From objects to classes:
Algorithms for optimal object-oriented design

Karl J. Lieberherr,
Paul Bergstein,
Ignacio Silva-Lepe
Northeastern University, College of Computer Science
Cullinane Hall, 360 Huntington Ave., Boston MA 02115
lieber@corwin.CCS.northeastern. EDU
phone: (617) 437 20 77

July 27, 1993

Texed at 21:10 July 27, 1993
Copyright (©1990 Karl Lieberherr

Accepted for publication in “Journal of Software Engineering”, a joint publication of IEE and
the British Computer Society.

Abstract

The contributions of this paper are two-fold: First we introduce a novel, axiomati-
cally defined, object-oriented data model, called the Demeter kernel model, and second
we present abstraction and optimization algorithms and their relationships for designing
classes from objects in the kernel model. We analyze several computational problems
underlying the class design process which is divided into two phases: a learning phase
and an optimization phase. This study focuses on approximation algorithms for the op-
timization phase and leads to a better understanding and a partial automation of the
object-oriented design process. The algorithms and the theory presented in this paper
have been implemented in the C++ Demeter System”™, a CASE tool for object-oriented
design and programming.

Keywords: Object-oriented programming and design, reverse engineering, formal software
engineering techniques, class hierarchy optimization.

Acknowledgements: Preliminary versions of this paper were published in the proceedings of

ER "90 [LBSL90b] and SOOLS 90 [LBSL90a].

1 Introduction

In their paper [JF88], Johnson and Foote state that “useful abstractions are usually designed
from the bottom up, i.e., they are discovered, not invented.” In [Ste89], Steier presents a theory
of human algorithm design. He compares this theory with published results from human design
activities in other areas (Lisp programming, Fortran programming, software design, mechanical
design and architectural design). Steier’s theory of algorithm design as well as the other studies
about human design, support Steier’s following claim:

Design is driven by evaluation in the context of examples: Designers run their
solutions to evaluate them in the context of some input to the program.

This statement gives strong support for object-oriented design to incorporate objects and not
only classes'. In this paper we propose algorithms which automate the discovery of classes from
object examples. We also study the complexity of the underlying computational problems.

In class-based object-oriented languages, the user has to define classes before objects can be
created. For the novice as well as for the experienced user, the class definitions are a non-trivial
abstraction of the objects. We claim it is easier to initially describe certain example objects and
to get a proposal for an optimal set of class definitions generated automatically than writing
the class definitions by hand. We present algorithms for abstracting class definitions (instance
variable types, abstract classes, inheritance) from a representative sample of object examples.

Our algorithms are programming language independent and are therefore useful to programmers
who use object-oriented languages such as C+4 [Str86], Smalltalk [GR83], CLOS [BDG*88] or
Eiffel [Mey88]. We have implemented the abstraction algorithms as part of our C++ CASE tool,
called the C++ Demeter System™ [Lie88], [LR88]. The input to the abstraction algorithms is
a list of object examples, and the output is a programming language independent set of class
definitions. They can be improved by the user and then translated into C++ by the CASE
tool.

We first describe our object example and class definition notations (the key concepts behind
the algorithms we present in this paper), since they are not common in the object-oriented
literature.

1.1 Motivation for object example notation

The importance of objects extends beyond the programmer concerns of data and control ab-
straction and data hiding. Rather, objects are important because they allow the program to
model some application domain in a natural way. In [MMP88], the execution of an object-
oriented program is viewed as a physical model consisting of objects, each object characterized

!Readers not familiar with object-oriented analysis, design and programming are referred to books such as

[Cox86, Mey88, CY90, Boo91].

il:Ident

coor 7]
/

t1:Table|:| __owner |:| L’D

pl:Person nl:Number
legl leg4
legz/ kegL%

I

11:Leg 12:Leg 13:Leg l4:Leg

Figure 1: Table object

by parts and a sequence of actions. It is the modelling that is significant, rather than the expres-
sion of the model in any particular programming language. We have devised a programming
language independent object example notation to describe objects in any application domain.

The objects in the application domain are naturally grouped into classes of objects with similar
subobjects. For our object example notation it is important that the designer names those
classes consistently. Fach object in the application domain has either explicitly named or
numbered subobjects. It is again important for our object example notation that the explicitly
named parts are named consistently. This consistency in naming classes and subparts is not
difficult since it is naturally implied by the application domain.

An object is described by giving its class name, followed by the named parts. The parts are
either physical parts of the object (e.g., legs of the table) or attributes or properties (e.g. owner
or color). An object example is in Fig. 1 which defines a table object with 6 parts: 4 physical
parts (legs) and two attributes: color and owner. The object example also indicates that the
four legs have no parts and that the owner is a person object with one part called ssn.

1.2 Motivation for class notation

We use a class notation which uses two kinds of classes: construction and alternation classes.?
A construction class definition is an abstraction of a class definition in a typical statically
typed programming language (e.g., C4+4). A construction class does not reveal implementation
information. We view a part as a high-level concept which might be implemented as a method,
not necessarily as an instance variable. An example of a construction class corresponding to
the object in Fig. 1 is in Fig. 2.

Each construction class inductively defines a set of objects which can be thought of being
elements of the direct product of the part classes. When modeling an application domain, it
is natural to take the union of object sets defined by construction classes. For example, the

?In practice we use a third kind, called repetition classes, which can be expressed in terms of construction
and alternation [Lie88].

Ident

color |:|

Table
owner ’ |:| ssn |:|

Person Number
legl ﬁgZ 19 leg4
Leg

Figure 2: Construction class

[]

Person

<o

i
N

[]

Company

Figure 3: Alternation class

owner of a table can be either a person or a company. So the objects we want to store in the
owner part of the table are either person or company objects. We use alternation classes to
define such union classes. An example of an alternation class is in Fig. 3. Person and Company
are called alternatives of the alternation class. Often the alternatives have some common parts.
For example, each owner had an expense to acquire the object. We use the notation in Fig. 4
to express such common parts.

Alternation classes have their origin in the variant records of Pascal. Because of the delayed
binding of function calls to code in object-oriented programming, alternation classes are easier
to use than variant records.

Alternation classes which have common parts are implemented by inheritance. In Fig. 4,

Numbwe

<O

address \

Person

Owner

D

String Company

Figure 4: Common parts

Person and Company inherit from Owner. Class Owner has methods and/or instance variables
to implement the parts expense and address.

Construction and alternation classes correspond to the two basic data type constructions in
denotational semantics: cartesian products and disjoint sums. They also correspond to the two
basic mechanisms used in formal languages: concatenation and alternation.

1.3 Informal description of the algorithm

We informally describe the abstraction algorithm MCDL-P (for Minimum Class Dictionary
Learning) in two steps: A basic learning step and a minimization step.

In the first step, we abstract a potentially non-optimal class dictionary graph from the object
examples. The abstracted class dictionary graph defines objects which are “similar” to the given
object examples. The object examples are described by a graph which shows the immediate
subparts of a given object. From the five object examples in Fig. ba-e we abstract the non-
optimal class dictionary graph in Fig. 5f. Two of the object examples are instances of the same
class Undergrad-student which has three parts called ssn, gpa, and major. In the abstracted class
dictionary graph, class Area is an alternation class. Notice how this class was discovered: In the
examples, part major of Undergrad-student contains objects belonging to two different classes.

In the second step, the class dictionary graph in Fig. 5f is minimized in two phases keeping the
set of defined objects invariant. The goal of the minimization phases is to minimize the number
of edges in the class dictionary graph to keep the software which will be attached to the classes
easy to manage. In the first phase we factor out common parts by introducing new alternation
classes if necessary. Fig. 6a shows the factored class dictionary from Fig. 5f. (CNF stands for
Common Normal Form and means that all common parts have been optimally factored, that
is we have a minimum number of construction edges.)

In the second minimization phase, we optimize the inheritance structure further. Fig. 6b
shows the fully optimized class dictionary graph, equivalent to Fig. 5f. We observe a decreased
number of alternation edges with respect to Fig. 6a. We also observe that, as a consequence,
the number of incoming alternation edges to any construction vertex has been reduced. This is
another criterion to determine when a class dictionary graph is optimal and it means that the
amount of multiple inheritance is minimal. Minimizng alternation edges is in general NP-hard.?
We can nevertheless obtain good approximations of an optimal class dictionary graph efficiently
and in this paper we present an efficient approximation algorithm.

Our algorithms can be used to analyze existing object-oriented programs regarding the proper
use of abstraction. Object examples which are used by existing object-oriented programs can
be given as inputs to the abstraction algorithms. The automatically generated class definitions
help to evaluate the class definitions in the existing programs. The algorithms are easy to teach
and can be applied by hand.

3However, when the result is a single inheritance hierarchy, the task can be solved in polynomial time

[LBSLYOb].

nl:Number
y |:| wn |:| nl:Number

course_assigned >

al:Adm_assistant |:|

pl:Professor cl:Course

m \
|:| salary |:| rl:Real

r1:Real
(a) (b)

|:| r2:Real
salary

gpa []rl:Real

% []n1:Number

course_assigned

tITA[]

|:| cl:Course

(0)

ul:Undergrad_student ul:Undergrad_student

[]

major ssn major
gpa gpa

[] L] I I R

nl:Number rl:Real el:Economics nl:Number rl:Real cl:Comp_Sci

(d) (e)

Professor TA Adm_assistant Undergrad_student

[] [oy [L]

course-
assigned | course-
assigned,

major
gpa

[] L] [] <>

Course Number Real Area \
|:| Comp_Sci

(®)

6
Figure 5: MCDL-P Example

Occupation
ssn

—> Number

— N\

Undergrad_ student Professor Adm_assistant

A A

Student Faculty <:> <:>Umver51ty employee

/ x course_assigned

gpa Course |:|
[]

Real

Economics Comp_Sci

(a)

Occupation

C> —= __» |:| Number

/\

Student University_employee
gpa salary
Real / \
Faculty

Ad ss stant
Undergrad_student m_assistan

course_assigned
major

Area

[] [] []
/ X TA Professor Course

Economlcs Comp_Sci

(b)
Figure 6: MCDL-P Example: optimized

This paper is part of our research program, called the Demeter System™ project (see [WBJ90]
for a survey). In section 2 we present the theoretical foundations of the Demeter data model
(ignoring its language definition capabilities since we don’t need them for describing design
algorithms). Section 3 discusses problems and their algorithms for object-oriented design while
section 4 discusses the practical relevance of our algorithms from a software engineering view
point. In section 5 we compare our work with related work in AI, data bases and object-oriented
software engineering. The appendix contains several NP-completeness proofs.

2 Structures for object-oriented design

We introduce mathematical objects which are fundamental to object-oriented design and pro-
gramming. A mathematical object is described as a tuple consisting of sets and relations defined
on the sets. A set of axioms defines minimal properties which the mathematical objects have
to satisfy.

For more information on mathematical objects, see the appendix.

The following definitions will be mathematical and perforce abstract. However they are essential
for presenting our algorithms and other formal results and they may also help to topple the
Tower of Babel that looms over object-oriented models and languages.

There has been considerable debate about the definition of object-oriented systems and there
is a lack of agreement on a formal foundation. [ABW*89, Dit90] describe characteristics which
such a formal model should possess and we view our formal model, which we call the Demeter
kernel model, a contribution towards the goals described in the two papers. The Demeter kernel
model has one distinguishing feature compared to other formal models which have appeared: It
offers a powerful capability to populate object-oriented databases [Lie88]. We call our model the
Demeter kernel model since we developed it during our work with the Demeter System (starting
in 1984, [Lie88]) and since it only describes the structural parts of useful object-oriented data
models. Next we describe the Demeter kernel model which consists of class dictionary graphs
and corresponding object graphs.

2.1 Class dictionary graphs

To describe multiple inheritance class libraries with part-of and inheritance relationships we
use graphs with construction and alternation vertices and edges. The information stored in
class dictionary graphs is considered to be essential for object-oriented design, as Booch writes
[Boo91]: “We have found it essential to view a system from both perspectives, seeing its “kind-
of” hierarchy as well as its “part-of” hierarchy.”

The concept of a part class and a part object which is used throughout the paper needs further
explanation. A part object does not have to be a physical part; any attribute of an object is
a part of it. We say that object oy is a part of object o1, if “0; knows about 0,”. Therefore,
our part-of relation is a generalization of the aggregation relation which only describes physical

containment. For example, a car is part of a wheel if the wheel knows about the car. The
concept of a part-class is a high-level concept which does not reveal implementation detail; the
parts might be implemented by operations.

Class dictionary graphs focus only on part-of and inheritance relations between classes. One
notably absent relation is the “uses” relation between class operations (see e.g., [LG86]). The
call relationships between classes describe important design information, e.g., for checking the
Law of Demeter [LHR88]. However, we find that class dictionary graphs as presented here, are
a useful design abstraction which can be debugged independently. Only in later design stages,
we augment class dictionary graphs with other information, such as operations.

We call a class S a supplier class to a class C, if in €' we use the functions of class S. The part
classes of a class ' are one important kind of supplier classes of (. If a design follows the Law
of Demeter, then there are only two other kinds of supplier classes (which are not considered in
a class dictionary graph): argument classes of functions of C' and classes of objects which are
created in functions of C'. It is an important insight of our approach that it is very worthwhile
for a first design step to consider only a limited set of supplier classes (the part classes) and
inheritance.

H Graph ‘ An object-oriented design H
vertices | construction | classes instantiable
alternation abstract
edges construction | class relationships | part-of relationships
labels are part names
alternation inheritance relationships

Table 1: Standard Interpretation of class dictionary graphs

In database terminology, a class dictionary graph is an object base schema with only a minimal
set of integrity constraints. Class dictionary graphs can be viewed as an adaptation of extended
entity-relationship diagrams for object-oriented design [TYF86]. More recently, graphs have
been used to model object-oriented data bases in [LRV90, GPG90].

The definition of a class dictionary graph is motivated by the interpretation in object-oriented
design given in Table 1. During the programming process, the alternation classes serve to
define interfaces (i.e., they serve the role of types) and the construction classes serve to provide
implementations for the interfaces.

Definition 1 A class dictionary graph* ¢ is a directed graph ¢ = (V,A; EC,EA) with
finitely many labeled vertices V. There are two defining relations EC, KA. EC is a ternary

4The class dictionary graphs described here are a specialization of the class dictionaries described in [Lie88],
[LR88]. The class dictionary graphs contain all the information necessary for many applications; however they
omit: terminal classes, concrete syntax, ordering of parts. For presenting design algorithms, e.g., we are not
concerned with the grammar aspects of class dictionaries since they would only clutter the presentation of the
algorithms. We also omit optional and repeated part-of relationships since they can be easily expressed in terms
of the primitives given here.

relation on V- X V x A, called the (labeled) construction edges: (v,w,l) € EC iff there is a
construction edge with label | from v to w. A is a finite set of construction edge labels. KA is a
binary relation on V x V', called the alternation edges: (v,w) € EA iff there is an alternation
edge from v to w. enddefinition

Next we partition the set of vertices into two subclasses, called the construction and alternation
vertices.

begindefinition We define

e the construction vertices VO = {v |v e V\Vw e V : (v,w) & EA}. In other words,
the construction vertices have no outgoing alternation edges.

e the alternation vertices VA= {v |ve V,Jw e V: (v,w) € EA}. In other words, the
alternation vertices have at least one outgoing alternation edge.

In standard object-oriented terminology we describe here the accepted programming rule: “In-
herit only from abstract classes” [JF88]. This rule can be exploited to derive an analogy between
class dictionary graphs and grammars. Sometimes, when we want to talk about the construc-
tion and alternation vertices of a class dictionary, we describe a class dictionary graph as a

tuple which contains an explicit reference to VC and VA: ¢ = (VC,VA,A; EC,EA).

We use the following graphical notation, based on [TYF86], for drawing class dictionary graphs:
squares for construction vertices, hexagons for alternation vertices, thin lines for construction
edges and double lines for alternation edges.

Example 1 Fig. 7 shows a class dictionary graph for satellites. Satellites can either be mil-
itary or civilian and they also can be either low orbit or geosynchronous. Military satellites
belong to a country and have a contract number assigned. Civilian satellites are described by a
manufacturer. For geosynchronous satellites we store their position while for orbiting satellites
we represent their path. For further illustration we give the components of the formal definition,
i.e.,

V = { Satellite, Orbit, Low_orbit, Geosynchronous,

Military, Civilian, Country, Position, Manufacturer, Path},

VC = { Low_orbit, Geosynchronous, Military, Civilian, Country,
Contract, Position, Manufacturer, Path,

VA = { Satellite, Orbit },

EC = { (Satellite, Orbit, orbit), (Low_orbit, Path, p),
(Geosynchronous, Position, p), (Military, Contract, c),
(Military, Country, country), (Civilian, Manufacturer, m) },

EA = { (Satellite, Military), (Satellite, Civilian),

(0rbit, Low_orbit), (Orbit, Geosynchronous) 1},

10

[J———[]
Satellite /‘7 Low-Orbit Path
CO—{

orbit
Orbit \
\1 0——

Geosynchronous Position
Civilian |:| |:| Military

m / country

L] L]

Manufacturer Contract Country

Figure 7: Satellites
A = {c, country, m, orbit, p }.

The definition of V' implies that FA C VA x V| since an alternation edge cannot start at a
construction vertex. We use V3, VCUy, VA, ete. to talk about the components of class dictionary

graph ¢.

For notational convenience, we overload the term vertex used for class dictionary graphs. Some-
times we mean by a vertex a labeled vertex of a class dictionary graph, and sometimes we mean
the label of a vertex. The context implies which of the two interpretations we mean. As an
example, consider the following hypothetical theorem:

Theorem 1 Let ¢ and) be two class dictionary graphs, where ¢ = (VCys,V Ay, Ay; ECy, EAy),
b = (VCy, VAy, Ay ECy, EAy). Class dictionary graphs ¢ and ¥ are object-equivalent if
Ve, =V,

and for all v € VC, the property
PartClustersy(v) = PartClustersy(v).

holds (PartClusters(v) is defined elsewhere).

In the definition of ¢ and ¢, VCy and VCy are sets of labeled vertices. In the equation
VCy =V,

we have omitted an explicit label extraction function; in the context of this equation we interpret
V(4 and V) as sets of labels and the equation expresses that the two sets of labels have to
be the same.

11

father
Child/\Person Name
O 0L

mother
ssn
L]] L]
Daughter Son Number

Figure 8: Child

In the expressions “for all v € V", v ranges over all labels and in
PartClustersy(v) = PartClustersy(v),

v stands for a labeled vertex in the appropriate graph.

This overloading saves complexity in our formulas, since without overloading the above equal-
ities would have to be written:

Label(VCy) = Label(VCy),

PartClustersy(Vertexyg(v)) = PartClustersy(Vertex,(v)).

Label is a function which extracts the label from labeled vertices and Vertezy is a function
which expands a label into a labeled vertex in class dictionary graph ¢. Since there is a
bijection between graph vertices and labels, it is justified to overload the meaning of verter in
class dictionary graphs for notational convenience.

Later we give a list of axioms which make a class dictionary graph into a legal class dictio-
nary graph. The interpretation in Table 1 is only one possible interpretation which we call
the standard interpretation. The motivation behind the abstract alternation/construction ter-
minology is that there are several useful interpretations of class dictionary graphs. In one of
those interpretations, a construction vertex is interpreted as an operation. We sometimes use
the standard interpretation to give intuitive explanations of relationships and algorithms.

The graphical notation presented above is useful for understanding class structures, but unfor-
tunately, it is not as concise as a textual notation. Therefore, we also use a textual notation

for class dictionary graphs which serves as an easy to learn, terse input notation for the Demeter
CASE tool. The textual notation is several factors more concise than the graphical notation.
To describe class dictionary graphs textually we use an adjacency representation which gives
the successors for each vertex. For example, the vertex Child in the graph in Fig. 8

is described by

Child :

12

// two alternation edges
Daughter | Son
*kcommons
// two construction edges
<father> Person
<mother> Person.

// introduces a comment line and *common* is syntactic sugar to separate the alternation
edges from the construction edges.

Please note that the syntax for an alternation vertex/abstract class, although very natural
from a graph-theoretic point of view, appears unnatural from the point of view of today’s
programming languages: In most programming languages which support the object-oriented
paradigm, the inheritance relationships are described in the opposite way. Each class indicates
from where it inherits. Of course, we can easily generate this information from class dictionary
graphs, but we feel that the Demeter notation is easier to use for design purposes. One reason
is that the design notation shows the immediate subclasses of a class and therefore promotes
proper abstraction of common parts. Another reason is that a class does not contain information
about where it inherits from and therefore the class can be easily reused in other contexts.

The construction vertex Person in Fig. 8 is described by:
Person =
// two construction edges

<name> Name
<ssn> Number.

Example 2 The following text

List : Empty | Nonempty *common.
Empty = .

Nonempty = <first> Element <rest> List.
Element = .

describes the class dictionary graph in Fig. 9:

The two edges leaving from List are alternation edges. The labeled edges are construction edges.

In this example we have the following class dictionary graph:

V = {Empty, Nonempty, Element, List},

VC = {Empty, Nonempty, Element},

VA = {List},

EC = {(Nonempty, List, rest), (Nonempty, Element, first)},
EA = {(List, Nonempty), (List,Empty)},

13

Nonempty Element

DT’]
\D

Empty

Figure 9: List
A = {first, rest}.

Definition 2 Vertex vy € V in a class dictionary graph ¢ = (V,A; EC, EA) is said to be
alternation-reachable from vertex vy € V wvia an alternation path of length & > 1, if
there exists a path of length k > 1 from vy to vy, such that for 0 < j <k —1:(v;,v;41) € FA.
We say that vertex vy, is alternation-reachable from itself. The path consists of the sequence of
edges.

Informally, an alternation path is a path which only contains alternation edges.

Vertex v, € V in a class dictionary graph ¢ = (V,A; EC, EA) is said to be reachable from
vertexr vg € V wvia a path of length & > 1, if there exist k — 1 vertices vy, vg,...,v5_1 such that
forallj, 0 <j <k—1:(vj,v41) € FA or Jw € V,3l € A such that v; is alternation-reachable
from w and (w,vj11,1) € EC. The path consists of the sequence of edges.

We say that vertex vy, is reachable from itself. A class dictionary graph is cycle-free if for all
v €V there is no path from v to v.

Vertex v, € V in a class dictionary graph ¢ = (V,A; EC, EA) is said to be construction-
reachable from vertex vg € V wia a construction path of length k& > 1, if there exists a
path of length k > 1 from vg to vy such that for all 7, 0 < 7 <k —13dw € V.3l € A such that
v is alternation-reachable from w and (w,v;41,1) € EC. The path consists of the sequence of
edges.

We say that vertex vy, is construction-reachable from itself.
Informally, a construction path is a path which only contains construction edges.

Note that all paths, alternation paths and construction paths must contain at least one edge.

A vertex w is alternation-reachable from alternation vertex v means in the standard interpre-
tation that w inherits from v or v = w.

A legal class dictionary graph is a structure which satisfies 2 independent axioms.

Definition 3 A class dictionary graph ¢ = (VC, VA, A; EC,EA) is legal if it satisfies the
following azioms (V = VC UV A):

14

pl ——» x p2——» Yy pll—bx

N tH

w

Figure 10: Forbidden subgraphs

1. Cycle-free alternation axiom:

There are no cyclic alternation paths, i.e., Yo € VA there is no alternation path from v
tov.

2. Unique labels axiom:

Yw € V there are no py,ps € V st Jz,y € VAL € A st eq = (1, 2,0) € EC and ey =
(p2,y,1) € EC, e1 # ey and w is alternation reachable from py and ps.

3. Cycle-free subgraph axiom:

For all v € V there exists at least one cycle-free partial class dictionary graph anchored
at v.

When we refer to a class dictionary graph in the following we mean a legal class dictionary
graph, unless we specifically mention illegality.

2.1.1 Discussion of axioms

The Cycle-Free Alternation Axiom is natural and has been proposed by other researchers, e.g.,
[PBEF*89, page 396], [Sno89, page 109: Class names may not depend on themselves in a circular
fashion involving only (alternation) class productions]. The axiom says that a class may not
inherit from itself.

The Unique Label Axiom guarantees that “inherited” construction edges are uniquely labeled
and excludes class dictionary graphs which contain the patterns shown in Fig. 10. Other
mechanisms for uniquely naming the construction edges could be used, e.g., the renaming
mechanism of Eiffel and the overriding of part classes [Mey88]. The theory does not seem to
be affected significantly by small changes such as this.

We list some important results of the theory of class dictionary graphs without explaining
them in detail. The theory is useful to designers and implementors of CASE tools for object-
oriented programming. (In what follows, P (N P) is the class of problems which can be solved
in deterministic polynomial (non-deterministic polynomial) time [GJ79].)

The results so far fall into three categories:

15

o Computing application development plans. Applications are developed in an incremen-
tal way, starting out with a minimal or minimum subset of classes and then adding in
each step a few more classes until all classes are implemented. Such a “growth plan”
is naturally determined by a class dictionary graph. A minimal or minimum subset of
classes is formalized by a minimal or minimum class subdictionary graph. A minimal
class subdictionary graph is a class dictionary graph which cannot be made smaller while
still preserving the class subdictionary graph property (local property). On the other
hand, a minimium class subdictionary graph is a class dictionary graph which is smallest
(least number of edges) among all class subdictionary graphs (global property).

The results are that finding a minimum class subdictionary graph is NP-hard [LW89]
while finding a minimal class subdictionary graph can be solved in polynomial time.

o Optimizing classes. A set of classes defines a set of objects in a non-unique way since
there are many different sets of classes which define the same set of objects. The question
is how can we select an optimum set of classes which is “object-equivalent” to a given set
of classes. The results are: 1. Minimizing a class dictionary graph is NP-hard [LBSL90c].
2. Minimizing a class dictionary graph is in P for single-inheritance class hierarchies
[LBSLI0b]. Our optimization algorithms are useful for improving class organizations so
that they are “good” from a software engineering point of view.

o Inductive inference. Objects are simpler than the corresponding classes. We have de-
veloped a polynomial algorithm for abstracting a class dictionary graph from example
object graphs [LBSLI0b]. The algorithm computes an “optimal” inheritance structure.
Our inductive inference algorithms are useful for reverse engineering and checking the
adequacy of test cases.

2.1.2 Programming with class dictionary graphs

To motivate the usefulness of class dictionary graphs further, we show with a simple example
how we use them to simplify programming. We have developed a CASE tool for C++ [Str86],
the C++4 Demeter System [LR88], which maps class dictionary graphs into a C++ class library
which is then enhanced manually with C4++ member functions implementing the application.
To each construction vertex corresponds a C++ class with a constructor and to each alternation
vertex corresponds an abstract C++ class.

Consider the class dictionary graph in Fig. 11. We want to implement a pocket calculator which
evaluates the object equivalent of expressions such as 3, (+3(+2 1)), (*3(+2 1)). We implement
the calculator in phases by starting with the smallest class subdictionary graph anchored at
Exp which means that in phase 0 we implement the classes Exp, Simple, and Number. Then we
choose the next larger class subdictionary graph which contains those classes, i.e., in phase 1
we implement additionally the classes Compound, Op, and Addsym. In the last phase we add
class Mulsym. The complete C++4 program which has to be written by the user is given in
Table 2. The missing parts of the C+4 program are generated from the class dictionary graph
in Fig. 11 by the Demeter System.

16

mpound Op
O—=—— <

o AN

|:| numValue > |:|

Simple Number Addsym Mulsym

Figure 11: Prefix expression class dictionary graph
(user-written)

‘ Growth phases ‘

‘ phases H user-written code H test inputs ‘

int Exp::eval(){} // virtual 3
int Simple::eval() {
return numvalue—eval();
0 !
int Number::eval() {
return val;

I
int Compound::eval() { (+3(+21))
return op—apply_op(argl —eval(),arg2—eval());
D
int Op::apply-op(int nl,int n2) {} // virtual
int Addsym::apply_op(int nl,int n2) {
return nl + n2;

I
int Mulsym::apply_op(int nl,int n2) { (*3(+21))
2 return nl * n2;

} ?

Table 2: Pocket calculator C++ implementation

17

IS PICTURE UPDATED?

4 < — — = —

Figure 12: Parts

2.2 Object graphs

We have defined the concept of a class dictionary graph which mathematically captures some of
the structural knowledge which object-oriented programmers use. Next we define object graphs
and their relation to class dictionary graphs. An object graph defines a hierarchical object and
is motivated by the interpretation of an object graph, called the standard interpretation, given

in Table 3.

H Graph ‘ Object-Oriented Design H

vertex object

immediate successor | immediate subpart
or component

edge label part name

Table 3: Standard interpretation for object graphs

Next we introduce three functions defined for class dictionary graphs. Those functions are used
to define the structural semantics of inheritance.

begindefinition Let ¢ = (V,A; EC, EA).

For v € Vi Parts(v) = {(l,w) | | € A,w € V,(v,w,]) € EC, and v is alternation-reachable
from v’} (see Fig. 12). An element of Parts(v),v € V is called a part of v.

Parts(¢) = U,eve Parts(v).

PartLabels(v) = {l | Jw € V s.t. (I, w) € Parts(v)}.
PartVertices(v) = {w | 3l € A s.t. ([,w) € Parts(v)}.
enddefinition

Parts(v) is a list of pairs where each pair consists of a label and a class of some part of v,
including inherited parts.

18

Fruit

O Tght> |:| Number

Apple |:| |:| Cherry

kernel stone

[] []

Kernel Stone

Figure 13: Fruit class dictionary graph

Example 3 We demonstrate the definitions with the following class dictionary graph (see Fig.
13):

Fruit : Apple | Cherry *common* <weight> Number.
Apple = <kernel> Kernel.
Cherry = <stone> Stone.

Number

Kernel
Stone = .

Parts(Apple) = {(kernel, Kernel), (weight, Number)}.
PartLabels(Apple) = {kernel, weight}.
PartVertices(Cherry) = {Stone, Number}.

The following definition relates a class dictionary graph with a set of object graphs. In object-
oriented programming language terminology, a class dictionary graph corresponds to a set of
class definitions and the object graphs correspond to the objects which can be created calling
“constructor” functions of the classes. In some languages, e.g., C++, the class definitions
considerably restrict the objects which can be created. The definitions which follow ask for
even more discipline than C++.

Definition 4 An object graph with respect to a class dictionary graph

o= (V,\; EC,EA) is a graph H = (W, S, Ag; FE,\) with vertex set W and S =VCy. Fis a
ternary relation on W x W x Ay. Ap is a set of edge labels. The function A : W — VCy maps
each vertex of H to a construction vertex of ¢. If (v,w,l) € F, we call [the label of the labeled
edge (v,w,l). Ag C A. enddefinition

19

ell ell

ovl\ cvl
'~ N\
alternation-reachable

Figure 14: Legality rule

Not every object graph with respect to a class dictionary graph is legal; intuitively, the object
structure has to be consistent with the class definitions: Fach object can only have parts as
prescribed in the class definition and the parts prescribed in the class definitions must appear
in the objects.

begindefinition An object graph H = (W, S, Ag; F,)\) is legal with respect to a partial class
dictionary graph P = (VCp,VAp,Ap; ECp, EAp, Elp) anchored at some vertex, where S =
VCp, if Vu e W Fv € S s.t. AMp)=v and

1. |PartClusters(v)|= the number of edges outgoing from u
2. ¥(p,v,0) € E : 31, A) € PartClusters(v) s.t. A(v) € A
3. Y(l,A) € PartClusters(v) : v € W s.t. Av) € A and (p,v,1) € E.

In database terminology, Objects(¢) represents all instances of object base schema ¢.
We use a textual notation for describing object graphs using an

adjacency representation which also shows the mapping of object graph vertices to class dic-
tionary graph vertices.

instl:v1(
<successorl> inst2:v2(...)
<successor2> inst3:v3(...)
<successorn> instn:vn(...))

The vertices correspond to the instance names. The name after the instance name is preceded
9.9

by a 7:” and gives the label assigned by A. The edge labels are between the < and > signs.

For describing shared objects, we also use the notation:

20

Al] *x—ﬁ

b C

B[| =y =]]i2 |:|\i4
be A
-
D—x+g

Figure 15: Object graph

instl:v1(
<successorl> inst2)

where inst2 is an object identifier defined elsewhere. Each object identifier has to be defined
once.

Example 4 Consider the class dictionary graph:
B <c>C.

A =
B = <bc> C.
C =.

The object graph

11:A(
 12:B(
<bc> i3:C())
<c> 14:C())

is legal with respect to the class dictionary graph (see Fig. 15). The object graph is given by:
W = {i1,12,:3,i4}, F = {(i1,42,b), (1,14, ¢), (:2,:3,be)}, Ag = {b,be,c}, A = {il — A2 —
B,i3 — C,i4 — C}.

If vertices are not shared, there is no need for naming them explicitly. Therefore, the above
object graph can also be described by:

21

<A(

 :B (
<bc> :C(O))
<c> :C())

The vertices are now named implicitly, e.g., by prefixing the class names with ¢ (for instance)
and by numbering them, if needed. The object graph is now:

W = {iA,iB,iC1,iC2}, E = {(iA,iB,b),...}.

Example 5 Consider the illegal object graph with respect to the class dictionary graph in Fig.
13:

:Apple(
<stone> :Stone()
<weight> :Number)
:Apple(
<kernel> :Kernel()
<weight> :Cherry)

The first object is illegal since apples don’t contain stones and the second, because Cherry is not
alternation-reachable from Number.

We have defined object graphs and their relationship to class dictionary graphs. We need a
second kind of object graph, called an object example graph, which has a life independent of a
class dictionary graph. Object example graphs are useful for describing objects from which we
want to abstract classes. An object example graph is described in terms of a set S of classes
whose relationships will be computed by the learning algorithm.

begindefinition An object example graph with respect to a set S is a graph
H = (W,S,Ap; E,). W,Ay, F are given as in definition 4. A : W — S labels each vertex of
H with an element of S. The following axioms must hold for H:

(1) No vertex of H may have two or more outgoing edges with the same label. (2) All vertices
which have the same element s € S as label (under A) must have either outgoing edges with
the same labels in Ay or no outgoing edges at all.

enddefinition

An object graph with respect to a class dictionary graph DG’ is an object example graph with
respect to set VCUpg.

22

2.3 Class dictionary graph learning

Given a list of object example graphs, the basic learning algorithm will learn a class dictionary
graph, ¢, such that the set of objects defined by ¢ includes all of the examples. Furthermore,
the algorithm insures that the set of objects defined by the learned class dictionary graph is a
subset of the objects defined by any class dictionary graph that includes all of the examples.
Intuitively, we learn a class dictionary graph that only defines objects that are “similar” to the
examples.

If there is no legal class dictionary graph that defines a set of objects that includes all of the
examples, we say that the list of object example graphs is not legal.

Class dictionary graph learning is formally treated in [LBSL90d]. We repeat here enough of
the definitions and the learning algorithm to make this paper self-contained. To formalize the
bottom-up design process we need the following definitions:

Definition 5 An object example graph H = (W, S, Ap; E,\) is similar to a set of object
example graphs Q, if the set of object example graphs Q U {H} is legal and if for each edge
(u, o/, 1) € E with Mu) = w and MNu') = ' there is an example graph Q; € Q which contains
an edge (v,v',1) where A\(v) = w and A\(v') = w'.

CDL-P (CLASS DICTIONARY LEARNING)

INSTANCE: A set of legal object example graphs ().

SEARCH: Find a class dictionary graph ¢ so that it OG' is an arbitrary object example graph
with respect to ¢ (S =V Cy), OG is similar to Q.

Next we define the size of a class dictionary graph.

Definition 6 The edge-size edge-size(DG) of a class dictionary graph DG is the number of
construction edges plus one quarter of the number of alternation edges.

Note: The 1/4 constant is arbitrary. Any constant ¢ < 1/2 would be appropriate. We want
alternation edges to be cheaper than construction edges since alternation edges express com-
monality between classes explicitly and lead to better software organization through better
abstraction and less code duplication.

2.3.1 Motivation for similarity

The CLASS DICTIONARY LEARNING problem is defined in terms of similar objects to
avoid the learning of a class dictionary graph which defines a much larger set of objects than
the examples intend to describe. The two class dictionary graphs in Fig. 16 have the same
edge-size, but the first one defines a much larger set of objects than the second class dictionary
graph.

23

Alt : Compound | Numerical | Variable |
Addsym | Mulsym.

Compound = <op> Alt <argl> Alt <arg2> Alt.

Numerical = <n> Number.

Variable = <v> Ident.

Addsym

Mulsym

edge-size: 5/4 +5 =6 1/4

Exp : Compound | Numerical | Variable.

Op : Addsym | Mulsym.

Compound = <op> Op <argl> Exp <arg2> Exp.
Numerical = <n> Number.

Variable = <v> Ident.

Addsym =

Mulsym =

edge-size: 5/4 +5 =6 1/4

Figure 16: Motivation for similarity

CDL-P can be solved efficiently by the algorithm described in [LBSLI0b].

An example explains how the algorithm works and shows how to learn the second class dictio-
nary in Fig. 16 from object examples.

Example 6 As input we use the following object examples from which the basic abstraction
algorithm abstracts:

:Numerical(<n> :Number)
:Variable(<v> :Ident)

: Compound (
<op> :Mulsym() <argl> :Numerical <arg2> :Variable)

: Compound (
<op> :Addsym() <argl> :Variable <arg2> :Numerical)

: Compound (
<op> :Addsym() <argl> :Compound <arg2> :Compound)

24

After the first three examples we have learned the class dictionary graph (asuming that Number
and ldent are predefined):

Compound = <op> Mulsym <argl> Numerical <arg2> Variable.
Mulsym =

Numerical = <n> Number.

Variable = <v> Ident.

After the fourth example we have learned (without repeating classes which have not changed):

Compound =

<op> Compound_op

<argl> Compound_argl <arg2> Compound_arg?2.
Compound_op : Mulsym | Addsym.
Compound_argl : Numerical | Variable.
Compound_arg?2 : Variable | Numerical.
Addsym =

After the fifth example we have learned:

Compound_argl : Numerical | Variable | Compound.
Compound_arg?2 : Variable | Numerical | Compound.

Simplification and renaming gives as result:

Compound =
<op> Op
<argl> Exp <arg2> Exp.
Op : Mulsym | Addsym.
Mulsym =
Addsym =
Exp : Numerical | Variable | Compound.
Numerical = <n> Number.
Variable = <v> Ident.

Note that the first class dictionary graph in Fig. 16 would define too many objects; it would
violate the similarity constraint on the learning process.

25

2.3.2 Object example notation

The object example notation needs to be contrasted with the object graph notation. Although
they are syntactically very similar, there are some subtle differences. The goal of the object
graph notation is to describe objects which might contain shared subobjects while the goal of
the object example notation is to define information from which we want to abstract classes.
In the latter case there is no need to express objects with shared subobjects. In object graphs
we also want to describe values for terminal classes such as ldent and Number while in object
example graphs this information would not be useful.

Therefore, an object example description has the following syntactic form:

:v0(
<successorl> :v1 (...)
<successor2> :v2 (...)
<successorn> :vn (...))

where the (...) may be omitted. This means that an object example description may have all
objects only nested to one level.

This capability is useful since it allows shorter object descriptions for reasons to be explained
later. It also allows to learn class dictionary graphs which violate the cycle-free subgraph axiom.
Consider the following two object graphs:

:A(:B)
:B(:4A)

The abstracted class dictionary graph is illegal:

=
1]

 B.
<a> A.

(vs]
1]

as pointed out by the Cycle-Free Subgraph Axiom.

2.3.3 Practicality of class dictionary graph learning

Our learning algorithm is only practically useful if it does not require too many examples and
if the examples are easy to find. Fortunately, the algorithm has both properties. We state an
upper bound on the number of examples needed by the basic algorithm in terms of the learned
class dictionary:

26

For each construction vertex v we need at most as many examples as the maximum N(v)
over all parts of the number of construction vertices which are alternation-reachable from each
part vertex. More precisely, N(v) = maxz{ala = number of construction vertices alternation-
reachable from w, where w € PartVertices(v)}. For a construction class without parts we need
one example. The structure of the parts is not specified by the examples and each example
only contains as many objects as it has parts.® A class A with no parts needs one example:
A(). For a further discussion see section 2.5.

Example 7 For the following class dictionary graph

Compound =

<op> Op

<argl> Exp <arg2> Exp.
Op : Mulsym | Addsym | Subsym.
Exp : Numerical | Variable | Compound.
Mulsym
Addsym
Subsym

we need at most 8 examples and a total of 14 objects:

Compound : 3 examples, each containing 3 objects
Mulsym 1 example, each containing 1 object
Addsym : 1 example, each containing 1 object
Subsym 1 example, each containing 1 object
Numerical: 1 example, each containing 1 object

1

Variable: example, each containing 1 object

This is only an upper bound since we can learn the above class dictionary graph from:

: Compound (
<op> :Subsym()
<argl>
: Compound (
<op> :Mulsym()
<argl> :Numerical (<n> :Number)
<arg2> :Variable(<v> :Ident))
<arg2>
: Compound (

>This restriction is only theoretical, aimed at obtaining an upper bound. Object example graphs can have
as deep a structure as desired.

27

<op> :Addsym()
<argl> :Variable
<arg2> :Numerical))

which contains only 1 example with 12 objects.

structure as desired.

It is important for the above upper bound that

A(
 :B (xxx-something)
<c> :cO))

A(
 :B (yyy-something)
<c> :cO))

(6 objects) can be abbreviated as (5 objects)

<A(
 :B // B is defined elsewhere
<c> :C()) // C can have no parts
:B(xxx-something)
:B(yyy-something)

Object example graphs can have as deep a

We can treat each construction class at the outermost level.

2.3.4 Learning better class dictionary graphs

Next we focus on learning a minimum class dictionary graph from examples.

MCDL-P (MINIMUM CLASS DICTIONARY LEARNING)

INSTANCE: A set w of legal object examples.

SEARCH: Find a class dictionary graph ¢ so that Objects(¢) contains only objects similar to
objects in w and for which edge-size(¢) is minimum.

MCDL-P is a minimization version of CDL-P where the class dictionary graph edge-size is
minimized. MCDL-P is NP-hard which is proven in the appendix. We use the following
combined algorithm for abstracting class definitions from object examples:

1. Apply algorithm CDL-A.

2. Class dictionary graph minimization: Apply algorithm ACP followed by algorithm Con-

solidate, both defined subsequently.

This algorithm is fast but only provides an approximate solution to MCDL-P.

28

2.4 Class dictionary graph minimization

To formalize the concept of class dictionary graph minimization, we need the following defini-
tions.

Definition 7 A class dictionary graph G1 is object-equivalent to a class dictionary graph
G2 if Objects(G1) = Objects(G2).

Object equivalence can be expressed purely in graph-theoretic terms without referring to ob-
jects.

In what follows we will describe the main components of class dictionary graph minimization by
outlining one of the relationships that came up from our investigation, namely: C DM S(¢) =

CAS(CNFS(6)).
2.4.1 Common normal form

We introduce a normal form for class dictionary graphs. To this end, we consider the equivalence
relation on construction edges given by the parts defined by the set of construction edges of a
class dictionary graph.

Definition 8 Let (u,w1,ly), (v,we,ly) € ECy for some class dictionary graph ¢. (u,wq,l)
part-equivalent (v, w,, ly) iff A(wy) = A(w,y) and |y =I5, where A(w) is the set of construc-
tion vertices alternation-reachable from w.

We say, for a particular equivalence class of size greater than 1 of the part-equivalent relation®,
that all but one of the parts defined by the edges in the equivalence class are redundant.
Informally, a class dictionary graph is in common normal form if it does not contain redundant
parts.

Definition 9 A class dictionary graph ¢ is in common normal form (CNF) if for all
€1, ea € ECy, e1 part-equivalent e; = €1 = e5.

The following problem formalizes the transformation of a class dictionary graph into an equiv-
alent class dictionary graph in common normal form.

CNF-P (COMMON NORMAL FORM)
INSTANCE: A legal class dictionary graph ¢.

61t is straightforward to verify that part-equivalent is an equivalence relation, and the exercise is left to the
reader.

29

SEARCH: Find a legal class dictionary graph which is object-equivalent to ¢ and which is in
common normal form.

A simple procedure for transforming a class dictionary graph to common normal form can be
obtained by the following apparatus:

CNF Rule.

1. Select an equivalence class R of part-equivalent such that |R| > 1.

2. Choose one construction edge, (v,w,l) € R, and replace every other edge, (n,w’,l) €
R, where w # w’ with an edge (n,w,[). Note that this replacement preserves object
equivalence since A(w;) = A(w;), for 1 <u,5 < |R|. Now, every edge in R is of the form
(ni,w, 1), for 1 < ¢ <|R|.

3. Introduce a new alternation vertex v, and |R| alternation edges (v, n1), (v,92), ..., (v, R)),
where (n;,w,[) € R, for each n;, if such an alternation vertex does not already exist. Delete
all edges (n;,w,l) for 1 < ¢ < |R|, and add edge (v,w,l). Note that for 1 < i < |R|,
(I,w) € Parts(n;) still holds since n; is alternation reachable from v.

Lemma 1 For all legal class dictionary graphs ¢ there is a sequence o of applications of CNF
rule and there is a class dictionary graph ¢, in CNFS(¢) such that ¢1 can be obtained by

applying o to ¢.

Proof:

Let ¢1 be an arbitrary class dictionary graph, and oy the sequence of applications of CNF rule
that contains exactly one application of CNF rule for each different part in Parts(¢y). After
the application of CNF rule corresponding to part p;, there will be only one occurrence of p; in
@1, therefore p; will not be redundant. O

It follows that CNF-P can be solved in polynomial time.

Notice that to bring a class dictionary graph to CNF, it might be necessary to introduce
new alternation vertices, although class dictionary graph edge-size is effectively decreased since
redundant parts are more costly than alternatives. We give a fast algorithm, called “ACP” (for
abstraction of common parts), for transforming to common normal form, i.e., for solving CNF.
This algorithm is not as simple as possible but it behaves well in practice in combination with
the consolidation of alternatives algorithm.

Algorithm ACP (Abstraction of Common Parts)

1. Add to the original class dictionary graph an alternation vertex, v, which has as alter-
natives all vertices of the original class dictionary graph which do not have any incom-
ing alternation edges. This insures that every vertex in the class dictionary graph is
alternation-reachable from v.

30

2. Call AR(v) to compute for each vertex the set of alternation-reachable construction ver-
tices.

3. Call ACP-Vertex(v).
4. If there are no construction edges outgoing from v, delete vertex v and all of its outgoing
edges (v,w) € FA.
Algorithm AR(v) (Alternation Reachable)

1. If v is marked “AR-DONE”, return S,,.
2. If v € VC then S, = {v}.

3. Else

(a) Sy:={}
(b) For each w, where (v,w) € EA, S, := 5,U ACP-Vertex(w)

4. Mark v “AR-DONE” and return 5,.
Algorithm ACP-Vertex(v)

1. If v ¢ VA or vis marked “ACP-DONE”, return.
2. For each w, where (v,w) € EA, call ACP-Vertex(w)

3. While there is a label [and a set of construction edges, F, such that ¥(v,w) € EA :
(w,u,l) € EC where the set of construction edges alternation-reachable from wu is equal
to E (we say the part ([,u) is redundant in every alternative of v), replace one such
construction edge, (w,u,!), with the new construction construction edge (v,u,[), and
delete all other such construction edges.

4. While there is a part that is redundant in two or more alternatives of v:

(a) Select a part, (/,u), which is redundant in at least as many alternatives as any other
part.

(b) Introduce a new alternation vertex, v’ and add construction edge (v',u,[) and alter-
nation edge (v,v’).

(¢) Foreach w # v’ such that (v,w) € FA and (w,v’,l) € EC where the set of construc-
tion vertices alternation-reachable from wu is equal to the set alternation-reachable
from v, delete edges (w,u’,l) and (v,w) and add the alternation edge (v’, w).

(d) Call ACP-Vertex(v').

31

5. While there is a part (I, u) which is redundant in two or more vertices which are alternation-
reachable from v:

(a) Introduce a new alternation vertex, v’ and add construction edge (v',u,).

(b) For each w alternation-reachable from v where (w,u’,l) € EC where the set of con-
struction edges alternation-reachable from wu is equal to the set alternation-reachable
from u’, delete edge (w,u’,l) and add the alternation edge (v',w). If w is an alter-
native of v, then also replace the alternation edge (v, w) with (v,v’).

(c¢) Call ACP-Vertex(v').
6. Mark v “ACP-DONE” and return.

Example 8 We demonstrate the normal form transformation by algorithm ACP with the fol-
lowing class dictionary graph:

Element : Coin | Brick | Box.

Coin =
<weight> Number <position> Vector.

Brick = <color> Ident
<width> Number <height> Number <length> Number
<weight> Number <position> Vector.

Box = <contents> ElementList
<width> Number <height> Number <length> Number
<weight> Number <position> Vector.

This class dictionary graph is not in common normal form since weight and position are re-
dundant in Coin, Brick and Box.

Therefore we factor them:

Element : Coin | Brick | Box
common <weight> Number <position> Vector.

The resulting class dictionary graph is:

Element : Coin | Brick | Box

common <weight> Number <position> Vector.
Coin = .
Brick = <color> Ident

<width> Number <height> Number <length> Number.
Box = <contents> ElementList

<width> Number <height> Number <length> Number.

32

which is not yet in common normal form. We introduce a new class:

QuadrangularElement : Brick | Box
common <width> Number <height> Number <length> Number.

Now the class dictionary graph is in common normal form:

Element : Coin | Brick | Box

common <weight> Number <position> Vector.
QuadrangularElement : Brick | Box

common <width> Number <height> Number <length> Number.
Coin = .
Brick = <color> Ident.
Box = <contents> ElementList.

2.4.2 Consolidation of alternatives

Following the definition of a class dictionary graph, a second component of class dictionary
graph minimization has to be concerned with alternation vertices. It turns out that alternatives
defined by alternation vertices can be redundant as well, although in a less clear cut way than
parts defined by construction vertices.

CA-P (CONSOLIDATION OF ALTERNATIVES)

INSTANCE: A legal class dictionary graph ¢.

SEARCH: Find a class dictionary graph ¢, such that the total number of alternation edges of
¢1 1s minimal and so that the following two conditions hold: 1. ¢ and ¢; are object-equivalent.
2. ¢1 has the same number or less construction edges than ¢.

CA-P is NP-hard which is shown in the appendix.

The algorithm presented in this section is fast but only provides an approximate solution for

CA-P (CONSOLIDATION OF ALTERNATIVES).

There are two aspects to consolidating alternatives:

o Inventing new alternations. We try to find new alternation vertices which allow us to
decrease the number of outgoing alternation edges of existing alternation vertices. This
leads to a deepening of the inheritance hierarchy. For example:

At :A| B|CIDIE.
B1 : A| B | C.

Ci : A | B | D.
D1 : A | B | E.

33

can be abbreviated to:

Al : N1 | C|DIE
B1 : N1 | C.

C1 : N1 | D.
D1 : N1 | E.
N1 : A | B.

e Using alternations for “covering” existing alternations. We try to express a given alter-
nation in terms of existing alternations. For example,

Cover : Al Bl CI|DI|E.
Al A | C | E.
Bl : B | D .
A=

can be abbreviated to

Cover : Al | B1.

Al A | C | E.
Bl : B | D .
A=

In this example multiple inheritance is removed since we found an “exact cover” of Cover

with Al and B1.

The algorithm “Consolidate” we give next is better at introducing new alternations than at
optimally reusing existing alternations.

Algorithm: Consolidate Alternatives

The algorithm considers for all alternation vertices the set of all possible unordered pairs of
alternatives defined by a same alternation vertex.

If there are pairs that are defined by two or more alternation vertices:

1. Select the pair of alternatives (1), (a2), defined by the most alternation vertices.

2. Create a new alternation vertex as. Create two new alternation edges with source vertex
as and target vertices o and g, respectively.

34

3. For each alternation vertex «a; that defines the pair,

o Delete the two outgoing alternation edges with targets oy and as and source «;.
e Add a new alternation edge with source a; and target as.
4. Consolidate alternatives in the new class dictionary graph. (Call this algorithm recur-

sively).

For each alternation vertex «; in the class dictionary graph,

o If o; has only one incoming alternation edge with source vertex aj then:

1. Make «y, the source vertex of each and every outgoing alternation edge of «;.
2. Delete the alternation edge (ag,a;).

3. Delete the alternation vertex «;.

Example 9 The following example shows how the algorithm recognizes common triples:

Z:A|BJ|CID.
Y:A|BI|C| E.
X:A|BI|C| F.
The algorithm first learns:
AOTB : A | B.

yA : AOrB | C | D.

Y : AOTB | C | E.
X : AOTB | C | F.
Then:

AOrBOrC : AOrB | C.

AOTB : A | B.

A : AOrBOrC | D.

Y : AOrBOrC | E.

X : AOrBOrC | F.

Now, AOrB is eliminated:

35

AOrBOrC : A | B | C.

A : AOrBOrC | D.

Y : AOrBOrC | E.

X : AOrBOrC | F.
Analysis:

e Running time

If we start out with p alternation vertices the algorithm might add O(p*) alternations
vertices. In the worst case we have to look at all pairs of alternatives and therefore the
running time of the algorithm is O(Size(input)?).

e Correctness

The algorithm does not change the set of objects defined by the class dictionary graph.

We now turn to class dictionary graph minimization in general.

CDM-P (CLASS DICTIONARY MINIMIZATION)

INSTANCE: A class dictionary graph G'= (V,A; EC, EA).

SEARCH: Find a class dictionary graph G' = (V',A; EC', EA") object-equivalent to G, such
that |[EC'| + |FA’| is minimum.

CDM-P is NP-hard which is shown in the appendix. A useful approximation algorithm is to
first use algorithm ACP followed by algorithm Consolidate Alternatives.

2.5 Object example generation

To get a better understanding of the abstraction algorithms, we also consider their inverse.
The abstraction algorithms produce a class dictionary graph from a set of object examples.
How can we find a set of object examples for a given class dictionary graph so that the object
examples contain all the essential information necessary to (almost perfectly 7) retrieve the
class dictionary graph? This analysis is important to understand that our algorithm needs only
a small number of training examples.

OEG-P: (OBJECT EXAMPLE GENERATION)

INSTANCE: A legal class dictionary graph ¢.

SEARCH: Find a set w of legal object examples such that ¢ is object-equivalent to all elements
in CDLS(w).

OEG-P can be solved in polynomial time by the following algorithm OEG-A. For a given
construction vertex v compute the number, called EXAMPLES(7), as follows: determine

"The names of alternation classes will be generated by the algorithm.

36

the maximum over each part vertex n of ~ of the number of construction vertices which are
alternation reachable from 7. For a construction vertex ~ with 0 parts, EXAMPLES(y) = 1.
For vertex v we generate KX AM PLES(~) object examples which have the parts determined by
Parts(vy). In each generated object example all alternatives for the parts must be tried, however
the composition of the part classes is left unspecified (only use the class name). For each object
o created and for each part s, create a part for o with a value from the list of construction
classes alternation reachable from s;. If the list of alternation-reachable construction classes
is not long enough, start repeating values from the beginning. If it contains a single element,
repeat it every time.

Example 10 Consider the class dictionary graph ¢:

Al : A | B *common* <bi1> B1.
Bi : D | E .

A=

B = <d> D.

D =

E =

OFEG-A(¢) is:

A(C <b1> D), A(<b1> E)

B(<d> D <bi1> D), B(<d> D <bi> E)
DO

EQ

The following theorem shows that the algorithm OEG-A achieves its goal:
Theorem 2 V class dictionary graphs ¢ : ¢ is object-equivalent to CDL(OFEG-A(¢)).

Proof.
By induction on the depth of objects. O

2.6 Relationships

To find good practical algorithms for the abstraction problems and to study the complexity of
them, we investigate relationships between the basic problems.

Theorem 3 For all legal class dictionary graphs ¢: CAS(CNFS(¢)) = CDMS(¢).

37

CNF CA

Figure 17: Minimization

Proof:

Consider figure 17. We start with a class dictionary graph GG and we transform it to CNF by
minimizing the construction edges. The only way to minimize the construction edges in an
object-equivalent way is to move them up along existing or new alternation edges. There are
many class dictionary graphs which are in CNF and object-equivalent to the original. Each
contains “some consolidation of alternatives”.

Once we have minimized the construction edges, we minimize the alternation edges, keeping
the construction edges at the minimum. Usually several non-isomorphic class dictionary graphs
with the same minimum number of edges can be obtained. It is conceivable that by adding
construction edges, we could get a lower minimum. But to keep the class dictionary graph
object-equivalent we could only add construction edges by introducing redundant parts. It is
always cheaper to factor the redundant parts because

A : B | C *common* <d> D.
B =.

c = .

(edge-size: 1.5)

is smaller in edge-size than

(vs]
1]

<d> D.
<d> D.

Q
1]

38

(edge-size: 2)

Therefore there is no trade-off between construction and alternation edges (i.e., we can not add
extra construction edges to get a better consolidation of alternatives). O

Theorem 4 For all legal object examples w: MCDLS(w) = CDMS(CDLS(w))

Proof:

Follows from theorem 3 and the definitions.O
Theorem 5 For all legal class dictionary graphs ¢ : CDMS(¢) = MCDLS(OEGS(¢)).

Proof:
Follows directly from the definitions.O

3 Practical relevance

In this paper we propose a metric (minimizing the number of edges) for measuring class hi-
erarchies. We propose to minimize the number of construction and alternation vertices of a
class dictionary graph while keeping the set of objects invariant. Our technique is as good as
the input which it gets: If the input does not contain the structural key abstractions of the
application domain then the optimized hierarchy will not be useful either, following the maxim:
garbage in — garbage out.

However if the input uses names consistently to describe either example objects or a class
dictionary graph then our metric is useful in finding “good” hierarchies. However, we don’t
intend that our algorithms be used to restructure class hierarchies without human control. We
believe that the output of our algorithms makes valuable proposals to the human designer who
then makes a final decision.

Our current metric is quite rough: we just minimize the number of edges. We could minimize
other criteria, such as the amount of multiple inheritance or the amount of repeated inheri-
tance. A class B has repeated inheritance from class A, if there are two or more edge-disjoint
alternation paths from A to B. The study of other metrics is left for future research.

We motivate now why our metric produces class hierarchies which are good from a software
engineering point of view.

3.1 Minimizing construction edges

Even simple functions cannot be implemented properly if a class dictionary graph is not in
CNF. By properly we mean with resilience to change.

Consider the following class dictionary graph which is not in CNF:

39

Coin = <radius> Number <weight> Number.
Brick = <width> Number <length> Number <height> Number <weight> Number.

Suppose we implement a print function for Coin and Brick. Now assume that several hundred
years have passed and that we find ourselves on the moon where the weight has a different
composition: a gravity and a mass. We then have to rewrite our print function for both Coin

and Brick.

After transformation to CNF we get:

Coin = <radius> Number .
Brick = <width> Number <length> Number <height> Number .
Weight_related : Coin | Brick *common* <weight> Number.

Now we implement the print function for Coin:

void Coin::print() {
radius -> print(); Weight_related::print();}

After the change of the weight composition, we get
Weight_related : Coin | Brick *common* <mass> Number <gravity> Number.

We reimplement the print function for this new class and no change is necessary for classes

Brick and Coin.

In summary: if the class dictionary graph is in CNF and the functions are written following the
strong Law of Demeter [LHR88], the software is more resilient to change. The strong Law of
Demeter says that a function f attached to class C should only call functions of the immediate
part classes of C, of argument classes of f, including C, and of classes which are instantiated in

f.

3.2 Minimizing alternation edges

Consider the following non-minimal class dictionary graph:

Occupation :
Undergrad_student | TA | Professor | Adm_assistant
kcommon <ssn> Number.
Student : Undergrad_student | TA *common* <gpa> Real.
Faculty : Professor | TA *common* <course_assigned> Course.

40

Professor =

TA = .

Adm_assistant = .

Course =

Undergrad_student = <major> Area.

Area : Economics | Comp_sci.

Economics =

Comp_sci = .

University_employee : TA | Professor | Adm_assistant
common <salary> Real.

Change the class definitions for Occupation and University_employee to

Occupation : Student | University_employee *common* <ssn> Number.
University_employee : Faculty | Adm_assistant *common* <salary> Real.

We have now reduced the number of alternation edges by 3 at the expense of adding repeated
inheritance. By repated inheritance we mean that a class is inherited several times in the same
class. In the above example, class Occupation is inherited twice in class TA:

Occupation -> University_employee -> Faculty -> TA
-> Student -> TA

However, not only alternation edges are reduced, also the amount of multiple inheritance, which
we propose as another metric to produce “good” schemas from the software engineering point
of view.

Repeated inheritance is undesirable under certain situations. For example, when we implement
the class hierarchy in C4++ using virtual base classes, we can no longer cast an Occupation
object to a TA object.

Another indication that our class dictionary graph optimization algorithm MCDL is useful is
that it succeeds in finding single-inheritance solutions. We can prove the following statement:
If we give a class dictionary graph which is object-equivalent to a single-inheritance class dic-
tionary graph to the optimization algorithm MCDL, it will return such a single-inheritance
class dictionary graph. From a software engineering standpoint, a single inheritance hierarchy
is simpler than a multiple-inheritance hierarchy and our optimization algorithm will find such
a hierarchy, if there is one.

3.3 Generalization to methods

So far we have considered parts of classes to be classes themselves. Another useful way of
looking at parts is as methods attached to classes. Particularly if we consider applying class

41

dictionary minimization to class dictionaries other than those supplied by the basic abstraction
algorithm. Now we can no longer assume that the classes in the class dictionary to be minimized
come from the abstraction of object examples which in turn had no methods attached to them.

Therefore we must find a suitable representation for methods in a class dictionary graph. We
can represent methods in a class dictionary graph in three ways:

e By their names and signatures. That is, specifying the name of the method and the class
names of the argument types and return type.

e By their names, signatures and the dependencies they define. That is, we can add to the
signature specification a list of class names referred to by the method.

e By their implementation. This includes signature, dependencies and code.

Let us consider the three options. Specifying implementation involves too much unnecessary
detail and, unless a formal notation is invented, also dependent on some programming lan-
guage syntax. Inventing a formal notation is out of the scope of this work and it is not clear
whether it would shed much light to the issues we are addressing, namely, those of abstracting
commonalities.

Specifying dependencies could give more insight in discerning whether or not two method
specifications are the same and hence subject to abstraction. However, specitying dependencies
forces us to consider issues such as what kinds of dependencies can a method validly specify,
what classes are visible to a specific method, issues not immediately related to the problem
of method abstraction. An interaction of our work with theories that explore the issue of
specification of dependencies, such as the Law of Demeter [LHRS88], is definitely important in
its own right and is left for future research.

With this in mind, we represent methods by their names and signatures. We consider two
types of methods, those that can be redefined in subclasses of an alternation class and those
that cannot. Even at this early point we realize that, although we want to minimize class
dictionaries with methods, we do not want to eliminate method edges in the process. With
this constraint the concepts of recognizing commonalities and minimizing class dictionaries get
a new meaning. We want to identify polymorphism as given by identical method definitions
in unrelated classes. We want to group these classes in inheritance hierarchies that capture
the polymorphic method as an abstract concept. We are actively pursuing the formalization of
these ideas at the present time.

4 Related work

The fast algorithm which we present here has not been reported in the literature. Our work
is a continuation of earlier work on inductive inference [CF82, Chapter XIV: Learning and
inductive inference], [AS83]. Our contribution is an efficient algorithm for inductive inference

42

of high-level class descriptions from examples. Related work has been done in the area of
learning context-free grammars from examples and syntax trees [AS83]. The key difference
to our work is that our approach learns grammars with a richer structure, namely the class
dictionary graphs we learn, define both classes and languages.

In [Cas89, Cas90] and in his upcoming dissertation, Eduardo Casais introduces global and
incremental class hierarchy reorganization algorithms. Those algorithms differ from our work
in a number of ways:

o The models used are different. Casais uses general graphs while we use graphs with
a special structure which has to satisfy three axioms needed for data modelling. For
example, we distinguish between abstract and concrete classes.

o The goal of Casais’ algorithms is to restructure class hierarchies to avoid explicit rejection
of inherited properties. In our work we currently avoid rejected properties.

What is unique of Casais’ model and algorithms is the capability to model undesirable class
hierarchies and to optimise them while minimizing the changes needed.

Automatic structuring of classes is studied in [Pir89]. Cardelli [Car84] proposes a technique for
inferring multiple inheritance from objects (records). But he does not deal with the optimality
question addressed in this paper: what is the optimum way of inferring inheritance?

Pun and Winder [PW89] discuss automatic class hierarchy construction. They describe the
process of factoring out common parts from an existing set of classes to form superclasses, but
do not include a learning component to obtain the initial set of classes.

Instead of providing algorithms, Pun and Winder suggest that a factorization engine could be
built based on an existing computer algebra system. A "normalized class hierarchy” is obtained
when there are no more common parts to factor. Thus, the factorization engine performs an
operation similar to the CNF transformation.

The CNF transformation presented in this paper extends the work of Pun and Winder in
several ways. First, our model allows composite objects including recursion while Pun and
Winder allow only objects with a flat list of attributes. Second, we give an algorithm for the
CNF tranformation and show that the time complexity is a polynomial of low degree. Finally,
we introduce the concept of object-equivalence which defines the legal transformations on a
class hierarchy.

Pun and Winder propose construction of a "normalized expression filter” to produce a "most
desirable” normalised class hierarchy. The filter would be constructed as an expert system
allowing users to input rules and constraints which might, for example, specify the priorty of
certain parts in the factorization process. In contrast, we introduce the concept of an optimal
class dictionary and show how the optimization can be fully automated. We further show
that the time complexity for optimization is in P for the single inheritance case, but that the
multiple inheritance case is NP-hard.

43

In software engineering, program reorganization based on the degree of coupling has been used
in [KK88, LH89, Cas90]. Inductive inference techniques are reported in [DJ88]. In the relational
database field various algorithms for deriving schemas in normal form have been developed to
help the application builder to pin-point design flaws [Lie85].

The problem of learning classes from object examples has been studied earlier in Al (e.g.,
[SM86], [CF82]). Clustering algorithms have been applied to build a tree of mutually exclusive
classes from a given object set. Our work extends this earlier work since we have more structure
in our classes, e.g., the capability to define a language.

The axiomatic Demeter kernel model which is used in this paper is new but similar data models
exist in the literature. In particular, the notions of “alternation” and “construction” appear as
“classification” and “aggregation” in both Hull and Yap’s Format Model [HY84] and Kuper and
Vardi’s LDM [KV84]. Ait-Kaci’s feature structures [AKN86] are also related to the Demeter
kernel model. Our abstraction algorithms can be adapted to abstract feature structures from
examples (this was actually the starting point of our investigation).

Other related work in the data base field is described in: [AH88, BMW8&6, TL82].

Winston’s work [Win70] is concerned with learning visual concepts in a world of 3-dimensional
structures comprised of bricks, wedges, and other simple objects. A scene is represented by a
semantic net with relations such as has-part, supported-by, in-front-of, a-kind-of, has-property-
of, etc.

There are several ways in which objects can be grouped. The most relevant to our work are by
common properties and by identification with a known model.

The following example serves to illustrate the differences.

Example 11 Consider the world with objects A, B, C, X, Y, and Z with the following proper-

ties:

A: has-part X, has-part Y, has-part Z
B: has-part X, has-part Y
C: has-part X, has-part Z

In our notation:

(AKx> X <y> Y <z> :Z)
:B(kx> X <y> :Y)
:C(kx> :X <z> :Z)

A, B, and C are candidates for a group since they all have the same (has-part) relationship to
X.

In Winston’s work, a program would learn the new object:

44

A&B(<a> A B)
In our system, converting to CNF we learn three new abstract classes:

AorB_or_AorC : AorB | AorC *common* <x> X.
AorB : A | B *common* <y> Y.
LorC : A | C *common* <z> Z.

and remove all the parts from classes A, B, and C.

Another major difference is that Winston’s work deals with properties that describe the re-
lationships between objects other than ”part-of” relations. That is, where we might learn an
abstract class based on the information that two objects share PARTS "length” and ”width”,
Winston would be concerned with whether or not two objects had the same values for their

PROPERTIES "length” and "width”.

Since Winston needs to learn relations other than ”part-of”, his system is necessarily much more
complex than ours. (Winston presents a lot of ideas about learning, but no formal algorithms.)
Another complicating factor is that Winston wants a system that, given some examples of a
type of object (class), builds a model that can recognize objects of that type even if they have
properties that are different from any of the examples.

For example, given an example of an "arch” that has two uprights supporting a brick, and
a second example of an arch that has two uprights supporting a wedge, the system should
recognize an object consisting of two uprights supporting some other type of object as an arch.

In [LM91] several ways in which conceptual database evolution can occur through learning are
discussed. One of these, the generalization of types to form supertypes, is a special case of our
abstraction of common parts, where there are only two objects from which the common parts
are abstracted. Another, the expansion of a type into subtypes, is similar to the introduction
of alternation vertices which occurs during the basic learning phase of our algorithm.

A major difference in our work is that we focus on learning from examples, while in [LM91] the
emphasis is on learning from observation of instances (e.g., noticing that some of the instances
of a type object have null values for a given attribute). Our examples are more general than
instances since we don’t supply values for attributes.

Wegner describes informally the idea of a class dictionary transformation in his subsection on
transformations of concept hierarchies in [Weg90]. He writes: “Such a calculus has interesting
possibilities as an object-oriented design technique ...” We agree with Wegner and give in this
paper a mathematical treatment of a calculus of class transformations which was also informally

described in [Lie88].

45

5 Conclusions

We have studied how to optimize class definitions and how to learn them from object examples.
There are several applications of our algorithms: 1. They serve as tools for the object-oriented
designer. 2. They serve as tools for the software engineer who moves from record structures to
class structures with inheritance. 3. They lead to a better understanding of the object-oriented
design process.

The algorithms have been developed as a part of our ongoing work on the Demeter CASE tool
[Lie88], [LR&9].

Acknowledgements: We would like to thank the anonymous reviewers, Kenneth Baclawski,
Mitchell Wand, and Keith Wright for their contributions. Many thanks to the other members
of the current Demeter team, including Tan Holland, Walter Hirsch, Christos Stamelos, Paul
Steckler and Cun Xiao for their encouragement and support with implementations, paper feed-
back and reorganization proposals. Cun Xiao was influential in simplifying and refining the
axioms for class dictionary graphs and object graphs.

6 Appendix

6.1 Mathematical objects

begindefinition A mathematical object is a tuple

(53 By vy B f1s 5 f1)

where S is a finite nonempty set and R;,: = 1,..., k, are relations on S, i.e., for some natural
number m;,

R; : 8™ — {true, false}
and f;,2 = 1,...,[are functions defined on direct products of S, i.e., for some natural numbers
Mg, My
fio ST — ST
(R; is called an m;-ary relation.)

enddefinition

begindefinition A mathematical object is legal if it satisfies all axioms of some axiom system
Y. The axioms in ¥ are formulas in some logical language. (Legal objects are also called models
of the axiom system.) enddefinition

Sometimes we partition the set S into several subsets which we name explicitly in the object

definition. For further information about structures see, e.g., [BBFST4, 508] or [J1.SS90, 325].

46

Cover : C1 | Cc2 | ... | Cm.

Cl : some alternatives from {A1 ... An}

C2 : some alternatives from {A1 ... An}

Cm = some alternatives from {A1 ... An}

Al =

An = .

D = <c1> C1 <c2> C2 ... <cm> Cm <cover> Cover.

Figure 18: Reduction

6.2 Proofs

We prove several complexity results:
Lemma 2 CA-P and CDM-P are polynomially related.

Proof:
We know from theorem 3 that for all legal class dictionaries ¢: CAS(CDCNFS(¢)) = CDMS(¢).
Since CDCNF-P can be solved efficiently, the result follows.O

Lemma 3 CDM-P and MCDL-P are polynomially related.

Proof:

We know that for all legal class dictionaries ¢: CDMS(¢) = MCDLS(OEGS(¢)). OEG-P
can be solved in polynomial time. Since an object example which is not an output of OEG-P
can be transformed into an equivalent object example using the basic abstraction algorithm
and an algorithm for OEG-P, the result follows.O

Theorem 6 CA-P (CONSOLIDATION OF ALTERNATIVES) is NP-hard.

Proof:
Suppose we have a routine to solve CA-P.i.e., we use a Turing reduction. We can then solve

the MINIMUM COVER problem as follows.

Let S = {A, Ay, ... A, },C ={C1,C4,... C,} be an instance of minimum cover, where C; =
{Ais Ay, ooy Ay,) is a subset of S0 Build a class dictionary graph G(VC, VA, A; EC, EA) as
follows (see Fig. 18):

47

o VA has m + 1 vertices, labeled Cover, Cy,C5,... C,,. Each vertex in VA is called a

subset vertex.

o V(has n vertices, labeled Ay,... A, and D
e FC contains the construction edges (D, C;, ¢;) for all i (1 < < m).

e I A has and edge (C;, A;), where C; € VA and A; € V', if subset C; contains element A;
in the MINIMUM COVER instance. FA also has an edge (Cover, Ay), fork =1,... n.

Let G' = (VA VC,EC, EA’) be a solution to CA-P with instance . We claim that we can
get back a solution for MINIMUM COVER from G’. There are two possibilities:

1. VA’ does not have any new vertices. Then the successors of Cover are subset vertices
which form a minimum cover. This is because |F A’| is minimal.

2. VA" has new vertices. Then the successors of C'over may include some of the new vertices.
But the set of vertices reachable from any of these new vertices is a subset of the set of
vertices reachable from some C; € V A. To get back a solution for MINIMUM COVER,
we inspect all the immediate successors of C'over. If an immediate successor of C'over
is a subset vertex, we include the corresponding subset in the minimum cover. If an
immediate successor of C'over is a new vertex h, then we consider some subset vertex
(' which is a predecessor of h. We then include the subset corresponding to (', in the
minimum cover.

Example 12 We give examples of each of the two possibilities.

/. MINIMUM COVER instance: § = {X1, X5, Xs}, C1 = {X1}, s = {X,}, Oy =
{Xa}, Oy = { X1, X5}

Corresponding CA-P instance:

Cover : X1 | X2 | X3.

C1 : X1.

Cc2 : X2.

C3 : X3.
C4 : X1 | X2.

D = <c1> C1 <c2> C2 <c3> C3 <c4> C4 <cover> Cover.

After minimization:

48

Cover : C3 | C4.

C1 : X1.

Cc2 : X2.

C3 : X3.
C4 : X1 | X2.

D = <c1> C1 <c2> C2 <c3> C3 <c4> C4 <cover> Cover.

Notice that the immediate successors of Cover are the solution to MINIMUM COVER.

,Q. MINIMUM COVER nstance: S = {X17X27X37X4}, Cl = {X17X27X3}} 02 =
{ X1, Xo, Xa}, O = { X5, Xy}

Corresponding CA-P instance:

Cover : X1 | X2 | X3 | X4.

C1 : X1 | X2 | X3.
Cc2 X1 | X2 | X4.
C3 : X3 | X4.

D = <cl1> C1 <c2> C2 <c3> C3 <cover> Cover.

After minimization:

Cover : h | C3.

C1 : h | X3.

C2 : h | X4.
C3 : X3 | X4.
H : X1 | X2.

D = <cl1> C1 <c2> C2 <c3> C3 <cover> Cover.

Notice that H is a new vertex and a successor of Cover. Since Cy is a predecessor of H
and a subset vertex, we select it for the solution of MINIMUM COVER. Cj5 is also in
the solution we select for MINIMUM COVER. Notice that we could have chosen C
instead of C.

Corollary 1 CDM-P and MCDL-P are NP-hard.

Proof:

CDM-P is NP-hard since CA-P is NP-hard and CDM-P and CA-P are polynomially related.
MCDL-P is NP-hard since CDM-P is NP-hard and MCDL-P and CDM-P are polynomially
related. O

49

References

[ABW*89] M. Atkinson, F. Bancilhorn, D. De Witt, K. Dittrich, D. Maier, and S. Zdonik.

[AHSS]

[AKNS6]

[AS83]

[BBFSTA]

[BDG*88]

[BMWS6]

[Boo91]

[Car84]

[Cas89]

[Cas90]

[CF82]

[Cox86]

The object-oriented database system manifesto. In Proceedings of International
Conference on Deductive and Object-Oriented Databases, Kyoto, Japan, 1989.

Serge Abiteboul and Richard Hull. Restructuring hierarchical database objects.
Theoretical Computer Science, (62):3-38, 1988.

H. Ait-Kaci and R. Nasr. Login: A logic programming language with built-in
inheritance. Journal of Logic Programming, 3:185-215, 1986.

Dana Angluin and Carl Smith. Inductive inference: Theory. ACM Computing
Surveys, 15(3):237-269, September 1983.

H. Behnke, F. Bachmann, K. Fladt, and W. Stss, editors. Fundamentals of Math-
ematics. The MIT Press, 1974.

D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S.E. Keene, G. Kiczales, and D.A.
Moon. Common Lisp Object System Specification. SIGPLAN Notices, 23, Septem-
ber 1988.

Alexander Borgida, Tom Mitchell, and Keith Williamson. Learning improved in-
tegrity constraints and schemas from exceptions in data and knowledge bases. In
Michael L. Brodie and John Mylopoulos, editors, On Knowledge Base Management
Systems, pages 259-286. Springer Verlag, 1986.

Grady Booch. Object-Oriented Design With Applications. Benjamin/Cummings
Publishing Company, Inc., 1991.

Luca Cardelli. A semantics of multiple inheritance. In Gilles Kahn, David
MacQueen, and Gordon Plotkin, editors, Semantics of Data Types, pages 51-67.
Springer Verlag, 1984.

Eduardo Casais. Reorganizing an object system. In Dennis Tsichritzis, editor,
Object Oriented Development, pages 161-189. Centre Universitaire D’ Informatique,
Geneve, 1989.

Eduardo Casais. Managing class evolution in object-oriented systems. In Den-
nis Tsichritzis, editor, Object Management, pages 133-195. Centre Universitaire
D’Informatique, Geneve, 1990.

Paul R. Cohen and Edward A. Feigenbaum. The Handbook of Artificial Intelligence,

volume 3. William Kaufmann, Inc., 1982.

Brad J. Cox. Object-Oriented Programming, An evolutionary approach. Addison
Wesley, 1986.

30

[CY90]

[Dit90]

[DJ8S]

[GJIT9]

[GPGYO]

[GRS3]

(Y84]

[JFsS]

[JLSS90]

[KKSS]

[KV84]

[LBSLI0a]

[LBSLIOD]

Peter Coad and Edward Yourdon. Object-Oriented Analysis. Yourdon Press, 1990.

second edition.

Klaus R. Dittrich. Object-oriented database systems: The next miles of the
marathon. Information Systems, 15(1):161-167, 1990.

V. Dhar and M. Jarke. Dependency directed reasoning and learning in systems
maintenance support. IEEFE Transactions on Software Engineering, 14(2):211-227,
February 1988.

Michael R. Garey and David S. Johnson. Computers and Intractability. Freeman,
1979.

Marc Gyssens, Jan Paradaens, and Dirk Van Gucht. A graph-oriented object model
for database end-user interfaces. In Hector Garcia-Molina and H.V. Jagadish, ed-
itors, Proceedings of ACM/SIGMOD Annual Conference on Management of Data,
pages 24-33, Atlantic City, 1990. ACM Press.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.
Addison Wesley, 1983.

R.B. Hull and C.K. Yap. The format model: A theory of data organization. Journal
of the Association for Computing Machinery, 31(3):518-537, July 1984.

Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-
Oriented Programming, 1(2):22-35, June/July 1988.

Gerhard Jager, Hans Lauchli, Bruno Scarpellini, and Volker Strassen, editors. Ernst
Specker Selecta. Birkhauser Verlag, Basel, Boston, Berlin, 1990.

J. Karimi and B.R. Konsynski. An automated software design assistant. [FEE
Transactions on Software Engineering, 14(2):194-210, Feb. 1988.

G.M. Kuper and M.Y. Vardi. The logical data model. In Principles of Database
Systems, pages 86-96. ACM, 1984.

Karl Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. Optimal and efficient
abstraction of single inheritance hierarchies. In Symposium on Object-Oriented
Languages and Systems, pages 1-24, Twente University (Inter-Actief and Computer
Science), 1990. Inter-Actief, P.O. Box 217, 7500 Enschede, Netherlands.

Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. Abstraction of object-
oriented data models. In Hannu Kangassalo, editor, Proceedings of International
Conference on Entity-Relationship, pages 81-94, Lausanne, Switzerland, 1990. El-

sevier.

51

[LBSLI0C]

[LBSLI0d]

[LGS6]

[LHSY]

[LHRSS]

[Lie85]

[LieSS8]

[LMO1]

(LRSS

[LR89]

[LRV90]

Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. From objects to classes:
Algorithms for object-oriented design. Technical Report Demeter-3, Northeastern
University, January 1990.

Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. Optimal and efficient
abstraction of classes from objects. Technical Report NU-CCS-90-6, revised Jan.
91, Northeastern University, January 1990.

Barbara Liskov and John Guttag. Abstraction and Specification in Program Devel-
opment. The MIT Electrical Engineering and Computer Science Series. MIT Press,
McGraw-Hill Book Company, 1986.

Karl J. Lieberherr and Tan Holland. Assuring good style for object-oriented pro-
grams. [FEFE Software, pages 38-48, September 1989.

Karl J. Lieberherr, Tan Holland, and Arthur J. Riel. Object-oriented programming:
An objective sense of style. In Object-Oriented Programming Systems, Languages
and Applications Conference, in Special Issue of SIGPLAN Notices, number 11,
pages 323-334, San Diego, CA., September 1988. A short version of this paper
appears in IEEE Computer, June 88, Open Channel section, pages 78-79.

Y.E. Lien. Relational database design. In S. Bing Yao, editor, Principles of Database
Design, pages 211-254. Prentice Hall, 1985.

Karl J. Lieberherr. Object-oriented programming with class dictionaries. Journal
on Lisp and Symbolic Computation, 1(2):185-212, 1988.

Qing Li and Dennis McLeod. Conceptual database evolution through learning. In
Rajiv Gupta and Ellis Horowitz, editors, Object-oriented Databases with applica-
tions to CASE, networks and VLSI CAD, pages 62-74. Prentice Hall Series in Data
and Knowledge Base Systems, 1991.

Karl J. Lieberherr and Arthur J. Riel. Demeter: A CASE study of software growth
through parameterized classes. Journal of Object-Oriented Programming, 1(3):8-22,
August, September 1988. A shorter version of this paper was presented at the 10th

International Conference on Software Engineering, Singapore, April 1988, IFFE
Press, pages 254-264.

Karl J. Lieberherr and Arthur J. Riel. Contributions to teaching object-oriented
design and programming. In Object-Oriented Programming Systems, Languages
and Applications Conference, in Special Issue of SIGPLAN Notices, pages 11-22,
October 1989.

Christophe Lecluse, Philipe Richard, and Fernando Velez. O2, an object-oriented
data model. In Zdonik and Maier, editors, Readings in Object-Oriented Database
Systems, pages 227-236. Morgan Kautmann Publishers, 1990.

52

[LWS9]

[Mey88]

[MMPSS]

[PBEF+89]

[Pir89)]

[PW89]

[SMS6]

[Sno89]

[Ste89]

[Str86]
[TL82]

[TYFS6]

[WBJ90]

[Weg90]

Karl Lieberherr and Carl Woolf. Grammar-based planning for object-oriented ap-
plications. Technical Report NU-CCS-89-11, Northeastern University, Feb. 1989.

Bertrand Meyer. Object-Oriented Software Construction. Series in Computer Sci-
ence. Prentice Hall International, 1988.

Ole Lehrmann Madsen and Birger Mgller-Pedersen. What object-oriented program-
ming may be - and what it does not have to be. In S.Gjessing and K. Nygaard,
editors, Furopean Conference on Object-Oriented Programming, pages 1-20, Oslo,
Norway, 1988. Springer Verlag.

B. Pernici, F. Barbic, M.G. Fugini, R. Maiocchi, J.R. Rames, and C. Rolland. C-
TODOS: An automatic tool for office system conceptual design. ACM Transactions
on Office Information Systems, 7(4):378-419, October 1989.

Fiora Pirri. Modelling a multiple inheritance lattice with exceptions. In Proceedings
of the Workshop on Inheritance and Hierarchies in Knowledge Representation and
Programming Languages, pages 91-104, Viareggio, February 1989.

Winnie W. Y. Pun and Russel L. Winder. Automating class hierarchy graph con-
struction. Technical report, University College London, 1989.

R.E. Stepp and R.S. Michalski. Conceptual clustering: Inventing goal-oriented
classification of structured objects. In R.S. Michalski et al., editor, Machine Learn-
ing: An Artificial Intelligence Approach, Vol. II, pages 471-498. Morgan-Kaufman
Publishers, 1986.

Richard Snodgrass. The interface description language. Computer Science Press,

1989.

David Steier. Automating algorithm design within a general architecture for intel-
ligence. Technical Report CS-89-128, Carnegie Mellon University, April 1989.

B. Stroustrup. The C++ Programming Language. Addison Wesley, 1986.

Dennis Tsichritzis and Frederick Lochovsky. Data Models. Software Series. Prentice-
Hall, 1982.

T.J. Teorey, D. Yang, and J.P. Fry. A logical design methodology for relational
data bases. ACM Computing Surveys, 18(2):197-222, June 1986.

Rebecca J. Wirfs-Brock and Ralph E. Johnson. A survey of current research in
object-oriented design. Communications of the ACM, 33(9):104-124, September
1990. The description of the Demeter project starts on page 120.

Peter Wegner. Concepts and paradigms of object-oriented programming. OOPS
Messenger, 1(1):7-87, Aug. 1990.

33

[Win70] P.H. Winston. Learning structural descriptions from examples. Technical Report 76,
MIT, 1970. Project MAC.

o4

Contents

1 Introduction
1.1 Motivation for object example notation
1.2 Motivation for class notation

1.3 Informal description of the algorithm

2 Structures for object-oriented design
2.1 Class dictionary graphs o
2.1.1 Discussion of axioms
2.1.2 Programming with class dictionary graphs
2.2 Object graphs L
2.3 Class dictionary graph learning o L
2.3.1 Motivation for similarity oL
2.3.2 Object example notation
2.3.3 Practicality of class dictionary graph learning
2.3.4 Learning better class dictionary graphs
2.4 C(lass dictionary graph minimization,
2.4.1 Common normal form oL oo
2.4.2 Consolidation of alternatives L.
2.5 Object example generation Lo

2.6 Relationships

3 Practical relevance
3.1 Minimizing construction edgeso Lo
3.2 Minimizing alternation edges oL L oL

3.3 Generalization to methods
4 Related work

5 Conclusions

39

15
16
18
23
23
26
26
28
29
29
33
36
37

39
39
40
41

42

46

6 Appendix

6.1 Mathematical objects oL

6.2 Proofs

56

