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Abstract: Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task1

in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop2

interaction, can potentially support sensemaking of large graphs. However, designing interactive3

algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of4

interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm5

that exploits graph topology. This algorithm can interactively layout graphs with millions of6

nodes, and support real-time interaction to explore alternative graph layouts. Users can directly7

manipulate the layout of vertices in a force-directed fashion. The complexity of traditional8

repulsive force computation is reduced by approximating calculations based on the hierarchical9

structure of multi-level clustered graphs. We evaluate the algorithm performance, and demonstrate10

human-in-the-loop layout in two sensemaking case studies. Moreover, we summarize lessons11

learned for designing interactive large graph layout algorithms on the GPU.12

Keywords: graph layout, big data, visual graph exploration, human-in-the-loop analytics, GPU13

1. Introduction14

Graphs are commonly used to depict complex relations among objects. Graph drawing offers15

solutions to geometrically represent graphs, with the intention of improving their readability. This16

supports applications and analysis in various domains, such as social network analysis (e.g., [1]17

and [2]), cyber security (e.g., [5]), and intelligence analysis (e.g., [4]).18

However, with the increasing size and complexity of graph data, the performance of drawing19

large graphs, especially those with millions of nodes, is still a significant challenge. Furthermore,20

user interaction with the graph layout becomes increasingly more critical to support sensemaking21

tasks (e.g., [2] and [6]) in the presence of large graph data. Many graph drawing algorithms have22

been proposed in the last few decades. However, many of them ( [7] and [8]) focus on relatively23

small graphs (e.g., graphs with hundreds of nodes) or certain types of graphs (e.g., trees or planar24

graphs). Existing large graph layout algorithms emphasize static graph layout results either based on25

their structures [9] or semantic meanings [10]. They focus on generating static and visually pleasing26

results, but their layouts are constrained by their predefined aims. Thus, these algorithms are limited27

in their support for interactive sensemaking tasks with large graphs.28

In this paper, we argue that enabling direct manipulation and real-time interaction are essential29

to support knowledge discovery and sensemaking activities with large graphs. Static graph layouts30

may not meet the need to reveal multiple perspectives of a graph. If there is not a clear definition31

of the best graph layout, users will need to explore the graph and interact with the layout to find32
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meaningful information. In some cases, users interactive feedback can alter graph layout properties,33

such as modifying edge weights [3] or expanding subgraphs [2], leading to the need for incremental34

layouts that dynamically respond to users’ sensemaking activities. We highlight human interactions35

on a large graph layout, which support user exploration of unexpected knowledge from large graphs.36

Thus, we are not overly concerned about the initial layout time, which could be preprocessed.37

Rather, we are focusing on the interactive update process that occurs when users are interacting with38

the large graph after it has already been initially displayed. We therefore stress that the performance39

of the interactive graph layout computation should be optimized for single iteration speed, rather40

than total batch completion speed, for the purpose of handling real-time feedback and human41

intervention that can interrupt or interplay with layout computation.42

To this end, we focus on optimizing a force-direct algorithm based on the spring-electrical model43

[11]. This model depicts the graph drawing problem as a physical system, where the spring-like44

attractive forces are generated by each edge, and each charged node repels others via electrical force.45

Since it iteratively calculates the position of each node, this algorithm has the inherent ability to46

dynamically incorporate user interactions into the ongoing automatic layout process. During the47

iterations of the algorithm, users can flexibly select, drag, and pin nodes to modify the layout results.48

However, this algorithm does not scale well with respect to the size of graphs, and it suffers from49

poor performance even on moderate-sized graphs.50

Similar to the N-body problem, the bottleneck of this algorithm lies in the repulsive force51

calculation [12]. Many solutions have been proposed to replace computing the exact repulsive52

forces between all pairs of nodes with some approximated calculations. A common heuristic is53

that if two nodes are far away from each other, the repulsive force between them can be ignored54

or approximated. Thus, a spatial indexing structure needs to be built and updated to describe the55

spatial relationships among nodes in each iteration. For example, Godiyal et al. [13] proposed a56

method combining CPU and GPU to construct a balance k-d tree, while Burtscher et al. [14] gave a57

GPU based octree implementation. However, building and traversing hierarchical structures can be58

computationally expensive for large graphs.59

In this paper, we contribute a new algorithmic solution to speed up repulsive force calculation,60

which can enable human-in-the-loop layout updates of large graphs. We calculate approximate61

repulsive forces based on the graph structure, rather than on the spatial distribution of nodes. The62

benefit of our algorithm, compared to previous accelerated methods, is that we avoid building,63

traversing, and updating a spatial indexing structure. To further improve performance, we design a64

novel parallel force-directed graph layout algorithm that utilizes the massive computational power of65

GPUs to achieve real-time frame-rates that support human interaction. Moreover, our algorithm can66

be integrated into the multi-level graph layout paradigm, which relieves the local minimum problem,67

to generate visually pleasing results.68

As a proof of concept, we demonstrate our algorithm with a few simple types of human69

interaction, such as dragging nodes, without loss of generality. Our method can be utilized in visual70

analytics systems to support many different kinds of dynamic interactions with large graph layouts.71

2. Related Work72

In this section, we review large graph layout algorithms, and focus on force-directed algorithms73

and GPU based methods.74

2.1. Large Graph Layout75

Hachul et al. [9] survey existing solutions to large graph layout considering two aspects:76

aesthetics and performance. They suggest that certain force-directed layout algorithms can generate77

pleasing layouts for most tested graphs. Several recent papers, including [13], [15] and [16], present78

advanced large graph layout techniques based on force-directed algorithms (e.g.,[11], [17], [18] and79

[19]).80
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Another strategy to layout large graphs is based on linear algebra, rather than physical81

simulation, such as [20] and [21]. However, these algorithms are designed to work on a few specific82

types of graphs. In addition, linear algebra based methods cannot be easily integrated with human83

interactions.84

Beyond these, a variety of other large graph drawing algorithms have been investigated. For85

example, Muelder et al. [23] present a treemap based approach; Wong et al. [24] use a space-filling86

fractal curve to layout graph nodes; and Khoury et al. [25] propose a layout algorithm that simplifies87

matrix computations based on linear-algebraic properties. However, these works focus on generating88

static visual representations of large graphs, so it is difficult to interactively change their layouts for89

analytical purposes (e.g., pin some interesting nodes and drag certain parts of the graph).90

2.2. Force-Directed Algorithms91

Force-directed algorithms are commonly used to support visual analysis of graphs, because they92

are conceptually simple and able to produce aesthetically pleasing layouts. These algorithms are also93

called energy-based methods, since they seek to minimize the net force on all vertices. Many practical94

algorithms have been proposed (see [26] for details).95

The spring-electrical model [11] is a popular force-directed layout algorithm, which generates96

graph layouts based on two types of forces: attractive force and repulsive force. This algorithm97

cannot handle large graphs well. The complexity of calculating repulsive force is O(N2), where N98

denotes number of nodes in the graph. For a graph with a million nodes, each iteration of repulsive99

force calculation requires tera-scale computations. This is beyond the processing power of a typical100

consumer desktop CPU. To improve performance, a natural approach is to compute approximated101

forces with some heuristic methods, instead of striving for the optimal solution. Fruchterman et102

al. [11] propose a grid-variant algorithm that accelerates repulsive force computation by splitting103

nodes into grids. Based on the Barnes-Hut Tree [27], a tree structure is used to speed up repulsive104

force calculation by grouping distant nodes as a super node ([16] and [28]). Moreover, [13] and [29]105

propose the Fast Multiple Method (FMM [12]) to accelerate repulsive force computation.106

In addition to the performance issue, another problem with the spring-electrical model is107

local minimum configurations of a large graph layout, particularly when randomizing the initial108

layout. A multi-level approach can overcome this limitation ([16], [30] and [31]). A sequence of109

successive smaller graphs are generated by graph coarsening and partitioning techniques to simplify110

the topology. Global optimal layout is obtained from a small graph, which is then used as a starting111

layout for the next level, until the finest graph layout has been achieved. Bartel et al. [32] summarize112

the multi-level layout paradigm in three phases: coarsening, placement, and single level layout. They113

conclude that there is no clear winning combination, since different coarsening, placement and layout114

algorithms have different attributes.115

2.3. Graph Layout on the GPU116

GPUs were designed for videogames and graphics. The remarkable advances in performance117

and programmability make GPUs popular for general purpose computation [22]. GPUs have been118

shown to produce rapid speed-ups in even straightforward implementations of the repulsive force119

calculations in force-directed graph layout [33] [34]. Godiyal et al. [13] present a parallel FMM120

algorithm on the GPU, and use a K-D tree structure for describing nodes’ spatial distribution. Yunis121

et al. [29] extend a parallel FMM algorithm to multiple GPUs. Moreover, Tikhonova et al. [35] propose122

a scalable parallel force-directed layout algorithm in distributed computing environments. Frishman123

et al. [15] apply the multi-level method to GPU based graph layout algorithms.124

In this paper, we aim at applying the spring-electrical model based force-directed layout125

algorithm to large graphs, wherein users can interact with graph layouts to perceive and explore126

meaningful information. To our knowledge, existing acceleration techniques cannot achieve127

interactive performance on very large graphs (specifically those with millions of nodes) to support128
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real-time exploratory interactions. Furthermore, existing work focuses on evaluating performance129

based on total convergence time, whereas we are more interested in individual iteration time so as130

to support human interaction during the algorithm run. We contribute a GPU based approximated131

force-directed layout algorithm, which achieves real-time human interactions on large graphs.132

3. Algorithm Outline133

In this section, we address the challenges of the spring-electrical model for large graph layout134

from two key perspectives: performance and result quality. We propose a new approximation135

algorithm for repulsive force, which intertwines with the multi-level approach.136

3.1. Approximation of The Repulsive Force137

Both Barnes-Hut Tree [27] and FMM [12] methods calculate approximated repulsive force based138

on node distribution, and a spatial indexing structure is built and updated in each iteration. To139

avoid these stages, we propose to use graph topology to approximately calculate repulsive forces.140

If two nodes belong to two different graph clusters, they are “far away" from each other, and we use141

their inter-cluster repulsive force for approximation. In total, repulsive forces have two components:142

internal-electric-force and external-electric-force. The internal-electric-force refers to the repulsive force143

between pairs of nodes within the same cluster, and the external-electric-force is the inter-cluster144

repulsive force. The internal-electric-force is used to obtain the local structure of a graph, while the145

external-electric-force is used for capturing the overview of a graph.146

Figure 1. Left: the original graph G0. Right: its coarsened graph G1.

Given an undirected graph G = G0 = (V, E), we first use a multi-level coarsening or clustering147

algorithm to generate serially successive coarser graphs (G1, G2, · · ·), where each (super)node in the148

next upper level represents a cluster of nodes in its lower level. Figure 1 shows a two-level graph,149

and the original graph is coarsened based on its topology structure. In the picture, the left graph G0
150

is a lower level graph, and the right graph G1 is a upper level graph. To compute the repulsive forces151

on all nodes, we begin at the coarsest graph and work our way down. Each node’s total repulsive152

force in level i with graph Gi is computed as the sum of the external-electric-forces inherited from153

graph Gi+1 plus the sum of the internal-electric-forces within its parent cluster. Thus, we calculate the154

internal-electric-forces at each level of the graph and pass the total repulsive forces down to the next155

level as external-electric-forces until we reach the finest level of the graph G0. This strategy accumulates156

the approximated total repulsive forces for each node in a logarithmic hierarchical fashion. Finally,157

we add the attractive force to the approximated repulsive force of the finest level graph and update158

each node’s position.159

Therefore, the complexity of computing the repulsive forces is the complexity of computing160

internal-electric-forces for a single cluster times the total number of clusters processed. Assuming that161

the total number of nodes is N, a graph G0 is evenly partitioned into clusters with P nodes. We have162

N/P number of clusters in the finest level graph G0, which equals the number of nodes in the next163

upper level graph G1. Graph G1, then has N/P2 clusters. In summary, the total number of clusters164

is N/P + N/P2 + N/P3 + · · · = N/(P − 1). The complexity of internal-electric-forces is O(P2) for a165

single cluster. So the total repulsive force complexity is O(NP). Adding the attractive force, the total166

complexity is O(NP + E) ≈ O(N + E), where E is the number of edges in the graph, and N >> P .167
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However, a graph cannot always be evenly partitioned based on its topology, such as in cases168

involving scale-free networks where the node degree distribution follows a power law. Different169

sizes of graph clusters are generated when we apply graph partition algorithms to these kinds of170

graphs. As a result, the value of P varies for different clusters. We may constrain the size of P to171

generate graph clusters with the same size. However, we cannot generate the graph structure well172

if we evenly partition it. In our work, the value of P is depended on the graph type, and we have173

no constrained value of P. Thus, the actual performance is highly impacted by graph type, and we174

discuss these details in Section 5.2.175

3.2. Multi-Level Approach176

Beyond the expensive force computation, another challenge of force-directed layout algorithms177

is the potential sub-optimal result for large graphs. Various multi-level approaches have been178

proposed to address this challenge. Bartel et al. [32] present a survey of graph clustering algorithms179

based on graph topology (e.g., edge collapse, independent set merger, solar merger, etc.). Frishman180

et al. [15] propose a spectral based graph partitioning algorithm, and Muelder et al. [23] discuss a181

modularity based hierarchy cluster algorithm. We propose our above approximated repulsive force182

computation algorithm to weave into the multi-level paradigm for big graph layout.183

In this paper, we adopt the solar merger algorithm to build multi-level graphs. The solar merger184

is introduced by Hachul et al. [36] in their fast multiple multi-level method (FM3), where each185

sub-graph is simulated as a solar system. Each node of a sub-graph is classified as sun, planet or186

moon. The solar system collapses a sub-graph into the sun node of the next level graph. Since a sun187

node is always the center of a sub-graph, it can represent all nodes within its sub-group for repulsive188

force computation.189

In the placement stage, we keep the positions of all parent nodes and initialize their child nodes190

along a circle, the center of which is their parent node. This design is based on the solar system191

where child nodes are either planet nodes or moon nodes. After this, we apply our approximated192

force-directed layout method by traversing graphs from the top level to the bottom. In summary, the193

three steps of our multi-level graph layout algorithm are as follows:194

• Coarsening : We use the solar merger [36] to generate a sequence of graphs G1, G2, . . . , Gcoarsest,195

where the maximum number of nodes in the coarsest is 50. Note that this hierarchical structure196

is strictly preprocessed, and does not need to be updated over time.197

• Placement : To initialize the layout for the next level graph, we keep the sun node’s position and198

assign its child nodes along a circle around it.199

• Layout : We use our approximated force-directed layout algorithm to update graph layout of200

each level. We parallelize our algorithm to achieve real-time interactions for graphs with millions201

of nodes.202

The multi-level scheme is used for obtaining high quality results, and reducing the number of203

iterations. However, the performance of a single iteration for force computation is crucial for human204

interaction with large graph layout. The GPU based approximated force-directed algorithm is the key205

to satisfy the demand of interactivity. In other words, any graph layout algorithm can be applied to206

obtain the initial pre-processed graph layout, and then our interactive GPU graph layout algorithm is207

deployed for dynamically updating graph layout on the fly. In summary, we generate a sequence of208

coarsened graphs in the CPU, and then apply the node placement and layout algorithms on the GPU209

to speed up performance.210

4. GPU Implementation211

This section describes how the GPU is utilized to accelerate the approximated force-directed212

layout algorithm. We begin our discussion with a GPU friendly data structure for the multi-level213

graphs, and then we discuss our GPU parallel force-directed algorithm design.214
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4.1. Data Storage215

There are two common types of data structures used to represent a graph: adjacency matrix and216

adjacency list. Compared with the adjacency list, the adjacency matrix suffers scalability issues for217

large graphs. Thus, we use a modified adjacency list, which is similar to the compressed sparse row218

(CSR) format used by [13]. We extend the modified adjacency list to organize multi-level graphs.219
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Figure 2. An example of the GPU memory organization of three-levels of graphs. Node-link
diagrams (right) show the corresponding level graphs. Several data arrays are stored in GPU memory
to represent these graphs. In this figure, G0 is the original graph, which is partitioned into four
sub-graphs. G1 is the coarsened graph of the original graph, and is partitioned into two sub-graphs.
G2 is the coarsest graph.

Figure 2 shows the GPU data structure for a three-level graph. Except for the finest level graph,220

there are two groups of data arrays used to describe graph clustering and edge connections at each221

level. The first group includes cluster-id, cluster-parentIndex, cluster-weight, cluster-size, cluster-offset,222

which are used to describe the organization of the clusters of graph nodes:223

• cluster-id stores the nodes of the current level graph, which are the sun nodes from the lower224

level graph.225

• cluster-parentIndex provides the indexes of the sun nodes for the next level graph.226

• cluster-weight is the number of nodes in the finest level graph that are descendent members of227

current cluster.228

• cluster-size is the number of nodes collapsed into this node from its next lower level graph.229

• cluster-offset is the actual index of the nodes in the sub-graph.230

The second group of arrays represents the edge connections of each level graph, including231

cluster-degree, edge-offset and edge-list:232

• cluster-degree is the number of edges that other clusters connect to the current cluster.233

• edge-offset stores the beginning index of the adjacency edge list.234

• edge-list is the adjacency edge list of the current level graph.235

In addition to these data arrays, Vertpos holds the positions of all the nodes in the graph; Fatt, Frep236

and Vertdisplacement respectively store the attractive forces, repulsive forces and node displacements237
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of each layout iteration. Thus the total memory usage is linear with the total number of nodes and238

edges. Memory usage is constrained by the original graph, not the value of P.239

4.2. GPU Kernels240

Our parallel algorithm includes three GPU kernels, shown in Figure 3. Each thread in the241

attractive forces kernel and updated position kernel is responsible for one node of the selected level242

graph, which calculates its attractive force and updates its position based on its total force.243

a"rac%ve(forces� approximated(
repulsive(forces�

updated(posi%on�

Figure 3. The GPU computation flowchart for a single level graph layout. The kernels of attractive
forces and approximated repulsive forces are described in Algorithm 1 and Algorithm 2.

Algorithm 1: Attractive Force Kernel
Input : level, user-chosen graph level

cluster-id, an array of node IDs
cluster-degree, an array of node degrees
edge-o f f set, an array of node offsets
edge-list, an array of edge list

Output: Fatt, an array of attractive forces
1 for i = 0 to size(cluster-id[level])− 1 do in parallel
2 id = cluster-idlevel [i];
3 degree = cluster-degreelevel [i];
4 start = edge-o f f setlevel [i];
5 for j from 0 to degree-1 do
6 adjacent-id = edge-listlevel [start + j];
7 Fatt(id) += AttForce(id, adjacent-id);
8 end
9 end

244

Algorithm 1 shows the attractive force computation, where its inputs are data arrays with edge245

information. The kernel of approximated repulsive forces is complex. It calculates the approximated246

repulsive force based on the data arrays with graph clustering information. Algorithm 2 shows the247

details: the while loop in Line 3 describes the top-down graph traversal to compute approximate248

repulsive force. In each level graph, there are two parts: computing the internal-electric-forces and249

passing the repulsive forces to the lower level graph as external-electric-forces. The first part includes250

Lines 3-31, with Lines 7-15 describing the special case of the top level graph layout. The second part251

in Lines 33-44 is concerned with bestowing the repulsive forces from one level graph to a lower level.252

4.3. Workload Imbalance253

Based on our parallel algorithm design, the thread workload imbalance problem occurs when254

the sizes of graph clusters vary significantly. Threads handling smaller graph clusters have less work255

to do compared to threads handling larger graph clusters. To solve this problem, we can evenly256

partition a graph into sub graphs. In this case, the workload is evenly distributed among threads257

(e.g., [15]). However, we may lose some graph topology knowledge when clustering the graph this258

way, which causes the force-directed layout to converge poorly.259
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Algorithm 2: Approximated Repulsive Forces
Input : level, user-chosen graph level

cluster-id, an array of nodes IDs
cluster-weight, an array of cluster weights
cluster-parentIndex, an array of parent indexes
cluster-o f f set, an array of node cluster offsets
cluster-size, an array of node cluster sizes
Rep(id1, id2), a subroutine to compute repulsive forces of two nodes

Output: Frep, an array of repulsive forces
1 curLevel = TotalLevel −1
2 //inter-cluster-forces (3-31)
3 while curLevel ≥ level do
4 size = size( cluster-idcurLevel)− 1
5 if curLevel = TotalLevel −1 then
6 //all nodes belong to one cluster in top level
7 for i = 0 to size do in parallel
8 id1 = cluster-idcurLevel [i]
9 w1 = cluster-weightcurLevel [i]

10 for j = 0 to size do
11 id2 = cluster-idcurLevel [j]
12 w2 = cluster-weightcurLevel [j]
13 Frep(id1) += Rep(id1, id2) ∗ w1 ∗ w2
14 end
15 end
16 else
17 for i = 0 to size do in parallel
18 id1 = cluster-idcurLevel [i]
19 w1 = cluster-weightcurLevel [i]
20 index = cluster-parentIndexcurLevel [i]
21 //find the nodes belonging to one cluster
22 start = cluster-o f f setcurLevel+1 [index]
23 size = cluster-sizecurLevel+1 [index]
24 end = start+size − 1
25 for j = start to end do
26 id2 = cluster-idcurLevel [j]
27 w2 = cluster-weightcurLevel [j]
28 Frep(id1) += Rep(id1, id2) ∗ w1 ∗ w2
29 end
30 end
31 end
32 //pass forces to next level, until the finest level
33 if curLevel > 0 then
34 for i = 0 to size do in parallel
35 id = cluster-idcurLevel [i]
36 start = cluster-o f f setcurLevel [i]
37 size = cluster-sizecurLevel [i]
38 end = start+size − 1
39 for j = start to end do
40 childrenID = cluster-idcurLevel−1 [j]
41 Frep(childrenID) = Frep(id)
42 end
43 end
44 end
45 curLevel -= 1
46 end



Version December 12, 2016 submitted to Informatics 9 of 19

To deal with the workload imbalance problem, Chen et al. [42] propose a dynamic load balancing260

method to effectively exploit the GPU concurrency. Hong et al. [43] present a warp-centric method261

that considers the detailed GPU architecture (a basic group of threads that share instructions on the262

GPU is called a warp) to achieve performance gains. However, both of them introduce extra work for263

thread assignment.264

In next section, we show the performance of the imbalance workload problem. We propose using265

a threshold of the maximum cluster size for generating graph clusters, to avoid outliers. We plan to266

consider other solutions to the workload imbalance problem to improve performance in future work.267

5. Results and Discussion268

We tested our algorithm on a desktop computer running Windows 7 Enterprise, which was269

equipped with an Intel i7 processor and an NVIDIA GeForce GTX 680 graphics card programmed270

with CUDA 7.5. We choose FM3 [36], a classic force-directed layout algorithm widely used for large271

graph layout ([9], [15] and [35]), as a baseline to evaluate the performance and visual results of our272

algorithm.273

In total, we picked five different graphs as five test cases for our algorithm, including one274

artificial graph generated by ourselves and other well-known graphs. Table 1 shows the summary275

of these five graphs.276

Table 1. Summary of the five tested graphs
Graph Number of Vertices Number of Edges
crack 10,240 30,380

finan512 74,752 261,120
web-Stanford 255,265 1,941,926

grid-mesh 1,000,000 1,998,000
roadNet-TX 1,379,917 3,843,320

5.1. Visual Assessment277

Figure 4. The crack layout results. A, B, C are three levels of coarsened graphs generated by our
algorithm (graph nodes colored by cluster membership). D is the result from FM3 implemented by
ODGF [38].
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Figure 5. The finan512 layout results. A, B, C are three levels of coarsened graphs generated by our
algorithm (graph nodes colored by cluster membership). D is the result from FM3 implemented by
ODGF [38].

A B

C D
Figure 6. The web-Stanford layout results. A, B, C are three levels of coarsened graphs generated by
our algorithm (graph nodes colored by cluster membership). D is the result from FM3 implemented
by ODGF [38].
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Making a fair, reasonable and comprehensive evaluation of visual representations of a graph278

is difficult because the assessment could be highly subjective (e.g., when considering the aesthetics279

aspect). Most previous large graph layout algorithms attempt to generate visually pleasing graph280

layouts but ignore the capability for human interactions to adjust layout results. Alternatively, we281

emphasize the importance of enabling interactive capabilities to improve visually pleasing layouts .282

This can potentially help to generate more meaningful layouts for a large graph, especially from a283

human perception and sensemaking insight perspective.284

Figures 4, 5 and 6 show results of our multi-level algorithm (200 iterations per level without285

human interactions) and FM3 on graphs crack, finan512 and web-Stanford. The visual results generated286

by our method can achieve at least the same visual quality as those from FM3.287

5.2. Performance Analysis288

Termination conditions of iterative force computation impact the quality and performance of289

graph layouts. Previous works (e.g., [13], [15]) focus on generating static pleasing layouts of large290

graphs, and they select a fixed number of iterations to halt the force computation. However, simply291

using a fixed number of iterations as a termination condition cannot guarantee that the computed292

layouts always satisfy user requirements, especially considering the fact that different users may focus293

on different aspects to evaluate graph layouts. For example, Endert et al. [37] argue for “human is the294

loop" sensemaking, in which analytical algorithms such as graph layouts are fundamentally centered295

around human sensemaking interactions to support exploratory knowledge discovery. Thus, it is296

important to support user interaction with graph layouts when sensemaking on large graphs.297

The support for dynamic interaction with large graph layouts is a key design goal in this paper.298

Thus, the average computation time for one iteration, rather than the total amount of time for299

computing a converged layout, is used as a meaningful measurement to evaluate the performance300

of our algorithm. This one-iteration oriented computation time is calculated by averaging the301

time of all iterations needed in our algorithm to achieve the finest level graph. We run both our302

algorithm and FM3 (implemented by ODGF [38]) at least 20 times to collect enough (statistically303

meaningful) data for comparison. In addition, we consider rendering time because it directly impacts304

the interactiveness of the actual visual layouts presented to users.305

The graph layout computation follows the multi-level graph structure. It starts from the top306

level graph, then expands the repulsive forces into its children level. When users drag a node, the307

algorithm updates each nodes positions from the top level graph to the finest level graph. If a dragged308

node belongs to a top level graph, its changed layout expands to its lower level graphs. If the dragged309

node only belongs to the finest level graph, the changed layout does not need to be expanded.310

Table 2. Performance results (milliseconds per iteration) on each tested graph.
Performance crack finan512 web-Stanford grid-mesh roadNet-TX
FM3 on CPU 63.900 630.000 2581.399 7814.100 11484.799

Our approximated force calculation on CPU 6.799 83.738 337.049 476.548 473.564
GPU Kernel Attractive-Force 0.315 0.660 38.177 1.287 1.767

GPU Kernel Approximated Repulsive-Force 2.099 3.887 28.184 14.484 17.819
GPU Kernel Updated-Position 0.007 0.008 0.015 0.013 0.011

GPU Others 0.302 0.383 0.728 1.296 1.727
GPU Total 2.732 4.938 67.104 17.080 21.324

Rendering (graph nodes) 0.809 1.288 2.252 4.958 9.727

Table 2 summarizes the measured performance metrics of each tested graph. Based on the first311

two rows, it is clear that the CPU version of our algorithm, on average, runs at least 7 times faster312

than FM3. For graphs with millions of nodes, the performance of our algorithm remains relatively313

stable, compared to that of FM3. The worst performance of our algorithm (GPU Version) is much314
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smaller than 100ms [39], which verifies that the performance of our algorithm can support real-time315

user interactions for graphs with millions of nodes.316

By comparing columns 4 and 5, we find that the performance of our algorithm (GPU version) for317

mesh-like graphs (grid-mesh) is better than that for the small-world graphs (web-Stanford). The reason318

for this is that we can get evenly partitioned graph clusters based on the solar merger for mesh-like319

graphs. However, the node degree of small world graphs is unevenly distributed, following the320

power law distribution. Therefore, the sizes of sub-graphs follow the power law distribution321

when applying graph clustering algorithms (e.g., Figure 7 shows the sub-graph distribution of322

web-Stanford). As a result, the GPU threads for internal-electric-force computation suffer the workload323

imbalance problem.324

1)

10)

100)

1000)

10000)

100000)

100) 400) 1600)
Figure 7. The sub-graph distribution of web-Stanford. The X-axis is the number of nodes, the Y-axis is
the number of sub graphs containing that many nodes. It follows a power law distribution.

To address this problem, a graph coarsening or partition algorithm that can evenly partition325

a graph is a better choice (e.g., the spectral graph partition algorithm [15]). However, evenly326

partitioned graphs may not generate the optimal graph topology structure as well. For example,327

the spectral graph partition algorithm [15] can evenly divide a graph into sub groups based on a328

graph’s spectrum. But this algorithm loses the graph’s topology, which may cause difficulties for329

the force-directed layout algorithm to converge into a global minimal configuration. To balance the330

trade-offs between performance and quality of layouts, following the discussion in Section 4.3, we331

use a threshold of maximum cluster size P to avoid generating giant clusters, which alleviates the332

workload imbalance problem. Another possible solution is to use the stochastic force-directed layout333

algorithm discussed in [40]. For giant clusters, the size of which are larger than the threshold, we334

can randomly pick neighbor nodes from the cluster for the internal-electric-force computation. In fact,335

workload imbalance is a classical problem for GPU programming, such as GPU based ray tracing [44]336

and GPU based graph traversal [45]. We will investigate the thread scheduling and job management337

methods from these previous works to improve performance in future work.338

Figure 8. The performance of grid-mesh layouts. The X-axis is the number of vertices, and the Y-axis
is the performance time. The average P of each cluster is 9, based on the solar merger algorithm.

We have tested the scalability of our algorithm for mesh-like graphs. We generate successive339

grid-meshes, which can be evenly partitioned by the solar merger. Thus, the repulsive force340

computation of mesh-like graphs avoids the workload imbalance problem. Figure 8 shows the341
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performance of our algorithm (GPU version) for these grid-meshes. It is clear that our algorithm342

can scale to mesh graphs with millions of nodes while also guaranteeing real-time user interactions.343

It is difficult to compare our GPU version with other GPU implementations. Godiyal et al. [13]344

provide the total time to generate appealing graph layouts without giving the number of iterations.345

Besides the GPU based force computation, their algorithm spends extra time on tree structure346

building (CPU) and CPU-GPU data movement. Frishman et al. [15] report that their algorithm is347

2-4 times faster than FM3, and their GPU implementation can achieve times 5.5 faster than their CPU348

version. However, their algorithm takes more time for each iteration computation. Even though349

our algorithm needs a greater number of iterations to achieve similar results (200 iterations per level350

compared with Frishman’s 50 iterations per level), we can achieve real-time frame-rate for interactive351

large graph layouts.352

We use the OpenGL VBOs (Vertex Buffer Objects) to efficiently render graphs. This avoids data353

movement between the CPU and the GPU. The last row of Table 2 shows the rendering performance.354

To visualize a million nodes takes about 5 milliseconds. Based on our GPU implementation, we can355

directly map the GPU memory to OpenGL VBOs without any CPU-GPU memory communication.356

This implementation keeps all graph data in the GPU memory, which fully utilizes the GPU resources357

for efficient computing and rendering.358

5.3. Discussion359

The evaluation of graph layout algorithms is challenging. Force-directed algorithms based360

on stress models [19] use the stress error functions to quantify layout quality and terminate the361

computation [41]. These algorithms need to store pairwise node distances, so they do not scale well362

for graphs with millions of nodes. Our method (spring-electric model) is based on adjacency lists,363

which can be applied to big graphs. However, termination conditions (e.g., the energy threshold and364

local minimum) of spring-electric model still need further investigation. Our work attempts to enable365

users to interrupt the computation and modify the layout results, so we focus on a single iteration of366

force calculation in the performance analysis.367

One limitation of our algorithm is that it only considers the scalability of the repulsive force368

computation. For dense graphs, the number of edges may be linear with squared number of nodes. In369

this case, computing attractive forces is a bottleneck. Compared with less dense graphs, our algorithm370

may not handle this well.371

6. Usage Scenarios372

In this section, we present two case studies to demonstrate how users can interact with a large373

graph for sensemaking tasks using our system. We first demonstrate that a user can explore a large374

graph structure based on the multi-level paradigm. Then we show that a user can interact with the375

graph layout to gain new insights.376

6.1. Visual Exploration of Web Networks377

Suppose that Elijah is a network analyst and he attempts to analyze the structure of the378

web-Stanford graph. He first processes this graph using the solar merger to generate four abstracted379

levels, which leads to a total of five level graphs. He explores these graphs in a top-down order.380

When he is satisfied with the layout of one level graph, after making some tweaks to the layout,381

he then expands and explores the next level layout. Figure 9 shows the five levels of graph layout382

resulting from this process.383

By comparing the levels of graph layout, Elijah notices that two specific sub-graphs show384

different evolutions. These two sub-graphs are circled in red and blue in Figure 9. At first, the basic385

structures of these two sub-graphs are in the shape of a triangle. After Elijah moves to the next level386

graph, the sub-graph circled in red changes to a clique-like structure, while the sub-graph circled in387

blue changes to a tree-like structure. In the finest level graph, the former becomes a compact cluster388
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but the latter still remains tree-like. The difference in structure evolutions of the two sub-graphs389

catches Elijah’s attention, especially the first sub-graph. He wants to better understand why the390

structure of the first sub-graph changes more, so he decides to zoom in to see more details for further391

exploration.392

Figure 9. Five level graph layout of web-Stanford data (graph nodes colored by cluster membership).
From coarse to fine, the graph levels are G4,G3,G2,G1,G0. The red and blue circles are highlighted
sub-graphs. Figure A shows the detailed layout when the user zooms into the red circle. Figure B
shows that one cluster separates into two clusters when the user drags a hub node.

Figure 9(A) shows the detailed layout result. This sub-graph consists of multiple small clusters393

that overlap each other. Elijah finds a hub node and drags it a little bit to see what happens. It turns394

out that several small clusters dynamically follow the dragged one, as shown in Figure 9(B). After395

this, he quickly realizes that this sub-graph can actually be separated into two clusters.396

In summary, with our proposed technique, users can inspect the evolution of large graph layouts397

by exploring different level layouts. With the capability of dragging nodes and modifying the layout398

in real time, our algorithm enables users to flexibly reorganize the layout and even assist in improving399

large graph layouts. This approach combines human cognition with computational power (e.g., GPU400

graph layout algorithms) to solve difficult problems in sensemaking of large graphs.401

6.2. Visual Exploration of Co-authorship Networks402

In this case study, we present a scenario of an analyst making sense of a co-authorship network.403

Suppose Grace is a social network analyst. She is interested in how research scientists collaborate404

with each other. Thus, she downloads publications from DBLP [46], parses them and generates a405

co-authorship network (515,103 nodes and 1,856,690 edges). At first, she obtains a graph layout based406

on FM3 as shown in Figure 10(T0). The visualization is a dense and intermingled network. The core407

of the network contains most of the nodes and edges, which has a nontrivial structure. Unfortunately,408

the research communities cannot be visually separated using FM3. Thus, she switches to using our409

algorithm to interact with the graph layout.410

First, Grace identifies research communities by their central actors (hub node of a subgraph).411

She is interested in a research community with Jean-Daniel Fekete (JDF) as a central actor. To separate412

the JDF community from the core network, she drags this central actor away from the core in413

Figure 10(T1). The nodes belonging to this community move towards the central actor. By observing414

the nodes’ movement, shown in Figures 10(T2 and T3), she easily identifies that the nodes are415
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separated into two groups. One group of nodes moves slowly and blends into the core network,416

while the other group of nodes moves faster and they are separated well from the core. She examines417

the details of each node, and finds that the first group consists primarily of senior researchers, while418

the other consists of junior researchers.419

Figure 10. The graph layout of the DBLP co-authorship network, showing a series of interactions.
T0 shows the initial graph layout using the FM3 algorithm. The remaining figures show the very
similar, but interactive, layout using our algorithm. In T1, Jean-Daniel Fekete is dragged away from the
network center (the user selected community is automatically highlighted in green). T2 and T3 are
snapshots of the resulting dynamic layout movement. In T4, Hans Hagen is dragged away from the
network center. T5, T6, and T7 show resulting node movement.

Grace hypothesizes that some of the senior researchers may belong to multiple research420

communities. If they were tied to other large communities, this would explain why their nodes were421
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being held back from moving toward JDF. To verify this, she drags Hans Hagen (HH) away from the422

network core, as in Figure 10(T4). Then she observes node movement, and finds that three senior423

researchers collaborate with both JDF and HH, as circled in Figure 10(T5, T6 and T7). Evidently, JDF424

collaborates with many junior researchers, while HH emphasizes senior researchers.425

Compared with other approaches, Grace gains more useful insights about the large graph by426

interacting with the graph layout using our algorithm. She easily separates research communities427

from a large nontrivial network while analyzing its structure. She also finds researchers connecting428

multiple communities.429

7. Lessons Learned430

In this paper, we seek to enable human-in-the-loop layout of large graphs. Based on this key431

design consideration, we contribute a topology based method to accelerate a force-directed graph432

layout algorithm that can support real-time exploration of large graphs. We parallelize this method by433

using the powerful resources of the GPU. We summarize two major lessons learned about designing434

accelerated algorithms to interactively layout large graphs as follows.435

Taking advantage of parallelization. Performance is a key concern for designing algorithms436

to handle big data such as large graphs. Parallelization is one option to accelerate algorithms.437

The GPU has been praised for its significant performance improvement and programmability for438

general purpose computation. Thus, researchers can rethink existing algorithms to utilize the GPU439

for parallelization.440

We design parallel algorithms by considering two important aspects: data structures and441

independent instructions. We use modified adjacency lists to organize multi-level graphs, and separate442

our force-directed algorithm into different kernels to reduce its dependency.443

Light computation per iteration. Figure 11 illustrates the flow chart of our interactive large444

graph layout system, where force computation is a potential bottleneck. Previous graph layout445

algorithms cannot support dynamic real-time human-in-the-loop interaction because of their heavy446

computation per iteration. To support sensemaking of large graphs, we emphasize light computation447

per iteration. Our topology based method requires less computation, since we save in the calculation of448

approximated forces. The rapid iteration enables humans to be involved in the graph layout process449

along with the automatic computation, which can lead to customized layouts that make more sense450

for individual users and tasks.451

Figure 11. The flow chart of the iteration cycle of our large graph layout system. User interactions
are inserted into iterative graph layout algorithm. During each iteration of the force directed layout
algorithm, user interaction data are passed to the GPU to compute forces, and then visual primitives
are updated based on the force calculations. To support interactivity, these iterations must be as
light-weight as possible.

As is shown in Figure 11, with our approach, humans are involved in the iterative graph layout452

process. For example, they can modify and halt the computation iterations in advance to reduce the453

total time to layout large graphs. Previous algorithms use a fixed number of iterations for layout454

generation to guarantee a converged result, which may waste some iterations and increase the total455

run time. Striving for the best solution to halt layout computation may introduce more memory and456
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computation requirements that may increase total time to layout a large graph. In such cases, light457

computation per iteration is a good design choice to obtain better and meaningful layout results in a458

short time by involving human interaction.459

However, light computation per iteration may need more iterations to get a converged graph460

layout in some cases, so it cannot always guarantee a decrease in total run time. Thus, the461

design of large graph layout algorithms often involves a trade-off between the total run time and462

the per-iteration run time performance. In this work, we favor per-iteration run time via light463

computation, to enable interactive layout.464

8. Conclusion465

To enable human interaction with large graph layout, we contribute a fast force-directed layout466

algorithm and a detailed GPU implementation. Our contribution contains two key novelties. First,467

we calculate the approximated repulsive force based on the topology of the graph, instead of the468

spatial distribution of its nodes, which avoids building, traversing, and updating a spatial indexing469

data structure. We use a multi-level clustering approach, carefully coordinated with a top-down470

approximate force computation. Second, we parallelize the algorithm in a GPU implementation,471

which includes the design of the GPU kernels and the GPU data structure memory layout that472

support our top-down approximation method. Taken together, our contributions enable light-weight473

computation per algorithm iteration, which increases the interactive frame-rate of the layout.474

We evaluated our method, which generates visually pleasing graph layouts for five benchmark475

graphs, and provides fast iteration performance that supports real-time user interactions on large476

graphs. The results indicate that our algorithm enables real-time interaction with graphs of over a477

million nodes. We present two case studies to demonstrate that our algorithm can support users478

in exploring large graphs and dynamically refining layouts. Finally, we summarize lessons learned479

from this work for designing algorithms that enable real-time human interaction with large graphs.480

We hope that these lessons will further inform future algorithm design, to enable a broad variety of481

user interactions in support of sensemaking tasks on very large graphs.482
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