
Limitations of Data Encapsulation and Abstract Data Types

Paul L. Bergstein
University of Massachusetts Dartmouth

pbergstein@umassd.edu

Abstract

One of the key benefits provided by object-oriented
programming languages is support for strong data
encapsulation and user defined abstract data types. The use
of these features is intended to improve the resiliency of
programs to changes in data representation by localizing
the effects. Recently, the software industry has experienced
the problems caused at least in part by a change in the
representation of dates – the Y2K problem.

In this paper, we consider how the use of data
encapsulation and abstract data types might have
hypothetically prevented these Y2K problems. We
consider examples that demonstrate that data encapsulation
and abstract data types as they are commonly defined and
used are not enough. Rather, it is necessary to provide an
interface that not only encapsulates data, but also presents
only an abstract view of the data. Finally, these rules are
formulated as an extension and generalization of the Law
of Demeter.

1. Introduction

One of the key benefits provided by object-oriented
programming languages is support for strong data
encapsulation and user defined abstract data types [1-5, 6-
9]. Strong data encapsulation refers to the prevention of
access to data defined in a class from outside of the class
(e.g. by declaring a class member private). Abstract data
types are types that are defined operationally as opposed to
structurally. That is, the type is defined in terms of the
operations (or methods) it supports rather than on its
internal structure. A class definition in a typical class
based object-oriented programming language where all data
members have been declared private would generally be
considered an implementation of an abstract data type. An
interface in Java where only method signatures are defined
is an even better example of an abstract data type.

The use of these features is intended to improve the
resiliency of programs to changes in data representation by
localizing the effects of the changes. Until recently the
classic example of software breaking due to change in data
representation was the United States Post Office adoption
of zip+4 postal codes. When the representation of zip
codes was extended to include an additional 4 digits, the

cost of modifying software to handle the seemingly trivial
change was reported to be in the hundreds of millions of
dollars [9, p.18]. More recently, we have experienced the
Y2K problem, which is at least partially due to changing
from a 2-digit to a 4-digit representation of years. In this
case, the cost estimates reported in the press range in the
hundreds of billions of dollars. In this paper, we imagine
that we are able to go back in time and introduce object-
oriented software engineering techniques before any
software using 2-digit dates is constructed. We imagine
that these techniques are used in the ways that they are
typically applied today, and we consider how the use of
these techniques would have impacted the Y2K crisis, and
why.

2. Object-oriented techniques applied to dates

If we were to implement an abstract data type for dates,
the public interface would probably look very similar to
the Java interface shown in Figure 1. The interface
includes methods for comparing dates, for parsing and
formatting dates, and for manipulating the month, day,
and year of dates. In fact, the methods included in our
interface are a subset of the methods from the Java 1.0
java.util.Date class1.

The Date definition in Figure 1 clearly meets the
definition of an abstract data type since it defines dates in
terms of operations only. A class implementing this
interface would include implementations of each of the
public methods as well as whatever private data members
and methods are necessary to support the public methods.
Such an implementation meets the criteria of strong data
encapsulation. Notice that the methods for manipulating
month, day, and year do not necessarily imply anything
about the underlying internal representation of Date
objects. That is, the get and set methods are not
necessarily accessor functions for month, day, and year
data members. Also notice that the getYear and setYear
methods return an int and take an int as argument,
respectively, so the interface should be stable for more
than 2 billion years. There are many possibilities for the
data structures that could be used in implementations of

1 In java 1.1 the parsing and formatting methods were
moved to java.text.DateFormat, and the methods for
manipulating month, day, and year were moved to
java.util.Calendar.

the Date interface. For example, the year might be stored
as a character array of length two, but since we have used
strong data encapsulation, changing to a character array of
length four should only require local changes in classes
implementing the Date interface. It seems that the use of

current software engineering techniques would have
prevented the Y2K crisis! Unfortunately, there is a serious
flaw in the approach we have taken, and it is doubtful that
the use of abstract data types and strong data encapsulation
by themselves would have had much impact on the Y2K
problem.

3. Example Usage

Although the interface definition fits the criteria of
abstract data type definitions, the inclusion of the get and
set methods invites clients (users of Date
implementations) to view dates as compositions of
month, day, and year, rather than as abstractions of the
date concept, e.g. a point in time. It also provides clients
with the means to circumvent the comparison, formatting,
and parsing methods, by performing these functions
outside of the class implementing the interface. Consider,
for example, the code in Figure 2. Here the programmer
has written some code to display textboxes for the user to
enter the month and year of an expiration date, and then
check to see if the expiration date has passed. The code
works only if the user enters for the year the last two
digits of a year in the range 1900-1999. The code breaks
when expiration dates reach the year 2000, despite the use
of a Date abstract data type with a stable interface and
programming language enforced strong data encapsulation.
The trouble is that the getYear and getMonth methods
encourage clients to perform parsing and comparisons of
months and years outside the class implementing the Date
interface.

interface Date {

 // Methods for comparing dates
 public boolean before(Date d);
 public boolean after(Date d);
 public boolean equals(Date d);

 // Formatting & parsing methods
 public String toString();
 public void parse(String s);

 // Methods for manipulating
 // month, day, and year
 public int getMonth();
 public void setMonth(int
month);
 public int getDay();
 public void setDay(int day);
 public int getYear();
 public int setYear(int year);
}

Figure 1

// Prompt user for month and year of expiration, and check to see
// if the expiration date has passed

Date today;
Textfield month, year;
Boolean expired;

// Code to initialize variables, display user interface, etc.
// ...

int todayMonth = today.getMonth();
int todayYear = today.getYear();
int expMonth = Integer.parse(month.getText()).intValue();
int expYear = Integer.parse(year.getText()).intValue();

if (expYear + 1900 == today.getYear())
 expired = (todayMonth > expMonth);
else
 expired = (today.getYear() > expYear + 1900);

Figure 2

The problem could be avoided by performing the
parsing and comparison within the class implementing the
Date interface. This requires extending the parse method to
recognize string formats containing only month and year
information, e.g. mm/yy, and overloading the comparison
functions with versions that take a precision with which
to perform the comparison, e.g. to the nearest year,
month, day, hour, minute, second, or millisecond. Figure
3 gives the improved Date interface, and Figure 4
illustrates the correct implementation of the client code.
Now the effects of date format changes and Y2K are

localized in the class implementing the Date interface. As
a fringe benefit, we get client code that is simpler and
more readable. We have also improved the reusability of
some parsing and comparison code by including it in the
Date interface.

The problems caused by the get and set methods could
be even worse if the interface to those methods was not
robust with respect to changes in data representation.
Consider, for example, the damage that might have
resulted from a getYear method that returned a value in the

// Prompt user for month and year of expiration, and check to see
// if the expiration date has passed

Date today, expiration;
Textfield month, year;
Boolean expired;

// Code to initialize variables, display user interface, etc.
// ...

String expDate = month.getText() + "/" + year.getText();
expiration.parse(expDate);
expired = today.after(expiration, Date.MONTH);

Figure 4

interface Date {

 // Precision constants
 public static final int YEAR = 0;
 public static final int MONTH = 1;
 public static final int DAY = 2;

 // Methods for comparing dates
 public boolean before(Date d);
 public boolean after(Date d);
 public boolean equals(Date d);
 public boolean before(Date d, int precision);
 public boolean after(Date d, int precision);
 public boolean equals(Date d, int precision);

 // Formatting and parsing of dates
 public String toString();
 public void parse(String s);
}

Figure 3

range 0-99 as a byte (8-bit integer), or as a character array
containing only the last two digits of the year.

While this example looks mainly at the harm caused
by the getYear method, the setYear method is also likely
to cause problems. Consider client code that parses a two-
digit year, interprets it as a year in the range 1900-1999,
and then sends a setYear message. In this case, we would
have been better off if the setYear method took an
argument in the range 0-99, so that the interpretation
could be modified in the class implementing the Date
interface.

4. Discussion

As the preceding example illustrates, methods that
allow clients to view objects as compositions rather than
as abstractions may cause serious repercussions. Defining
abstract data types is not enough. Implementers of both
the abstract data types and the client code that uses them
must learn to take an abstract view of the data – but it is
not always easy or natural. People don’t generally think
about dates in an abstract way, e.g. as points in time.
They think of a date as a month, a day, and a year, so it is
natural for the implementers of date classes to supply
methods for manipulating month, day, and year, and it is
natural for implementers of client code to expect or request
such methods.

The lesson here is that “accessors”, whether or not they
correspond to actual data members, may break the
abstraction of a class, with all of the ensuing bad
consequences, even if they do not break the encapsulation.
Whenever we provide an accessor method we should first
ask how the access will be used, and whether or not it is
truly necessary. In most cases, it will be better to move
the functionality for which access is required out of client
code and into the class where the data is encapsulated.
When writing client code, we should avoid using
accessors, even if they are available, whenever possible.

The elimination of accessor use might be viewed as an
extension or generalization of the Law of Demeter [6],
which restricts the set of objects to which clients can send
messages. Suppose an object of class A holds a reference
to an object of class B which in turn holds a reference to
an object of class C. It would be a violation of the Law of
Demeter for the A object to request from the B object the
reference to the C object (via a get method) and then use
that reference to send messages directly to the C object.
Instead, the A object should send messages only to the B
object, delegating responsibility for communicating with
C. The effect is a decrease in the coupling and brittleness
of the code.

The suggestion here is that in addition to restricting
the set of objects that can be sent messages, there should

be a restriction on the kind of messages they can be sent.
The messages that are sent to an object should be
restricted to those that treat the object as an abstraction.
This is a generalization of the principle that we should
delegate rather than use get methods to retrieve object
references for message sending. It says that we should
delegate rather than use get methods to retrieve any data
for any type of manipulation. It is also an extension, in
that it says we should not use set methods if they are used
to manipulate a component of the object, rather than the
abstraction as a whole.

5. Conclusions

Data encapsulation and user defined abstract data types
are powerful mechanisms for creating flexible and robust
data representations, but they are not enough to prevent a
future Y2K type crisis. Even strict adherence to rules such
as “declare all data members private” will not insulate
software from changes in data representations, unless
programmers learn to think about abstract data types
abstractly. The “No Accessors” rule goes a long way
toward forcing programmers to think more abstractly and
can result in code which is significantly more robust.
Fringe benefits may include more readable code and
additional opportunities for reuse.

On the other hand, the benefits of working with
objects at a higher level of abstraction do not come
without a cost. In the short run, it may be quicker and
easier to write code using accessors, but the maintenance
risk may be very high. There are surely situations where it
is best to break the Law of Demeter, and there are
situations where it is best to break the No Accessors rule.
The point is to understand the reasons why the rules exist,
and to make sure that if a rule is broken that the benefits
outweigh the risks.

6. References

[1] Appelbe, W. and Ravn, A. “Encapsulation Constructs
in Systems Programming Languages”, ACM
Transactions on Programming Languages and
Systems, 6(2), 1984.

[2] Booch, Grady, Object-Oriented Analysis and Design
with Applications, 2nd Edition, Addison-Wesley,
1994.

[3] Claybrook, B. and Wyckof, M., “Module: an
Encapsulation Mechanism for Specifying and
Implementing Abstract Data Types”,
Communications of the ACM, 1980.

[4] Cohen, A. “Data Abstraction, Data Encapsulation, and
Object-Oriented Programming”, SIGPLAN Notices,
(19)1, 1984.

[5] Guttag, John V., “Abstract Data Types and the
Development of Data Structures”, Communications
of the ACM, 20(6), June 1977, pp. 396-404.

[6] Lieberherr, Karl and Holland, Ian, “Assuring Good
Style for Object-Oriented Programs”, IEEE Software,
September 1989, pp. 38-48.

[7] Liskov, Barbara H. , and Zilles, Stephen N.,
“Programming with Abstract Data Types”, SIGPLAN
Notices, 9(4), April 1974, pp 50-59.

[8] Meyer, Bertrand, “Principles of Package Design”,
Communications of the ACM, 25(7), July 1982, pp.
419-428.

[9] Meyer, Bertrand, Object-Oriented Software
Construction, 2 nd Edition, Prentice Hall, 1997.

[10] Sun Microsystems, The Java Platform 1.1 API
Specification, URL:
http://java.sun.com/products/jdk/1.1/docs/api/package
s.html

