Maintenance of Object-oriented Systems

during Structural Evolution *

Paul L. Bergstein

Department of Computer Science and Engineering
Wright State University

Dayton, OH 45435

Keywords: Object-oriented Software Engineering, Sructural Evolution, Program Transformations

We have previously developed a mathematical treatment
of a calculus for class transformations that preserve or
extend a set of objects. Methods for automating the
maintenance of structural and behavioral consistency in
systems based on evolving class structures have been
provided for the object-preserving and object-extending
transformations. This work extends the calculus of class
transformations to include certain transformations that
reflect not only the extension and reclassification of ex-
isting objects, but also structural changes (other than
addition of attributes) in the original objects.

Language-preserving transformations are a special
case of transformations that change the structure of ex-
isting objects. If an object schema is decorated with
concrete syntax, it defines not only a class structure, but
also a language for describing the objects. When two
schemas define the same language but different classes,
the language may be used to guide the transporta-
tion of functionality between domains. The language-
preserving transformations defined here form the ba-
sis of a complete transformation system for a subset
of class graphs powerful enough to express the regular
languages. © 1997 John Wiley & Sons

1. Introduction

Class organizations (schemas) evolve over the life cycle
object-oriented systems for a variety of reasons. This issul

tion might represent an optimization of the system, or just a
change inthe users’ perspective. Atthe other extreme, a class
reorganization might reflect not only the extension and re-
classification of existing objects, but also structural changes
(other than addition of attributes) in the original objects.

While extension and reclassification of objects are mainly
concerned with the organization of objects into classes, object
restructuring is concerned primarily with the organization of
attributes, or “parts”, into objects. Here, a major concern
is how to modify the code of an object-oriented program
if the class definitions are changed so that the same data is
organized into a different object structure. If the new objects
hold the same data as the original objects, the class structures
can be considered in some way analogous. The problem is
to find a mapping of the code (methods) from the old class
structure to the new one.

Some of the issues related to maintaining behavioral con-
sistency during object restructuring have been previously
addressed by Johnson and Opdyke [19] and others. In this
paper, we consider a novel framework for dealing with object

Orfestructuring with atheoretical basis in formal languages. We
iew the original and restructured class hierarchies as struc-

has recently been a subject of increasing attention in th&urally different grammars that define the same language.

literature of both object-oriented languages and especially

The programming language model used throughout the

object-oriented database systems: [22, 19, 29, 8, 5, 10 1femainder of this paper is formally defined in section 4. In

12, 4,21, 1, 3, 30, 34].

One of the most common forms of evolution involves the

the model, a program comprises a set of class definitions in
the form of a class graph plus a set of method definitions. The

extension of an existing schema by addition of new classedat@ model, formally defined in appendix A, is an extension

of objects or the addition of attributes to the original o

b- of the Demeter Kernel Model [24] which allows decoration

jects. Sometimes class structures are reorganized even wh%fnCIaSS graphs (schemas) with concrete syntax.

the set of objects is unchanged. In this case the reorganiza-

The extended data model uses a graphical notation to
define both a set of objects and a language for representing the
objects textually. In a class graph squares represent concrete

*This research was partially supported by Ohio Board of Regents granglasses and hexagons represent abstract classes. Inheritance

663019.

© (Year) John Wiley & Sons, Inc.

(subclass) relationships are indicated by wide arrows. Thin
arrows are used to specify the attributes and concrete syntax,
collectively referred to as “parts”, associated with a class.

THEORY AND PRACTICE OF OBJECT SYSTEMS, Vol. (Volume Number)((Optional Issue Number)), 1?? (Year) CCC(cccline information)

The parts of a class (including inherited parts) are totallyits. AddExp andMulExp objects are represented textually
ordered. The textual representation of an object is obtainely strings comprising an opening parenthesis, a “+” or “*”,
by concatenation of the concrete syntax as it is encounterdtie textual representations of their two subexpression argu-
during a depth first traversal of the object’s parts. ments, and a closing parenthesis. They may be nested to any
Aninteresting class of transformations investigated in secarbitrary depth.
tion 5 are those that change the structure of the objects, but Inthe second class graph, theCompound class has been
preserve the language defined by the schema. Since a clamade concrete. We no longer have subclass€smpound
graph defines both a class structure and a grammar, aitg distinguish between multiplication and addition. Instead,
change in the class structure is reflected in a correspondirwe use an attributeyp, which takes as its value an instance
change inthe grammar. There is an interesting class of trangf an AddOp or MulOp. Notice, however, that the textual
formations that result in a new class structure, a potentiallyepresentations @fompound objects has not changed.
new set of objects, and a new grammar, but which leave the Suppose we start with; and implement a program to
language defined by the grammar unchanged. | call such @valuate prefix expressions in an object-oriented language
transformationanguage-preserving and say thatthe old and such as C++. The class definitions can be automatically
new class graphs atanguage-equivalent. generated from the class graph. More interestingly, code
o to parse the program'’s input and build the corresponding
Example 1. Theclass graphsin Figure 1 are language- prefiy object can also be automatically generated. The
equivalent even though they define different sets of objects. gppjication is completed by adding a few simple methods:
Grammars corresponding to the class graphs ¢; and ¢,

respectively, are given below in EBNF form: int Number::eval()
{ return value; 7}

<Prefix> ::= <Number> | <Compound>
<Number> ::= Digit {Digit} int AddExp::eval()
<Compound> ::= <AddExp> | <MulExp> { return (argi->eval() + arg2->eval()); }
<AddExp> ::= ’(’ ’+’ <Prefix> <Prefix> ’)’
<MulExp> ::= ’(’ ’#’ <Prefix> <Prefix> ’)’ int MulExp::eval()
{ return (argl->eval() * arg2->eval()); }
<Prefix> ::= <Number> | <Compound> .
<Number> ::= Digit {Digit} Now, suppose we wish to change the class structure to
<Compound> ::= ’(’ <Op> <Prefix> <Prefix> ’)’ that of the second class gragh, We start by rerunning the
<0p> ::= <AddOp> | <MulOp> code generator to get a new set of class definitions and new
<AddOp> ::= 4 code to parse and build-ef ix objects.
<MulOp> ::= %’ When parsing &ompound in the original program, an

instance of eitheaddExp or MulExp is created, depending
If the concrete syntax specified in a schema is meaningsn whether a “+” or “*" is found in the input stream. When
ful and a transformation preserves the defined language, #compound is parsed in the new program, an instance of the
is reasonable to hypothesize that the objects are intended ¢@ncreteCompound class is created. This involves parsing
represent the same data in the transformed schema as in the op part of theCompound to produce either amddop
original. If the inputs and outputs of a program are objectsor Mu10p depending on whether a “+” or “*” is found in
thenitis reasonable to expect that the code could be automahe input stream. Wherever an object had s&idExp or
ically updated after a language-preserving transformation smu1Exp as a part in the original program, the corresponding
that any input in the language will produce output identical object will have a&ompound with either arddd0Op or Mul0p,
to the output from the original program In other words, respectively, in the transformed program.
we can expect to find a mapping of the methods from the In order to maintain functional equivalence, itis necessary
old class structure to the new one which will preserve thefor a Compound object in the transformed program to pass
behavior of the system. along any message it receives todgs part with the extra
These techniques may be useful in contexts other thaargumenthis. Methods written for the original program are
evolution, e.g. during implementation when it is desirable tomapped fronkddExp — Add0p and fromMulExp — MulOp.
reuse some of the functionality of an old application in a newThe only modification to the methods is that they must access
environment. any parts defined fatompound objects indirectly through
the extra argument:

2. Motivating example int Number::eval()
{ return value; 7}
Consider the first class graph,, in Figure 1. Since the
Prefix class is abstract, evePyefix object mustbe anin- int Compound::eval()
stance of a concrete subclafismber, AddExp, Or MulExp. { return op->eval(this);
Number objects are represented textually by strings of dig-

2 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

Prefix

Prefix arg2
4
argl
arg2
(4) / \ 3)
argl
©)
NumberD Compound
(5
1
Numbef | Compound / / op\\ oy
1 5 @)
o)) a y o9}
)
0-9]+
o] Addexp [] MulExp
@ @ 1
e] -2
g * AddOp MulOp
o1 b2
FIG. 1. Language-equivalentClass Graphs
int AddOp::eval(Compound* exp) Addition and deletion of useless symbols

{ return (exp->get_argi()->eval() +
exp—>get_arg2()->eval()); }

int MulOp::eval(Compound* exp)
{ return (exp->get_argi()->eval() #
exp—>get_arg2()->eval()); }

The subclass to attribute transformation and its inverse are
just two of many common class transformations that change
the structure, but not the textual representation or informa-
tion content, of objects. The remainder of this paper is
dedicated to developing methods &mtomatically restoring
the behavior of a system after such class transformations.

3. Research Approach

The approach taken is to break the problem down into
three manageable sub-problems:

1. Defining a set of primitive transformations. A small
set of primitive transformations is defined which can be
composed sequentially to form many useful language-
preserving transformations. Byseful, we mean those
transformations that would make sense from a software

Distribution of parts up or down the part-of
hierarchy

Replacing subclasses with attributes or attributes
with subclasses

2. Providing algorithms for incrementally updating the

code. For each primitive transformation an algorithm
must be found for updating the code. Then, given any
sequence of primitive transformations, the code can be
updated incrementally by performing updates for each of
the primitives in sequence.

. Reducing an arbitrary language-preserving transfor-

mation to a sequence of primitives. An algorithm

to search for a sequence of primitive transformations

between two arbitrary language-equivalent class graphs
must be found. The search may be effectively guided by

the concrete syntax of the language. When the search
is successful, we may regard the resulting sequence of
primitives as the definition of an analogy between the

class graphs.

4. Language Model

design point of view. The primitives defined in Section 5
allow transformations including:

¢ Any transformation that preserves the original
objects

¢ Renaming of classes and attributes

This section describes a simple object-oriented program-
ming language based on class graphs. The CG language
will be used to illustrate the method transformations that are
required to restore behavioral consistency after a language-
preserving class graph transformation. Although the CG

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 3

language is very simple, the same principles can be used to the list from left to right. The value of the list is the value

modify programs written in “real” languages. of the last expression.
exp ::= name
41. Overview Here, name may be either the name of a part of the object

for which the method being evaluated was invoked or the

A CG (class graph) program consists of a set of clas§@me of a formal parameter of the method. The value of the
definitions in the form of a class graph plus a set of methoXPression is the object instantiating the part or the object
definitions. There is one built-in class call§dmber for passed as the actual argument, respectively.
which the language provides the built-in metheds, sub, exp ;.= self
mul, div, assign, andprint. The user may define still The value of the expressimalf is the object for which the
more methods for thBumber class. method being evaluated was invoked.

The class definitions must include a concrete class calleg(p .= container

Hain, and the method definitions must providemain The value of the expressiarontainer is the object which
method for thelfain class. Program execution begins by contains the object for which the method being evaluated

parsing the input by recursive descent to construct an inyas invoked. The expressi@ontainer must not appear in
stance of thélain class (the main ObjeCt), and invoking its any method attached to the Main class.

main method. Note that programs written in the CG lan-
guage are self documenting as to their legal inputs since the

fine thei i I . . .
define their own input anguag'e This construct denotes the sending of a message. When an
In the CG language, there is no way to create or destr%bject is sent a message, the object’s method catien

objects once t.he iniFiaI parsing gperation is completg. Thusl,5 invoked. If the object has no method with the proper
the set of objects is fixed during program execution anthame a run time exception occurs and program execution is
consists of a tree rooted at the main object. terminated. The evaluation order is: Té@ on the left hand
Each object except the main object has an implied “consjde of the message send operater, is evaluated; each of
tainer” attribute. An object’s container is its parent in the the actual argument expressions is evaluated and their values
object tree. In other words, the attribute links between obare substituted for the corresponding formals in the method
jects are defined to be bidirectional. This feature of the CGyody; the method body is evaluated and the result is returned.
language is included to simplify some of the code transfor- Note that the CG language supports delayed binding but
mations discussed below. In a “real” language, the containerot inheritance of methods. Inheritance is not an important
attribute$ would be implemented only when required by a issue in the study of code transformations since it can easily
code transformation. be eliminated from an object-oriented program just by copy-
In the CG language, as in languages such as Smalltalk)g methods from superclasses to the classes where they are
each object has direct access only to its own attributes. HowDherited. The inheritance mechanism is merely a conve-
ever, in CG these attributes include the container attributeli€nce for the programmer so that each method only needs
In other words, each object has access to its own parts and {3 P& written in one place.
the object of which itis a part.

p::=exp < name’(’ [actualg] ')’
ctuals::=exp {,exp }

4.3. Built-ins

4.2, Methods, Messages, and Expressions All of the built-in methods for thélumber class except

, L})rint take a single argumentwhich must be anothmeiber.
Each method may take any number of objects as arguy| of the methods retursel£. A side effect of the methods

ments and every method returns an object. Both the ar9tqq. sub, mul, div, andassign is that the “value” of the

ments and the return value are passed by reference. Thignper object receiving the message is changed. Thatis, the
must be the case, since passing by value would involve thgiate of the object is changed in such a way that subsequent
construction of new objects during program execution. messages to the object may have different results. The value
method ::= class: name’(’ formals’) ' { explist’}’ is modlfleq C|1rc11 thebObelf' way dep.endl\r;\?hon ghet:er the
formals::= name{ , name} message 1add, sub, mul,div, Orassign. en alumber

This construct is a method definition. When the methocfs created during the initial parsing, its value is initialized
is invoked by sending theame messége to an object of depending on the value denoted by the token parsed. When

I | th . liti luated aft i aNumber receives therint message, a token denoting its
classclass, the expressioexplistis evaluated after argument | o\ ic output.

values are substituted for the formals and its value is returned.
Example 2. A complete CG program to evaluate arith-

explist ::= exp { ; exp } _ _ metic prefix expressions is shown in Figure 2.
An expression listis evaluated by evaluating each expression

4 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

5. Language-preserving Class Transformations

5.1. PrimitiveLanguage-Preserving Transformations

The following primitives comprise the language-

7. Addition of lambda alternative

8. Deletion of lambda alternative

9. Insertion of singleton construction
10. Deletion of singleton construction
11. Attribute to subclass
12. Subclass to attribute

preserving class graph transformations, and are described

informally below. Formal definitions can be found in Ap-

pendix B.

. The object-preserving transformations
. Renaming of vertices and edges

. Nesting of parts

. Unnesting of parts

. Addition of lambda parts

. Deletion of lambda part

S U R W N

M ain Preflx

()
rg2

al
(4)
argl
//// \\ 7

NumbeD V‘("‘é‘;e Compound

(1) (5)

(Z)l op (2)1 op

"4 W D T 1

AddOp MulOp

Main : main ()
{ exp <- eval() <- print() }

Number : eval ()
{ self }

AddExp : eval ()
{

value <- assign(argl <- eval());
value <- add(arg2 <- eval())

MulExp : eval ()
{

value <- assign(argl <- eval())
<- mul(arg2 <- eval())

FIG. 2. Program A

5.1.1. Object-preserving transformations The object-
preserving transformations for class graphs are almost the
same as the object-preserving transformations defined in [5]
for graphs lacking concrete syntax and ordering of parts.
There is an additional primitive that allows edges to be
renumbered as long as the ordering is unchandgdstrac-
tion of common parts anddistribution of common parts are
extended to apply to syntax edges as well as attribute edges.
The only additional complexity is that abstraction of com-
mon parts to a superclass is restricted so that the ordering of
parts at each immediate subclass cannot be changed. Ifthere
is a set of classes that have more than one part in common,
butthe common parts are ordered differentlyin the individual
classes, then it is not possible to abstract all of the common
parts.

The object-preserving transformations for class graphs are
as follows:

¢ Renumberingof parts. Any set of attribute and syntax
edges in a class graph may be renumbered as long as
the ordering of parts (including inherited parts) remains
unchanged for each class.

¢ Abstraction of common parts. If all of the immediate
subclasses of class C have the same part, that part can
be moved up the inheritance hierarchy so that each of
the subclasses will inherit the part from C, rather than
duplicating the part in each subclass.

¢ Distribution of common parts. This is the inverse of
abstraction of common parts.

¢ Deletion of “useless’ alternation. A vertex representing
an abstract class (formally, aiternation vertex) is “use-
less” if it has no incoming edges and no parts. Intuitively,
an abstract classis uselessif it is not a part of any concrete
class, and it has no parts for any concrete class to inherit.
If an abstract class is useless it may be deleted along with
its outgoing inheritance edges.

¢ Addition of “useless’ alternation. An abstractclass can
be added along with outgoing inheritance edgesto any set
of classes already in the class graph. This is the inverse
of deletion of useless alternation.

e Part replacement. If two classes, C1 and C2, have the
same set of instantiable (concrete) subclasses then any
attribute edge incoming at C1 may be rerouted to C2,
since the set of objects which may instantiate the attribute
will not change. Note that the inverse of part replacement
is just another instance of the transformation.

5.1.2. Renaming of vertices and edges Classes and at-
tributes may be freely renamed.

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 5

@

v (5)
1 Vo —u
(1) 4)
w 4)
(1)
2
; 3
A B W +———— Vg,
1(3)
C

FIG. 3.

Nest ,/(2)l

Nesting of parts

/Qﬁ /Q

Add lambda alternatlve

\

B

%\

FIG. 4. Addition of lambda alternative

N

e
— N7

Insert singleton construction l

\Y

FIG. 5. Insertion of singleton construction

5.1.3. Nesting of parts

¢ If every class which has a classas a part, has as a
partimmediately aftew, then we may remove thepart
from all of those classes and instead makée last part
of classw. See, for example, Figure 3.

¢ If every class which hag as a part has as a part
immediately beforev, then we may remove the part
from all of those classes and instead makbe first part
of classw.

6 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

5.1.4. Unnestingof parts This is the inverse afiesting of
parts.

5.1.5. Addition of lambdaparts A part,p, can be added
to any class i is a class with no parts and no subclasses, or
if p is the “empty string”.

5.1.6. Deletion of lambda parts This is the inverse of
addition of lambda parts.

w

)
v —» <:>W
[
&

FIG. 6. Attribute to subclass

5.1.7. Addition of lambda alternative If an abstract is that they make it possible to express commonly occurring
class,v, has as its only immediate (not inherited) part an),qage_preserving transformations as a sequence of prim-
immediate superclass of v/, then a concrete class, with
no parts may be added to the subclasses &ee, for exam-
ple, Figure 4. with the evolution of the Demeter system indicate that the

itives. Examination of the literature and personal experience

primitive transformations defined in this section are power-
5.1.8. Deletion of lambdaalternative Thisis the inverse ful enough to express most, if not all, of the transformations
of addition of lambda alternative. that could be considered language-preserving. Rather than

argue the subjective “practical usefulness” of the transforma-

5.1.9. Insertion of singleton construction A new con- tions, however, we demonstrate that the primitive language-
crete classy, with a classy/, as its only part may be added

to a class graph, andmay replace/ as a part in any other
class. Ifv’ is a subclass, inheritance edges may be rerouteebmplete transformation system for a subset of class graphs

from v’ to v 'if the change does not result in thg inheritancepowerfu| enough to express the regular languages.
of any additional parts at See, for example, Figure 5.

preserving transformations defined here form the basis of a

5.1.10. Deletion of singleton construction Thisis the in-

5.2.1. Regular classgraphs Theregular class graphs are
verse ofinsertion of singleton construction. eg grap “ arap

defined so that there is a bijection between them and the

regular expressions. The alphabet of a regular class graph
5.1.11. Attributeto subclass If a class graph contains a
concrete classy, with an abstract classy, as a part, then
we may delete the party, from v and for each immediate single outgoing syntax edge as their only part). Vertices rep-
subclassy’, of w we create a new concrete clagswith
w’ as a part, and make a subclass of. Classv becomes
abstract. See, for example, Figure 6.

consists of théerminal classes (those concrete classes with a

resenting non-terminal concrete classes are concatengtion (

operators and vertices representing abstract classes are union

(+) operators. The closure operator can be expressed

51.12. Subclass to attribute This is the inverse ofit- using a cycle combining vertices representing abstract and

tribute to subclass. concrete classes. For convenience, we introduce a symbol
(see Figure 7) for the operator and the symbol, for the

5.2. Judtificationfor theprimitivetransformations terminal class with the “empty string” as the target of its

One justification for the selection of the chosen primitivessyntax edge.

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 7

(A%)

(A%) [5/ \E} ()
cdr
@ denotes A I:I
l A_list
(1)lcar
A

FIG. 7. Closure operator

Definition. Let VS be the set of all syntax vertices. Then
theregular class graphs and their bijection with the regular
expressions are defined recursively as follows:

u

l for all A € VS

=

IIAII

(A-B)

2. |:| for regular subgraphs A and B
(’1/\(‘2) S¢) grap
a b
A B

(A+B)

3. % % for regular subgraphs A and B

A B

(A%)

O

4. l for regular subgraph A

A

5.2.2. Axiom systems for regular expressions It is well
known that using substitution as the only rule of inference,
there is no finite set of equations over the regular expressions
that allows the derivation of a regular expressienfrom a
regular expressioa’ iff « and«’ define the same language.
Thatis, there is no finite complete set of axioms inthe algebra
of regular expressions [32]. However, the following system,
F, due to Salomaa [32] is complete if an additional rule of
inference is allowed:

(@+(B+7)=a+8)+7)
(- (B-7)=e-8)-7)
(a+f) = (F+a)

(- (B+7) = e F)+(a-7))
((a+8)-7) =7 +(E-7)
(a+a)=a
(a-A) =«
(a-¢)=0¢
(0t ¢)=a

(ax) = (A4 (o (%))
(a%) = (A +a))
The additional rule of inference isolution of equations:
If 5 does not possess the “empty word property” then the
equationa = (v - (5*)) may be inferred from the equation
a=((aB)+7)
Definition. Aregular expression, «, (or its corresponding
regular class graph) has the empty word property (ew.p.)
iff one of the following holds:
l.a=2A
. a = (B«*) foranyg
. a = (B + ~v) whereg or v has the e.w.p.
. a = (8- ~v) whereg andvy have the e.w.p.

[NV)

5.2.3. Completeness proof We show that for each equa-
tion over the regular expressions which is a substitution in-
stance of an axiom in the complete systém there is a
sequence of primitive transformations to transform the reg-
ular class graph corresponding to the left hand side of the
equation to the class graph corresponding to the right hand
side. Since every primitive transformation has an inverse, it
is also possible to transform the right hand side to the left
hand side. In other words, if it is possible to substitute a
regular expressiony, for a regular expressian in F, then

it is possible to transform the regular class graphto o

with the primitive transformations. Any regular expression,
«, can be derived from any language-equivalent regular ex-

Since there is a bijection between the regular expressiord€Ssiona’, in 7, so it must be possible to transform any

and the regular class graphs, we sometimes denote a regu eg

ular class graph to any language-equivalent regular class
ph by a sequence of primitive transformations if the fol-

class graph by its corresponding regular expression in thgywing meta-transformation (Figure 8), corresponding to the

following discussion.

8 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

extra rule of inference, solution of equations, is allowed:

¢ If a regular class graphp, contains a subgraplf(c - object-preserving transformation. For other untyped lan-
8) +), which was obtained by a sequence of primitive ~ guages, such as CLOS, the only object-preserving transfor-
transformations fromy, ands does not possessthe empty mation that requires a code updatedietion of useless
word property, thet(a -) + v) may be replaced with alternation. Note that the “useless” designation is only rele-
the subgraplty - (5+)). vant from a data modeling point of view, since the class may

The meta-transformation may prove difficultto apply in prac_have important methods attached. If the class is deleted the
tice and is not considered one of the primitives. Itis includedfunctionality of the methods attached to the class must be
here only to demonstrate that the primitive transformationdreserved. Each method can be copied to each of the imme-
themselves form a system as complete as any known systefite subclasses that does not override it. Now every object
for regular expressions. will respond to messages in the same way after the “useless”
Appendix C gives sequences of primitive transforma’[ion§!ass is deleted. In CG, there are never any methods to copy
that correspond to each of the equations in the axiom systerg!Nce methods may only be attached to concrete classes.
F, except for the equatior(e - ¢) = ¢ and(a + ¢) = «
which are not applicable since the regular class graphs

defined here do not contain the empty language. 6gfl.z. Renaming of verticesand edges No code updates

are required when vertices are renamed. In the standard
interpretation, renaming an edge corresponds to changing
6. CG Program Transformations the identifier for an instance variable. When an edge;—
w), is renamed t¢v —— w), the identifier’ is substituted

In this section, code update rules for programs writterfor the identifier,/, in the methods of class. Since CG
in the CG language are given for each of the primitive lan-provides strong data encapsulation, there is no need to make
guage preserving transformations. The rules are relativelgubstitutions in methods of any other classes.
straight forward since CG is untyped, and since the objects
in a CG program always form a tree at runtime. Some of
the code transformations require that an object have acce8sl-3. Nestingof parts Ifaclass,4, has outgoing attribute
to its “container” (parent) object and may involve adding€dges(A — B) and(A — ('), and the edgeA — C)
code to the container class. For example, when a part i§ replaced by an edges — C) (thec part of A is nested
unnested (moved up the part-of hierarchy) instances of thender itsb part), then in methods attached to classthe
class which originally had the part must access it indirectlyc part must be accessed indirectly throughtitsart. An
through their containers. In CG there is a built-in methodaccessor method to return thepart is added to class,
calledcontainer that provides the required access. In“real” and the identifierc, is replaced by <- c() in methods
languages, an instance variable may be added where necéclassA. If methods of clase’ accessA objects through
sary to provide a link to an object’s container. Still, there the container operator, the access must now be indirect
are additional complications when the objects don’t form athrough the intermediatés object. We add an accessor
tree. When a class graph is used to define the class structuyfethod to class B for its container, and in methods of class
for a program written in a typical object-oriented language, &' the expressiorontainer is replaced by the expression
construction edge from some vertek, to another vertex, ~ container <- container().
implies that everyd object has & object as a part, but not

the converse; ever§ object is not necessarily a part of dn) .
L yap §.1.4. Unnesting of parts If a class,A, has an outgoing

object. In general, there may be no suitable container class: " y . .
for a code transformation, and if there is a suitable class i?ttrlbute edge(A — B) toaclass3 which has an outgoing

cannot in general be identified without examining the exist-""ttribUte edge(B —=» C), to classC, and the edges —»

ing code. The code transformations presented below, whil)isreplaced by the edged — C), (thec partis unnested

correct for CG programs, are intended to be used with hut oM under the) part of classA) then in mgthpds attached
classB, thec¢ part must be accessed indirectly through

man guidance in the general case. The container classes 5?e

specified manually, and code must be transformed manualf} par;ntz;l. Obtjefr:' S'rr?l[lﬁ rIy,tln .methodsr ?[f flt"’;f;:(iss
if a container class is required by a code transformation rul mccetsn v(\j bjeﬁns dir::?tghroueoﬁ i t:maerz:tpz)%'ae ; ' Accessor
and none is available. For strongly typed languages there afgust now be 9 P Ject.
the complications discussed in [7] methods are added to clasisto return theb and ¢ parts.
' In methods of clas$3, the expressior is replaced by the
expressiorcontainer <- c() and in methods of class
6.1. Transformation rules the expressiorontainer is replaced bycontainer <-

b().

6.1.1. The object-preserving transformations For the 6.1.5. Addition of lambdaparts Adding a part does not
CG language, there are no code updates required for amgquire any change in the code.

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 9

)
S 2N
Several steps |:| ¢
7\
a b

THEN

N

FIG. 8. Solution of equations

6.1.6. Deletion of lambda part If a class,A, has an at- 6.1.8. Deletion of lambda alternative Deletion of a
tribute edge,(4 — B), to a “lambda” classB and the lambda alternative does not require any change in the code.
edge is deleted, clas$ must supply any functionality that

was formerly delegateq o clags. Note that sincef is a . 6.1.9. Insertion of singleton construction When a new
lambda class, none of its methods have access to any Obje‘&?ncrete class4, with an attribute edge to a class, is
other thanself andcontainer. Each method of clasB 4qged by insertion of singleton construction, a method which
is copied unchanged to clask except that the expression simply delegates to it® part is added to clasd for each
container is replaced withself in the copied methods. In methodin clas®. Anaccessoris added tofor its container,
classA'’s original methods, the expressibris replaced with and in the methods of clads the expressiorontainer is

the expressionelf. replaced byontainer <- container().

6.1.7. Addition of lambda alternative When an inheri- 6.1.10. Deletion of singleton construction ~ When a con-

tance edgg,A — B), is added from a class} to a lambda crete class, with an attrl'bute edge /1 B)’ to classi
e . : is deleted by deletion of singleton construction, each method
class, B, by addition of lambda alternativé3 objects may

))) . , in classA is copied to clasg3 with substitution of the ex-
be interspersed in a list of objects. Any message received pressionselt for b. In the original methods of clasB the
by such aB object should be passed to tHeobject thathas expressiorontainer is replaced byelf.
been displaced. For each method attached to any subclass
of A a corresponding method is generated for cidsshich

simply delegates to the next object in the list. We also add t&-1.11. Attribute to subclass When a concrete class is
each of the originalt classes a method calletiis which transformed into an abstract class by attribute to subclass, its

returnsself. To classB we add athis method that returns methods are simply copied to each of its new subclasses.
container <- this(). In each of the originalt methods

the expressiorontainer is replaced bycontainer <= 61,12, Subclassto attribute When an abstract clasd,
this () so that these expressions will have the same objecigains an attributd, by subclass to attribute, each of its sub-
as their values as if thB objects were not present in the list. classes,B, must be a singleton construction whose only

10 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

outgoing edge(B —— ('), has labell. The elimination 6.2. Examplesof CG programtransformations

of the subclasses is handled as for deletion of singleton con-

struction (above), except that an additionalargument is added

to each of the methods copied from cla@go C, and the Example3. Figures 9-11 show how yet another version
copied methods are modified to access any parts inherited i the prefix expression evaluator (Figure 9) is transformed
B (from A) indirectly through the extra argument. Accessorwhen its class structure evolves first by transforming the
methods are added to cladsfor each of its parts, and for op attribute of class Compound to subclasses followed by
each method copied fro? to C, a corresponding method deletion of the useless alternation vertex 0p (Figure 10) and
is added to clasg which simply delegates to itpart, pass- then by deleting the singleton construction vertices MulExp
ing along whatever arguments it received pedf for the

actual value of the extra argument.

Pref|x

M ain Preflx

(
rg2

a
Maln 4)
(1 argl
arg? (3)
gl (4)

al
®3) |
/ \ Number|:| V‘("‘6‘)Je Compound
< value (1) (5)
NumbeD © |:| Compound % "y
‘///?I;’ 0;\137\\
(e 2) ") AddExp|:| |:| MulExp
Op (Z)l op (Z)lop
"4 W D T 1k
AddOp MulOp
e @) |:| I:' —> e Main : main ()
AddOp MulOp { exp <- eval() <- print() }
Main : main () Number : eval ()
{ exp <- eval() <- print() } { self }
Number : eval () MulExp : eval ()
{ self } { op <- apply(argl, arg2, value) }
Compound : eval () AddExp : eval ()

{ op <- apply(argl, arg2, value) } { op <- apply(argl, arg2, value) }

AddOp : apply (al, a2, v) AddOp : apply (al, a2, v)
{ {
v <- assign(al <- eval()) v <- assign(al <- eval())
<- add(a2 <- eval()) <- add(a2 <- eval())
} }
MulOp : apply (al, a2, v) MulOp : apply (al, a2, v)
{ {
v <- assign(al <- eval()) v <- assign(al <- eval())
<- mul(a2 <- eval()) <- mul(a2 <- eval())
} }
FIG. 9. ProgramC FIG. 10. Program D

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 11

and AddExp followed by renaming of the classes Mul0p and
AddOp to MulExp and AddExp, respectively (Figure 11).

Example4. Figure 12 shows a CG programto calculate
the total weight of all the bricksin a pile. If the class graph
evolves by addition of lambda alternative to allow balloons
to be interspersed with the bricks the code to calculate the

total weight of the bricks is updated as shown in Figure 13.

M ain Pref|x

rg2

a

4
argl
/ P

Number|:| V?é;’e
(1) (5)

Compound

[] AddExp [MuiExp

1(2) l)

nyn ngn

Main : main ()
{ exp <- eval() <- print() }

Number : eval ()
{ self }
MulExp : eval ()
{ self <- apply(argl, arg2, value) }
AddExp : eval ()
{ self <- apply(argl, arg2, value) }
AddExp : apply (al, a2, v)
{
v <- assign(al <- eval())
<- add(a2 <- eval())
}
MulExp : apply (al, a2, v)
{
v <- assign(al <- eval())
<- mul(a2 <- eval())
}
FIG. 11. ProgramE

12 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

7. Practicality of the approach

7.1. Limitationsof the Data Model

The data model used here is a formal mathematical model
(see Appendix A), that was chosen to provide programming
language independence and a sound theoretical basis for the
methodology. Itis a “low-level” model that starts with only
those relationships that are directly supported by most most
object-oriented programming languages: part-of (data mem-
bers) and kind-of (subclassing). Concrete syntax and order-
ing of parts are added to relate the semantics of different class
structures.

It is expected that the approach will often be applied in
the same way it was developed. That is, a class structure
without concrete syntax or part ordering will be embedded in
a grammar for the purpose of maintenance. The grammatical
requirements of the model should not restrict its usefulness.
In many cases, it may even be possible to recognize class
transformations as “language-preserving” outside the context
of a grammar. Still, the concrete syntax and ordering of

Main Pile
brlcks
/ \ next
()
Bottom

|:| weight |:|

Number Brick
Main : main ()
{ bricks <- last() <- weight() <- print() }

Brick : last ()
{ next <- last() %}

Bottom : last ()
{ container }

Brick : weight ()
{ container <- weight() <- add(weight) }

Main : weight ()
{ zero }
FIG. 12. Program to calculate weight of brick pile

parts is a valuable means of documenting the nature of class A class organization with inheritance from concrete

transformations.

The main constraints in our model are the lack of inheri-
tance from concrete classes and the inability to override (oP

classes may be easily (and automatically) restructured to
eliminate this kind of inheritance. The concrete class is re-

laced by an abstract class in the inheritance hierarchy, the
concrete class is made a subclass of the new abstract class,

shadow) data members in subclasses. We also disallow namg a1 methods of the concrete class are moved to the new
clashes due to multiple inheritance. None of these constrainigstract class. There are no code transformations required.

pose a major obstacle to the use of the approach.

Pile

brlcks
/ \ next
Bottom / \

|:| Welght

Number BI’ICk

Main

Zero

Balloon

Main : main ()
{ bricks <- last() <- weight() <- print() }

Main : weight ()
{ zero }

Brick : last ()
{ next <- last() %}

Brick : weight ()
{

container <- this()
<- weight() <- add(weight)

Brick : this ()
{ self }

Bottom : last ()
{ container <- this() }

Balloon : this ()
{ container <- this() }

Balloon : last ()
{ next <- last() %}

Balloon : weight ()
{ next <- weight() 2

FIG. 13. After adding balloons to the pile

In the author’s opinion, shadowing data members in sub-
classes is a dangerous and generally undesirable technique.
In any case, it can be simulated by implementing the data
member as a method, and overriding in subclasses.

Any language, or model, that allows multiple inheritance
must somehow cope with potential name clashes. For exam-
ple, in Eiffel, there is a mechanism to rename inherited data
members. In C++, names must be qualified by using the class
scope resolution operator. These design decisions have only
a minor effect on the mechanics of code transformations. By
requiring unique names, we have, in essence, adopted the
C++ approach. If we consider instance variables to have the
class name where they are defined as an implicit prefix, we
get unique names.

Our low-level model is probably unsuitable for high-level
analysis and design. However, models in common use, in-
cluding the new Unified Modeling Language, may be mapped
to the CG model inthe same way that they are mapped to pro-
gramming languages. A CASE tool supporting such models
could incorporate support for maintenance of user written
code based on the mapping to low-level constructs.

7.2. Limitationsof the Language Model

The limitations of the CG language model include:

¢ No conditional expressions

¢ No looping constructs

¢ No inheritance of methods

¢ No programmer control over encapsulation

¢ No true dynamic object construction

¢ Object structure at run time must be a tree

¢ Thelanguage is untyped

+ No non-object primitives (e.g. integer, character, etc.)

Most of these language features were left out of the model
merely to simplify the discussion, and to allow us to focus on
those features at the core of object-oriented programming:
data encapsulation, message passing, late binding, and poly-
morphism. We are currently implementing a system that will
support all of the features mentioned above except static typ-
ing. Our implementation will support C++, but circumvents
the type system by supplying @bject class from which
every other class inherits. We define a defaniessage
not understood, method for clas@bject corresponding to
each method in every other class. All member functions and
parameters are declared to have tgpgect. We provide
“wrapper” classes for the non-object types. In the future,
we will eliminate thedbject class, and modify our transfor-
mations to satisfy the C++ type system. Many of the issues

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 13

relevant to type system support in program transformationgxample, a small portion of the system'’s original class struc-
have already been investigated [7]. ture and the corresponding portion of the new structure are
The addition of conditionals and loops has had no impacshown in Figure 14.
on the transformation rules. Inheritance of methods has very The strategy suggested in Section 8.2 was used to find a
little effect. In those cases were it is important, a methodsequence of primitives to accomplish the overall class struc-
attached to an abstract class can be copied to each of thge transformation. This strategy proved effective for the
subclasses that does not override it, and then eliminated. Ifte&st case with approximately 40 classes in each structure. A
method in a subclass calls this method using the class scopequence of primitives was found in approximately 2 hours.
resolution operator, the code can be inlined. Later, identical Next, portions of the CLOS code used to implement the
methods may be abstracted to common superclasses in thgginal system were modified according to the rules in Sec-
same way that data members are abstracted. tion 6 (adding instance variables to link objects to their “con-
The program transformations assume that all methods até@iners” where necessary), and the correctness of the new
public, and all data members are protected. If stronger ercode was verified.
capsulationis present, and a program transformation requires The same methodology has been used successfully to
access which is not allowed, we simply weaken the encapguide the evolution of more recent versions of the Deme-
sulation (with appropriate warnings and user interaction)ter System which have been implemented in C++. In this
In C++ the only encapsulation weaker than what we havé&ase, the code transformation rules had to be augmented
assumed, is the use of public data members. We considé@mewhat in order to satisfy the type system. For a more
this very poor programming practice and our system will notcomplete discussion of type system issues see [7].
support it.
The problem with object structures that are not trees, i gearch algorithms
general, and of dynamic object creation, in particular, is
that objects may not have a suitable container object for If the primitive language-preserving transformations are
transformations that require it. As noted in Section 6, uset!sed to restructure the class organization of a CG program,
interaction is necessary in such cases. the code may be automatically updated following the rules
defined in Section 6. More generally, given an arbitrary
o CG program and a new language-equivalent class graph, we
7.3. Reorganizations that are not language must be able to find a sequence of primitives that produces
preserving the given transformation in order to apply the code transfor-

The most commonly occurring reorganizations that arénation rules.
not language preserving are those that add new classes, or
new attributes to existing classes. Thedgect-extending 81, Regular languages
class transformations are much easier to manage than the
language-preserving transformations described here. Acom- since the primitive transformations are not complete
plete set of pl’lmltlve ObjeCt-extending tranSformationS, andfor regu|ar class graphs without the addition of a meta-
corresponding code update rules is described in [7]. Th@ansformation, it is not always possible to reduce an ar-
maintenance techniques for language-preserving transformgitrary language-preserving transformation over the regular
tions are intended to augment, rather than replace, existinflass graphs to a sequence of primitives. However, there is
techniques to allow for automatic maintenance over a muc@n algorithm to perform the reduction to a sequence of prim-
larger set of class reorganizations. itives and meta-transformations. Manual code updates must
then be performed only for the meta-transformations.

The proof that Salomaa’s axiom system for the regular
expressions is complete [32] is constructive in the sense that
The original motivation for this work was a major revision for any valid equatiotX = Y, over the regular expressions it
of the Demeter system’s class graph, which required thgives a method to construct its proof. To reduce an arbitrary
entire system to be manually ported to the new environmernianguage-preserving transformation over the regular class
by rewriting all the code. This was true even though thegraphs to a sequence of primitives we first construct the proof
languages defined by the class graphs were nearly identicalhat the corresponding regular expressions are equivalent.
and the functionality of the programs comprising the systenEach substitution in the proof is mapped to a sequence of

was unchanged. primitives as defined in Section 5.2.3.. Each solution of
The methodology presented in this paper has been agquations is mapped to the meta-transformation defined in

plied, by hand, to parts of the system that motivated theSection 5.2.3..

research. The Demeter System [17, 33] originally used a no-

tation based on grammars and later changed to a graph basgg

notation. When the notation was changed the class structure

was reorganized to properly model the new perspective. For There can be no algorithm guaranteed to reduce an ar-

7.4. Practical experience

Context free languages

14 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

optlabeledsymbol Opt_labeled_term
ez

vertex

= O s
AN

Hirradll

labeledsymbol symbol Labeled Regular
1) 1
@[name\® Y @[name®
S g
ident Ident

FIG. 14. Reorganization of the Demeter System class structure

bitrary language-preserving transformation over the classypes and numbers of outgoing edges, outgoing construction
graphs to a sequence of primitives. Even if the set okdges have the same labels, and outgoing syntax edges have
primitive transformations were complete, such an algorithnthe same targets. Next, the target of each construction and
would be impossible since equivalence of context-free lanalternation edge is brought into congruence with the corre-
guages is undecidable, and the class graphs define contexponding class in the goal state in the same manner, and the
free languagés Nevertheless, it is reasonable to expect thaprocess continues until the target is reached or the depth in
searches for sequences of primitives will often terminate suche state space exceeds some specified value.
cessfully since the primitives are designed to represent the An important heuristic which can be used to improve the
kinds of transformations that are likely to arise in practice. gegrch performance is to use the names of classes and labels
The search problem may be viewed in terms of the classigt edges to guide the search. If, for example, a vertex must
state-space search paradigm as defined in the literature §e an outgoing construction edge with lab# a vertex
artificial intelligence. Given an initial stat&, a set of oper- labeled’, we first check to see if there is already an outgoing
ators on states), and a set of goal states, the state-space g qge with label. If two analogous classes have parts with

is defined as a directed graph where eac'h node representﬁjg same names, we guess that the parts are also analogous.
sta’Fe and each arc repr§§ents an operation. The proble erwise, we check if some other vertex has an outgoing
tofind pgth from the |n|t|a'\l §tate to a goal state. 'Normally,edge with label and targetl” that can be brought into the

the graph is not made explicit except for the solution path. J)roper position by nesting and unnesting of parts. If neither

¢ rln ?urtﬁaser’ir;?t?vmlluil state |sra Cl?vsifl g:?pnhs’f:)?sqg[?;: condition is met we look for a vertex labeléd and finally
ors are the p € language-preserving tra SFIO" an edge with labél

and the only goal state is a language-equivalent class graph. This strategy is useful if the class graph changes gradu-

Alternatively, we may consider the set of goal states to be llv during th luti ince most ol nd
the set of all class graphs which are object-equivalent to &'y during the evolutionary process, s fteis gliocl?ssesfi? ;

given language-equivalent class graph since we already ha\P@rtS will retain their original names.

efficient algorithms for checking object-equivalence and re{N€ designers use names consistently when reorganizing the
ass structure. Finally, if a class graph has changed dra-

ducing an object-preserving transformation to a sequence & :) . L
primitives. matically it may be easy for a human designer familiar with

State-space search has been heavily investigated in Af'€ @pplication domain to supply a mapping between classes
and sophisticated systems have been developed for evalu¥fith analogous roles by manually renaming parts and classes
ing states and choosing the next operation to apply in variou8€fore starting the search. For the human designer, giving
domains. A detailed algorithm of this sortis beyond the scopé Partial analogy by renaming the parts and classes is the
of the current work and is left for future research. However, €asy” part — elaborating the analogy by finding the primi-

a simple search strategy might proceed as follows: The stative transformations and then updating all of the code is the
space is searched in depth-first order (with backtrackingjhard” part. For the machine, the reverse is true; thus, the
and operators are applied to vertices in the class graph iachine complements the abilities of the human designer
breadth-first order starting with théain class. TheMain When this strategy is employed.

vertex of the initial class graph is brought into congruence The concrete syntax may be used as a further guide of the
with theMain vertex of the goal state by applying operators search or to prune nodes in the state space if we note that
(primitive transformations) until the vertices have the samait is not possible to find a solution by bringing two vertices

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 15

into congruence that have different sets of reachable syntaget domain. Generally, there is a 1-1 mapping between nodes
vertices. in the base and target domains. Each pair of corresponding
object nodes inthe mapping is part of the analogy: “the target
is like the base”. The analogy is applied by using mapping
rules, based on the principle sfstematicity, to determine
which predicates should be brought from the base domain to
the target domain. The selected predicates are carried over
9.1. Software Refactoring using the node substitutions indicated in the object mapping.
A sequence of primitive transformations where each prim-

In their software refactory project, Opdyke and Johnsoritive only renames a vertex in a class graph would be equiv-
[28, 27, 29, 19] have worked on building a tool to supporta@lent to an analogy as defined by structure mapping the-
various aspects of object-oriented program transformatiorPry- However, the primitive transformations can be more
including the maintenance of behavioral consistency duringXPressive since they may include changes in cegtaie-
schema evolution. Many of the code transformation issuefiral relations (e.g. part-of, kind-of) as part of the anal-
they address are similar to the issues addressed here, #fi@y- For example, in the base domain a clémsan might
their solutions are also similar in some cases. In particul@ve an attribute (part) calle@nder, with possible values
lar, they consider reorganization of “aggregate/componenttkinds) Hale or Female. In the target domain an analo-
hierarchies, and conversion between aggregation and i§l0US Structure might have a clagsrson with subclasses
heritance. The problems and solutions they present arinds)tan andwoman. The simple mappingH uman —
guite similar to those presented here for nesting/unnestingerw”’ Male — Man, Female — Woman) do'es not
of parts and subclass-to-attribute/attribute-to-subclass corPrOPerly express the analogy. Instead, the relationship be-
versions, respectively. tweenPerson andHuman must be qualified, asin: ‘Berson

The work of Opdyke and Johnson differs in several way§.s like aHuman where the attribut@ender is expressed by

from the work presented in this paper. Perhaps the most ims_ubclassing". Gentner's structure ma.p.ping theory s not pow-
portant is the theoretical basis of the current work in formalerfm enough to express such a qualified structural analogy,

languages. In our case, the program transformation spaq?éJ t t'h|s can be exprefsed by a primitive transformation, say
attribute-to-subclass”.

is clearly and concisely defined. Furthermore, language- In our work, application of the analogy involves bringing

equivalent class graphs guarantee that programs written in . . .
: . relations, in the form of program code, from the base domain

the CG language will accept the same inputs, and that their : . :
over to the target domain. As in structure mapping theory,

run-time objects have the same textual descriptions. This B e rules depend only on syntactic properties and not on an

the answer to thg Important question: Why s it reasonable nderstanding of the contents of the domains. Therefore, the

to expect the existence of code that will make a system Ogode is brought over with little modification

transformed o'bj.ects behave in a manner functionally equiv- Structure mapping theory says nothing about how an anal-

alentto the ongmal system'? ') ogy, “thetarget is like thebase”, is broken down into a map-
The alternative answer is that the transformation was acﬁing of nodes in the base to nodes in the target. In our case

complished via a sequence of primitives for which correcty search is performed to find a sequence of primitive trans-

code transformations are known. Opdyke and Johnson rely mations that would convert the base structure to the target
solely on this second justification, and require that users ofcture.

their system directly apply primitives (or compositions of

primitives already known to the system). In the system we

envision, users need not even be aware of the existence 88- Analogical Program Synthesis Guided by

the primitive transformations. In the context of reuse (asCorrectness Proofs

opposed to evolution), the users of Opdyke and Johnson’s) .
system would have to perform a search for a sequence of Ulrich apd Moll [38] hgve used correctnes§ proofs to guide
primitives to transform the class structure of the existingth® formation of analogies and the construction of analogous
code to the class structure where it is to be reused. In thBrograms. Eachlinein the proof of a program written for the

system we envision, there is a search engine to perform thf§2S€ domainis mapped into a statement in the target domain.
task automatically. Terms and relationships in the target domain are substituted

for terms and relationships in the original proof. As the
process is carried out, the original program is modified by

9.2. Structure Mapping Theory the same substitutions. This process produces a new program
and its correctness proof at the same time.

In structure mapping theory [14, 15] knowledge is rep- Dershowitz and Manna [13] used a similar approach to au-
resented as propositional networks comprising object nodematically modify programs. They formulate an analogy as
and predicates (attributes and relations). An analogy maps set of substitutions that yield a specification of the desired
object nodes from the base domain to object nodes in the taprogram when applied to the specification of an analogous

9. Related Work

16 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

program. The specifications, including input specifications, [4] Gilles Barbedette. Schema modifications in thepo> persistent
are given for both programs in a high-level assertion lan- object-oriented language. In Pierre America, edioropean Confer-

A enceon Object-Oriented Programming, pages 77-96, Geneva, Switzer-
gua%e. In cf)ur f[:,ase_’ t?he kfnown fCG ?mgram %ontalns Its own land, July 1991. Springer Verlag, Lecture Notes in Computer Science.
Input specification In the torm ot a class grapn.

. An_'mpor_tant _aSpECt Of a program Spe?'.f'cat'_on is the Oriented Programming Systems, Languagesand Applications Confer-

inclusion ofinvariant assertions which are utilized in cor- ence, in Special Issue of SGPLAN Notices, pages 299-313, Phoenix,

rectness proofs. Transformations are applied to all assertions Arizona, 1991. ACM Press.

as well as to program code. The transformed assertions cai8] Paul L. Bergstein. Managing the Evolution of Object-oriented Sys-

be used to obtain verification conditions for the new pro- tems. PhD thesis, Northeastern University, Boston, Massachusetts,
L . June 1994.

gram. In our case, it is the language defined by the class ™ _ i o _

graphs that remains invariant. Correctness is guaranteed blf] Paul L. Bergstein and Walter L. kisch. Maintaining behavioral con-

L . sistency during schema evolution. In S. Nishio and A. Yonezawa, ed-

the correctness of the primitive transformations. itors, International Symposium on Object Technologies for Advanced

Software, pages 176-193, Kanazawa, Japan, November 1993. JSSST,

Springer Verlag, Lecture Notes in Computer Science. Also available as

Northeastern University, College of Computer Science technical report

number NU-CCS-93-04.

By extending a typical graph based data model to includels] Elisa Bertino. A view mechanism for object-oriented databases. In
concrete syntax, we have produced a new model that can be 'lngg ”fé'fn\afl ConfeL encf_onl%ggﬁdmg Database Technology, pages
used to simultaneously define both a class structure and alan- >0 V1enNa Austia, 2992 o _
guage for describing instances of the classes textually. Wheff] Alexander Borgida, Tom Mitchell, and Keith Wiliamson. Learning

. . . improved integrity constraints and schemas from exceptions in data
the .EXtendEd data model is mcorporatgd Into a programming g knowledge bases. In Michael L. Brodie and John Mylopoulos,
environment, we get programs that define a language for de- editors, On Knowledge Base Management Systems, pages 259-286.
scribing their run-time objects and are self documenting as ~ Springer Verlag, 1986.
to their legal inputs. The result is a novel framework for [10] Eduardo CasaisMianagingevolutionin object-oriented environments:
dealing with object restructuring with a theoretical basis in " agorithmic approach. PhD thesis, University of Geneva, Geneva,

Switzerland, May 1991. Thesis no. 369.
formal languages. | Poricini. Luidi L 4 Roberto Zicari. Und
The methods described for maintaining behavioral conlt Alberto Coen-Porisini, Luigi Lavazza, and Roberto Zicari. Updat-
. . . ing the schema of an object-oriented databa&®iarterly Bulletin
sistency of evolving systems have been successfully applied of the IEEE Computer Society Technical Committee on Data Engi-
by hand to the development of the Demeter System. An neering, 14(2):33-37, June 1991. Special Issue on Foundations of
automated prototype is currently in the planning stage.

[5] Paul L. Bergstein. Object-preserving class transformation®bject-

10. Conclusions

object-Oriented Database Systems.

[12] Christine Delcourt and Roberto Zicari. The design of an integrity con-
sistency checker (icc) for an object oriented database system. In Pierre
America, editorEuropean Conference on Object-Oriented Program-
ming, pages 97-117, Geneva, Switzerland, July 1991. Springer Verlag,

The author would like to thank the anonymous referees of Lecture Notes in Computer Science.

TOPLAS and TAPOS for their many helpful comments on[13] Nachum Dershowitz and Zohar Manna. The evolution of programs:
earlier versions of this article. Automatic program modificatiod EEE Transactionson Software En-
gineering, SE-3(6):377-385, November 1977.

[14] Dedre Gentner. Structure-mapping: A theoretical framework for anal-
ogy. Cognitive Science, 7:155-170, 1983.
e[15] Dedre Gentner and Cecile Toupin. Systematicity and surface similarity

1. More generally, if two class graphs define acommon sub-language (i.e=~ . S . i
the intersection of the two languages is not empty) then a program in the development of analog@ognitive Science, 10:277-300, 1986.

written for one of the class graphs could be automatically transformed16] R.B. Hull and C.K. Yap. The format model: A theory of data or-

Acknowledgments

Notes

into a program for the other in such a way that the behavior of the
system is preserved for any input in the sub-language.
2. The required accessor methods for cla@spound are not shown.

3. There may be more than one container for each object.
4. See Table 1.

References

[1] Serge Abitebouland Richard Hull. Restructuring hierarchical database

objects.Theoretical Computer Science, 62:3-38, 1988.

ganization. Journal of the Association for Computing Machinery,
31(3):518-537, July 1984.

[17] Walter L. Hursch, Linda M. Seiter, and Cun Xiao. In any CASE:

Demeter.The American Programmer, 4(10):46-56, October 1991.

[18] Ralph E. Johnson and Brian Foote. Designing reusable clakssesal

of Object-Oriented Programming, 1(2):22—-35, June/July 1988.

[19] Ralph E. Johnson and William F. Opdyke. Refactoring and aggrega-

tion. In S. Nishio and A. Yonezawa, editorSjternational Sympo-

sium on Object Technologiesfor Advanced Software, pages 264-278,
Kanazawa, Japan, November 1993. JSSST, Springer Verlag, Lecture
Notes in Computer Science.

[2] H. Ait-Kaci and R. Nasr. Login: A logic programming language with [20] G.M. Kuper and M.Y. Vardi. The logical data model. Pinciples of

built-in inheritance Journal of Logic Programming, 3:185—-215, 1986.

Database Systems, pages 86—-96. ACM, 1984.

[3] Jay Banerjee, Won Kim, Hyong-Joo Kim, and Henry F. Korth. Se- [21] Barbara Staudt Lerner and A. Nico Habermann. Beyond schema evo-

mantics and implementation of schema evolution in object-oriented
databases. Ifroceedings of ACM/SIGMOD Annual Conference on
Management of Data, pages 311-322. ACM, ACM Press, December
1987. SIGMOD Record, Vol.16, No.3.

lution to database reorganization. In Norman Meyrowitz, edRoo;
ceedings OOPSLA ECOOP '90, pages 67-76, Ottawa, Canada, Oc-
tober 1990. ACM, ACM Press. Special Issue of SIGPLAN Notices,
Vol.25, No.10.

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 17

[22] Qing Li and Dennis McLeod. Conceptual database evolution throughA.1. Classgraphs
learning in object database$EEE Transactions on Knowledge and

Data Enginering, 6(2):205-224, 1994. The class graphs described in this section use three kinds
(23] Karl J. Lieberherr. -Object-oriented programming with class dictio- of vertices to model abstract classes, instantiable classes, and
Togs Journal on Lisp and Symbolic Computation, 1(2):185-212, +ncrete syntax. We also use three kinds of edges to model

knows-of, kind-of, and has-syntax relationships. The knows-
[24] Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. From

objects to classes: Algorithms for object-oriented desigpurnal of of r,elatlonShlp IS a generall'zatlon of t_he aggregation relation
Software Engineering, 6(4):205-228, July 1991. which only describes physical contamment. .

[25] Karl J. Lieberherr and Arthur J. Riel. Demeter: A CASE study of The If‘nOWS-Oj and _has-syntax relations comprise what we
software growth through parameterized classasurnal of Object- call the “part-of” relation. For lack of a better term, we call
Oriented Programming, 1(3):8-22, August, September 1988. Ashorter the syntax and known collaborators of an object its “parts”,
Ve';?tr\‘,f“hg p?per‘_’vasgrese”teo' :ﬂ“?‘lﬂl'g;%f”f‘gé’gajpconfe’mce although the parts need not be physical parts. For example,

I
224_264are NEANESHing, SIngapore Apr ' &5 Pages i our terminology a car is part of a wheel if the wheel knows

. . . o about the car.
[26] Bertrand Meyer. Object-Oriented Software Construction. Series in

Computer Science. Prentice Hall International, 1988. Definition. A class graph', ¢, is a directed graph, ¢ =
[27] William F. Opdyke.Refactoring: A ProgramRestructuring Aid in De- (V,VS A; EC, EA ES Ord), with finitely many vertices V.
signing object-Oriented Application Frameworks. PhD thesis, Com- \/Sjsa set of strings called the syntax vertices. A isafiniteset
puter Science Department, University of lllinois, May 1992. of labels. Therearefour defini ng relations: EC, EA, ES Ord.
28] William F. Opdyke and Ralph E. Johnson. Refactoring: An aid in de- EC jsa ternary relationon V x V x A, called the (labeled)

signing application frameworks and evolving object-oriented systems. . . i ; : g
In Proceedings of the Symposium on Object-Oriented Programming construction edges: (v — w) € EC iff thereisa construc

emphasizing Practical Applications(SOOPA), pages 145-160, Pough- tion edge with label [fromv to w. EA isa binary relation
keepsie, NY, September 1990. ACM. on V' x V, called the alternation edges. (v — w) € EA

[29] William F. Opdyke and Ralph E. Johnson. Creating abstract superiff there is an alternation edge from v to w. ESisa binary
classes by refactoring. IRroceedings of CSC '93: The ACM 1993 relation on V' x VScalled the syntax edges: (v — w) € ES
Computer Science Conference, February 1993. iff there isa syntax edge fromv to w. Ord : (ECUES) — N

[30] Jason D. Penney and Jacob Stein. Class modification in the GemStorig a function that maps each construction and syntax edge to

object-orignted DBMS. In Norman Meyrow_itz, gditmbj ect-Orientgd a natural number.
Programming Systems, Languages and Applications Conference, in
Special Issue of SIGPLAN Notices, pages 111-117, Orlando, Florida, Next the set of vertices is partitioned into two subclasses,

December 1987. ACM, ACM Press. Special Issue of SIGPLAN . . .
Notices, Vol.22, No.12. called the construction and alternation vertices.

[31] B. Pernici, F. Barbic, M.G. Fugini, R. Maiocchi, J.R. Rames, and Definition.
C. Rolland. C-TODOS: An automatic tool for office system conceptual

design. ACM Transactions on Office Information Systems, 7(4):378— * Theconstruction verticesare defined by:
419, October 1989. VC={v|veVVweV:(v=w)dEAL

In other words, the construction vertices have no outgoing
alternation edges.

) ¢ Thealternation verticesare defined by:
[33] Ignacio Silva-Lepe, Walter tsch, and Greg Sullivan. A Report on VA= {v|veV,3we V: (v =>w) € EA}.

Demeter/C++C++ Report, pages 24-30, February 1994.

[32] Arto SalomaaTheory of Automata. International series of monographs
in pure and applied mathematics, v. 100. Pergamon Press, 1969.

In other words, the alternation vertices have at least one

[34] Andrea H. Skarra and Stanley B. Zdonik. The management of changing outgoing alternation edge.
types in an object-oriented databaseObject-Oriented Programming
Systems, Languages and Applications Conference, in Special |ssue of Sometimes, when we want to talk about the con-

?Q%ZLAN Notices, pages 483-495. ACM, ACM Press, September gt ction and alternation vertices of a class graph, it is
' more convenient to describe a class graph as a tuple
[35] Righard SnodgrassThe interface description language. Computer which contains explicit references ¥C and VA: ¢ =
Science Press, 1989. (VC, VA VS A: EC, EA ES Ord).
[36] T.J. Teorey, D. Yang, and J.P. Fry. A logical design methodology for In standard object-oriented terminologywe describe here

lational CM Computing Su 18(2):197-222, June . » .
rl%gg?na data based omputing Srveys, 18(2) . the accepted programming rule: “Inherit only from abstract

o ‘ classes” [18]. This rule can be exploited to derive an analogy
[37] Dennis Tsichritzis and Frederick Lochovskyata Models. Software bet | h d
Series. Prentice-Hall, 1982. etween class graphs and grammars.

_ _ We use the following graphical notation, based on [36],
(8] éOGhS&Edﬁogg;h(gz)ﬁ‘gfggf%'gﬂ'st Fl)g’?r_am synthesis by alnalogy'for drawing class graphs: squares for construction vertices,
hexagons for alternation vertices, quoted strings for syntax
vertices, thin arrows for construction and syntax edges, and
Appendix A wide arrows for alternation edges.

Data Model Example 1. For further illustration we give the compo-
nents of the formal definition, for the class graph, ¢4, of

18 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

TABLE 1. Standard interpretation of class graphs
Graph Object-oriented Design Context Free Language
Vertex Class Symbol

construction

instantiable class with memb
defined by construction edges
(including “inherited” edges)

ers Concatenation of languages

5 defined by construction and

syntax edges (including
“inherited” edges)

alternation abstract class with subclasses union of languages defined by
defined by alternation edges alternation edges
syntax no meaning terminal
Edge Class Relationship Operator

construction

part-of relationship, “uses”,

concatenation — numbers

“knows”, — labels are part define order
names
alternation inheritance relationship, union
specialization, classification
syntax no meaning concatenation — numbers

define order

Figure 1:

VC =
VA
VS =
A=
EC =

ES =

Ord =

The definition ofVC implies thatEA C VA xV/, since an

{Number, AddExp, MulExp}

{Prefiz, Compound}

{7, [0 - 914}

{num, argl, arg2}

{(Compound =5 Prefizx),

(Compound =5 Prefix)}

{(Prefiz = Number),

(Prefiz = Compound),

(Compound = AddE=zp),

(Compound = MulExp)}
{(Compound = “("), (Compound = *)"),
(Number — [0 — 9]4), (AddExzp — “+"),

(MulEzp — “+")}

{(Compound 53 Prefizx,3),

Compound — “(", 1),

(
(
(
(

Compound =5 Prefix, 4),

Compound —)" 5), (Number — [0 — 9]+, 1),
AddExp — “+",2), (Mul Exp — “x",2)}

is labeledString, then the two class graphs define different
sets of objects in the standard interpretation. On the other
hand, changing the labels of the alternation vertices (names
of abstract classes in the standard interpretation) does not
effect the defined objects. Therefore, we adopt the following
convention for labeling the vertices of class graphs: Labels
of alternation vertices are local to the class graph in which
they occur; labels of construction vertices are global. Thatis,
if two class graphs have construction vertices with the same
label, it means that theame vertex (same class under the
standard interpretation) belongs to both graphs. However,
we may in general assume that different class graphs have
disjoint sets of alternation vertices regardless of their labels.

The same semantics apply when we denote the sets of
vertices in a class graph textually. The identifiers we use
to denote alternation vertices are of local scope whereas the
identifiers we use to denote construction vertices have global
scope.

Later we give conditions which make a class graph into
a legal class graph. The interpretation in Table 1 is only
one possible interpretation which we call the standard in-
terpretation. The motivation behind the abstract alterna-
tion/construction terminology is that there are several useful
interpretations of class graphs. In one of those interpreta-
tions, a construction vertex is interpreted as an operation.
We often use the standard interpretation to give intuitive ex-

alternation edge cannot start at a construction vertex. We ugdanations of relationships and algorithms. _
V¢a VC¢’ VA¢ etc. to refer to the components of class graph Please note that the syntax for an alternation ver-

tex/abstract class, although very natural from a graph-

When we draw a class graph, the vertices are labeled dbeoretic point of view, appears unnatural from the point of
that we can conveniently refer to particular vertices in ourview of today’s programming languages: In most program-
discussion. The standard interpretation implies that the laming languages which supportthe object-oriented paradigm,
bels on construction vertices are significant. Consider twdhe inheritance relationships are described in the opposite
isomorphic class graphs each with only a single construcway. Each class indicates from where it inherits. Of course,
tion vertex and no edges. If the construction vertex of oneve can easily generate this information from class graphs,
graph is labelednteger and the vertex of the other graph but we feel that the Demeter notation is easier to use for de-

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 19

sign purposes. One reason is that the design notation shows 3. Unique numbering condition:

the immediate subclasses of a class and therefore promotes ~ Vu,v,v' € V ande,e’ € (ECUES) wherev == u,
proper abstraction of common parts. Another reason is that v’ == u, e # ¢’ : If Jw,w’, 1,1’ such thae = (v -
a class does not contain information about where it inherits w)ore = (v = w), ande’ = (v 5 w')ore’ =
from and therefore the class can be easily reused in other (v = w’), thenOrd(e) 7 Ord(e’)

contexts. When we refer to a class graph in the following we mean

Definition. Inaclassgraph, ¢ = (V, VS, A; EC, EA, ES Ord), a legal class graph, unless we specifically mention illegality.
avertex w € V isalternation-reachable fromvertex v € VV The cycle-free alternation condition is natural and has
(Wewrite v == w): been proposed by other researchers, e.g., [31, page 396],
[35, page 109: Class hames may not depend on themselves
in a circular fashion involving only (alternation) class pro-
ductions]. The condition says that a class may not inherit

¢ viaapath of lengty, if v = w
¢ via a path of lengtm + 1, if 3u € V suchthatv =
u) € EAandu == w via a path of length.

from itself.
In other words, thelternation-reachable relation is the The unique labels condition guarantees that “inherited”
reflexive, transitive closure of tHeA relation. construction edges are uniquely labeled and excludes class
In the standard interpretaticfy, = w) means thateither graphs which contain the patterns shown in Figure 15.
w inherits fromv or w = v. Other mechanisms for uniquely naming the construction

Sometimes when we want to discuss the inheritance hieedges could be used, e.g., the renaming mechanism of Eiffel
archy, itis convenient to refer to the alternation subgraph obind the overriding of part classes [26]. The theory does not
a class graph. The alternation subgraph contains all of the akeem to be affected significantly by small changes such as
ternation vertices and alternation edges plus the constructiois.
vertices that have incoming alternation edges. The unique numbering condition is similar to the unique
Definition. The alternation subgraph of a class graph, labels conditiqn. It guarantees that the construction and
6 = (VC, VA, A; EC, EA), isadirected acyclicgraph (DAG), syntax edges inherited at any vertex are totally ordered.

G = (V' EA), wherelV’ = VAU{v € VC|Fu : (u = v) €
EA}. A.2. Object graphs

It is often helpful to think of each alternation vertex as , .
representing a set of associated construction vertices. This e have defined the concept of a class graph which math-
set, A(v), consists of all the construction vertices which are€matically captures some of the structural knowledge which
alternation reachable from the vertex,If v is an alternation ~ OPject-oriented programmers use. Next we define object
vertex with an incoming construction edge, — v), the ~ 9raphs and their relation to class graphs. An object graph
construction vertices inl(v) represent the concrete classesdef'”es a hlera'rchlcal object and is motivated b'y the interpre-
which might be used to instantiate th@art of u objects. ~ tation of an object graph, called the standard interpretation,
If v has an outgoing construction edge, — w), the givenin Table 2.
construction vertices inl(v) represent the concrete classeSpefinition. An object graph, v, is a directed graph ¢ =

which inherit thel part fromuo. (W, W,, S, Ay; E| E,, A, Ord) where:

Definition. Theassociated classes of avertex, v, inaclass s W is afinite set of vertices.

graph, ' s W, is a set of strings called the syntax vertices.
¢ = (VC,VA VS A; EC, EA, ES Ord), isthe set of all con- « Sisan arbitrary finite set.

struction vertices which are alternation-reachablefrom v: e A, isasetof labels.

A(v) = {v'|v = ¢ andv’ € VC} * FEis aternary relation omV x W x Ay. If (v -
w) € E we calll the label of the edgév - w). No
two edges outgoing from the same vertex may have the
A.1.1. Legality conditions A legal class graph is a struc- same label. That isyv, w,w’ € W,l € Ay such that
ture which satisfies three independent conditions. w#w : {(v—w), (v W)} ZE

Definition. Aclassgraphé = (V, VS A; EC, EA, ES, Ord) e FE. is a binary relation oV x W, called the syntax

islegal if it satisfies the following three conditions: edges. _
e X: W — Sis afunction that maps each vertexwfto

1. Cycle-free alterne_ltion cond_ition: _ an element of.
There are no cyclic alternation paths, i.e., e Ord: (EUE.) — A is afunction that maps each edge
{(v,w) [v,w € Vv # w, andv = w = v} = 0. to a natural number.

2. Unique labels condition:) i
Yu, 0,0, w,w’ € V,1 € A suchtha(v == u), Normally, the setS is a subset of the construction ver-
(v == w), and(v, w) # (v/,w') : tices of some class graph. In the standard interpretation, the
{(v 5 w), (v 25 w')} EC function A maps each object in an object graph to the class

20 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

TABLE 2. Standard interpretation for object graphs

Graph Object-oriented Design
vertex object
immediate successor immediate subpart or component
edge label part name
of which it is an instance. We use a graphical notation for \V -\ ‘)\(V) <.:* v’

object graphs similar to that for class graphs. \ertices are
represented by circles and edges by labeled arrows. The ver- | |
tices are labeled with their class names (their mapping under

A). In case we wish to distinguish more than one instance *

) . . W mmm \ s> < wW
of a class, the labels may be prefixed with an instance name A A (W) W
followed by a “:" FIG. 16. Legality Rule

Not every object graph with respect to a class graph is le-
gal; intuitively, the object structure has to be consistent with % %
the class definitions. Each object can only have parts as pre- EC such that r o Av)ys = Aw), anld
. . . i) PartOrder(v, (v — w)) = PartOrder(A(v), (r —
scribed in the class definition and the parts prescribed in the $)
class definitions must appear in the objects (see Figure 16). Each object hasnly the sub-objects prescribed by the
class graph and has them in the proper order.
* Vs where(v — s) € E, : 3r such that(r — s) €
ESr = A(v), and PartOrder(v, (v — w)) =

Yuw,l where (v - w) € E : 3(r -5 5) €

Definition. Let py, po, ..., p, be the outgoing edges (in-
cluding syntax edges) from a vertex, v € W, of an object
graph such that Ord(p;) < Ord(p;+1), 1 < ¢ < n. Thenthe PartOrder(\(v), (r — s))

PartOrder(v, pi) = i. _ Each object hasnly the concrete syntax prescribed by
Let ¢1,¢2, ..., g» be the construction and syntax edges the class graph and has it in the proper order.

outgoing from all vertices, v’, fromwhich a vertex, v € VC] o)

of aclassgraphisalternation reachable, suchthat Ord(g;) < Ex@mple2. Consider thegraphsin Figure 17. The object

Ord(¢;+1),1 < i < n. Thenthe PartOrder(v, q;) = 1. graph’ W, I_Slega] with respect IQ th? cllass.graph, 2 The Obb'
ject graphisgiven by: W = {il,i2,3,i4}, F = {(il —

Definition. An object graph, ¢ = (W, W,, S, Ay; i2), (i1 == 43), (12 2 i4)}, Ay = {b,be, e}, A = {il —

E,E,, A, 0Ord), is legal with respect to a class graph, 4 9 B i3 — C,i4 — Cl.

¢ = (VC,VA VS A; EC EA ES Ord), iff for each vertex,

veWw: Example 3. Consider object graphsin Figure 19 which

are illegal with respect to the class graph in Figure 18. The

first object graph isillegal since applesdon’t contain stones

and the second because Cherry isnot alternation-reachable

e Av)eVC
Each vertex in the object graph maps to a construction
vertex in the class graph.

o V¥(r 45 s) € ECwherer = X(v) : 3w € W such from Number.
that(v > w) € E The language of a class graph, is formally defined in
Each object has all of the sub-objects prescribed by the terms ofsentences which are defined, in turn, by the object
class graph. graphs which are legal with respectgo

o VY(r —s) e ESwherer == \(v) : (v — s) € E. L . . .
Each object has all of the concrete syntax prescribed by Definition. An acyclic object graph, ¥, rooted at a unique
the class graph. vertex, v, hasatextual representation, called sentence(v)),

I i1:A

pl——X

p1—>x p2 —>y

\ / AN

J——0 N
\V{ B c O

i4:C

FIG. 15. Forbidden subgraphs FIG. 17. Class graphs, and legal object graph;.

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 21

In the context of evolution, we often wish to discuss object
graphs that are not legal with respect to the current class
graph. We sometimes refer to these object graphabjest
example graphs since our goal is often to modify a class
graph so that it will become compatible with a new set of
objects based on examples.

Fruit

<:> __weight [Numper

\

|:| Cherry

stone

A.3. Related work

AppIeD

kernel

The axiomatic model which is used in this paper is new
but similar data models exist in the literature. In particular,
the notions of “alternation” and “construction” appear as
“classification” and “aggregation” in both Hull and Yap's
Format Model [16] and Kuper and Vardi's LDM [20]. Ait-
l:' l:' Kaci's feature structures [2] are also related to the Demeter

kernel model. Our abstraction algorithms [24, 6] can be

Kernel Stone adapted to abstract feature structures from examples.
FIG. 18. Fruit class graph Other related work in the data base field is described in:
[1,9, 37].
Apple Apple
si?/ Wht ke'ry W‘ght Appendix B
O O O O Formal Definition of Primitives
Stone Number Kernel Cherry
FIG. 19. Fruit object graphs

. . . . B.1. Object-preserving transformations
which is the string of syntax vertices encountered during a JECtp g

depth first traversal of ¢ starting fromwv. If an object graph,
¥, iscyclic or unrooted, sentence(v) isundefined.
We say that an object graph, ¢ = (W, W,,S, Ay;

The definitions of the object-preserving transformations
for class graphs are as follows:

E, E,,)\, Ord), is rooted at vertex v if v is the only ver- . Renumbering_of parts. Any set of construction and

tex in W with an in-degree of 0. syntax edges in a class gragh,may be renumbered (by
replacing theérd function) to produce a new class graph,

Definition. The language defined by a class graph, ¢', if for all vertices,v € V, and edges; € (ECUES),

such thaw is alternation reachable from the source:Df

¢ = (V,VS A; EC, EA ES Ord), isgiven by:
PartOrdery(v,e) = PartOrdery (v, e).

L(¢) = {s|3¢ : s = sentence(v),
andy is legal with respect t¢ }

The input language of a CG program, P, with class
graph, ¢, isgiven by:
L(P) = {s]|3¢ : s = sentence(v),
1 is legal with respect t@,
andy is rooted atM ain}

Definition. The set of all legal object graphs with respect
to a classgraph, ¢, iscalled Objects(¢).

The definitions above relate a class graph with a set of
In object-oriented programming language
terminology, a class graph corresponds to a set of class defi-
nitions and the object graphs correspond to the objects which
can be created calling “constructor” functions of the classes.
In some languages, e.g., C++, the class definitions consider-
ably restrictthe objects which can be created. The definitions

object graphs.

above demand even more discipline than C++.

22 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

¢ Abstraction of common parts. If Jv,w,{,: such that
Vo', where (v = v') € EA : (v LN w) =
e € ECandOrd(e) = 4, or (v — w) = e €
ESandOrd(e) = i, then all of the edges;, can be
replaced by a new edge,, with v as its source and
Ord(e') = Ord(e).
Intuitively, if all of the immediate subclasses of class
C have the same part, that part can be moved up the
inheritance hierarchy so that each of the subclasses will
inherit the part from C, rather than duplicating the partin
each subclass.

¢ Distribution of common parts. An outgoing construc-

tion edgee = (v — w), or syntax edges = (v — w),

can be deleted from an alternation vertexjf for each

(v = v') € EAa new construction edgé = (v’ -

w), or syntax edge’ = (v’ — w), respectively is added

with Ord(e’) = Ord(e).

This is the inverse of abstraction of common parts.

Deletion of “useless’ alternation. An alternation vertex

is “useless” if it has no incoming edges and no outgoing

construction edges. If an alternation vertex is useless it

may be deleted along with its outgoing alternation edges.

Intuitively, an alternation vertex is useless if it is not a
part of any construction class, and it has no parts for any
construction class to inherit.

¢ Addition of “useless’ alternation. An alternation ver-
tex, v, can be added along with outgoing alternation edges
to any set of vertices already in the class graph. This is
the inverse of deletion of useless alternation.

¢ Part replacement. If the set of construction vertices
which are alternation-reachable from some vertexs
V, is equal to the set of construction vertices alternation-
reachable from another vertex,c V', then any construc-
tion edge(w — v) € EC can be deleted and replaced

for all other construction and syntax edge$putgoing
from anyw’ wherew == w’'.

Intuitively, if every class which hag as a part has as
a part immediately before, then we may remove the
part from all of those classes and instead makiee first
part of classv.

B.4. Unnesting of parts

Given a vertexw € V' with no incoming alternation
edges and an outgoing construction edge or syntax eglge,
with targetu:

with a new construction edgey — v’).

Intuitively, if two class C1 and C2 have the same set ¢
of instantiable (construction) subclasses then the defined
objects do not change when C1 is replaced by C2 in a

part definition. Note that the inverse of part replacement

is just another instance of the transformation.

B.2. Renaming of vertices and edges

Any construction edgéy — w) € EC may be replaced
by a construction edge with a different labél, -~ w). .
Also, any construction vertex, € VC, may be replaced by
a different construction vertex;, with the same incoming
and outgoing edges. When viewing a picture of a class graph
it appears that the vertex has been “renamed” by chang-
ing its label. Since the labels or identifiers used to denote
construction vertices have a global scope, and the same iden-
tifiers may be used to denote vertices in other class graphs, a
changed label implies a changed vertex. On the other hand,

If for every construction or syntax edge, # e, with
sourcew’ such thatw == w’, v’ has at most one in-
coming alternation edge ar@d(e) > Ord(e’) (soe is
the last part of everyw object), then we may delete edge
e, if for each construction from some vertex,to w, e,
we add a replacement edg€,, from » to u such that
PartOrder(v,e,) = PartOrder(v, e,) + 1. In other
words, we remove the last papt, from everyw object,
and insert the papt just after thew part of every object
thatcontainsa w object.

or

If for every construction or syntax edge, # e, with
sourcew’ such thatw == w’, w’ has at most one in-
coming alternation edge ar@d(e) < Ord(e’) (soe is
the first part of everyv object), then we may delete edge
e, if for each construction from some vertex,to w, e,
we add a replacement edg€,, from » to u such that
PartOrder(v,e,) = PartOrder(v,e,) — 1. In other
words, we remove the first pag, from everyw object,
and insert the paft just before thev part of every object
thatcontainsa w object.

since the identifiers used to denote alternation vertices havehis is the inverse aofiesting of parts.

a scope local to the class graph, changing the labels of alter-

nation vertices may be done freely, but does notin any wayg 5 aqdition of lambda parts

“transform” the class graph.

B.3. Nesting of parts

Given a vertexw € V' with no incoming alternation
edges and a different vertex, € (V' U VS), such that for
every construction edge, = (v — w’), wherew == w/,
there is a syntax or construction edge = (v — u), andw’
has at most one incoming alternation edge, then:

¢ |Ifforeachv, PartOrder(v, e),) = PartOrder(v, e)+
1, then we may delete each edgg, and add a single re-
placement edge, from w tou and letOrd(e) > Ord(e’)
for all other construction and syntax edge$putgoing
from anyw’ wherew == w’'.
Intuitively, if every class which has as a part has as a
partimmediately aftew, then we may remove thepart
from all of those classes and instead makée last part
of classw. See, for example, Figure 3.

¢ |fforeachw, PartOrder(v, e,) = PartOrder(v,e,)—
1, then we may delete each edgg, and add a single re-
placement edge, fromw tou and letOrd(e) < Ord(e’)

From any vertexy € 1/, an outgoing construction edge,
(v — w) toa construction vertexy € VC, may be added if
w has no outgoing edges. An outgoing syntax edges w)
to a syntax vertexy, may be added it is the “empty string”.

B.6. Deletion of lambda parts

A construction edge whose target is a construction vertex
with no outgoing edges, or a syntax edge whose target is
the “empty string” may be deleted. This is the inverse of
addition of lambda parts.

B.7. Addition of lambda alternative

An alternation edge(v = w), may be added from
an alternation vertex; € VA to a construction vertexy €
VC if w has no outgoing edges, has only one outgoing
construction edgéy — v'), and the target;, of that edge
has an outgoing alternation edge, —- v), back tov. See,
for example, Figure 4.

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 23

B.8. Deletion of lambda alternative Appendix C

An alternation edge,v = w), from a vertexy € VA
to a construction vertexy € VC, may be deleted ifv has no
outgoing edgesy has only one outgoing construction edge,
(v — v'), and the targety’, of that edge has an outgoing
alternation edge(v’ — v), back tov. This is the inverse Figures 20 - 28 show sequences of primitive transfor-

of addition of lambda alternative. mations that correspond to each of the equations in the ax-
iom system,F, except for the equations: - ¢) = ¢ and
B.9. Insertion of singleton construction (a+ ¢) = a which are not applicable since the regular class

A new construction vertexy, with a single outgoing 9raphs as defined here do not contain the empty langgage,
construction edge to a vertex, € V, may be added to a
class graph, and any incoming construction edges iiay
be rerouted te. Incoming alternation edgesw&imay also by
rerouted ta if the rerouting does notresultin the inheritance
of additional parts (syntax or construction edges).aSee,
for example, Figure 5.

Primitive transformations for completeness
proof

B.10. Deletion of singleton construction

If a class graph contains a construction vertexyith
no inherited parts and a single outgoing edge to a vertex,
v' € (V UVS), thenv may be deleted if all incoming edges
at v are rerouted ta’. This is the inverse oinsertion of
singleton construction.

B.11. Attributeto subclass

If a class graph contains a construction vertex; VC,
with an outgoing construction edgéy — w), to an al-
ternation vertexyw € VA, then we may delete the construc-
tion edge fromv to w and for each vertexy’, such that
(w = w') € EA, we add a new construction vertexX,
with an incoming alternation edge from (v — v’), and
an outgoing construction edge;’ — w’) to w’. Each of
the new construction edges is mapped to the same number
(underOrd) as was the deleted construction edge. Since
now has outgoing alternation edges it becomes (by definition)
an alternation vertex. See, for example, Figure 6.

B.12. Subclass to attribute

If a class graph contains alternation verticesy € VA,
such that there is a one to one correspondence between the
vertices,v’, where(v — ¢') € EA and the verticesy/
where(w = w’) € EA, such that for eacl’ the corre-
spondingy’ is a construction vertex with a single incoming
edge,(v = ¢'), and a single outgoing edge;’ — w’),
then we may delete each su¢talong with its incoming and
outgoing edges and add a new construction edge;~ w),
from v to w. Sincev no longer has any outgoing alternation
edges it becomes (by definition) a construction vertex. This
is the inverse oéttribute to subclass.

24 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

() ()

—
a% X@ Object-equivalent OJ &c

Y ZN

b C a b
FIG.20. (a+ (b+¢))=((a+0d)+¢)

[]

& (:/ \f)
C C
Nest I:I
(’1/ \(f)
a b

<+

]
y \f) %)
a |:| :,\V a
(1) 2
b/ \c

[]

Unnest

~—~~
>
O 4+—

FIG.21. (a-(b-¢)) = ((a-d)-c)

o O
P, e 2N

a b b a

FIG.22. (a+b) = (b+a)

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 25

Object-equivalent

() ,
¥ —

FIG.23. (a4+a)=a

()2

AN

a <:> Attribute to subclass (z)l (2)1

A \V
@,

)
Objiillem D% &

YASAY
a b a c

FIG.24. (a-(b+¢))=((a-d)+(a-c))

26 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

Delete lambda part Delete singleton construction

AN

FIG.25. (a-)\)=a

(=

(’1)/ Ni) % \

C 0 O

<:> Attribute to subclass (1)1 l
a b

@)

Object-equivalent |:| |:|

FIG.26. ((a4+Db)-¢c)=((a-c)+(b-c))

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 27

1)

A I:I Attribute to subclass A ——> a

1)
£ 2 D%(ZQD

— ’
Insert singleton construction (1)1 j‘>

Unnest part

—
[ER
~—
—
N
~
>

FIG. 27. (ax) = (A + (a - (ax)))

28 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

A |:| Object-equivalent

(1)£ @

a (l)l:l

@
% Q 1) Insert singleton construction
—_—> () E—
Add lambda alternative % 2) Unnest part
A

O
e)= /O%

1)

a

2 Y AN,

(1)1 :> _ @ <:>
Delete singleton construction

())
4

Moo] A a

FIG. 28. (ax) = (A + a)x)

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 29

