
Query Translation and Where Clause Processing in
Data Mediation

Paul L. Bergstein
Dept. of Computer and Information Science

University of Massachusetts Dartmouth
Dartmouth, MA

A b s t r a c t - A serious problem facing many
organizations today is the need to use information
from multiple data sources that have been developed
separately. Conflicts in the structure and semantics of
these disparate data sources create major obstacles to
effective use. We have previously described the
development of a data mediation service to overcome
these obstacles. One of the services our mediator
provides is the ability for users and applications to
pull data from a foreign data source without any
knowledge of its actual structure or semantics.

The mediator translates a query written against a
well known (local) data source into a query against
the foreign data source, executes the query, and then
translates the data into the local format. One of the
most challenging aspects of this approach is handling
the where clause, which can be difficult or impossible
to translate. In this paper we describe our solution,
which involves splitting the where clause into a
translatable portion to be processed in the foreign
database, and an untranslatable portion to be
processed in the mediator.

Keywords: Data mediation, data integration

1. Introduction
A serious problem facing many organizations today

is the need to share information among systems that
have been developed separately. The information
sharing may be within the organization or with
external partners. In either case, the heterogeneity of
the data creates major obstacles to effective sharing of
information. Conflicts may exist in both the structure
and the semantics of the data involved. Furthermore,
the structure and semantics of a data source may
change over time. In this section and the next we
review historical approaches to the data interoperability
problem and our mediation approach. Readers familiar
with our earlier work may skip to section 3.

Historically, there have been a variety of approaches
to this problem [1-4]. The simplest approach is to
build a messaging system for each pair of data sources
that wish to exchange data. The messaging system

translates data to and from the agreed message format
at each end. However this approach doesn’t scale well
if there are many systems that want to participate in
the sharing, since a messaging system is needed for
each pair. There is another problem as well. The
metadata documenting the structure and semantics of
an enterprise’s data that is required to build the
messaging system is a very valuable resource, but it
may get lost in the translating code.

Another approach is to define standards. The
standardization approach takes several forms. For
example, we could standardize the data sources,
making the data homogeneous. While seemingly
simple, this approach has proven impossible in
practice. Since different data sources are designed to be
used in different environments, they are heterogeneous
for good reasons, and nobody can agree on a common
standard.

Standardizing the message format is another
possibility. This approach is not new, but has recently
been receiving widespread attention in the form of
defining standard DTD’s for exchanging data in XML
format [5]. Given the level of effort in this direction,
we expect to see quite a bit of success, especially
within limited and well defined domains. On the other
hand, prior attempts to define standard message
formats have generally failed due to lack of agreement
on the format’s structure and semantics. Note that
agreement to use XML does not solve this problem. It
is still necessary to agree on the structure (what tags to
use) and the semantics (what the tags mean). Also, two
systems exchanging information through a standard
message format may lose information and/or precision
during the exchange that could have been preserved
using a custom format.

The data mediation approach relies on a common
ontology that can be used to describe the structure and
semantics of each of the systems that wish to
participate in the information sharing. A data mediator
uses these descriptions to perform any necessary
translation between systems exchanging information.
In a variation of this approach, a shared view is
created, and the mediator translates queries written
against the shared view. This approach has the

advantages that there is no need to agree on standard
formats, the metadata is made explicit (so it may be
reused), and translations only occur where the structure
or semantics between two systems differ. In many
situations, we believe that mediation will prove to be a
better approach than standardization.

Our mediation service uses a layered architecture as
shown in Figure 1. In the next section we will briefly
describe the operation of the mediator. Then we will
focus on our recent work on the mediator’s where
clause processing.

ODBC Drivers JDBC Drivers

CORBA Mediation
Service

RMI Mediation
Service

Data Mediator

Data Source
Metadata
(XML)

Conceptual
Schema

Conversion
Functions

Figure 1

2. Background
Our data mediator was originally based on the

following scenario: Suppose a user who knows the
schema of only their local database, System A, wishes
to retrieve information from a foreign database, System
B. They write a query against the schema of System
A, but indicate that they would like to use System B
as the data source. The mediator translates the query
against System A into one or more queries against
System B, executes the queries, and translates the
results into the local format of System A.

In our current work we also consider a slightly
different scenario: Suppose an application using
ODBC or JDBC has been written to use a particular
data source, System A, but we now want to use a
different source, System B, with a different structure or
semantics. We accomplish the change simply by
plugging in our Mediator ODBC or JDBC driver in
place of the System A driver. The application can now
use the new data source without rewriting any code or
queries. Notice that plugging in the System B driver
will only work if Systems A and B have identical
structure and semantics, otherwise mediation is
required.

2.1 Conceptual Schema
In our implementation, the common ontology is

expressed as a shared conceptual schema, which
includes both ordinary classes (e.g. University,
Student) and domain classes (e.g. Money, Date). The
attributes of ordinary classes have domain classes as
their types. For example, Student might have an
attribute called graduation-date with type Date. For
each domain class, we specify subclasses (sub-
domains) for the known representations. When a new
data source is registered with the mediator, it will
typically be necessary to add sub-domains for data
representations that are unique to that data source.
The conceptual schema is never populated in our
system. It is used only as a reference for defining the
structure and semantics of the actual data sources. In
particular, the conceptual schema is not used as an
intermediate data representation when transferring data
from one source to another. Instead, the mediator
synthesizes a plan for direct conversion between the
data sources based on their structures and semantics as
defined by their individual mappings to the conceptual
schema.

2.2 Conversion Functions
The mediator uses a repository of functions for

converting between representations within a domain. In
our (java) implementation all conversion functions
have the same interface. They take a java Properties
object as parameter, and return a Properties object as
the result, so they naturally support many-to-many
mappings. For example, a position might be specified
using a Properties object with latitude and longitude
attributes, or (using Universal Transverse Mercators)
with zone, easting, and northing attributes. In this case
we have a two-to-three mapping. The repository is
implemented as a java class with methods for each
conversion function. The repository uses java
introspection to search for suitable conversion
functions.

2.2 Metadata
In order to register a data source with the mediator,

a description of the data source (its metadata) must be
supplied in XML format. For each data source there is
a separate XML file prepared by someone familiar with
that data source. Currently, the XML files are prepared
manually, but we plan to develop tools to help
generate these files. The metadata includes information
required to connect to the data source as well as
mappings to the conceptual schema that define the
structure and semantics of the data source. We use

XML1 to map data elements of real databases onto
attributes of ordinary classes in the conceptual schema.
Each mapping to an attribute of an ordinary class
includes the subdomain of the data element.

In the simplest case each data element of System A
corresponds one-to-one with an element of the
conceptual schema, which in turn corresponds one-to-
one with an element of System B. If the conceptual
schema contains an ordinary class called Employee
with a salary attribute of type Salary, and System A
has a Worker relation with a pay-rate attribute, then the
XML file for System A would map Worker/pay-rate to
Employee/salary and it would also map pay-rate to one
of the subdomains of Salary such as Annual/USDollars
or Monthly/Euros2. Similar mappings from System B
provide the mediator with the information needed for
translation.

Mappings between the conceptual schema and an
actual database are not always one-to-one. Suppose that
in the conceptual schema Professor’s have a phone-
number attribute of type PhoneNumber, but in the
actual database Instructor’s have area-code, exchange,
and extension attributes. For the mediator to work, the
PhoneNumber domain class must have a subdomain,
say ACEE, for the area-code/exchange/extension
representation of phone numbers, with attributes
corresponding to the three parts of a phone number.
Each of the area-code, exchange, and extension
attributes is mapped to the Professor/phone-number
attribute (and also to the appropriate attribute of the
ACEE subdomain). The mapping (from actual to
conceptual) is many-to-one.

If another database uses the same representation of
phone numbers, so we have mappings like:

A: (code, exchg, ext)  phone-number
B: (area, exg, extension)  phone-number

 then the translation will not use conversion functions
(even if the data elements have different names). In
other cases, such as:

A: (latitude, longitude)  position
B: (zone, easting, northing)  position

a conversion function is required.

Sometimes data source isn’t a very good match for
the conceptual schema. This is likely to happen, for
example, when a new data source is added after the
conceptual schema has been completed. Consider, for

1 For brevity, in this paper we mostly describe
mappings without showing the XML syntax since the
XML is trivial but verbose.
2 In theory, the issues of currency units and frequency
of payment should be separate, but we combine them
for the sake of simplicity in our implementation, in
order to focus on more interesting concerns.

example, a conceptual schema that has entity classes
for full-time students and part-time students, and a
data source with graduate students and undergraduate
students. In this case we map attributes, e.g. gpa, from
both graduate and undergraduate students to attributes
of both full-time and part-time students. Additionally,
we supply conditions that determine, for example,
which graduate students are part-time and which are
full-time. These conditional mappings [5] are specified
in both directions (to and from the conceptual schema).

2.3 Data Mediator
The data mediator manages the conversion function

repository, the conceptual schema, and the data source
metadata. It is responsible for synthesizing query and
translation plans. When a query against the schema of
System A is executed using System B as the data
source, the mediator translates the query against
System A into one or more queries against System B,
executes the queries, and translates the results into the
local format of System A. The details of our algorithm
are beyond the scope of this paper, but will be reported
elsewhere.

The mediator is implemented entirely in Java and
uses JDBC to access the desired data source. Therefore,
the mediator can be used to exchange data between any
data sources that have JDBC drivers available,
including most relational databases, all ODBC data
sources (via a JDBC/ODBC bridge driver), and XML
data (using an available XML JDBC driver).

3. Query Mediation
In this section we describe the mediator’s

processing of simple queries written against the
schema of a well known (local) data source when the
actual data resides in a different (foreign) data source.
We start by considering simple queries consisting of
only select and from clauses. In the next section we
will consider the more complex issues of processing
the where clause. For our examples we will use the
local and foreign schemas for airplane data in Figure 2.
For simplicity, we have not shown the shared
conceptual schema.

Local schema:
Airplanes (aid , latitude, longitude, fuel_capacity,

range, wingspan)

Foreign schema:
Aircraft (craftId , zone, easting, northing,

fuel_tank_size, cruising_range, wingspan)

Figure 2

3.1 Select Clause Translation
The select clause is translated by replacing the

name of each data element in the list with the data
element(s) from the foreign data source that map to the
same attribute(s) in the shared conceptual schema.

In the simplest case, the local element maps to a
single attribute in the shared schema which in turn
maps to a single element of the foreign data source,
and the replacement mapping between the local and
foreign data elements inferred by the mediator is one-
to-one. In our example, the mediator would infer a
one-to-one replacement of fuel_capacity with
fuel_tank_size wherever fuel_capacity occurs in the
select clause of the original query.

However, in general, the inferred replacements are
one-to-many both because the local element may map
to many attributes in the conceptual schema, and
because each attribute of the conceptual schema may
map to many elements of the foreign data source. For
example, since the local attribute latitude (along with
longitude) maps to the concept of position, and the
foreign attributes zone, easting, and northing also map
to the concept of position, latitude would be replaced
with zone, easting, and northing when the query is
translated. This one-to-three replacement is correct
since the mediator needs all three UTM attributes to
calculate a latitude. Note that if the select clause of the
original query contained both latitude and longitude,
the mediator would infer a one-to-three mapping for
each of them. In a subsequent step, the mediator
eliminates requests for duplicate columns.

3.2 From Clause Translation
The table names of the from clause are translated in

a manner similar to the columns in the select clause. A
single table in the where clause of the original query
may map to multiple tables in the conceptual schema
and each of those may map to multiple tables in the
foreign schema.

In this case where the inferred replacement is one-
to-many, there will be a separate query generated for
each replacement. For example, if the foreign data
source had its aircraft data split into two tables, say
Jets and Propeller Aircraft, a single query on the
Airplanes table of the local data source would result in
two separate queries in the foreign data source – one
selecting from Jets and one from Propeller Aircraft.
The mediator would execute both queries and combine
the results.

The other complication is that table mappings may
be conditional [5]. This would come into play if we
switched the local and foreign data sources for our
example. In this case the mediator would replace Jets
with Airplanes in the from clause, but not all airplanes
are jets.

When mappings between a data source and the
conceptual schema are conditional, the conditions are
specified as part of the mapping. The mediator adds
the appropriate mapping conditions to the where clause
of the original query. The to conditions of the foreign
schema mapping (specifying which foreign entities
map to a conceptual class) and the from conditions of
the local schema (specifying which conceptual entities
map from the conceptual class) are added to the where
clause of the query.

The to conditions are already written in terms of
the foreign data source and don’t require translation.
The from conditions of the local schema, however,
must be translated before the query can be executed in
the foreign data source. The where clause processing is
discussed in section 4.

3.3 Data Translation
After the translated queries have been

executed in the foreign data source, the results
must be translated into the format expected in
the local data source. If there was a one-to-one
replacement of an attribute in the select clause with
a corresponding attribute from the foreign data source
in the same format, no conversion is necessary.
Otherwise, a conversion function from the mediator’s
repository is used. The values retrieved from the
foreign data source are packaged as a java Properties
object, passed to the appropriate conversion function,
and the desired value is then extracted from the
returned Properties object. For example, if latitude in
the original query was replaced by zone, easting, and
northing in the translated query, these three values
from each row would be packaged as a Properties
object and the latitude value would be extracted from
the new Properties object with values for latitude and
longitude returned from the conversion function.

4. Where Clause Processing
The central problem in where clause processing is

to translate conditions involving data elements of the
local schema into conditions that can be specified
against the foreign schema. The simplest situation is
where the local and foreign data elements are in the
same format and correspond one-to-one. For example,
if the where clause contains the condition range >
1000, and Airplanes range and Aircraft cruising_range
are in the same format (units, scale, etc.), the mediator
can simply replace range with cruising_range.

The next simplest situation is where, for example,
range and cruising_range correspond one-to-one but are
in different formats. If range is in kilometers and
cruising_range is in miles, the mediator can apply a
conversion function to the constant to generate the

condition cruising_range > 621.37. The mediator can
also modify conditions by applying operators to
attributes, e.g. replacing expression range with
cruising_range * 0.62137, although there are few cases
in practice where this is useful.

Unfortunately, conditions involving attributes that
do not map one-to-one are much more difficult to
translate. Consider, for example, translating the
condition latitude > 40 into terms of zone, easting,
and northing. While a human with adequate
understanding of the two positioning systems could
produce a translation, our mediator cannot.

In our early implementations we attempted to
translate all where clause conditions and the mediator
would throw an exception when presented with queries
it could not handle. Once we realized that some where
clause conditions could never be translated efficiently,
we tried a radically different approach. In this new
approach we eliminated the where clause altogether
before executing the query in the foreign data source.
After the data was returned the mediator applied the
where clause to each data tuple as it was translated to
the format of the local schema. By applying the where
clause conditions to the translated data, it was not
necessary to translate the conditions.

While this approach worked, it has a major
drawback. Since the where clause is evaluated in the
mediator, rather than the foreign data source,
potentially large quantities of data that are not part of
the final result must be brought across the network
into the mediator.

Another suggestion was to implement conversion
functions in the actual data sources. In this case the
condition latitude > 40 would be translated to
conv(zone, easting, northing) > 40 where conv is a
conversion function defined in the foreign data source.
However, this approach also has major drawbacks.
First, not all data sources support this kind of
function. More importantly, the approach would not
scale. One of the important features of the mediation
approach is that each data source is mapped only to the
conceptual schema. Supplying each data source with
conversion functions for every data element of every
other data source is not realistic.

Our current approach is a compromise between the
extremes of translating all conditions or eliminating
the where clause entirely. In the most recent approach
the mediator starts by rewriting the where clause in
conjunctive normal form (CNF). The conjuncts can
then be applied independently in sequential fashion.
The conjuncts are partitioned into translatable and
untranslatable groups. As many conjuncts as possible
are translated and added to the where clause of the
translated query for execution in the foreign data
source, thereby minimizing the network traffic. The
untranslatable conjuncts are applied in the mediator as

the data returned from the foreign data source is
translated into the format of the local data source.

Consider the query:
select aid from airplanes
where (latitude > 40 AND wingspan > 20)
 OR (range > 2000 AND fuel_capacity > 500)
The mediator will start by rewriting the where

clause conditions in CNF as:
(latitude > 40 OR range > 2000) AND
(latitude > 40 OR fuel_capacity > 500) AND
(wingspan > 20 OR range > 2000) AND
(wingspan > 20 OR fuel_capacity > 500)

The first two conjuncts contain the condition on
latitude which cannot be translated so they will be
applied in the mediator. The last two, however, are
easily translated by replacing wingspan, range, and fuel
capacity with the corresponding attribute names from
the foreign data source, and converting the constant
values into to the appropriate units. The last two
conditions are translated and applied in the foreign data
source to eliminate unnecessary network traffic.

5. Conclusions
There are numerous other researchers [1-4, 7-12]

who have investigated mediation as a way of resolving
structural and semantic conflicts between data sources.
However, as far as we can determine, there are no
previous reports detailing the query translation issues
that we have identified in this paper.

We have tested our implementation on a small
number of sample applications and found it to be
highly effective. However, we are still working on
improvements in several areas. We are working to
expand the kinds of where clause conditions that we
can recognize and translate. We are working actively to
complete a fully ODBC compliant set of drivers for
the mediator service, and we are seeking to improve
the efficiency of the mediator as well as the range of
queries that it can successfully mediate.

Currently our mediator is able to successfully
mediate most simple SQL queries that don’t involve
joins or sub-queries. We are currently working on
enhancing the mediator so that it can handle queries
involving joins. We are particularly interested in cases
where relations have been decomposed differently in
the local and foreign databases, so that the joins
required in the foreign database are different than those
specified for the local database.

6. References
[1] E. Sciore, M. Siegel, and A. Rosenthal, “Using

Semantic Values to Facilitate Interoperability

Among Heterogeneous Information Systems”,
ACM Transactions on Database Systems, vol.
19(2), June 1994, pp. 254-290.

[2] G. Wiederhold, “Mediators in the Architecture of
Future Information Systems”, Readings in
Agents , Eds. M. N. Huhns and M. P. Singh, San
Francisco, CA, USA: Morgan Kaufmann, 1997,
pp. 185-196.

[3] P. B. Lowry, “XML data mediation and
collaboration: A proposed comprehensive
architecture and query requirements for using
XML to mediate heterogeneous data sources and
targets,” 34th Annual Hawaii International
Conference On System Sciences (HICSS), Maui,
Hawaii, January 3-6, 2001, pp. 2535-2543.

[4] C. H. Goh, S. Bressan, S. Madnick, and M.
Siegel, “Context interchange: new features and
formalisms for the intelligent integration of
information”, ACM Transactions on Information
Systems, vol. 17(3), July 1999, pp. 270.

[5] P. Bergstein and V. Shah, “Conditional Mapping
in Data Mediation”, Proceedings of the
International Conference on Information and
Knowledge Engineering (IKE 2004). June 21-24,
2004, Las Vegas, Nevada, USA. CSREA Press
2004, ISBN 1-932415-27-0.

[6] P. Bergstein and A. Sikder, “A JDBC Data
Mediation Service”, Proceedings of the
International Conference on Information and
Knowledge Engineering (IKE 2005), pages 45-50,
June 20-23, 2005, Las Vegas, Nevada. CSREA
Press, ISBN 1-932415-81-5.

[7] L. S. Seligman and A. Rosenthal, “XML’s Impact
on Databases and Data Sharing”, IEEE Computer,
vol. 34(6), 2001, pp. 59-67.

[8] G. Neugebauer, “GLUE – Using Heterogeneous
Sources of Information in a Logic Programming
System”, Proceedings of the KI’97 Workshop on
Intelligent Information Integration, Freiburg,
1997.

[9] L. Serafini and F. Giunchiglia and F. Mylopoulos
and P. Bernstein, “The Local Relational Model: A
Logical Formalization of Database Coordination”,
Proceedings of CONTEX'03, 2003.

[10] H. Wache and H. Stuckenschmidt, “Practical
Context Transformation for Information System
Interoperability”, Lecture Notes in Computer
Science, vol. 2116, 2001, p. 367.

[11] B. Ludäscher, A. Gupta, and M. Martone,
“Model-Based Mediation with Domain Maps”,
17th International Conference on Data
Engineering (ICDE ’01) , Washington-Brussels-
Tokyo, April 2001.

[12] C. Baru, A. Gupta, B. Ludäscher, R. Marciano,
Y. Papakonstantinou, P. Velikhov, and V. Chu,
“XML-based Information Mediation with MIX”,
Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data:
SIGMOD '99, Philadelphia, PA, June 1-3, 1999,
SIGMOD Record, vol. 28(2), 1999, pp. 597-599.

[13] P. Bergstein, “An ODBC CORBA-Based Data
Mediation Service”, Proceedings of the
International Conference on Information and
Knowledge Engineering (IKE 2006), pages 196-
202, June 26-29, 2006, Las Vegas, Nevada.
CSREA Press, ISBN 1-60132-003-5.

