Pro*COBOL Precompiler

Programmer’s Guide

Release 8.1.5

February, 1999
Part No. A68023-01

ORrRACLE

Pro*COBOL Precompiler Programmer’s Guide, Release 8.1.5
Part No. A68023-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.
Primary Authors: Jack Melnick, Tom Portfolio

Contributors: Michael Chiocca, Nancy Ikeda, Maura Joglekar, Thomas Kurian, Shiao-yen Lin, Diana
Lorentz, Lee Osborne, Jacqui Pons, Ajay Popat, Pamela Rothman, Gael Turk Stevens

Graphic Designer: Valarie Moore

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by such
use of the Programs.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. Except as may be expressly permitted in your license agreement
for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are "restricted computer software"
and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Pro*COBOL, SQL*Forms, SQL*Net, and SQL*Plus, Net8, Oracle
Call Interface, Oracle7, Oracle7 Server, Oracle8, Oracle8 Server, Oracle8i, Oracle Forms, PL/SQL, Pro*C,
Pro*C/C++, and Trusted Oracle are registered trademarks or trademarks of Oracle Corporation.

All other company or product names mentioned are used for identification purposes only and may be
trademarks of their respective owners.

Contents

SeNA US YOUI COMIMENES oo et e et et et ettt ettt et et ettt ettt ettt et et ettt ee e

PIEIACE ...
What This Manual Has t0 OFfer ... e
Who Should Read This ManUAI?...........cccoiiiiiiiiiiee ettt sre s
How This Manual IS Organizedccccveiiiiiiiiie et
Text Conventions Used in ThisS Manual...........c.ccooco o

N [o] 7 1 1o s IS RSO PR O TR OROPRPRRP
SYNTAX DESCIIPTION ..o.viiiiiiciiiie ettt b e st et e e et et e b et e s eseeseeneanesrestenreas
SAMPIE PrOGIAIMS ...ttt ettt b e b bt s b b e b s b et et st eneen s e b e e beebeebesbesben
Does the Pro*COBOL Precompiler Meet Industry Standards?..........ccccocovveneennineienciennens
Lo LU T =T 0 =T | £SO
COMIPIIANCE ...t bbb bbbt b e e st e bt e b e s bt besb et sbesbesee e e e eneas
FIPS FIAGOET ...ttt bbb bbbttt sttt
1SR @ o] 1 o] o [USRS
(O 1) 7= (0] o PSR
IMILALZSPIRIT ettt ettt ettt et b e et s be et e s ae e st e e ba e s beettesbeenbesbeenbesbeebesaeenresanes
Your CommENtS Are WEICOME........c.iiiiciee et

1 Introduction

WRAL IS PrO*COBOL? ...ttt bbbt

LanNQUAGE ATEINALIVEScceiiiiiiie et b et et sb et e et et b e be b b e
Why Use the Pro*COBOL PreCOMPIIEI? ..ot
WY USE SQL7 ittt bbb bbbttt

XXVili
XXVili
XXViii

1-2

1-3

WY USE PL/ISQL? ..ttt sttt sttt b et e et et sbe s b et e besb et et et e st esseseeneebeetesreatears 1-4
What D0ES Pro*COBOL OFfEI7 ...ttt ettt ettt e st e s sba e e s sb e e s sata e sareas 1-4

2 Precompiler Concepts

vi

Key Concepts of Embedded SQL Programmingcccoeoreriinneneneesieesieeseese s 2-2
Steps in Developing an Embedded SQL Applicationc.cccoovivieniiiincnesesec e 2-2
Embedded SQL STAtEMENTS........cciiieiiice ettt sre e sre s 2-3
EMbDedded SQL SYNTAXc.oiiiiiiieiiieti ettt ettt sr bbb en e sre e 2-6
Static versus Dynamic SQL StatemMentS........cccccerererieireisie e 2-6
Embedded PLZSQL BIOCKSccviiieiiiiccte sttt et s nne s 2-7
Host Variables and Indicator Variables............coooiiiiiii s 2-7
(O = Tod [- =1 Y 1= 2-8
LI 11 L= TSSO PRSP PRURURPRURN 2-9
Errors and WAININGScvoiiiii ettt b e sr bbb b ane e 2-9

Programming GUIAEIINEScccviiiiiire et e e en e neerenns 2-11
ADDIEVIALIONS ...ttt b et are 2-11
CaSE-INSENSITIVITY ...ttt ettt r bbbt r e en e ebe e 2-11
COBOL Versions SUPPOITEAcccviviiiiiireiereesee et e s se e ste sttt sse e e saenaeseesessessesses 2-11
(0700 [T g Vo I AN == USSP 2-12
L670] 0101 0 T LTS P PTOPRURO 2-12
1070] 1010 1 1=T o | £ T TSP P TSSOSO RPRPRPRON 2-12
CONLINUALION LINES ...ttt bbb bbb bbbttt ebe e 2-13
COPY STALEMBINTS ...t sbeer s 2-14
Decimal-POiNt IS COMMIA.....c..ciiiiiiiieiere bbb 2-14
DBIIMITEIS ...ttt b bbbt b b sb e se e e b et et e st e s e ebeebeebenbe b 2-14
OPLIONAI DIVISIONScviiiitiiiteieie ettt ettt et nb bbbt eb et eb et r e b e b 2-15
(S a] o=To [0 [=To ST T I] Y/ | - DS R 2-15
FIQUPAtiVE CONSTANTScvviiiiciicicie ettt ettt et e st s e s be e e e saeestestaeseesnaesrenraens 2-15
FIIE LENGEN ..ot 2-16
FILLER IS AHOWET.coiiiiiiieciese ettt bbb 2-16
HOSE Variable NAMIEScoiiiiii et ene s 2-16
HYPNENALEA INAIMES......ciiiitiiit bbbttt bbb 2-16
LEVEI INUMIDETS ...ttt bbbttt bbb 2-17
MAXLITERAL DEFAUIL.......cueiiiiciiiciee et 2-17
MUItI-BYTE DALALYPESecueitiniitiiitcietie ettt bbbttt 2-17

NLS_LOCALZYES e s 2-17

Null Characters in COBOL StatemMeNtScccooveieieiiicieese s 2-18
NULLS TN SQL 1.ttt 2-18
Paragraph INAITIES ... bbb ettt b e bbb e 2-18
REDEFINES CIAUSEc.vtitiieiiiteieisisieie etttk sttt sttt b b 2-18
T LA o] T L@ 01T | 0] £ 2-19
SENTENCE TEIMINATON ..ottt bbb b b e et e ettt besbe b b 2-19
THE DECIAIE SECLION......cuiiiiiieiiie ettt sttt bbb e st et s e st e e e st et e stesnesreneas 2-20
What iS 8 DECIAre SECLIONT?.......ciiiieeie ettt be b 2-20
Precompiler Option DECLARE_SECTIONccoiiiiiiiiiiiie e 2-21
Using the INCLUDE SEAtEMENT..........ooiiiiiieiiieicreeeeees st 2-22
N T=ES] =T o o T T U 1S 2-23
SUPPOIt FOr NESTEA PrOgramS........co.iieiieieieieieieic ettt sne e 2-24
Conditional PreCoOmMpPIlations. ..o 2-26
F N T = 0 0] o] L SR 2-26
DefiNiNg SYMDOISooiecee e e 2-27
Separate PreCOMPITAtIONS........oovciiiieit bbb 2-27
GUIBIINES ... bbb bbbttt ettt et n s 2-27
RESTIICTIONS ...tttk b e bbb bbb b b et et e st et e et e b b e b e 2-28
CompPiling anNd LINKINGc.oiiiiiiii bbbt 2-28
= L] o] [= T - o 1= TSP 2-29
SAMPIE DALA......eeiei ittt bbb bbb ettt h et b e e nre s 2-29
Sample Programs: SAMPLELPCO.......cciiiiiiiet e 2-30

Database Concepts

CONNECTING 1O OFACIE.......iiiiic bbbttt 3-3
Default Databases and CONNECLIONScoiiiiiriiiriee e 3-4
UsSIiNg USErName/PasSWOTId.........ccoiiiiiiiiie ettt ste e ste e ste e ste e steeaesreens 3-5
AUTOMALIC LOGONS ...ttt b et b et b et b et nb bbbt sb et sb et b e b e ane e 3-10
Changing Passwords at RUNTIMEccccoeiieiicccesie s sne s 3-11
Connect Without Alter AUTNOFIZALION..........c.coiiiiiiie e 3-12
Advanced CoNNECLION OPTIONS.........ccuiiiiiiieriee it 3-13
ConNecting USING INET8ccoiiiiie et neene e nnesnens 3-13
(0701 (18] ¢ £=] o1l IoTo o] o - S PRSPPI 3-14
USING LINKS ..ottt b bbbttt 3-15

Vii

Embedding OCI (Oracle Call Interface) Calls..........cccccevveiiiiciiiiccc e 3-16

SEttiNG UP the LDA ..ottt e bbbt bbb ebe e 3-17
Remote and Multiple CONNECLIONS..........cocieiciecese e 3-17
Some Terms YOU ShOUTA KNOW.......coiiiiiii e 3-18
How Transactions Guard YOUr Databaseccccceoeiiiiiiiiisiie e 3-19
How to Begin and ENd TraNSACtIONSccccvvivuiieierieicieese ettt sees e e as e enessesnesneas 3-20
Using the COMMIT State€mMENt.........ccovoiiiieic ettt ene s 3-20
WITH HOLD Clause in DECLARE CURSOR Statements..........ccccoverereneenieieieeeeeseneanens 3-21
CLOSE_ON_COMMIT Precompiler Optioncccccoveieieieiiiicese e 3-22
Using the ROLLBACK State€mMENt.........ccooiiiiiiie ettt 3-22
Statement-LeVel ROIDACKScoiiiiiie e 3-23
Using the SAVEPOINT StatemMentcccocce i sre s 3-24
USING the RELEASE OPTION......cciiiiiiiitiie ettt sne s 3-26
Using the SET TRANSACTION STatemMeNT.........ccceoiiiiiiiieiieeneese e 3-26
Overriding Default LOCKINGcooiiiiiiiice et s neenenne e 3-27
Using the FOR UPDATE OF CIAUSEcccviiiiieie ettt 3-27
Using the LOCK TABLE STAtEMENTccooiiiiirieierieisiee et 3-28
FEtChing ACIOSS COMMITS.....cviiiiiiiieiise e e ettt sa e et e e e e e e ereeneanearenres 3-29
Handling Distributed TranSaCtiONS..........c.ccuviieiiiicie et 3-30
Guidelines for Transaction ProCESSINGcccoeiiiirieirieireie et 3-30
DesigniNg APPHICALIONSccoiiii et e e ere s 3-31
(0] o] -1 [T a0 TN 0T USSR 3-31
L0 L] o [o 41O] ISR 3-31
Developing X/Open APPHICAtIONSccccviiiiiiee e sneas 3-31
OraCle-SPECITIC ISSUBS ...ttt bbbt sb e 3-33

4 Datatypes and Host Variables

viii

THe Oracle8i DatatyPeS.cciii ittt bbb bbb e bbbt b e bt et e sbesbe b e 4-2
INTEFNAI DALATYEScoeeviieeiieei ittt b bbbt bbb bbb 4-2
=T g T I T L7 1Y/ 0 LT 4-8

HOSE VariabIes.o e et ettt sbe 4-16
Declaring HOSt Variables ... e 4-16
Referencing HOSt Variables..........oooiiiicccc e 4-23

INAICATOr VariabIes. ... e 4-26

Using INicator VariabIles ..o 4-26

Declaring INdicator VariabIeSccoviiiiiiiiciec e 4-26

Referencing INAicator Variables ..ot 4-27
VARCHAR VATTADIES ... 4-29
Declaring VARCHAR Variables............ccoiiiiiiicc ettt 4-29
IMPplicit VARCHAR Group ITEIMS ..ottt 4-30
Referencing VARCHAR Variables..........ccoo e 4-31
Handling Character Data...........ccccoeiiiii ittt ne s 4-32
DEfAUIL FOI PIC Xttt bbbttt s ettt et et see e 4-32
Effects 0f the PICX OPLIONccccviiiiiesi et st e sre e 4-32
Fixed-Length Character VariabIes ... 4-33
Varrying-Length Variables. ... e 4-34
User-Specified RUNTIME CONTEXTS........cvciviiiiiiie ettt srenne s 4-35
UNIVEISAl ROWVIDS ...ttt bbb bbb ettt et b e b be e 4-36
Subprogram SQLROWIDGETcc.ciiiiiiieiiiesee e 4-38
National Language SUPPOIT.. ..ottt ie st e sttt st sae st saessesseseessesessessessessessenes 4-39
MUlti-Byte NLS CRharaCter SIS ...ttt 4-41
Restrictions When NLS_LOCALZYES ...t 4-41
Character Strings in Embedded SQLccocvoiiiei e 4-42
EMDEAAEA DL ... bbb b bbbttt b e bbb e 4-42
BIanK PaOOiNgcveeieiiieiieiee ettt 4-42
INAICALOr VariabIesoviiiiee e e 4-43
DatatyPE CONVEISION.......iitiiiiitiitiite ittt ettt bbbt b b bbbttt s et et e bt et e b e bt sbe st e 4-43
Explicit Control Over DATE String FOMMAL.........ccocooiiiiiiiiiiie e 4-45
Datatype EQUIVAIENCINGcciiiiieiieie et sttt n e re e snesee e nes 4-46
Why EQUIVAIENCE DAtatyPES?oouiiiiiiiesieiieie ettt 4-46
Host Variable EQUIVAIENCINGciiviiiiicee e 4-47
Using the CHARF Datatype SPECITIErcccoiviiciececece e 4-51
GUIAETINES ... bbb bbb bbb et et e bt e bt bt b s besbe b 4-52
RAW and LONG RAW VAIUES........coceiiieieieiee ettt sttt 4-53
Sample Program 4; Datatype EQUIVAIENCINGcccoiiiiiiiieccse e 4-55
.. 4-59
5
Embedded SQL
USING HOSE VAriabIes.cooii s 5-2

Output Versus Input HOSt VariabIes ... 5-2

UsiNg INIcator VariabIes..........ccoooiiiii e 5-3
INPUL VAETADIES ... st e e eseeneeneanenrenrenrens 5-3
OULPUL VATADIES ...ttt 5-4
INSEFTING NNULLS ..ottt bbbttt 5-4
Handling RetUIrNE NULLS.........ccccviieeiieieieieee et e e ere e snenes 5-5
FEECNING INULLS ..ottt et e s e e be et e eaeeteaneentesneenteaneas 5-5
TESTING TOF INULLS ...ttt bbbt 5-6
Fetching TrunCated ValUES........c..coeiieiiiiceeee st sne s 5-6

The BasiC SQL StateIMENTScccvoiiiiiie ettt sae st te e et e e naesteeneenreenes 5-7
SEIECTING ROWVS. ...ttt bbbt bbbttt bbbt 5-8
INSEITING ROWS....c.eiiiieictice sttt ettt et be st s e e be s ae e et en s e e eneenenneaneanenaenrenrens 5-9
DL\ I (e (U g oYV o T O - U £ SRS 5-9
USING SUDGQUETTES ...tttk ettt b e 5-10
(1o - UL T N (0 1TV SR 5-10
(D T] =] AT Lo T (1TSS 5-11
USING the WHERE CIAUSEc.cciiiiiiicee et 5-11

(LU £=T0] £ TP U PP SUSPR PP PP 5-11
(D LTol P T T o I W OA U | <o SR 5-12
OPENING 8 CUSOF ...ttt ettt b et b et bt ab e ekt ekt se et e sbeb e nbeb e eb e st ab e e e b e e ene e ene e 5-14
FEtChing fromM @ CUISOToc.iiei et e e re e neenenns 5-14
(0 (011 [o = T O U] Yo T ST 5-15
Using the CURRENT OF ClIAUSEc.ooiiiiiiiieiiiee ettt 5-16
RESEFICHIONS. ...t bbbttt ettt et e 5-17
A Typical Sequence Of STATEMENTScoviiiiiiiie e 5-17

Sample Program 2: CUrsOr OPEratiONSccociieirieirieisee ettt 5-18

The PREFETCH OPtION ...ocuiiiii ettt sttt a e ene e aneenenns 5-20

6 Embedded PL/SQL

=g o =T Lo T To I8 = 10T P 6-2
HOSE VANADIES ...ttt n et e e ae e naesneenteanes 6-2
VARCHAR ValIADIEScoviiiicic sttt ettt ettt ste e sbe e sresteestenreens 6-2
[aTo [Tor=Y (oY £= -1 o] 1= 6-2
SQLECHECK ..ottt sttt et e se et e et e s be b e st e s be st et e se e b et esseseeneeteereereerenreee 6-3

AAVANTAGES OF PLISQL ...ttt 6-3

ST (S =T (0] 0 4T L (o= TR 6-3

INtegration With OFaCIE8i........ccciiiiiiiiiii e 6-3
LT B o g @] o Lo o1 TS 6-4
SUDPIOGIAIMS ..ttt b bbb bbbt s et e st eb e e bt e bt e bt bt st sbesnenas 6-4
PACKAGES ...ttt bbb bbbt 6-5
PLZSQL TABIES.....ocviieectictie ettt sttt et et b e et e e be et e sbeebesaeesbesaeesbeeteesbesnbesreens 6-6
USEr-DefiNed RECOMSooiiiiiiiie e ettt sbe b b nn 6-6
Embedding PL/SQL BIOCKScociiiiiiiiciiee bbb 6-7
HoSt Variables and PLISQLoooiiiiiiiieiece ettt sttt sttt st et sbe et sbeesresnees 6-8
PLZSQL EXAMPIESottt bbb ettt ettt ebe b b e 6-8
A More ComPIex EXAMPIE ..o 6-10
VARCHAR PSEUAOLYPE.cueiiiciisiiie sttt iesae s ettt sttt sn e saenaenaesesnesnenns 6-11
Indicator Variables and PL/SQLcoooiiiiiiccce ettt 6-12
HaNAING NULLS ...ttt an e 6-13
Handling TrunCated ValUES...........ccccviiiiiiie e nne e 6-14
[(o1 A = To] [E3R= VLo I I SR 6-14
ARRAYLEN STAtEIMENT.....cuiiiiiiee ettt b e sb e see s 6-16
Optional KEYWOrd EXECUTEccccciieieieieieisese sttt ne e e snens 6-18
Cursor Usage in Embedded PL/SQLccvoiiiiiiceee ettt 6-20
Stored PL/SQL and Java SUDPIOGIamIS.........couiiriiiiiirieirieineeieseeesiee s 6-21
Creating Stored SUBPIrOGramScoiiiie e e e e snesne s 6-21
Calling a Stored PL/SQL 0r Java SUDPIOGIamMccciiirinininie e 6-23
Sample Program 9: Calling a Stored ProCedureccoeiriiniiiiiieseeee s 6-24
Getting Information about Stored SUDPrograms..........cccvvivvivinevesesere e 6-31
USING DYNAMUC PLZSQL ..ottt sttt ent et e et sre e nre e 6-31
SUDPrograms RESIIICTIONc.oiiiiiiiieiiieeic et 6-32
CUISON VATTADIES ... bbbt bbbt bt naenes 6-32
Declaring a Cursor Variable.............cooiiiiiccc e 6-33
Allocating a Cursor Variable ..o 6-33
Opening a CursOr VariabIe ..o e nne s 6-34
Fetching from a Cursor Variable ... 6-35
CloSing @ CUISOr Variable ..ot e 6-36
Freeing a Cursor VariabIe..........ccvii it e 6-37
Restrictions 0N CUISOr VariablESco.oiiiiiiiiiieieee e 6-37
=g o] g o] g T [4 o] o 130 PSSR 6-37

Xi

Xii

Sample Program 11: Cursor Variables.........ccoooiiiiiiiiei s 6-38

Host Tables
What 1S @ HOSE TABDIE? ...t b 7-2
WY USE TADIES? ...t b bbbttt 7-2
Declaring HOSE TADIEScviiiiiece et e e r e e renre e 7-2
Referencing HOSE TaADIESc..oovieicee et 7-3
USING INAICALOr TADIESooiiiiii e 7-4
OraCle RESIFICHIONS ...ttt ettt e e e 7-5
ANSI Restriction and REQUITEMENTS ..ot 7-5
Tables in Data Manipulation StatemMentS...........ccciiiiiiiii s 7-6
SeleCting INtO TADIES......c.ooiie e e e e et e e eresrenrennens 7-6
BAtCh FEICNES ...ttt 7-7
USING SQLERRDI(3)...utiteititeiitiiete ittt sttt sv ettt sttt ettt e st et e sbesesaesasbe e ane e areseas 7-8
NUumber of ROWS FELCNEAoiiiiiiiie e 7-8
Restrictions on Using HOSt TabIES.........c.coiiiiii it 7-9
FEECHING INNULLS ...ttt b et se bbbt bbb ane e 7-9
Fetching TrunCated ValUES...........coeieiiiiciceee sttt snesne s 7-9
Sample Program 3: Fetching in BAtChescoooiiciiiiiiii s 7-10
INSErting WIth TaADIES ..o 7-12
ReStriCtioNs 0N HOSE TADIESc.ooviiieiicie e e 7-13
Updating With TaDIESc.o e 7-13
RESTIICLIONS IN UPDATE ...ttt st ettt e 7-14
Deleting With TADIESc..ovicc ettt e e re e nneas 7-14
ReSTHICLIONS 1N DELETE ..ottt e ettt 7-15
USING INICAtor TaBIES ..o e 7-15
USING the FOR CHAUSEcuiiieieccce ettt sttt e e naeneeneaneenenns 7-16
RESTIICTIONS. ...ttt bbb bbbt et bbbttt et e bt e bt e bt bt ettt et eb e 7-17
USING the WHERE ClHAUSEcuiiiiiiitiie bbbt 7-18
Mimicking the CURRENT OF ClaUSEcccoceiiriiieieicieies ettt a s snesnens 7-19
Tables of Group Items as HOSt Variables ... 7-20
Sample Program 14: Tables of Group IteMSccooiiiiiiiineeeee e 7-22

Error Handling and Diagnostics
The Need for Error HaNAIiNg ..o 8-2

Error Handling AIEINAtIVESccv ottt et sae e reanes 8-2

SQLCODE and SQLSTATE ..ottt sttt sttt n et sn et nnne 8-3
SQLC A bbb e bR bR bbbt bttt ettt 8-3
ORACA bbbttt R e bR bbbt Rt be ettt et n e 8-4
Using Status Variables when MODE={ANSI | ANSIL14} ..o 8-4
Some Historical INfOrmMation..........coooviiiiiiii e 8-4
Declaring Status Variables ... 8-5
Status Variable COMDBINATIONSc.ooiiiiiie et 8-6
Status Variable VaAlUES ..o e 8-9
Using the SQL COMMUNICALIONS ATcocveiieiieeiie ettt ste e ste et ste e sre e e e see e saenneens 8-19
What's iNThe SQLCA? ..ottt st s a et b et e b e b e e b e eteseete e 8-20
Declaring the SQLCA ... ettt st e e e ereereeneerennn 8-21
Key Components of Error REPOITING........coooiiiiiiiiiiieiee e 8-22
SQLCA STIUCTUIE ...ttt b bbbt bttt bt e bt bt e s be s b e et e e be e nbees e sbeenbenbeenee 8-23
PLZSQL CONSIAEIALIONScuviivieiiiticiecte ettt ettt ste et te et sba et e sbeebesbeebesbsesbeensesbesneesbeenees 8-26
Getting the FUll Text of Error MESSAgES.ccvcviiiieieireeie ettt 8-26
L] AV A = TP PRTPUSTSPRRPN 8-27
WHENEVER DIFECHIVE ..ottt sttt sae e 8-28
Coding the WHENEVER StatemeNtc.ccoveiiiiieiiiicic et 8-30
Getting the Text of SQL StAtEMENTS.......ccciiiiiiire e 8-34
Using the Oracle COmMMUNICAtIONS ATBa........ccccevvirierierieieisese st re e sneeresre s 8-36
What's INThe ORACA? ...ttt sttt sttt st e st se st et e ebe et e 8-36
Declaring the ORACA ... bbbttt b et ab e ene e 8-37
ENabliNg the ORACA ...ttt et se et e e e e s e s e e neeneerenrenes 8-37
ChooSIiNG RUNLIME OPTIONS.ottt ettt sbesne s 8-38
ORACA SETUCTUIE ...ttt b bt b et e bt s bt ae e s be s b e e s beebeesbees b e sbeenbenneanne 8-38
ORACA EXAMPIE ..ttt sttt st e e e e e s eneeseeneenesrennenrens 8-41

Oracle Dynamic SQL

What 1S DYNAMIC SQL?......oiiiiiiieiisee ettt et et e e e s e esaeneeneesesnesresreneenrens 9-3
Advantages and Disadvantages of DyNamic SQLcccoviiiiieiinieii e 9-3
When to Use DYNAMIC SQL ..ottt sn e sne e 9-3
Requirements for Dynamic SQL StatemMeNtS.........ccccvvivvieiiirinie s s 9-4
How Dynamic SQL Statements Are ProCeSSEd.........c.oovviviieeiiiieeie et 9-4
Methods for Using DYNAMIC SQL ..ottt 9-5

Xiii

Xiv

1Y/ 1=1 1 o T R 9-5

Y111 g Lo Lo 1SRRI 9-5
MIEENOM 3 ... e bbbttt ettt 9-6
IMIEBENOMA 4 ...t bbb bbb bbbt h bbbt nrens 9-6
LU Lo [T 1T 1= SRRSO 9-6
LY T T Y/ =1 T T I P 9-8
The EXECUTE IMMEDIATE StatemMeNt.......cccoviiirieiieises e 9-9
AN EXAIMPIE ..o bbbttt 9-10
Sample Program 6: Dynamic SQL Method 1........ccccooiiiiiiiie i 9-10
L0 YT o TR\ L1 1 T T SRS 9-13
THE USING CIAUSE. ..ottt bbbttt s e reebe e e 9-15
Sample Program 7: Dynamic SQL Method 2...........covoviiiiiiie i 9-15
L0 YT o TR\ L1 1 T T I SO SSS 9-19
PREPARE ..ottt sttt b e b s bttt et ettt bttt ettt benenrens 9-19
DECLARE ..ottt b bbbttt 9-20
OPEN L.ttt b bbb bttt E et Rt E bRt b e R e b e b e b ettt e 9-20
L 1O USSR 9-21
CLOSE ...ttt bbb bbb btk e bR R bRt bbb e b e b e 9-21
Sample Program 8: Dynamic SQL Method 3...........cooiiiiiiiiii e 9-21
USING Oracle METNOMO 4ooiiiii bbb 9-25
Need fOr the SQLDA ...ttt be e st e e s be e beebeenbesreenns 9-25
The DESCRIBE STALEIMENT........coiiiiiieieiieie et ettt b e 9-26
WHAL IS @ SQLDA? ...ttt sttt ettt bbb re e 9-26
IMplementing MELNOA 4 ..o e 9-27
Using the DECLARE STATEMENT Statement.........cccccoiviiiiieiiieecc e 9-28
USING HOSE TADIES ...t 9-29
LT gL I I PSSP 9-29
WIth IMIEBENOA L. bbbttt sttt b e b 9-30
WIth IMEBENOMA 2. bbbttt sttt b et bbb renane 9-30
WIth IMEBENOA ... bbbttt bbb e 9-30
WIth IMIEBENOA 4. ettt sttt b e b 9-30
F N 1 (=1 01 (o] o TSP PRRPRORR 9-31
LO2= 101 o] o [OOSR 9-31

10 ANSI Dynamic SQL

Basics 0f ANSI DYNAMIC SQL ..ottt ene e 10-2
g =Yoo T 0] oY1 1= @ o] o o 1< 10-2
Overview of ANSI SQL StatemMentS.......ccvciiiiciiiececeese e 10-3
SAMPIE COUR ...ttt bbbt b et bt bt et b et bt e 10-6
(O] = Tod L N 1] 0TS T o TSSOSO 10-7
RETEIENCE SEMEANTICSottt bbbttt b e e 10-8
Using Tables for BUlK OPErations ...t 10-9
ANSI Dynamic SQL Precompiler OPLiONS.......c.ccccveiiieii e esneanen 10-12
Full Syntax of the Dynamic SQL StatementS.........ccccocevveiiiiieie e 10-13
ALLOCATE DESCRIPTOR ..ottt sttt sttt sb e s be s 10-13
DEALLOCATE DESCRIPTORceiiiieitiiee ettt s 10-14
GET DESCRIPTOR ..ottt sttt ettt bttt ns st en et s ntenes 10-15
SET DESCRIPTOR ..ottt sttt et sttt et b st sa s s st en st nentenes 10-18
USE OF PREPAREottt sttt b et ettt ebe e 10-20
DESCRIBE INPUT ..ottt sttt ettt sttt st st nans 10-21
DESCRIBE OUTPUT ...ttt sttt sttt sttt st st s be s b b e nnens 10-22
EXECUTE ...ttt bbbt bbbt a bbb e b e e b et b et ettt ebeneas 10-23
Use Of EXECUTE IMMEDIATEcoiiiiiiieise sttt ettt st 10-24
Use of DYNAMIC DECLARE CURSORccciiiiiieesee ettt 10-24
OPEN CUISOK ..ttt sttt ettt b ke b e bbb bbb e n et e e et e s e e s e e seeneer e b e 10-25
FET CH ottt b e bbbt b et Rt R b e bR et ettt et et e 10-26
CLOSE 2 DYNAMIC CUISOE ...ttt sttt ettt 10-27
Differences From Oracle Dynamic Method 4..........cccoveieiiiiiciniie s 10-27
RESTIICTIONS ...ttt bbbt bt b e bbb e et e e et e b e bt e beebe et 10-28
Sample Programs: SAMPLEL2.PCO.......cccoiiiiiiiiiie ettt 10-28

11 Oracle Dynamic SQL: Method 4

Meeting the Special Requirements of Method 4 ... 11-2
What Makes Method 4 SPECIAI?........c.ccviiiieie e 11-2
What Information Does the Database Need? ... 11-2
Where Is the INformation STOred? ... e 11-3
How Is the Information OBtaiNed? ..o 11-3

Understanding the SQL Descriptor Area (SQLDA) ... 11-4
PUrpose Of the SQLDA. ..ottt 11-4

XV

12

XVi

MUIEIPIE SQLDIAS ..ottt r ettt 11-4

Declaring @ SQLDA ..ot 11-5
The SQLDA Variables.........ooiiiiciiciece ettt be et s be et sbe e saesbeesbesraesbesaeens 11-8
SOME PreliMINAIIES.o bbbt bbb ettt ebe e 11-14

USING SQLADR ..ottt ettt bttt ettt et b s bt naens 11-14

1070101V /=T o 1] oo [5 - - SRS 11-15

COBICING DALALYPES ...ttt ettt ettt b e bbb bbb e e e eneene s 11-18

Handling NULLZ/NOt NULL DAtatyPesccccourrirerinieiiinieienieieseeeseee s 11-21
LI LI =T T 1] (=] o 1RSSR 11-22
A Closer LOOK @t EACH STEPciiiiiiiieiis et et 11-23

Declare @ HOSE SIFING ..ottt 11-24

DECIAre the SQLDAS.....cci ittt ettt be et b e st e e b e st b et e etbesbeenteebeenresreenees 11-25

Set the Maximum Number to DESCRIBEcccooooiiiiie e 11-26

INTtialize the DESCIIPTOIS.ccvciiiiiiieeiee bbb 11-26

Store the Query Text in the HOSt STriNgGcccviviiiieccceece e 11-29

PREPARE the Query from the HOSt STriNgcccocv i 11-29

DECLARE @ CUISOF ...ttt sttt be st b e bbbt e b e bt ebe e bt e st e b e s saeeeas 11-29

DESCRIBE the Bind Variables ...t 11-29

Reset Number of place-holders ... 11-32

Get Values for Bind VariabIes...........cooi i 11-32

OPEN the CUISOI ...ttt sttt sttt bbbt bbb b 11-34

DESCRIBE the SEIECE LIST.....cviiiiiieiiieiiiieiiieesiesie sttt 11-34

Reset NUumber Of SEleCt-LiSt IEEMScoviiiiiiiie e 11-35

Reset Length/Datatype of Each Select-List Itemcccccoveiviiiivciscve e 11-36

FETCH ROWS from the ACLIVE Set.......cccoiiiiiiiiieeee e 11-37

Get and Process Select-LiSt ValUES.........cooiiiiiiirieieeee e 11-38

CLOSE the CUISOT ...ttt ettt ettt st b e b 11-38
Using Host Tables With Method 4 ... 11-39
Sample Program 10: Dynamic SQL Method 4...........cccocoiiiiiiiiiiiieseeee e 11-44
User Exits
WAL IS @ USEE EXIT? ...ttt bbbttt 12-3
WHY WIITE 8 USEE EXIT?....ciiiiiciiiiiieee bbbttt 12-3
DeVelopiNg 8 USEI EXITooooiiiiiiiiie st bbb ettt sne 12-4
WIITING 8 USEE EXIT...oviiiicicc bbbttt 12-5

13

Requirements for VariabIes..........oo e 12-5

THe TAF GET STAEIMENTiiiii ettt sttt n et et besreneas 12-5
THhe LAF PUT SEAEMENT.....ciiiiiieee ettt 12-6

LOF 1L [T Lo I R Y=Y g T AU U ST 12-7

Passing Parameters t0 @ USEr EXIT.........ccciiiiiiiiiiiiiieisesie et 12-8

Returning Values 10 @ FOIM ..o renre s 12-8
THE TAP CONSTANTS ...ttt bt bbb e et e e bt et be st eb e 12-8
Using the SQLIEM FUNCHIONoiiiiiiiiice s 12-8
USING WHENEWVER ..ottt 12-9

Sample Program 5: Oracle FOrmMS USEr EXIt ..o 12-9

Precompiling and Compiling a USer EXItcccviiiiiiiiiiiieseee e 12-11

UsiNg the GENXTB ULIHItYcvooioiie et 12-12

Linking a User EXit iNto SQL*FOIMScciiiiiiiee e 12-12

Guidelines for SQL*FOrMS USEI EXITScccciiiiiriirieiiieieisee et 12-13
NAMING T EXIT...c.iiieicceece ettt sn et e e e eneeneanennens 12-13
CoNNECLING 10 OFACIE.......ocii et ae s 12-13
ISSUING 170 CaIS ... bbb 12-13
USING HOSE VAriabIEScvoiiiie et e ne e 12-13
UPAAtiNg TabBIES......ceie e et 12-13
ISSUING COMMEANTAS......cviiiitiiitiiie bbbttt bbb 12-14

EXEC TOOLS STATEIMENTS ..ottt enenns 12-14
EXEC TOOLS SET ..ttt sttt sttt ettt sttt st sttt ab et e et e sbe e ebeneetennas 12-14
EXEC TOOLS GET oottt sttt sttt sttt sttt st sb et a b e et seebe e ebesnenennas 12-15
EXEC TOOLS MESSAGE ...ttt ettt 12-16

Large Objects (LOBS)

WAL GIre LOBS? ...ttt et b et b ettt ettt et et nnee 13-2
INTEINAT LOBS ...ttt ettt bbb bbb bbbt e e e bt sb e b b 13-2
EXEEINAL LOBS.....coooieeee ettt sttt st b et sttt r e bbbt e 13-2
SECUTILY FOF BFILEScciiicieii ittt e e neeneeneenenrennennens 13-2
LOBS vS. LONG and LONG RAWcooiiiiiretie sttt ettt ettt 13-3
LLOB LOCAIONS ...ttt sttt sttt b bbb bt et e b e eb e e bt e nb e e s b e bt en b e eb e et e ebeebeeaeenbesaeas 13-3
TEMPOTAIY LOBS.....c.iiiieeieeit ettt ste e se e e st e e st e e sseesteaneesaeaneesaeeeesreesaesseeseesranns 13-3
LOB BUFfering SUDSYSTEIMooieiiiieiicie ettt 13-4

HOW t0 USe LOBS iN YOUF PIrOGIaMcoiuiiiiiiieieiieiesieie sttt 13-5

XVii

14

Xviii

TWO WaAYS 10 ACCESS LOBS ...ttt et 13-5

LOB Locators in YOUr APPHCATION ... 13-6
LT 14 [T = T] SRS 13-7
RUIES TOr LOB STAtEMENTSouiitiiiiieitiiteite ettt sbe s 13-8
FOr All LOB SEAEMIENTSoviitiiiieiiieie ettt st st ettt sneeneneas 13-8
For the LOB BUffering SUDSYSTEMcccoeiiicccese e 13-9
FOr HOSE VAITADIES ...t bbb 13-10
LOB STATEIMIENTSei ittt b et b e ae e b e s et e be e e e s be e besbe e besbeenbe st e e be st e e nbennee e 13-10
APPEND ..ottt bbbt bbb bt b ettt e b e b e 13-10
AASSIGIN L.ttt bbbt R et R et R et Rttt ettt nen 13-11
L0 I OSSOSO 13-12
COPY ettt bbb bbbt Rt Ee e R e Rt bR bR bbb 13-12
CREATE TEMPORARY ..ottt sttt ettt sttt sttt sb et be et 13-14
DISABLE BUFFERINGcoiiiiiiiiici ettt nes 13-14
ENABLE BUFFERING ..ottt 13-15
BERASE ...ttt b et Rt b et b e b b 13-15
FILE CLOSE ALL ..ottt ettt b et 13-16
FILE SET ittt bbbtk R bbb bbbt 13-16
FLUSH BUFFER ..ottt ettt bt 13-17
FREE TEMPORARY ..ottt ettt bbbttt bbb 13-18
LOAD FROM FILE ...ttt 13-18
OPEN L.ttt b bbb Rt bt bt Rt R bbbt bbb nenaens 13-20
READ ...ttt bRt b et R et R ettt R bR b e b ne et 13-20
TRIM bbb btttk e bt e e bt s e bt s b b e e bR e e bt be et ettt et e 13-22
WWVRITE .ottt bttt et s ettt bbbt bt b et e s ettt et et enes 13-23
DESCRIBEottt ettt sttt b et s et s e nn s et n et n et re s 13-24
READ and WRITE Using the Polling Method...........ccccooveiiiiiccssnce e 13-27
LOB Sample Program:LOBDEMOL.PCO......cccooiiiiiiiieiresese e 13-29
Precompiler Options
The Pro*COBOL COMIMANG........coiiiiiiiiie ittt r bbb b e 14-2
CaSE-SENSTLIVITY ...ttt ettt b bbbt ne et nb bbbt bt bt r e b ene e 14-2
What Occurs during Precompilation?..........cccooiiiiiiicicce e 14-3
ADOUL THE OPTIONS ..ttt bbb bbb et e et e bt bbb 14-3
Precedence Of OPLION VAIUES ...ttt 14-4

MaCro anNd MICIO OPTIONSuiiuiiiiieiieie et bbb e ettt ebe bt 14-5

Determining CUITENT VAIUES.........cociiiiiiiiee et 14-6
CoNFIGUIALION FIlESoiiiecec e se e enesresresnens 14-6
ENTEIING OPTIONS. ..c.eitiieee ettt bbbt bbb bbb e e st e b e bt bt bt e 14-7
ON the COMMEANG LINE ..ottt ettt sne s 14-7
L] T T OO OSSPSR 14-8
SCOPE OF OPTIONS ...t b bbb bbbt b et et s e e b e e bt ebesbenbe b 14-9
L@ LU ol S R {=3 (=] =] o (ot PSSR RPR 14-10
Using Pro*COBOL Precompiler OPLiONS.......cccccviieiiriiiciciece st e e sne e 14-12
AASACC ..o E bbbt bt Ee e Rt Ee et b e bR b re et nenbne 14-12
ASSUME_SQLCODEcooiiiieitieeee ettt sttt ettt st sb e b b 14-13
AUTO _CONNECT ..ttt sttt ettt ne bbb bbb n b 14-14
CLOSE_ON_COMMIT ..ottt ben st nne s 14-14
LO(0]\ TSRS 14-15
DATE _FORMAT ..ottt bbbt bbbtk ek et sb et bbb st nane 14-16

] 271V F OSSOSO 14-17
DECLARE_SECTION ..ottt sttt ettt sttt sttt nesae e sbenennens 14-18
DEFINE ...ttt e bbbtttk bbb et et bbb e 14-19
DYNADMIC ...ttt et st b ettt ettt ettt sttt e et e b e sber et nennns 14-20
END_OF FETCH.....ciiiiiictiee sttt sttt sb et e sb et e be e etesaenennas 14-20
ERRORS ...t bbb bbbttt b bbb bttt e b 14-21

F P S ettt b b b e Rt bt E e e Rt R e bR e b e R e b et e be e be e etenan 14-21
FORM AT .ottt ettt b e b et et et et et e st e be st et e sa et e s b e s e et e s e e be e abe e ebe e ete e eteeas 14-23
HOLD_CURSOR.....ot ittt sttt ettt ettt b et bbb nnne 14-23

o (O 1S OSSOSO 14-24
INAME ..ottt b ettt et R bRt R et s bRt R ettt ne e e 14-25
INCLUDE ...ttt bbb bbbttt bbb e 14-25
IRECLEN ...ttt ettt bbbttt ettt et bbb nn e 14-26

N I I 1 SRS 14-27
LINAME ... b e bbb ekt b etk b bbb b e b nenrne 14-27
LRECLEN ..ottt bbbttt ettt ettt sttt bbbt nnns 14-28

I I 2 SRS 14-28
IMAXLITERAL ...ttt ettt bbb bbbt bbbt 14-29
MAXOPENGCURSORS........ociiiteiee ettt sttt sttt sttt sttt st r e bt nennens 14-30

Y (@ SRS 14-31

Xix

NLS_LOCAL .ottt 14-32
OINAME ...ttt et 14-33
ORAGCA e 14-34
ORECLEN ..ottt et ene 14-34
PAGELEN ..ot 14-34
P X e 14-35
PREFETCH ..ot e 14-36
RELEASE_CURSOR ..ottt 14-36
SELECT_ERROR ..ot e 14-37
SQLCHECK ..ot e 14-38
TYPE_CODE ... oot ettt e ne e 14-40
UNSAFE_NULL ..ottt 14-40
USERID ...ttt 14-41
VARCHAR ..ottt ettt 14-42
XREF s 14-42

A New Features

New Features OF REIEASE 8.1.........co et A-2
CALL STAEIMENT ..ottt b ettt e e bt e e be e be b e e besb e e besbe e bt e ebesbeennanbeenes A-2
Calling Java MELNOAS ..o e neere s re s A-2
@] 21U o] o o] o S TT TP O U U PP UPTPRTUPRPRO A-2
ANSI DYNAMIC SQL. ..ttt bbbt b et bbbttt e A-2
PREFETCH OPLION ..ottt sttt st sttt sb e sbe b A-2
DML REUINING CIAUSEeiitieie ettt ettt s e e s be s te s e ba e st e sbeeneesneenaesneenreanes A-2
UNIVEISAl ROWIDS ...ttt sttt ettt ene et et sbe b e e A-3
User-Specified RUNTIME CONTEXEScvoviicicicrce et A-3
SYSDBA/SYSOPER Privileges in CONNECT Statements........cccccceeveviievinieveese e A-3
TabIes OF GrOUP ITEIMS ...t A-3
WHENEVER DO CALL BFranChcoiiiiiiienee e A-3
DECIMAL-POINT ISCOMMA ..ottt ettt A-3
Optional DiVISION HEAERIS........cc.ciiiiiiiiit s A-3
NS I =1 2 @] o 1 [o TSP A-3

DB2 Compatibility Features of Release 8.0.........ccciiiiiiiiiiiere s A-4
OPLioNal DECIAre SECTIONcviiiieiiiiiciiiti et A-4

XX

Support of AdditioNal DatatYPEScceouiieiiiiiiieee et A-4

Support of Group Items as Host Variables............cccooiiiiiiniie A-4
Implicit Form of VARCHAR Group IEBMSccovviiiiiieiesine et A-5
Explicit Control Over the END-OF-FETCH SQLCODE Returned............ccccccovieiiniiniennnnens A-5
Support of the WITH HOLD Clause in the DECLARE CURSOR Statement....................... A-5
New Precompiler Option CLOSE_ON_COMMIT ... A-5
SUPPOIt FOF DSINTIAR. ... oot ettt b et b e sb et nee b e A-6
Date String Format Precompiler OPtion ..ottt A-6
Any Terminator Allowed After SQL StatemMeNtS........c.ccvcvvereierinere e A-7
Other New Features 0f REIEASE 8.0 ..o A-7
New Name for Configuration File ... A-7
Support of Other Additional DatatyPesS........covveviirieiisire e A-7
SUPPOIt OFf NESTEA PrOGIAMS ...c..ouiiiieieieieiiee ettt bbbttt sbe s A-7
Support for REDEFINES and FILLERcccooiiiiiiieee e A-7
New Precompiler Option PICX ...ttt A-8
Optional CONVBUFSZ Clause in VAR Statement...........cocoeiiieiineneieeeesese e A-8
IMProved Error REPOITINGcovoiiiiiiiiieii ettt A-8
Changing Password When CONNECTINGcccoviveiiireiece et A-8
Error MESSAJE COUESocvveiiieiiiii ettt sttt e et esbe et e sae e teeseesbeenaesteesaesteeaenreans A-8
Migration From Earlier REIEASESccociiiiiiiicrc et A-9

B Operating System Dependencies

System-Specific References in this Manual..............cccocoii e B-2
COBOL VEISIONS......iiiiiieieiieie sttt sttt ettt ettt sttt et bbbt s bbbt skt e bt et ettt n s B-2
HOSE VArTADIES ... bbbt sb e B-2
INCLUDE STATEIMENTS ...ttt bbb bbbt et sbe b bt et saeeneesneas B-2
MAXLITERAL DEFAUIL ...ttt B-3
PIC N or Pic G Clause for Multi-byte NLS Charactersccccoovevviieieivee e B-3
RETURN-CODE Special Register May Be Unpredictable.cccooeoiiiiiininiensences B-3

C Reserved Words, Keywords, and Namespaces

Reserved Words and KEYWOTTS ..ottt C-2
RESEIVEU NAMESPACES. ... i iviieieieiieiereeeeteeee et sre st te et e stesaese e teeeseenseseeseeseaseeseaseaseateseesresrenees C-14

XXi

D

Performance Tuning

What Causes POOF PErfOrmMaNCE?.........cccviiiiiiiiiieee sttt D-2
How Can Performance be IMProVed? ... e D-2
USING HOSE TADIES ...ttt D-3
USING PL/SQL QNG JAVA......c.iiiiiiicicese sttt et tesreste e stessesbesaennesesaenaeneenens D-3
OptiMizing SQL STATEMENTS.oiiiiiiieeeee ettt sb e b b bbb e eneas D-5
OPLIMIZEN HINTS ...ttt bbbttt nb s D-5
QLI U= = (o1) Y25 USSR D-6
L8] [[o T LT [(=SSR D-6
Taking Advantage of ROW-LeVel LOCKING........cccoiiiiiiiiieieesese e D-6
Eliminating UNNECeSSary ParSiNgccocviviieiiiiieierineseseeseeeeese s stese e stes e ssessessesaessessessesesssesens D-7
HaNAIiNG EXPHCIT CUISOESoiviiiiiiiieieeie ettt st st D-7
Using the Cursor Management OPLIONS ... s D-9

E Syntactic and Semantic Checking

XXii

What Are Syntactic and Semantic Checking? ... E-2
Controlling the Type and Extent of CheCKiNg.........ccccovvivviiiiiiinin i E-2
Specifying SQLCHECK=SEMANTICS ..ottt E-3

Enabling @ SEMAaNtIC CHECKc.ciiiiiiiic e E-3

Embedded SQL Statements and Precompiler Directives

Summary of Precompiler Directives and Embedded SQL Statementsccccocvevivninnnnns F-4
About the Statement DESCrIPLIONScc.oovciiiccce et es F-6
HoWw t0 Read SYNtax DIagramS.........ccccciueiiiieiiiiesie ettt sttt et este e sreenes F-7
STAtEMENT TEIMINALOTottt bt st se et e et e b e s e eaesne e e F-8
Required Keywords and Parameters ..o e seesese e ses e e s sse s F-8
Optional Keywords and Parameters..........coooeieiiiiiieieesiese s F-9
SYNTAX LOOPS ..ttt F-9
Y LU o T L f DT =T | Ut oSSR F-10
(D U7 10T = @ o] (=T £ S S F-10
ALLOCATE (Executable Embedded SQL EXtENSION)ccoiiiriiiniiiiiiiinseieiesieeseeeseeeseens F-10
ALLOCATE DESCRIPTOR (Executable Embedded SQL)c.cccoovvvvivrininenerceeeeee e F-12
CALL (Executable Embedded SQL)cccoiiieiiiicccee et F-13

CLOSE (Executable Embedded SQL)cccoviieiiiiee et s F-14

COMMIT (Executable Embedded SQL) ...t F-15
CONNECT (Executable Embedded SQL EXENSION)ccccovvivieiiniie e F-17
CONTEXT ALLOCATE (Executable Embedded SQL EXtension)...........cccccvevvevvivienecceeseennn, F-19
CONTEXT FREE (Executable Embedded SQL EXENSION).......cccoeiiiririniiiniineciecsiecneees F-20
CONTEXT USE (Oracle Embedded SQL DireCtiVe)........ccccvvivieiierierieiineneseeieeresesesesesnens F-21
DEALLOCATE DESCRIPTOR (Embedded SQL Statement)ccccccovvereeneieneieneieneenans F-23
DECLARE CURSOR (Embedded SQL Dir€CLIVE)........cccureirieinieinieisieesie e F-24
DECLARE DATABASE (Oracle Embedded SQL DireCtive)cccccocvvvrerereieineeeese e F-26
DECLARE STATEMENT (Embedded SQL DIireCtiVe)ccccovveriierinenisenieeneesiee e F-27
DECLARE TABLE (Oracle Embedded SQL DireCtiVe) ..o F-29
DELETE (Executable Embedded SQL)ccccovieiiiieie e F-31
DESCRIBE (Executable Embedded SQL)cccovoiiiieiiiice e F-34
DESCRIBE DESCRIPTOR (Executable Embedded SQL)cccccoiiiiinnncieninnrceesseees F-36
EXECUTE ... END-EXEC (Executable Embedded SQL EXtENSION)cccccevveveevevveineiecnriens F-38
EXECUTE (Executable Embedded SQL) ..o F-40
EXECUTE DESCRIPTOR (Executable Embedded SQL...........cocooiniiniiiniiiniincneeseeiees F-42
EXECUTE IMMEDIATE (Executable Embedded SQL)c.ccccovvivvivvvniniincne e F-43
FETCH (Executable Embedded SQL)ccooiiiiiiie ettt e F-45
FETCH DESCRIPTOR (Executable Embedded SQL)cccooiiiiniiniincenceeeseese e F-48
FREE (Executable Embedded SQL EXIENSION)ccceiviieiiiiii s F-50
GET DESCRIPTOR (Executable Embedded SQL)........ccocooviiiiiieineicesessesse e F-51
INSERT (Executable Embedded SQL).......coooiiiiiiiiiieseee st F-54
LOB APPEND (Executable Embedded SQL EXtENSION)cccccvivvivreieriiceeceee e F-57
LOB ASSIGN (Executable Embedded SQL EXENSION)ccooviieviiien e F-58
LOB CLOSE (Executable Embedded SQL EXIENSION)cccooiiiieiiiiiiieeeeee e F-58
LOB COPY (Executable Embedded SQL EXtENSION)cccvvvrvieriineneiecieieese e F-59
LOB CREATE TEMPORARY (Executable Embedded SQL EXtension)cccccevvevennnene F-59
LOB DESCRIBE (Executable Embedded SQL EXtENSION).......c.ccoveiiienineninenseniceneeeeee F-60
LOB DISABLE BUFFERING (Executable Embedded SQL EXteNsion).........cccceevvvvivrnnnenn F-61
LOB ENABLE BUFFERING (Executable Embedded SQL EXtension)c..cccccevvvveiennnene, F-62
LOB ERASE (Executable Embedded SQL EXtENSION)cccceiireiiierinienineniseee e F-62
LOB FILE CLOSE ALL (Executable Embedded SQL EXtENSION)cccccvvvveveeveieesece e F-63
LOB FILE SET (Executable Embedded SQL EXtENSION)ccoovieeieiieiecie e F-64
LOB FLUSH BUFFER (Executable Embedded SQL EXtENSION)ccooveviiennininineeeee F-64

XXili

XXV

LOB FREE TEMPORARY (Executable Embedded SQL EXtension)c.cccceevevvevvccieiinennn, F-65

LOB LOAD (Executable Embedded SQL EXtENSION)ccvuiiriiiiiiiiiiieeeceeseeeseeeeees F-65
LOB OPEN (Executable Embedded SQL EXtENSION)ccccvviviviinniisesese e F-66
LOB READ (Executable Embedded SQL EXtENSION)ccccccviieiieii i F-67
LOB TRIM (Executable Embedded SQL EXtENSION).........ccviiriiiiiiiisineeneeeeeeeeseeeneens F-67
LOB WRITE (Executable Embedded SQL EXtENSION)ccccoiviiviirerriisese e F-68
OPEN (Executable Embedded SQL).......ccccco oot F-69
OPEN DESCRIPTOR (Executable Embedded SQL)c.cccoeiiinininiieeseee e F-71
PREPARE (Executable Embedded SQL)......ccccceiiieiiiieeiciese et sne s F-73

LU ST= T (oI AN Lo (L PR PPRUR F-74
ROLLBACK (Executable Embedded SQL)cccoiiiiiiiiieeeseiesie e F-74
SAVEPOINT (Executable Embedded SQL)ccciviiiiiiniie e F-78
SELECT (Executable Embedded SQL)........cccoiiiiiiiiicic e F-79
SET DESCRIPTOR (Executable Embedded SQL)........cccoiiiiiiiiiiieneesese e F-82
UPDATE (Executable Embedded SQL)cccooeiiieccecse e F-85
VAR (Oracle Embedded SQL DIrECLIVE)cccveiiiiiiie ettt e F-89
WHENEVER (Embedded SQL DIreCliVe)cccciiiiiiiricinieinesieseese st F-91

Send Us Your Comments

Pro*COBOL Precompiler Programmer’s Guide, Release 8.1.5
Part No. A68023-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Is the information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?

« What features did you like most about this manual?
If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

« electronic mail - infodev@us.oracle.com

« FAX-(650) 506-7228 Attn: Information Development Department

« postal service:
Oracle Corporation
Information Development Department
500 Oracle Parkway
Redwood Shores, CA 94065 USA

If you would like a reply, please give your name, address, and telephone number below.

XXV

XXVi

Preface

This manual is a comprehensive user’s guide and reference to the Oracle
Pro*COBOL Precompiler. It shows you how to develop COBOL programs that use
the database languages SQL and PL/SQL to access and manipulate Oracle data. See
Oracle8i SQL Reference and PL/SQL User’s Guide and Reference for more information
on SQL and PL/SQL.

This preface covers these topics:

What This Manual Has to Offer

Who Should Read This Manual?

How This Manual Is Organized

Text Conventions Used in This Manual

Sample Programs

Does the Pro*COBOL Precompiler Meet Industry Standards?

Your Comments Are Welcome

XXVil

What This Manual Has to Offer

This manual shows you how the Oracle Pro*xCOBOL Precompiler and embedded
SQL can benefit your entire applications development process. It gives you lessons
in how to design and develop applications that harness the power of Oracle. And,
as quickly as possible, it helps you become proficient in writing embedded SQL
programs.

An important feature of this manual is its emphasis on getting the most out of
Pro*COBOL and embedded SQL. To help you master these tools, this manual shows
you all the "tricks of the trade" including ways to improve program performance. It
also includes many program examples to better your understanding and
demonstrate the usefulness of embedded SQL.

Note: You will not find installation instructions or system-specific information
in this manual. For that kind of information, refer to your system-specific
Oracle documentation.

For information about migrating your applications from Oracle7 to Oracle8i, see
Oracle8i Migration.

Who Should Read This Manual?

Anyone developing new COBOL applications or converting existing applications to
run in the Oracle8i environment will benefit from reading this manual. Written
especially for programmers, this comprehensive treatment of Pro*COBOL will also
be of value to systems analysts, project managers, and others interested in
embedded SQL applications.

To use this manual effectively, you need a working knowledge of the following
subjects:

« Applications programming in COBOL.
« The SQL database language.

« Oracle8i concepts and terminology.

How This Manual Is Organized
A brief summary of what you will find in each chapter and appendix follows.

Chapter 1, "Introduction”

XXViii

This chapter introduces you to Pro*COBOL. You look at its role in developing
application programs that manipulate Oracle data and find out what are its key
benefits and features.

Chapter 2, "Precompiler Concepts™"

This chapter explains how embedded SQL programs work. Then the guidelines for
programming in Pro*COBOL are presented. Compilation issues are discussed and
the sample Oracle tables used in this guide are presented, as is the first of the demo
programs, SAMPLEL1.PCO.

Chapter 3, "Database Concepts”

This chapter describes transaction processing. You learn the basic techniques that
safeguard the consistency of your database. You then learn how to connect to a
database and how to connect to multiple distributed databases.

Chapter 4, "Datatypes and Host Variables™"

The internal and external datatypes are defined at length. Then you are shown how
to use the datatypes in your COBOL program. Then runtime contexts and ROWIDs
are explained, followed by National Language Support, datatype conversion and
datatype equivalencing. (with a sample program).

Chapter 5, "Embedded SQL"

This chapter teaches you the essentials of embedded SQL programming. You learn
how to use host variables, indicator variables, cursors, cursor variables, and the
fundamental SQL commands that insert, update, select, and delete Oracle data.

Chapter 6, "Embedded PL/SQL"

This chapter shows you how to improve performance by embedding PL/SQL
transaction processing blocks in your program. You learn how to use PL/SQL with
host variables, indicator variables, cursors, stored subprograms in either PL/SQL or
Java, host tables, and dynamic PL/SQL.

Chapter 7, "Host Tables"

This chapter looks at using host (COBOL) tables to improve program performance.
You learn how to manipulate Oracle data using tables, how to operate on all the
elements of a table with a single SQL statement, and how to limit the number of
table elements processed.

Chapter 8, "Error Handling and Diagnostics"

This chapter provides an in-depth discussion of error reporting and recovery. You
learn how to detect and handle errors using the status variable SQLSTATE, the

XXiX

XXX

SQLCA structure, and the WHENEVER statement. You also learn how to diagnose
problems using the ORACA.

Chapter 9, "Oracle Dynamic SQL"

This chapter shows you how to take advantage of dynamic SQL. You are taught
three methods, from simple to complex, for writing flexible programs that let users
build SQL statements interactively at run time.

Chapter 10, "ANSI Dynamic SQL"

ANSI Dynamic SQL, Method 4, is presented. This method supports all Oracle

datatypes, while the older Oracle Method 4 does not support cursor variables,
tables of group items, DML Returning Clause, and LOBs. ANSI Method 4 uses
embedded SQL statements that set up descriptor areas in memory. ANSI SQL

should be used for all new applications.

Chapter 11, "Oracle Dynamic SQL: Method 4"

This chapter shows you how to maintain existing applications that use dynamic
SQL Method 4. Numerous examples are used to illustrate the method.

Chapter 12, "User Exits"

This chapter focuses on writing user exits for your SQL*Forms or Oracle Forms
applications. First, you learn the commands that allow a Forms application to
interface with user exits. Then, you learn how to write and link a Forms user exit.

Chapter 13, "Large Obijects (LOBs)"

This chapter presents large object datatypes (BLOBs, CLOBs, NCLOBs, and
BFILEs). The embedded SQL commands that provide functionality comparable to
OCI and PL/SQI are presented and used in sample code.

Chapter 14, "Precompiler Options™

This chapter details the requirements for running the Pro*COBOL precompiler, and
a list of the precompiler options. You learn what happens during precompilation,
how to issue the Pro*COBOL command, and how to specify the many useful
precompiler options.

Appendix A, "New Features”

This appendix highlights the improvements and new features introduced with both
releases 8.1 and 8.0 of Pro*xCOBOL.

Appendix B, "Operating System Dependencies”

Some details of Pro*COBOL programming vary from one system to another. So, you
are occasionally referred to other manuals for system-specific information. For
convenience, this appendix collects all such external issues.

Appendix C, "Reserved Words, Keywords, and Namespaces"

This appendix refers you to a table of reserved words that have a special meaning to
Pro*COBOL. The namespaces that are reserved for Oracle libraries are presented.

Appendix D, "Performance Tuning"

This appendix gives you some simple methods for improving the performance of
your applications.

Appendix E, "Syntactic and Semantic Checking"

This appendix shows you how to use the SQLCHECK option to control the type
and extent of syntactic and semantic checking done on embedded SQL statements
and PL/SQL blocks.

Appendix F, "Embedded SQL Statements and Precompiler Directives"

This appendix contains descriptions of precompiler directives, embedded SQL
commands, and Oracle embedded SQL extensions. The purpose, prerequisites,
syntax diagrams, keywords, parameters, usage notes, examples, and related topics
are presented for each statement and directive.

Text Conventions Used in This Manual

Notation

Important terms being defined for the first time are italicized. In discussions, UPPER
CASE is used for database objects, precompiler options, and SQL keywords.
Variables and constants are in monospaced font, as are code samples.

The following notation is used in this manual:

<> Angle brackets enclose the name of a syntactic element. Sometimes
italics are used.

A dot separates an object name from a component name and so
qualifies a reference.

Two dots separate the lowest and highest values in a range.

An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

XXXi

This character is used in text to represent blank spaces when
referring to the content of a database column.

Syntax Description

Embedded SQL syntax is described using a variant of Backus-Naur Form (BNF),
which includes the following symbols:

[] Brackets enclose optional items.
{} Braces enclose items only one of which is required.
| A vertical bar separates alternatives within brackets or braces.

An ellipsis shows that the preceding parameter can be repeated.

Sample Programs

This manual provides several Pro*COBOL programs to help you in writing your
own. These programs illustrate the key concepts and features of Pro*COBOL
programming and demonstrate techniques that let you take full advantage of SQL’s
power and flexibility.

Each complete sample program in this manual is available on-line in the demo
directory. However, the exact filenames are system-dependent. For exact filenames,
see your Oracle system-specific documentation. We present sample code developed
for the Solaris operating system in this manual.

Does the Pro*COBOL Precompiler Meet Industry Standards?

XXX

SQL has become the standard language for relational database management
systems. This section describes how the Pro*COBOL Precompiler conforms to the
latest SQL standards established by the following organizations:

« American National Standards Institute (ANSI)

« International Standards Organization (ISO)

« U.S. National Institute of Standards and Technology (NIST)

Those organizations have adopted SQL as defined in the following publications:
« ANSI Document ANSI X3.135-1992, Database Language SQL

« ANSI Document ANSI X3.168-1992, Database Language Embedded SQL

« International Standard ISO/IEC 9075:1992, Database Language SQL

« NIST Federal Information Processing Standard FIPS PUB 127-2, Database
Language SQL

Requirements

ANSI X3.135-1992 (known informally as SQL92) specifies a "conforming SQL
language" and, to allow implementation in stages, defines three language levels:

« Full SQL

« Intermediate SQL (a subset of Full SQL)

« Entry SQL (a subset of Intermediate SQL)

A conforming SQL implementation must support at least Entry SQL.

ANSI X3.168-1992 specifies the syntax and semantics for embedding SQL
statements in application programs written in a standard programming language
such as COBOL-74 and COBOL-85.

ISO/IEC 9075-1992 fully adopts the ANSI standards.

FIPS PUB 127-2, which applies to RDBMS software acquired for federal use, also
adopts the ANSI/ISO standards. In addition, it specifies minimum sizing
parameters for database constructs and requires a "FIPS Flagger" to identify ANSI
extensions.

For copies of the ANSI standards, write to
American National Standards Institute
1430 Broadway

New York, NY 10018, USA

For a copy of the ISO standard, write to the national standards office of any ISO
participant. For a copy of the NIST standard, write to

National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161, USA

Xxxiii

Compliance

FIPS Flagger

FIPS Option

Certification

XXXIV

The Pro*COBOL precompiler complies 100% with the ANSI, I1SO, and NIST
standards. As required, they support Entry SQL and provide a FIPS Flagger.

According to FIPS PUB 127-1:

"An implementation that provides additional facilities not specified by this standard
shall also provide an option to flag nonconforming SQL language or conforming
SQL language that may be processed in a nonconforming manner."

To meet this requirement, the Pro*COBOL Precompiler provides the FIPS Flagger,
which flags ANSI extensions. An extension is any SQL element that violates ANSI
format or syntax rules, except privilege enforcement rules. For a list of Oracle
extensions to standard SQL, see the Oracle8i SQL Reference.

You can use the FIPS Flagger to identify

« nonconforming SQL elements that might have to be modified if you move the
application to a conforming environment

« conforming SQL elements that might behave differently in another processing
environment

Thus, the FIPS Flagger helps you develop portable applications.

An option named FIPS governs the FIPS Flagger. To enable the FIPS Flagger, you
specify FIPS=YES inline or on the command line. For more information about the
command-line option FIPS, see "FIPS" on page 14-21.

NIST tested the Pro*COBOL Precompiler for ANSI Entry SQL compliance using the
SQL Test Suite, which consists of nearly 300 test programs. Specifically, the programs
tested for conformance to the COBOL embedded SQL standards. As a result, the
Pro*COBOL Precompiler was certified 100% ANSI-compliant.

For more information about the tests, write to
National Computer Systems Laboratory

Attn.: Software Standards Testing Program

National Institute of Standards

MIA/SPIRIT

The Pro*COBOL Precompiler provides National Language Support (NLS) of
multi-byte character data by complying with the Multivendor Integration
Architecture (MIA) specification, Version 1.3, and the Service Providers Integrated
Requirements for Information Technology (SPIRIT) specification, Issue 2.

Your Comments Are Welcome

The Oracle Corporation technical staff values your comments. As we write and
revise, your opinions are the most important feedback we receive. Please use the
Reader’s Comment Form to tell us what you like and dislike about this Oracle
publication.

« electronic mail - infodev@us.oracle.com
« FAX-(650) 506-7228 Attn: Information Development Department
« postal service:

Oracle Corporation

Information Development Department
500 Oracle Parkway

Redwood Shores, CA 94065 USA

XXXV

XXXVI

1

Introduction

This chapter introduces you to the Pro*COBOL Precompiler. You look at its role in
developing application programs that manipulate Oracle data and find out what it
allows your applications to do. The following questions are answered:

What Is Pro*COBOL?

Why Use the Pro*COBOL Precompiler?
Why Use SQL?

Why Use PL/SQL?

What Does Pro*COBOL Offer?

Introduction 1-1

What Is Pro*COBOL?

What Is Pro*COBOL?

The Pro*COBOL Precompiler is a programming tool that allows you to embed SQL
statements in a host COBOL program. As Figure 1-1 shows, the precompiler
accepts the host program as input, translates the embedded SQL statements into
standard Oracle run-time library calls, and generates a source program that you can
compile, link, and execute in the usual way.

Figure 1-1 Embedded SQL Program Development

Host
Program

Oracle
Precompiler

Source
Program

Object
Program

Executable
Program

1-2 Pro*COBOL Precompiler Programmer’s Guide

With embedded SQL statements

With all SQL statements replaced by library calls

Oracle
Runtime
Library

To resolve calls (SQLLIB)

Why Use SQL?

Language Alternatives

Oracle Precompilers are available (but not on all systems) for the following
high-level languages:

« C/C++
. COBOL
« FORTRAN

Pro*Pascal, Pro*ADA and Pro*PL/1 will not be released again. However, Oracle will
continue to issue patch releases for Pro*FORTRAN as bugs are reported and
corrected.

Why Use the Pro*COBOL Precompiler?

The Pro*COBOL Precompiler lets you pack the power and flexibility of SQL into
your application programs. You can embed SQL statements in COBOL. A
convenient, easy to use interface lets your application access Oracle directly.

Unlike many application development tools, Pro*COBOL lets you create highly
customized applications. For example, you can create user interfaces that
incorporate the latest windowing and mouse technology. You can also create
applications that run in the background without the need for user interaction.

Furthermore, with Pro*xCOBOL you can fine-tune your applications. They allow
close monitoring of resource usage, SQL statement execution, and various run-time
indicators. With this information, you can adjust program parameters for maximum
performance.

Why Use SQL?

If you want to access and manipulate Oracle data, you need SQL. Whether you use
SQL interactively or embedded in an application program depends on the job at
hand. If the job requires the procedural processing power of COBOL, or must be
done on a regular basis, use embedded SQL.

SQL has become the database language of choice because it is flexible, powerful,
and easy to learn. Being non-procedural, it lets you specify what you want done
without specifying how to do it. A few English-like statements make it easy to
manipulate Oracle data one row or many rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application program.
For example, you can:

Introduction 1-3

Why Use PL/SQL?

« CREATE, ALTER, and DROP database tables dynamically.
« SELECT, INSERT, UPDATE, and DELETE rows of data.
« COMMIT or ROLLBACK transactions.

Before embedding SQL statements in an application program, you can test them

interactively using SQL*Plus. Usually, only minor changes are required to switch
from interactive to embedded SQL.

Why Use PL/SQL?

An extension to SQL, PL/SQL is a transaction processing language that supports
procedural constructs, variable declarations, and robust error handling. Within the
same PL/SQL block, you can use SQL and all the PL/SQL extensions.

The main advantage of embedded PL/SQL is better performance. Unlike SQL,
PL/SQL allows you to group SQL statements logically and send them to Oracle in a
block rather than one by one. This reduces network traffic and processing overhead.

For more information about PL/SQL including how to embed it in an application
program, see Chapter 6, "Embedded PL/SQL".

What Does Pro*COBOL Offer?

As Figure 1-2 shows, Pro*COBOL offers many features and benefits that help you
to develop effective, reliable applications.

1-4 Pro*COBOL Precompiler Programmer’s Guide

What Does Pro*COBOL Offer?

Figure 1-2 Features and Benefits

Runtime Event Language ANSI/ISO SQL
Diagnostics Handling [Alternatives Conformance
Separate Highly
Precompilation Customized
Applications
Conditional gyNnSeIamic
Precompilation SOL
Pro*COBOL
Support for
Concurrent PL/SQL
Connects and Java
Host
Support Table
for LOBs Support
Datatype Syntax Precompiler
Equivalencing Checking User Exits Options

For example, the Pro*COBOL Precompiler allows you to:
= Write your application in COBOL.
« Conform to the ANSIZISO embedded SQL standard.

« Take advantage of ANSI Dynamic SQL Method 4, an advanced programming
technique that lets your program accept or build any valid SQL statement at
run-time in a COBOL program

« Design and develop highly customized applications.

« Convert automatically between Oracle8i internal datatypes and COBOL
datatypes.

Introduction 1-5

What Does Pro*COBOL Offer?

« Improve performance by embedding PL/SQL transaction processing blocks in
your COBOL application program.

« Specify useful precompiler options and change their values during
precompilation.

« Use datatype equivalencing to control the way Oracle8i interprets input data
and formats output data.

« Precompile several program modules separately, then link them into one
executable program.

« Check the syntax and semantics of embedded SQL data manipulation
statements and PL/SQL blocks.

« Access Oracle8i databases on multiple nodes concurrently, using Net8.
« Use arrays as input and output program variables.

« Precompile sections of code conditionally so that your host program can run in
different environments.

« Interface with tools such as Oracle Forms and Oracle Reports via user exits
written in a high-level language.

« Handle errors and warnings with the ANSI-approved status variables
SQLSTATE and SQLCODE, and/or the SQL Communications Area (SQLCA)
and WHENEVER statement.

« Use an enhanced set of diagnostics provided by the Oracle Communications
Area (ORACA).

« Access Large Object (LOB) database types.

1-6 Pro*COBOL Precompiler Programmer’s Guide

2

Precompiler Concepts

This chapter explains how embedded SQL programs do their work. Definitions of
important words, explanations of basic concepts, and "rules
of the road" are presented.

Topics covered are:

Key Concepts of Embedded SQL Programming
Programming Guidelines

The Declare Section

Nested Programs

Conditional Precompilations

Separate Precompilations

Compiling and Linking

Sample Tables

Sample Programs: SAMPLE1.PCO

Precompiler Concepts 2-1

Key Concepts of Embedded SQL Programming

Key Concepts of Embedded SQL Programming

This section lays the conceptual foundation on which later chapters build.

Steps in Developing an Embedded SQL Application

Precompiling results in a source file that can be compiled normally. Although
precompiling adds a step to the traditional development process, that step is well
worth taking because it lets you write very flexible applications.

Figure 2-1 walks you through the embedded SQL application development process:

2-2 Pro*COBOL Precompiler Programmer’s Guide

Key Concepts of Embedded SQL Programming

Figure 2-1 Application Development Process

Steps Results

Design ——| Specs I
yes Host
_> COde _>

. Source
Precompile —p Program

Compile L grtgg‘r:;m
Linked
ﬁ

Execute

Embedded SQL Statements

The term embedded SQL refers to SQL statements placed within an application
program. Because the application program houses the SQL statements, it is called a

Precompiler Concepts 2-3

Key Concepts of Embedded SQL Programming

host program, and the language in which it is written is called the host language. For
example, with Pro*COBOL you can embed SQL statements in a COBOL host
program.

To manipulate and query Oracle data, you use the INSERT, UPDATE, DELETE, and
SELECT statements. INSERT adds rows of data to database tables, UPDATE
modifies rows, DELETE removes unwanted rows, and SELECT retrieves rows that
meet your search criteria.

Only SQL statements—not SQL*Plus statements—are valid in an application
program. (SQL*Plus has additional statements for setting environment parameters,
editing, and report formatting.)

Executable versus Declarative Statements

Embedded SQL includes all the interactive SQL statements plus others that allow
you to transfer data between Oracle and a host program. There are two types of
embedded SQL statements: executable and declarative.

Executable SQL statements generate calls to the database. They include almost all
gueries, DML (Data Manipulation Language), DDL (Data Definition Language),
and DCL (Data Control Language) statements.

Declarative statements, on the other hand, do not result in calls to SQLLIB and do
not operate on Oracle data.

Declarative statements are also known as directives. You use them to declare Oracle
objects, communications areas, and SQL variables. They can be placed wherever
COBOL declarations can be placed.

Appendix F, "Embedded SQL Statements and Precompiler Directives" contains a
presentation of the most important statements and directives.Table 2-1 groups some
examples of embedded SQL statements(not a complete list):

Table 2-1 Embedded SQL Statements

Declarative SQL

STATEMENT PURPOSE
ARRAYLEN* To use host tables with PL/SQL
BEGIN DECLARE SECTION* To declare host variables

END DECLARE SECTION*
DECLARE* To name Oracle objects
INCLUDE* To copy in files

2-4 Pro*COBOL Precompiler Programmer’s Guide

Key Concepts of Embedded SQL Programming

Table 2-1 Embedded SQL Statements

VAR* To equivalence variables
WHENEVER* To handle runtime errors
Executable SQL

STATEMENT PURPOSE

ALLOCATE* To define and control Oracle data
ALTER
ANALYZE
AUDIT
COMMENT
CONNECT*
CREATE
DROP
GRANT
NOAUDIT
RENAME
REVOKE
TRUNCATE

CLOSE* To query and manipulate Oracle data
DELETE

EXPLAIN PLAN

FETCH*

INSERT

LOCK TABLE

OPEN*

SELECT

UPDATE

COMMIT To process transactions
ROLLBACK

SAVEPOINT

SET TRANSACTION

Precompiler Concepts 2-5

Key Concepts of Embedded SQL Programming

Table 2-1 Embedded SQL Statements

DESCRIBE* To use dynamic SQL
EXECUTE*

PREPARE*

ALTER SESSION To control sessions
SET ROLE

*Has no interactive counterpart

Embedded SQL Syntax

In your application program, you can freely intermix SQL statements with
host-language statements and use host-language variables in SQL statements. The
only special requirement for building SQL statements into your host program is that
you begin them with the words EXEC SQL and end them with the token
END-EXEC. Pro*COBOL translates all executable EXEC SQL statements into calls to
the runtime library SQLLIB.

Most embedded SQL statements differ from their interactive counterparts only
through the addition of a new clause or the use of program variables. Compare the
following interactive and embedded ROLLBACK statements:

ROLLBACK WORK; - interactive

* embedded
EXEC SQL
ROLLBACK WORK
END-EXEC.

A period or any other terminator can follow a SQL statement. Either of the
following is allowed:

EXEC SQL ... END-EXEC,
EXEC SQL ... END-EXEC.

Static versus Dynamic SQL Statements

Most application programs are designed to process static SQL statements and fixed
transactions. In this case, you know the makeup of each SQL statement and
transaction before run time. That is, you know which SQL commands will be
issued, which database tables might be changed, which columns will be updated,
and so on. See Chapter 5, "Embedded SQL".

2-6 Pro*COBOL Precompiler Programmer’s Guide

Key Concepts of Embedded SQL Programming

However, some applications are required to accept and process any valid SQL
statement at run time. So, you might not know until then all the SQL commands,
database tables, and columns involved.

Dynamic SQL is an advanced programming technique that lets your program accept
or build SQL statements at run time and take explicit control over datatype
conversion. See Chapter 9, "Oracle Dynamic SQL", Chapter 10, "ANSI Dynamic
SQL", and Chapter 11, "Oracle Dynamic SQL: Method 4".

Embedded PL/SQL Blocks

Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. So, you
can place a PL/SQL block anywhere in an application program that you can place a
SQL statement. To embed PL/SQL in your host program, you simply declare the
variables to be shared with PL/SQL and bracket the PL/SQL block with the
keywords EXEC SQL EXECUTE and END-EXEC.

From embedded PL/SQL blocks, you can manipulate Oracle data flexibly and
safely because PL/SQL supports all SQL data manipulation and transaction
processing commands. For more information about PL/SQL, see Chapter 6,
"Embedded PL/SQL".

Host Variables and Indicator Variables

A host variable is a scalar or table variable or group item declared in the COBOL
language and shared with Oracle, meaning that both your program and Oracle can
reference its value. Host variables are the key to communication between Oracle
and your program.

You use input host variables to pass data to the database. You use output host
variables to pass data and status information from the database to your program.

Host variables can be used anywhere an expression can be used. But, in SQL
statements, host variables must be prefixed with a colon, "’ to set them apart from
database schema names.

You can associate any host variable with an optional indicator variable. An indicator
variable is an integer variable that indicates the value or condition of its host
variable. A NULL is a missing, an unknown, or an inapplicable value. You use
indicator variables to assign NULLSs to input host variables and to detect NULLs in
output variables or truncated values in output character host variables.

A host variable must not be

« prefixed with a colon in COBOL statements

Precompiler Concepts 2-7

Key Concepts of Embedded SQL Programming

« used in data definition (DDL) statements such as ALTER and CREATE

In SQL statements, an indicator variable must be prefixed with a colon and
appended to its associated host variable (to improve readability, you can precede
the indicator variable with the optional keyword INDICATOR).

Every program variable used in a SQL statement must be declared according to the
rules of the COBOL language. Normal rules of scope apply. COBOL variable names
can be any length, but only the first 30 characters are significant for Pro*COBOL.
Any valid COBOL identifier can be used as a host variable identifier, including those
beginning with digits.

The external datatype of a host variable and the internal datatype of its source or
target database column need not be the same, but they must be compatible.
Table 4-9, "Conversions Between Internal and External Datatypes"” shows the
compatible datatypes between which Oracle8i converts automatically when
necessary.

Oracle Datatypes

Typically, a host program inputs data to the database, and the database outputs data
to the program. Oracle inserts input data into database tables and selects output
data into program host variables. To store a data item, Oracle must know its
datatype, which specifies a storage format and valid range of values.

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle stores data in database columns. Oracle also uses internal
datatypes to represent database pseudo-columns, which return specific data items
but are not actual columns in a table.

External datatypes specify how data is stored in host variables. When your host
program inputs data to Oracle, if necessary, Oracle converts between the external
datatype of the input host variable and the internal datatype of the database
column. When Oracle outputs data to your host program, if necessary, Oracle
converts between the internal datatype of the database column and the external
datatype of the output host variable.

Note: You can override default datatype conversions by using dynamic SQL
Method 4 or datatype equivalencing. For information about datatype
equivalencing, see "Datatype Equivalencing" on page 4-46.

2-8 Pro*COBOL Precompiler Programmer’s Guide

Key Concepts of Embedded SQL Programming

Tables

Pro*COBOL lets you define table host variables (called host tables) and operate on
them with a single SQL statement. Using the SELECT, FETCH, DELETE, INSERT,
and UPDATE statements, you can query and manipulate large volumes of data with
ease.

For a complete discussion of host tables, see Chapter 7, "Host Tables".

Errors and Warnings

When you execute an embedded SQL statement, it either succeeds or fails, and
might result in an error or warning. You need a way to handle these results.
Pro*COBOL provides these error handling mechanisms;

« SQLCODE status variable

« SQLSTATE status variable

« SQL Communications Area (SQLCA)

« WHENEVER statement

« Oracle Communications Area (ORACA)

SQLCODE/SQLSTATE Status Variables

After executing a SQL statement, the Oracle Server returns a status code to a
variable named SQLCODE or SQLSTATE. The status code indicates whether the
SQL statement executed successfully or caused an error or warning condition.

SQLCA Status Variable

The SQLCA is a data structure that defines program variables used by Oracle to
pass runtime status information to the program. With the SQLCA, you can take
different actions based on feedback from Oracle about work just attempted. For
example, you can check to see if a DELETE statement succeeded and if so, how
many rows were deleted.

The SQLCA provides for diagnostic checking and event handling. At runtime, the
SQLCA holds status information passed to your program by Oracle8i. After
executing a SQL statement, Oracle8i sets SQLCA variables to indicate the outcome,
as illustrated in Figure 2-2.

Precompiler Concepts 2-9

Key Concepts of Embedded SQL Programming

Figure 2-2 Updating the SQLCA

Host Program

[——

Warning Flag Settings

Number of Rows

Diagnostic Test

SQL

Database Server

You can check to see if an INSERT, UPDATE, or DELETE statement succeeded and
if so, how many rows were affected. Or, if the statement failed, you can get more
information about what happened.

When MODE={ANSI13 | ORACLE}, you must declare the SQLCA by hard-coding
it or by copying it into your program with the INCLUDE statement. The section
"Using the SQL Communications Area" on page 8-19 shows you how to declare and use
the SQLCA.

WHENEVER Statement

With the WHENEVER statement, you can specify actions to be taken automatically
when Oracle detects an error or warning condition. These actions include

2-10 Pro*COBOL Precompiler Programmer’s Guide

Programming Guidelines

continuing with the next statement, calling a subprogram, branching to a labeled
statement, performing a paragraph, or stopping.

ORACA

When more information is needed about runtime errors than the SQLCA provides,
you can use the ORACA. The ORACA is a data structure that handles Oracle
communication. It contains cursor statistics, information about the current SQL
statement, option settings, and system statistics.

Precompiler Options and Error Handling

Oracle returns the success or failure of SQL statements in status variables,
SQLSTATE and SQLCODE. With precompiler option MODE=ORACLE, you can
declare SQLCODE by including the SQLCA. With MODE=ANSI. you must declare
either SQLSTATE or SQLCODE. For more information, see Chapter 8, "Error
Handling and Diagnostics".

Programming Guidelines

Abbreviations

This section deals with embedded SQL syntax, coding conventions, and
Pro*COBOL-specific features and restrictions.

Note: Topics are arranged alphabetically for quick reference.

You can use the standard COBOL abbreviations, such as PIC for PICTURE IS and
COMP for USAGE IS COMPUTATIONAL.

Case-Insensitivity

Pro*COBOL precompiler options and values as well as all EXEC SQL statements,
inline commands, and COBOL statements are case-insensitive. The precompiler
accepts both upper- and lower-case tokens.

COBOL Versions Supported

Pro*COBOL supports the standard implementation of COBOL for your operating
system (usually COBOL-85 or COBOL-74). Some platforms may support both
COBOL implementations. For more information, see your Oracle system-specific
documentation.

Precompiler Concepts 2-11

Programming Guidelines

Coding Areas
The precompiler option FORMAT, specifies the format of your source code. If you
specify FORMAT=ANSI (the default), you are conforming as much as possible to
the ANSI standard, in which columns 1 through 6 can contain an optional sequence
number, and column 7 (indicator area) can indicate comments or continuation lines.
Division headers, section headers, paragraph names, FD and 01 statements begin in
columns 8 through 11 (area A). Other statements, including EXEC SQL and EXEC
ORACLE statements, must be placed in area B (columns 12 through 72). These
guidelines for source code format can be overridden by your compiler’s rules.
If you specify FORMAT=TERMINAL, COBOL statements can begin in column 1
(the left-most column), or column one can be the indicator area. This is also subject
to the rules of your compiler.
Consult your COBOL compiler documentation for your own platform to determine
the actual acceptable formats for COBOL statements.
Note: In this manual, COBOL code examples use the FORMAT=TERMINAL
setting. The online sample programs in the demo directory use
FORMAT=ANSI.
Commas
In SQL, you must use commas to separate list items, as the following example
shows:
EXEC SQL SELECT ENAME, JOB, SAL
INTO :EMP-NAME, :JOB-TITLE, :SALARY
FROM EMP
WHERE EMPNO =:EMP-NUMBER
END-EXEC.
In COBOL, you can use commas or blanks to separate list items. For example, the
following two statements are equivalent:
ADD AMT1, AMT2, AMT3 TO TOTAL-AMT.
ADD AMT1 AMT2 AMT3 TO TOTAL-AMT.
Comments

You can place COBOL comment lines within SQL statements. COBOL comment
lines start with an asterisk (*) in the indicator area.

2-12 Pro*COBOL Precompiler Programmer’s Guide

Programming Guidelines

You can also place ANSI SQL-style comments starting with "-- " within SQL
statements at the end of a line (but not after the last line of the SQL statement).

COBOL comments continue for the rest of the line after these two characters; "*>".
You can place C-style comments (/* ... */) in SQL statements.
The following example shows all four styles of comments:

MOVE 12 TO DEPT-NUMBER. *> This is the software development group.
EXEC SQL SELECT ENAME, SAL
* assign column values to output host variables
INTO :EMP-NAME, :SALARY - output host variables
F column values assigned to output host variables */
FROM EMP
WHERE DEPTNO = :DEPT-NUMBER
END-EXEC. -illegal Comment

You cannot nest comments or place them on the last line of a SQL statement after
the terminator END-EXEC.

Continuation Lines

You can continue SQL statements from one line to the next, according to the rules of
COBOL, as this example shows:

EXEC SQL SELECT ENAME, SAL INTO :EMP-NAME, :SALARY FROM EMP
WHERE DEPTNO =:DEPT-NUMBER
END-EXEC.
No continuation indicator is needed.

To continue a string literal from one line to the next, code the literal through column
72. On the next line, code a hyphen (-) in column 7, a quote in column 12 or beyond,
and then the rest of the literal. An example follows:

WORKING STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 UPDATE-STATEMENT PIC X(80) VALUE "UPDATE EMP SET BON

- "US =500 WHERE DEPTNO = 20",
EXEC SQL END DECLARE SECTION END-EXEC.

Precompiler Concepts 2-13

Programming Guidelines

Copy Statements

Copy statements are not supported by Pro*COBOL. Instead, use the INCLUDE
precompiler statement which is documented on "Using the INCLUDE Statement”
on page 2-22. Be careful when using INCLUDE and also using
DECLARE_SECTION=YES. Group items should be either placed all inside or all
outside of a Declare Section.

Decimal-Point is Comma

Pro*COBOL supports the DECIMAL-POINT IS COMMA clause in the
ENVIRONMENT DIVISION. If the DECIMAL-POINT IS COMMA clause appears
in the source file, then the comma will be allowed as the symbol beginning the
decimal part of any numeric literals in the VALUE clauses.

For example, the following is allowed:

IDENTIFICATION DIVISION.
PROGRAM-D. FOO
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
DECIMAL-POINT IS COMMA. > <
DATADIVISION.
WORKING-STORAGE SECTION.

01 WDATAL PIC S9VO999VALUE +567.%> <—*
01 WDATA2 PIC SOVO99VALUE -234.%> <—**

Delimiters

The LITDELIM option specifies the delimiters for COBOL string constants and
literals. If you specify LITDELIM=APOST, the Pro*COBOL uses apostrophes when
generating COBOL code. If you specify LITDELIM=QUOTE (default), quotation marks are
used, asin

CALL "SQLROL" USING SQL-TMPO.

In SQL statements, you must use quotation marks to delimit identifiers containing
special or lowercase characters, as in

EXEC SQL CREATE TABLE "Emp2"' END-EXEC.

However, you must use apostrophes to delimit string constants, as in

2-14 Pro*COBOL Precompiler Programmer’s Guide

Programming Guidelines

EXEC SQL SELECT ENAME FROM EMP WHERE JOB ="CLERK’ END-EXEC.

Regardless of which delimiter is used in the Pro*COBOL source file, Pro*COBOL
generates the delimiter specified by the LITDELIM value.

Optional Divisions
The following division headers are optional:
« IDENTIFICATION DIVISION
« ENVIRONMENT DIVISION
« DATADIVISION

Note that the PROCEDURE DIVISION header is not optional. For example, the
following source can be now precompiled:

*DENTIFICATION DIVISION header is optional
PROGRAM-D. HELLO.

*ENVIRONMENT DIVISION header is optional
CONFIGURATION SECTION.

*DATA DIVISION header is optional
WORKING-STORAGE SECTION.
PROCEDURE DIVISION.

DISPLAY "Hello World!".
STOP RUN.

Embedded SQL Syntax

To use a SQL statement in your Pro*COBOL program, precede the SQL statement
with the EXEC SQL clause, and end the statement with the END-EXEC keyword.
Embedded SQL syntax is described in the Oracle8 Server SQL Reference.

Figurative Constants

Figurative constants, such as HIGH-VALUE, ZERO, and SPACE, cannot be used in
SQL statements. For example, the following is invalid:

EXEC SQL DELETE FROM EMP WHERE COMM =ZERO END-EXEC.

Instead, use the following:

EXEC SQL DELETE FROM EMP WHERE COMM =0 END-EXEC.

Precompiler Concepts 2-15

Programming Guidelines

File Length

Pro*COBOL cannot process arbitrarily long source files. Some of the variables used
internally limit the size of the generated file. There is no absolute limit to the
number of lines allowed, but the following aspects of the source file are contributing
factors to the file-size constraint:

« complexity of the embedded SQL statements (for example, the number of bind
and define variables)

« Wwhether a database name is used (for example, connecting to a database with
an AT clause)

« number of embedded SQL statements

To prevent problems related to this limitation, use multiple program units to
sufficiently reduce the size of the source files.

FILLER is Allowed

The word FILLER is allowed in host variable declarations. The word FILLER is used
to specify an elementary item of a group that cannot be referred to explicitly. The
following declaration is valid:

01 STOCK.
05 DIVIDEND PIC X(5).
05 FILLER PICX.
05 PRICE PICX().

Host Variable Names

Any valid standard COBOL identifier can be used as a host variable. Variable
names can be any length, but only the first 30 characters are significant. The
maximum number of significant characters recognized by COBOL compilers is 30.

For SQL92 standards conformance, restrict the length of host variable names to 18
or fewer characters.

For a list of words that have restrictions on their use in applications, see
Appendix C, "Reserved Words, Keywords, and Namespaces".

Hyphenated Names

You can use hyphenated host-variable names in static SQL statements but not in
dynamic SQL. For example, the following usage is invalid:

2-16 Pro*COBOL Precompiler Programmer’s Guide

Programming Guidelines

MOVE "DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER" TO SQLSTMT.
EXEC SQL PREPARE STMT1 FROM SQLSTMT END-EXEC.

Level Numbers

When declaring host variables, you can use level numbers 01 through 49, and 77.
Pro*COBOL does not allow variables containing the VARYING clause, or
pseudo-type variables (these datatypes are prefixed with "SQL- ") to be declared
level 49 or 77.

MAXLITERAL Default

With the MAXLITERAL option, you can specify the maximum length of string
literals generated by Pro*COBOL, so that compiler limits are not exceeded. For
Pro*COBOL, the default value is 256, but you might have to specify a lower value.

Multi-Byte Datatypes

ANSI standard National Character Set datatypes are supported for handling
multi-byte character data. The PIC N or PIC G clause, if supported by your
compiler, defines variables that store fixed-length NCHAR strings. You can store
variable-length, multi-byte National Character Set strings using COBOL group
items consisting of a length field and a string field. See "VARCHAR Variables" on
page 4-29.

The environmental variable NLS_NCHAR is available to specify a client-side
National Character Set.

NLS_LOCAL=YES

When the precompiler option NLS_LOCAL=YES, because dynamic SQL statements
are not processed at precompile time, and the database server does not itself process
multi-byte NLS strings, you cannot embed multi-byte NLS strings in dynamic SQL
statements.

Also, when NLS_LOCAL=YES, columns storing multi-byte NLS data cannot be
used in embedded data definition language (DDL) statements. This restriction
cannot be enforced when precompiling, so the use of these column types within
embedded DDL statements results in an execution error rather than a precompile
error.

See "NLS_LOCAL" on page 14-32 for more details.

Precompiler Concepts 2-17

Programming Guidelines

Null Characters in COBOL Statements

Do not use null characters in embedded SQL statements or in COBOL code; they
are not supported.

NULLs in SQL

In SQL, a NULL represents a missing, unknown, or inapplicable column value; it
equates neither to zero nor to a blank. Use the NVL function to convert NULLSs to
non-NULL values, use the IS [NOT] NULL comparison operator to search for
NULLs, and use indicator variables to insert and test for NULLs.

Paragraph Names

You can associate standard COBOL paragraph names with SQL statements, as
shown in the following example:

LOAD-DATA.
EXEC SQL
INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (EMP-NUMBER, :-EMP-NAME, :DEPT-NUMBER)
END-EXEC.

Also, you can reference paragraph names in a WHENEVER ... DO or WHENEVER
... GOTO statement, as the next example shows:

PROCEDURE DIVISION.
MAIN.

EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.

SQL-ERROR.

You must begin all paragraph names in area A.

REDEFINES Clause

You can use the COBOL REDEFINES clause to redefine group or elementary items.
For example, the following declarations are valid:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 RECID PICX(4).

01 REC-NUM REDEFINES RECHD PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

And:

2-18 Pro*COBOL Precompiler Programmer’s Guide

Programming Guidelines

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 STOCK.

05 DIVIDEND PICX(5).

05 PRICE PICX(6).
01 BOND REDEFINES STOCK.

05 COUPON-RATE PIC X(4).

05 PRICE PICX(?).

EXEC SQL END DECLARE SECTION END-EXEC.

Pro*COBOL issues no warning or error if a single INTO clause uses items from both
a group item host variable and from its re-definition.

Relational Operators

COBOL relational operators differ from their SQL equivalents, as shown in
Table 2-2. Furthermore, COBOL allows the use of words instead of symbols,
whereas SQL does not.

Table 2-2 Relational Operators
SQL Operators COBOL Operators

= =, EQUAL TO

<>, 1=, A= NOT=, NOT EQUAL TO

> >, GREATER THAN

< <, LESS THAN

>= >= GREATER THAN OR EQUAL TO
<= <=, LESS THAN OR EQUAL TO

Sentence Terminator

A COBOL sentence includes one or more COBOL and/or SQL statements and ends with a
period. In conditional sentences, only the last statement must end with a period, as the
following example shows:

IF EMP-NUMBER =ZERO
MOVE FALSE TO VALID-DATA
PERFORM GET-EMP-NUM UNTIL VALID-DATA=TRUE
ELSE
EXEC SQL DELETE FROM EMP
WHERE EMPNO = :EMP-NUMBER
END-EXEC

Precompiler Concepts 2-19

The Declare Section

ADD 1 TO DELETE-TOTAL.
END-IF.
SQL statements may be ended by a comma, a period, or another COBOL statement.

With COBOL-74, however, if you use WHENEVER ... GOTO or WHENEVER ...
STOP to handle errors for a SQL statement, the SQL statement must be terminated
by a period or followed by an ELSE.

The DELETE statement below is repositioned to meet this requirement:

EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.
IF EMP-NUMBER =ZERO
MOVE FALSE TO VALID-DATA
PERFORM GET-EMP-NUM UNTIL VALID-DATA=TRUE
ELSE
ADD 1 TO DELETE-TOTAL
EXEC SQL DELETE FROM EMP
WHERE EMPNO =:EMP-NUMBER
END-EXEC.

Alternatively, you can place the SQL statement in a separate paragraph and
PERFORM that paragraph.

The Declare Section

Passing data between the database server and your application program requires
host variables and error handling. This section shows you how to meet these
requirements.

What is a Declare Section?
An optional Declare Section, begins with the statement:
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

and ends with the statement:
EXEC SQL END DECLARE SECTION END-EXEC.

Between these two statements only the following are allowed:
« host-variable and indicator-variable declarations
« hon-host COBOL variables

2-20 Pro*COBOL Precompiler Programmer’s Guide

The Declare Section

« EXEC SQL DECLARE statements
« EXEC SQL INCLUDE statements
« EXEC SQL VAR statements

« EXEC SQL TYPE statements

« EXEC ORACLE statements

« COBOL Comments

An Example

In the following example, you declare four host variables for use later in your
program.

WORKING-STORAGE SECTION.

*The nextline is optional
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-NUMBER PIC 9(4) COMP VALUE ZERO.
01EMP-NAME PIC X(10) VARYING.
01 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
01 COMMISSION PIC S9(5)V99 COMP-3 VALUE ZERO.
*The nextline is optional

EXEC SQL END DECLARE SECTION END-EXEC.

Precompiler Option DECLARE_SECTION

The Declare Section is optional. For backward compatibility with releases prior to
8.0, Pro*COBOL, for which it was required, Pro*COBOL provides a command-line
precompiler option for explicit control over whether only declarations in the
Declare Section are allowed as host variables. This option is

DECLARE_SECTION={YES | NO} (default NO)

You must use the DECLARE_SECTION option on the command line or in a
configuration file.

When MODE=ORACLE and DECLARE_SECTION=YES, only variables declared
inside the Declare Section are allowed as host variables. When MODE=ANSI then
DECLARE_SECTION is implicitly set to YES. See the discussion of macro and micro
options in "Macro and Micro Options" on page 14-5.

Precompiler Concepts 2-21

The Declare Section

When the precompiler option DECLARE_SECTION is set to NO (the default), the
Declare Section is optional. This optional behavior is a change from Pro*xCOBOL
prior to release 8.0. If DECLARE_SECTION is YES, you must declare all program
variables used in SQL statements inside the Declare Section.

If DECLARE_SECTION is set to NO, it is optional to use a Declare Section. Then
declarations of host variables and indicator variables can be made either inside or
outside a Declare Section. See "DECLARE_SECTION" on page 14-18 for details of
the option.

Multiple Declare Sections are allowed per precompiled unit. Furthermore, a host
program can contain several independently precompiled units.

Note: Regardless of the DECLARE_SECTION value all declarations in the
Working-Storage Section and the Linkage Section are fully parsed.

Using the INCLUDE Statement

The INCLUDE statement lets you copy files into your host program, as the
following example shows;

* Copy in the SQL Communications Area (SQLCA)
EXEC SQL INCLUDE SQLCA END-EXEC.

* Copy in the Oracle Communications Area (ORACA)
EXEC SQL INCLUDE ORACA END-EXEC.

You can INCLUDE any file. When you precompile your Pro*COBOL program, each
EXEC SQL INCLUDE statement is replaced by a copy of the file named in the
statement.

Filename Extensions

If your system uses file extensions but you do not specify one, Pro*xCOBOL assumes
the default extension for source files (usually COB). The default extension is
system-dependent. For more information, see your Oracle system-specific
documentation.

Search Paths

If your system uses directories, you can set a search path for included files using the
INCLUDE option, as follows:

INCLUDEath

where path defaults to the current directory.

2-22 Pro*COBOL Precompiler Programmer’s Guide

Nested Programs

Pro*COBOL first searches the current directory, then the directory specified by the
INCLUDE option, and finally the directory for standard INCLUDE files. You need
not specify a path for standard files such as the SQLCA and ORACA. However, a
path is required for nonstandard files unless they are stored in the current directory.

You can also specify multiple paths on the command line, as follows:
... INCLUDE=<path1> INCLUDE=<path2> ...

When multiple paths are specified, Pro*COBOL searches the current directory first,
then the pathl directory, then the path2 directory, and so on. The directory containing
standard INCLUDE files is searched last. The path syntax is system specific. For more
information, see your Oracle system-specific documentation.

Note: Remember that Pro*COBOL searches for a file in the current directory first
even if you specify a search path. If the file you want to INCLUDE is in another
directory, make sure no file with the same name is in the current directory or any
other directory that precedes it in the search path. If your operating system is case
sensitive, be sure to specify the same upper/lowercase filename under which the
file is stored.

Nested Programs

Nesting programs in COBOL means that you place one program inside another. The
contained programs may reference some of the resources of the programs within
which they are contained. The names within the higher-level program and the
nested program can be the same, and describe different data items without conflict,
because the names are known only within the programs. However, names
described in the Configuration Section of the higher-level program can be
referenced in the nested program.

Some compilers do not support nested programs that use the GLOBAL clause. Since
Pro*COBOL supports nested programs, the generated code contains GLOBAL
clauses. To avoid generating the GLOBAL clause unconditionally, the precompiler
option NESTED can is used. NESTED (=YES or NO) defaults to YES and can be
used in configuration files, or on the command line, but not inline (EXEC ORACLE
statement). To avoid the generation of the GLOBAL clauses, specify NESTED=NO.
See "NESTED" on page 14-32.

The higher-level program can contain several nested programs. Likewise, nested
programs can have programs nested within them. You must place the nested
program directly before the END PROGRAM header of the program in which it is
nested.

Precompiler Concepts 2-23

Nested Programs

You can call a nested program only by a program in which it is either directly or
indirectly nested. If you want a nested program to be called by any program, even
one on a different branch of the nested tree structure, you code the COMMON
clause in the PROGRAM-ID paragraph of the nested program. You can code
COMMON only for nested programs:

PROGRAM-ID. <nested-program-name>COMMON.

You can code the GLOBAL phrase for File Definitions and level 01 data items (any
subordinate items automatically become global). This allows them to be referenced
in all subprograms directly or indirectly contained within them. You code GLOBAL
on the higher-level program. If the nested program defines the same name as one
declared GLOBAL in a higher-level program, COBOL uses the declaration within

the nested program. If the data item contains a REDEFINES clause, GLOBAL must
follow it.

FD file-name GLOBAL ...
01 data-namel GLOBAL ...
01 data-name2 REDEFINES data-name3 GLOBAL ...

Support for Nested Programs

Pro*COBOL allows nested programs with embedded SQL within a single source
file. All 01 level items which are marked as global in a containing program and are
valid host variables at the containing program level are usable as valid host
variables in any programs directly or indirectly contained by the containing
program. Consider the following example:

IDENTIFICATION DIVISION.
PROGRAM-ID. MAINPROG.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01REC1 GLOBAL.
05 VARL PICX(10).
05 VAR2 PICX(10).
01VAR1 PIC X(10) GLOBAL.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

<main program statements>

2-24 Pro*COBOL Precompiler Programmer’s Guide

Nested Programs

IDENTIFICATION DIVISION.
PROGRAM-ID. NESTEDPROG.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01VARL PIC S9().
PROCEDURE DIVISION.
EXEC SQL SELECT X, Y INTO :REC1 FROM .. END-EXEC,
EXEC SQL SELECT X INTO :VARL FROM ... END-EXEC.
EXEC SQL SELECT X INTO :REC1VARL FROM .. END-EXEC.

END PROGRAM NESTEDPROG.
END PROGRAM MAINPROG.

The main program declares the host variable RECL1 as global and thus the nested
program can use RECL1 in the first select statement without having to declare it.
Since VARL1 is declared as a global variable and also as a local variable in the nested
program, the second select statement will use the VAR1 declared as S9(4),
overriding the global declaration. In the third select statement, the global VARL1 of
RECL1 declared as PIC X(10) is used.

The previous paragraph describes the results when DECLARE_SECTION=NO is
used. When DECLARE_SECTION=YES, Pro*COBOL will not recognize host
variables unless they are declared inside a Declare Section. If the above program is
precompiled with DECLARE_SECTION=YES, then the second select statement
would result in an ambiguous host variable error. The first and third select
statements would function the same.

Note: Recursive nested programs are not supported

Declaring the SQLCA

About declaring the SQLCA for nested programs, (see "SQLCA Status Variable" on
page 2-9), the included SQLCA definition provided will be declared as global, so
the declaration of SQLCA is only required in the higher-level program. The SQLCA
can change each time a new SQL statement is executed. The SQLCA provided can
always be modified to remove the global specification if you want to declare
additional SQLCA areas in the nested programs. The same will apply to SQLDA
and ORACA.

Precompiler Concepts 2-25

Conditional Precompilations

Nested Program Example
See SAMPLE13.PCO in the demo directory.

Conditional Precompilations

An Example

Conditional precompilation includes (or excludes) sections of code in your host
program based on certain conditions. For example, you might want to include one
section of code when precompiling under UNIX and another section when
precompiling under VMS. Conditional precompilation lets you write programs that
can run in different environments.

Conditional sections of code are marked by statements that define the environment
and actions to take. You can code host-language statements as well as EXEC SQL
statements in these sections. The following statements let you exercise conditional
control over precompilation:

* —define asymboal

EXEC ORACLE DEFINE symbol END-EXEC.
* —ifsymbolis defined

EXEC ORACLE IFDEF symbol END-EXEC.
* —if symbolis not defined

EXEC ORACLE IFNDEF symbol END-EXEC.
* - otherwise

EXEC ORACLE ELSE END-EXEC.
* —end this control block

EXEC ORACLE ENDIF END-EXEC.

A conditional statement must be terminated with END-EXEC.

Note: The conditional compilation feature of your compiler may not be supported
by Pro*COBOL.

In the following example, the SELECT statement is precompiled only when the
symbol SITE2 is defined:

EXEC ORACLE IFDEF SITE2 END-EXEC.
EXEC SQL SELECT DNAME

INTO :DEPT-NAME

FROM DEPT

WHERE DEPTNO = :DEPT-NUMBER
EXEC ORACLE ENDIF END-EXEC.

2-26 Pro*COBOL Precompiler Programmer’s Guide

Separate Precompilations

Blocks of conditions can be nested as shown in the following example:
EXEC ORACLE IFDEF OUTER END-EXEC.
EXEC ORACLE IFDEF INNER END-EXEC.

EXEC ORACLE ENDIF END-EXEC.
EXEC ORACLE ENDIF END-EXEC.

You can "Comment out" host-language or embedded SQL code by placing it
between IFDEF and ENDIF and not defining the symbol.

Defining Symbols

You can define a symbol in two ways. Either include the statement
EXEC ORACLE DEFINE symbol END-EXEC.

in your host program or define the symbol on the command line using the syntax
... INAME=filename ... DEFINE=symbol

where symbol is not case-sensitive.

Some port-specific symbols are predefined for you when Pro*COBOL is installed on
your system. For example, predefined operating system symbols include CMS,
MVS, MS-DOS, UNIX, and VMS.

Separate Precompilations

Guidelines

You can precompile several COBOL program modules separately, then link them
into one executable program. This supports modular programming, which is
required when the functional components of a program are written and debugged
by different programmers. The individual program modules need not be written in
the same language.

The following guidelines will help you avoid some common problems.

Referencing Cursors

Cursor names are SQL identifiers, whose scope is the precompilation unit. Hence,
cursor operations cannot span precompilation units (files). That is, you cannot
declare a cursor in one file and open or fetch from it in another file. So, when doing

Precompiler Concepts 2-27

Compiling and Linking

Restrictions

a separate precompilation, make sure all definitions and references to a given cursor
are in one file.

Specifying MAXOPENCURSORS

When you precompile the program module that connects to Oracle, specify a value
for MAXOPENCURSORS that is high enough for any of the program modules. If
you use it for another program module, MAXOPENCURSORS is ignored. Only the
value in effect for the connect is used at run time.

Using a Single SQLCA
If you want to use just one SQLCA, you must declare it globally in one of the
program modules.

Using a Single DATE_FORMAT
You must use the same format string for DATE in each program module.

All references to an explicit cursor must be in the same program file. You cannot
perform operations on a cursor that was DECLAREGJ in a different module. See
Chapter 4 for more information about cursors.

Also, any program file that contains SQL statements must have a SQLCA that is in
the scope of the local SQL statements.

Compiling and Linking

To get an executable program, you must compile the source file(s) produced by
Pro*COBOL, then link the resulting object module with any modules needed from
SQLLIB and system-specific Oracle libraries. Also, if you are embedding OCI calls,
make sure to link in the OCI runtime library (OCILIB).

The linker resolves symbolic references in the object modules. If these references
conflict, the link fails. This can happen when you try to link third party software
into a precompiled program. Not all third-party software is compatible with Oracle,
so you might have problems. Check with Oracle Customer Support to see if the
software is supported.

Compiling and linking are system-dependent. For example, on some systems, you
must turn off compiler optimization when compiling a host language program. For
instructions, see your system-specific Oracle manual.

2-28 Pro*COBOL Precompiler Programmer’s Guide

Sample Tables

Sample Tables

Most of the complete program examples in this guide use two sample database
tables: DEPT and EMP. Their definitions follow:

CREATE TABLE DEPT
(DEPTNO NUMBER(2),
DNAME VARCHAR2(14),
LOC VARCHAR2(13)

CREATE TABLE EMP

(EMPNO NUMBER() primary key,
ENAME VARCHAR2(10),

JOB VARCHAR2(9),

MGR NUMBER®),
HIREDATE DATE,

SAL NUMBER(7,2),

COMM NUMBER(7,2),
DEPTNO NUMBER()

Sample Data
Respectively, the DEPT and EMP tables contain the following rows of data:
DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7369 SMITH CLERK 7902 17-DEC-80 800 20
TA9ALLEN SALESMAN 769820-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 783902-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 783909-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839KING PRESIDENT 17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7900JAMES CLERK 7698 03-DEC-81 950 30

Precompiler Concepts 2-29

Sample Programs: SAMPLE1.PCO

7902FORD ANALYST 7566 03-DEC-81 3000 20
7934MILLER CLERK 7782 23-JAN-82 1300 10

Sample Programs: SAMPLE1.PCO

A good way to get acquainted with embedded SQL is to look at a program example.
This program is SAMPLE1.PCO in the demo directory.

The program logs on to the database, prompts the user for an employee number,
gueries the database table EMP for the employee’s name, salary, and commission.
The selected results are stored in host variables EMP-NAME, SALARY, and
COMMISSION. The program uses the host indicator variable, COMM-IND to
detect NULL values in column COMMISSION. See "Indicator Variables" on

page 4-26.

The paragraph DISPLAY-INFO then displays the result.

The COBOL variables USERNAME, PASSWD, and EMP-NUMBER are declared
using the VARYING clause, which allows you to use a variable-length string
external Oracle datatype called VARCHAR. This datatype is explained in
"VARCHAR Variables" on page 4-29.

The SQLCA Communications Area is included to handle errors. If an error occurs,
paragraph SQL-ERROR is performed. See "Using the SQL Communications Area"
on page 8-19.

The BEGIN DECLARE SECTION and END DECLARE SECTION statements used
are optional, unless you set the precompiler option DECLARE_SECTION to YES, or
option MODE to ANSI. See "MODE" on page 2-2.

The WHENEVER statement is used to handle errors. For more details, see
"WHENEVER Directive" on page 8-28.

The program ends when the user enters a zero employee number.

* Sample Program 1: Simple Query *

*This program logs on to ORACLE, promptsthe userforan ~ *
* employee number, queries the database for the employee's *
* name, salary, and commission, then displays the result. ~ *
*The program terminates when the user enters a 0. *

ID DIVISION.

2-30 Pro*COBOL Precompiler Programmer’s Guide

Sample Programs: SAMPLE1.PCO

PROGRAM-ID. QUERY.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10) VARYING.
01 PASSWD PIC X(10) VARYING.
01 EMP-REC-VARS.
05 EMP-NAME PIC X(10) VARYING.
05 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
05 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
05 COMMISSION PIC S9(5)V99 COMP-3 VALUE ZERO.
05 COMM-ND PIC S9(4) COMP VALUE ZERO.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.

01 DISPLAY-VARIABLES.
05 D-EMP-NAME PIC X(10).
05 D-SALARY PIC Z(4)9.99.
05 D-COMMISSION PIC Z(4)9.99.
05 D-EMP-NUMBER PIC 9(4).

01 D-TOTAL-QUERIED PIC 9(4) VALUE ZERO.

PROCEDURE DIVISION.
BEGIN-PGM.
EXEC SQL WHENEVER SQLERROR
DO PERFORM SQL-ERROR END-EXEC.

PERFORM LOGON.

QUERY-LOOP.
DISPLAY ",
DISPLAY "ENTER EMP NUMBER (0 TO QUIT): "
WITHNO ADVANCING.

ACCEPT D-EMP-NUMBER.

MOVE D-EMP-NUMBER TO EMP-NUMBER.
IF (EMP-NUMBER =0)
PERFORM SIGN-OFF.
MOVE SPACES TO EMP-NAME-ARR.
EXEC SQL WHENEVER NOT FOUND GOTO NO-EMP END-EXEC.

Precompiler Concepts 2-31

Sample Programs: SAMPLE1.PCO

EXEC SQL SELECT ENAME, SAL, COMM
INTO :EMP-NAME, :SALARY, :COMMISSION:COMM-IND
FROM EMP
WHERE EMPNO =:EMP-NUMBER

END-EXEC.

PERFORM DISPLAY-INFO.

ADD 1 TO D-TOTAL-QUERIED.

GO TO QUERY-LOOP.

NO-EMP.
DISPLAY "NOT A VALID EMPLOYEE NUMBER - TRY AGAIN.".
GO TO QUERY-LOORP.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE "TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY ",
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

DISPLAY-INFO.
DISPLAY "".
DISPLAY "EMPLOYEE SALARY COMMISSION".
DISPLAY "—— — ——"
MOVE EMP-NAME-ARR TO D-EMP-NAME.
MOVE SALARY TO D-SALARY.
IF COMM-IND =-1
DISPLAY D-EMP-NAME, D-SALARY, " NULL"
ELSE
MOVE COMMISSION TO D-COMMISSION
DISPLAY D-EMP-NAME, D-SALARY," ", D-COMMISSION
END-IF.

SIGN-OFF.
DISPLAY ™"
DISPLAY "TOTAL NUMBER QUERIED WAS ",
D-TOTAL-QUERIED, ".".
DISPLAY "".
DISPLAY "HAVE A GOOD DAY.".
DISPLAY "".
EXEC SQL COMMIT WORK RELEASE END-EXEC.

2-32 Pro*COBOL Precompiler Programmer’s Guide

Sample Programs: SAMPLE1.PCO

STOP RUN.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

Precompiler Concepts 2-33

Sample Programs: SAMPLE1.PCO

2-34 Pro*COBOL Precompiler Programmer’s Guide

3

Database Concepts

This chapter explains the CONNECT statement and its options, Net8, and related
statements used for network connections. Next, how to do transaction processing is
presented. You learn the basic techniques that safeguard the consistency of your
database, including how to control whether changes to Oracle data are made
permanent or undone.

Connecting to Oracle

Default Databases and Connections
Advanced Connection Options
Embedding OCI (Oracle Call Interface) Calls
Some Terms You Should Know

How Transactions Guard Your Database
How to Begin and End Transactions
Using the COMMIT Statement

Using the ROLLBACK Statement

Using the SAVEPOINT Statement

Using the RELEASE Option

Using the SET TRANSACTION Statement
Overriding Default Locking

Fetching Across Commits

Handling Distributed Transactions

Guidelines for Transaction Processing

Database Concepts 3-1

« Developing X/Open Applications

3-2 Pro*COBOL Precompiler Programmer’s Guide

Connecting to Oracle

Connecting to Oracle

Your Pro*COBOL program must log on to Oracle before querying or manipulating
data. To log on, you use the CONNECT statement, as in

EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.

where USERNAME and PASSWD are PIC X(n) or PIC X(n) VARYING host variables.
Alternatively, you can use the statement

EXEC SQL
CONNECT :USR-PWD
END-EXEC.

where the host variable USR-PWD contains your username and password
separated by a slash (/).

The syntax for the CONNECT statement has an optional ALTER
AUTHORIZATION clause. The syntax for CONNECT is shown here:

EXEC SQL

CONNECT {:user IDENTIFIED BY :oldpswd | :usr_psw}

[[AT {dbname | :host_variable J] USING :connect_sfring]

[{ALTER AUTHORIZATION :newpswd | IN{SYSDBA | SYSOPER} MODE}]
END-EXEC.

The ALTER AUTHORIZATION clause is explained in "Changing Passwords at
Runtime" on page 3-11. The SYSDBA and SYSOPER options are explained in
"SYSDBA or SYSOPER Privileges" on page 3-12.

The CONNECT statement must be the first SQL statement executed by the
program. That is, other executable SQL statements can positionally, but not
logically, precede the CONNECT statement. If the precompiler option
AUTO_CONNECT=YES, a CONNECT statement is not needed.)

To supply the Oracle username and password separately, you define two host
variables as character strings or VARCHAR variables. If you supply a userid
containing both username and password, only one host variable is needed.

Make sure to set the username and password variables before the CONNECT is
executed or it will fail. Your program can prompt for the values or you can
hard-code them, as follows:

WORKING STORAGE SECTION.

Database Concepts 3-3

Default Databases and Connections

01 USERNAME PIC X(10) VARYING.
01 PASSWD PIC X(10) VARYING.

PROCEDURE DIVISION.
LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL WHENEVER SQLERROR GOTO LOGON-ERROR END-EXEC.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.

However, you cannot hard-code a username and password into the CONNECT
statement or use quoted literals. For example, the following statements are invalid:

EXEC SQL
CONNECT SCOTT IDENTIFIED BY TIGER
END-EXEC.

EXEC SQL
CONNECT "SCOTT" IDENTIFIED BY 'TIGER"
END-EXEC.

Default Databases and Connections

Each node has a default database. If you specify a node but no database in your CONNECT
statement, you connect to the default database on the named local or remote node. If you
specify no database and no node, you connect to the default database on the current node.
Although it is unnecessary, you can specify the default database and current node in your
CONNECT statement.s

A default connection is made using a CONNECT statement without an AT clause. The
connection can be to any default or non-default database at any local or remote node. SQL
statements without an AT clause are executed against the default connection. Conversely, a
non-default connection is made by a CONNECT statement that has an AT clause. A SQL
statement with an AT clause is executed against the non-default connection.

All database names must be unique, but two or more database names can specify
the same connection. That is, you can have multiple connections to any database on
any node.

3-4 Pro*COBOL Precompiler Programmer’s Guide

Default Databases and Connections

Using Username/Password
Usually, you establish a connection to Oracle as follows:
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD END-EXEC.

Or, you can use:
EXEC SQL CONNECT :USR-PWD END-EXEC.

where USR-PWD contains USERNAME/PASSWORD.
You can also log on automatically as shown in "Automatic Logons" on page 3-10.

These are simplified subsets of the CONNECT statement. For all details, read the
next sections in this chapter and also see "CONNECT (Executable Embedded SQL
Extension)" on page F-17.

If you do not specify a database and node, you are connected to the default
database at the current node. If you want to connect to a different database, you
must explicitly identify that database.

With explicit logons, you connect to another database directly, giving the connection a name
that will be referenced in SQL statements. You can connect to several databases at the same
time and to the same database multiple times.

Single Explicit Logons

In the following example, you connect to a single non-default database at a remote
node:

*— Declare necessary host variables
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10).
01 PASSWORD PIC X(10).
01 DB-STRING PIC X(20).

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

MOVE "scott’ TO USERNAME.

MOVE "tiger" TO PASSSWORD.

MOVE "nyremote” TO DB-STRING.

*— Assign a unique name to the database connection.

Database Concepts 3-5

Default Databases and Connections

EXEC SQL DECLARE DBNAME DATABASE END-EXEC.
* — Connect to the non-default database

EXEC SQL

CONNECT :USERNAME IDENTIFIED BY :PASSWORD

AT DBNAME USING :DB-STRING

END-EXEC.

The identifiers in this example serve the following purposes:
« The host variables USERNAME and PASSWORD identify a valid user.

« The host variable DB-STRING contains the Net8 syntax for logging on to a non-default
database at a remote node.

« The undeclared identifier DBNAME names a non-default connection; it is an identifier
used by Oracle, not a host or program variable.

The USING clause specifies the network, machine, and database to be associated
with DBNAME. Later, SQL statements using the AT clause (with DBNAME) are executed at
the database specified by DB-STRING.

Alternatively, you can use a character host variable in the AT clause, as the
following example shows;

*— Declare necessary host variables
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10).
01 PASSWORD PIC X(10).
01 DB-NAME PIC X(10).
01 DB-STRING PIC X(20).

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
MOVE "scott’ TO USERNAME.
MOVE "tiger" TO PASSSWORD.
MOVE "oraclel" TO DB-NAME.
MOVE "nyremote” TO DB-STRING.

* — Connect to the non-default database
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT :DB-NAME USING :DB-STRING
END-EXEC.

3-6 Pro*COBOL Precompiler Programmer’s Guide

Default Databases and Connections

If DB-NAME is a host variable, the DECLARE DATABASE statement is not needed. Only if
DBNAME is an undeclared identifier must you execute a DECLARE DBNAME DATABASE
statement before executinga CONNECT ... AT DBNAME statement.

SQL Operations. If granted the privilege, you can execute any SQL data
manipulation statement at the non-default connection. For example, you might
execute the following sequence of statements:

EXEC SQL AT DBNAME SELECT ...
EXEC SQL AT DBNAME INSERT ...
EXEC SQL AT DBNAME UPDATE ...

In the next example, DB-NAME is a host variable:
EXEC SQL AT :DB-NAME DELETE ...

If DB-NAME is a host variable, all database tables referenced by the SQL statement must be
defined in DECLARE TABLE statements.

Cursor Control. Cursor control statements such as OPEN, FETCH, and CLOSE are
exceptions—they never use an AT clause. If you want to associate a cursor with an
explicitly identified database, use the AT clause in the DECLARE CURSOR
statement, as follows;

EXEC SQL AT :DB-NAME DECLARE emp_cursor CURSOR FOR ...
EXEC SQL OPEN EMP-CURSOR....

EXEC SQL FETCH EMP-CURSOR ...

EXEC SQL CLOSE EMP-CURSOR END-EXEC.

If DB-NAME is a host variable, its declaration must be within the scope of all SQL statements
that refer to the declared cursor. For example, if you open the cursor in one subprogram, then
fetch from it in another, you must declare DB-NAME globally or pass it to each subprogram.

When opening, closing, or fetching from the cursor, you do not use the AT clause.
The SQL statements are executed at the database named in the AT clause of the
DECLARE CURSOR statement or at the default database if no AT clause is used in
the cursor declaration.

The AT :host-variable clause allows you to change the connection associated with a cursor.
However, you cannot change the association while the cursor is open. Consider the following
example:

EXEC SQL AT :DB-NAME DECLARE EMP-CURSOR CURSOR FOR ...

MOVE "oraclel" TO DB-NAME.

EXEC SQL OPEN EMP-CURSOR END-EXEC.
EXEC SQL FETCH EMP-CURSORINTO. ...

Database Concepts 3-7

Default Databases and Connections

MOVE "oracle2" TO DB-NAME.

*— fllegal, cursor still open
EXEC SQL OPEN EMP-CURSOR END-EXEC.
EXEC SQL FETCH EMP-CURSOR INTO....

This is illegal because EMP-CURSOR is still open when you try to execute the second
OPEN statement. Separate cursors are not maintained for different connections; there is only
one EMP-CURSOR, which must be closed before it can be reopened for another connection.
To debug the last example, simply close the cursor before reopening it, as follows:

* — close cursor first
EXEC SQL CLOSE EMP-CURSOR END-EXEC.
MOVE "oracle2" TO DB-NAME.
EXEC SQL OPEN EMP-CUROR END-EXEC.
EXEC SQL FETCH EMP-CURSOR INTO ...

Dynamic SQL. Dynamic SQL statements are similar to cursor control statements in
that some never use the AT clause. For dynamic SQL Method 1, you must use the
AT clause if you want to execute the statement at a non-default connection. An
example follows:

EXEC SQL AT :DB-NAME EXECUTE IMMEDIATE :SQL-STMT END-EXEC.

For Methods 2, 3, and 4, you use the AT clause only in the DECLARE STATEMENT
statement if you want to execute the statement at a non-default connection. All
other dynamic SQL statements such as PREPARE, DESCRIBE, OPEN, FETCH, and
CLOSE never use the AT clause. The next example shows Method 2:

EXEC SQL AT :DB-NAME DECLARE SQL-STMT STATEMENT END-EXEC.
EXEC SQL PREPARE SQL-STMT FROM :SQL-STRING END-EXEC.
EXEC SQL EXECUTE SQL-STMT END-EXEC.

The following example shows Method 3:

EXEC SQL AT :DB-NAME DECLARE SQL-STMT STATEMENT END-EXEC.
EXEC SQL PREPARE SQL-STMT FROM :SQL-STRING END-EXEC.

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR SQL-STMT END-EXEC.
EXEC SQL OPEN EMP-CURSOR ...

EXEC SQL FETCH EMP-CURSORINTO. ...

EXEC SQL CLOSE EMP-CURSOR END-EXEC.

You need not use the AT clause when connecting to a remote database unless you
open two or more connections simultaneously (in which case the AT clause is
needed to identify the active connection). To make the default connection to a
remote database, use the following syntax:

3-8 Pro*COBOL Precompiler Programmer’s Guide

Default Databases and Connections

EXEC SQL

CONNECT :USERNAME IDENTIFIED BY :PASSWORD USING :DB-STRING

END-EXEC.

Multiple Explicit Logons

You can use the AT db_name clause for multiple explicit logons, just as you would for a
single explicit logon. In the following example, you connect to two non-default databases

concurrently:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10).
01 PASSWORD PIC X(10).
01 DB-STRING1 PIC X(20).
01 DB-STRING2 PIC X(20).
EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "scott’ TO USERNAME.
MOVE "tiger' TO PASSWORD.
MOVE "New-York" TO DB-STRINGL1.
MOVE "Boston” TO DB-STRING2.

*— give each database connection a unique name
EXEC SQL DECLARE DBNAMEL DATABASE END-EXEC.
EXEC SQL DECLARE DBNAME2 DATABASE;

*— connect to the two non-default databases
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT DBNAME1 USING :DB-STRING1 END-EXEC.
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT DBNAME2 USING :DB-STRING2 END-EXEC.

The undeclared identifiers DBNAMEL and DBNAME? are used to nhame the default
databases at the two non-default nodes so that later SQL staterments can refer to the databases

by name.

Alternatively, you can use a host variable in the AT clause, as the following example

shows:

01 USERNAME PIC X(10).
01 PASSWORD PICX(10).
01 DB-NAME PIC X(10).
01 DB-STRING PIC X(20).

MOVE "scott’ TO USERNAME.
MOVE "tiger" TO PASSWORD.
PERFORM GETDB 2 TIMES.

Database Concepts 3-9

Default Databases and Connections

*— get next database name and Net8 string

GETDB.
DISPLAY "Database Name?".
ACCEPT DB-NAME.
DISPLAY "Net8 String? .
ACCEPT DB-STRING.

*— connect to the non-default database
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT :DB-NAME USING :DB-STRING
END-EXEC.

You can also use this method to make multiple connections to the same database, as
the following example shows:

MOVE "scott’ TO USERNAME.
MOVE "tiger" TO PASSWORD.
MOVE "nyremote” TO DB-STRING.
PERFORM GETDB 2 TIMES

GETDB.
*— get next database name
DISPLAY 'Database Name?’.
ACCEPT DB-NAME.
* — connect to the non-default database
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT :DB-NAME USING :DB-STRING
END-EXEC.

You must use different database names for the connections, even if they use the
same Net8 string.

Automatic Logons
You can log on to Oracle automatically with the userid:
<prefix><usemame>
where prefix is the value of the Oracle initialization parameter OS_ AUTHENT _PREFIX (the
default value is OPS$) and username is your operating system user or task name. For

example, if the prefix is OPS$, your user name is TBARNES, and OPS$TBARNES is a valid
Oracle userid, you log on to Oracle as user OPS$TBARNES.

3-10 Pro*COBOL Precompiler Programmer’s Guide

Default Databases and Connections

To take advantage of the automatic logon feature, you simply pass a slash (/)
character to Pro*COBOL, as follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 ORACLEID PICX.

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE 7 TO ORACLEID.
EXEC SQL CONNECT :ORACLEID END-EXEC.

This automatically connects you as user OPS$username. For example, if your operating
system username is RHILL, and OPS$RHILL is a valid Oracle username, connecting with a
slash (/) automatically logs you on to Oracle as user OPS$SRHILL.

You can also pass a character string to Pro*COBOL. However, the string cannot
contain trailing blanks. For example, the following CONNECT statement will fail:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01ORACLEID PICX().

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE"/ ' TO ORACLEID.
EXEC SQL CONNECT :ORACLEID END-EXEC.

The AUTO_CONNECT Precompiler Option

Pro*COBOL lets your program log on to the default database without using the
CONNECT statement. Simply specify the precompiler option AUTO_CONNECT
on the command line.

Assume that the default value of OS_ AUTHENT_PREFIX is OPS$, your username
is TBARNES, and OPS$TBARNES is a valid Oracle userid. When
AUTO_CONNECT=YES, as soon as Pro*COBOL encounters an executable SQL
statement, your program logs on to Oracle automatically with the userid
OPS$TBARNES.

When AUTO_CONNECT=NO (the default), you must use the CONNECT
statement to log on to Oracle.

Changing Passwords at Runtime

Pro*COBOL provides client applications with a convenient way to change a user
password at runtime through the optional ALTER AUTHORIZATION clause.

Database Concepts 3-11

Default Databases and Connections

The syntax for the ALTER AUTHORIZATION clause is shown here:
EXEC SQL CONNECT .. ALTER AUTHORIZATION : newpswd END-EXEC.

Using this clause indicates that you want to change the account password to the
value indicated by newpswd. After the change is made, when an attempt is made to
connect as user /newpswd. This can have the following results:

« The application will connect without issue
« The application will fail to connect. This could be due to either of the following:

« Password verification failed for some reason. In this case the password
remains unchanged.

« Theaccount is locked. Changes to the password are not permitted.

Connect Without Alter Authorization

This section describes the possible outcomes of different variations of the
CONNECT statement.

Standard CONNECT
If an application issues the following statement

EXEC SQL CONNECT ... /*No ALTER AUTHORIZATION clause */

it performs a normal connection attempt. The possible results include the following:
« The application will connect without issue.

« The application will connect, but will receive a password warning. The warning
indicates that the password has expired but is in a grace period which will
allow logons. At this point, the user is encouraged to change the password
before the account becomes locked.

« The application will fail to connect. Possible causes include the following:
« The password is incorrect.

« The account has expired, and is possibly in a locked state.
SYSDBA or SYSOPER Privileges

Before Oracle release 8.1 you did not have to use this clause to have the SYSOPER
or SYSDBA system privilege, but now you must.

3-12 Pro*COBOL Precompiler Programmer’s Guide

Advanced Connection Options

Append the following optional string to the CONNECT statement after all other
clauses if you want to log on with either SYSDBA or SYSOPER system privileges:

IN{SYSDBA | SYSOPER } MODE

For example:

EXEC SQL CONNECT ... IN SYSDBA MODE END-EXEC.

Here are the restrictions that apply to this option:

« This option is not supported when using the AUTO_CONNECT=YES
precompiler option setting.

« The option is not permitted when using the ALTER AUTHORIZATION
keywords in the CONNECT statement.

Advanced Connection Options

The communicating points in a network are called nodes. Net8 lets you transmit
information (SQL statements, data, and status codes) over the network from one node to
another.

A protocol is a set of rules for accessing a network. The rules establish such things as
procedures for recovering after a failure and formats for transmitting data and checking
errors.

The Net8 syntax for connecting to the default database in the local domain is simply
to use the service name for the database.

If the service name is not in the default (local) domain, you must use a global
specification (all domains specified). For example:

HR.US.ORACLE.COM

Connecting Using Net8

To connect using a Net8 driver, substitute a service hame, as defined in your
tnsnames.ora configuration file or in Oracle Names, in place of the SQL*Net V1 connect string.

If you are using Oracle Names, the name server obtains the service name from the
network definition database.

Note: SQL*Net V1 does work with Oracle8i.

See Net8 Administrator’s Guide for more information about Net8.

Database Concepts 3-13

Advanced Connection Options

Concurrent Logons

Pro*COBOL supports distributed processing via Net8. Your application can
concurrently access any combination of local and remote databases or make
multiple connections to the same database. In Figure 3-1, an application program
communicates with one local and three remote Oracle8i databases. ORA2, ORA3,
and ORA4 are simply logical names used in CONNECT statements.

Figure 3-1 Connecting via Net8

Application
Program

Remote
Oracle
Database Remote
Oracle
Database

By eliminating the boundaries in a network between different machines and
operating systems, Net8 provides a distributed processing environment for Oracle
tools. This section shows you how the Pro*COBOL supports distributed processing

Local

Oracle
Database

Remote
Oracle
Database

via Net8. You learn how your application can

= access other databases directly or indirectly

« concurrently access any combination of local and remote databases

3-14 Pro*COBOL Precompiler Programmer’s Guide

Advanced Connection Options

Using Links

« make multiple connections to the same database

Implicit logons are supported through the Oracle8i distributed database option,
which does not require explicit logons. For example, a distributed query allows a
single SELECT statement to access data on one or more non-default databases.

The distributed query facility depends on database links, which assign a name to a
CONNECT statement rather than to the connection itself. At run time, the
embedded SELECT statement is executed by the specified database server, which
connects implicitly to the non-default database(s) to get the required data.

Single Implicit Logons
In the next example, you connect to a single non-default database. First, your

program executes the following statement to define a database link (database links
are usually established interactively by the DBA or user):

EXEC SQL CREATE DATABASE LINK db_link
CONNECT TO usemame IDENTIFIED BY password USING 'nyremote’
END-EXEC.

Then, the program can query the non-default EMP table using the database link, as
follows:

EXEC SQL SELECT ENAME, JOB INTO :EMP-NAME, :JOB-TITLE
FROM emp@db_link
WHERE DEPTNO = :DEPT-NUMBER

END-EXEC.

The database link is not related to the database name used in the AT clause of an
embedded SQL statement. It simply tells Oracle where the non-default database is
located, the path to it, and what Oracle username and password to use. The
database link is stored in the data dictionary until it is explicitly dropped.

In our example, the default Oracle8i Server logs on to the non-default database via
Net8 using the database link db_link. The query is submitted to the default server, but is
"forwarded" to the non-default database for execution.

To make referencing the database link easier, you can create a synonym as follows
(again, this is usually done interactively):

EXEC SQL CREATE SYNONYM emp FOR emp@db_link END-EXEC.
Then, your program can query the non-default EMP table, as follows:

Database Concepts 3-15

Embedding OCI (Oracle Call Interface) Calls

EXEC SQL SELECT ENAME, JOB INTO :EMP-NAME, :JOB-TITLE
FROM emp
WHERE DEPTNO = :DEPT-NUMBER

END-EXEC.

This provides location transparency for emp.

Multiple Implicit Logons

In the following example, you connect to two non-default databases concurrently.
First, you execute the following sequence of statements to define two database links
and create two synonyms:

EXEC SQL CREATE DATABASE LINK db_link1
CONNECT TO usemamel IDENTIFIED BY passwordl
USING 'nyremote’
END-EXEC.
EXEC SQL CREATE DATABASE LINK db_link2
CONNECT TO usemame2 IDENTIFIED BY password?2
USING 'chiremote’
END-EXEC.
EXEC SQL CREATE SYNONYM emp FOR emp@db_link1 END-EXEC.
EXEC SQL CREATE SYNONYM dept FOR dept@db_link2 END-EXEC.

Then, your program can query the non-default EMP and DEPT tables, as follows:

EXEC SQL SELECT ENAME, JOB, SAL, LOC

FROM emp, dept

WHERE emp.DEPTNO = dept DEPTNO AND DEPTNO = :dept_number
END-EXEC.

Oracle8i executes the query by performing a join between the non-default EMP
table at dob_link1 and the non-default DEPT table at db_link2.

Embedding OCI (Oracle Call Interface) Calls

Pro*COBOL allows you embed OCI calls in your program. Just take the following
steps:

1. Declare the OCI Logon Data Area (LDA) outside the Declare Section, if it exists.
For details, see the Oracle Call Interface Programmer’s Guide.

2. Connect to Oracle using the embedded SQL statement CONNECT, not the OCI
call OLOG.

3-16 Pro*COBOL Precompiler Programmer’s Guide

Embedding OCI (Oracle Call Interface) Calls

3. Call the Oracle8i run-time library routine SQLLDA to store the connect
information in the LDA.

That way, Pro*COBOL and the OCI "know" that they are working together.
However, there is no sharing of Oracle8i cursors.

You need not worry about declaring the OCI Host Data Area (HDA) because the
Oracle8i run-time library manages connections and maintains the HDA for you.

Setting Up the LDA
You set up the LDA by issuing the OCI call
CALL"SQLLDA"USING LDA.

where LDA identifies the LDA data structure. See the Oracle Call Interface Programmer’s

Guide. If the CONNECT statement fails, the LDA-RC field in the Ida is set to 1012 to indicate
the error.

Remote and Multiple Connections

A call to SQLLDA sets up an LDA for the connection used by the most recently
executed SQL statement. To set up the different LDAs needed for additional
connections, just call SQLLDA with a different Ida after each CONNECT. In the
following example, you connect to two non-default databases concurrently:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10).
01 PASSWORD PIC X(10).
01 DB-STRING1 PIC X(20) .
01 DB-STRING2 PIC X(20) .
EXEC SQL END DECLARE SECTION END-EXEC.

*— Field sizes in LDA are system-dependent.

01 LDA1.
02 LDA1-V2RC PIC S9(4) COMP.
02FILLER PIC X(10).
02LDA1-RC PIC S9(4) COMP.
02FILLER PIC X(50).

01 LDA2.
02 LDA2-V2RC PIC S9(4) COMP.
02FILLER PIC X(10).
02LDA2-RC PIC S9(4) COMP.
02FILLER PIC X(50).

Database Concepts 3-17

Some Terms You Should Know

MOVE 'SCOTT TO USERNAME.
MOVE TIGER' TO PASSWORD.
MOVE 'nyremote’ TO DB-STRING1.
MOVE 'chiremote’ TO DB-STRING2.

*— give each database connection a unique name
EXEC SQL DECLARE db_namel DATABASE END-EXEC.
EXEC SQL DECLARE db_name2 DATABASE END-EXEC.

* — connect to first non-default database
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT db_namel USING :DB-STRING1
END-EXEC.
*— setupfirst LDA for OCl use
CALL 'SQLLDA USING LDA1.
* — connect to second non-default database
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT db_name2 USING :DB-STRING2
END-EXEC.
*— setup second LDA for OCl use
CALL 'SQLLDA USING LDA2.

Remember, do not declare db_namel and db_name2 because they are not host variables.
You use them only to name the default databases at the two non-default nodes so that later
SQL statements can refer to the databases by name.

Some Terms You Should Know

Before delving into the subject of transactions, you should know the terms defined
in this section.

The jobs or tasks that the database manages are called sessions. A user session is
started when you run an application program or a tool such as Oracle Forms and
connect to the database. Oracle8i allows user sessions to work "simultaneously” and
share computer resources. To do this, Oracle8i must control concurrence, the
accessing of the same data by many users. Without adequate concurrence controls,
there might be a loss of data integrity. That is, changes to data or structures might be
made in the wrong order.

Oracle8i uses locks to control concurrent access to data. A lock gives you temporary
ownership of a database resource such as a table or row of data. Thus, data cannot
be changed by other users until you finish with it. You need never explicitly lock a
resource, because default locking mechanisms protect table data and structures.
However, you can request data locks on tables or rows when it is to your advantage

3-18 Pro*COBOL Precompiler Programmer’s Guide

How Transactions Guard Your Database

to override default locking. You can choose from several modes of locking such as
row share and exclusive.

A deadlock can occur when two or more users try to access the same database object.
For example, two users updating the same table might wait if each tries to update a
row currently locked by the other. Because each user is waiting for resources held
by another user, neither can continue until the server breaks the deadlock. The
server signals an error to the participating transaction that had completed the least
amount of work, and the "deadlock detected while waiting for resource" error code
is returned to SQLCODE in the SQLCA.

When a table is being queried by one user and updated by another at the same time,
the database generates a read-consistent view of the table’s data for the query. That
is, once a query begins and as it proceeds, the data read by the query does not
change. As update activity continues, the database takes snapshots of the table’s data
and records changes in a rollback segment. The database uses information in the
rollback segment to build read-consistent query results and to undo changes if
necessary.

How Transactions Guard Your Database

The database is transaction oriented; it uses transactions to ensure data integrity. A
transaction is a series of one or more logically related SQL statements you define to
accomplish some task. The database treats the series of SQL statements as a unit so
that all the changes brought about by the statements are either committed (made
permanent) or rolled back (undone) at the same time. If your application program
fails in the middle of a transaction, the database is automatically restored to its
former (pre-transaction) state.

The coming sections show you how to define and control transactions. Specifically,
you learn how to:

« begin and end transactions
« use the COMMIT statement to make transactions permanent

« use the SAVEPOINT statement with the ROLLBACK TO statement to undo
parts of transactions

« use the ROLLBACK statement to undo whole transactions
« specify the RELEASE option to free resources and log off the database
« use the SET TRANSACTION statement to set read-only transactions

Database Concepts 3-19

How to Begin and End Transactions

« use the FOR UPDATE clause or LOCK TABLE statement to override default
locking

For details about the SQL statements discussed in this chapter, see the Oracle8i SQL
Reference.

How to Begin and End Transactions

You begin a transaction with the first executable SQL statement (other than
CONNECT) in your program. When one transaction ends, the next executable SQL
statement automatically begins another transaction. Thus, every executable
statement is part of a transaction. Because they cannot be rolled back and need not
be committed, declarative SQL statements are not considered part of a transaction.

You end a transaction in one of the following ways:

» Code a COMMIT or ROLLBACK statement, with or without the RELEASE
option. This explicitly makes permanent or undoes changes to the database.

« Code a data definition statement (ALTER, CREATE, or GRANT, for example)
that issues an automatic commit before and after executing. This implicitly
makes permanent changes to the database.

A transaction also ends when there is a system failure or your user session stops
unexpectedly because of software problems, hardware problems, or a forced
interrupt. Oracle8i rolls back the transaction.

If your program fails in the middle of a transaction, Oracle8i detects the error and
rolls back the transaction. If your operating system fails, Oracle8i restores the
database to its former (pre-transaction) state.

Using the COMMIT Statement

You use the COMMIT statement to make changes to the database permanent. Until
changes are committed, other users cannot access the changed data; they see it as it
was before your transaction began. The COMMIT statement has no effect on the
values of host variables or on the flow of control in your program. Specifically, the
COMMIT statement

« makes permanent all changes made to the database during the current
transaction

« makes these changes visible to other users

« erases all savepoints (see the next section)

3-20 Pro*COBOL Precompiler Programmer’s Guide

Using the COMMIT Statement

« releases all row and table locks, but not parse locks

« closes cursors referenced in a CURRENT OF clause or, when MODE={ANSI |
ANSI14}, closes all explicit cursors

« ends the transaction

When MODE={ANSI13 | ORACLE}, explicit cursors not referenced in a CURRENT
OF clause remain open across commits. This can boost performance. For an
example, see "Fetching Across Commits" on page 3-29.

Because they are part of normal processing, COMMIT statements should be placed
inline, on the main path through your program. Before your program terminates, it
must explicitly commit pending changes. Otherwise, Oracle8i rolls them back. In
the following example, you commit your transaction and disconnect:

EXEC SQL COMMIT WORK RELEASE END-EXEC.

The optional keyword WORK provides ANSI compatibility. The RELEASE option
frees all resources (locks and cursors) held by your program and logs off the
database.

You need not follow a data definition statement with a COMMIT statement because
data definition statements issue an automatic commit before and after executing. So,
whether they succeed or fail, the prior transaction is committed.

WITH HOLD Clause in DECLARE CURSOR Statements

Any cursor that has been declared with the clause WITH HOLD after the word
CURSOR, remains open after a COMMIT or a ROLLBACK. The following example
shows how to use this clause:

EXEC SQL

DECLARE C1 CURSOR WITH HOLD

FOR SELECT ENAME FROM EMP

WHERE EMPNO BETWEEN 7600 AND 7700
END-EXEC.

The cursor must not be declared for UPDATE. The WITH HOLD clause is used in
DB2 to override the default, which is to close all cursors on commit. Pro*COBOL
provides this clause in order to ease migrations of applications from DB2 to Oracle.
When MODE=ANSI, Oracle uses the DB2 default, but all host variables must be
declared in a Declare Section. To avoid having a Declare Section, use the
precompiler option CLOSE_ON_COMMIT described next. See "DECLARE
CURSOR (Embedded SQL Directive)" on page F-24.

Database Concepts 3-21

Using the ROLLBACK Statement

CLOSE_ON_COMMIT Precompiler Option
The precompiler option CLOSE_ON_COMMIT is available for DB2 compatibility:
CLOSE_ON_COMMIT ={YES | NO}
The default is NO. This option must be entered only on the command line or in a

configuration file. If you specify MODE=ANSI on the command line, any cursors
not declared with the WITH HOLD clause are closed on commit.

Note: Use this option carefully; applications may be slowed if cursors are
opened and closed many times because of the need to re-parse for each OPEN
statement. See "CLOSE_ON_COMMIT" on page 14-14.

Using the ROLLBACK Statement

You use the ROLLBACK statement to undo pending changes made to the database.
For example, if you make a mistake, such as deleting the wrong row from a table,
you can use ROLLBACK to restore the original data. The ROLLBACK statement has
no effect on the values of host variables or on the flow of control in your program.
Specifically, the ROLLBACK statement

« undoes all changes made to the database during the current transaction
« erases all savepoints

« ends the transaction

« releases all row and table locks, but not parse locks

« closes cursors referenced in a CURRENT OF clause or, when MODE={ANSI |
ANSI14}, closes all explicit cursors

When MODE={ANSI13 | ORACLE}, explicit cursors not referenced in a CURRENT
OF clause remain open across rollbacks.

Because they are part of exception processing, ROLLBACK statements should be
placed in error handling routines, off the main path through your program. In the
following example, you roll back your transaction and disconnect:

EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
The optional keyword WORK provides ANSI compatibility. The RELEASE option
frees all resources held by your program and logs off the database.

If a WHENEVER SQLERROR GOTO statement branches to an error handling
routine that includes a ROLLBACK statement, your program might enter an infinite

3-22 Pro*COBOL Precompiler Programmer’s Guide

Using the ROLLBACK Statement

loop if the rollback fails with an error. You can avoid this by coding WHENEVER
SQLERROR CONTINUE before the ROLLBACK statement.

For example, consider the following:

EXEC SQL
WHENEVER SQLERROR GOTO SQL-ERROR
END-EXEC.

DISPLAY 'Employee number?”.

ACCEPT EMP-NUMBER.

DISPLAY Employee name?’.

ACCEPT EMP-NAME.

EXEC SQL INSERT INTO EMP (EMPNO, ENAME)
VALUES (EMP-NUMBER, :EMP-NAME)

END-EXEC.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
DISPLAY 'Processing emor.

* — exit program with an enror.
STOP RUN.

Oracle8i rolls back transactions if your program terminates abnormally.

Statement-Level Rollbacks

Before executing any SQL statement, Oracle8i marks an implicit savepoint (not
available to you). Then, if the statement fails, Oracle8i rolls it back automatically
and returns the applicable error code to SQLCODE in the SQLCA. For example, if
an INSERT statement causes an error by trying to insert a duplicate value in a
unique index, the statement is rolled back.

Only work started by the failed SQL statement is lost; work done before that
statement in the current transaction is kept. Thus, if a data definition statement fails,
the automatic commit that precedes it is not undone.

Note: Before executing a SQL statement, Oracle8i must parse it, that is, examine
it to make sure it follows syntax rules and refers to valid database objects.
Errors detected while executing a SQL statement cause a rollback, but errors
detected while parsing the statement do not.

Database Concepts 3-23

Using the SAVEPOINT Statement

Oracle8i can also roll back single SQL statements to break deadlocks. Oracle8i
signals an error to one of the participating transactions and rolls back the current
statement in that transaction.

Using the SAVEPOINT Statement

You use the SAVEPOINT embedded SQL statement to mark and name the current
point in the processing of a transaction. Each marked point is called a savepoint. For
example, the following statement marks a savepoint named start_delete:

EXEC SQL SAVEPOINT start_delete END-EXEC.

Savepoints let you divide long transactions, giving you more control over complex
procedures. For example, if a transaction performs several functions, you can mark
a savepoint before each function. Then, if a function fails, you can easily restore the
data to its former state, recover, then re-execute the function.

To undo part of a transaction, you use savepoints with the ROLLBACK statement
and its TO SAVEPOINT clause. The TO SAVEPOINT clause lets you roll back to an
intermediate statement in the current transaction, so you do not have to undo all
your changes. Specifically, the ROLLBACK TO SAVEPOINT statement

« undoes changes made to the database since the specified savepoint was marked
« erases all savepoints marked after the specified savepoint

« releases all row and table locks acquired since the specified savepoint was
marked

In the example below, you access the table MAIL_LIST to insert new listings, update
old listings, and delete (a few) inactive listings. After the delete, you check
SQLERRD(3) in the SQLCA for the number of rows deleted. If the number is
unexpectedly large, you roll back to the savepoint start_delete, undoing just the
delete.

* — For each new customer

DISPLAY 'New customer number? .

ACCEPT CUST-NUMBER.

IF CUST-NUMBER =0
GO TOREV-STATUS

ENDAF.

DISPLAY 'New customer name? .
ACCEPT CUST-NAME.

EXEC SQL INSERT INTO MAIL-LIST (CUSTNO, CNAME, STAT)
VALUES (:CUST-NUMBER, :CUST-NAME, 'ACTIVE).

3-24 Pro*COBOL Precompiler Programmer’s Guide

Using the SAVEPOINT Statement

END-EXEC.

* — For each revised status
REV-STATUS.
DISPLAY 'Customer number to revise status? .
ACCEPT CUST-NUMBER.
IF CUST-NUMBER =0
GO TO SAVE-POINT
ENDHF.
DISPLAY 'New status? .
ACCEPT NEW-STATUS.
EXEC SQL UPDATE MAIL-LIST
SET STAT =:NEW-STATUS WHERE CUSTNO = :CUST-NUMBER
END-EXEC.

*— mark savepoint
SAVE-POINT.
EXEC SQL SAVEPOINT START-DELETE END-EXEC.
EXEC SQL DELETE FROM MAIL-LIST WHERE STAT ='INACTIVE'
END-EXEC.
IF SQLERRD(3) <25
* — check number of rows deleted
DISPLAY 'Number of rows deleted is’, SQLERRD(3)
ELSE
DISPLAY "Undaing deletion of’, SQLERRD(3), ' rows’
EXEC SQL
WHENEVER SQLERROR GOTO SQL-ERROR
END-EXEC
EXEC SQL
ROLLBACK TO SAVEPOINT START-DELETE
END-EXEC
ENDAF.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL COMMIT WORK RELEASE END-EXEC.
STOP RUN.
* — exit program.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
DISPLAY "Processing error'.

* — exit program with an error.
STOP RUN.

Database Concepts 3-25

Using the RELEASE Option

Note that you cannot specify the RELEASE option in a ROLLBACK TO
SAVEPOINT statement.

Rolling back to a savepoint erases any savepoints marked after that savepoint. The
savepoint to which you roll back, however, is not erased. For example, if you mark
five savepoints, then roll back to the third, only the fourth and fifth are erased. A
COMMIT or ROLLBACK statement erases all savepoints.

Using the RELEASE Option

Oracle8i rolls back changes automatically if your program terminates abnormally.
Abnormal termination occurs when your program does not explicitly commit or roll
back work and disconnect using the RELEASE embedded SQL statement.

Normal termination occurs when your program runs its course, closes open cursors,
explicitly commits or rolls back work, disconnects, and returns control to the user.
Your program will exit gracefully if the last SQL statement it executes is either

EXEC SQL COMMIT RELEASE END-EXEC.

or
EXEC SQL ROLLBACK RELEASE END-EXEC.

Otherwise, locks and cursors acquired by your user session are held after program
termination until Oracle8i recognizes that the user session is no longer active. This
might cause other users in a multi-user environment to wait longer than necessary
for the locked resources.

Using the SET TRANSACTION Statement

You use the SET TRANSACTION statement to begin a read-only or read-write
transaction, or to assign your current transaction to a specified rollback segment. A
COMMIT, ROLLBACK, or data definition statement ends a read-only transaction.

Because they allow "repeatable reads," read-only transactions are useful for running
multiple queries against one or more tables while other users update the same
tables. During a read-only transaction, all queries refer to the same snapshot of the
database, providing a multi-table, multi-query, read-consistent view. Other users
can continue to query or update data as usual. An example of the SET
TRANSACTION statement follows:

EXEC SQL SET TRANSACTION READ ONLY END-EXEC.

3-26 Pro*COBOL Precompiler Programmer’s Guide

Overriding Default Locking

The SET TRANSACTION statement must be the first SQL statement in a read-only
transaction and can appear only once in a transaction. The READ ONLY parameter
is required. Its use does not affect other transactions. Only the SELECT (without
FOR UPDATE), LOCK TABLE, SET ROLE, ALTER SESSION, ALTER SYSTEM,
COMMIT, and ROLLBACK statements are allowed in a read-only transaction.

In the example below, as a store manager, you check sales activity for the day, the
past week, and the past month by using a read-only transaction to generate a
summary report. The report is unaffected by other users updating the database
during the transaction.

EXEC SQL SET TRANSACTION READ ONLY END-EXEC.
EXEC SQL SELECT SUM(SALEAMT) INTO :DAILY FROM SALES
WHERE SALEDATE = SYSDATE END-EXEC.
EXEC SQL SELECT SUM(SALEAMT) INTO :WEEKLY FROM SALES
WHERE SALEDATE > SYSDATE - 7 END-EXEC.
EXEC SQL SELECT SUM(SALEAMT) INTO :MONTHLY FROM SALES
WHERE SALEDATE > SYSDATE - 30 END-EXEC.
EXEC SQL COMMIT WORK END-EXEC.
*— simply ends the transaction since there are no changes
*— to make permanent
*— format and print report

Overriding Default Locking

By default, Oracle8i implicitly (automatically) locks many data structures for you.
However, you can request specific data locks on rows or tables when it is to your
advantage to override default locking. Explicit locking lets you share or deny access
to a table for the duration of a transaction or ensure multi-table and multi-query
read consistency.

With the SELECT FOR UPDATE OF statement, you can explicitly lock specific rows
of a table to make sure they do not change before an update or delete is executed.
However, Oracle8i automatically obtains row-level locks at update or delete time.
So, use the FOR UPDATE OF clause only if you want to lock the rows before the
update or delete.

You can explicitly lock entire tables using the LOCK TABLE statement.

Using the FOR UPDATE OF Clause

When you DECLARE a cursor that is referenced in the CURRENT OF clause of an
UPDATE or DELETE statement, you use the FOR UPDATE OF clause to acquire

Database Concepts 3-27

Overriding Default Locking

exclusive row locks. SELECT FOR UPDATE OF identifies the rows that will be
updated or deleted, then locks each row in the active set. (All rows are locked at the
open, not as they are fetched.) This is useful, for example, when you want to base an
update on the existing values in a row. You must make sure the row is not changed
by another user before your update.

The FOR UPDATE OF clause is optional. For instance, instead of

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR
SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO =20
FOR UPDATE OF SAL

END-EXEC.

you can drop the FOR UPDATE OF clause and simply code

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR
SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO =20
END-EXEC.

The CURRENT OF clause signals the precompiler to add a FOR UPDATE clause if
necessary. You use the CURRENT OF clause to refer to the latest row fetched from a
cursor. For an example, see "Using the CURRENT OF Clause" on page 5-16.

Restrictions

If you use the FOR UPDATE OF clause, you cannot reference on page 5-16 multiple
tables. Also, an explicit FOR UPDATE OF or an implicit FOR UPDATE acquires
exclusive row locks. Row locks are released when you commit or rollback (except
when you rollback to a savepoint). If you try to fetch from a FOR UPDATE cursor
after a commit, Oracle8i generates an error:

Using the LOCK TABLE Statement

You use the LOCK TABLE statement to lock one or more tables in a specified lock
mode. For example, the statement below locks the EMP table in row share mode.
Row share locks allow concurrent access to a table; they prevent other users from
locking the entire table for exclusive use.

EXEC SQL
LOCK TABLE EMP IN ROW SHARE MODE NOWAIT
END-EXEC.

The lock mode determines what other locks can be placed on the table. For

example, many users can acquire row share locks on a table at the same time, but
only one user at a time can acquire an exclusive lock. While one user has an

3-28 Pro*COBOL Precompiler Programmer’s Guide

Fetching Across Commits

exclusive lock on a table, no other users can insert, update, or delete rows in that
table. For more information about lock modes, see the Oracle8i Application
Developer’s Guide - Fundamentals.

The optional keyword NOWAIT tells Oracle8i not to wait for a table if it has been
locked by another user. Control is immediately returned to your program, so it can
do other work before trying again to acquire the lock. (You can check SQLCODE in
the SQLCA to see if the table lock failed.) If you omit NOWAIT, Oracle8i waits until
the table is available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query never
acquires a table lock. So, a query never blocks another query or an update, and an
update never blocks a query. Only if two different transactions try to update the
same row will one transaction wait for the other to complete. Table locks are
released when your transaction issues a commit or rollback.

Fetching Across Commits

If you want to mix commits and fetches, do not use the CURRENT OF clause.
Instead, select the rowid of each row, then use that value to identify the current row
during the update or delete. Consider the following example:

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR
SELECT ENAME, SAL, ROWID FROM EMP WHERE JOB ='CLERK’
END-EXEC.

EXEC SQL OPEN EMP-CURSOR END-EXEC.
EXEC SQL WHENEVER NOT FOUND GOTO....
PERFORM
EXEC SQL
FETCH EMP-CURSOR INTO :EMP_NAME, :SALARY, -ROW-D
END-EXEC

EXEC SQL UPDATE EMP SET SAL = :NEW-SALARY
WHERE ROWID =:ROW-ID
END-EXEC
EXEC SQL COMMIT END-EXEC
END-PERFORM.

Note, however, that the fetched rows are not locked. So, you can receive inconsistent

results if another user modifies a row after you read it but before you update or
delete it.

Database Concepts 3-29

Handling Distributed Transactions

Handling Distributed Transactions

A distributed database is a single logical database comprising multiple physical
databases at different nodes. A distributed statement is any SQL statement that
accesses a remote node using a database link. A distributed transaction includes at
least one distributed statement that updates data at multiple nodes of a distributed
database. If the update affects only one node, the transaction is non-distributed.

When you issue a commit, changes to each database affected by the distributed
transaction are made permanent. If instead you issue a rollback, all the changes are
undone. However, if a network or machine fails during the commit or rollback, the
state of the distributed transaction might be unknown or in doubt. In such cases, if
you have FORCE TRANSACTION system privileges, you can manually commit or
roll back the transaction at your local database by using the FORCE clause. The
transaction must be identified by a quoted literal containing the transaction ID,
which can be found in the data dictionary view DBA_2PC_PENDING. Some
examples follow:

EXEC SQL COMMIT FORCE '22.31.83 END-EXEC.
EXEC SQL ROLLBACK FORCE "25.33.86END-EXEC.

FORCE commits or rolls back only the specified transaction and does not affect
your current transaction. Note that you cannot manually roll back in-doubt
transactions to a savepoint.

The COMMENT clause in the COMMIT statement lets you specify a Comment to be
associated with a distributed transaction. If ever the transaction is in doubt, The
server stores the text specified by COMMENT in the data dictionary view
DBA_2PC_PENDING along with the transaction ID. The text must be a quoted
literal of no more than 50 characters in length. An example follows:

EXEC SQL
COMMIT COMMENT ’In-doulbt trans; notify Order Entry’
END-EXEC.

For more information about distributed transactions, see Oracle8i Concepts.

Guidelines for Transaction Processing

The following guidelines will help you avoid some common problems.

3-30 Pro*COBOL Precompiler Programmer’s Guide

Developing X/Open Applications

Designing Applications

When designing your application, group logically related actions together in one
transaction. A well-designed transaction includes all the steps necessary to
accomplish a given task — no more and no less.

Data in the tables you reference must be left in a consistent state. So, the SQL
statements in a transaction should change the data in a consistent way. For example,
a transfer of funds between two bank accounts should include a debit to one
account and a credit to another. Both updates should either succeed or fail together.
An unrelated update, such as a new deposit to one account, should not be included
in the transaction.

Obtaining Locks

Using PL/SQL

If your application programs include SQL locking statements, make sure the users
requesting locks have the privileges needed to obtain the locks. Your DBA can lock
any table. Other users can lock tables they own or tables for which they have a
privilege, such as ALTER, SELECT, INSERT, UPDATE, or DELETE.

If a PL/SQL block is part of a transaction, commits and rollbacks inside the block
affect the whole transaction. In the following example, the rollback undoes changes
made by the update and the insert:

EXEC SQL INSERT INTO EMP ...
EXEC SQL EXECUTE
BEGIN UPDATE emp

EXCEPTION
WHEN DUP_VAL_ON_INDEX THEN
ROLLBACK;
END;
END-EXEC.

Developing X/Open Applications

X/0Open applications run in a distributed transaction processing (DTP)
environment. In an abstract model, an X/Open application calls on resource managers
(RMs) to provide a variety of services. For example, a database resource manager provides

Database Concepts 3-31

Developing X/Open Applications

access to data in a database. Resource managers interact with a transaction manager (TM),
which controls all transactions for the application.

Figure 3-2 shows one way that components of the DTP model can interact to
provide efficient access to data in an Oracle8i database. The DTP model specifies the
XA interface between resource managers and the transaction manager. Oracle supplies an
XA-compliant library, which you must link to your X/Open application. Also, you must
specify the native interface between your application program and the resource managers.

Figure 3-2 Hypothetical DTP Model

TX Interface L
Application Program

i “

XA Interface Resource
Transaction [Manager
Manager
v
P XA Interface R Resource
< » Manager
v l
Oracle Server Other
Resources

The DTP model that specifies how a transaction manager and resource managers
interact with an application program is described in the X/Open guide Distributed
Transaction Processing Reference Model and related publications, which you can obtain by
writing to

X/0pen Company Ltd.

3-32 Pro*COBOL Precompiler Programmer’s Guide

Developing X/Open Applications

1010 El Camino Real, Suite 380
Menlo Park, CA 94025

For instructions on using the XA interface, see your Transaction Processing (TP)
Monitor user’s guide.

Oracle-Specific Issues

You can use Pro*COBOL to develop applications that comply with the X/Open
standards. However, you must meet the following requirements.

Connecting to Oracle

The X/Open application does not establish and maintain connections to a database.
Instead, the transaction manager and the XA interface, which is supplied by Oracle,
handle database connections and disconnections transparently. So, normally an
X/0pen-compliant application does not execute CONNECT statements.

Transaction Control

The X/Open application must not execute statements such as COMMIT,
ROLLBACK, SAVEPOINT, and SET TRANSACTION that affect the state of global
transactions. For example, the application must not execute the COMMIT statement
because the transaction manager handles commits. Also, the application must not
execute SQL data definition statements such as CREATE, ALTER, and RENAME
because they issue an implicit commit.

The application can execute an internal ROLLBACK statement if it detects an error
that prevents further SQL operations. However, this might change in later versions
of the XA interface.

OCI Calls

If you want your X/Open application to issue OCI calls, you must use the run-time
library routine SQLLD2, which sets up an LDA for a specified connection
established through the XA interface. For a description of the SQLLD2 call, see the
Oracle Call Interface Programmer’s Guide. Note that OCOM, OCON, OCOF, ORLON,
OLON, OLOG, and OLOGOF cannot be issued by an X/Open application.

Linking

To get XA functionality, you must link the XA library to your X/Open application
object modules. For instructions, see your system-specific Oracle8i manuals.

Database Concepts 3-33

Developing X/Open Applications

3-34 Pro*COBOL Precompiler Programmer’s Guide

A

Datatypes and Host Variables

This chapter provides the basic information you need to write a Pro*COBOL
program, including:

« The Oracle8i Datatypes

« Host Variables

« Indicator Variables

« VARCHAR Variables

« Handling Character Data

« User-Specified Runtime Contexts
« Universal ROWIDs

« National Language Support

« Multi-Byte NLS Character Sets

« Datatype Conversion

« Explicit Control Over DATE String Format
« Datatype Equivalencing

« Sample Program 4: Datatype Equivalencing

Datatypes and Host Variables 4-1

The Oracle8i Datatypes

The Oracle8i Datatypes

Oracle8i recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle8i stores data in database columns. Oracle8i also uses internal
datatypes to represent dtabase pseudocolumns. An external datatype specifies how
data is stored in a host varable

Internal Datatypes
Oracle uses the following internal datatypes to store values in database colum

Table 4-1 Internal datatypes

Name Code Description

CHAR 96 <= 2000-byte, fixed-length string

NCHAR 96 <= 2000-byte, fixed-length single-byte or
fixed-width multi-byte string

DATE 12 7-byte, fixed-length date/time value

LONG 8 <= 2147483647-byte, variable-length string

LONG RAW 24 <= 2147483647-byte, variable-length binary data

NUMBER 2 fixed or floating point number, represented in
binary coded decimal format

RAW 23 <= 255-byte, variable-length binary data

ROWID 11 fixed-length binary value

VARCHAR?2 1 <= 4000-byte, variable-length string

NVARCHAR?2 1 <= 4000-byte, variable-length single-byte or

fixed-width multi-byte string

CHAR

You use the CHAR datatype to store fixed-length character data. How the data is
represented internally depends on the database character set. The CHAR datatype
takes an optional parameter that lets you specify a maximum width up to 2000
bytes. The syntax follows:

CHAR[(maximum_width)]

If you do not specify the maximum width, it defaults to 1. Remember, you specify
the maximum width of a CHAR(n) column in bytes, not characters. So, if a

4-2 Pro*COBOL Precompiler Programmer’s Guide

The Oracle8i Datatypes

CHAR(Nn) column stores multi-byte (2-byte) characters, its maximum width is less
than n/2 characters.

NCHAR

Use this datatype to store NLS (National Language Support) strings. See "National
Language Support” on page 4-39. NCHAR values can not be converted to an
internal datatype and are only used in the Declare Table when performing a
semantics check with SQLCHECK=SEMANTICS (or FULL). See "Specifying
SQLCHECK=SEMANTICS" on page E-3 for a discussion of semantics checking.

See "DECLARE TABLE (Oracle Embedded SQL Directive)" on page F-29 for a
discussion and syntax diagram of this embedded SQL directive. You can not insert
CHAR values into an NCHAR column. You can not insert NCHAR values into a
CHAR column. This datatype can not be used in VAR statements for datatype
equivalences.

DATE

You use the DATE datatype to store dates and times in 7-byte, fixed-length fields.
The date portion defaults to the first day of the current month; the time portion
defaults to midnight.

Internally, DATEs are stored in a binary format. When converting a DATE column
value to a character string in your program, Oracle8i uses the default format mask
for your session. If you need other date/time information such as the date in Julian
days, use the TO_CHAR function with a format mask. Always convert DATE
column values to and from character strings using (external) character datatypes
such as VARCHAR?2 or STRING.

LONG

You use the LONG datatype to store variable-length character strings. LONG
columns can store text, arrays of characters, or even short documents. The LONG
datatype is like the VARCHAR?2 datatype, except the maximum width of a LONG
column is 2147483647 bytes or two gigabytes.

You can use LONG columns in UPDATE, INSERT, and (most) SELECT statements,
but not in expressions, function calls, or SQL clauses such as WHERE, GROUP BY,
and CONNECT BY. Only one LONG column is allowed per database table and that
column cannot be indexed.

Datatypes and Host Variables 4-3

The Oracle8i Datatypes

LONG RAW

You use the LONG RAW datatype to store variable-length binary data or byte
strings. The maximum width of a LONG RAW column is 2147483647 bytes or two
gigabytes.

LONG RAW data is like LONG data, except that Oracle8i assumes nothing about
the meaning of LONG RAW data and does no character set conversions when you
transmit LONG RAW data from one system to another. The restrictions that apply
to LONG data also apply to LONG RAW data.

NUMBER

You use the NUMBER datatype to store fixed or floating point numbers of virtually
any size. You can specify precision, which is the total number of digits, and scale,
which determines where rounding occurs.

The maximum precision of a NUMBER value is 38; the magnitude range is 1.0E-129
to 9.99E125. Scale can range from -84 to 127. For example, a scale of -3 means the
number is rounded to the nearest thousand (3456 becomes 3000). A scale of 2 means
the value is rounded to the nearest hundredth (3.456 becomes 3.46).

When you specify precision and scale, Oracle8i does extra integrity checks before
storing the data. If a value exceeds the precision, Oracle8i issues an error message; if
a value exceeds the scale, Oracle8i rounds the value.

RAW

You use the RAW datatype to store binary data or byte strings (a sequence of
graphics characters, for example). RAW data is not interpreted by Oracle8i.

The RAW datatype takes a required parameter that lets you specify a maximum
width up to 255 bytes. The syntax follows:

RAW(maximum_width)
You cannot use a constant or variable to specify the maximum width; you must use
an integer literal.

RAW data is like CHAR data, except that Oracle8i assumes nothing about the
meaning of RAW data and does no character set conversions (from 7-bit ASCII to
EBCDIC Code Page 500 for example) when you transmit RAW data from one
system to another.

4-4 Pro*COBOL Precompiler Programmer’s Guide

The Oracle8i Datatypes

ROWID

Internally, every table in an Oracle8i database has a pseudocolumn named ROWID,
which stores binary values called ROWIDs. ROWIDs uniquely identify rows and
provide the fastest way to access particular rows.

For more about how to use ROWIDs, see "Universal ROWIDs" on page 4-36.

VARCHAR2

You use the VARCHAR?2 datatype to store variable-length character strings. How
the strings are represented internally depends on the database character set, which
might be 7-bit ASCII or EBCDIC Code Page 500 for example.

The maximum width of a VARCHAR?2 database column is 4000 bytes. To define a
VARCHAR2 column, you use the syntax

VARCHAR2(maximum_wickth)

where maximum_width is an integer literal in the range 1 .. 2000.

You specify the maximum width of a VARCHAR2(n) column in bytes, not
characters. So, if a VARCHAR2(n) column stores multi-byte (2-byte) characters, its
maximum width is less than n/2 characters.

NVARCHAR?2

Use NVARCHAR? to store variable-length NLS character data. For fixed-width
character sets, specify the maximum length in characters. For variable-width
character sets, specify the maximum length in bytes. See "National Language
Support" on page 4-39. NVARCHAR?2 values can not be converted to an internal
datatype and are only used in the Declare Table when performing a semantics check
with SQLCHECK=SEMANTICS (or FULL). See "Specifying
SQLCHECK=SEMANTICS" on page E-3 for a discussion of semantics checking. See
"DECLARE TABLE (Oracle Embedded SQL Directive)" on page F-29 for a
discussion and syntax diagram of this embedded SQL directive. You can not insert
VARCHAR? values into an NVARCHAR2 column. You can not insert
NVARCHAR?2 values into a VARCHAR2 column.This datatype can not be used in
VAR statements for datatype equivalences.

SQL Pseudocolumns and Functions
SQL recognizes the pseudocolumns in Table 4-2, which return specific data items:

Datatypes and Host Variables 4-5

The Oracle8i Datatypes

Table 4-2 Pseudocolumns and Internal Datatypes

Pseudocolumn Internal Datatype
CURRVAL NUMBER
LEVEL NUMBER
NEXTVAL NUMBER
ROWID ROWID
ROWNUM NUMBER

Pseudocolumns are not actual columns in a table. However, pseudocolumns are
treated like columns, so their values must be SELECTed from a table. Sometimes it
is convenient to select pseudocolumn values from a dummy table.

In addition, SQL recognizes the functions without parameters in Table 4-3, which
also return specific data items:

Table 4-3 Functions and Internal Datatypes

Function Internal Datatype
SYSDATE DATE

uIiD NUMBER

USER VARCHAR2

You can refer to SQL pseudocolumns and functions in SELECT, INSERT, UPDATE,
and DELETE statements. In the following example, you use SYSDATE to compute
the number of months since an employee was hired:

EXEC SQL SELECT MONTHS_BETWEEN(SYSDATE, HIREDATE)
INTO :MONTHS-OF-SERVICE
FROM EMP
WHERE EMPNO = EMP-NUMBER

END EXEC.

Brief descriptions of the SQL pseudocolumns and functions follow. For details, see
the Oracle8i SQL Reference.

CURRVAL returns the current number in a specified sequence. Before you can
reference CURRVAL, you must use NEXTVAL to generate a sequence number.

4-6 Pro*COBOL Precompiler Programmer’s Guide

The Oracle8i Datatypes

LEVEL returns the level number of a node in a tree structure. The root is level 1,
children of the root are level 2, grandchildren are level 3, and so on.

LEVEL is used in the SELECT CONNECT BY statement to incorporate some or all
the rows of a table into a tree structure. In an ORDER BY or GROUP BY clause,
LEVEL segregates the data at each level in the tree.

You specify the direction in which the query walks the tree (down from the root or
up from the branches) with the PRIOR operator. In the START WITH clause, you
specify a condition that identifies the root of the tree.

NEXTVAL returns the next number in a specified sequence. After creating a
sequence, you can use it to generate unique sequence numbers for transaction
processing. In the following example, you use the sequence named partno to assign
part numbers;

EXEC SQL INSERT INTO PARTS
VALUES (PARTNO.NEXTVAL, :DESCRIPTION, :QUANTITY, :PRICE
END EXEC.

If a transaction generates a sequence number, the sequence is incremented when
you commit or rollback the transaction. A reference to NEXTVAL stores the current
sequence number in CURRVAL.

ROWNUM returns a number indicating the sequence in which a row was selected
from a table. The first row selected has a ROWNUM of 1, the second row has a
ROWNUM of 2, and so on. If a SELECT statement includes an ORDER BY clause,
ROWNUMs are assigned to the selected rows before the sort is done.

You can use ROWNUM to limit the number of rows returned by a SELECT
statement. Also, you can use ROWNUM in an UPDATE statement to assign unique
values to each row in a table. Using ROWNUM in the WHERE clause does not stop
the processing of a SELECT statement; it just limits the number of rows retrieved.
The only meaningful use of ROWNUM in a WHERE clause is

... WHERE ROWNUM < constant END-EXEC.

because the value of ROWNUM increases only when a row is retrieved. The
following search condition can never be met because the first four rows are not
retrieved:

... WHERE ROWNUM =5 END-EXEC.

SYSDATE returns the current date and time.

UID returns the unique ID number assigned to an Oracle user.

Datatypes and Host Variables 4-7

The Oracle8i Datatypes

USER returns the username of the current Oracle user.

External Datatypes

As Table 4-4 shows, the external datatypes include all the internal datatypes plus
several datatypes found in other supported host languages. For example, the
STRING external datatype refers to a C null-terminated string. You use the datatype
names in datatype equivalencing, and you use the datatype codes in dynamic SQL
Method 4.

Table 4-4 External Datatypes

Name Code Description
CHAR 1 <= 65535-byte, variable-length character string (1)
96 <= 65535-byte, fixed-length character string (1)
CHARF 96 <= 65535-byte, fixed-length character string
CHARZ 97 <= 65535-byte, fixed-length, null-terminated string (2)
DATE 12 7-byte, fixed-length date/time value
DECIMAL 7 COBOL packed decimal
DISPLAY 91 COBOL numeric character string

DISPLAY TRAILING 152

COBOL numeric with trailing sign

FLOAT 4 4-byte or 8-byte floating-point number
INTEGER 3 2-byte or 4-byte signed integer

LONG 8 <= 2147483647-byte, fixed-length string
LONG RAW 24 <= 217483647-byte, fixed-length binary data
LONG VARCHAR 94 <= 217483643-byte, variable-length string
LONG VARRAW 95 <= 217483643-byte, variable-length binary data
NUMBER 2 integer or floating-point number
OVER-PUNCH 172 numeric with embedded leading sign
LEADING

OVER-PUNCH 154 numeric with embedded trailing sign
TRAILING

RAW 23 <= 65535-byte, fixed-length binary data (2)
ROWID 11 fixed-length binary value (system-specific)

4-8 Pro*COBOL Precompiler Programmer’s Guide

The Oracle8i Datatypes

Table 4-4 External Datatypes

Name Code Description

STRING 5 <= 65535-byte, null-terminated character string (2)
UNSIGNED 68 2-byte or 4-byte unsigned integer

UNSIGNED DISPLAY 153 COBOL unsigned numeric

VARCHAR 9 <= 65533-byte, variable-length character string
VARCHAR?2 1 <= 65535-byte, variable-length character string (2)
VARNUM 6 variable-length binary number

VARRAW 15 <= 65533-byte, variable-length binary data
Notes:

1. CHAR is datatype 1 when PICX=VARCHAR?2 and datatype 96 when
PICX=CHARF.

2. Maximum size is 32767 (32K) on some platforms.

CHAR

CHAR behavior depends on the settings of the option PICX. See "PICX" on
page 14-35.

CHARF

By default, Oracle8i assigns the CHARF datatype to all non-varying character host
variables. You use the CHARF datatype to store fixed-length character strings. On
most platforms, the maximum length of a CHARF value is 65535 (64K) bytes. See
"PICX" on page 14-35.

On Input. Oracle8i reads the number of bytes specified for the input host variable,
does not strip trailing blanks, then stores the input value in the target database
column.

If the input value is longer than the defined width of the database column, Oracle8i
generates an error. If the input value is all-blank, Oracle8i treats it like a character
value.

On Output. Oracle8i returns the number of bytes specified for the output host
variable, blank-padding if necessary, then assigns the output value to the target host
variable. If a NULL is returned, Oracle8i fills the host variable with blanks.

Datatypes and Host Variables 4-9

The Oracle8i Datatypes

If the output value is longer than the declared length of the host variable, Oracle8i
truncates the value before assigning it to the host variable. If an indicator variable is
available, Oracle8i sets it to the original length of the output value.

CHARZ

Use the CHARZ datatype to store fixed-length, null-terminated character strings.
On most platforms, the maximum length of a CHARZ value is 65535 bytes. You
should not need this external type in Pro*xCOBOL.

On input, the CHARZ and STRING datatypes work the same way. You must
null-terminate the input value. The null terminator serves only to delimit the string;
it is not part of the data.

On output, the CHARZ and CHAR datatypes work the same way. Oracle8i appends
a null terminator to the output value, which is also blank-padded if necessary.

DATE

Use the DATE datatype to store dates and times in 7-byte, fixed-length fields. As
Table 4-5 shows, the century, year, month, day, hour (in 24-hour format), minute,
and second are stored in that order from left to right.

Table 4-5 Date Format

Byte 1 2 3 4 5 6 7
Meaning Century Year Month Day Hour Minute Second
Example 119 194 10 17 14 24 13

17-OCT-1994 at 1:23:12 PM

The century and year bytes are in excess-100 notation. The hour, minute, and
second are in excess-1 notation. Dates before the Common Era (B.C.E.) are less than
100. The epoch is January 1, 4712 B.C.E. For this date, the century byte is 53 and the
year byte is 88. The hour byte ranges from 1 to 24. The minute and second bytes
range from 1 to 60. The time defaults to midnight (1, 1, 1).

DECIMAL

With Pro*COBOL, use the DECIMAL datatype to store packed decimal numbers for
calculation. In COBOL, the host variable must be a signed COMP-3 field with an
implied decimal point. If significant digits are lost during data conversion, Oracle8i
fills the host variable with asterisks.

4-10 Pro*COBOL Precompiler Programmer’s Guide

The Oracle8i Datatypes

DISPLAY

With Pro*COBOL, use the DISPLAY datatype to store numeric character data. The
DISPLAY datatype refers to a COBOL "DISPLAY SIGN LEADING SEPARATE"
number, which requires n + 1 bytes of storage for PIC S9(n), and n + d + 1 bytes of
storage for PIC S9(n)V9(d).

FLOAT

Use the FLOAT datatype to store numbers that have a fractional part or that exceed
the capacity of the INTEGER datatype. The number is represented using the
floating-point format of your computer and typically requires 4 or 8 bytes of
storage. You must specify a length for input and output host variables.

Oracle8i can represent numbers with greater precision than floating point
implementations because the internal format of Oracle8i numbers is decimal.

Note: In SQL statements, when comparing FLOAT values, use the SQL function
ROUND because FLOAT stores binary (not decimal) numbers; so, fractions do
not convert exactly.

INTEGER

Use the INTEGER datatype to store numbers that have no fractional part. An
integer is a signed, 2- or 4-byte binary number. The order of the bytes in a word is
platform-dependent. You must specify a length for input and output host variables.
On output, if the column value is a floating point number, Oracle8i truncates the
fractional part.

LONG

Use the LONG datatype to store fixed-length character strings. The LONG datatype
is like the VARCHAR? datatype, except that the maximum length of a LONG value
is 2147483647 bytes (two gigabytes).

LONG RAW
Use the LONG RAW datatype to store fixed-length, binary data or byte strings. The
maximum length of a LONG RAW value is 2147483647 bytes (two gigabytes).

LONG RAW data is like LONG data, except that Oracle8i assumes nothing about
the meaning of LONG RAW data and does no character set conversions when you
transmit LONG RAW data from one system to another.

Datatypes and Host Variables 4-11

The Oracle8i Datatypes

LONG VARCHAR

Use the LONG VARCHAR datatype to store variable-length character strings.
LONG VARCHAR variables have a 4-byte length field followed by a string field.
The maximum length of the string field is 2147483643 bytes. In an EXEC SQL VAR
statement, do not include the 4-byte length field.

LONG VARRAW

Use the LONG VARRAW datatype to store binary data or byte strings. LONG
VARRAW variables have a 4-byte length field followed by a data field. The
maximum length of the data field is 2147483643 bytes. In an EXEC SQL VAR
statement, do not include the 4-byte length field.

NUMBER

Use the NUMBER datatype to store fixed or floating point numbers. You can specify
precision and scale. The maximum precision of a NUMBER value is 38; the
magnitude range is 1.0E-129 to 9.99E125. Scale can range from -84 to 127.

NUMBER values are stored in variable-length format, starting with an exponent
byte and followed by up to 20 mantissa bytes. The high-order bit of the exponent
byte is a sign bit, which is set for positive numbers. The low-order 7 bits represent
the exponent, which is a base-100 digit with an offset of 65.

Each mantissa byte is a base-100 digit in the range 1 .. 100. For positive numbers, 1
is added to the digit. For negative numbers, the digit is subtracted from 101, and,
unless there are 20 mantissa bytes, a byte containing 102 is appended to the data
bytes. Each mantissa byte can represent two decimal digits. The mantissa is
normalized and leading zeros are not stored. You can use up to 20 data bytes for the
mantissa but only 19 are guaranteed accurate. The 19 bytes, each representing a
base-100 digit, allow a maximum precision of 38 digits.

On output, the host variable contains the number as represented internally by
Oracle8i. To accommodate the largest possible number, the output host variable
must be 21 bytes long. Only the bytes used to represent the number are returned.
Oracle8i does not blank-pad or null-terminate the output value. If you need to
know the length of the returned value, use the VARNUM datatype instead.

Normally, there is little reason to use this datatype.
RAW

Use the RAW datatype to store fixed-length binary data or byte strings. On most
platforms, the maximum length of a RAW value is 65535 bytes.

4-12 Pro*COBOL Precompiler Programmer’s Guide

The Oracle8i Datatypes

RAW data is like CHAR data, except that Oracle8i assumes nothing about the
meaning of RAW data and does no character set conversions when you transmit
RAW data from one system to another.

ROWID

Before the release of Oracle8, the ROWID datatype was used to store the physical
address of each row of each table, as a hexadecimal number. The ROWID contained
the physical address of the row and allowed you to retrieve the row in a single
efficient block access.

With Oracle8, the logical ROWID was introduced. Rows in Index-Organized tables
do not have permanent physical addresses. The logical ROWID is accessed using
the same syntax as the physical ROWID. For this reason, the physical ROWID was
expanded in size to include a data object number (schema objects in the same
segment).

To support both logical and physical ROWIDs (as well as ROWIDs of non-Oracle
tables) the Universal ROWID was defined.

You can use VARCHAR?2 host variables to store ROWIDs in a readable format.
When you select or fetch a ROWID into a VARCHAR2 host variable, Oracle8i
converts the binary value to an 18-byte character string and returns it in the format

BBBBBBBB.RRRR.FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in the block (the
first row is 0), and FFFF is the database file. These numbers are hexadecimal. For
example, the ROWID

(0000000E.000A.0007

points to the 11th row in the 15th block in the 7th database file.

Typically, you fetch a ROWID into a VARCHAR?2 host variable, then compare the
host variable to the ROWID pseudocolumn in the WHERE clause of an UPDATE or
DELETE statement. That way, you can identify the latest row fetched by a cursor.
For an example, see "Mimicking the CURRENT OF Clause" on page 7-19.

Note: If you need full portability or your application communicates with a
non-Oracle database via Transparent Gateway, specify a maximum length of
256 (not 18) bytes when declaring the VARCHAR?2 host variable. If your
application communicates with a non-Oracle data source via Oracle Open
Gateway, specify a maximum length of 256 bytes. Though you can assume

Datatypes and Host Variables 4-13

The Oracle8i Datatypes

nothing about its contents, the host variable will behave normally in SQL
statements.

STRING

The STRING datatype is like the VARCHAR?2 datatype, except that a STRING value
is always null-terminated.

On Input. Oracle8i uses the specified length to limit the scan for a null terminator. If
a null terminator is not found, Oracle8i generates an error. If you do not specify a
length, Oracle8i assumes the maximum length, which is 65535 on most platforms.

The minimum length of a STRING value is 2 bytes. If the first character is a null
terminator and the specified length is 2, Oracle8i inserts a NULL unless the column
is defined as NOT NULL. An all-blank or null-terminated value is stored intact.

On Output. Oracle8i appends a null byte to the last character returned. If the string
length exceeds the specified length, Oracle8i truncates the output value and
appends a null byte.

UNSIGNED

Use the UNSIGNED datatype to store unsigned integers. An unsigned integer is a
binary number of 2 or 4 bytes. The order of the bytes in a word is
system-dependent. You must specify a length for input and output host variables.
On output, if the column value is a floating point number, Oracle8i truncates the
fractional part.

VARCHAR

Use the VARCHAR datatype to store variable-length character strings. VARCHAR
variables have a 2-byte length field followed by a 65533-byte string field. However,
for VARCHAR array elements, the maximum length of the string field is 65530
bytes. When you specify the length of a VARCHAR variable, be sure to include 2
bytes for the length field. For longer strings, use the LONG VARCHAR datatype. In
an EXEC SQL VAR statement, do not include the 2-byte length field.

VARCHAR2

Use the VARCHAR?2 datatype to store variable-length character strings. On most
platforms, the maximum length of a VARCHAR2 value is 65535 bytes.

Specify the maximum length of a VARCHAR2(n) value in bytes, not characters. So,
if a VARCHARZ2(n) variable stores multi-byte characters, its maximum length is less
than n characters.

4-14 Pro*COBOL Precompiler Programmer’s Guide

The Oracle8i Datatypes

On Input. Oracle8i reads the number of bytes specified for the input host variable,
strips any trailing blanks, then stores the input value in the target database column.
Be careful. An un-initialized host variable can contain nulls. So, always blank-pad a
character input host variable to its declared length. (COBOL PIC X(n) variables do
this automatically.)

If the input value is longer than the defined width of the database column, Oracle8i
generates an error. If the input value is all-blank, Oracle8i treats it like a NULL.

Oracle8i can convert a character value to a NUMBER column value if the character
value represents a valid number. Otherwise, Oracle8i generates an error.

On Output. Oracle8i returns the number of bytes specified for the output host
variable, blank-padding if necessary, then assigns the output value to the target host
variable. If a NULL is returned, Oracles8i fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle8i
truncates the value before assigning it to the host variable. If an indicator variable is
available, Oracle8i sets it to the original length of the output value.

Oracle8i can convert NUMBER column values to character values. The length of the
character host variable determines precision. If the host variable is too short for the
number, scientific notation is used. For example, if you select the column value
123456789 into a host variable of length 6, Oracle8i returns the value "1.2E08" to the
host variable.

VARNUM

The VARNUM datatype is like the NUMBER datatype, except that the first byte of a
VARNUM variable stores the length of the value.

On input, you must set the first byte of the host variable to the length of the value.
On output, the host variable contains the length followed by the number as
represented internally by Oracle8i. To accommodate the largest possible number,
the host variable must be 22 bytes long. After selecting a column value into a
VARNUM host variable, you can check the first byte to get the length of the value.

VARRAW

Use the VARRAW datatype to store variable-length binary data or byte strings. The
VARRAW datatype is like the RAW datatype, except that VARRAW variables have a
2-byte length field followed by a <= 65533-byte data field. For longer strings, use
the LONG VARRAW datatype. In an EXEC SQL VAR statement, do not include the
2-byte length field. To get the length of a VARRAW variable, simply refer to its
length field.

Datatypes and Host Variables 4-15

Host Variables

Host Variables

Host variables are the key to communication between your host program and the
server. Typically, a host program inputs data to the server, and the server outputs
data to the program. The server stores input data in database columns and stores

output data in program host variables.

Declaring Host Variables

Host variables are declared according to COBOL rules, using the COBOL datatypes
that are supported by Pro*COBOL. COBOL datatypes must be compatible with the

source/target database column.
The supported COBOL datatypes are shown in Table 4-6

4-16 Pro*COBOL Precompiler Programmer’s Guide

Host Variables

Table 4-6 Host Variable Declarations

Variable Declaration Description

PIC X...X fixed-length string of 1-byte characters (1)

PIC X(n) n-length string of 1-byte characters

PIC X..X VARYING variable-length string of 1-byte characters (1,2)

PIC X(n) VARYING Elza;riable-length (n max.) string of 1-byte characters
PIC N...N fixed-length string of multi-byte NCHAR characters
PICG..G (1.3)

PIC N(n)

PIC G(n) n-length string of multi-byte NCHAR characters (3)

PIC N...N VARYING
PIC N(n) VARYING
PIC G...G VARYING
PIC G(n) VARYING

variable-length string of multi-byte characters (2,3)

variable-length (n max.) string of multi-byte
characters (2,3)

PIC S9...9 BINARY integer (4,5,7)
PIC S9(n) BINARY

PIC S9...9 COMP

PIC S9(n) COMP

PIC S9...9 COMP-4

PIC S9(n) COMP-4

COMP-1 floating-point number (5)
COMP-2

PIC S9...9V9...9 COMP-3 packed-decimal (4,5)

PIC S9(n)V9(n) COMP-3

PIC S9...9V9...9

PACKED-DECIMAL
PIC S9(n)V(n)
PACKED-DECIMAL

Datatypes and Host Variables 4-17

Host Variables

Table 4-6 Host Variable Declarations

PIC S9...9 COMP-5 byte-swapped integer (4,5,6,7)
PIC S9(n) COMP-5
PIC S9...9V9...9 DISPLAY display leading (9,12)

SIGN LEADING SEPARATE
PIC S9(n)V9(m) DISPLAY
SIGN LEADING SEPARATE
PIC S9...9V9...9 DISPLAY display trailing (9)
SIGN TRAILING SEPARATE
PIC S9(n)V9(m) DISPLAY
SIGN TRAILING SEPARATE

PIC 9..9 DISPLAY unsigned display(10)
PIC 9(n)V9(m) DISPLAY
PIC S9...9V9...9 DISPLAY over-punch trailing (10,11

SIGN TRAILING
PIC S9(n)V9(m) DISPLAY
SIGN TRAILING over-punch leading (10))
PIC S9...9V9...9 DISPLAY
SIGN LEADING
PIC S9(n)V9(m) DISPLAY
SIGN LEADING

SQL-CURSOR cursor variable
SQL-CONTEXT runtime context
SQL-ROWID universal ROWID
Notes:

1. X..Xand?9..9 stand for a given number (n) of Xs or 9s. For variable-length
strings, n is the maximum length.

2. The keyword VARYING assigns the VARCHAR external datatype to a character
string. For more information, see "Declaring VARCHAR Variables" on
page 4-29.

4-18 Pro*COBOL Precompiler Programmer’s Guide

Host Variables

10.
11.

12.

Before using the PIC N or PIC G datatype in your Pro*COBOL source files, verify that
it is supported by your COBOL compiler.

Only signed numbers (PIC S...) are allowed. For floating-point numbers,
however, PIC strings are not accepted.

Not all COBOL compilers support all of these datatypes.

With COMP or COMP-5, the number cannot have a fractional part; scaled
binary numbers are not supported.

The maximum value of n ranges from 9 to 18, depending upon your system.
One-dimensional tables of COBOL types are also supported.

Both DISPLAY and SIGN are optional.

DISPLAY is optional

If TRAILING is omitted, the embedded sign position is operating-system
dependent.

LEADING is optional.

See Table 4-7, "Compatible Oracle Internal Datatypes" below.

Datatypes and Host Variables 4-19

Host Variables

Table 4-7 Compatible Oracle Internal Datatypes

Internal

Datatype Notes COBOL Datatype Description
CHAR(X) 1) PIC X..X character string
VARCHARZ(y) () PIC X(n) n-character string

NCHAR(u) @
NVARCHAR2(V) {2}
BLOB

CLOB

NCLOB

BFILE

PIC {X(n) | X(n) VARYING}
PIC $9...9 COMP

PIC S9(n) COMP

PIC $9...9 BINARY

PIC S9(n) BINARY

PIC $9...9 COMP-5

PIC S9(n) COMP-5
COMP-1

COMP-2

PIC $9...9V9...9 COMP-3
PIC S9(n)V9(n) COMP-3
PIC $9...9V9...9 DISPLAY
PIC S9(n)V9(n) DISPLAY
PIC{N..N | G..G}
PIC{N(n) | G(n)}
SQL-BLOB

SQL-CLOb

SQL-NCLOB
SQL-BFILE

4-20 Pro*COBOL Precompiler Programmer’s Guide

variable-length string
integer

integer

integer

floating point number

packed decimal

display

national character string
n-national character string
binary LOB

character LOB

national character LOB
external binary file

Host Variables

Table 4-7 Compatible Oracle Internal Datatypes

Internal
Datatype Notes COBOL Datatype Description
NUMBER PIC S9...9 COMP integer
NUMBER (p,s) 3) PIC S9(n) COMP
PIC S9...9 BINARY integer
PIC S9(n) BINARY
PIC S9...9 COMP-5 integer
PIC S9(n) COMP-5
COMP-1 floating point number
COMP-2
PIC S9...9V9...9 COMP-3 packed decimal
PIC S9(n)V9(n) COMP-3
PIC S9...9V9...9 DISPLAY display
PIC S9(n)V9(n) DISPLAY
PIC [X..X] N..N | G..G] character string (4)
PIC [X(n) | N(n) | G(n)] n-character string (4)
PIC X..X VARYING variable-length string
PIC X(n) VARYING n-byte variable-length string
DATE (5) PIC X(n) n-byte character string
LONG
RAW 1) PIC X..X VARYING n-byte variable-length string
LONG RAW
ROWID (6) SQL-ROWID universal rowid
Notes:

1. <=x<=2000 bytes, default is 1. 1<=y <=4000 bytes, default is 1.
2. 1<=u<=2000 bytes, default is 1. 1<=v<=4000 bytes, default is 1.

3. pranges from 2 to 38. s ranges from -84 to 127.

Datatypes and Host Variables 4-21

Host Variables

4. Strings can be converted to NUMBERs only if they consist of convertible
characters — 0 to 9, period (.), +, -, E, e. The NLS settings for your system might
change the decimal point from a period (.) to a comma (,).

5. When converted to a string type, the default size of a DATE depends on the
NCHAR settings in effect on your system. When converted to a binary value,
the length is 7 bytes.

6. When converted to a string type, a ROWID requires from 18 to 4000 bytes.

Example Declarations

In the following example, you declare several host variables for use later in your
Pro*COBOL program:

01 STR1 PICX(3).

01 STR2 PIC X(3) VARYING.
01 NUM1 PIC S9(5) COMP.
01 NUM2 COMP-1.

01 NUM3 COMP-2.

You can also declare one-dimensional tables of simple COBOL types, as the next
example shows:

01 XMP-TABLES.
05 TAB1 PIC XXX OCCURS 3 TIMES.
05 TAB2 PIC XXX VARYING OCCURS 3 TIMES.
05 TAB3 PIC S999 COMP-3 OCCURS 3 TIMES.

Initialization
You can initialize host variables, except pseudo-type host variables, using the
VALUE clause, as shown in the following example:

01 USERNAME PIC X(10) VALUE "SCOTT".
01 MAX-SALARY PIC S9(4) COMP VALUE 5000.

If a string value assigned to a character variable is shorter than the declared length
of the variable, the string is blank-padded on the right. If the string value assigned
to a character variable is longer than the declared length, the string is truncated.

No error or warning is issued, but any VALUES clause on a pseudo-type variable is
ignored and discarded.

4-22 Pro*COBOL Precompiler Programmer’s Guide

Host Variables

Restrictions

You cannot use alphabetic character (PIC A) variables or edited data items as host

variables. Therefore, the following variable declarations cannot be made for host
variables:

01 AMOUNT-OF-CHECK PIC ***0.99,
01 FIRST-NAME PICA(10).
01 BIRTH-DATE PIC 99/99/99.

Referencing Host Variables

You use host variables in SQL data manipulation statements. A host variable must be

prefixed with a colon (?) in SQL statements but must not be prefixed with a colon in COBOL
statements, as this example shows:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
01 EMP-NAME PIC X(10) VALUE SPACE.

01 SALARY PIC S9(5)V99 COMP-3.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

DISPLAY "Employee number? " WITH NO ADVANCING.
ACCEPT EMP-NUMBER.
EXEC SQL SELECT ENAME, SAL
INTO :EMP-NAME, :SALARY FROM EMP
WHERE EMPNO =:EMP-NUMBER
END-EXEC.
COMPUTE BONUS =SALARY / 10.

Though it might be confusing, you can give a host variable the same name as a table
or column, as the following example shows:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMPNO PIC S9(4) COMP VALUE ZERO.
01 ENAME PIC X(10) VALUE SPACE.

Datatypes and Host Variables 4-23

Host Variables

01 COMM PIC S9(5)V99 COMP-3.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

EXEC SQL SELECT ENAME, COMM
INTO :ENAME, :COMM FROM EMP
WHERE EMPNO =:EMPNO

END-EXEC.

Group Items as Host Variables

Pro*COBOL allows the use of group items in embedded SQL statements. Group
items with elementary items (containing only one level) can be used as host
variables. The host group items (also referred to as host structures) can be
referenced in the INTO clause of a SELECT or a FETCH statement, and in the
VALUES list of an INSERT statement. When a group item is used as a host variable,
only the group name is used in the SQL statement. For example, given the
following declaration

01 DEPARTURE.
05HOUR PICX(2).
05 MINUTE PIC X(2).

the following statement is valid:

EXEC SQL SELECT DHOUR, DMINUTE
INTO :DEPARTURE
FROM SCHEDULE
WHERE ...

The order that the members are declared in the group item must match the order
that the associated columns occur in the SQL statement, or in the database table if
the column list in the INSERT statement is omitted. Using a group item as a host
variable has the semantics of substituting the group item with elementary items. In
the above example, it would mean substituting :DEPARTURE with
:DEPARTURE.HOUR, :DEPARTURE.MINUTE.

Group items used as host variables can contain host tables. In the following
example, the group item containing tables is used to INSERT three entries into the
SCHEDULE table:

01 DEPARTURE.
05 HOUR PIC X(2) OCCURS 3 TIMES.
05 MINUTE PIC X(2) OCCURS 3 TIMES.

4-24 Pro*COBOL Precompiler Programmer’s Guide

Host Variables

EXEC SQL INSERT INTO SCHEDULE (DHOUR, DMINUTE)
VALUES (DEPARTURE) END-EXEC.

If VARCHAR=YES is specified, Pro*COBOL will recognize implicit VARCHARs. If
the nested group item declaration resembles a VARCHAR host variable, then the
entire group item is treated like an elementary item of VARYING type. See
"VARCHAR" on page 14-42.

When referencing elementary items instead of the group items as host variables
elementary names need not be unique because you can qualify them using the
following syntax:

<group_item>.<elementary_item>

This naming convention is allowed only in SQL statements. It is similar to the IN (or
OF) clause in COBOL, examples of which follow:

MOVE MINUTE IN DEPARTURE TO MINUTE-OUT.
DISPLAY HOUR OF DEPARTURE.

The COBOL IN (or OF) clause is not allowed in SQL statements. Qualify elementary
names to avoid ambiguity. For example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 DEPARTURE.

05 HOUR PICX(2).

05 MINUTE PIC X(2).
01 ARRIVAL.

05 HOUR PICX().

05 MINUTE PIC X(2).

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL SELECT DHR, DMIN INTO :DEPARTURE.HOUR, :DEPARTURE.MINUTE
FROM TIMETABLE
WHERE ...

Restrictions

A host variable cannot substitute for a column, table, or other object in a SQL
statement and must not be an Oracle8i reserved word. See Appendix C, "Reserved
Words, Keywords, and Namespaces'for a list of reserved words and keywords.

Datatypes and Host Variables 4-25

Indicator Variables

Indicator Variables

You can associate any host variable with an optional indicator variable. Each time
the host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

You use indicator variables in the VALUES or SET clause to assign NULLSs to input
host variables and in the INTO clause to detect NULLSs (or truncated values for
character columns) in output host variables.

Using Indicator Variables

Here are the values indicator variables can take on.

OnInput The values your program can assign to an indicator variable have the
following meanings:

-1 Oracle will assigh a NULL to the column, ignoring the value of
the host variable.

>=0 Oracle will assign the value of the host variable to the column.

On Output T he values Oracle can assign to an indicator variable have the following

meanings:

-1 The column value is NULL, so the value of the host variable is
indeterminate.

0 Oracle assigned an intact column value to the host variable.

>0 Oracle assigned a truncated column value to the host variable.
The integer returned by the indicator variable is the original
length of the column value, and SQLCODE in SQLCA is set to
zero.

-2 Oracle assigned a truncated column variable to the host

variable, but the original column value could not be
determined (a LONG column, for example).

Declaring Indicator Variables

An indicator variable must be explicitly declared as PIC S9(4) COMP and must not
be a reserved word. In the following example, you declare an indicator variable
named COMM-IND (the name is arbitrary):

4-26 Pro*COBOL Precompiler Programmer’s Guide

Using Indicator Variables

WORKING-STORAGE SECTION.

01 EMP-NAME PIC X(10) VALUE SPACE.
01 SALARY PIC S9(5)V99 COMP-3.

01 COMMISSION PIC S9(5)Va9 COMP-3.
01 COMMHND PIC S9(4) COMP.

Referencing Indicator Variables

In SQL statements, an indicator variable must be prefixed with a colon and
appended to its associated host variable. In COBOL statements, an indicator
variable must not be prefixed with a colon or appended to its associated host variable. An
example follows:

EXEC SQL SELECT SAL, COMM
INTO :SALARY, :COMMISSION:COMM-IND FROM EMP
WHERE EMPNO =:EMP-NUMBER
END-EXEC.
IFCOMM-IND =-1
COMPUTE PAY = SALARY
ELSE
COMPUTE PAY =SALARY + COMMISSION.

To improve readability, you can precede any indicator variable with the optional
keyword INDICATOR. You must still prefix the indicator variable with a colon. The
correct syntax is

<host_variable>INDICATOR:<indicator_variable>

and is equivalent to

<host variable>:<indicator_variable>

You can use both forms of expression in your host program.

Restriction

Indicator variables cannot be used in the WHERE clause to search for NULLs. For
example, the following DELETE statement triggers an error at run time:

* Setindicator variable.
COMM-IND =-1
EXEC SQL
DELETE FROM EMP WHERE COMM = :COMMISSION:COMM-IND
END-EXEC.

Datatypes and Host Variables 4-27

Using Indicator Variables

The correct syntax follows:

EXEC SQL
DELETE FROM EMP WHERE COMM IS NULL
END-EXEC.

Oracle8/ Restrictions

If you SELECT or FETCH a NULL into a host variable that has no indicator,
Oracle8i issues an error message.

You can disable the error message by also specifying UNSAFE_NULL=YES on the
command line. For more information, see Chapter 14, "Precompiler Options".

ANSI Requirements

When MODE=ORACLE, if you SELECT or FETCH a truncated column value into a
host variable that is not associated with an indicator variable, Oracle8i issues an
error message.

However, when MODE={ANSI | ANSI14 | ANSI13}, no error is generated. Values
for indicator variables are discussed in Chapter 5, "Embedded SQL".

Indicator Variables for Multi-Byte NCHAR Variables

Indicator variables for multi-byte NCHAR character variables can be used as with
any other host variable. However, a positive value (the result of a SELECT or
FETCH was truncated) represents the string length in multi-byte characters instead
of 1-byte characters.

Indicator Variables with Host Group Items

To use indicator variables with a host group item, either setup a second group item
that contains an indicator variable for each nullable variable in the group item or
use a table of half-word integer variables. You do NOT have to have an indicator
variable for each variable in the group item, but the nullable fields which you wish
to use indicators for must be placed at the beginning of the data group item. The
following indicator group item can be used with the DEPARTURE group item:

01 DEPARTURE-IND.
05 HOUR-IND PIC S9(4) COMP.
05 MINUTE-IND PIC S9(4) COMP.

4-28 Pro*COBOL Precompiler Programmer’s Guide

VARCHAR Variables

If you use an indicator table, you do NOT have to declare a table of as many
elements as there are members in the host group item. The following indicator table
can be used with the DEPARTURE group item:

01 DEPARTURE-IND PIC S9(4) COMP OCCURS 2 TIMES.
Reference the indicator group item in the SQL statement in the same way that a host
indicator variable is referenced:

EXEC SQL SELECT DHOUR, DMINUTE
INTO :DEPARTURE:DEPARTURE-IND
FROM SCHEDULE
WHERE ...

When the query completes, the NULL/NOT NULL status of each selected
component is available in the host indicator group item. The restrictions on
indicator host variables and the ANSI requirements also apply to host indicator
group items.

VARCHAR Variables

COBOL string datatypes are fixed length. However, Pro*COBOL lets you declare a
variable-length string pseudo-type called VARCHAR.

Declaring VARCHAR Variables

You define a VARCHAR host variable by adding the keyword VARYING to its
declaration, as shown in the following example:

01 ENAME PIC X(15) VARYING.
Note: PIC N and PIC G are not allowed in definitions that use VARYING. To see

how to correctly use PIC N and PIC G in VARCHAR variables, see "Implicit
VARCHAR Group Items" on page 4-30

The COBOL VARYING phrase is used in PERFORM and SEARCH statements to
increment subscripts and indexes. Do not confuse this with the ProxCOBOL
VARYING clause in the preceding example.

VARCHAR is an extended Pro*COBOL datatype or pre-declared group item. For
example, Pro*COBOL expands the VARCHAR declaration

01 ENAME PIC X(15) VARYING.

into a group item with length and string fields, as follows:

Datatypes and Host Variables 4-29

VARCHAR Variables

01 ENAME.
05 ENAME-LEN PIC S9(4) COMP.
05 ENAME-ARR PIC X(15).

The length field (suffixed with -LEN) holds the current length of the value stored in the
string field (suffixed with -ARR). The maximum length in the VARCHAR host-variable
declaration must be in the range of 1 to 65533 bytes.

The advantage of using VARCHAR variables is that you can explicitly set and
reference the length field. With input host variables, Pro*COBOL reads the value of
the length field and uses that many characters of the string field. With output host
variables, Pro*COBOL sets the length value to the length of the character string
stored in the string field.

Implicit VARCHAR Group Items

Pro*COBOL implicitly recognizes some group items as VARCHAR host variables
when the precompiler option VARCHAR=YES is specified on the command line.
For variable-length single-byte character types, use the following structure (length
expressed in single-byte characters):

<nn> DATA-NAME-1.
49 DATA-NAME-2 PIC S9(4) COMP.
49 DATA-NAME-3 PIC X(<length>).

nn must be 01 through 48.

For variable-length multi-byte NCHAR characters, use these formats (length is
expressed in double-byte characters):

<nn>DATA-NAME-1.
49 DATANAME-2 PIC S9(4) COMP.
49 DATA-NAME-3 PIC N(<length>).

<nn>DATA-NAME-L.
49 DATA-NAME-2 PIC S9(4) COMP.
49 DATA-NAME-3 PIC G(<length>).

The elementary items in these group-tem structures must be declared as level

49 for Pro*COBOL to recognize them as VARCHAR host variables.

The VARCHAR=YES command line option must be specified for Pro*COBOL to
recognize the extended form of the VARCHAR group items. If VARCHAR=NO,
then any declarations that resemble the above formats will be interpreted as regular
group items. If VARCHAR=YES and a group item declaration format looks similar
(but not identical) to the extended VARCHAR format, then the item will be

4-30 Pro*COBOL Precompiler Programmer’s Guide

VARCHAR Variables

interpreted as a regular group item rather than a VARCHAR group item. For
example, if VARCHAR=YES is specified and you write the following:

01 lastname
48 lastname-en PIC S9(4) USAGE COMP.
48 lastname-text PIC X(15).

then, since level 48 instead of 49 is used for the group item elements, the item is
interpreted as a regular group item rather than a VARCHAR group item.

For more information about the Pro*COBOL VARCHAR option, see Chapter 14,
"Precompiler Options"

Referencing VARCHAR Variables

In SQL statements, you reference a VARCHAR variable using the group name
prefixed with a colon, as the following example shows:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PART-NUMBER PIC X(5).
01 PART-DESC PIC X(20) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

EXEC SQL
SELECT PDESC INTO :PART-DESC FROM PARTS
WHERE PNUM = :PART-NUMBER

END-EXEC.

After the query executes, PART-DESC-LEN holds the actual length of the character
string retrieved from the database and stored in PART-DESC-ARR.

In COBOL statements, you can reference VARCHAR variables using the group
name or the elementary items, as this example shows:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-TABLES.
05 EMP-NAME OCCURS 50 TIMES PIC X(15) VARYING.

Datatypes and Host Variables 4-31

Handling Character Data

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

PERFORM DISPLAY-NAME
VARYING JFROM 1 BY 1 UNTIL J>NAME-COUNT.

DISPLAY-NAME.
DISPLAY EMP-NAME-ARR OF EMP-NAME(J).

Handling Character Data

This section explains how Pro*COBOL handles character host variables. There are
two kinds of single-byte character host variables and two kinds of multi-byte NLS
character host variables:

« PIC X(n) (or PIC X...X)
« PIC X(n) VARYING (or PIC X..X VARYING)
« PIC N(n) (or PICN..N) or PIC G(n) (or PIC G...G)

Attention: Before using multi-byte NCHAR datatypes, verify that the PIC N or
PIC G datatype is supported by your COBOL compiler.

Default for PIC X

The default datatype of PIC X variables is CHARF (was VARCHAR?2 before release
8.0.) The precompiler command line option, PICX, is provided for backward
compatibility. PICX can be entered only on the command line or in a configuration
file. See "PICX" on page 14-35 for more details.

Effects of the PICX Option

The PICX option determines how Pro*COBOL treats data in character strings. The
PICX option allows your program to use ANSI fixed-length strings or to maintain
compatibility with previous versions of the database server and Pro*COBOL.

You must use PICX=VARCHAR2 (not the default) to obtain the same results as
releases of Pro*xCOBOL before 8.0. Or, use

EXEC SQL <vamame> IS VARCHAR2 END-EXEC.

for each variable.

4-32 Pro*COBOL Precompiler Programmer’s Guide

Handling Character Data

Fixed-Length Character Variables

Fixed-length character variables are declared using the PIC X(n) and PIC G(n) and
PIC N(n) datatypes. These types of variables handle character data based on their roles as
input or output variables.

On Input

When PICX=VARCHARZ2, the program interface strips trailing blanks before
sending the value to the database. If you insert into a fixed-length CHAR column,
Pro*COBOL re-appends trailing blanks up to the length of the database column.
However, if you insert into a variable-length VARCHAR?2 column, Pro*xCOBOL
never appends blanks.

When PICX=CHAREF, trailing blanks are never stripped.

Make sure that the input value is not trailed by extraneous characters. For example,
NULLSs are not stripped and are inserted into the database. Normally, this is not a
problem because when a value is ACCEPTed or MOVEGd into a PIC X(n) variable,
COBOL appends blanks up to the length of the variable.

The following example illustrates the point:
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMPLOYEES.

05 EMP-NAME PIC X(10).

05 DEPT-NUMBER PIC S9(4) VALUE 20 COMP.

05 EMP-NUMBER PIC S9(9) VALUE 9999 COMP.

05 JOBNAME PICX(8).

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

DISPLAY "Employee name? " WITH NO ADVANCING.
ACCEPT EMP-NAME.
* Assume that the name MILLER was entered
* EMP-NAME contains "MILLER " (4 trailing blanks)
MOVE "SALES" TO JOB-NAME.
* JOB-NAME now contains "SALES " (3 tralling blanks)
EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO, JOB)
VALUES (EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER, :JOB-NAME
END-EXEC.

Datatypes and Host Variables 4-33

Handling Character Data

If you precompile the last example with PICX=VARCHAR?2 and the target database
columns are VARCHAR?2, the program interface strips the trailing blanks on input
and inserts just the 6-character string "MILLER" and the 5-character string "SALES"
into the database. However, if the target database columns are CHAR, the strings
are blank-padded to the width of the columns.

If you precompile the last example with PICX=CHARF and the JOB column is
defined as CHAR(10), the value inserted into that column is "SALES##H##" (five
trailing blanks). However, if the JOB column is defined as VARCHAR2(10), the
value inserted is "SALES###" (three trailing blanks), because the host variable is
declared as PIC X(8). This might not be what you want, so be careful.

On Output

The PICX option has no effect on output to fixed-length character variables. When
you use a PIC X(n) variable as an output host variable, Pro*COBOL blank-pads it. In our
example, when your program fetches the string "MILLER" from the database, EMP-NAME
contains the value "MILLER###" (with four trailing blanks). This character string can be
used without change as input to another SQL statement.

Varrying-Length Variables

VARCHAR variables handle character data based on their roles as input or output
variables.

On Input

When you use a VARCHAR variable as an input host variable, your program must
assign values to the length and string fields of the expanded VARCHAR
declaration, as shown in the following example:

IFENAME-AND =-1
MOVE "NOT AVAILABLE" TO ENAME-ARR
MOVE 13 TO ENAME-LEN.

You need not blank-pad the string variable. In SQL operations, Pro*xCOBOL uses
exactly the number of characters given by the length field, counting any spaces.

Host input variables for multi-byte NLS data are not stripped of trailing double-byte
spaces. The length component is assumed to be the length of the data in characters, not

bytes.

4-34 Pro*COBOL Precompiler Programmer’s Guide

User-Specified Runtime Contexts

On Output
When you use a VARCHAR variable as an output host variable, Pro*COBOL sets
the length field. An example follows:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMPNO PIC S9(4) COMP.
01 ENAME PIC X(15) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

EXEC SQL
SELECT ENAME INTO :ENAME FROM EMP
WHERE EMPNO = EMPNO

END-EXEC.

IF ENAME-LEN =0
MOVE FALSE TO VALID-DATA.

An advantage of VARCHAR variables over fixed-length strings is that the length of
the value returned by Pro*COBOL is available right away. With fixed-length strings,
to get the length of the value, your program must count the number of characters.

Host output variables for multi-byte NCHAR data are not padded at all. The length of
the buffer is set to the length in characters, not bytes.

User-Specified Runtime Contexts

Starting with release 8.1, Pro*COBOL allows multithreaded Pro*C/C++ programs
to call COBOL subprograms, using the arguments defined in the Linkage Section of
the subprogram. One of these arguments can be the context.

Note: Multithreaded applications are not supported in Pro*COBOL.

A runtime context, usually simply called a context, is a handle to an area in client
memory which contains zero or more connections, zero or more cursors, their inline
options (such as MODE, HOLD_CURSOR, RELEASE_CURSOR,
SELECT_CURSOR, etc.) and other additional state information.

To define a context host variable use pseudotype SQL-CONTEXT. For example:
01 MY-CONTEXT SQL-CONTEXT.

Datatypes and Host Variables 4-35

Universal ROWIDs

Use the CONTEXT ALLOCATE precompiler directive to allocate and initialize
memory for a context:

EXEC SQL CONTEXT ALLOCATE : context END-EXEC.
where context is a host variable that is a handle to the runtime context. An
example is:

EXEC SQL CONTEXT ALLOCATE :MY-CONTEXT END-EXEC.
Use the CONTEXT USE precompiler directive to define which context is to be used
by the embedded SQL statements from that point on in the source file, not in the

flow of program logic. That context value is used until another CONTEXT USE
statement is encountered. The syntax is:

EXEC SQL CONTEXT USE {: context | DEFAULT} END-EXEC.
The keyword DEFAULT specifies that the default (also known as the global) context
is to be used in all the embedded SQL statements that will be executed

subsequently, until another CONTEXT USE directive is encountered. A simple
example is:

EXEC SQL CONTEXT USE :MY-CONTEXT END_EXEC.
If the context variable MY-CONTEXhas not been defined and allocated already, an
error is returned.

The CONTEXT FREE statement frees the memory used by the context after it is no
longer needed:

EXEC SQL CONTEXT FREE : context END-EXEC.

An example using our variable is:

EXEC SQL CONTEXT FREE :MY-CONTEXT END-EXEC.

Universal ROWIDs

There are two kinds of table organization used in the database server: heap tables
and index-organized tables.

Heap tables are the default. This is the organization used in all tables before
Oracle8. The physical row address (ROWID) is a permanent property that is used to
identify a row in a heap table. The external character format of the physical ROWID
is an 18-byte character string in base-64 encoding.

4-36 Pro*COBOL Precompiler Programmer’s Guide

Universal ROWIDs

An index-organized table does not have physical row addresses as permanent
identifiers. A logical ROWID is defined for these tables. When you use a SELECT
ROWID ... statement from an index-organized table the ROWID is an opaque
structure that contains the primary key of the table, control information, and an
optional physical "guess". You can use this ROWID in a SQL statement containing a
clause such as "WHERE ROWID = ..." to retrieve values from the table.

The universal ROWID was introduced in the Oracle 8.1 release. Universal ROWID
can be used for both physical ROWID and logical ROWID. You can use universal
ROWIDs to access data in heap tables, or index-organized tables, since the table
organization can change with no effect on applications. The column datatype used
for ROWID is UROWID(length), where length is optional.

Use the universal ROWID in all new applications.

For more information on universal ROWIDs, see Oracle8i Concepts.

Declare a universal ROWID, which uses the pseudotype SQL-ROWID, this way:
01 MY-ROWID SQL-ROWID.

Memory for the universal ROWID is allocated with the ALLOCATE statement:
EXEC SQL ALLOCATE :MY-ROWID END-EXEC.

Use MY-ROWID in SQL DML statements like this:
EXEC SQL SELECT ROWID INTO :MY-ROWID FROM MYTABLE WHERE ... END-EXEC.

EXEC SQL UPDATE MYTABLE SET ... WHERE ROWID = :MY-ROWID END-EXEC.

Free the memory when you no longer need it with the FREE directive:

EXEC SQL FREE :MY-ROWID END-EXEC.
You also have the option of using a character host variable of width between 1 and
4000 as the host bind variable for universal ROWID. Character-based universal
ROWIDs are supported for heap tables only for backwards compatibility. Because a

universal ROWID can be variable length there can be truncation when it is selected.
For a more complete discussion of this variable see Oracle8i Concepts.

Use the character variable like this:

01 MY-ROWID-CHAR PIC X(4000) VARYING.

EXEC SQL ALLOCATE :MY-ROWID-CHAR;
EXEC SQL SELECT ROWID INTO :MY-ROWID-CHAR FROM MYTABLE WHERE ... END-EXEC.

Datatypes and Host Variables 4-37

Universal ROWIDs

EXEC SQL UPDATE MYTABLE SET ... WHERE ROWID = :MY-ROWID-CHAR END-EXEC.

EXEC SQL FREE :MY-ROWID-CHAR,;

Subprogram SQLROWIDGET

The Oracle subprogram SQLROWIDGET allows you to retrieve the ROWID of the
last row inserted, updated, or selected. SQLROWIDGET requires a context and a
ROWID that were both declared as its arguments. To use the default context, move
ZERO to a variable of type SQL-CONTEXT first.

Note: The universal ROWID must be declared and allocated before the call. The
context must be declared and allocated before the call. Here is the syntax of the call:

CALL "SQLROWIDGET" USING context rowid

where

context(IN)

is the runtime context variable, of pseudotype SQL-CONTEXT.
rowid (OUT)

is a universal ROWID variable, of pseudotype SQL-ROWID. When a normal
execution finishes, this will point to a valid universal ROWID. In case of an error,
MY-ROWID is undefined.

Here is a sample showing this subprogram’s usage:
01 MY-ROWID SQL-ROWID.
01 MY-CONTEXT SQL-CONTEXT.

EXEC SQL ALLOCATE :MY-ROWID END-EXEC.

EXEC SQL CONTEXT ALLOCATE :MY-CONTEXT END-EXEC.

EXEC SQL CONTEXT USE :MY-CONTEXT END-EXEC.
*INSERT, or UPDATE or DELETE Goes here:

CALL "SQLROWIDGET" USING MY-CONTEXT MY-ROWID.
* MY-ROWID now has the universal rowid descriptor for the last row

EXEC SQL CONTEXT FREE :MY-CONTEXT END-EXEC.
EXEC SQL FREE :MY-ROWID END-EXEC.

4-38 Pro*COBOL Precompiler Programmer’s Guide

National Language Support

National Language Support

Although the widely-used 7-bit or 8-bit ASCII and EBCDIC character sets are
adequate to represent the Roman alphabet, some Asian languages, such as
Japanese, contain thousands of characters. These languages require 16 bits or more,
to represent each character. How does Oracle8i deal with such dissimilar
languages?

Oracle8i provides National Language Support (NLS), which lets you process
single-byte and multi-byte character data and convert between character sets. It also
lets your applications run in different language environments. With NLS, number
and date formats adapt automatically to the language conventions specified for a
user session. Thus, NLS allows users around the world to interact with Oracle8i in
their native languages.

You control the operation of language-dependent features by specifying various
NLS parameters. You can set default parameter values in the initialization file.
Table 4-8 shows what each NLS parameter specifies.

Table 4-8 NLS Parameters

NLS Parameter Specifies

NLS_LANGUAGE language-dependent conventions
NLS_TERRITORY territory-dependent conventions
NLS DATE_FORMAT date format

NLS DATE_LANGUAGE language for day and month names

NLS_NUMERIC_CHARACTERS decimal character and group separator

NLS_CURRENCY local currency symbol
NLS_ISO_CURRENCY I1SO currency symbol
NLS_SORT sort sequence

The main parameters are NLS_LANGUAGE and NLS_TERRITORY.
NLS_LANGUAGE specifies the default values for language-dependent features,
which include

« language for Server messages
« language for day and month names

. sort sequence

Datatypes and Host Variables 4-39

National Language Support

NLS_TERRITORY specifies the default values for territory-dependent features,
which include

« date format

« decimal character

= group separator

« local currency symbol
« ISO currency symbol

You can control the operation of language-dependent NLS features for a user
session by specifying the parameter NLS_LANG as follows

NLS_LANG = <language>_<tenitory>.<character set>

where language specifies the value of NLS_LANGUAGE for the user session, territory
specifies the value of NLS_TERRITORY, and character set specifies the encoding scheme used
for the terminal. An encoding scheme (usually called a character set or code page) is a range of
numeric codes that corresponds to the set of characters a terminal can display. It also includes
codes that control communication with the terminal.

You define NLS_LANG as an environment variable (or the equivalent on your
system). For example, on UNIX using the C shell, you might define NLS_LANG as
follows:

setenvNLS_LANG French_France WESISO8859P1

To change the values of NLS parameters during a session, you use the ALTER
SESSION statement as follows:

ALTER SESSION SET <nls_parameter> = <value>

Pro*COBOL fully supports all the NLLS features that allow your applications to
process multilingual data stored in an Oracle8i database. For example, you can
declare foreign-language character variables and pass them to string functions such
as INSTRB, LENGTHB, and SUBSTRB. These functions have the same syntax as the
INSTR, LENGTH, and SUBSTR functions, respectively, but operate on a per-byte
basis rather than a per-character basis.

You can use the functions NLS_INITCAP, NLS_LOWER, and NLS_UPPER to
handle special instances of case conversion. And, you can use the function
NLSSORT to specify WHERE-clause comparisons based on linguistic rather than
binary ordering. You can even pass NLS parameters to the TO_CHAR, TO_DATE,

4-40 Pro*COBOL Precompiler Programmer’s Guide

Multi-Byte NLS Character Sets

and TO_NUMBER functions. For more information about NLS, see the Oracle8i
Application Developer’s Guide - Fundamentals.

Multi-Byte NLS Character Sets

Pro*COBOL extends support for multi-byte NLS character sets through

« recognition of multi-byte character strings by Pro*COBOL in embedded SQL
statements.

« the COBOL PIC N and PIC G datatype declaration clauses, that instruct
Pro*COBOL to interpret host character variables as strings of multi-byte
characters.

« the NLS_NCHAR environment variable. Equate it to the client-side character
set used in PIC N or PIC G.

Variable-width National Character Sets are not supported.

Restrictions When NLS_LOCAL=YES

When the precompiler option NLS_LOCAL is YES, the runtime library (SQLLIB)
performs blank-padding and blank-stripping for NLS multi-byte datatypes.

When NLS_LOCAL=YES, multi-byte NCHAR features are not supported within a
PL/SQL block. These features include N-quoted character literals and fixed-length
character variables.

These restrictions then apply:

Tables Disallowed. Host variables declared using the PIC N or PIC G datatype
must not be tables.

No Odd-Byte Widths. Oracle8i CHAR columns should not be used to store
multi-byte NCHAR characters. A run-time error is generated if data with an odd
number of bytes is FETCHed from a single-byte column into a multi-byte NCHAR
host variable.

No Host Variable Equivalencing. Multi-byte NCHAR character variables cannot be
equivalenced using an EXEC SQL VAR statement.

No Dynamic SQL. Dynamic SQL is not available for NCHAR multi-byte character
string host variables in Pro*COBOL.

Functions should not be used on columns that store multi-byte NLS data.

Datatypes and Host Variables 4-41

Multi-Byte NLS Character Sets

Character Strings in Embedded SQL

A multi-byte NLS character string in an embedded SQL statement consists of the
letter N, followed by the string enclosed in single quotes.

For example,

EXEC SQL
SELECT EMPNO INTO :EMP-NUM FROM EMP
WHERE ENAME=N'<NLS_string>

END-EXEC.

Embedded DDL

When the precompiler option, NLS_LOCAL=YES, columns storing NCHAR data
cannot be used in embedded data definition language (DDL) statements. This
restriction cannot be enforced when precompiling, so the use of extended column
types, such as NCHAR, within embedded DDL statements results in an execution
error rather than a precompile error.

For more information about these options, see their entries in Chapter 14,
"Precompiler Options".

Blank Padding

When a Pro*COBOL character variable is defined as a multi-byte NLS variable, the
following blank padding and blank stripping rules apply, depending on the
external datatype of the variable. See the section "Handling Character Data" on
page 4-32.

CHAREF. Input data is stripped of any trailing double-byte spaces. However, if a
string consists only of multi-byte spaces, a single multi-byte space is left in the
buffer to act as a sentinel.

Output host variables are blank padded with multi-byte spaces.

VARCHAR. On input, host variables are not stripped of trailing double-byte spaces.
The length component is assumed to be the length of the data in characters, not
bytes.

On output, the host variable is not blank padded at all. The length of the buffer is
set to the length of the data in characters, not bytes.

STRING/LONG VARCHAR. These host variables are not supported for NLS data,
since they can only be specified using dynamic SQL or datatype equivalencing,
neither of which is supported for NLS data.

4-42 Pro*COBOL Precompiler Programmer's Guide

Datatype Conversion

Indicator Variables

You can use indicator variables with multi-byte NLS character variables as use you
would with any other variable, except column length values are expressed in
characters instead of bytes. For a list of possible values, see "Using Indicator
Variables" on page 5-3.

Datatype Conversion

At precompile time, an external datatype is assigned to each host variable. For
example, Pro*COBOL assigns the INTEGER external datatype to host variables of
type PIC S9(n) COMP. At run time, the datatype code of every host variable used in
a SQL statement is passed to Oracle8i. Oracle8i uses the codes to convert between
internal and external datatypes.

Before assigning a SELECTed column value to an output host variable, Oracle8i
must convert the internal datatype of the source column to the datatype of the host
variable. Likewise, before assigning or comparing the value of an input host
variable to a column, Oracle8i must convert the external datatype of the host
variable to the internal datatype of the target column.

Conversions between internal and external datatypes follow the usual data
conversion rules. For example, you can convert a CHAR value of "1234" to a PIC
S9(4) COMP value. You cannot, however, convert a CHAR value of "65543" (number
too large) or "10F" (number not decimal) to a PIC S9(4) COMP value. Likewise, you
cannot convert a PIC X(n) value that contains alphabetic characters to a NUMBER
value.

The datatype of the host variable must be compatible with that of the database
column. It is your responsibility to make sure that values are convertible. For
example, if you try to convert the string value "YESTERDAY" to a DATE column
value, you get an error. Conversions between internal and external datatypes follow
the usual data conversion rules. For instance, you can convert a CHAR value of
"1234" to a 2-byte integer. But, you cannot convert a CHAR value of "65543"
(number too large) or "10F" (number not decimal) to a 2-byte integer. Likewise, you
cannot convert a string value that contains alphabetic characters to a NUMBER
value.

Number conversion follows the conventions specified by National Language
Support (NLS) parameters in the Oracle8i initialization file. For example, your
system might be configured to recognize a comma (,) instead of a period (.) as the
decimal character. For more information about NLS, see the Oracle8i Application
Developer’s Guide - Fundamentals.

Datatypes and Host Variables 4-43

Datatype Conversion

The following table shows the supported conversions between internal and external
datatypes.

Table 4-9 Conversions Between Internal and External Datatypes

Internal

CHAR DATE LONG LONG NUMBER RAW ROWID VARCHAR2
External RAW
CHAR 170 Z)O 170 1(3) 170 I/0(3) 1I/10(1) 1/0
CHARF 170 g)o 170 1(3) 170 I/0(3) 1/0() 1I/0
CHARZ 170 Z)O 170 1(3) 170 I/0(3) I/0(1) 1/0
DATE 170 170 | 170
DECIMAL 1/0 (4) | 170 170 (4)
DISPLAY 170 (4)) | 170 170 (4)
FLOAT 170 (4) | (Vfe) 170 (4)
INTEGER 170 (4) | (Vfe) 170 (4)
LONG 170 g)o 170 135 I/0 I/0(3) 1/0(1) 1/0
LONG RAW O(6) 1(56) 170 170 O (6)
LONG 170 170(2) 170 1(3,5) 170 170(3)) 110 /O
VARCHAR
LONG 170 (6) 1(56) 170 170 170 (6)
VARRAW
NUMBER 170 (4) | 170 170 (4)
RAW 170 (6) 1(56) 1/0 170 170 (6)
ROWID | | 170 |
STRING 170 g)o 170 I 35) I/0 I/0(3) 1/0(1) 1/0
UNSIGNED 170 (4) | 170 170 (4)
VARCHAR 170 g)O 170 1(3,5) 170 2}50 170

4-44 Pro*COBOL Precompiler Programmer’s Guide

Explicit Control Over DATE String Format

Table 4-9 Conversions Between Internal and External Datatypes

VARCHAR2 I/0 170 170 1(3) 1/0 I/03) I10(1) 1I/0
2

VARNUM 170 (4) | 1/0 170 (4)

VARRAW 170 (6) 1 (5,6) 170 170 170 (6)

Notes:

1. 1. Oninput, host string must be in
Oracle’BBBBBBBB.RRRR.FFFF’' format.

1. Onoutput, column value is returned in same format.

N

2. On input, host string must be the default DATE character
format.

On output, column value is returned in same format

3. On input, host string must be in hex format.

On output, column value is returned in same format.

4. On output, column value must represent a valid number.
5. On input, length must be less than or equal to 2000.

6. On input, column value is stored in hex format.

© ® N o 0 M W

On output, column value must be in hex format.

10. 7.0n input, host string must be a valid OS label in text Legend:
format. '
11. On output, column value is returned in same format. | =inputonly

12. 8. On input, host string must be a valid OS label in raw O = output only

format. 1/0 = input or output
13. On output, column value is returned in same format.

Explicit Control Over DATE String Format

When you select a DATE column value into a character host variable, Oracle8i must
convert the internal binary value to an external character value. So, Oracle8i
implicitly calls the SQL function TO_CHAR, which returns a character string in the
default date format. The default is set by the Oracle8i initialization parameter
NLS_DATE_FORMAT. To get other information such as the time or Julian date, you
must explicitly call TO_CHAR with a format mask.

A conversion is also necessary when you insert a character host value into a DATE
column. Oracle8i implicitly calls the SQL function TO_DATE, which expects the

Datatypes and Host Variables 4-45

Datatype Equivalencing

default date format. To insert dates in other formats, you must explicitly call
TO_DATE with a format mask.

For compatibility with other versions of SQL Pro*COBOL now provides the
following precompiler option to specify date strings:

DATE_FORMAT={ISO | USA | EUR | JIS | LOCAL | 'fmt’ (default LOCAL)}

The DATE_FORMAT option must be used on the command line or in a
configuration file. The date strings are shown in the following table:

Table 4-10 Formats for Date Strings

Format Name Abbreviation Date Format

International Standards Organization SO yyyy-mm-dd

USA standard USA mm/dd/yyyy

European standard EUR dd.mm.yyyy

Japanese Industrial Standard JIS yyyy-mm-dd
installation-defined LOCAL Any installation-defined form.

'fmt’ is a date format model, such as ’"Month dd, yyyy’. See the Oracle8i SQL
Reference for the list of date format model elements.

Note: All separately compiled units to be linked together must use the same DATE_FORMAT value.

Datatype Equivalencing

Datatype equivalencing lets you control the way Oracle8i interprets input data and
the way Oracle8i formats output data. You can equivalence supported COBOL
datatypes to external datatypes on a variable-by-variable basis.

Why Equivalence Datatypes?

Datatype equivalencing is useful in several ways. For example, suppose you want
to use a null-terminated host string in a COBOL program. You can declare a PIC X
host variable, then equivalence it to the external datatype STRING, which is always
null-terminated.

You can use datatype equivalencing when you want Oracle8i to store but not
interpret data. For example, if you want to store an integer host array in a LONG
RAW database column, you can equivalence the host array to the external datatype
LONG RAW.

4-46 Pro*COBOL Precompiler Programmer’s Guide

Datatype Equivalencing

In addition, you can use datatype equivalencing to override default datatype
conversions. Unless NLS parameters in the initialization file specify otherwise, if
you select a DATE column value into a character host variable, Oracle8i returns a
9-byte string formatted as follows:

DD-MON-YY
However, if you equivalence the character host variable to the DATE external

datatype, Oracle8i returns a 7-byte value in the internal format.

Host Variable Equivalencing

By default, Pro*COBOL assigns a specific external datatype to every host variable.
You can override the default assignments by equivalencing host variables to
external datatypes. This is called host variable equivalencing.

The syntax of the VAR embedded SQL statement is:

EXEC SQL
VAR <host_variable> IS <datatype>[CONVBUFSZ [IS] (<size>)]
END-EXEC

or

EXEC SQL VAR <host_variable> [CONVBUFSZ [IS] (<size>)] END-EXEC
where <datatype> is:

<SQL datatype> [({<length> | <precision>, <scale>})]

There must be at least one of the two clauses, or both.

where:

host_variable Is an input or output host variable (or host table) declared earlier.

The VARCHAR and VARRAW external datatypes have a 2-byte
length field followed by an n-byte data field, where n lies in the range 1 ..
65533. So, if type_name is VARCHAR or VARRAW, host_variable must be at
least 3 bytes long.

The LONG VARCHAR and LONG VARRAW external datatypes
have a 4-byte length field followed by an n-byte data field, where n lies
inthe range 1 .. 2147483643. So, if type_name is LONG VARCHAR or LONG
VARRAW, host_variable must be at least 5 bytes long.

SQL datatype Is the name of a valid external datatype such as RAW or STRING.

Datatypes and Host Variables 4-47

Datatype Equivalencing

length An integer literal specifying a valid length in bytes. The value of
length must be large enough to accommodate the external datatype.

When type_name is DECIMAL or DISPLAY, you must specify precision and
scale instead of length. When type_name is VARNUM, ROWID, or DATE,
you cannot specify length because it is predefined. For other external
datatypes, length is optional. It defaults to the length of host_variable.

When specifying length, if type_name is VARCHAR, VARRAW, LONG
VARCHAR, or LONG VARRAW, use the maximum length of the data field.
Pro*COBOL accounts for the length field. If type_name is LONG VARCHAR
or LONG VARRAW and the data field exceeds 65533 bytes, put "-1" in the
length field.

precision and scale Are integer literals that represent, respectively, the number of
significant digits and the point at which rounding will occur. For
example, a scale of 2 means the value is rounded to the nearest hundredth
(3.456 becomes 3.46); a scale of -3 means the number is rounded to the
nearest thousand (3456 becomes 3000).

You can specify a precision of 1 .. 99 and a scale of -84 .. 99. However, the
maximum precision and scale of a database column are 38 and 127,
respectively. So, if precision exceeds 38, you cannot insert the value of
host_variable into a database column. On the other hand, if the scale of a
column value exceeds 99, you cannot select or fetch the value into
host_variable.

Specify precision and scale only when type_name is DECIMAL or DISPLAY.

size An integer which is the size, in bytes, of a buffer used to perform
conversion of the specified host_variable to another character set.

Table 4-11 on page 4-50 shows which parameters to use with each external
datatype.

The CONVBUFSZ clause is explained in "CONVBUFSZ Clause in VAR Statement"
on page 4-49.

You cannot use EXEC SQL VAR with NCHAR host variables (those containing PIC
G or PIC N clauses).

If DECLARE_SECTION=TRUE then you must have a Declare Section and you must
place EXEC SQL VAR statements in the Declare Section.

For a syntax diagram of this statement, see "VAR (Oracle Embedded SQL
Directive)" on page F-89.

When ext_type_name is FLOAT, use length; when ext_type_name is DECIMAL, you
must specify precision and scale instead of length.

4-48 Pro*COBOL Precompiler Programmer’s Guide

Datatype Equivalencing

Host variable equivalencing is useful in several ways. For example, you can use it
when you want Oracle8i to store but not interpret data. Suppose you want to store a
host table of 4-byte integers in a RAW database column. Simply equivalence the
host table to the RAW external datatype, as follows:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-TABLES.
05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.

* Reset default datatype (INTEGER) to RAW.
EXEC SQL VAR EMP-NUMBER IS RAW (200) END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.

With host tables, the length you specify must match the buffer size required to hold
the table. In the last example, you specified a length of 200, which is the buffer size
needed to hold 50 4-byte integers.

You can also declare a group item to be used as a LONG VARCHAR:

01 MY-LONG-VARCHAR.
05 UC-LEN PIC S9(9) COMP.
05 UC-ARR PIC X(6000).
EXEC SQL VAR MY-LONG-VARCHAR IS LONG VARCHAR(G000).

CONVBUFSZ Clause in VAR Statement

The EXEC SQL VAR statement can have an optional CONVBUFSZ clause. You
specify the size, in bytes, of the buffer in the runtime library used to perform
conversion of the specified host variable between character sets.

When you have not used the CONVBUFSZ clause, the runtime automatically
determines a buffer size based on the ratio of the host variable character size
(determined by NLS_LANG) and the character size of the database character set.
This can sometimes result in the creation of a buffer of LONG size. Databases are
allowed to have only one LONG column. An error is raised if there is more than one
LONG value.

To avoid such errors, you use a length shorter than the size of a LONG. If a
character set conversion results in a value longer than the length specified by
CONVBUFSZ, then Pro*COBOL returns an error.

An Example

Suppose you want to select employee names from the EMP table, then pass them to
a C-language routine that expects null-terminated strings. You need not explicitly

Datatypes and Host Variables 4-49

Datatype Equivalencing

null-terminate the names. Simply equivalence a host variable to the STRING
external datatype, as follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-NAME PIC X(11).
EXEC SQL VAR EMP-NAME IS STRING (11) END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.

The width of the ENAME column is 10 characters, so you allocate the new
EMP-NAME 11 characters to accommodate the null terminator. (Here, length is
optional because it defaults to the length of the host variable.) When you select a
value from the ENAME column into EMP-NAME, Oracle8i null-terminates the
value for you.

Table 4-11 Parameters for Host Variable Equivalencing

External

Datatype Length Precision Scale Default Length

CHAR optional n/a n/a declared length of
variable

CHARZ optional n/a n/a declared length of
variable

DATE n/a n/a n/a 7 bytes

DECIMAL n/a required required none

DISPLAY n/a required required none

DISPLAY n/a required required none

TRAILING

UNSIGNED n/a required required none

DISPLAY

OVERPUNCH n/a required required none

TRAILING

OVERPUNCH n/a required required none

LEADING

FLOAT optional (4 or 8) n/a n/a declared length of
variable

INTEGER optional (1,2,0r4) n/a n/a declared length of
variable

4-50 Pro*COBOL Precompiler Programmer’s Guide

Datatype Equivalencing

Table 4-11 Parameters for Host Variable Equivalencing

External

Datatype Length Precision Scale Default Length

LONG optional n/a n/a declared length of
variable

LONG RAW optional n/a n/a declared length of
variable

LONG required (note 1) n/a n/a none

VARCHAR

LONG VARRAW required (note 1) n/a n/a none

NUMBER n/a n/a n/a not available

STRING optional n/a n/a declared length of
variable

RAW optional n/a n/a declared length of
variable

ROWID n/a n/a n/a 18 bytes (see note 2)

UNSIGNED optional (1,2,0or4) n/a n/a declared length of
variable

VARCHAR required n/a n/a none

VARCHAR?2 optional n/a n/a declared length of
variable

VARNUM n/a n/a n/a 22 bytes

VARRAW optional n/a n/a none

1. If the data field exceeds 65533 bytes, pass -1.
2. This length is typical but the default is port-specific.

Using the CHARF Datatype Specifier

You can use the datatype specifier CHARF in VAR statements to equivalence
COBOL datatypes to the fixed-length ANSI datatype CHAR.s

When PICX=CHAREF, specifying the datatype CHAR in a VAR statement
equivalences the host-language datatype to the fixed-length ANSI datatype CHAR
(Oracle8i external datatype code 96). However, when PICX=VARCHARZ2, the

Datatypes and Host Variables 4-51

Datatype Equivalencing

Guidelines

host-language datatype is equivalenced to the variable-length datatype
VARCHAR?2 (code 1).

However, you can always equivalence host-language datatypes to the fixed-length
ANSI datatype CHAR. Simply specify the datatype CHARF in the VAR statement.
If you use CHAREF, the host-language datatype is equivalenced to the fixed-length
ANSI datatype CHAR even when PICX=VARCHAR2.

To input VARNUM or DATE values, you must use the Oracle8i internal format.
Keep in mind that Oracle8i uses the internal format to output VARNUM and DATE
values.

After selecting a column value into a VARNUM host variable, you can check the
first byte to get the length of the value. Table 4-1 gives some examples of returned
VARNUM values.
Table 4-12 VARNUM Examples

VARNUM Value

Length Exponent Mantissa Terminator

Decimal Value Byte Byte Bytes Byte
0 1 128 n/a n/a
5 2 193 6 n/a
-5 3 62 96 102

2767 3 194 28, 68 n/a
-2767 4 61 74,34 102

100000 2 195 11 n/a
1234567 5 196 2,24, 46, 68 n/a

For converting DATE values, see "Explicit Control Over DATE String Format" on
page 4-45.

If no Oracle8i external datatype suits your needs exactly, use a VARCHAR?2-based
or RAW-based external datatype.

4-52 Pro*COBOL Precompiler Programmer’s Guide

Datatype Equivalencing

RAW and LONG RAW Values

When you select a RAW or LONG RAW column value into a character host
variable, Oracle8i must convert the internal binary value to an external character
value. In this case, Oracle8i returns each binary byte of RAW or LONG RAW data as
a pair of characters. Each character represents the hexadecimal equivalent of a
nibble (half a byte). For example, Oracle8i returns the binary byte 11111111 as the
pair of characters "FF". The SQL function RAWTOHEX performs the same
conversion.

A conversion is also necessary when you insert a character host value into a RAW
or LONG RAW column. Each pair of characters in the host variable must represent
the hexadecimal equivalent of a binary byte. If a character does not represent the
hexadecimal value of a nibble, Oracle8i issues an error message.

For more information about datatype conversion, see "Sample Program 4: Datatype
Equivalencing” on page 4-55.

The default assignments of External and COBOL datatypes are shown in Table 4-13:

Datatypes and Host Variables 4-53

Datatype Equivalencing

Table 4-13 Host Variable Equivalencing

COBOL Datatype External Datatype Code
PIC X...X CHARF 96
PIC X(n)

PIC X..X VARYING VARCHAR 9
PIC X(n) VARYING

PIC S9...9 COMP INTEGER 3

PIC S9(n) COMP

PIC S9...9 COMP-5
PIC S9(n) COMP-5
PIC S9...9 COMP-4
PIC S9(n) COMP-4
PIC S9...9 BINARY
PIC S9(n) BINARY

COMP-1 FLOAT 4
COMP-2
PIC S9...9V9...9 COMP-3 DECIMAL 7

PIC S9(n)V9(n) COMP-3
PIC S9...9V9...9 PACKED-DECIMAL
PIC S9(n)V9(n) PACKED-DECIMAL

PIC 9(n) COMP UNSIGNED 68
PIC 9...9 COMP

PIC $9..9V9..9 LEADING SEPARATE DISPLAY 91
PIC S9(n)V9(n) LEADING SEPARATE

PIC 9(n)V9(9) UNSIGNED DISPLAY 153
PIC9..9V9..9

PIC $9...9V9..9 TRAILING OVERPUNCH TRAILING 154
PIC S9(n)V9(n) TRAILING

PIC $9...9V9...9 LEADING OVERPUNCH LEADING 172

PIC S9(n)V9(n) LEADING

4-54 Pro*COBOL Precompiler Programmer’s Guide

Sample Program 4: Datatype Equivalencing

Table 4-13 Host Variable Equivalencing

COBOL Datatype External Datatype Code

PIC $9...9V9...9 TRAILING SEPARATE DISPLAY TRAILING 152
PIC S9(n)V9(n) TRAILING SEPARATE

Sample Program 4. Datatype Equivalencing

After connecting to Oracle, this program creates a database table named IMAGE in
the SCOTT account, then simulates the insertion of bitmap images of employee
numbers into the table. Datatype equivalencing lets the program use the Oracle
external datatype LONG RAW to represent the images. Later, when the user enters
an employee number, the number’s "bitmap" is selected from the IMAGE table and
pseudo-displayed on the terminal screen.

* Sample Program 4: Datatype Equivalencing *

*This program simulates the storage and retrieval of bitmap *
*images into table IMAGE, which is created inthe SCOTT ~ *
*account after logging on to ORACLE. Datatype equivalencing *

* allows an ORACLE extemnal type of LONG RAW to be specified *
*for the programs representation of the images. *

IDENTIFICATION DIVISION.
PROGRAM-ID. DTY-EQUIV.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10) VARYING.
01 PASSWD PICX(10) VARYING.
01 EMP-REC-VARS.
05 EMP-NUMBER PIC S9(4) COMP.
05 EMP-NAME PIC X(10) VARYING.
05 SALARY PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 COMMISSION PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 COMMHND ~ PIC S9(4) COMP.

EXEC SQL VAR SALARY IS DISPLAY(8,2) END-EXEC.

Datatypes and Host Variables 4-55

Sample Program 4: Datatype Equivalencing

EXEC SQL VAR COMMISSION IS DISPLAY(8,2) END-EXEC.

01 BUFFERVAR.
05 BUFFER PIC X(8192).
EXEC SQL VAR BUFFER IS LONG RAW END-EXEC.

01 INEMPNO PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

01 DISPLAY-VARIABLES.
05 D-EMP-NAME PIC X(10).
05 D-SALARY PIC $Z(4)9.99.
05 D-COMMISSION PIC $Z(4)9.99.
05 DINEMPNO PIC 9(4).
01 REPLY PIC X(10).
01 INDX PIC S9(9) COMP.
01 PRT-QUOT PIC S9(9) COMP.
01 PRT-MOD PIC S9(9) COMP.

PROCEDURE DIVISION.

BEGIN-PGM.
EXEC SQL WHENEVER SQLERROR
DO PERFORM SQL-ERROR END-EXEC.

PERFORM LOGON.
DISPLAY "OK TO DROP THE IMAGE TABLE? (Y/N) "
WITH NO ADVANCING.

ACCEPT REPLY.

IF (REPLY NOT ="Y") AND (REPLY NOT ='y")

GO TO SIGN-OFF-EXIT.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL DROP TABLE IMAGE END-EXEC.
DISPLAY "".
IF (SQLCODE =0) DISPLAY

"TABLE IMAGE DROPPED - CREATING NEW TABLE."
ELSE IF (SQLCODE =-942) DISPLAY

"TABLE IMAGE DOES NOT EXIST - CREATING NEW TABLE"
ELSE PERFORM SQL-ERROR.
EXEC SQL WHENEVER SQLERROR

DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL CREATE TABLE IMAGE

4-56 Pro*COBOL Precompiler Programmer’s Guide

Sample Program 4: Datatype Equivalencing

(EMPNO NUMBER(4) NOT NULL, BITMAP LONG RAW)
END-EXEC.
EXEC SQL DECLARE EMPCUR CURSOR FOR
SELECT EMPNO, ENAME FROM EMP
END-EXEC.
EXEC SQL OPEN EMPCUR END-EXEC.
DISPLAY "".
DISPLAY
"INSERTING BITMAPS INTO IMAGE FOR ALL EMPLOYEES....".
DISPLAY "".

INSERT-LOOP.
EXEC SQL WHENEVER NOT FOUND GOTO NOT-FOUND END-EXEC.
EXEC SQL FETCH EMPCUR
INTO :-EMP-NUMBER, :EMP-NAME
END-EXEC.
MOVE EMP-NAME-ARR TO D-EMP-NAME.
DISPLAY "EMPLOYEE ", D-EMP-NAME WITH NO ADVANCING.
PERFORM GET-IMAGE.
EXEC SQL INSERT INTO IMAGE
VALUES (EMP-NUMBER, :BUFFER)
END-EXEC.
DISPLAY " IS DONE!".
MOVE SPACES TO EMP-NAME-ARR.
GO TO INSERT-LOOP.

NOT-FOUND.
EXEC SQL CLOSE EMPCUR END-EXEC.
EXEC SQL COMMIT WORK END-EXEC.
DISPLAY "".
DISPLAY
"DONE INSERTING BITMAPS. NEXT, LET'S DISPLAY SOME.".

DISP-LOOP.
MOVE 0 TO INEMPNO.
DISPLAY "".
DISPLAY "ENTER EMPLOYEE NUMBER (0 TO QUIT): "
WITH NO ADVANCING.

ACCEPT DANEMPNO.
MOVE D-INEMPNO TO INEMPNO.
IF (NEMPNO =0)

GO TO SIGN-OFF.
EXEC SQL WHENEVER NOT FOUND GOTO NO-EMP END-EXEC.

Datatypes and Host Variables 4-57

Sample Program 4: Datatype Equivalencing

EXEC SQL SELECT EMP.EMPNO, ENAME, SAL, COMM, BITMAP
INTO :EMP-NUMBER, :EMP-NAME, :SALARY,
:‘COMMISSION:COMM-IND, :-BUFFER
FROM EMP, IMAGE
WHERE EMP.EMPNO = :INEMPNO
AND EMP.EMPNO = IMAGE.EMPNO
END-EXEC.
DISPLAY "".
PERFORM SHOW-IMAGE.
MOVE EMP-NAME-ARR TO D-EMP-NAME.
MOVE SALARY TO D-SALARY.
MOVE COMMISSION TO D-COMMISSION.
DISPLAY "EMPLOYEE ", D-EMP-NAME, " HAS SALARY ", D-SALARY
WITH NO ADVANCING.
IFCOMM-IND =-1
DISPLAY " AND NO COMMISSION."
ELSE
DISPLAY " AND COMMISSION ", D-COMMISSION, "."
END-IF.
MOVE SPACES TO EMP-NAME-ARR.
GO TO DISP-LOOP.

NO-EMP.
DISPLAY "NOT AVALID EMPLOYEE NUMBER - TRY AGAIN.".
GO TO DISP-LOCP.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY ",
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.
DISPLAY ",

GET-IMAGE.
PERFORM MOVE-IMAGE
VARYING INDX FROM 1 BY 1 UNTIL INDX>8192.

MOVE-IMAGE.

STRING * DELIMITED BY SIZE
INTO BUFFER

4-58 Pro*COBOL Precompiler Programmer’s Guide

WITH POINTER INDX.
DIVIDE 256 INTO INDX
GIVING PRT-QUOT REMAINDER PRT-MOD.
IF (PRT-MOD = 0) DISPLAY "." WITH NO ADVANCING.

SHOW-IMAGE.
PERFORM VARYING INDX FROM 1 BY 1 UNTIL INDX > 10
DlSPLAY " FekkekdeckkkdckdcdckkddckdcdckkdkR
END-PERFORM.
DISPLAY "".

SIGN-OFF.

EXEC SQL DROP TABLE IMAGE END-EXEC.
SIGN-OFFEXIT.

DISPLAY "".

DISPLAY "HAVE A GOOD DAY.".

DISPLAY "".

EXEC SQL COMMIT WORK RELEASE END-EXEC.

STOP RUN.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED: ".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

Datatypes and Host Variables 4-59

4-60 Pro*COBOL Precompiler Programmer’s Guide

D

Embedded SQL

This chapter helps you to understand and apply the basic techniques of embedded
SQL programming. Topics are:

Using Host Variables
Using Indicator Variables
The Basic SQL Statements
Cursors

The PREFETCH Option

Sample Program 2: Cursor Operations

Embedded SQL 5-1

Using Host Variables

Using Host Variables

Use host variables to pass data and status information to your program from the
database, and to pass data to the database.

Output Versus Input Host Variables

Depending on how they are used, host variables are called output or input host
variables. Host variables in the INTO clause of a SELECT or FETCH statement are
called output host variables because they hold column values output by Oracle.
Oracle assigns the column values to corresponding output host variables in the
INTO clause.

All other host variables in a SQL statement are called input host variables because
your program inputs their values to Oracle. For example, you use input host
variables in the VALUES clause of an INSERT statement and in the SET clause of an
UPDATE statement. They are also used in the WHERE, HAVING, and FOR clauses.
In fact, input host variables can appear in a SQL statement wherever a value or
expression is allowed.

Attention: In an ORDER BY clause, you can use a host variable, but it is treated
as a constant or literal, and hence the contents of the host variable have no
effect. For example, the SQL statement:

EXEC SQL SELECT ENAME, EMPNO INTO :NAME, :NUMBER
FROM EMP
ORDER BY :ORD

END-EXEC.

appears to contain an input host variable, ORD. However, the host variable in this case
is treated as a constant, and regardless of the value of ORD, no ordering is done.

You cannot use input host variables to supply SQL keywords or the names of
database objects. Thus, you cannot use input host variables in data definition
statements (sometimes called DDL) such as ALTER, CREATE, and DROP. In the
following example, the DROP TABLE statement is invalid:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 TABLE-NAME PIC X(30) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.
DISPLAY Table name?".

ACCEPT TABLE-NAME.
EXEC SQL DROP TABLE :TABLE-NAME END-EXEC.

5-2 Pro*COBOL Precompiler Programmer’s Guide

Using Indicator Variables

* — host variable not allowed

Before Oracle executes a SQL statement containing input host variables, your
program must assign values to them. Consider the following example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-NUMBER PIC S9(4) COMP.
01 EMP-NAME PIC X(20) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.

* — get values for input host variables
DISPLAY 'Employee number? .
ACCEPT EMP-NUMBER.
DISPLAY Employee name?".
ACCEPT EMP-NAME.
EXEC SQL INSERT INTO EMP (EMPNO, ENAME)
VALUES (EMP-NUMBER, :EMP-NAME)
END-EXEC.

Notice that the input host variables in the VALUES clause of the INSERT statement
are prefixed with colons.

Using Indicator Variables

You can associate any host variable with an optional indicator variable. Each time
the host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

You use indicator variables in the VALUES or SET clause to assign NULLSs to input
host variables and in the INTO clause to detect NULLSs or truncated values in
output host variables.

Input Variables

For input host variables, the values your program can assign to an indicator
variable have the following meanings:

-1 Oracle will assign a NULL to the column, ignoring the value of the host variable.

>=0 Oracle will assigns the value of the host variable to the column.

Embedded SQL 5-3

Using Indicator Variables

Output Variables

For output host variables, the values Oracle can assign to an indicator variable have
the following meanings:

-2 Oracle assigned a truncated column value to the host variable, but
could not assign the original length of the column value to the
indicator variable because the number was too large.

-1 The column value is NULL, so the value of the host variable is
indeterminate.

0 Oracle assigned an intact column value to the host variable.

>0 Oracle assigned a truncated column value to the host variable,

assigned the original column length (expressed in characters,
instead of bytes, for multi-byte NLS host variables) to the indicator
variable, and set SQLCODE in the SQLCA to zero.

Remember, an indicator variable must be declared as a 2-byte integer and, in SQL
statements, must be prefixed with a colon and appended to its host variable (unless
you use the keyword INDICATOR).

Inserting NULLs

5-4

You can use indicator variables to insert NULLSs. Before the insert, for each column
you want to be NULL, set the appropriate indicator variable to -1, as shown in the
following example:

MOVE -1 TO IND-COMM.

EXEC SQL INSERT INTO EMP (EMPNO, COMM)
VALUES (EMP-NUMBER, :cOMMISSION:IND-COMM)

END-EXEC.

The indicator variable IND-COMM specifies that a NULL is to be stored in the
COMM column.
You can hard-code the NULL instead, as follows:

EXEC SQL INSERT INTO EMP (EMPNO, COMM)
VALUES (EMP-NUMBER, NULL)
END-EXEC.

While this is less flexible, it might be more readable.

Typically, you insert NULLs conditionally, as the next example shows:

Pro*COBOL Precompiler Programmer’s Guide

Using Indicator Variables

DISPLAY "Enter employee number or O if not available: ’
WITH NO ADVANCING.
ACCEPT EMP-NUMBER.
IFEMP-NUMBER =0
MOVE -1 TO IND-EMPNUM
ELSE
MOVE 0 TO IND-EMPNUM
END-IF.
EXEC SQL INSERT INTO EMP (EMPNO, SAL)
VALUES (EMP-NUMBER:IND-EMPNUM, :SALARY)
END-EXEC.

Handling Returned NULLs

You can also use indicator variables to manipulate returned NULLSs, as the
following example shows;

EXEC SQL SELECT ENAME, SAL, COMM
INTO :EMP-NAME, :SALARY, :COMMISSION:IND-COMM
FROM EMP
WHERE EMPNO =:EMP_NUMBER
END-EXEC.
IFIND-COMM =-1
MOVE SALARY TO PAY.
* —commission is null; ignore it
ELSE
ADD SALARY TO COMMISSION GIVING PAY.
END-IF.

Fetching NULLs

Using the precompiler option UNSAFE_NULL=YES, you can select or fetch NULLs
into a host variable that lacks an indicator variable, as the following example shows:

* — assume that commission is NULL
EXEC SQL SELECT ENAME, SAL, COMM
INTO :EMP-NAME, :SALARY, :COMMISSION
FROM EMP
WHERE EMPNO = :EMP-NUMBER
END-EXEC.

SQLCODE in the SQLCA is set to zero indicating that Oracle executed the statement
without detecting an error or exception.

Embedded SQL 5-5

Using Indicator Variables

There is no way to know whether or not a NULL was returned, or the value of the
host variable if a NULL is returned. This is to be avoided, thus the name of the
option. UNSAFE_NULL=YES should not be used in new applications. It is
provided only for backward compatibility.

However, when UNSAFE_NULL=NO, if you select or fetch NULLSs into a host
variable that lacks an indicator variable, Oracle issues an error message.

For more information, see "UNSAFE_NULL" on page 14-40.

Testing for NULLs

You can use indicator variables in the WHERE clause to test for NULLSs, as the
following example shows;

EXEC SQL SELECT ENAME, SAL
INTO :EMP-NAME, :SALARY
FROM EMP
WHERE :COMMISSION:IND-COMM IS NULL ...

However, you cannot use a relational operator to compare NULLSs with each other
or with other values. For example, the following SELECT statement fails if the
COMM column contains one or more NULLSs:

EXEC SQL SELECT ENAME, SAL

INTO :EMP-NAME, :SALARY

FROM EMP

WHERE COMM = :COMMISSION:IND-COMM
END-EXEC.

The next example shows how to compare values for equality when some of them
might be NULLs:

EXEC SQL SELECT ENAME, SAL
INTO :EMP_NAME, :SALARY
FROM EMP
WHERE (COMM = :COMMISSION) OR ((COMM IS NULL) AND
(COMMISSION:ND-COMM IS NULL))
END-EXEC.

Fetching Truncated Values
If a value is truncated when fetched into a host variable, no error is generated.

5-6 Pro*COBOL Precompiler Programmer’s Guide

The Basic SQL Statements

The Basic SQL Statements

Executable SQL statements let you query, manipulate, and control Oracle data and
create, define, and maintain Oracle objects such as tables, views, and indexes. This
chapter focuses on data manipulation statements (sometimes called DML) and
cursor control statements.

The following SQL statements let you query and manipulate Oracle data:

SELECT Returns rows from one or more tables.
INSERT Adds new rows to a table.

UPDATE Modifies rows in a table.

DELETE Removes rows from a table.

When executing a data manipulation statement such as INSERT, UPDATE, or
DELETE, your only concern, besides setting the values of any input host variables,
is whether the statement succeeds or fails. To find out, you simply check the
SQLCA. (Executing any SQL statement sets the SQLCA variables.) You can check in
the following two ways:

« implicit checking with the WHENEVER statement
« explicit checking of SQLCA variables

Alternatively, when MODE={ANSI | ANSI14}, you can check the status variable
SQLSTATE or SQLCODE. For more information, see "Using Status Variables when
MODE={ANSI | ANSI14}" on page 8-4.

When executing a SELECT statement (query), however, you must also deal with the
rows of data it returns. Queries can be classified as follows:

= queries that return no rows (that is, merely check for existence)
= queries that return only one row
= queries that return more than one row

Quieries that return more than one row require an explicitly declared cursor or
cursor variable (or the use of host arrays, which are discussed in Chapter 7, "Host
Tables"). The following embedded SQL statements let you define and control an
explicit cursor:

Embedded SQL 5-7

The Basic SQL Statements

DECLARE Names the cursor and associates it with a query.

OPEN Executes the query and identifies the active set.

FETCH Advances the cursor and retrieves each row in the active set, one by one.
CLOSE Disables the cursor (the active set becomes undefined.)

In the coming sections, first you learn how to code INSERT, UPDATE, DELETE, and
single-row SELECT statements. Then, you progress to multi-row SELECT
statements. For a detailed discussion of each statement and its clauses, see the
Oracle8i SQL Reference.

Selecting Rows

Querying the database is a common SQL operation. To issue a query you use the
SELECT statement. In the following example, you query the EMP table:

EXEC SQL SELECT ENAME, JOB, SAL + 2000
INTO :emp_name, :JOB-TITLE, :SALARY
FROM EMP
WHERE EMPNO = :EMP-NUMBER

END-EXEC.

The column names and expressions following the keyword SELECT make up the
select list. The select list in our example contains three items. Under the conditions
specified in the WHERE clause (and following clauses, if present), Oracle returns
column values to the host variables in the INTO clause. The number of items in the
select list should equal the number of host variables in the INTO clause, so there is a
place to store every returned value.

In the simplest case, when a query returns one row, its form is that shown in the last
example (in which EMPNO is a unique key). However, if a query can return more
than one row, you must fetch the rows using a cursor or select them into a host
array.

If a query is written to return only one row but might actually return several rows,
the result depends on how you specify the option SELECT_ERROR. When
SELECT_ERROR=YES (the default), Oracle issues an message if more than one row
is returned.

When SELECT_ERROR=NO, a row is returned and Oracle generates no error.

5-8 Pro*COBOL Precompiler Programmer’s Guide

The Basic SQL Statements

Available Clauses

You can use all of the following standard SQL clauses in your SELECT statements:
INTO, FROM, WHERE, CONNECT BY, START WITH, GROUP BY, HAVING,
ORDER BY, and FOR UPDATE OF.

Inserting Rows

You use the INSERT statement to add rows to a table or view. In the following
example, you add a row to the EMP table:

EXEC SQL INSERT INTO EMP (EMPNO, ENAME, SAL, DEPTNO)
VALUES (EMP_NUMBER, :EMP-NAME, :SALARY, :DEPT-NUMBER)
END-EXEC.

Each column you specify in the column list must belong to the table named in the
INTO clause. The VALUES clause specifies the row of values to be inserted. The
values can be those of constants, host variables, SQL expressions, or
pseudocolumns, such as USER and SYSDATE.

The number of values in the VALUES clause must equal the number of names in the
column list. However, you can omit the column list if the VALUES clause contains a
value for each column in the table in the same order they were defined by CREATE
TABLE.

DML Returning Clause

The INSERT, UPDATE, and DELETE statements can have an optional DML
returning clause which returns column value expressions expr, into host variables hy,
with host indicator variables iv. The returning clause has this syntax:

{RETURNING | RETURN}expr [exprT
INTO {hv [INDICATOR]:M [, :hv [INDICATOR]:M]}

The number of expressions must equal the number of host variables. This clause
eliminates the need for selecting the rows after an INSERT or UPDATE, and before a
DELETE when you need to record that information for your application. The DML
returning clause eliminates inefficient network round-trips, extra processing,
and server memory.

The returning_clause is not allowed with a subquery. It is only allowed after the
VALUES clause.

For example, our INSERT could have a clause at its end such as:

Embedded SQL 5-9

The Basic SQL Statements

RETURNING empno, ename, deptno INTO :new_emp_number, :new_emp_name, :dept

See the DELETE, INSERT, and UPDATE entries in the appendix Appendix F,
"Embedded SQL Statements and Precompiler Directives".

Using Subqueries

A subquery is a nested SELECT statement. Subqueries let you conduct multi-part
searches. They can be used to

« supply values for comparison in the WHERE, HAVING, and START WITH
clauses of SELECT, UPDATE, and DELETE statements

« define the set of rows to be inserted by a CREATE TABLE or INSERT statement
« define values for the SET clause of an UPDATE statement

For example, to copy rows from one table to another, replace the VALUES clause in
an INSERT statement with a subquery;, as follows:

EXEC SQL INSERT INTO EMP2 (EMPNO, ENAME, SAL, DEPTNO)
SELECT EMPNO, ENAME, SAL, DEPTNO FROM EMP
WHERE JOB =:JOB-TITLE

END-EXEC.

Notice how the INSERT statement uses the subquery to obtain intermediate results.

Updating Rows

You use the UPDATE statement to change the values of specified columns in a table
or view. In the following example, you update the SAL and COMM columns in the
EMP table:

EXEC SQL UPDATE EMP
SET SAL =:SALARY, COMM =:COMMISSION
WHERE EMPNO =:EMP-NUMBER
END-EXEC.

You can use the optional WHERE clause to specify the conditions under which rows
are updated. See "Using the WHERE Clause" on page 5-11.

The SET clause lists the names of one or more columns for which you must provide
values. You can use a subquery to provide the values, as the following example
shows:

EXEC SQL UPDATE EMP

5-10 Pro*COBOL Precompiler Programmer’s Guide

Cursors

Deleting Rows

SET SAL = (SELECT AVG(SAL)*1.1 FROM EMP WHERE DEPTNO =20)
WHERE EMPNO =:EMP-NUMBER
END-EXEC.

You use the DELETE statement to remove rows from a table or view. In the
following example, you delete all employees in a given department from the EMP
table:

EXEC SQL DELETE FROM EMP
WHERE DEPTNO = :DEPT-NUMBER
END-EXEC.

You can use the optional WHERE clause to specify the condition under which rows
are deleted.

Using the WHERE Clause

Cursors

You use the WHERE clause to select, update, or delete only those rows in a table or
view that meet your search condition. The WHERE-clause search condition is a
Boolean expression, which can include scalar host variables, host arrays (not in
SELECT statements), and subqueries.

If you omit the WHERE clause, all rows in the table or view are processed. If you
omit the WHERE clause in an UPDATE or DELETE statement, Oracle sets
SQLWARN(5) in the SQLCA to "W’ to warn that all rows were processed.

To process a SQL statement, Oracle opens a work area called a private SQL area. The
private SQL area stores information needed to execute the SQL statement. An
identifier called a cursor lets you name a SQL statement, access the information in
its private SQL area, and, to some extent, control its processing.

For static SQL statements, there are two types of cursors: implicit and explicit. Oracle
implicitly declares a cursor for all data definition and data manipulation statements,
including SELECT statements (queries) that return only one row. However, for
gueries that return more than one row, to process beyond the first row, you must
explicitly declare a cursor (or use host tables).

Embedded SQL 5-11

Cursors

The set of rows retrieved is called the results set; its size depends on how many rows
meet the query search condition. You use an explicit cursor to identify the row
currently being processed, which is called the current row.

When a query returns multiple rows, you can explicitly define a cursor to
« process beyond the first row returned by the query
« keep track of which row is currently being processed

A cursor identifies the current row in the set of rows returned by the query. This
allows your program to process the rows one at a time. The following statements let
you define and manipulate a cursor:

« DECLARE
« OPEN

« FETCH

« CLOSE

First you use the DECLARE statement (more precisely, a directive) to name the
cursor and associate it with a query.

The OPEN statement executes the query and identifies all the rows that meet the
guery search condition. These rows form a set called the active set of the cursor.
After opening the cursor, you can use it to retrieve the rows returned by its
associated query.

Rows of the active set are retrieved one by one (unless you use host arrays). You use
a FETCH statement to retrieve the current row in the active set. You can execute
FETCH repeatedly until all rows have been retrieved.

When done fetching rows from the active set, you disable the cursor with a CLOSE
statement, and the active set becomes undefined.

Declaring a Cursor

You use the DECLARE statement to define a cursor by giving it a name and
associating it with a query, as the following example shows:

EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, EMPNO, SAL
FROM EMP
WHERE DEPTNO = :DEPT_NUMBER

END-EXEC.

5-12 Pro*COBOL Precompiler Programmer’s Guide

Cursors

The cursor name is an identifier used by the precompiler, not a host or program
variable, and should not be declared in a COBOL statement. Therefore, cursor
names cannot be passed from one precompilation unit to another. Cursor names
cannot be hyphenated. They can be any length, but only the first 31 characters are
significant. For ANSI compatibility, use cursor names no longer than 18 characters.

The WITH HOLD clause can be used in a DECLARE CURSOR statement to hold
the cursor open after a COMMIT or a ROLLBACK.

The precompiler option CLOSE_ON_COMMIT is provided for use in the command
line or in a configuration file. Any cursor not declared with the WITH HOLD clause
is closed after a COMMIT or ROLLBACK when CLOSE_ON_COMMIT=YES. See
"WITH HOLD Clause in DECLARE CURSOR Statements" on page 3-21, and
"CLOSE_ON_COMMIT" on page 14-14.

If MODE is specified at a higher level than CLOSE_ON_COMMIT, then MODE
takes precedence. The defaults are MODE=ORACLE and
CLOSE_ON_COMMIT=NO. If you specify MODE=ANSI then any cursors not
using the WITH HOLD clause will be closed on COMMIT. The application will run
more slowly because cursors are closed and re-opened many times. Setting
CLOSE_ON_COMMIT=NO when MODE=ANSI results in performance
improvement. To see how macro options such as MODE affect micro options such
as CLOSE_ON_COMMIT, see "Precedence of Option Values" on page 14-4.

The SELECT statement associated with the cursor cannot include an INTO clause.
Rather, the INTO clause and list of output host variables are part of the FETCH
statement.

Because it is declarative, the DECLARE statement must physically (not just
logically) precede all other SQL statements referencing the cursor. That is, forward
references to the cursor are not allowed. In the following example, the OPEN
statement is misplaced:

EXEC SQL OPEN EMPCURSOR END-EXEC.
* —MISPLACED OPEN STATEMENT
EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, EMPNO, SAL
FROM EMP
WHERE ENAME = :EMP-NAME
END-EXEC.

The cursor control statements (DECLARE, OPEN, FETCH, CLOSE) must all occur
within the same precompiled unit. For example, you cannot declare a cursor in
source file A.PCO, then open it in source file B.PCO.

Embedded SQL 5-13

Cursors

Your host program can declare as many cursors as it needs. However, in a given file,
every DECLARE statement must be unique. That is, you cannot declare two cursors
with the same name in one precompilation unit, even across blocks or procedures,
because the scope of a cursor is global within a file. If you will be using many
cursors, you might want to specify the MAXOPENCURSORS option. For more
information, see "MAXOPENCURSORS" on page 14-30.

Opening a Cursor

Use the OPEN statement to execute the query and identify the active set. In the
following example, a cursor named EMPCURSOR is opened.

EXEC SQL OPEN EMPCURSOR END-EXEC.

OPEN positions the cursor just before the first row of the active set. It also zeroes
the rows-processed count kept by SQLERRD(3) in the SQLCA. However, none of
the rows is actually retrieved at this point. That will be done by the FETCH
statement.

Once you open a cursor, the query’s input host variables are not reexamined until
you reopen the cursor. Thus, the active set does not change. To change the active set,
you must reopen the cursor.

Generally, you should close a cursor before reopening it. However, if you specify
CLOSE_ON_COMMIT=YES, you need not close a cursor before reopening it. This
can boost performance; for details, see Appendix D, "Performance Tuning".

The amount of work done by OPEN depends on the values of three precompiler
options: HOLD_CURSOR, RELEASE_CURSOR, and MAXOPENCURSORS. For
more information, see their alphabetized entries in "Using Pro*COBOL Precompiler
Options" on page 14-12.

Fetching from a Cursor

You use the FETCH statement to retrieve rows from the active set and specify the
output host variables that will contain the results. Recall that the SELECT statement
associated with the cursor cannot include an INTO clause. Rather, the INTO clause
and list of output host variables are part of the FETCH statement. In the following
example, you fetch into three host variables:

EXEC SQL FETCH EMPCURSOR
INTO :EMP-NAME, -EMP-NUMBER, :SALARY
END-EXEC.

5-14 Pro*COBOL Precompiler Programmer’s Guide

Cursors

The cursor must have been previously declared and opened. The first time you
execute FETCH, the cursor moves from before the first row in the active set to the
first row. This row becomes the current row. Each subsequent execution of FETCH
advances the cursor to the next row in the active set, changing the current row. The
cursor can only move forward in the active set. To return to a row that has already
been fetched, you must reopen the cursor, then begin again at the first row of the
active set.

If you want to change the active set, you must assign new values to the input host
variables in the query associated with the cursor, then reopen the cursor. When
CLOSE_ON_COMMIT=NO, you must close the cursor before reopening it.

As the next example shows, you can fetch from the same cursor using different sets
of output host variables. However, corresponding host variables in the INTO clause
of each FETCH statement must have the same datatype.

EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, SAL FROM EMP WHERE DEPTNO =20
END-EXEC.

EXEC SQL OPEN EMPCURSOr END-EXEC.
EXEC SQL WHENEVER NOT FOUND DO ...

PERFORM
EXEC SQL FETCH EMPCURSOR INTO :EMP-NAMEL, :SAL1 END-EXEC
EXEC SQL FETCH EMPCURSOR INTO :EMP-NAME2, :SAL2 END-EXEC
EXEC SQL FETCH EMPCURSOR INTO :EMP-NAMES3, :SAL3 END-EXEC

END-PERFORM.

If the active set is empty or contains no more rows, FETCH returns the "no data
found" Oracle warning code to SQLCODE in the SQLCA (or when MODE=ANSI, to
the status variable SQLSTATE). The status of the output host variables is
indeterminate. (In a typical program, the WHENEVER NOT FOUND statement
detects this error.) To reuse the cursor, you must reopen it.

Closing a Cursor

When finished fetching rows from the active set, you close the cursor to free the
resources, such as storage, acquired by opening the cursor. When a cursor is closed,
parse locks are released. What resources are freed depends on how you specify the
options HOLD_CURSOR and RELEASE_CURSOR. In the following example, you
close the cursor named EMPCURSOR:

EXEC SQL CLOSE EMPCURSOR END-EXEC.

Embedded SQL 5-15

Cursors

You cannot fetch from a closed cursor because its active set becomes undefined. If

necessary, you can reopen a cursor (with new values for the input host variables, for
example).

When CLOSE_ON_COMMIT=NO, issuing a commit or rollback closes cursors
referenced in a CURRENT OF clause. Other cursors are unaffected by a commit or
rollback and if open, remain open. However, when CLOSE_ON_COMMIT=YES,
issuing a commit or rollback closes all explicit cursors. For more information, see
"CLOSE_ON_COMMIT Precompiler Option" on page 3-22.

Using the CURRENT OF Clause

You use the CURRENT OF cursor_name clause in a DELETE or UPDATE statement
to refer to the latest row fetched from the named cursor. The cursor must be open
and positioned on a row. If no fetch has been done or if the cursor is not open, the
CURRENT OF clause results in an error and processes no rows.

The FOR UPDATE OF clause is optional when you declare a cursor that is
referenced in the CURRENT OF clause of an UPDATE or DELETE statement. The
CURRENT OF clause signals the precompiler to add a FOR UPDATE clause if
necessary. For more information, see"Mimicking the CURRENT OF Clause" on
page 7-19.

In the following example, you use the CURRENT OF clause to refer to the latest row
fetched from a cursor named EMPCURSOR:

EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, SAL FROM EMP WHERE JOB ='CLERK’
FOR UPDATE OF SAL

END-EXEC.

EXEC SQL OPEN EMPCURSOR END-EXEC.
EXEC SQL WHENEVER NOT FOUND DO ...
PERFORM
EXEC SQL FETCH EMPCURSOR INTO :EMP-NAME, :SALARY
END-EXEC

EXEC SQL UPDATE EMP SET SAL = :NEW-SALARY
WHERE CURRENT OF EMPCURSOR
END-EXEC
END-PERFORM.

5-16 Pro*COBOL Precompiler Programmer’s Guide

Cursors

Restrictions

An explicit FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row
locks. All rows are locked at the open, not as they are fetched, and are released
when you commit or rollback. If you try to fetch from a FOR UPDATE cursor after a
commit, Oracle generates an error.

You cannot use host arrays with the CURRENT OF clause. For an alternative, see
"Mimicking the CURRENT OF Clause" on page 7-19. Also, you cannot reference
multiple tables in an associated FOR UPDATE OF clause, which means that you
cannot do joins with the CURRENT OF clause. Finally, you cannot use the
CURRENT OF clause in dynamic SQL.

A Typical Sequence of Statements

The following example shows the typical sequence of cursor control statements in
an application program;

*— Define a cursor.
EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, JOB FROM EMP
WHERE EMPNO =:EMP-NUMBER
FOR UPDATE OF JOB
END-EXEC.
*— Open the cursor and identify the active set.
EXEC SQL OPEN EMPCURSOR END-EXEC.
*— Exit if the last row was already fetched.
EXEC SQL
WHENEVER NOT FOUND DO PERFORM NO-MORE
END-EXEC.
*— Fetch and process data in a loop.
PERFORM
EXEC SQL FETCH EMPCURSOR INTO :EMP-NAME, :JOB-TITLE
END-EXEC
*— hostlanguage statements that operate on the fetched data
EXEC SQL UPDATE EMP
SET JOB =:NEW-JOB-TITLE
WHERE CURRENT OF EMPCURSOR
END-EXEC
END-PERFORM.

MO-MORE.
*— Disable the cursor.
EXEC SQL CLOSE EMPCURSOR END-EXEC.
EXEC SQL COMMIT WORK RELEASE END-EXEC.

Embedded SQL 5-17

Sample Program 2: Cursor Operations

STOP RUN.

Sample Program 2: Cursor Operations

This program logs on to Oracle, declares and opens a cursor, fetches the names,
salaries, and commissions of all salespeople, displays the results, then closes the
cursor

All fetches except the final one return a row and, if no errors were detected during

the fetch, a success status code. The final fetch fails and returns the "no data found"
Oracle warning code to SQLCODE in the SQLCA. The cumulative number of rows
actually fetched is found in SQLERRD(3) in the SQLCA.

* Sample Program 2: Cursor Operations *
* *

*This program logs on to ORACLE, declares and opens a cursor, *
*fetches the names, salaries, and commissions of all *
* salespeople, displays the results, then closes the cursor. *

IDENTIFICATION DIVISION.
PROGRAM-ID. CURSOR-OPS.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10) VARYING.
01 PASSWD PIC X(10) VARYING.
01 EMP-REC-VARS.
05 EMP-NAME PIC X(10) VARYING.
05 SALARY PICS9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 COMMISSION PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
EXEC SQL VAR SALARY IS DISPLAY(8,2) END-EXEC.
EXEC SQL VAR COMMISSION IS DISPLAY(8,2) END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.
01 DISPLAY-VARIABLES.

05 D-EMP-NAME PIC X(10).
05 D-SALARY PIC Z(4)9.99.

5-18 Pro*COBOL Precompiler Programmer’s Guide

Sample Program 2: Cursor Operations

05 D-COMMISSION PIC Z(4)9.99.
PROCEDURE DIVISION.

BEGIN-PGM.
EXEC SQL WHENEVER SQLERROR
DO PERFORM SQL-ERROR END-EXEC.
PERFORM LOGON.
EXEC SQL DECLARE SALESPEOPLE CURSOR FOR
SELECT ENAME, SAL, COMM
FROM EMP
WHERE JOB LIKE 'SALES%'
END-EXEC.
EXEC SQL OPEN SALESPEOPLE END-EXEC.
DISPLAY "".
DISPLAY "SALESPERSON SALARY COMMISSION".
DISPLAY " !,

FETCH-LOOP.

EXEC SQL WHENEVER NOT FOUND

DO PERFORM SIGN-OFF END-EXEC.
EXEC SQL FETCH SALESPEOPLE

INTO :-EMP-NAME, :SALARY, :COMMISSION
END-EXEC.
MOVE EMP-NAME-ARR TO D-EMP-NAME.
MOVE SALARY TO D-SALARY.
MOVE COMMISSION TO D-COMMISSION.
DISPLAY D-EMP-NAME," ", D-SALARY," ", D-COMMISSION.
MOVE SPACES TO EMP-NAME-ARR.
GO TO FETCH-LOORP.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY ",
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

SIGN-OFF.

EXEC SQL CLOSE SALESPEOPLE END-EXEC.
DISPLAY "".

Embedded SQL 5-19

The PREFETCH Option

DISPLAY "HAVE A GOOD DAY.".

DISPLAY "".

EXEC SQL COMMIT WORK RELEASE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

The PREFETCH Option

The precompiler option PREFETCH allows for more efficient queries by
pre-fetching a given number of rows. This decreases the number of server
round-trips needed. The number of rows set by the PREFETCH option value in a
configuration file or on the command line is used for all queries involving explicit
cursors, subject to the standard precedence rules. When used inline, the PREFETCH
option must precede any of these cursor statements:

« EXEC SQL OPEN cursor
« EXEC SQL OPEN cursor USING host_var_list
« EXEC SQL OPEN cursor USING DESCRIPTOR desc_name

When an OPEN is executed, the value of PREFETCH gives the number of rows to
be pre-fetched when the query is executed. You can set the value from 0 (no
pre-fetching) to 9999.

5-20 Pro*COBOL Precompiler Programmer’s Guide

6

Embedded PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL
transaction processing blocks in your program. This chapter has the following
sections:

Embedding PL/SQL

Advantages of PL/SQL

Embedding PL/SQL Blocks

Host Variables and PL/SQL

Indicator Variables and PL/SQL

Host Tables and PL/SQL

Cursor Usage in Embedded PL/SQL

Stored PL/SQL and Java Subprograms
Sample Program 9: Calling a Stored Procedure

Cursor Variables

Embedded PL/SQL 6-1

Embedding PL/SQL

Embedding PL/SQL

Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. So, you
can place a PL/SQL block anywhere in a host program that you can place a SQL
statement.

To embed a PL/SQL block in your host program, declare the variables to be shared
with PL/SQL and bracket the PL/SQL block with the EXEC SQL EXECUTE and
END-EXEC keywords.

Host Variables

Inside a PL/SQL block, host variables are global to the entire block and can be used
anywhere a PL/SQL variable is allowed. Like host variables in a SQL statement,
host variables in a PL/SQL block must be prefixed with a colon. The colon sets host
variables apart from PL/SQL variables and database objects.

VARCHAR Variables

When entering a PL/SQL block, Oracle8i automatically checks the length fields of
VARCHAR host variables, so you must set the length fields before the block is
entered. For input variables, set the length field to the length of the value stored in
the string field. For output variables, set the length field to the maximum length
allowed by the string field.

Indicator Variables

In a PL/SQL block, you cannot refer to an indicator variable by itself; it must be
appended to its associated host variable. Also, if you refer to a host variable with its
indicator variable, you must always refer to it that way in the same block.

Handling NULLs

When entering a block, if an indicator variable has a value of -1, PL/SQL
automatically assigns a NULL to the host variable. When exiting the block, if a host
variable is NULL, PL/SQL automatically assigns a value of -1 to the indicator
variable.

Handling Truncated Values

PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the
original length of the string.

6-2 Pro*COBOL Precompiler Programmer’s Guide

Advantages of PL/SQL

SQLCHECK
You must specify SQLCHECK=SEMANTICS when precompiling a program with
an embedded PL/SQL block. You must also use the USERID option. For more
information, see Chapter 14, "Precompiler Options".

Advantages of PL/SQL

This section looks at some of the features and benefits offered by PL/SQL, such as
« better performance

« integration with Oracle8i

« cursor FOR loops

« procedures and functions

« packages

« PL/SQL tables

= user-defined records

For more information about PL/SQL, see PL/SQL User’s Guide and Reference.

Better Performance

PL/SQL can help you reduce overhead, improve performance, and increase
productivity. For example, without PL/SQL, Oracle8i must process SQL statements
one at a time. Each SQL statement results in another call to the Server and higher
overhead. However, with PL/SQL, you can send an entire block of SQL statements
to the server. This minimizes communication between your application and the
server.

Integration with Oracle8 i

PL/SQL is tightly integrated with the server. For example, most PL/SQL datatypes
are native to the data dictionary. Furthermore, you can use the %TYPE attribute to
base variable declarations on column definitions stored in the data dictionary, as the
following example shows:

job_tite emp.job%TYPE;

That way, you need not know the exact datatype of the column. Furthermore, if a
column definition changes, the variable declaration changes accordingly and

Embedded PL/SQL 6-3

Advantages of PL/SQL

automatically. This provides data independence, reduces maintenance costs, and
allows programs to adapt as the database changes.

Cursor FOR Loops

Subprograms

With PL/SQL, you need not use the DECLARE, OPEN, FETCH, and CLOSE
statements to define and manipulate a cursor. Instead, you can use a cursor FOR
loop, which implicitly declares its loop index as a record, opens the cursor
associated with a given query, repeatedly fetches data from the cursor into the
record, then closes the cursor. An example follows:

DECLARE
BEGIN
FOR emprec IN (SELECT empno, sal, comm FROM emp) LOOP
IF emprec.comm/emprec.sal >0.25 THEN ...

END LOOP;
END;

Notice that you use dot notation to reference fields in the record.

PL/SQL has two types of subprograms called procedures and functions, which aid
application development by letting you isolate operations. Generally, you use a
procedure to perform an action and a function to compute a value.

Procedures and functions provide extensibility. That is, they let you tailor the
PL/SQL language to suit your needs. For example, if you need a procedure that
creates a new department, just write your own as follows:

PROCEDURE create_dept
(hew_dname IN CHAR(14),
new_loc IN CHAR(13),
new_deptno OUT NUMBER(2)) IS
BEGIN
SELECT deptno_seq.NEXTVAL INTO new_deptno FROM dual;
INSERT INTO dept VALUES (new_deptno, new_dname, new_loc);
END create_dept;

When called, this procedure accepts a new department name and location, selects
the next value in a department-number database sequence, inserts the new number,
name, and location into the dept table, then returns the new number to the caller.

6-4 Pro*COBOL Precompiler Programmer’s Guide

Advantages of PL/SQL

Packages

You can store subprograms in the database (using CREATE FUNCTION and
CREATE PROCEDURE) that can be called from multiple applications without
needing to be re-compiled each time.

Parameter Modes

You use parameter modes to define the behavior of formal parameters. There are three
parameter modes: IN (the default), OUT, and IN OUT. An IN parameter lets you
pass values to the subprogram being called. An OUT parameter lets you return
values to the caller of a subprogram. An IN OUT parameter lets you pass initial
values to the subprogram being called and return updated values to the caller.

The datatype of each actual parameter must be convertible to the datatype of its
corresponding formal parameter. Table 6-1 on page 6-16 shows the legal
conversions between datatypes.

PL/SQL lets you bundle logically related types, program objects, and subprograms
into a package. Packages can be compiled and stored in a database, where their
contents can be shared by multiple applications.

Packages usually have two parts: a specification and a body. The specification is the
interface to your applications; it declares the types, constants, variables, exceptions,
cursors, and subprograms available for use. The body defines cursors and
subprograms and so implements the specification. In the following example, you
"package" two employment procedures:

PACKAGE emp_actions IS - package specification
PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);
PROCEDURE fire_employee (emp_id NUMBER);

END emp_actions;

PACKAGE BODY emp_actions IS — package body
PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS
BEGIN
INSERT INTO emp VALUES (empno, ename, ...);
END hire_employee;
PROCEDURE fire_employee (emp_id NUMBER) IS
BEGIN
DELETE FROM emp WHERE empno =emp_id;
END fire_employee;
END emp_actions;

Embedded PL/SQL 6-5

Advantages of PL/SQL

Only the declarations in the package specification are visible and accessible to
applications. Implementation details in the package body are hidden and
inaccessible.

PL/SQL Tables

PL/SQL provides a composite datatype named TABLE. Objects of type TABLE are
called PL/SQL tables, which are modeled as (but not the same as) database tables.
PL/SQL tables have only one column and use a primary key to give you array-like
access to rows. The column can belong to any scalar type (such as CHAR, DATE, or
NUMBER), but the primary key must belong to type BINARY_INTEGER.

You can declare PL/SQL table types in the declarative part of any block, procedure,
function, or package. In the following example, you declare a TABLE type called
NumTabTyp:

DECLARE
TYPE NumTabTyp IS TABLE OF NUMBER
INDEX BY BINARY_INTEGER;
BEGIN
END;
Once you define type NumTabTyp, you can declare PL/SQL tables of that type, as
the next example shows:

num_tab NumTabTyp;

The identifier num_tab represents an entire PL/SQL table.

You reference rows in a PL/SQL table using array-like syntax to specify the primary
key value. For example, you reference the ninth row in the PL/SQL table named
num_tab as follows:

num_tab(9) ...

User-Defined Records

You can use the %ROWTYPE attribute to declare a record that represents a row in a
database table or a row fetched by a cursor. However, you cannot specify the
datatypes of fields in the record or define fields of your own. The composite
datatype RECORD lifts those restrictions.

6-6 Pro*COBOL Precompiler Programmer’s Guide

Embedding PL/SQL Blocks

Objects of type RECORD are called records. Unlike PL/SQL tables, records have
uniquely named fields, which can belong to different datatypes. For example,
suppose you have different kinds of data about an employee such as name, salary,
hire date, and so on. This data is dissimilar in type but logically related. A record
that contains such fields as the name, salary, and hire date of an employee would let
you treat the data as a logical unit.

You can declare record types and objects in the declarative part of any block,
procedure, function, or package. In the following example, you declare a RECORD
type called DeptRecTyp:

DECLARE
TYPE DeptRecTyp IS RECORD
(deptno NUMBER(4) NOT NULL = 10, — must initialize
dname CHAR(9),
loc CHAR(14));

Notice that the field declarations are like variable declarations. Each field has a
unique name and specific datatype. You can add the NOT NULL option to any field
declaration and so prevent the assigning of NULLSs to that field. However, you must
initialize NOT NULL fields.

Once you define type DeptRecTyp, you can declare records of that type, as the next
example shows;

dept _rec DeptRecTyp;

The identifier dept_rec represents an entire record.

You use dot notation to reference individual fields in a record. For example, you
reference the dname field in the dept_rec record as follows:

dept _rec.dname...

Embedding PL/SQL Blocks

Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. So, you
can place a PL/SQL block anywhere in a host program that you can place a SQL
statement.

To embed a PL/SQL block in your host program, simply bracket the PL/SQL block
with the keywords EXEC SQL EXECUTE and END-EXEC as follows:

EXEC SQLEXECUTE
DECLARE

Embedded PL/SQL 6-7

Host Variables and PL/SQL

BEGIN

END;
END-EXEC.

When your program embeds PL/SQL blocks, you must specify the precompiler
option SQLCHECK=SEMANTICS because PL/SQL must be parsed by Pro*COBOL.
To connect to the server, you must also specify the option USERID. For more
information, see "Using Pro*COBOL Precompiler Options" on page 14-12.

Host Variables and PL/SQL

Host variables are the key to communication between a host language and a
PL/SQL block. Host variables can be shared with PL/SQL, meaning that PL/SQL
can set and reference host variables.

For example, you can prompt a user for information and use host variables to pass
that information to a PL/SQL block. Then, PL/SQL can access the database and use
host variables to pass the results back to your host program.

Inside a PL/SQL block, host variables are treated as global to the entire block and
can be used anywhere a PL/SQL variable is allowed. However, character host
variables cannot exceed 255 characters in length. Like host variables in a SQL
statement, host variables in a PL/SQL block must be prefixed with a colon. The
colon sets host variables apart from PL/SQL variables and database objects.

PL/SQL Examples

The following example illustrates the use of host variables with PL/SQL. The
program prompts the user for an employee number, then displays the job title, hire
date, and salary of that employee.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(20) VARYING.
01PASSWORD PIC X(20) VARYING.
01 EMP-NUMBER PIC S9(4) COMP.
01 JOB-TITLE PIC X(20) VARYING.
01 HIRE-DATE PIC X(9) VARYING.
01 SALARY PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

DISPLAY 'Usemame? " WITH NO ADVANCING.

6-8 Pro*COBOL Precompiler Programmer’s Guide

Host Variables and PL/SQL

ACCEPT USERNAME.
DISPLAY "Password? " WITH NO ADVANCING.
ACCEPT PASSWORD.
EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWORD
END-EXEC.
DISPLAY "Connected to Oracle’.
PERFORM
DISPLAY 'Employee Number (0 to end)? WITH NO ADVANCING
ACCEPTd EMP-NUMBER
IF EMP-NUMBER =0
EXEC SQL COMMIT WORK RELEASE END-EXEC
DISPLAY "Exiting progranm
STOPRUN
ENDHF.
* ——— begin PL/SQL block ———
EXEC SQL EXECUTE
BEGIN
SELECT job, hiredate, sal
INTO :JOB-TITLE, :HIRE-DATE, :SALARY
FROM EMP
WHERE EMPNO = :EMP-NUMBER,;
END;
END-EXEC.
* ——end PL/SQL block
DISPLAY 'Number Job Tile Hire Date Salary'.
DISPLAY " '\
DISPLAY EMP-NUMBER, JOB-TITLE, HIRE-DATE, SALARY.
END-PERFORM.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
DISPLAY "Processing error’.
STOP RUN.

Notice that the host variable EMP-NUMBER is set before the PL/SQL block is

entered, and the host variables JOB-TITLE, HIRE-DATE, and SALARY are set inside
the block.

Embedded PL/SQL 6-9

Host Variables and PL/SQL

A More Complex Example

In the example below, you prompt the user for a bank account number, transaction
type, and transaction amount, then debit or credit the account. If the account does

not exist, you raise an exception. When the transaction is complete, you display its
status.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(20) VARYING.
0LACCT-NUM PIC S9(4) COMP.
01 TRANS-TYPE PIC X(1).
01 TRANS-AMT PIC PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
01 STATUS PIC X(80) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.
DISPLAY "Usemame? 'WITH NO ADVANCING.
ACCEPT USERNAME.
DISPLAY "Password? .
ACCEPT PASSWORD.
EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR.
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD.
PERFORM
DISPLAY "Account Number (0 to end)?’
WITH NO ADVANCING
ACCEPT ACCT_NUM
IFACCT-NUM=0
EXEC SQL COMMIT WORK RELEASE END-EXEC
DISPLAY ’Exiting program’ WITH NO ADVANCING
STOP RUN
END-IF.
DISPLAY Transaction Type - D)ebit or C)redit?’
WITH NO ADVANCING
ACCEPT TRANS-TYPE
DISPLAY Transaction Amount?’
ACCEPT trans_amt
* — begin PL/SQL block
EXEC SQL EXECUTE
DECLARE
old bal NUMBER(®92);
em_msg CHAR(70);
nonexistent EXCEPTION;
BEGIN
TRANS-TYP-TYPE ="C' THEN — crediit the account
UPDATE accts SET bal = bal + :-TRANS-AMT

6-10 Pro*COBOL Precompiler Programmer’s Guide

Host Variables and PL/SQL

WHERE acctid = :acct-num;
IF SQLY%ROWCOUNT=0THEN —no rows affected
RAISE nonexistent,
ELSE
:STATUs = Credit applied’;
END IF;
ELSIF . TRANS-TYPe="D' THEN — dehit the account
SELECT bal INTO old_bal FROM accts
WHERE acctid = ACCT-NUM;
IFold_bal>=TRANS-AMTTHEN - enough funds
UPDATE accts SET bal =bal - TRANS-AMT
WHERE acctid = ACCT-NUM;
:STATUS = "Debit applied’;
ELSE
:STATUS ="Insufficient funds’;
END IF;
ELSE
:STATUS ='Invalid type:’ || TRANS-TYPE;
END IF;
COMMIT;
EXCEPTION
WHEN NO_DATA_FOUND OR nonexistent THEN
:STATUS :="Nonexistent account;;
WHEN OTHERS THEN
emr_msg ;= SUBSTR(SQLERRM, 1, 70);
‘STATUS =Error:’ || err_msg;
END;
END-EXEC.
* ——— end PL/SQL block
DISPLAY "Status:’, STATUS
END-PERFORM.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
DISPLAY "Processing error’.
STOP RUN.

VARCHAR Pseudotype

Recall that you can use the VARCHAR pseudotype to declare variable-length
character strings. If the VARCHAR is an input host variable, you must tell

Embedded PL/SQL 6-11

Indicator Variables and PL/SQL

Pro*COBOL what length to expect. So, set the length field to the actual length of the
value stored in the string field.

If the VARCHAR is an output host variable, Pro*COBOL automatically sets the
length field. However, to use a VARCHAR output host variable in your PL/SQL
block, you must initialize the length field before entering the block. So, set the length
field to the declared (maximum) length of the VARCHAR, as shown in the
following example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
0LEMP-NUM PIC S9(4) COMP.
01 EMP-NAME PIC X(10) VARYING.
01 SALARY PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

* — initialize length field
MOVE 10 TO EMP-NAME-LEN.
EXEC SQL EXECUTE
BEGIN
SELECT ename, sal INTO :EMP-NAME, :SALARY
FROMemp
WHERE empno =:EMP-NUM,;

END;
END-EXEC.

Indicator Variables and PL/SQL

PL/SQL does not need indicator variables because it can manipulate NULLs. For
example, within PL/SQL, you can use the IS NULL operator to test for NULLSs, as
follows:

IF variable IS NULL THEN ...

You can use the assignment operator (:=) to assign NULLSs, as follows:

variable :=NULL;

However, host languages need indicator variables because they cannot manipulate
NULLs. Embedded PL/SQL meets this need by letting you use indicator variables
to

6-12 Pro*COBOL Precompiler Programmer’s Guide

Indicator Variables and PL/SQL

« accept NULLs input from a host program
« output NULLSs or truncated values to a host program
When used in a PL/SQL block, indicator variables are subject to the following rules:

= You cannot refer to an indicator variable by itself; it must be appended to its
associated host variable.

« If you refer to a host variable with an indicator variable, you must always refer
to it that way in the same block.

In the following example, the indicator variable IND-COMM appears with its host
variable COMMISSION in the SELECT statement, so it must appear that way in the
IF statement:

EXEC SQL EXECUTE
BEGIN
SELECT ename, comm
INTO :EMP-NAME, :COMMISSION:IND-COMM FROM emp
WHERE empno = :EMP-NUM,;
IF :COMMISSION:IND-COMM IS NULL THEN ...

END;
END-EXEC.

Notice that PL/SQL treats :COMMISSION:IND-COMM like any other simple
variable. Though you cannot refer directly to an indicator variable inside a PL/SQL
block, PL/SQL checks the value of the indicator variable when entering the block
and sets the value correctly when exiting the block.

Handling NULLs

When entering a block, if an indicator variable has a value of -1, PL/SQL
automatically assigns a NULL to the host variable. When exiting the block, if a host
variable is NULL, PL/SQL automatically assigns a value of -1 to the indicator
variable. In the next example, if IND-SAL had a value of -1 before the PL/SQL block
was entered, the salary_missing exception is raised. An exception is a hamed error
condition.

EXEC SQL EXECUTE
BEGIN
IF :SALARY:IND-SAL IS NULL THEN
RAISE salary_missing;
ENDIF;

Embedded PL/SQL 6-13

Host Tables and PL/SQL

END;
END-EXEC.

Handling Truncated Values

PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the
original length of the string. In the following example, the host program will be able
to tell, by checking the value of IND-NAME, if a truncated value was assigned to
EMP-NAME:

EXEC SQL EXECUTE
DECLARE

new_name CHAR(10);
BEGIN

‘EMP_NAME:IND-NAVE := new_name;

END;
END-EXEC.

Host Tables and PL/SQL

You can pass input host tables and indicator tables to a PL/SQL block. They can be
indexed by a PL/SQL variable of type BINARY_INTEGER or by a host variable
compatible with that type. Normally, the entire host table is passed to PL/SQL, but
you can use the ARRAYLEN statement (discussed later) to specify a smaller table
dimension.

Furthermore, you can use a subprogram call to assign all the values in a host table
to rows in a PL/SQL table. Given that the table subscript range is m .. n, the
corresponding PL/SQL table index range is always 1 .. (n - m + 1). For example, if
the table subscript range is 5 .. 10, the corresponding PL/SQL table index range is 1
.(10-5+1orl..6.

Note: Pro*COBOL does not check your usage of host tables. For instance, no
index range checking is done.

In the example below, you pass a host table named salary to a PL/SQL block, which
uses the host table in a function call. The function is named median because it finds
the middle value in a series of numbers. Its formal parameters include a PL/SQL
table named num_tab. The function call assigns all the values in the actual
parameter salary to rows in the formal parameter num_tab.

6-14 Pro*COBOL Precompiler Programmer’s Guide

Host Tables and PL/SQL

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 SALARY OCCURS 100 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
01 MEDIAN-SALARY PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
EXEC SQL END DECLARE SECTION END-EXEC.
* — populate the host table
EXEC SQL EXECUTE
DECLARE
TYPE NumTabTyp IS TABLE OF REAL
INDEX BY BINARY_INTEGER;
n BINARY_INTEGER;

FUNCTION median (hum_tab NumTabTyp, n INTEGER)
RETURN REAL IS
BEGIN
*— compute median
END;
BEGIN
n =100,
‘MEDIAN-SALARY :=median(:SALARY END;
END-EXEC.

You can also use a subprogram call to assign all row values in a PL/SQL table to
corresponding elements in a host table. For an example, see "Stored PL/SQL and
Java Subprograms" on page 6-21.

Table 6-1 shows the legal conversions between row values in a PL/SQL table and
elements in a host table. For example, a host table of type LONG is compatible with
a PL/SQL table of type VARCHAR2, LONG, RAW, or LONG RAW. Notably, it is
not compatible with a PL/SQL table of type CHAR.

Embedded PL/SQL 6-15

Host Tables and PL/SQL

Table 6-1 Legal Datatype Conversions

PL/SQL Table

CHAR DATE LONG LONG NUMBER RAW ROWID VARCHAR2
Host table RAW

CHARF

CHARZ

DATE X
DECIMAL

DISPLAY

FLOAT

INTEGER

LONG X

LONG X X X X
VARCHAR

LONG X X
VARRAW

NUMBER X

RAW X X

ROWID X

STRING X X X X
UNSIGNED X

VARCHAR X X X

VARCHAR?2

VARNUM X

VARRAW X X

X X X X

ARRAYLEN Statement

Suppose you must pass an input host table to a PL/SQL block for processing. By
default, when binding such a host table, Pro*COBOL use its declared dimension.
However, you might not want to process the entire table. In that case, you can use
the ARRAYLEN statement to specify a smaller table dimension. ARRAYLEN

6-16 Pro*COBOL Precompiler Programmer’s Guide

Host Tables and PL/SQL

associates the host table with a host variable, which stores the smaller dimension.
The statement syntax is:

EXEC SQL ARRAYLEN host_array (dimension) EXECUTE END-EXEC.

where dimension is a 4-byte, integer host variable, not a literal or an expression.

The ARRAYLEN statement must appear somewhere after the declarations of
host_array and dimension. You cannot specify an offset into the host table. However,
you might be able to use COBOL features for that purpose.

In the following example, you use ARRAYLEN to override the default dimension of
a host table named BONUS:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 BONUS OCCURS 100 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
01 MY-DIM PIC S9(4) COMP.

EXEC SQL ARRAYLEN BONUS (MY-DIM) END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.
* — populate the host table

* — set smaller table dimension
MOVE 25 TO MY-DIM.
EXEC SQL EXECUTE
DECLARE
TYPE NumTabTyp IS TABLE OF REAL
INDEX BY BINARY_INTEGER;
median_bonus REAL;
FUNCTION median (hum_tab NumTabTyp, n INTEGER)
RETURN REAL IS
BEGIN
*— compute median
END;
BEGIN
median_bonus := median(BONUS, :MY-DIM);

END;
END-EXEC.

Only 25 table elements are passed to the PL/SQL block because ARRAYLEN
reduces the host table from 100 to 25 elements. As a result, when the PL/SQL block
is sent to the server for execution, a much smaller host table is sent along. This saves
time and, in a networked environment, reduces network traffic.

Embedded PL/SQL 6-17

Host Tables and PL/SQL

Optional Keyword EXECUTE

Host tables used in a dynamic SQL method 2 EXEC SQL EXECUTE statement may
have two different interpretations based on the presence or absence of the optional
keyword EXECUTE. See "Using Method 2" on page 9-13.

By default (if the EXECUTE keyword is absent):

« The host array is considered when determining the number of times a PL/SQL
block will be executed. The minimum array dimension is used.

« The host array must not be bound to a PL/SQL index table.

If the keyword EXECUTE is present:

« The host table must be bound to an index table.

« The PL/SQL block will be executed one time.

« All host variables specified in the EXEC SQL EXECUTE statement must either
« be specified in an ARRAYLEN ... EXECUTE statement, or
« beascalar.

For example, given the following PL/SQL procedure:

CREATE OR REPLACE PACKAGE pkg AS
TYPE tab IS TABLE OF NUMBER(5) INDEX BY BINARY_INTEGER;
PROCEDURE procl (parml tab, parm2 NUMBER, parm3 tab);

END;

The following Pro*COBOL example demonstrates how host tables can be used to
determine how many times a given PL/SQL block is executed. In this case, the
PL/SQL block will be execute 3 times resulting in 3 new rows in the emp table.

01 DYNSTMT PIC X(80) VARYING.

01 EMPNOTAB PIC S9(4) COMPUTATIONAL OCCURS 5 TIMES.
01 ENAMETAB PIC X(10) OCCURS 3 TIVES.

01 DIM PIC S99) COMP VALUE 2.

MOVE 1111 TO EMPNOTAB(L).
MOVE 2222 TO EMPNOTAB(2).
MOVE 3333 TO EMPNOTAB(3).
MOVE 4444 TO EMPNOTAB(4).
MOVE 5555 TO EMPNOTAB().

MOVE "MICKEY" TO ENAMETAB(1).

6-18 Pro*COBOL Precompiler Programmer’s Guide

Host Tables and PL/SQL

MOVE "MINNIE" TO ENAMETAB(2).
MOVE "GOOFY" TO ENAMETAB(3).

MOVE "BEGIN INSERT INTO emp(empno, ename) VALUES :b1, :b2; END;"
TODYNSTMT-ARR.
MOVE 57 TO DYNSTMT-LEN.

EXEC SQL PREPARE s1 FROM :DYNSTMT END-EXEC.
EXEC SQL EXECUTE s1 USING :EMPNOTAB, .ENAMETAB END-EXEC.

The following Pro*COBOL example demonstrates how to bind a host table to a
PL/SQL index table through dynamic method 2. Note the presence of the
ARRAYLEN...EXECUTE statement for all host arrays specified in the EXEC SQL
EXECUTE statement.

01 DYNSTMT PIC X(80) VARYING.

0Ll PICS9(4) COMP VALUE 2.

01 INTTAB PIC S9(9) COMP OCCURS 3 TIVES.
01 DIM PIC S99) COMP VALUE 3.

EXEC SQL ARRAYLEN INTTAB (DIM) EXECUTE END-EXEC.

MOVE 1 TO INTTAB(L).
MOVE 2 TO INTTAB(2).
MOVE 3TO INTTAB(3).

MOVE "BEGIN pkg.procl (v, v2, v3); end;”;
TODYNSTMT-ARR.
MOVE 37 TO DYNSTMT-LEN.

EXEC SQL PREPARE s1 FROM :DYNSTMT END-EXEC.
EXEC SQL EXECUTE s1 USING :INTTAB, :II, INTTAB END-EXEC.

However, the following Pro*COBOL example will result in a precompile-time error
because there is no ARRAYLEN...EXECUTE statement for INTTAB2.

01 DYNSTMT PIC X(80) VARYING.

01 INTTAB PIC S9(9) COMP OCCURS 3 TIMES.
01 INTTAB2 PIC S9(9) COMP OCCURS 3 TIMES.
01 DIM PIC S9(9) COMP VALUE 3.

Embedded PL/SQL 6-19

Cursor Usage in Embedded PL/SQL

EXEC SQL ARRAYLEN INTTAB (DIM) EXECUTE END-EXEC.

MOVE 1 TO INTTAB(L).
MOVE 2 TO INTTAB(2).
MOVE 3 TO INTTAB(3).

MOVE "BEGIN pkg.procl (v, v2, v3); end;”;
TODYNSTMT-ARR.
MOVE 37 TO DYNSTMT-LEN.

EXEC SQL PREPARE s1 FROM :DYNSTMT END-EXEC.
EXEC SQL EXECUTE s1 USING :INTTAB, INTTAB2, :INTTAB END-EXEC.

Cursor Usage in Embedded PL/SQL

The maximum number of cursors your program can use simultaneously is
determined by the database initialization parameter OPEN_CURSORS. While
executing an embedded PL/SQL block, one cursor. the parent cursor, is associated
with the entire block and one cursor, the child cursor, is associated with each SQL
statement in the embedded PL/SQL block. Both parent and child cursors count
toward the OPEN_CURSORS limit. Figure 6-1, "Maximum Cursors in Use" shows
you how to calculate the maximum number of cursors used.

Figure 6-1 Maximum Cursors in Use

SQL statement cursors

PL/SQL parent cursors

PL/SQL child cursors
+ 6 cursors for overhead

Sum of cursors in use

Must not exceed OPEN_CURSORS

If your program exceeds the limit imposed by OPEN_CURSORS, you get an error:
You can avoid this error by specifying the RELEASE_ CURSOR=YES and
HOLD_CURSOR=NO options. If you do not want to precompile the entire program

6-20 Pro*COBOL Precompiler Programmer’s Guide

Stored PL/SQL and Java Subprograms

with RELEASE_CURSOR set to YES, simply reset it to NO after each PL/SQL block,
as follows:

EXEC ORACLE OPTION (RELEASE_CURSOR=YES) END-EXEC.
*— firstembedded PL/SQL block
EXEC ORACLE OPTION (RELEASE_CURSOR=NO)END-EXEC.
*— embedded SQL statements
EXEC ORACLE OPTION (RELEASE_CURSOR=YES)END-EXEC.
*— second embedded PL/SQL block
EXEC ORACLE OPTION (RELEASE_CURSOR=NO)END-EXEC.
*— embedded SQL statements
For more details on this subject, see "Embedded PL/SQL Considerations" on
page D-12.

Stored PL/SQL and Java Subprograms

Unlike anonymous blocks, PL/SQL subprograms (procedures and functions) and
Java methods, can be compiled separately, stored in the database, and invoked.

A subprogram explicitly created using an Oracle tool such as SQL*Plus is called a
stored subprogram. Once compiled and stored in the data dictionary;, it is a database
object, which can be re-executed without being re-compiled.

When a subprogram within a PL/SQL block or stored subprogram is sent to the
database by your application, it is called an inline subprogram. Pro*COBOL
compiles the inline subprogram and caches it in the System Global Area (SGA), but
does not store the source or object code in the data dictionary.

Subprograms defined within a package are considered part of the package, and so
are called packaged subprograms. Stored subprograms not defined within a package
are called stand-alone subprograms.

Creating Stored Subprograms

You can embed the SQL statements CREATE FUNCTION, CREATE PROCEDURE,
and CREATE PACKAGE in a COBOL program, as the following example shows:

EXEC SQL CREATE
FUNCTION sal_ok (salary REAL, tite CHAR)
RETURN BOOLEAN AS
min_sal REAL;
max_sal REAL;
BEGIN
SELECT losal, hisal INTO min_sal, max_sal
FROM sals

Embedded PL/SQL 6-21

Stored PL/SQL and Java Subprograms

WHERE job =fitle;
RETURN (salary >=min_sal) AND
(salary <=max_sal);
END sal_ok;
END-EXEC.

Notice that the embedded CREATE {FUNCTION | PROCEDURE | PACKAGE}
statement is a hybrid. Like all other embedded CREATE statements, it begins with
the keywords EXEC SQL (not EXEC SQL EXECUTE). But, unlike other embedded
CREATE statements, it ends with the PL/SQL terminator END-EXEC.

In the example below, you create a package that contains a procedure named
get_employees, which fetches a batch of rows from the emp table. The batch size is
determined by the caller of the procedure, which might be another stored
subprogram or a client application program.

The procedure declares three PL/SQL tables as OUT formal parameters, then
fetches a batch of employee data into the PL/SQL tables. The matching actual
parameters are host tables. When the procedure finishes, it automatically assigns all
row values in the PL/SQL tables to corresponding elements in the host tables.

EXEC SQL CREATE OR REPLACE PACKAGE emp_actions AS
TYPE CharArrayTyp IS TABLE OF VARCHAR2(10)
INDEX BY BINARY_INTEGER;
TYPE NumAmayTyp IS TABLE OF FLOAT
INDEX BY BINARY_INTEGER,;
PROCEDURE get_employees(
dept_numberIN INTEGER,
batch size IN INTEGER,
found INOUT INTEGER,
done_fetch OUT INTEGER,
emp_name OUT CharAmayTyp,
jobile OUT CharAmrayTyp,
salary OUT NumAmayTyp);
END emp_actions;

END-EXEC.

EXEC SQL CREATE OR REPLACE PACKAGE BODY emp_actions AS
CURSOR get_emp (dept_number IN INTEGER) IS
SELECT ename, job, sal FROM emp

WHERE deptno = dept_number;
PROCEDURE get_employees(
dept numberIN INTEGER,
batch_size IN INTEGER,
found INOUT INTEGER,
done_fetch OUT INTEGER,

6-22 Pro*COBOL Precompiler Programmer’s Guide

Stored PL/SQL and Java Subprograms

emp_name OUT CharArayTyp,

job_tite OUT CharArrayTyp,

salary OUT NumAmayTyp) IS

BEGIN

IFNOT get_emp%ISOPEN THEN
OPEN get_emp(dept_number);

ENDIF;

done _fetch:=0;

found :=0;

FORIIN 1.batch size LOOP

FETCH get_emp INTO emp_name(j),
job_titie(), salary();

IF get_emp%NOTFOUND THEN
CLOSE get_emp;
done_fetch:=1;

EXIT;

ELSE
found :=found + 1,

ENDIF;

END LOOP;
END get_employees;
END emp_actions;
END-EXEC.

You specify the REPLACE clause in the CREATE statement to redefine an existing
package without having to drop the package, recreate it, and re-grant privileges on
it. For the full syntax of the CREATE statement see the Oracle8i SQL Reference.

If an embedded CREATE {FUNCTION | PROCEDURE | PACKAGE} statement
fails, Oracle8i generates a warning, not an error.

Calling a Stored PL/SQL or Java Subprogram

To call a stored subprogram from your host program, you can use either an
anonymous PL/SQL block, or the CALL embedded SQL statement.

Anonymous PL/SQL Block
In the following example, you call a stand-alone procedure named raise_salary:

EXEC SQL EXECUTE
BEGIN
raise_salary(:emp_id, iincrease);
END;
END-EXEC.

Embedded PL/SQL 6-23

Sample Program 9: Calling a Stored Procedure

Notice that stored subprograms can take parameters. In this example, the actual
parameters emp_id and increase are host variables.

In the next example, the procedure raise_salary is stored in a package named
emp_actions, so you must use dot notation to fully qualify the procedure call:

EXEC SQL EXECUTE
BEGIN
emp_actions.raise_salary(:emp_id, :increase);
END;
END-EXEC.

An actual IN parameter can be a literal, host variable, host table, PL/SQL constant
or variable, PL/SQL table, PL/SQL user-defined record, subprogram call, or
expression. However, an actual OUT parameter cannot be a literal, subprogram call,
or expression.

You must use precompiler option SQLCHECK=SEMANTICS with an embedded
PL/SQL block.

Sample Program 9: Calling a Stored Procedure

Before trying the sample program, you must create a PL/SQL package named
calldemo, by running a script named CALLDEMO.SQL, which is supplied with
Pro*COBOL and shown below. The script can be found in the Pro*COBOL demo
library. Check your system-specific Oracle documentation for exact spelling of the
script.

CREATE OR REPLACE PACKAGE calldemo AS

TYPE name_array IS TABLE OF emp.ename%type
INDEX BY BINARY_INTEGER,;

TYPE job_array IS TABLE OF emp.job%type
INDEX BY BINARY_INTEGER,;

TYPE sal_array IS TABLE OF emp.sal%type
INDEX BY BINARY_INTEGER;

PROCEDURE get_employees(

dept numberIN number, —departmentto query
batch size IN INTEGER, -rowsatatime

found INOUTINTEGER, -rows actually retumed
done_fetch OUT INTEGER, - alldoneflag
emp_name OUT name_array,

job OUT job armay,

6-24 Pro*COBOL Precompiler Programmer’s Guide

Sample Program 9: Calling a Stored Procedure

sal OUT sal_aray);

END calldemo;
/

CREATE OR REPLACE PACKAGE BODY calldemo AS

CURSOR get_emp (dept_number IN number) IS
SELECT ename, job, sal FROM emp
WHERE deptno = dept_number;

- Procedure "get_employees' fetches a batch of employee
—rows (batch size is determined by the client/caller

- of the procedure). It can be called from other

— stored procedures or client application programs.

— The procedure opens the cursor if it is not

— already open, fetches a batch of rows, and

- retums the number of rows actually retrieved. At

—end of fetch, the procedure closes the cursor.

PROCEDURE get_employees(
dept_numberIN number,
batch_size IN INTEGER,
found INOUTINTEGER,
done fetch OUT INTEGER,
emp_name OUT name_anay,
job OUT job_amay,

sa OUT sal _amay)lS

BEGIN
IFNOT get emp%ISOPEN THEN - open the cursor if
OPEN get_emp(dept_number); — not already open
ENDIF;

—Fetch up to "batch_size'" rows into PL/SQL table,
—tallying rows found as they are retrieved. When all
- rows have been fetched, close the cursor and exit
—the loop, retuming only the last set of rows found.

done_fetch :=0; — setthe done flag FALSE
found :=0;

FORIIN 1.batch size LOOP
FETCH get_emp INTO emp_name(i), job(i), sal();

Embedded PL/SQL

6-25

Sample Program 9: Calling a Stored Procedure

IF get_emp%NOTFOUND THEN - if no row was found
CLOSE get_emp;
done_fetch:=1; —indicate alldone
EXIT,
ELSE
found :=found +1; — countrow
ENDIF;
END LOOP,;
END;
END;
/

The following sample program connects to the database, prompts the user for a
department number, then calls a PL/SQL procedure named get_employees, which is
stored in package calldemo. The procedure declares three PL/SQL tables as OUT
formal parameters, then fetches a batch of employee data into the PL/SQL tables.
The matching actual parameters are host tables. When the procedure finishes, row
values in the PL/SQL tables are automatically assigned to the corresponding
elements in the host tables. The program calls the procedure repeatedly, displaying
each batch of employee data, until no more data is found.

* Sample Program 9: Calling a Stored Procedure
*

*This program connects to ORACLE, prompits the user fora

* department number, then calls a PL/SQL stored procedure named
*GET_EMPLOYEES, which is stored in package CALLDEMO. The
* procedure declares three PL/SQL tables ast OUT formal

* parameters, then fetches a batch of employee data into the
*PL/SQL tables. The matching actual parameters are host tables.
*When the procedure finishes, it automatically assigns all row
*values in the PL/SQL tables to comesponding elements in the
*host tables. The program calls the procedure repeatedly,

* displaying each batch of employee data, until no more data
*jsfound.

* Use option picx=varchar2 when precompiling this sample program.

IDENTIFICATION DIVISION.
PROGRAM-ID. CALL-STORED-PROC.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

6-26 Pro*COBOL Precompiler Programmer’s Guide

Sample Program 9: Calling a Stored Procedure

01 USERNAME PIC X(15) VARYING.

01 PASSWD PICX(15) VARYING.

01 DEPT-NUM PIC S9(9) COMP.

01 EMP-TABLES.
05 EMP-NAME OCCURS 10 TIMES PIC X(10).
05 JOB-TITLE OCCURS 10 TIMES PIC X(10).

05 SALARY OCCURS 10 TIMES COMP-2.

01 DONE-FLAG PIC S9(9) COMP.
01 TABLE-SIZE PIC S9(9) COMP VALUE 10.
01 NUM-RET PIC S9(9) COMP.
01 SQLCODE PIC S9(9) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

0L COUNTER PIC S9(9) COMP.
01 DISPLAY-VARIABLES.

05 DEMP-NAME PIC X(10).

05 D-JOB-TITLE PIC X(10).

05 D-SALARY PICZ(5)9.

05 D-DEPT-NUM PIC9(2).

EXEC SQL INCLUDE SQLCA END-EXEC.
PROCEDURE DIVISION.

BEGIN-PGM.
EXEC SQL WHENEVER SQLERROR DO
PERFORM SQL-ERROR END-EXEC.

PERFORM LOGON.

PERFORM INIT-TABLES VARYING COUNTERFROM 1BY 1
UNTIL COUNTER > 10.

PERFORM GET-DEPT-NUM.

PERFORM DISPLAY-HEADER.

MOVE ZERO TO DONE-FLAG.

MOVE ZERO TO NUM-RET.

PERFORM FETCH-BATCH UNTIL DONE-FLAG =1.

PERFORM LOGOFF.

INIT-TABLES.

MOVE SPACE TO EMP-NAME(COUNTER).
MOVE SPACE TO JOB-TITLE(COUNTER).

Embedded PL/SQL 6-27

Sample Program 9: Calling a Stored Procedure

MOVE ZERO TO SALARY(COUNTER).

GET-DEPT-NUM.
MOVE ZERO TO DEPT-NUM.
DISPLAY "".
DISPLAY "ENTER DEPARTMENT NUMBER: "
WITH NO ADVANCING.

ACCEPT D-DEPT-NUM.
MOVE D-DEPT-NUM TO DEPT-NUM.

DISPLAY-HEADER.

DISPLAY "".

DISPLAY "EMPLOYEE JOBTITLE SALARY".
DISPLAY "— —— —"

FETCH-BATCH.
EXEC SQL EXECUTE
BEGIN
CALLDEMO.GET_EMPLOYEES
(:DEPT-NUM, :TABLE-SIZE,
‘NUM-RET, :DONE-FLAG,
‘EMP-NAME, :JOB-TITLE, :SALARY);
END;
END-EXEC.
PERFORM PRINT-ROWS VARYING COUNTER FROM 1BY 1
UNTIL COUNTER >NUM-RET.

PRINT-ROWS.
MOVE EMP-NAME(COUNTER) TO D-EMP-NAME.
MOVE JOB-TITLE(COUNTER) TO D-JOB-TITLE.
MOVE SALARY(COUNTER) TO D-SALARY.
DISPLAY D-EMP-NAME, " ",
D-JOB-TITLE," ",
D-SALARY.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE "TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.

6-28 Pro*COBOL Precompiler Programmer’s Guide

Sample Program 9: Calling a Stored Procedure

DISPLAY "".
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

LOGOFF.
DISPLAY "".
DISPLAY "HAVE A GOOD DAY.".
DISPLAY "".
EXEC SQL COMMIT WORK RELEASE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

Remember, the datatype of each actual parameter must be convertible to the
datatype of its corresponding formal parameter. Also, before a stored subprogram
exits, all OUT formal parameters must be assigned values. Otherwise, the values of
corresponding actual parameters are indeterminate.

Remote Access

PL/SQL lets you access remote databases via database links. Typically, database links
are established by your DBA and stored in the data dictionary. A database link tells
your program where the remote database is located, the path to it, and what
username and password to use. In the following example, you use the database link
dallas to call the raise_salary procedure:

EXEC SQL EXECUTE
BEGIN
raise_salary@dallas(:emp _id, :increase);
END,;

END-EXEC.

You can create synonyms to provide location transparency for remote subprograms,
as the following example shows:

CREATE PUBLIC SYNONYM aise_salary FOR raise_salary@dallas;

Embedded PL/SQL 6-29

Sample Program 9: Calling a Stored Procedure

CALL Statement

The concepts presented above for the embedded PL/SQL block holds true for the
CALL statement. The CALL embedded SQL statement has the form:

EXEC SQL
CALL [schema.] [package Jstored_proc[@db_link]@argy, ...)
[INTO ‘ret_var [INDICATOR]ret_ind]
END-EXEC.
where
schema
the schema containing the procedure
package
the package containing the procedure
stored_proc
is the Java or PL/SQL stored procedure to be called
db_link
is the optional remote database link
argl...
is the list of arguments (variables, literals, or expressions) passed,
ret_var
is the optional host variable which receives the result
ind_var
the optional indicator variable for ret_var.

You can use either SQLCHECK=SYNTAX, or SQLCHECK=SEMANTICS with the
CALL statement.

CALL Example

If you have created a PL/SQL function fact (stored in the package mathpkg) that
takes an integer as input and returns its factorial in an integer:

EXEC SQL CREATE OR REPLACE PACKAGE BODY mathpkg as
function fact(n IN INTEGER) RETURN INTEGER AS
BEGIN
IF (h<=0)thenretum 1,

6-30 Pro*COBOL Precompiler Programmer’s Guide

Sample Program 9: Calling a Stored Procedure

ELSE retum n*fact(n - 1);
ENDIF;
END fact;
END mathpkge;
END-EXEC.

then to use fact in a ProxCOBOL application:

01N PICS9(4) COMP.
01FACT PIC S9(9) COMP.

EXEC SQL CALL mathpkge fact(N) INTO :FACT END-EXEC.

For more information about this statement, see "CALL (Executable Embedded
SQL)" on page F-16. For a complete explanation of passing arguments and other
issues, see Oracle8i Application Developer’s Guide - Fundamentals, "External Routines"
chapter.

Getting Information about Stored Subprograms

In Chapter 4, "Datatypes and Host Variables", you learned how to embed OCI calls
in your host program. After calling the library routine SQLLDA to set up the LDA,
you can use the OCI call ODESSP to get useful information about a stored
subprogram. When you call ODESSP, you must pass it a valid LDA and the name of
the subprogram. For packaged subprograms, you must also pass the name of the
package. ODESSP returns information about each subprogram parameter such as
its datatype, size, position, and so on. For details, see Oracle Call Interface
Programmer’s Guide.

You can also use the procedure describe_procedure in package DBMS_DESCRIBE,
which is supplied with Oracle8i. For more information, see the Oracle8i Application
Developer’s Guide - Fundamentals.

Using Dynamic PL/SQL
Recall that Pro*COBOL treats an entire PL/SQL block like a single SQL statement.
Therefore, you can store a PL/SQL block in a string host variable. Then, if the block
contains no host variables, you can use dynamic SQL Method 1 to execute the
PL/SQL string. Or, if the block contains a known number of host variables, you can
use dynamic SQL Method 2 to prepare and execute the PL/SQL string. If the block
contains an unknown number of host variables, you must use dynamic SQL

Embedded PL/SQL 6-31

Cursor Variables

Method 4. For more information, refer to Chapter 9, "Oracle Dynamic SQL",
Chapter 10, "ANSI Dynamic SQL"and Chapter 11, "Oracle Dynamic SQL: Method
g

Subprograms Restriction

In dynamic SQL Method 4, a host table cannot be bound to a PL/SQL procedure
with a parameter of type "table."

Cursor Variables

You can use cursor variables in your Pro*COBOL programs to process multi-row queries
using static embedded SQL. A cursor variable identifies a cursor reference that is defined
and opened on the database server, using PL/SQL. See PL/SQL User’s Guide and
Reference for complete information about cursor variables.

Like a cursor, a cursor variable points to the current row in the active set of a
multi-row query. Cursors differ from cursor variables the way constants differ from
variables. While a cursor is static, a cursor variable is dynamic, because it is not tied
to a specific query. You can open a cursor variable for any type-compatible query.

You can assign new values to a cursor variable and pass it as a parameter to
subprograms, including subprograms stored in a database. This gives you a
convenient way to centralize data retrieval.

First, you declare the cursor variable. After declaring the variable, you use these
statements to control a cursor variable:

« ALLOCATE
« OPEN...FOR

« FETCH
« CLOSE
« FREE

After you declare the cursor variable and allocate memory for it, you must pass it as
an input host variable (bind variable) to PL/SQL, OPEN it FOR a multi-row query
on the server side, FETCH from it on the client side, then CLOSE it on either side.

The advantages of cursor variables are

« Ease of maintenance: queries are centralized, in the stored procedure that opens
the cursor variable. If you need to change the cursor, you only need to make the

6-32 Pro*COBOL Precompiler Programmer’s Guide

Cursor Variables

change in one place: the stored procedure. There is no need to change each
application.

= Security: the user of the application (the username when the Pro*COBOL
application connected to the database) must have execute permission on the
stored procedure that opens the cursor. This user, however, does not need to
have read permission on the tables used in the query. This capability can be
used to limit access to the columns in the table.

Declaring a Cursor Variable

You declare a Pro*COBOL cursor variable using the SQL-CURSOR pseudotype. For
example:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
61 CUR-VAR SQL-CURSOR.
EXEC SQL END DECLARE SECTION END-EXEC.

A SQL-CURSOR variable is implemented as a COBOL group item in the code that
Pro*COBOL generates. A cursor variable is just like any other Pro*COBOL host
variable.

Allocating a Cursor Variable

Before you can OPEN or FETCH from a cursor variable, you must initialize it using
the Pro*COBOL ALLOCATE command. For example, to initialize the cursor
variable CUR-VAR that was declared in the previous section, write the following
statement:

EXEC SQL ALLOCATE :CUR-VAR END-EXEC.

Allocating a cursor variable does not require a call to the server, either at precompile
time or at runtime.

The AT clause cannot be used in an ALLLOCATE statement.

Warning: Allocating a cursor variable does cause heap memory to be used. For this
reason, avoid allocating a cursor variable in a program loop.

Embedded PL/SQL 6-33

Cursor Variables

Opening a Cursor Variable

You must use an embedded anonymous PL/SQL block to open a cursor variable on
the database server. The anonymous PL/SQL block may open the cursor either
indirectly by calling a PL/SQL stored procedure that opens the cursor (and defines
it in the same statement) or directly from the Pro*COBOL program.

Opening Indirectly through a Stored PL/SQL Procedure
Consider the following PL/SQL package stored in the database:

CREATE PACKAGE demo_cur_pkg AS
TYPE EmpName IS RECORD (name VARCHAR2(10));
TYPE cur_type IS REF CURSOR RETURN EmpName;
PROCEDURE open_emp_cur (
curs IN OUT curtype,
dept numIN number);
END;

CREATE PACKAGE BODY demo_cur_pkg AS
CREATE PROCEDURE open_emp_cur (
curs IN OUT curtype,
dept numIN number) IS
BEGIN
OPEN curs FOR
SELECT ename FROM emp
WHERE deptno =dept_num
ORDER BY ename ASC;
END;
END;

After this package has been stored, you can open the cursor curs by calling the
open_emp_cur stored procedure from your Pro*COBOL program, and FETCH from
the cursor variable EMP-CURSOR in the program. For example:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-CURSOR SQL-CURSOR.
01 DEPT-NUM PIC S9(4).
01 EMP-NAME PIC X(10) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

* Allocate the cursor variable.

6-34 Pro*COBOL Precompiler Programmer’s Guide

Cursor Variables

EXEC SQL
ALLOCATE 'EMP-CURSOR
END-EXEC.

MOVE 30 TO DEPT_NUM.
* Open the cursor on the Oracle Server.
EXEC SQL EXECUTE
BEGIN
demo_cur_pkg.open_emp_cur(: EMP-CURSOR, :DEPT-NUM);
END;
END-EXEC.
EXEC SQL
WHENEVER NOT FOUND DO PERFORM SIGN-OFF
END-EXEC.
FETCH-LOOP.
EXEC SQL
FETCH :EMP-CURSOR INTO :EMP-NAME
END-EXEC.
DISPLAY "Employee Name: ", EMP-NAME.
GO TO FETCH-LOOP.

SIGN-OFF.

Opening Directly from Your Pro*COBOL Application

To open a cursor using a PL/SQL anonymous block in a Pro*COBOL program,
define the cursor in the anonymous block. Consider the following example:

PROCEDURE DIVISION.

EXEC SQL EXECUTE
BEGIN
OPEN :EMP-CURSOR FOR SELECT ENAME FROM EMP
WHERE deptno = :DEPT-NUM;
end;
END-EXEC.

Fetching from a Cursor Variable

After opening a cursor variable for a multi-row query, you use the FETCH
statement to retrieve rows from the active set one at a time. The syntax follows:

EXEC SQL FETCH cursor_variable name

Embedded PL/SQL 6-35

Cursor Variables

INTO {record_name | variable_name], variable_name, ...}
END-EXEC.
Each column value returned by the cursor variable is assigned to a corresponding
field or variable in the INTO clause, providing their datatypes are compatible.

The FETCH statement must be executed on the client side. In the following
example, you fetch rows into a host record named EMP-REC:

* — exitloop when done fetching

EXEC SQL

WHENEVER NOT FOUND DO PERFORM NO-MORE

END-EXEC.

PERFORM
*—fetch row into record

EXEC SQL FETCH :EMP-CUR INTO :EMP-REC END-EXEC
* —test for transfer out of loop

*— process the data
END-PERFORM.

NO-MORE.

Use the embedded SQL FETCH INTO command to retrieve the rows SELECTed
when you opened the cursor variable. For example:

EXEC SQL
FETCH :EMP-CURSOR INTO :EMP-INFO:EMP-INFO-IND
END-EXEC.

Before you can FETCH from a cursor variable, the variable must be initialized and
opened. You cannot FETCH from an unopened cursor variable.

Closing a Cursor Variable

Use the embedded SQL CLOSE statement to close a cursor variable, at which point
its active set becomes undefined. The syntax follows:

EXEC SQL CLOSE cursor_variable_name END-EXEC.
The CLOSE statement can be executed on the client side or the server side. In the

following example, when the last row is processed, you close the cursor variable
CUR-VAR:

WORKING-STORAGE SECTION.

6-36 Pro*COBOL Precompiler Programmer’s Guide

Cursor Variables

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
* Declare the cursor variable.
01 CURVAR SQL-CURSOR.

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
* Allocate and open the cursor variable, then
* Fetch one or more rows.

* Close the cursor variable.
EXEC SQL
CLOSE :CUR-VAR
END-EXEC.

Freeing a Cursor Variable

To free memory allocated for the cursor variable, CUR-VAR,use the FREE statement
after the CLOSE:

* Free the cursor variable memory.
EXEC SQL
FREE :CUR-VAR
END-EXEC.

Restrictions on Cursor Variables
The following restrictions apply to the use of cursor variables:
« Cursor variables are not supported in dynamic SQL.

= You can only use cursor variables with the ALLOCATE, FETCH, FREE, and
CLOSE commands. The DECLARE CURSOR command does not apply to cursor
variables.

« If you precompile with CLOSE_ON_COMMIT=NO, it is an error to close a
cursor variable that is already closed.

« You cannot use the AT clause with the ALLOCATE command.

Error Conditions
Do not perform any of the following operations;

« FETCH from a closed or un-allocated cursor variable.

Embedded PL/SQL 6-37

Cursor Variables

« Use acursor variable that is not ALLOCATEd.
« CLOSE a cursor variable that is not open

These operations on cursor variables result in errors.

Sample Program 11: Cursor Variables

The following sample programs — a SQL script (SAMPLE11.SQL) and a Pro*xCOBOL
program (SAMPLE11.PCO) — demonstrate how you can use cursor variables in
Pro*COBOL.

SAMPLE11.SQL

Following is the PL/SQL source code for a creating a package that declares and
opens a cursor variable:

CONNECT SCOTT/TIGER
CREATE OR REPLACE PACKAGE emp_demo_pkg AS
TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;
PROCEDURE open_cur (
cursor INOUT emp_cur_type,
dept_ numIN number);
END emp_demo_pkg;
/
CREATE OR REPLACE PACKAGE BODY emp_demo_pkg AS

PROCEDURE open_cur (
cursor INOUT emp_cur_type,
dept numIN number) IS
BEGIN
OPEN cursor FOR SELECT * FROM emp
WHERE deptno =dept_num
ORDER BY ename ASC;
END;
END emp_demo_pkg;
/

SAMPLE11.PCO

Following is a Pro*COBOL sample program, SAMPLE11.PCO, that uses the cursor
variable declared in the SAMPLE11.SQL example to fetch employee names, salaries, and
commissions from the EMP table:

6-38 Pro*COBOL Precompiler Programmer’s Guide

Cursor Variables

* Sample Program 11: Cursor Variable Operations *
* *

*This program logs on to ORACLE, allocates and opens a cursor *
*variable fetches the names, salaries, and commissions of all *
* salespeople, displays the results, then closes the cursor. *

IDENTIFICATION DIVISION.
PROGRAMH-D. CURSOR-VARIABLES.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(15) VARYING.
0L PASSWD PICX(15) VARYING.
01 HOST PIC X(15) VARYING.
01 EMPCUR SQL-CURSOR.
01 EMP-INFO.
05 EMP-NUM PIC S9(4) COMP.
05 EMP-NAM PIC X(10) VARYING.
05 EMP-JOB PIC X(10) VARYING.
05 EMP-MGR PIC S9(4) COMP.
05 EMP-DAT PIC X(10) VARYING.
05 EMP-SAL PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 EMP-COM PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 EMP-DEP PIC S9(4) COMP.
01 EMP-INFO-IND.
05 EMP-NUMHND PIC S9(4) COMP.
05 EMP-NAMHND PIC S9(4) COMP.
05 EMP-JOBAND PIC S9(4) COMP.
05 EMP-MGR-IND PIC S9(4) COMP.
05 EMP-DAT-IND PIC S9(4) COMP.
05 EMP-SALIND PIC S9(4) COMP.
05 EMP-COM-ND PIC S9(4) COMP.
05 EMP-DEPAND PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.

01 DISPLAY-VARIABLES.
05 D-DEP-NUM PIC Z(3)9.

Embedded PL/SQL 6-39

Cursor Variables

05 D-EMP-NAM PIC X(10).
05 D-EMP-SAL PIC Z(4)9.99.
05 D-EMP-COM PIC Z(4)9.99.
05 D-EMP-DEP PIC9(2).

PROCEDURE DIVISION.

BEGIN-PGM.
EXEC SQL
WHENEVER SQLERROR DO PERFORM SQL-ERROR
END-EXEC.
PERFORM LOGON.
EXEC SQL
ALLOCATE :EMP-CUR
END-EXEC.
DISPLAY "Enter department number (O to exit): "
WITH NO ADVANCING.
ACCEPT D-EMP-DEP.
MOVE D-EMP-DEP TO EMP-DEP.
IFEMP-DEP <=0
GO TO SIGN-OFF
END-IF.
MOVE EMP-DEP TO D-DEP-NUM.
EXEC SQL EXECUTE
BEGIN
emp_demo_pkg.open_cur(EMP-CUR, :EMP-DEP);
END;
END-EXEC.
DISPLAY "".
DISPLAY "For department ", D-DEP-NUM, "".
DISPLAY "".
DISPLAY "EMPLOYEE SALARY COMMISSION".
DISPLAY "—4— ——— ——""

FETCH-LOOP.
EXEC SQL
WHENEVER NOT FOUND GOTO CLOSE-UP
END-EXEC.
MOVE SPACES TO EMP-NAM-ARR.
EXEC SQL FETCH :EMP-CUR
INTO :EMP-NUM:EMP-NUM-IND,
‘EMP-NAM:EMP-NAVHND,
‘EMP-JOB:EMP-JOB-IND,
‘EMP-MGREMP-MGR-IND,

6-40 Pro*COBOL Precompiler Programmer’s Guide

Cursor Variables

‘EMP-DAT:EMP-DAT-IND,
‘EMP-SAL:EMP-SAL-IND,
EMP-COM:EMP-COM-IND,
‘EMP-DEP:EMP-DEP-IND
END-EXEC.
MOVE EMP-SAL TO D-EMP-SAL.
IFEMP-COM-IND=0
MOVE EMP-COM TO D-EMP-COM
DISPLAY EMP-NAM-ARR, " ", D-EMP-SAL,
" ", D-EMP-COM
ELSE
DISPLAY EMP-NAM-ARR," ", D-EMP-SAL,
"NA
END-IF.
GO TO FETCH-LOORP.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
MOVE "INSTL_ALIAS" TOHOST-ARR.
MOVE 11 TO HOST-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY ",
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

CLOSE-UP.
EXEC SQL
CLOSE :EMP-CUR
END-EXEC.
EXEC SQL
FREE :EMP-CUR
END-EXEC.
SIGN-OFF.
DISPLAY ",
DISPLAY "HAVE A GOOD DAY"".
DISPLAY ",
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

Embedded PL/SQL 6-41

Cursor Variables

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

6-42 Pro*COBOL Precompiler Programmer’s Guide

v

Host Tables

This chapter looks at using tables to simplify coding and improve program
performance. You learn how to manipulate Oracle data using host tables, how to
operate on all the elements of a host table with a single SQL statement, how to limit
the number of table elements processed, and how to use tables of group items.

The main sections are:

What Is a Host Table?

Why Use Tables?

Tables in Data Manipulation Statements
Selecting into Tables

Inserting with Tables

Updating with Tables

Deleting with Tables

Using Indicator Tables

Using the FOR Clause

Using the WHERE Clause

Mimicking the CURRENT OF Clause
Tables of Group Items as Host Variables

Tables of Group Items as Host Variables

Host Tables 7-1

What Is a Host Table?

What Is a Host Table?

A host table is a set of related data items, called elements, associated with a single
variable. An indicator variable defined as a table is called an indicator table. An
indicator table can be associated with any host table that is NULLABLE.

Why Use Tables?

Tables can ease programming and offer improved performance. When writing an
application, you are usually faced with the problem of storing and manipulating
large collections of data. Tables simplify the task of naming and referencing the
individual items in each collection.

Tables let you manipulate an entire collection of data items with a single SQL
statement. Thus, communications overhead is reduced markedly, especially in a
networked environment. For example, suppose you want to insert information
about 300 employees into the EMP table. Without tables your program must do 300
individual INSERTs—one for each employee. With tables, only one INSERT need be
done.

With few exceptions, you can use host tables wherever scalar host variables are
allowed. Also, you can associate an indicator table with any host table.

Declaring Host Tables

You declare and dimension host tables in the Data Division. In the following
example, three host tables are declared, each dimensioned with 50 elements:

01 EMP-TABLES.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
05 EMP-NAME OCCURS 50 TIMES PIC X(10.
05 SALARY OCCURS 50 TIMES PIC S9(5)VV99 COMP-3.

You can use the INDEXED BY phrase in the OCCURS clause to specify an index, as
the next example shows:

01 EMP-TABLES.
05 EMP-NUMBER PIC X(10) OCCURS 50 TIMES
INDEXED BY EMP-INDX.

The INDEXED BY phrase implicitly declares the index item EMP-INDX.

7-2 Pro*COBOL Precompiler Programmer’s Guide

Why Use Tables?

Restrictions

Multi-dimensional host tables are not allowed. Thus, the two-dimensional host
table declared in the following example is invalid:

01 NATION.
05 STATE OCCURS 50 TIMES.
10 STATE-NAME PIC X(25).
10 COUNTY OCCURS 25 TIMES.
15 COUNTY-NAME PIXX(25).

Variable-length host tables are not allowed either. For example, the following
declaration of EMP-REC is invalid for a host variable:

01 EMP-FILE.
05 REC-COUNT PIC S9(3) COMP.
05 EMP-REC OCCURSO0TO 250 TIMES
DEPENDING ON REC-COUNT.

The maximum number of bytes accessable by a host table in one fetch is dependent
on resources used. If you define a host table that exceeds the maximum, you get a
"parameter out of range" runtime error. If you use multiple host tables in a single
SQL statement, their number of entries should be the same. Otherwise, a "table size
mismatch"” warning message is issued at precompile time. If you ignore this
warning, the precompiler uses the smallest number of entries for the SQL operation.

Referencing Host Tables

If you use multiple host tables in a single SQL statement, their dimensions should
be the same. This is not a requirement, however, because Pro*COBOL always uses

the smallest dimension for the SQL operation. In the following example, only 25 rows are
INSERTed:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-TABLES.
05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
05 EMP-NAME PIC X(10) OCCURS 50 TIMES.
05 DEPT-NUMBER PIC S9(4) COMP OCCURS 25 TIMES.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

Host Tables 7-3

Why Use Tables?

* Populate host tables here.

EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER)
END-EXEC.

Host tables must not be subscripted in SQL statements. For example, the following
INSERT statement is invalid:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-TABLES.
05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
05 EMP-NAME PIC X(10) OCCURS 50 TIMES.
05 DEPT-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

PERFORM LOAD-EMP VARYING JFROM 1 BY 1 UNTIL J>50.

LOAD-EMP.
EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (EMP-NUMBER(J), -EMP-NAME(J),
‘DEPT-NUMBER(J)
END-EXEC.

You need not process host tables in a PERFORM VARYING statement. Instead, use
the un-subscripted table names in your SQL statement. Pro*COBOL treats a SQL
statement containing host tables of dimension n like the same statement executed n
times with n different scalar host variables, but more efficiently.

Using Indicator Tables

You can use indicator tables to assign NULLSs to elements in input host tables and to
detect NULLs or truncated values (of character columns only) in output host tables.
The following example shows how to INSERT with indicator tables:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-TABLES.
05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
05 DEPT-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
05 COMMISSION PIC S9(5)V99 COMP-3 OCCURS 50 TIMES.
05 COMM-HIND PIC S9(4) COMP OCCURS 50 TIMES.

7-4 Pro*COBOL Precompiler Programmer’s Guide

Why Use Tables?

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

* Populate the host and indicator tables.
* Setindicator table to all zeros.

EXEC SQL INSERT INTO EMP (EMPNO, DEPTNO, COMM)
VALUES (EMP-NUMBER, :DEPT-NUMBER,
:COMMISSION:COMM-IND)
END-EXEC.

The dimension of the indicator table must be greater than, or equal to, the
dimension of the host table.

Oracle Restrictions
Mixing scalar host variables with host arrays in the VALUES, SET, INTO, or
WHERE clause is not allowed. If any of the host variables is an array, all must be
arrays.

You cannot use host arrays with the CURRENT OF clause in an UPDATE or
DELETE statement.

ANSI Restriction and Requirements

The array interface is an Oracle extension to the ANSI/ZISO embedded SQL
standard. However, when you precompile with MODE=ANSI, array SELECTs and
FETCHes are still allowed. The use of arrays can be flagged using the FIPS flagger
precompiler option, if desired.

When doing array SELECTs and FETCHes, always use indicator arrays. That way,
you can test for NULLSs in the associated output host array.

When you precompile with the precompiler option DBMS=V7 or V8, if a NULL is
selected or fetched into a host variable that has no associated indicator variable,
Oracle stops processing, sets sglca.sglerrd(3) to the number of rows processed, and
returns an error.

When DBMS=V7 or V8, Oracle does not consider truncation to be an error.

Host Tables 7-5

Tables in Data Manipulation Statements

Host Group Item Containing Tables

Note: If you have a host group item containing tables, you cannot use a table of
half-word integer variables for an indicator. You must use a corresponding group
item of tables for an indicator. For example, if your group item is the following:

01 DEPARTURE.
05HOUR PIC X(2) OCCURS 3 TIMES.
05MINUTE PIC X(2) OCCURS 3 TIMES.

the following indicator variable cannot be used:
01 DEPARTURE-IND PIC S9(4) COMP OCCURS 6 TIMES.

The indicator variable you use with the group item of tables must itself be a group
item of tables such as the following:

01 DEPARTURE-IND.
05HOUR-IND PIC S9(4) COMP OCCURS 3 TIMES.
05 MINUTEAND PIC S9(4) COMP OCCURS 3 TIMES.

Tables in Data Manipulation Statements

Pro*COBOL allows the use of host tables in data manipulation statements. You can
use host tables as input variables in the INSERT, UPDATE, and DELETE statements
and as output variables in the INTO clause of SELECT and FETCH statements.

The syntax used for host tables and simple host variables is nearly the same. One
difference is the optional FOR clause, which lets you control table processing. Also,
there are restrictions on mixing host tables and simple host variables in a SQL
statement.

The following sections illustrate the use of host tables in data manipulation
statements.

Selecting into Tables

You can use host tables as output variables in the SELECT statement. If you know
the maximum number of rows the select will return, simply define the host tables
with that number of elements. In the following example, you select directly into
three host tables. Knowing the select will return no more than 50 rows, you defined
the tables with 50 elements:

01 EMP-REC-TABLES.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.

7-6 Pro*COBOL Precompiler Programmer’s Guide

Selecting into Tables

Batch Fetches

05 EMP-NAME OCCURS 50 TIMES PIC X(10) VARYING.
05 SALARY OCCURS 50 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.

EXEC SQL SELECT ENAME, EMPNO, SAL
INTO :EMP-NAME, -EMP-NUMBER, :SALARY
FROM EMP
WHERE SAL >1000

END-EXEC.

In this example, the SELECT statement returns up to 50 rows. If there are fewer than
50 eligible rows or you want to retrieve only 50 rows, this method will suffice.
However, if there are more than 50 eligible rows, you cannot retrieve all of them this
way. If you re-execute the SELECT statement, it just returns the first 50 rows again,
even if more are eligible. You must either define a larger table or declare a cursor for
use with the FETCH statement.

If a SELECT INTO statement returns more rows than the size of the table you
defined, Oracle8i issues an error message unless you specify SELECT_ERROR=NO.
For more information about the option see "SELECT_ERROR" on page 14-37.

If you do not know the maximum number of rows a select will return, you can
declare and open a cursor, then fetch from it in "batches.” Batch fetches within a
loop let you retrieve a large number of rows with ease. Each fetch returns the next
batch of rows from the current active set. In the following example, you fetch in
20-row batches:

01 EMP-REC-TABLES.
05 EMP-NUMBER OCCURS 20 TIMES PIC S9(4) COMP.
05 EMP-NAME = OCCURS 20 TIMES PIC X(10) VARYING.
05 SALARY OCCURS 20 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.

EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT EMPNO, SAL FROM EMP

END-EXEC.

EXEC SQL OPEN EMPCURSOR END-EXEC.

EXEC SQL WHENEVER NOT FOUND DO PERFORM END-IT.
LOOP.

Host Tables 7-7

Selecting into Tables

EXEC SQL FETCH EMPCURSOR INTO :EMP-NUMBER, :SALARY END-EXEC.
*— process batch of rows

GO TO LOOP.
END-IT.

Do not forget to check how many rows were actually returned in the last fetch, and
process them.

Using SQLERRD(3)
For INSERT, UPDATE, and DELETE statements, SQLERRD(3) records the number
of rows processed.

SQLERRD(3) is also useful when an error occurs during a table operation.
Processing stops at the row that caused the error, so SQLERRD(3) gives the number
of rows processed successfully.

Number of Rows Fetched

Each fetch returns, at most, the number of entries in the table. Fewer rows are
returned in the following cases:

« The end of the active set is reached. The "no data found" warning code is
returned to SQLCODE in the SQLCA. For example, this happens if you fetch
into a table of number of entries 100, but only 20 rows are returned.

« Fewer than a full batch of rows remain to be fetched. For example, this happens
if you fetch 70 rows into a table of number of entries 20 because after the third
fetch, only 10 rows remain to be fetched.

« An error is detected while processing a row. The fetch fails and the applicable
error code is returned to SQLCODE.

The cumulative number of rows returned can be found in the third element of
SQLERRD in the SQLCA, called SQLERRD(3) in this guide. This applies to each
open cursor. In the following example, notice how the status of each cursor is
maintained separately:

EXEC SQL OPEN CURSOR1 END-EXEC.

EXEC SQL OPEN CURSOR2 END-EXEC.

EXEC SQL FETCH CURSORL INTO :TABLE-OF-20 END-EXEC.
*— now running total in SQLERRD(3) is 20

EXEC SQL FETCH CURSOR2 INTO :TABLE-OF-30 END-EXEC.

7-8 Pro*COBOL Precompiler Programmer’s Guide

Selecting into Tables

*— now running total in SQLERRD(3) is 30, not 50

EXEC SQL FETCH CURSOR1 INTO :TABLE-OF-20 END-EXEC.
*— now running total in SQLERRD(3) is 40 (20 + 20)

EXEC SQL FETCH CURSOR2 INTO :TABLE-OF-30 END-EXEC.
*— now running total in SQLERRD(3) is 60 (30 + 30)

Restrictions on Using Host Tables

Using host tables in the WHERE clause of a SELECT statement is allowed only in a
sub-query. (For an example, see "Using the WHERE Clause” on page 7-18.) Also,
you cannot mix simple host variables with host tables in the INTO clause of a
SELECT or FETCH statement; if any of the host variables is a table, all must be
tables.

Table 7-1 shows which uses of host tables are valid in a SELECT INTO statement:

Table 7—-1 Host Tables Valid in SELECT INTO
INTO Clause WHERE Clause Valid?

table table no

scalar scalar yes

table scalar yes

scalar table no
Fetching NULLs

When UNSAFE_NULL=YES, if you select or fetch a NULL into a host table that
lacks an indicator table, no error is generated. So, when doing table selects and
fetches, always use indicator tables. That way, you can find NULLs in the associated
output host table. (To learn how to find NULLSs and truncated values, see "Using
Indicator Variables" on page 5-3.)

When UNSAFE_NULL=NO, if you select or fetch a NULL into a host table that
lacks an indicator table, Oracle8i stops processing, sets SQLERRD(3) to the number
of rows processed, and issues an error message:

Fetching Truncated Values

When DBMS=V7 or V8, if you select or fetch a truncated column value into a host
table that lacks an indicator table, Oracle8i sets SQLWARN(2).

Host Tables 7-9

Selecting into Tables

You can check SQLERRD(3) for the number of rows processed before the truncation
occurred. The rows-processed count includes the row that caused the truncation
error.

When doing table selects and fetches, always use indicator tables. That way, if
Oracle8i assigns one or more truncated column values to an output host table, you
can find the original lengths of the column values in the associated indicator table.

Sample Program 3: Fetching in Batches
The following host table sample program can be found in the demo directory.

* Sample Program 3: Host Tables *

* *

*This program logs on to ORACLE, declares and opens a cursor, *
*fetches in batches using host tables, and prints the results. *

IDENTIFICATION DIVISION.
PROGRAM-ID. HOST-TABLES.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 USERNAME PIC X(15) VARYING.

01 PASSWD PICX(15) VARYING.

01 EMP-REC-TABLES.
05 EMP-NUMBER OCCURS 5 TIMES PIC S9(4) COMP.
05 EMP-NAME OCCURS 5 TIMES PIC X(10) VARYING.
05 SALARY OCCURS 5 TIMES PIC S9(6)V99

DISPLAY SIGN LEADING SEPARATE.

EXEC SQL VAR SALARY IS DISPLAY(82) END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

01 NUMRET PIC S9(9) COMP VALUE ZERO.

01 PRINT-NUM PIC S9(9) COMP VALUE ZERO.

0L COUNTER PIC S9(9) COMP.

01 DISPLAY-VARIABLES.
05 DEMP-NAME PIC X(10).
05 D-EMP-NUMBER PIC 9(4).
05 D-SALARY PIC Z(4)9.99.

PROCEDURE DIVISION.

7-10 Pro*COBOL Precompiler Programmer’s Guide

Selecting into Tables

BEGIN-PGM.
EXEC SQL
WHENEVER SQLERROR DO PERFORM SQL-ERROR
END-EXEC.
PERFORM LOGON.
EXEC SQL
DECLARE C1 CURSOR FOR
SELECT EMPNO, SAL, ENAME
FROM EMP
END-EXEC.
EXEC SQL
OPENC1
END-EXEC.

FETCH-LOOP.
EXEC SQL
WHENEVER NOT FOUND DO PERFORM SIGN-OFF
END-EXEC.
EXEC SQL
FETCHC1
INTO :EMP-NUMBER, :SALARY, :EMP-NAME
END-EXEC.
SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
PERFORM PRINTAT.
MOVE SQLERRD(3) TO NUM-RET.
GO TO FETCH-LOOP.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY ",
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

PRINT-IT.
DISPLAY "".
DISPLAY "EMPLOYEE NUMBER SALARY EMPLOYEE NAME".
DISPLAY " —_—
PERFORM PRINT-ROWS
VARYING COUNTERFROM 1BY 1

Host Tables 7-11

Inserting with Tables

UNTIL COUNTER > PRINT-NUM.

PRINT-ROWS.
MOVE EMP-NUMBER(COUNTER) TO D-EMP-NUMBER.
MOVE SALARY(COUNTER) TO D-SALARY.
DISPLAY " ", D-EMP-NUMBER, "", D-SALARY, " ",
EMP-NAME-ARR IN EMP-NAME(COUNTER).
MOVE SPACES TO EMP-NAME-ARR IN EMP-NAME(COUNTER).

SIGN-OFF.
SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
IF (PRINT-NUM > 0) PERFORM PRINT-T.
EXEC SQL
CLOSEC1
END-EXEC.
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.
DISPLAY ",
DISPLAY "HAVE A GOOD DAY.".
DISPLAY "".
STOPRUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:",
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Inserting with Tables

You can use host tables as input variables in an INSERT statement. Just make sure
your program populates the tables with data before executing the INSERT
statement. If some elements in the tables are irrelevant, you can use the FOR clause
to control the number of rows inserted. See "Using the FOR Clause" on page 7-16.

An example of inserting with host tables follows:

7-12 Pro*COBOL Precompiler Programmer’s Guide

Updating with Tables

01 EMP-REC-TABLES.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
05 EMP-NAME OCCURS 50 TIMES PIC X(10) VARYING.
05 SALARY OCCURS 50 TIMES PIC S9(6)V99

DISPLAY SIGN LEADING SEPARATE.

*— populate the host tables

EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)
VALUES (EMP-NAME, :EMP-NUMBER, :SALARY)

END-EXEC.

The cumulative number of rows inserted can be found in SQLERRD(3).

Host tables must not be subscripted in SQL statements. For example the following
INSERT statement is invalid:

PERFORM VARYING | FROM 1 BY 1 UNTIL | = TABLE-DIMENSION.
EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)
VALUES (EMP-NAME(), EMP-NUMBER(), :SALARY(())
END_EXEC
END-PERFORM.

Restrictions on Host Tables

Mixing simple host variables with host tables in the VALUES clause of an INSERT
statement is not allowed; if any of the host variables is a table, all must be tables.

Updating with Tables

You can also use host tables as input variables in an UPDATE statement, as the
following example shows:

01 EMP-REC-TABLES.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
05 SALARY OCCURS 50 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.

*— populate the host tables
EXEC SQL
UPDATE EMP SET SAL =:SALARY WHERE EMPNO =:EMP-NUMBER
END-EXEC.

The cumulative number of rows updated can be found in SQLERRD(3). The
number does not include rows processed by an update cascade.

Host Tables 7-13

Deleting with Tables

If some elements in the tables are irrelevant, you can use the FOR clause to limit the
number of rows updated.

The last example showed a typical update using a unique key (EMP-NUMBER).
Each table element qualified just one row for updating. In the following example,
each table element qualifies multiple rows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

05 JOB-TITLE OCCURS 10 TIMES PIC X(10) VARYING.
05 COMMISSION OCCURS 50 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
EXEC SQL END DECLARE SECTION END-EXEC.
*— populate the host tables
EXEC SQL
UPDATE EMP SET COMM = :COMMISSION WHERE JOB =:JOB-TITLE

END-EXEC.

Restrictions in UPDATE

Mixing simple host variables with host tables in the SET or WHERE clause of an
UPDATE statement is not allowed. If any of the host variables is a table, all must be
tables. Furthermore, if you use a host table in the SET clause, you must use one in
the WHERE clause. However, their number of entries and datatypes need not
match.

You cannot use host tables with the CURRENT OF clause in an UPDATE statement.
For an alternative, see "Mimicking the CURRENT OF Clause" on page 7-19.

Table 7-2 shows which uses of host tables are valid in an UPDATE statement:

Table 7-2 Host Tables Valid in UPDATE
SET Clause WHERE Clause Valid?

table table yes

scalar scalar yes

table scalar no

scalar table no
Deleting with Tables

You can also use host tables as input variables in a DELETE statement. It is like
executing the DELETE statement repeatedly using successive elements of the host

7-14 Pro*COBOL Precompiler Programmer’s Guide

Using Indicator Tables

table in the WHERE clause. Thus, each execution might delete zero, one, or more
rows from the table. An example of deleting with host tables follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
*— populate the host table
EXEC SQL
DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER

END-EXEC.

The cumulative number of rows deleted can be found in SQLERRD(3). That number
does not include rows processed by a delete cascade.

The last example showed a typical delete using a unique key (EMP-NUMBER).
Each table element qualified just one row for deletion. In the following example,
each table element qualifies multiple rows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

05 JOB-TITLE OCCURS 10 TIMES PIC X(10) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.
*— populate the host table
EXEC SQL
DELETE FROM EMP WHERE JOB = :JOB-TITLE
END-EXEC.

Restrictions in DELETE

Mixing simple host variables with host tables in the WHERE clause of a DELETE
statement is not allowed; if any of the host variables is a table, all must be tables.
Also, you cannot use host tables with the CURRENT OF clause in a DELETE
statement. For an alternative, see "Mimicking the CURRENT OF Clause"” on

page 7-19.

Using Indicator Tables

You use indicator tables to assign NULLSs to input host tables and to detect NULL or
truncated values in output host tables. The following example shows how to insert
with indicator tables:

01 EMP-REC-VARS.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.

Host Tables 7-15

Using the FOR Clause

05 DEPT-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
05 COMMISSION OCCURS 50 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
* —indlicator table:
05 COMMHND OCCURS 50 TIMES PIC S9(4) COMP.
— populate the host tables
— populate the indicator table; to insert a NULL into
- the COMM column, assign -1 to the appropriate element in
— the indicator table
EXEC SQL
INSERT INTO EMP (EMPNO, DEPTNO, COMM)
VALUES (EMP_NUMBER, :-DEPT-NUMBER, :COMMISSION:COMM-IND)
END-EXEC.

*
*
*
*

The number of entries of the indicator table cannot be smaller than the number of
entries of the host table.

Using the FOR Clause

You can use the optional FOR clause to set the number of table elements processed
by any of the following SQL statements:

« DELETE

« EXECUTE
« FETCH

= INSERT

« OPEN

= UPDATE

The FOR clause is especially useful in UPDATE, INSERT, and DELETE statements.
With these statements you might not want to use the entire table. The FOR clause
lets you limit the elements used to just the number you need, as the following
example shows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-REC-VARS.
05 EMP-NAME OCCURS 1000 TIMES PIC X(20) VARYING.
05 SALARY OCCURS 100 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
01 ROWS-TOINSERT PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
*— populate the host tables

7-16 Pro*COBOL Precompiler Programmer’s Guide

Using the FOR Clause

Restrictions

MOVE 25 TO ROWS-TO-INSERT.
* — set FOR-Clause variable
*—will process only 25 rows
EXEC SQL FOR :ROWS-TO-INSERT
INSERT INTO EMP (ENAME, SAL)
VALUES (EMP-NAME, :SALARY)
END-EXEC.

The FOR clause must use an integer host variable to count table elements. For
example, the following statement is illegal:
*_jlegal
EXEC SQL FOR 25
INSERT INTO EMP (ENAME, EMPNO, SAL)
VALUES (EMP-NAME, :EMP-NUMBER, :SALARY)
END-EXEC.

The FOR clause variable specifies the number of table elements to be processed.
Make sure the number does not exceed the smallest table dimension. Internally, the
value is treated as an unsigned quantity. An attempt to pass a negative value
through the use of a signed host variable will result in unpredictable behavior.

Two restrictions keep FOR clause semantics clear: you cannot use the FOR clause in
a SELECT statement or with the CURRENT OF clause.

Ina SELECT Statement
If you use the FOR clause in a SELECT statement, you receive an error message.

The FOR clause is not allowed in SELECT statements because its meaning is
unclear. Does it mean "execute this SELECT statement n times"? Or, does it mean
"execute this SELECT statement once, but return n rows"? The problem in the
former case is that each execution might return multiple rows. In the latter case, it is
better to declare a cursor and use the FOR clause in a FETCH statement, as follows:

EXEC SQL FOR :LIMIT FETCH EMPCURSOR INTO. ...

With the CURRENT OF Clause

You can use the CURRENT OF clause in an UPDATE or DELETE statement to refer
to the latest row returned by a FETCH statement, as the following example shows:

EXEC SQL DECLARE EMPCURSOR CURSOR FOR

Host Tables 7-17

Using the WHERE Clause

SELECT ENAME, SAL FROM EMP WHERE EMPNO = :EMP-NUMBER
END-EXEC.

EXEC SQL OPEN EMPCURSOR END-EXEC.
EXEC SQL FETCH emp_cursor INTO :EM-NAME, :SALARY END-EXEC.

EXEC SQL UPDATE EMP SET SAL = :NEW-SALARY
WHERE CURRENT OF EMPCURSOR
END-EXEC.

However, you cannot use the FOR clause with the CURRENT OF clause. The
following statements are invalid because the only logical value of LIMIT is 1 (you
can only update or delete the current row once):

EXEC SQL FOR :LIMIT UPDA-CURSOR END-EXEC.
EXEC SQL FOR :LIMIT DELETE FROM EMP

WHERE CURRENT OF EMP-CURSOR
END-EXEC.

Using the WHERE Clause

Pro*COBOL treats a SQL statement containing host tables of number of entries n
like the same SQL statement executed n times with n different scalar variables (the
individual table elements). The precompiler issues an error message only when
such treatment is ambiguous:

For example, assuming the declarations:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
05 MGRP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
05 JOB-TITLE OCCURS50TIMES PIC X(20) VARYING.
01 I PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
it would be ambiguous if the statement

EXEC SQL SELECT MGR INTO :MGR-NUMBER FROM EMP
WHERE JOB =:JOB-TITLE
END-EXEC.

were treated like the imaginary statement
PERFORM VARYING | FROM 1 BY 1 UNTIL [=50

7-18 Pro*COBOL Precompiler Programmer’s Guide

Mimicking the CURRENT OF Clause

SELECT MGR INTO :MGR-NUMBER(l) FROM EMP
WHERE JOB =:JOB_TITLE(l)

END-EXEC

END-PERFORM.

because multiple rows might meet the WHERE-clause search condition, but only
one output variable is available to receive data. Therefore, an error message is
issued.

On the other hand, it would not be ambiguous if the statement

EXEC SQL
UPDATE EMP SET MGR =:MGR_NUMBER
WHERE EMPNO IN (SELECT EMPNO FROM EMP WHERE
JOB =:JOB-TITLE)

END-EXEC.

were treated like the imaginary statement

PERFORM VARYING | FROM 1 BY 1 UNTIL | =50
UPDATE EMP SET MGR =:MGR_NUMBER()
WHERE EMPNO IN
(SELECT EMPNO FROM EMP WHERE JOB = :JOB-TITLE(l))
END-EXEC
END-PERFORM.

because there is a MGR-NUMBER in the SET clause for each row matching
JOB-TITLE in the WHERE clause, even if each JOB-TITLE matches multiple rows.
All rows matching each JOB-TITLE can be SET to the same MGR-NUMBER. So, no
error message is issued.

Mimicking the CURRENT OF Clause

You use the CURRENT OF cursor clause in a DELETE or UPDATE statement to refer
to the latest row fetched from the cursor. However, you cannot use CURRENT OF
with host tables. Instead, select the ROWID of each row, then use that value to
identify the current row during the update or delete. An example follows:

05 EMP-NAME OCCURS 25 TIMES PIC X(20) VARYING.
05 JOB-TITLE OCCURS 25 TIMES PIC X(15) VARYING.
05 OLD-TITLE OCCURS 25 TIMES PIC X(15) VARYING.
05 ROW-ID OCCURS 25 TIMES PIC X(18) VARYING.

EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, JOB, ROWID FROM EMP

Host Tables 7-19

Tables of Group Items as Host Variables

END-EXEC.
EXEC SQL OPEN EMPCURSOR END-EXEC.
EXEC SQL WHENEVER NOT FOUND GOTO ...

PERFORM
EXEC SQL
FETCH EMPCURSOR
INTO :EMP-NAME, :JOB-TITLE, :ROWA
END-EXEC

EXEC SQL
DELETE FROM EMP
WHERE JOB = :OLD-TITLE AND ROWID = :ROW-ID
END-EXEC
EXEC SQL COMMIT WORK END-EXEC
END-PERFORM.

However, the fetched rows are not locked because no FOR UPDATE OF clause is
used. So, you might get inconsistent results if another user changes a row after you
read it but before you delete it.

Tables of Group Items as Host Variables

Pro*COBOL allows the use of tables of group items (also called records) in
embedded SQL statements. The tables of group items can be referenced in the INTO
clause of a SELECT or a FETCH statement, and in the VALUES list of an INSERT
statement.

For example, given the following declaration:

01 TABLES.
05 EMP-TABLE OCCURS 20 TIMES.
10 EMP-NUMBER PIC S9(4) COMP.
10 EMP-NAME PIC X(10).
10 DEPT-NUMBER PIC S9(4) COMP.

the following statement is valid:

EXEC SQL INSERT INTO EMPEMPNO, ENAME, DEPTNO)
VALUES(EMP-TABLE)
END-EXEC.

7-20 Pro*COBOL Precompiler Programmer’s Guide

Tables of Group Items as Host Variables

Assuming that the group item has been filled with data already, the statement bulk
inserts 20 rows consisting of the employee number, employee name, and
department number into the EMP table.

Make sure that the order of the group items corresponds to the order in the SQL
statement.

When using tables of group items, it is also possible to specify individual
elementary items of the group. For example, the following statement is also valid.
Twenty rows of employee numbers are inserted into the EMPNO column of the
EMP table:

EXEC SQL INSERT INTO EMP (EMPNO)
VALUES (EMP-TABLE EMP-NUMBER)
END-EXEC.

When using VARCHAR=YES, if the group item declaration resembles a VARCHAR
host variable, then the group item is treated like an elementary item. Therefore,
referencing this group item in SQL statements must be done using the group name,
but not the elementary item names.

To use an indicator variable, setup a second table of a group item that contains an
indicator variable for each variable in the group item:

01 TABLES-ND.
05 EMP-TABLE-ND OCCURS 20 TIMES.
10 EMP-NUMBERIND PIC S9(4) COMP.
10 EMP-NAME-ND PIC S9(4) COMP.
10 DEPT-NUMBER_ IND PIC S9(4) COMP.

The host indicator table of a group item could be used as follows:

EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (EMP-TABLE:EMP-TABLE-IND)
END-EXEC.

You can use an individual element of the indicator group item. with a component of
the group item when inserting:

EXEC SQL INSERT INTO EMP (EMPNO)
VALUES (EMP-TABLE.EMP-NUMBER EMP-TABLE-IND EMP-NUMBER-IND)
END-EXEC.

If the exact characteristics of the data are known, it is convenient to specify an
elementary item indicator for a group item:

05 EMP-TABLEAND PIC S9(4) COMP

Host Tables 7-21

Tables of Group Items as Host Variables

OCCURS 20 TIMES.

Host tables of group items cannot have group items that are tables. For example:

01 TABLES.
05 EMP-TABLE OCCURS 20 TIMES.
10 EMP-NUMBER PIC S9(4) COMP OCCURS 10 TIMES.
10 EMP-NAME PIC X(10).
10 DEPT-NUMBER PIC S9(4) COMP.

EMP-TABLEcannot be used as a host variable because EMP-NUMBERS a table.
Host tables of nested group items are not allowed. For example:

01 TABLES.
05 TEAM-TABLE OCCURS 20 TIMES
10 EMP-TABLE
15 EMPNUMBER PIC S9(4) COMP.
15 EMP-NAME PIC X(10).
10 DEPT-TABLE.
15 DEPT-NUMBER PIC S9(4) COMP.
15 DEPT-NAME PIC X(10).

TEAM-TABLE cannot be used as a host variable because its members (EMP-TABLE
and DEPT-TABLE) are group items themselves.

Finally, the restrictions that apply to host tables in Pro*COBOL also apply to tables
of group items:

« Multi-dimensional and variable-length tables are not allowed.

« If multiple tables are used in a single SQL statement, their dimensions should
be the same.

« Host tables in SQL statements must not be subscripted.

Sample Program 14: Tables of Group Items

This program logs on, declares and opens a cursor, fetches in batches using a table
of group items. Read the initial comments for details.

* Sample Program 14: Tables of group items *

*This program logs on to ORACLE, declares and opens a cursor, *

7-22 Pro*COBOL Precompiler Programmer’s Guide

Tables of Group Items as Host Variables

*fetches in batches using a table of group items , and prints *
*the results. This sample is identical to sample3 except that *
*instead of using three separate host tables of five elements *
*each, it uses a five-element table of three group tems. *
*The output should be identical.

IDENTIFICATION DIVISION.
PROGRAMH-D. TABLE-OF-GROUP-ITEMS.
ENVIRONMENT DIVISION.
DATADIVISION.

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(15) VARYING.
0L PASSWD PICX(15)VARYING.
01 EMP-REC-TABLE OCCURS 5 TIMES.
05 EMP-NUMBER PIC S9(4) COMP.
05 SALARY PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 EMP-NAME PIC X(10) VARYING.
EXEC SQL VAR SALARY IS DISPLAY(8,2) END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.
01 NUMRET PIC S9(9) COMP VALUE ZERO.
01 PRINT-NUM PIC S9(9) COMP VALUE ZERO.
0L COUNTER PIC S9(9) COMP.
01 DISPLAY-VARIABLES.
05 D-EMP-NAME PIC X(10).
05 D-EMP-NUMBER PIC 9(4).
05 D-SALARY PIC Z(4)9.99.

PROCEDURE DIVISION.

BEGIN-PGM.

EXEC SQL
WHENEVER SQLERROR DO PERFORM SQL-ERROR

END-EXEC.

PERFORM LOGON.

EXEC SQL
DECLARE C1 CURSOR FOR
SELECT EMPNO, SAL, ENAME
FROM EMP

END-EXEC.

EXEC SQL

Host Tables 7-23

Tables of Group Items as Host Variables

OPENC1
END-EXEC.

FETCH-LOOP.
EXEC SQL
WHENEVER NOT FOUND DO PERFORM SIGN-OFF
END-EXEC.
EXEC SQL
FETCHC1
INTO :EMP-REC-TABLE
END-EXEC.
SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
PERFORM PRINTAT.
MOVE SQLERRD(3) TO NUM-RET.
GO TO FETCH-LOOP.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE 'TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY ",
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

PRINT-IT.
DISPLAY "".
DISPLAY "EMPLOYEE NUMBER SALARY EMPLOYEE NAME".
DISPLAY " —_—
PERFORM PRINT-ROWS
VARYING COUNTERFROM 1BY 1
UNTIL COUNTER > PRINT-NUM.

PRINT-ROWS.
MOVE EMP-NUMBER(COUNTER) TO D-EMP-NUMBER.
MOVE SALARY(COUNTER) TO D-SALARY.
DISPLAY " ", D-EMP-NUMBER, "", D-SALARY, " ",
EMP-NAME-ARR IN EMP-NAME(COUNTER).
MOVE SPACES TO EMP-NAME-ARR IN EMP-NAME(COUNTER).

SIGN-OFF.

SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
IF (PRINT-NUM > 0) PERFORM PRINT-T.

7-24 Pro*COBOL Precompiler Programmer’s Guide

Tables of Group Items as Host Variables

EXEC SQL
CLOSEC1
END-EXEC.
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.
DISPLAY "".
DISPLAY "HAVE A GOOD DAY.".
DISPLAY "".
STOPRUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:",
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Host Tables 7-25

Tables of Group Items as Host Variables

7-26 Pro*COBOL Precompiler Programmer’s Guide

8

Error Handling and Diagnostics

An application program must anticipate runtime errors and attempt to recover from
them. This chapter provides an in-depth discussion of error reporting and recovery.
You learn how to handle warnings and errors using the status variables SQLCODE,
SQLSTATE, and SQLCA (SQL Communications Area), and the WHENEVER
statement. You also learn how to diagnose problems using the status variable
ORACA (Oracle Communications Area). The following topics are discussed:

« The Need for Error Handling

« Error Handling Alternatives

« Using Status Variables when MODE={ANSI | ANSI14}
« Using the SQL Communications Area

« Using the Oracle Communications Area

Error Handling and Diagnostics 8-1

The Need for Error Handling

The Need for Error Handling

A significant part of every application program must be devoted to error handling.
The main benefit of error handling is that it allows your program to continue
operating in the presence of errors. Errors arise from design faults, coding mistakes,
hardware failures, invalid user input, and many other sources

You cannot anticipate all possible errors, but you can plan to handle certain kinds of
errors meaningful to your program. For Pro*COBOL, error handling means
detecting and recovering from SQL statement execution errors.

You can also prepare to handle warnings such as "value truncated" and status
changes such as "end of data." It is especially important to check for error and
warning conditions after every data manipulation statement, because an INSERT,
UPDATE, or DELETE statement might fail before processing all eligible rows in a
table.

Error Handling Alternatives

Pro*COBOL supports four status variables that serve as error handling

mechanisms:

« SQLCODE

« SQLSTATE

» SQLCA (using the WHENEVER statement)
« ORACA

The precompiler MODE option governs ANSI/ISO compliance. The availability of
the SQLCODE, SQLSTATE, and SQLCA variables depends on the MODE setting.
You can declare and use the ORACA variable regardless of the MODE setting. For
more information, see "Using the Oracle Communications Area" on page 8-36.

When MODE={ORACLE | ANSI13}, you must declare the SQLCA status variable.
SQLCODE and SQLSTATE declarations are accepted (not recommended) but are
not recognized as status variables. For more information, see "Using the SQL
Communications Area" on page 8-19.

When MODE={ANSI | ANSI14}, you can use any one, two, or all three of the
SQLCODE, SQLSTATE, and SQLCA variables. To determine which variable (or
variable combination) is best for your application, see "Using Status Variables when
MODE={ANSI | ANSI14}" on page 8-4.

8-2 Pro*COBOL Precompiler Programmer’s Guide

Error Handling Alternatives

SQLCODE and SQLSTATE

SQLCA

With Release 1.5 of Pro*COBOL, the SQLCODE status variable was introduced as
the SQL89 standard ANSI/ZISO error reporting mechanism. The SQL92 standard
listed SQLCODE as a deprecated feature and defined a new status variable,
SQLSTATE (introduced with Release 1.6 of Pro*xCOBOL), as the preferred
ANSI/ISO error reporting mechanism.

SQLCODE stores error codes and the "not found" condition. It is retained only for
compatibility with SQL89 and is likely to be removed from future versions of the
standard.

Unlike SQLCODE, SQLSTATE stores error and warning codes and uses a
standardized coding scheme. After executing a SQL statement, the database server
returns a status code to the SQLSTATE variable currently in scope. The status code
indicates whether a SQL statement executed successfully or raised an exception
(error or warning condition). To promote interoperability (the ability of systems to
exchange information easily), SQL92 pre-defines all the common SQL exceptions.

The SQLCA is a record-like, host-language data structure. Oracle8i updates the
SQLCA after every executable SQL statement. (SQLCA values are undefined after a
declarative statement.) By checking return codes stored in the SQLCA, your
program can determine the outcome of a SQL statement. This can be done in two
ways:

« implicit checking with the WHENEVER statement
« explicit checking of SQLCA variables

You can use WHENEVER statements, code explicit checks on SQLCA variables, or
do both. Generally, using WHENEVER statements is preferable because it is easier,
more portable, and ANSI-compliant.

Nested Programs

In nested programs, the included SQLCA definition provided will be declared as
global, so the declaration of SQLCA will only be required within the higher-level
program. SQLCA can change every time a new SQL statement is executed. The
SQLCA provided can always be modified to remove the global specification by the
user if the user wishes to declare additional SQLCAs in the nested programs. This
applies to SQLDA and ORACA.

Error Handling and Diagnostics 8-3

Using Status Variables when MODE={ANSI | ANSI14}

ORACA

When more information is needed about runtime errors than the SQLCA provides,
you can use the ORACA, which contains cursor statistics, SQL statement data,
option settings, and system statistics.

The ORACA is optional and can be declared regardless of the MODE setting. For
more information about the ORACA status variable, see "Using the Oracle
Communications Area" on page 8-36.

Using Status Variables when MODE={ANSI | ANSI14}

When MODE={ANSI | ANSI14}, you must declare at least one — you may declare
two — of the following status variables:

. SQLCODE
. SQLSTATE
. SQLCA

You cannot declare SQLCODE if SQLCA is declared. Likewise, you cannot declare
SQLCA if SQLCODE is declared. The field in the SQLCA data structure that stores
the error code for is also called SQLCODE, so errors will occur if both status
variables are declared.

Your program can get the outcome of the most recent executable SQL statement by
checking SQLCODE and/or SQLSTATE explicitly with your own code after
executable SQL and PL/SQL statements. Your program can also check SQLCA
implicitly (with the WHENEVER SQLERROR and WHENEVER SQLWARNING
statements) or it can check the SQLCA variables explicitly.

Note: When MODE={ORACLE | ANSI13 | ANSI14}, you must declare the
SQLCA status variable. For more information, see "Using the SQL
Communications Area" on page 8-19.

Some Historical Information

The treatment of status variables and variable combinations by Pro*COBOL has
evolved beginning with Release 1.5.

Release 1.5

Pro*COBOL, Release 1.5, presumed there was a status variable SQLCODE whether
or not it was declared; in fact, Pro*COBOL never noted whether SQLCODE was

8-4 Pro*COBOL Precompiler Programmer’s Guide

Using Status Variables when MODE={ANSI | ANSI14}

declared or not — it just presumed it was. SQLCA would be used as a status
variable if and only if there was an INCLUDE of the SQLCA.

Release 1.6

Beginning with Pro*COBOL, Release 1.6, the precompiler no longer presumes that
there is a SQLCODE status variable and it is not required. Pro*COBOL requires that
at least one of SQLCODE or SQLSTATE be declared.

SQLCODE is recognized as a status variable if and only if at least one of the
following criteria is satisfied:

« Itis declared with exactly the right datatype.
« Pro*COBOL finds no other status variable.

If Pro*COBOL finds a SQLSTATE declaration (of exactly the right type of course) or
finds an INCLUDE of the SQLCA, it will not presume SQLCODE is declared.

Release 1.7

Because Pro*COBOL, Release 1.5, allowed the SQLCODE variable to be declared
outside of a Declare Section while also declaring SQLCA, Pro*COBOL, Release 1.6
and greater, is presented with a compatibility problem. A new option,
ASSUME_SQLCODE={YES | NO} (default NO), was added to fix this in Release
1.6.7 and is documented as a new feature in Release 1.7.

Release 8.0

Beginning with release 8.0, the Declare Section is now optional. For details of the
ASSUME_SQLCODE option, see "ASSUME_SQLCODE" on page 14-13.

Declaring Status Variables

This section describes how to declare SQLCODE and SQLSTATE. For information
about declaring the SQLCA status variable, see "Declaring the SQLCA" on
page 8-21.

Declaring SQLCODE

SQLCODE must be declared as a 4-byte integer variable either inside or outside the
Declare Section, as shown in the following example:

* Declare host and indicator variables.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

Error Handling and Diagnostics 8-5

Using Status Variables when MODE={ANSI | ANSI14}

EXEC SQL END DECLARE SECTION END-EXEC.
* Declare the SQLCODE status variable.
01 SQLCODE PIC S9(9) COMP.

If declared outside the Declare Section, SQLCODE is recognized as a status variable
if and only if ASSUME_SQLCODE=YES. When MODE={ORACLE | ANSI13 |
ANSI14}, declarations of the SQLCODE variable are ignored.

Warning: Do not declare SQLCODE if SQLCA is declared. Likewise, do not
declare SQLCA if SQLCODE is declared. The status variable declared by the
SQLCA structure is also called SQLCODE, so errors will occur if both
error-reporting mechanisms are used.

After every SQL operation, Oracle8i returns a status code to the SQLCODE variable.
So, your program can learn the outcome of the most recent SQL operation by
checking SQLCODE explicitly, or implicitly with the WHENEVER statement.

When you declare SQLCODE instead of the SQLCA in a particular compilation
unit, Pro*COBOL allocates an internal SQLCA for that unit. Your host program
cannot access the internal SQLCA.

Declaring SQLSTATE

SQLSTATE must be declared as a five-character alphanumeric string, as shown in
the following example:

* Dedlare the SQLSTATE status variable.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 SQLSTATE PIC X(5).
EXEC SQL END DECLARE SECTION END-EXEC.

When MODE={ORACLE | ANSI13 | ANSI14}, SQLSTATE declarations are ignored.
Declaring the SQLCA is optional.

Status Variable Combinations

When MODE={ANSI | ANSI14}, the behavior of the status variables depends on
the following:

« which variables are declared
« declaration placement (inside or outside the Declare Section)
« ASSUME_SQLCODE setting

8-6 Pro*COBOL Precompiler Programmer’s Guide

Using Status Variables when MODE={ANSI | ANSI14}

Table 8-1 and Table 8-2 describe the resulting behavior of each status variable
combination when ASSUME_SQLCODE=NO and when
ASSUME_SQLCODE=YES, respectively.

For both Tables: when DECLARE_SECTION=NO, any declaration of a status
variable is treated as IN as far as these tables are concerned.

Do not use ASSUME_SQLCODE=YES with DECLARE_SECTION=NO.

Table 8-1 Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI |
ANSI14 and DECLARE_SECTION=YES

Declare Section (IN/OUT/—) Behavior

SQLCODE SQLSTATE SQLCA

ouT — — SQLCODE is declared and is presumed to be a status variable.

ouT — ouT This status variable configuration is not supported.

ouT — IN This status variable configuration is not supported.

ouT ouT — SQLCODE is declared and is presumed to be a status variable,
and SQLSTATE is declared but is not recognized as a status
variable.

ouT ouT ouT This status variable configuration is not supported.

ouT ouT IN This status variable configuration is not supported.

ouT IN — SQLSTATE is declared as a status variable, and SQLCODE is
declared but is not recognized as a status variable.

ouT IN ouT This status variable configuration is not supported.

ouT IN IN This status variable configuration is not supported.

IN — — SQLCODE is declared as a status variable.

IN — ouT This status variable configuration is not supported.

IN — IN This status variable configuration is not supported.

IN ouT — SQLCODE is declared as a status variable, and SQLSTATE is
declared but is not recognized as a status variable.

IN ouT ouT This status variable configuration is not supported.

IN ouT IN This status variable configuration is not supported.

IN IN — SQLCODE and SQLSTATE are declared as a status variables.

IN IN ouT This status variable configuration is not supported.

Error Handling and Diagnostics 8-7

Using Status Variables when MODE={ANSI | ANSI14}

Table 8-1 Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI |
ANSI14 and DECLARE_SECTION=YES

Declare Section (IN/OUT/—) Behavior
SQLCODE SQLSTATE SQLCA

IN IN IN This status variable configuration is not supported.

— — — This status variable configuration is not supported.

— — ouT SQLCA is declared as a status variable.

— — IN SQLCA is declared as a status host variable.

— ouT — This status variable configuration is not supported.

— ouT ouT SQLCA is declared as a status variable, and SQLSTATE is
declared but is not recognized as a status variable.

— ouT IN SQLCA is declared as a status host variable, and SQLSTATE is
declared but is not recognized as a status variable.

— IN — SQLSTATE is declared as a status variable.

— IN ouT SQLSTATE and SQLCA are declared as status variables.

— IN IN SQLSTATE and SQLCA are declared as status host variables.

Table 8-2 Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI |
ANSI14 and DECLARE_SECTION=YES

Declare Section (IN/OUT/—) Behavior
SQLCODE SQLSTATE SQLCA

ouT — — SQLCODE is declared and is presumed to be a status variable.

ouT — ouT This status variable configuration is not supported.

ouT — IN This status variable configuration is not supported.

ouT ouT — SQLCODE is declared and is presumed to be a status variable,
and SQLSTATE is declared but is not recognized as a status
variable.

ouT ouT ouT This status variable configuration is not supported.

ouT ouT IN This status variable configuration is not supported.

ouT IN — SQLSTATE is declared as a status variable, and SQLCODE is

declared and is presumed to be a status variable.

8-8 Pro*COBOL Precompiler Programmer’s Guide

Using Status Variables when MODE={ANSI | ANSI14}

Table 8—2 Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI |
ANSI14 and DECLARE_SECTION=YES

Declare Section (IN/OUT/—) Behavior

SQLCODE SQLSTATE SQLCA

ouT IN ouT This status variable configuration is not supported.

ouT IN IN This status variable configuration is not supported.

IN — — SQLCODE is declared as a status variable.

IN — ouT This status variable configuration is not supported.

IN — IN This status variable configuration is not supported.

IN ouT — SQLCODE is declared as a status variable, and SQLSTATE is
declared but not as a status variable.

IN ouT ouT This status variable configuration is not supported.

IN ouT IN This status variable configuration is not supported.

IN IN — SQLCODE and SQLSTATE are declared as a status variables.

IN IN ouT This status variable configuration is not supported.

IN IN IN This status variable configuration is not supported.

— — — These status variable configurations are not supported.

. . ouT SQLCODE must be declared when
ASSUME_SQLCODE=YES.

— — IN

— ouT —

— ouT ouT

— ouT IN

— IN ouT

— IN IN

Status Variable Values

This section describes the values for the SQLCODE and SQLSTATE status variables.
For information about the SQLCA status variable, see "Key Components of Error
Reporting"” on page 8-22.

Error Handling and Diagnostics 8-9

Using Status Variables when MODE={ANSI | ANSI14}

SQLCODE Values

After every SQL operation, Oracle8i returns a status code to the SQLCODE variable
currently in scope. The status code, which indicates the outcome of the SQL
operation, can be any of the following numbers:’

You can learn the outcome of the most recent SQL operation by checking SQLCODE
explicitly with your own code or implicitly with the WHENEVER statement.

When you declare SQLCODE instead of the SQLCA in a particular precompilation
unit, Pro*COBOL allocates an internal SQLCA for that unit. Your host program
cannot access the internal SQLCA.

Note: When MODE={ORACLE | ANSI13}, declarations of SQLCODE are ignored.

SQLSTATE Values

SQLSTATE status codes consist of a two-character class code followed by a
three-character subclass code. Aside from class code 00 (successful completion), the class
code denotes a category of exceptions. Aside from subclass code 000 (not applicable), the
subclass code denotes a specific exception within that category. For example, the
SQLSTATE value 22012’ consists of class code 22 (data exception) and subclass code 012
(division by zero).

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase
Latin letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in
the range A..H are reserved for predefined conditions (those defined in SQL92). All
other class codes are reserved for implementation-defined conditions. Within
predefined classes, subclass codes that begin with a digit in the range 0..4 or a letter
in the range A..H are reserved for predefined sub-conditions. All other subclass
codes are reserved for implementation-defined sub-conditions. Figure 8-1 shows
the coding scheme;

8-10 Pro*COBOL Precompiler Programmer’s Guide

Using Status Variables when MODE={ANSI | ANSI14}

Figure 8-1 SQLSTATE Coding Scheme

First Char in Class Code

0..4 5..9 A..H 1..Z

0..4
o
3
£33 5..9
T n
63
- O
» Qo A..H
=3
[T 7p]

1..Z

D Predefined D Implementation—defined

Table 8-3 shows the classes predefined by SQL92

Table 8—-3 Predefined Classes

Class Condition

00 successful completion

01 warning

02 no data

07 dynamic SQL error

08 connection exception

0A feature not supported

21 cardinality violation

22 data exception

23 integrity constraint violation
24 invalid cursor state

25 invalid transaction state

26 invalid SQL statement name
27 triggered data change violation

Error Handling and Diagnostics 8-11

Using Status Variables when MODE={ANSI | ANSI14}

Table 8—-3 Predefined Classes

Class Condition

28 invalid authorization specification

2A direct SQL syntax error or access rule
violation

2B dependent privilege descriptors still exist

2C invalid character set name

2D invalid transaction termination

2E invalid connection name

33 invalid SQL descriptor name

34 invalid cursor name

35 invalid condition number

37 dynamic SQL syntax error or access rule
violation

3C ambiguous cursor name

3D invalid catalog name

3F invalid schema name

40 transaction rollback

42 syntax error or access rule violation

44 with check option violation

HZ remote database access

Note: The class code HZ is reserved for conditions defined in International

Standard ISO/IEC DIS 9579-2, Remote Database Access.

Table 8-4 shows how errors map to SQLSTATE status codes. In some cases, several
errors map to the status code. In other cases, no error maps to the status code (so the
last column is empty). Status codes in the range 60000 .. 99999 are

implementation-defined.

8-12 Pro*COBOL Precompiler Programmer’s Guide

Using Status Variables when MODE={ANSI | ANSI14}

Table 8-4 SQLSTATE Codes

Code Condition Oracle8 1/ Error

00000 successful completion ORA-00000

01000 warning

01001 cursor operation conflict

01002 disconnect error

01003 null value eliminated in set function

01004 string data - right truncation

01005 insufficient item descriptor areas

01006 privilege not revoked

01007 privilege not granted

01008 implicit zero-bit padding

01009 search condition too long for info schema

0100A query expression too long for info schema

02000 no data ORA-01095
ORA-01403

07000 dynamic SQL error

07001 using clause does not match parameter specs

07002 using clause does not match target specs

07003 cursor specification cannot be executed

07004 using clause required for dynamic parameters

07005 prepared statement not a cursor specification

07006 restricted datatype attribute violation

07007 using clause required for result fields

07008 invalid descriptor count SQL-02126

07009 invalid descriptor index

08000 connection exception

08001 SQL client unable to establish SQL connection

Error Handling and Diagnostics 8-13

Using Status Variables when MODE={ANSI | ANSI14}

Table 8—-4 SQLSTATE Codes

Code

Condition

Oracle8 i Error

08002
08003
08004
08006
08007
0AQ00
0A001
21000

22000
22001

22002

22003

22005
22007
22008
22009
22011
22012
22015
22018
22019

connection name in use

connection does not exist

SQL server rejected SQL connection

connection failure

transaction resolution unknown
feature not supported

multiple server transactions

cardinality violation

data exception

string data - right truncation

null value - no indicator parameter

numeric value out of range

error in assignment
invalid datetime format

datetime field overflow

invalid time zone displacement value

substring error

division by zero

interval field overflow

invalid character value for cast

invalid escape character

8-14 Pro*COBOL Precompiler Programmer’s Guide

SQL-02121

ORA-03000

ORA-01427
SQL-02112

ORA-01401
ORA-01406
ORA-01405
SQL-02124

ORA-01426
ORA-01438
ORA-01455
ORA-01457

ORA-01800

ORA-01476

ORA-00911
ORA-01425

.. 03099

.. 01899

Using Status Variables when MODE={ANSI | ANSI14}

Table 8—4 SQLSTATE Codes

Code Condition Oracle8 i Error

22021 character not in repertoire

22022 indicator overflow ORA-01411

22023 invalid parameter value ORA-01025
ORA-01488
ORA-04000 .. 04019

22024 unterminated C string ORA-01479 .. 01480

22025 invalid escape sequence ORA-01424

22026 string data - length mismatch

22027 trim error

23000 integrity constraint violation ORA-00001
ORA-02290 .. 02299

24000 invalid cursor state ORA-01001 .. 01003
ORA-01410
ORA-08006
SQL-02114
SQL-02117
SQL-02118
SQL-02122

25000 invalid transaction state

26000 invalid SQL statement name

27000 triggered data change violation

28000 invalid authorization specification

2A000 direct SQL syntax error or access rule violation

2B000 dependent privilege descriptors still exist

2C000 invalid character set name

2D000 invalid transaction termination

2E000 invalid connection name

33000 invalid SQL descriptor name

Error Handling and Diagnostics 8-15

Using Status Variables when MODE={ANSI | ANSI14}

Table 8—-4 SQLSTATE Codes

Code

Condition

Oracle8 i Error

34000
35000
37000

3C000
3D000
3F000
40000
40001
40002
40003
42000

44000

invalid cursor name
invalid condition number

dynamic SQL syntax error or access rule
violation

ambiguous cursor name

invalid catalog name

invalid schema name
transaction rollback
serialization failure

integrity constraint violation
statement completion unknown

syntax error or access rule violation

with check option violation

8-16 Pro*COBOL Precompiler Programmer’s Guide

ORA-02091 ..

ORA-00022
ORA-00251

ORA-00900 ..

ORA-01031

ORA-01490 ..
ORA-01700 ..
ORA-01900 ..
ORA-02140 ..
ORA-02420 ..
ORA-02450 ..
ORA-03276 ..
ORA-04040 ..
ORA-04070 ..

ORA-01402

02092

00999

01493
01799
02099
02289
02424
02499
03299
04059
04099

Using Status Variables when MODE={ANSI | ANSI14}

Table 8—4 SQLSTATE Codes

Code Condition Oracle8 i Error

60000 system errors ORA-00370 .. 00429
ORA-00600 .. 00899
ORA-06430 .. 06449
ORA-07200 .. 07999
ORA-09700 .. 09999
61000 resource error ORA-00018 .. 00035
ORA-00050 .. 00068
ORA-02376 .. 02399
ORA-04020 .. 04039

62000 multi-threaded server and detached process ORA-00100 .. 00120

errors ORA-00440 .. 00569

63000 Oracle XA and two-task interface errors ORA-00150 .. 00159
SQL-02128

ORA-02700 .. 02899
ORA-03100 .. 03199
ORA-06200 .. 06249

SQL-02128
64000 control file, database file, and redo file errors; ORA-00200 .. 00369
archival and media recovery errors ORA-01100 .. 01250
65000 PL/SQL errors ORA-06500 .. 06599
66000 Net8 driver errors ORA-06000 .. 06149

ORA-06250 .. 06429
ORA-06600 .. 06999
ORA-12100 .. 12299
ORA-12500 .. 12599
67000 licensing errors ORA-00430 .. 00439
69000 SQL*Connect errors ORA-00570 .. 00599
ORA-07000 .. 07199

Error Handling and Diagnostics 8-17

Using Status Variables when MODE={ANSI | ANSI14}

Table 8—-4 SQLSTATE Codes

Code Condition Oracle8 i Error
72000 SQL execute phase errors ORA-01000 .. 01099
ORA-01400 .. 01489
ORA-01495 .. 01499
ORA-01500 .. 01699
ORA-02400 .. 02419
ORA-02425 .. 02449
ORA-04060 .. 04069
ORA-08000 .. 08190
ORA-12000 .. 12019
ORA-12300 .. 12499
ORA-12700 .. 21999
82100 out of memory (could not allocate) SQL-02100
82101 inconsistent cursor cache: unit cursor/global SQL-02101
cursor mismatch
82102 inconsistent cursor cache: no global cursor SQL-02102
entry
82103 inconsistent cursor cache: out of range cursor SQL-02103
cache reference
82104 inconsistent host cache: no cursor cache SQL-02104
available
82105 inconsistent cursor cache: global cursor not SQL-02105
found
82106 inconsistent cursor cache: invalid cursor SQL-02106
number
82107 program too old for runtime library SQL-02107
82108 invalid descriptor passed to runtime library SQL-02108
82109 inconsistent host cache: host reference is out of SQL-02109
range
82110 inconsistent host cache: invalid host cache entry SQL-02110
type
82111 heap consistency error SQL-02111
82112 unable to open message file SQL-02113

8-18 Pro*COBOL Precompiler Programmer’s Guide

Using the SQL Communications Area

Table 8—4 SQLSTATE Codes

Code Condition Oracle8 i Error
82113 code generation internal consistency failed SQL-02115
82114 reentrant code generator gave invalid context SQL-02116
82115 invalid hstdef argument SQL-02119
82116 first and second arguments to sqlrcn both null ~ SQL-02120
82117 invalid OPEN or PREPARE for this connection SQL-02122
82118 application context not found SQL-02123
82119 connect error; can’t get error text SQL-02125
82120 precompiler/SQLLIB version mismatch. SQL-02127
82121 FETCHed number of bytes is odd SQL-02129
82122 EXEC TOOLS interface is not available SQL-02130
82123 runtime context in use SQL-02131
82124 unable to allocate runtime context SQL-02131
82125 unable to initialize process for use with threads SQL-02133
82126 invalid runtime context SQL-02134
90000 debug events ORA-10000 .. 10999
99999 catch all all others
HZ000 remote database access

Using the SQL Communications Area

Oracle8i uses the SQL Communications Area (SQLCA) to store status information
passed to your program at run time. The SQLCA is a record-like, COBOL data
structure that is a updated after each executable SQL statement, so it always reflects
the outcome of the most recent SQL operation. Its fields contain error, warning, and
status information updated by Oracle8i whenever a SQL statement is executed.To
determine that outcome, you can check variables in the SQLCA explicitly with your
own COBOL code or implicitly with the WHENEVER statement.

Note: When your application uses SQL*Net to access a combination of local and
remote databases concurrently, all the databases write to one SQLCA. There is
not a different SQLCA for each database. For more information, see "Concurrent
Logons” on page 3-14

Error Handling and Diagnostics 8-19

Using the SQL Communications Area

When MODE={ORACLE | ANSI13}, the SQLCA is required,; if the SQLCA is not
declared, compile-time errors will occur. The SQLCA is optional when
MODE={ANSI | ANSI14}, but you cannot use the WHENEVER SQLWARNING
statement without the SQLCA. So, if you want to use the WHENEVER
SQLWARNING statement, you must declare the SQLCA.

Note: If you declare SQLCODE instead of the SQLCA in a particular compilation
unit, Pro*xCOBOL allocates an internal SQLCA for that unit. Your host program
cannot access the internal SQLCA.

When MODE={ANSI | ANSI14}, you must declare either SQLSTATE (see
"Declaring SQLSTATE" on page 8-6) or SQLCODE (see "Declaring SQLCODE" on
page 8-5) or both. The SQLSTATE status variable supports the SQLSTATE status
variable specified by the SQL92 standard. You can use the SQLSTATE status
variable with or without SQLCODE.

What's in the SQLCA?

The SQLCA contains runtime information about the execution of SQL statements,
such as error codes, warning flags, event information, rows-processed count, and
diagnostics.

Figure 8-2 shows all the variables in the SQLCA. However, SQLWARN?2,
SQLWARNS5, SQLWARNSG, SQLWARNY7, and SQLEXT are not currently in use.

8-20 Pro*COBOL Precompiler Programmer’s Guide

Using the SQL Communications Area

Figure 8-2 SQLCA Variable Declarations for Pro*COBOL

01 SQLCA.
05 SQLCAID PIC X(8).
05 SQLCABC PIC S9(9) COMPUTATIONAL.
05 SQLCODE PIC S9(9) COMPUTATIONAL.
05 SQLERRM.
49 SQLERRML PIC S9(4) COMPUTATIONAL.
49 SQLERRMC PIC X(70)
05 SQLERRP PIC X(8).

05 SQLERRD OCCURS 6 TIMES
PIC S9(9) COMPUTATIONAL.

05 SQLWARN.
10 SQLWARNO PIC X(1).
10 SQLWARN1 PIC X(1).
10 SQLWARN2 PIC X(1).
10 SQLWARN3 PIC X(1).
10 SQLWARNA4 PIC X(1).
10 SQLWARNS PIC X(1).
10 SQLWARNSG PIC X(1).
10 SQLWARN? PIC X(1).

05 SQLEXT PIC X(8).

Declaring the SQLCA

To declare the SQLCA, simply include it (using an EXEC SQL INCLUDE statement)
in your Pro*COBOL source file outside the Declare Section as follows:

* Include the SQL Communications Area (SQLCA).
EXEC SQL INCLUDE SQLCA END-EXEC.

The SQLCA must be declared outside the Declare Section.

Warning: Do not declare SQLCODE if SQLCA is declared. Likewise, do not
declare SQLCA if SQLCODE is declared. The status variable declared by the
SQLCA structure is also called SQLCODE, so errors will occur if both
error-reporting mechanisms are used.

When you precompile your program, the INCLUDE SQLCA statement is replaced
by several variable declarations that allow Oracle8i to communicate with the
program.

Attention: When using multi-byte NCHAR host variables, the SQLCA must be
included.

Error Handling and Diagnostics 8-21

Using the SQL Communications Area

Key Components of Error Reporting

The key components of Pro*COBOL error reporting depend on several fields in the
SQLCA.

Status Codes

Every executable SQL statement returns a status code in the SQLCA variable
SQLCODE, which you can check implicitly with WHENEVER SQLERROR or
explicitly with your own COBOL code.

Warning Flags

Warning flags are returned in the SQLCA variables SQLWARNO through
SQLWARNY7, which you can check with WHENEVER SQLWARNING or with your
own COBOL code. These warning flags are useful for detecting runtime conditions
that are not considered errors.

Rows-Processed Count
The number of rows processed by the most recently executed SQL statement is

returned in the SQLCA variable SQLERRD(3). For repeated FETCHes on an OPEN
cursor, SQLERRD(3) keeps a running total of the number of rows fetched.

Parse Error Offset

Before executing a SQL statement, Oracle8i must parse it; that is, examine it to make sure it
follows syntax rules and refers to valid database objects. If Oracle8i finds an error, an offset
is stored in the SQLCA variable SQLERRD(5), which you can check explicitly. The offset
specifies the character position in the SQL statement at which the parse error begins. The first
character occupies position zero. For example, if the offset is 9, the parse error begins at the
tenth character.

If your SQL statement does not cause a parse error, Oracle8i sets SQLERRD(5) to
zero. Oracle8i also sets SQLERRD(5) to zero if a parse error begins at the first
character (which occupies position zero). So, check SQLERRD(5) only if SQLCODE
is negative, which means that an error has occurred.

Error Message Text

The error code and message for errors are available in the SQLCA variable
SQLERRMC. For example, you might place the following statements in an
error-handling routine:

* Handle SQL execution errors.

8-22 Pro*COBOL Precompiler Programmer’s Guide

Using the SQL Communications Area

MOVE SQLERRMC TO ERROR-MESSAGE.
DISPLAY ERROR-MESSAGE.

At most, the first 70 characters of message text are stored. For messages longer than
70 characters, you must call the SQLGLM subroutine, which is discussed in "Getting
the Full Text of Error Messages" on page 8-26.

SQLCA Structure

This section describes the structure of the SQLCA, its fields, and the values they can
store.

SQLCAID

This string field is initialized to "SQLCA" to identify the SQL Communications
Area.

SQLCABC
This integer field holds the length, in bytes, of the SQLCA structure.

SQLCODE

This integer field holds the status code of the most recently executed SQL statement.
The status code, which indicates the outcome of the SQL operation, can be any of
the following numbers:

0 Oracle8i executed the statement without detecting an error or
exception.
>0 Oracle8i executed the statement but detected an exception. This

occurs when Oracle8i cannot find a row that meets your
WHERE-clause search condition or when a SELECT INTO or
FETCH returns no rows.

<0 When MODE={ANSI | ANSI14 | ANSI113}, +100 is returned to
SQLCODE after an INSERT of no rows. This can happen when a
subquery returns no rows to process.

Oracle8i did not execute the statement because of a database,
system, network, or application error. Such errors can be fatal.
When they occur, the current transaction should, in most cases, be
rolled back.

Negative return codes correspond to error codes listed in Oracle8i
Error Messages.

Error Handling and Diagnostics 8-23

Using the SQL Communications Area

SQLERRM
This sub-record contains the following two fields:

SQLERRML This integer field holds the length of the message text stored in
SQLERRMC.

SQLERRMC This string field holds the message text for the error code stored in
SQLCODE and can store up to 70 characters. For the full text of
messages longer than 70 characters, use the SQLGLM function.

Verify SQLCODE is negative before you reference SQLERRMC. If
you reference SQLERRMC when SQLCODE is zero, you get the
message text associated with a prior SQL statement.

SQLERRP
This string field is reserved for future use.

SQLERRD

This table of binary integers has six elements. Descriptions of the fields in
SQLERRD follow:

SQLERRD(1) This field is reserved for future use.
SQLERRD(2) This field is reserved for future use.
SQLERRD(3) This field holds the number of rows processed by the most

recently executed SQL statement. However, if the SQL
statement failed, the value of SQLERRD(3) is undefined, with
one exception. If the error occurred during a table operation,
processing stops at the row that caused the error, so
SQLERRD(3) gives the number of rows processed successfully.

The rows-processed count is zeroed after an OPEN statement
and incremented after a FETCH statement. For the EXECUTE,
INSERT, UPDATE, DELETE, and SELECT INTO statements, the
count reflects the number of rows processed successfully. The
count does not include rows processed by an update or delete
cascade. For example, if 20 rows are deleted because they meet
WHERE-clause criteria, and 5 more rows are deleted because
they now (after the primary delete) violate column constraints,
the count is 20 not 25.

SQLERRD(4) This field is reserved for future use.

8-24 Pro*COBOL Precompiler Programmer’s Guide

Using the SQL Communications Area

SQLERRD(5) This field holds an offset that specifies the character position at
which a parse error begins in the most recently executed SQL
statement. The first character occupies position zero.

SQLERRD(6) This field is reserved for future use.

This table of single characters has eight elements. They are used as warning flags.
Oracle8i sets a flag by assigning it a "W" (for warning) character value. The flags
warn of exceptional conditions.

For example, a warning flag is set when Oracle8i assigns a truncated column value
to an output host character variable.

Note: While Figure 8-2, "SQLCA Variable Declarations for Pro*COBOL" on
page 8-21 illustrates SQLWARN as a table, it is implemented in Pro*xCOBOL as a
group item with elementary PIC X items named SQLWARNQO through
SQLWARNTY.

Descriptions of the fields in SQLWARN follow:

SQLWARN(0) This flag is set if another warning flag is set.

SQLWARN(1) This flag is set if a truncated column value was assigned to an
output host variable. This applies only to character data.
Oracle8i truncates certain numeric data without setting a
warning or returning a negative SQLCODE value.

To find out if a column value was truncated and by how much,
check the indicator variable associated with the output host
variable. The (positive) integer returned by an indicator
variable is the original length of the column value. You can
increase the length of the host variable accordingly.

SQLWARN(2) This flag is set if one or more NULLSs were ignored in the
evaluation of a SQL group function such as AVG, COUNT, or
MAX. This behavior is expected because, except for COUNT(*),
all group functions ignore NULLs. If necessary, you can use the
SQL function NVL to temporarily assign values (zeros, for
example) to the NULL column entries.

SQLWARN(3) This flag is set if the number of columns in a query select list
does not equal the number of host variables in the INTO clause
of the SELECT or FETCH statement. The number of items
returned is the lesser of the two.

SQLWARN(4) This flag is no longer in use.

Error Handling and Diagnostics 8-25

Using the SQL Communications Area

SQLWARN(5) This flag is set when an EXEC SQL CREATE {PROCEDURE |
FUNCTION | PACKAGE | PACKAGE BODY} statement fails
because of a PL/SQL compilation error.

SQLWARN(6) This flag is no longer in use.
SQLWARN(7) This flag is no longer in use.
SQLEXT

This string field is reserved for future use.

PL/SQL Considerations

When your Pro*COBOL program executes an embedded PL/SQL block, not all
fields in the SQLCA are set. For example, if the block fetches several rows, the
rows-processed count, SQLERRD(3), is set to 1, not the actual number of rows fetched. So,
you should rely only on the SQLCODE and SQLERRM fields in the SQLCA after
executing a PL/SQL block.

Getting the Full Text of Error Messages

The SQLCA can accommodate error messages up to 70 characters long. To get the
full text of longer (or nested) error messages, you need the SQLGLM subroutine.

If connected a database, you can call SQLGLM using the syntax
CALL "SQLGLM"USING MSG-TEXT, MAX-SIZE, MSG-LENGTH

where:

MSG-TEXT The field in which to store the error message. (Oracle8i
blank-pads to the end of this field.)

MAX-SIZE An integer that specifies the maximum size of the MSG-TEXT

field in bytes.

MSG-LENGTH An integer variable in which Oracle8i stores the actual length
of the error message.

The maximum length of an error message is 512 characters including the error code,
nested messages, and message inserts such as table and column names. The
maximum length of an error message returned by SQLGLM depends on the value
specified for MAX-SIZE.

8-26 Pro*COBOL Precompiler Programmer’s Guide

Using the SQL Communications Area

DSNTIAR

The following example uses SQLGLM to get an error message of up to 200
characters in length:

* Declare variables for the SQL-ERROR subroutine call.
01 MSG-TEXT PIC X(200).

01 MAX-SIZE PIC S9(9) COMP VALUE 200.

01 MSG-LENGTH PIC S9(9) COMP.

PROCEDURE DIVISION.
MAIN.
EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.

SQL-ERROR.

* Clear the previous message text.
MOVE SPACES TO MSG-TEXT.

* Get the full text of the error message.
CALL "SQLGLM" USING MSG-TEXT, MAX-SIZE, MSG-LENGTH.
DISPLAY MSG-TEXT.

In the example, SQLGLM is called only when a SQL error has occurred. Always
make sure SQLCODE is negative before calling SQLGLM. If you call SQLGLM when
SQLCODE is zero, you get the message text associated with a prior SQL statement.

Note: If your application calls SQLGLM to get message text or your
Oracle*Forms user exit calls SQLIEM to display a failure message, the message
length must be passed. Do not use the SQLCA variable SQLERRML. SQLERRML isa
PIC S9(4) COMP integer while SQLGLM and SQLIEM expect a PIC S9(9) COMP
integer. Instead, use another variable declared as PIC S9(9) COMP.

DB2 provides an assembler routine called DSNTIAR to obtain a form of the SQLCA
that can be displayed. For users migrating to Oracle from DB2, Pro*xCOBOL
provides DSNTIAR. DSNTIAR’s implementation is a wrapper around SQLGLM.
The DSNTIAR interface is as follows

CALL 'DSNTIAR’ USING SQLCA MESSAGE LRECL

where MESSAGE is the output message area, in VARCHAR form of size greater
than or equal to 240, and LRECL is a full word containing the length of the output
messages, between 72 and 240. The first half-word of the MESSAGE argument
contains the length of the remaining area. The possible error codes returned by
DSNTIAR are:

Error Handling and Diagnostics 8-27

Using the SQL Communications Area

Table 8-5 DSNTIAR Error Codes and Their Meanings

0 successful execution

4 more data was available than could fit into the provided message

8 the logical record length (LRECL) was not between 72 and 240

12 the message area was not large enough (greater than 240)
WHENEVER Directive

By default, Pro*COBOL ignores error and warning conditions and continues
processing, if possible. To do automatic condition checking and error handling, you
need the WHENEVER statement.

With the WHENEVER statement you can specify actions to be taken when Oracle8i
detects an error, warning condition, or "not found" condition. These actions include
continuing with the next statement, PERFORMIing a paragraph, branching to a
paragraph, or stopping.

You can have Oracle8i automatically check the SQLCA for any of the following
conditions.

Conditions

SQLWARNING

SQLWARN(O0) is set because Oracle8i returned a warning (one of the warning flags,
SQLWARN(1) through SQLWARN(7), is also set) or SQLCODE has a positive value
other than +1403. For example, SQLWARN(1) is set when Oracle8 assigns a
truncated column value to an output host variable.

Declaring the SQLCA is optional when MODE={ANSI | ANSI14}. To use
WHENEVER SQLWARNING, however, you must declare the SQLCA.

SQLERROR
SQLCODE has a negative value because Oracle8i returned an error.

NOT FOUND or NOTFOUND

SQLCODE has a value of +1403 (+100 when MODE={ANSI | ANSI14 | ANSI13}),
because Oracle8i could not find a row that meets the search condition of a WHERE
clause, or a SELECT INTO or FETCH returned no rows. When MODE={ANSI |
ANSI14 | ANSIL13}, +100 is returned to SQLCODE after an INSERT of no rows.

8-28 Pro*COBOL Precompiler Programmer’s Guide

Using the SQL Communications Area

Since DB2 returns a SQLCODE value of 100 when an END-OF-FETCH condition
occurs after a SQL statement execution, Pro*COBOL provides a new command line
option for explicit control over the value returned when the END-OF-FETCH
condition occurs. This option is:

END_OF FETCH =100 1403 (default 1403)

The END_OF_FETCH option must be used on the command line or in a
configuration file. For more details, see "END_OF_FETCH" on page 14-20

If the user specifies MODE=ANSI in a configuration file, Pro*COBOL will
implement the 100 at the END_OF_FETCH, overriding the default
END_OF_FETCH=1403. If the user specifies MODE=ANSI and
END_OF_FETCH=1403 in the configuration file, then Pro*COBOL will implement
the 1403 at the END_OF_FETCH. If the user specifies MODE=ANSI in the
configuration file and END_OF_FETCH=1403 on the command line, Pro*COBOL
will again implement the 1403 at the END_OF_FETCH.

When Oracle8i detects one of the preceding conditions, you can have your program take
any of the following actions.

Actions

CONTINUE

Your program continues to run with the next statement if possible. This is the
default action, equivalent to not using the WHENEVER statement. You can use it to
"turn off" condition checking.

DO CALL

Your program calls a nested subprogram. When the end of the subprogram is
reached, control transfers to the statement that follows the failed SQL statement.

DO PERFORM

Your program transfers control to a COBOL paragraph. When the end of the
paragraph is reached, control transfers to the statement that follows the failed SQL
statement.

EXEC SQL
WHENEVER <condition> DO PERFORM <paragraph_name>
END-EXEC.

Error Handling and Diagnostics 8-29

Using the SQL Communications Area

GOTO or GO TO
Your program branches to a labeled statement.

STOP
Your program stops running and uncommitted work is rolled back.

Be careful. The STOP action displays no messages before logging off.

Coding the WHENEVER Statement
Code the WHENEVER statement using the following syntax:

EXEC SQL
WHENEVER <condition> <action>
END-EXEC.

DO PERFORM

When using the WHENEVER ... DO PERFORM statement, the usual rules for
PERFORMInNg a paragraph apply. However, you cannot use the THRU, TIMES,
UNTIL, or VARYING clauses.

For example, the following WHENEVER ... DO statement is invalid:

PROCEDURE DIVISION.
* |nvalid statement
EXEC SQL WHENEVER SQLERROR DO
PERFORM DISPLAY-ERROR THRU LOG-OFF
END-EXEC.

DISPLAY-ERROR.

LOG-OFF.

In the following example, WHENEVER SQLERROR DO PERFORM statements are
used to handle specific errors:

PROCEDURE DIVISION.
MAIN.

EXEC SQL

WHENEVER SQLERROR DO PERFORM INS-ERROR
END-EXEC.
EXEC SQL

8-30 Pro*COBOL Precompiler Programmer’s Guide

Using the SQL Communications Area

INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (EMP-NUMBER, :-EMP-NAME, :DEPT-NUMBER)
END-EXEC.
EXEC SQL
WHENEVER SQLERROR DO PERFORM DEL-ERROR
END-EXEC.
EXEC SQL
DELETE FROM DEPT
WHERE DEPTNO = DEPT-NUMBER
END-EXEC.

* Emor-handling paragraphs.
INS-ERROR.
* Check for "duplicate key value" Oracle8 error
IF SQLCA.SQLCODE =-1

* Check for "value too large" Oracle8 error
ELSE IF SQLCA.SQLCODE =-1401

ELSE
END-IF.
DEL-ERROR.
* Check for the number of rows processed.
IF SQLCA.SQLERRD(3)=0
ELSE

END-IF.

Notice how the paragraphs check variables in the SQLCA to determine a course of
action.

DO CALL
This clause calls an action subprogram. Here is the syntax of this clause:

EXEC SQL
WHENEVER <condition> DO CALL <subprogram_name>
[USING <param1>..]

END-EXEC.

The following restrictions or rules apply:

Error Handling and Diagnostics 8-31

Using the SQL Communications Area

« You cannot use the RETURNING, ON_EXCEPTION, or OVER_FLOW phrases
in the USING clause.

« You may have to enter the subprogram name followed by the keyword
COMMON in the PROGRAM-ID statement of your COBOL source code.

« You must use a WHENEVER CONTINUE statement in the action subprogram.

« The action subprogram name may have to be in double quotes in the DO CALL
clause of the WHENEVER directive.

Here is an example of a program that can call the error subprogram SQL-ERROR
from inside the subprogram LOGON, or inside the MAIN program, without having
to repeat code in two places, as when using the DO PERFORM clause:

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN.
ENVIRONMENT DIVISION.

PROCEDURE DIVISION.
BEGIN-PGM.
EXEC SQL
WHENEVER SQLERROR DO CALL "SQL-ERROR"
END-EXEC.
CALL "LOGON'".

IDENTIFICATION DIVISION.
PROGRAM-ID. LOGON.
DATADIVISION.
WORKING-STORAGE SECTION.
01 USERNAME PIC X(15) VARYING.
01 PASSWD PIC X(15) VARYING.
PROCEDURE DIVISION.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY "*".
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.
END PROGRAM LOGON.

IDENTIFICATION DIVISION.
PROGRAM-ID. SQL-ERROR COMMON.

8-32 Pro*COBOL Precompiler Programmer’s Guide

Using the SQL Communications Area

PROCEDURE DIVISION.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY """,
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
END PROGRAM SQL-ERROR.
END PROGRAM MAIN.

Scope

Because WHENEVER is a declarative statement, its scope is positional, not logical.
It tests all executable SQL statements that follow it in the source file, not in the flow
of program logic. So, code the WHENEVER statement before the first executable
SQL statement you want to test.

A WHENEVER statement stays in effect until superseded by another WHENEVER
statement checking for the same condition.

Suggestion: You can place WHENEVER statements at the beginning of each
program unit that contains SQL statements. That way, SQL statements in one
program unit will not reference WHENEVER actions in another program unit,
causing errors at compile or run time.

Careless Usage: Examples

Careless use of the WHENEVER statement can cause problems. For example, the
following code enters an infinite loop if the DELETE statement sets the NOT
FOUND condition, because no rows meet the search condition:

* Improper use of WHENEVER.
EXEC SQL
WHENEVER NOT FOUND GOTO NO-MORE
END-EXEC.
PERFORM GET-ROWS UNTIL DONE ="YES".

GET-ROWS.
EXEC SQL
FETCH EMP-CURSOR INTO :EMP-NAME, :SALARY
END-EXEC.

NO-MORE.

Error Handling and Diagnostics 8-33

Using the SQL Communications Area

MOVE "YES" TO DONE.
EXEC SQL

DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER
END-EXEC.

In the next example, the NOT FOUND condition is properly handled by resetting
the GOTO target:

* Proper use of WHENEVER.
EXEC SQL WHENEVER NOT FOUND GOTO NO-MORE END-EXEC.
PERFORM GET-ROWS UNTIL DONE ="YES".

GET-ROWS.
EXEC SQL
FETCH EMP-CURSOR INTO :EMP-NAME, :SALARY
END-EXEC.

NO-MORE.
MOVE "YES" TO DONE.
EXEC SQL WHENEVER NOT FOUND GOTO NONE-FOUND END-EXEC.
EXEC SQL
DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER
END-EXEC.

NONE-FOUND.

Getting the Text of SQL Statements

In many Pro*COBOL applications, it is convenient to know the text of the statement
being processed, its length, and the SQL command (such as INSERT or SELECT)
that it contains. This is especially true for applications that use dynamic SQL.

The routine SQLGLS, which is part of the SQLLIB runtime library, returns the
following information:

« the text of the most recently parsed SQL statement
« the length of the statement

« afunction code (see Table 8-1, "Status Variable Behavior with
ASSUME_SQLCODE=NO and MODE=ANSI | ANSI14 and
DECLARE_SECTION=YES" on page 8-1) for the SQL command used in the
statement

8-34 Pro*COBOL Precompiler Programmer’s Guide

Using the SQL Communications Area

You can call SQLGLS after issuing a static SQL statement. With dynamic SQL
Method 1, you can call SQLGLS after the SQL statement is executed. With dynamic
SQL Method 2, 3, or 4, you can call SQLGLS after the statement is prepared.

To call SQLGLS, you use the following syntax:
CALL"SQLGLS"USING SQLSTM STMLEN SQLFC.

Table 8-6 shows the host-language datatypes available for the parameters in the
SQLGLS argument list.

Table 8-6 Parameter Datatypes

Parameter Datatype
SQLSTM PIC X(n)
STMLEN PIC S9(9) COMP
SQLFC PIC S9(9) COMP

All parameters must be passed by reference. This is usually the default parameter
passing convention; you need not take special action.

The parameter SQLSTM is a blank-padded (not null-terminated) character buffer
that holds the returned text of the SQL statement. Your program must statically
declare the buffer or dynamically allocate memory for it.

The length parameter STMLEN is a four-byte integer. Before calling SQLGLS, set
this parameter to the actual size (in bytes) of the SQLSTM buffer. When SQLGLS
returns, the SQLSTM buffer contains the SQL statement text blank padded to the
length of the buffer. STMLEN returns the actual number of bytes in the returned
statement text, not counting the blank padding. However, STMLEN returns a zero if
an error occurred.

Some possible errors follow:

« No SQL statement was parsed.

« You passed an invalid parameter (for example, a negative length value).
« An internal exception occurred in SQLLIB.

The parameter SQLFC is a four-byte integer that returns the SQL function code for
the SQL command in the statement. A complete table of the function code for each
SQL command is found in Oracle Call Interface Programmer’s Guide.

Error Handling and Diagnostics 8-35

Using the Oracle Communications Area

There are no SQL function codes for these statements:

« CONNECT
« COMMIT

« FETCH

« ROLLBACK
« RELEASE

Using the Oracle Communications Area

The SQLCA handles standard SQL communications. The Oracle Communications
Area (ORACA) is a similar structure that you can include in your program to
handle Oracle8i-specific communications. When you need more runtime
information than the SQLCA provides, use the ORACA.

Besides helping you to diagnose problems, the ORACA lets you monitor your
program’s use of resources such as the SQL Statement Executor and the cursor cache,
an area of memory reserved for cursor management.

What's in the ORACA?

The ORACA contains option settings, system statistics, and extended diagnostics.
Figure 8-3 shows all the variables in the ORACA:

8-36 Pro*COBOL Precompiler Programmer’s Guide

Using the Oracle Communications Area

Figure 8-3 ORACA Variable Declarations for Pro*COBOL

ORACA
01 ORACA

05 ORACAID PIC X(8).

05 ORACABC PIC S9(9) COMP.

05 ORACCHF PIC S9(9) COMP.

05 ORADBGF PIC S9(9) COMP.

05 ORAHCHF PIC S9(9) COMP.

05 ORASTXTF PIC S9(9) COMP.

05 ORASTXT.
49 ORASTXTL PIC S9(4) COMP.
49 ORASTXTL PIC X(70)

05 ORASFNM.
49 ORASFNML PIC S9(4) COMP.
49 ORASFNMC PIC X(70)

05 ORASLNR PIC X(8).

05 ORAHOC PIC S9(9) COMP.

05 ORAMOC PIC S9(9) COMP.

05 ORACOC PIC S9(9) COMP.

05 ORANOR PIC S9(9) COMP.

05 ORANPR PIC S9(9) COMP.

05 ORANEX PIC S9(9) COMP.

Declaring the ORACA

To declare the ORACA, simply include it (using an EXEC SQL INCLUDE
statement) in your Pro*COBOL source file outside the Declare Section as follows:

* Include the Oracle Communications Area (ORACA).
EXEC SQL INCLUDE ORACA END-EXEC.

Enabling the ORACA

To enable the ORACA, you must set the ORACA precompiler option to YES on the
command line or in a configuration file with

ORACA=YES

or inline with
EXEC Oracle OPTION (ORACA=YES) END-EXEC.

Error Handling and Diagnostics 8-37

Using the Oracle Communications Area

Then, you must choose appropriate runtime options by setting flags in the ORACA.
Enabling the ORACA is optional because it adds to runtime overhead. The default
setting is ORACA=NO.

Choosing Runtime Options

The ORACA includes several option flags. Setting these flags by assigning them
non-zero values allows you to:

« save the text of SQL statements
« enable DEBUG operations

= check cursor cache consistency (the cursor cache is a continuously updated area of
memory used for cursor management)

« check heap consistency (the heap is an area of memory reserved for dynamic
variables)

« gather cursor statistics

The descriptions below will help you choose the options you need.

ORACA Structure

This section describes the structure of the ORACA, its fields, and the values they
can store.

ORACAID

This string field is initialized to "ORACA" to identify the Oracle Communications
Area.

ORACABC
This integer field holds the length, expressed in bytes, of the ORACA data structure.

ORACCHF

If the master DEBUG flag (ORADBGF) is set, this flag lets you check the cursor
cache for consistency before every cursor operation.

The runtime library does the consistency checking andcan issue error messages,
which are listed in Oracle8i Error Messages.

This flag has the following settings:

8-38 Pro*COBOL Precompiler Programmer’s Guide

Using the Oracle Communications Area

0 Disable cache consistency checking (the default).
1 Enable cache consistency checking.
ORADBGF

This master flag lets you choose all the DEBUG options. It has the following
settings:

0 Disable all DEBUG operations (the default).
1 Enable all DEBUG operations.
ORAHCHF

If the master DEBUG flag (ORADBGF) is set, this flag tells the runtime library to
check the heap for consistency every time Pro*COBOL dynamically allocates or
frees memory. This is useful for detecting program bugs that upset memory.

This flag must be set before the CONNECT command is issued and, once set,
cannot be cleared; subsequent change requests are ignored. It has the following
settings:

0 Disable all DEBUG operations (the default).
1 Enable all DEBUG operations.
ORASTXTF

This flag lets you specify when the text of the current SQL statement is saved. It has
the following settings:

Never save the SQL statement text (the default).
Save the SQL statement text on SQLERROR only.
Save the SQL statement text on SQLERROR or SQLWARNING.

w N - O

Always save the SQL statement text.

The SQL statement text is saved in the ORACA sub-record named ORASTXT.

Error Handling and Diagnostics 8-39

Using the Oracle Communications Area

Diagnostics
The ORACA provides an enhanced set of diagnostics; the following variables help
you to locate errors quickly.

ORASTXT

This sub-record helps you find faulty SQL statements. It lets you save the text of the
last SQL statement parsed by Oracle8i. It contains the following two fields:

ORASTXTL This integer field holds the length of the current SQL statement.

ORASTXTC This string field holds the text of the current SQL statement. At
most, the first 70 characters of text are saved.

Statements parsed by Pro*COBOL, such as CONNECT, FETCH, and COMMIT, are
not saved in the ORACA.

ORASFNM

This sub-record identifies the file containing the current SQL statement and so helps
you find errors when multiple files are precompiled for one application. It contains
the following two fields:

ORASFNML This integer field holds the length of the filename stored in

ORASFNMC.
ORASFNMC This string field holds the filename. At most, the first 70 characters
are stored.
ORASLNR
This integer field identifies the line at (or near) which the current SQL statement can
be found.

Cursor Cache Statistics

The variables below let you gather cursor cache statistics. They are automatically set
by every COMMIT or ROLLBACK statement your program issues. Internally, there
is a set of these variables for each CONNECTed database. The current values in the
ORACA pertain to the database against which the last commit or rollback was
executed.

8-40 Pro*COBOL Precompiler Programmer’s Guide

Using the Oracle Communications Area

ORAHOC

This integer field records the highest value to which MAXOPENCURSORS was set
during program execution.

ORAMOC

This integer field records the maximum number of open cursors required by your
program. This number can be higher than ORAHOC if MAXOPENCURSORS was
set too low, which forced Pro*COBOL to extend the cursor cache.

ORACOC

This integer field records the current number of open cursors required by your
program.

ORANOR

This integer field records the number of cursor cache reassignments required by
your program. This number shows the degree of "thrashing" in the cursor cache and
should be kept as low as possible.

ORANPR

This integer field records the number of SQL statement parses required by your
program.

ORANEX

This integer field records the number of SQL statement executions required by your
program. The ratio of this number to the ORANPR number should be kept as high
as possible. In other words, avoid unnecessary re-parsing. For help, see

Appendix D, "Performance Tuning".

ORACA Example

The following program prompts for a department number, inserts the name and
salary of each employee in that department into one of two tables, then displays
diagnostic information from the ORACA.:

IDENTIFICATION DIVISION.
PROGRAM-ID. ORACAEX.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

Error Handling and Diagnostics 8-41

Using the Oracle Communications Area

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
OLUSERNAME PIC X(20).

OLPASSWORD PIC X(20).

OLEMP-NAME PIC X(10) VARYING.
01DEPT-NUMBER PIC S9(4) COMP.

OLSALARY PIC S96)V99

DISPLAY SIGN LEADING SEPARATE.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

DISPLAY "Usemame? " WITH NO ADVANCING.
ACCEPT USERNAME.
DISPLAY "Password? " WITH NO ADVANCING.
ACCEPT PASSWORD.
EXEC SQL

WHENEVER SQLERROR GOTO SQL-ERROR
END-EXEC.
EXEC SQL

CONNECT :USERNAME IDENTIFIED BY :PASSWORD
END-EXEC.
DISPLAY "Connected to Oracle”.

*— setflags inthe ORACA
*— enable debug operations
MOVE 1 TO ORADBGF-.
*— enable cursor cache consistency check
MOVE 1 TO ORACCHF.
*— always save the SQL statement
MOVE 3 TO ORASTXTF.
DISPLAY "Department number? " WITH NO ADVANCING.
ACCEPT DEPT-NUMBER.
EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, SAL + NVL(COMM,0)
FROM EMP
WHERE DEPTNO = :DEPT-NUMBER
END-EXEC.
EXEC SQL OPEN EMPCURSOR END-EXEC.
EXEC SQL
WHENEVER NOT FOUND GOTO NO-MORE
END-EXEC.

8-42 Pro*COBOL Precompiler Programmer’s Guide

Using the Oracle Communications Area

LOOP.
EXEC SQL
FETCH EMPCURSOR INTO :EMP-NAME, :SALARY
END-EXEC.
IF SALARY < 2500
EXEC SQL
INSERT INTO PAY1 VALUES (EMP-NAME, :SALARY)
END-EXEC
ELSE
EXEC SQL
INSERT INTO PAY2 VALUES (EMP-NAME, :SALARY)
END-EXEC
END-IF.
GO TOLOOP.

NO-MORE.
EXEC SQL CLOSE EMPCURSOR END-EXEC.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL COMMIT WORK RELEASE END-EXEC.
DISPLAY "(NO-MORE.) Last SQL statement: ", ORASTXTC.
DISPLAY "... at or near line number: ", ORASLNR.
DISPLAY "".
DISPLAY " Cursor Cache Statistics'.
DISPLAY "
DISPLAY "Maximum value of MAXOPENCURSORS ", ORAHOC.
DISPLAY "Maximum open cursors required: ", ORAMOC.
DISPLAY "Current number of open cursors: ', ORACOC.
DISPLAY "Number of cache reassignments: ", ORANOR.
DISPLAY "Number of SQL statement parses: ", ORANPR.
DISPLAY "Number of SQL statement executions: ", ORANEX.
STOP RUN.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
DISPLAY "(SQL-ERROR.) Last SQL statement: ", ORASTXTC.
DISPLAY "... at or near ine number: ", ORASLNR.
DISPLAY "".
DISPLAY " Cursor Cache Statistics'.
DISPLAY "
DISPLAY "MAXIMUM VALUE OF MAXOPENCURSORS ", ORAHOC.
DISPLAY "Maximum open cursors required: ", ORAMOC.
DISPLAY "Current number of open cursors: ", ORACOC.
DISPLAY "Number of cache reassignments: ", ORANOR.
DISPLAY "Number of SQL statement parses: ", ORANPR.

Error Handling and Diagnostics 8-43

Using the Oracle Communications Area

DISPLAY "Number of SQL statement executions: ", ORANEX.
STOP RUN.

8-44 Pro*COBOL Precompiler Programmer’s Guide

9

Oracle Dynamic SQL

This chapter shows you how to use dynamic SQL, an advanced programming
technique that adds flexibility and functionality to your applications. After
weighing the advantages and disadvantages of dynamic SQL, you learn four
methods—from simple to complex—for writing programs that accept and process
SQL statements "on the fly" at run time. You learn the requirements and limitations
of each method and how to choose the right method for a given job.

Topics are:

What Is Dynamic SQL?

Advantages and Disadvantages of Dynamic SQL
When to Use Dynamic SQL

Requirements for Dynamic SQL Statements
How Dynamic SQL Statements Are Processed
Methods for Using Dynamic SQL

Using Method 1

Sample Program 6: Dynamic SQL Method 1
Using Method 2

Sample Program 7: Dynamic SQL Method 2
Using Method 3

Sample Program 8: Dynamic SQL Method 3
Using Oracle Method 4

Using the DECLARE STATEMENT Statement

Oracle Dynamic SQL 9-1

« Using Host Tables
« Using PL/SQL

9-2 Pro*COBOL Precompiler Programmer’s Guide

When to Use Dynamic SQL

What Is Dynamic SQL?

Most database applications do a specific job. For example, a simple program might
prompt the user for an employee number, then update rows in the EMP and DEPT
tables. In this case, you know the makeup of the UPDATE statement at precompile
time. That is, you know which tables might be changed, the constraints defined for
each table and column, which columns might be updated, and the datatype of each
column.

However, some applications must accept (or build) and process a variety of SQL
statements at run time. For example, a general-purpose report writer must build
different SELECT statements for the various reports it generates. In this case, the
statement’s makeup is unknown until run time. Such statements can, and probably
will, change from execution to execution. They are aptly called dynamic SQL
statements.

Unlike static SQL statements, dynamic SQL statements are not embedded in your
source program. Instead, they are stored in character strings input to or built by the
program at run time. They can be entered interactively or read from a file.

Advantages and Disadvantages of Dynamic SQL

Host programs that accept and process dynamically defined SQL statements are
more versatile than plain embedded SQL programs. Dynamic SQL statements can
be built interactively with input from users having little or no knowledge of SQL.

For example, your program might simply prompt users for a search condition to be
used in the WHERE clause of a SELECT, UPDATE, or DELETE statement. A more
complex program might allow users to choose from menus listing SQL operations,
table and view names, column names, and so on. Thus, dynamic SQL lets you write
highly flexible applications.

However, some dynamic queries require complex coding, the use of special data
structures, and more runtime processing. While you might not notice the added
processing time, you might find the coding difficult unless you fully understand
dynamic SQL concepts and methods.

When to Use Dynamic SQL

In practice, static SQL will meet nearly all your programming needs. Use dynamic
SQL only if you need its open-ended flexibility. Its use is suggested when one or
more of the following items is unknown at precompile time:

Oracle Dynamic SQL 9-3

Requirements for Dynamic SQL Statements

« text of the SQL statement (commands, clauses, and so on)
« the number of host variables
« the datatypes of host variables

« references to database objects such as columns, indexes, sequences, tables,
usernames, and views

Requirements for Dynamic SQL Statements

To represent a dynamic SQL statement, a character string must contain the text of a
valid DML or DDL SQL statement, but not contain the EXEC SQL clause,
host-language delimiters or statement terminator.

In most cases, the character string can contain dummy host variables. They hold
places in the SQL statement for actual host variables. Because dummy host
variables are just place-holders, you do not declare them and can name them
anything you like (hyphens are not allowed). For example, Oracle8i makes no
distinction between the following two strings

'DELETE FROM EMP WHERE MGR =:MGRNUMBER AND JOB = :JOBTITLE'
'DELETE FROM EMP WHERE MGR =:M AND JOB =.J

How Dynamic SQL Statements Are Processed

Typically, an application program prompts the user for the text of a SQL statement
and the values of host variables used in the statement. Then Oracle8i parses the SQL
statement. That is, Oracle8i examines the SQL statement to make sure it follows
syntax rules and refers to valid database objects. Parsing also involves checking
database access rights, reserving needed resources, and finding the optimal access
path.

Next, Oracle8i binds the host variables to the SQL statement. That is, Oracle8i gets
the addresses of the host variables so that it can read or write their values.

Then Oracle8i executes the SQL statement. That is, Oracle8i does what the SQL
statement requested, such as deleting rows from a table.

The SQL statement can be executed repeatedly using new values for the host
variables.

9-4 Pro*COBOL Precompiler Programmer’s Guide

Methods for Using Dynamic SQL

Methods for Using Dynamic SQL

Method 1

Method 2

This section introduces four methods you can use to define dynamic SQL
statements. It briefly describes the capabilities and limitations of each method, then
offers guidelines for choosing the right method. Later sections show you how to use
the methods.

The four methods are increasingly general. That is, Method 2 encompasses Method
1, Method 3 encompasses Methods 1 and 2, and so on. However, each method is
most useful for handling a certain kind of SQL statement, as Table 9-1 shows:

Table 9-1 Appropriate Method to Use

Method Kind of SQL Statement

1 Non-query without input host variables.

2 Non-query with known number of input host variables.

3 Query with known number of select-list items and input host variables.
4 Query with unknown number of select-list items or input host variables.

The term select-list item includes column names and expressions.

This method lets your program accept or build a dynamic SQL statement, then
immediately execute it using the EXECUTE IMMEDIATE command. The SQL
statement must not be a query (SELECT statement) and must not contain any
place-holders for input host variables. For example, the following host strings
qualify:

'DELETE FROM EMP WHERE DEPTNO =20

'‘GRANT SELECT ON EMP TO SCOTT

With Method 1, the SQL statement is parsed every time it is executed (unless you
specify HOLD_ CURSOR=YES).

This method lets your program accept or build a dynamic SQL statement, then
process it using the PREPARE and EXECUTE commands. The SQL statement must

Oracle Dynamic SQL 9-5

Methods for Using Dynamic SQL

Method 3

Method 4

Guidelines

not be a query. The number of place-holders for input host variables and the
datatypes of the input host variables must be known at precompile time. For
example, the following host strings fall into this category:

INSERT INTO EMP (ENAME, JOB) VALUES (EMPNAME, :JOBTITLEY
'DELETE FROM EMP WHERE EMPNO =:EMPNUMBER’

With Method 2, the SQL statement is parsed just once (unless you specify
RELEASE_CURSOR=YES), but it can be executed many times with different values
for the host variables. SQL data definition statements such as CREATE are executed
when they are PREPAREJ.

This method lets your program accept or build a dynamic query, then process it
using the PREPARE command with the DECLARE, OPEN, FETCH, and CLOSE
cursor commands. The number of select-list items, the number of place-holders for
input host variables, and the datatypes of the input host variables must be known at
precompile time. For example, the following host strings qualify:

'SELECT DEPTNO, MIN(SAL), MAX(SAL) FROM EMP GROUP BY DEPTNO'
"SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO =:DEPTNUMBER’

This method lets your program accept or build a dynamic SQL statement, then
process it using descriptors (discussed in "Using Oracle Method 4" on page 9-25).
The number of select-list items, the number of place-holders for input host
variables, and the datatypes of the input host variables can be unknown until run
time. For example, the following host strings fall into this category:

INSERT INTO EMP (<unknown>) VALUES (<unknown>)
"SELECT <unknown>FROM EMP WHERE DEPTNO = 20

Method 4 is required for dynamic SQL statements that contain an unknown number
of select-list items or input host variables.

With all four methods, you must store the dynamic SQL statement in a character
string, which must be a host variable or quoted literal. When you store the SQL
statement in the string, omit the keywords EXEC SQL and the statement terminator.

9-6 Pr