 
tember 1976. C2 is the configuration de- 
scribed in this paper. 

Implementing a general framework has a 
potential disadvantage: the start-up cost is 
relatively high. However, if the framework 
is suitable, it can be used to explore differ- ARm79 
ent configurations within the model more 
easily than if each configuration were built 

BAHL76 in an ad hoc manner. Additionally, a natu- 
ral result of the continued use of any high- 
level system is its improvement in terms 
of enhanced facilities, increased stability, 
reliability, and efficiency, and greater fa- 
miliarity on the part of the researchers 
using it. BAHL78 

Hearsay-II has been successful in this 
respect; we believe that the total cost of 
creating the high-level system and using it 
to develop KS configurations C1 and C2 
(and intermediate configurations) was less 
than it would have been to generate them 
in an ad hoc manner. It should be stressed BALZS0 
that the construction of even one configu- 
ration is itself an experimental and evolving 
process. The high-level programming sys- 
tem provides a framework, both conceptual 
and physical, for developing a configuration BARN77 

in an incremental fashion. The speed with 
which C2 was developed is some indication 
of the advantage of this system-design ap- 
proach. A more detailed description of the BERN76 
development philosophy and tools can be 
found in ERMA78, and a discussion of the 
relationships between the C1 and C2 con- 
figurations can be found in LEss77b. 
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