
An Eclipse Plug-In for Visualizing Java Code
Dependencies on Relational Databases

Paul L. Bergstein, Priyanka Gariba, Vaibhavi Pisolkar, and Sheetal Subbanwad

Dept. of Computer and Information Science, University of Massachusetts Dartmouth, Dartmouth, MA, USA

Abstract – Enterprise applications typically consist of a web
layer, the business logic layer, and a relational database.
However, the interaction between these various layers is not
sufficiently captured by the current generation of IDE
(Integrated Development Environment). For example,
current Java IDE's do not evaluate the relationship of
classes with the database, or how a particular java method
interacts with database tables and columns. We report here
our progress in developing an Eclipse plug-in that helps the
programmer by providing a visual map of interactions
between Java code and relational databases. A primary
motivation is to facilitate code maintenance in the face of
database modifications.

Keywords: Software maintenance, software visualization
tools.

1 Introduction
Modern tools have simplified the development of

enterprise applications by bridging gaps across various
technologies like file systems, relational databases,
messaging, and web services. However, this has also
led to challenges in maintenance and enhancement of
enterprise applications. An enterprise application
usually consists of a web layer, the business logic and
relational database, often enhanced with frameworks
like Struts and Hibernate for web and persistence.
However, the interaction between these various layers
is not sufficiently captured by the current generation of
IDE (Integrated Development Environment). For
example, the Eclipse IDE provides support for syntax
and debugging of java classes, but it does not evaluate
the relationship with the database, or how a particular
java method interacts with database tables and
columns. For example, it does not flag a warning
where an SQL query might be formed incorrectly.
Similarly, the Visual Studio .NET would not flag a
warning if an XPath applied on an XML document
does not correspond to a valid value according to the
schema. This makes it very difficult to maintain and

enhance applications written by a third party, since a
change in code may break some other layer, and the
problem will become known only after extensive
testing.

Our goal is to develop a framework that will help
programmers in bridging the gap between different
technologies used in an enterprise application.
However, this is very substantial initiative and we
report here our progress in developing an Eclipse plug-
in that helps the programmer by providing a visual map
of interactions between Java code and relational
databases.

The obvious benefit of the mapping is to facilitate
code maintenance in the face of database modifications
by identifying the code-to-database couplings. In some
cases the string search function of the IDE's editor
might be useful for finding affected code when
changes are made to the database schema. However,
this technique is difficult or impossible to use in certain
situations. Suppose, for example, that a column name
is changed in one table, but other tables have columns
with the same name. A search for the column name in
the java code may find many instances that are
irrelevant. Furthermore, consider that table and column
names may be stored in variables, passed as parameters
to other methods, or constructed dynamically in code
(e.g. by string concatenation). In such cases, the string
search technique may fail to detect many areas of
affected code. With our tool, the developer only needs
to click on a database element to find the code coupled
to that element.

A second, and equally important, benefit involves
the easy detection of code-to-code couplings that arise
when different java methods access the same database
elements. Suppose a developer has a Java enterprise
application which uses relational database for data
persistence, and the Eclipse IDE is being used for
development. The programmer wants to make some

changes to a method and would like to know the
effects of this change on rest of the code. Ordinarily
the programmer could use the “Call Hierarchy” feature
of the Eclipse IDE to get the dependencies of other
methods and classes on this method. But suppose the
method uses an SQL statement to store a string in the
address column of the customer table, and the
developer wants to change the format of the address.
This is not easy because there may be many other
methods which are dependent on the address format
but are not related to the current method containing this
SQL query through the call hierarchy. As noted above,
the editor's search function is not a reliable way to find
the affected methods. Therefore the programmer has to
manually inspect all the classes and check for methods
referencing the address column of the customer table,
but even this manual process is highly error prone
when column and table names are passed as parameters
and accessed through parameter or variable names.

2 Background
We have previously reported [1] our development

of a prototype tool to provide a visual mapping of java
code-to-database couplings. In our initial effort we
developed a stand alone application to scan java source
code and present the coupling information to the user
in tabular format. After entering a java source file
name and database connection information (database,
host, username, and password) the tool would scan the
source code for database access and display tables with
the couplings that were found.

When we tested the prototype on a simple
database application development project, we found it
to be quite useful, but several shortcomings were
apparent. First, our methodology for identifying the
code-to-database couplings depended entirely on static
analysis of the java source code, and was not very
sophisticated. Second, we had no mechanism for
tracking changes to the code and database schema over
time, so that the developer would need to identify the
relevant couplings before making a change. For
example, if the developer were to change the name of a
database column, it would be necessary to find the
couplings of code to that column before the change
was made. Afterward, the couplings would no longer
exist and our tool had no way to identify the affected
code.

Also, our user interface was a bit awkward, not
integrated into a development environment, and only
allowed the user to process a single source file at a
time. Therefore it was not very useful for detecting
code-to-code couplings between different source files.

In our current implementation we have made
improvements to address each of these shortcomings.
We have implemented our tool as a fully integrated
plug-in to the popular Eclipse development
environment with the ability to visualize all the code-
to-database and code-to-code (via database) couplings
for an entire project. We have somewhat improved our
static code analysis and added a dynamic (runtime)
analysis feature. We have added change tracking
ability by storing the coupling information in a
database that the tool uses internally.

3 Results
Figure 1 shows the overall architecture of the tool.

The tool uses both static and dynamic analysis of the
java code to find database couplings. The results of
both analysis methods are combined in the coupling
data repository which is also used to track changes
over time. The user interface, implemented as an
Eclipse plug-in displays the results to the user and
allows easy navigation to code based on its database
coupling.

3.1 Static Code Analysis

In our initial prototype the code analysis was quite
primitive. The source code was parsed using ANTLR
[7] and a public domain java grammar [8] for ANTLR
to build an abstract syntax tree. Next, the tree was
scanned for string literals and an attempt was made to
parse each string using the ZQL [9] SQL parser. If the
string was successfully parsed as an SQL statement the
class and method containing the string was mapped to
the database tables and columns it referenced. Only
string literals that were complete SQL statements were
considered and all other strings were ignored. As a
result, SQL statements that were generated
dynamically (e.g. using string concatenation) were not
detected and many couplings were missed.

The static code analysis in our current version has
been improved somewhat to handle certain string
concatenations including some concatenations that are
built from a combination of string literals and

variables. The new implementation uses the Sun java
compiler API [10] and the Compiler Tree API [11] to
parse the java source and walk the abstract syntax tree.
The static code analyzer performs its own parsing,
rather than relying on ZQL, so that it can handle SQL
fragments that are not complete, valid SQL statements.
In particular, it looks for string literals that are included
either directly or after assignment to String variables in
calls to the execute, executeQuery, and executeUpdate
methods of the JDBC Statement class. The analyzer
attempts to identify column and table names occurring
in select, from and where clauses.

Although the static analysis is much improved
from our initial prototype, static analysis in general is a
hard problem and it is not possible to detect all
couplings to the database that may occur at runtime,
possibly dependent on user input. We have therefore
postponed further enhancements to the static analyzer

in order to focus on adding dynamic analysis.

3.2 Dynamic Code Analysis

In order to overcome some of the difficulties of
static code analysis, we have added a dynamic code
analyzer to our system. The main component of the
dynamic analyzer is a JDBC bridge driver that logs the
database accesses to the coupling data repository. Our
driver acts as a bridge between the application and the
"real" driver that communicates with the user's
database. The implementation is conceptually simple.
Most of the methods in our driver classes simply pass
requests on to the underlying "real" driver and return
whatever data is returned from the real driver. The
main exception is in the Statement class methods (e.g.
execute, executeQuery, executeUpdate) that take SQL
statements as arguments. These methods receive only
complete, valid, fully formed SQL statements as

User Interface

(Eclipse Plug-In)

Static Code

Analyzer

Dynamic Code
Analyzer

Coupling

Data
Repository

Figure 1

arguments (unless there are errors in the application)
even if they have been built dynamically.

The SQL statements processed in the JDBC driver
are easily parsed with the ZQL parser to determine the
database elements that are being accessed. The driver
methods that process the SQL statements create (but
don't throw) Exceptions and use the Exception object
to obtain a stack trace. Using methods in the
StackTraceElement class, the driver can determine the
class, method, file, and line number from which it was
called. The coupling information is recorded in the
coupling data repository.

In order to ensure that all JDBC database access

goes through our bridge driver, we also supply a
replacement for the DriverManager class. Installation
of the dynamic analyzer requires installation of the
bridge driver and replacing the standard
DriverManager.

3.3 Coupling Database

The coupling data repository is implemented as a
database that is used internally by our tool. For every
code-to-database coupling that is detected by either the
static or dynamic code analyzer, there is an entry in the
repository. Each coupling entry in the repository
includes the code location (class, method, file, and line

Figure 2

number), the database element (database, table, and
column), the SQL statement type (select, insert, update,
etc.) and the type of access (read, write, or read/write).
The statement type does not necessarily determine the
access type. For example, a field occurring in the set
clause of an update statement indicates a write access,
but a field occurring in the where clause of the same
statement indicates a read access.

In order to detect changes over time, the
repository also records the first time and last time that
a coupling is detected. Also, each time the tool is run,
the structure of the database is checked using the JDBC
metadata API, and any structural changes are recorded
in the repository.

3.4 User Interface

The screenshot below shows the tool interface in
an Eclipse pane. The database structure is shown as a
tree with database, table, and column information
arranged in a hierarchal structure. The leaf nodes at the
lowest level of the tree include code references under
the database column names. For example, in the view
below we can see that EmpName column of the
Employee table of Database-5 is coupled to the both
java methods CreateTable and PerformLoadWrite.
Clicking on a code reference in the tree brings the
corresponding java source into view in an editor pane.

The two code-to-database couplings to the same
database element suggest a code-to-code coupling
between the two methods. The current interface does
not show the access type information, but this can
easily be added to make the nature of the code-to-code
coupling apparent. For example, one method might
read data that is written to the database by another
method.

4 Related Work
There is a large body of work on software

visualization [2-6] and also on database visualization.
There is also a good deal of work on reverse
engineering of databases and CASE tools that support
reverse engineering with visualization techniques.
However, we are not aware of any other system
designed to support the development and maintenance
of software through the visualization of program code
dependencies on the database.

5 Conclusions

Many researchers have investigated to resolve the
dependencies between different technologies involved
in an enterprise application. Our tool significantly
enhances visibility between java and relational
databases. The principal benefit is the ability to easily
detect the code-to-database couplings and couplings of
code-to-code via the database. This ability makes it
easy to maintain application code in the face of
structural changes to the database, or changes in the
format of data stored in the database.

Static and dynamic analysis of java code to
discover database couplings each have their advantages
and disadvantages. Dynamic analysis is easier to
implement and will find all couplings that occur during
testing. Static analysis is harder to implement and
cannot identify couplings that only occur dynamically
(e.g. based on user input). However, static analysis
may identify couplings that are missed during the
testing phase. By combining the results of static and
dynamic analysis in a coupling data repository, we get
the combined benefits of each. The repository also
allows for tracking of changes over time so that areas
of code that may be affected by a change could be
flagged for the developer.

6 Future Work

We have tested our tool on a several medium
sized applications that were developed as team based
student projects in a database course. Our users found
the tool to be very useful. However, we are actively
working on improvements to the user interface based
on their feedback. In particular, our users were most
interested in viewing coupling at multiple levels of
granularity (e.g. at the table level in addition to the
column level) and in automatic flagging of potentially
affected code when structural changes to the database
occur. We are also working on improving the static
code analyzer to reduce the number of couplings that
are only detected dynamically.

In the long term, we plan to extend this tool to
handle additional languages and technologies. For
example, we plan to extend our java code analyzers to
support JSP by analyzing the java snippets embedded
in JSP pages, so that we can show couplings of JSP
pages to the database. This would also allow the

visualization of couplings between the presentation
layer (JSP) and business logic code that occur through
the database in a typical J2EE environment. If all these
dependencies between the various layers of a J2EE
application can be shown through a visual tool, the task
of maintaining and enhancing such applications would
be greatly facilitated. Eventually, we would also like to
support additional programming languages such as C#
and C++ and add support for ODBC applications.

7 References
[1] Sai Ravindran and Paul L. Bergstein. AppDetector:

A Tool Prototype for Visualizing Java Code
Dependencies on Relational Databases. In
Proceedings of the 2007 International Conference
on Software Engineering Research and Practice
(SERP’07), Pages 497-500, June 25-28, 2007, Las
Vegas, Nevada. CSREA Press, ISBN 1-60132-
034-5.

[2] G. C. Roman and K. C. Cox. A taxonomy of
program visualization systems. IEEE Computer,
Vol. 26(12), Pages 11-24, 1993.

[3] Blaine A. Price, Ian S. Small, and Ronald M.
Baecker. A Principled Taxonomy of Software
Visualization. Journal of Visual Languages and
Computing, Vol. 4, Pages 211-266, 1993.

[4] Jonathan I. Maletic, Andrian Marcus, and Michael
L. Collard. A task oriented view of software
visualization. In Proceedings of the First
International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT), Pages
32-40, 2002.

[5] Christian Collberg, Stephen Kobourov, Jasvir
Nagra, Jacob Pitts, and Kevin Wampler. A system
for graph-based visualization of the evolution of
software. In Proceedings of the 2003 ACM
symposium on Software visualization, Pages 77-86,
2003. ACM Press.

[6] M. D. Storey, K. Wong, F. D. Fracchia, and H. A.
Müller. On Integrating Visualization Techniques
for Effective Software Exploration. In Proceedings
of IEEE Symposium on Information Visualization,
Pages 38-45, 1997.

[7] Terence Parr. An Introduction To ANTLR.
http://www.cs.usfca.edu/~parrt/course/652/lectures
/antlr.html

[8] Java Grammar
http://www.antlr.org/grammar/java

[9] Zql: a Java SQL parser
http://www.experlog.com/gibello/zql/

[10] Java 6 Compiler API
http://today.java.net/pub/a/today/2008/04/10/sou
rce-code-analysis-using-java-6-compiler-
apis.html

[11] Compiler Tree API
http://java.sun.com/javase/6/docs/jdk/api/javac/tr
ee/index.html

