Incremental Class Dictionary Learning and
Optimization

Paul L. Bergstein and Karl J. Lieberherr
Northeastern University, College of Computer Science

Cullinane Hall, 360 Huntington Ave., Boston MA 02115
(pberg or lieber)@Qcorwin.CCS.northeastern. EDU

Abstract

We have previously shown how the discovery of classes from objects can be automated,
and how the resulting class organization can be efficiently optimized in the case where
the optimum is a single inheritance class hierarchy. This paper extends our previous work
by showing how an optimal class dictionary can be learned incrementally. The ability
to expand a class organization incrementally as new object examples are presented is an
important consideration in software engineering.

Keywords: Object-oriented programming and design, reverse engineering, class library orga-
nization, class abstraction algorithms.

1 Introduction

In class-based object-oriented languages, the user has to define classes before objects can be
created. For the novice as well as for the experienced user, the class definitions are a non-trivial
abstraction of the objects. We claim it is easier to initially describe certain example objects
and to get a proposal for an optimal set of class definitions generated automatically than to
write the class definitions by hand.

We have previously shown ([LBSL90], [LBSLI1]) how the discovery of classes from objects
can be automated, and how the resulting class organization can be efficiently optimized in
the case where the optimum is a single inheritance class hierarchy. This paper extends our
previous work in an important way: We show how an optimal class organization can be learned
incrementally.

The algorithms discussed in this paper are a part of our research results in reverse engineering
of programs from examples. In one line of research, we start with object examples and apply
an abstraction algorithm described in this paper to get a set of class definitions. Then we apply

a legalization algorithm to the class definitions to ensure that each recursive class definition
is well behaved. Next, an optimization algorithm summarized in this paper makes the class
definitions as small as possible while preserving the same set of objects. Then we apply an
LL(1)-correction algorithm which adds some concrete syntax to the class definitions to make
the object description language LI(1) for easy readability and learnability. The object descrip-
tion language allows very succinct object descriptions and the LL(1)-property guarantees that
there is a one-to-one correspondence between sentences and objects. Finally we apply a C++
code generation algorithm to the class definitions which produces a tailored class library for
manipulating the application objects (e.g., reading, printing, traversing, comparing, copying
etc.).

This sequence of algorithms allows us to produce a tailored C++ library just from object
examples. After the specific object implementations are injected into this library, we have the
complete application code. The creative steps in this method of software development are 1)
to find the right objects, 2) to find good replacements for the names which are generated by
the abstraction programs, 3) to fine tune the object syntax and 4) to write the specific object
implementations. However, it is much easier to start with a custom generated C++ class library
than to proceed manually from the object examples. For further information on our research
program in object-oriented software engineering, we refer the reader to the survey in [WBJ90].

In section 2 the basic learning algorithm is formally presented. An informal presentation has
been given in [LBSL90]. This algorithm learns a correct (but not optimal) class dictionary
graph from a list of object example graphs. An algorithm for learning class dictionary graphs
incrementally is given in section 3. The ability to expand a class dictionary incrementally as
new object examples are presented is an important consideration in software engineering. In
section 4 the algorithm is extended to incrementally learn an optimal class dictionary graph
when the optimum is a single inheritance class dictionary.

Our algorithms are programming language independent and are therefore useful to programmers
who use object-oriented languages such as C+4 [Str86], Smalltalk [GR83], CLOS [BDG*88] or
Eiffel [Mey88]. We have implemented the abstraction algorithms as part of our C++ CASE tool,
called the C++ Demeter System”™ [Lie88], [LR88]. The input to the abstraction algorithms is
a list of object examples, and the output is a programming language independent set of class
definitions. They can be improved by the user and then translated into C++ by the CASE
tool.

We first describe our class definition and object example notations (the key concepts behind
the algorithms we present in this paper), since they are not common in the object-oriented
literature.

Ident

color |:|
Table

owner ’ |:| ssn |:|

Person Number
legl ﬁgZ 19 leg4
Leg

Figure 1: Construction class

ereon Numbwe

<o <o

Owner \ address Owner \

L] D.

Company String Company

(a) (b)

Figure 2: Alternation classes

Person

1.1 Class notation

We use a class notation which uses two kinds of classes: construction and alternation classes.!
A construction class definition is an abstraction of a class definition in a typical statically
typed programming language (e.g., C4+4). A construction class does not reveal implementation
information. Examples of construction classes are in Figure 1 for: Table, Leg, etc.

Each construction class defines a set of objects which can be thought of being elements of the
direct product of the part classes. When modeling an application domain, it is natural to take
the union of object sets defined by construction classes. For example, the owner of a table can
be either a person or a company. So the objects we want to store in the owner part of the table
are either person or company objects. We use alternation classes to define such union classes.
An example of an alternation class is in Fig. 2a.

Person and Company are called alternatives of the alternation class. Often the alternatives have
some common parts. For example, each owner had an expense to acquire the object. We use
the notation in Fig. 2b to express such common parts.

Alternation classes have their origin in the variant records of Pascal. Because of the delayed
binding of function calls to code in object-oriented programming, alternation classes are easier

Tn practice we use a third kind, called repetition classes, which can be expressed in terms of construction
and alternation [Lie88].

to use than variant records.

Alternation classes which have common parts are implemented by inheritance. In Fig. 2b,
Person and Company inherit from Owner. Class Owner has methods and/or instance variables
to implement the parts expense and address.

Construction and alternation classes correspond to the two basic data type constructions in
denotational semantics: cartesian products and disjoint sums. They also correspond to the two
basic mechanisms used in formal languages: concatenation and alternation.

Definition 1 A class dictionary graph ¢ is a directed graph ¢ = (V,A; EC,FEA) with
finitely many labeled vertices V. There are two defining relations: FC, EA. EC is a ternary
relation on V- X V x A, called the (labeled) construction edges: (v,w,l) € EC iff there is a
construction edge with label | from v to w. A is a finite set of construction edge labels. FA is a
binary relation on V x V', called the alternation edges: (v,w) € EA iff there is an alternation
edge from v to w.

Next we partition the set of vertices into two subclasses, called the construction and alternation
vertices.

Definition 2 We define

e the construction vertices VO = {v |v e V\Vw e V : (v,w) & EA}. In other words,
the construction vertices have no outgoing alternation edges.

e the alternation vertices VA= {v |ve V,Jw e V: (v,w) € EA}. In other words, the
alternation vertices have at least one outgoing alternation edge.

Sometimes, when we want to talk about the construction and alternation vertices, we describe
a class dictionary graph as a tuple which contains explicit references to VC' and VA: ¢ =

(VC,VA,A\; EC,EA).

Definition 3 Vertex vy € V in a class dictionary graph, ¢ = (V,A; EC, EA), is said to be
alternation reachable from vertex v € V via a path of length £ > 1, if there exist k — 1
vertices vy, va, ..., Vp—1 such that for all j, 0 < 5 <k, (vj,vj41) € FA. The path consists of the
sequence of alternation edges. We say that every vertex is alternation-reachable from itself.

A legal class dictionary graph is a structure which satisfies two independent axioms.

Definition 4 A class dictionary graph ¢ = (VC, VA, A; EC,EA) is legal if it satisfies the

following two axioms:

1. Cycle-free alternation axiom:

There are no cyclic alternation paths, i.e., Vo € V A there is no alternation path from v
to v.

The cycle-free alternation axiom is natural and has been proposed by other researchers,
e.g., [PBF189, page 396], [Sno89, page 109: Class names may not depend on themselves
in a circular fashion involving only (alternation) class productions]. The axiom says that
a class may not inherit from itself.

2. Unique labels axiom:

Yw € V there are no p1,py € V s.t. Ja,y € VI € A sit. e = (p1,2,1) € EC and e3 =
(p2,y,1) € EC, e1 # €5 and w is alternation reachable from p; and p,.

The unique labels axiom guarantees that “inherited” construction edges are uniquely
labeled. Other mechanism for uniquely naming the construction edges could be used,
e.g., the renaming mechanism of Eiffel [Mey88].

In the rest of this paper, when we refer to a class dictionary graph we mean a legal class
dictionary graph.

We use the following graphical notation, based on [TYF86], for drawing class dictionary graphs:
squares for construction vertices, hexagons for alternation vertices, thin arrows for construction
edges and double arrows for alternation edges (see Figures 1 and 2).

1.2 Object example notation

The importance of objects extends beyond the programmer concerns of data and control ab-
straction and data hiding. Rather, objects are important because they allow the program to
model some application domain in a natural way. In [MMP88], the execution of an object-
oriented program is viewed as a physical model consisting of objects, each object characterized
by parts and a sequence of actions. It is the modeling that is significant, rather than the expres-
sion of the model in any particular programming language. We use a programming language
independent object example notation to describe objects in any application domain.

The objects in the application domain are naturally grouped into classes of objects with similar
subobjects. For our object example notation it is important that the designer names those
classes consistently. Fach object in the application domain has either explicitly named or
numbered subobjects. It is again important for our object example notation that the explicitly
named parts are named consistently. This consistency in naming classes and subparts is not
difficult since it is naturally implied by the application domain.

An object is described by giving its class name, followed by the named parts. The parts are
either physical parts of the object (e.g., legs of the table) or attributes or properties (e.g., owner
or color). An object example is in Fig. 3 which defines a table object with 6 parts: 4 physical
parts (legs) and two attributes: color and owner. The object example also indicates that the

5

il:Ident

coor 7]
/

t1:Table|:| __owner |:| L’D

pl:Person nl:Number
legl leg4
legz/ kegL%

I

11:Leg 12:Leg 13:Leg l4:Leg

Figure 3: Table object

four legs have no parts and that the owner is a Person object with one part called ssn which
is a Number.

Definition 5 An object example graph with respect to a set of classes, S, is a graph
H = (W,5 Ag; E,\) with vertex set W. Ay is a set of edge labels. E is a ternary relation on
W x W x Ag. If (v,w,]) € E, we call | the label of the labeled edge (v,w, 1), from v to w. The
function A : W — S labels each vertex of H with an element of S. The following axioms must
hold for H:

(1) No vertex of H may have two outgoing edges with the same label. (2) All vertices which
have the same element s € S as label (under X\) must have either outgoing edges with the same
labels or no outgoing edges at all.

Definition 6 An object graph with respect to a class dictionary graph, ¢
is an object example graph, H = (W, S, Ag; E,X) with respect to set S, where S = VCy and
Ag C Ay

Not every object graph with respect to a class dictionary graph is legal; intuitively, the object
structure has to be consistent with the class definitions. For a formal definition of legality see

[LBSLI1].
The set of all legal object graphs defined by a class dictionary graph ¢ is called Objects(o).

When we optimize a class dictionary graph, we must insure that the optimized version defines
the same set of objects. The following definition formalizes the concept that two sets of class
definitions define the same set of objects.

Definition 7 A class dictionary graph G1 is object-equivalent to a class dictionary graph
G2 if Objects(G1) = Objects(G2).

We use a textual notation for describing object graphs using an adjacency representation which
also shows the mapping of object graph vertices to class dictionary graph vertices. The example
of Fig. 3 has the following textual representation:

t1:Table(
<legi> 11:Leg()
<leg2> 12:Leg()
<leg3> 13:Leg()
<leg4> 14:Leg()
<color> il:Ident()
<owner> pl:Person(
<ssn> ni:Number()))

The vertices correspond to the instance names. The name after the instance name is preceded
by a “:” and gives the label assigned by A. The edge labels are between the < and > signs.

1.3 A simple example of incremental class dictionary learning

Example 1 Consider the two object graphs which represent a basket containing two apples and
a basket with an orange:

bl :Basket(
<contents> ol:0nelrMore(
<one> al:Apple(<weight> nl:Number())
<more> 02:0nelrMore(
<one> a2:Apple(<weight> n2:Number())
<more> nol:None())))

bl :Basket(
<contents> ol:0nelrMore(
<one> orl:0range(<weight> nil:Number())
<more> nol:None()))

After seeing the first object example graph, the learning algorithm generates the class dictionary
graph in Fig. fa. Now when the second object example is presented, the algorithm will learn
the class dictionary graph in Fig. 4b.

Notice that the algorithm “invents” two abstract classes, SeveralFruit and Fruit. Since both
subclasses of Fruit have a weight part, that part is attached to the Fruit class and is inherited
in the Apple and Orange classes.

A sample program to calculate the weight of a fruit basket is given below. All of the user
written code is shown. The class definitions and remaining code are generated automatically
from the class dictionary by the Demeter System CASE tool.

Apple

Basket OneOrMore Apple |:|
tent:
|:| L |:| —=» |:| Basket OneOrMore Fruit
contents
il (] s [s

weight W \
< > weight |:|
SeveralFruit\ C> Orange
|:| SeveralFruit\

|:| Number |:|

None |:| Number
None

(a) (b)

Figure 4: Fruit basket class dictionary graphs

// Basket = <contents> SeveralFruit.
Number Basket::get_weight()
{ return contents->get_weight(); }

// SeveralFruit : None | OneOrMore.
virtual Number SeveralFruit::get_weight ()

{3

// OneOrMore = <one> Fruit <more> SeveralFruit.
Number OneOrMore: :get_weight ()
{ return (one->get_weight() + more->get_weight()); }

// None = .
Number None::get_weight ()
{ return Number(0); }

// Fruit : Apple | Orange *common* <weight> Number.
Number Fruit::get_weight()
{ return *weight; }

2 Basic Learning

Given a list of object example graphs, the basic learning algorithm will learn a class dictionary
graph, ¢, such that the set of objects defined by ¢ includes all of the examples. Furthermore,
the algorithm insures that the set of objects defined by the learned class dictionary graph is a
subset of the objects defined by any class dictionary graph that includes all of the examples.

Intuitively, we learn a class dictionary graph that only defines objects that are “similar” to the
examples.

Formally, given a list of object example graphs, 4,€, ..., €, we learn a legal class dictionary
graph, ¢, such that Objects(¢) 2 {1, Qa,...,Q2,}, and for all legal class dictionary graphs, ¢’
where Objects(¢') 2 {Q4,Qq,...., 0, } : Objects(¢) C Objects(¢’).

If there is no legal class dictionary graph that defines a set of objects that includes all of the
examples, we say that the list of object example graphs is not legal. The following definition
gives the conditions under which a list of object example graphs is legal.

Definition 8 A list of object example graphs Qy,...,Q, is legal if all vertices which have the
same element s € S as label (under A, for some i,1 <1 < n) have either outgoing edges with
the same labels (under E for Q;) or no outgoing edges at all.

A legal list of object example graphs Q4,...,€Q, of the form Q = (Wq, Sq, Aq; Fq, Aq) is trans-
lated into a class dictionary graph ¢ = (V. A; FEC, EA) as follows:

L. A= |J Aq

1<i<n
The construction edges of the class dictionary graph are given the same labels as the
edges in the object example graph.

2. VO ={r|r=Aq,(v) and v € Wy, where 1 <i < n}

We interpret A as a function that maps objects to their classes. For each class that
appears in an object example, we generate a construction class which is represented as a
construction vertex in the class dictionary graph.

3. VA={(r,)) |r € VO, 1€ A3, j, 01,02, wl, w2 : (vl,wl,l) € Eq,, (v2,w2,]) € Eq,,
Ag, (vl) =)\Q](UQ) =r, A, (wl) #)\QJ(U)Q)}
When we learn that objects of class r have a part labeled [that is not always of the
same class, we create an abstract class represented in the class dictionary graph as an

alternation vertex (r,l). In step 6, we will make each of the part’s possible classes a
subclass of the new abstract class.

4. V=VCUVA

The vertices of the class dictionary graph are given by the union of the construction
vertices and alternation vertices.

5. EC =A{(r,s,]) | r,s € V,F,v,w: (v,w,]) € Eq,, Aq,(v) =1, Aq,(w) = s,(r,]) & VA}
UA{(r,(r,), 1) [r € V. (r,]) € VA}

If an object of class r has a part of class s with label [, then we create a construction
edge from the construction vertex representing r to the construction vertex representing

9

s with label [. But if the part can have more than one class, in which case an alternation
vertex representing all of the possible classes was created in step 3, we instead create a
construction edge to that alternation vertex.

6. FA={((r,0),s)|(r,l) e VA,s € V,Fi,v,w: (v,w,l) € Eq,, A\q,(v) =1, Aq,(w) = s}

Finally, we create a alternation edge from each alternation vertex (representing an abstract
class) to each vertex which represents a subclass.

The following example serves to illustrate the operation of the algorithm:

Example 2 .
Oy al:A((z) b1:B((y) a2:A4))

o W =1{al,a2,bl}

e S={A B}

o A={z,y} al:A b1:B a2A
o I = {(alvblvx)v(blchva)}

Aw = {al — Aja2 — A, bl — B}

Qo al:Al(z) cl:C())

W ={al,cl}

S ={A,C}

A= {l'} al:A cl:C

E={(al,cl,z)}

Aw ={al = A el — C}

10

o A={z,y}

(Ax)
e VO ={A,B,C} Al x> >
[}

VA={(A,2)}
V={A,B,C,(Az)} y

EC = {(B,A.y).(A,(A,2).)} L] []

FA= {((Avx)vB)v ((Avx)v C)}

3 Incremental Learning

Given a class dictionary graph, ¢, and an object example graph,), the incremental learning
algorithm will learn a class dictionary graph, ¢’, such that the set of objects defined by ¢’
includes €) and all of the objects defined by ¢. Furthermore, the algorithm insures that the set
of objects defined by ¢’ is a subset of the objects defined by any class dictionary graph that
includes € and all of the objects defined by ¢. Intuitively, we extend the set of objects defined
by ¢ only enough to include objects “similar” to).

Formally, given a class dictionary graph, ¢, and an object example graph, {2, we learn a legal
class dictionary graph, ¢q, such that Objects(¢z) 2O Objects(¢r) U 2, and for all legal class
dictionary graphs, ¢3 where Objects(¢s) 2 Objects(p1) U Q @ Objects(¢p2) C Objects(gs).

If there is no legal class dictionary graph that defines a set of objects that includes €2 and all
of the objects defined by ¢, we say that the object example graph €2 is not incrementally legal
with respect to ¢.

Definition 9 An object example graph € isincrementally legal with respect to a class dictio-
nary graph ¢ if there exists a legal class dictionary ¢' such that Objects(¢’) O Objects(p)U Q.

If a list of object example graphs €2y, ..., Q,, is legal, then each €; in the list must be incrementally
legal with respect to the class dictionary graph learned from €y, ...,€;_;. Therefore a class
dictionary graph can be learned incrementally from a legal list of object example graphs.

Denote the intermediate class dictionary learned from €Q4,Q,,....,Q,, by ¢,,, and let ¢q =
(0,0;0,0). Then ¢, is learned from ¢,,_1 and Q,,, where 1 < m < n, as follows:

1. A=A, , UAg,

For each edge in the object example graph there is a construction edge in the class
dictionary graph with the same label.

11

2. VC =VC, U{r|Ive Wy, : Mr@w) =r}

We interpret A as a function that maps objects to their classes. For each new class that
appears in the object example graph, we add a construction class which is represented as
a construction vertex in the class dictionary graph.

3. VA=VA, |
U{(r,l)|reVC,le A, Fvl,v2,wl,w2 € Wy, :
Mz (v1) = Mz (02) = r, Mz (wl) £ Mz (w2), (vl wl, 1), (v2,w2,1) € Eg,,}
U{(r,)|reVC,le A Fv,we Wy, seV(C:
)\QW’"(U) =,)\QW’"(w) # s, (v,w,l) € Eq, ,(r,s)€ ECy .}
The first term represents the alternation vertices already learned in ¢,,_;. The second
term adds the alternations we learn from 2, alone (this is the same term as in the Basic
Algorithm, where Q; = Q; = Q,,). The last term adds alternations that are learned in
the Basic Algorithm when €Q; # ;. In the case of incremental learning we rely on the
fact that the edges of Qq, ..., Q,,_1 are recorded in ¢,,_1 as construction edges.

4. V=VCUVA

The vertices of the class dictionary graph are given by the union of the construction
vertices and alternation vertices.

U{(r, (r,0),0) | (1) € (VA VA,)}
UA{(r,s,l) | r,s € V,Jv,w e Wy, :)\Q’"(v) =,)\QW’"(w) =s,(v,w,l) € Eq,,,(r,]) &
V A}

We start with the construction edges in ¢,,_1, but if we learned a new abstract class,

5. BEC = (EC,, 1—{|(7“ s;) [(1) e (VA=V Ay,)})

represented by (r,1), we remove any construction edges to vertices representing subclasses
of the new abstract class (first term) and replace them with construction edges to (r,l)
(second term). Finally, the third term adds new construction edges learned from €,,.

6. EA= EA,
U{((r,0),s)(r,]) € VA,s € V,Fv,w € W, : Apr(v) = 7 A\pr(w) = s, (v,w,]) €
Eq,.}

Here we start with the alternation edges from the previous class dictionary graph and
add edges learned from (), alone, and from €2, and ¢,,_;. The three terms correspond
to the three terms used to learn the alternation vertices in step 3.

The following theorem can be easily proven by induction on the length of the object example
graph list:

Theorem 1 A class dictionary graph learned incrementally is identical to the class dictionary
graph learned using the basic learning algorithm.

12

4 Incremental Optimization

In this section, we develop an algorithm for incrementally learning minimum single-inheritance
class dictionary graphs. We measure class dictionary graphs by counting the number of edges,
except that we consider construction edges to be at least twice as expensive as alternation edges.
Consideration of this problem leads to some important observations regarding class dictionary
design.

Informally, we say that a class dictionary graph is in common normal form (CNF) if it has no
redundant parts. If a vertex, v, in a class dictionary graph has two incoming construction edges
with the same label, [, the part (I,v) is redundant.

We observe that we can always avoid redundant parts by introducing multiple inheritance.
Sometimes, we can avoid multiple inheritance by introducing redundant parts, but other times
we can not eliminate multiple inheritance while maintaining object equivalence. When faced
with a choice, multiple inheritance always produces the smaller class dictionary, since construc-
tion edges are at least twice as expensive as alternation edges.

In [LBSLI1] an efficient algorithm is presented for abstracting minimum single-inheritance
class dictionary graphs from class dictionary graphs learned using the basic learning algorithm
(section 2). It is shown that a class dictionary graph with no redundant parts (i.e., it is in
class dictionary common normal form, or CNF), no useless alternation vertices, and with a
single-inheritance hierarchy is guaranteed minimal. An alternation vertex is “useless” if it does
not have at least two outgoing alternation edges.

Clearly, an incremental learning algorithm will produce a minimum single-inheritance class
dictionary graph if with each new example the algorithm maintains a class dictionary graph
that has a single-inheritance hierarchy and no redundant parts. We define the Incremental
Single-Inheritance Minimum Class Dictionary Learning problem as follows:

Instance:
A minimum single-inheritance class dictionary graph, ¢, and an object example graph, €, where
Q is incrementally legal with respect to ¢.

Problem:
Find a minimum single-inheritance class dictionary graph, ¢’, such that

Objects(¢') O Objects(p) U .

In order to maintain the desired conditions in the intermediate class dictionary graphs, each
new object example graph must meet two criteria:

1. If we learn from an object example graph, H = (W, S, Ag; F,)), that a class occurring
in H (under A) has a part in common with some other class, C, in the class dictionary it
must have all the parts inherited by C.

13

2. If an object has a class with parts in common with two or more classes in the class
dictionary, all of the classes with which it has parts in common must lie on a single
alternation path.

It is easy to see how the incremental learning algorithm presented in section 3 can be extended
to produce minimum single-inheritance class dictionaries.

5 Practical Relevance

In this paper we propose a metric (minimizing the number of edges) for measuring class hier-
archies. We propose to minimize the number of construction and alternation edges of a class
dictionary graph while keeping the set of objects invariant. Our technique is as good as the
input which it gets: If the input does not contain the structural key abstractions of the ap-
plication domain then the optimized hierarchy will not be useful either, following the maxim:
garbage in — garbage out.

However if the input uses names consistently to describe either example objects or a class
dictionary then our metric is useful in finding “good” hierarchies. However, we don’t intend
that our algorithms be used to restructure class hierarchies without human control. We believe
that the output of our algorithms makes valuable proposals to the human designer who then
makes a final decision.

Our current metric is quite rough: we just minimize the number of edges. We also minimize the
amount of multiple inheritance (since this is consistent with minimizing edge size), but ignore
other criteria such as the amount of repeated inheritance. This is left for future research.

We motivate now why our metric produces class hierarchies which are good from a software
engineering point of view.

5.1 Minimizing the number of construction edges: CNF

We minimize the number of construction edges by eliminating redundant parts. We say a class
dictionary with no redundant parts is in class dictionary common normal form (CNF).

Even simple functions cannot be implemented properly if a class dictionary is not in CNF. By
properly we mean with resilience to change. Consider the class dictionary in Figure 5 which
is not in CNF. Suppose we implement a print function for Coin and Brick. Now assume that
several hundred years have passed and we find ourselves on the moon where the weight has a
different composition: a gravity and a mass. We then have to rewrite our print function for

both Coin and Brick.

After transformation to CNF we get the class dictionary in Figure 6. Now we implement the
print function for Coin:

void Coin::print() { radius->print(); Weight_related::print(); }

14

radius width
/‘\@
Coin |:| Number|:| |:| Brick

weight weight
Figure 5: A class dictionary not in CNF

Weight-related

<2

=]
0
()
2
width
. radius .
Coin[| ===+ |4 [Brick
Number
ength

Figure 6: After transforming to CNF

After the change of the weight composition, we get the class dictionary in Figure 7. We
reimplement the print function for this new class and no change is necessary for classes Brick
and Coin.

In summary: if the class dictionary is in CNF and the functions are written following the strong
Law of Demeter [LHRS88], the software is more resilient to change. The strong Law of Demeter
says that a function f attached to class C should only call functions of the immediate part
classes of C, of argument classes of f, including C, and of classes which are instantiated in f.

Transformation to CNF can be more complicated, but not less beneficial, than the above
example suggests.

Weight-related

<2

mass

vgravity

width
. radius .
Coin[| ===+ |4 [Brick
Number h
eng

Figure 7: After change of weight composition

15

5.2 Minimizing the number of alternation edges

Consider the non-minimal class dictionary in Figure 8. By changing the class definitions for
Occupation and Univ-employee we get the class dictionary in Figure 9. We have now reduced
the number of alternation edges by 5 and have also reduced the amount of multiple inheritance,
which we propose as another metric to produce “good” schemas from the software engineering
point of view.

Another indication that our class dictionary optimization algorithm is useful is that it succeeds
in finding single-inheritance solutions. We can prove the following statement: If we give a class
dictionary which is object-equivalent to a single-inheritance class dictionary to the optimization
algorithm, it will return such a single-inheritance class dictionary. From a software engineering
standpoint, a single inheritance hierarchy is simpler than a multiple-inheritance hierarchy and
our optimization algorithm will find such a hierarchy, if there is one.

6 Related work

Our work is a continuation of earlier work on inductive inference [CF82, Chapter XIV: Learning
and inductive inference], [AS83]. Our contribution is an efficient algorithm for inductive infer-
ence of high-level class descriptions from examples. Related work has been done in the area
of learning context-free grammars from examples and syntax trees [AS83]. The key difference
to our work is that our approach learns grammars with a richer structure, namely the class
dictionary graphs we learn, define both classes and languages.

In [Cas89, Cas90] and in his upcoming dissertation, Eduardo Casais introduces incremental
class hierarchy reorganization algorithms. Those algorithms differ from our work in a number
of ways:

o The models used are different. Casais uses general graphs while we use graphs with a
special structure which has to satisfy two axioms needed for data modeling. For example,
we distinguish between abstract and concrete classes.

o A step in Casais’ incremental algorithm consists of adding a new subclass with potentially
rejected attributes. In our work, an incremental step is adding a new object to a class
hierarchy and to restructure the hierarchy so that it is optimal and at the same time
describes the newly added object.

o The goal of Casais’ algorithms is to restructure class hierarchies to avoid explicit rejection
of inherited properties. In our work we avoid rejected properties.

o Casais’ algorithms deal with operation signatures. In our work we have not added oper-
ation signatures yet. However, an operation of a class can be easily represented as a part
by encoding the signature into the part’s class name.

16

Occupation

O — = » |:|Num

AN

Undergradlj Grad |:| T A|:| Prof |:| Aig;}(“lj Coach|:|

VIR

Student FacultyC> Univ-employee
<O <O ploy

assignment

Course |:|
gpa |:|

Real_Num

Figure 8: Before minimizing alternation edges

Occupation

O — = » |:|Num

~

Student Univ-employee
salary

4—

L1 [

|:| Faculty

Undergrad Grad assignmen Admin Coach

asst
Course

TAI:I Prof|:|

Figure 9: After alternation edge minimization

17

In [LM91] several ways in which conceptual database evolution can occur through learning are
discussed. One of these, the generalization of types to form supertypes, is a special case of our
abstraction of common parts, where there are only two objects from which the common parts
are abstracted. Another, the expansion of a type into subtypes, is similar to the introduction
of alternation vertices which occurs during the basic learning phase of our algorithm.

A major difference in our work is that we focus on learning from examples, while in [LM91] the
emphasis is on learning from observation of instances (e.g., noticing that some of the instances
of a type object have null values for a given attribute). Our examples are more general than
instances since we don’t supply values for attributes.

7 Conclusion

We have presented novel algorithms for incremental learning and optimization of class dictio-
naries. Earlier we have studied global class reorganization algorithms [LBSL90], [LBSL91].
Incremental algorithms are useful for at least two reasons:

First, incremental algorithms are much more efficient than global reorganization algorithms. If
we have a class library with several hundred classes, we don’t want to globally restructure all
those classes if there is a small evolution of some class definition.

Second, incremental algorithms give further insight into the design process. They serve as a
tool to understand change propagation when there is a change in the class structure.

Our algorithms are a useful ingredient to a tool suite for object-oriented design and program-
ming and we have implemented them in the Demeter System.

Acknowledgments: We would like to thank Ignacio Silva-Lepe for the university example
given in section 6.2.

References

[AS83] Dana Angluin and Carl Smith. Inductive inference: Theory. ACM Computing
Surveys, 15(3):237-269, September 1983.

[BDG*88] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S.E. Keene, G. Kiczales, and D.A.
Moon. Common Lisp Object System Specification. SIGPLAN Notices, 23, Septem-
ber 1988.

[Cas89] Eduardo Casais. Reorganizing an object system. In Dennis Tsichritzis, editor,
Object Oriented Development, pages 161-189. Centre Universitaire D’Informatique,
Geneve, 1989.

[Cas90] Eduardo Casais. Managing class evolution in object-oriented systems. In Den-
nis Tsichritzis, editor, Object Management, pages 133-195. Centre Universitaire
D’Informatique, Geneve, 1990.

18

[CF82]

[GRS3]

[LBSLIO]

[LBSLI1]

[LHRSS]

[LieSS8]

[LMO1]

(LRSS

[Meys8]

[MMPSS]

[PBEF+89]

Paul R. Cohen and Edward A. Feigenbaum. The Handbook of Artificial Intelligence,

volume 3. William Kaufmann, Inc., 1982.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.
Addison Wesley, 1983.

Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. Abstraction of object-
oriented data models. In Hannu Kangassalo, editor, Proceedings of International
Conference on Entity-Relationship, pages 81-94, Lausanne, Switzerland, 1990. El-

sevier.

Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. From objects to classes:
Algorithms for object-oriented design. Journal of Software Engineering, 6(4):205—
228, July 1991.

Karl J. Lieberherr, lan Holland, and Arthur J. Riel. Object-oriented programming;:
An objective sense of style. In Object-Oriented Programming Systems, Languages
and Applications Conference, in Special Issue of SIGPLAN Notices, number 11,
pages 323-334, San Diego, CA., September 1988. A short version of this paper
appears in IEEE Computer, June 88, Open Channel section, pages 78-79.

Karl J. Lieberherr. Object-oriented programming with class dictionaries. Journal
on Lisp and Symbolic Computation, 1(2):185-212, 1988.

Qing Li and Dennis McLeod. Conceptual database evolution through learning. In
Rajiv Gupta and Ellis Horowitz, editors, Object-oriented Databases with applications
to CASE, networks and VLSI CAD, pages 62-74. Prentice Hall Series in Data and
Knowledge Base Systems, 1991.

Karl J. Lieberherr and Arthur J. Riel. Demeter: A CASE study of software growth
through parameterized classes. Journal of Object-Oriented Programming, 1(3):8-22,
August, September 1988. A shorter version of this paper was presented at the 10th

International Conference on Software Engineering, Singapore, April 1988, IEFEFE
Press, pages 254-264.

Bertrand Meyer. Object-Oriented Software Construction. Series in Computer Sci-
ence. Prentice Hall International, 1988.

Ole Lehrmann Madsen and Birger Mgller-Pedersen. What object-oriented program-
ming may be - and what it does not have to be. In S.Gjessing and K. Nygaard,
editors, Furopean Conference on Object-Oriented Programming, pages 1-20, Oslo,
Norway, 1988. Springer Verlag.

B. Pernici, F. Barbic, M.G. Fugini, R. Maiocchi, J.R. Rames, and C. Rolland. C-
TODOS: An automatic tool for office system conceptual design. ACM Transactions
on Office Information Systems, 7(4):378-419, October 1989.

19

[Sno89]

[Str86]
[TYFS6]

[WBJ90]

Richard Snodgrass. The interface description language. Computer Science Press,

1989.
B. Stroustrup. The C++ Programming Language. Addison Wesley, 1986.

T.J. Teorey, D. Yang, and J.P. Fry. A logical design methodology for relational data
bases. ACM Computing Surveys, 18(2):197-222, June 1986.

Rebecca J. Wirfs-Brock and Ralph E. Johnson. A survey of current research in
object-oriented design. Communications of the ACM, 33(9):104-124, September
1990. The description of the Demeter project starts on page 120.

20

Contents

1 Introduction

1.1 Class notation

1.2 Object example notation

1.3 A simple example of incremental class dictionary learning

2 Basic Learning

3 Incremental Learning

4 Incremental Optimization

5 Practical Relevance

5.1 Minimizing the number of construction edges: CNF

5.2 Minimizing the number of alternation edges

6 Related work

7 Conclusion

21

11

13

14
14
16

16

18

