SIGPLAN Notices Vol. 26, No. 11, pages 299-313, Phoenix, AZ, November 1991. ACM Press.

Object-Preserving Class Transformations

Paul L. Bergstein
Northeastern University, College of Computer Science
Cullinane Hall, 360 Huntington Ave., Boston MA 02115
pberg@corwin.CCS.northeastern. EDU

Abstract

Reorganization of classes for object-oriented pro-
gramming and object-oriented database design has
recently received considerable attention in the lit-
erature. In this paper a small set of primitive
transformations is presented which forms an or-
thogonal basis for object-preserving class reorgani-
zations. This set is proven to be correct, complete,
and minimal. The primitive transformations help
form a theoretical basis for class organization and
are a powerful tool for reasoning about particular
organizations.

Keywords: Object-oriented programming and de-
sign, object-oriented database design, class library
organization.

1 Introduction

Reorganization of classes for object-oriented pro-
gramming and object-oriented database design
has recently received considerable attention in
the literature: [BCG*87], [LBSL90], [LBSL91],
[AH87], [BMWR6], [Cas89], [Cas90], [LM91],
[Pir89], [PW89]. A number of researchers have
suggested algorithms and hueristics to produce
“good” class organizations. A “good” class organi-
zation may be variously defined as one which pro-
motes efficient reuse of code, one with a minimum
of multiple-inheritance, a minimum of repeated-
inheritance, or some other characteristics depend-
ing on the author’s point of view.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
©1991 ACM 89791-446-5/91/0010/0299...$1.50

In any case, it is usually desirable that reorga-
nization of a class hierarchy should not change the
set of objects which the classes define, that is the
reorganization should be object-preserving. For
object-oriented database design, this means that
the database does not need to be repopulated. For
object-oriented programming, this means that pro-
grams will still accept the same inputs and produce
the same outputs. Furthermore, methods need not
be rewritten (although they may need to be at-
tached to different classes).

In this paper a small set of primitive transforma-
tions is presented which forms an orthogonal basis
for object-preserving class organizations. This set
is proven to be correct, complete, and minimal.
The primitive transformations help form a theo-
retical basis for class organization and are useful in
proving characteristics of particular organizations.

The concept of a primitive set of object-
preserving class transformations was developed as
part of the Demeter project to develop CASE
tools for object-oriented design and programming.
While the class model used in this paper is the
simplified one of [LBSL91], the Demeter System™"
actually uses an expanded model which includes
optional parts, collection (repetition) classes, and
the ability to specify concrete syntax used for pars-
ing and printing objects. Each notation has the
advantage of being programming language inde-
pendent and is therefore useful to programmers
who use object-oriented languages such as C4++
[Str86], Smalltalk [GR83], CLOS [BDG'88] or Eif-
fel [Mey88].

The C++ Demeter System incorporates a C++

LawnMower
‘% motor
Ident Gasohne _Engine
fuel tank
Wheel Gas tank

Figure 1: Construction class

code generation algorithm to translate the class
definitions into C++4 and generate methods for
manipulating the application objects (e.g. pars-
ing, printing, copying, comparing, traversing, etc.).
The primitive transformations discussed in this pa-
per were very helpful in developing and analyzing
the latest additions to the Demeter System: tools
for the abstraction of optimal class organizations
from object examples, and for the optimization of
existing class organizations [LBSL91] [BLI1].

The second section provides a brief description
of the class notation. In section 3 the primitive
transformations are presented along with related
proofs. In section 4 some practical rules for class
hierarchy optimization, which can be built from the
primitive transformations, are given.

2 Class notation

The class notation of [LBSLI1] uses two kinds of
classes: construction and alternation classes. A
construction class definition is an abstraction of a
class definition in a typical statically typed pro-
gramming language (e.g., C++).
class does not reveal implementation information.

A construction

Examples of construction classes are in Fig. 1 for:
LawnMower, Wheel, etc.

Each construction class defines a set of objects
which can be thought of as being elements of the di-
rect product of the part classes. When modeling an
application domain, it is natural to take the union
of object sets defined by construction classes. For
example, the motor of a lawn-mower can be either
a gasoline engine or an electric motor. So the ob-
jects that can be stored in the motor part of a lawn-
mower are either gasoline_engine or electric motor

[]

Electric

<o

=
Mo SN

[]

Gasoline_Engine

Figure 2: Alternation class

orsepower
NumbN /‘7 Electric
Motor
|:| shaft

DriveShaft Gasohne_Engine

Figure 3: Common parts

objects. Alternation classes are used to define such
union classes. An example of an alternation class
is in Fig. 2. Gasoline Engine and Electric are

Often

the alternatives have some common parts. For ex-

called alternatives of the alternation class.

ample, each motor has a drive shaft. The notation
in Fig. 3 is used to express such common parts.
Alternation classes have their origin in the variant
Because of the delayed bind-
ing of function calls to code in object-oriented pro-

records of Pascal.

gramming, alternation classes are easier to use than
variant records.

Alternation classes which have common parts are
implemented by inheritance. In Fig. 3, Electric
Class

Motor has methods and/or instance variables to

and Gasoline Engine inherit from Motor.

implement the parts horsepower and shaft.

Construction and alternation classes correspond
to the two basic data type constructions in deno-
tational semantics: cartesian products and disjoint
sums. They also correspond to the two basic mech-
anisms used in formal languages: concatenation
and alternation.

The concept of a part class which is used
throughout this paper needs further explanation.

A part object does not have to be a physical part;

any attribute of an object is a part of it. Object
0o is said to be a part of object oy if “0; knows
about 03”. Therefore, the part-of relation is a gen-
eralization of the aggregation relation which only
describes physical containment. For example, a car
is part of a wheel if the wheel knows about the car.

Definition 1 . A class dictionary graph ¢ is
a directed graph ¢ = (V,A; EC, EA) with finitely
many vertices V. A is a finite set of labels. There
are two defining relations EC', KA. FC'is a ternary
relation on 'V X V x A, called the (labeled) con-
struction edges: (v,w,l) € FC iff there is a con-
struction edge with label | from v to w. FA is a
binary relation on V X V, called the alternation
edges: (v,w) € KA iff there is an alternation edge
from v to w.

Next the set of vertices is partitioned into two sub-
classes, called the construction and alternation ver-
tices.

Definition 2 .

o The construction vertices are defined by
VC={v|veV.VweV: (v,u)g FA}.
In other words, the construction vertices have
no outgoing alternation edges.

o The alternation vertices are defined by
VA={v|veV,FweV: (v,w) e FA}.
In other words, the alternation vertices have
at least one outgoing alternation edge.

Sometimes, it is more convenient to describe
a class dictionary graph as a tuple which con-
tains explicit references to VC' and VA: ¢ =
(VC, VA, A; EC,EA).

The definition of a class dictionary graph is mo-
tivated by the interpretation in object-oriented de-
sign given in Figure 4. During the programming
process, the alternation classes serve to define in-
terfaces (i.e., they serve the role of types) and the
construction classes serve to provide implementa-
tions for the interfaces.

The standard interpretation implies that the la-
bels on construction vertices are significant. Con-
sider two class dictionary graphs each with only a

Graph

Vertex

Object-oriented design

Class
instantiable

construction

alternation abstract

Edge Class relationship

construction part-of relationship
“ases”, “knows”,

labels are part names

alternation inheritance relationship
specialization,

classification

Figure 4: Standard Interpretation

single construction vertex and no edges. From a
graph theoretic point of view, the graphs are equal
regardless of the labels on the vertices, but if the
construction vertex of one graph is labeled Integer
and the vertex of the other graph is labeled String,
then the two class dictionary graphs define different
sets of objects in the standard interpretation.

Since the mapping from construction vertices to
labels is a bijection, its explicit inclusion in the defi-
nition of class dictionary graphs would only clutter
the theory. When referring to an element of the
construction vertices of a class dictionary graph,
the reference is sometimes to a vertex and some-
times to the label of a vertex. The meaning should
be clear from the context.

The following graphical notation, based on
[TYF86], is used for drawing class dictionary
graphs: squares for construction vertices, hexagons
for alternation vertices, thin lines for construction
edges and double lines for alternation edges.

Example 1 Fig. 5 shows a class dictionary graph
for telephones. Telephones can either be standard
or cordless and they also can be either rotary dial or
touch-tone. Cordless phones have an antenna while
standard phones have a handset cord. The dialer on
a touch-tone phone is a keypad, whereas a rotary
dial phone has a dial. For further illustration the
components of the formal definition are given, i.e.:

V = { Telephone, Cordless, Standard,

Antenna, Handset_Cord,
Dialer, Rotary, Dial,
TouchTone, Keypad }

VC

{ Cordless, Standard, Antenna,
Handset_Cord, Rotary, Dial,
TouchTone, Keypad }

VA

1]
-~

Telephone, Dialer }

EC

1]
-~

(Telephone, Dialer, dialer),
(Rotary, Dial, dial),
(TouchTone, Keypad, dial),
(Cordless, Antenna, ant),
(Standard, Handset_Cord, cord) }

EA

1]
-~

(Telephone, Cordless),
(Telephone, Standard),
(Dialer, Rotary),

(Dialer, TouchTone) }

A = {dialer, ant, cord, dial }.

Definition 3 In a class dictionary graph ¢ =
(V,A; EC,FEA), a vertex w € V is alternation-
reachable from vertez v € V (we write v = w):

o via a path of length 0, if v = w

o via a path of length n+ 1, of Ju € V such that
(v,u) € EFA and u = w via a path of length n.

A legal class dictionary graph is a structure
which satisfies 2 independent axioms.

Definition 4 A class dictionary graph ¢ =
(V,A; EC,FEA) is legal if it satisfies the follow-

ing two arioms:

1. Clycle-free alternation aziom:

There are no cyclic alternation paths, i.e.,
{(v,w)| v,w € Vv #w, and v > w = v} =
0.

2. Unique labels aziom:
Yu,v, 0", w,w € V, I € A such that

v 3, v 3w, and (v,w) # (VW)
{(v,w, 1), (v, w',)} € EC

The cycle-free alternation axiom is natural and
has been proposed by other researchers, e.g.,
[PBFT89, page 396], [Sno89, page 109: Class
names may not depend on themselves in a circular
fashion involving only (alternation) class produc-
tions]. The axiom says that a class may not inherit
from itself.

The unique labels axiom guarantees that “in-
herited” construction edges are uniquely labeled.
Other mechanisms for uniquely naming the con-
struction edges could be used, e.g., the renaming
mechanism of Eiffel [Mey88].

Throughout the rest of this paper, the term class
dictionary graph refers to a legal class dictionary
graph.

3 Primitive Object-Preserving Trans-
formations

An informal definition of object-preserving has
already been given in the introduction. For a for-
mal definition we first need a definition of object-

equivalence. !

Definition 5 Given a class dictionary graph
p=(VC,VAAN; EC,EA), forveV let
PartClustersy(v) = {(I, A(w)) | v :
v S v and (v, w,l)€ EC}
where A(w) = {w' | w3 w' and w' € VC},

Then, class dictionary graphs ¢1 and ¢o are
object-equivalent if:

o VCy, =V,

e Voe V(' :
PartClustersy, (v) = PartClustersg,(v).

Intuitively, two class dictionary graphs are
object-equivalent if they define sets of correspond-
ing construction classes with the same names, and
for each construction class defined by one class dic-
tionary graph the parts are the same as those de-
fined for the corresponding class in the other class
dictionary graph.

'The most straight-forward definition would be: Two
class dictionary graphs, ¢1 and ¢2, are object-equivalent if
Objects(¢1) = Objects(¢2), where Objects(p) is formally
defined in [LBSL91]. The equivalent definition of object-
equivalence given here is more appropriate for this paper.

Telephone

|:| dial N |:|

Rotary Dial

C> dialer \ C>

Dialer \
dial
_r
- [] []

Cordless |:|

ant cord

[] []

Antenna Handset_Cord

Figure 5

Example 2 The two class dictionary graphs in
Fig. 6, 1 and ¢q, are object-equivalent since:
VCy, = Vs,
= {Undergrad, Grad, Prof, TA,

Admin_asst, Coach, Num, Real_l\Ium}

PartClustersgy, (Undergrad)

= PartClustersy,(Undergrad)

= {(ssn, {Num}), (gpa, {Real Num})}
PartClustersy, (Grad)

= PartClustersy,(Grad)

= {(ssn, {Num}), (gpa, {Real Num})}
PartClustersg, (TA)

= PartClustersy,(TA)

= {(ssn, {Num}), (salary, {Real Num}),

(assigned, {Course, Committee})}

PartClustersgy, (Prot)
= PartClustersy,(Prof)
= {(ssn, {Num}), (salary, {Real Num}),
(assigned, {Course, Committee})}

PartClustersy, (Admin_asst)
= PartClusterss,(Admin_asst)
= {(ssn, {Num}), (salary, {Real Num})}

PartClustersgy, (Coach)

= PartClustersy,(Coach)

= {(ssn, {Num}), (salary, {Real Num})}
PartClustersgy, (Course)

= PartClustersy,(Course) = ()

|:| Standard

uchTone Keypad

: Telephones

PartClustersgy, (Committee)

= PartClustersy,(Committee) = ()
PartClustersgy, (Real Num)

= PartClustersy,(Real Num) =)
PartClustersgy, (Num)

= PartClustersg,(Num) = ()

Definition 6 A class dictionary graph transfor-
mation, T, is a rule which defines an allowable
modification of class dictionary graphs. Let
Ry = {(¢1,¢2) | ¢2 can be obtained from
@1 by a single application of T'}.
Then T is called object-preserving if ¢ is
object-equivalent to ¢z for all (¢1,¢2) € Rr.

3.1 Primitive Transformations

The following five primitive transformations form
an orthogonal basis for object-preserving transfor-
mations:

1. Deletion of “useless” alternation. An al-
ternation vertex is “useless” if it has no incom-
ing edges and no outgoing construction edges.
If an alternation vertex is useless it may be
deleted along with it’s outgoing alternation
edges.

Intuitively, an alternation vertex is useless if
it is not a part of any construction class, and

Univ studV \jmv employee

salary

|

Undergrad Grad T A Prof Admm Coach

asst

Course |:| assigned assigned

Faculty_Assignment
Commrtteelj /

(a) Class Dictionary Graph ¢,

Occupation

CO—= o[Num

/\

Student Employee
pa salary
/ X Real Num / iL\
Faculty

Undergrad Grad A(aisr,gtm Coach
assigned
Course |:| K

J-t=gn s
Assignment Prof
Committee |:|

(b) Class Dictionary Graph ¢,

Figure 6: Object-equivalent Class Dictionary Graphs

it has no parts for any construction class to
inherit.

2. Addition of “useless” alternation. An al-
ternation vertex, v, can be added along with
outgoing alternation edges to any set of ver-
tices already in the class dictionary graph.
This is the inverse of transformation 1.

3. Abstraction of common parts. If 3o, w,!
such that Vo', where (v,0v') € EA: (v, w,l) €
EC, then all of the edges, (v/,w,l), can be
deleted and replaced with a new construction

edge, (v, w,l).

Intuitively, if all of the immediate subclasses
of class C have the same part, that part can
be moved up the inheritance hierarchy so that
each of the subclasses will inherit the part from
C, rather than duplicating the part in each
subclass.

4. Distribution of common parts. An outgo-
ing construction edge, (v, w,[) can be deleted
from an alternation vertex, v, if for each
(v,v") € EA anew construction edge, (v', w,1)

is added.

This is the inverse of transformation 3.

5. Part replacement. If the set of construc-
tion vertices which are alternation-reachable
from some vertex, v € V, is equal to the set
of construction vertices alternation-reachable
from another vertex, v € V, then any con-
struction edge (w,v,l) € EC can be deleted
and replaced with a new construction edge,

(w,v',1).

Intuitively, if two class C1 and C2 have the
same set of instantiable (construction) sub-
classes then the defined objects do not change
when Cl1 is replaced by C2 in a part definition.

The set of primitive object-preserving transfor-
mation given in this section is correct, i.e. any
sequence of primitive transformations preserves
object-equivalence; complete, i.e. for any two

object-equivalent class dictionary graphs, ¢1,®s,

there is a sequence of primitive operations which
transforms ¢ to ¢o; and minimal, i.e. none of the
primitive transformations can be derived from any
set of the others.

3.2 Proofs

3.2.1 Correctness

Each primitive operation preserves object-
equivalence.

3.2.2 Completeness

Given two object-equivalent class dictionary
graphs, ¢y and ¢3, ¢1 can be transformed to ¢

using only primitive operations as follows:

1. Use primitive operation 2 (addition of useless
alternation) to “superimpose” the alternation
subgraph of ¢ onto ¢;.

Since there are no alternation cycles in ¢,
there must be some v € V Ay, with outgoing
alternation edges only to construction vertices
(if there are any alternation vertices at all).
For each such alternation vertex, add a new
alternation vertex to ¢y with alternation edges
to the corresponding construction vertices.

Now continue adding new alternation vertices
corresponding to alternation vertices in ¢
that have outgoing alternation edges only to
construction vertices and alternation vertices
which have already been added in ¢ until all
the alternation vertices in ¢o are duplicated in

1.

2. Use primitive operation 4 (distribution of com-
mon parts) to remove the outgoing construc-
tion edges from all of the original alternation
vertices in ¢.

Distribution of common parts is applied re-
peatedly until all of the parts are attached di-
rectly to construction vertices.

3. Use primitive operation 3 (abstraction of com-
mon parts) to move construction edges up the
“new” inheritance hierarchy in ¢ until they
are all attached to vertices corresponding to

the vertices where they are attached in ¢s.
This must be possible since ¢; and ¢y are
object-equivalent.

At this point ¢; and ¢9 have the same num-
ber of construction edges and the construc-
tion edges have the same labels and the same
sources, but may have different targets.

4. Use primitive number 5 (part replacement) to
move any construction edge with an “old” al-
ternation vertex or construction vertex as its
target so that its target corresponds to the
proper vertex in ¢s.

5. Use primitive transformation 1 (deletion of
useless alternation) to delete the “old” alter-
nation subgraph from ¢;. At this point there
are no construction edges (either incoming or
outgoing) attached to any of the “old” alter-
nation vertices. Also, since there are no cycles
in the old alternation subgraph, and since we
have not added any edges from “new” alter-
nation vertices to “old” alternation vertices or
vice versa, at least one of the “old” alterna-
tion vertices must be “useless” (if there are

After deleting that useless al-

ternation vertex the condition still holds, so

any at all).

we can continue deleting the “old” alternation
vertices until there are none left.

Now ¢1 = ¢s.

3.2.3 Minimality

No primitive transformation can be derived from
any set of the others since:

e No sequence of primitive operations can re-
duce the number of alternation vertices with-
out deletion of useless alternations.

e No sequence of primitive operations can in-
crease the number of alternation vertices with-
out addition of useless alternations.

e No sequence of primitive operations can re-
duce the number of construction edges without
abstraction of common parts.

e No sequence of primitive operations can in-
crease the number of construction edges with-
out distribution of common parts.

e No sequence of primitive operations can
change the construction edge in-degree of a
vertex from 0 to 1 or from 1 to 0 without part
replacement.

Example 3 This example illustrates the construc-
tion of the completeness proof with the class dic-
tionary graphs of Figure 6. Note that although the
labels on construction vertices are significant, the
labels on the alternation vertices are only provided
as a means of referring to particular vertices in the
following discussion.

Addition of Useless Alternations. In ¢, there
are three alternation vertices which have outgo-
ing alternation edges only to construction vertices:
Faculty, Assignment, and Student. These are
added to ¢ along with their outgoing alternation
edges. Next, the Employee vertex is added with its
outgoing alternation edges, including an edge to
Faculty. Finally, the Occupation vertex is added
along with its edges to Student and Employee. At
this point ¢ has been transformed to the class dic-
tionary graph shown in Figure 7.

Distribution of Common Parts. The ssn and
gpa parts are distributed from class Univ_student
to classes Undergrad and Grad where they are
inherited. Similarly, parts ssn and salary are
distributed from Univ_employee to TA, Prof,
Admin_asst, and Coach. The result is the class
dictionary graph shown in Figure 8. In a deeper
inheritance hierarchy some parts might need to be
distributed repeatedly until they are attached di-
rectly to construction classes.

Abstraction of Common Parts. Parts ssn and
gpa are abstracted from Undergrad and Grad
to Student.
assigned are abstracted from TA and Prof to

Next, parts ssn, salary, and
Faculty. Parts ssn and salary are then ab-
stracted from Faculty, Admin_asst, and Coach
to Employee. Finally, part ssn is abstracted from
Employee and Student to Occupation. The result
is shown in Figure 9.

Num

Univ studM |:| \jniv employee

N7

Undergrad Grad Prof Adm1n Coach

asst
assigned
|:| assigne
Course

Faculty
|:| Faculty Assignment

Committee

Ass1gnment

Student

Employee

Occupation

Figure 7: Addition of Useless Alternations

Univ_employee

Undergrad Grad Prof Adm1n Coach

asst
assigned
|:| assigne
Course

Faculty
|:| Faculty Assignment

Committee

Ass1gnment
Student

Employee

<

Occupation

Figure 8: Distribution of Common Parts

Univ_student Univ employee

<o

/X //X\t

L] L] O O O

Undergrad Grad TA Prof Admin oach

asst
/7C0urs K assigned
4/

Faculty
|:| Faculty Assignment

Committee

Ass1gnment

Student

Employee

<

Occupation

1
lssn salary

Real_Num

Figure 9: Abstraction of Common Parts

10

Part Replacement. The “old” alternation ver-
tex Faculty_Assignment still has an incoming con-
struction edge from the new vertex Faculty. In ¢,
the corresponding edge is to vertex Assignment, so
the edge is moved accordingly in ¢,. This is allowed
since the set of construction vertices alternation
reachable from Assignment is equal to the set alter-
nation reachable from Faculty_Assignment. Such
a part replacement must always be possible since
¢1 is object-equivalent to ¢9. The result is shown
in Figure 10.

Deletion of Useless Alternations. The alterna-
tion vertices Faculty_Assignment,
Univ_student, and Univ_employee are now “use-
less” since they have no incoming edges and no
outgoing construction edges. These vertices and
their outgoing alternation edges are deleted, and

the transformation from ¢ to ¢9 is complete.

4 Practical Applications

There are many useful rules which can be derived
from the primitive transformations and are there-
fore guaranteed object-preserving. The following
examples show how object-preserving transforma-
tions can be used to improve class organization
by reducing the number of construction edges, the
number of alternation edges, or the degree of mul-
tiple inheritance in a class dictionary graph.

1. Elimination of redundant parts.

If a vertex, », has two incoming construc-
tion edges with the same label, (u,v,l) and
(u',v,1), then those edges should be replaced
by a single edge (w, v,!) where w is an alterna-
tion vertex with exactly u and v’ as alternation
successors, by abstraction of common parts. If
necessary, w is first introduced by addition of
useless alternation. (See Fig. 11.)

2. Removal of singleton alternation ver-
tices.
If an alternation vertex, », has only one
outgoing alternation edge, (v,w), then that
vertex should be removed. Incoming con-
struction edges (u,v,[), and alternation edges,

(u,v), are replaced by edges (u,w,l)and (u,w)

11

respectively. Outgoing construction edges,
(v,2,l), are replaced by edges (w,z,l). The
incoming construction edges can be moved by
part replacement and the outgoing construc-
tion edges by distribution of common parts.
Moving the incoming alternation edges can
be accomplished by alternation replacement
which is analogous to part replacement but is
not primitive. It is easy to see how alternation
replacement can be accomplished using only
primitive transformations. Finally, the vertex
v is deleted by deletion of useless alternation.
(See Fig. 12.)

. Complete Cover

If a subset, 5, of the outgoing alternation
edges from a vertex, u, completely cover the
alternatives of another alternation vertex, v,
then replace the edges in .5 with a single alter-
nation edge to v. We say the alternatives of
an alternation vertex, v, are completely cov-
ered by a set of edges, 9, if every vertex which
is the target of an outgoing alternation edge
from v is also the target of an edge in 5. This
rule can be derived from the primitive trans-
formations using a construction similar to that
given in section 3.2.2. (See Fig. 13.)

. Partial Cover

This rule applies if two alternation vertices,
u and v, cover a common set of alternatives,
but neither contains a subset of outgoing al-
ternation edges that completely covers the al-
ternatives of the other. In this case, a new
alternation vertex, w, is created with an out-
going alternation edge to each of the vertices
that is a target of outgoing alternation edges
from both w and v, and incoming alternation
edges (u,w) and (v,w). For each edge (w,z)
which is added, the corresponding edges (u, z)
and (v,x) are deleted. (See Fig. 14.)

. MI Minimization

If there are alternation edges, (u,w) and (v, w)
such that for all other alternation edges from
v, (v,w’), w' is alternation reachable from u,

Umv student Univ employee

/X //\\t

-

Undergrad Grad

Prof Admin Coach
a551gned aSSt
%;\
Faculty
Ass1gnment Faculty Assignment
Student
Commlttee Employee

C>

Occupation

1
lssn salary

Real _Num

Figure 10: Part Replacement

Q\D IR
el nl-a

u' u'

< O——[]

Figure 11: Elimination of redundant parts

u l:l—l’é—l’ljx i |:|x
u D—I’D/
w \DC

w D—Cbljc

Figure 12: Removal of singleton alternation vertex

12

1 Y

7N 4\

c3|:| 4|:| 5|:| 6|:| 2|:|—>C> C3

N

e[J—— > al[] o] o[]

Figure 13: Complete Cover

dD—><:> D—»Q C><—D

A EFATA T

s[] a[] o[] o] <[]

Y SN

2 D—>C> c4|:| c5|:| c6|:|

Figure 14: Partial cover

e (O] e [

BEATA T 2N

a > O+——LI

"~ NI\

! s o0 «OJ

Figure 15: MI minimization

13

then replace the edge (u,w) with the edge
(u,v). This rule reduces the amount of multi-
ple inheritance without changing the edge size.
However, it introduces repeated inheritance.

(See Fig. 15.)
5 Conclusion

The primitive object-preserving class transforma-
tions presented in this paper are a powerful tool
for reasoning about object-preserving transfor-
mations and optimizations. In order to deter-
mine whether a transformation is guaranteed to
be object-preserving it is only necessary to show
whether it can be derived from the primitive trans-
formations.

To prove that a particular class organization is
in some sense optimal (see, for example, [LBSLI1]),
it is only necessary to consider improvements that
might be possible through the primitive transfor-
mations.

An area for further research is the study of
object-extending class reorganizations [LHX91]. An
object-extending transformation is one which adds
to the set of defined objects or adds part classes
to previously defined objects. For object-oriented
data base design this means that the objects can
be updated automatically. For object-oriented pro-
gramming it means that the programs will still ac-
cept similar inputs and produce similar outputs.

Acknowledgments: I would like to thank Karl
Lieberherr for his generous support and feedback.
Additional thanks go to Cun Xiao for his help in
polishing some of the definitions.

References

[AH8T] S. Abiteboul and R. Hull. A formal se-
mantic database model. ACM Transac-
tions on Database Systems, 12(4):525—

565, Dec. 1987.

[BCGT87] Jay Banerjee, Hong-Tai Chou, Jorge F.
Garza, Won Kim, Darrell Woelk, and
Nat Ballou.

object-oriented applications.

Data model issues for
ACM
Transactions on Office Information
Systems, 5(1):3 — 26, January, 1987.

14

[BDGT88] D.G. Bobrow, L.G. DeMichiel, R.P.
Gabriel, S.E. Keene, G. Kiczales, and
D.A. Moon. Common Lisp Object Sys-
tem Specification. SIGPLAN Notices,
23, September 1988.

[BLI1] Paul Bergstein and Karl Lieberherr.
Incremental class dictionary learning
and optimization. In Furopean Confer-
ence on Object-Oriented Programming,
pages 377-396, Geneva, Switzerland,

1991. Springer Verlag.

[BMWS86] Alexander Borgida, Tom Mitchell, and
Keith Williamson. Learning improved
integrity constraints and schemas from
exceptions in data and knowledge
In Michael L. Brodie and

John Mylopoulos, editors, On Knowl-

bases.

edge Base Management Systems, pages
259-286. Springer Verlag, 1986.

[Cas89]

Eduardo Casais. Reorganizing an ob-
ject system. In Dennis Tsichritzis,
editor, Object Oriented Development,
pages 161-189. Centre Universitaire

D’Informatique, Geneve, 1989.
[Cas90]

Eduardo Casais. Managing class evolu-
tion in object-oriented systems. In Den-
nis Tsichritzis, editor, Object Manage-
ment, pages 133-195. Centre Universi-

taire D’Informatique, Geneve, 1990.

[GR83] A. Goldberg and D. Robson. Smalltalk-
80: The Language and its Implementa-

tion. Addison Wesley, 1983.

[LBS1.90] Karl J. Lieberherr,

and Ignacio Silva-Lepe.

Paul Bergstein,
Abstraction
of object-oriented data models. 1In
Hannu Kangassalo, editor, Proceedings
of International Conference on FEntity-
Relationship, pages 81-94, Lausanne,

Switzerland, 1990. Elsevier.

[LBS1.91] Karl J. Lieberherr, Paul Bergstein, and

Ignacio Silva-Lepe. From objects to

[LHX91]

[LMO1]

[Mey88]

[PBF+89]

[Pir89]

[PW89]

[Sno&9]

classes: Algorithms for object-oriented
design. Journal of Software Engineer-
ing, 6(4):205-228, July 1991.

Karl J. Lieberherr, Walter L. Hiirsch,
and Cun Xiao. Object-extending
class transformations. Technical Re-
port NU-CCS-91-8, Northeastern Uni-

versity, July 1991.

Qing Li and Dennis McLeod. Concep-
tual database evolution through learn-
ing. In Rajiv Gupta and Ellis Horowitz,
editors, Object-oriented Databases with
applications to CASE, networks and
VLST CAD, pages 62-74. Prentice Hall
Series in Data and Knowledge Base Sys-
tems, 1991.

Bertrand Meyer. Object-Oriented Soft-
ware Construction. Series in Com-
puter Science. Prentice Hall Interna-

tional, 1988.

B. Pernici, F. Barbic, M.G. Fugini,
R. Maiocchi, J.R. Rames, and C. Rol-
land. C-TODOS: An automatic tool
for office system conceptual design.
ACM Transactions on Office Informa-
tion Systems, 7(4):378-419, October
1989.

Fiora Pirri. Modelling a multiple in-
heritance lattice with exceptions. In
Proceedings of the Workshop on Inher-
itance and Hierarchies in Knowledge
Representation and Programming Lan-
guages, pages 91-104, Viareggio, Febru-
ary 1989.

Winnie W. Y. Pun and Russel L.
Winder.
graph construction. Technical report,
University College London, 1989.

Automating class hierarchy

Richard Snodgrass. The interface de-
sceription language. Computer Science
Press, 1989.

15

[StrR6]

[TYFS86]

B. Stroustrup. The C++ Programming
Language. Addison Wesley, 1986.

T.J. Teorey, D. Yang, and J.P. Fry.
A logical design methodology for re-
lational data bases. ACM Computing
Surveys, 18(2):197-222, June 1986.

Contents

1

2

3

Introduction 1
Class notation 2

Primitive Object-Preserving Trans-

formations 4
3.1 Primitive Transformations 5
3.2 Proofs 7
3.2.1 Correctness 7
3.2.2 Completeness 7
3.2.3 Minimality 8
Practical Applications 11
Conclusion 14

16

