
Maintenance of Object-oriented Systems
during Structural Evolution *

Paul L. Bergstein
Department of Computer Science and Engineering
Wright State University
Dayton, OH 45435

Keywords: Object-oriented Software Engineering, Structural Evolution, Program Transformations

We have previously developed a mathematical treatment
of a calculus for class transformations that preserve or
extend a set of objects. Methods for automating the
maintenance of structural and behavioral consistency in
systems based on evolving class structures have been
provided for the object-preserving and object-extending
transformations. This work extends the calculus of class
transformations to include certain transformations that
reflect not only the extension and reclassification of ex-
isting objects, but also structural changes (other than
addition of attributes) in the original objects.

Language-preserving transformations are a special
case of transformations that change the structure of ex-
isting objects. If an object schema is decorated with
concrete syntax, it defines not only a class structure, but
also a language for describing the objects. When two
schemas define the same language but different classes,
the language may be used to guide the transporta-
tion of functionality between domains. The language-
preserving transformations defined here form the ba-
sis of a complete transformation system for a subset
of class graphs powerful enough to express the regular
languages. c� 1997 John Wiley & Sons

1. Introduction

Class organizations (schemas) evolve over the life cycle of
object-oriented systems for a variety of reasons. This issue
has recently been a subject of increasing attention in the
literature of both object-oriented languages and especially
object-oriented database systems: [22, 19, 29, 8, 5, 10, 11,
12, 4, 21, 1, 3, 30, 34].

One of the most common forms of evolution involves the
extension of an existing schema by addition of new classes
of objects or the addition of attributes to the original ob-
jects. Sometimes class structures are reorganized even when
the set of objects is unchanged. In this case the reorganiza-

*This research was partially supported by Ohio Board of Regents grant
663019.

c� (Year) John Wiley & Sons, Inc.

tion might represent an optimization of the system, or just a
change in the users’ perspective. At the other extreme, a class
reorganization might reflect not only the extension and re-
classification of existing objects, but also structural changes
(other than addition of attributes) in the original objects.

While extension and reclassification of objects are mainly
concerned with the organization of objects into classes, object
restructuring is concerned primarily with the organization of
attributes, or “parts”, into objects. Here, a major concern
is how to modify the code of an object-oriented program
if the class definitions are changed so that the same data is
organized into a different object structure. If the new objects
hold the same data as the original objects, the class structures
can be considered in some way analogous. The problem is
to find a mapping of the code (methods) from the old class
structure to the new one.

Some of the issues related to maintaining behavioral con-
sistency during object restructuring have been previously
addressed by Johnson and Opdyke [19] and others. In this
paper, we consider a novel framework for dealing with object
restructuring with a theoretical basis in formal languages. We
view the original and restructured class hierarchies as struc-
turally different grammars that define the same language.

The programming language model used throughout the
remainder of this paper is formally defined in section 4. In
the model, a program comprises a set of class definitions in
the form of a class graph plus a set of method definitions. The
data model, formally defined in appendix A, is an extension
of the Demeter Kernel Model [24] which allows decoration
of class graphs (schemas) with concrete syntax.

The extended data model uses a graphical notation to
define both a set of objects and a language for representing the
objects textually. In a class graph squares represent concrete
classes and hexagons represent abstract classes. Inheritance
(subclass) relationships are indicated by wide arrows. Thin
arrows are used to specify the attributes and concrete syntax,
collectively referred to as “parts”, associated with a class.

THEORY AND PRACTICE OF OBJECT SYSTEMS, Vol. (Volume Number)((Optional Issue Number)), 1?? (Year) CCC(cccline information)



The parts of a class (including inherited parts) are totally
ordered. The textual representation of an object is obtained
by concatenation of the concrete syntax as it is encountered
during a depth first traversal of the object’s parts.

An interesting class of transformations investigated in sec-
tion 5 are those that change the structure of the objects, but
preserve the language defined by the schema. Since a class
graph defines both a class structure and a grammar, any
change in the class structure is reflected in a corresponding
change in the grammar. There is an interesting class of trans-
formations that result in a new class structure, a potentially
new set of objects, and a new grammar, but which leave the
language defined by the grammar unchanged. I call such a
transformationlanguage-preserving and say that the old and
new class graphs arelanguage-equivalent.

Example 1. The class graphs in Figure 1 are language-
equivalent even though they define different sets of objects.
Grammars corresponding to the class graphs �� and ��,
respectively, are given below in EBNF form:

�Prefix� ��� �Number� � �Compound�

�Number� ��� Digit �Digit�

�Compound� ��� �AddExp� � �MulExp�

�AddExp� ��� ��� �	� �Prefix� �Prefix� �
�

�MulExp� ��� ��� ��� �Prefix� �Prefix� �
�

�Prefix� ��� �Number� � �Compound�

�Number� ��� Digit �Digit�

�Compound� ��� ��� �Op� �Prefix� �Prefix� �
�

�Op� ��� �AddOp� � �MulOp�

�AddOp� ��� �	�

�MulOp� ��� ���

If the concrete syntax specified in a schema is meaning-
ful and a transformation preserves the defined language, it
is reasonable to hypothesize that the objects are intended to
represent the same data in the transformed schema as in the
original. If the inputs and outputs of a program are objects,
then it is reasonable to expect that the code could be automat-
ically updated after a language-preserving transformation so
that any input in the language will produce output identical
to the output from the original program�. In other words,
we can expect to find a mapping of the methods from the
old class structure to the new one which will preserve the
behavior of the system.

These techniques may be useful in contexts other than
evolution, e.g. during implementation when it is desirable to
reuse some of the functionalityof an old application in a new
environment.

2. Motivating example

Consider the first class graph,��, in Figure 1. Since the
Prefix class is abstract, everyPrefix object must be an in-
stance of a concrete subclass:Number, AddExp, orMulExp.
Number objects are represented textually by strings of dig-

its. AddExp andMulExp objects are represented textually
by strings comprising an opening parenthesis, a “+” or “*”,
the textual representations of their two subexpression argu-
ments, and a closing parenthesis. They may be nested to any
arbitrary depth.

In the second class graph,��, theCompound class has been
made concrete. We no longer have subclasses ofCompound

to distinguish between multiplication and addition. Instead,
we use an attribute,op, which takes as its value an instance
of an AddOp or MulOp. Notice, however, that the textual
representations ofCompound objects has not changed.

Suppose we start with�� and implement a program to
evaluate prefix expressions in an object-oriented language
such as C++. The class definitions can be automatically
generated from the class graph. More interestingly, code
to parse the program’s input and build the corresponding
Prefix object can also be automatically generated. The
application is completed by adding a few simple methods:

int Number��eval�


� return value� �

int AddExp��eval�


� return �arg��eval�
 	 arg���eval�

� �

int MulExp��eval�


� return �arg��eval�
 � arg���eval�

� �

Now, suppose we wish to change the class structure to
that of the second class graph,��. We start by rerunning the
code generator to get a new set of class definitions and new
code to parse and buildPrefix objects.

When parsing aCompound in the original program, an
instance of eitherAddExp or MulExp is created, depending
on whether a “+” or “*” is found in the input stream. When
aCompound is parsed in the new program, an instance of the
concreteCompound class is created. This involves parsing
the op part of theCompound to produce either anAddOp
or MulOp depending on whether a “+” or “*” is found in
the input stream. Wherever an object had anAddExp or
MulExp as a part in the original program, the corresponding
object will have aCompoundwith either anAddOp or MulOp,
respectively, in the transformed program.

In order to maintain functional equivalence, it is necessary
for a Compound object in the transformed program to pass
along any message it receives to itsop part with the extra
argumentthis. Methods written for the original program are
mapped fromAddExp� AddOp and fromMulExp� MulOp.
The only modification to the methods is that they must access
any parts defined forCompound objects indirectly� through
the extra argument:

int Number��eval�


� return value� �

int Compound��eval�


� return op��eval�this
� �

2 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



Prefix

(4)
arg2

arg1
(3)

Compound

"("

AddExp MulExp

(2) (2)

"*""+"

(1) (5)
")"

[0-9]+

Number

(1)

Prefix

Number

[0-9]+

(1)

Compound

arg1
(3)

arg2
(4)

(1) (5)

"(" ")"
op
(2)

Op

AddOp MulOp

"+"
(1) (1)

"*"

�� ��

FIG. 1. Language-equivalent Class Graphs

int AddOp��eval�Compound� exp


� return �exp��get�arg�
��eval�
 	

exp��get�arg��
��eval�

� �

int MulOp��eval�Compound� exp


� return �exp��get�arg�
��eval�
 �

exp��get�arg��
��eval�

� �

The subclass to attribute transformation and its inverse are
just two of many common class transformations that change
the structure, but not the textual representation or informa-
tion content, of objects. The remainder of this paper is
dedicated to developing methods forautomatically restoring
the behavior of a system after such class transformations.

3. Research Approach

The approach taken is to break the problem down into
three manageable sub-problems:

�. Defining a set of primitive transformations. A small
set of primitive transformations is defined which can be
composed sequentially to form many useful language-
preserving transformations. Byuseful, we mean those
transformations that would make sense from a software
design point of view. The primitives defined in Section 5
allow transformations including:

� Any transformation that preserves the original
objects

� Renaming of classes and attributes

� Addition and deletion of useless symbols

� Distribution of parts up or down the part-of
hierarchy

� Replacing subclasses with attributes or attributes
with subclasses

�. Providing algorithms for incrementally updating the
code. For each primitive transformation an algorithm
must be found for updating the code. Then, given any
sequence of primitive transformations, the code can be
updated incrementally by performing updates for each of
the primitives in sequence.

�. Reducing an arbitrary language-preserving transfor-
mation to a sequence of primitives. An algorithm
to search for a sequence of primitive transformations
between two arbitrary language-equivalent class graphs
must be found. The search may be effectively guided by
the concrete syntax of the language. When the search
is successful, we may regard the resulting sequence of
primitives as the definition of an analogy between the
class graphs.

4. Language Model

This section describes a simple object-oriented program-
ming language based on class graphs. The CG language
will be used to illustrate the method transformations that are
required to restore behavioral consistency after a language-
preserving class graph transformation. Although the CG

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 3



language is very simple, the same principles can be used to
modify programs written in “real” languages.

4.1. Overview

A CG (class graph) program consists of a set of class
definitions in the form of a class graph plus a set of method
definitions. There is one built-in class calledNumber for
which the language provides the built-in methodsadd, sub,
mul, div, assign, andprint. The user may define still
more methods for theNumber class.

The class definitions must include a concrete class called
Main, and the method definitions must provide amain
method for theMain class. Program execution begins by
parsing the input by recursive descent to construct an in-
stance of theMain class (the main object), and invoking its
main method. Note that programs written in the CG lan-
guage are self documenting as to their legal inputs since they
define their own input language.

In the CG language, there is no way to create or destroy
objects once the initial parsing operation is complete. Thus,
the set of objects is fixed during program execution and
consists of a tree rooted at the main object.

Each object except the main object has an implied “con-
tainer” attribute. An object’s container is its parent in the
object tree. In other words, the attribute links between ob-
jects are defined to be bidirectional. This feature of the CG
language is included to simplify some of the code transfor-
mations discussed below. In a “real” language, the container
attributes� would be implemented only when required by a
code transformation.

In the CG language, as in languages such as Smalltalk,
each object has direct access only to its own attributes. How-
ever, in CG these attributes include the container attribute.
In other words, each object has access to its own parts and to
the object of which it is a part.

4.2. Methods, Messages, and Expressions

Each method may take any number of objects as argu-
ments and every method returns an object. Both the argu-
ments and the return value are passed by reference. This
must be the case, since passing by value would involve the
construction of new objects during program execution.

method ::= class : name ’(’ formals ’)’ ’f’ explist ’g’
formals ::= name f , name g
This construct is a method definition. When the method
is invoked by sending thename message to an object of
classclass, the expressionexplist is evaluated after argument
values are substituted for the formals and its value is returned.

explist ::= exp f ; exp g
An expression list is evaluated by evaluating each expression

in the list from left to right. The value of the list is the value
of the last expression.

exp ::= name
Here, name may be either the name of a part of the object
for which the method being evaluated was invoked or the
name of a formal parameter of the method. The value of the
expression is the object instantiating the part or the object
passed as the actual argument, respectively.

exp ::= self
The value of the expressionself is the object for which the
method being evaluated was invoked.

exp ::= container
The value of the expressioncontainer is the object which
contains the object for which the method being evaluated
was invoked. The expressioncontainer must not appear in
any method attached to the Main class.

exp ::= exp � name ’(’ [actuals] ’)’
actuals ::= exp f , exp g
This construct denotes the sending of a message. When an
object is sent a message, the object’s method calledname
is invoked. If the object has no method with the proper
name, a run time exception occurs and program execution is
terminated. The evaluation order is: Theexp on the left hand
side of the message send operator,�, is evaluated; each of
the actual argument expressions is evaluated and their values
are substituted for the corresponding formals in the method
body; the method body is evaluated and the result is returned.

Note that the CG language supports delayed binding but
not inheritance of methods. Inheritance is not an important
issue in the study of code transformations since it can easily
be eliminated from an object-oriented program just by copy-
ing methods from superclasses to the classes where they are
inherited. The inheritance mechanism is merely a conve-
nience for the programmer so that each method only needs
to be written in one place.

4.3. Built-ins

All of the built-in methods for theNumber class except
print take a single argument which must be anotherNumber.
All of the methods returnself. A side effect of the methods
add, sub, mul, div, andassign is that the “value” of the
Number object receiving the message is changed. That is, the
state of the object is changed in such a way that subsequent
messages to the object may have different results. The value
is modified in the obvious way depending on whether the
message isadd, sub, mul, div, orassign. When aNumber
is created during the initial parsing, its value is initialized
depending on the value denoted by the token parsed. When
a Number receives theprint message, a token denoting its
value is output.

Example 2. A complete CG program to evaluate arith-
metic prefix expressions is shown in Figure 2.

4 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



5. Language-preserving Class Transformations

5.1. Primitive Language-Preserving Transformations

The following primitives comprise the language-
preserving class graph transformations, and are described
informally below. Formal definitions can be found in Ap-
pendix B.

�. The object-preserving transformations

�. Renaming of vertices and edges

�. Nesting of parts

�. Unnesting of parts

�. Addition of lambda parts

�. Deletion of lambda part

(1)

Compound

arg2
(4)

(3)
arg1

Main
(1)
exp

Prefix

MulExp

")""("

(5)

(6)
valueNumber

(2) op (2)

(2) (2) "*""+"

MulOpAddOp

AddExp

op

Main � main �


� exp �� eval�
 �� print�
 �

Number � eval �


� self �

AddExp � eval �


�

value �� assign�arg �� eval�

�

value �� add�arg� �� eval�



�

MulExp � eval �


�

value �� assign�arg �� eval�



�� mul�arg� �� eval�



�

FIG. 2. Program A

�. Addition of lambda alternative

�. Deletion of lambda alternative

�. Insertion of singleton construction

�	. Deletion of singleton construction

��. Attribute to subclass

��. Subclass to attribute

5.1.1. Object-preserving transformations The object-
preserving transformations for class graphs are almost the
same as the object-preserving transformations defined in [5]
for graphs lacking concrete syntax and ordering of parts.
There is an additional primitive that allows edges to be
renumbered as long as the ordering is unchanged.Abstrac-
tion of common parts anddistribution of common parts are
extended to apply to syntax edges as well as attribute edges.
The only additional complexity is that abstraction of com-
mon parts to a superclass is restricted so that the ordering of
parts at each immediate subclass cannot be changed. If there
is a set of classes that have more than one part in common,
but the common parts are ordered differently in the individual
classes, then it is not possible to abstract all of the common
parts.

The object-preserving transformations for class graphs are
as follows:

� Renumbering of parts. Any set of attribute and syntax
edges in a class graph may be renumbered as long as
the ordering of parts (including inherited parts) remains
unchanged for each class.

� Abstraction of common parts. If all of the immediate
subclasses of class C have the same part, that part can
be moved up the inheritance hierarchy so that each of
the subclasses will inherit the part from C, rather than
duplicating the part in each subclass.

� Distribution of common parts. This is the inverse of
abstraction of common parts.

� Deletion of “useless”alternation. A vertex representing
an abstract class (formally, analternation vertex) is “use-
less” if it has no incoming edges and no parts. Intuitively,
an abstract class is useless if it is not a part of any concrete
class, and it has no parts for any concrete class to inherit.
If an abstract class is useless it may be deleted along with
its outgoing inheritance edges.

� Addition of “useless” alternation. An abstract class can
be added along with outgoing inheritance edges to any set
of classes already in the class graph. This is the inverse
of deletion of useless alternation.

� Part replacement. If two classes, C1 and C2, have the
same set of instantiable (concrete) subclasses then any
attribute edge incoming at C1 may be rerouted to C2,
since the set of objects which may instantiate the attribute
will not change. Note that the inverse of part replacement
is just another instance of the transformation.

5.1.2. Renaming of vertices and edges Classes and at-
tributes may be freely renamed.

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 5



Nest
w

w´

v2
v1 u

(5)

(4)

A B

(3)

C

(1)

(2)

(1)

(4)

v3

(3)

(2)

w

w´

v2
v1

A B

u

(3)

C

(4)

(4)

(1)

(2)

(1)

v3

(3)

FIG. 3. Nesting of parts

Add lambda alternative
A

B

A

w B

v v

v´ v´
l l

FIG. 4. Addition of lambda alternative

Insert singleton construction
v´

BA

BA

v´

v

FIG. 5. Insertion of singleton construction

5.1.3. Nesting of parts

� If every class which has a classw as a part, hasu as a
part immediately afterw, then we may remove theu part
from all of those classes and instead makeu the last part
of classw. See, for example, Figure 3.

� If every class which hasw as a part hasu as a part
immediately beforew, then we may remove theu part
from all of those classes and instead makeu the first part
of classw.

5.1.4. Unnesting of parts This is the inverse ofnesting of

parts.

5.1.5. Addition of lambda parts A part,p, can be added

to any class ifp is a class with no parts and no subclasses, or
if p is the “empty string”.

5.1.6. Deletion of lambda parts This is the inverse of

addition of lambda parts.

6 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



Attribute to subclass

wv

A CB

l

w

l l l

v

A CB

FIG. 6. Attribute to subclass

5.1.7. Addition of lambda alternative If an abstract
class,v, has as its only immediate (not inherited) part an
immediate superclass ofv, v�, then a concrete class,w, with
no parts may be added to the subclasses ofv. See, for exam-
ple, Figure 4.

5.1.8. Deletion of lambda alternative This is the inverse
of addition of lambda alternative.

5.1.9. Insertion of singleton construction A new con-
crete class,v, with a class,v�, as its only part may be added
to a class graph, andv may replacev� as a part in any other
class. Ifv� is a subclass, inheritance edges may be rerouted
from v� to v if the change does not result in the inheritance
of any additional parts atv. See, for example, Figure 5.

5.1.10. Deletion of singleton construction This is the in-
verse ofinsertion of singleton construction.

5.1.11. Attribute to subclass If a class graph contains a
concrete class,v, with an abstract class,w, as a part, then
we may delete the part,w, from v and for each immediate
subclass,w�, of w we create a new concrete class,v� with
w� as a part, and makev� a subclass ofv. Classv becomes
abstract. See, for example, Figure 6.

5.1.12. Subclass to attribute This is the inverse ofat-
tribute to subclass.

5.2. Justification for the primitive transformations

One justification for the selection of the chosen primitives

is that they make it possible to express commonly occurring

language-preserving transformations as a sequence of prim-

itives. Examination of the literature and personal experience

with the evolution of the Demeter system indicate that the

primitive transformations defined in this section are power-

ful enough to express most, if not all, of the transformations

that could be considered language-preserving. Rather than

argue the subjective “practical usefulness” of the transforma-

tions, however, we demonstrate that the primitive language-

preserving transformations defined here form the basis of a

complete transformation system for a subset of class graphs

powerful enough to express the regular languages.

5.2.1. Regular class graphs Theregular class graphs are

defined so that there is a bijection between them and the

regular expressions. The alphabet of a regular class graph

consists of theterminal classes (those concrete classes with a

single outgoing syntax edge as their only part). Vertices rep-

resenting non-terminal concrete classes are concatenation (�)

operators and vertices representing abstract classes are union

(�) operators. The closure (�) operator can be expressed

using a cycle combining vertices representing abstract and

concrete classes. For convenience, we introduce a symbol

(see Figure 7) for the� operator and the symbol,�, for the

terminal class with the “empty string” as the target of its

syntax edge.

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 7



(A*)

A

denotes

(2)
cdr

(A*)

A_list

A

(1) car

λ

FIG. 7. Closure operator

Definition. Let VS be the set of all syntax vertices. Then
the regular class graphs and their bijection with the regular
expressions are defined recursively as follows:

1.

A

"A"

for all A � VS

2.

a b
(1) (2)

(A·B)

BA

for regular subgraphs A and B

3.

(A+B)

BA

for regular subgraphs A and B

4.

(A*)

A

for regular subgraph A

Since there is a bijection between the regular expressions
and the regular class graphs, we sometimes denote a regular
class graph by its corresponding regular expression in the
following discussion.

5.2.2. Axiom systems for regular expressions It is well
known that using substitution as the only rule of inference,
there is no finite set of equations over the regular expressions
that allows the derivation of a regular expression,�, from a
regular expression�� iff � and�� define the same language.
That is, there is no finite complete set of axioms in the algebra
of regular expressions [32]. However, the following system,
F , due to Salomaa [32] is complete if an additional rule of
inference is allowed:

��� �� � ��� � ���� �� � ��

�� � �� � ��� � ��� � �� � ��

��� �� � �� � ��

�� � �� � ��� � ��� � �� � �� � ���

���� �� � �� � ��� � �� � �� � ���

��� �� � �

�� � �� � �

�� � �� � �

��� �� � �

���� � ��� �� � ������

���� � ��� � ����

The additional rule of inference issolution of equations:
If � does not possess the “empty word property” then the
equation� � �� � ����� may be inferred from the equation
� � ��� � �� � ��.

Definition. A regular expression, �, (or its corresponding
regular class graph) has the empty word property (e.w.p.)
iff one of the following holds:

�. � � �

�. � � ���� for any�

�. � � �� � �� where� or � has the e.w.p.

�. � � �� � �� where� and� have the e.w.p.

5.2.3. Completeness proof We show that for each equa-
tion over the regular expressions which is a substitution in-
stance of an axiom in the complete systemF , there is a
sequence of primitive transformations to transform the reg-
ular class graph corresponding to the left hand side of the
equation to the class graph corresponding to the right hand
side. Since every primitive transformation has an inverse, it
is also possible to transform the right hand side to the left
hand side. In other words, if it is possible to substitute a
regular expression,�, for a regular expression�� in F , then
it is possible to transform the regular class graph,�� to �
with the primitive transformations. Any regular expression,
�, can be derived from any language-equivalent regular ex-
pression,��, in F , so it must be possible to transform any
regular class graph to any language-equivalent regular class
graph by a sequence of primitive transformations if the fol-
lowing meta-transformation (Figure 8), corresponding to the
extra rule of inference, solution of equations, is allowed:

8 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



� If a regular class graph,�, contains a subgraph,��� �
�� � ��, which was obtained by a sequence of primitive
transformations from�, and� doesnot possessthe empty
word property, then��� � �� � �� may be replaced with
the subgraph�� � �����.

The meta-transformation may prove difficult to apply in prac-
tice and is not considered one of the primitives. It is included
here only to demonstrate that the primitive transformations
themselves form a system as complete as any known system
for regular expressions.

Appendix C gives sequences of primitive transformations
that correspond to each of the equations in the axiom system,
F , except for the equations�� � �� � � and�� � �� � �

which are not applicable since the regular class graphs as
defined here do not contain the empty language,�.

6. CG Program Transformations

In this section, code update rules for programs written
in the CG language are given for each of the primitive lan-
guage preserving transformations. The rules are relatively
straight forward since CG is untyped, and since the objects
in a CG program always form a tree at runtime. Some of
the code transformations require that an object have access
to its “container” (parent) object and may involve adding
code to the container class. For example, when a part is
unnested (moved up the part-of hierarchy) instances of the
class which originally had the part must access it indirectly
through their containers. In CG there is a built-in method
calledcontainer that provides the required access. In “real”
languages, an instance variable may be added where neces-
sary to provide a link to an object’s container. Still, there
are additional complications when the objects don’t form a
tree. When a class graph is used to define the class structure
for a program written in a typical object-oriented language, a
construction edge from some vertex,A, to another vertex,B,
implies that everyA object has aB object as a part, but not
the converse; everyB object is not necessarily a part of anA
object. In general, there may be no suitable container class
for a code transformation, and if there is a suitable class it
cannot in general be identified without examining the exist-
ing code. The code transformations presented below, while
correct for CG programs, are intended to be used with hu-
man guidance in the general case. The container classes are
specified manually, and code must be transformed manually
if a container class is required by a code transformation rule
and none is available. For strongly typed languages there are
the complications discussed in [7].

6.1. Transformation rules

6.1.1. The object-preserving transformations For the
CG language, there are no code updates required for any

object-preserving transformation. For other untyped lan-
guages, such as CLOS, the only object-preserving transfor-
mation that requires a code update isdeletion of useless
alternation. Note that the “useless” designation is only rele-
vant from a data modeling point of view, since the class may
have important methods attached. If the class is deleted the
functionality of the methods attached to the class must be
preserved. Each method can be copied to each of the imme-
diate subclasses that does not override it. Now every object
will respond to messages in the same way after the “useless”
class is deleted. In CG, there are never any methods to copy
since methods may only be attached to concrete classes.

6.1.2. Renaming of vertices and edges No code updates
are required when vertices are renamed. In the standard
interpretation, renaming an edge corresponds to changing
the identifier for an instance variable. When an edge,�v l��
w�, is renamed to�v l��� w�, the identifierl� is substituted
for the identifier,l, in the methods of classv. Since CG
provides strong data encapsulation, there is no need to make
substitutions in methods of any other classes.

6.1.3. Nesting of parts If a class,A, has outgoing attribute
edges,�A b�� B� and�A c�� C�, and the edge�A c�� C�
is replaced by an edge�B c�� C� (thec part ofA is nested
under itsb part), then in methods attached to classA, the
c part must be accessed indirectly through itsb part. An
accessor method to return thec part is added to classB,
and the identifier,c, is replaced byb �� c�
 in methods
of classA. If methods of classC accessA objects through
the container operator, the access must now be indirect
through the intermediateB object. We add an accessor
method to class B for its container, and in methods of class
C the expressioncontainer is replaced by the expression
container �� container�
.

6.1.4. Unnesting of parts If a class,A, has an outgoing
attribute edge,�A b�� B� to a classBwhich has an outgoing
attribute edge,�B c�� C�, to classC, and the edge�B c��
C� is replaced by the edge,�A c�� C�, (thec part is unnested
from under theb part of classA) then in methods attached
to classB, the c part must be accessed indirectly through
its parentA object. Similarly, in methods of classC that
accessB objects through thecontaineroperator, the access
must now be indirect through its parentA object. Accessor
methods are added to classA to return theb and c parts.
In methods of classB, the expressionc is replaced by the
expressioncontainer �� c�
 and in methods of classC
the expressioncontainer is replaced bycontainer ��

b�
.

6.1.5. Addition of lambda parts Adding a part does not
require any change in the code.

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 9



Several steps

Meta-transformation

IF

a

(2)(1)

c

a b

THEN

(2)(1)

c

a b

(2)(1)

c

b

FIG. 8. Solution of equations

6.1.6. Deletion of lambda part If a class,A, has an at-
tribute edge,�A b�� B�, to a “lambda” classB and the
edge is deleted, classA must supply any functionality that
was formerly delegated to classB. Note that sinceB is a
lambda class, none of its methods have access to any objects
other thanself andcontainer. Each method of classB
is copied unchanged to classA except that the expression
container is replaced withself in the copied methods. In
classA’s original methods, the expressionb is replaced with
the expressionself.

6.1.7. Addition of lambda alternative When an inheri-
tance edge,�A �� B�, is added from a class,A to a lambda
class,B, by addition of lambda alternative,B objects may
be interspersed in a list ofA objects. Any message received
by such aB object should be passed to theA object that has
been displaced. For each method attached to any subclass
ofA a corresponding method is generated for classB which
simply delegates to the next object in the list. We also add to
each of the originalA classes a method calledthis which
returnsself. To classB we add athis method that returns
container �� this�
. In each of the originalA methods
the expressioncontainer is replaced bycontainer ��

this�
 so that these expressions will have the same objects
as their values as if theB objects were not present in the list.

6.1.8. Deletion of lambda alternative Deletion of a
lambda alternative does not require any change in the code.

6.1.9. Insertion of singleton construction When a new
concrete class,A, with an attribute edge to a class,B, is
added by insertion of singleton construction, a method which
simply delegates to itsB part is added to classA for each
method in classB. An accessor is added toA for its container,
and in the methods of classB the expressioncontainer is
replaced bycontainer �� container�
.

6.1.10. Deletion of singleton construction When a con-
crete class,A, with an attribute edge,�A b�� B�, to classB
is deleted by deletion of singleton construction, each method
in classA is copied to classB with substitution of the ex-
pressionself for b. In the original methods of classB the
expressioncontainer is replaced byself.

6.1.11. Attribute to subclass When a concrete class is
transformed into an abstract class by attribute to subclass, its
methods are simply copied to each of its new subclasses.

6.1.12. Subclass to attribute When an abstract class,A,
gains an attribute,l by subclass to attribute, each of its sub-
classes,B, must be a singleton construction whose only

10 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



outgoing edge,�B l�� C�, has labell. The elimination
of the subclasses is handled as for deletion of singleton con-
struction(above), except that an additionalargument is added
to each of the methods copied from classB to C, and the
copied methods are modified to access any parts inherited in
B (fromA) indirectly through the extra argument. Accessor
methods are added to classA for each of its parts, and for
each method copied fromB to C, a corresponding method
is added to classA which simply delegates to itsl part, pass-
ing along whatever arguments it received plusself for the
actual value of the extra argument.

arg1

AddOp MulOp

"+" "*"

"("

(1)
(2)

(1)(1)

Main Prefix

Number

Op

op (5)
")"

Compound

arg2
(4)

(3)

(6)

(1)
exp

value

Main � main �


� exp �� eval�
 �� print�
 �

Number � eval �


� self �

Compound � eval �


� op �� apply�arg� arg�� value
 �

AddOp � apply �a� a�� v


�

v �� assign�a �� eval�



�� add�a� �� eval�



�

MulOp � apply �a� a�� v


�

v �� assign�a �� eval�



�� mul�a� �� eval�



�

FIG. 9. Program C

6.2. Examples of CG program transformations

Example 3. Figures 9-11 show how yet another version

of the prefix expression evaluator (Figure 9) is transformed

when its class structure evolves first by transforming the

op attribute of class Compound to subclasses followed by

deletion of the useless alternation vertex Op (Figure 10) and

then by deleting the singleton construction vertices MulExp

(1)

Compound

arg2
(4)

(3)
arg1

Main
(1)
exp

Prefix

MulExp

")""("

(5)

(6)
valueNumber

(2) op (2)

(2) (2) "*""+"

MulOpAddOp

AddExp

op

Main � main �


� exp �� eval�
 �� print�
 �

Number � eval �


� self �

MulExp � eval �


� op �� apply�arg� arg�� value
 �

AddExp � eval �


� op �� apply�arg� arg�� value
 �

AddOp � apply �a� a�� v


�

v �� assign�a �� eval�



�� add�a� �� eval�



�

MulOp � apply �a� a�� v


�

v �� assign�a �� eval�



�� mul�a� �� eval�



�

FIG. 10. Program D

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 11



and AddExp followed by renaming of the classes MulOp and

AddOp to MulExp and AddExp, respectively (Figure 11).

Example 4. Figure 12 shows a CG program to calculate

the total weight of all the bricks in a pile. If the class graph

evolves by addition of lambda alternative to allow balloons

to be interspersed with the bricks the code to calculate the

total weight of the bricks is updated as shown in Figure 13.

(1)

Compound

(2)

arg2
(4)

(3)
arg1

Main
(1)
exp

Prefix

AddExp MulExp

(2)

"*""+"

")""("

(5)

(6)
valueNumber

Main � main �


� exp �� eval�
 �� print�
 �

Number � eval �


� self �

MulExp � eval �


� self �� apply�arg� arg�� value
 �

AddExp � eval �


� self �� apply�arg� arg�� value
 �

AddExp � apply �a� a�� v


�

v �� assign�a �� eval�



�� add�a� �� eval�



�

MulExp � apply �a� a�� v


�

v �� assign�a �� eval�



�� mul�a� �� eval�



�

FIG. 11. Program E

7. Practicality of the approach

7.1. Limitations of the Data Model

The data model used here is a formal mathematical model
(see Appendix A), that was chosen to provide programming
language independence and a sound theoretical basis for the
methodology. It is a “low-level” model that starts with only
those relationships that are directly supported by most most
object-oriented programming languages: part-of (data mem-
bers) and kind-of (subclassing). Concrete syntax and order-
ing of parts are added to relate the semantics of different class
structures.

It is expected that the approach will often be applied in
the same way it was developed. That is, a class structure
without concrete syntax or part ordering will be embedded in
a grammar for the purpose of maintenance. The grammatical
requirements of the model should not restrict its usefulness.
In many cases, it may even be possible to recognize class
transformations as “language-preserving” outside the context
of a grammar. Still, the concrete syntax and ordering of

Main

Bottom

weight

zero

bricks

next

Pile

BrickNumber

Main � main �


� bricks �� last�
 �� weight�
 �� print�
 �

Brick � last �


� next �� last�
 �

Bottom � last �


� container �

Brick � weight �


� container �� weight�
 �� add�weight
 �

Main � weight �


� zero �

FIG. 12. Program to calculate weight of brick pile

12 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



parts is a valuable means of documenting the nature of class
transformations.

The main constraints in our model are the lack of inheri-
tance from concrete classes and the inability to override (or
shadow) data members in subclasses. We also disallow name
clashes due to multiple inheritance. None of these constraints
pose a major obstacle to the use of the approach.

Main

Bottom

weight

zero

bricks

next

Pile

Brick BalloonNumber

Main � main �


� bricks �� last�
 �� weight�
 �� print�
 �

Main � weight �


� zero �

Brick � last �


� next �� last�
 �

Brick � weight �


�

container �� this�


�� weight�
 �� add�weight


�

Brick � this �


� self �

Bottom � last �


� container �� this�
 �

Balloon � this �


� container �� this�
 �

Balloon � last �


� next �� last�
 �

Balloon � weight �


� next �� weight�
 �

FIG. 13. After adding balloons to the pile

A class organization with inheritance from concrete
classes may be easily (and automatically) restructured to
eliminate this kind of inheritance. The concrete class is re-
placed by an abstract class in the inheritance hierarchy, the
concrete class is made a subclass of the new abstract class,
and all methods of the concrete class are moved to the new
abstract class. There are no code transformations required.

In the author’s opinion, shadowing data members in sub-
classes is a dangerous and generally undesirable technique.
In any case, it can be simulated by implementing the data
member as a method, and overriding in subclasses.

Any language, or model, that allows multiple inheritance
must somehow cope with potential name clashes. For exam-
ple, in Eiffel, there is a mechanism to rename inherited data
members. In C++, names must be qualified by using the class
scope resolution operator. These design decisions have only
a minor effect on the mechanics of code transformations. By
requiring unique names, we have, in essence, adopted the
C++ approach. If we consider instance variables to have the
class name where they are defined as an implicit prefix, we
get unique names.

Our low-level model is probably unsuitable for high-level
analysis and design. However, models in common use, in-
cluding the new Unified Modeling Language, may be mapped
to the CG model in the same way that they are mapped to pro-
gramming languages. A CASE tool supporting such models
could incorporate support for maintenance of user written
code based on the mapping to low-level constructs.

7.2. Limitations of the Language Model

The limitations of the CG language model include:

� No conditional expressions
� No looping constructs
� No inheritance of methods
� No programmer control over encapsulation
� No true dynamic object construction
� Object structure at run time must be a tree
� The language is untyped
� No non-object primitives (e.g. integer, character, etc.)

Most of these language features were left out of the model
merely to simplify the discussion, and to allow us to focus on
those features at the core of object-oriented programming:
data encapsulation, message passing, late binding, and poly-
morphism. We are currently implementing a system that will
support all of the features mentioned above except static typ-
ing. Our implementation will support C++, but circumvents
the type system by supplying anObject class from which
every other class inherits. We define a default,message
not understood, method for classObject corresponding to
each method in every other class. All member functions and
parameters are declared to have typeObject. We provide
“wrapper” classes for the non-object types. In the future,
we will eliminate theObject class, and modify our transfor-
mations to satisfy the C++ type system. Many of the issues

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 13



relevant to type system support in program transformations
have already been investigated [7].

The addition of conditionals and loops has had no impact
on the transformation rules. Inheritance of methods has very
little effect. In those cases were it is important, a method
attached to an abstract class can be copied to each of the
subclasses that does not override it, and then eliminated. If a
method in a subclass calls this method using the class scope
resolution operator, the code can be inlined. Later, identical
methods may be abstracted to common superclasses in the
same way that data members are abstracted.

The program transformations assume that all methods are
public, and all data members are protected. If stronger en-
capsulation is present, and a program transformation requires
access which is not allowed, we simply weaken the encap-
sulation (with appropriate warnings and user interaction).
In C++ the only encapsulation weaker than what we have
assumed, is the use of public data members. We consider
this very poor programming practice and our system will not
support it.

The problem with object structures that are not trees, in
general, and of dynamic object creation, in particular, is
that objects may not have a suitable container object for
transformations that require it. As noted in Section 6, user
interaction is necessary in such cases.

7.3. Reorganizations that are not language
preserving

The most commonly occurring reorganizations that are
not language preserving are those that add new classes, or
new attributes to existing classes. Theseobject-extending
class transformations are much easier to manage than the
language-preserving transformations described here. A com-
plete set of primitive object-extending transformations, and
corresponding code update rules is described in [7]. The
maintenance techniques for language-preserving transforma-
tions are intended to augment, rather than replace, existing
techniques to allow for automatic maintenance over a much
larger set of class reorganizations.

7.4. Practical experience

The originalmotivation for thiswork was a major revision
of the Demeter system’s class graph, which required the
entire system to be manually ported to the new environment
by rewriting all the code. This was true even though the
languages defined by the class graphs were nearly identical,
and the functionality of the programs comprising the system
was unchanged.

The methodology presented in this paper has been ap-
plied, by hand, to parts of the system that motivated the
research. The Demeter System [17, 33] originally used a no-
tation based on grammars and later changed to a graph based
notation. When the notation was changed the class structure
was reorganized to properly model the new perspective. For

example, a small portion of the system’s original class struc-
ture and the corresponding portion of the new structure are
shown in Figure 14.

The strategy suggested in Section 8.2 was used to find a
sequence of primitives to accomplish the overall class struc-
ture transformation. This strategy proved effective for the
test case with approximately 40 classes in each structure. A
sequence of primitives was found in approximately 2 hours.

Next, portions of the CLOS code used to implement the
original system were modified according to the rules in Sec-
tion 6 (adding instance variables to link objects to their “con-
tainers” where necessary), and the correctness of the new
code was verified.

The same methodology has been used successfully to
guide the evolution of more recent versions of the Deme-
ter System which have been implemented in C++. In this
case, the code transformation rules had to be augmented
somewhat in order to satisfy the type system. For a more
complete discussion of type system issues see [7].

8. Search algorithms

If the primitive language-preserving transformations are
used to restructure the class organization of a CG program,
the code may be automatically updated following the rules
defined in Section 6. More generally, given an arbitrary
CG program and a new language-equivalent class graph, we
must be able to find a sequence of primitives that produces
the given transformation in order to apply the code transfor-
mation rules.

8.1. Regular languages

Since the primitive transformations are not complete
for regular class graphs without the addition of a meta-
transformation, it is not always possible to reduce an ar-
bitrary language-preserving transformation over the regular
class graphs to a sequence of primitives. However, there is
an algorithm to perform the reduction to a sequence of prim-
itives and meta-transformations. Manual code updates must
then be performed only for the meta-transformations.

The proof that Salomaa’s axiom system for the regular
expressions is complete [32] is constructive in the sense that
for any valid equationX � Y , over the regular expressions it
gives a method to construct its proof. To reduce an arbitrary
language-preserving transformation over the regular class
graphs to a sequence of primitives we first construct the proof
that the corresponding regular expressions are equivalent.
Each substitution in the proof is mapped to a sequence of
primitives as defined in Section 5.2.3.. Each solution of
equations is mapped to the meta-transformation defined in
Section 5.2.3..

8.2. Context free languages

There can be no algorithm guaranteed to reduce an ar-

14 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



"<" ">"

name
(1)

(2) (3)

Labeled

Ident

Opt_labeled_term

Vertex
vertex

(4)

Regular

optlabeledsymbol

(4)

labeledsymbol symbol
sym

"<" ">"

ident

name
(1)

(2) (3)

FIG. 14. Reorganization of the Demeter System class structure

bitrary language-preserving transformation over the class
graphs to a sequence of primitives. Even if the set of
primitive transformations were complete, such an algorithm
would be impossible since equivalence of context-free lan-
guages is undecidable, and the class graphs define context-
free languages�. Nevertheless, it is reasonable to expect that
searches for sequences of primitives will often terminate suc-
cessfully since the primitives are designed to represent the
kinds of transformations that are likely to arise in practice.

The search problem may be viewed in terms of the classic
state-space search paradigm as defined in the literature of
artificial intelligence. Given an initial state,S, a set of oper-
ators on states,O, and a set of goal states,G, the state-space
is defined as a directed graph where each node represents a
state and each arc represents an operation. The problem is
to find a path from the initial state to a goal state. Normally,
the graph is not made explicit except for the solution path.

In our case, the initial state is a class graph, the opera-
tors are the primitive language-preserving transformations,
and the only goal state is a language-equivalent class graph.
Alternatively, we may consider the set of goal states to be
the set of all class graphs which are object-equivalent to a
given language-equivalent class graph since we already have
efficient algorithms for checking object-equivalence and re-
ducing an object-preserving transformation to a sequence of
primitives.

State-space search has been heavily investigated in AI,
and sophisticated systems have been developed for evaluat-
ing states and choosing the next operation to apply in various
domains. A detailed algorithm of this sort is beyond the scope
of the current work and is left for future research. However,
a simple search strategy might proceed as follows: The state
space is searched in depth-first order (with backtracking)
and operators are applied to vertices in the class graph in
breadth-first order starting with theMain class. TheMain
vertex of the initial class graph is brought into congruence
with theMain vertex of the goal state by applying operators
(primitive transformations) until the vertices have the same

types and numbers of outgoing edges, outgoing construction
edges have the same labels, and outgoing syntax edges have
the same targets. Next, the target of each construction and
alternation edge is brought into congruence with the corre-
sponding class in the goal state in the same manner, and the
process continues until the target is reached or the depth in
the state space exceeds some specified value.

An important heuristic which can be used to improve the
search performance is to use the names of classes and labels
of edges to guide the search. If, for example, a vertex must
have an outgoing construction edge with labell to a vertex
labeledV , we first check to see if there is already an outgoing
edge with labell. If two analogous classes have parts with
the same names, we guess that the parts are also analogous.
Otherwise, we check if some other vertex has an outgoing
edge with labell and targetV that can be brought into the
proper position by nesting and unnesting of parts. If neither
condition is met we look for a vertex labeledV and finally
for an edge with labell.

This strategy is useful if the class graph changes gradu-
ally during the evolutionary process, since most classes and
parts will retain their original names. It is also useful if
the designers use names consistently when reorganizing the
class structure. Finally, if a class graph has changed dra-
matically it may be easy for a human designer familiar with
the application domain to supply a mapping between classes
with analogous roles by manually renaming parts and classes
before starting the search. For the human designer, giving
a partial analogy by renaming the parts and classes is the
“easy” part – elaborating the analogy by finding the primi-
tive transformations and then updating all of the code is the
“hard” part. For the machine, the reverse is true; thus, the
machine complements the abilities of the human designer
when this strategy is employed.

The concrete syntax may be used as a further guide of the
search or to prune nodes in the state space if we note that
it is not possible to find a solution by bringing two vertices

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 15



into congruence that have different sets of reachable syntax
vertices.

9. Related Work

9.1. Software Refactoring

In their software refactory project, Opdyke and Johnson
[28, 27, 29, 19] have worked on building a tool to support
various aspects of object-oriented program transformation,
including the maintenance of behavioral consistency during
schema evolution. Many of the code transformation issues
they address are similar to the issues addressed here, and
their solutions are also similar in some cases. In particu-
lar, they consider reorganization of “aggregate/component”
hierarchies, and conversion between aggregation and in-
heritance. The problems and solutions they present are
quite similar to those presented here for nesting/unnesting
of parts and subclass-to-attribute/attribute-to-subclass con-
versions, respectively.

The work of Opdyke and Johnson differs in several ways
from the work presented in this paper. Perhaps the most im-
portant is the theoretical basis of the current work in formal
languages. In our case, the program transformation space
is clearly and concisely defined. Furthermore, language-
equivalent class graphs guarantee that programs written in
the CG language will accept the same inputs, and that their
run-time objects have the same textual descriptions. This is
the answer to the important question: “Why is it reasonable
to expect the existence of code that will make a system of
transformed objects behave in a manner functionally equiv-
alent to the original system?”.

The alternative answer is that the transformation was ac-
complished via a sequence of primitives for which correct
code transformations are known. Opdyke and Johnson rely
solely on this second justification, and require that users of
their system directly apply primitives (or compositions of
primitives already known to the system). In the system we
envision, users need not even be aware of the existence of
the primitive transformations. In the context of reuse (as
opposed to evolution), the users of Opdyke and Johnson’s
system would have to perform a search for a sequence of
primitives to transform the class structure of the existing
code to the class structure where it is to be reused. In the
system we envision, there is a search engine to perform this
task automatically.

9.2. Structure Mapping Theory

In structure mapping theory [14, 15] knowledge is rep-
resented as propositional networks comprising object nodes
and predicates (attributes and relations). An analogy maps
object nodes from the base domain to object nodes in the tar-

get domain. Generally, there is a 1-1 mapping between nodes
in the base and target domains. Each pair of corresponding
object nodes in the mapping is part of the analogy: “the target
is like the base”. The analogy is applied by using mapping
rules, based on the principle ofsystematicity, to determine
which predicates should be brought from the base domain to
the target domain. The selected predicates are carried over
using the node substitutions indicated in the object mapping.

A sequence of primitive transformations where each prim-
itive only renames a vertex in a class graph would be equiv-
alent to an analogy as defined by structure mapping the-
ory. However, the primitive transformations can be more
expressive since they may include changes in certainstruc-
tural relations (e.g. part-of, kind-of) as part of the anal-
ogy. For example, in the base domain a classHuman might
have an attribute (part) calledGender, with possible values
(kinds) Male or Female. In the target domain an analo-
gous structure might have a classPerson with subclasses
(kinds)Man andWoman. The simple mapping�Human �
Person�Male � Man�Female � Woman� does not
properly express the analogy. Instead, the relationship be-
tweenPerson andHumanmust be qualified,as in: “aPerson
is like aHuman where the attributeGender is expressed by
subclassing”. Gentner’s structure mapping theory is not pow-
erful enough to express such a qualified structural analogy,
but this can be expressed by a primitive transformation, say
“attribute-to-subclass”.

In our work, application of the analogy involves bringing
relations, in the form of program code, from the base domain
over to the target domain. As in structure mapping theory,
the rules depend only on syntactic properties and not on an
understanding of the contents of the domains. Therefore, the
code is brought over with little modification.

Structure mapping theory says nothingabout how an anal-
ogy, “thetarget is like thebase”, is broken down into a map-
ping of nodes in the base to nodes in the target. In our case,
a search is performed to find a sequence of primitive trans-
formations that would convert the base structure to the target
structure.

9.3. AnalogicalProgram Synthesis Guided by
Correctness Proofs

Ulrich and Moll [38] have used correctness proofs to guide
the formation of analogies and the construction of analogous
programs. Each line in the proof of a program written for the
base domain is mapped into a statement in the target domain.
Terms and relationships in the target domain are substituted
for terms and relationships in the original proof. As the
process is carried out, the original program is modified by
the same substitutions. This process produces a new program
and its correctness proof at the same time.

Dershowitz and Manna [13] used a similar approach to au-
tomatically modify programs. They formulate an analogy as
a set of substitutions that yield a specification of the desired
program when applied to the specification of an analogous

16 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



program. The specifications, including input specifications,
are given for both programs in a high-level assertion lan-
guage. In our case, the known CG program contains its own
input specification in the form of a class graph.

An important aspect of a program specification is the
inclusion of invariant assertions which are utilized in cor-
rectness proofs. Transformations are applied to all assertions
as well as to program code. The transformed assertions can
be used to obtain verification conditions for the new pro-
gram. In our case, it is the language defined by the class
graphs that remains invariant. Correctness is guaranteed by
the correctness of the primitive transformations.

10. Conclusions

By extending a typical graph based data model to include
concrete syntax, we have produced a new model that can be
used to simultaneously define both a class structure and a lan-
guage for describing instances of the classes textually. When
the extended data model is incorporated into a programming
environment, we get programs that define a language for de-
scribing their run-time objects and are self documenting as
to their legal inputs. The result is a novel framework for
dealing with object restructuring with a theoretical basis in
formal languages.

The methods described for maintaining behavioral con-
sistency of evolving systems have been successfully applied
by hand to the development of the Demeter System. An
automated prototype is currently in the planning stage.

Acknowledgments

The author would like to thank the anonymous referees of
TOPLAS and TAPOS for their many helpful comments on
earlier versions of this article.

Notes

1. More generally, if two class graphs define a common sub-language(i.e.
the intersection of the two languages is not empty) then a program
written for one of the class graphs could be automatically transformed
into a program for the other in such a way that the behavior of the
system is preserved for any input in the sub-language.

2. The required accessor methods for classCompoundare not shown.

3. There may be more than one container for each object.

4. See Table 1.

References

[1] Serge Abiteboul and Richard Hull. Restructuring hierarchical database
objects.Theoretical Computer Science, 62:3–38, 1988.

[2] H. Ait-Kaci and R. Nasr. Login: A logic programming language with
built-in inheritance.Journal of Logic Programming, 3:185–215, 1986.

[3] Jay Banerjee, Won Kim, Hyong-Joo Kim, and Henry F. Korth. Se-
mantics and implementation of schema evolution in object-oriented
databases. InProceedings of ACM/SIGMOD Annual Conference on
Management of Data, pages 311–322. ACM, ACM Press, December
1987. SIGMOD Record, Vol.16, No.3.

[4] Gilles Barbedette. Schema modifications in thelispo� persistent
object-oriented language. In Pierre America, editor,European Confer-
ence on Object-Oriented Programming,pages 77–96,Geneva, Switzer-
land, July 1991. Springer Verlag, Lecture Notes in Computer Science.

[5] Paul L. Bergstein. Object-preserving class transformations. InObject-
Oriented Programming Systems, Languages and Applications Confer-
ence, in Special Issue of SIGPLAN Notices, pages 299–313, Phoenix,
Arizona, 1991. ACM Press.

[6] Paul L. Bergstein. Managing the Evolution of Object-oriented Sys-
tems. PhD thesis, Northeastern University, Boston, Massachusetts,
June 1994.

[7] Paul L. Bergstein and Walter L. H¨ursch. Maintaining behavioral con-
sistency during schema evolution. In S. Nishio and A. Yonezawa, ed-
itors, International Symposium on Object Technologies for Advanced
Software, pages 176–193, Kanazawa, Japan, November 1993. JSSST,
Springer Verlag, Lecture Notes in Computer Science. Also available as
Northeastern University, College of Computer Science technical report
number NU-CCS-93-04.

[8] Elisa Bertino. A view mechanism for object-oriented databases. In
International Conference on Extending Database Technology, pages
136–151, Vienna, Austria, 1992.

[9] Alexander Borgida, Tom Mitchell, and Keith Williamson. Learning
improved integrity constraints and schemas from exceptions in data
and knowledge bases. In Michael L. Brodie and John Mylopoulos,
editors,On Knowledge Base Management Systems, pages 259–286.
Springer Verlag, 1986.

[10] Eduardo Casais.Managingevolution in object-oriented environments:
an algorithmic approach. PhD thesis, University of Geneva, Geneva,
Switzerland, May 1991. Thesis no. 369.

[11] Alberto Coen-Porisini, Luigi Lavazza, and Roberto Zicari. Updat-
ing the schema of an object-oriented database.Quarterly Bulletin
of the IEEE Computer Society Technical Committee on Data Engi-
neering, 14(2):33–37, June 1991. Special Issue on Foundations of
object-Oriented Database Systems.

[12] Christine Delcourt and Roberto Zicari. The design of an integrity con-
sistency checker (icc) for an object oriented database system. In Pierre
America, editor,European Conference on Object-Oriented Program-
ming, pages 97–117,Geneva, Switzerland, July 1991. Springer Verlag,
Lecture Notes in Computer Science.

[13] Nachum Dershowitz and Zohar Manna. The evolution of programs:
Automatic program modification.IEEE Transactions on Software En-
gineering, SE-3(6):377–385, November 1977.

[14] Dedre Gentner. Structure-mapping: A theoretical framework for anal-
ogy. Cognitive Science, 7:155–170, 1983.

[15] Dedre Gentner and Cecile Toupin. Systematicity and surface similarity
in the development of analogy.Cognitive Science, 10:277–300, 1986.

[16] R.B. Hull and C.K. Yap. The format model: A theory of data or-
ganization. Journal of the Association for Computing Machinery,
31(3):518–537, July 1984.

[17] Walter L. Hürsch, Linda M. Seiter, and Cun Xiao. In any CASE:
Demeter.The American Programmer, 4(10):46–56, October 1991.

[18] Ralph E. Johnson and Brian Foote. Designing reusable classes.Journal
of Object-Oriented Programming, 1(2):22–35, June/July 1988.

[19] Ralph E. Johnson and William F. Opdyke. Refactoring and aggrega-
tion. In S. Nishio and A. Yonezawa, editors,International Sympo-
sium on Object Technologies for Advanced Software, pages 264–278,
Kanazawa, Japan, November 1993. JSSST, Springer Verlag, Lecture
Notes in Computer Science.

[20] G.M. Kuper and M.Y. Vardi. The logical data model. InPrinciples of
Database Systems, pages 86–96. ACM, 1984.

[21] Barbara Staudt Lerner and A. Nico Habermann. Beyond schema evo-
lution to database reorganization. In Norman Meyrowitz, editor,Pro-
ceedings OOPSLA ECOOP ’90, pages 67–76, Ottawa, Canada, Oc-
tober 1990. ACM, ACM Press. Special Issue of SIGPLAN Notices,
Vol.25, No.10.

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 17



[22] Qing Li and Dennis McLeod. Conceptual database evolution through
learning in object databases.IEEE Transactions on Knowledge and
Data Engineering, 6(2):205–224, 1994.

[23] Karl J. Lieberherr. Object-oriented programming with class dictio-
naries. Journal on Lisp and Symbolic Computation, 1(2):185–212,
1988.

[24] Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. From
objects to classes: Algorithms for object-oriented design.Journal of
Software Engineering, 6(4):205–228, July 1991.

[25] Karl J. Lieberherr and Arthur J. Riel. Demeter: A CASE study of
software growth through parameterized classes.Journal of Object-
Oriented Programming,1(3):8–22,August, September 1988. A shorter
version of this paper was presented at the10th International Conference
on Software Engineering, Singapore, April 1988, IEEE Press, pages
254-264.

[26] Bertrand Meyer. Object-Oriented Software Construction. Series in
Computer Science. Prentice Hall International, 1988.

[27] William F. Opdyke.Refactoring: A Program Restructuring Aid in De-
signing object-Oriented Application Frameworks. PhD thesis, Com-
puter Science Department, University of Illinois, May 1992.

[28] William F. Opdyke and Ralph E. Johnson. Refactoring: An aid in de-
signing application frameworks and evolving object-oriented systems.
In Proceedings of the Symposium on Object-Oriented Programming
emphasizing Practical Applications (SOOPA), pages 145–160, Pough-
keepsie, NY, September 1990. ACM.

[29] William F. Opdyke and Ralph E. Johnson. Creating abstract super-
classes by refactoring. InProceedings of CSC ’93: The ACM 1993
Computer Science Conference, February 1993.

[30] Jason D. Penney and Jacob Stein. Class modification in the GemStone
object-orientedDBMS. In NormanMeyrowitz, editor,Object-Oriented
Programming Systems, Languages and Applications Conference, in
Special Issue of SIGPLAN Notices, pages 111–117, Orlando, Florida,
December 1987. ACM, ACM Press. Special Issue of SIGPLAN
Notices, Vol.22, No.12.

[31] B. Pernici, F. Barbic, M.G. Fugini, R. Maiocchi, J.R. Rames, and
C. Rolland. C-TODOS: An automatic tool for office system conceptual
design. ACM Transactions on Office Information Systems, 7(4):378–
419, October 1989.

[32] Arto Salomaa.Theory of Automata. International series of monographs
in pure and applied mathematics, v. 100. Pergamon Press, 1969.

[33] Ignacio Silva-Lepe, Walter H¨ursch, and Greg Sullivan. A Report on
Demeter/C++.C++ Report, pages 24–30, February 1994.

[34] Andrea H. Skarra and Stanley B. Zdonik. The management of changing
types in an object-orienteddatabase. InObject-Oriented Programming
Systems, Languages and Applications Conference, in Special Issue of
SIGPLAN Notices, pages 483–495. ACM, ACM Press, September
1986.

[35] Richard Snodgrass.The interface description language. Computer
Science Press, 1989.

[36] T.J. Teorey, D. Yang, and J.P. Fry. A logical design methodology for
relational data bases.ACM Computing Surveys, 18(2):197–222, June
1986.

[37] Dennis Tsichritzis and Frederick Lochovsky.Data Models. Software
Series. Prentice-Hall, 1982.

[38] John Wade Ulrich and Robert Moll. Program synthesis by analogy.
SIGPLAN Notices, (64):22–28, August 1977.

Appendix A

Data Model

A.1. Class graphs

The class graphs described in this section use three kinds
of vertices to model abstract classes, instantiable classes, and
concrete syntax. We also use three kinds of edges to model
knows-of, kind-of, and has-syntax relationships. The knows-
of relationship is a generalization of the aggregation relation
which only describes physical containment.

The knows-of and has-syntax relations comprise what we
call the “part-of” relation. For lack of a better term, we call
the syntax and known collaborators of an object its “parts”,
although the parts need not be physical parts. For example,
in our terminology a car is part of a wheel if the wheel knows
about the car.

Definition. A class graph�, �, is a directed graph, � �
�V�VS��� EC�EA�ES�Ord�, with finitely many vertices V .
VS is a set of strings called the syntax vertices. � is a finite set
of labels. There are four defining relations: EC�EA�ES�Ord.
EC is a ternary relation on V � V � �, called the (labeled)
construction edges: �v l�� w� � EC iff there is a construc-
tion edge with label l from v to w. EA is a binary relation
on V � V , called the alternation edges: �v �� w� � EA
iff there is an alternation edge from v to w. ES is a binary
relation on V � VS called the syntax edges: �v � w� � ES
iff there is a syntax edge from v to w. Ord � �EC�ES��N
is a function that maps each construction and syntax edge to
a natural number.

Next the set of vertices is partitioned into two subclasses,
called the construction and alternation vertices.

Definition.
� Theconstruction vertices are defined by:

VC � fv j v � V��w � V � �v �� w� �� EAg.
In other words, the construction vertices have no outgoing
alternation edges.

� Thealternation vertices are defined by:
VA � fv j v � V� �w � V � �v �� w� � EAg.
In other words, the alternation vertices have at least one
outgoing alternation edge.

Sometimes, when we want to talk about the con-
struction and alternation vertices of a class graph, it is
more convenient to describe a class graph as a tuple
which contains explicit references toVC and VA: � �
�VC�VA�VS���EC�EA�ES�Ord�.

In standard object-oriented terminology we describe here
the accepted programming rule: “Inherit only from abstract
classes” [18]. This rule can be exploited to derive an analogy
between class graphs and grammars.

We use the following graphical notation, based on [36],
for drawing class graphs: squares for construction vertices,
hexagons for alternation vertices, quoted strings for syntax
vertices, thin arrows for construction and syntax edges, and
wide arrows for alternation edges.

Example 1. For further illustration we give the compo-
nents of the formal definition, for the class graph, ��, of

18 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



TABLE 1. Standard interpretation of class graphs

Graph Object-oriented Design Context Free Language
Vertex Class Symbol

Edge Class Relationship Operator

construction instantiable class with members
defined by construction edges
(including “inherited” edges)

Concatenation of languages
defined by construction and
syntax edges (including
“inherited” edges)

alternation abstract class with subclasses
defined by alternation edges

union of languages defined by
alternation edges

syntax no meaning terminal

construction part-of relationship, “uses”,
“knows”, — labels are part
names

concatenation — numbers
define order

alternation inheritance relationship,
specialization, classification

union

syntax no meaning concatenation — numbers
define order

Figure 1:

VC � fNumber�AddExp�MulExpg

VA � fPrefix� Compoundg

VS � f“�” � “�” � “�” � “�” � �	� 
��g

� � fnum� arg�� argg

EC � f�Compound
arg�

�� Prefix��

�Compound
arg�

�� Prefix�g

EA � f�Prefix �� Number��

�Prefix �� Compound��

�Compound �� AddExp��

�Compound ��MulExp�g

ES � f�Compound� “�”�� �Compound� “�”��

�Number � �	� 
���� �AddExp� “�”��

�MulExp� “�”�g

Ord � f�Compound
arg�

�� Prefix� ���

�Compound
arg�

�� Prefix� ���

�Compound� “�” � ���

�Compound� “�” � ��� �Number� �	� 
��� ���

�AddExp� “�” � �� �MulExp� “�” � �g

The definition ofVC implies thatEA 	 VA�V , since an
alternation edge cannot start at a construction vertex. We use
V��VC��VA� etc. to refer to the components of class graph
�.

When we draw a class graph, the vertices are labeled so
that we can conveniently refer to particular vertices in our
discussion. The standard interpretation implies that the la-
bels on construction vertices are significant. Consider two
isomorphic class graphs each with only a single construc-
tion vertex and no edges. If the construction vertex of one
graph is labeledInteger and the vertex of the other graph

is labeledString, then the two class graphs define different
sets of objects in the standard interpretation. On the other
hand, changing the labels of the alternation vertices (names
of abstract classes in the standard interpretation) does not
effect the defined objects. Therefore, we adopt the following
convention for labeling the vertices of class graphs: Labels
of alternation vertices are local to the class graph in which
they occur; labels of construction vertices are global. That is,
if two class graphs have construction vertices with the same
label, it means that thesame vertex (same class under the
standard interpretation) belongs to both graphs. However,
we may in general assume that different class graphs have
disjoint sets of alternation vertices regardless of their labels.

The same semantics apply when we denote the sets of
vertices in a class graph textually. The identifiers we use
to denote alternation vertices are of local scope whereas the
identifiers we use to denote construction vertices have global
scope.

Later we give conditions which make a class graph into
a legal class graph. The interpretation in Table 1 is only
one possible interpretation which we call the standard in-
terpretation. The motivation behind the abstract alterna-
tion/construction terminology is that there are several useful
interpretations of class graphs. In one of those interpreta-
tions, a construction vertex is interpreted as an operation.
We often use the standard interpretation to give intuitive ex-
planations of relationships and algorithms.

Please note that the syntax for an alternation ver-
tex/abstract class, although very natural from a graph-
theoretic point of view, appears unnatural from the point of
view of today’s programming languages: In most program-
ming languages which support the object-oriented paradigm,
the inheritance relationships are described in the opposite
way. Each class indicates from where it inherits. Of course,
we can easily generate this information from class graphs,
but we feel that the Demeter notation is easier to use for de-

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 19



sign purposes. One reason is that the design notation shows
the immediate subclasses of a class and therefore promotes
proper abstraction of common parts. Another reason is that
a class does not contain information about where it inherits
from and therefore the class can be easily reused in other
contexts.

Definition. In a class graph,� � �V�VS��� EC�EA�ES�Ord�,
a vertex w � V is alternation-reachable from vertex v � V

(we write v
�

�� w):

� via a path of length�, if v � w

� via a path of lengthn � �, if �u � V such that�v ��
u� � EA andu

�
�� w via a path of lengthn.

In other words, thealternation-reachable relation is the
reflexive, transitive closure of theEA relation.

In the standard interpretation,�v
�

�� w�means that either
w inherits fromv orw � v.

Sometimes when we want to discuss the inheritance hier-
archy, it is convenient to refer to the alternation subgraph of
a class graph. The alternation subgraph contains all of the al-
ternation vertices and alternation edges plus the construction
vertices that have incoming alternation edges.

Definition. The alternation subgraph of a class graph,
� � �VC�VA��� EC�EA�, is a directed acyclic graph (DAG),
G � �V ��EA�, where V � � VA�fv � VC j
u � �u �� v� �
EAg.

It is often helpful to think of each alternation vertex as
representing a set of associated construction vertices. This
set,A�v�, consists of all the construction vertices which are
alternation reachable from the vertex,v. If v is an alternation
vertex with an incoming construction edge,�u l�� v�, the
construction vertices inA�v� represent the concrete classes
which might be used to instantiate thel part of u objects.
If v has an outgoing construction edge,�v l�� w�, the
construction vertices inA�v� represent the concrete classes
which inherit thel part fromv.

Definition. The associated classes of a vertex, v, in a class
graph,
� � �VC�VA�VS��� EC�EA�ES�Ord�, is the set of all con-
struction vertices which are alternation-reachable from v:

A�v� � fv�jv
�

�� v� andv� � VCg

A.1.1. Legality conditions A legal class graph is a struc-
ture which satisfies three independent conditions.

Definition. A class graph� � �V�VS��� EC�EA�ES�Ord�
is legal if it satisfies the following three conditions:

�. Cycle-free alternation condition:
There are no cyclic alternation paths, i.e.,
f�v�w� j v�w � V� v �� w� andv

�
�� w

�
�� vg � �.

�. Unique labels condition:
�u� v� v�� w�w� � V� l � � such that�v

�
�� u�,

�v� �
�� u�, and�v�w� �� �v�� w�� �

f�v l�	 w�� �v� l�	 w��g �
 EC

�. Unique numbering condition:
�u� v� v� � V ande� e� � �EC�ES� wherev

�
�� u,

v� �
�� u, e �� e� : If �w�w�� l� l� such thate � �v l�	

w� or e � �v 	 w�, ande� � �v� l��	 w�� or e� �
�v� 	 w��, thenOrd�e� �� Ord�e��

When we refer to a class graph in the following we mean
a legal class graph, unless we specifically mention illegality.

The cycle-free alternation condition is natural and has
been proposed by other researchers, e.g., [31, page 396],
[35, page 109: Class names may not depend on themselves
in a circular fashion involving only (alternation) class pro-
ductions]. The condition says that a class may not inherit
from itself.

The unique labels condition guarantees that “inherited”
construction edges are uniquely labeled and excludes class
graphs which contain the patterns shown in Figure 15.

Other mechanisms for uniquely naming the construction
edges could be used, e.g., the renaming mechanism of Eiffel
and the overriding of part classes [26]. The theory does not
seem to be affected significantly by small changes such as
this.

The unique numbering condition is similar to the unique
labels condition. It guarantees that the construction and
syntax edges inherited at any vertex are totally ordered.

A.2. Object graphs

We have defined the concept of a class graph which math-
ematically captures some of the structural knowledge which
object-oriented programmers use. Next we define object
graphs and their relation to class graphs. An object graph
defines a hierarchical object and is motivated by the interpre-
tation of an object graph, called the standard interpretation,
given in Table 2.

Definition. An object graph, �, is a directed graph � �
�W�Ws� S����E�Es� ��Ord� where:

� W is a finite set of vertices.
� Ws is a set of strings called the syntax vertices.
� S is an arbitrary finite set.
� �� is a set of labels.
� E is a ternary relation onW � W � ��. If �v l�	

w� � E we call l the label of the edge�v l�	 w�. No
two edges outgoing from the same vertex may have the
same label. That is,�v� w�w� � W� l � �� such that
w �� w� � f�v l�	 w�� �v l�	 w��g �
 E

� Es is a binary relation onW � Ws called the syntax
edges.

� � � W 	 S is a function that maps each vertex of� to
an element ofS.

� Ord � �E �Es�	 N is a function that maps each edge
to a natural number.

Normally, the setS is a subset of the construction ver-
tices of some class graph. In the standard interpretation, the
function� maps each object in an object graph to the class

20 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



TABLE 2. Standard interpretation for object graphs

Graph Object-oriented Design
vertex object

immediate successor immediate subpart or component

edge label part name

of which it is an instance. We use a graphical notation for
object graphs similar to that for class graphs. Vertices are
represented by circles and edges by labeled arrows. The ver-
tices are labeled with their class names (their mapping under
�). In case we wish to distinguish more than one instance
of a class, the labels may be prefixed with an instance name
followed by a “:”.

Not every object graph with respect to a class graph is le-
gal; intuitively, the object structure has to be consistent with
the class definitions. Each object can only have parts as pre-
scribed in the class definition and the parts prescribed in the
class definitions must appear in the objects (see Figure 16).

Definition. Let p�� p�� ���� pn be the outgoing edges (in-
cluding syntax edges) from a vertex, v � W , of an object
graph such that Ord�pi� � Ord�pi���� � � i � n. Then the
PartOrder�v� pi� � i.

Let q�� q�� ���� qn be the construction and syntax edges
outgoing from all vertices, v�, from which a vertex, v � VC
of a class graph is alternation reachable, such that Ord�qi� �
Ord�qi���� � � i � n. Then the PartOrder�v� qi� � i.

Definition. An object graph, � � �W�Ws� S����
E�Es� ��Ord�, is legal with respect to a class graph,
� � �VC�VA�VS��� EC�EA�ES�Ord�, iff for each vertex,
v �W :

� ��v� � VC
Each vertex in the object graph maps to a construction
vertex in the class graph.

� ��r l�	 s� � EC wherer
�

�� ��v� � �w � W such
that�v l�	 w� � E

Each object has all of the sub-objects prescribed by the
class graph.

� ��r 	 s� � ES wherer
�

�� ��v� � �v 	 s� � Es

Each object has all of the concrete syntax prescribed by
the class graph.

p1

p2

w

x

y

l

l

p1 p2x y

w

l l

FIG. 15. Forbidden subgraphs

l

v

w

λ

λ λ

λ(v)

(w)

l

’v

’w

*

*

FIG. 16. Legality Rule

� �w� l where �v l�	 w� � E � ��r l�	 s� �
EC such that r

�
�� ��v�� s

�
�� ��w�� and

PartOrder�v� �v l�	 w�� � PartOrder���v�� �r l�	
s��
Each object hasonly the sub-objects prescribed by the
class graph and has them in the proper order.

� �s where�v 	 s� � Es � �r such that�r 	 s� �
ES� r

�
�� ��v�, and PartOrder�v� �v 	 w�� �

PartOrder���v�� �r 	 s��
Each object hasonly the concrete syntax prescribed by
the class graph and has it in the proper order.

Example 2. Consider the graphs in Figure 17. The object
graph, �, is legal with respect to the class graph, �. The ob-
ject graph is given by: W � fi�� i� i�� i�g� E � f�i�

b
��

i�� �i� c�� i��� �i bc�� i��g��� � fb� bc� cg� � � fi� �
A� i� B� i�� C� i�� Cg.

Example 3. Consider object graphs in Figure 19 which
are illegal with respect to the class graph in Figure 18. The
first object graph is illegal since apples don’t contain stones
and the second because Cherry is not alternation-reachable
from Number.

The language of a class graph,�, is formally defined in
terms ofsentences which are defined, in turn, by the object
graphs which are legal with respect to�.

Definition. An acyclic object graph, �, rooted at a unique
vertex, v, has a textual representation, calledsentence���,

A

B C
bc

b c

b

bc

c

i1:A

i4:C

i2:B i3:C

FIG. 17. Class graph,�, and legal object graph,�.

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 21



Numberweight

Fruit

Apple Cherry

kernel stone

StoneKernel

FIG. 18. Fruit class graph

NumberStone

weightstone

Apple

weight

Apple

kernel

CherryKernel

FIG. 19. Fruit object graphs

which is the string of syntax vertices encountered during a
depth first traversal of � starting from v. If an object graph,
�, is cyclic or unrooted, sentence��� is undefined.

We say that an object graph, � � �W�Ws� S����
E�Es� ��Ord�, is rooted at vertex v if v is the only ver-
tex in W with an in-degree of 0.

Definition. The language defined by a class graph,
� � �V�VS��� EC�EA�ES� Ord�, is given by:

L��� � fsj
� � s � sentence����

and� is legal with respect to�g

The input language of a CG program, P , with class
graph, �, is given by:

L�P � � fsj
� � s � sentence����

� is legal with respect to��

and� is rooted atMaing

Definition. The set of all legal object graphs with respect
to a class graph, �, is called Objects���.

The definitions above relate a class graph with a set of
object graphs. In object-oriented programming language
terminology, a class graph corresponds to a set of class defi-
nitions and the object graphs correspond to the objects which
can be created calling “constructor” functions of the classes.
In some languages, e.g., C++, the class definitions consider-
ably restrict the objects which can be created. The definitions
above demand even more discipline than C++.

In the context of evolution, we often wish to discuss object
graphs that are not legal with respect to the current class
graph. We sometimes refer to these object graphs asobject
example graphs since our goal is often to modify a class
graph so that it will become compatible with a new set of
objects based on examples.

A.3. Related work

The axiomatic model which is used in this paper is new
but similar data models exist in the literature. In particular,
the notions of “alternation” and “construction” appear as
“classification” and “aggregation” in both Hull and Yap’s
Format Model [16] and Kuper and Vardi’s LDM [20]. Ait-
Kaci’s feature structures [2] are also related to the Demeter
kernel model. Our abstraction algorithms [24, 6] can be
adapted to abstract feature structures from examples.

Other related work in the data base field is described in:
[1, 9, 37].

Appendix B

Formal Definition of Primitives

B.1. Object-preserving transformations

The definitions of the object-preserving transformations
for class graphs are as follows:

� Renumbering of parts. Any set of construction and
syntax edges in a class graph,�, may be renumbered (by
replacing theOrd function) to produce a new class graph,
��, if for all vertices,v � V , and edges,e � �EC�ES�,
such thatv is alternation reachable from the source ofe:
PartOrder��v� e� � PartOrder�� �v� e�.

� Abstraction of common parts. If �v�w� l� i such that
�v�, where �v �� v�� � EA � �v� l�	 w� �
e � EC andOrd�e� � i, or �v� 	 w� � e �
ES andOrd�e� � i, then all of the edges,e, can be
replaced by a new edge,e �, with v as its source and
Ord�e�� � Ord�e�.
Intuitively, if all of the immediate subclasses of class
C have the same part, that part can be moved up the
inheritance hierarchy so that each of the subclasses will
inherit the part from C, rather than duplicating the part in
each subclass.

� Distribution of common parts. An outgoing construc-
tion edge,e � �v l�	 w�, or syntax edge,e � �v 	 w�,
can be deleted from an alternation vertex,v, if for each
�v �� v�� � EA a new construction edgee � � �v� l�	
w�, or syntax edgee� � �v� 	 w�, respectively is added
with Ord�e�� � Ord�e�.
This is the inverse of abstraction of common parts.

� Deletion of “useless” alternation. An alternation vertex
is “useless” if it has no incoming edges and no outgoing
construction edges. If an alternation vertex is useless it
may be deleted along with its outgoing alternation edges.

22 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



Intuitively, an alternation vertex is useless if it is not a
part of any construction class, and it has no parts for any
construction class to inherit.

� Addition of “useless” alternation. An alternation ver-
tex, v, can be added along with outgoing alternation edges
to any set of vertices already in the class graph. This is
the inverse of deletion of useless alternation.

� Part replacement. If the set of construction vertices
which are alternation-reachable from some vertex,v �
V , is equal to the set of construction vertices alternation-
reachable from another vertex,v� � V , then any construc-
tion edge�w l�	 v� � EC can be deleted and replaced
with a new construction edge,�w l�	 v��.
Intuitively, if two class C1 and C2 have the same set
of instantiable (construction) subclasses then the defined
objects do not change when C1 is replaced by C2 in a
part definition. Note that the inverse of part replacement
is just another instance of the transformation.

B.2. Renaming of vertices and edges

Any construction edge,�v l�� w� � EC may be replaced
by a construction edge with a different label,�v l��� w�.
Also, any construction vertex,v � VC, may be replaced by
a different construction vertex,v�, with the same incoming
and outgoing edges. When viewing a picture of a class graph
it appears that the vertex has been “renamed” by chang-
ing its label. Since the labels or identifiers used to denote
construction vertices have a global scope, and the same iden-
tifiers may be used to denote vertices in other class graphs, a
changed label implies a changed vertex. On the other hand,
since the identifiers used to denote alternation vertices have
a scope local to the class graph, changing the labels of alter-
nation vertices may be done freely, but does not in any way
“transform” the class graph.

B.3. Nesting of parts

Given a vertex,w � V with no incoming alternation
edges and a different vertex,u � �V � VS�, such that for
every construction edge,ev � �v � w��, wherew �

�� w�,
there is a syntax or construction edge,e�

v � �v � u�, andw�

has at most one incoming alternation edge, then:

� If for eachv,PartOrder�v� e�

v� � PartOrder�v� ev��
�, then we may delete each edge,e �

v, and add a single re-
placement edge,e, fromw tou and letOrd�e� � Ord�e��
for all other construction and syntax edges,e� outgoing
from anyw� wherew

�
�� w�.

Intuitively, if every class which hasw as a part hasu as a
part immediately afterw, then we may remove theu part
from all of those classes and instead makeu the last part
of classw. See, for example, Figure 3.

� If for eachv,PartOrder�v� e�

v� � PartOrder�v� ev��
�, then we may delete each edge,e �

v, and add a single re-
placement edge,e, fromw tou and letOrd�e� � Ord�e��

for all other construction and syntax edges,e� outgoing
from anyw� wherew

�
�� w�.

Intuitively, if every class which hasw as a part hasu as
a part immediately beforew, then we may remove theu
part from all of those classes and instead makeu the first
part of classw.

B.4. Unnesting of parts

Given a vertex,w � V with no incoming alternation
edges and an outgoing construction edge or syntax edge,e,
with targetu:

� If for every construction or syntax edge,e� �� e, with
sourcew� such thatw

�
�� w�, w� has at most one in-

coming alternation edge andOrd�e� � Ord�e �� (soe is
the last part of everyw object), then we may delete edge
e, if for each construction from some vertex,v, tow, ev,
we add a replacement edge,e �

v, from v to u such that
PartOrder�v� e�

v� � PartOrder�v� ev� � �. In other
words, we remove the last part,p, from everyw object,
and insert the partp just after thew part of every object
thatcontains aw object.
or

� If for every construction or syntax edge,e� �� e, with
sourcew� such thatw

�
�� w�, w� has at most one in-

coming alternation edge andOrd�e� � Ord�e �� (soe is
the first part of everyw object), then we may delete edge
e, if for each construction from some vertex,v, tow, ev,
we add a replacement edge,e �

v, from v to u such that
PartOrder�v� e�

v� � PartOrder�v� ev�� �. In other
words, we remove the first part,p, from everyw object,
and insert the partp just before thew part of every object
thatcontains aw object.

This is the inverse ofnesting of parts.

B.5. Addition of lambda parts

From any vertex,v � V , an outgoing construction edge,
�v l�� w� to a construction vertex,w � VC, may be added if
w has no outgoingedges. An outgoingsyntax edge,�v � w�
to a syntax vertex,w, may be added ifw is the “empty string”.

B.6. Deletion of lambda parts

A construction edge whose target is a construction vertex
with no outgoing edges, or a syntax edge whose target is
the “empty string” may be deleted. This is the inverse of
addition of lambda parts.

B.7. Addition of lambda alternative

An alternation edge,�v �� w�, may be added from
an alternation vertex,v � VA to a construction vertex,w �
VC if w has no outgoing edges,v has only one outgoing
construction edge,�v l�� v��, and the target,v�, of that edge
has an outgoing alternation edge,�v� �� v�, back tov. See,
for example, Figure 4.

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 23



B.8. Deletion of lambda alternative

An alternation edge,�v �� w�, from a vertex,v � VA
to a construction vertex,w � VC, may be deleted ifw has no
outgoing edges,v has only one outgoing construction edge,
�v l�� v��, and the target,v�, of that edge has an outgoing
alternation edge,�v� �� v�, back tov. This is the inverse
of addition of lambda alternative.

B.9. Insertion of singleton construction

A new construction vertex,v, with a single outgoing
construction edge to a vertex,v� � V , may be added to a
class graph, and any incoming construction edges atv� may
be rerouted tov. Incoming alternation edges atv� may also by
rerouted tov if the rerouting does not result in the inheritance
of additional parts (syntax or construction edges) atv. See,
for example, Figure 5.

B.10. Deletion of singleton construction

If a class graph contains a construction vertex,v, with
no inherited parts and a single outgoing edge to a vertex,
v� � �V � VS�, thenv may be deleted if all incoming edges
at v are rerouted tov�. This is the inverse ofinsertion of
singleton construction.

B.11. Attribute to subclass

If a class graph contains a construction vertex,v � VC,
with an outgoing construction edge,�v l�� w�, to an al-
ternation vertex,w � VA, then we may delete the construc-
tion edge fromv to w and for each vertex,w�, such that
�w �� w�� � EA, we add a new construction vertex,v�,
with an incoming alternation edge fromv, �v �� v��, and
an outgoing construction edge,�v� l�� w�� to w�. Each of
the new construction edges is mapped to the same number
(underOrd) as was the deleted construction edge. Sincev

now has outgoing alternation edges it becomes (by definition)
an alternation vertex. See, for example, Figure 6.

B.12. Subclass to attribute

If a class graph contains alternation vertices,v� w � VA,
such that there is a one to one correspondence between the
vertices,v�, where�v �� v�� � EA and the vertices,w�

where�w �� w�� � EA, such that for eachw� the corre-
spondingv� is a construction vertex with a single incoming
edge,�v �� v��, and a single outgoing edge,�v� l�� w��,
then we may delete each suchv� along with its incoming and
outgoing edges and add a new construction edge,�v l�� w�,
from v tow. Sincev no longer has any outgoing alternation
edges it becomes (by definition) a construction vertex. This
is the inverse ofattribute to subclass.

Appendix C

Primitive transformations for completeness
proof

Figures 20 - 28 show sequences of primitive transfor-

mations that correspond to each of the equations in the ax-

iom system,F , except for the equations�� � �� � � and

����� � �which are not applicable since the regular class

graphs as defined here do not contain the empty language,�.

24 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



b

a

c a b

cObject-equivalent

FIG. 20. �a� �b� c�� � ��a� b� � c�

a

b c

a

b c

c

a b

(1) (2)

(1) (2) (1)

(1) (2)

(1) (2)

b

(2)
(3)(1)

a c
Unnest Nest

FIG. 21. �a � �b � c�� � ��a � b� � c�

a b b a

Object-equivalent

FIG. 22. �a� b� � �b� a�

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 25



Object-equivalent

a

a

FIG. 23. �a� a� � a

Attribute to subclass

Object-equivalent

c

a

(1) (2)

b

a

b c

(1)

(2) (2)

a a

(2)(1) (2)

b c

(1)

FIG. 24. �a � �b� c�� � ��a � b� � �a � c��

26 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



Delete lambda part Delete singleton construction

a

aλa

FIG. 25. �a � �� � a

Object-equivalent

Attribute to subclass

(1) (2)

c

ba

ba

c
(2)

(1)(1)

a

(2)(1) (2)(1)

c b c

FIG. 26. ��a� b� � c� � ��a � c� � �b � c��

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 27



Insert singleton construction
Unnest part

Delete singleton construction

Attribute to subclass
a

λ

a

(1)

(2)

λ

λ

a
(1)

(2) (2)

λ

a

(2) (2)

λ

(1)

(1)

λ

λ (2)(2)

(2)

a

a

(1)

(1)

λ

(2)

a

(1)

a

FIG. 27. �a�� � ��� �a � �a����

28 THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year)



Object-equivalent

aλ

Add lambda alternative

λ

(2)

λ
(1)

a

λ

λ

(2)

(1)

(1)

a

aλ

λ

(2)

(1)

a

a

(1)

(2)

λ λ

(2)

a
(1)

2) Unnest part

Insert singleton construction1)

Delete singleton construction

FIG. 28. �a�� � ���� a���

THEORY AND PRACTICE OF OBJECT SYSTEMS�(Year) 29


