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Abstract

Class organizations (schemas) evolve over the life cycle of object-oriented systems for
a variety of reasons. This issue has recently been a subject of increasing attention in the
literature of both object-oriented languages and object-oriented database systems.

One of the most common forms of evolution involves the extension of an existing system
by addition of new classes of objects or the addition of attributes to the original objects.
Sometimes class structures are reorganized even when the set of objects is unchanged. In
this case the reorganization might represent an optimization of the system, or just a change
in the users’ perspective. At the other extreme, a class reorganization might reflect not only
the extension and reclassification of existing objects, but also structural changes (other than
addition of attributes) in the original objects.

This work provides a mathematical treatment of a calculus of class transformations.
Three kinds of transformations that commonly occur in the evolution of class structures are
considered: object-extending, object-preserving, and language-preserving. For each kind of
transformation, methods for automating the maintenance of systems based on the evolving
class structure are discussed.

The language-preserving transformations are a special case of transformations that
change the structure of existing objects. If an object schema is decorated with concrete
syntax, it defines not only a class structure, but also a language for describing the objects.
When two schemas define the same language but different classes, the language may be
used to guide the discovery of analogies between the classes. The resulting analogies may

then be used to transport functionality between domains.
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Chapter 1

Introduction

Class organizations (schemas) evolve over the life cycle of object-oriented systems for a
variety of reasons. This issue has recently been a subject of increasing attention in the
literature of both object-oriented languages and especially object-oriented database systems:
[Opd92, Ber92, Ber91, Cas91, CPLZ91, DZ91, Bar91, LH90, AH88, BKKK87, PS87, SZ86].

One of the most common forms of evolution involves the extension of an existing schema
by addition of new classes of objects or the addition of attributes to the original objects.
Sometimes class structures are reorganized even when the set of objects is unchanged. In
this case the reorganization might represent an optimization of the system, or just a change
in the users’ perspective. At the other extreme, a class reorganization might reflect not only
the extension and reclassification of existing objects, but also structural changes (other than

addition of attributes) in the original objects.

1.1 Schema extension

Chapter 3 addresses the structural aspects of schema extension. In particular, we consider
how a schema can be automatically updated to accommodate new objects based on exam-
ples. The problem of updating the original objects (e.g. persistent instances in a database)
so that they remain consistent with the new schema has been addressed by others, but a
simple solution is presented in Chapter 3.

In Chapter 6, we return to the problem of schema extension to address the issue of
behavioral consistency. It is shown that once a schema has been extended, it is possible

to automate the modifications of methods so that programs based on the schema will
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exhibit behavior identical to that which was exhibited before the extension. This problem is
examined using both strongly typed (C++) and untyped (CLOS) language models, and it
is shown how the type system of strongly typed languages can complicate the maintenance
of evolving object-oriented systems.

The algorithms developed in Chapter 3 are also useful in contexts other than evolution.
In class-based object-oriented languages, the user has to define classes before objects can
be created. For the novice as well as for the experienced user, the class definitions are a
non-trivial abstraction of the objects. The evolution algorithm can be used to automate
the abstraction simply by starting with an “empty” schema and extending it by presenting

the algorithm with a set of example objects.

1.2 Class reorganization

In another common form of schema evolution, the class structures are reorganized but
the set of objects is unchanged. Consider, for example, the set of objects: {motorboat,
sailboat, automobile, bicycle}. In one context it might be desirable to classify these
objects as either water-vehicles or land-vehicles. In another context, however, it might
make more sense to classify the objects as either motorized or non-motorized. A small
set of primitive transformations that can be used to achieve any reorganization of classes
that preserves the set of objects is presented in Chapter 4. A constructive proof of the
completeness of the set of primitives is presented. Since the proof is constructive, there is
an algorithm to determine whether two arbitrary class organizations define the same set of
objects, and if they do, to find a sequence of primitives to transform one organization to
the other.

Chapter 5 discusses some metrics for schema design, and presents an algorithm for op-
timizing a class organization based on the the primitive object-preserving transformations.
In Chapter 6 the problem of class reorganization is reexamined with the focus on behavior,

in the same manner as for the schema extension case.
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1.3 Object restructuring

While the schema extension and class reorganization are mainly concerned with the orga-
nization of objects into classes, object restructuring is concerned primarily with the orga-
nization of attributes, or “parts”, into objects. Here the concern is how to modify the code
of an object-oriented program if the class definitions are changed so that the same data is
organized into a different object structure. If the new objects hold the same data as the
original objects, the class structures can be considered in some way analogous. The problem
is to find a mapping of the code (methods) from the old class structure to the new one.

In Chapter 7 the data model presented in Chapter 2 is extended by decorating the
schema with concrete syntax. In the extended model, the schema defines both a set of
objects and a language for representing the objects textually. The concept of a part is
extended to mean either another object or a text string. An interesting class of transfor-
mations investigated in Chapter 8 are those that change the structure of the objects, but
preserve the language defined by the schema. If the concrete syntax specified in a schema is
meaningful and a transformation preserves the defined language, it is reasonable to hypoth-
esize that the objects are intended to represent the same data in the transformed schema
as in the original. Therefore, we can expect to find a mapping of the methods from the old

class structure to the new one which will preserve the behavior of the system.



Chapter 2

Data Model

2.1 Motivation for object example notation

The importance of objects extends beyond the programmer concerns of data and control
abstraction and data hiding. Rather, objects are important because they allow the program
to model some application domain in a natural way. In [MMPS88], the execution of an
object-oriented program is viewed as a physical model consisting of objects, each object
characterized by parts and a sequence of actions. It is the modeling that is significant,
rather than the expression of the model in any particular programming language. We have
devised a programming language independent object example notation to describe objects
in any application domain.

The objects in the application domain are naturally grouped into classes of objects
with similar subobjects. For our object example notation it is important that the designer
names those classes consistently. Each object in the application domain has either explicitly
named or numbered subobjects. It is again important for our object example notation that
the explicitly named parts are named consistently. This consistency in naming classes and
subparts is not difficult since it is naturally implied by the application domain.

An object is described by giving its class name, followed by the named parts. The
parts are either physical parts of the object (e.g., wheels of a lawnmower) or attributes
or properties (e.g. model number). An object example is in Figure 1 which defines a
lawnmower object with 6 parts: 5 physical parts (legs and motor) and one attribute: model.
The object example also indicates that the four wheels have no parts and that the motor is

a gasoline engine object with one part called fuelTank.
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O Ident
model

LawnMower O __motor fuelTank O

'/‘/'/ \\asol ineEngine  GasTank

O O O O

Wheel Wheel Wheel Wheel

Figure 1: Lawnmower object

LawnMower
y DW‘
Ident Wl (w2 w3) |W4 GasolineEngine

lfueITank

- [

GasTank

Figure 2: Construction class

2.2 Motivation for class notation

We use a class notation which uses two kinds of classes: construction and alternation
classes.! A construction class definition is an abstraction of a class definition in a typical
statically typed programming language (e.g., C+4). A construction class does not reveal
implementation information. We view a part as a high-level concept which might be imple-
mented as a method, not necessarily as an instance variable. An example of a construction
class corresponding to the object in Figure 1 is in Figure 2.

Each construction class inductively defines a set of objects which can be thought of
being elements of the direct product of the part classes. When modeling an application
domain, it is natural to take the union of object sets defined by construction classes. For
example, the motor of a lawnmower can be either a gasoline engine or an electric motor.

So the objects we want to store in the motor part of the lawnmower are either gasoline

!In practice we use a third kind, called repetition classes, which can be expressed in terms of construction
and alternation [Lie88].
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Electric

ol
N a
GasolineEngine

Figure 3: Alternation class

Number Electric

DWGO%
D% Motor\BD

DriveShaft GasolineEngine

Figure 4: Common parts

engine or electric motor objects. We use alternation classes to define such union classes.
An example of an alternation class is in Figure 3. GasolineEngine and Electric are called
alternatives of the alternation class. Often the alternatives have some common parts. For
example, each motor has a drive shaft. We use the notation in Figure 4 to express such
common parts.

Alternation classes have their origin in the variant records of Pascal. Because of the
delayed binding of function calls to code in object-oriented programming, alternation classes
are easier to use than variant records.

Parts which are common to more than one class may be implemented by inheritance
from an alternation class. In Figure 4, GasolineEngine and Electric inherit from Motor. Class
Motor has methods and/or instance variables to implement the parts shaft and horsepower.

Construction and alternation classes correspond to the two basic data type constructions
in denotational semantics: cartesian products and disjoint sums. They also correspond to

the two basic mechanisms used in formal languages: concatenation and alternation.
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2.3 Class dictionary graphs

To describe multiple inheritance class libraries with part-of and inheritance relationships
we use graphs with construction and alternation vertices and edges. The information stored
in class dictionary graphs is considered to be essential for object-oriented design, as Booch
writes [Boo91]: “We have found it essential to view a system from both perspectives, seeing
its “kind-of” hierarchy as well as its “part-of” hierarchy.”

The concept of a part class and a part object which is used throughout the text needs
further explanation. A part object does not have to be a physical part; any attribute of an
object is a part of it. We say that object oy is a part of object oy, if “01 knows about 03”.
Therefore, our part-of relation is a generalization of the aggregation relation which only
describes physical containment. For example, a car is part of a wheel if the wheel knows
about the car. The concept of a part-class is a high-level concept which does not reveal
implementation detail; the parts might be implemented by operations.

Class dictionary graphs focus only on part-of and inheritance relations between classes.
One notably absent relation is the “uses” relation between class operations (see e.g., [LG86]).
The call relationships between classes describe important design information, e.g., for check-
ing the Law of Demeter [LHR88]. However, we find that class dictionary graphs as presented
here are a useful design abstraction which can be debugged independently. Only in later
design stages do we augment class dictionary graphs with other information such as opera-
tions.

We call a class 5" a supplier class to a class (', if in C' we use the functions of class 5. The
part classes of a class (' are one important kind of supplier classes of C'. If a design follows
the Law of Demeter, then there are only two other kinds of supplier classes (which are not
considered in a class dictionary graph): argument classes of functions of C' and classes of
objects which are created in functions of C'. It is an important insight of our approach that
it is very worthwhile for a first design step to consider only a limited set of supplier classes
(the part classes) and inheritance.

In database terminology, a class dictionary graph is an object base schema with only a
minimal set of integrity constraints. Class dictionary graphs can be viewed as an adaptation
of extended entity-relationship diagrams for object-oriented design [TYF86]. More recently,
graphs have been used to model object-oriented data bases in [LRV90, GPG90].
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Graph Object-oriented Design
Vertex Class
construction instantiable class with members

defined by construction edges
(including “inherited” edges)

alternation abstract class with subclasses
defined by alternation edges
Edge Class Relationship
construction part-of relationship, “uses’,
“knows’, — labels are part
names
alternation inheritance relationship,

specialization, classification

Table 1: Standard interpretation of class dictionary graphs

The definition of a class dictionary graph is motivated by the interpretation in object-
oriented design given in Table 1. During the programming process, the alternation classes
serve to define interfaces (i.e., they serve the role of types) and the construction classes

serve to provide implementations for the interfaces.

Definition 2.1. A class dictionary graph?, ¢, is a directed graph, ¢ = (V,A; EC, EA),
with finitely many vertices V.. A is a finite set of labels. There are two defining relations:
FC,EA. EC is a ternary relation on V x V x A, called the (labeled) construction edges:
(v = w) € EC iff there is a construction edge with label I from v to w. EA is a binary
relation on V X V', called the alternation edges: (v = w) € FA iff there is an alternation

edge from v to w.

Next the set of vertices is partitioned into two subclasses, called the construction and

alternation vertices.

Definition 2.2.

2The class dictionary graphs described here are a specialization of the class dictionaries described in
[Lie88], [LR88]. The class dictionary graphs contain all the information necessary for many applications;
however they omit: terminal classes, concrete syntax, ordering of parts. For presenting design algorithms,
e.g., we are not concerned with the grammar aspects of class dictionaries since they would only clutter the
presentation of the algorithms. We also omit optional and repeated part-of relationships since they can be
easily expressed in terms of the primitives given here.
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o The construction vertices are defined by:
Vi={v|veVVweV: (v= w)¢ FA}.

In other words, the construction vertices have no outgoing alternation edges.

o The alternation vertices are defined by:
VA={v|veV,JweV: (v = w) € LA}

In other words, the alternation vertices have at least one outgoing alternation edge.

Sometimes, when we want to talk about the construction and alternation vertices of a
class dictionary, it is more convenient to describe a class dictionary graph as a tuple which
contains explicit references to VCand VA: ¢ = (VC, VA, A; EC, FA).

In standard object-oriented terminology we describe here the accepted programming
rule: “Inherit only from abstract classes” [JF'88]. This rule can be exploited to derive an
analogy between class dictionary graphs and grammars.

We use the following graphical notation, based on [TYF86], for drawing class dictionary
graphs: squares for construction vertices, hexagons for alternation vertices, thin arrows for

construction edges and wide arrows for alternation edges.

Example 2.1. Figure 5 shows a class dictionary graph for satellites. Satellites can either
be military or civilian and they also can be either low orbit or geosynchronous. Military
satellites belong to a country and have a contract number assigned. Civilian satellites are
described by a manufacturer. For geosynchronous satellites we store their position while for
orbiting satellites we represent their path. For further illustration we give the components

of the formal definition, i.e.,

V = { Satellite, Orbit, Low_orbit, Geosynchronous,

Military, Civilian, Country, Position, Manufacturer, Path},

VC = { Low_orbit, Geosynchronous, Military, Civilian, Country,
Contract, Position, Manufacturer, Path,

VA = { Satellite, Orbit },

EC = { (Satellite, Orbit, orbit), (Low_orbit, Path, p),
(Geosynchronous, Position, p), (Military, Contract, c),
(Military, Country, country), (Civilian, Manufacturer, m) },

EA = { (Satellite, Military), (Satellite, Civilian),

(0rbit, Low_orbit), (Orbit, Geosynchronous) },
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Low-Orbit Path

[ |——

/ -]
Geosynchronous Position
m / xiuntry

[ ]

Manufacturer Contract Country

Figure 5: Satellites
A = {c, country, m, orbit, p }.

The definition of VCimplies that FA C VA xV, since an alternation edge cannot start
at a construction vertex. We use Vg, VCy, VA, etc. to refer to the components of class
dictionary graph ¢.

When we draw a class dictionary graph, the vertices are labeled so that we can conve-
niently refer to particular vertices in our discussion. The standard interpretation implies
that the labels on construction vertices are significant. Consider two isomorphic class dic-
tionary graphs each with only a single construction vertex and no edges. If the construction
vertex of one graph is labeled Integer and the vertex of the other graph is labeled String,
then the two class dictionary graphs define different sets of objects in the standard interpre-
tation. On the other hand, changing the labels of the alternation vertices (names of abstract
classes in the standard interpretation) does not effect the defined objects. Therefore, we
adopt the following convention for labeling the vertices of class dictionary graphs: Labels
of alternation vertices are local to the class dictionary graph in which they occur; labels of
construction vertices are global. That is, if two class dictionary graphs have construction
vertices with the same label, it means that the same vertex (same class under the standard
interpretation) belongs to both graphs. However, we may in general assume that different

class dictionary graphs have disjoint sets of alternation vertices regardless of their labels.
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. father
Child _— - Person Name

O\/’

mother

—
name

[ ] [ ] [ ]

Daughter Son Number

Figure 6: Child

The same semantics apply when we denote the sets of vertices in a class dictionary graph
textually. The identifiers we use to denote alternation vertices are of local scope whereas
the identifiers we use to denote construction vertices have global scope.

Later we give conditions which make a class dictionary graph into a legal class dictionary
graph. The interpretation in Table 1 is only one possible interpretation which we call
the standard interpretation. The motivation behind the abstract alternation/construction
terminology is that there are several useful interpretations of class dictionary graphs. In
one of those interpretations, a construction vertex is interpreted as an operation. We
sometimes use the standard interpretation to give intuitive explanations of relationships
and algorithms.

The graphical notation presented above is useful for understanding class structures, but
a textual notation may be more suitable for implementation purposes. Therefore, we also
use a textual notation for class dictionary graphs which serves as an easy to learn, terse
input notation for the Demeter CASE tool. To describe class dictionary graphs textually
we use an adjacency representation which gives the successors for each vertex. For example,

the vertex Child in the graph in Figure 6 is described by:

Child :
// two alternation edges
Daughter | Son
* COMMOT*
// two construction edges
<father> Person

<mother> Person.
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and the construction vertex Person is described by:

Person =
// two construction edges
<name> Name

<ssn> Number.

A “//” introduces a comment line and *common* is syntactic sugar to separate the
alternation edges from the construction edges.

Please note that the syntax for an alternation vertex/abstract class, although very
natural from a graph-theoretic point of view, appears unnatural from the point of view of
today’s programming languages: In most programming languages which support the object-
oriented paradigm, the inheritance relationships are described in the opposite way. Each
class indicates from where it inherits. Of course, we can easily generate this information
from class dictionary graphs, but we feel that the Demeter notation is easier to use for
design purposes. One reason is that the design notation shows the immediate subclasses of
a class and therefore promotes proper abstraction of common parts. Another reason is that
a class does not contain information about where it inherits from and therefore the class

can be easily reused in other contexts.

Example 2.2. The following text describes the class dictionary graph in Figure 7:

List : Empty | Nonempty *common.
Empty =
Nonempty = <first> Element <rest> List.

Element =

The two edges leaving from List are alternation edges. The labeled edges are construction

edges. In this example we have the following class dictionary graph:

V = {Empty, Nonempty, Element, List},

VC = {Empty, Nonempty, Element},

VA = {List},

EC = {(Nonempty, List, rest), (Nonempty, Element, first)},
EA = {(List, Nonempty), (List,Empty)},

A = {first, rest}.
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Nonempty Element

} [
A
N

Empty

Figure 7: List

Definition 2.3. In a class dictionary graph, ¢ = (V,A; EC,FA), a vertex w € V is

alternation-reachable from vertex v € V (we write v == w):
o via a path of length 0, if v = w

e via a path of length n+ 1, if Ju € V such that (v = u) € EA and u == w via a path
of length n.

In other words, the alternation-reachable relation is the reflexive, transitive closure
of the FA relation.

In the standard interpretation, (v == w) means that either w inherits from v or w = v.

Sometimes when we want to discuss the inheritance hierarchy, it is convenient to refer
to the alternation subgraph of a class dictionary graph. The alternation subgraph contains
all of the alternation vertices and alternation edges plus the construction vertices that have

incoming alternation edges.

Definition 2.4. The alternation subgraph of a class dictionary graph,
o= (VC, VA, A; EC,EA), is a directed acyclic graph (DAG), G = (V', EA),
where V' = VAU{v € VC|Ju: (u = v) € FA}.

It is often helpful to think of each alternation vertex as representing a set of associated
construction vertices. This set, A(v), consists of all the construction vertices which are
alternation reachable the vertex, v. If » is an alternation vertex with an incoming construc-
tion edge, (u —— v), the construction vertices in A(v) represent the concrete classes which
might be used to instantiate the [ part of u objects. If » has an outgoing construction edge,

4

(v — w), the construction vertices in A(v) represent the concrete classes which inherit the

[ part from v.
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Definition 2.5. The associated classes of a vertex, v, in a class dictionary graph, ¢ —
(VC, VA, A; EC, EA), is the set of all construction vertices which are alternation-reachable

from v:

Aw) = {v'|[v = v and v € VC}

2.3.1 Legality conditions

A legal class dictionary graph is a structure which satisfies 2 independent conditions.

Definition 2.6. A class dictionary graph ¢ = (V,A; EC, FA) is legal if it satisfies the

following two conditions:

1. Clycle-free alternation condition:

There are no cyclic alternation paths, i.e.,

{(v,w) | v,weV,v# w, and v == w = v} = 0.

2. Unique labels condition:

Yu, v, v, w,w' €V, 1 € A such that (v == u), (v == u), and (v,w) # (v, w') :
{(v = w), (v == w)} £ BEC

When we refer to a class dictionary graph in the following we mean a legal class dictio-
nary graph, unless we specifically mention illegality.

The cycle-free alternation condition is natural and has been proposed by other re-
searchers, e.g., [PBF189, page 396], [Sno89, page 109: Class names may not depend on
themselves in a circular fashion involving only (alternation) class productions]. The condi-
tion says that a class may not inherit from itself.

The unique labels condition guarantees that “inherited” construction edges are uniquely
labeled and excludes class dictionary graphs which contain the patterns shown in Figure 8.
Other mechanisms for uniquely naming the construction edges could be used, e.g.. the
renaming mechanism of Eiffel and the overriding of part classes [Mey88]. The theory does

not seem to be affected significantly by small changes such as this.

2.3.2 Programming with class dictionary graphs

To motivate the usefulness of class dictionary graphs further, we show with a simple example

how we use them to simplify programming. We have developed a CASE tool for C4++
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Exp
argl
Op
op
Simple[ | [ —"—

Compou

)
numValue % \\\\
[ ] []
|:| Addsym Mulsym
Number

Figure 9: Prefix expression class dictionary graph

[Str86], the C4+4 Demeter System [LR88], which maps class dictionary graphs into a C++
class library which is then enhanced manually with C++ member functions implementing
the application. To each construction vertex corresponds a C++ class with a constructor
and to each alternation vertex corresponds an abstract C++ class.

Consider the class dictionary graph in Figure 9. We want to implement a pocket cal-
culator which evaluates the object equivalent of expressions such as 3, (+ 3 (+ 2 1)),
(* 3 (+ 2 1)). The complete C++ program which has to be written by the user is given
in Figure 10. The missing parts of the C++ program are generated from the class dictionary

graph in Figure 9 by the Demeter System.
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int Exp::eval() = 0; // pure virtual

int Simple::eval()
{ return numvalue->eval(); }

int Number::eval()
{ return val; }

int Compound::eval()
{ return op->apply_op(argil->eval(), arg2->eval()); }

int Op::apply_op(int nl,int n2) = 0; // pure virtual

int Addsym::apply_op(int nil,int n2)
{ return n1 + n2; }

int Mulsym::apply_op(int nl,int n2)
{ return n1 * n2; %}

(user-written)

Figure 10: Pocket calculator C4++ implementation

16
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2.4 Object graphs

We have defined the concept of a class dictionary graph which mathematically captures
some of the structural knowledge which object-oriented programmers use. Next we define
object graphs and their relation to class dictionary graphs. An object graph defines a
hierarchical object and is motivated by the interpretation of an object graph, called the

standard interpretation, given in Table 2.

Graph Object-oriented Design
vertex object
immediate successor immediate subpart or component
edge label part name

Table 2: Standard interpretation for object graphs

Definition 2.7. An object graph, v, is a directed graph o = (W, S, Ay; E,\) where:
o W is a finite set of vertices.
e 5 is an arbitrary finite set.
o Ay is a set of labels.

o E is a ternary relation on W x W x Ay. If (v == w) € E we call | the label of the
edge (v —— w). No two edges outgoing from the same vertex may have the same label.

That is, Yo, w,w’ € W,1 € Ay such that w # w' : {(v —— w), (v — w")} C F
o AW — 5 is a function that maps each vertex of ¥ to an element of 5.

Normally, the set S is a subset of the construction vertices of some class dictionary
graph. In the standard interpretation, the function A maps each object in an object graph
to the class of which it is an instance. We use a graphical notation for object graphs similar
to that for class dictionary graphs. Vertices are represented by circles and edges by labeled
arrows. The vertices are labeled with their class names (their mapping under A). In case
we wish to distinguish more than one instance of a class, the labels may be prefixed with

an instance name followed by a “:”.
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Vv —)\ﬂ)\(v)<‘,:* &
I I

W—)\ﬂ)\(w) <i W

Figure 11: Legality Rule

i1:A

i4:.C
Figure 12: Class dictionary graph, ¢, and legal object graph, 2.
Not every object graph with respect to a class dictionary graph is legal; intuitively, the
object structure has to be consistent with the class definitions. Each object can only have

parts as prescribed in the class definition and the parts prescribed in the class definitions

must appear in the objects (see Figure 11).

Definition 2.8. An object graph, v = (W, 5, Ay; E,N), is legal with respect to a class
dictionary graph, ¢ = (VC, VA, A; EC, EA), iff for each vertex, v € W:

o ANv)e VC
o Yw,l where (v -~ w) € E: 3(r -t s) € EC such that r == A\(v) and s == A\(w)

e V(r - s) € EC where r = AMv): Jw € W such that (v - w) € E

Example 2.3. Consider the graphs in Figure 12. The object graph, 1, is legal with respect
to the class dictionary graph, ¢. The object graph is given by: W = {il,i2,i3,i4}, E =
{(i1 == i2), (i1 == 4), (12 == 3)}, Ay = {b,bc,c}, A = {il — A,i2 — B,i3 — C,i4 —
C}.
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Figure 13: Fruit class dictionary graph
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Figure 14: Fruit object graphs
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Example 2.4. Consider object graphs in Figure 14 which are illegal with respect to the class
dictionary graph in Figure 13. The first object graph is illegal since apples don’t contain

stones and the second because Cherry is not alternation-reachable from Number.

Definition 2.9. The set of all legal object graphs with respect to a class dictionary graph,
¢, is called Objects(¢).

The graphical notation for object graphs is useful for understanding object structures,
but a textual notation may be more suitable for implementation purposes. Therefore, we
also use a textual notation for object graphs. To describe object graphs textually we use
an adjacency representation which also shows the mapping of object graph vertices to class

dictionary graph vertices:

instl:v1(
<successorl> inst2:v2( ... )
<successor2> inst3:v3( ... )
<successorn> instn:vn( ... ))

The vertices correspond to the instance names. The name after the instance name is
preceded by a ”:” and gives the label assigned by A. The edge labels are between the < and
> signs.

For describing shared objects, we also use the notation:

instl:v1(

<successorl> inst2)

where inst2 is an object identifier defined elsewhere. Fach object identifier has to be defined
once. Vertices which are not shared need not be named explicitly. Therefore the instance

name and “:” may be omitted.

Example 2.5. The object graph in Figure 12 can be represented textually as:

i1:A(
<b> i2:B(
<bc> 13:C())
<c> i4:c())



CHAPTER 2. DATA MODEL 21

The definitions above relate a class dictionary graph with a set of object graphs. In
object-oriented programming language terminology, a class dictionary graph corresponds
to a set of class definitions and the object graphs correspond to the objects which can be
created calling “constructor” functions of the classes. In some languages, e.g., C++, the
class definitions considerably restrict the objects which can be created. The definitions
above demand even more discipline than C++.

In the context of evolution, we often wish to discuss object graphs that are not legal with
respect to the current class dictionary graph. We sometimes refer to these object graphs as
object example graphs since our goal is often to modify a class dictionary graph so that it

will become compatible with a new set of objects based on examples.

2.5 Related work

The axiomatic model which is used in this paper is new but similar data models exist in
the literature. In particular, the notions of “alternation” and “construction” appear as
“classification” and “aggregation” in both Hull and Yap’s Format Model [HY84] and Kuper
and Vardi’s LDM [KV84]. Ait-Kaci’s feature structures [AKN86] are also related to the
Demeter kernel model. Our abstraction algorithms presented in Chapter 3 can be adapted
to abstract feature structures from examples.

Other related work in the data base field is described in: [AH88, BMW86, TL82].



Chapter 3

Extending a class organization

In class-based object-oriented languages, the user has to define classes before objects can be
created. For the novice as well as for the experienced user, the class definitions are a non-
trivial abstraction of the objects. We claim it is easier to initially describe certain example
objects and to get a proposal for an optimal set of class definitions generated automatically
than to write the class definitions by hand.

In this section an algorithm for learning a class dictionary graph from a set of object
examples is presented. This algorithm learns a correct (but not optimal) class dictionary
graph from a list of object example graphs. An algorithm for learning class dictionary graphs
incrementally is also presented. The ability to expand a class dictionary incrementally as
new object examples are presented is an important consideration in software engineering.
The algorithm is then extended to incrementally learn an optimal class dictionary graph

when the optimum is a single inheritance class dictionary.

3.1 A simple example of incremental class dictionary graph

learning

Example 3.1. Consider the two object example graphs in Figure 15 which represent a
basket containing two apples and a basket with an orange, respectively.

After seeing the first object example graph, the learning algorithm generates the class
dictionary graph in Figure 16a. Now when the second object example is presented, the

algorithm will learn the class dictionary graph in Figure 16b.

22
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Figure 15: Fruit basket objects
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Figure 16: Fruit basket class dictionary graphs

Notice that the algorithm “invents” two abstract classes, SeveralFruit and Fruit. Since
both subclasses of Fruit have a weight part, that part is attached to the Fruit class and is
inherited in the Apple and Orange classes.

A sample program to calculate the weight of a fruit basket is given below. All of the user
written code is shown. The class definitions and remaining code are generated automatically

from the class dictionary by the Demeter System CASE tool.

// Basket = <contents> SeveralFruit.
Number Basket::get_weight()
{ return contents->get_weight(); }
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// SeveralFruit : None | OneOrMore.

virtual Number SeveralFruit::get_weight()

{3

// OneOrMore = <one> Fruit <more> SeveralFruit.
Number OneOrMore::get_weight()
{ return (one->get_weight() + more->get_weight()); }

// None = .
Number None::get_weight()
{ return Number(0); }

// Fruit : Apple | Orange *common* <weight> Number.
Number Fruit::get_weight()

{ return *weight;

3.2 Basic Learning

Given a list of object example graphs, the basic learning algorithm! will learn a class
dictionary graph, ¢, such that the set of objects defined by ¢ includes all of the examples.
Furthermore, the algorithm insures that the set of objects defined by the learned class
dictionary graph is a subset of the objects defined by any class dictionary graph that
includes all of the examples. Intuitively, we learn a class dictionary graph that only defines
objects that are “similar” to the examples

Formally, given a legal list of object example graphs, 11,9, ...,1,, we learn a legal
class dictionary graph, ¢, such that Objects(¢) 2 {11,192, ..., ¢}, and for all legal class
dictionary graphs, ¢', where Objects(¢') D {11, 2, ..., ¥n}, Objects(¢p) C Objects(¢’).

If there is no legal class dictionary graph that defines a set of objects that includes all
of the examples, we say that the list of object example graphs is not legal. The following

definition gives the conditions under which a list of object example graphs is legal.

Definition 3.1. A list of object example graphs 14, ..., 1, is legal if all vertices which have

! An informal description of the algorithm appears in [LBSL90].
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the same element s € S as label (under Ay, for some i,1 < i < n) have either outgoing

edges with the same labels (under E for 1;) or no outgoing edges at all.

A legal list of object example graphs 1, ..., 1, of the form ¢ = (Wy, Sy, Ay; Ey, Ay) is
translated into a class dictionary graph ¢ = (V, A; EC, FA) as follows:

L A= |J Ay
1<i<n

The construction edges of the class dictionary graph are given the same labels as the

edges in the object example graph.

2. VO={r|r=Ay(v) and v € Wy, where 1 <i < n}

We interpret A as a function that maps objects to their classes. For each class that
appears in an object example, we generate a construction class which is represented

as a construction vertex in the class dictionary graph.

3. VA={(r,l)| r e VC,l € A,3i,j,v1,02,wl,w2: (vl —= wl) € Ey,,
(v2 == w2) € By Ay, (v1) = Ay, (02) = 1, Ay (wl) # Ay (w2)}

When we learn that objects of class r have a part labeled [ that is not always of the
same class, we create an abstract class represented in the class dictionary graph as an
alternation vertex (r,1). In step 6, we will make each of the part’s possible classes a

subclass of the new abstract class.

4. V=VCuUVA

The vertices of the class dictionary graph are given by the union of the construction

vertices and alternation vertices.

5. EC={(r == s)|r,seV,di,v,w: (v —= w) € Ey,, Ay, (v) = 1, Ay, (w) = s,
(r,0) ¢ VAYU{(r == (r,)) | r € V. (r.]) € VA}

If an object of class r has a part of class s with label [, then we create a construction
edge from the construction vertex representing r to the construction vertex represent-
ing s with label [. But if the part can have more than one class, in which case an
alternation vertex representing all of the possible classes was created in step 3, we

instead create a construction edge to that alternation vertex.
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6. FA={((r,l)= s)|(r,]) € VA,s € V,Ti,v,w: (v - w) € Ey,,
Api(v) = 1, Ay (w) = s}
Finally, we create an alternation edge from each alternation vertex (representing an

abstract class) to each vertex which represents a subclass.
The following example serves to illustrate the operation of the algorithm:

Example 3.2.
P al:A((z) b1:B((y) a2:4))
o W ={al,a2,bl}

e S={A, B}

A={z,y} al:A b1:B a2 A

o E={(al,bl,2),(b1,a2,y)}

Aw ={al — A,a2 — A, bl — B}

o al:A((z) c1:C())

e W ={al,cl}

e S={A,C} y
O————

o A= {z} aLA cl:C

o F={(al,cl,z)}

Aw ={al — A, el — C}
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A={z,y}

VC={4,B.C) A ]—

VA = {(A,2)} [/// \\\\
V ={A,B,C,(A,2)} y

o FC={(B,A,y),(A, (A, z),z)} B C

o EA={((A,z),B),((A,z),C)}

3.3 Correctness of Basic Learning

In this section we prove that the set of objects defined by a class dictionary graph, ¢, learned
from a legal list of object example graphs, 11,19, ...10,, is a subset of the objects defined by
any class dictionary graph that includes all of the examples.?

Consider the construction vertices in ¢ and note that r € VCy iff there is some 1; for
1 < <n with a vertex, v € Iy,, such that 7 = A(v).

Next, consider the construction edges in ¢. First, note that every construction edge
has a construction vertex as its source (step 5). Second, a construction vertex, r, has an
outgoing construction edge, (r —— s), with label [ iff there is at least one ¢; in the list
with an edge, (v —— w) where A(v) = r (step 5). Finally, note that the set of construction
vertices, A(s), which are alternation reachable from the target, s, of a construction edge,
(r = s) € ECy, is the union of all vertices, A(w), where (v —— w) € Ey,, 1 <i < n, and
A(v) = r (steps 3,5,6).

Let ¢’ be a class dictionary graph such that Objects(¢) D Objects(¢’) D {11, 2, ...tn},
and let ¢ € Objects(¢) but 1» ¢ Objects(¢’). Since 1 is not legal with respect to ¢’, one of
the following conditions must hold (by definition 2.8.):

A. Jv e Wy such that A(v) € VCy
B. Jv € Wy, (v - w) € Ey such that ¥(r — s) € ECy : 155> A\(v) or s> Mw)

C. v € Wy, (r - s) € ECy such that r == \(v) and Yw € Wy : (v - w) & Ey.

21t follows directly from definition 2.8. that each v;, 1 < i < n, is included in Objects(@).
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Case A. Since ® is legal with respect to ¢, A(v) € VCy, so there must be some ¢, 1 <
i < n, which contains a vertex, v’ such that A(v') = A(v) &€ VCy. But ¢; is legal with
respect to ¢/, so A(v') € VCy, a contradiction.

Case B. Since 1 is legal with respect to ¢, I(r —— s) € EC, such that r = A(v) and
s = Mw). Therefore, there must be some 1, 1 < i < n, such that (v/ == w') € Ey,,
AM0') = Mv), Mw') = Mw). But 1; is legal with respect to ¢/, so I(r - s) € ECy
such that r == A\(v) = A(v) and s == A(w’) = Mw), a contradiction.

Case C. Since 7 is legal with respect to ¢, there must exist some ;, 1 < ¢ < n, which
contains a vertex, v’ € Wy,, such that A(v) = A(v). Since #; and @ are both legal
with respect to ¢:

o Vu',l where (v/ == w') € Fy, : I(r = s) € EC, such that r = A(v') = A(v).

o Y(r - s) € ECy; where r = A\(v) : 3w € Wy, such that (v - w) € Ey.
Therefore:
o Vu',l where (v/ —— w’) € Fy, : 3w € Wy, such that (v —— w) € Ey.

But ¢; is also legal with respect to ¢/, so ¥(r —— s) € ECy where r = \(v') : Ju’ €
Wy, such that (v/ = w') € E,, and therefore Jw € Wy, such that (v —— w) € Ey, a

contradiction.

3.4 Incremental Learning

Given a class dictionary graph, ¢, and an object example graph, 1, the incremental learning
algorithm will learn a class dictionary graph, ¢’, such that the set of objects defined by ¢’
includes @ and all of the objects defined by ¢. Furthermore, the algorithm insures that the
set of objects defined by ¢’ is a subset of the objects defined by any class dictionary graph
that includes @ and all of the objects defined by ¢. Intuitively, we extend the set of objects
defined by ¢ only enough to include objects “similar” to .

Formally, given a class dictionary graph, ¢, and an object example graph, ¥, we learn
a legal class dictionary graph, ¢q, such that Objects(¢z) O Objects(¢r) U b, and for all
legal class dictionary graphs, ¢3 where Objects(¢s) 2 Objects(¢pr) U : Objects(¢pz) C
Objects(¢s).
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If there is no legal class dictionary graph that defines a set of objects that includes ¢ and
all of the objects defined by ¢, we say that the object example graph 1 is not incrementally
legal with respect to ¢.

Definition 3.2. An object example graph 1 is incrementally legal with respect to a

class dictionary graph ¢ if there exists a legal class dictionary ¢’ such that Objects(¢') D
Objects(¢) U .

If a list of object example graphs 11, ...,1, is legal, then each ; in the list must be
incrementally legal with respect to the class dictionary graph learned from 1, ...,%;_1.
Therefore a class dictionary graph can be learned incrementally from a legal list of object
example graphs.

Denote the intermediate class dictionary learned from 1,9, ...,%, by ¢,, and let
o = (0,0;0,0). Then ¢, is learned from ¢,,—1 and ,,, where 1 < m < n, as follows:

1. A= A¢m—1 U A¢m

For each edge in the object example graph there is a construction edge in the class

dictionary graph with the same label.

2. VO=VC,,,  U{r|Jve Wy, Ay, (v) =1}
We interpret A as a function that maps objects to their classes. For each new class that

appears in the object example graph, we add a construction class which is represented

as a construction vertex in the class dictionary graph.

3. VA= VA, |
U{(r,l) | r e VCl € A, Fvl,v2,wl,w2e Wy,
A (01) = Ay (02) = 7, Ay (wl) # Ay, (w2),
(vl == wl), (v2 - w2) € Fy,,}
U{(r,l)|re VCle A,Fv,we Wy, ,se VC':
M (0) = 7, A (w) # 5, (0 == w) € By, (r — s) € ECy,,_, }
The first term represents the alternation vertices already learned in ¢,,_1. The second
term adds the alternations we learn from 1, alone (this is the same term as in the
Basic Algorithm, where ; = t; = 1,,). The last term adds alternations that are
learned in the Basic Algorithm when 1; # ;. In the case of incremental learning we
rely on the fact that the edges of 4y, ..., ¥,,,_1 are recorded in ¢,, 1 as construction

edges.
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4. V=VCU VA

The vertices of the class dictionary graph are given by the union of the construction

vertices and alternation vertices.

5. EC = (EC,, _, —{(r —s)|(r,])e(VA- VA, _)})
U{(r == (r,0)) | (r,1) € (VA— VA4, _)}
U{(r = s)|r,seV,qv,we Wy, :
Ao (0) = 1, Ay (0) = 8, (v == w) € Ey,,,(r,1) ¢ VA}

We start with the construction edges in ¢,,_1, but if we learned a new abstract
class, represented by (r,l), we remove any construction edges to vertices representing
subclasses of the new abstract class (first term) and replace them with construction
edges to (r,l) (second term). Finally, the third term adds new construction edges

learned from 1,,.

6. FA=FAy,
U{((r,l) = s)|(r,1) e VA, s e V,Tv,w e Wy, :
Ao (V) = 7, Ay (W) = 5, (v == w) € By}
U{((r,l)= s)|(r,l) € VA,s e V,(r - s) € ECy__,}
Here we start with the alternation edges from the previous class dictionary graph and
add edges learned from 1, alone, and from %,, and ¢,,_1. The three terms correspond

to the three terms used to learn the alternation vertices in step 3.

The following theorem can be easily proven by induction on the length of the object

example graph list:

Theorem 3.1. A class dictionary graph learned incrementally is identical to the class dic-

tionary graph learned using the basic learning algorithm.

3.5 Optimum class dictionary graph learning

The learning algorithms presented in sections 3.2 and 3.4 produce class dictionary graphs
that are correct but not optimal. There are two major problems with the learned class
dictionary graphs. The first problem is that alternation vertices are never reused. For each
part that can be instantiated by objects of more than one construction class, a new alter-

nation vertex is generated that has each of the construction classes as immediate successors
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in the inheritance hierarchy. In other words, each alternation vertex has only one incom-
ing construction edge and no incoming alternation edges. The result is a class dictionary
graph with too many alternation vertices, too many alternation edges, and an inheritance
hierarchy with great deal of unnecessary multiple-inheritance.

The second problem is that parts are never inherited; instead, they are attached directly
to each construction class. In other words, none of the alternation vertices have any outgoing
construction edges. The result is a class dictionary graph with too many construction edges.

Class dictionary graph optimization is discussed formally in Chapter 5 and algorithms
for optimizing the class dictionary graphs produced by the learning algorithms are devel-
oped. In this section, we discuss informally how the incremental learning algorithm can
be extended to learn optimal single-inheritance class dictionary graphs. Consideration of
the optimization problem leads to some important observations regarding class dictionary
design.

Informally, we say that a class dictionary graph is in common normal form (CNF) if
it has no redundant parts. If two different vertices, v and ©’, in a class dictionary graph
have outgoing construction edges with the same label, [, and the same target, w, then we
say that the part, [, is redundant in classes v and v’. We observe that we can always avoid
redundant parts by introducing additional inheritance. That is, we only need to define the
part [ once in a common superclass of v and v’. It may be necessary to add a new abstract
class if v and v’ do not already have a suitable common superclass, and the addition may
cause the introduction of multiple inheritance.

Sometimes, we can avoid multiple inheritance by introducing redundant parts, but other
times we can not eliminate multiple inheritance while maintaining object equivalence. When
faced with a choice, multiple inheritance will generally produce the better class dictionary
graph since redundant parts hide the commonalities between classes and often lead to poor
software organization and duplication of code.

In Chapter 5 an efficient algorithm is presented for abstracting optimum single-inheritance
class dictionary graphs from class dictionary graphs learned using the basic learning algo-
rithm (section 2). It is shown that a class dictionary graph with no redundant parts (i.e., it
is in class dictionary common normal form, or CNF'), no unnecessary alternation vertices,
and with a single-inheritance hierarchy is guaranteed optimal®. An alternation vertex is

unnecessary if it is a singleton (i.e. has only one outgoing alternation edge) or if it has no

Jaccording to the metrics introduced in Chapter 5
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incoming or outgoing construction edges.

Therefore, an incremental learning algorithm will produce an optimum single-inheritance
class dictionary graph if with each new example the algorithm maintains a class dictionary
graph that has a single-inheritance hierarchy with no unnecessary alternation vertices and no
redundant parts. We define the Incremental Single-Inheritance Optimum Class Dictionary

Learning problem as follows:

Instance:
An optimum single-inheritance class dictionary graph, ¢, and an object example

graph, 1, where 1 is incrementally legal with respect to ¢.

Problem:

Find an optimum single-inheritance class dictionary graph, ¢, such that Objects(¢’) 2
(Objects(p) U ).

It is always possible to avoid unnecessary alternation edges. If an alternation vertex,
v, has no incoming or outgoing construction edges it can be deleted after transferring its
outgoing alternation edges to its predecessor in the inheritance hierarchy. If there is no
predecessor, the outgoing alternation edges can just be deleted. A singleton can be similarly
removed after first transferring any incoming or outgoing construction edges to its successor
in the inheritance hierarchy.

Clearly, however, it is not always possible to maintain a single-inheritance hierarchy,
particularly with the added constraint that no redundant parts are introduced. After elimi-
nating unnecessary alternation vertices, each remaining alternation vertex, v, can be thought
of as representing a set of construction classes, A(v). If the alternation vertex has an in-
coming construction edge, it represents the set of classes that can be used to instantiate a
part. If it has an outgoing construction edge, it represents the set of classes that share a
common part. In an optimal class dictionary graph, ¢, these sets of construction classes are
called the ConstructionClusters(¢). If the vertices of ¢ are arranged in a single-inheritance
hierarchy, there must only be one vertex for each element of ConstructionClusters(¢) and
each pair of elements must either be disjoint or in a superset/subset relation.

Consider an instance of the Incremental Single-Inheritance Optimum Class Dictionary

Learning problem with class dictionary graph, ¢ and object example graph, ¢ and assume
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there is a solution, ¢'. Since ¢ is optimal, we can easily compute ConstructionClusters(¢).
Next, consider the changes that will need to be made in ConstructionClusters(¢) when
we learn the new objects in 7). Some of the sets in ConstructionClusters(¢) need to be
expanded when we learn a new possibility for the kind of object that can instantiate a part.
We will also need to expand (or add) sets when we learn that there are additional classes
that share a common part. The Incremental Single-Inheritance Optimum Class Dictionary
Learning problem has a solution only if the conditions for a single-inheritance hierarchy still
hold after making the necessary changes to ConstructionClusters(¢). That is, there is a
solution if each pair of elements is still either disjoint or in a superset/subset relation.

It is easy to see how the incremental learning algorithm presented in Section 3.4 can
be extended to produce optimum single-inheritance class dictionaries. Only one alternation
vertex is created for each set of construction classes that needs to be represented. Alter-
nation vertices are created not only to express the different possibilities for instantiating a
part, but also to implement inheritance of parts common to more than one class. Each new
alternation vertex is inserted into the inheritance-hierarchy according to the order imposed

by the superset/subset relations.

3.6 Extending a class dictionary graph based on object

examples

The algorithms presented in sections 3.2 and 3.4 are useful for object-oriented design, es-
pecially when used in combination with the optimization techniques of Section 3.5 and
Chapter 5. However, even the incremental learning algorithm is not ideal for use in the
context of schema evolution. The algorithm can learn new classes and can learn an ex-
panded set of classes that can instantiate a part, but it cannot learn new parts for existing
classes.

If an object example graph, ¥ = (W, S, Ay; F,A), contains an edge (v —— w) € E,
and the existing class dictionary graph contains vertex »" = A(v) but v’ does not already
have an [ part, then % is not incrementally legal with respect to ¢ since there is no class
dictionary graph, ¢, such that Objects(¢’) O Objects(o).

One solution is to expand the data model to allow classes to have optional parts. That is,
different instances of the same class may be allowed to differ in their number of attributes.

This is the approach that we took in implementing the Demeter case tool. With the addition
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of optional parts to the data model, every object example graph is incrementally legal with
respect to every class dictionary graph. If the object example graph, v = (W, S, Ay; E,X),
contains an edge (v —— w) € F, and the class dictionary graph, ¢ = (VC, VA, A; EC, EA),
contains vertex v’ = A(v) € VC but v’ does not already have an [ part, then an optional [
part is added. If ¢ contains an edge, (v' = '), and the object example graph contains
a vertex, v, such that v/ = A(v) but there is no outgoing edge from v with label [ in 1,
then the [ part is made optional in ¢.

A second solution is to simply drop the legality requirement and reformulate the learning
problem. That is the approach taken in this section. The incremental evolution problem

is formulated as follows:

Instance:
A legal class dictionary graph, ¢ = (VC, VA, A; EC, EA), and a legal object example
graph, ¥ = (W, 5, Ay; E,X).

Problem:
Find a class dictionary graph, ¢’, such that every element of Objects(¢) U ) is a
subgraph of an element of Objects(¢’) and every element of Objects(¢') is similar to
the objects Objects(¢) U 1.

Definition 3.3. An object example graph, v = (W, S, Ay; E,A), is similar to a set of
object example graphs, O = {1y, g, .40}, if for each edge (v - w) € E there exists an
element of O, ;, such that: (v = w') € E;, M(v) = XNi(v'), AMw) = A(w').

Intuitively, we add only those classes and parts that are warranted by the object example
graph. Unlike the incremental learning problem, the instance is not constrained by an
incremental legality requirement. We accept any legal class dictionary graph and any legal
object example graph as input.

In this approach we change our interpretation of object example graphs. The graphs
are considered examples of partial objects. That is, the examples need not show all of the
parts of the objects. The incremental evolution algorithm is identical to the incremental

learning algorithm given in Section 3.4. Only the interpretation changes.

Example 3.3. Consider the class dictionary graph and object example graph shown in
Figure 17. The Student object is not legal with respect to the class dictionary graph for

two reasons: It has an advisor part and is missing the gpa part. When the incremental
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Figure 17: Class dictionary graph and object graph for incremental evolution
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Figure 18: Class dictionary graph after incremental evolution

learning algorithm is applied the missing gpa part is ignored, the advisor part is added to
the Student definition, and the major part is extended as expected. The new class dictionary

graph shown in Figure 18 is exactly what is desired for incremental evolution.

In Chapter 6 we define a complete set of primitive transformations that are useful for

extending a class dictionary graph.

3.7 Training set

Class dictionary graph learning requires only a small easily generated training set. To learn
a class dictionary graph that defines the same objects as a given class dictionary graph, ¢,
we need to see examples for each construction class with all possible parts. But since we
can vary the parts simultaneously, we need at most | V(| examples for each construction

class, and | VC|? examples to learn the whole class dictionary graph.

Example 3.4. Consider the class dictionary graph in Figure 19. Class A has three parts

and there are three alternatives for each part, so there are a total of 27 different combinations
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Figure 20: The training set

that could occur in object graphs. Fven so, the class dictionary graph can be learned from

just the three examples shown in Figure 20 where the parts are varied simultaneously.

3.8 Related work

The problem of learning classes from object examples has been studied earlier in Al (e.g.,
[SM86], [CF82],). Clustering algorithms have been applied to build a tree of mutually
exclusive classes from a given object set. Our work extends this earlier work since we have
more structure in our classes, e.g., the capability to define a language. Related work has
been done in the area of learning context-free grammars from examples and syntax trees
[AS83].

Winston’s work [Win70] is concerned with learning visual concepts in a world of 3-
dimensional structures comprised of bricks, wedges, and other simple objects. A scene is
represented by a semantic net with relations such as has-part, supported-by, in-front-of,

a-kind-of, has-property-of, etc.



CHAPTER 3. EXTENDING A CLASS ORGANIZATION 38

There are several ways in which objects can be grouped. The most relevant to our
work are by common properties and by identification with a known model. The following

example serves to illustrate the differences.

Example 3.5. Consider the world with objects A, B, C, X, Y, and Z with the following

properties:

A: has-part X, has-part Y, has-part Z
B: has-part X, has-part Y
C: has-part X, has-part Z

In our notation:

ARz> X <y> Y <z> Z)
B(<x> X <y> Y)
Clkx> X <z> Z)

A, B, and C are candidates for a group since they all have the same (has-part) relation-
ship to X.

In Winston’s work, a program would learn the new object:
A&B(<a> A <b> B)
In our system, we learn (after optimization) three new abstract classes:

AorB_or_AorC : AorB | AorC *common* <x> X.
AorB : A | B xcommon* <y> Y.

AorC : A | C *commonk <z> Z.

and remove all the parts from classes A, B, and C.

Another major difference is that Winston’s work deals with properties that describe
the relationships between objects other than “part-of” relations. That is, where we might
learn an abstract class based on the information that two objects share parts “length” and
“width”, Winston would be concerned with whether or not two objects had the same values
for their properties “length” and “width”.

Since Winston needs to learn relations other than part-of, his system is necessarily much

more complex than ours. (Winston presents a lot of ideas about learning, but no formal
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algorithms.) Another complicating factor is that Winston wants a system that, given some
examples of a type of object (class), builds a model that can recognize objects of that type
even if they have properties that are different from any of the examples.

For example, given an example of an “arch” that has two uprights supporting a brick,
and a second example of an arch that has two uprights supporting a wedge, the system
should recognize an object consisting of two uprights supporting some other type of object
as an arch.

In [LM91] several ways in which conceptual database evolution can occur through learn-
ing are discussed. One of these, the expansion of a type into subtypes, is similar to the
introduction of alternation vertices which occurs during the basic learning phase of our
algorithm. Another, the generalization of types to form supertypes, is a special case of our
technique for removing redundant parts discussed in Chapter 5.

A major difference in our work is that we focus on learning from examples, while in
[LM91] the emphasis is on learning from observation of instances (e.g., noticing that some
of the instances of a type object have null values for a given attribute). Our examples are

more general than instances since we don’t supply values for attributes.



Chapter 4
Object preserving transformations

Reorganization of classes for object-oriented programming and object-oriented database
design has recently received considerable attention in the literature: [BCG187], [LBSL90],
[LBSLI1], [AH&7], [BMWS&6], [Cas89], [Cas90], [LMI1], [Pir89], [PW89]. A number of
researchers have suggested algorithms and hueristics to produce “good” class organizations.
A “good” class organization may be variously defined as one which promotes efficient reuse
of code, one with a minimum of multiple-inheritance, a minimum of repeated-inheritance,
or some other characteristics depending on the author’s point of view.

In any case, it is often desirable that reorganization of a class hierarchy should not change
the set of objects which the classes define; that is, the reorganization should be object-
preserving. For object-oriented database design, this means that the database does not
need to be repopulated. For object-oriented programming, this means that programs will
still accept the same inputs and produce the same outputs. Furthermore, methods need
not be rewritten (although they may need to be attached to different classes).

In this chapter a small set of primitive transformations is presented which forms an
orthogonal basis for object-preserving class organizations. This set is proven to be correct,
complete, and minimal. The primitive transformations help form a theoretical basis for

class organization and are useful in proving characteristics of particular organizations.

4.1 Primitive Object-Preserving Transformations

An informal definition of object-preserving has already been given in the introduction.

For a formal definition we first need a definition of object-equivalence.

40
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Definition 4.1. Two class dictionary graphs, ¢1 and ¢y, are object-equivalent if the set
of legal object graphs with respect to ¢ is the same as the set of legal object graphs with
respect to ¢o; that is, Objects(¢pr) = Objects(¢z).

The following theorem provides a convenient means for mechanically checking two class

dictionary graphs for object-equivalence:

Theorem 4.1. Given a class dictionary graph ¢ = (VC, VA, A; FC,FEA), for v € V let
PartClustersg(v) = {(I, A(w)) | I’ :v' = v and (v/,w,l) € EC}.

where A(w) = {w'|w = v’ and v’ € VC}
Then, class dictionary graphs ¢1 and ¢o are object-equivalent iff:
o V(Cy = Vs,

o Vv e V(-
PartClustersy, (v) = PartClustersgy, (v).

Intuitively, two class dictionary graphs are object-equivalent if they define sets of corre-
sponding construction classes with the same names, and for each construction class defined
by one class dictionary graph the parts are the same as those defined for the corresponding
class in the other class dictionary graph.

The proof of theorem 4.1. is straightforward:
1. The conditions of theorem 4.1. are necessary.

o Let ¢ and ¢, be class dictionary graphs such that VCy, # VCy,. Now construct
an object graph, v = (W, VCy,,A; E, ), as follows. For each vertex, v € VCy,,
we place a corresponding vertex, v" in W, and map v’ to v by adding (', v) to A.
For each construction edge, (v —— w) in ¢y, add an outgoing construction edge
(v' =4 w') from each vertex, v’ in ¢ where v == A(v') to some vertex w' such
that w == A(w’). The resulting object graph, ¢, is legal with respect to ¢; but

not with respect to ¢, so the class dictionary graphs are not object-equivalent.

o Let ¢ and ¢ be class dictionary graphs such that VCy, = VCy,, but for some
v € VC, there exists ([, 5) such that (I,5) € PartClusterss (v) but (I,5) ¢
PartClustersy,(v). Now construct an object graph as before, but when adding
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outgoing edge, (v —— w'), to the vertex, v’, corresponding to v (under \) choose
w’ such that there is no ({,5) € PartClustersg,(v) where A(w') € S. The
resulting object graph, 1, is legal with respect to ¢; but not with respect to ¢o,

so the class dictionary graphs are not object-equivalent.
2. The conditions of theorem 4.1. are sufficient.

o Let ¢y and ¢, be class dictionary graphs such that VCy, = V(jy, and for all
vertices, v € VC, PartClustersy, (v) = PartClustersy,(v). Now assume that
there exists an object graph, ¥ = (W, S5, Ay; E,X), such that ¢ is legal with
respect to ¢y but not with respect to ¢,.

By the definition of legality for object graphs, each vertex, » in 1w, has one

outgoing edge, (v —— w) for each corresponding construction edge, (v/ — w')
in ¢, where v’ == \(v), such that w’ == A(w). There can be no other outgoing

edges from v.

But there must be some vertex, v, in @ which either has an outgoing edge,
(v =~ w), with no corresponding edge in ¢y, or else has no outgoing edge
corresponding to a construction edge in ¢,. In either case, PartClustersy, (v) #

PartClustersgy,(v), a contradiction.

Example 4.1.
The two class dictionary graphs in figures 21 and 22, ¢1 and ¢, are object-equivalent since:
VCy, = Vg,
= {Undergrad, Grad, Prof, TA, Admin_asst, Coach, Num, Real_l\lum}
PartClustersgy, (Undergrad)
= PartClustersy,(Undergrad)
= {(ssn, {Num}), (gpa, {Real Num})}
PartClustersgy, (Grad)
= PartClustersy,(Grad)
= {(ssn, {Num}), (gpa, {Real Num})}
PartClustersgy, (TA)
= PartClustersy,(TA)
= {(ssn, {Num}), (salary, {Real Num}), (assigned, {Course, Committee})}
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PartClustersgy, (Prof)

= PartClustersy,(Prof)

= {(ssn, {Num}), (salary, {Real Num}), (assigned, {Course, Committee})}
PartClustersy, (Admin_asst)

= PartClustersy,(Admin_asst)

= {(ssn, {Num}), (salary, {Real Num})}
PartClustersgy, (Coach)

= PartClustersg,(Coach)

= {(ssn, {Num}), (salary, {Real Num})}
PartClustersgy, (Course)

= PartClustersy,(Course) = )
PartClustersgy, (Committee)

= PartClustersy,(Committee) = ()
PartClustersgy, (Real Num)

= PartClustersy,(Real Num) = ()
PartClustersy, (Num)

= PartClustersg,(um) = ()

One final formulation of the object-equivalence criteria is provided by theorem 4.2..
Theorem 4.2. Two class dictionary graphs, ¢1 and ¢, are object-equivalent iff:
o V(Cy = Vs,
o Yo, we V(U
(El(vl — wy) € ECy, 11y = v, wp = w)
= (El(?]z — wy) € ECy, vy = v, wy = w)
That is, v can have w as an | part in ¢1 iff v can have w as an | part in ¢,.
The second condition in theorem 4.2. is equivalent to the second condition in theo-

rem 4.1., and the proof is essentially the same.

Now we can formally define object-preserving class dictionary graph transformations.

Definition 4.2. A class dictionary graph transformation, 1, is a rule which defines an

allowable modification of class dictionary graphs. Let

Ry = {(¢1,¢2)|¢2 can be obtained from ¢1 by a single application of T'}
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Figure 21: Class Dictionary Graph ¢

Then T is called object-preserving if ¢1 is object-equivalent to ¢ for all (¢1,¢2) € Rr.

4.2 Primitive Transformations

The following five primitive transformations form an orthogonal basis for object-preserving

transformations:

1. Deletion of “useless” alternation. An alternation vertex is “useless” if it has no
incoming edges and no outgoing construction edges. If an alternation vertex is useless

it may be deleted along with its outgoing alternation edges.

Intuitively, an alternation vertex is useless if it is not a part of any construction class,

and it has no parts for any construction class to inherit.

2. Addition of “useless” alternation. An alternation vertex, v, can be added along
with outgoing alternation edges to any set of vertices already in the class dictionary

graph. This is the inverse of transformation 1.
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3.

Abstraction of common parts. If 3v,w,[ such that Vo', where (v = v') € FA :
(v' - w) € FEC, then all of the edges, (v' =~ w), can be deleted and replaced with

: l
a new construction edge, (v — w).

Intuitively, if all of the immediate subclasses of class C have the same part, that part
can be moved up the inheritance hierarchy so that each of the subclasses will inherit

the part from C, rather than duplicating the part in each subclass.

Distribution of common parts. An outgoing construction edge, (v —— w) can be
deleted from an alternation vertex, v, if for each (v == v’) € E/A a new construction

edge, (v - w), is added.

This is the inverse of transformation 3.

. Part replacement. If the set of construction vertices which are alternation-reachable

from some vertex, v € V, is equal to the set of construction vertices alternation-
reachable from another vertex, »’ € V, then any construction edge (w — v) € EC

can be deleted and replaced with a new construction edge, (w —— v').

Intuitively, if two class C1 and C2 have the same set of instantiable (construction)
subclasses then the defined objects do not change when C1 is replaced by C2 in a part
definition. Note that the inverse of part replacement is just another instance of the

transformation.

The set of primitive object-preserving transformation given in this section is correct, i.e.

any sequence of primitive transformations preserves object-equivalence; complete, i.e. for

any two object-equivalent class dictionary graphs, ¢4, ¢o, there is a sequence of primitive op-

eratio

ns which transforms ¢4 to ¢9; and minimal, i.e. none of the primitive transformations

can be derived from any set of the others.

4.3

4.3.1

Fach

orem

Proofs

Correctness

primitive operation preserves object-equivalence. This fact follows directly from the-

4.1. (PartClusters).
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4.3.2 Completeness

Given two arbitrary object-equivalent class dictionary graphs, ¢1 = (VC, VA1, A1; FCy, EAq)
and ¢o = (VC, VAy, Ag; ECy, FA3), it is possible to transform ¢; to ¢, using only primi-
tive operations. Before transforming ¢, we record the original graph for reference; i.e., let

¢o = (VC, VAg, Ao; ECy, EAg) = ¢1. Now ¢ is transformed to ¢y as follows:

1. Assume, without loss of generality, that the sets of alternation vertices of ¢; and ¢,
are disjoint; that is, VA1 N VAy = 0. Let T = vy, vs,...v, be a topological sorting of
the alternation subgraph of ¢, such that if v; = v; in ¢ then ¢ > j.

For j — 1 to n:

o If v; € VAy then VA; — VA U{v;}
o A — FA, U{(?J] — w)|(v] — w) S EAQ}

by addition of useless alternation.

Since w is either an alternation vertex or a construction vertex that has an incoming
. . . . *
alternation edge, w must be included in 7'. Furthermore since v; = w, w = v; for

some 7 < j. Therefore w must already be a vertex in ¢y.

Now EAl = EAO U EA2 and VAl = VAO U VA2
2. While 3(v —— w) € F(Cy such that v € VA;:

e Select one such edge, (v —— w). Delete that edge and for every vertex v such

that (v = ) € FA; add an edge (v' —— w), by distribution of common parts.

3. Consider each construction edge, (v; SN wy) € ECy such that wy € VAy. Note that
v1 € VC'since all common parts have been distributed. There must be an edge (v SLEN
wy) € EC, such that vy == vy and Ag, (wy) = Ay, (wq) since PartClustersy, (v) =
PartClustersy,(v). Furthermore, Ay, (wg) = Ag, (w2) after step 1. Replace each

(v1 = wy) with (v = wy) in EC} by part replacement.

4. Consider the construction edges that would be obtained if distribution of common
parts was applied exhaustively to ¢3. They are exactly the construction edges that
we now have in ¢, after distribution of common parts and part replacement. Since
each step in the sequence of distribution of common parts operations is reversible by an

abstraction of common parts operation, there is a sequence of abstraction of common
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part operations to transform F(j to EC;. Abstraction of common parts is applied to
move construction edges up the inheritance hierarchy until they are attached to the

same vertices as in ¢s.

Now we have FCy = FCy, FAy = FAgU FAs, and VA; = VAgU VA,. All that remains

is to remove the original alternation vertices, VAp, and alternation edges, FAg.

. After steps 2 and 3, there are no construction edges (either incoming or outgoing)

attached to any of the original alternation vertices; that is, {(v -~ w)|v € VAg or w €
VAp} = (0. Also, there are no cycles in the alternation subgraph of ¢;, and ¢; has no
alternation edges from the new alternation vertices ( VAy) to the original alternation
vertices (VAg). Therefore, if (VAgN VA;) # 0, then at least one of the elements
of VAgN VA, must be “useless”. The “useless” alternation vertex is deleted from ¢4

along with its outgoing alternation edges. This step is repeated until (VAo N VA;) = 0.

Now VA; = VAs. But since outgoing alternation edges were deleted along with the
useless alternation vertices and every alternation edge in FAg had a vertex in VAg as

its source, all the edges in FAg are deleted from ¢; and FA; = FAs, s0 ¢1 = ¢s.

In summary, a class dictionary graph, ¢y can be transformed to an arbitrary object-

equivalent class dictionary graph, ¢, as follows:

1.

Use addition of useless alternation to “superimpose” the alternation subgraph of ¢

onto ¢.

. Exhaustively apply distribution of common parts until all outgoing construction edges

have been removed from the original alternation vertices in ¢y and are attached di-

rectly to construction vertices.

Use part replacement to move any construction edge with an “old” alternation vertex

as its target so that its target corresponds to the proper vertex in ¢,.

. Use abstraction of common parts to move construction edges up the “new” inheritance

hierarchy in ¢ until they are all attached to vertices corresponding to the vertices

where they are attached in ¢,.

. Use deletion of useless alternation to remove the “old” alternation subgraph from ¢;.
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4.3.3 Minimality

No primitive transformation can be derived from any set of the others since:

e No sequence of primitive operations can reduce the number of alternation vertices

without deletion of useless alternations.

e No sequence of primitive operations can increase the number of alternation vertices

without addition of useless alternations.

e No sequence of primitive operations can reduce the number of construction edges

without abstraction of common parts.

e No sequence of primitive operations can increase the number of construction edges

without distribution of common parts.

e No sequence of primitive operations can change the construction edge in-degree of a

vertex from 0 to 1 or from 1 to 0 without part replacement.

Example 4.2. This example illustrates the construction of the completeness proof with the
class dictionary graphs of figures 21 and 22. Note that although the labels on construction
vertices are significant, the labels on the alternation vertices are only provided as a means
of referring to particular vertices in the following discussion.

Addition of Useless Alternations. In ¢5 there are three alternation vertices which
have outgoing alternation edges only to construction vertices: Faculty, Assignment, and
Student. These are added to ¢; along with their outgoing alternation edges. Next, the
Employee vertex is added with its outgoing alternation edges, including an edge to Faculty.
Finally, the Occupation vertex is added along with its edges to Student and Employee. At
this point ¢ has been transformed to the class dictionary graph shown in Figure 23.

Distribution of Common Parts. The ssn and gpa parts are distributed from class
Univ_student to classes Undergrad and Grad where they are inherited. Similarly, parts ssn
and salary are distributed from Univ_employee to TA, Prof, Admin asst, and Coach.
The result is the class dictionary graph shown in Figure 24. In a deeper inheritance hierar-
chy some parts might need to be distributed repeatedly until they are attached directly to
construction classes.

Part Replacement. The “old” alternation vertex Faculty_Assignment still has incoming

construction edges from the new construction vertices TA and Prof. In ¢5 the corresponding
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edges are to vertex Assignment, so the edges are moved accordingly in ¢;. This is allowed
since the set of construction vertices alternation reachable from Assignment is equal to the
set alternation reachable from Faculty_Assignment. Such a part replacement must always
be possible since ¢ is object-equivalent to ¢o. The result is shown in Figure 25.
Abstraction of Common Parts. Parts ssn and gpa are abstracted from Undergrad and
Grad to Student. Next, parts ssn, salary, and assigned are abstracted from TA and
Prof to Faculty. Parts ssn and salary are then abstracted from Faculty, Admin asst,
and Coach to Employee. Finally, part ssn is abstracted from Employee and Student to

Occupation. The result is shown in Figure 26.
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Deletion of Useless Alternations. The alternation vertices Faculty_Assignment,
Univ_student, and Univ_employee are now “useless” since they have no incoming edges
and no outgoing construction edges. These vertices and their outgoing alternation edges

are deleted, and the transformation from ¢ to ¢ is complete.

4.4 Related work

Opdyke and Johnson [0J90, Opd92] are investigating methods for refactoring object-oriented
systems to support reuse. Refactorings are defined as restructuring plans and can be applied
by performing a small set of basic refactorings.

Casais [Cas89, Cas90, Cas91] introduces global and incremental class hierarchy reorga-

nization algorithms. Those algorithms differ from our work in a number of ways:

o The models used are different. Casais uses general graphs while we use graphs with
a special structure which has to satisfy three axioms needed for data modeling. For

example, we distinguish between abstract and concrete classes.

o The goal of Casais’ algorithms is to restructure class hierarchies to avoid explicit

rejection of inherited properties. In our work we currently avoid rejected properties.

Wegner describes informally the idea of a class dictionary transformation in his section
on transformations of concept hierarchies in [Weg90]. He writes: “Such a calculus has
interesting possibilities as an object-oriented design technique ...” We agree with Wegner

and give a mathematical treatment of a calculus of class transformations.



Chapter 5

Class dictionary graph

optimization

5.1 Practical applications of the object-preserving transfor-

mations

There are many useful rules which can be derived from the primitive transformations and
are therefore guaranteed object-preserving. The examples in this section show how object-
preserving transformations can be used to improve class organization by reducing the num-
ber of construction edges, the number of alternation edges, or the degree of multiple inheri-
tance in a class dictionary graph. Later, we introduce formal metrics and methods for class

dictionary graph optimization.

5.1.1 Elimination of redundant parts

If a vertex, v, has two incoming construction edges with the same label, (¢ —~ v) and
(v —= v), then those edges should be replaced by a single edge (w — v) where w is an
alternation vertex with exactly u and ' as alternation successors, by abstraction of common

parts. If necessary, w is first introduced by addition of useless alternation. (See Figure 27.)

5.1.2 Removal of singleton alternation vertices

If an alternation vertex, v, has only one outgoing alternation edge, (v = w), then that

vertex should be removed. Incoming construction edges (v —— v), and alternation edges,

55
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Figure 28: Removal of singleton alternation vertex

(u = v), are replaced by edges (v —— w) and (u = w) respectively. Outgoing construc-
tion edges, (v —— =), are replaced by edges (w —— z). The incoming construction edges
can be moved by part replacement and the outgoing construction edges by distribution of
common parts. Moving the incoming alternation edges can be accomplished by alternation
replacement which is analogous to part replacement but is not primitive. It is easy to see how
alternation replacement can be accomplished using only primitive transformations. Finally,

the vertex v is deleted by deletion of useless alternation. (See Figure 28.)

5.1.3 Complete Cover

If a subset, 5, of the outgoing alternation edges from a vertex, u, completely cover the
alternatives of another alternation vertex, v, then replace the edges in S with a single
alternation edge to v. We say the alternatives of an alternation vertex, v, are completely
covered by a set of edges, 5, if every vertex which is the target of an outgoing alternation
edge from v is also the target of an edge in §. This rule can be derived from the primitive

transformations using a construction similar to that given in Section 4.3.2. (See Figure 29.)
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5.1.4 Partial Cover

This rule applies if two alternation vertices, u and v, cover a common set of alternatives,
but neither contains a subset of outgoing alternation edges that completely covers the
alternatives of the other. In this case, a new alternation vertex, w, is created with an
outgoing alternation edge to each of the vertices that is a target of outgoing alternation
edges from both u and v, and incoming alternation edges (v = w) and (v = w). For
each edge (w = x) which is added, the corresponding edges (v = ) and (v == x) are
deleted. (See Figure 30.)

5.1.5 MI Minimization

If there are alternation edges, (v = w) and (v = w) such that for all other alternation
edges from v, (v == w’), w' is alternation reachable from u, then replace the edge (v = w)
with the edge (v = v). This rule reduces the amount of multiple inheritance without

changing the edge size. However, it introduces repeated inheritance. (See Figure 31.)

5.2 Maetrics for class organizations

We propose a metric (minimizing the number of edges) for measuring class hierarchies
[LBSLI1]. We propose to minimize the edge-size of a class dictionary graph while keeping

the set of objects invariant.

Definition 5.1. The edge-size of a class dictionary graph, ¢ = (VC, VA, A; EC, EA), is
defined by:
sizeg = | EC| 4+ 1/4| EA|

The edge-size is the number of construction edges plus one quarter of the number of
alternation edges. Note that the 1/4 constant is arbitrary. Any constant ¢ < 1/2 would
be appropriate. We want alternation edges to be cheaper than construction edges since
alternation edges express commonality between classes explicitly and lead to better software
organization through better abstraction and less code duplication.

This metric is quite rough: we just minimize the number of edges. We could mini-
mize other criteria, such as the amount of multiple inheritance or the amount of repeated

inheritance. A class B has repeated inheritance from class A, if there are two or more
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edge-disjoint alternation paths from A to B. The study of other metrics is left for future

research.

5.3 Minimizing construction edges

The only way that the number of construction edges in a class dictionary graph can be
reduced without changing the set of defined objects is by introducing additional inheritance.
Two classes have a part in common if each class has a part with the same name, and that
part may be instantiated by the same set of objects in instances of each class. If two
or more classes share a common part which is not inherited from a common superclass,
the number of construction edges may be reduced by introducing such inheritance. A
class dictionary graph where all common parts are implemented through inheritance from
common superclasses is said to be in common normal form! (CNF). Formally, a class
dictionary graph is defined to be in common normal form if each equivalence class of the

part-equivalence relation has only one member.

Definition 5.2. For class dictionary graph ¢ = (VC, VA, A; EC, EA) with edges (v ——
w), (v - w') € EC: (v - w) is part-equivalent to (v - w') iff A(w) = A(w'),
where A(z) = {2'|x = 2/, 2" € VC}.

Of course, none of the equivalence classes of the part-equivalent relation can be elimi-
nated from a class dictionary graph without changing the set of defined objects. Therefore
a class dictionary graph in common normal form must have the minimum number of con-
struction edges. Minimization of the construction edges can be accomplished in polynomial

time using the primitive object-preserving transformations by exhaustive application of the

CNF Rule.

5.3.1 CNF Rule

The CNF Rule says that if a class dictionary graph has equivalence classes of the part-

equivalence relation with more than one member:

1. Select an equivalence class, R, such that |R| > 1.

!The concept of a common normal form free of redundant parts was first introduced informally by Ignacio
Silva-Lepe.
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2. Choose one edge, (v —— w) € R, and replace every other edge, (v/ -~ w') € R, with

an edge (v' —— w) by part-replacement.

3. Introduce a new alternation vertex, v/, and for each (v -~ w) € R introduce an
alternation edge (v = v) by addition of useless alternation. Then replace all edges

(v —— w) € R with the single new edge (v —— w) by abstraction of common parts.

When the CNTF Rule is applied with an equivalence class, R, of size n, n new alternation
edges are added and n — 1 construction edges are eliminated. The total number of edges
increases by one, but the edge-size decreases since (n > 1) = (n —1 > n/4). Thus, the
1/4 constant in the edge-size definition guarantees that a class dictionary graph with a
minimum edge-size also has the minimum number of construction edges. That is, it is never
possible to decrease the edge-size by eliminating alternation edges at the expense of adding
construction edges.

The minimization technique depends upon the consistent use of part names in a class
dictionary graph. If the input does not contain the structural key abstractions of the
application domain then the optimized hierarchy will not be useful either, following the
maxim: garbage in — garbage out.

However if the input uses names consistently to describe either example objects or a
class dictionary graph then our metric is useful in finding “good” hierarchies. However, we
don’t intend that our algorithms be used to restructure class hierarchies without human
control. We believe that the output of our algorithms makes valuable proposals to the
human designer who then makes a final decision.

Even simple functions cannot be implemented properly if a class dictionary graph is not
in CNF. By properly we mean with resilience to change.

Consider the class dictionary graph shown in Figure 32, which is not in CNF. Suppose we
implement a print function for Coin and Brick. Now assume that several hundred years have
passed and that we find ourselves on the moon where the weight has a different composition:
a gravity and a mass. We then have to rewrite our print function for both Coin and Brick.

After transformation to CNF we get the class dictionary graph in Figure 33. Now we

implement the print function for Coin:

void Coin::print() {
radius -> print(); Weight_related::print();}
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After the change of the weight composition, we get the class dictionary graph in Fig-
ure 34. We reimplement the print function for this new class and no change is necessary for
classes Brick and Coin.

In summary: if the class dictionary graph is in CNF and the functions are written
following the strong Law of Demeter [LHR88], the software is more resilient to change. The
strong Law of Demeter says that a function f attached to class C should only call functions

of the immediate part classes of C, of argument classes of f, including C, and of classes

Wel ght related

gravity
/ \ .

Wi dth

Com Br|c|<wght/'|\| umber

Figure 34: After change of weight composition
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which are instantiated in f.

5.4 Minimizing alternation edges

A class dictionary graph with a minimal edge-size may be obtained by first minimizing the
number of construction edges, and then minimizing the number of alternation edges while
holding the number of construction edges constant. In this section a procedure for mini-
mizing the alternation edges (i.e. computing an optimal alternation subgraph) is developed
which provides the means for overall optimization. The problem of minimizing the alterna-
tion edges is NP-hard?, but algorithms for achieving a fast approximation to the optimum
are provided in the next section. In the next section we also present a fast algorithm for an
exact solution in the special case where the minimum is a single-inheritance hierarchy.

An optimal class dictionary graph cannot have any more alternation edges than any
object-equivalent class dictionary graph which is in CNF. Since each application of the CNF
rule adds only one alternation edge for each construction edge in some part-equivalence class,
conversion to CNIF adds | EC| alternation edges in the worst case, and the total number
of alternation edges in the optimal class dictionary graph is bounded by | FA| 4+ | EC].
But every alternation vertex in an optimal class dictionary graph must have at least two
outgoing alternation edges, so the number of alternation vertices in an optimal solution is
bounded by 1/2(] EA| + | EC|) and the total number of vertices (including construction
vertices) is bounded by 1/2(| FA|+ | EC|) + | VC|. In other words, the size of the solution
is linearly related to the size of the input.

We can represent any optimal inheritance graph by a binary s x s matrix, M, where
s =1/2(]| EA|+]| EC|)+4| VC|. If there is an alternation edge from vertex v; to vertex v; the
value of M; ; is 1, otherwise it is 0. The total number of alternation subgraphs to consider
must therefore be bounded by 25, Tn fact, the upper bound is significantly lower. Since
the alternation subgraph is a directed acyclic graph, let vy, ve, ...V, Vimt1, Vg2, ...0s Where
m = | VC|, be a topological sorting of vertices such that if a; = a; then ¢ > j. Then we
need not consider elements of the matrix M;; where 7 < j. Since the construction vertices
have no outgoing alternation edges, and each v;, (1 < ¢ < m), must be a construction
vertex, we can also disregard elements of the matrix, M; ;, where ¢+ < m. If there are m

construction vertices and n alternation vertices in the matrix, then the upper bound is

2See [LBSL91] for a formal proof due to Ignacio Silva-Lepe.
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reduced from 25° = 2n+2nm+m® o 9n®/24nm aq shown by the shaded portion of Figure 35.

In order to compute an optimal alternation subgraph, we need to be able to determine
if a given alternation subgraph contains all of the alternation vertices and edges which are
required to place the class dictionary graph in CNF. We can think of each alternation vertex
as representing (or covering) a set of construction vertices. This set, A(v), consists of all
the construction vertices which are alternation reachable from the alternation vertex, v. If
an alternation vertex, v, has an incoming construction edge, (v —— v), the construction
vertices in A(v) represent the concrete classes which might be used to instantiate the [ part
in u objects. If v has an outgoing construction edge, (v — w), the construction vertices
in A(v) represent the concrete classes which inherit the [ part from v.

For each construction edge, (v —— w) in the optimal class dictionary graph, we must be
able to represent the set of classes associated with the source of the edge, A(v), and the set
of classes associated with the target of the edge, A(w). An optimal inheritance hierarchy
meets this requirement with the minimum number of alternation edges.

The only primitive object-preserving transformation that changes the target of a con-
struction edge is part replacement, but part replacement does not change the set of classes
associated with the target. Therefore, the sets of classes associated with construction edge
targets in the optimal class dictionary graph can be calculated from any object-equivalent
class dictionary graph.

In any class dictionary graph with a minimal number of construction edges, there is

exactly one edge in each part-equivalence class. Furthermore, if an edge, (v —— w), in
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one class dictionary graph with a minimum number of construction edges is part-equivalent
to an edge, (v/ —— w'), in an object-equivalent class dictionary graph which also has a
minimum number of construction edges, then the vertices v and v must have the same set
of associated classes. The part represented by the equivalent edges must be inherited in
exactly the same set of construction classes in each case since the class dictionary graphs are
object-equivalent. Therefore, the sets of classes associated with edge sources in the optimal
class dictionary graph can be calculated from the class dictionary graph that results from
transformation to common normal form. As long as the number of construction edges is
kept minimal these sets remain constant. In practice, it is not necessary to actual convert
to CNF in order to perform the computation. The following algorithm can be used to
compute the sets of classes, T, associated with the targets of construction edges and the

sets of classes, .5, associated with the sources of construction edges in an optimal solution:

Algorithm to compute sets of associated classes:
1. Let T = (). (Target sets)

2. Let S = (). (Source sets)

3. For each edge, (u - v) € EC':

(a) Let Tiy gy = {v'| v' € VCand v = '}

(we associate Tu,v,y With edge (u -+ v))

(b) r=Tu {T(u,v,l)}
4. For each element, t € T':

(a) Let e, = {(u —— v) € EC| Ty, = t}.

(b) For each label, [, such that I(u —— v) € ¢ 5 = SU{{v/ | ' € VC and
u - v) e iu== u'}}.

(we associate this element of S with edges (u,v,1))
Now we have an algorithm to find an optimal inheritance hierarchy:

1. Compute the sets classes associated with targets and sources of construction edges in

the optimal class dictionary, 7" and 5.
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2. Let m = | VC|,n=1/2(| FA| + | EC]).
For k& «— 0 to 2n consider, in turn, each inheritance graph, g, with one of the
( n?/2 + nm

A ) combinations of k edges.

o If for each set, r € SUT, there exists a vertex v in g such that A(v) = r then

stop and return g.

Note that there may be more than one optimal solution; that is, there may be more than
one inheritance graph with the same minimum number of edges that contains the required
vertices. In such cases, we arbitrarily return the first one we find.

An arbitrary class dictionary graph, ¢, can be optimized by computing an optimal
inheritance hierarchy and then following the construction of the completeness proof for the

object-preserving transformations:
1. Compute an optimal alternation subgraph.

2. Superimpose the optimal alternation subgraph on the old class dictionary graph (by

addition of useless alternation).

3. Apply distribution of common parts exhaustively (until all parts are attached directly

to construction vertices).

4. Apply part replacement to insure that the target of every construction edge is in the

optimum inheritance hierarchy.
5. Delete the old inheritance hierarchy (by deletion of useless alternation).

6. Apply abstraction of common parts exhaustively (until there is only one edge in each

part-equivalence class).

5.5 Fast algorithms for optimization

5.5.1 Single-inheritance hierarchies

There is a fast algorithm to minimize the alternation edges in a class dictionary graph when
the solution is a single-inheritance hierarchy [LBSL90]. Given a class dictionary graph, &,

in CNF, delete all useless alternation vertices and consider the associated classes, A(v), for



CHAPTER 5. CLASS DICTIONARY GRAPH OPTIMIZATION 68

each remaining alternation vertex, v. We say that ¢ has the tree property if Vv, v" € VA one

of the following conditions holds:
o AW)NA(W) =0
o A(v)NA(V) = A(v)
o A(v)NAMW) = A(v')

When a class dictionary graph has the tree property, we can restructure the alternation
subgraph as a tree by inspecting the containment relationship between the sets of associated

vertices?

. Finally, the tree is collapsed by eliminating any singleton alternation vertices
(Section 5.1.2) and any alternation vertices with no incoming or outgoing construction edges.
Now there is only one alternation vertex for each set of classes that must be represented
in the class dictionary graph. Furthermore, since the result is a tree, each set is optimally

expressed in terms of subsets, so the result has the minimum number of alternation edges.

5.5.2 Common normal form

We give a fast algorithm, called “ACP” (for abstraction of common parts), for transforming
to common normal form. This algorithm is not as simple as applying the CNF rule but it
behaves well in practice in combination with the “consolidation of alternatives” algorithm
(below) for minimizing alternation edges.

Algorithm ACP (Abstraction of Common Parts)

1. Add to the original class dictionary graph an alternation vertex, v, which has as
alternatives all vertices of the original class dictionary graph which do not have any
incoming alternation edges. This insures that every vertex in the class dictionary

graph is alternation-reachable from ».

2. Call AR(v) to compute for each vertex the set of alternation-reachable construction

vertices.
3. Call ACP-Vertex(v).

4. If there are no construction edges outgoing from v, delete vertex v and all of its

outgoing edges (v = w) € FA.

°If two alternation vertices have the same set of associated classes, so that there is no proper containment
relationship, one of them can be eliminated if its attached edges are transferred to the other.
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Algorithm AR(v) (Alternation Reachable)
1. If v is marked “AR-DONE”, return 9,.

2. If v € VCthen S, = {v}.

FElse

(a) S, =10
(b) For each w, where (v = w) € FA, 5, = 5,U AR(w)

3. Mark v “AR-DONE” and return 9,.

Algorithm ACP-Vertex(v)

1. If v ¢ VA or v is marked “ACP-DONE”, return.

2. For each w, where (v = w) € EA, call ACP-Vertex(w)

3. While there is a label [ and a set of construction classes, 5, such that V(v = w) €
EA : I(w - u) € FC such that A(u) = S (we say the part (/,u) is redundant in
every alternative of v), replace one such construction edge, (w —— u), with the new

construction construction edge (v —— u), and delete all other such construction edges.
4. While there is a part that is redundant in two or more alternatives of v:

(a) Select a part, (/,u), which is redundant in at least as many alternatives as any

other part.

(b) Introduce a new alternation vertex, v’ and add construction edge (v’ —— ) and

alternation edge (v = v').

(c) For each w # v such that (v = w) € FA and (w —— u') € EC where
A(u) = A(u'), delete edges (w —— ') and (v = w) and add the alternation
edge (v = w).

(d) Call ACP-Vertex(v').

5. While there is a part ({,u) which is redundant in two or more vertices which are

alternation-reachable from »:

(a) Introduce a new alternation vertex, v’ and add construction edge (v — u).
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Figure 36: Original class dictionary graph

(b) For each w alternation-reachable from v where (w —— ') € EC such that
A(u) = A(u'), delete edge (w —— ') and add the alternation edge (v = w).
If w is an alternative of v, then also replace the alternation edge (v = w) with
(v =7").

(c) Call ACP-Vertex(v').
6. Mark v “ACP-DONE” and return.

Example 5.1. We demonstrate the normal form transformation by algorithm ACP with
the class dictionary graph in Figure 36. This class dictionary graph is not in common
normal form since weight and position are redundant in Coin, Brick and Box. Therefore we

factor them, i.e.:

Element : Coin | Brick | Box

*common* <weight> Number <position> Vector.

The resulting class dictionary graph, which is still not in common normal form, is shown

in Figure 37. We introduce a new class:
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Figure 37: After factoring weight and position

QuadrangularElement : Brick | Box

xcommon* <width> Number <height> Number <length> Number.

The resulting class dictionary graph, shown in Figure 38, is now in common normal

form.

5.5.3 Minimizing alternation edges

The algorithm presented in this section is fast but only provides an approximate solution
for minimizing the alternation edges.

There are two aspects to minimizing alternation edges:

o Inventing new alternations. We try to find new alternation vertices which allow us
to decrease the number of outgoing alternation edges of existing alternation vertices.

This leads to a deepening of the inheritance hierarchy. For example (cf. Figure 39):

Al : Al BICIDIE.
B1 : A| B C.
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Ci1: 41| B| D.
D1 : A | B | E.

can be abbreviated to:

Al : N1 | CIDIE.

Bl : N1 | C.

C1 : N1 | D.

D1 : N1 | E.
N1 : A | B.

[ ]
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Using alternations for “covering” existing alternations. We try to express a given

alternation in terms of existing alternations. For example (cf. Figure 40):

Cover : A | B| C | D] E.
Al A | C | E.
Bl : B | D .

can be abbreviated to
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Cover : Al | Bi.
Al A | C | E.
Bl : B | D .

In this example multiple inheritance is removed since we found an “exact cover” of

Cover with Al and B1.

The algorithm “Consolidate” we give next is better at introducing new alternations than
at optimally reusing existing alternations.

Algorithm: Consolidate Alternatives

The algorithm considers for all alternation vertices the set of all possible unordered pairs

of alternatives defined by the same alternation vertex.
If there are pairs that are defined by two or more alternation vertices:
1. Select the pair of alternatives (ay), (ag), defined by the most alternation vertices.

2. Create a new alternation vertex asz. Create two new alternation edges with source

vertex ag and target vertices oy and ag, respectively.
3. For each alternation vertex a; that defines the pair,

e Delete the two outgoing alternation edges with targets ay and as and source «;.

¢ Add a new alternation edge with source a; and target as.

4. Consolidate alternatives in the new class dictionary graph. (Call this algorithm re-

cursively).

For each alternation vertex a; in the class dictionary graph,

o If a; has only one incoming alternation edge with source vertex aj, and no incoming

or outgoing construction edges then:

1. Make ay, the source vertex of each and every outgoing alternation edge of a;.
2. Delete the alternation edge (ay,o;).

3. Delete the alternation vertex a;.

Example 5.2. The following example shows how the algorithm recognizes common triples:
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Z:AIBICID.
Y:A|BICI E.
X:alBICI F.

The algorithm first learns:

AOrB : A | B.

Z : AOrB | C | D.

Y : ADOrB | C | E.

X : ADOrB | C | F.
Then:

AOrBOrC : AOrB | C.

AOrB : A | B.

Z : AOrBOrC | D.

Y : AOrBOrC | E.

X : AOrBOrC | F.

Now, AOrB is eliminated:

AOTBOrC : A | B | C.

Z : AOrBOrC | D.

Y : AOrBOrC | E.

X : AOrBOrC | F.
Analysis:

¢ Running time
If we start out with p alternation vertices the algorithm might add O(p?) alternation
vertices. In the worst case we have to look at all pairs of alternatives and therefore
the running time of the algorithm is O(Size(input)?).

o Correctness

The algorithm does not change the set of objects defined by the class dictionary graph.
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We now turn to class dictionary graph minimization in general.
A useful approximation algorithm is to first use algorithm ACP followed by algorithm
Consolidate Alternatives.

Consider the following non-minimal class dictionary graph:

Occupation :
Undergrad_student | TA | Professor | Adm_assistant
*common* <ssn> Number.

Student : Undergrad_student | TA *common* <gpa> Real.

Faculty : Professor | TA *common* <course_assigned> Course.

Professor = .

TA = .

Adm_assistant =

Course =

Undergrad_student = <major> Area.

Area : Economics | Comp_sci.

Economics = .

Comp_sci = .

University_employee : TA | Professor | Adm_assistant

*common* <salary> Real.

Change the class definitions for Occupation and University_employee to

Occupation : Student | University_employee *common* <ssn> Number.

University_employee : Faculty | Adm_assistant *common* <salary> Real.

We have now reduced the number of alternation edges by 3 at the expense of adding
repeated inheritance. By repated inheritance we mean that a class is inherited several times

in the same class. In the above example, class Occupation is inherited twice in class TA:

Occupation -> University_employee -> Faculty -> TA
-> Student -> TA

However, not only alternation edges are reduced, also the amount of multiple inheri-
tance, which we propose as another metric to produce “good” schemas from the software

engineering point of view.



CHAPTER 5. CLASS DICTIONARY GRAPH OPTIMIZATION 78

Repeated inheritance is undesirable under certain situations. For example, when we
implement the class hierarchy in C4++ using virtual base classes, we can no longer cast an
Occupation object to a TA object.

Another indication that our class dictionary graph optimization algorithm MCDL is
useful is that it succeeds in finding single-inheritance solutions. We can prove the follow-
ing statement: If we give a class dictionary graph which is object-equivalent to a single-
inheritance class dictionary graph to the optimization algorithm MCDL, it will return such
a single-inheritance class dictionary graph. From a software engineering standpoint, a single
inheritance hierarchy is simpler than a multiple-inheritance hierarchy and our optimization

algorithm will find such a hierarchy, if there is one.

5.6 Related work

Automatic structuring of classes is studied in [Pir89]. Cardelli [Car84] proposes a tech-
nique for inferring multiple inheritance from objects (records). But he does not deal with
the optimality question addressed in this paper: what is the optimum way of inferring
inheritance?

Pun and Winder [PW89] discuss automatic class hierarchy construction. They describe
the process of factoring out common parts from an existing set of classes to form super-
classes, but do not include a learning component to obtain the initial set of classes.

Instead of providing algorithms, Pun and Winder suggest that a factorization engine
could be built based on an existing computer algebra system. A “normalized class hierarchy”
is obtained when there are no more common parts to factor. Thus, the factorization engine
performs an operation similar to the CNF transformation.

The CNF transformation presented in this chapter extends the work of Pun and Winder
in several ways. First, our model allows composite objects including recursion while Pun
and Winder allow only objects with a flat list of attributes. Second, we give an algorithm
for the CNF transformation and show that the time complexity is a polynomial of low
degree. Finally, we introduce the concept of object-equivalence which defines the legal
transformations on a class hierarchy.

Pun and Winder propose construction of a “normalized expression filter” to produce a
“most desirable” normalized class hierarchy. The filter would be constructed as an expert

system allowing users to input rules and constraints which might, for example, specify the
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priority of certain parts in the factorization process. In contrast, we introduce the concept
of an optimal class dictionary and show how the optimization can be fully automated. We
further show that the time complexity for optimization is in P for the single inheritance
case, but that the multiple inheritance case is NP-hard.

In software engineering, program reorganization based on the degree of coupling has
been used in [KK88, LH89, Cas90]. Inductive inference techniques are reported in [DJ88].
In the relational database field various algorithms for deriving schemas in normal form have

been developed to help the application builder to pin-point design flaws [Lie85].



Chapter 6

Maintaining Behavioral

Consistency

Most of the recent work on schema'! evolution and transformations, [Opd92, Ber92, Ber91,
Cas91, CPLZ91, D791, Bar91, LH90, AH88, BKKKR&7, PS87, SZ86], has been done from the
object-oriented database point of view where the focus is naturally on the structural, rather
than behavioral, aspects of the evolving schema. Systems such as ORION [BKKKS87],
GemStone [PS87], and OTGen [LH90] update the persistent instances in a database to
guarantee structural consistency with a transformed schema. However, none them considers
code updates on existing programs to restore behavioral consistency.

In this chapter? the problem of behavioral consistency is considered for an important
subset of possible class dictionary graph transformations. The transformations in this sub-
set are the object-preserving transformations defined in chapter 4 plus three additional
transformations [LHX94] that do not preserve objects.

These transformations have three desirable properties. First, the transformed class
dictionary graph’s consistency with the old objects either is maintained or can be easily
restored. For object-oriented database design, this means that the database does not need
to be repopulated, or that the repopulation can be easily automated. Second, the extension
transformations are powerful enough to allow the learning and incremental extension of class
dictionary graphs defined in Chapter 3 and the optimizations defined in Chapter 5 as well

as other transformations that commonly occur in practice. Third, they can be decomposed

!Class dictionary graphs are one model of object schemas
2The work in this chapter was completed in collaboration with Walter Hiirsch and first appears in [BH93].
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into a sequence of primitive transformations.

Our strategy for solving the behavioral consistency problem relies heavily on the third
property. A given extension is decomposed into a sequence of primitives, and the problem
is solved for each of the primitives in turn.

We consider (informally) two very different language models: strongly typed and un-
typed. We compare solutions to the behavioral consistency problem in the two models using
C++ and CLOS (Common Lisp Object System), respectively, as representative examples.
As one might expect, the problem is much more difficult for the strongly typed model. For
simplicity, we consider the class definitions and the methods of a class separately, although
some languages might require forward declarations of methods in the class definitions.

A class dictionary graph is essentially a language-independent set of class definitions,
and the translation to a particular programming language is a straight-forward process.
The kind-of relations defined by the class dictionary graph are implemented by declaring a
corresponding inheritance relation in the class definitions. In most languages, this means
that if there is an alternation edge from A to B, then class B is declared to inherit from
class A in the definition of class B. Part-of relations are implemented by instance variables.
For each part of a class, an instance variable is declared whose name is the same as the part
name. In the case of a typed language, the part’s type is declared to be the corresponding

class. For example, the class definition for Shapelist from the class dictionary graph in
Figure 41 would be written in C++ or CLOS as:

C++ Version CLOS Version
class ShapelList : public List { (defclass ShapelList (List)
protected: (firstShape restShapes))

Shape* firstShape;
List* restShapes;

s
6.1 Features of language models
Our two language models share several common features:

e The parts of an object are implemented as references.

e Any object can send another object any message for which the receiving object has a

corresponding method. In C++ terminology, all methods are “public”.
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¢ Each method is attached to exactly one class. In CLOS terminology, each method

has exactly one “specialized parameter”, i.e. there are no “multi-methods”.

e Any method available to an alternation class is also available to each of its alternatives

through inheritance.

¢ Inherited methods may be overriden (specialized) in a subclass. In C++ terminology

all methods are “virtual”.

e Every object has access (through its methods) to all of its own parts, and to the
parts of other objects of the same class. This level of encapsulation is equivalent to

“protected” instance variables in C++.

6.2 The extension relation

For the following discussion it is important to remember that all alternation classes are
abstract and only instances of construction classes can be assigned to a part. Thus, even if
a construction edge points to an alternation class A, the only objects that can be assigned
to the part are instances of construction classes that are subclasses of A.

Informally, two class dictionary graphs ¢1 and ¢ are object-equivalent if they both
define the same set of objects. Consequently, ¢1 and ¢; must satisfy these conditions: (1)
¢1 and ¢ have the same set of construction classes. (2) A construction class A of ¢ has
a (inherited or direct) part b if and only if its corresponding class in ¢y has a (inherited or
direct) part b . (3) An instance can be assigned to part b of class A in ¢y if and only if the
instance can also be assigned to part b of class A in ¢5.

As an example of two class dictionary graphs in an object-equivalence relation, consider
Figures 41 and 42. Note that both class dictionary graphs contain the same construction
classes. Furthermore, each construction class has the same parts and to each part one
can assign the same instances. In particular, in both class dictionary graphs, instances of
classes RectTool, OvalTool, and SelectTool can be assigned to part inputTool attached to
class Screen.

Two class dictionary graphs ¢ and ¢9 are in an extension relation, such that ¢o
extends ¢1, if they satisfy these conditions: (1) The set of construction classes of ¢, is a
superset of the set of construction classes of ¢1. (2) If a construction class A of ¢; has a

(inherited or direct) part b, then its corresponding class in ¢z has a (inherited or direct)
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part b . (3) If an instance can be assigned to part b of class A in ¢1, then the instance can
also be assigned to part b of class A in ¢5. An example of two class dictionary graphs in an
extension relation is given in Figures 42 and 43.

As a consequence of the above definitions the following relationship holds between ex-
tension and object-equivalence. Class dictionary graph ¢; is object-equivalent to class

dictionary graph ¢ if and only if ¢ is extended by ¢, and ¢9 is extended by ¢.

6.3 Class dictionary graph Extension Transformations

This section informally reviews the class dictionary graph extension transformations. The

first five of these are the object-preserving transformations that were formally defined in
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Chapter 4. The last three are not object-preserving and are presented here for the first
time. Together, the eight primitive transformations comprise the class dictionary graph

extension transformations as summarized below.

Deletion of useless alternation (DUA) An alternation class is “useless” if it has no
incoming edges and no outgoing construction edges. In other words, an alternation
class is useless if it is not a part of any class, and defines no parts for any class to
inherit. If an alternation class is useless it may be deleted by the DUA primitive. An
example of a DUA operation is the deletion of the alternation class Tool shown in the
transition from the partially drawn class dictionary graph in Figure 44-PRP to the
class dictionary graph in Figure 43.

Addition of useless alternation (AUA) This is the inverse operation of DUA. An al-
ternation class can be added to a class dictionary graph along with outgoing alterna-
tion edges to any other classes. An example of an AUA operation is the addition of the

two alternation classes DrawingTool and CanvasTool (Figure 41 to Figure 44-AUA).

Abstraction of common parts (ACP) If B; (1 < ¢ < n) are all the alternatives of an
alternation class A and each of them has a part ¢ of class C', then ACP deletes all the
construction edges B; —— C (1 < i < n) and replaces them with a new construction
edge A —= (. Intuitively, if all of the immediate subclasses of a class A have the same
part, that part is moved up the inheritance hierarchy so that each of the subclasses
will inherit it from A. An example of the ACP operation is the abstraction of the
common part interface from the classes RectTool, OvalTool, SelectTool to their common

superclass CanvasTool (Figure 44-DCP to Figure 44-ACP).

Distribution of common parts (DCP) This is the inverse of ACP. DCP deletes an
outgoing construction edge A — (' from an alternation class, A, and adds for each
alternative B; of A, a new construction edge B; — C. An example of DCP is the

distribution of the part interface from class Tool to its subclasses RectTool, OvalTool,

SelectTool (Figure 44-AUA to Figure 44-DCP).

Part replacement (PRP) If the set of construction classes that are subclasses of an
alternation class A is the same as the set that are subclasses of another alternation
class A’, then PRP may delete any construction edge X —“ A and replace it with a

new construction edge X —* A’. Intuitively, if two classes A and A’ have the same
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set of instantiable (construction) subclasses then the definable objects do not change
when A is replaced by A’ in the definition of a part. An example of PRP is the
rerouting of edge inputTool from class Tool to class CanvasTool (Figure 44-ACP to
Figure 44-PRP).

Class addition (CAD) CAD adds to the existing class dictionary graph a single new
construction class with no incoming or outgoing edges. Ixamples of CAD are the
addition of the classes Printer and Color to the class dictionary graph in Figure 42 as

shown in the partially drawn class dictionary graph in Figure 45-CAD.

Part addition (PAD) If the classes A and B already exist in a class dictionary graph,
then PAD adds a new construction edge A -~ B; that is, the class A obtains a new

part b of class B. An example of PAD is the addition of the part color to the class
Shape (Figure 45-AUA to Figure 45-PAD).

Part generalization (PGN) If a class C' is a subclass of some alternation class B, then
PGN reroutes a construction edge A = C to A %= B. In other words, PGN
generalizes the domain of part p. An example of PGN is the generalization of part
canvas from class Screen to the class OutputDevice (Figure 45-PAD to Figure 45—
PGN).

Each of the primitive transformations defines a relation on class dictionary graphs. To-
gether, the eight primitive relations comprise the object-extension relation. The primitives
have been shown to be correct, minimal and complete [Ber91, LHX94]. The completeness
guarantees that for any two class dictionary graphs in an object-extending relation there
exists a sequence of primitive transformations that transforms the original into the extended
class dictionary graph. Since the completeness proofs are constructive, there also exists an
algorithm to find the sequence. The primitive class dictionary graph transformations will
be used in the subsequent section to determine their impact on the behavioral consistency

of a program.

6.4 Structural Consistency

Each of the primitive transformations, except part addition, maintains the structural con-

sistency of the object base; that is, all the objects remain consistent with the transformed
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class dictionary graph. When a part is added to a class A by a part addition, then structural
consistency must be restored by adding an instance of that part’s class to every instance
of class A. The added object can either be some default object or specified by an object

transformation function defined by the user.

6.5 Code Transformations

In this section we discuss how application code can be automatically updated after a class
dictionary graph has been transformed or extended. The approach we take is to first reduce
the transformation to a sequence of primitives. We then update the code incrementally, in
steps that parallel the primitive transformations. Reduction to a sequence of primitives can
be easily accomplished by following the constructions of the completeness proofs given in
[LHX94] and [Ber91].

For each primitive transformation, we consider the rules that should be followed to
update the application code so that it will meet all of the original requirements. Of course,
if we wish to extend, rather than simply maintain the original functionality, it will be
necessary to hand code some of the extension. Even so, a maintenance tool based on the

primitive transformations could be used to do most of the work and generate hints for code

that should be modified by hand.

6.5.1 Untyped Language Model

In the untyped language model the code transformations are very simple. Consider the
example of the transformation of the class dictionary graph in Figure 41 to the extended

class dictionary graph in Figure 43.

Addition of useless alternation classes

The first primitives in the sequence obtained by reducing the transformation are addition
of the “useless” alternation classes DrawingTool and CanvasTool (Figure 44-AUA). The

addition of these abstract classes does not require any modification of the code.

Distribution of common parts

In the next step (Figure 44-DCP), the interface part of the Tool class is distributed down

the inheritance hierarchy to the classes RectTool, OvalTool, and SelectTool. Once again,
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there is no need to modify the code. Note that there may be methods attached to class
Tool that refer to the interface part. In a strongly typed language such as C++4, the method
would no longer compile, since the part would be undefined within the scope of the method.
In an untyped language such as CLOS, however, the symbol interface is bound at run time
when the method is invoked in response to a message to a RectTool, OvalTool, or SelectTool
object. Since Tool is abstract, the method can never be invoked in response to a message

to a Tool object, and no run time errors occur.

Part replacement

In the next step, the part class of Screen’s inputTool is changed from Tool to CanvasTool by
part replacement (Figure 44-PRP). Of course, every object that instantiates the inputTool
part of a Screen must still be an instance of one of the three construction classes: RectTool,
OvalTool, and SelectTool. Therefore any message that was sent to inputTool in the original
code will still be understood after the class transformation and, once again, there is no need

to modify existing code.

Abstraction of common parts

When the part is moved up the new inheritance hierarchy to the CanvasTool class (Figure 44—
ACP) by abstraction of common parts, there is still no need to modify the code. Every
reference to interface in the RectTool, OvalTool, and SelectTool classes is still valid due to

inheritance.

Deletion of useless alternations

Now that the Tool class has no incoming edges and no outgoing construction edges, it
is considered “useless”, and may be deleted. Note that the “useless” designation is only
relevant from a data modeling point of view, since the class may have important methods
attached. If the class is deleted to produce the class dictionary graph in Figure 42, the
functionality of the methods attached to the class must be preserved. In the simplest case,
we consider only primary methods and don’t allow a method to explicitly call a method
defined in a superclass (i.e. call-next-method in CLOS). In this case each method can be
copied to each of the immediate subclasses that does not override it. Now every object will

respond to messages in the same way after the “useless” class is deleted.
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Suppose, for example, that the Tool class has a method called getPosition which is

inherited in each of its subclasses:

(defmethod getPosition ((self Tool))

(getPosition (slot-value self ’interface)))

In this case, the getPosition method is copied from the Tool class to the RectTool, OvalTool,

and SelectTool classes:

(defmethod getPosition ((self RectTool))
(getPosition (slot-value self ’interface)))

(defmethod getPosition ((self OvalTool))
(getPosition (slot-value self ’interface)))

(defmethod getPosition ((self SelectTool))

(getPosition (slot-value self ’interface)))

If there is another alternation class that covers the same set of construction classes as the
“useless” alternation, the method could just be copied to that class instead. In the example,
we could just copy the getPosition method from the Tool class to the CanvasTool class, so

that the three methods above would be replaced with:

(defmethod getPosition ((self CanvasTool))

(getPosition (slot-value self ’interface)))

If we wish to allow “before” and “after” methods, then any before method in the “useless”
class can be prepended to the before method in each subclass or the primary method if
the subclass has no before method. After methods are appended to the after methods in
each subclass, or the primary method if there is no after method. If we allow “call-next-
method”, then in each subclass, every occurrence of call-next-method can be removed and

the “next-method” defined in the “useless” class inlined in its place.

Class and part addition

Extension of a class dictionary graph by class addition or part addition does not require any
modification of existing code. In the current example, addition of the classes OutputDevice,
Printer, and Color (Figure 43) does not effect the application code. When the color part

is added to the Shape class, existing code will continue to provide the same functionality.
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In this case, however, it is likely that methods attached to the Shape, Rectangle, and Oval
classes would be extended to make use of the new color information. For example, if there
are methods attached to these classes for drawing the shapes in black and white, they will
still function properly, but the additional code required to produce color renderings would

have to be added by hand.

Part generalization

Part generalization causes a problem similar to, but more serious than, part addition.
When the part class of DrawWindow’s canvas part is generalized from Screen to OutputDevice
(Figure 43), the original code will continue to function properly as long as every DrawWindow
continues to use a Screen as its output device. This is the case for all DrawWindow objects
that were present in the old object store and possibly updated subsequently by an object
transformation (see Section 6.4) after the class dictionary graph transformation. However,
if new DrawWindow objects are introduced that use Printer output devices, messages to the
canvas part will not be understood. Since it is not possible, in general, to automatically
generate correct methods for the new part classes, warnings should be added to the code
wherever a DrawWindow method accesses its canvas part to indicate that the part has been

generalized.

6.5.2 Typed Language Model

For the discussion of code transformations in the typed language model, illustrated for the
example of C+4, we assume that the code conforms to our data and language models.
In particular, make the following simplifying assumptions: (1) All parts are defined as
protected data members. (2) All alternation classes are mapped to abstract superclasses.
(3) All member functions of alternation classes are defined as virtual member functions. (4)

All data members are defined as pointers or references.

Addition of useless alternation classes

As for the untyped language model, the change in class definitions due to the addition of a

useless alternation class requires no modification to the methods.
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Distribution of common parts

As we have seen, in the untyped language model the distribution of a part from a superclass
to its subclasses does not require any change in the methods. However, in the strongly typed
model methods that access a distributed part will no compile, since the part is not defined
within the scope of the superclass.

To restore behavioral consistency, every superclass method that accesses the part must
be distributed, along with the part, to each subclass where the method is not overridden.
Since instances of the subclasses may be declared with the static type of the superclass, we
must replace the original method with a “pure virtual” method so that messages to those
instances will be understood.

Constructor and destructor methods in C++ may be treated much like the distribution
of before and after methods in deletion of useless alternation classes in the untyped model
since their behavior is similar. The body of a superclass constructor accessing a distributed
part is inlined at the beginning of each subclass constructor and replaced with an empty
body. The body of a superclass destructor accessing a distributed part is inlined at the end
of each subclass destructor and replaced with an empty body.

Consider, for example, what happens when the interface part of the Tool class is dis-
tributed down the inheritance hierarchy to the classes RectTool, OvalTool, and SelectTool
(Figure 44-DCP). Suppose that the Tool class defines the method:

Position *Tool::getPosition() { return interface -> getPosition(); }

Then Tool::getPosition is replaced by a pure virtual function, and the following new methods
are added:

Position *RectTool::getPosition() { return interface->getPosition(); }
Position *0valTool::getPosition() { return interface->getPosition(); }

Position *SelectTool::getPosition() { return interface->getPosition(); }

Part replacement

In the untyped language model, part replacement does not require any modification of the
code since the objects that can be assigned to the replaced part are unchanged. However, in
a typed language, there are two problems that occur as a result of the implied change in the

type declaration of the part. First, messages sent to the part might no longer be understood
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since there may be no such method known to the part’s new class. Second, wherever the part
is involved in an assignment statement, function call (as a passed parameter), or function
return (as the returned value), the part’s new type will no longer be compatible.

The first problem can be solved by supplying a pure virtual function in the part’s new
class for each corresponding method defined in the part’s old class. Since each of the
instantiable (construction) subclasses now inherits both the original method and the “new”
pure virtual method, it must supply its own method to resolve the ambiguity by calling its
original (possibly inherited) method.

The second problem requires that objects be converted to the appropriate type in as-
signment statements, function calls, and function returns. Unfortunately, simple casting
will not work in C++ under multiple inheritance.

Consider what happens when the part class of Screen’s inputTool is changed from Tool
to CanvasTool by part replacement. Suppose that the following methods were originally
defined:

void Tool::handleMouseClick(DrawWindow *win) = 0;
void Screen::handleMouseClick(DrawWindow *win)
{ inputTool -> handleMouseClick(win)}

void Screen::Screen(Tool *t) { inputTool = t; }

To solve the first problem, we define a pure virtual function in the CanvasTool class and a

disambiguating method in each construction subclass:

void CanvasTool::handleMouseClick(DrawWindow *win) = O;
void RectTool::handleMouseClick(DrawWindow *win)
{Tool: :handleMouseClick(win); }
void OvalTool::handleMouseClick(DrawWindow *win)
{Tool: :handleMouseClick(win); }
void SelectTool::handleMouseClick(DrawWindow *win)

{Tool: :handleMouseClick(win); }

To solve the second problem, we generate methods to transform the type of objects from
Tool to CanvasTool and from CanvasTool to Tool. Wherever inputTool either occurs on the
right hand side of an assignment, or is passed as a parameter to a function, or is returned

from a function, it is first converted to its original type (Tool). Wherever inputTool occurs
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on the left hand side of an assignment statement, the expression on the right hand side is

converted to its new type (CanvasTool).

Tool *CanvasTool::CT_to_T() 0;
CanvasTool *Tool::T_to_CT() 0;
Tool *RectTool::T_to_CT() { return this; }

CanvasTool *RectTool::CT_to_T() { return this; }
Tool *0valTool::T_to_CT() { return this; }
CanvasTool *0valTool::CT_to_T() { return this; }
Tool *SelectTool::T_to_CT() { return this; }
CanvasTool *SelectTool::CT_to_T() { return this; }

void Screen::Screen(Tool *t) { inputTool = t -> T_to_CT(); }

Abstraction of common parts

As in the untyped model, no changes are required by abstraction of common parts. Any
class that accesses a part that has been abstracted to a superclass will still have access to
the part through inheritance since data members are defined to be protected in our language

model.

Deletion of useless alternation classes

As in the case of the untyped language model, one problem with deleting a “useless” alter-
nation class is that there may be methods attached to the class. There is the additional
problem that the class name may be used in the static type declarations of objects.
Methods (including constructors and destructors) attached to the useless alternation
class, A, are distributed to subclasses in the same manner as when required by distribution
of common parts. Since objects of static type A may be sent messages, we must either keep
a class definition of A and attach pure virtual methods, or else find a substitute type. If
there is an alternation class B with the same set of associated construction classes as for A,
B can serve as a substitute type for A. In this case, all the member functions which were
defined for A