
Data Mediation in a Grid Environment
Paul L. Bergstein

Dept. of Computer and Information Science
University of Massachusetts Dartmouth

Dartmouth, MA
pbergstein@umassd.edu

Abstract – Many modern data applications need to
process large amounts of data stored in heterogeneous
databases which are distributed across multiple grid
nodes. One of the key issues in developing such a grid
DBMS is transparency, i.e. users and applications
should not need to be aware of the data heterogeneity
or distribution details. Another important issue is
query optimization, especially for queries involving
distributed joins.

We have previously described the development of a
data mediation service which provides the
transparency that enables users and applications to
pull data from a foreign data source without any
knowledge of its actual structure or semantics. The
mediator translates a query written against a well
known (local) data source into a query against the
foreign data source, executes the query, and then
translates the data into the local format. In this
scenario, all of the data retrieved is obtained from a
single source.

In this paper, we describe how our mediator is
easily extended to provide transparency and
distributed query processing in a grid environment
where a single query may require combining data from
multiple sources.

Keywords: Data mediation, data integration, grid-
dbms, distributed join processing.

1. Introduction

A serious problem facing many organizations today
is the need to process large amounts of distributed data.
The problems are particularly difficult when the nodes
have been developed separately, in which case the
heterogeneity of the data creates major obstacles to
effective processing. Conflicts may exist in both the
structure and the semantics of the data involved.
Furthermore, the structure and semantics of a data
source may change over time.

The data mediation approach to data interoperability
relies on a common ontology that can be used to
describe the structure and semantics of each of the

systems that wish to participate in the information
sharing. A data mediator uses these descriptions to
resolve structural and semantic inconsistencies
between nodes exchanging information. In a variation
of this approach, a shared view is created, and the
mediator translates queries written against the shared
view. In either case, mediation has the advantages that
there is no need to agree on standard formats, the
metadata is made explicit (so it may be reused), and
translations only occur where the structure or
semantics between two systems differ.

Our mediation service uses a layered architecture as
shown in Figure 1. In the sections 2 and 3 we will
briefly describe the basic operation of the mediator.
Then we will focus on our recent work on mediation in
a grid environment.

ODBC Drivers JDBC Drivers

CORBA Mediation
Service RMI Mediation Service

Data Mediator

Data Source
Metadata
(XML)

Conceptual
Schema

Conversion
Functions

Figure 1

2. Background

Our data mediator was originally based on the
following scenario: Suppose a user who knows the
schema of only their local database, System A, wishes
to retrieve information from a foreign database, System
B. They write a query against the schema of System A,
but indicate that they would like to use System B as the
data source. The mediator translates the query against

International Conference on Enterprise Information Systems and Web Technologies (EISWT-10)

117

System A into one or more queries against System B,
executes the queries, and translates the results into the
local format of System A.

In our current work we also consider a slightly
different scenario: Suppose an application using
ODBC or JDBC has been written to use a particular
data source, System A, but we now want to use a
different source, System B, with a different structure or
semantics. We accomplish the change simply by
plugging in our Mediator ODBC or JDBC driver in
place of the System A driver. The application can now
use the new data source without rewriting any code or
queries. Notice that plugging in the System B driver
will only work if Systems A and B have identical
structure and semantics, otherwise mediation is
required.

2.1 Conceptual Schema
In our implementation, the common ontology is

expressed as a shared conceptual schema, which
includes both ordinary classes (e.g. University,
Student) and domain classes (e.g. Money, Date). The
attributes of ordinary classes have domain classes as
their types. For example, Student might have an
attribute called graduation-date with type Date. For
each domain class, we specify subclasses (sub-
domains) for the known representations. When a new
data source is registered with the mediator, it will
typically be necessary to add sub-domains for data
representations that are unique to that data source.
The conceptual schema is never populated in our
system. It is used only as a reference for defining the
structure and semantics of the actual data sources. In
particular, the conceptual schema is not used as an
intermediate data representation when transferring data
from one source to another. Instead, the mediator
synthesizes a plan for direct conversion between the
data sources based on their structures and semantics as
defined by their individual mappings to the conceptual
schema.

2.2 Conversion Functions
The mediator uses a repository of functions for

converting between representations within a domain. In
our (java) implementation all conversion functions
have the same interface. They take a java Properties
object as parameter, and return a Properties object as
the result, so they naturally support many-to-many
mappings. For example, a position might be specified
using a Properties object with latitude and longitude
attributes, or (using Universal Transverse Mercators)
with zone, easting, and northing attributes. In this case
we have a two-to-three mapping. The repository is
implemented as a java class with methods for each

conversion function. The repository uses java
introspection to search for suitable conversion
functions.

2.3 Metadata
In order to register a data source with the mediator,

a description of the data source (its metadata) must be
supplied in XML format. For each data source there is
a separate XML file prepared by someone familiar
with that data source. Currently, the XML files are
prepared manually, but we plan to develop tools to
help generate these files. The metadata includes
information required to connect to the data source as
well as mappings to the conceptual schema that define
the structure and semantics of the data source. We use
XML1 to map data elements of real databases onto
attributes of ordinary classes in the conceptual schema.
Each mapping to an attribute of an ordinary class
includes the subdomain of the data element.

In the simplest case each data element of System A
corresponds one-to-one with an element of the
conceptual schema, which in turn corresponds one-to-
one with an element of System B. If the conceptual
schema contains an ordinary class called Employee
with a salary attribute of type Salary, and System A
has a Worker relation with a pay-rate attribute, then the
XML file for System A would map Worker/pay-rate to
Employee/salary and it would also map pay-rate to one
of the subdomains of Salary such as Annual/USDollars
or Monthly/Euros2. Similar mappings from System B
provide the mediator with the information needed for
translation.

Mappings between the conceptual schema and an
actual database are not always one-to-one. Suppose
that in the conceptual schema Professor’s have a
phone-number attribute of type PhoneNumber, but in
the actual database Instructor’s have area-code,
exchange, and extension attributes. For the mediator to
work, the PhoneNumber domain class must have a
subdomain, say ACEE, for the area-
code/exchange/extension representation of phone
numbers, with attributes corresponding to the three
parts of a phone number. Each of the area-code,
exchange, and extension attributes is mapped to the
Professor/phone-number attribute (and also to the

1 For brevity, in this paper we mostly describe
mappings without showing the XML syntax since the
XML is trivial but verbose.
2 In theory, the issues of currency units and frequency
of payment should be separate, but we combine them
for the sake of simplicity in our implementation, in
order to focus on more interesting concerns.

International Conference on Enterprise Information Systems and Web Technologies (EISWT-10)

118

appropriate attribute of the ACEE subdomain). The
mapping (from actual to conceptual) is many-to-one.

If another database uses the same representation of
phone numbers, so we have mappings like:

A: (code, exchg, ext)  phone-number
B: (area, exg, extension)  phone-number

 then the translation will not use conversion functions
(even if the data elements have different names). In
other cases, such as:

A: (latitude, longitude)  position
B: (zone, easting, northing)  position

a conversion function is required.

Sometimes data source isn’t a very good match for

the conceptual schema. This is likely to happen, for
example, when a new data source is added after the
conceptual schema has been completed. Consider, for
example, a conceptual schema that has entity classes
for full-time students and part-time students, and a data
source with graduate students and undergraduate
students. In this case we map attributes, e.g. gpa, from
both graduate and undergraduate students to attributes
of both full-time and part-time students. Additionally,
we supply conditions that determine, for example,
which graduate students are part-time and which are
full-time. These conditional mappings [5] are specified
in both directions (to and from the conceptual schema).

2.4 Data Mediator
The data mediator manages the conversion function

repository, the conceptual schema, and the data source
metadata. It is responsible for synthesizing query and
translation plans. When a query against the schema of
System A is executed using System B as the data
source, the mediator translates the query against
System A into one or more queries against System B,
executes the queries, and translates the results into the
local format of System A. The details of our algorithm
are beyond the scope of this paper, but will be reported
elsewhere.

The mediator is implemented entirely in Java and
uses JDBC to access the desired data source.
Therefore, the mediator can be used to exchange data
between any data sources that have JDBC drivers
available, including most relational databases, all
ODBC data sources (via a JDBC/ODBC bridge driver),
and XML data (using an available XML JDBC driver).

3. Query Mediation
In this section we describe the mediator’s

processing of simple queries written against the
schema of a well known (local) data source when the

actual data resides in a different (foreign) data source.
We start by considering simple queries consisting of
only select and from clauses. In the next section we
will consider the more complex issues of processing
the where clause. For our examples we will use the
local and foreign schemas for airplane data in Figure 2.
For simplicity, we have not shown the shared
conceptual schema.

Local schema:
Airplanes (aid, latitude, longitude, fuel_capacity,

range, wingspan)

Foreign schema:
Aircraft (craftId, zone, easting, northing,

fuel_tank_size, cruising_range, wingspan)

Figure 2

3.1 Select Clause Translation
The select clause is translated by replacing the

name of each data element in the list with the data
element(s) from the foreign data source that map to the
same attribute(s) in the shared conceptual schema.

In the simplest case, the local element maps to a
single attribute in the shared schema which in turn
maps to a single element of the foreign data source,
and the replacement mapping between the local and
foreign data elements inferred by the mediator is one-
to-one. In our example, the mediator would infer a one-
to-one replacement of fuel_capacity with
fuel_tank_size wherever fuel_capacity occurs in the
select clause of the original query.

However, in general, the inferred replacements are
one-to-many both because the local element may map
to many attributes in the conceptual schema, and
because each attribute of the conceptual schema may
map to many elements of the foreign data source. For
example, since the local attribute latitude (along with
longitude) maps to the concept of position, and the
foreign attributes zone, easting, and northing also map
to the concept of position, latitude would be replaced
with zone, easting, and northing when the query is
translated. This one-to-three replacement is correct
since the mediator needs all three UTM attributes to
calculate a latitude. Note that if the select clause of the
original query contained both latitude and longitude,
the mediator would infer a one-to-three mapping for
each of them. In a subsequent step, the mediator
eliminates requests for duplicate columns.

International Conference on Enterprise Information Systems and Web Technologies (EISWT-10)

119

3.2 From Clause Translation
The table names of the from clause are translated in

a manner similar to the columns in the select clause. A
single table in the where clause of the original query
may map to multiple tables in the conceptual schema
and each of those may map to multiple tables in the
foreign schema.

In this case where the inferred replacement is one-
to-many, there will be a separate query generated for
each replacement. For example, if the foreign data
source had its aircraft data split into two tables, say Jets
and Propeller Aircraft, a single query on the Airplanes
table of the local data source would result in two
separate queries in the foreign data source – one
selecting from Jets and one from Propeller Aircraft.
The mediator would execute both queries and combine
the results.

The other complication is that table mappings may
be conditional [5]. This would come into play if we
switched the local and foreign data sources for our
example. In this case the mediator would replace Jets
with Airplanes in the from clause, but not all airplanes
are jets.

When mappings between a data source and the
conceptual schema are conditional, the conditions are
specified as part of the mapping. The mediator adds the
appropriate mapping conditions to the where clause of
the original query. The to conditions of the foreign
schema mapping (specifying which foreign entities
map to a conceptual class) and the from conditions of
the local schema (specifying which conceptual entities
map from the conceptual class) are added to the where
clause of the query.

The to conditions are already written in terms of the
foreign data source and don’t require translation. The
from conditions of the local schema, however, must be
translated before the query can be executed in the
foreign data source. The where clause processing is
discussed in section 4.

3.3 Data Translation
After the translated queries have been executed in

the foreign data source, the results must be translated
into the format expected in the local data source. If
there was a one-to-one replacement of an attribute in
the select clause with a corresponding attribute from
the foreign data source in the same format, no
conversion is necessary. Otherwise, a conversion
function from the mediator’s repository is used. The
values retrieved from the foreign data source are
packaged as a java Properties object, passed to the
appropriate conversion function, and the desired value
is then extracted from the returned Properties object.

For example, if latitude in the original query was
replaced by zone, easting, and northing in the
translated query, these three values from each row
would be packaged as a Properties object and the
latitude value would be extracted from the new
Properties object with values for latitude and longitude
returned from the conversion function.

3.4 Where Clause Processing
The central problem in where clause processing is

to translate conditions involving data elements of the
local schema into conditions that can be specified
against the foreign schema. The simplest situation is
where the local and foreign data elements are in the
same format and correspond one-to-one. For example,
if the where clause contains the condition range >
1000, and Airplanes range and Aircraft cruising_range
are in the same format (units, scale, etc.), the mediator
can simply replace range with cruising_range.

The next simplest situation is where, for example,
range and cruising_range correspond one-to-one but
are in different formats. If range is in kilometers and
cruising_range is in miles, the mediator can apply a
conversion function to the constant to generate the
condition cruising_range > 621.37. The mediator can
also modify conditions by applying operators to
attributes, e.g. replacing expression range with
cruising_range * 0.62137, although there are few cases
in practice where this is useful.

Unfortunately, conditions involving attributes that
do not map one-to-one are much more difficult to
translate. Consider, for example, translating the
condition latitude > 40 into terms of zone, easting, and
northing. While a human with adequate understanding
of the two positioning systems could produce a
translation, our mediator cannot.

In our early implementations we attempted to
translate all where clause conditions and the mediator
would throw an exception when presented with queries
it could not handle. Once we realized that some where
clause conditions could never be translated efficiently,
we tried a radically different approach. In this new
approach we eliminated the where clause altogether
before executing the query in the foreign data source.
After the data was returned the mediator applied the
where clause to each data tuple as it was translated to
the format of the local schema. By applying the where
clause conditions to the translated data, it was not
necessary to translate the conditions.

While this approach worked, it has a major
drawback. Since the where clause is evaluated in the
mediator, rather than the foreign data source,
potentially large quantities of data that are not part of

International Conference on Enterprise Information Systems and Web Technologies (EISWT-10)

120

the final result must be brought across the network into
the mediator.

Another suggestion was to implement conversion
functions in the actual data sources. In this case the
condition latitude > 40 would be translated to
conv(zone, easting, northing) > 40 where conv is a
conversion function defined in the foreign data source.
However, this approach also has major drawbacks.
First, not all data sources support this kind of function.
More importantly, the approach would not scale. One
of the important features of the mediation approach is
that each data source is mapped only to the conceptual
schema. Supplying each data source with conversion
functions for every data element of every other data
source is not realistic.

Our current approach is a compromise between the
extremes of translating all conditions or eliminating the
where clause entirely. In the most recent approach the
mediator starts by rewriting the where clause in
conjunctive normal form (CNF). The conjuncts can
then be applied independently in sequential fashion.
The conjuncts are partitioned into translatable and
untranslatable groups. As many conjuncts as possible
are translated and added to the where clause of the
translated query for execution in the foreign data
source, thereby minimizing the network traffic. The
untranslatable conjuncts are applied in the mediator as
the data returned from the foreign data source is
translated into the format of the local data source.

Consider the query:
select aid from airplanes
where (latitude > 40 AND wingspan > 20)
 OR (range > 2000 AND fuel_capacity > 500)
The mediator will start by rewriting the where

clause conditions in CNF as:
(latitude > 40 OR range > 2000) AND
(latitude > 40 OR fuel_capacity > 500) AND
(wingspan > 20 OR range > 2000) AND
(wingspan > 20 OR fuel_capacity > 500)

The first two conjuncts contain the condition on

latitude which cannot be translated so they will be
applied in the mediator. The last two, however, are
easily translated by replacing wingspan, range, and fuel
capacity with the corresponding attribute names from
the foreign data source, and converting the constant
values into to the appropriate units. The last two
conditions are translated and applied in the foreign data
source to eliminate unnecessary network traffic.

4. Grid DBMS
Aloisio et. al. [15] have identified seven basic

requirements that a Grid-DBMS must provide:
security, transparency, easiness, robustness, efficiency,
dynamicity, and intelligence. They further identify five
forms of transparency which must be addressed in a
Grid-DBMS: physical data location, network, data
replication, data fragmentation, and DBMS
heterogeneity. While they do not suggest a specific
grid middleware, our mediator is well suited for
adaptation to meet the identified requirements. In this
section, we describe our initial efforts to adapt the
mediator to a grid environment, focusing primarily on
transparency and efficiency issues.

The most fundamental change in the mediator is
almost trivial – nodes are treated as a single distributed
data source rather than a collection of alternative
sources of the same information. The nodes are
mapped onto a conceptual schema exactly as before.
Users can customize their view of the Grid-DBMS by
mapping an “actual” schema onto the conceptual
schema. This is exactly as before, except that the actual
schema is not populated. Clients write queries in terms
of their “view” and the mediator performs the
necessary translations.

4.1 Transparency
The mediator service was designed from the

beginning to hide details of physical data locations,
network issues, and database heterogeneity from
clients. These aspects of the mediator are unmodified
when used as Grid-DBMS middleware.

The mediator was also designed to handle
translation between data sources that use different
partitioning schemes. It handles both horizontal
partitioning (e.g. Aircraft into Jets and Propeller
Planes) and vertical partitioning (e.g. Projects into
ProjectFinancials and ProjectSchedules). Once again,
the mediator functionality can be used unmodified in a
Grid system. Although vertical partitioning of data will
improve the efficiency of some queries, it may
necessitate additional distributed join operations for
others. We take a unique approach to distributed joins,
which is discussed in the next section.

Data replication is one aspect of Grid-DBMS that
the mediator was not designed to handle. In the
original mediator implementation the various data
sources are assumed to have been developed
independently, whereas in a Grid-DBMS data is often
replicated to improve performance and reliability.
Extending the mediator to handle data replication in a
transparent manner is not difficult. The solution is to
add metadata to the mediator’s repository to specify

International Conference on Enterprise Information Systems and Web Technologies (EISWT-10)

121

where data is replicated. The mediator will choose a
particular source of replicated data according to its
policy without involving the user. Currently, the
mediator simply chooses a data source at random in the
case of data replication. In the future, we would like to
provide a mechanism for the system administrator to
specify a policy in a flexible way through a
configuration file.

4.2 Efficiency
Our efforts in the area of efficiency are currently

focused on processing distributed joins. Our approach
is based on the same basic idea as semi-joins. We try to
reduce the network traffic as much as possible at the
expense of increased local processing.

Ordinarily, we think of join conditions involving
both of the relations to be joined. However, the
conditions in the on clause of an SQL theta join may
contain arbitrary conditions. Furthermore, joins are
frequently followed by selections (i.e. where clause).
We start by combining the join conditions with
conditions from the selection (if there is one) according
to the following rewriting rule:

�

σΘ 2
(r⋈

�

Θ1
s)⇒ r⋈

�

Θ1 ∧Θ 2
s

Next, we rewrite the join condition (

�

Θ1 ∧ Θ 2) in
conjunctive normal form (CNF), and partition the
resulting terms into three groups: conditions that
involve only r (

�

Θr), conditions that involve only s (

�

Θs),
and conditions that involve both r and s (

�

Θrs):

�

r⋈

�

Θ1 ∧Θ 2
s⇒ r⋈

�

Θ r ∧Θ s ∧Θ rs
s

Now we perform selections locally in the data
sources of r and s, and only the tuples from r that
satisfy

�

Θr and the tuples of s that satisfy

�

Θs are
brought into the mediator to compute the join:

�

σΘ r
(r)⋈

�

Θ rs
σΘ s

(s)
This approach can be combined with semi-joins to

further reduce the network overhead. Lu and Carey
[17] demonstrated that the additional computational
overhead of semi-joins can be higher than the savings
in communication costs in certain circumstances.
Similarly, there is a potentially high cost involved with
transforming join conditions to CNF. In the worst case,
the number of terms can increase exponentially. While
we have not experienced this problem in practice, we
intend to empirically investigate this issue in more
detail.

5. Related Work
There are numerous other researchers [1-4, 7-12]

who have investigated mediation as a way of resolving
structural and semantic conflicts between data sources.
However, as far as we can determine, there are no
previous reports of adapting a mediation service to a
Grid-DBMS environment.

6. Future Work
In the immediate future we will continue to focus

on improving data replication features and efficiency.
In particular we intend to develop a flexible and easy
to use interface for configuring the mediator’s policy
for selecting among duplicate data sources. We will
also attempt to determine the conditions where the
savings in network overhead justify CNF
transformations and/or semi-joins.

Another area where the mediator requires
additional work is in security. In its current form, the
mediator does not support encrypted connections to the
grid nodes and relies on the individual nodes to
perform authentication and authorization of requests.
Future work will address both of these shortcomings.

7. References

[1] E. Sciore, M. Siegel, and A. Rosenthal, “Using

Semantic Values to Facilitate Interoperability
Among Heterogeneous Information Systems”,
ACM Transactions on Database Systems, vol.
19(2), June 1994, pp. 254-290.

[2] G. Wiederhold, “Mediators in the Architecture of

Future Information Systems”, Readings in Agents,
Eds. M. N. Huhns and M. P. Singh, San Francisco,
CA, USA: Morgan Kaufmann, 1997, pp. 185-196.

[3] P. B. Lowry, “XML data mediation and

collaboration: A proposed comprehensive
architecture and query requirements for using
XML to mediate heterogeneous data sources and
targets,” 34th Annual Hawaii International
Conference On System Sciences (HICSS), Maui,
Hawaii, January 3-6, 2001, pp. 2535-2543.

[4] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel,

“Context interchange: new features and
formalisms for the intelligent integration of
information”, ACM Transactions on Information
Systems, vol. 17(3), July 1999, pp. 270.

[5] P. Bergstein and V. Shah, “Conditional Mapping

in Data Mediation”, Proceedings of the

International Conference on Enterprise Information Systems and Web Technologies (EISWT-10)

122

International Conference on Information and
Knowledge Engineering (IKE 2004). June 21-24,
2004, Las Vegas, Nevada, USA. CSREA Press
2004, ISBN 1-932415-27-0.

[6] P. Bergstein and A. Sikder, “A JDBC Data

Mediation Service”, Proceedings of the
International Conference on Information and
Knowledge Engineering (IKE 2005), pages 45-50,
June 20-23, 2005, Las Vegas, Nevada. CSREA
Press, ISBN 1-932415-81-5.

[7] L. S. Seligman and A. Rosenthal, “XML’s Impact

on Databases and Data Sharing”, IEEE Computer,
vol. 34(6), 2001, pp. 59-67.

[8] G. Neugebauer, “GLUE – Using Heterogeneous

Sources of Information in a Logic Programming
System”, Proceedings of the KI’97 Workshop on
Intelligent Information Integration, Freiburg,
1997.

[9] L. Serafini and F. Giunchiglia and F. Mylopoulos

and P. Bernstein, “The Local Relational Model: A
Logical Formalization of Database Coordination”,
Proceedings of CONTEX'03, 2003.

[10] H. Wache and H. Stuckenschmidt, “Practical

Context Transformation for Information System
Interoperability”, Lecture Notes in Computer
Science, vol. 2116, 2001, p. 367.

[11] B. Ludäscher, A. Gupta, and M. Martone, “Model-

Based Mediation with Domain Maps”, 17th
International Conference on Data Engineering
(ICDE ’01), Washington-Brussels-Tokyo, April
2001.

[12] C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y.

Papakonstantinou, P. Velikhov, and V. Chu,
“XML-based Information Mediation with MIX”,
Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data:
SIGMOD '99, Philadelphia, PA, June 1-3, 1999,
SIGMOD Record, vol. 28(2), 1999, pp. 597-599.

[13] P. Bergstein, “An ODBC CORBA-Based Data

Mediation Service”, Proceedings of the
International Conference on Information and
Knowledge Engineering (IKE 2006), pages 196-
202, June 26-29, 2006, Las Vegas, Nevada.
CSREA Press, ISBN 1-60132-003-5.

[14] P. Bergstein, “Query Translation and Where

Clause Processing in Data Mediation”,

Proceedings of the International Conference on
Information and Knowledge Engineering (IKE
2007), pages 61-66, June 25-28, 2007, Las Vegas,
Nevada. CSREA Press, ISBN 1-60132-050-7.

[15] G. Aloisio, M. Cafaro, S. Fiore, and M. Mirto,

“The Grid-DBMS: Towards Dynamic Data
Management in Grid Environments”, Proceedings
of the International Conference on Information
Technology: Coding and Computing (ITCC’05),
volume 2, pages 199-204, 2005, IEEE Computer
Society, ISBN 0-7695-2315-3.

[16] D. Kossmann, “The State of the Art in Distributed

Query Processing”, ACM Computing Surveys, Vol.
32, No. 4, December 2000, pages 422-469.

[17] H. Lu and M. Carey, “Some Experimental Results

on Distributed Join Algorithms in a Local
Network”, Proceedings of the 11th International
Conference on Very Large Data Bases
(VLDB’85), August 1985, Stockholm, Sweden,
pages 292-304.

[18] P. Mishra and M. Eich, “Join Processing in

Relational Databases”, ACM Computing Surveys,
Vol. 24, No. 1 March 1992, pages 63-113.

International Conference on Enterprise Information Systems and Web Technologies (EISWT-10)

123

