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EVALUATING INFLUENCE DIAGRAMS

ROSS D. SHACHTER
Stanford University, Stanford, California
(Received June 1984; revision received January 1986; accepted February 1986)

An influence diagram is a graphical structure for modeling uncertain variables and decisions and explicitly revealing
probabilistic dependence and the flow of information. It is an intuitive framework in which to formulate problems as
perceived by decision makers and to incorporate the knowledge of experts. At the same time, it is a precise description
of information that can be stored and manipulated by a computer. We develop an algorithm that can evaluate any well-
formed influence diagram and determine the optimal policy for its decisions. Since the diagram can be analyzed directly,
there is no need to construct other representations such as a decision tree. As a result, the analysis can be performed
using the decision maker’s perspective on the problem. Questions of sensitivity and the value of information are natural
and easily posed. Modifications to the model suggested by such analyses can be made directly to the problem formulation,

and then evaluated directly.

Many practical problems in operations research
are characterized by a large number of inter-
related uncertain quantities and alternatives. Decision
analysis has been developed to address these problems
analytically, based on a normative axiomatic frame-
work. Unfortunately, this approach often transforms
the problem as perceived by the decision maker into
a different representation, such as a decision tree, in
order to evaluate it. Many decision makers have
resisted this approach, despite its fundamental basis,
in favor of more ad hoc procedures that let them
maintain their way of thinking about the problem.

The influence diagram has been designed as a
knowledge representation to bridge the gap between
analysis and formulation. It is intuitive enough to
communicate with decision makers and experts and,
at the same time, precise enough for normative
analysis. An influence diagram is a graphical represen-
tation of uncertain quantities and decisions that ex-
plicitly reveals probabilistic dependence and the flow
of information. In recent years, it has become an
established tool for developing models and commu-
nicating among people.

An influence diagram is a network with directed
arcs and no cycles. The nodes represent random
variables and decisions. Arcs into random variables
indicate probabilistic dependence, while arcs into
decisions specify the information available at the
time of the decision. The diagram is compact and
intuitive, emphasizing the relationships among vari-
ables, and yet it represents a complete probabilistic
description of the problem. For example, it is easy to

convert any decision tree into an influence diagram.
Conversely, it is possible to transform any well-
formed influence diagram into a decision tree,
though doing so may require repeated applications
of Bayes’ theorem.

From their inception, influence diagrams were con-
ceived as a “front end” for a decision analysis com-
puter system (Miller, Merkhofer, Howard, Matheson
and Rice 1976). There have been several attempts to
automate the transition from influence diagram for-
mulation to analysis (Merkhofer 1981, Korsan and
Matheson 1978, Howard and Matheson 1981).
Olmsted (1983) proposed evaluating a decision prob-
lem within the influence diagram representation. This
paper completes that process with an algorithm
that can evaluate any well-formed influence diagram
directly.

There are several benefits to evaluating a problem
through influence diagram operations. Since the
algorithm performs all of the inference and anal-
ysis automatically, the analyst is able to use a repre-
sentation that is natural to the decision maker. For
example, the algorithm makes it easy to formulate
sensitivity questions, such as the value of inform-
ation or control, and to evaluate them. Since the
model is stored in its original formulation, the in-
formation from the sensitivity analysis can be used
to modify and refine the formulation directly. This
capability is convenient not only when the analyst is
dealing with a decision maker, but simplifies the
construction of an automated decision system.

The influence diagram solution procedure can also
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result in significant gains in efficiency. Conditional
independence is explicitly revealed in the diagram, so
the algorithm can take advantage of it. This can reduce
the size of intermediate calculations and result in
considerable reductions in processing time and mem-
ory requirements. In fact, decision tree algorithms that
are “smart” enough to keep track of conditional in-
dependence are really building influence diagrams.
On the other hand, there are some problems for which
decision trees may be more efficient. An influence
diagram corresponds to a symmetric decision tree, so
if most of the computational savings can be achieved
through asymmetric processing, the influence diagram
algorithm, as currently conceived, cannot take advan-
tage of those savings.

Section 1 introduces influence diagrams and shows
some formulation examples. Section 2 develops a
formal definition of an influence diagram, along with
sufficient conditions for it to be well-formed. Section
3 shows the basic operations used in transforming the
influence diagram. In Section 4, these operations are
combined into an algorithm that can evaluate any
well-formed influence diagram. Section 5 states the
conclusions and some directions for future research.

1. Formulation Examples

This section contains a brief description of influence
diagrams and how they can be used to formulate
decision problems. For more information on this sub-
ject, see Howard and Matheson.

An influence diagram is a network with three types
of nodes: chance nodes, decision nodes and a value
node, drawn respectively as circles, squares and a
rounded rectangle. There are two types of directed
arcs: conditional arcs (into chance and value nodes)
and informational arcs (into decision nodes).

First, consider a diagram containing only chance
nodes. Associated with each node is a random vari-
able, and there is an underlying joint probability dis-
tribution for all of the random variables. This joint
distribution can be decomposed into a set of condi-
tional distributions, to be assessed by the analyst, with
conditioning represented by arcs in the diagram. If
there is no undirected path between two nodes, then
they must be independent. If arc (i, j) is part of the
diagram, then the assessed distribution for the jth
random variable is conditioned on the value of the
ith. When a chance node has no arcs into it, then the
assessed distribution is a marginal (unconditional)
distribution.

Consider the case of two chance nodes, shown in
Figure 1. Either they are independent and have no

OO OO
OO

Figure 1. All possibilities with two chance nodes.

arcs between them, or there is an arc from one to the
other. When they are dependent, either one can have
a marginal distribution, and the other a conditional
distribution. The direction of the arc can be reversed
through inference, by invoking Bayes’ theorem. Note
that a conditional arc represents probabilistic depend-
ence and not (necessarily) causality, so the meaning
of the diagram (the underlying joint distribution) is
the same, no matter which direction the arc points.
Figure 2 illustrates the different cases for three
nodes. Cases (a) and (b) show total and partial inde-
pendence, and case (c) shows complete dependence
among the associated random variables. Now, how-
ever, there is also the possibility of conditional inde-
pendence, shown in case (d). The outer two random
variables are dependent, but only through their direct
dependence on the middle variable. If the value of the
middle variable is known, then the other two random
variables are independent. Note that a cycle is not

a’ O O
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Figure 2. Some of the possibilities with three chance
nodes.



permitted. In that case, it would be impossible to
compute the underlying joint distribution.

As another example, consider a discrete-time Mar-
kov chain and let each chance node correspond to the
state variable at a given time. (Note that this is not
the usual network representation of a Markov chain.)
The Markov property, that the future is independent
of the past, given the present, is represented by a series
network (Figure 3). Since each arc may be reversed,
using Bayes’ theorem, from left to right in the diagram,
it is easy to see that the reverse chain must always
satisfy the Markov property as well.

In order to evaluate the influence diagram, there
must be some question to be answered, some random
variable(s) whose distribution must be determined.
The associated chance node is singled out as the value
node, and an influence diagram containing a value
node is said to be oriented. In this paper we will
assume that there is only a single random variable
associated with the value node, that it needs only to
be calculated in expectation, and that it represents the
expected utility of the outcome. (In general, we could
maintain more information than just an expected
value—additional moments, a full lottery, or even a
vector of lotteries.) If there are decisions to be made,
then the expected utility will be used to compare
alternatives. The variables associated with nodes hav-
ing arcs into the value node are the attributes of the
decision maker’s utility function.

There may also be decision nodes in the diagram.
Each node represents a choice among a set of alter-
natives. Arcs into decision nodes indicate time prece-
dence, that the information at the source of the arc is
available at the time the decision is made. Given the
state of information at the time of the decision, the
alternative(s) to be selected should maximize the
expected utility of the resulting outcome, normally
associated with the value node.

Figure 4 shows several cases involving one node of
each type, a chance, a value, and a decision node. In
case (a), the value depends on the random variable,

‘,ﬁ....k_

Figure 3. Discrete-time Markov chain with forward
and backward transitions.
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Figure 4. Some possibilities with a chance, decision
and value node.

which itself depends upon a decision. Case (b) is
similar, but the value depends on both the decision
and the random variable. In case (c), the value depends
on both, but the random variable is independent of
the decision. In case (d), the random variable is ob-
served before the decision is made. This case may be
thought of as the “closed loop” version of case (c), and
must yield at least as much expected utility, since the
decision maker is better informed at the time of the
decision. Finally, in case (¢), the random variable is
observed but has no effect on the value and may be
considered irrelevant with respect to the decision.

Cycles are still not permitted. A cycle involving a
decision and a random variable would violate the
decision maker’s free will—it would imply that he can
infer something about a decision he has not yet made.
On the other hand, if the cycle contains only decision
nodes, then it contradicts the assumption of time
precedence.

It is not possible, however, to reverse an arc into or
out of a decision node. Because an arc into a decision
node represents time precedence, reversal would
change the meaning of the diagram.

There is also an asymmetry in the definition of the
arcs. A conditional arc (into a chance or value node)
indicates that there may be dependence. An informa-
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tional arc (into a decision node) indicates that the
information must be available at the time of the
decision. The strong statements are the absence of
conditional arcs (independence) and the presence of
informational arcs (the acquisition of information).

As a final example, consider the oil wildcatter prob-
lem in Raiffa (1968), shown in Figure 5a. This influ-
ence diagram is solved in Section 4 as an illustration
of the algorithm. The value in this problem is the
decision maker’s profit, and it is a function of the
decision to drill, the cost of drilling, the amount of oil
to be found, and the type of test performed. At the
time the wildcatter must choose whether to drill, he
knows the results of the test he ordered. That test is
a (possibly noisy) determination of the seismic struc-
ture or no test, so the results depend both on the
testing decision and the seismic structure. The seismic
structure itself is dependent on the possible presence
of oil. Finally, there is no observation available before
the testing decision must be made. (In this problem,
the drilling decision is whether to drill, and the cost
of drilling does not depend upon that decision. If
there were different drilling alternatives available,
then the cost of drilling could depend upon the
drilling decision.)

A variation on the influence diagram includes a
utility function over the wildcatter’s profits, as is

a)

Test Profit

Utility
b)

Test

Figure 5. Oil wildcatter’s problem with expected
monetary value and with utility.

shown in Figure 5b. If the wildcatter’s preferences are
better described by a multiattribute utility function,
the diagram could represent this problem feature as
well, by drawing arcs to the value node from the nodes
corresponding to those attributes.

2. Formal Definition of an Influence Diagram

This section contains a formal definition of an influ-
ence diagram, and develops the notation needed to
prove and explain the influence diagram solution
algorithms. Before an influence diagram can be de-
fined, however, a number of concepts and objects
must be introduced.

An influence diagram is a network consisting of a
directed graph G = (N, A) and associated node sets
and functions. It contains three types of nodes in the
set N, partitioned into sets V, C and D. There is at
most one value node v € V, drawn as a rounded
rectangle, which represents the objective to be maxi-
mized in expectation. There are zero or more chance
nodes in the set C, shown as circles, representing
random variables (or uncertain quantities). Finally,
there may be zero or more decision nodes in the
set D, drawn as squares, corresponding to choices
available to the decision maker.

The arcs A in the graph have different meanings,
based on the target. Arcs into utility and chance nodes
are conditional and represent probabilistic depend-
ence. They do not imply causality or time precedence.
Arcs into decision nodes are informational and imply
time precedence. Any uncertainties or decisions at the
tails of such arcs have been resolved before the deci-
sion at the head of the arc must be made.

In describing the influence diagram evaluation al-
gorithm, it is more convenient to think in terms of
the predecessors and successors of a node in the graph
rather than the arc set A. The set of direct successors,
S(i), of node i is defined as

S() = {j € N: (i, ) € A},

while the indirect successors (or simply successors) is
the set of nodes along directed paths emanating from
node i. In a similar fashion, the set of direct predeces-
sorsis {j € N: (J, i) € A} and the indirect predecessors
(or simply predecessors) is the set of nodes along
directed paths into node i. It is useful to distinguish
between the two kinds of direct predecessors. Direct
predecessors of chance or value node i are called
conditional predecessors, and denoted by C(i), and
the direct predecessors of decision node i are the
informational predecessors, 1(i).

Associated with each node i in the graph is a variable



X; in the decision maker’s problem, and a set Q; of
possible values it may assume. If i is the value node,
then X; represents the expected utility and its domain
Q; is a subset of the real line. If i is a chance node,
then ©, is the sample space for the random variable
X.. Finally, decision node i has alternative X; chosen
from the set Q;. For ease of presentation, whenever
convenient we assume all sets ; are finite. The nota-
tion Q,, with J = {j1, ..., jn} C N, refers to the cross-
product space Q;; X ... X ;. Likewise, X, denotes
the random vector (X, . .., Xj).

Each node i in the influence diagram has an asso-
ciated mapping. For chance and value nodes, this
mapping is an input that must be assessed before
evaluation can begin. As it transforms the diagram,
the algorithm redefines these mappings. For decision
nodes, the algorithm calculates the mapping and rep-
resents it as an output from the process.

The value node v € V has an associated utility
function U: Q¢ — ©,, which represents the expected
utility as a function of the values of the conditioning
predecessors of the value node. At the conclusion of
the algorithm, the value node has no predecessors,
C(v) = @, and U( ) evaluates to the maximal expected
utility.

There is a conditional probability distribution =; for
every chance node i, given the values of its conditional
predecessors, m;(X; | X)) = PriX; = X; | Xcuy = Xcw}. If
the node i has no predecessors, then w; represents the
marginal distribution for Xj,

m(x;) = PriX; = x;}.

For each decision node i, there is an optimal policy
d¥ computed during the algorithm. It maps from
into €, indicating the optimal alternatives given the
decision maker’s state of information at the time of
the decision.

It is now possible to formally define an influence
diagram.

An influence diagram consists of a directed graph
G = (N, A) with nodes N and arcs A. The nodes are
partitioned into sets V, C and D. For each node i,
there is a set ; and a mapping, either U, m; or d},
depending upon the node type.

An influence diagram is said to be proper if it is an
unambiguous representation of a single decision mak-
er’s view of the world. It is said to be oriented if it
contains a value node.

Slightly stronger conditions must be assumed in the
development of an algorithm to evaluate influence
diagrams. The algorithm will then be a constructive
proof that these conditions are sufficient for an influ-
ence diagram to be proper. An influence diagram is
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said to be regular if it satisfies the following conditions:

(1) the directed graph has no cycles,

(2) the value node, if present, has no successors, and

(3) there is a directed path that contains all of the
decision nodes.

The third condition is equivalent to requiring a total
ordering of all of the decisions, a reasonable condition
when there is a single decision maker. As a result, any
relevant information available at the time of one
decision should be available for all subsequent deci-
sions. This “no forgetting” property could be enforced
as a condition for regularity, but as a convenience to
the modeler, the algorithm can assume it with no
ambiguity. This way, at most one arc to a decision
node needs to be specified from any node.

Proposition 1. No Forgetting. If decision node i pre-
cedes decision node j in a regular influence diagram,
then node i and all of its informational predecessors
should be informational predecessors of node j.

Figure 6 shows the addition of “no forgetting” arcs.

It is easy to determine whether an influence diagram
is regular by invoking the following well-known result
from a graph theory (Lawler 1976).

Proposition 2. A directed graph has no cycles if and
only if some list of the nodes has all of the successors
of a node follow it in the list.

An algorithm to build such a list and check for a

becomes

Q__

Figure 6. Adding “no forgetting” arcs.
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cycle is given by order (N):

DEFINE PROCEDURE order (M) TO BE
BEGIN
We{ieM|S()NM =]}
IFW#0O
THEN RETURN (APPEND (order(M\W),
W)
ELSEIFM =9
THEN RETURN(W)
ELSE ERROR (“Cycle in graph”)
END

Ordering the decision nodes in the graph simplifies
the propagation of “no forgetting” arcs.

3. Transformations to the Influence Diagram

The procedure to evaluate an influence diagram con-
sists of a sequence of transformations to the diagram
that maintain feasibility and do not modify the opti-
mal policy or maximal expected value. Such a trans-
formation will be called a value-preserving reduction.
A node will be said to be removed from the diagram
if it is eliminated through some value-preserving re-
duction. When a node is removed, it can be dropped
from the current node set N, and all arcs incident to
it can be dropped from the current arc set A.

This section develops two kinds of reductions—
those that remove nodes and one that reverses arcs.
The chance and decision node removal transforma-
tions are based on results by Olmsted, but are really
just the basic steps in evaluating a stochastic dynamic
program (Bellman 1957). The arc reversal transfor-
mation is Bayes’ Theorem (Howard and Matheson,
and Olmsted).

A chance or decision node will be called a barren
node if it is a sink, that is, it has no successors. No
matter what value is assigned to the barren node
variable, no other node is affected, so it may be
removed from the diagram. The algorithm does not
need to know a probability distribution for barren
chance nodes, and so it may be possible to evaluate
an incomplete influence diagram if all of the chance
nodes missing probability distributions become barren
nodes. Figure 7 illustrates the removal of barren nodes.

Proposition 3. Barren Node Removal. A barren node
may be simply removed from an oriented, regular
influence diagram. If it is a decision node, then any
alternative would be optimal.

Once a barren node has been removed, other nodes
may become barren, as shown in Figure 7. In general,

becomes

becomes

Figure 7. Reducing barren nodes.

any chance or decision node that does not indirectly
precede the value node can be considered a barren
node. Such a node may be simply removed from an
oriented, regular influence diagram.

Theorem 1. Chance Node Removal. Given that chance
node i directly precedes the value node and nothing
else in an oriented, regular influence diagram, node i
may be removed by conditional expectation. After-
ward, the value node inherits all of the conditional
predecessors from node i, and thus the process creates
no new barren nodes.

Proof. Figure 8 gives a picture of the process. The
conditional predecessors of the value node after the
removal of node / become

C™™(v) « Cv) U Ci)\{i}.

[The operator “\” denotes set subtraction. A\B =
{i € A | i€ B}.] Since the conditional expectation with



respect to X; affects only the value node,
Unew(xc,ww(u)) «— Ele I XCncw(U) = XC“CW(U)}
E{E{X, | Xi} | Xcrenw) = XCrov(u)}

Y EWX X = X, Xowww) = Xom(w))

XEL;

- PriX; = x;| Xcrovw) = Xcmevw))
Y E(X, | Xco) = Xco))

X€9;

- PriX; = x;| Xeiy = Xew)

= X Ulxco)mi(x; | Xcp)

X,€Q;
for all xcr=(v) € Qcr=(v).

Decision nodes may be removed from the diagram
by maximizing the expected utility. First, however,
the procedure must use conditional expectation to
remove any conditional predecessors of the value node
not observable at the time of the decision. Therefore,
decision node i may be removed only when all direct
predecessors of the value node (except for i itself)
directly precede node i. Figure 9 shows the decision
node removal process.

Theorem 2. Decision Node Removal. Given that all
barren nodes have been removed, that decision node i
is a conditional predecessor of the value node, and that
all other conditional predecessors of the value node are
informational predecessors of node i in an oriented,

‘
becomes

Figure 8. Removing a chance node.
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1) ~ C(v)

becomes

Figure 9. Reducing a decision node.

regular influence diagram, node i may be removed by
maximizing expected utility, conditioned on the values
of its informational predecessors. The maximizing
alternative(s) should be recorded as the optimal policy.
The value node inherits no new conditional predeces-
sors from this operation. As a result, it is possible that
some of the informational predecessors of node i may
become barren nodes.

Proof. First, we must show that the value node is the
only successor of node i. Suppose that this is not the
case, that is, some node j # v is also a successor of .
Since the diagram contains no barren nodes, there
must be a directed path from j to v. Let k (possibly ;)
be the penultimate node on that path. By construction,
k is a successor of i/ and a conditional predecessor of
v. The assumptions in the theorem require that k must
also be an informational predecessor of i, which means
there is a cycle and hence a contradiction.

The conditional predecessors of the value node after
the removal of node i become

C™¥(v) — COuN\{il.

Note that the variables Xjncw), although known at
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the time of the decision, are irrelevant and do not play
arole.

The assumptions ensure that the expected utility
depends only on variables know when the decision
corresponding to node i is made. Therefore the opti-
mal expected utility is given by

U™ (Xcmen(w)) <— max E(X, | Xi = xi, Xy = X1}
XEQ;

max E{X, | Xcow) = xcoow))

XEQ;

I

max U(x;, xcre))
X €Y

and the optimal policy is determined by

d*(xcrvp)) «— argmax U(x;, XCrov(w))

X€9;
for all xcre) € Qcrew(y).

It may be worthwhile to keep track of ties and to
let dF be the set of all optimal policies. It is also useful
to store with dF the expected utility value that it
achieves.

The final transformation is the reversal of arcs
between chance nodes, and is the implementation of
Bayes’ Theorem. Remember that it is not possible to
reverse an arc incident on a decision node. Figure 10
illustrates the arc reversal process.

Theorem 3. Arc Reversal. Given that there is an arc
(i, ) between chance nodes i and j, but no other directed

OanO,
W;W

becomes

C() \ (i) \ {i}

Figure 10. Reversing an arc between chance nodes.

(i, j)-path in a regular influence diagram, arc (i, j) can
be replaced by arc (J, i). Afterward, both nodes inherit
each other’s conditional predecessors.

Proof. The conditional predecessors of each chance
node after arc reversal become

C"™(j) « CM(i) U C(i))\{i}
and
C(i) « C™™(j) U {j}.

In addition to the new arc (j, i) which replaces arc
(i, j), the reversal adds arcs from the conditional
predecessors of each node to the other node, if not
already present, bringing both to the same state of
information before the arc reversal. The requirement
that there is no other directed (i, j)-path is necessary
and sufficient to ensure that no cycle is created by the
addition of these arcs.
By conditional expectation,

w7 | Xerev( ) <= PriX; = x; | Xemewj)y = Xcmew( )}
= E{Pr{X) = x; | Xi} | Xcrewj) = Xcoev( )}
= Xgﬂ_ PriX; = x| X; = X;, Xcoon(jy = X )}
- PriXi = x; | Xcrew(j) = Xcoev( )}
= X;ﬂ PriX; = x;| Xcowj) = xcow )}

- PriX; = x; | Xcowgiy = xcow(i)}

= X w0 | xou ) x| xcoun),

X;€Q;
and, by Bayes’ theorem,
w1 | Xeme(iy) <= PriX; = x; | Xcvewiy = xcmew)}

_ PriXi =2, Xi = x; | Xcrewj) = Xcrov(j)
P{X; = x; | Xcrev(jy = XCmov )}

= Pr{X;=x; | X; = x;, Xcrov(j) = XCrov )}

PriXi= x| Xcrong) = X))
PriX;= x;| Xcrev(j) = xcmen(j)}

= Pr{X; = x;| Xco(j) = xco4(j)}

~ PriXi = xi | Xcoup) = xcoin}
PriX; = x; | Xerewj) = X}

_ 7705 | xcos)ar (6 | Xeos)
0G| xeme()

for all x; € Qi, x; € @y, Xcrevjy € Qcmenj).



4. The Algorithm

This section combines the basic transformations de-
veloped so far into a procedure that can evaluate any
oriented, regular influence diagram. The procedure
will remove nodes from the diagram until only the
value node remains. At that point, it has determined
all of the optimal policies and computed the maximal
expected utility. The following theorem justifies the
crucial step in the procedure.

Theorem 4. Existence of a Node to Remove. Given
that an influence diagram is oriented and regular, has
no barren nodes, and has “no forgetting” arcs added,
if the value node has predecessor(s) but there is no
decision node that may be removed, then there is a
chance node that is a conditional predecessor of the
value node but not an informational predecessor of
any decision node. That chance node may be removed,
perhaps after some arc reversals.

Proof. First, suppose the diagram contains no deci-
sion nodes. In that case all of the conditional prede-
cessors of the value node are chance nodes with no
decision successors, and the result follows.

Hereafter, suppose the diagram contains at least one
decision node. The diagram is regular, so the decisions
are completely ordered, and there is some decision
node j corresponding to the latest decision. Because
all “no forgetting” arcs have been added, any infor-
mation predecessor of any decision node must also
directly precede node j. Therefore, we are looking for
some node i € C N C(v)\I(j).

Suppose j € C(v). Node j cannot be removed so
C)\I(j) U {j}) is not empty. Due to the “no forget-
ting” arcs, D C I(j) U {j}, so there is some node
i€ CNCMNG).

Otherwise j &€ C(v). Since the diagram contains no
barren nodes, it must contain a directed path from j
to v. Let node i be the penultimate node on the path.
By the construction, ; € C N C(v) and, because there
cannot be a cycle, i & I(j). Thus i € C N C(u)\I(j).

During its execution, the algorithm may select a
chance node i € C(v) for removal which has other
(chance node) successors besides the value node. In
this case, its arcs to chance nodes must be reversed
before it can be removed from the diagram. Care must
be taken when performing these reversals so that a
cycle will not be formed. For example, if j and k are
chance node successors of 7, and j is a (possibly indi-
rect) predecessor of k, then arc (i, j) must be reversed
before arc (i, k). (Otherwise there is another directed
(i, k)-path, through j, which violates the arc reversal
conditions.) Fortunately, due to the acyclicity of the
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graph, some ordering of reversals does not create a
cycle.

We can now state an algorithm that can evaluate
any regular influence diagram:

DEFINE PROCEDURE IDEVAL TO BE
BEGIN
check for oriented, regular influence diagram
and “no forgetting” arcs
eliminate all barren nodes
WHILE C(v) # & DO
BEGIN
IF there exists i € C N C(v) st S(i) = {v}
THEN remove chance node i
ELSE IF there exists i € D N C(v)
st C(v) C I(i) U {i}
THEN BEGIN
remove decision node i
eliminate barren nodes
END
ELSE BEGIN
findieCNC)stDNS() =
WHILE C N S(i) # @ DO
BEGIN
find j € C N S(i) st there is no
other directed (i, j)-path
reverse arc (I, j)

END
remove chance node i
END
END
END

These value-preserving reductions can be used to
evaluate any regular influence diagram. Every step
of the algorithm removes at least one node, so the
algorithm will always terminate. Since the decision
maker’s problem can be evaluated uniquely, the
influence diagram must be proper.

Corollary 1. If an influence diagram is regular, then
it is also proper.

As an example of the algorithm, consider again the
oil wildcatter problem from Raiffa as formulated in
Section 1, and shown in Figure 11a. This influence
diagram is feasible and contains no barren nodes, but
has one added “no forgetting” arc, since the type
of test chosen is known at the time of the drilling
decision.

In its first iteration, the algorithm will remove the
“Cost of Drilling” chance node since the value node
is its only successor.

In the next iteration, no node can be removed
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a) Test Profit

b) Test @ Drill Profit

7

Figure 11. Evaluating oil wildcatter’s problem
(first part).

directly. The “Amount of Oil” chance node is a direct
predecessor of the value node, but it has another
successor as well. The “Drill” and “Test” decision
nodes are also direct predecessors of the value node
but the “Amount of Oil” is not known at the time
these decisions must be made. Therefore, the algo-
rithm must reverse the arc from “Amount of Oil” to
“Seismic Structure” as shown in Figure 11b. This
operation is the common “flipping” of the decision
tree, familiar to everyone who has solved these prob-
lems by hand. Now it is possible to remove the
“Amount of Oil” chance node (Figure 12a). Notice
that “Seismic Structure” becomes a direct predecessor
of the value node in the process.

The third iteration is similar to the second in that
it is impossible to remove any of the nodes directly.
Reversing the arc from “Seismic Structure” to “Test
Results,” however, removes the “Seismic Structure”
and as shown in the new diagram in Figure 12b. Note
that when the arc is reversed, “Test” becomes a direct
predecessor of “Seismic Structure.” When “Seismic
Structure” is removed, “Profit” inherits conditional
predecessor “Test Results.”

In the fourth iteration, we are finally able to remove
the “Drill” decision node, since the other conditional
predecessors of the value node are informational pred-
ecessors of “Drill.” Figure 12c illustrates the new
diagram. In the process of removing “Drill,” a table is
constructed showing, for each type of test chosen and
the results of that test, which drilling decision should
be made.

The fifth iteration removes the “Test Results”
chance node and the new diagram has just two nodes
(Figure 12d).

The sixth and last iteration removes the “Test”
decision node. By comparing the value of each alter-
native, we can now select the optimal testing decision:

(1) No test should be done and always drill. This
alternative has an expected value of $40,000.

(2) Ifthe seismic test were conducted, then drill unless
there is no structure. The test is not conducted,
because it is worth $4,300 but it costs $10,000.

(3) No matter what the experimental test reveals, drill
anyway. Therefore, this test is worthless to us.

5. Conclusions

The influence diagram has become a useful tool for
analysts in communicating with decision makers and
experts. The development of an algorithm to evaluate
such diagrams directly creates new possibilities in
decision analysis to construct intelligent systems using
influence diagrams as a knowledge representation.
The convenience it allows in posing sensitivity ques-
tions and the efficiency in solution from explicit

a) Test Drill Profit
b) Test Drill Profit
c) Test Profit
N
d) Test Profit

J/

Figure 12. Evaluating oil wildcatter’s problem
(second part).



recognition of conditional independence offer clear
advantages over decision tree processing for many
applications. Moreover, the analyst is able to frame
the problem from the perspective of the decision
maker, and to maintain and revise the model from
that perspective.

The algorithm allows the evaluation phase to be-
come transparent, so that analysts can place emphasis
on formulating the model and asking sensitivity ques-
tions. Because the model can be represented in the
same form in which it was assessed, it is natural for
the decision makers and experts to understand the
process and to be involved. Even when there are no
decisions in the model, such as in a complex reliability
analysis, the focus is on the relationships among the
variables and the most natural way to obtain proba-
bilities. Probabilistic inference on the model can then
be performed by the algorithm.

For example, influence diagrams make it easy to
compute the expected value of information, since the
required modification is the addition or deletion of an
informational arc from chance node(s) to decision
node(s). (Note that this assessment is actually the
selling price for information rather than the desired
buying price, but they are the same when our utility
function is linear or exponential.) When we evaluate
value of information on an influence diagram, we
must explicitly specify which information and when it
will become available (Merkhofer 1977).

Consider the oil wildcatter problem and the value
of knowing the amount of oil before making the
drilling decision. In Figure 13a an arc is added from
“Amount of Oil” to “Drill.” The expected value of
the new diagram is $65,000, and it would never be
worth more than $25,000 (i.e., $65,000 — $40,000) to
obtain any information about the presence of oil.

Suppose we could find out the cost of drilling be-
fore making a testing decision. In this case, shown in
Figure 13b, if the cost is highest ($70,000 in the
problem), then the experimental test should be or-
dered and drilling conducted unless it reveals no struc-
ture. (Otherwise, there is drilling without any test.)
The value of learning the cost in advance is $385.

In general, the decision maker may specify a collec-
tion of informational arcs to add or delete simultane-
ously, and may determine their collective value.

It is prohibitive to try to determine the value of all
present and potential informational arcs. It is reason-
able, however, to consider changing the time that a
particular random variable is known. We can do so
by adding or deleting arcs from the corresponding
chance node to different decision nodes. Since this
operation will add “no forgetting” arcs, there never
needs to be more than one arc into a decision node—
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a) Test Profit

b) Test

Figure 13. Value of information in oil wildcatter’s
problem.

the earliest decision by which the information will be
available. There is no limit to how late the information
may be revealed since it is possible that it may never
be observed. On the other hand, there can be a limit
on how early it may be known, if the chance node
is a successor of some decision node. Within these
limits, it is possible to obtain the value of finding out
the information earlier or later than in the original
problem formulation.

It is also possible to change the time that a decision
is to be made, or, in general, to change the order of
decisions (assuming that the sets of alternatives do not
change). There is no limit to how early a particular
decision can be made, since if it is made before
anything is observed then it is just an “open loop”
decision. There is, however, a limit on how late a
decision may be made, since some chance node may
be the successor of this decision and the predecessor
of another. Within these limits, one can find the value
of postponing or hurrying a decision as compared to
the original formulation. These changes are imple-
mented by the addition and deletion of informational
arcs into and out of the particular decision node.

In a similar fashion, we could consider other sensi-
tivity questions. The value of control is the improve-
ment we obtain when a chance node becomes a
decision node. Conversely, policies may be compared
by replacing a decision node with a (deterministic)
chance node. Stochastic sensitivity is performed by
reducing the diagram to our key variables as condi-
tional predecessors of the value node. Of course all of
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these options may be combined along with the most
basic sensitivities, the perturbation of numbers and
the inclusion or exclusion of outcomes or alternatives.

In addition, if the algorithm is to be run many times
with a variety of changes to the diagram, it may be
possible to reuse partial solutions. As an example, a
decision tree is one such partial solution, and the
algorithm can be easily modified to just perform the
inferences needed to build a decision tree from an
influence diagram.

There are many directions for future research. These
include refinement of the algorithm and its imple-
mentation, application to specific problem structures,
possible uses as a subproblem within a larger
decision system, and extensions to the influence
diagram “language.”

There are challenges to implement the algorithm in
a framework that extends its power and flexibility. For
example, a graphical user interface is essential, as is
efficient processing of deterministic variables. An im-
portant improvement in the algorithm would be de-
termining the optimal choice when breaking “ties.”
There may often be a choice as to which chance node
to remove and which one to reverse. Since the removal
process can add arcs to the value node, this choice
affects the time and memory requirements for future
iterations.

In general, even an expensive procedure to deter-
mine the optimal sequence of node reductions may
be worthwhile.

Several problem structures seem particularly appro-
priate for special influence diagram algorithms. These
include fault trees, dynamic programs, and multi-
variate normal problems. Maintaining large probabi-
listic databases as influence diagrams would permit
the calculation of arbitrary conditional probability
distributions on demand. In particular, influence dia-
grams would be an ideal framework for representing
probabilistic rules and knowledge in an expert system
semantic network.

The influence diagram, as presented in this paper,
represents a single decision maker’s problem. Most
games and decentralized team decisions do not fit that

model. While the algorithm and analysis for a single
decistion maker do not directly extend to these prob-
lems, it may be worthwhile to develop a generalized
influence diagram that is able to represent them.

Acknowledgment

The algorithm was implemented by Jack Breese as it
was being developed. His experiences and ideas played
a key role. Sam Holtzman, Ron Howard, Jim Mathe-
son, and Scott Olmsted have all done work leading up
to these results, and their suggestions and encourage-
ment were helpful, as were the comments of the
anonymous referees and the Associate Editor. I must
also mention Stuart Dreyfus, who taught me many
things, including dynamic programming.

References

BELLMAN, R. 1957. Dynamic Programming. Princeton
University Press, Princeton, N.J.

HowaARrD, R. A., AND J. E. MATHESON. 1981. Influence
Diagrams. In The Principles and Applications of
Decision Analysis, Vol. II, (1984), R. A. Howard
and J. E. Matheson (eds.). Strategic Decisions
Group, Menlo Park, Calif.

KorsaN, R. J., AND J. E. MATHESON. 1978. Pilot Auto-
mated Influence Diagram Decision Aid. SRI Inter-
national, Menlo Park, Calif.

LAWLER, E. L. 1976. Combinatorial Optimization: Net-
works and Matroids. Holt, Rinehart & Winston,
New York.

MERKHOFER, M. W. 1977. The Value of Information
Given Decision Flexibility. Mgmt. Sci. 23, 716-727.

MERKHOFER, M. W. 1981. A Computer Aided Decision
Structuring Process. SRI International.

MILLER, A. C., M. W. MERKHOFER, R. A. HOWARD,
J. E. MATHESON AND T. R. RICE. 1976. Develop-
ment of Automated Aids for Decision Analysis.
Stanford Research Institute, Menlo Park, Calif.

OLMSTED, S. M. 1983. On Representing and Solving
Decision Problems. Ph.D. Thesis, EES Dept., Stan-
ford University.

RAIFFA, H. 1968. Decision Analysis. Addison-Wesley,
Reading, Mass.



