Oracle8i

Application Developer’s Guide - Advanced Queuing

Release 8.1.5

February 1999
Part No. A68005-01

ORrRACLE

Application Developer’s Guide - Advanced Queuing, Release 8.1.5
Part No. A68005-01

Copyright © 199x, 1999, Oracle Corporation. All rights reserved.
Primary Author: Denis Raphaely

Contributors: Neerja Bhatt, Sashi Chandrasekaran, Dieter Gawlick, John Gibb, Mohan Kamath,
Krishnan Meiyyappan, Bhagat Nainani, Goran Olsson, Madhu Reddy, Mary Rhodes, Ashok Saxena,
Ekrem Soylemez, Alvin To, Rahim Yaseen

Graphic Designer: Valerie Moore

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by such
use of the Programs.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are "restricted computer software"
and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

Oracle, Pro*Ada, Pro*COBOL, Pro*FORTRAN, SQL*Loader, SQL*Net and SQL*Plus are registered trade-
marks of Oracle Corporation, Redwood City, California.

Designer/2000, Developer/2000, Net8, Oracle Call Interface, Oracle7, Oracle8, Oracle8i, Oracle Forms,
Oracle Parallel Server, PL/SQL, Pro*C, Pro*C/C++ and Trusted Oracle are trademarks of Oracle Corpora-
tion, Redwood City, California.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

Contents

SeNd US YOUI COMMENTS ..ottt XVii
PIEIAICE ..o Xix
USE CASE DIAGIAMIS.uiiieiiitietieie ettt sttt sttt bt b et b e et et e sbe st e s besbesbesbese et e st e e e e eneareanas xXiii
SEALE DIHAGIAMIS ...ttt bbbttt b ekt b et b et e bt eb et eb ettt et e e et e e ebene et e XXiX

1 Introduction

The Need for Queuing in MesSaging SYSLEMScociriiriineie e 1-2
Y oIS (o [V] (=] 0 PP P OV RTUPRRPRPN 1-2
MESSAQE PEISISTENCE ...ttt bbbt bbb e bt ettt e et e b be b e 1-3

Features of Advanced QUEUING (AQ) ...oiiiiiiiiiiiiie ettt 1-5
GENEIAI FEALUIES ...ttt bbbttt 1-5
ENQUEUE FEATUIEScecvieiii ittt ettt sttt be et e e te e sba e be e staeebe e ssaeebeennee s 1-8
DEQUEUE FEALUIESocuiiiiieie ettt ettt sttt ae st e s et e be s ente e e naeanees 1-11
Propagation FEALUIEScccvieiiie ettt sttt sttt bt e e e e e st eraeneeneare e e 1-13

Primary Components of Advanced QUeuing (AQ) ..o 1-15
IMIBSSATE ...ttt ettt Rt r et 1-15
(O 18 1= U T TP OPRRPRPR 1-15
(@ LU CTU T =1 o] LTRSS 1-15
AAGEINT .. e et 1-15
Tt | 1 1=1 o | USRS 1-16
Recipient and SUDSCHIPTION LISTSccuoiiiiiiiiiiieieese et 1-16
] ST 1-17
Rule Based SUDSCIIDET ..o 1-17

2

(@ LU IO 1Y, o] 11 (o USSP 1-17

Modeling QUEUE ENTITIEScoiiiiiiiiii bbbt 1-18
2T TS o @ U 1= T o SR 1-19
HTustrating BasiC QUEUINGcouiiiiiiiieitr ettt te e ae et e st e sbeensesre e e e sreennes 1-19
IMustrating Client-Server Communication USiNg AQ ..o 1-21
Multiple-Consumer Dequeuing of the Same MEeSSAgE..........cvvrvrererierererieriereeeeeeieseaneas 1-23
Illustrating Multiple-Consumer Dequeuing of the Same MesSsage.........ccoceveveiveeinenenn 1-24
Ilustrating Dequeuing of Specified Messages by Specified Recipients............ccoccoveeinene. 1-26
Illustrating the Implementation of Workflows using AQcccocvivinienie e 1-28
Illustrating the Implementation of Publish/Subscribe using AQ ... 1-29
MESSAGE PrOPAGALIONcuiiiiiiiiiciiec ettt 1-32
IHlustration of Message Propagationccccccciereeeieiesiese e 1-34

Programmatic Environments for Working wWith AQ ..o 1-35

F @ I 1 T 0 TSRS 1-35

170 3] 0 T= 11 1 o] 1 11 Y2 1-36

RESTIICTIONS ...ttt bbbt b e bt bt bt b e b b e ne e b e s b et e e eneebeabesbeebenbas 1-37
Auto-commit features in DBMS_AQADM PaCKAGE..........cccurveireiiiinesesesee e 1-37
Collection Types in Message Payloads.........ccccovveeriieciciein e 1-37
Object Type Payload Support in AQ JaVa AP ..o 1-37
Synonyms on Queue Tables and QUEUEccoeiiiiiiiieiiee e 1-37
Pluggable Tablespace does not Work For 8.0 Compatible Multiconsumer Queues......... 1-37
Tablespace POiNt-iN-TIME FECOVEIYooiiiiieiieieeeeee et et 1-38
Propagation from ODJECT QUEUESc..cirieirieiirieesieesiee ettt 1-38
NON-PEISISTENT QUEUESveeviiviiiteitie ittt be et eebe et e sbeeebesaeesbe s e e sbeeseesbeeseesbeesbesbeenbesreenns 1-38

RETEIENCE 1O DBIMOSciiiiiitieiie ettt bbbt bbb ettt e e st et ebesaeebe b 1-39

Implementing AQ — A Sample Application

A SAMPIE APPHICALION ...ttt b bbb e 2-3
GENEIAI FRATUIES. ...ttt bbbt et st e e st e st e st e b e e b e e beebesbenbesnen 2-4
System Level ACCESS CONLIOL ... re s 2-5
(U (WY =To I =\ Y o T T USRS 2-7
QuEUE LeVel ACCESS CONTIOLcoiiiiiiiesie ettt be e 2-9
NON-PEISISTENT QUEUESveeviivieite et eee sttt sre et e et et esbeebesbeeebesaeesbeeeesbesraesbeeseesbeesbesbeenbesrsenns 2-10
Retention and MeSSage HiSTOMYcov oot 2-20
PUDBIiSh/SUDSCIIDE SUPPOIT ..o e 2-21

Support for Oracle Parallel SErver (OPS) ... 2-24

SUPPOIT FOr STALISTICS VIBWSouiiiiiiiciieee ettt 2-27
ENQUEUE FEALUIESoiiiieiie sttt ettt et ae et e st e e te e saa e e beesneeebe e s raeenbeesnbeesteesneeeees 2-28
Subscriptions and RECIPIENT LISTSoouiiiiiiiiiiiiee e 2-29
Priority and Ordering 0f IMESSATEScouiuiiiirieirieiriee et 2-31
Time SPECITICAtiON: DEIAYc.ccveiviiiieece e sre e 2-34
Time Specification: EXPIratioNcooiiiiiiiiiieie e 2-35
MESSAGE GIOUPING. ...eveteiteiiiteiiiteeete ettt sttt ettt b et b bt b et b e e eb et eb bbb e bt et e nr et e sb bt areseare e 2-37
ASYNChronous NOLITICALIONScceieiiccc e 2-39
DEQUEUE FRATUIESuii ittt ittt ettt ettt sttt sbe e s et e st e e s be e sabe e beeanbeebeesnbeenbeennbe s 2-46
DequEUE METNOAS. ..ottt 2-47
Y LU TN o] L= ot o 1 =] oL SO 2-50
Local and RemOte RECIPIENTScciiiiiiiiiieiee e 2-52
Message Navigation iN DEQUEUE...........cccoueiriirieirieereeste ettt sr e 2-54
1V [T LT3 o) 0 1= [L0 1 g SO T 2-57
Optimization of Waiting for Arrival of MESSagescccoieriririiineee e 2-61
Retry With Delay INTErVal ..o s 2-63
SO (T=] o1 T T TN U T | 1T o PSS 2-65
Rule-based SUDSCIIPTIONoiiiiii e 2-69
LiSTEN CaPabiliTyc.eiviiieeiiiie bbb 2-72
Propagation FEAUIES........cccieiei ettt ettt et st et st ne e e e e e e s e ereereeneerenrenes 2-76
PrOPAGATION ...ttt bbb bbb bbbt ettt b bbb 2-77
Propagation SCHEAUIINGcviiiiii s 2-78
Propagation of Messages with LOB AttribULeS.........c.ccccv i 2-82
Enhanced Propagation Scheduling Capabilities...........c.ccccoiiiiniiiiniece 2-85
Exception Handling DUFiNgG Propagation ... 2-87

Managing Oracle AQ

N O] YN o U= 1 =] 1= oSSR SR 3-2
AQ _TM_PROCESSESccooiiitieestt ettt se e st ste e saesta s e stees e sseensesseeeeaneeneesneenteanens 3-2
JOB_QUEUE _PROCESSES........cctiiet sttt sttt et et sna et e ste e nneanes 3-3

COMMON DAta STTUCTUIESoviiieeiie sttt e s et e e e e e sbe e s rbeebeesrbeabeesrae s 34
L@ 1= AN =T - P 3-4
TYPE NAIMIE ...ttt ettt h et bttt h e e bt s b e bt e R e e b e e b b e bt es b e eb e enn e eb e e et ebe e e e sreennenrean 3-4
AAGBINIT e 3-5

AQ RECIPIENT LIST TYPB ...ttt sttt bbbttt ettt sbe e 3-6

AQ AGENT LIST TYPR. ettt bbbt bt bbbttt 3-6
AQ SUDSCIIDEE LISt TYPB..uiiiiiecei ettt sttt eeneeneeresnesrenns 3-6
Enumerated Constants in the Administrative Interface...........cccoooiiiiinciciiic 3-7
Enumerated Constants in the Operational INterface ... 3-8
RS T= U] SRS 3-9
Security with 8.0 and 8.1 Compatible QUEUES...........cccoeiiiiiiirire e 3-9
Privileges and ACCESS CONTIOI ..o 3-10
ROIES. .. bbbt b et b ettt et r e 3-11
AAMINISTIATOE FOIE ... ettt e e bt bbb 3-11
USEE FOIE .. ettt sttt b et st se et et st e st e st e st e st ene et e e besbeebenes 3-12
ACCESS 10 AQ ODJECT TYPES. .o ieiieiteeteitesteseste et ee et ere st s e re et srestesteseeste e e e e eneesee e asearenreans 3-12
OCT APPHICALIONS ...ttt ettt b bbb b bbb e ettt e e bbb e 3-12
PrOPAGATION.ceieete ettt bbbttt 3-12
=T (o] =T (o1 SO ST 3-14
Table and INAEX STFUCLUIES ..ottt et 3-14
TRFOUGRNPUL ...t bbbttt 3-14
N 7= 1 = o 11 02 3-14
o= 1= 1 oY1 T 2SS 3-15
Migrating QUEUE TaBIESciiiiiie bbb 3-16
LT Vo L= 3N A 0] (PSSR 3-16
Example: To Upgrade An 8.0 Queue Table To A 8.1-Compatible Queue Table............... 3-17
Export and IMport 0f QUEUE Datacccciruiiriiiiiiiiiie e 3-18
Exporting QUEUE Table Data..........ccceoevieieieieeieesese e ere e 3-18
Importing QuUeue Table DALAcoiiiiiieee e 3-19
Propagation ISSUESc.oiuiiiiiiitiiiteeet etttk b et bbbttt 3-21
ENterprise Manager SUPPOIT........ocivi et se e e e e e e eneenesneerenees 3-23
USING XA WITN AQ ..ottt ettt sttt ettt ettt st st e 3-23
Sample DBA Actions as Preparation for Working with AQ ..o 3-24

4 Administrative Interface: Basic Operations

Use Case Model: Administrative Interface — Basic Operations...........cccoceoveviienniensennennns 4-2
Create @ QUEUE TABIB.......cei ettt ettt e st esbe et e sbeesbesaeesbeanees 4-4
(O S7= T (oI A L0 (L T PSR UPRRO 4-8
Example: Create a Queue Table Using PL/SQL (DBMS_AQADM Package)c.ccoeuenee 4-9

vi

Create a Queue Table [Set Storage ClaUSE].......coieiiiiiiieire e 4-11

AIEr @ QUEUE TaBIE ...t ettt re bt nee e 4-12
Example: Alter a Queue Table Using PL/SQL (DBMS_AQADM Package)...........c..co...... 4-13
(O S7=To (oI Ao (L PSP PP R 4-14
Drop @ QUEUE TADIE. ...ttt b 4-15
Example: Drop a Queue Table Using PL/SQL (DBMS_AQADM Package)c..cccvveene. 4-16
Create @ QUEBUEceeieiie ittt ettt ettt e e et e e bt et e e s b b e e Eeesbe e e bt e s b be et e e nb b e e beesnbeesbeeanaeenbee e 4-18
USBGE INOTES ... e et 4-21
Example: Create a Queue Using PL/SQL (DBMS_AQADM)ccccevvveieiereeiee e 4-21
Create @ NON-PersiStENt QUEUEcc.eiiiiiieiecicee et e e e e s te et e ta et e st e tesaeesreaneesreannes 4-24
USBGE INOTES ... e ettt 4-25
Example: Create a Non-Persistent Queue Using PL/SQL (DBMS_AQADM)..........c....... 4-25
F AN L = = WO LU =T 1= PSS 4-27
USBGE INOTES ... e ettt 4-29
Example: Alter a Queue Using PL/SQL (DBMS_AQADM).....ccccvivviviieierceese e 4-29
DIOP 8 QUEUE. ...ttt ettt a bbbt b e et he e b e s he e et e e be e nbe e b e e nb e e s b e bt en b e nbeenrenneenes 4-30
Example: Drop a Queue Using PL/SQL (DBMS_AQADM)......ccccctriiriiriireinieisieeneens 4-31
= L - O T U= 1 BRSPS 4-32
(O S7=To (oI N0 (L TSP UPRR 4-33
Example: Start a Queue using PL/SQL (DBMS_AQADM Package).........ccccovvvreirerenennn 4-33
0] o o = T L 1= 1= ST 4-34
(O S7= T (oI N0 (L PP TP PR 4-35
Example: Stop a Queue Using PL/SQL (DBMS_AQADM)cccviriiriireineineisieeniens 4-36
Grant SYSIEM PriVIIEgEcv ottt e e enenrenreanens 4-37
Example: Grant System Privilege Using PL/SQL (DBMS_AQADM)ccccccoviiinininienn. 4-39
REVOKE SYSTEM PriVIIEOE ...ccviiiiiece et 4-40
Example: Revoke System Privilege Using PL/SQL (DBMS_AQADM)......c.ccccvvvevenrnnnn. 4-41
Grant QUEUE PrIVIIEOE ..ottt ettt e ae e ste e e sreannas 4-42
Example: Grant Queue Privilege Using PL/SQL (DBMS_AQADM)........ccccvviineiineinninnns 4-43
REVOKE QUEUE PriVIIEQEceeeee ettt sttt n e neerenre s 4-44
(O S7=To (oI Ao (L PP PP 4-45
Example: Revoke Queue Privilege Using PL/SQL (DBMS_AQADM)ccccecvvvinicininnn 4-45
A @ SUDSCIIDET ...ttt sttt bbbt 4-46
(O S7=To (<IN AN To] (PSP TR 4-47
Example: Add Subscriber Using PL/SQL (DBMS_AQADM)ccoiiiiiiiineineinenins 4-48

vii

Example: Add Rule-Based Subscriber Using PL/SQL (DBMS_AQADM)cccccveveunne. 4-48

AEE @ SUBDSCIIDET ...ttt e e resreene 4-50
Example: Alter Subscriber Using PL/SQL (DBMS_AQADM)ccccevvveieieieeeeieeeeenns 4-52
ReMOVE @ SUDSCIIDET ... 4-53
USBGE INOTES ...t e ettt ns 4-54
Example: Remove Subscriber Using PL/SQL (DBMS_AQADM)......cccocvieievieieieeeeeennn 4-55
Schedule @ QUEUE Propagationcoeiiieiiiiiiiieiieesc ettt 4-56
USBGE INOTES ...ttt 4-58
Example: Schedule a Propagation Using PL/SQL (DBMS_AQADM)ccccceevevvvvvevernnn. 4-59
Unschedule a QUEUE Propagationccoccoiiiieiiiiiieieieice sttt sne s 4-60
Example: Unschedule a Propagation Using PL/SQL (DBMS_AQADM)cccccvvvvvennnne. 4-61
=T Y- WO L0 1-T U T Y o1 S 4-62
Example: Verify a Queue Type Using PL/SQL (DBMS_AQADM)ccccceiivvivinieninnne, 4-63
Alter a Propagation SChedule ... 4-65
Example: Alter a Propagation Schedule Using PL/SQL (DBMS_AQADM)........ccccvevnee. 4-67
Enable a Propagation SChEAUIE. ...t 4-68
Example: Enable a Propagation Using PL/SQL (DBMS_AQADM)ccoceovvvivnvienennnnns 4-69
Disable a Propagation SChedUIE ... e 4-70
Example: Disable a Propagation Using PL/SQL (DBMS_AQADM)......ccovviivinieninnnn. 4-71
USBGE INOTES ...t ettt 4-72

5 Administrative Interface: Views

viii

Use Case Model: Administrative Interface — VIEWS........cccooviiiiiiiiniie e 5-2
Select All Queue Tables iN Databasecc.cviivieiiiicieie et s 5-4
Select User QUEUE TaBIESc..oiii ettt re e sreanes 5-7
Select All QUEUES 1N DAtADASEcc.oiuiiieiiirieiee ettt be st e e 5-10
Select All Propagation SCheAUIES ..o 5-12
Select Queues for which User has ANy Privilege ... 5-17
Select Queues for which User has Queue Privilege.........ccccoiiiiiiii i 5-19
Select Messages in QUEUE TADIEcceiiiieiccce s nne s 5-21
Select Queue Tables iN USer SChEMAcccvciiiiiiccce e 5-25
Select QUEUES 1N USEI SCNEIMAcc.oiiiiiiieee ettt see e 5-28
Select Propagation Schedules in User SChema ... 5-30
Select QUEUE SUDSCIIDEIS.........oe e 5-35

USBGE INOTES ...t e e ettt sr s 5-36

Select Queue Subscribers and their RUIES............coov i 5-37
Select the Number of Messages in Different States for the Whole Database....................... 5-39
Select the Number of Messages in Different States for Specific Instances...........ccccccvvenie 5-41

Operational Interface: Basic Operations

Use Case Model: Operational Interface — Basic Operations............ccocevvevvevveveivniesnsesiesesnnens 6-2
ENQUEUE 8 IMIESSATE ..otttk bt s e bt s bbbt bbbt e b e bt e nesneenresneas 6-4
USBGE INOTES ... et b e 6-5
Enqueue a Message [SPeCITy OPLIONS] ..o s 6-7
(O S7= T (oI A Lo (PSSP OURRIN 6-8
Enqueue a Message [Specify Message Properties] ... 6-9
LT Vo =30 A 0] (=SSR 6-12
Enqueue a Message [Specify Message Properties [Specify Sender ID]] ..o 6-13
Enqueue a Message [Add Payload] ..o 6-15
LT Vo =30 A 0] (=SSR 6-15
Example: Enqueue of Object TYPe MESSAQEScooieiriiriiiiirie st 6-16
Listen to ONe (Many) QUEUE(S)...c.cieurueriiieiaierieie ettt sttt sr et sb ettt sb et b ettt 6-18
LT Vo =30 A 0] (=SSR 6-19
Listen to One (Many) Single-Consumer QUEUE(S)........ccvverviieeieieeie e e see e e ste et ese e 6-20
Example: Listen to Queue(s) Using PL/SQL (DBMS_AQ Package).........cccoevevvvveinnnnnn 6-21
Example: Listen to Single-Consumer Queue(s) Using C (OCI) ...c.cccccvveveverecricienecncnses 6-21
Listen to One (Many) Multi-Consumer QUEUE(S)ccvvirerreiieeieiee e see e see e eae e sre e e 6-30
Example: Listen to Queue(s) Using PL/SQL (DBMS_AQ Package).........cccoevvevvvveirinnnnn 6-31
Example: Listen to Multi-Consumer Queue(s) Using C (OCI)ccccvvveievevecicieeecc e 6-32
DEQUEUE 8 IMIBSSAUEeiieeeite ittt sttt ettt b et ae b bt bt b e e nbe b e bt e s et e enbenbeennenneenes 6-38
USBGE INOTES ... e et 6-39
Dequeue a Message from a Single-Consumer Queue [Specify Options]ccccceevvevevrnne 6-41
(O S7= T (oI N0 (L PP TP PR 6-44
Example: Dequeue of Object Type Messages using PL/SQL (DBMS_AQ Package) 6-44
Dequeue a Message from a Multi-Consumer Queue [Specify Options]........ccccccevivvevrnnnnnn 6-46
Register for NOTITICAtIONooiiiiie e ae e 6-50
USBGE INOTES ... e ettt e 6-52
Register for Notification [Specify Subscription Name — Single-Consumer Queue]......... 6-54
Register for Notification [Specify Subscription Name — Multi-Consumer Queue] 6-55

Example: Register for Notifications For Single-Consumer and Multi-Consumer Queries
Using C (OCI) 6-56

Advanced Queuing — Java API

TNTFOAUCTION ...t b bbb e bbbt e bt e b e e bt bt et e e be st sbennes 7-2
AQDIIVEINMAENAGET ...ttt bbb bbbt bbbttt b et e 7-3
(oL V=] S 7-3
o] VAN @ =Y o o PSSR 7-3
FEOISTEIDIIVEL ...t b et bbbkttt nb et b et ab et b e ane e 7-4
AAPTS/CIASSES ...ttt ettt b bbbt b e R R bbbt b bbb 7-6
g @ 51 o] o SRR 7-8
CreateQUEUETADIE ... ettt sttt ettt et e bbb s 7-8
[0S U =T T 1= o 1= S 7-8
(o =T 1T 0 1T [USRS OPRTRP 7-9
EEQUEBUE ...ttt et b et E bt b er R et 7-10
Setup fOr AQ EXAMIPIES......cv ittt sttt n e neene e 7-10
EXAIMIPIE ...t b bbb bbbt e ettt bbb e 7-12
YN @ 0] g 11 -1 o | £SO PRSPPSO 7-14
N @ o = o | SRS 7-15
(070] 0 3 1 (U To1 (o] U TSP PP U TP PPPRTOPRPRTO 7-15
GEENAIMIE L.t 7-16
SEENBIMIE. .t et h bR R R R R R R R R et h et n e r e re e 7-16
[0S 770 Lo [£t USSP 7-16
L3170 [0 [(1SRRI 7-17
[0 {0 (o oo ISR 7-17
SEEPTOTOCON ... bbb b b b bbbttt b e 7-17
AQQUEUETADIEPTOPEITY ...ttt bbbttt bt r et nn et 7-19
Constants for Message GrOUPINGc..cvieiiirereriirerereeeeesese e se st sre e e seenaesaesessessenses 7-19
(070] 0 3 1 (U To1 (o] U T TP PO P TP OPPPPTOPRPRTOT 7-19
GETPAYIOAATYPE ..ottt ettt et bbbttt 7-20
Y= |4 Lo Uo I 1Y o 1= S 7-20
e] o] = To [T O F- 11 1] S SRT 7-20
GEESOTTOTTET ...ttt b bbbt bt ekt e ekt ne ekt eb bt e b bt e bt b e e b e en e b 7-21
1S I3]0 ¢ (@ o (=] OSSOSO PRORRO 7-21

ISMUItICONSUMEIENADIE.........ooiieiiiicee ettt et e s bae s s rae s 7-22

SEEMIUITICONSUIMIET ... vttt ettt e e st e e et e s e bt e e s sbb e e s saba e s sbaeessabeesereaeesareas 7-22

EtMESSAGEGTOUPING ...ttt ettt ettt bbb bbbttt b bbb 7-23
YoV T=TS= o [T T o 10T o 1 o SR 7-23
[0]<1 (0] 10 g1 o | A TP TPPRRUR 7-24
1S (Od0] 0 010 4 1=] o OT PSPPSR PSPPI 7-24
GELCOMPALIDIE ...t 7-24
SELCOMPALIDIE ... et 7-25
GELPTIMAINYINSTANCE ..ottt bbbttt bbbt 7-25
SEEPIIMANYINSIANCEeiecie ettt et e se e s e e e enesrenresnesrenen 7-25
SELSECONAAINYINSTANCEoiieii et e st e e s be e e sreestesreesresraeseesreens 7-26
EXAIMPIES: ..t bbbttt bt 7-26
YN @ @ 10 10 L] e o] o 1] o 1SR 7-28
(070 0] 2 01 £SO PO UR TP PRRPPPP 7-28
(070]] 1 (U0t (o] SO URRTRPP 7-28
[0S L@ T oI T 1Y/ o - 7-28
SELQUEUEBTYIE ..ottt bbbt b e bt e b e bt e ae e e bt e me e sbeeeesbeennesbeebenbeen 7-29
GELIMAXRELIIES. ...ttt bbb bbbttt bbb 7-29
SEEIMAXRELIIES ...ttt e e bbbttt ettt ettt e et et 7-29
SEIRELIYINTEIVAL.ottt re e s e e ae e etenreens 7-30
GELRETIYINTEIVAL ..o bbbttt 7-30
(o T LR (=] (=T 0] (Lo o 1 I [=SSR 7-31
SETRETENTIONTIMIE ...t bbb ettt et b ettt be b e 7-31
OEECOMIMEBNT ...t e et e b e bt sreare s 7-31
1S (0{0] 1 0] 0 1=] 01 PP TSRS PRSP PRPRPRURON 7-32
= 0 0] o] LSOO USROS PO PR 7-32
AQQUEUETADIE. ...ttt ettt st b e b st e e s et e st ene et e e reabesteneeee 7-33
[0 =] L@ 1YY T SR 7-33
(0= A F= 10 0TV TOPRRURTI 7-33
OEEPTOPEITY ...t 7-33
Lo [0] o SRS 7-34
1 (] OSSO P PO TOOUSTURPRURURPRURTN 7-34
CrEATEQUEBUE ...ttt ettt ettt bt b ekt e bt e h e b e e ab e e bt et e ehe e e be e he e ebesbeeebeebeenbees b e nbeenbenbeanes 7-35
Lo [0] oL@ 11 1= U -SSR 7-35
EXAIMIPIE bbb bbb bttt b e bbb e 7-36
AQQUEUEBAAIMIN ...ttt ettt sttt st e be st e b e bese e e es e e s e eneeneebeabeabesbeneees 7-38

Xi

Xii

STAMTENQUEUE ..ot e r b e et et r e 7-38
LY t= LD =T [T 1 ST 7-39
Yo o J T TP T RSP U RO U U PTOTPPPTOPRURTOT 7-39
STOPENQUEUE ...ttt r bbbt 7-40
L0 010 1= [BT T ST 7-40
(o [(0] o TN TSP U TP SOPR RPN 7-41
AIEEIQUEUE. ...ttt ettt b e bt et e st s b et e b se et et et e st et e e reebeebe e 7-41
AAASUDSCIIDET ...t b et eb et be b 7-41
FEMOVESUDSCIIDET ...t 7-42
AIEEISUDSCIIDEN ...ttt ettt et re b sne e 7-42
grantQUEUEPTIVIIEQE .. .ottt n e e erenes 7-43
rEVOKEQUEUEPTIVIIEQE......ocuieii ettt et st s re e sre e e srenraens 7-44
SCNEAUIEPTOPAGALIONc.ecvieiiiteiesteet ettt bbbttt 7-44
(U] Ilol gTcTo BN LT o] o - Lo -1 A o] o SR 7-45
alterPropagatioNSCREAUIE ... s 7-46
enablePropagatioNSCREAUIE ..ot 7-47
disablePropagationSChEdUIE ..o e 7-47
EXAIMIPIES: ..ot bbb bbb bbbt ettt ettt b b e 7-48
AQIQIUEBUE ...ttt bbbttt b e bt h e e bt e ae e ebe e R e e ebe e Rb e e b e e st e eE e e R beeb e e n b e ehe e b e ehe e nbeeaeenbeeneas 7-50
[0 =] L@ VLY T SRR 7-50
[0]= A F= 10 0T PSPPI 7-50
EtQUEUETADIENGIME.c.iiitic ettt bbbt b e ebe e 7-50
[0]<] g o] 01T o 1Y T O OO P PRSP PR PPPTOPRTIN 7-51
(o =T L\ (oS- o PSPPI 7-51
1<] L0 10 1= U TP T TP 7-51
Lo 1= 0T8T 1= USSR 7-52
[0 Tc IS U] 0T] =T USSR 7-53
AQENQUEUEOPTION. ...ttt ettt e bttt b b bt bt e bt bbbt bbbt nnenes 7-54
100] 0151 721 o] £ J TSP TP U TSP PR PRPPURON 7-54
(070 0 K3 1 (U Lot (o] £ T TSP U PO U TP PPPPTOPRPRTO 7-54
GEEVISTDIITY .ttt b bbbt 7-55
LY AT | o] | Y2 7-55
OETREIMESSAQEIM ...t e st e e e s re et e eaeesteeneesreenes 7-56
OEtSEQUENCEDEVIALION ..ottt sr bbbt eb et b ene e 7-57

SEtSEQUENCEDEVIALIONcvieiiiii ettt nes 7-57

AQDEGUEUEOPTION ...ttt bbbt bbbt b et bttt eb bbb 7-58
100] 0 51 ¢= 1o | KT ST TP TP PR PRPRURPRPRTRTION 7-58
(070 03 1 (U0t (o] TP OO TP PRRPPPP 7-58
OELCONSUMEIINGITIE ...ttt et sreare s 7-59
SETCONSUMEIINAIMIE ...ttt bbb e ettt et st bt b b enennes 7-59
OEIDEGUEUEIMOME ..ottt bbb bttt eb et b ere s 7-59
SEEDEQUEUEBIMOUTE ... bbbt b et bbbttt n et b e 7-60
OEtNAVIGAtIONMOUE ..o re e eneerennenrens 7-60
Y N A7 o F= L [0 11/ oo [PSR PSSPR 7-61
GETVISTDITITY ..t bbbt 7-61
LY AT | o] | 1 Y2 7-61
Lo e VAT = UL A 1 0 =SSR 7-62
LA TAY U1 I L OSSOSO USSR 7-62
o Y [=TSES= o] o SRS 7-63
Ry 0\ LoTST= Vo T o OSSPSR 7-63
GELCONTEIALION ...ttt bbb 7-63
SELCOITEIALION ...t bbbttt ettt et 7-64

PN Y 1T Vo [T ST PPRTIN 7-65
GELIMESSAGEIT.ttt 7-65
OEtRAWPAYIOAA ..ot nre s 7-65
SELRAWPAYIOAU.........c.ooiiccc e e et a e 7-65
OEEMESSAGEPTOPEITY ...c.eiiviiiiiii ittt 7-66
Y AV LoXST= Vo [T 0] o 1=] o Y/ 7-66

AQMESSAGEPTOPEITY ...ttt r e e r e b e b e bbb e s e bt e nne s 7-67
LO070] 0] =1 01 KT SO P RPN 7-67
1070] 0 511 £ U o1 1o] N ST TP TP TP PSSRSO PRPRPRPRPRTION 7-67
(o= 1 0]) 1Y SRS 7-67
SEEPTIOTTLY ..ttt bbbt bbbt bttt b e 7-68
[0 1= - | SRS 7-68
SEEDEIAYottt a et e are e te s e e ae e etenraens 7-68
GETEXPITALION ...ttt bbb bbbt bbbttt 7-69
YT oYL LA o] o S 7-69
(o< (@] ¢ =] F= 11] o SRS 7-70
3o (0T o] g =] 1= 4 o] o [OOSR 7-70

xii

Xiv

[0 VN A 1=] 0 0] 0] T TP TP PP PPPPTOPRURTO 7-70

GELRECIPIENTLIST.....eiiiitiecce ettt 7-71
Ry =T T oY1= T SRS 7-71
(oS L@ g [0 AV FoTSEST= o =] o ST 7-72
GEESENUET ...ttt bbbt b b bbbt b st bbbttt 7-72
1S 13]=] T [T TSSOSO PROPRO 7-72
OELEXCEPLIONQUEUEoviii ettt bbbt bbb bbbttt be e 7-73
SETEXCEPTIONQIUEUE ..otttk et bbb bbbt bbbt e et bbbt nn s 7-73
(o 4= o [0 T=T U TN I 0 -SSR 7-73
[0]<] I3 2= 1 (PRSPPI 7-74
AQRAWPAYIOAMooiiiiiiciee bbb 7-75
[0 =] 1] 1 == o o ST 7-75
(0= 12N (T TP PRTRIN 7-75
1]] L g=T= o o USSR P P U PRSI 7-76
N @] (ot =T 0 1 [0} o TS 7-77
(o< Y LTS - o PSPPI 7-77
GETETTONCOUE ...ttt bbbt bbbt ekt b ekt ne bbbt e b bt bt bt b e b ene e 7-77
(0T N T=D (ol =T 0] o o SR 7-77
AQOTACIESQLEXCEPTION ...ttt ettt bbb bbb et e et be st e b b 7-78

Oracle Advanced Queuing by Example

Create Queue Tables aNd QUEUESccveuieiiiiec et et et e et e saeesae e sreanees 8-4
Create a Queue Table and Queue Of ODJECT TYPEccvrviiiiiriireree s 8-4
Create a Queue Table and Queue OFf RAW TYPE ...cvcvcveiieiecn e 8-4
Create a Prioritized Message Queue Table and QUEUEcccceeveveevinee e 8-5
Create a Multiple-Consumer Queue Table and QUEUE..........c.cceverererenieniee e 8-5
Create a Queue to Demonstrate Propagation..........ccccccoviviiiiiiinnieninnin s 8-5

Enqueue and Dequeue Of IMIESSAJEScouiiiiiiiieieiieeie sttt sttt sbe e e 8-6
Enqueue and Dequeue of Object Type Messages Using PL/SQL ... 8-6
Enqueue and Dequeue of Object Type Messages Using Pro*C/C++cccccceveeveiviivivnnnnnns 8-7
Enqueue and Dequeue of Object Type Messages UsSiNg OCIcccooeveiiiiininienincnee 8-9
Enqueue and Dequeue of RAW Type Messages Using PL/SQLccccoovviiniincinennne, 8-11
Enqueue and Dequeue of RAW Type Messages Using Pro*C/C++.......ccccocvvvveivnivnnennnnn, 8-12
Enqueue and Dequeue of RAW Type Messages UsSing OCl ..., 8-15
Enqueue and Dequeue of RAW Type Messages USiNg Java.........c.ccovereeneieneeneieneennens 8-16

Setup for AQ EXAMPIES ..o e 8-16

Dequeue 0f MeSSagES USING JAVA.........ciuiiiiiiiiieiiieieee ettt 8-20
Dequeue of Messages in Browse Mode USING JAVAa..........ccccvcivvvvininieneneniesesese e 8-21
Enqueue and Dequeue of Messages by Priority Using PL/SQL........ccooeiiviiiiniiiiinnn 8-22
Enqueue of Messages with Priority USINg JAVA ... 8-24
Dequeue of Messages after Preview by Criterion Using PL/SQLcccccevvvvvveiccvinennn, 8-25

Enqueue and Dequeue of Messages with Time Delay and Expiration Using PL/SQL... 8-28
Enqueue and Dequeue of Messages by Correlation and Message ID Using Pro*C/C++ 8-29

Enqueue and Dequeue of Messages by Correlation and Message ID Using OCI 8-34
Enqueue and Dequeue of Messages to/from a Multiconsumer Queue Using PL/SQL. 8-36
Enqueue and Dequeue of Messages to/from a Multiconsumer Queue using OCl.......... 8-39
Enqueue and Dequeue of Messages Using Message Grouping Using PL/SQL............... 8-43

Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes Using
PL/SQL 8-45

PrOPAGALION ...ttt bbb bbb ekt bbbt bbb ere e 8-48
Enqueue of Messages for remote subscribers/recipients to a Multiconsumer Queue and
Propagation Scheduling Using PL/SQL 8-48
Manage Propagation From One Queue To Other Queues In The Same Database Using
PL/SQL 8-50
Manage Propagation From One Queue To Other Queues In Another Database Using
PL/SQL 8-50

Unscheduling Propagation Using PLZSQLcveveiiiiie e 8-51
DIrOP AQ OB JECES ...ttt bbb bbb bbbttt b et e b bbb 8-52
Revoke ROIES aNd PrIVIIEOEScoiiiiiiicee e 8-53
(D CT o [0} YA AN @ Y V1 1 AN 8-54
YO - TaTe I \V/ =T 0 o] o VAU L7 Vo S S 8-59

Create_types.sqgl : Create Payload Types and Queues in Scott's Schema............cccoeeueneee. 8-59

Enqueue Messages (Free Memory After Every Call) Using OClcccccocevevccivcvcvcnenn 8-59

Enqueue Messages (Reuse Memory) USiNg OCH ... 8-63

Dequeue Messages (Free Memory After Every Call) Using OCl ..o 8-67

Dequeue Messages (Reuse Memory) Using OCHccovvviviiiiniinneninse e 8-70

Scripts for Implementing 'BooksOnLine’

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers.......... A-2
tkagdocd.sql: Examples of Administrative and Operational Interfaces............cccocoevncne. A-16
tkagdoce.sql: Operational EXamPIES...........cooiiiiiiii e A-21

XV

tkagdocp.sql: Examples of Operational Interfaces
tkagdocc.sgl: Clean-Up Script.........cocoevveincninnenn

Index

XVi

Send Us Your Comments

Application Developer’'s Guide - Advanced Queuing, Release 8.1.5
Part No. A68005-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Is the information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

« electronic mail - infodev@us.oracle.com

« FAX-(650) 506-7228

« postal service:
Oracle Corporation
Oracle Server Documentation Manager
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.

Xvii

xViii

Preface

This Guide describes features of application development on the Oracle Server
having to do with Oracle Advanced Queuing, Release 8.1.5. Information in this Guide
applies to versions of the Oracle Server that run on all platforms, and does not
include system-specific information.

The Preface includes the following sections:

Information in This Guide

Feature Coverage and Availability

New Features Introduced with Oracle 8.1
Other Guides

How This Book Is Organized

Visual Modelling

Conventions Used in this Guide

Your Comments Are Welcome

Xix

Information in This Guide

Oracle Advanced Queueing (Oracle AQ) provides message queuing as an
integrated part of the Oracle server. Oracle AQ provides this functionality by
integrating the queuing system with the database, thereby creating a message-enabled
database. By providing an integrated solution Oracle AQ frees application
developers to devote their efforts to their specific business logic rather than having
to construct a messaging infrastructure.

The Oracle8i Application Developer’s Guide - Advanced Queuing is intended for
programmers developing new applications that use Oracle Advanced Queuing, as
well as those who have already implemented this technology and now wish to take
advantage of new features.

The increasing importance of Oracle AQ has led to its being presented as an
independent volume within the Oracle Application Developers documentation set.

Feature Coverage and Availability

For information about the differences between Oracle8 and the Oracle8 Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8i.

New Features Introduced with Oracle 8.1

XX

« Queue Level Access Control

« Non-Persistent Queues

« Support for OPS Environments

= Rule-based Subscribers forPublish/Subscribe

« Asynchronous Notification

= Sender Identification

« Listen Capability (Wait on Multiple Queues)

« Propagation of Messages with LOBs

« Enhanced Propagation Scheduling Capabilities

« Dequeue Message Header Only With No Payload

« Support for Statistics Views

« Separate storage of history management information

For more information about Oracle AQ features, see:

« Chapter 2, "Implementing AQ — A Sample Application"

Other Guides

Use the PL/SQL User’s Guide and Reference to learn PL/SQL and to get a complete
description of this high-level programming language, which is Oracle Corporation’s
procedural extension to SQL.

The Oracle Call Interface (OCI) is described in:
« Oracle Call Interface Programmer’s Guide

You can use the OCI to build third-generation language (3GL) applications that
access the Oracle Server.

Oracle Corporation also provides the Pro* series of precompilers, which allow you
to embed SQL and PL/SQL in your application programs. If you write 3GL
application programs in Ada, C, C++, COBOL, or FORTRAN that incorporate
embedded SQL, refer to the corresponding precompiler manual. For example, if
you program in C or C++, refer to the Pro*C/C++ Precompiler Programmer’s Guide.

For SQL information, see the Oracle8i SQL Reference and Oracle8i Administrator’s
Guide. For basic Oracle concepts, see Oracle8i Concepts.

How This Book Is Organized

The Application Developer’s Guide - Advanced Queuing contains seven chapters and an
appendix. A brief summary of what you will find in each chapter follows;

Chapter 1, "Introduction”

This chapter ’sets the bar’ by describing the requirements for optimal messaging
systems. Although Oracle AQ is a relatively new technology, and not all these goals
have been realized, you can get an overview of the underlying design and a clear
idea of the intended direction.

Chapter 2, "Implementing AQ — A Sample Application”

This chapter describes features already present in Oracle AQ under three headings:
General Features, Enqueue Features, and Dequeue Features.

XXi

XXii

Chapter 3, "Managing Oracle AQ"

This chapter describes the primary queuing entities (message, queue, queue table,
agent, queue monitor), and the basics of connecting single/multiple producers of
messages with single/multiple consumers of messages. Of particular interest is the
way messages can directed toward specific subscribers implicitly, explicitly or on
the basis of rules.

Chapter 4, "Administrative Interface: Basic Operations”

A:s its title indicates, this chapter presents the basic operations underlying the
Administrative interface, such as Create Queue Table , Create Queue , Grant
Queue Privilege , Add a Subscriber , and Schedule a Propagation . We have
introduced a new way of presenting this information that utilizes the Unified
Modelling Language (detailed notes are included below). On-line users will
additionally be able to make use of hypertext links and image-based hot links

Chapter 5, "Administrative Interface: Views"

This chapter is dedicated to the various views that Oracle has provided for
administrators and users that are projected as a result of queries, such as Select
All Queue Tables in the Database , Select Messages in a Queue Table ,
and Select Queue Subscribers and their Rules

Chapter 6, "Operational Interface: Basic Operations"

We here describe the essentials of the operational interface in terms of the basic
operations concerned with enqueuing a message, dequeuing a message, registering
for messages based on defined rules, and listening to one or more queues for
messages.

Chapter 7, "Advanced Queuing — Java API"

This chapter introduces and details the Java Application Programmer’s Interface for
Advanced Queuing.

Chapter 8, "Oracle Advanced Queuing by Example"
As you can see by examining the Table of Contents, small examples are interspersed

throughout the text, but this chapter is dedicated solely to providing examples in
both PL/SQL and OCI.

Visual Modelling

This release introduces the Universal Modeling Language (UML) as a way of
explaining the technology that we hope will help you develop applications. A full
presentation of the UML is beyond the scope of this documentation set, however we
do provide a description of the subset of UML notation that we use in a chapter
devoted to visual modelling inOracle8i Application Developer’s Guide - Fundamentals.
What follows here is a selection from that chapter of those elements that are used in

Use Case Diagrams

Chapter A, "Scripts for Implementing 'BooksOnLine™

This appendix has the scripts for implementing the sample application,
BooksOnLine .

Graphic Element

Description

X

User/
Program

This release of the documentation
introduces and makes heavy use of the
Use Case Diagram. Each primary use
case is instigated by an actor
(’stickman’) that could be a human
user, an application, or a sub-program.
The actor is connected to the primary
use case which is depicted as an oval
(bubble) enclosing the use case action.

The totality of primary use cases is
described by means of a Use Case
Model Diagram.

XXili

Graphic Element

Description

User/
Program

User/
Program

XXiV

Operational Interface

specify

ENQUEUE
queue name

a message

e

Operational Interface

specify

ENQUEUE
gueue name

a message

P

specify

properties

H
H
H
H
: message
H
H
H
H

specify
options

add
payload

Primary use cases may require other
operations to complete them. In this
diagram fragment

« specify queue name

is one of the sub-operations, or
secondary use cases, needed to
complete

« ENQUEUR message

The downward lines from the primary
use case lead to the other required
operations (not shown).

Secondary use cases that have drop
shadows ’expand’ in that they are
described by means of their own use
case diagrams. There are two reasons
for doing this:

(a) it makes it easier to understand the
logic of the operation;

(b) it would not have been possible to
place all the operations and
sub-operations on the same page.

In this example

« specify message
properties,

« specify options
« add payload

are all expanded in separate use case
diagrams.

Graphic Element Description

This diagram fragment shows the use
case diagram expanded. While the
Operational Interface standard diagram has the actor as the
initiator), here the use case itself is the
point of departure for the
add sub-operation. In this example, the
payload expanded view of

ENQUEUE
a message

« add payload

represents a constituent operation of
« ENQUEUR message
This convention (a, b, ¢) shows that

there are three different ways of
creating a table that contains LOBs.

Internal persistent LOBs

CREATE
atable
(LOB)

User/
Program

This fragment shows one of the uses of
a NOTE box, here distinguishing

CREATE which of the three ways of creating a
atable (LOB)= - e CREATE table with one or more LOBs table containing LOBs is being
columns) presented.

XXV

Graphic Element

list i List at
SELECT - . list
. propag schedules)- - BgeEer I%\%EUE all Df%pcég?tlon attribute _ Ieas,tt) one
User/ in user schema SCHEDULES — schedule names attribute
Program attributes
: A A
:OR
Description

This drawing shows two other common use of NOTE boxes:

(a) as a way of presenting an alternative name, as in this case the action SELECTpropagation schedules
the user schema is represented by the view USER_QUEUE_SCHEDULES

(b) the action list attribute names is qualified by the note to the user that you must list at least one
attribute if you elect not to list all the propagation schedule attributes.

XXVi

Graphic Element Description

The dotted arrow in the use case
diagram indicates dependency. In

this example
create
»>(a terﬂﬁ(ggrary . free atemporary LOB
User/ requires that you first
Program

« Ccreate atemporary LOB

Put another way: you should not
execute the free operation on a
LOB that is not temporary.

What you need to remember is
that the target of the arrow shows
the operation that must be
performed first.

free
a temporary
LOB

Use cases and their sub-operations
can be linked in complex
relationships. In this example of a
notification callback, you must earlier

. REGISTERfor
notification

REGISTER
for
notification

receive

in order to later
. receive a notification

XXVil

Graphic Element

list i List at
SELECT PR . list
. propag schedules)= — HéeErR\’”erbEUE all pr%p%g?t|on attribute _ Ieas_lg one
User/ in user schema SCHEDULES — schedule names attribute
Program attributes
: 7y A
:OR :
Description

In this case the branching paths of an OR condition are shown. In invoking the view, you may choose either to
list all the attributes or you may view one or more attributes. The fact that you may stipulate which of the
attributes you wish made visible is indicated by the grayed arrow.

XXViii

Graphic Element

OPEN
alLOB

CLOSE
alLOB

append
SELECT < :

alLOB %

User/
Program

get
chunk size

Description

Not all linked operations are mandatory. While the black dashed-line and arrow indicate that you must
perform the targeted operation to complete the use case, actions that are optional are shown by the grey
dashed-line and arrow. In this example, executing

« write append

on a LOBrequires that you first

« SELECTalLOB

As a facilitating operations, you may choose to

« OPENaLOB and/or get chunk size

However, note that if you do OPENa LOB, you will later have to CLOSHt.

State Diagrams

XXiX

Graphic Element

Administrative Interface
] SunLeEgT _ _|é| User view
User/ subscribers AQ$<queue_table_name>_S
Program -
iOR :
v v
list ;
all queue attlrlif)bte List at
subscriber names least one
attributes attribute
[QUEUE] [NAME] [ADDRESS PROTOCOL
Description

All the previous notes have dealt with use case diagrams. Here we introduce the very basic application of a state
diagram that we utilize in this book to present the attributes of view. In fact, attributes of a view have only two
states — visible or invisible. We are not interested in showing the permutations of state but in showing what
you might make visible in invoking a view. Accordingly, we have extended the UML to join a partial state
diagram onto a use case diagram to show the totality of attributes, and thereby all the view sub-states of the
view that you can see. We have demarcated the use case from the view state by coloring the background of the
state diagram grey.

In this example, the view AQ$<queue_table_name>_S allows you to query queue subscribers. You can
stipulate one attribute, or some combination of the four attributes, or all of the four attributes.

Graphic Element Description

XXX

Use Case Model Diagrams summarize all

the use cases in a particular domain,

Internal temporary LOBs (part 1 of 2) such as Internal temporary LOBs
Often these diagrams are too complex
to contain within a single page. When
that happens we have resorted to
dividing the diagram into two parts.
Please note that there is no sequence
implied in this division.

In some cases we have had to split a

diagram simply because it is too long
continued on next page
for the page. In such cases, we have

included this marker.

Conventions Used in this Guide

The following notational and text formatting conventions are used in this guide:

[]

Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{}

Braces enclose items of which only one is required.

I
A vertical bar separates items within braces, and may also be used to indicate that
multiple values are passed to a function parameter.

In code fragments, an ellipsis means that code not relevant to the discussion has
been omitted.

font change
SQL or C code examples are shown in monospaced font.

italics
Italics are used for OCI parameters, OCI routines names, file names, and data fields.

UPPERCASE
Uppercase is used for SQL keywords, like SELECTor UPDATE

XXXi

This guide uses special text formatting to draw the reader’s attention to some
information. A paragraph that is indented and begins with a bold text label may
have special meaning. The following paragraphs describe the different types of
information that are flagged this way.

Note: The "Note" flag indicates that the reader should pay particular attention
to the information to avoid a common problem or increase understanding of a
concept.

Warning: An item marked as "Warning" indicates something that an OCI
programmer must be careful to do or not do in order for an application to work
correctly.

See Also: Text marked "See Also" points you to another section of this guide, or
to other documentation, for additional information about the topic being
discussed.

Your Comments Are Welcome

XXX

We value and appreciate your comment as an Oracle user and reader of our
manuals. As we write, revise, and evaluate our documentation, your opinions are
the most important feedback we receive.

You can send comments and suggestions about this manual to the following e-mail
address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to the
following address:

Server Technologies Documentation Manager
Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7228

1

Introduction

In this chapter we introduce Oracle Advanced Queuing (AQ) by considering the
requirements for complex information handling in a distributed environment under
the following headings:

The Need for Queuing in Messaging Systems
Features of Advanced Queuing (AQ)

Primary Components of Advanced Queuing (AQ)
Modeling Queue Entities

Programmatic Environments for Working with AQ
AQ and XA

Compatibility

Restrictions

Reference to Demos

Introduction 1-1

The Need for Queuing in Messaging Systems

The Need for Queuing in Messaging Systems
Consider the following application scenario.

The operations of a large bookseller, BooksOnLine , are based on an online book ordering system
which automates activities across the various departments involved in the entire sale process.The
front end of the system is an order entry application which is used to enter new orders.These incoming
orders are processed by an order processing application which validates and records the order.
Shipping departments located at regional warehouses are then responsible for ensuring that these
orders are shipped in a timely fashion. There are three regional warehouses: one serving the East
Region, one serving the West Region, and a third warehouse for shipping International orders. Once
an order has been shipped, the order information is routed to a central billing department which
handles payment processing.The customer service department, located at its own site, is responsible
for maintaining order status and handling inquiries about orders.

Message Systems

This scenario describes an application in which messages come from and are
disbursed to multiple clients (nodes) in a distributed computing environment.
Messages are not only passed back and forth between clients and servers but are
also intricately interleaved between processes on different servers. The integration
of the various component applications consist of multi-step processes in which each
step is triggered by one or more messages, and which may then give rises to one or
more messages.

These applications can be viewed as message systems. For instance, the application
should be able to implement content-based routing, content-based subscription, and
content-based querying.

Such message systems need to exhibit high performance characteristics as might be
measured by the following metrics:

— Number of messages enqueued/dequeued per second.
— Time to evaluate a complex query on a message warehouse.
— Time to recover/restart the messaging process after a failure.

Message systems should also exhibit high scalability. A system should continue to
exhibit high performance as the number of programs using the application increase,
as the number of messages increase, and as the size of the message warehouse
increases.

1-2 Application Developer’s Guide - Advanced Queuing

The Need for Queuing in Messaging Systems

Synchronous Communication as an Application Model

One way of modeling this intercommunication of messages, termed synchronous,
on-line or connected, is based on the request-reply paradigm. In this model a
program sends a request to another program and waits (blocks) until the reply
arrives. This close coupling of the sender and receiver of the message is suitable for
programs that need to get a reply before they can proceed.

Traditional client/server architectures are based on this model.lts major drawback
is that all the component programs must be available and running for the
application to work. In the event of network or machine failure, or even if the
needed program is busy, the entire application grinds to a halt.

Asynchronous Messaging as an Application Model

In the asynchronous, disconnected or deferred model programs in the role of producers
place messages in a queue and then proceed with their work. Programs in the role
of consumers retrieve requests from the queue and act on them. This model is well
suited for applications that can continue with their work after placing a request in
the queue because they are not blocked waiting for a reply. It is also suited to
applications that can continue with their work until there is a message to
retrieve.This decoupling of 'requests for service’ from 'supply of services’ increases
efficiency, and provides the infrastructure for complex scheduling.

Message Persistence

Handling an intricate scheduling of message-passing is not the only challenge.
Unfortunately, networks, computing hardware, and software applications will all
fail from time to time. For deferred execution to work correctly in the presence of
network, machine and application failures, messages that constitute requests for
service must be stored persistently, and processed exactly once.In other words,
messaging must be persistent.

Being able to preserve messages is fundamental. Applications may have to deal
with multiple unprocessed messages arriving simultaneously from external clients
or from programs internal to the application, and in such situations they may not
have the necessary resources. Similarly, the communication links between databases
may not be available all the time or may be reserved for some other purpose. If the
system falls short in its capacity to deal with these messages immediately, the
application must be able to store the messages until they can be processed. By the
same token, external clients or internal programs may not be ready to receive
messages that have been processed.

Introduction 1-3

The Need for Queuing in Messaging Systems

Even more importantly, messaging systems need message persistence so they can
deal with priorities: messages arriving later may be of higher priority than
messages arriving earlier; messages arriving earlier may have to wait for messages
arriving later before actions are executed; the same message may have to be
accessed by different processes; and so on. Such priorities may not be fixed. One
crucial dimension of handling the dynamic aspect of message persistence has to do
with windows of opportunity that grow and shrink.It may be that messages in a
specific queue become more important than messages in other queues, and so need
to be processed with less delay or interference from messages in other queues.
Similarly, it may be more pressing to send messages to some destinations than to
others.

Finally, message persistence is crucial because the control component of the
message can be as important as the payload data. For instance, the time that
messages are received or dispatched can be a crucial part of the message. It may be
central to analyzing periods of greatest demand, or for evaluating the lag between
receiving and completing an order, and son on. Put more formally: the message
may need to retain importance as a business asset after it has been
executed.Tracking and documentation should be the responsibility of the messaging
system, not the developer.

1-4 Application Developer’s Guide - Advanced Queuing

Features of Advanced Queuing (AQ)

Features of Advanced Queuing (AQ)

By integrating transaction processing with queuing technology, persistent
messaging in the form of Advanced Queuing is made possible. The following
overview considers the features of Oracle AQ under four headings:

« "General Features" on page 1-5
« "ENQUEUE Features" on page 1-8
« "DEQUEUE Features" on page 1-11

« "Propagation Features" on page 1-13

General Features
The following features apply to all aspects of Oracle AQ.

SQL Access

Messages are placed in normal rows in a database table, and so can be queried
using standard SQL. This means that you can use SQL to access the message
properties, the message history and the payload. All available SQL technology, such
as indexes, can be used to optimize the access to messages.

Integrated Database Level Operational Support

Standard database features such as recovery, restart and enterprise manager are
supported. Oracle AQ queues are implemented in database tables, hence all the
operational benefits of high availability, scalability and reliability are applicable to
gueue data. In addition, database development and management tools can be used
with queues. For instance, queue tables can be imported and exported.

Structured Payload

Users can use object types to structure and manage message payloads. RDBMSs in
general have had a far richer typing system than messaging systems. Since Oracle8i
is an object-relational DBMS, it supports both traditional relational types as well as
user-defined types. Many powerful features are enabled as a result of having
strongly typed content i.e. content whose format is defined by an external type
system. These include:

« Content-based routing: an external agent can examine the content and route the
message to another queue based on the content.

Introduction 1-5

Features of Advanced Queuing (AQ)

« Content-based subscription: a publish and subscribe system built on top of a
messaging system which can offer content based on subscription.

« Querying: the ability to execute queries on the content of the message enables
message warehousing.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Structured Payload on page 2-7 in Chapter 2, "Implementing AQ — A Sample
Application™)

Retention and Message History

Users of AQ can specify that messages be retained after consumption. The systems
administrator can specify the duration for which messages will be retained. Oracle
AQ stores information about the history of each message, preserving the queue and
message properties of delay, expiration, and retention for messages destined for
local or remote recipients. The information contains the ENQUEUEDEQUEUEmMe
and the identification of the transaction that executed each request. This allows
users to keep a history of relevant messages. The history can be used for tracking,
data warehouse and data mining operations.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Retention and Message History on page 2-20)

Tracking and Event Journals

If messages are retained they can be related to each other. For example: if a message
m2is produced as a result of the consumption of message m1 m1lis related to m2
This allows users to track sequences of related messages. These sequences represent
‘event journals’ which are often constructed by applications. Oracle AQ is designed
to let applications create event journals automatically.

Integrated Transactions

The integration of control information with content (data payload) simplifies
application development and management.

Queue Level Access Control

With Oracle 8i, an owner of an 8.1 style queue can grant or revoke queue level
privileges on the queue. DBAS can grant or revoke new AQ system level privileges
to any database user. DBAs can also make any database user an AQ administrator.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Queue Level Access Control on page 2-9).

1-6 Application Developer’s Guide - Advanced Queuing

Features of Advanced Queuing (AQ)

Non-Persistent Queues

AQ can deliver non-persistent messages asynchronously to subscribers. These
messages can be event-driven and do not persist beyond the failure of the system
(or instance). AQ supports persistent and non-persistent messages with a common
APL.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Non-Persistent Queues on page 2-10).

Publish/ Subscribe Support

A combination of features are introduced to allow a publish/subscribe style of
messaging between applications. These features include rule-based subscribers,
message propagation, the listen feature and notification capabilities.

Support for OPS Environments

With Oracle8i release 8.1.5, an application can specify the instance affinity for a
gueue-table. When AQ is used with parallel server and multiple instances, this
information is used to partition the queue-tables between instances for
gueue-monitor scheduling. The queue-table is monitored by the queue-monitors of
the instance specified by the user. If an instance affinity is not specified, the
gueue-tables will be arbitrarily partitioned among the available instances. There can
be 'pinging’ between the application accessing the queue-table and the
gueue-monitor monitoring it. Specifying the instance-affinity does not prevent the
application from accessing the queue-table and its queues from other instances.

This feature prevents ’'pinging’ between queue monitors and AQ propagation jobs
running in different instances. In Oracle8i release 8.1.5 an instance affinity (primary
and secondary) can be specified for a queue table. When AQ is used with parallel
server and multiple instances, this information is used to partition the queue-tables
between instances for queue-monitor scheduling as well as for propagation. At any
time, the queue table is affiliated to one instance. In the absence of an explicitly
specified affinity, any available instance is made the owner of the queue table. If the
owner of the queue table dies, the secondary instance or some available instance
takes over the ownership for the queue table.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Support for Oracle Parallel Server (OPS) on page 2-24).

Support for Statistics Views
Basic statistics about queues in the database are available via the GV$AQ view.

Introduction 1-7

Features of Advanced Queuing (AQ)

Reliability and Recoverability

The standard database reliability and recoverability characteristics apply to queue
data.

ENQUEUE Features

The following features apply to the process of producing messages by enqueuing
them into a queue.

Correlation Identifier

Users can assign an identifier to each message, thus providing a means to retrieve
specific messages at a later time.

Subscription & Recipient Lists

A single message can be designed to be consumed by multiple consumers. A queue
administrator can specify the list of subscribers who can retrieve messages from a
gueue. Different queues can have different subscribers, and a consumer program
can be a subscriber to more than one queue. Further, specific messages in a queue
can be directed toward specific recipients who may or may not be subscribers to the
gueue, thereby overriding the subscriber list.

You can design a single message for consumption by multiple consumers in a
number of different ways. The consumers who are allowed to retrieve the message
are specified as explicit recipients of the message by the user or application that
enqueues the message. Every explicit recipient is an agent identified by name,
address and protocol.

A queue administrator may also specify a default list of recipients who can retrieve
all the messages from a specific queue. These implicit recipients become subscribers
to the queue by being specified in s default list. If a message is enqueued without
specifying any explicit recipients, the message is delivered to all the designated
subscribers.

A rule-based subscriber is one that has a rule associated with it in the default
recipient list. A rule based subscriber will be sent a message with no explicit
recipients specified only if the associated rule evaluated to TRUE for the message.
Different queues can have different subscribers, and the same recipient can be a
subscriber to more than one queue. Further, specific messages in a queue can be
directed toward specific recipients who may or may not be subscribers to the queue,
thereby over-riding the subscriber list.

1-8 Application Developer’s Guide - Advanced Queuing

Features of Advanced Queuing (AQ)

A recipient may be specified only by its name, in which case the recipient must
dequeue the message from the queue in which message was enqueued. It may be
specified by its name and an address with a protocol value of 0. The address should
be the name of another queue in the same database or another Oracle8i database
(identified by the database link) in which case the message is propagated to the
specified queue and can be dequeued by a consumer with the specified name. If the
recipient’s name is NULL, the message is propagated to the specified queue in the
address and can be dequeued by the subscribers of the queue specified in the
address. If the protocol field is nonzero, the name and address field is not
interpreted by the system and the message can be dequeued by special consumer
(see third party support in the propagation section).

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Subscriptions and Recipient Lists on page 2-29).

Priority and Ordering of Messages in Enqueuing

It is possible to specify the priority of the enqueued message. An enqueued message
can also have its exact position in the queue specified. This means that users have
three options to specify the order in which messages are consumed: (a) a sort order
specifies which properties are used to order all message in a queue; (b) a priority
can be assigned to each message; (c) a sequence deviation allows you to position a
message in relation to other messages. Further, if several consumers act on the same
gueue, a consumer will get the first message that is available for immediate
consumption. A message that is in the process of being consumed by another
consumer will be skipped.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Priority and Ordering of Messages on page 2-31).

Message Grouping

Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires the queue be created in a queue table
that is enabled for message grouping. All messages belonging to a group have to be
created in the same transaction and all messages created in one transaction belong
to the same group. This feature allows users to segment complex messages into
simple messages, e.g., messages directed to a queue containing invoices could be
constructed as a group of messages starting with the header message, followed by
messages representing details, followed by the trailer message.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Message Grouping on page 2-37).

Introduction 1-9

Features of Advanced Queuing (AQ)

Propagation

This feature enables applications to communicate with each other without having to
be connected to the same database or to the same Queue. Messages can be
propagated from one Oracle AQ to another, irrespective of whether these are local
or remote. The propagation is done using database links, and Net8.

To see this feature applied in the context of the BooksOnLine scenario, refer to
Asynchronous Notifications on page 2-39).

Sender Identification

Applications can mark the messages they send with a custom identification. Oracle
also automatically identifies the queue from which a message was dequeued. This
allows applications to track the pathway of a propagated message, or of a string
messages within the same database.

Time Specification and Scheduling

Delay interval and/or expiration intervals can be specified for an enqueued
message, thereby providing windows of execution. A message can be marked as
available for processing only after a specified time elapses (a delay time) and has to
be consumed before a specified time limit expires.

Rule-based Subscribers

A message can be delivered to multiple recipients based on message properties or
message content. Users define a rule based subscription for a given queue as the
mechanism to specify interest in receiving messages of interest. Rules can be
specified based on message properties and message data (for object and raw
payloads). Subscriber rules are then used to evaluate recipients for message
delivery.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Rule-based Subscription on page 2-69).

Asynchronous Notification

OCI clients can use the new call OCISubscriptionRegister to register a
callback for message notification. The client issues a registration call which specifies
a subscription name and a callback. When messages for the subscription are
received, the callback is invoked. The callback may then issue an explicit dequeue to
retrieve the message.

1-10 Application Developer’s Guide - Advanced Queuing

Features of Advanced Queuing (AQ)

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Asynchronous Notifications on page 2-39).

DEQUEUE Features

Multiple Recipients
A message in queue can be retrieved by multiple recipients without there being
multiple copies of the same message.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Multiple Recipients on page 2-50).

Local and Remote Recipients
Designated recipients can be located locally and/or at remote sites.

To see this feature applied in the context of the BooksOnLine scenario, refer to Local
and Remote Recipients on page 2-52).

Navigation of Messages in Dequeuing

Users have several options to select a message from a queue. They can select the
first message or once they have selected a message and established a position, they
can retrieve the next. The selection is influenced by the ordering or can be limited
by specifying a correlation identifier. Users can also retrieve a specific message
using the message identifier.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Message Navigation in Dequeue on page 2-54).

Modes of Dequeuing

A DEQUEUEequest can either browse or remove a message. If a message is
browsed it remains available for further processing, if a message is removed, it is
not available any more for DEQUEUEequests. Depending on the queue properties a
removed message may be retained in the queue table.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Modes of Dequeuing on page 2-57).

Introduction 1-11

Features of Advanced Queuing (AQ)

Optimization of Waiting for the Arrival of Messages

A DEQUEUEould be issued against an empty queue. To avoid polling for the
arrival of a new message a user can specify if and for how long the request is
allowed to wait for the arrival of a message.

To see this feature applied in the context of the BooksOnLine scenario, refer to
Optimization of Waiting for Arrival of Messages on page 2-61).

Retries with Delays

A message has to be consumed exactly once. If an attempt to dequeue a message
fails and the transaction is rolled back, the message will be made available for
reprocessing after some user specified delay elapses. Reprocessing will be
attempted up to the user-specified limit.

To see this feature applied in the context of the BooksOnLine scenario, refer to Retry
with Delay Interval on page 2-63).

Optional Transaction Protection

ENQUEUEDEQUEUEequests are normally part of a transaction that contains the
requests, thereby providing the desired transactional behavior. Users can, however,
specify that a specific request is a transaction by itself making the result of that
request immediately visible to other transactions. This means that messages can be
made visible to the external world either as soon as the ENQUEUBr DEQUEUE
statement is issued, or only after the transaction is committed.

Exception Handling
A message may not be consumed within given constraints, i.e. within the window

of execution or within the limits of the retries. If such a condition arises, the
message will be moved to a user-specified exception queue.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Exception Handling on page 2-65).

Listen Capability (Wait on Multiple Queues)

The listen call is a blocking call that can be used to wait for messages on multiple
gueues. It can be used by a gateway application to monitor a set of queues. An
application can also use it to wait for messages on a list of subscriptions. If the listen
returns successfully, a dequeue must be used to retrieve the message.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Listen Capability on page 2-72).

1-12 Application Developer’s Guide - Advanced Queuing

Features of Advanced Queuing (AQ)

Dequeue Message Header with No Payload

The new dequeue mode REMOVE_NODATA can be used to remove a message
from a queue without retrieving the payload. This mode will be useful for
applications that want to delete messages with huge payloads and aren’t interested
in the payload contents.

Propagation Features

Automated Coordination of Enqueuing and Dequeuing

As already noted, recipients can be local or remote. Oracle8i does not support
distributed object types, hence remote enqueuing or dequeuing using a standard
database link does not work. However, you can use AQ’s message propagation to
enqueue to a remote queue.

For example, you can connect to database X and enqueue the message in a queue,
say "DROPBOXocated in database X. You can configure AQ so that all messages
enqueued in queue "DROPBOXwill be automatically propagated to another queue
in a database Y, regardless whether database Y is local or remote. AQ will
automatically check if the type of the remote queue in database Y is structurally
equivalent to the type of the local queue in database X, and propagate the message.

Recipients of propagated messages can be either applications or queues. If the
recipient is a queue, the actual recipients will be determined by the subscription list
associated with the recipient queue.If the queues are remote, messages will be
propagated using the specified database link. Only AQ to AQ message propagation
is supported.

Propagation of Messages with LOBs
Propagation handles payloads with LOBattributes.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Propagation of Messages with LOB Attributes on page 2-82).

Propagation Scheduling

Messages can be scheduled to propagate from a queue to local or remote
destinations. Administrators can specify the start time, the propagation window
and a function to determine the next propagation window (for periodic schedules).

Introduction 1-13

Features of Advanced Queuing (AQ)

Enhanced Propagation Scheduling Capabilities

Detailed run-time information about propagation is gathered and stored in the
DBA_QUEUE_SCHEDULK®&w for each propagation schedule. This information can
be used by queue designers and administrators to fix problems or tune
performance. For example, available statistics about the total and average number
of message/bytes propagated can be used to tune schedules. Similarly, errors
reported by the view can be used to diagnose and fix problems. The view also
describes additional information such as the session ID of the session handling the
propagation, and the process name of the job queue process handling the
propagation. To see this feature applied in the context of the BooksOnL.ine scenario,
refer to Enhanced Propagation Scheduling Capabilities on page 2-85).

Third Party Support

Advanced Queueing allows messages to be enqueued in queues that can then be
propagated to different messaging systems by third party propagators. If the
protocol number for a recipient is in the range 128 - 255, the address of the recipient
is not interpreted by AQ and so the message is not propagated by the Advanced
Queuing system. Instead a third party propagator can then dequeue the message by
specifying a reserved consumer name in the dequeue operation. The reserved
consumer names are of the form AQ$_P#where # is the protocol number in the
range 128 - 255. For example, the consumer name AQ$_P128can be used to
dequeue messages for recipients with protocol number 128. The list of recipients for
a message with the specific protocol number is returned in the recipient_list
message property on dequeue.

1-14 Application Developer’s Guide - Advanced Queuing

Primary Components of Advanced Queuing (AQ)

Primary Components of Advanced Queuing (AQ)

Message

Queue

Queue Table

Agent

By integrating transaction processing with queuing technology, persistent
messaging in the form of Advanced Queuing is made possible.

A message is the smallest unit of information inserted into and retrieved from a
gueue. A message consists of

« Control information (metadata), and
« Payload (data).

The control information represents message properties used by AQ to manage
messages. The payload data is the information stored in the queue and is
transparent to Oracle AQ. A message can reside in only one queue. A message is
created by the enqueue call and consumed by the dequeue call.

A queue is a repository for messages. There are two types of queues: user queues,
also known as normal queues, and exception queues. The user queue is for normal
message processing. Messages are transferred to an exception queue if they can not
be retrieved and processed for some reason. Queues can be created, altered, started,
stopped, and dropped by using the Oracle AQ administrative interfaces (see
Chapter 4, "Administrative Interface: Basic Operations").

Queues are stored in queue tables. Each queue table is a database table and contains
one or more queues. Each queue table contains a default exception queue.

Figure 1-1, "Basic Queues" on page 1-18 shows the relationship between messages,
gueues, and queue tables.

An agent is a queue user. This could be an end user or an application.There are two
types of agents:

« Producers who place messages in a queue (enqueuing), and

« Consumers who retrieve messages (dequeuing).

Introduction 1-15

Primary Components of Advanced Queuing (AQ)

Any number of producers and consumers may be accessing the queue at a given
time. Agents insert messages into a queue and retrieve messages from the queue by
using the Oracle AQ operational interfaces (see Chapter 6, "Operational Interface:
Basic Operations™)

An agent is identified by its name, address and protocol (see "Agent" on
page 3-5 in Chapter 3, "Managing Oracle AQ" for formal description of this data
structure).

« The name of the agent may be the name of the application or a name assigned
by the application. As will be described below, a queue may itself be an agent
— enqueuing or dequeuing from another queue.

« The address field is a character field of up to 1024 bytes that is interpreted in the
context of the protocol. For instance, the default value for the protocol is 0,
signifying a database link addressing. In this case, the address for this protocol
is of the form

queue_name@dblink

where queue_name is of the form [schema.]queue and dblink may either
be a fully qualified database link name or the database link name without the
domain name.

Recipient

The recipient of a message may be specified by its name only, in which case the
recipient must dequeue the message from the queue in which the message was
enqueued. The recipient may be specified by hame and an address with a protocol
value of 0. The address should be the name of another queue in the same database
or another Oracle8 database (identified by the database link) in which case the
message is propagated to the specified queue and can be dequeued by a consumer
with the specified name. If the recipient's name is NULL, the message is propagated
to the specified queue in the address and can be dequeued by the subscribers of the
gueue specified in the address. If the protocol field is nonzero, the name and
address field is not interpreted by the system and the message can be dequeued by
special consumer (see third party support in the propagation section).

Recipient and Subscription Lists

A single message can be designed for consumption by multiple consumers. There
are two ways to do this.

1-16 Application Developer’s Guide - Advanced Queuing

Primary Components of Advanced Queuing (AQ)

Rule

« The enqueuer can explicitly specify the consumers who may retrieve the
message as recipients of the message. A recipient is an agent identified by a
name, address and protocol.

« A queue administrator can specify a default list of recipients who can
retrieve messages from a queue. The recipients specified in the default list
are known as subscribers. If a message is enqueued without specifying the
recipients the message is implicitly sent to all the subscribers.

Different queues can have different subscribers, and the same recipient can be a
subscriber to more than one queue. Further, specific messages in a queue can be
directed toward specific recipients who may or may not be subscribers to the queue,
thereby over-riding the subscriber list.

A rule is used to define one or more subscribers’ interest in subscribing to messages
that conform to that rule. The messages that meet this criterion are then delivered to
the interested subscribers. Put another way: a rule filters for messages in a queue on a
topic in which a subscriber is interested.

A rule is specified as a boolean expression (one that evaluates to truer false) using
syntax similar to the WHERElause of a SQL query. This boolean expression can
include conditions on

= message properties (currently priority and corrid),
« user data properties (object payloads only), and

« functions (as specified in the where clause of a SQL query).

Rule Based Subscriber

Queue Monitor

A rule-based subscriber is a subscriber that has rule associated with it in the default
recipient list. A rule-based subscriber is sent a message that has no explicit
recipients specified if the associated rule evaluates to TRUEfor the message.

The queue monitor (QMNN) is a background process that monitors the messages in
the queues. It provides the mechanism for message delay, expiration and retry
delay. The also QMNN also performs garbage collection for the queue table and its
indexes and index-organized tables. It is possible to start a maximum of 10 multiple
gueue monitors at the same time. You start the desired number of queue monitors

Introduction 1-17

Modeling Queue Entities

by setting the dynamic init.ora parameter aq_tm_processes . The queue monitor
wakes up every minute, or whenever there is work to be done, for instance, if a
message is to be marked as expired or as ready to be processed.

Modeling Queue Entities

Figure 1-1 Basic Queues

Queue Table

Queue 1 Queue 2 Exception Queue 1
Quel Msgl Que2 Msgl ExQue 1l Msg 1
Quel Msg 2 Que 2 Msg 2 ExQue 1l Msg 2
Quel Msg3 Que 2 Msg3 ExQue 1 Msg 3
Quel Msg4 Que 2 Msg4
Quel Msg5 Que 2 Msg5
Quel Msg6 Que 2 Msg6
Quel Msg?7 Que2 Msg 7
Quel Msg 8
Quel Msg9
Quel Msg 10

The preceding figure portrays a queue table that contains two queues, and one
exception queue:

1-18 Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

Basic Queuing

« Queuel — contains 10 messages.
« Queue2 — contains 7 messages.

« ExceptionQueuel — contains 3 messages.

Basic Queuing — One Producer, One Consumer

At its most basic, one producer may enqueue different messages into one queue.
Each message will be dequeued and processed once by one of the consumers. A
message will stay in the queue until a consumer dequeues it or the message expires.
A producer may stipulate a delay before the message is available to be consumed,
and a time after which the message expires. Likewise, a consumer may wait when
trying to dequeue a message if no message is available. Note that an agent program,
or application, can act as both a producer and a consumer.

Basic Queuing — Many Producers, One Consumer

At a slightly higher level of complexity, many producers may enqueue messages
into a queue, all of which are processed by one consumer.

Basic Queuing — Many Producers, Many Consumers of Discrete Messages

In this next stage, many producers may enqueue messages, each message being
processed by a different consumer depending on type and correlation identifier. The
figure below shows this scenario.

lllustrating Basic Queuing

Figure Figure 1-2, "Modeling Basic Queuing" (below) portrays a queue table that
contains one queue into which messages are being enqueued and from which
messages are being dequeued.

Producers

The figure indicates that there are 6 producers of messages, although only four are
shown. This assumes that two other producers (P4 and P5) have the right to
enqueue messages even though there are no messages enqueued by them at the
moment portrayed by the figure. The figure shows:

. thatasingle producer may enqueue one or more messages.

Introduction 1-19

Modeling Queue Entities

« that producers may enqueue messages in any sequence.

Consumers

According to the figure, there are 3 consumers of messages, representing the total
population of consumers. The figure shows:

« messages are not necessarily dequeued in the order in which they are
enqueued.

« messages may be enqueued without being dequeued.

1-20 Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

Figure 1-2 Modeling Basic Queuing

Queue Table
Enqueue Queue Dequeue
application as application as
producers consumers
Msg 1
Msg 2
Msg 3 #
Msg 5 #

lllustrating Client-Server Communication Using AQ

The previous figure portrayed the enqueuing of multiple messages by a set of
producers, and the dequeuing of messages by a set of consumers. What may not be
readily evident in that sketch is the notion of time, and the advantages offered by

Oracle AQ.

Client-Server applications normally execute in a synchronous manner, with all the
disadvantages of that tight coupling described above. Figure 1-3, "Client-Server
Communication Using AQ" demonstrates the asynchronous alternative using AQ.

Introduction 1-21

Modeling Queue Entities

In this example Application B (a server) provides service to Application A (a client)
using a request/response queue.

Figure 1-3 Client-Server Communication Using AQ

Application A Client
producer & consumer

Dequeue
Enqueue
Request Response
Queue Queue
Enqueue
Dequeue

1
2
3.
4

5.

Application B Server

consumer & producer

Application A enqueues a request into the request queue.
Application B dequeues the request.
Application B processes the request.
Application B enqueues the result in the response queue.

Application A dequeues the result from the response queue.

In this way the client does not have to wait to establish a connection with the server,
and the server dequeues the message at its own pace. When the server is finished
processing the message, there is no need for the client to be waiting to receive the
result. In this way a process of double-deferral frees both client and server.

1-22 Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

Note: The various enqueue and dequeue operations are part of
different transactions.

Multiple-Consumer Dequeuing of the Same Message

A message can only be enqueued into one queue at a time. If a producer had to
insert the same message into several queues in order to reach different consumers,
this would require management of a very large number of queues. Oracle AQ
provides two mechanisms to allow for multiple consumers to dequeue the same
message: queue subscribers and message recipients. The queue must reside in a queue
table that is created with multiple consumer option to allow for subscriber and
recipient lists. Each message remains in the queue until it is consumed by all its
intended consumers.

Queue Subscribers Using this approach, multiple consumer-subscribers are
associated with a queue. This will cause all messages enqueued in the queue to be
made available to be consumed by each of the queue subscribers. The subscribers to
the queue can be changed dynamically without any change to the messages or
message producers. Subscribers to the queue are added and removed by using the
Oracle AQ administrative package. The diagram below shows multiple producers
enqueuing messages into queue, each of which is consumed by multiple
consumer-subscribers.

Message Recipients A message producer can submit a list of recipients at the time a
message is enqueued. This allows for a unique set of recipients for each message in
the queue. The recipient list associated with the message overrides the subscriber
list associated with the queue, if there is one. The recipients need not be in the
subscriber list. However, recipients may be selected from among the subscribers.

Introduction 1-23

Modeling Queue Entities

Figure 1-4 Multiple-Consumer Dequeuing of the Same Message

Queue Table
Subscriber list: s1, s2, s3

Queue Subscribers
Msg 1]

Msg 2 #

Msg 3

Msg 4 #
Msg 5

Msg 6 #
Msg 7

Illustrating Multiple-Consumer Dequeuing of the Same Message

Figure 1-4 describes the case in which three consumers are all listed as subscribers
of a queue. This is the same as saying that they all subscribe to all the messages that
might ever be enqueued into that queue. The drawing illustrates a number of
important points:

« The figure portrays the situation in which the 3 consumers are subscribers to 7
messages that have already been enqueued, and that they might become
subscribers to messages that have not yet been enqueued.

1-24 Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

« Every message will eventually be dequeued by every subscriber.

« There is no priority among subscribers. This means that there is no way of
saying which subscriber will dequeue which message first, second, and so on.
Or, put more formally: the order of dequeuing by subscribers is undetermined.

« We have no way of knowing from the figure about messages they might already
have been dequeued, and which were then removed from the queue.

Figure 1-5 Communication Using a Multi-Consumer Queue

Application A J

Enqueue

Multiple
Consumer
Queue

Dequeue Dequeue

Application B J ‘ Application C J

Figure 1-5 illustrates the same technology from a dynamic perspective. This
examples concerns a scenario in which more than one application needs the result
produced by an application. Every message enqueued by Application A is dequeued
by Application B and Application C. To make this possible, the multiple consumer
gueue is specially configured with Application B and Application C as queue
subscribers. Consequently, they are implicit recipients of every message placed in
the queue.

Introduction 1-25

Modeling Queue Entities

Note: Queue subscribers can be applications or other queues.

Figure 1-6 Dequeuing of Specified Messages by Specified Recipients

Queue Table
Subscriber list: s1, s2, s3
Recipient list: r1, r2

Queue Subscribers
Msg 1
Msg 2 »
Msg 3
Msg 4 1R) (52)
Msg 5
COINTT e s
Msg 7

lllustrating Dequeuing of Specified Messages by Specified Recipients

Figure 1-6 shows how a message can be specified for one or more recipients. In this
case, Message 5 is specified to be dequeued by Recipient-1 and Recipient-2. As
described by the drawing, neither of the recipients is one of the 3 subscribers to the
queue.

1-26 Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

Figure 1-7 Explicit and Implicit Recipients of Messages

Application A
producer

Enqueue

Dequeue

Application B
consumer (subscriber)

Implicit Recipient

Dequeue

Application C
consumer (subscriber)

Implicit Recipient

Application D
consumer (recipient)

Explicit Recipient

We earlier referred to subscribers as "implicit recipients” in that they are able to
dequeue all the messages placed into a specific queue. This is like subscribing to a
magazine and thereby implicitly gaining access to all its articles. The category of
consumers that we have referred to as recipients may also be viewed as "explicit
recipients” in that they are designated targets of particular messages.

Figure 1-7 shows how Oracle AQ can adjust dynamically to accommodate both
kinds of consumers. In this scenario Application B and Application C are implicit
recipients (subscribers). But messages can also be explicitly directed toward specific

Introduction 1-27

Modeling Queue Entities

consumers (recipients) who may or may not be subscribers to the queue. The list of
such recipients is specified in the enqueue call for that message and overrides the
list of subscribers for that queue. In the figure, Application D is specified as the sole
recipient of a message enqueued by Application A.

Note: Multiple producers may simultaneously enqueue messages
aimed at different targeted recipients.

Illustrating the Implementation of Workflows using AQ

Figure 1-8 illustrates the use of AQ for implementing workflows, also knows as
chained application transactions. It shows a workflow consisting of 4 steps
performed by Applications A, B, C and D. The queues are used to buffer the flow of
information between different processing stages of the business process. By
specifying delay interval and expiration time for a message, a window of execution
can be provided for each of the applications.

1-28 Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

Figure 1-8 Implementing Workflows using AQ

Application A
producer

Application C
consumer & producer

Enqueue Dequeue Enqueue
(Message 1) (Message 2) (Message 3)

Dequeue Enqueue Dequeue
(Message 1) (Message 2) (Message 3)

Application B Application D
consumer & producer consumer

From a workflow perspective, the passing of messages is a business asset above and
beyond the value of the payload data. Hence, AQ supports the optional retention of
messages for analysis of historical patterns and prediction of future trends. For
instance, two of the three application scenarios at the head of the chapter are
founded in an implementation of workflow analysis.

Note: The contents of the messages 1, 2 and 3 can be the same or
different. Even when they are different, messages may contain parts
of the of the contents of previous messages.

lllustrating the Implementation of Publish/Subscribe using AQ

Figure 1-9 illustrates the use of AQ for implementing a publish/subscribe
messaging scheme between applications. Application A is a publisher application
which is publishing messages to a queue. Applications B, C, D are subscriber
applications. Application A publishes messages anonymously to a queue. These
messages are then delivered to subscriber applications based on the rules specified

Introduction 1-29

Modeling Queue Entities

by each application. Subscriber applications can specify interest in messages by
defining a rule on message properties and message data content.

In the example shown, applications B has subscribed with rule "priority=1",
application C has subscribed with rule "priority > 1" and application D has
subscribed with rule "priority = 3". Application A enqueues 3 messages (priority 3,
1, 2). Application B receives a single message (priority 1), application C receives two
messages (priority 2, 3) and application D receives a single message (priority 3).
Thus, message recipients are computed dynamically based on message properties
and content. Additionally, the figure also illustrates how application D uses
asynchronous notification for message delivery. Application D registers for
messages on the queue. When messages arrive, application D is notified and can
then dequeue the messages.

1-30 Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

Figure 1-9 Implementing Publish/Subscribe using AQ

Application A
producer

Enqueue
31— priority 3
+— priority 1
1— priority 2
Register
Dequeue Dequeue
Application B Application C
consumer consumer
(rule-based subscriber) (rule-based subscriber)
"priority = 1" "priority > 1"
Application D
consumer
(rule-based subscriber)
"priority = 3"

From a workflow perspective, the passing of messages is a business asset above and
beyond the value of the payload data. Hence, AQ supports the optional retention of
messages for analysis of historical patterns and prediction of future trends. For
instance, two of the three application scenarios at the head of the chapter are

founded in an implementation of workflow analysis.

Introduction 1-31

Modeling Queue Entities

Message Propagation

Fanning-Out of Messages

In AQ, message recipients can be either consumers or other queues. If the message
recipient is a queue, the actual recipients are determined by the subscribers to the
gueue (which may in turn be other queues). Thus it is possible to fan-out messages
to a large number of recipients without requiring them all to dequeue messages
from a single queue.

For example: A queue, Source, may have as its subscribers queues dispatch1@dest1
and dispatch2@dest2. Queue dispatchl@destl may in turn have as its subscribers the
gueues outerreachl@dest3 and outerreach2@dest4, while queue dispatch2@dest2 has as
subscribers the queue outerreach3@dest21 and outerreach4@dest4. In this way,
messages enqueued in Source will be propagated to all the subscribers of four
different queues.

Funneling-in of Messages

Another use of queues as a message recipient is the ability to combine messages
from different queues into a single queue. This process is sometimes described as
"compositing"

For example, if queue composite@endpoint is a subscriber to both queues
funnell@sourcel and funnel2@source2 then the subscribers to queue
composite@endpoint can get all messages enqueued in those queues as well as
messages enqueued directly into itself.

1-32 Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

Figure 1-10 Message Propagation

Database 1

Application A
producer & consumer

Dequeue
Enqueue

Outbox Inbox

; AQ's \
J/ Message
Propagation
Infrastructure

>

’

Database 2

BN

Outbox

Inbox Outbox Inbox

Enqueue Enqueue

Dequeue Dequeue

Application B
consumer & producer

Application C
consumer & producer

Introduction 1-33

Modeling Queue Entities

Illustration of Message Propagation

Figure 1-10 illustrates applications on different databases communicating via AQ.
Each application has an inbox and an outbox for handling incoming and outgoing
messages. An application enqueues a message into its outbox irrespective of
whether the message has to be sent to an application that is local (on the same node)
or remote (on a different node).

Likewise, an application is not concerned as to whether a message originates locally
or remotely. In all cases, an application dequeues messages from its inbox.

Oracle AQ facilitates all this interchange, treating messages on the same basis.

1-34 Application Developer’s Guide - Advanced Queuing

AQ and XA

Programmatic Environments for Working with AQ

AQ and XA

Oracle now offers you different environments for working with AQ

« The PL/SQL language by means of the DBMS_AQADM and the DBMS_AQ
packages as described in the Oracle8i Supplied Packages Reference

» The C++ language by means of the Oracle Call Interface (OCI) described in the
Oracle Call Interface Programmer’s Guide

« The Visual Basic language by means of Oracle Objects For OLE (O0O40) as
described in its accompanying online help.

« TheJava language by means of the Java Application Programmer’s Interface as
described in the Chapter 7, "Advanced Queuing — Java API".

You must specify "Objects=T" in the xa_open string if you want to use the AQ OCI
interface. This forces XA to initialize the client side cache in Objects mode. You do
not need to do this if you plan to use AQ through PL/SQL wrappers from OCI or
Pro*C.

You must use AQ navigation option carefully when you are using AQ from XA. XA
cancels cursor fetch state after an xa_end . Hence, if you want to continue
dequeuing between services (i.e. xa_start /xa_end boundaries) you must reset
the dequeue position by using the FIRST_MESSAGHavigation option. Otherwise
you will get an ORA-25237 (navigation used out of sequence).

For more information about deploying AQ with XA, see:

« "Using XA with AQ" on page 3-23 in Chapter 3, "Managing
Oracle AQ"

« "Deploy AQ with XA" on page 8-54 in Chapter 8, "Oracle
Advanced Queuing by Example"

Introduction 1-35

Compatibility

Compatibility

Certain features only will function if compatibility is set to ’8.1’. As shown in
Table 1-1, you may have to set the compatible parameter of the init .ora and/or

the compatible parameter of the queue table.

Table 1-1 Compatibility Settings Required to Make Use of New Features

Init.ora queue table
Feature compatible =’ 8.1.x’ compatible =’ 8.1’
Queue Level Access Control X X
Non-Persistent Queues X automatically created
Support for OPS Environments X
Rule-based Subscribers for X X
Publish/Subscribe
Asynchronous Notification X
Sender Identification X

Separate storage of history
management information

For more information, see:

« Appendix A, "Migrating Queue Tables
« Oracle8i Migration

1-36 Application Developer’s Guide - Advanced Queuing

Restrictions

Restrictions

The following restrictions currently apply.

Auto-commit features in DBMS_AQADM package

The auto_commit parameters in CREATE_QUEUE_TABI.EROP_QUEUE_TABLE
CREATE_QUEUBROP_QUEU&hd ALTER_QUEUEalls in DBMS_AQADpackage
are deprecated for 8.1.5 and subsequent releases. Oracle continues to support this
parameter in the interface for backward compatibility purpose.

Collection Types in Message Payloads

You cannot construct a message payload using a collection type that is not itself
contained within an object. You also cannot currently use a nested table even as an
embedded object within a message payload. However, you can create an object type
that contains one or more VARRAY, and create a queue table that is founded on this
object type.

For example, the following operations are allowed:

CREATE TYPE number_varray AS VARRAY(32) OF NUMBER;
CREATE TYPE embedded_varray AS OBJECT (coll number_varray);
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(
queue_table = QT,
gueue_payload type => ‘embedded varay);

Object Type Payload Support in AQ Java API

The AQ Java classes in release 8.1.5 does not allow enqueuing and dequeuing object
type payloads, only raw type payloads are supported.

Synonyms on Queue Tables and Queue

All AQ PL/SQL calls do not resolve synonyms on queues and queue tables. Even
though you can create a synonyms, you should not apply the synonym to the AQ
interface.

Pluggable Tablespace does not Work For 8.0 Compatible Multiconsumer Queues

Any tablespace which contains 8.0 compatible multiconsumer queue tables should
not be transported using the pluggable tablespace mechanism. The mechanism will

Introduction 1-37

Restrictions

work, however, with tablespaces that contain only single consumer queues as well
as 8.1 compatible multiconsumer queues. Before you can export a tablespace in
pluggable mode, you have to alter the tablespace to read-only mode. If you try to
import a read-only tablespace which contain 8.0 compatible multiconsumer queues,
you will get an Oracle error indicating that you cannot update the queue table index
at import time.

Tablespace point-in-time recovery

AQ currently does not support tablespace point in time recovery. Creating a queue
table in a tablespace will disable that particular tablespace for point-in-time
recovery.

Propagation from Object Queues

Note that AQ does not support propagation from Object queues that have BFILE or
REF attributes in the payload.

Non-Persistent Queues

Currently you can create only non-persistent queues of RAWype.You are limited in
that you can send messages only to subscribers and explicitly specified recipients
who are local. Propagation is not supported from non-persistent queues. And in
retrieving messages, you cannot use the dequeue call but must instead employ the
asynchronous notification mechanism, registering for the notification by mean of
OCISubcriptionRegister

1-38 Application Developer’s Guide - Advanced Queuing

Reference to Demos

Reference to Demos

The following demos may be found in the $ORACLE_HOME/demo directory.:

Table 1-2

Demo & Locations

Topic

aqdemo00.sql
agdemoO1l.sql

aqdemo02.sql
agdemo03.sql
agdemo04.sql
newagdemo00.sq|l

newaqdemoO1l.sql

newagdemo02.sq|
newagdemo03.sqgl
newagdemo04.sq|l
newaqdemo05.sql

newagdemo06.sq|

ociagdemo00.c
ociagdemoO1.c

ociagdemo02.c

Main driver of demo

Create queue tables and queues using AQ
administration interface

Load the demo package

Submit the event handler as a job to Job Queue
Engueue messages

Create users, message types, tables etc.

Set up queue_tables, queues, subscribers and
set up

Enqueue messages

Installs dequeue procedures
Performs ’blocking dequeue’
Performs ’listen’ for multiple agents

Cleans up users, queue_tables, queues,
subscribers etc. (cleanup script)

Enqueue messages
Performs blocking dequeue

Performs ’Listen’ for multiple agents

Introduction 1-39

Reference to Demos

1-40 Application Developer’s Guide - Advanced Queuing

2

Implementing AQ — A Sample Application

In Chapter 1 we described a messaging system for an imaginary company,
BooksOnLine . In this chapter we consider the features of AQ in the context of a
sample application based on that scenario.

« A Sample Application

« General Features

System Level Access Control

Structured Payload

Queue Level Access Control
Non-Persistent Queues

Retention and Message History
Publish/Subscribe Support

Support for Oracle Parallel Server (OPS)

Support for Statistics Views

« ENQUEUE Features

Subscriptions and Recipient Lists
Priority and Ordering of Messages
Time Specification: Delay

Time Specification: Expiration
Message Grouping

Asynchronous Notifications

Implementing AQ — A Sample Application 2-1

« DEQUEUE Features

Dequeue Methods

Multiple Recipients

Local and Remote Recipients

Message Navigation in Dequeue

Modes of Dequeuing

Optimization of Waiting for Arrival of Messages
Retry with Delay Interval

Exception Handling

Rule-based Subscription

Listen Capability

« Propagation Features

Propagation

Propagation Scheduling

Propagation of Messages with LOB Attributes
Enhanced Propagation Scheduling Capabilities

Exception Handling During Propagation

2-2 Application Developer's Guide - Advanced Queuing

A Sample Application

A Sample Application

The operations of a large bookseller, BooksOnLine , are based on an online book ordering system
which automates activities across the various departments involved in the entire sale process.The
front end of the system is an order entry application which is used to enter new orders.These incoming
orders are processed by an order processing application which validates and records the order.
Shipping departments located at regional warehouses are then responsible for ensuring that these
orders are shipped in a timely fashion. There are three regional warehouses: one serving the East
Region, one serving the West Region, and a third warehouse for shipping International orders. Once
an order has been shipped, the order information is routed to a central billing department which
handles payment processing.The customer service department, located at its own site, is responsible
for maintaining order status and handling inquiries about orders.

In Chapter 1 we outlined a messaging system for an imaginary company,
BooksOnLine . In this chapter we consider the features of AQ in the context of a
sample application based on that scenario. This sample application has been
devised for the sole purpose of demonstrating the features of Oracle AQ. Our aim
in creating this integrated scenario is to make it easier to grasp the possibilities of
this technology by locating our explanations within a single context. We have also
provided the complete script for the code as an appendix (see Appendix A, "Scripts
for Implementing ‘BooksOnLine’™). However, please keep in mind that is not
possible within the scope of a single relatively small code sample to demonstrate
every possible application of AQ.

Implementing AQ — A Sample Application 2-3

General Features

General Features

System Level Access Control

Structured Payload

Queue Level Access Control
Non-Persistent Queues

Retention and Message History
Publish/Subscribe Support

Support for Oracle Parallel Server (OPS)

Support for Statistics Views

2-4 Application Developer's Guide - Advanced Queuing

General Features

System Level Access Control

Oracle 8i supports system level access control for all queueing operations. This
feature allows application designer or DBA to create users as queue administrators.
A queue administrator can invoke all AQ interface (both administration and
operation) on any queue in the database. This simplify the administrative work as
all administrative scripts for the queues in a database can be managed under one
schema for more information, see "Security" on page 3-9 in Chapter 3, "Managing
Oracle AQ").

Example Scenario and Code

In the BooksOnLine application, the DBA creates BOLADMthe BooksOnLine
Administrator account, as the queue administrator of the database. This allows
BOLADMOo create, drop, manage, and monitor any queues in the database. If you
decide to create PL/SQL packages in the BOLADMchema that can be used by any
applications to enqueue or dequeue, then you should also grant BOLADMhe
ENQUEUE_ANxhd DEQUEUE_ANYystem privilege.

CREATE USER BOLADM IDENTIFIED BY BOLADMV,;

GRANT CONNECT, RESOURCE, aq_administrator_role TO BOLADM;

GRANT EXECUTE ON dbms_ag TO BOLADM,;

GRANT EXECUTE ON dbms_agadm TO BOLADM,;

EXECUTE dbms_agadm.grant_system_privilege(ENQUEUE_ANY',BOLADM,FALSE);
EXECUTE dbms_agadm.grant_system_privilege(DEQUEUE_ANY',BOLADMFALSE);

In the application, AQ propagators populate messages from the OE(Order Entry)
schema to W(Western Sales), ES (Eastern Sales) and OS(Worldwide Sales)
schemas. WSESand OSschemas in turn populates messages to CB(Customer
Billing) and CS(Customer Service) schemas. Hence the OE WS ESand OSschemas
all host queues that serve as the source queues for the propagators.

When messages arrive at the destination queues, sessions based on the source
gueue schema name are used for enqueuing the newly arrived messages into the
destination queues. This means that you need to grant schemas of the source
gueues enqueue privileges to the destination queues.

To simplify administration, all schemas that host a source queue in the
BooksOnLine application are granted the ENQUEUE_ANYystem privilege.

EXECUTE doms_acadm.grant_system_priviege(ENQUEUE_ANY"'OE'FALSE);
EXECUTE dbms_agadm.grant_system_priviege(ENQUEUE_ANY',WS'FALSE);
EXECUTE dbms_agadm.grant_system_priviege(ENQUEUE_ANY',ES' FALSE);
EXECUTE dbms_agadm.grant_system_privilege(ENQUEUE_ANY';OSFALSE);

Implementing AQ — A Sample Application 2-5

General Features

To propagate to a remote destination queue, the login user specified in the database
link in the address field of the agent structure should either be granted the
'ENQUEUE ANY QUEUprivilege, or be granted the rights to enqueue to the
destination queue. However, you do not need to grant any explicit privileges if the
login user in the database link also owns the queue tables at the destination.

2-6 Application Developer's Guide - Advanced Queuing

General Features

Structured Payload

Oracle AQ lets you use object types to structure and manage the payload of
messages. Object Relational Database Systems (ORDBMSs) generally have a richer
type system than messaging systems. The object-relational capabilities of Oracle 8i
provide a rich set of data types that range from traditional relational data types to
user-defined types (see "Enqueuing and Dequeuing Object Type Messages That
Contain LOB Attributes Using PL/SQL" on page 8-45 inChapter 8, "Oracle
Advanced Queuing by Example®).

Many powerful features are enabled as a result of having strongly typed content
i.e., content whose format is defined by an external type system. These features
include;

« Content-based routing: an external agent can examine the content and route
messages to another queue based on content.

« Content-based subscription: a publish and subscribe system can be built on top
of a messaging system offers content-based subscription

« Querying: the ability to execute queries on the content of messages allows users
to examine current and processed messages for various applications including
message warehousing.

Example Scenario and Code

The BooksOnLine application uses a rich set of data types to model book orders as
message content.

« Customers are modeled as a object type called customer_typ

CREATE OR REPLACE TYPE customer_typ AS OBJECT (
custno NUMBER,
name VARCHAR2(100),
street VARCHAR2(100),
cdty VARCHAR2(30),
state VARCHAR2(2),
Zip NUMBER,
county VARCHAR2(100));

« Books are modeled as an object type called book_typ

CREATE OR REPLACE TYPE book_typ AS OBJECT (
fie VARCHAR2(100),
authors VARCHAR2(100),
ISBN. NUMBER,
pice NUMBERY);

Implementing AQ — A Sample Application 2-7

General Features

« An order item which represents an order line item is modeled as an object type
called orderitem_typ . An order item is a nested type which includes the
book type.

CREATE OR REPLACE TYPE orderitem_typ AS OBJECT (
quanity NUMBER,
tem BOOK_TYP,
subtotal NUMBER),

« Anorder item list is used to represent a list of order line items and is modeled
as a varray of order items;

create or replace type orderitemiist_vartyp AS VARRAY (20) OF orderitemn_
yp;

« Anorder is modeled as a object type called order_typ. The order type is a
composite type which includes nested object types defined above. The order
type captures details of the order, the customer information, and the item list.

create or replace type order_typ as object (
ordemo NUMBER,
status VARCHAR2(30),
orderype VARCHAR2(30),
orderregion VARCHAR2(30),
customer CUSTOMER_TYP,
paymentmethod VARCHAR2(30),
items ORDERITEMLIST_VARTYP,
total NUMBERY);

2-8 Application Developer's Guide - Advanced Queuing

General Features

Queue Level Access Control

Oracle 8i supports queue level access control for enqueue and dequeue operations.
This feature allows the application designer to protect queues created in one schema
from applications running in other schemas. You need to grant only minimal access
privileges to the applications that run outside the queue's schema. The supported
access privileges on a queue are ENQUEUEDEQUEURENd ALL for more information,
see "Security" on page 3-9 in Chapter 3, "Managing Oracle AQ").

Example Scenario

The BooksOnLine application processes customer billings in its CBand CBADM
schemas. CB(Customer Billing) schema hosts the customer billing application, and
the CBADMchema hosts all related billing data stored as queue tables.

To protect the billing data, the billing application and the billing data reside in
different schemas. The billing application is allowed only to dequeue messages
from CBADM _shippedorders_que , the shipped order queue. It processes the
messages, and them enqueues new messages into CBADM _billedorders_que
the billed order queue.

To protect the queues from other illegal operations from the application, the
following two grant calls are made;

Example Code
/*Grant dequeuie privilege on the shopped orders queue to the Customer
Biling application. The CB application retrieves orders that are shipped but
not billed from the shipped orders queue. ¥/
EXECUTE dbms_agadm.grant_queue_privilege(
'DEQUEUE'/CBADM _shippedorders_que', 'CB', FALSE);

/*Grant enqueue privilege on the billed orders quevie to Customer Biling
application. The CB application is allowed to puit billed orders into this
queue after processing the orders. %

EXECUTE dbms_agadm.grant_queue_privilege(
'ENQUEUE,, 'CBADM _billedorders_que', 'CB, FALSE);

Implementing AQ — A Sample Application 2-9

General Features

Non-Persistent Queues

Messages in a non-persistent queues are not persistent in that hey are not stored in
database tables.

You create a non-persistent RAW queue which can be of either single-consumer or
multi-consumer type. These queues are created in a system created queue-table
(AQ$_MEM_S@r single-consumer queues and AQ$_MEM_Mfdr multi-consumer
gueues) in the schema specified by the create_np_queue command. Subscribers
can be added to the multi-consumer queues (see "Create a Non-Persistent Queue”
on page 4-24 in Chapter 2, "Implementing AQ — A Sample Application").
Non-persistent queues can be destinations for propagation.

You use the enqueue interface to enqueue messages into a non-persistent queue in
the normal way. You retrieve messages from a non-persistent queue through the
asynchronous notification mechanism, registering for the notification (using
OCISubcriptionRegister) for those queues in which you are interested (see
"Register for Notification" on page 6-50 in Chapter 6, "Operational Interface: Basic
Operations").

When a message is enqueued into a queue, it is delivered to the clients that have
active registrations for the queue. The messages are then published to the interested
clients without incurring the overhead of storing them in the database.

For more information see:

« OCI documentation on OCISubscriptionRegister in Oracle Call
Interface Programmer’s Guide.

Example Scenario

Assume that there are three application processes servicing user requests at the
ORDER ENTR&ystem. The connection dispatcher process, which shares out the
connection requests among the application processes, would like to maintain a
count of the number of users logged on to the Order Entry system as well as the
number of users per application process. The application process are named APP_1,
APP_2 APP_3. To simplify things we shall not worry about application process
failures.

One way to solve this requirement is to use non-persistent queues. When a user
logs-on to the database, the application process enqueues to the multi-consumer
non-persistent queue, LOGIN_LOGOU;fwith the application name as the consumer
name. The same process occurs when a user logs out. To distinguish between the

2-10 Application Developer's Guide - Advanced Queuing

General Features

two events, the correlation of the message is 'LOGIN for logins and 'LOGOUTfor

logouts.

The callback function counts the login/logout events per application process. Note
that the dispatcher process only needs to connect to the database for registering the
subscriptions. The notifications themselves can be received while the process is

disconnected from the database.

Example Code
CONNECT oeloe;

/* Create the multiconsumer nonpersistent queue in OE schema: ¥/
EXECUTE dbms_agadm.create_np_queue(queue_name =>'LOGON_LOGOFF,
multiple_consumers => TRUE);

/*Enable the queue for enqueue and dequeue:
EXECUTE dbms_agadm.start_queue(queue_name =>'LOGON_LOGOFF);

/*Non Persistent Queue Scenario - proceaure to be executed upon logon: %/
CREATE OR REPLACE PROCEDURE User_Logon(app_process IN VARCHAR?2)
AS
msgprop dbms_ag.message_properties _t;
enqopt dbms_ag.enqueue_options t;
eng_msgid RAW(16);
payload RAW(1);
BEGIN
F visibility must always be immediate for NonPersistent queues */
engoptvisibility:=dbms_aq.IMMEDIATE;
msgprop.correlation:="LOGON
msgprop.recipient_list(0) :=ag$_agent(app_process, NULL, NULL);
P payload is NULL */
dbms_ag.enqueue(
queue name =>LOGON_LOGOFF,
enqueue_options =>enqopt,
message_properties => msgprop,
payload =>payload,
msgid =>eng_msgid);

END;
/

/* Non Persistent queue scenario - procedure to be executed upon logoff %
CREATE OR REPLACE PROCEDURE User_Logoffiapp_process IN VARCHAR?)
AS

Implementing AQ — A Sample Application 2-11

General Features

msgprop dbms_ag.message_properties _t;
engopt dbms_ag.enqueue_options t;
eng msgd RAW(16);
payload ~ RAW(D);
BEGIN
/* Visibility must always be immediate for NonPersistent queues: ¥/
engoptvisibiity:=dbms_aq.IMMEDIATE;
msgprop.correlation:="LOGOFF;
msgprop.recipient_list(0) :=ag$ _agent(app_process, NULL, NULL);
/*Payload is NULL: %
dbms_ag.enqueue(
queue_name =>'LOGON_LOGOFF,
enqueue_options =>enqopt,
message_properties => msgprop,
payload ~ =>payload,
msgid =>enq_msgid),
END;
/

FIfthere is a login at APP1, enqueue a message into login_logoff with
correlation LOGIN %/
EXECUTE User_logon(APP1);

F* If there is a logout at APP13 enqueue a message into 'login_logoff with
correlation LOGOFF: ¥/

EXECUTE User_logoff(App3);

/* The OCI program which waits for notifications: %/
#include <stdio.h>

#include <stdlib.n>

#include <string.h>

#include <oci.h>

#ifdef WINS2COMMON

#define sleep(x) Sleep(1000%(X))

#endif

#LOGON/password: %
static text *usemame = (text *) "OE",
static text *password = (text *) "OE",

/* The correlation strings of messages: ¥/

static char *logon ="LOGON";
static char *logoff ="LOGOFF",

2-12 Application Developer's Guide - Advanced Queuing

General Features

/* The possible consumer names of queues: ¥
static char *applist] ={"APP1", "APP2""APP3'%};

static OCIEnv *envhp;
static OClServer *svhp;
static OCIEror *errhp;
static OCISveCix *svehp;

static void checken(*_ OCIEmor *erhp, sword status _*/);
struct process_statistics

{

ub4 logon;

ub4 logoff;

%
typedef struct process_statistics process_statistics;

int main(#_int arge, char *argvi] _*);

/*Notify Callback: %

ub4 notifyCB(ctx, subscrhp, pay, payl, desc, mode)

dvoid *ctx;

OCISubscription *subscrhp;

dvoid *pay,

ub4 payl

dvoid *desc;

ub4 mode;

{

text *subname; /*subscription name %
ub4 Isub; /*length of subscription name %/
text *queue; /queue name ¥/

ub4 *oueue; *queue name ¥/
text *consumer; /*consumer name ¥/
ub4 lconsumer;

text *correlation;

ub4 Icomelation;

ub4 size;

ub4 appno;

OCIRaw *msgid;

OCIAQMsgProperties *msgprop; /*message properties descriptor ¥/

process_statistics *user_count = (process_stafistics *)ctx;

Implementing AQ — A Sample Application 2-13

General Features

OCIAtrGet((dvoid *)subscrhp, OCl_HTYPE_SUBSCRIPTION,
(dvoid *)&subname, &lsub,
OCI_ATTR_SUBSCR_NAME, erthp);

/* Extract the attributes from the AQ descriptor: %/

/*Queue name: ¥/

OCIAtrGet(desc, OCI_ DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&queue, &size,
OCI_ATTR_QUEUE_NAME, errhp);

/*Consumer name: ¥/
OClAtrGet(desc, OCl_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&consumer, &consumer,
OCI_ATTR_CONSUMER_NAME, erthpy;

/*Message properties: ¥/
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid ¥)&msgprop, &size,
OCI_ATTR_MSG_PROP, erthp);

/* Get correlation from message properties: ¥/

checkem(errhp, OCIAtrGet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES,
(dvoid *)&correlation, &lcorrelation,
OCI_ATTR_CORRELATION, enhp));

if ((consumer — strien(applist{O])
{
if (Imemcmp((dvoid *)consumer, (dvoid *)applisti0], strien(applistO])))
appno=0;
else if (Imemcmp((dvoid *)consumer, (dvoid *)applist1],
strien(applistf1])))
appno=1,
else if (Imememp((dvoid *)consumer, (dvoid *)applist2],
strien(applistf2])))
appno=2;
else
{
printf(\Wrong consumer in notification”);
retum;

}

else

{ /*consumer name must be "APP1", "APP2" or "APP3" %
printf*\Wrong consumer in notification”);
retum;

}

if (lcomelation = strlen(logon) && Flogonevent®

2-14 Application Developer's Guide - Advanced Queuing

General Features

Imemcemp((dvoid *)correlation, (dvoid *)logon, strien(logon)))
{
user_countfappnol.logon++;
/increment logon count for the app process %
printf('Logon by APP%d \n", (appno+1));

}
elseif (lcorrelation == strien(logoff) && logoff event*/
Imemcmp((dvoid *)correlation,(dvoid *)logoff, stlen(logoff)))
{
user_countfappnol.logoff++;
/*increment logoff count for the app process %
printf('Logoff by APP%d \n", (appno+1));
}
else /*correlation is "LOGON" or "LOGOFF"*%
printf("Wrong correlation in notification”);

printf(Total : \n");

printf(’Appl : %d \n", user_count[0].logon-user_count{O].logoff);
printf(’App?2 : %d \n", user_count1].logon-user_count1].logoff);
printf("App3 : %d \n", user_count2].logon-user_countf2].logoff);

}

intmain(argc, argv)

intargc;

char *argvJ;

{
OCISession *authp = (OCISession *) 0;
OCISubscription *subscrhp[3];
ub4 namespace = OCI_SUBSCR_NAMESPACE_AQ;
process_statistics c(3] ={{0,0}, {0,0}, {0.0};
ub4 sleep_time =0;

printf(Initializing OCI Process\n®);

/Initialize OCI environment with OCI_EVENTS flag set: %/

(void) OClinitialize((ub4) OCI_EVENTS|OCI_OBJECT, (dvoid *)0,
(dvoid * (*)(dvoid *, size_t)) O,
(dvoid * (*)(dvoid *, dvoid *, size_1))0,
(void (*)(dvoid *, dvoid *)) 0);

printf(Initialization successfuln’);

printf{’Initializing OCI Envin';

Implementing AQ — A Sample Application 2-15

General Features

(void) OCIEnvinit((OCIEnv *) &envhp, OCI_DEFAULT, (size t) 0, (dvoid *) 0

)
printf('Initialization successfuln');

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid *¥) &errhp,
OCI_HTYPE_ERROR,
(size_1) O, (dvoid **) O));

checken(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid *¥) &srvhp,
OC|_HTYPE_SERVER,
(size_1) O, (dvoid **) O));

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid *¥) &svchp,
OCI_HTYPE_SVCCTX,
(size_1) 0, (dvoid **) 0));

printf{‘connecting to server\n’);

checkerr(errhp, OClServerAttach(srvhp, errhp, (text *)instl_alias”,
stien('instl_alias"), (ub4) OCI_DEFAULT));

printf(’connect successfuln’);

/* Set attribute server context in the service context: */
checkerr(erhp, OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp,
(ub4) 0, OCI_ATTR_SERVER, (OCIEror *) enthp));

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
(ub4) OCI_HTYPE_SESSION, (size_t) O, (dvoid **) Q));

/* Set usemame and password in the session handle: %/

checkenr(errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_ HTYPE_SESSION,
(dvoid *) usemame, (ub4) strlen((char *usemame),
(ub4) OCI_ATTR_USERNAME, erthp));

checken(errhp, OCIAtrSet((dvoid *) authp, (ub4) OCI_ HTYPE_SESSION,

(dvoid *) password, (ub4) strlen((char *)password),
(ub4) OCI_ATTR_PASSWORD, erthp));

/* Begin session: %/
checken(errhp, OClSessionBegin (svchp, erhp, authp, OCI_CRED _RDBMS,
(ub4) OCI_DEFAULT));

(void) OCIAtrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
(dvoid) authp, (ub4) 0,
(ub4) OCI ATTR_SESSION, enthp);

2-16 Application Developer's Guide - Advanced Queuing

General Features

/* Register for notification: %

printf("allocating subscription handle\n’);

subscrhp[0] = (OCISubscription *)0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[0],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_1) O, (dvoid *¥) 0);

/* For application process APP1: %/

printf{'setting subscription name\n';

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "OE.LOGON_LOGOFFAPP1",
(ub4) strlen("OE.LOGON_LOGOFFAPPL),
(ub4) OCI_ATTR_SUBSCR_NAME, erthp);

printf{’setting subscription callbackin';

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, erhp);

(void) OCIAtrSet((dvoid *) subscrhp(0], (ub4) OCl HTYPE_SUBSCRIPTION,
(dvoid &ctx, (Ubd)sizeof(ctx),
(Ub4) OCI_ATTR_SUBSCR_CTX, enthp);

printf{"'setting subscription namespace\n”);

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, enthp);

printf(allocating subscription handle\n®);

subscrhp[1] = (OCISubscription *)0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[1],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) O);

/* For application process APP2: %/

printf{"'setting subscription name\n');

(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "OE.LOGON_LOGOFFAPP2",
(Ub4) strlen("OE.LOGON_LOGOFF:APP2"),
(Ub4) OCI_ATTR_SUBSCR_NAME, erthp);

printf{"'setting subscription callbackin';

(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(Ub4) OCI_ATTR _SUBSCR_CALLBACK, erthp);

Implementing AQ — A Sample Application 2-17

General Features

(void) OCIAtrSet((dvoid) subscrhp[1], (ub4) OCl HTYPE_SUBSCRIPTION,
(dvoid H&ctx, (Ubd)sizeof(ctx),
(Ub4) OCI_ATTR_SUBSCR_CTX, ethp);

printf{"'setting subscription namespace\n”);

(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, enthp);

printf{allocating subscription handle\n';

subscrhp[2] = (OCISubscription *)0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[2],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

/* For application process APP3: %/

printf{"'setting subscription name\n');

(void) OCIAttrSet((dvoid *) subscrhp(2], (ub4) OCI_HTYPE,_SUBSCRIPTION,
(dvoid *) "OE.LOGON_LOGOFFAPP3",
(Ub4) strien("OE.LOGON_LOGOFF:APP3'),
(Ub4) OCI_ATTR_SUBSCR_NAME, erthp);

printf{"'setting subscription callbackin';

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE,_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, erthpy;

(void) OCIAttrSet((dvoid *) subscrhpi2], (ub4) OCI HTYPE_SUBSCRIPTION,
(dvoid %)&tx, (ubA)sizeof(ctx),
(Ub4) OCI_ ATTR_SUBSCR_CTX, erthp);

printf{"'setting subscription namespace\n”);

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(Ub4) OCI_ATTR_SUBSCR_NAMESPACE, erthp);

printf('Registering fomotifications \n');
checkenr(errhp, OCISubscriptionRegister(svchp, subscrhp, 3, errhp,
OCI_DEFAULT));

sleep_time = (ub4)atoi(argv1]);
printf (‘waiting for %d s \n", sleep_time);
Sleep(sleep_time);

2-18 Application Developer's Guide - Advanced Queuing

General Features

printf Exiting");
exit(0);
}

void checkenr(errhp, status)
OCIEnor *errhp;
sword status;
{
textenbuf[512];
sb4 errcode =0;

switch (status)

{

case OC|_SUCCESS:
break;

case OC|_SUCCESS_WITH_INFO:
(void) printf("Emor - OCl_SUCCESS_WITH_INFO\n");
break;

case OC|_NEED_DATA:
(void) printf("Error - OCI_NEED_DATAWN");
break;

case OC|_NO_DATA:
(void) printf("Emor - OCI_NODATAWN");
break;

case OC|_ERROR:
(void) OCIErrorGet((dvoid *)erhp, (ub4) 1, (text *) NULL, &errcode,

erbuf, (ub4) sizeofiembuf), OCI_HTYPE_ERROR);

(void) printf("Error - %.*s\n", 512, enbuf);
break;

case OCl_INVALID_HANDLE:
(void) printf("Error - OCI_INVALID_HANDLE\n");
break;

case OC|_STILL_EXECUTING:
(void) printf("Error - OCI_STILL_EXECUTEWN");
break;

case OCI_CONTINUE:
(void) printf("Error - OCI_ CONTINUE\n");
break;

default
break;

}

}

/*End of file tkaqdocn.c ¥/

Implementing AQ — A Sample Application 2-19

General Features

Retention and Message History

AQ allows users retain messages in the queue-table which means that SQL can then
be used to query these message for analysis. Messages often are related to each
other. For example, if a message is produced as a result of the consumption of
another message, the two are related. As the application designer, you may want to
keep track of such relationships. Along with retention and message identifiers, AQ
lets you automatically create message journals, also referred to as tracking journals
or event journals. Taken together — retention, message identifiers and SQL queries
— make it possible to build powerful message warehouses.

Example Scenario

Let us suppose that the shipping application needs to determine the average
processing times of orders. This includes the time the order has to wait in the
backed_order queue. It would also like to find out the average wait time in the
backed_order queue. Specifying the retention as TRUEfor the shipping queues
and specifying the order number in the correlation field of the message, SQL
gueries can be written to determine the wait time for orders in the shipping
application.

For simplicity, we will only analyze orders that have already been processed. The
processing time for an order in the shipping application is the difference between
the enqueue time in the WS_bookedorders_queue and the enqueue time in the
WS_shipped_orders_queue

Example Code

SELECT SUM(SO.eng_time - BO.eng_time) / count (¥) AVG_PRCS_TIME
FROMWS.AQ$WS _orders_pr_matab BO, WS AQ3WS_orders_mgqtab SO
WHERE SO.msg_state ='PROCESSED' and BO.msg_state ='PROCESSED'
AND SO.corr_id =BO.com_id and SO.queue ='WS_shippedorders_que',

/*Average waiting time in the backed order queue: %/

SELECT SUM(BACK.deq_time - BACK.enq_time)/count (¥) AVG_BACK_TIME
FROMWS.AQ$WS_orders_ matab BACK
WHERE BACK.msg_state ='PROCESSED' AND BACK.queue ="WS_backorders_que;

2-20 Application Developer's Guide - Advanced Queuing

General Features

Publish/Subscribe Support

Oracle AQ adds various features that allow you to develop an application based on
a publish/subscribe model. The aim of this application model is to enable flexible
and dynamic communication between applications functioning as publishers and
applications playing the role of subscribers. The specific design point is that the
applications playing these different roles should be decoupled in their
communication, that they should interact based on messages and message content.

In distributing messages publisher applications do not have to explicitly handle or
manage message recipients. This allows the dynamic addition of new subscriber
applications to receive messages without changing any publisher application logic.
Subscriber applications receive messages based on message content without
regarding to which publisher applications are sending messages. This allows the
dynamic addition of subscriber applications without changing any subscriber
application logic. Subscriber applications specify interest by defining a rule-based
subscription on message content (payload) and message header properties of a
gueue. The system automatically routes messages by computing recipients for
published messages using the rule-based subscriptions.

You can implement a publish/subscribe model of communication using AQ by
taking the following steps:

« Set up one or more queues to hold messages. These queues should represent an
area or subject of interest. For example, a queue can be used to represent billed
orders.

« Setup aset of rule based subscribers. Each subscriber may specify a rule which
represents a specification for the messages that the subscriber wishes to receive.
A null rule indicates that the subscriber wishes to receive all messages.

« Publisher applications publish messages to the queue by invoking an enqueue
call.

« Subscriber applications may receive messages in the following manner.
« A dequeue call retrieves messages that match the subscription criteria.

« Alisten call may be used to monitor multiple queues for subscriptions on
different queues. This is a more scalable solution in cases in which a subscriber
application has subscribed to many queues and wishes to receive messages that
arrive in any of the queues.

« Use the OCI notification mechanism. This allows a "push” mode of message
delivery in which the subscriber application registers the queues (and
subscriptions specified as subscribing agent) from which to receive messages

Implementing AQ — A Sample Application 2-21

General Features

from and registers a callback to be invoked when messages matching the
subscriptions arrive.

Example Scenario

The BooksOnLine application illustrates the use of a publish/subscribe model for
communicating between applications. For example,

Define queues The Order Entry application defines a queue (OE_booked_orders__
gue) to communicate orders that are booked to various applications. The Order
Entry application is not aware of the various subscriber applications and thus, a
new subscriber application may be added without disrupting any setup or logic in
the Order Entry (publisher) application.

Set up Subscriptions The various shipping applications and the customer service
application (i.e., Eastern region shipping, Western region shipping, Overseas
shipping and Customer Service) are defined as subscribers to the booked_orders
gueue of the Order Entry application. Rules are used to route messages of interest to
the various subscribers. Thus, Eastern Region shipping, which handles shipment of
all orders for the East coast and all rush US orders, would express its subscription
rule as follows;

rule =>tab.user_data.orderregion ="EASTERN' OR
(tab.user_data.ordertype ="RUSH" AND
tab.user_data.customer.country ="USA")'

Each subscriber can specify a local queue to which messages are to be delivered.
The Eastern region shipping application specifies a local queue (ES_booked_
orders_que) for message delivery by specifying the subscriber address as follows:

subscriber = ag$_agent(East_Shipping','ES.ES_bookedorders_que', null;

Set up propagation Enable propagation from each publisher application queue. To
allow subscribed messages to be delivered to remote queues, the Order Entry
application enables propagation by means of the following statement:

execute doms_agadm.schedule_propagation(queue_name => 'OE.OE_bookedorders_que);

Publish Messages Booked orders are published by the Order Entry application when
it enqueues orders (into the OE_booked_order_que) that have been validated and
are ready for shipping. These messages are then routed to each of the subscribing

2-22 Application Developer's Guide - Advanced Queuing

General Features

applications. Messages are delivered to local queues (if specified) at each of the
subscriber applications.

Receive Messages Each of the shipping applications and the Customer Service
application will then receive these messages in their local queues. For example,
Eastern Region Shipping only receives booked orders that are for East Coast
addresses or any US order that is marked RUSHThis application then dequeues
messages and processes its orders for shipping.

Implementing AQ — A Sample Application 2-23

General Features

Support for Oracle Parallel Server (OPS)

The Oracle Parallel Server facility can be used to improve AQ performance by
allowing different queues to be managed by different instances. You do this by
specifying different instance affinities (preferences) for the queue tables that store
the queues. This allows queue operations (enqueue/dequeue) on different queues
to occur in parallel.

The AQ gueue monitor process continuously monitors the instance affinities of the
gueue tables. The queue monitor assigns ownership of a queue table to the specified
primary instance if it is available, failing which it assigns it to the specified
secondary instance. If the owner instance of a queue table ceases to exist at any
time, the queue monitor changes the ownership of the queue table to a suitable
instance — the secondary instance or some other available instance if the secondary
instance is also unavailable.

AQ propagation is able to make use of OPS although it is completely transparent to
the user. The affinities for jobs submitted on behalf of the propagation schedules are
set to the same values as that of the affinities of the respective queue tables. Thus a
job_queue_process associated with the owner instance of a queue table will be
handling the propagation from queues stored in that queue table thereby
minimizing 'pinging’. Additional discussion on this topic can be found under AQ
propagation scheduling (see "Schedule a Queue Propagation™ on page 4-56 in
Chapter 4, "Administrative Interface: Basic Operations").

For information about Oracle Parallel Server (OPS) see:

« Oracle8i Parallel Server Setup and Configuration Guide

Example Scenario

In the BooksOnLine example, operations on the new_orders_queue and
booked_order_queue at the order entry (OE) site can be made faster if the two
gueues are associated with different instances. This is done by creating the queues
in different queue tables and specifying different affinities for the queue tables in
the create_queue_table() command.

In the example, the queue table OE_orders_sqtab stores queue new_orders_
gueue and the primary and secondary are instances 1 and 2 respectively. For queue
table OE_orders_mqtab stores queue booked_order_queue and the primary
and secondary are instances 2 and 1 respectively. The objective is to let instances 1 &
2 manage the two queues in parallel. By default, only one instance is available in
which case the owner instances of both queue tables will be set to instance 1.

2-24 Application Developer's Guide - Advanced Queuing

General Features

However, if OPS is setup correctly and both instances 1 and 2 are available, then
gueue table OE_orders_sqtab will be owned by instance 1 and the other queue
table will be owned by instance 2. The primary and secondary instance specification
of a queue table can be changed dynamically using the alter_queue_table 0
command as shown in the example below. Information about the primary,
secondary and owner instance of a queue table can be obtained by querying the
view USER_QUEUE_TABLHESee "Select Queue Tables in User Schema" on

page 5-25 in "Administrative Interface: Views").

Example Code

/*Create queue tables, quevies for OE %/
CONNECT OE/OE;
EXECUTE dbms_agadm.create_queue_table(\
queue_table =>'OE_orders_sqfab’\
comment =>'Order Entry Single-Consumer Orders queue table’\
queue_payload_type =>'BOLADM.order_typ'\
compatible =>'8.1'\
primary_instance =>1\
secondary_instance => 2);

EXECUTE dbms_agadm.create_queue_table(\
queue_table =>'OE_orders_mqtab’\
comment =>'Order Entry Multi Consumer Orders queue table’\
multiple_consumers =>TRUE,\
queue_payload type =>"'BOLADM.order_typ’\
compatble =>'8.1'\
primary_instance =>2\
secondary_instance => 1),

EXECUTE dbms_agadm.create_queue (\
queue_name =>'OE_neworders_que’\
queue_table =>'OE_orders_sqtab);

EXECUTE doms_agadm.create_queue (\
queue_name =>'OE_bookedorders_que’\
queue_table =>'OE_orders_mqtab);

/*Check instance affinity of OE queue tables from AQ administrative view: ¥
SELECT queue_table, pimary_instance, secondary_instance, owner_instance
FROM user_gueue_tables;

* Alter instance affinity of OE queue tables: */
EXECUTE dbms_agadm.alter_queue_table(\

Implementing AQ — A Sample Application 2-25

General Features

queue_table =>'OE.OE orders_sqtab’\
primary_instance =>2\
secondary_instance => 1),

EXECUTE dbms_agadm.alter_queue_table(\
queue table =>'OE.OE_orders_matab’,\
primary_instance =>1\
secondary_instance => 2);

/*Check instance affinity of OE queue tables from AQ administrative view: ¥

SELECT queue_table, pimary_instance, secondary_instance, owner_instance
FROM user_gqueue_tables;

2-26 Application Developer's Guide - Advanced Queuing

General Features

Support for Statistics Views

Each instance keeps its own AQ statistics information in its own SGA, and does not
have knowledge of the statistics gathered by other instances. Then, when a GV$AQ
view is queried by an instance, all other instances funnel their AQ statistics
information to the instance issuing the query.

Example Scenario

The gv$ view can be queried at any time to see the number of messages in waiting,
ready or expired state. The view also displays the average number of seconds for
which messages have been waiting to be processed. The order processing
application can use this to dynamically tune the number of order processing
processes (see "Select the Number of Messages in Different States for the Whole
Database" on page 5-39 in Chapter 5, "Administrative Interface: Views").

Example Code
CONNECT oeloe

/ Count the number as messages and the average time for which the messages have
been waiting: ¥/

SELECT READY, AVERAGE_WAIT FROM gv$ag Stats, user_queues Qs
WHERE Stats.qid = Qs.gid and Qs.Name ='OE_neworders_que’;

Implementing AQ — A Sample Application 2-27

ENQUEUE Features

ENQUEUE Features

Subscriptions and Recipient Lists
Priority and Ordering of Messages
Time Specification: Delay

Time Specification: Expiration
Message Grouping

Asynchronous Notifications

2-28 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

Subscriptions and Recipient Lists

In a single-consumer queue a message can be processed once by only one consumer.
What happens when there are multiple processes or operating system threads
concurrently dequeuing from the same queue? Given that a locked message cannot
be dequeued by a process other than the one which has created the lock, each
process will dequeue the first unlocked message that is at the head of the queue.
After processing, the message is removed if the retention_time of the queue is 0,
or retained for the specified retention time. While the message is retained the
message can be either queried using SQL on the queue table view or by dequeuing
using the BROWSHEode and specifying the message ID of the processed message.

AQ allows a single message to be processed/consumed by more than one
consumer. To use this feature, you must create multi-consumer queues and enqueue
the messages into these multi-consumer queues. AQ allows two methods of
identifying the list of consumers for a message: subscriptions and recipient lists.

Subscriptions

You can add a subscription to a queue by using the DBMS_AQADM.ADD _
SUBSCRIBERPL/SQL procedure (see "Add a Subscriber" on page 4-46 in Chapter 4,
"Administrative Interface: Basic Operations"). This lets you specify a consumer by
means of the AQ$_AGENTarameter for enqueued messages. You can add more
subscribers by repeatedly using the DBMS_AQADM.ADD_SUBSCRIBBRcedure up
to a maximum of 1024 subscribers for a multi-consumer queue. (Note that you are
limited to 32 subscriber for multi-consumer queue created using Oracle 8.0.3.)

All consumers that are added as subscribers to a multi-consumer queue must have
unique values for the AQ$_AGENTparameter. This means that two subscribers
cannot have the same values for the NAMEADDRES@nd PROTOCOAttributes for
the AQ$_AGENType. At least one of the three attributes must be different for two
subscribers (see "Agent" on page 3-5 in Chapter 3, "Managing Oracle AQ" for formal
description of this data structure).

you cannot add subscriptions to single-consumer queues or exception queues. A
consumer that is added as a subscriber to a queue will only be able to dequeue
messages that are enqueued after the DBMS_AQADM.ADD_SUBSCRIBRRcedure
is completed. In other words, messages that had been enqueued before this
procedure is executed will not be available for dequeue by this consumer.

You can remove a subscription by using the DBMS_AQADM.REMOVE_SUBSCRIBER
procedure (see "Remove a Subscriber" in Chapter 4, "Administrative Interface: Basic
Operations"). AQ will automatically remove from the queue all metadata
corresponding to the consumer identified by the AQ$ _AGENTarameter. In other

Implementing AQ — A Sample Application 2-29

ENQUEUE Features

words, it is not an error to execute the REMOVE_SUBSCRIBHEBtocedure even when
there are pending messages that are available for dequeue by the consumer. These
messages will be automatically made unavailable for dequeue after the REMOVE _
SUBSCRIBERprocedure is executed. In a queue table that is created with the
compatible parameter set to '8.1' or higher, such messages that were not dequeued
by the consumer will be shown as "UNDELIVERABLE in the AQ$<queue_table>
view. Note that a multi-consumer queue table created without the compatible
parameter, or with the compatible parameter set to '8.0', does not display the state of
a message on a consumer basis, but only displays the global state of the message.

Recipient Lists

You do not need to specify subscriptions for a multi-consumer queue provided that
producers of messages for enqueue supply a recipient list of consumers. In some
situations it may be desirable to enqueue a message that is targeted to a specific set
of consumers rather than the default list of subscribers. You accomplish this by
specifying a recipient list at the time of enqueuing the message.

« InPL/SQL you specify the recipient list by adding elements to the
recipient_list field of the message_properties record.

« In OCI the recipient list is specified by using the OCISetAttr procedure to
specify an array of OCI_DTYPE_AQAGENdescriptors as the recipient list (OCI_
ATTR_RECIPIENT_LIST attribute) of an OCI_DTYPE_AQMSG_PROPERTIES
message properties descriptor.

If a recipient list is specified during enqueue, it overrides the subscription list. In
other words, messages that have a specified recipient list will not be available for
dequeue by the subscribers of the queue. The consumers specified in the recipient
list may or may not be subscribers for the queue. It is an error if the queue does not
have any subscribers and the enqueue does not specify a recipient list (see
"Enqueue a Message" on page 6-4 in Chapter 6, "Operational Interface: Basic
Operations").

2-30 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

Priority and Ordering of Messages

The message ordering dictates the order in which messages will be dequeued from
a queue. The ordering method for a queue is specified when a queue table is created
(see "Create a Queue Table" on page 4-4 in Chapter 4, "Administrative Interface:
Basic Operations"). Currently, AQ supports two types of message ordering:

« Priority ordering of messages. If priority ordering is chosen, each message will
be assigned a priority at enqueue time by the enqueuer. At dequeue time, the
messages will be dequeued in the order of the priorities assigned. If two
messages have the same priority, the order at which they are dequeued is
undetermined.

« First-In, First-Out (FIFO) ordering. A FIFO-priority queue can also be created by
specifying both the priority and the enqueue time as the sort order of the
messages. A FIFO-priority queue behaves like a priority queue, except if two
messages are assigned the same priority, they will be dequeued according to the
order of their enqueue time.

Example Scenario
In the BooksOnLine application, a customer can request

« FedEx shipping (priority 1),
« Priority air shipping (priority 2). or
« Regular ground shipping (priority 3).

The Order Entry application uses a FIFO-priority queue to store booked orders.
Booked orders are propagated to the regional booked orders queues. At each
region, orders in these regional booked orders queues are processed in the order of
the shipping priorities.

The following calls create the FIFO-priority queues for the Order Entry application.

Example Code

 Create a priority queue table for OE: */

EXECUTE dbms_agadm.create_queue_table(\
queue_table =>'OE_orders_pr matab',\
sort_list =>priority,enqg_time',\
comment =>'Order Entry Priority \

MuttiConsumer Orders queue table’\

multiple_consumers =>TRUE,\
queue_payload_type =>"'BOLADM.order_typ',\
compatible =81\

Implementing AQ — A Sample Application 2-31

ENQUEUE Features

primary_instance =>2,\
secondary_instance =>1);

EXECUTE dbms_agadm.create_queue (\
queue_name =>'OE_hookedorders_que',\
queue_table =>'OE_orders_pr_mqtab);

/*When an order amives, the order entry application can use the following
procedure to enqueue the order into its booked orders queue. A shipping
Jprionity is specified for each order: %/

CREATE OR REPLACE procedure order_eng(book_tile IN VARCHAR2,

book_qty INNUMBER,
order_num IN NUMBER,
shipping_priority IN NUMBER,

cust state INVARCHAR2,
cust_country INVARCHAR?2,
cust region INVARCHARZ,
cust ord_typ INVARCHAR2) AS

OE _enq order data BOLADM.order_typ;

OE enq cust data ~ BOLADM.customer_typ;
OE_enq _book data BOLADM.book_typ;

OE _enq item data BOLADM.orderitem_typ;
OE_enq item list ~ BOLADM.orderitemiist_vartyp;

enqopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid RAW(16);

BEGIN

msgprop.correlation := cust_ord_typ;

OE_enq_cust data :=BOLADM.customer_typ(NULL, NULL, NULL, NULL,
cust state, NULL, cust_country);

OE_enq book data :=BOLADM.book_typ(book_title, NULL, NULL, NULL);

OE_enq_item data :=BOLADM.orderitem_typ(book _qty,
OE_enq_book_data, NULL);

OE_enq_item list := BOLADM.orderitemiist_vartyp(
BOLADM.orderitem_typ(book_qty,
OE_enq_book_data, NULL));

OE _enq_order data :=BOLADM.order_typ(order_num, NULL,
cust_ord_typ, cust_region,
OE_enq_cust_data, NULL,
OE_enq_item list, NULL);

FPut the shipping priority into message property before enqueueing
the message: */

2-32 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

msgprop.priority := shipping_priority;
dbms_ag.enqueue(OE.OE_bhookedorders_que', enqopt, msgprop,
OE_enq_order_data, enq_msgid);
COMMIT;
END;
/

/*Ateach region, similar booked order queues are created. The orders are
propagated from the central Order Entry’s booked order queues to the regional
booked order queues.For example, at the westem region, the booked orders
queue is created.
Create a priority queuie table for WS shipping: %
EXECUTE dbms_agadm.create_queue_table(\
queue table =>'WS orders pr mqtab,
sort_list =>' priority,eng_time', \
comment => West Shipping Priority \
MutiConsumer Orders queue table'\
multiple_consumers =>TRUE, \
queue_payload_type =>'BOLADM.order_typ',\
compatible =>'8.1);

/*Booked orders are stored in the priority queue table:

EXECUTE dbms_agadm.create_queue (\
queue_name =>WS_bookedorders_gue',\
queue_table =>'WS orders_pr_mqtab);

/* At each region, the shipping application dequeuies orders from the regional
booked order queue according to the orders' shipping priorites, processes
the orders, and enqueues the processed orders into the shipped orders queues
or the back orders queues. ¥/

Implementing AQ — A Sample Application 2-33

ENQUEUE Features

Time Specification: Delay

Messages can be enqueued to a queue with a delay. The delay represents a time
interval after which the message becomes available for dequeuing. A message
specified with a delay is in a waiting state until the delay expires and the message
becomes available. Note that delay processing requires the queue monitor to be
started. Note also that dequeuing by msgid overrides the delay specification.

Example Scenario

In the BooksOnLine application, delay can be used to implement deferred billing.
A billing application can define a queue in which shipped orders that are not billed
immediately can be placed in a deferred billing queue with a delay. For example, a
certain class of customer accounts, such as those of corporate customers, may not be
billed for 15 days. The billing application dequeues incoming shipped order
messages (from the shippedorders queue) and if the order is for a corporate
customer, this order is enqueued into a deferred billing queue with a delay.

Example Code

/*Enqueue an order to implement deferred billing so that the order is not made

visible again unti delay has expired.: %
CREATE OR REPLACE PROCEDURE defer_hiling(deferred_hiling_order order_typ)
AS

defer_bill_ queue_name VARCHAR2(62);

engopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid RAW(16);

BEGIN

Enqueue the order into the deferred billing queue with a delay of 15 days: %
defer_bill_queue_name :='CBADM.deferhiling_que’;
msgprop.delay := 15*60*60*24;
dbms_ag.enqueue(defer_bil queue_name, engopt, msgprop,
deferred_hiling_order, enq_msgid);
END;
/

2-34 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

Time Specification: Expiration
Messages can be enqueued with an expiration which specifies the interval of time

the message is available for dequeuing. Note that expiration processing requires
that the queue monitor be running.

Example Scenario

In the BooksOnLine application, expiration can be used to control the amount of
time that is allowed to process a back order. The shipping application places orders
for books that are not available on a back order queue. If the shipping policy is that
all back orders must be shipped within a week, then messages can be enqueued into
the back order queue with an expiration of 1 week. In this case, any back orders that
are not processed within one week are moved to the exception queue with the
message state set to EXPIRED This can be used to flag any orders that have not
been shipped according to the back order shipping policy.

Example Code

CONNECT BOLADM/BOLADM
/*Reg-enqueue a back arder into a back order queue and set a delay of 7 days;
all back orders must be processed in 7 days or they are moved to the
exception queue: %/
CREATE OR REPLACE PROCEDURE requeue_back order(sale_region varchar2,
backorder order_typ)

AS

back_order_queue_name VARCHAR2(62);

enqgopt dbms_ag.enqueue_options t;

msgprop dbms_ag.message_properties t;

eng_msgid RAW(16);

BEGIN

/*Look up a back order queue based the the region by means of a directory
senvice: %/

IF sale_region="WEST THEN
back_order_queue_name :=WS.WS_backorders_que;
ELSIF sale_region="EAST THEN
back_order_queue_name :='ES.ES backorders_que’,
ELSE
back order_queue_name :='0S.0S_backorders_que;
END IF,

F Enqueue the order with expiration setto 7 days: */

msgprop.expiration := 7*60*60*24;

dbms_ag.enqueue(back_order_queue_name, enqopt, msgprop,
backorder, enq_msgid);

Implementing AQ — A Sample Application 2-35

ENQUEUE Features

END;

2-36 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

Message Grouping

Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires the queue be created in a queue table
that is enabled for transactional message grouping (see "Create a Queue Table" on
page 4-4 in Chapter 4, "Administrative Interface: Basic Operations™). All messages
belonging to a group have to be created in the same transaction and all messages
created in one transaction belong to the same group. This feature allows you to
segment complex messages into simple messages.

For example, messages directed to a queue containing invoices could be constructed
as a group of messages starting with the header message, followed by messages
representing details, followed by the trailer message. Message grouping is also very
useful if the message payload contains complex large objects such as images and
video that can be segmented into smaller objects.

The general message properties (priority, delay, expiration) for the messages in a
group are determined solely by the message properties specified for the first
message (head) of the group irrespective of which properties are specified for
subsequent messages in the group.

The message grouping property is preserved across propagation. However, it is
important to note that the destination queue to which messages have to be
propagated must also be enabled for transactional grouping. There are also some
restrictions you need to keep in mind if the message grouping property is to be
preserved while dequeuing messages from a queue enabled for transactional
grouping (see "Dequeue Methods" on page 2-47 and "Modes of Dequeuing” on
page 2-57 for additional information).

Example Scenario

In the BooksOnLine application, message grouping can be used to handle new
orders. Each order contains a number of books ordered one by one in succession.
Items ordered over the Web exhibit similar behavior.

In the example given below, each enqueue corresponds to an individual book that is
part of an order and the group/transaction represents a complete order. Only the
first enqueue contains customer information. Note that the OE_neworders_que is
stored in the table OE_orders_sqtab which has been enabled for transactional
grouping. Refer to the example code for descriptions of procedures new_order_
enq () and same_order_enqg ().

Implementing AQ — A Sample Application 2-37

ENQUEUE Features

Example Code
connect OE/OE;

* Create queue table for OE: */
EXECUTE dbms_agadm.create_queue_table(\
queue_table =>'OE_orders_sqtab’\
comment =>"Order Entry Single-Consumer Orders queue table’\
queue_payload type =>"'BOLADM.order_typ’\
message_grouping =>DBMS_AQADM.TRANSACTIONAL,\
compatble =>'81,\
primary_instance =>1\
secondary_instance => 2);

* Create neworders queue for OE: */

EXECUTE dbms_agadm.create_queue (\
queue_name =>'OE_neworders_que’,\
queue_table =>'OE_orders_sqtab);

¥ Login into OE account :*/
CONNECT OE/OE;
SET serveroutput on;

F Enqueue some orders using message grouping into OE_neworders_gque,
First Order Group: */

EXECUTE BOLADM.new_order_enq(My First Book, 1, 1001, 'CAY;

EXECUTE BOLADM.same_order_enqg(My Second Book, 2);

COMMIT;

/

* Second Order Group: */

EXECUTE BOLADM.new_order_enq(My Third Book;, 1, 1002, WA,

COMMIT;

/

FThird Order Group: */

EXECUTE BOLADM.new_order_enqg(My Fourth Book, 1, 1003, 'NV');

EXECUTE BOLADM.same_order_enq(My Fith Book;, 3);

EXECUTE BOLADM.same_order_enqg(My Sixth Book’, 2);

COMMIT;

/

F Fourth Order Group: */

EXECUTE BOLADM.new_order_eng(My Seventh Book', 1, 1004, MA);

EXECUTE BOLADM.same_order_enq(My Eighth Book, 3);

EXECUTE BOLADM.same_order_eng(My Ninth Book’, 2);

COMMIT;

/

2-38 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

Asynchronous Notifications

This feature allows OCI clients to receive notifications when there is a message in a
gueue of interest. The client can use it to monitor multiple subscriptions. The client
does not have to be connected to the database to receive notifications regarding its
subscriptions.

You use the OCI function, OCISubcriptionRegister , to register interest in
messages in a queue (see "Register for Notification” in Chapter 6, "Operational
Interface: Basic Operations").

For more information about the OCI operation Register for
Notification see:

« Oracle Call Interface Programmer’s Guide

The client can specify a callback function which is invoked for every new message
that is enqueued. For non-persistent queues, the message is delivered to the client
as part of the notification. For persistent queues, only the message properties are
delivered as part of the notification. Consequently, in the case of persistent queues,
the client has to make an explicit dequeue to access the contents of the message.

Example Scenario

In the BooksOnLine application, a customer can request Fed-ex shipping (priority
1), Priority air shipping (priority 2). or Regular ground shipping (priority 3).

The shipping application then ships the orders according to the user's request. It is
of interest to BooksOnLine to find out how many requests of each shipping type
come in each day. The application uses asynchronous notification facility for this
purpose. It registers for notification on the WSWS_bookedorders_que .When it
is notified of new message in the queue, it updates the count for the appropriate
shipping type depending on the priority of the message.

Example Code

This example illustrates the use of OCIRegister. At the shipping site, an OCI client
program keeps track of how many orders were made for each of the shipping types,
FEDEX, AIR and GROUND. The priority field of the message enables us to
determine the type of shipping desired.

#include <stdio.h>
#include <stdlib.h>

Implementing AQ — A Sample Application 2-39

ENQUEUE Features

#include <string.h>

#include <oci.h>

#ifdef WIN32COMMON

#define sleep(x) Sleep(1000%(X))
#endif

static text *usermame = (text*) "WS";
static text *password = (text *) "WS";

static OCIEnv *envhp;
static OClServer *sivhp;
static OCIEror *errhp;
static OCISvcCix *svehp;

static void checken(*_ OCIEmor *errhp, sword status _*/);

struct ship_data
{

ub4 fedex;
ub4 arr;

ub4 ground,

J;

typedef struct ship_data ship_data;

int main(*_int argc, char *argv{] _*);

F Notify callback: */

ub4 notifyCB(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;

OCISubscription *subscrhp;

dvoid *pay;

ub4 payl

dvoid *desc;

ub4 mode;

{

text *subname;

ub4 Size;

ship_data *ship_stats = (ship_data *)ctx;
text *queue;

text *consumer;

OCIRaw *msgid;

ub4 priority;

OCIAQMsgProperties *msgprop;

2-40 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

OCIAtrGet((dvoid *)subscrhp, OCl_ HTYPE_SUBSCRIPTION,
(dvoid *)&subname, &size,
OCl_ATTR_SUBSCR_NAME, erthp);

P Extract the attributes from the AQ descriptor.
Queue name: */
OClAttrGet(desc, OCl_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&queue, &size,
OCI_ATTR_QUEUE_NAME, errhp);

¥ Consumer name: */
OCIAtrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&consumer, &size,
OCI_ATTR_CONSUMER_NAME, erthpy;

FMsgid: ¥
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&msgid, &size,
OCI_ATTR_NFY_MSGID, erthp);

* Message properties: */
OCIAtrGet(desc, OCI_ DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&msgprop, &size,
OCI_ATTR_MSG_PROP, erthpy;

* Get priority from message properties. */

checkem(enhp, OCIAtrGet(msgprop, OCl_DTYPE_AQMSG_PROPERTIES,
(dvoid *)&priority, O,
OCI_ATTR_PRIORITY, ehp));

switch (priority)

{

case 1: ship_stats->fedex++;
break;

case 2 : ship_stats->air++;
break;

case 3. ship_stats->ground++;
break;

default
printf(" Error priority %d", priority);

}

}

int main(argc, argv)
intargc;
char *argv;
{
OCISession *authp = (OCISession *) 0;

Implementing AQ — A Sample Application 2-41

ENQUEUE Features

OCISubscription *subscrhp[8];

ub4 namespace = OCl_SUBSCR_NAMESPACE_AQ;
ship_data ctx={0,0,0};

ub4 sleep_time =0;

printf(Initializing OCI Process\n®);

F Initialize OCI environment with OCl_ EVENTS flag set: */

(void) OClinitialize((ub4) OCI_EVENTS|OCI_OBJECT, (dvoid *)0,
(dvoid * (*)(dvoid *, size_t)) O,
(dvoid * (*)(dvoid *, dvoid *, size_1))0,
(void (*)(dvoid *, dvoid ¥) 0);

printf('Initialization successfuln');

printf{’Initializing OCI Envin';

(void) OCIEnvinit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t) O, (dvoid**) 0
)
printf("Initialization successfuln’);

checkenr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid *) &enhp, OCI_ HTYPE
ERROR,
(size_1) O, (dvoid **) O));

checkerr(enthp, OCIHandieAlloc (dvoid *) envhp, (dvoid #) &svhp, OCI HTYPE
SERVER,
(size)0, (dvoid #) O));

checkerr(entp, OCIHandleAlloc (cvoid *) envhp, (dvoid **) &svehp, OCI_HTYPE_
SVCCTX,
(size_£) 0, (dvoid) Q));

printf{‘connecting to server\n’);

checkerr(errhp, OClServerAttach(srvhp, errhp, (text *)instl_alias”,
stien('instl_alias"), (ub4) OCI_DEFAULT));

printf(‘connect successfuln');

[Set attribute server context in the service context: */
checkerr(errhp, OCIAtrSet((dvoid *) svchp, OCI_ HTYPE_SVCCTX, (dvoid *)svhp,
(ub4) 0, OCI_ATTR_SERVER, (OCIEror *) enthp));

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
(ub4) OCI_HTYPE_SESSION, (size_t) O, (dvoid **) Q));

2-42 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

F Set usemame and password in the session handle: */

checkerr(errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
(dvoid *) usemame, (ub4) strlen((char *usemame),
(ub4) OCI_ATTR_USERNAME, erthp));

checkenr(errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_ HTYPE_SESSION,

(dvoid *) password, (ub4) strlen((char *)password),
(ub4) OCI_ATTR_PASSWORD, erthp));

F*Begin session: */
checkem(errhp, OClSessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,
(ub4) OCI_DEFAULT));

(void) OCIAtrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
(dvoid*) authp, (ub4) 0,
(ub4) OCI_ATTR_SESSION, erthp);

 Register for notification: */

printf("allocating subscription handle\n’);

subscrhp[0] = (OCISubscription *)0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[0],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_1) O, (dvoid **) 0);

printf("setting subscription name\n’);

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "WS.WS_BOOKEDORDERS_QUE:BOOKED_ORDERS',
(ub4) strien("'WS.WS_BOOKEDORDERS_QUE:BOOKED ORDERS"),
(ub4) OCI_ATTR_SUBSCR_NAME, errhp);

printf("setting subscription callbackin');

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(cvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, erthp);

(void) OCIAtrSet((dvoid *) subscrhp(0], (ub4) OCl HTYPE_SUBSCRIPTION,
(dvoid &ctx, (Ubd)sizeof(ctx),
(Ub4) OCI_ATTR_SUBSCR_CTX, enthp);

printf{"'setting subscription namespace\n”);

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, erthp);

Implementing AQ — A Sample Application 2-43

ENQUEUE Features

printf("Registering \n");
checkerr(errhp, OCISubscriptionRegister(svchp, subscrhp, 1, errhp,
OCI_DEFAULT));

sleep_time = (Ub4)atoiargv{1]);
printf (‘waiting for %d s", sleep_time);
sleep(sleep_time);

printf("Exiting);
exit(Q);
}

void checkerr(errhp, status)
OCIEnor *errhp;
sword status;
{
text enbuf512];
sb4 errcode =0;

switch (status)
{
case OCl_SUCCESS:
break;
case OCl_SUCCESS WITH_INFO:
(void) printf("Emor - OCl_SUCCESS_WITH_INFO\n";
break;
case OCl_ NEED DATA:
(void) printf("Error - OCI_NEED_DATAWN");
break;
case OCI_NO_DATA:
(void) printf("Error - OCI_NODATAWN');
break;
case OCl_ERROR:
(void) OCIEmorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
enbuf, (ub4) sizeof(errbuf), OCI HTYPE_ERROR);
(void) printf("Error - %.*s\n", 512, enbuf);
break;
case OCl_INVALID HANDLE:
(void) printf("Error - OCl_INVALID_HANDLE\N");
break;
case OC|_STILL_EXECUTING:
(void) printf("Emor - OCI_STILL_EXECUTE\N");
break;
case OCl_CONTINUE:
(void) printf("Error - OCl_CONTINUE\N");

2-44 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

break;
default
break;

Implementing AQ — A Sample Application 2-45

DEQUEUE Features

DEQUEUE Features

Dequeue Methods

Multiple Recipients

Local and Remote Recipients

Message Navigation in Dequeue

Modes of Dequeuing

Optimization of Waiting for Arrival of Messages
Retry with Delay Interval

Exception Handling

Rule-based Subscription

Listen Capability

2-46 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Dequeue Methods

A message can be dequeued from a queue using one of two dequeue methods: a
correlation identifier or a message identifier.

A correlation identifier is a user defined message property (of VARCHAR2latatype)
while a message identifier is a system-assigned value (of RAWdatatype). Multiple
messages with the same correlation identifier can be present in a queue while only
one message with a given message identifier can be present. A dequeue call with a
correlation identifier will directly remove a message of specific interest rather than
using a combination of locked and remove mode to first examine the content and
then remove the message. Hence, the correlation identifier usually contains the
most useful attribute of a payload. If there are multiple messages with the same
correlation identifier, the ordering (enqueue order) between messages may not be
preserved on dequeue calls. The correlation identifier cannot be changed between
successive dequeue calls without specifying the first message navigation option.

Note that dequeueing a message with either of the two dequeue methods will not
preserve the message grouping property (see "Message Grouping” on page 2-37 and
"Message Navigation in Dequeue” on page 2-54 for further information).

Example Scenario

In the following scenario of the BooksOnLine example, rush orders received by the
East shipping site are processed first. This is achieved by dequeueing the message
using the correlation identifier which has been defined to contain the order type
(rush/normal). For an illustration of dequeueing using a message identifier please
refer to the get_northamerican_orders procedure discussed in the example
under "Modes of Dequeuing" on page 2-57.

Example Code
CONNECT boladmvbolad;

[+ Create procedures to enqueue into single-consumer queues. */
create or replace procedure get_rushtiles(consumer in varchar2) as

deq_cust data BOLADM .customer_typ;
deq_book_data BOLADM.book_typ;
deq_item data BOLADM.orderitem_typ;

deq_msgid RAW(16);

dopt dbms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;
deq_order_data BOLADM.order_typ;
gname varchar2(30);

Implementing AQ — A Sample Application 2-47

DEQUEUE Features

no_messages exception;

pragma exception_init (no_messages, -25228);
new_orders BOOLEAN :=TRUE;

begin

dopt.consumer_name := consumer;
doptwait:=1;
dopt.correlation :='RUSH;;

IF (consumer ="West_Shipping’) THEN
gname :="WS.WS_bookedorders_que’;
ELSIF (consumer ="East_Shipping) THEN
gname :="ES.ES_bookedorders_que’;
ELSE
gname :='0S.0S_hookedorders_que’;
ENDIF;

WHILE (new_orders) LOOP
BEGIN

dbms_ag.dequeue(
gueue_name =>gname,
dequeue_options =>dopt,
message_properties =>mprop,
payload =>deq_order_data,
msgid =>deq_msgid);

commit;

deq_item_data :=deq_order_data.items(1);
deq_book data :=deq_item_data.itern;

dbms_outputput_line(rushorder book_titie: *||
deq_book_dataitie ||
'quantity:’|| deq_item_data.quantty);
EXCEPTION
WHEN no_messages THEN
doms_outputput_line (— NO MORE RUSH TITLES —);
new_orders := FALSE;
END;
END LOOP;

end;
/

CONNECT EXECUTE on get rushtiles to ES;

2-48 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

F* Dequeue the orders: */
CONNECT ESIES;

F Dequeue all rush order titles for East_Shipping: */
EXECUTE BOLADM.get rushtiies(East_Shipping’);

Implementing AQ — A Sample Application 2-49

DEQUEUE Features

Multiple Recipients

A consumer can dequeue a message from a multi-consumer normal queue by
supplying the name that was used in the AQ$_AGENType of the DBMS_
AQADMDD_SUBSCRIBERrocedure or the recipient list of the message properties
(see "Add a Subscriber" on page 4-46 or Enqueue a Message [Specify Message
Properties] on page 6-9).

« InPL/SQL the consumer name is supplied using the consumer_name field of
the dequeue_options_t record.

« In OCI the consumer name is supplied using the OCISetAttr procedure to
specify a text string as the OCI_ATTR_CONSUMER_NAIMEan OCI_DTYPE_
AQDEQ_OPTIONSescriptor.

There can be multiple processes or operating system threads that use the same
consumer_name to dequeue concurrently from a queue. In that case AQ will
provide the first unlocked message that is at the head of the queue and is intended
for the consumer. Unless the message ID of a specific message is specified during
dequeue, the consumers can dequeue messages that are in the READ Ystate.

A message is considered PROCESSEDnNIly when all intended consumers have
successfully dequeued the message. A message is considered EXPIREDIf one or
more consumers did not dequeue the message before the EXPIRATION time. When
a message has expired, it is moved to an exception queue.

The exception queue must also be a multi-consumer queue. Expired messages from
multi-consumer queues cannot be dequeued the intended recipients of the message.
However, they can be dequeued in the REMOVEnode exactly once by specifying a
NULL consumer name in the dequeue options. Hence, from a dequeue perspective,
multi-consumer exception queues behave like single-consumer queues because
each expired message can be dequeued only once using a NULLconsumer name.
Note that expired messages can be dequeued only by specifying a message ID if the
multi-consumer exception queue was created in a queue table without the
compatible parameter or with the compatible parameter set to '8.0'".

In release 8.0.x when two or more processes/threads that are using different
consumer_names are dequeuing from a queue, only one process/thread can
dequeue a given message in the LOCKEDbr REMOVEnode at any time. What this
means is that other consumers that need to the dequeue the same message will have
to wait until the consumer that has locked the message commits or aborts the
transaction and releases the lock on the message. However, while release 8.0.x did
not support concurrency among different consumers for the same message., with
release 8.1.x all consumers can access the same message concurrently. The result is
that two processes/threads that are using different consumer_name to dequeue the

2-50 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

same message do not block each other. AQ achieves this improvement by
decoupling the task of dequeuing a message and the process of removing the
message from the queue. In release 8.1.x only the queue monitor removes messages
from multi-consumer queues. This allows dequeuers to complete the dequeue
operation by not locking the message in the queue table. Since the queue monitor
performs the task of removing messages that have been processed by all consumers
from multi-consumer queues approximately once every minute, users may see a
delay when the messages have been completely processed and when they are
physically removed from the queue.

Implementing AQ — A Sample Application 2-51

DEQUEUE Features

Local and Remote Recipients

Consumers of a message in multi-consumer queues (either by virtue of being a
subscriber to the queue or because the consumer was a recipient in the enqueuer’s
recipient list) can be local or remote.

« Alocal consumer dequeues the message from the same queue into which the
producer enqueued the message. Local consumers have a non-NULL NAMEnd
a NULL ADDRES&nd PROTOCO(field in the AQ$_AGENType (see "Agent" on
page 3-5 in Chapter 3, "Managing Oracle AQ").

« A Remote consumer dequeues from a queue that is different (but has the same
payload type as the source queue) from the queue in which the message was
enqueued. As such, users need to be familiar with and use the AQ Propagation
feature to use remote consumers. Remote consumers can fall into one of three
categories:

a. The ADDRESSield refers to a queue in the same database. In this case the
consumer will dequeue the message from a different queue in the same
database. These addresses will be of the form [schema] .queue_name
where queue_name (optionally qualified by the schema name) is the target
gueue. If the schema is not specified, the schema of the current user
executing the ADD_SUBSCRIBERrocedure or the enqueue is used (see
"Add a Subscriber" on page 4-46, or "Enqueue a Message" on page 6-4 in
Chapter 6, "Operational Interface: Basic Operations”). Use the DBMS _
AQADNMSCHEDULE_PROPAGATI@NmMmand with a NULL destination
(which is the default) to schedule propagation to such remote consumers
(see "Schedule a Queue Propagation™” on page 4-56 in Chapter 4,
"Administrative Interface: Basic Operations").

b. The ADDRESSield refers to a queue in a different database. In this case the
database must be reachable using database links and the PROTOCOmust
be either NULL or 0. These addresses will be of the form [schema] .queue_
name@dblink . If the schema is not specified, the schema of the current
user executing the ADD_SUBSCRIBERrocedure or the enqueue is used. If
the database link is not a fully qualified name (does not have a domain
name specified) the default domain as specified by the db_domain
init .ora parameter will be used. Use the DBMS_AQADSICHEDULE_
PROPAGATIOIprocedure with the database link as the destination to
schedule the propagation. AQ does not support the use of synonyms to
refer to queues or database links.

c. The ADDRESSield refers to a destination that can be reached by a third
party protocol. You will need to refer to the documentation of the third

2-52 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

party software to determine how to specify the ADDRESSnd the
PROTOCOUHatabase link, and on how to schedule propagation.

When a consumer is remote, a message will be marked as PROCESSEIh the source
gueue immediately after the message has been propagated even though the
consumer may not have dequeued the message at the remote queue. Similarly,
when a propagated message expires at the remote queue, the message is moved to
the DEFAULTexception queue of the remote queue's queue table, and not to the
exception queue of the local queue. As can be seen in both cases, AQ does not
currently propagate the exceptions to the source queue. You can use the MSGIDand
the ORIGINAL_MSGIDcolumns in the queue table view (AQ$<queue_table>)to
chain the propagated messages. When a message with message ID m1 is
propagated to a remote queue, ml is stored in the ORIGINAL_MSGIDcolumn of the
remote queue.

The DELAY EXPIRATION and PRIORITY parameters apply identically to both local
and remote consumers. AQ accounts for any delay in propagation by adjusting the

DELAYand EXPIRATION parameters accordingly. For example, if the EXPIRATION
is set to one hour, and the message is propagated after 15 minutes, the expiration at
the remote queue will be set to 45 minutes.

Implementing AQ — A Sample Application 2-53

DEQUEUE Features

Message Navigation in Dequeue

You have several options for selecting a message from a queue. You can select the
"first message’. Alternatively, once you have selected a message and established its
position in the queue (for example, as the fourth message), you can then retrieve the
‘next message’.

These selections work in a slightly different way if the queue is enabled for
transactional grouping.

« If the ’first message’ is requested then the dequeue position is reset to the
beginning of the queue.

« If the 'next message’ is requested then the position is set to the next message of
the same transaction

« If the 'next transaction’ is requested then the position is set to the first message
of the next transaction.

Note that the transaction grouping property is negated if a dequeue is performed in
one of the following ways: dequeue by specifying a correlation identifier, dequeue
by specifying a message identifier, or dequeueing some of the messages of a
transaction and committing. For additional information on dequeueing by
specifying a correlation identifier or a message identifier please refer to the section
on dequeue methods.

If in navigating through the queue, the program reaches the end of the queue while
using the 'next message’ or’ next transaction’ option, and you have specified a
non-zero wait time, then the navigating position is automatically changed to the
beginning of the queue.

Example Scenario

The following scenario in the BooksOnLine example continues the message
grouping example already discussed with regard to enqueuing (see "Dequeue
Methods" on page 2-47).

The get_orders () procedure dequeues orders from the OE_neworders_que
Recall that each transaction refers to an order and each message corresponds to an
individual book in the order. The get_orders () procedure loops through the
messages to dequeue the book orders. It resets the position to the beginning of the
gueue using the first message option before the first dequeues. It then uses the next
message navigation option to retrieve the next book (message) of an order
(transaction). If it gets an error message indicating all message in the current
group/transaction have been fetched, it changes the navigation option to next
transaction and get the first book of the next order. It then changes the navigation

2-54 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

option back to next message for fetching subsequent messages in the same
transaction. This is repeated until all orders (transactions) have been fetched.

Example Code
CONNECT boladmvboladm;

create or replace procedure get_new_orders as
deq_cust data BOLADM.customer_typ;

deq_book_data BOLADM.book_typ;
deq_item data BOLADM .orderitemn_typ;

deq_msgid RAW(16);

dopt dbms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;
deq_order_data BOLADM.order_typ;
gname VARCHAR2(30);
no_messages exception;

end_of group exception;

pragma exception_init (no_messages, -25228);
pragma exception_init (end_of group, -25235);
new_orders BOOLEAN :=TRUE;

begin

doptwait:=1;
dopt.navigation := DBMS_AQ.FIRST_MESSAGE;
gname :='OE.OE_neworders_que’;
WHILE (new_orders) LOOP
BEGIN
LOOP
BEGIN
dbms_ag.dequeue(
gueue_name =>(name,
dequeue_options =>dopt,
message_properties =>mprop,
payload =>deq_order_data,
msgid =>deq_msgid);
deq_item data :=deq_order_data.items(1);
deq_book data:=deq_item_data.itern;
deq_cust data :=deq_order_data.customer;

IF (deq_cust_data IS NOT NULL) THEN
dbms_outputput_ine(** NEXT ORDER **;

Implementing AQ — A Sample Application 2-55

DEQUEUE Features

dbms_output.put_lineCorder_num:’||
deqg_order_data.ordemo);
dbms_outputput_line('ship_state:” ||
deq_cust data.state);
ENDIF;
dbms_outputput_line(— nextbook —);
dbms_output.put_line(book_title: " ||
deq_book_dataite ||
"quantity:’ || deq_item _data.quantity);
EXCEPTION
WHEN end_of group THEN
dbms_output.put_line (*** END OF ORDER *+¥);
CoOmmit;
dopt.navigation := DBMS_AQ.NEXT_TRANSACTION;
END;
END LOOP;
EXCEPTION
WHEN no_messages THEN
dbms_outputput_line (— NO MORE NEW ORDERS —);
new_orders := FALSE;
END;
END LOOP;

end;
/

CONNECT EXECUTE ON get_new_orders to OF;
F Dequeue the orders: */

CONNECT OE/OE;
EXECUTE BOLADM.get new_orders;

2-56 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Modes of Dequeuing

A dequeue request can either view a message or delete a message (see "Dequeue a
Message" on page 6-38 in Chapter 6, "Operational Interface: Basic Operations").

« Toview a message you can use either the ’browse’ mode or ’locked’ mode.

« To delete a message you can use either the 'remove’ mode or 'remove with no
data’ mode.

If a message is browsed it remains available for further processing. Similarly if a
message is locked it remains available for further processing once the lock on it is
released by performing a transaction commit or rollback. Once a message is deleted
using either of the remove modes, it is no longer available for dequeue requests.

When a message is dequeued using REMOVE_NODATAode, the payload of the
message is not retrieved. This mode can be useful when the user has already
examined the message payload, possibly by means of a previous BROWSHequeue.
In this way, you can avoid the overhead of payload retrieval which can be
substantial for large payloads

A message is retained in the queue table after it has been removed only if a
retention time is specified for a queue. Messages cannot be retained in exception
gueues (refer to the section on exceptions for further information). Removing a
message with no data is generally used if the payload is known (from a previous
browse/locked mode dequeue call), or the message will not be used.

Note that after a message has been browsed there is no guarantee that the message
can be dequeued again since a dequeue call from a concurrent user might have
removed the message. To prevent a viewed message from being dequeued by a
concurrent user, you should view the message in the locked mode.

You need to take special care while using the browse mode for other reasons as
well. The dequeue position is automatically changed to the beginning of the queue
if a non-zero wait time is specified and the navigating position reaches the end of
the queue. Hence repeating a dequeue call in the browse mode with the 'next
message’ navigation option and a non-zero wait time can dequeue the same
message over and over again. We recommend that you use a non-zero wait time for
the first dequeue call on a queue in a session, and then use a zero wait time with the
next message navigation option for subsequent dequeue calls. If a dequeue call gets
an ’end of queue’ error message, the dequeue position can be explicitly set by the
dequeue call to the beginning of the queue using the *first message’ navigation
option, following which the messages in the queue can be browsed again.

Implementing AQ — A Sample Application 2-57

DEQUEUE Features

Example Scenario

In the following scenario from the BooksOnLine example, international orders
destined to Mexico and Canada are to be processed separately due to trade policies
and carrier discounts. Hence, a message is viewed in the locked mode (so no other
concurrent user removes the message) and the customer country (message payload)
is checked. If the customer country is Mexico or Canada the message be deleted
from the queue using the remove with no data (since the payload is already known)
mode. Otherwise, the lock on the message is released by the commit call. Note that
the remove dequeue call uses the message identifier obtained from the locked mode
dequeue call. The shipping_bookedorder_deq (refer to the example code for
the description of this procedure) call illustrates the use of the browse mode.

Example Code
CONNECT boladm/boladm;

create or replace procedure get_northamerican_orders as
deq_cust data BOLADM.customer_typ;

deqg_book_data BOLADM.book_typ;
deq_item_data BOLADM .orderitem_typ;

deq_msgid RAW(16);
dopt doms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;

deq_order_data BOLADM.order_typ;
deq_order_nodata ~ BOLADM.order_typ;
gname VARCHAR2(30);
Nno_messages exception;

pragma exception_init (ho_messages, -25228);
new_orders BOOLEAN =TRUE;

begin

dopt.consumer_name = consumer;

doptwait := DBMS_AQ.NO_WAIT;
doptnavigation :=dbms_aq.FIRST_MESSAGE;
doptdequeue_mode :=DBMS_AQ.LOCKED;

gname :='0S.0S_hookedorders_que’;

WHILE (new_orders) LOOP
BEGIN
dbms_ag.dequeue(
gueue_name =>qgname,

2-58 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

dequeue_options => dopt,
message_properties => mprop,
payload =>deq_order_data,
msgid =>deq_msgid);

deq_item_data :=deq_order_data.itemns(1);
deq_book data:=deq_item_data.itern;
deq_cust data :=deq_order_data.customer;

IF (deq_cust_data.country ='Canada’ OR
deq_cust_data.country ="Mexico') THEN

doptdequeue_mode :=dbms_aq.REMOVE_NODATA,
doptmsgid := deq_msgid;
dbms_ag.dequeue(
gueue_name =>gname,
dequeue_options =>dopt,
message_properties =>mprop,
payload =>deq_order_nodata,
msgid =>deq_msgid);
commit;

dbms_outputput_line(**** next booked order "),
dbms_outputput_line(order_no:’|| deq_order_data.ordemo ||
"book _title:* || deq_book_datadtite ||
"quantity:” || deq_item_data.quantity);
dbms_outputput_line('ship_state: ' || deg_cust_data.state ||
"ship_country:’ || deq_cust_data.country ||
"ship_order_type:’ || deq_order_data.ordertype);

ENDIF;

commit;

doptdequeue_mode :=DBMS_AQ.LOCKED;

doptmsgid := NULL;

dopt.navigation := dbms_ag.NEXT_MESSAGE;
EXCEPTION

WHEN no_messages THEN
dbms_outputput_line (— NO MORE BOOKED ORDERS —);
new_orders :=FALSE;
END;
END LOOP;

end;
/

Implementing AQ — A Sample Application 2-59

DEQUEUE Features

CONNECT EXECUTE on get_northamerican_ordersto OS;
CONNECT ESEES;

* Browse all booked orders for East_Shipping: */
EXECUTE BOLADM .shipping_bookedorder_deq(East_Shipping, DBMS_AQ.BROWSE);

CONNECT OS/OS;

F* Dequeue all intemational North American orders for Overseas_Shipping: */
EXECUTE BOLADM.get_northamerican_orders;

2-60 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Optimization of Waiting for Arrival of Messages

One of the most important features of AQ is that it allows applications to block on
one or more queues waiting for the arrival of either a newly enqueued message or
for a message that becomes ready. You can use the DEQUEUBperation to wait for
arrival of a message in a queue (see "Dequeue a Message" on page 6-38) or the
LISTEN operation to wait for the arrival of a message in more than one queue (see
"Listen to One (Many) Queue(s)" on page 6-18 in Chapter 6, "Operational Interface:
Basic Operations™).

When the blocking DEQUEUEalI returns, it returns the message properties and the
message payload. By contrast, when the blocking LISTEN call returns, it discloses
only the name of the queue in which a message has arrived. A subsequent DEQUEUE
operation is needed to dequeue the message.

Applications can optionally specify a timeout of zero or more seconds to indicate
the time that AQ must wait for the arrival of a message. The default is to wait
forever until a message arrives in the queue. This optimization is important in two
ways. It removes the burden of continually polling for messages from the
application. And it saves CPU and network resource because the application
remains blocked until a new message is enqueued or becomes READ Yafter its
DELAYtime. In release 8.1.5 applications can also perform a blocking dequeue on
exception queues to wait for arrival of EXPIRED messages.

A process or thread that is blocked on a dequeue is either woken up directly by the
enqueuer if the new message has no DELAYor is woken up by the queue monitor
process when the DELAYor EXPIRATION time has passed. Applications can not
only wait for the arrival of a message in the queue that an enqueuer enqueues a
message, but also on a remote queue, provided that propagation has been schedule
to the remote queue using DBMS_AQADSICHEDULE_PROPAGATIOM this case the
AQ propagator will wake-up the blocked dequeuer after a message has been
propagated.

Example Scenario

In the BooksOnLine example, the get_rushtitles procedure discussed under
dequeue methods specifies a wait time of 1 second in the dequeue_options
argument for the dequeue call. Wait time can be specified in different ways as
illustrated in the code below.

« If the wait time is specified as 10 seconds, the dequeue call is blocked with a
timeout of 10 seconds until a message is available in the queue. This means that
if there are no messages in the queue after 10 seconds, the dequeue call returns
without a message. Predefined constants can also be assigned for the wait time.

Implementing AQ — A Sample Application 2-61

DEQUEUE Features

« If the wait time is specified as DBMS_AMO_WAITa wait time of 0 seconds is
implemented. The dequeue call in this case will return immediately even if
there are no messages in the queue.

« If the wait time is specified as DBMS_A@OREVERthe dequeue call is blocked
without a timeout until a message is available in the queue.

Example Code

Fdopt Isavarable of type dbms_ag.dequeue_options t.
Set the dequevie wait ime to 10 seconds: ¥
doptwait:=10;

/* Set the dequeue wait time to 0 seconds:
doptwait = DBMS_AQNO_WAIT:

F Setthe dequeue wait ime to infinite (forever): */
doptwait = DBMS_AQ.FOREVER;

2-62 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Retry with Delay Interval

AQ supports delay delivery of messages by letting the enqueuer specify a delay
interval on a message when enqueueing the message, that is, the time before which
a message cannot be retrieved by a dequeue call. (see "Enqueue a Message [Specify
Message Properties]” on page 6-9 in Chapter 6, "Operational Interface: Basic
Operations™). The delay interval determines when an enqueued message is marked
as available to the dequeuers after message is enqueued. The producer can also
specify the time when a message expires, at which time the message is moved to an
exception queue.

When a message is enqueued with a delay time set, the message is marked as in
WAIT state. Messages in WAIT state are masked from the default dequeue calls.

A background time-manager daemon wakes up periodically, scans an internal
index for all WAIT state messages, and marks messages as READYif their delay time
has passed. The time-manager will then post to all foreground processes that are
waiting on queues in which messages have just been made available.

Example Scenario

An order is placed in a back order queue at a specific shipping region if the order
cannot be filled immediately. To avoid repeatedly processing an unfilled order, all
unfilled orders are enqueued into the backorder queue with a delay time of 1 day.
The shipping application will attempt to ship a backorder by dequeuing an order
from the backorder queue. If the order cannot be filled, it will re-enqueue the order
into the same backorder queue with delay interval of the order set to 1 day.

The following procedure re-enqueues an unfilled order. It demonstrate enqueuing a
backorder with delay time set to 1 day. This guarantees that each backorder will
be processed only once a day until the order is filled.

Example Code

F Create a package that enqueue with delay set to one day:

CONNECT BOLADM/BOLADM

CREATE OR REPLACE PROCEDURE requeue_unfiled_order(sale_region varchar2,
backorder order_typ)

AS
back_order_queue_name VARCHAR2(62);
enqopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid RAW(16);

BEGIN

F Choose a back order queue based the the region: */

Implementing AQ — A Sample Application 2-63

DEQUEUE Features

IF sale_region="WEST THEN

back_order_queue_name :="WS.WS_backorders_gque’,
ELSIF sale_region="EAST THEN

back order_queue_name :='ES.ES backorders_que’,
ELSE

back order_queue_name :='0S.0S_backorders_gque’;
ENDIF;

F Enqueue the order with delay time setto 1 day: */
msgprop.delay := 60*60*24;
dbms_ag.enqueue(back _order_queue_name, engopt, msgprop,
backorder, enq_msgid);
END;
/

2-64 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Exception Handling

AQ provides four integrated mechanisms to support exception handling in
applications: EXCEPTION_QUEUE&XPIRATION, MAX_RETRIESand RETRY_
DELAY

An exception_queue is a repository for all expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. Also, a
multi-consumer exception queue cannot have subscribers associated with it.
However, an application that intends to handle these expired or unserviceable
messages can dequeue from the exception queue. The exception queue created for
messages intended for a multi-consumer queue must itself be a multi-consumer
gueue. Like any other queue, the exception queue must be enabled for dequeue
using the DBMS_AQADSITART_QUEUIBrocedure. You will get an Oracle error if
you try to enable an exception queue for enqueue.

When a message has expired, it is moved to an exception queue. The exception
gueue for a message in multi-consumer queue must also be a multi-consumer
gueue. Expired messages from multi-consumer queues cannot be dequeued by the
intended recipients of the message. However, they can be dequeued in the REMOVE
mode exactly once by specifying a NULL consumer name in the dequeue options.
Hence, from a dequeue perspective multi-consumer exception queues behave like
single-consumer queues because each expired message can be dequeued only once
using a NULLconsumer name. Messages can also be dequeued from the exception
gueue by specifying the message ID. Note that expired messages can be dequeued
only by specifying a message ID if the multi-consumer exception queue was created
in a queue table without the compatible parameter or with the compatible
parameter set to '8.0".

The exception queue is a message property that can be specified during enqueue
time (see "Enqueue a Message [Specify Message Properties]” on page 6-9 in
Chapter 6, "Operational Interface: Basic Operations™). In PL/SQL users can use the
exception_queue attribute of the DBMS_AMESSAGE_PROPERTIES récord to
specify the exception queue. In OCI users can use the OCISetAttr procedure to set
the OCI_ATTR_EXCEPTION_QUEUg&itribute of the OCIAQMsgProperties
descriptor.

If an exception queue is not specified, the default exception queue is used. If the
gueue is created in a queue table, say QTAB the default exception queue will be
called AQ$_QTAB_E. The default exception queue is automatically created when
the queue table is created. Messages are moved to the exception queues by AQ
under the following conditions.

Implementing AQ — A Sample Application 2-65

DEQUEUE Features

The message is not being dequeued within the specified expiration interval. For
messages intended for more than one recipient, the message will be moved to
the exception queue if one or more of the intended recipients was not able to
dequeue the message within the specified expiration interval. The default
expiration interval is DBMS_AQIEVERwhich means the messages will not
expire.

The message is being dequeued successfully. However, because of an error that
arises while processing the message, the application which dequeues the
message chooses to roll back the transaction. In this case, the message is
returned to the queue and will be available for any applications that are waiting
to dequeue from the same queue. A dequeue is considered rolled back or
undone if the application rolls back the entire transaction, or if it rolls back to a
savepoint that was taken before the dequeue. If the message has been dequeued
but rolled back more than the number of time specified by the retry limit, the
message will be moved to the exception queue.

For messages intended for multiple recipients, each message keeps a separate
retry count for each recipient. The message is moved to the exception queue
only when retry counts for all recipients of the message have exceeded the
specified retry limit. The default retry limit is 5 for single consumer queues and
8.1-compatible multiconsumer queues. No retry limit is not supported for 8.0-
compatible multi-consumer queues.

The statement executed by the client contains a dequeue that succeeded but the
statement itself was undone later due to an exception. To understand this case,
consider a PL/SQL procedure that contains a call to DBMS_AM®EQUEUHT the
dequeue procedure succeeds but the PL/SQL procedure raises an exception,
AQ will attempt to increment the RETRY_COUNGT the message returned by the
dequeue procedure.

The client program successfully dequeued a message but terminated before
committing the transaction.

Messages intended for 8.1-compatible multiconsumer queues cannot be dequeued
by the intended recipients once the messages have been moved to an exception
gueue. These messages should instead be dequeued in the REMOVEr BROWSE
mode exactly once by specifying a NULL consumer name in the dequeue options.
The messages can also be dequeued by their message IDs.

Messages intended for single consumer queues, or for 8.0-compatible
multi-consumer queues, can only be dequeued by their message IDs once the
messages have been moved to an exception queue.

2-66 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Users can associate a RETRY_DELAYvith a queue. The default value for this
parameter is 0 which means that the message will be available for dequeue
immediately after the RETRY_COUNIE incremented. Otherwise the message will be
unavailable for RETRY_DELAYeconds. After RETRY_DELAYeconds the queue
monitor will mark the message as READY

Example Scenario

In the BooksOnLine application, the business rule for each shipping region is that
an order will be placed in a back order queue if the order cannot be filled
immediately. The back order application will try to fill the order once a day. If the
order cannot be filled within 5 days, it is placed in an exception queue for special
processing. You can implement this process by making use of the retry and
exception handling features in AQ.

The example below shows how you can create a queue with specific maximum
retry and retry delay interval.

Example Code

/*Example for creating a back order queue in Westem Region which allows a
maximum of 5 retries and 1 day delay between each retry. %

CONNECT BOLADM/BOLADM
BEGIN
dbms_agadm.create_queue (

gueue_name =>"WSWS_backorders_que',
queue_table =>"WSWS_orders_mgtab),
max_retries =5,
retry_delay =>60%60%24);

END;

/

/*Create an exception queue for the back order queue for Westem Region. ¥

CONNECT BOLADM/BOLADM
BEGIN
dbms_agadm.create_queue (
gueue_name =>"WSWS_backorders_excpt_que,
queue_table =>"WSWS_orders_mgtab),
queue_type =>DBMS_AQADM.EXCEPTION_QUEUE);
end;

/
/* Enqueue a message to WS _backorders que and specify WS _backorders_excpt_que as

the exception quevie for the message: ¥/
CONNECT BOLADM/BOLADM

Implementing AQ — A Sample Application 2-67

DEQUEUE Features

CREATE OR REPLACE PROCEDURE enqueue_WS_unfiled_order(backorder order_typ)

AS
back_order_queue_name varchar2(62);
engopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid raw(16);

BEGIN

/* Set back order queue name for this message: %/
back_order_queue_name :='WS.WS_backorders_que’;

F* Set exception queue name for this message: */
msgprop.exception_queue :="WSWS_backorders_excpt_que’;

dbms_ag.enqueue(back _order_queue_name, enqopt, msgprop,
backorder, enq_msgid);
END;
/

2-68 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Rule-based Subscription

Messages may be routed to various recipients based on message properties or
message content. Users define a rule-based subscription for a given queue to specify
interest in receiving messages that meet particular conditions.

Rules are boolean expressions that evaluate to TRUEor FALSE Similar in syntax to
the WHERElause of a SQL query, rules are expressed in terms of the attributes that
represent message properties or message content. These subscriber rules are
evaluated against incoming messages and those rules that match are used to
determine message recipients. This feature thus supports the notions of
content-based subscriptions and content-based routing of messages.

Example Scenario and Code

For the BooksOnLine application, we illustrate how rule-based subscriptions are
used to implement a publish/subscribe paradigm utilizing content-based
subscription and content-based routing of messages. The interaction between the
Order Entry application and each of the Shipping Applications is modeled as
follows;

« Western Region Shipping handles orders for the Western region of the US.
« Eastern Region Shipping handles orders for the Eastern region of the US.
« Overseas Shipping handles all non-US orders.

« Eastern Region Shipping also handles all US rush orders.

Each shipping application subscribes to the OE booked orders queue. The following
rule-based subscriptions are defined by the Order Entry user to handle the routing
of booked orders from the Order Entry application to each of the Shipping
applications.

CONNECT OE/OE;

Western Region Shipping defines an agent called 'West_Shipping ' with the WS
booked orders queue as the agent address (destination queue to which messages
must be delivered). This agent subscribes to the OE booked orders queue using a
rule specified on order region and ordertype attributes.

F* Add a rule-based subscriber for West Shipping -
West Shipping handles Westem region US orders,
Rush Westem region orders are handled by East Shipping: */
DECLARE
subscriber ag$_agent;
BEGIN

Implementing AQ — A Sample Application 2-69

DEQUEUE Features

subscriber :=ag$_agent(West_Shipping’, WS.WS_bookedorders_que', null);
dbms_agadm.add_subscriber(
gueue_name =>'OE.OE_bookedorders_que',
subscriber => subscriber,
rue =>'tab.user_data.orderregion =
"WESTERN" AND tab.user_data.ordertype I="RUSH"),
END;
/

Eastern Region Shipping defines an agent called East_Shipping with the ES
booked orders queue as the agent address (the destination queue to which
messages must be delivered). This agent subscribes to the OEbooked orders queue
using a rule specified on orderregion , ordertype and customer attributes.

F Add a rule-based subscriber for East Shipping -
East shipping handles all Eastem region orders,
East shipping also handles all US rush orders: */
DECLARE
subscriber ag$_agent;
BEGIN
subscriber :=ag$_agent(East_Shipping, ES.ES_bookedorders_que', null;
dbms_agadm.add_subscriber(
queue_name =>'OE.OE_bookedorders_gque',
subscriber => subscriber,
rue =>tab.user_data.orderregion ="EASTERN' OR
(tab.user_data.ordertype ="RUSH" AND
tab.user_data.customer.country ="USA"));
END;
/

Overseas Shipping defines an agent called Overseas_Shipping with the OS
booked orders queue as the agent address (destination queue to which messages
must be delivered). This agent subscribes to the OEbooked orders queue using a
rule specified on orderregion attribute.

F* Add a rule-based subscriber for Overseas Shipping
Intl Shipping handles all non-US orders: */
DECLARE
subscriber ag$_agent;
BEGIN
subscriber :=ag$_agent(Overseas_Shipping','OS.0S_bookedorders_que,
null);
dbms_agadm.add_subscriber(
queue_name =>'OE.OE_bookedorders_que',
subscriber => subscriber,

2-70 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

rue =>'tab.user_data.orderregion ="INTERNATIONAL");
END;
/

Implementing AQ — A Sample Application 2-71

DEQUEUE Features

Listen Capability

In Oracle8i release 8.1.x, AQ has the capability to monitor multiple queues for
messages with a single call, listen . An application can use listen to wait for
messages for multiple subscriptions. It can also be used by gateway applications to
monitor multiple queues. If the listen call returns successfully, a dequeue must be
used to retrieve the message (see Listen to One (Many) Queue(s) on page 6-18 in
Chapter 6, "Operational Interface: Basic Operations").

Without the listen call, an application which sought to dequeue from a set of
gueues would have to continuously poll the queues to determine if there were a
message. Alternatively, you could design your application to have a separate
dequeue process for each queue. However, if there are long periods with no traffic
in any of the queues, these approaches will create an unacceptable overhead. The
listen call is well suited for such applications.

Note that when there are messages for multiple agents in the agent list, listen
returns with the first agent for whom there is a message. In that sense listen is not
‘fair' in monitoring the queues. The application designer must keep this in mind
when using the call. To prevent one agent from 'starving' other agents for
messages, the application could change the order of the agents in the agent list.

Example Scenario

In the customer service component of the BooksOnLine example, messages from
different databases arrive in the customer service queues, indicating the state of the
message. The customer service application monitors the queues and whenever there
is a message about a customer order, it updates the order status in the order_
status_table . The application uses the listen call to monitor the different
gueues. Whenever there is a message in any of the queues, it dequeues the message
and updates the order status accordingly.

Example Code
CODE (in tkagdocd.sql)

F Update the status of the order in the order status table: */
CREATE OR REPLACE PROCEDURE update_status(
new_status INVARCHARZ,
order msg INBOLADM.ORDER_TYP)
IS
old_status VARCHAR2(30);
dummy NUMBER,
BEGIN

2-72 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

BEGIN
F* Query old status from the table: */
SELECT ststatus INTO old_status FROM order_status _table st
WHERE st.customer_order.ordemo = order_msg.ordemo;

F+ Status can be BOOKED_ORDER, 'SHIPPED_ORDER', BACK_ORDER'
and BILLED_ORDER:*

IF new_status ='SHIPPED_ORDER THEN
IFold_status="BILLED ORDER' THEN
retum; F* message about a previous state */
ENDIF;
ELSIF new_status ='BACK_ORDER THEN
IFold_status ="SHIPPED_ORDER' OR old_status ='BILLED ORDER' THEN
retum; ¥ message about a previous state */
ENDIF;
ENDIF;

F Update the order status: */
UPDATE order_status_table st
SET stcustomer_order =order_msg, ststatus = new_status;

COMMIT,

EXCEPTION
WHEN OTHERS THEN /*change to no data found */
[First update for the order: */
INSERT INTO order_status_table(customer_order, status)
VALUES (order_msg, new_status);
COMMIT;

END;
END;
/

F* Dequeues message from 'QUEUE for' CONSUMER?: */
CREATE OR REPLACE PROCEDURE DEQUEUE_MESSAGE(
queue IN VARCHAR2,
consumer IN VARCHAR?Z,
message OUT BOLADM.order_typ)

IS
dopt doms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;

Implementing AQ — A Sample Application 2-73

DEQUEUE Features

deq_msgid RAW(16);

BEGIN

doptdequeue_mode :=dbms_aq.REMOVE;
doptnavigation :=dbms_aq.FIRST_MESSAGE;
dopt.consumer_name := consumer;

dbms_ag.dequeue(
gueue_name =>queue,
dequeue_options =>dopt,
message_properties =>mprop,
payload => message,
msgid =>deq_msgid);
COMMIt;
END;
/

F Monitor the queues in the customer service databse for time' seconds: */
CREATE OR REPLACE PROCEDURE MONITOR_STATUS_QUEUE(time IN NUMBER)
IS
agent w_message ag$_agent;
agent list dbms_ag.agent list t;
wait ime INTEGER :=120;
no_message EXCEPTION;
pragma EXCEPTION_INIT(no_message, -25254);
order_ msg boladm.order_typ;
new_stalus VARCHAR2(30);
monitor BOOLEAN :=TRUE;
begin tme NUMBER;
end tme NUMBER,;
BEGIN

begin_time := dbms_utility.get_time;
WHILE (monitor)

LOOP

BEGIN

P Construct the waiters list */
agent list(1) :=ag$_agent(BILLED_ORDER!,'CS_hilledorders_que', NULL);

agent _list(1) .=ag$_agent(SHIPPED_ORDER!,'CS _shippedorders_que',
NULL);

agent list(2) =ag$_agent(BACK_ORDER;,'CS_backorders_que', NULL);
agent list(3) :=ag$_agent(Booked ORDER,'CS_bookedorders_que', NULL);

FWait for order status messages: */
dbms_aglisten(agent list, wait_time, agent w_message);

2-74 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

dbms_output.put_line(Agent || agent w_message.name || ' Address ||
agent w_message.address);
F* Dequeue the message from the queue: */
dequeue_message(agent w_message.address, agent w_message.name, order_msg);

P Update the status of the order depending on the type of the message,
*the name of the agent contains the new state: */
update_status(agent w_message.name, order_msg);

F Exit if we have been working long enough: */
end_time :=dbms_utility.get_time;
IF (end_time - begin_time >time) THEN
EXIT;
ENDIF;

EXCEPTION
WHEN no_message THEN
dbms_outputput_line(No messages in the past 2 minutes);
end_time :=dbms_utility.get_time;
[Exit if we have done enough work: */
IF (end_time - begin_time >time) THEN
EXIT,
ENDIF;
END;

END LOOP;

END;
/

Implementing AQ — A Sample Application 2-75

Propagation Features

Propagation Features

Propagation

Propagation Scheduling

Propagation of Messages with LOB Attributes
Enhanced Propagation Scheduling Capabilities

Exception Handling During Propagation

2-76 Application Developer's Guide - Advanced Queuing

Propagation Features

Propagation

This feature enables applications to communicate with each other without having to
be connected to the same database, or to the same queue. Messages can be
propagated from one Oracle AQ to another, irrespective of whether these are local
or remote. Propagation is performed by snapshot (job_queue) background
processes. Propagation to remote queues is done using database links, and Net 8.

The propagation feature is used as follows. First one or more subscribers are
defined for the queue from which messages are to be propagated (see
"Subscriptions and Recipient Lists" on page 2-29). Second, a schedule is defined for
each destination to which messages are to be propagated from the queue. Enqueued
messages will now be propagated and automatically be available for dequeuing at
the destination queues.

Note that two or more number of job_queue background processes must be
running to use propagation. This is in addition to the number of job_queue
background processes needed for handling non-propagation related jobs. Also, if
you wish to deploy remote propagation, you must ensure that the database link
specified for the schedule is valid and have proper privileges for enqueuing into the
destination queue. For more information about the administrative commands for
managing propagation schedules, see "Asynchronous Notifications" below.

Propagation also has mechanisms for handling failure. For example, if the database
link specified is invalid, or if the remote database is unavailable, or if the remote
gueue is not enabled for enqueuing, then the appropriate error message is reported.

Finally, propagation provides detailed statistics about the messages propagated and
the schedule itself. This information can be used to properly tune the schedules for
best performance. Failure handling/Zerror reporting facilities of propagation and
propagation statistics are discussed under "Enhanced Propagation Scheduling
Capabilities".

Implementing AQ — A Sample Application 2-77

Propagation Features

Propagation Scheduling

A propagation schedule is defined for a pair of source and destination queues. If a
gueue has messages to be propagated to several queues then a schedule has to be
defined for each of the destination queues. A schedule indicates the time frame
during which messages can be propagated from the source queue. This time frame
may depend on a number of factors such as network traffic, load at source database,
load at destination database, and so on. The schedule therefore has to be tailored for
the specific source and destination. When a schedule is created, a job is
automatically submitted to the job_queue facility to handle propagation.

The administrative calls for propagation scheduling provide great flexibility for
managing the schedules (see "Schedule a Queue Propagation” in Chapter 4,
"Administrative Interface: Basic Operations"). The duration or propagation window
parameter of a schedule specifies the time frame during which propagation has to
take place. If the duration is unspecified then the time frame is an infinite single
window. If a window has to be repeated periodically then a finite duration is
specified along with a next_time function that defines the periodic interval
between successive windows.

The latency parameter for a schedule is relevant only when a queue does not have
any messages to be propagated. This parameter specifies the time interval within
which a queue has to be rechecked for messages. Note that if the latency parameter
is to be enforced, then the job_queue_interval parameter for the job_queue
processes should be less than or equal to the latency parameter.

The propagation schedules defined for a queue can be changed or dropped at
anytime during the life of the queue. In addition there are calls for temporarily
disabling a schedule (instead of dropping the schedule) and enabling a disabled
schedule. A schedule is active when messages are being propagated in that
schedule. All the administrative calls can be made irrespective of whether the
schedule is active or not. If a schedule is active then it will take a few seconds for
the calls to be executed.

Example Scenario

In the BooksOnLine example, messages in the OE_bookedorders_que are
propagated to different shipping sites. The following example code illustrates the
various administrative calls available for specifying and managing schedules. It also
shows the calls for enqueuing messages into the source queue and for dequeuing

the messages at the destination site). The catalog view USER_QUEUE_SCHEDULES
provides all information relevant to a schedule (see "Select Propagation Schedules

in User Schema" in Chapter 5, "Administrative Interface: Views").

2-78 Application Developer's Guide - Advanced Queuing

Propagation Features

Example Code
CONNECT OE/OE;

* Schedule Propagation from bookedorders_que to shipping: */
EXECUTE dbms_agadm.schedule_propagation(\
queue_name =>'OE.OE_bookedorders_que’);

F Check if a schedule has been created: */
SELECT * FROM user_queue_schedules;

F* Enqueue some orders into OE_bookedorders_que: */

EXECUTE BOLADM.order_enqg(My First Book', 1, 1001, 'CA,'USA',\
'WESTERN','NORMAL);

EXECUTE BOLADM.order_enqg(My Second Book;, 2, 1002, 'NY’, 'USA',\
'EASTERN', NORMAL);

EXECUTE BOLADM.order_eng(My Third Book, 3,1003,”, 'Canada,\
INTERNATIONAL’,'NORMALY);

EXECUTE BOLADM.order_enq(My Fourth Book, 4, 1004, NV, 'USA,\
'WESTERN','RUSH);

EXECUTE BOLADM.order_enqg(My Fifth Book’, 5, 1005, MA', 'USA',\
'EASTERN, RUSH));

EXECUTE BOLADM.order_enq(My Sixth Book, 6, 1006, , UK’,\
INTERNATIONAL’,'NORMALY);

EXECUTE BOLADM.order_eng(My Seventh Book’, 7, 1007,”, 'Canada’,\
INTERNATIONAL', RUSH);

EXECUTE BOLADM.order_enq(My Eighth Book, 8,1008,”, 'Mexico',\
INTERNATIONAL’,'NORMAL);

EXECUTE BOLADM.order_enq(My Ninth Book, 9, 1009, ‘CA', 'USA',\
'WESTERN','RUSHY);

EXECUTE BOLADM.order_eng(My Tenth Book’, 8,1010,” , 'UK’,\
INTERNATIONAL','NORMALY);

EXECUTE BOLADM.order_eng(My Last Book, 7,1011," , ' Mexica',\
INTERNATIONAL’,'NORMALY);

FWait for propagation to happen: */
EXECUTE dbms_lock sleep(100);

F Connect to shipping sites and check propagated messages: */
CONNECT WSMWS;
set serveroutput on;

F* Dequeue all booked orders for West_Shipping: */
EXECUTE BOLADM.shipping_bookedorder_deq(West_Shipping’, DBMS_AQ.REMOVE);

Implementing AQ — A Sample Application 2-79

Propagation Features

CONNECT ESEES;
SET SERVEROUTPUT ON;

¥ Dequeue all remaining booked orders (normal order) for East_Shipping: */
EXECUTE BOLADM .shipping_bookedorder_deq(East_Shipping, DBMS_AQ.REMOVE);

CONNECT OS/OS;
SET SERVEROUTPUT ON;

F* Dequeue all intemational North American orders for Overseas_Shipping: */
EXECUTE BOLADM.get_northamerican_orders(Overseas_Shipping);

F* Dequeue rest of the booked orders for Overseas_Shipping: */
EXECUTE BOLADM shipping_bookedorder_deq(Overseas_Shipping, DBMS_AQ.REMOVE);

* Disable propagation schedule for booked orders
EXECUTE dbms_agadm.disable_propagation_schedule(\
queue_name =>'OE_bookedorders_que));

*Wait for some time for call to be effected: */
EXECUTE dbms_lock sleep(30);

P Checkif the schedule has been disabled: */
SELECT schedule_disabled FROM user_queue_schedules;

* Alter propagation schedule for booked orders to execute every
15 mins (900 seconds) for a window duration of 300 seconds: */
EXECUTE dbms_agadm.alter_propagation_schedule(\
queue_name =>'OE_hookedorders_que’,\
duration =>300,\
next tme =>'SYSDATE +900/86400’\
latency =>25);

f*Wait for some time for call to be effected: */
EXECUTE dbms_lock sleep(30);

¥ Check if the schedule parameters have changed: */
SELECT next_time, latency, propagation_window FROM user_queue_schedules;

¥ Enable propagation schedule for booked orders:
EXECUTE dbms_agadm.enable_propagation_schedule(\
queue_name =>'OE_bookedorders_que));

*Wait for some time for call to be effected: */
EXECUTE dbms_lock sleep(30);

2-80 Application Developer's Guide - Advanced Queuing

Propagation Features

f* Check if the schedule has been enabled: */
SELECT schedule_disabled FROM user_queue_schedules;

FUnschedule propagation for booked orders: */
EXECUTE dbms_agadm.unschedule_propagation(\
queue_name =>'OE.OE_bookedorders_que’);

f*Wait for some time for call to be effected: */
EXECUTE dbms_lock sleep(30);

F* Check if the schedule has been dropped
SELECT * FROM user_queue_schedules;

Implementing AQ — A Sample Application 2-81

Propagation Features

Propagation of Messages with LOB Attributes
Large Objects can be propagated using AQ using two methods:

« Propagation from RAWjueues. In RAWjueues the message payload is stored
as a Binary Large Object (BLOB. This allows users to store up to 32KB of data
when using the PL/SQL interface and as much data as can be contiguously
allocated by the client when using OCI. This method is supported by all
releases from 8.0.4 inclusive.

« Propagation from Object queues with LOBattributes. The user can populate the
LOBand read from the LOBusing Oracle's LOBhandling routines. The LOB
attributes can be BLOB or CLOB. If the attribute is a CLOBAQ will
automatically perform any necessary characterset conversion between the
source queue and the destination queue. This method is supported by all
releases from 8.1.3 inclusive.

For more information about working with LOBs, see:

« Oracle8i Application Developer’s Guide - Large Objects (LOBS)

Note that AQ does not support propagation from Object queues that have BFILE or
REF attributes in the payload.

Example Scenario

In the BooksOnL.ine application, the company may wish to send promotional
coupons along with the book orders. These coupons are generated depending on
the content of the order, and other customer preferences. The coupons are images
generated from some multimedia database, and are stored as LOBs.

When the order information is sent to the shipping warehouses, the coupon
contents are also sent to the warehouses. In the code shown below the order_typ

is enhanced to contain a coupon attribute of LOB type. The code demonstrates how
the LOBcontents are inserted into the message that is enqueued into OE_
bookedorders_que when an order is placed. The message payload is first
constructed with an empty LOB The place holder (LOBlocator) information is
obtained from the queue table and is then used in conjunction with the LOB
manipulation routines, such as DBMS_LOB.WRITE(), to fill the LOB contents. The
example has additional examples regarding for enqueue and dequeue of messages
with LOBs as part the payload.

A COMMITis issued only after the LOB contents are filled in with the appropriate
image data. Propagation automatically takes care of moving the LOB contents along

2-82 Application Developer's Guide - Advanced Queuing

Propagation Features

with the rest of the message contents. The code below also shows a dequeue at the
destination queue for reading the LOB contents from the propagated message. The
LOB contents are read into a buffer that can be sent to a printer for printing the
coupon.

Example Code

/*Enhance the type order typ o contain coupon field (lob field):
CREATE OR REPLACE TYPE order_typ AS OBJECT (
odemo NUMBER,
status VARCHAR2(30),
ordertype VARCHAR2(30),
orderregion VARCHAR2(30),
customer customer_typ,
paymentmethod VARCHAR2(30),
items orderitemlist_vartyp,
total NUMBER,
coupon BLOB),
/

£ lob loc isavarnable of type BLOB,
buffer is a variable of type RAW,
length is a variable of type NUMBER. ¥
/* Complete the order data and perform the enqueuie using the order_enq()
procedure: %/

dbms_ag.enqueue(OE.OE_hookedorders_que', endopt, msgprop,
OE_enq_order_data, enq_msgid);

/*Getthe lob locator in the queue table after enqueue: %

SELECT tuser_data.coupon INTO lob_loc

FROM OE.OE_orders_pr_mqtabt

WHERE tmsgid =enq_msgid;

/*Generate a sample LOB of 100 bytes:
buffer := hextoraw(rpad(FF,100,FF));

/*Fillin the lob using LOB routtines in the dbms lob package: ¥/
dbms_lobwrite(lob_loc, 90, 1, buffer);

/*Issue a commit only after filling in lob contents: %/
COMMIT;

/* Sleep until propagation is complete: %/

Implementing AQ — A Sample Application 2-83

Propagation Features

/* Perform dequeue at the Westemn Shipping warehouse: %
dbms_ag.dequeue(

gueue_name =>qname,

dequeue_options =>dopt,

message_properties =>mprop,

payload =>deq_order_data,

msgid =>deq_msgid);

/*Get the LOB locator after dequeue; %/
lob_loc :=deq_order_data.coupon;

/*Getthe length of the LOB: %/
length :=dbms_lob.getlength(lob_loc);

/*Read the LOB contents into the buffer: ¥/
dbms_lob.read(lob_loc, length, 1, buffer);

2-84 Application Developer's Guide - Advanced Queuing

Propagation Features

Enhanced Propagation Scheduling Capabilities

Detailed information about the schedules can be obtained from the catalog views
defined for propagation. Information about active schedules —such as the name of
the background process handling that schedule, the SID (session, serial number) for
the session handling the propagation and the Oracle instance handling a schedule
(relevant if OPS is being used) — can be obtained from the catalog views. The same
catalog views also provide information about the previous successful execution of a
schedule (last successful propagation of message) and the next execution of the
schedule.

For each schedule detailed propagation statistics are maintained. This includes the
total number of messages propagated in a schedule, total number of bytes
propagated in a schedule, maximum number of messages propagated in a window,
maximum number of bytes propagated in a window, average number of messages
propagated in a window, average size of propagated messages and the average time
to propagated a message. These statistics have been designed to provide useful
information to the queue administrators for tuning the schedules such that
maximum efficiency can be achieved.

Propagation has built in support for handling failures and reporting errors. For
example, if the database link specified is invalid, the remote database is unavailable
or if the remote queue is not enabled for enqueuing then the appropriate error
message is reported. Propagation uses an exponential backoff scheme for retrying
propagation from a schedule that encountered a failure. If a schedule continuously
encounters failures, the first retry happens after 30 seconds, the second after 60
seconds, the third after 120 seconds and so forth. If the retry time is beyond the
expiration time of the current window then the next retry is attempted at the start
time of the next window. A maximum of 16 retry attempts are made after which the
schedule is automatically disabled. When a schedule is disabled automatically due
to failures, the relevant information is written into the alert log. At anytime it is
possible to check if there were failures encountered by a schedule and if so how
many successive failure were encountered, the error message indicating the cause
for the failure and the time at which the last failure was encountered. By examining
this information, a queue administrator can fix the failure and enable the schedule.
During a retry if propagation is successful then the number of failures is reset to 0.

Propagation has support built in for OPS and is completely transparent to the user
and the queue administrator. The job that handles propagation is submitted to the
same instance as the owner of the queue table in which the queue resides. If at
anytime there is a failure at an instance and the queue table that stores the queue is
migrated to a different instance, the propagation job is also automatically migrated
to the new instance. This will minimize the ’pinging’ between instances and thus

Implementing AQ — A Sample Application 2-85

Propagation Features

offer better performance. Propagation has been designed to handle any number of
concurrent schedules. Note that the number of job_queue_processes is limited to a
maximum of 36 and some of these may be used to handle non-propagation related
jobs. Hence, propagation has built is support for multi-tasking and load balancing.
The propagation algorithms are designed such that multiple schedules can be
handled by a single snapshot (job_queue) process. The propagation load on a job_
gueue processes can be skewed based on the arrival rate of messages in the different
source queues. If one process is overburdened with several active schedules while
another is underloaded with many passive schedules, propagation automatically
re-distributes the schedules among the processes such that they are loaded
uniformly:.

Example Scenario

In the BooksOnLine example, the OE_bookedorders_que is a busy queue since
messages in it are propagated to different shipping sites. The following example
code illustrates the calls supported by enhanced propagation scheduling for error
checking and schedule monitoring.

Example Code
CONNECT OE/OE;

¥ getaverages
selectavg_time, avg_number, avg_size from user_queue_schedules;

F gettotals
selecttotal_time, total_number, total_bytes from user_queue_schedules;

F* get maximums for a window
select max_number, max_bytes from user_queue_schedules;

F* get current status information of schedule
select process_name, session id, instance, schedule_disabled
from user_queue_schedules;

¥ getinformation about last and next execution
selectlast_run_date, last_run_time, next_run_date, next_run_time
fromuser_queue_schedules;

F* getlast error information if any

select failures, last_error_msg, last_emor_date, last_error_time
fromuser_queue_schedules;

2-86 Application Developer's Guide - Advanced Queuing

Propagation Features

Exception Handling During Propagation

When a system errors such as a network failure occurs, AQ will continue to attempt
to propagate messages using an exponential back-off algorithm. In some situations
that indicate application errors AQ will mark messages as UNDELIVERABLET there
is an error in propagating the message.

Examples of such errors are when the remote queue does not exist or when there is
a type mismatch between the source queue and the remote queue. In such situations
users must query the DBA_SCHEDULES®iew to determine the last error that
occurred during propagation to a particular destination.The trace files in the
$ORACLE_HOME/logdirectory can provide additional information about the error.

Example Scenario

In the BooksOnLine example, the ES_bookedorders_que in the Eastern Shipping
region is stopped intentionally using the stop_queue() call. After a short while the
propagation schedule for OE_bookedorders_que will display an error indicating
that the remote queue ES_bookedorders_que is disabled for enqueuing. When the
ES bookedorders_que s started using the start_queue () call, propagation to
that queue resumes and there is no error message associated with schedule for OE_
bookedorders_que

Example Scenario

/* Intentionally stop the eastem shipping queue : %
connect BOLADM/BOLADM
EXECUTE dbms_agadm.stop_queue(queue_name =>'ES.ES_bookedorders_que’);

/*Wait for some time before error shows up indba_queue_scheaules:
EXECUTE dbms_lock.sleep(100);

/* This query will retum an ORA-25207 enqueue failed error: %/
SELECT gname, last_error_msg from dba_queue_schedules;

* Start the eastem shipping queue: */
EXECUTE doms_agadm.start_queue(queue_name =>'ES.ES_bookedorders_que);

/*Wait for Propagation to resume for eastem shipping queue: %/
EXECUTE dbms_lock sleep(100);

F*This query will indicate that there are no errors with propagation:
SELECT gname, last_error_msg from dba_queue_schedules;

Implementing AQ — A Sample Application 2-87

Propagation Features

2-88 Application Developer's Guide - Advanced Queuing

3

Managing Oracle AQ

This chapter describes the elements you need to work with and issues you will
want to take into consideration in preparing the application environment.

« INIT.ORA Parameter

« Common Data Structures

« Enumerated Constants in the Administrative Interface
« Enumerated Constants in the Operational Interface

« Security

« Performance

« Scalability

« Migrating Queue Tables

« Export and Import of Queue Data

« Propagation Issues

« Enterprise Manager Support

« Using XA with AQ

« Sample DBA Actions as Preparation for Working with AQ

Managing Oracle AQ 3-1

INIT.ORA Parameter

INIT.ORA Parameter

AQ TM_PROCESSES

You specify the parameter aq_tm_processes intheinit .ora PARAMETEHKile if
you want to perform time monitoring on gueue messages. You can set the
parameter in a range from 0 to 10 depending on how many queue monitor
processes you require. Setting it to any other number will result in an error. If this
parameter is set to 1, one queue monitor process will be created as a background
process to monitor the messages. If the parameter is not specified, or is set to 0, the
gueue monitor process is not created.

Since the ag_tm_processes parameter is dynamic, you can alter the number of
gueue monitors while the instance is running. You do this by means of the syntax:

ALTER SYSTEM SET aq_tm_processes=<integer>;

Parameter Name: aq_tm_processes

Parameter Type: integer

Parameter Class: Dynamic

Allowable Values: Oto 10

Syntax: ag_tm_processes = <0 to 10>
Name of process: ora_gmon_<oracle sid>
Example: ag_tm_processes = 1

3-2 Application Developer's Guide - Advanced Queuing

INIT.ORA Parameter

JOB_QUEUE_PROCESSES

Propagation is handled by job queue (SNP) processes. The number of job queue
processes started in an instance is controlled by the init .ora parameter JOB_
QUEUE_PROCESSEHRe default value of this parameter is 0. In order for message
propagation to take place, this parameter must be set to at least 1. The DBA can set
it to higher values if there are many queues from which the messages have to be
propagated, or if there are many destinations to which the messages have to be
propagated, or if there are other jobs in the job queue.

Note: with release 8.1.5 you need at least two job queue processes
for propagation scheduling

See Also: Oracle8 Reference for complete details about JOB_
QUEUE_PROCESSES

Managing Oracle AQ 3-3

Common Data Structures

Common Data Structures

Object Name

Type name

The following data structures are used in both the operational and administrative
interfaces:

« Chapter 4, "Administrative Interface: Basic Operations”

« Chapter 6, "Operational Interface: Basic Operations"”

Purpose:

The naming of database objects. This naming convention applies to queues, queue
tables and object types.

Syntax:

object_name :=VARCHAR2
object_name = [<schema_name>J<name>

Usage:

Names for objects are specified by an optional schema name and a name. If the
schema name is not specified then the current schema is assumed. The name must
follow object name guidelines in the Oracle8i SQL Reference with regard to reserved
characters.The schema name, agent name and the object type name can each be up
to 30 bytes long. However, queue names and queue table names can be a maximum
of 24 bytes.

Purpose:
Defining queue types.

Syntax:

type_name :=VARCHAR2
type_name :=<object_type> | "RAW"

3-4 Application Developer's Guide - Advanced Queuing

Common Data Structures

Usage:

Table 3-1 Type Name

Parameter Description

<object_types> For details on creating object types please refer to Server concepts manual. The
maximum number of attributes in the object type is limited to 900.

"RAW To store payload of type RAWAQ will create a queue table with a LOBcolumn as the
payload repository. The size of the payload is limited to 32K bytes of data. Because
LOBcolumns are used for storing RAWpayload, the AQ administrator can choose the
LOBtablespace and configure the LOBstorage by constructing a LOBstorage string
in the storage_clause parameter during queue table creation time.

Agent

Purpose:
To identify a producer or a consumer of a message.

Syntax:

TYPE ag$_agent IS OBJECT (
name VARCHAR2(30),
address VARCHAR2(1024),
protocol NUMBER)

Usage:

Table 3-2 Agent

Parameter Description

name Name of a producer or consumer of a message.The name must follow object name
(VARCHAR2(30)) guidelines in the Oracle8i SQL Reference with regard to reserved characters.
address Protocol specific address of the recipient. If the protocol is 0 (default) the address is
(VARCHAR2(1024)) of the form [schema.]queue[@dblink]

protocol Protocol to interpret the address and propagate the message. The default value is 0.
(NUMBER)

Managing Oracle AQ 3-5

Common Data Structures

Usage Notes

All consumers that are added as subscribers to a multi-consumer queue must have
unique values for the AQ$_AGENTarameter. This means that two subscribers
cannot have the same values for the NAMEADDRES@nd PROTOCOAttributes for
the AQ$_AGENType. At least one of the three attributes must be different for two

subscribers.

AQ Recipient List Type

Purpose:
To identify the list of agents that will receive the message.

Syntax:

TYPE ag$ _recipient list tIS TABLE OF ag$_agent
INDEX BY BINARY_INTEGER;

AQ Agent List Type

Purpose:
To identify the list of agents for DBMS_AQ.LISTEN to listen for.

Syntax:

TYPE ag$_agent list t1S TABLE OF ag$_agent
INDEX BY BINARY INTEGER,;

AQ Subscriber List Type

Purpose:
To identify the list of subscribers that subscribe to this queue.

Syntax:

TYPE ag$_subscriber_list t1S TABLE OF ag$_agent
INDEX BY BINARY INTEGER;

3-6 Application Developer's Guide - Advanced Queuing

Enumerated Constants in the Administrative Interface

Enumerated Constants in the Administrative Interface

When using enumerated constants such as INFINITE , TRANSACTIONALNORMAL _
QUEURre selected as values, the symbol needs to be specified with the scope of the

packages defining it. All types associated with the administrative interfaces have to
be prepended with dbms_agadm . For example:

DBMS_AQADM.NORMAL QUEUE

Table 3-3 Enumerated types in the administrative interface

Parameter Options

retention 0,1,2...INFINITE

message_grouping TRANSACTIONAL , NONE

queue_type NORMAL_QUEUEEXCEPTION_QUEUE,NON_PERSISTENT QUEUE

Managing Oracle AQ 3-7

Enumerated Constants in the Operational Interface

Enumerated Constants in the Operational Interface

When using enumerated constants such as BROWSHEOCKEDREMOVREhe PL/SQL
constants need to be specified with the scope of the packages defining it. All types
associated with the operational interfaces have to be prepended with dbms_aq. For
example:

DBMS_AQ.BROWSE

Table 3-4 Enumerated types in the operational interface

Parameter Options

visibility IMMEDIATE , ON_COMMIT

dequeue mode BROWSE LOCKEDREMOVE, REMOVE_NODATA
navigation FIRST_MESSAGE , NEXT_MESSAGHEEXT_TRANSACTION
state WAITING , READYPROCESSEEXPIRED
sequence_deviation BEFORE , TOP

wait FOREVER, NO_WAIT

delay NO_DELAY

expiration NEVER

3-8 Application Developer's Guide - Advanced Queuing

Security

Security

Configuration information can be managed through procedures in the DBMS _
AQADNMNpackage. Initially, only SYSand SYSTEMave the execution privilege for the
procedures in DBMS_AQADAMd DBMS_AQANy users who have been granted the
EXECUTFRights to these two packages will be able to create, manage, and use
gueues in their own schema. The user would also need the MANAGE ANY QUEUE
privilege in order to create and manage queues in other schemas.

Security with 8.0 and 8.1 Compatible Queues

AQ administrators of an 8.1 database are allowed to create queues with 8.0 or 8.1
compatibility. All 8.1 security features are enabled for 8.1 compatible queues.
However, please note that AQ 8.1 security features work only with 8.1 compatible
gueues; 8.0 compatible queues are protected by the 8.0 compatible security features.

To create queues in 8.1 that can make use of the new security features, the
compatible parameter in DBMS_AQADNREATE_QUEUE_TABLfRust be set to ’8.1’
or above. If you want to use the new security features on a queue originally created
in an 8.0 database, the queue table must be converted to 8.1 compatibility by
running DBMS_AQADMIGRATE_QUEUE_TABL&N the queue table.

If a database downgrade is necessary, all 8.1 compatible queue tables have to be
either converted back to 8.0 compatibility or dropped before the database
downgrade can be carried out. During the conversion, all 8.1 security features on
the queues, like the object privileges, will be dropped. When a queue is converted to
8.0 compatibility, the 8.0 security model apply to the queue, and only 8.0 security
features are supported.

The following table lists the AQ security features supported in each version of
Oracle8 database and their equivalence privileges across different database version.

Managing Oracle AQ 3-9

Security

Table 3-5 Security with 8.0- and 8.1-Compatible Queues

8.0.x Compatible 8.1.x Compatible

Queues in a 8.1.x Queuesina8.1.x
Privilege 8.0.x Database Database Database
AQ_USER_ROLE Supported. The grantee is Supported. The grantee is Not supported.

given the execute right of given the execute right of Equivalent privileges:

DBMS_AQhrough the dbms_aq through the role. 1. execute right on

role. dbms_aq
2. engueue any queue
system privilege
3. dequeue any queue
system privilege
AQ_ADMINISTRATOR_ Supported. Supported. Supported.
ROLE
Execute right on Execute right on DBMS_AQ Execute right on DBMS_AQ Execute right on DBMS_AQ
DBMS_AQ should be granted to should be granted to should be granted to all

developers who write AQ developers who write AQ AQ users. To

applications in PL/SQL. applications in PL/SQL. enqueue/dequeue on 8.1
compatible queues, the
user needs the following

privileges:

1. executeright on
DBMS_AQ

2. either
enqueue/dequeue

privileges on target
queues, or ENQUEUE
ANY
QUEUE/DEQUEUE
ANY QUEUBystem
privileges

Privileges and Access Control

With Oracle 8.1, you can grant or revoke privileges at the object level on 8.1
compatible queues. You can also grant or revoke various system level privileges.
The following table lists all common AQ operations, and the privileges need to
perform these operations for an 8.1-compatible queue;

3-10 Application Developer's Guide - Advanced Queuing

Security

Roles

Table 3-6 Operations and Required Privileges in the 8.1 Security Model

Operation(s)

Privileges Required

CREATZDROFZMONITOR
own queues

CREATEZDROFZMONITOR
any queues

ENQUEUE DEQUEUE to
own queues

ENQUEUEDEQUEUE to
another’s queues

ENQUEUEDEQUEUE to
any queues

Must be granted execute rights on DBMS_AQADMIo other
privileges needed.

Must be granted execute rights on DBMS_AQADAMd be
granted AQ_ADMINISTRATOR_ROLEy another user who
has been granted this role (SYSand SYSTEMare the first
granters of AQ_ADMINISTRATOR_ROLE)

Must be granted execute rights on DBMS_AQ. No other
privileges needed.

Must be granted execute rights on DBMS_AQ@nd be granted
privileges by the owner using DBMS_AQADBRANT_QUEUE_
PRIVILEGE.

Must be granted execute rights on DBMS_AQ@nd be granted
ENQUEUE ANY QUEDEDEQUEUE ANY QUEB\stem
privileges by an AQ administrator using DBMS _
AQADMSRANT_SYSTEM_PRIVILEGE

Access to AQ operations in Oracle 8.0 is granted to users through roles which
provide execution privileges on the AQ procedures. The fact that there is no control
at the database object level when using Oracle 8.0 means that in Oracle 8.0 a user
with the AQ_USER_ROLEan enqueue and dequeue to any queue in the system.
Since Oracle 8.1 offers a finer-grained access control, the function of roles changes
when you develop applications in the 8.1 context.

Administrator role

Oracle 8.1 continues to support the AQ_ AQMISTRATOR_ROLASs in 8.0, the AQ _
ADMINISTRATOR_ROLIas been granted all the required privileges to administer
gueues. The privileges granted to the role let the grantee:

« perform any queue administrative operation, including create queues and
gueue tables on any schema in the database

« perform enqueue and dequeue operations on any queues in the database

= access statistics views used for monitoring the queues’ workload

Managing Oracle AQ 3-11

Security

User role

AQ_USER_ROLEontinues to work for queues that are created with 8.0
compatibility. However, you should avoid granting AQ_USER_ROLk Oracle 8.1
since this role will not provide sufficient privileges for enqueuing or dequeuing on
8.1 compatible queues.

Your database administrator has the option of granting the system privileges
ENQUEUE ANY QUEHHE] DEQUEUE ANY QUEWkKercising DBMS_AQADBRANT_
SYSTEM_PRIVILEGEand DBMS_AQADREVOKE_SYSTEM_PRIVILEGHirectly to
a database user, provided that you wish the user to have this level of control. You as
the application developer give rights to a queue by granting and revoking
privileges at the object level by exercising DBMS_AQADMRANT_QUEUE_
PRIVILEGE and DBMS_AQADREVOKE_QUEUE_PRIVILEGE

As a database user you do not need any explicit object level or system level
privileges to enqueue or dequeue to queues in your own schema other than the
execute right on DBMS_AQ

Access to AQ Object Types

The procedure grant_type_access is made obsolete in release 8.1.5 for both
8.0-compatible and 8.1 compatible queues. All internal AQ objects are now
accessible to PUBLIC.

OCI Applications

Propagation

For an OCI application to access an 8.0-compatible queue, the session user has to be
granted the EXECUTHRights of DBMS_AQFor an OCI application to access an
8.1-compatible queue, the session user has to be granted either the object privilege
of the queue he intends to access or the ENQUEUE ANY QUEU&Nd/or DEQUEUE
ANY QUEUEBsystem privileges. The EXECUTEight of DBMS_AQuill not be checked
against the session user’s rights, if the queue he intends to access is an
8.1-compatible queue.

AQ propagates messages through database links. The propagation driver dequeues
from the source queue as owner of the source queue; hence, no explicit access rights
have to be granted on the source queue. At the destination, the login user in the
database link should either be granted ENQUEUE ANY QUEURrivilege or be
granted the rights to enqueue to the destination queue. However, if the login user in

3-12 Application Developer's Guide - Advanced Queuing

Security

the database link also owns the queue tables at the destination, no explicit AQ
privileges need to be granted either.

Managing Oracle AQ 3-13

Performance

Performance

Queues are stored in database tables. The performance characteristics of queue
operations are very similar to the underlying database operations.

Table and index structures

Throughput

Availability

To understand the performance characteristics of queues it is important to under-
stand the tables and index layout for AQ objects.

Creating a queue table creates a database table with approximately 25 columns.
These columns store the AQ meta data and the user defined payload. The payload
can be of an object type or RAWThe AQ meta data contains object types and scaler
types. A view and two indexes are created on the queue table. The view allows
users to query the message data. The indexes are used to accelerate access to mes-
sage data. Please refer to the create queue table command for a detailed description
of the objects created.

The code path of an enqueue operation is comparable to an insert into a multi-col-
umn table with two indexes. The code path of a dequeue operation is comparable to
a select and delete operation on a similar table. These operations are performed
using PL/SQL functions.

Oracle Parallel Server (OPS) can be used to ensure highly available access to queue
data. Queues are implemented using database tables. The tail and the head of a
gueue can be extreme hot spots. Since OPS does not scale well in the presence of hot
spots it is recommended to limit normal access to a queue from one instance only. In
case of an instance failure messages managed by the failed instance can be pro-
cessed immediately by one of the surviving instances.

3-14 Application Developer's Guide - Advanced Queuing

Scalability

Scalability

Queue operation scalability is similar to the underlying database operation
scalability. If a dequeue operation with wait option is issued in a Multi-Threaded
Server (MTS) environment the shared server process will be dedicated to the
dequeue operation for the duration of the call including the wait time. The presence
of many such processes could cause severe performance and availability problems
and could result in deadlocking the shared server processes. For this reason it is
recommended that dequeue requests with wait option be only issued via dedicated
server processes. This restriction is not enforced.

Managing Oracle AQ 3-15

Migrating Queue Tables

Migrating Queue Tables

Purpose:
To upgrade a 8.0-compatible queue table to an 8.1-compatible queue table or to
downgrade a 8.1-compatible queue table to an 8.0-compatible queue table.

Syntax:

DBMS_AQADMMIGRATE_QUEUE_TABLE(
queue_table IN VARCHARZ,
compatible IN VARCHAR2)

Usage:

Table 3-7 DBMS_AQADM_MIGRATE_QUEUE_TABLE

Parameter Description

queue_table Specifies name of the queue table that is to be migrated.

(IN VARCHAR?2)

Set to '8.1’ to upgrade an 8.0 queue table to 8.1 compatible. Set to '8.0’ to downgrade

compatible
an 8.1 queue table to 8.0 compatible.

Usage Notes
For the most current information regarding the interrelationship of different
releases, please refer to "Compatibility" on page 1-36 in Chapter 1, "Introduction".

3-16 Application Developer's Guide - Advanced Queuing

Migrating Queue Tables

Example: To Upgrade An 8.0 Queue Table To A 8.1-Compatible Queue Table

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table =>'gtablel’,

multiple_consumers => TRUE,
queue_payload_type =>'ag.message_typ’,
compatible =>'8.0");

EXECUTE DBMS_AQADMMIGRATE_QUEUE_TABLE(
queue_table => 'gtablel’,
compatible =>'8.1);

Managing Oracle AQ 3-17

Export and Import of Queue Data

Export and Import of Queue Data

When a queue table is exported, the queue table data and anonymous blocks of
PL/SQL code are written to the export dump file. When a queue table is imported,
the import utility executes these PL/SQL anonymous blocks to write the metadata
to the data dictionary.

Exporting Queue Table Data

Queues are implemented on tables. The export of queues entails the export of the
underlying queue tables and related dictionary tables. Export of queues can only be
done at queue table granularity.

Exporting queue tables with multiple recipients

For every queue table that supports multiple recipients, there is an index-organized
table (I0T) and a time-management table that contain important queue metadata.
For 8.1 compatible queue tables there is also a subscriber table, a history table and a
rules table. This metadata is essential to the operation of the queue, so the user must
export these tables as well as the queue table itself for the queues in this queue table
to work after import. During full database mode and user mode export, all these
tables are exported automatically.

Because these metadata tables contain rowids of some rows in the queue table, the
import process will generate a note about the rowids being obsoleted when
importing the metadata tables. This message can be ignored as the queuing system
will automatically correct the obsolete rowids as a part of the import operation.
However, if another problem is encountered while doing the import (such as
running out of rollback segment space), the problem should be corrected and the
import should be repeated.

Exporting Rules

Rules are associated with a queue table. When a queue table is exported, all
associated rules, if any, will be exported automatically.

Supported Export Modes

Export currently operates in three modes: full database mode, user mode, and table
mode. The operation of the three export modes is described as follows.

3-18 Application Developer's Guide - Advanced Queuing

Export and Import of Queue Data

Full database mode

This mode is supported. Queue tables, all related tables, system level grants, and
primary and secondary object grants are exported automatically.

User mode

This mode is supported. Queue tables, all related tables and primary object grants
are exported automatically.

Table mode

This is not recommended. If there is a need to export a queue table in table mode,
the user is responsible for exporting all related objects which belong to that queue
table. For example, when exporting an 8.1 compatible multi-consumer queue table
MCQ, you will also need to export the following tables:

AQ$ MCQ |

AQ$ MCQ_H
AQ$_MCQ_S
AQ$ MCQ_T

Incremental export
Incremental export on queue tables is not supported.

Importing Queue Table Data

Similar to exporting queues, the import of queues entails the import of the
underlying queue tables and related dictionary data. After the queue table data is
imported, the import utility executes the PL/SQL anonymous blocks in the dump
file to write the metadata to the data dictionary.

Importing queue tables with multiple recipients

As explained earlier, for every queue table that supports multiple recipients, there is
a index-organized table (10T), a subscriber table, a history table, and a
time-management table that contain important queue metadata. All these tables as
well as the queue table itself, have to be imported for the queues in this queue table
to work after the import.

Because these metadata tables contain rowids of some rows in the queue table, the
import process will issue a note about the rowids being obsoleted when importing
the metadata table. This message can be ignored, as the queuing system will
automatically correct the obsolete rowids as a part of the import operation.

Managing Oracle AQ 3-19

Export and Import of Queue Data

However, if another problem is encountered while doing the import (such as
running out of rollback segment space), the problem should be corrected and the
import should be rerun.

Import IGNORE parameter

We suggest that you do not import queue data into a queue table that already
contains data. We recommend that the DBA should always set the IGNORE
parameter of the import utility to NOwhen importing queue tables. If the IGNORE
parameter is set to YES and the queue table that already exists is compatible with
the table definition in the dump file, then the rows will be loaded from the dump
file into the existing table. At the same time, the old queue table definition and the
old queue definition will be dropped and recreated. Hence, queue table and queue
definitions prior to the import will be lost, and duplicate rows will appear in the
gueue table.

3-20 Application Developer's Guide - Advanced Queuing

Propagation Issues

Propagation Issues

Caution: Propagation makes use of the system queue aq$_prop_
notify_X (where X is the instance number of the instance where
the source queue of a schedule resides) for handling propagation
run-time events. These messages in this queue are stored in the
system table aq$_prop_table_X (where X is the instance
number of the instance where the source queue of a schedule
resides). The queue aq$_prop_notify_X should never be
stopped or dropped and the table ag$_prop_notify X should
never be dropped for propagation to work correctly.

Optimizing Propagation

In setting the number of JOB_QUEUE_PROCESSES8)e DBA should aware that this
need is determined by the number of queues from which the messages have to be
propagated and the number of destinations (rather than queues) to which messages
have to be propagated.

In this release, a new scalable scheduling algorithm has been incorporated for
handling propagation. It has been designed to make optimal use of the available job
gueue processes and also minimize the time it takes for a message to show up at a
destination once it has been enqueued into the source queue, thereby providing
near OLTP behavior. This algorithm is capable of simultaneously handling an
unlimited number of schedules. The algorithm also has robust support for handling
various types of failures. While propagation tries to make the optimal use of the
available job queue processes, the number of job queue processes to be started also
depends on the existence of non-propagation related jobs such as replication jobs.
Hence, it is very important to use the following guidelines to get the best results
from this new algorithm.

The new algorithm uses the job queue processes as follows: (for this discussion an
active schedule is one which has a valid current window)

« if the number of active schedules is less than half the number of job queue
processes, the number of job queue processes acquired corresponds to the
number of active schedules

« if the number of active schedules is more than half the number of job queue
processes, after acquiring half the number of job queue processes multiple
active schedules are assigned to an acquired job queue process

Managing Oracle AQ 3-21

Propagation Issues

« if system is overloaded (all schedules are busy propagating), depending on the
availability additional job queue processes will be acquired up to one less than
the total number of job queue processes

« if none of the active schedules handled by a process have messages to be
propagate then that job queue process will be released

« the algorithm performs automatic load balancing by transferring schedules
from a heavily loaded process to a lightly load process such that no process is
excessively loaded

The scheduling algorithm places the restriction that at least 2 job queue processes be
available for propagation. If there are non-propagation related jobs then more
number of job queue processes is needed. If heavily loaded conditions (when there
are a large number of active schedules all of which have messages to be propagated)
are expected then it is recommended to start a larger number of job queue processes
keeping in mind that the job queue processes will be used for non-propagation
related jobs as well. In a system which only has propagation jobs, then 2 job queue
processes can handle all schedules but higher the number the faster the messages
get propagated. Note that, since one job queue process can propagate messages
from multiple schedules, it is not necessary to have the same number of job queue
processes as the number of schedules.

Handling Failures in Propagation

The new algorithm also has robust support for handling failures. It may not be able
to propagate messages from a queue due to various types of failures. Some of the
common reasons include failure of the database link, non-availability of the remote
database, non-existence of the remote queue, remote queue not started and security
violation while trying to enqueue messages into the remote queue. Under all these
circumstances the appropriate error messages will be reported in the dba_queue_
schedules view. When an error occurs in a schedule, propagation of messages in
that schedule is attempted periodically using an exponential backoff algorithm for a
maximum of 16 times after which the schedule is disabled. If the problem causing
the error is fixed and the schedule is enabled, the error fields that indicate the last
error date, time and message will still continue to show the error information. These
fields are reset only when messages are successfully propagated in that schedule.
During the later stages of the exponential backoff, the time span between
propagation attempts can be large in the tune of hours or even days. This happens
only when an error has been neglected for a long time. Under such circumstances it
may be better to unschedule the propagation and schedule it again.

3-22 Application Developer's Guide - Advanced Queuing

Using XA with AQ

Enterprise Manager Support

Enterprise manager supports GUIs for most of the administrative functions listed in
the administrative interfaces section.

These include:
Queues as part of schema manager to view properties.
Create, start, stop and drop queue.
Schedule and unschedule propagation.

1.

2

3

4. Add and remove subscriber.

5. View the current propagation schedule.
6

Grant & revoke privileges.

Using XA with AQ

You must specify "Objects=T" in the xa_open string if you want to use the AQ OCI
interface. This forces XA to initialize the client side cache in Objects mode. You do
not need to do this if you plan to use AQ through PL/SQL wrappers from OCI or
Pro*C. The LOB memory management concepts you picked up from the Pro*
documentation is not relevant for AQ raw messages because AQ provides a simple
RAW buffer abstraction (although they are stored as LOBSs).

You must use AQ navigation option carefully when you are using AQ from XA. XA
cancels cursor fetch state after an xa_end. Hence, if you want to continue
dequeuing between services (i.e. xa_start/xa_end boundaries) you must reset the
dequeue position by using the FIRST_MESSAGHavigation option. Otherwise, you
will get an ORA-25237 (navigation used out of sequence).

Managing Oracle AQ 3-23

Sample DBA Actions as Preparation for Working with AQ

Sample DBA Actions as Preparation for Working with AQ

Creating a User as an AQ Administrator
To set a user up as an AQ administrator, you must the following steps

CONNECT system/manager

CREATE USER agadm IDENTIFIED BY agadm;
GRANT AQ_ADMINISTRATOR_ROLE TO agadm;
GRANT CONNECT, RESOURCE TO agadm;

Additionally, you might grant execute on the AQ packages as follows;

GRANT EXECUTE ON DBMS_AQADM TO agadm;
GRANT EXECUTE ON DBMS_AQ TO agadm;

This allows the user to execute the procedures in the AQ packages from within a
user procedure.

Creating User AQUSER1 and AQUSER?2 as Two AQ Users

If you want to create an AQ user who creates and accesses queues within his/her
own schema, follow the steps outlined in the previous section except do not grant
the AQ_ADMINISTRATOR_ROLE

CONNECT system/manager
CREATE USER aquserl IDENTIFIED BY aquserl;
GRANT CONNECT, RESOURCE TO aquserl;

Additionally, you might grant execute on the AQ packages as follows:
GRANT EXECUTE ON DBMS_AQADM to aquserl;
GRANT EXECUTE ONDBMS_AQ TO aquserl;

If you wish to create an AQ user who does not create queues but uses a queue in
another schema, first follow the steps outlined in the previous section. In addition,
you must grant object level privileges. However, note that this applies only to
gueues defined using 8.1 compatible queue tables.

CONNECT system/manager

CREATE USER aquser2 IDENTIFIED BY aquser2;

GRANT CONNECT, RESOURCE TO aquser2;

Additionally, you might grant execute on the AQ packages as follows:

GRANT EXECUTE ON DBMS_AQADM to aquser2;
GRANT EXECUTE ON DBMS_AQ TO aquser2;

3-24 Application Developer's Guide - Advanced Queuing

Sample DBA Actions as Preparation for Working with AQ

For aquser2 to access the queue, aquserl gl in aquserl schema, aquserl
must execute the following statements:

CONNECT aquserl/aquserl
EXECUTE DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(
‘ENQUEUEaquserl._ql',aquser2,FALSE);

Managing Oracle AQ 3-25

Sample DBA Actions as Preparation for Working with AQ

3-26 Application Developer's Guide - Advanced Queuing

A

Administrative Interface: Basic Operations

In this chapter we describe the administrative interface to Oracle Advanced
Queuing in terms of use cases. That is, we discuss each operation (such as "Create a
Queue Table") as a use case by that name. The table listing all the use cases is
provided at the head of the chapter (see "Use Case Model: Administrative Interface
— Basic Operations" on page 4-2).

A summary figure, "Use Case Diagram: Administrator’s Interface — Basic
Operations”, locates all the use cases in single drawing. If you are using the HTML
version of this document, you can use this figure to navigate to the use case in
which you are interested by clicking on the relevant use case title.

The individual use cases are themselves laid out as follows:

« A figure that depicts the use case (see "Preface" for a description of how to
interpret these diagrams).

« Alisting of the syntax.
« Basic examples

« Usage Notes, if any.

Administrative Interface: Basic Operations 4-1

Use Case Model; Administrative Interface — Basic Operations

Use Case Model: Administrative Interface — Basic Operations

Table 4-1 Use Case Model: Administrative Interface — Basic Operations

Use Case

Create a Queue Table on page 4-4

Create a Queue Table [Set Storage Clause] on page 4-11
Alter a Queue Table on page 4-12

Drop a Queue Table on page 4-15

Create a Queue on page 4-18

Create a Non-Persistent Queue on page 4-24
Alter a Queue on page 4-27

Drop a Queue on page 4-30

Start a Queue on page 4-32

Stop a Queue on page 4-34

Grant System Privilege on page 4-37

Revoke System Privilege on page 4-40

Grant Queue Privilege on page 4-42

Revoke Queue Privilege on page 4-44

Add a Subscriber on page 4-46

Alter a Subscriber on page 4-50

Remove a Subscriber on page 4-53

Schedule a Queue Propagation on page 4-56
Unschedule a Queue Propagation on page 4-60
Verify a Queue Type on page 4-62

Alter a Propagation Schedule on page 4-65
Enable a Propagation Schedule on page 4-68
Disable a Propagation Schedule on page 4-70

4-2 Application Developer’'s Guide - Advanced Queuing

Use Case Model: Administrative Interface — Basic Operations

Figure 4-1 Use Case Diagram: Administrator’s Interface — Basic Operations

Administrative Interface — Basic Operations

CREATE a
queue table

ALTER a
queue table

DROP a
queue table

4 n(():nr\r’)ltzag—irslfant CREATE ALTER DROPa Y«
queue a queue a queue queue ---:
START STOP :
a queue a queue <

GRANT
system
privilege

REVOKE

system

privilege

GRANT
queue
privilege

REVOKE
queue
privilege

ADD a

ALTER a

subscriber subscriber

REMOVE
a subscriber

5

Administrator

SCHEDULE
a queue
propagation

propagation
schedule

DISABLE
propagation
schedule

ENABLE
propagation
schedule

VERIFY
a queue type

Administrative Interface: Basic Operations 4-3

Create a Queue Table

Create a Queue Table

Figure 4-2 Use Case Diagram: Create a Queue Table

Administrative Interface

; specify
CREATE specify
7 queue table quent?en{:ble payload type pag/sl’oggézg ¢
User/ as RAW Je
Program ! typ .
E A A "0‘
P OR :
v 4

specify
storage
clause

wish to use the default

specify only if you do not
| tablespace

: OR E
e : :
T e
v v v v

sort by sort by

for sort enqueue S?{érﬁy enqueue time priority by
list time prionty by priority enqueue time
'.O.FE : default
v ’
default specify specify specify specify
for multi- single- multi-consumer message message
consumer grouping as grouping as
consumers queue transactional

queue none

define
object type

continued on next page

4-4 Application Developer’'s Guide - Advanced Queuing

Create a Queue Table

specify
primary
instance

. add
optional table
information [description

default

specify
secondary
instance

set set
auto-commit auto-commit
= true = false
WARNING:
deprecated

e . :
v v
specify specify
default | compatible compatible
as 8.0 as 8.1
To refer to the table of all basic operations having to do with the
Administrative Interface see:
« "Use Case Model: Administrative Interface — Basic
Operations" on page 4-2
Purpose:

Create a queue table for messages of a pre-defined type. The sort keys for dequeue
ordering, if any, need to be defined at table creation time. The following objects are

created at this time:

« The default exception queue associated with the queue table called ag$_

<queue_table _name>_e.

« Avread-only view which is used by AQ applications for querying queue data
called ag$<queue_table_name>.

Administrative Interface: Basic Operations 4-5

Create a Queue Table

« Anindex or an index organized table (10T) for the queue monitor operations
called ag$_<queue_table_name>_t

« Anindex or an index organized table (I0T) in the case of multiple consumer
queues for dequeue operations called ag$_<queue_table_name>_i.

For 8.1-compatible multiconsumer queue tables the following additional objects are
created:

« Atablecalled ag$_<queue_table_name>_s. This table stores information
about the subscribers.

= Atable called ag$_<queue_table_name>_r. This table stores information
about rules on subscriptions.

« Anindex organized table (10T) called ag$_<queue_table_name>_h. This
table stores the dequeue history data.

Syntax

DBMS_AQADM.CREATE_QUEUE TABLE (
queue table IN VARCHAR2,
queue_payload typeIN VARCHARZ,
storage clause IN VARCHAR? default NULL,
sort list IN VARCHAR2 default NULL,
multiple_consumersIN BOOLEAN default FALSE,
message_grouping IN BINARY_INTEGER default NONE,
comment IN VARCHAR2 default NULL,
auto_ commit IN BOOLEAN default TRUE,
primary_instance IN BINARY_INTEGER default O,
secondary_instance IN BINARY_INTEGER default O,
compatble IN VARCHAR2 default'8.0);

4-6 Application Developer’'s Guide - Advanced Queuing

Create a Queue Table

Usage:

Table 4-2 DBMS_AQADM.CREATE_QUEUE_TABLE

Parameter Description

queue_table specifies the name of a queue table to be created.
(IN VARCHAR?2)

queue_payload_type specifies the type of the user data stored. Please see section entitled "Type name" on
(IN VARCHAR?) page 3-4 for valid values for this parameter.

storage_clause specifies the storage parameter. The storage parameter will be included in the

(IN VARCHARY) "CREATE TABLEstatement when the queue table is created. The storage parameter
can be made up of any combinations of the following parameters: PCTFREE

PCTUSEDINITRANS, MAXTRANSTABLEPSACELOBand a table storage clause.

If tablespace is not specified in the storage_clause parameter, the queue table
and all its related objects are created in the default user tablespace. If a tablespace is
specified in the storage_clause parameter, the queue table and all its related objects
are created in the tablespace specified in the storage clause.

Please refer to the SQL reference guide for the usage of these parameters.

sort_list specifies the columns to be used as the sort key in ascending order.
(IN VARCHAR?2) Sort_list has the following format: '<sort_column_1>,<sort_column_2>’.

The allowed column names are priority and eng_time. If both columns are specified
then <sort_column_1> defines the most significant order.

Once a queue table is created with a specific ordering mechanism, all queues in the
queue table inherit the same defaults. The order of a queue table cannot be altered
once the queue table has been created.

If no sort list is specified all the queues in this queue table will be sorted by the
enqueue time in ascending order. This order is equivalent to FIFO order.

Even with the default ordering defined, a dequeuer is allowed to choose a message
to dequeue by specifying its msgid or correlation. Msgid, correlation and sequence_
deviation take precedence over the default dequeueing order if they are specified.

multiple_consumers FALSE Queues created in the table can only have one consumer per message. This

(IN BOOLEAN) is the default.
TRUE Queues created in the table can have multiple consumers per message.

message_grouping specifies the message grouping behavior for queues created in the table.
(IN BINARY_ NONEEach message is treated individually.
INTEGER)

TRANSACTIONALMessages enqueued as part of one transaction are considered
part of the same group and can be dequeued as a group of related messages.

Administrative Interface: Basic Operations 4-7

Create a Queue Table

Table 4-2 DBMS_AQADM.CREATE_QUEUE_TABLE

Parameter

Description

comment
(IN VARCHAR?2)

auto_commit
(IN BOOLEAN)

primary_instance
(IN
BINARY_INTEGER)

secondary_instance
(IN
BINARY_INTEGER)

compatible
(VARCHAR?2)

specifies the user-specified description of the queue table. This user comment will
be added to the queue catalog.

TRUE causes the current transaction, if any, to commit before the CREATE_QUEUE_
TABLE operation is carried out. The CREATE_QUEUE_TAMB . operation becomes
persistent when the call returns. This is the default.

FALSE The operation is part of the current transaction and will become persistent
only when the caller issues a commit.

Caution: This parameter has been deprecated.

This is the primary owner of the queue table. Queue monitor scheduling and
propagation for the queues in the queue table will be done in this instance.

The default value for primary instance is 0, which means queue monitor scheduling
and propagation will be done in any available instance.

The queue table fails over to the secondary instance if the primary instance is not
available. The default value is 0, which means that the queue-table will fail over to
any available instance.

specifies the lowest database version with which the queue is compatible. Currently
the possible values are either ’8.0’ or ’8.1’. The default is ’8.0’.

Usage Notes:

CLOB BLOBor BFILE objects are valid attributes for an AQ object type load.
However, only CLOB and BLOB can be propagated using AQ propagation in
Oracle8i release 8.1.x.

You can specify and modify the primary_instance and secondary_
instance only when the database is in 8.1-compatible mode.

You cannot specify a secondary instance unless there is a primary instance.

4-8 Application Developer’'s Guide - Advanced Queuing

Create a Queue Table

Example: Create a Queue Table Using PL/SQL (DBMS_AQADM Package)

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/managetr;

DROP USER agadm CASCADE;

CREATE USER agadm IDENTIFIED BY agadm;
GRANT CONNECT, RESOURCE TO agadm;
GRANT EXECUTE ON DBMS_AQADM TO agadm;
GRANT Aq_administrator_role TO agadm;

DROP USER aq CASCADE;

CREATE USER aq IDENTIFIED BY ag;

GRANT CONNECT, RESOURCE TO ag;

GRANT EXECUTE ON dbms_aq TO ag;

Create queue table for queues containing messages of object type
CREATE type ag.Message_typ as object (

Subject VARCHAR2(30),

Text VARCHAR2(80));

| *Note: if you do not stipulate a schema, you defaullt to the user’s schema. %
EXECUTE dbms_agadm.create_queue_table (

Queue_table =>'ag.ObjMsgs_gtab,
Queue_payload_type =>'ag.Message typ);

Create queue table for queues containing messages of RAW type
EXECUTE dbms_agadm.create_queue_table (

Queue_table =>'ag.RawMsgs_qtab,

Queue_payload type =>'RAW);

Create a queue table for prioritized messages

EXECUTE dbms_agadm.create_queue_table (

Queue_table =>’aq.PriorityMsgs_qtab’,
Sort list =>PRIORITY,ENQ_TIME,,

Queue_payload type =>'agMessage_typ);

Administrative Interface: Basic Operations 4-9

Create a Queue Table

Create a queue table for multiple consumers
EXECUTE dbms_agadm.create_queue_table (
Queue_table =>'ag.MuliConsumerMsgs_gtab’,
Multtiple_consumers =>TRUE,
Queue_payload type =>'ag.Message_typ);

Create a queue table for multiple consumers compatible with 8.1
EXECUTE dbms_agadm.create_queue_table (

Queue_table =>"ag.Multiconsumermsgs8_1qtab’,

Multiple_consumers => TRUE,

Compatible =81,

Queue_payload_type =>'agMessage_typ);

Create a queue table in a specified tablespace

EXECUTE dbms_agadm.create_queue_table(
queue_table =>‘ag.aq thsMsg gtab),
queue_payload type =>'ag.Message typ',
storage_clause =>'tablespace aq_ths);

4-10 Application Developer’'s Guide - Advanced Queuing

Create a Queue Table [Set Storage Clause]

Create a Queue Table [Set Storage Clause]

CREATE
Queue Table

Figure 4-3 Use Case Diagram: Create a Queue Table [Set Storage Clause]

Administrative Interface

specify
storage
clause

specify specify specify
PCTFREE

PCTUSED INITRANS

See SQL Reference

specify specify
MAXTRANS TABLESPACE

specify
LOB storage

<---
-

specify
INITIAL

specify
MAXEXTENTS

Administrative Interface: Basic Operations 4-11

Alter a Queue Table

Alter a Queue Table

Figure 4-4 Use Case Diagram: Alter a Queue Table

Administrative Interface
%] ALTER S name
User/ queue table gueue table
Program

optional add
information [comment
optional [Eﬁﬁgg Sggoeﬁ(igry optional
information instance instance information

To refer to the table of all basic operations having to do with the

Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic

Operations” on page 4-2
Purpose:

Alter the existing properties of a queue table.

4-12 Application Developer’'s Guide - Advanced Queuing

Alter a Queue Table

Syntax:
DBMS_AQADMALTER_QUEUE_TABLE (

queue_table
comment
primary_instance IN BINARY_INTEGER default NULL,
secondary_instance IN BINARY_INTEGER default NULL);

IN VARCHARZ,
IN VARCHAR2 default NULL,

Usage:

Table 4-3 DBMS_AQADM.ALTER_QUEUE_TABLE

Parameter

Description

gueue_table
(IN VARCHAR?2)

comment
(IN VARCHAR?2)

primary_instance
(IN
BINARY_INTEGER)

secondary_instance
(IN
BINARY_INTEGER)

specifies the name of a queue table to be altered.

modifies the user-specified description of the queue table. This user comment will
be added to the queue catalog. The default value is NULLwhich means that the
value will not be changed.

This is the primary owner of the queue table. Queue monitor scheduling and
propagation for the queues in the queue table will be done in this instance.

The default value is NULLwhich means that the current value will not be changed.

The queue table fails over to the secondary instance if the primary instance is not
available.

The default value is NULL which means that the current value will not be changed.

Example: Alter a Queue Table Using PL/SQL (DBMS_AQADM Package)

/* Altering the table to change the primary, secondary instances for queue owner
(only applicable for OPS environments). The primary instance is the instarice
number of the primary owner of the queue table. The secondary instance is the
instance number of the secondary owner of the queue table.

EXECUTE dbms_agadm.alter_queue_table
Queue_table =>'ag.ObjMsgs_gtaly,
Primary_instance =>3,
Secondary_instance =>2);

/*Altering the table to change the comment for a queue table: %
EXECUTE dbms_agadm.alter_queue_table

Queue_table =>'"ag.ObjMsgs_qtalby,

Comment =>"revised usage for queue table’);

Administrative Interface: Basic Operations 4-13

Alter a Queue Table

Usage Notes

« You can specify and modify the primary_instance and secondary_instance only
in 8.1-compatible mode.

« You cannot specify a secondary instance unless there is a primary instance.

4-14 Application Developer’'s Guide - Advanced Queuing

Drop a Queue Table

Drop a Queue Table

Figure 4-5 Use Case Diagram: Drop a Queue Table

Administrative Interface

- WARNING: Dropping a queue table
requires a decision regarding stopping

User/ and dropping the queues it contains

Program

v
default | set
force = false force = true
OR
defaul set set
efault auto-commit auto-commit
= true = false

WARNING:
deprecated

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations” on page 4-2

Administrative Interface: Basic Operations 4-15

Drop a Queue Table

Purpose:

Drop an existing queue table. Note that you must stop and drop all the queues in a
gueue tables before the queue table can be dropped. You must do this explicitly
unless the force option is used in which case this done automatically.

Syntax:

DBMS_AQADM.DROP_QUEUE_TABLE (
queue_table IN VARCHARZ,

force IN BOOLEAN default FALSE,
auto_ commit IN BOOLEAN default TRUE);

Usage:

Table 4-4 DBMS_AQADM.DROP_QUEUE_TABLE

Parameter

Description

queue_table
(IN VARCHAR?2)

force
(IN BOOLEAN)

auto_commit
(IN BOOLEAN)

specifies the name of a queue table to be dropped.

FALSE The operation will not succeed if there are any queues in the table.This
is the default.

TRUE All queues in the table are stopped and dropped automatically.

TRUE Causes the current transaction, if any, to commit before the DROP_
QUEUE_TABLBperation is carried out. The DROP_QUEUE_TABLd&peration
becomes persistent when the call returns. This is the default.

FALSE The operation is part of the current transaction and will become
persistent only when the caller issues a commit.

Caution: This parameter has been deprecated.

Caution: You may need to set up or drop data structures for
certain examples to work:

Example: Drop a Queue Table Using PL/SQL (DBMS_AQADM Package)

/* Drop the queue table (for which all queues have been previously dropped by
the user) %/

EXECUTE dbms_agadm.drop_queue_table (
gueue table =>’aq.Objmsgs_qtab);

4-16 Application Developer’'s Guide - Advanced Queuing

Drop a Queue Table

Caution: You may heed to set up or drop data structures for
certain examples to work:

/*Drop the queue table and force all queues to be stopped and dropped by the
system?

EXECUTE dbms_agadm.drop_queue_table (
queue table =>'agq.Objmsgs_qtab,
force =>TRUE);

Administrative Interface: Basic Operations 4-17

Create a Queue

Create a Queue

Figure 4-6 Use Case Diagram: Create a Queue

Administrative Interface
CREATE name name
—] queue table queue
User/
Program T

i i A
o Thesssssssssamnnnnnn . .
i OR :
P v
i specify specify
e default L _(queue type queue type
: : i as normal as exception
P1i OR
P v
i : 6 specify specify
HHE default | _ (' maximum retry maximum
HE =5 retrys
i110R
i specif specify
o default { no retr))c retry delay
i delay (seconds)

continued on next page

4-18 Application Developer’'s Guide - Advanced Queuing

Create a Queue

1i OR :

i1 OR : :

: v
specify specify :

: | default | no retention retention indreefti%lirt]ely
. (seconds)

! OR :
Lussssssssssssssssssssssnnns a .

set
dependency
tracking

dependency
tracking

default

C = false = true
default WARNING:
deprecated
i set set
ﬁ optional add _
information [=\ comment aUtht?L'ng'[aut:ofcsgnemlt

OR
To refer to the table of all basic operations having to do with the
Administrative Interface see:
« "Use Case Model: Administrative Interface — Basic
Operations” on page 4-2
Purpose:

Create a queue in the specified queue table.

Syntax:

DBMS_AQADM.CREATE. QUEUE (
queue name IN VARCHAR?,

Administrative Interface: Basic Operations 4-19

Create a Queue

queue table IN VARCHARZ,

queue_type IN BINARY_INTEGER defauit NORMAL_QUEUE,
max_reies IN NUMBER defauft NULL,

rety delay IN NUMBER defaultO,

retenion_tme IN NUMBER default O,

dependency_trackingIN BOOLEAN default FALSE,

comment IN VARCHAR2 default NULL,

auto_commit IN BOOLEAN default TRUE);

Usage:

Table 4-5 DBMS_AQADM.CREATE_QUEUE

Parameter

Description

queue_name
(IN VARCHAR?2)

queue_table
(IN VARCHAR?2)
queue_type

(IN BINARY _
INTEGER)

max_retries
(IN NUMBER)

retry_delay
(IN NUMBER)

retention_time
(IN NUMBER)

specifies the name of the queue that is to be created. The name must be unique
within a schema and must follow object name guidelines in the Oracle8i SQL
Reference with regard to reserved characters.

specifies the name of the queue table that will contain the queue.

specifies whether the queue being created is an exception queue or a normal queue.
NORMAL_QUEUEhe queue is a normal queue. This is the default.

EXCEPTION_QUEUHt is an exception queue. Only the dequeue operation is
allowed on the exception queue.

limits the number of times a dequeue with the REMOVIEnode can be attempted on a
message. The count is incremented when the application issues a rollback after
executing the dequeue. The message is moved to the exception queue when it is
reaches its max_retries . The default is NULLbut is set internally to 5. Note that
max_retries is supported for all single consumer queues and 8.1-compatible
multiconsumer queues but not for 8.0-compatible multiconsumer queues.

specifies the delay time, in seconds before this message is scheduled for processing
again after an application rollback. The default is 0, which means the message can
be retried as soon as possible. This parameter will have no effect if max_retries is
set to 0. Note that retry_delay is supported for single consumer queues and
8.1-compatible multiconsumer queues but not for 8.0 -compatible multiconsumer
queues.

specifies the number of seconds for which a message will be retained in the queue
table after being dequeued from the queue.

INFINITE : Message will be retained forever.

number: Number of seconds for which to retain the messages. The defaultis 0, i.e.
no retention.

4-20 Application Developer’'s Guide - Advanced Queuing

Create a Queue

Table -5 DBMS_AQADM.CREATE_QUEUE

Parameter Description
dependency_ Reserved for future use.
tracking

(IN BOOLEAN)

comment

(IN VARCHAR?2)
auto_commit

(IN BOOLEAN)

FALSE This is the default.
TRUE Not permitted in this release.

User-specified description of the queue. This user comment will be added to the
queue catalog.

TRUE Causes the current transaction, if any, to commit before the CREATE_QUEUE
operation is carried out. The CREATE_QUEU&peration becomes persistent when
the call returns. This is the default.

FALSE The operation is part of the current transaction and will become persistent
only when the caller issues a commit.

Caution: This parameter has been deprecated.

Usage Notes

All queue names must be unique within a schema. Once a queue is created with
CREATE_QUEUH can be enabled by calling START _QUEUBY default, the
gueue is created with both enqueue and dequeue disabled.

To view retained messages, you can either dequeue by message ID or use SQL.

Example: Create a Queue Using PL/SQL (DBMS_AQADM)

Create a queue within a queue table for messages of object type

/*Create amessage type: ¥/

CREATE type ag.Message_typ as object (
Subject VARCHAR2(30),
Text VARCHAR2(80));

| *Create a object type queue table and queue: ¥

EXECUTE dbms_agadm.create_queue_table (
Queue_table =>'aq.ObjMsgs_gtal’,
Queue_payload_type =>'ag.Message_typ);

Administrative Interface: Basic Operations 4-21

Create a Queue

EXECUTE doms_agadm.create_queue (
Queue name =>’msg_gueue),
Queue table =>'ag.ObjMsgs_qtab);

Create a queue within a queue table for messages of RAW type
F Create a RAW type queue table and queue: ¥
EXECUTE dbms_agadm.create_queue_table (

Queue_table =>'ag.RawMsgs_gtab,

Queue _payload type =>'RAW);

F Create queue: ¥

EXECUTE dbms_agadm.create_queue (
Queue_name =>’raw_msg_queue’,
Queue table =>'ag.RawMsgs_gtab);

Create a prioritized message queue table and queue

Caution: You may heed to set up or drop data structures for
certain examples to work:

P Create a queue table for priortized messages: ¥
EXECUTE dbms_agadm.create_queue_table (
Queue table =>'aqg.PriorityMsgs_qtal’,
Sort list ~ =>'PRIORITY,ENQ_TIME,
Queue_payload_type =>'ag.Message_typ);
F Create queue: ¥
EXECUTE doms_agadm.create_queue (
Queue name =>'priority_msg_gqueue’,
Queue table =>'aqg.PriorityMsgs_qtab);

Create a queue table and queue meant for multiple consumers

Caution: You may need to set up or drop data structures for
certain examples to work:

F* Create a queue table for muf-consumers: #
EXECUTE dbms_agadm.create_queue_table (

4-22 Application Developer’'s Guide - Advanced Queuing

Create a Queue

queue_table =>'"ag.MuliConsumerMsgs_gtab’,
Multiple_consumers =>TRUE,

Queue_payload_type =>'aqMessage_typ);

P Create queue: ¥

EXECUTE doms_agadm.create_queue (
Queue name =>'MultiConsumerMsg_gueue’,
Queue table =>"ag.MuliConsumerMsgs_qtab’);

Create a queue table and queue to demonstrate propagation
F Create queue: ¥
EXECUTE dbms_agadm.create_queue (

Queue_name =>'AnotherMsg_queue’,

queue_table =>'ag.MuliConsumerMsgs_qtab’);

Create a queue table and queue for multiple consumers compatible with 8.1
P Create a queue table for mult-consumers compatible with Release 8.1: ¥
EXECUTE dbms_agadm.create_queue_table (
Queue table =>"ag.MuliConsumerMsgs81l _gtab’,
Multiple_consumers =>TRUE,
Compatible =>'8.1,
Queue_payload type =>'ag.Message_typ);
EXECUTE doms_agadm.create_queue (

Queue name =>'MultiConsumerMsg8l_queue’,
Queue_table =>'ag.MuliConsumerMsgs81_gtab);

Administrative Interface: Basic Operations 4-23

Create a Non-Persistent Queue

Create a Non-Persistent Queue

Figure 4-7 Use Case Diagram: Create a Non-Persistent Queue

Administrative Interface
i CREATE
- a non-persistent } === nggaz
User/ q
Program .
e smsssssssssssssssssssssssssssssssssas .
'OR H
v
default specify specify
i single- !
E:%rn?lljjrlrtmlers consumer multi-consumer
queue queue
optional add
information| comment
To refer to the table of all basic operations having to do with the
Administrative Interface see:
« "Use Case Model: Administrative Interface — Basic
Operations" on page 4-2
Purpose

Create a non-persistent RAWqueue.

Syntax
DBMS_AQADM.CREATE_NP_QUEUE (
queue_name IN VARCHARZ,
muliple_consumers IN BOOLEAN default FALSE,
comment IN VARCHAR?Z default NULL);

4-24 Application Developer’'s Guide - Advanced Queuing

Create a Non-Persistent Queue

Usage:

Table 4-6 DBMS_AQADM.CREATE_NP_QUEUE

Parameter

Description

queue_name
(IN VARCHAR?2)

multiple_consumers
(IN BOOLEAN)

comment
(IN VARCHAR?2)

specifies the name of the non-persistent queue that is to be created. The name
must be unique within a schema and must follow object name guidelines in the
Oracle8i SQL Reference with regard to reserved characters.

FALSE Queues created in the table can only have one consumer per message.
This is the default.

TRUE Queues created in the table can have multiple consumers per message.

Note that the multi_consumers parameter is distinguished at the queue level
because a non-persistent queue does not inherit this characteristic from any
user-created queue table

User-specified description of the queue. This user comment will be added to the
gueue catalog.

Usage Notes

The queue may be either single-consumer or multiconsumer queue. All queue
names must be unique within a schema. The queues are created in a
8.1-compatible system-created queue table (AQ$_MEM_SGr AQ$_MEM_MGn
the same schema as that specified by the queue name. If the queue name does
not specify a schema name, the queue is created in the login user’s schema.
Once a queue is created with CREATE_NP_QUEUH can be enabled by calling
START_QUEUBYy default, the queue is created with both enqueue and
dequeue disabled.

You cannot dequeue from a non-persistent queue. The only way to retrieve a
message from a non-persistent queue is by using the OCI notification
mechanism (see Register for Notification on page 6-50).

You cannot invoke the listen call on a non-persistent queue (see Listen to One
(Many) Queue(s) on page 6-18).

You cannot have rule based subscriptions on non-persistent queues.

Example: Create a Non-Persistent Queue Using PL/SQL (DBMS_AQADM)
/* Create a non-persistent single-consumer queue (Note: this is not preceded by

Administrative Interface: Basic Operations 4-25

Create a Non-Persistent Queue

creation of a queuie table) ¥/

EXECUTE dbms_agadm.create_np_queue(
Queue_name =>'Singleconsumersmsg_npaque’,
Multiple_consumers =>FALSE);

/* Create a non-persistent muli-consumer queue (Note: this is not preceded by

creation of a queuie table) ¥/
EXECUTE dbms_agadm.create_np_queue(
Queue_name =’ Multiconsumersmsg_npque’,

Multiple_consumers =>TRUE);

4-26 Application Developer’'s Guide - Advanced Queuing

Alter a Queue

Alter a Queue

Figure 4-8 Use Case Diagram: Alter a Queue

Administrative Interface

ALTER -p name
a queue queue
User/
Program B

PR i
. specify specify
: | default | maximum maximum
: retrys=5 retrys
+ OR H
‘IIIIIIIIIIIIIIIIIIIIIII. :

specify
retry delay
(seconds)

specify
ﬁ default | no retry
delay

specify specify

retain

retention indefinitely

no retention
(seconds)

WARNING: optional
OR deprecated information
_Idf | set set add
efault autocommit autocommit queue
= true = false description

Administrative Interface: Basic Operations 4-27

Alter a Queue

Purpose:

To refer to the table of all basic operations having to do with the
Administrative Interface see:

"Use Case Model: Administrative Interface — Basic
Operations” on page 4-2

Alter existing properties of a queue. Only max_retries, retry_delay, and retention_
time can be altered.

Syntax:

DBMS_AQADMALTER_QUEUE (
queue_name IN VARCHAR2,

max_retries
retry_delay

IN NUMBER defauft NULL,
IN' NUMBER defauit NULL,

retention_time IN NUMBER default NULL,
auto_commit IN BOOLEAN default TRUE,

comment

Usage:

IN VARCHAR2 default NULL);

Table 4~7 DBMS_AQADM.ALTER_QUEUE

Parameter

Description

gueue_name
(IN VARCHAR?2)

max_retries
(IN NUMBER)

retry_delay
(IN NUMBER)

specifies the name of the queue that is to be altered.

Limits the number of times a dequeue with REMOVEnode can be attempted on
a message. The count is incremented when the application issues a rollback
after executing the dequeue. If the time at which one of the retries has passed
the expiration time, no further retries will be attempted. The default is NULL
which means that existing value will not be changed. Note that max_retries

is supported for all single consumer queues and 8.1-compatible multiconsumer
gueues but not for 8.0-compatible multiconsumer queues.

specifies the delay time in seconds before this message is scheduled for
processing again after an application rollback. The default is NULLwhich means
that existing value will not be changed. Note that retry_delay is supported
for single consumer queues and 8.1-compatible multiconsumer queues but not
for 8.0-compatible multiconsumer queues.

4-28 Application Developer's Guide - Advanced Queuing

Alter a Queue

Table 4~7 DBMS_AQADM.ALTER_QUEUE

Parameter

Description

retention_time
(IN NUMBER)

auto_commit
(IN BOOLEAN)

comment
(IN VARCHAR?2)

specifies the retention time in seconds for which a message will be retained in
the queue table after being dequeued. The default is NULLwhich means that the
value will not be altered.

TRUE Causes the current transaction, if any, to commit before the ALTER_
QUEUEoperation is carried out. The ALTER_QUEUEoperation become
persistent when the call returns. This is the default.

FALSE The operation is part of the current transaction and will become
persistent only when the caller issues a commit.

Caution: This parameter has been deprecated.

User-specified description of the queue. This user comment will be added to the
gueue catalog. The default value is NULLwhich means that the value will not
be changed.

Usage Notes

« To view retained messages, you can either dequeue by message ID or use SQL.
= You can only alter the comment field of a non-persistent queues.

« Note that max_retries ,retention ,retry_delay and retry_count are

not supported for non-persistent queues.

Example: Alter a Queue Using PL/SQL (DBMS_AQADM)

/*Alter queuie to change retention time, saving messages for 1 day after

dequeueing: ¥

EXECUTE dbms_agadm.alter_queue (

queue_name =>‘agAnothermsg queue,
retention_time =>86400);

Administrative Interface: Basic Operations 4-29

Drop a Queue

Drop a Queue

Figure 4-9 Use Case Diagram: Drop a Queue

Administrative Interface

E% — DROP - - |éI WARNING: You must stop
a queue

a queue before you drop it
User/

Program T

v
name
queue
OR
set set
default auto-commit auto-commit
= true = false

WARNING:
deprecated

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 4-2

Purpose:

Drops an existing queue. DROP_QUEUE not allowed unless STOP_QUEURas been
called to disable the queue for both enqueuing and dequeuing. All the queue data is
deleted as part of the drop operation.

4-30 Application Developer’'s Guide - Advanced Queuing

Drop a Queue

Syntax:

DBMS_AQADM.DROP_QUEUE (
gueue_name IN VARCHAR2,
auto_commit IN BOOLEAN default TRUE);

Usage:

Table 4-8 DBMS_AQADM.DROP_QUEUE

Parameter Description

gueue_name specifies the name of the queue that is to be dropped.
(IN VARCHAR?2)

auto_commit TRUE Causes the current transaction, if any, to commit before the DROP_
QUEUBperation is carried out. The DROP_QUEU@&peration becomes
(IN BOOLEAN) persistent when the call returns. This is the default.

FALSE The operation is part of the current transaction and will become
persistent only when the caller issues a commit.

Caution: This parameter has been deprecated.

Example: Drop a Queue Using PL/SQL (DBMS_AQADM)

Drop a Standard Queue

/* Stop the queue preparatory to dropping it (@ queue may be dropped only after
it has been succestully stopped for enqueing and dequeing): %/

EXECUTE dbms_agadm.stop_queue (
Queue name =>'agqMsg_queue’);

/*Drop queue: ¥
EXECUTE doms_agadm.drop_gqueue (
Queue name =>'ag.Msg_queue),

Drop a Non-Persistent Queue

EXECUTE DBMS_AQADM.DROP_QUEUE(queue_name => 'Nonpersistent_
singleconsumerql’);
EXECUTE DBMS_AQADM.DROP_QUEUE(queue_name =>'Nonpersistent_multiconsumergl);

Administrative Interface: Basic Operations 4-31

Start a Queue

Start a Queue

Figure 4-10 Use Case Diagram: Start a Queue

Administrative Interface
% START '\ _.... > name
] a queue queue
User/
Program . .
: 1 OR :
: v \4
H set
H keeps
: default | _ start start - - curPent
H for enqueue for enqueue settin
H =true = false 9
1 OR :
v v
set
keeps
default | _ start start - curPent
for dequeue for dequeue setting
= true = false
To refer to the table of all basic operations having to do with the
Administrative Interface see:
« "Use Case Model: Administrative Interface — Basic
Operations" on page 4-2
Purpose:

Enables the specified queue for enqueuing and/or dequeueing.
Syntax:

DBMS_AQADM.START_QUEUE (
queue_name IN VARCHAR2,

4-32 Application Developer’'s Guide - Advanced Queuing

Start a Queue

enqueue IN BOOLEAN default TRUE,
dequeue IN BOOLEAN default TRUE)

Usage:

Table 4-9 DBMS_AQADM.START_QUEUE

Parameter

Description

queue_name
(IN VARCHAR?2)
enqueue

(IN BOOLEAN)

dequeue
(IN BOOLEAN)

specifies the name of the queue to be enabled.

specifies whether ENQUEURBhould be enabled on this queue.
TRUE Enable ENQUEUEThis is the default.
FALSE Do not alter the current setting.

specifies whether DEQUEUEhould be enabled on this queue.
TRUE Enable DEQUEUEThis is the default.
FALSE Do not alter the current setting.

Usage Notes

After creating a queue the administrator must use START_QUEUHD enable the
gueue. The default is to enable it for both ENQUEUBNd DEQUEUEOnNIy dequeue
operations are allowed on an exception queue. This operation takes effect when the
call completes and does not have any transactional characteristics.

Example: Start a Queue using PL/SQL (DBMS_AQADM Package)

/* Start a queue and enable both enqueue and dequeue: ¥/
EXECUTE dbms_agadm.start_queue (
queue_name =>'Msg_queue);

* Start a previously stopped queue for dequeue only */
EXECUTE dbms_agadm.start_queue (
queue_name =>’ag.msg_gqueue’,
dequeue =>TRUE,
enqueue =>FALSE),

Administrative Interface: Basic Operations 4-33

Stop a Queue

Stop a Queue

Figure 4-11 Use Case Diagram: Stop a Queue

User/
Program

Administrative Interface

wait for ongoing
transactions to -
complete and do
not allow new
transactions

set
wait = true

_set
wait = false -

keeps
- - current
setting

keeps
- - current
setting

él stop if there is
no ongoing
transaction

To refer to the table of all basic operations having to do with the

Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic

Operations" on page 4-2

4-34 Application Developer’'s Guide - Advanced Queuing

Stop a Queue

Purpose:
Disables enqueuing and/or dequeuing on the specified queue.

Syntax:
DBMS_AQADM.STOP_QUEUE (
queue_name IN VARCHARZ,
enqueue IN BOOLEAN default TRUE,
dequeue IN BOOLEAN default TRUE,
wait IN BOOLEAN default TRUE);

Usage:

Table 4~10 DBMS_AQADM.STOP_QUEUE

Parameter

Description

gueue_name
(IN VARCHAR?2)

enqueue
(IN BOOLEAN)

dequeue
(IN BOOLEAN)

wait
(IN BOOLEAN)

specifies the name of the queue to be disabled.

specifies whether ENQUEUEhould be disabled on this queue.
TRUE Disable ENQUEUEThis is the default.

FALSE Do not alter the current setting.

specifies whether DEQUEUEhould be disabled on this queue.
TRUE Disable DEQUEUEThis is the default.

FALSE Do not alter the current setting.

The wait parameter allows you to specify whether to wait for the completion of
outstanding transactions.

TRUE Wait if there are any outstanding transactions. In this state no new
transactions are allowed to enqueue to or dequeue from this queue.

FALSE Return immediately either with a success or an error.

Usage Notes

By default, this call disables both ENQUEU&or DEQUEU& A queue cannot be
stopped if there are outstanding transactions against the queue. This operation
takes effect when the call completes and does not have any transactional
characteristics.

Administrative Interface: Basic Operations 4-35

Stop a Queue

Example: Stop a Queue Using PL/SQL (DBMS_AQADM)

/* Stop the queue: ¥
EXECUTE dbms_agadm.stop_gqueue (
gueue_name =>'ag.Msg_queue);

4-36 Application Developer’'s Guide - Advanced Queuing

Grant System Privilege

Grant System Privilege

Figure 4-12 Use Case Diagram: Grant System Privilege

Administrative Interface

X

User/
Program

GRANT
system
privilege

grant

enqueue any dequeue any

manage any

v

grant

name

May perform any
administrative
operation

set

administrative
option

default |
=false

To refer to the table of all basic operations having to do with the
Administrative Interface see:

"Use Case Model: Administrative Interface — Basic
Operations” on page 4-2

Administrative Interface: Basic Operations

4-37

Grant System Privilege

Purpose:

To grant AQ system privileges to users and roles. The privileges are ENQUEUE_ANY
DEQUEUE_ANYIANAGE_ANMitially, only SYSand SYSTEMan use this

procedure successfully.

Syntax:

DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
priviege IN VARCHARZ,

grantee IN VARCHARZ2,

admin_option IN BOOLEAN :=FALSE);

Usage:

Table 4-11 DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE

Parameter

Description

privilege
(IN VARCHAR?2)

grantee

(IN VARCHAR2
admin_option
(IN BOOLEAN

specifies the AQ system privilege to grant.
Options are: ENQUEUE_ANDEQUEUE_ANWIANAGE_ANY
The operations allowed for each system privilege are specified as follows:

ENQUEUE_AN\sers granted with this privilege are allowed to enqueue messages
to any queues in the database.

DEQUEUE_AN\sers granted with this privilege are allowed to dequeue messages
from any queues in the database.

MANAGE_ANVYisers granted with this privilege are allowed to execute DBMS_AQADM
calls on any schemas in the database.

specifies the grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

specifies if the system privilege is granted with the ADMIN option or not. If the
privilege is granted with the ADMINoption, the grantee is allowed to use this
procedure to grant the system privilege to other users or roles.

Default:FALSE

4-38 Application Developer’'s Guide - Advanced Queuing

Grant System Privilege

Example: Grant System Privilege Using PL/SQL (DBMS_AQADM)
/*User AQADM grarits the nights to enqueue and dequeue to ANY queues: ¥/

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/managetr;

CREATE USER agadm IDENTIFIED BY agadm;
GRANT CONNECT, RESOURCE TO agadm;
GRANT EXECUTE ON DBMS_AQADM TO agadm;
GRANT Aq_administrator_role TO agadm;

CONNECT agadm/agadm;

EXECUTE DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
privilege => 'ENQUEUE_ANY’,

grantee => 'Jones,

admin_option => FALSE);

EXECUTE DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
privilege => 'DEQUEUE_ANY’,

grantee => 'Jones,

admin_option => FALSE);

Administrative Interface: Basic Operations 4-39

Revoke System Privilege

Revoke System Privilege

Figure 4-13 Use Case Diagram: Revoke System Privilege

Administrative Interface
i REVOKE
—] sys_tem
User/ privilege
Program H
' revoke
E right to
. manage any
: queue
v
name
grantee
To refer to the table of all basic operations having to do with the
Administrative Interface see:
« "Use Case Model: Administrative Interface — Basic
Operations" on page 4-2
Purpose:

To revoke AQ system privileges from users and roles. The privileges are ENQUEUE _
ANY DEQUEUE_ANahd MANAGE_ANYhe ADMINoption for a system privilege
cannot be selectively revoked.

Syntax:
DBMS_AQADM.REVOKE _SYSTEM PRIVILEGE(

4-40 Application Developer’'s Guide - Advanced Queuing

Revoke System Privilege

priviege IN VARCHARZ,
grantee IN VARCHAR?);

Usage:

Table 4-12 DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE
Parameter Description
privilege specifies the AQ system privilege to revoke.
(IN VARCHAR?2) Options are: ENQUEUE_ANDEQUEUE_ANWIANAGE_ANY

The ADMINoption for a system privilege cannot be selectively revoked.

grantee specifies the grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.
(IN VARCHAR?2

Example: Revoke System Privilege Using PL/SQL (DBMS_AQADM)

FTorevoke the DEQUEUE_ANY system privilege from Jones. */
CONNECT system/manager,

execute DBMS_AQADM.REVOKE._SYSTEM PRIVILEGE(privilege=>DEQUEUE_ANY’,
grantee=>Jones));

Administrative Interface: Basic Operations 4-41

Grant Queue Privilege

Grant Queue Privilege

Figure 4-14 Use Case Diagram: Grant Queue Privilege

Administrative Interface
GRANT
:(): - auewe e SN
User/ privilege
Program e eaeseasssmseesesssssessssesssesseessssssesssasens .
LR e, ; 5
M v \
E grant grant
H enqueue dequeue
Mersssssssssssssnennn : 1
; May enqueue
and dequeue
name
grantee
To refer to the table of all basic operations having to do with the
Administrative Interface see:
« "Use Case Model: Administrative Interface — Basic
Operations" on page 4-2
Purpose:

To grant privileges on a queue to users and roles. The privileges are ENQUEUBr
DEQUEUHNitially, only the queue table owner can use this procedure to grant

privileges on the queues.

4-42 Application Developer’'s Guide - Advanced Queuing

Grant Queue Privilege

Syntax:
DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(
priviege IN VARCHARZ,

queue_name IN VARCHAR2,

grantee IN VARCHAR?Z,

grant option IN BOOLEAN :=FALSE);

Usage:

Table 4-13 DBMS_AQADM.GRANT_QUEUE_PRIVILEGE

Parameter Description

privilege specifies the AQ queue privilege to grant.

(IN VARCHAR?2) Options are: ENQUEUEDEQUEUENd ALL. ALL means both ENQUEUEBNnd DEQUEUE
gueue_name specifies the name of the queue.

(IN VARCHAR?2)

grantee specifies the grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.
(IN VARCHAR?)

grant_option specifies if the access privilege is granted with the GRANToption or not. If the privilege

(IN BOOLEAN) is granted with the GRANToption, the grantee is allowed to use this procedure to grant
the access privilege to other users or roles, regardless of the ownership of the queue
table.

Default:FALSE

Example: Grant Queue Privilege Using PL/SQL (DBMS_AQADM)

/*User grarnits the access right for both enqueue and dequeue rights using
DBMS_AQADM.GRANT. %
EXECUTE DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (
priviege = 'ALL,
queue_name => ‘agmulticonsumermsg8l queue
grantee => 'Jones,
grant_option => TRUE);

Administrative Interface: Basic Operations 4-43

Revoke Queue Privilege

Revoke Queue Privilege

Figure 4-15 Use Case Diagram: Revoke Queue Privilege

Administrative Interface

REVOKE
queue
privilege

X

User/
Program

<

revoke
enqueue dequeue all

May not enqueue
and dequeue

name
grantee

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 4-2

4-44 Application Developer’'s Guide - Advanced Queuing

Revoke Queue Privilege

Purpose:

To revoke privileges on a queue from users and roles. The privileges are ENQUEUE
or DEQUEUE

Syntax:

DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE(
priviege IN VARCHARZ,
queue_name IN VARCHARZ,
grantee IN VARCHARY?),

Usage:

Table 4-14 DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE

Parameter

Description

privilege

(IN VARCHAR?2)
gueue_name
(IN VARCHAR?)
grantee

(IN VARCHAR?)

specifies the AQ queue privilege to revoke.
Options are: ENQUEUEDEQUEURENd ALL. ALL means both ENQUEUEBNnd DEQUEUE

specifies the name of the queue.

specifies the grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role. If the
privilege has been propagated by the grantee through the GRANToption, the
propagated privilege is also revoked.

Usage Notes

To revoke a privilege, the revoker must be the original grantor of the privilege. The
privileges propagated through the GRANToption are revoked if the grantor’s
privileges are revoked.

Example: Revoke Queue Privilege Using PL/SQL (DBMS_AQADM)

/*User can revoke the dequeuie night of a grantee on a specific queue
leaving the grantee with only the enqueue nght: %/

CONNECT scottftiger;

EXECUTE DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE(
priviege => 'DEQUEUE,
queue_name => ’Scott.ScottMsgs gqueue’,
grantee => 'Jones);

Administrative Interface: Basic Operations 4-45

Add a Subscriber

Add a Subscriber

Figure 4-16 Use Case Diagram: Add a Subscriber

Administrative Interface

i ADD name
Ueer) a subscriber =% queue
Program
- If you do
specify not name a
agent subscriber
(subscriber) you must
specify an
address
OR
specify do not
name specify name | ~
OR
. do not
specify h
address specify -
address
OR

specify do not
protocol

(number)

specify
protocol

default to
- NULL

specify
name as
NULL

specify
address
as NULL

W

specify
protocol
as NULL/0

4-46 Application Developer’'s Guide - Advanced Queuing

Add a Subscriber

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations” on page 4-2

Purpose:
Adds a default subscriber to a queue.

Syntax:

DBMS_AQADM.ADD_SUBSCRIBER(
queue_name IN VARCHARZ,
subscriber IN ag$_agent,

rule IN VARCHAR2 default NULL);

Usage:

Table 4-15 DBMS_AQADM.ADD_SUBSCRIBER

Parameter Description

gueue_name specifies the name of the queue.
(IN VARCHAR?2)

subscriber The agent on whose behalf the subscription is being defined (see definition of
(IN ag$_agent) "Agent" on page 3-5).
rule A conditional expression based on the message properties, the message data
(INVARCHAR?) propertigs find PL/SQL functions. A rule is specified asa boolean expre§sion using
syntax similar to the WHEREIlause of a SQL query. This boolean expression can
include conditions on message properties, user data properties (object payloads
only) and PL/SQL or SQL functions (as specified in the where clause of a SQL
query). Currently supported message properties are priority and corrid . To
specify rules on a message payload (object payload), use attributes of the object type
in clauses. You must prefix each attribute with tab .user_data as a qualifier to
indicate the specific column of the queue table that stores the payload. The rule
parameter cannot exceed 4000 characters.

Usage Note:

« A program can enqueue messages to a specific list of recipients or to the default
list of subscribers. This operation will only succeed on queues that allow

Administrative Interface: Basic Operations 4-47

Add a Subscriber

multiple consumers. This operation takes effect immediately and the containing
transaction is committed. Enqueue requests that are executed after the

completion of this call will reflect the new behavior.

« Note that any string within the rule has to be quoted as shown below;

rule =>'PRIORITY <=3 AND CORRID = "FROM JAPAN"

Note that these are all single quotation marks.

Example: Add Subscriber Using PL/SQL (DBMS_AQADM)

/*Anonymous PL/SQL block for adding a subscriber at a designated queue in a
designated schema at a database link: %
DECLARE
subscriber ag$_agent;
BEGIN
subscriber :=ag$_agent (subscriberl’, 'ag2.msg_queue2@Ilondon’, null);
DBMS_AQADM.ADD_SUBSCRIBER(

gueue_name =>"aqg.multi_queue’,
subscriber => subscriber);
END;

/*Add a subscriber with a rule: %/

DECLARE
subscriber ag$_agent;

BEGIN
subscriber = ag$_agent(subscriber?’, 'ag2.msg_queue2@Ilondon’, null);
DBMS_AQADM.ADD_SUBSCRIBER(

gueue_name => 'ag.multi_queue’,
subscriber => subscriber,
rule => ‘priority <2);

END;

Example: Add Rule-Based Subscriber Using PL/SQL (DBMS_AQADM)

DECLARE
subscriber ag$ _agent;

BEGIN
subscriber = ag$_agent(East_Shipping,ES.ES_bookedorders_que',null);
DBMS_AQADM.ADD_SUBSCRIBER(

4-48 Application Developer’'s Guide - Advanced Queuing

Add a Subscriber

queue_name =>'OE.OE_bookedorders_que',
subscriber =>subscriber,
rule =>'tab.user_data.orderregion = "EASTERN" OR
(tab.user_data.ordertype = "RUSH" AND
tab.user_data.customer.country ="USA"));
END;

Administrative Interface: Basic Operations 4-49

Alter a Subscriber

Alter a Subscriber

Figure 4-17 Use Case Diagram: Alter a Subscriber

Administrative Interface

ALTER > name
= a subscriber f*""
User/ -
’rogram
" If you do
specity not name a
agent subscriber
(subscriber) you must
specify an
address
OR
specify
name
OR
specify
address
OR

specify
protocol
(number)

do not
specify name

do not

specify
address

do not

specify -
protocol

specify
name as
NULL

specify
address
as NULL

specify
protocol
as NULL/O

LR

4-50 Application Developer’'s Guide - Advanced Queuing

Alter a Subscriber

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations” on page 4-2

Purpose:

Alter existing properties of a subscriber to a specified queue. Only the rule can be
altered.

Syntax:

DBMS_AQADMALTER SUBSCRIBER(
queue_name IN VARCHARZ,
subscriber IN ag$_agent

rule IN VARCHAR?);

Usage:

Table 4-16 DBMS_AQADM.ALTER_SUBSCRIBER

Parameter

Description

queue_name
(IN VARCHAR?2)
subscriber

(IN ag$_agent)
rule
(INVARCHAR?)

specifies the name of the queue.

The agent on whose behalf the subscription is being altered (see definition of
"Agent” on page 3-5).

A conditional expression based on the message properties, the message data
properties and PL/SQL functions.The rule parameter cannot exceed 4000
characters.To eliminate the rule, set the rule parameter to NULL

Administrative Interface: Basic Operations 4-51

Alter a Subscriber

Example: Alter Subscriber Using PL/SQL (DBMS_AQADM)

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table =>"ag.multi_gtab’,
multiple_consumers => TRUE,
queue_payload_type =>'ag.message_typ’,

compatible =>'8.1.5");

EXECUTE DBMS_AQADM.CREATE_QUEUE (
gueue_name => 'multi_queue’,
queue_table =>"ag.multi_gtab’);

/*Add a subscriber with a rule: %/
DECLARE
subscriber ag$_agent;
BEGIN
subscriber = ag$_agent(SUBSCRIBERY’, 'ag2.msg_queue2@Iondon’, null);
DBMS_AQADM.ADD_SUBSCRIBER(
queue name => ‘agMmsg_queue,
subscriber => subscriber,
rule => ’priority < 2);

END;
/*Change rule for subscriber: %
DECLARE

subscriber ag$_agent;
BEGIN

subscriber :=ag$_agent(SUBSCRIBERL', 'ag2.msg_queue2@Ilondon’, null);
DBMS_AQADMALTER_SUBSCRIBER(

queue_name => ‘ag.msg_gueue,

subscriber => subscriber,

rule => ’priority = 1))
END;

4-52 Application Developer’'s Guide - Advanced Queuing

Remove a Subscriber

Remove a Subscriber

Figure 4-18 Use Case Diagram: Remove a Subscriber

Administrative Interface

REMOVE
a subscriber

name
queue

User/
Program

If you do
name not name a
agent subscriber
(subscriber) you must
specify an
address
OR
specify
name
OR
specify
address
OR

specify
protocol
(number)

do not
specify name

do not
specify
address

do not

specify
protocol

specify
name as
NULL

specify
address
as NULL

specify
protocol
as NULL/O

Administrative Interface: Basic Operations 4-53

Remove a Subscriber

To refer to the table of all basic operations having to do with the
Administrative Interface see:

= "Use Case Model: Administrative Interface — Basic
Operations" on page 4-2

Purpose:
Remove a default subscriber from a queue.

Syntax:

DBMS_AQADM.REMOVE_SUBSCRIBER(
queue_hame IN VARCHAR?2,
subscriber IN ag$_agent);

Usage:

Table 4-17

Parameter

Description

gueue_name
(IN VARCHAR?)
subscriber

(IN ag$_agent)

specifies the name of the queue.

The agent who is being removed from the (see definition of "Agent" on
page 3-5).

Usage Notes

This operation takes effect immediately and the containing transaction is
committed. All references to the subscriber in existing messages are removed as
part of the operation.

4-54 Application Developer’'s Guide - Advanced Queuing

Remove a Subscriber

Example: Remove Subscriber Using PL/SQL (DBMS_AQADM)

DECLARE
subscriber ag$_agent;
BEGIN
subscriber :=ag$_agent(subscriberl’,'ag2.msg_queue2’, NULL);
DBMS_AQADM.REMOVE_SUBSCRIBER(
queue_name =>"ag.mulli_queue’,
subscriber => subscriber);
END;

Administrative Interface: Basic Operations 4-55

Schedule a Queue Propagation

Schedule a Queue Propagation

Figure 4-19 Use Case Diagram: Schedule a Queue Propagation

Administrative Interface

name

SCHEDULE
a queue

User/ propagation

Program

destination
as local
database

default

time

default
for
duration

default for
next time
=null

default
for
latenc

for start |

specify
start time now
(sysdate)

continue
until
unschedule

recheck
every 60
seconds

specify
start time later
(date)

specify
duration
(seconds)

repeat
as

specified

specify
recheck
interval

name

destination as
remote

database

4-56 Application Developer’'s Guide - Advanced Queuing

Schedule a Queue Propagation

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations” on page 4-2

Purpose:

Schedule propagation of messages from a queue to a destination identified by a
specific dblink.

Syntax:

DBMS_AQADM.SCHEDULE_PROPAGATION(
queue_name IN VARCHARZ,
destination IN VARCHAR?Z defauft NULL,
start ime IN DATE default SYSDATE,
duration IN NUMBER default NULL,
next tme IN VARCHARZ default NULL,
latency IN NUMBER default 60);

Usage:

Table 4-18 DBMS_AQADM.SCHEDULE_PROPAGATION

Parameter Description

gueue_name specifies the name of the source queue whose messages are to be propagated,
including the schema name. If the schema name is not specified, it defaults to
(IN VARCHAR?) the schema name of the administrative user.

destination specifies the destination dblink. Messages in the source queue for recipients at
(IN VARCHARY) this destination will be propagated. If it is NULL, the destination is the local

database and messages will be propagated to other queues in the local
database. The length of this field is currently limited to 128 bytes and if the
name is not fully qualified the default domain name is used.

start_time specifies the initial start time for the propagation window for messages from
(IN DATE) the source queue to the destination.

Administrative Interface: Basic Operations 4-57

Schedule a Queue Propagation

Table 4-18 DBMS_AQADM.SCHEDULE_PROFPAGATION

Parameter Description

duration specifies the duration of the propagation window in seconds. A NULL value
(IN NUMBER) umr?:::r;]s(a;hlﬁg)(;?pagatlon window is forever or until the propagation is
next_time date function to compute the start of the next propagation window from the

(IN VARCHAR?2)

latency
(IN NUMBER)

end of the current window. If this value is NULL, propagation will be stopped
at the end of the current window. For example, to start the window at the same
time every day, next_time should be specified as 'SYSDATE + 1 -
duration/86400’.

maximum wait, in seconds, in the propagation window for a message to be
propagated after it is enqueued. For example, if the latency is 60 seconds, then
during the propagation windowy, if there are no messages to be propagated,
messages from that queue for the destination will not be propagated for at least
60 more seconds. It will be at least 60 seconds before the queue will be checked
again for messages to be propagated for the specified destination. If the latency
is 600, then the queue will not be checked for 10 minutes and if the latency is O,
then a job queue process will be waiting for messages to be enqueued for the
destination and as soon as a message is enqueued it will be propagated.

Usage Notes

Messages may also be propagated to other queues in the same database by
specifying a NULL destination. If a message has multiple recipients at the same
destination in either the same or different queues the message will be propagated to
all of them at the same time.

4-58 Application Developer’'s Guide - Advanced Queuing

Schedule a Queue Propagation

Example: Schedule a Propagation Using PL/SQL (DBMS_AQADM)

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table =>'ag.objmsgs_gtab),
queue_payload_type =>'ag.message_typ,
multiple_consumers => TRUE);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
gqueue name =>'ag.qldef,
queue_table =>'"ag.objmsgs_gtab);

Schedule a Propagation from a Queue to other Queues in the Same Database
/* Schedule propagation from queue aq.qldef tootherqueues inthe same

database ¥
EXECUTE DBMS_AQADM.SCHEDULE_PROPAGATION(

Queue name => ‘aq.qldef);

Schedule a Propagation from a Queue to other Queues in Another Database
P Schedule a propagation from queue aq.qldef toother queues in another
database ¥/
EXECUTE DBMS_AQADM.SCHEDULE_PROPAGATION(
Queue_name => ‘aqg.qldef,
Destination => ‘another_db.world);

Administrative Interface: Basic Operations 4-59

Unschedule a Queue Propagation

Unschedule a Queue Propagation

Figure 4-20 Use Case Diagram: Unschedule a Queue Propagation

name
destination
as local

name

destination as
remote

database

UNSCHEDULE
aqueue

. . default
Administrative Interface | (ul)
? ; 4

User/ propagation database
Program v

: A A
R e, =

To refer to the table of all basic operations having to do with the

Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic

Operations" on page 4-2
Purpose:

Unschedule a previously scheduled propagation of messages from a queue to a
destination identified by a specific dblink

Syntax:

DBMS_AQADM.UNSCHEDULE_PROPAGATION(
queue_name IN VARCHARZ,
destination IN VARCHAR? default NULL);

4-60 Application Developer’'s Guide - Advanced Queuing

Unschedule a Queue Propagation

Usage:

Table 4-19 DBMS_AQADM.UNSCHEDULE_PROPAGATION

Parameter Description
gueue_name specifies the name of the source queue whose messages are to be propagated,
(IN VARCHARY) including the schema name. If the schema name is not specified, it defaults to

the schema name of the administrative user.

destination specifies the destination dblink. Messages in the source queue for recipients at
(IN VARCHARY) this destination will be propagated. If it is NULL, the destination is the local

database and messages will be propagated to other queues in the local
database. The length of this field is currently limited to 128 bytes and if the
name is not fully qualified the default domain name is used.

Example: Unschedule a Propagation Using PL/SQL (DBMS_AQADM)

Unschedule Propagation from Queue To Other Queues in the Same Database
/*Unschedule propagation from queue aq.qldefto other queues in the same

database: ¥/
EXECUTE DBMS_AQADM.UNSCHEDULE PROPAGATION(queue_name =>‘ag.qldef);

Unschedule Propagation from a Queue to other Queues in Another Database
/*Unschedule propagation from queue ag.qldef toother queues in another

database reached by the database link another_db.world 4
EXECUTE DBMS_AQADM.UNSCHEDULE._PROPAGATION(

Queue_name => ‘aq.qldef,

Destination => 'another_db.world’);

Administrative Interface: Basic Operations 4-61

Verify a Queue Type

Verify a Queue Type

Figure 4-21 Use Case Diagram: Verify a Queue Type

Administrative Interface
% VERIFY
— a queue
User/
Program O
i specify
HEERTTT TP ET LR 4 (source queue
Y name
: : specify
e ememaeananan > destination
' queue
: name
E specify
destination
(dblink)
To refer to the table of all basic operations having to do with the
Administrative Interface see:
» "Use Case Model: Administrative Interface — Basic
Operations" on page 4-2
Purpose:
Verify that the source and destination queues have identical types. The result of the
verification is stored in ag$_Message_types tables , overwriting all previous

output of this command.

Syntax:

DBMS_AQADM.VERIFY_QUEUE_TYPES(
src_queue_name IN VARCHAR2,
dest queue_name IN VARCHAR?Z,

4-62 Application Developer’'s Guide - Advanced Queuing

Verify a Queue Type

destination IN VARCHAR?Z defauft NULL,
rc OUT BINARY_INTEGER);

Usage:

Table 4-20 DBMS_AQADM.VERIFY_QUEUE_TYPES

Parameter

Description

SIC_queue_name
(IN VARCHAR?2)

dest_queue_name
(IN VARCHAR?2)

destination
(IN VARCHAR?)

Ic

(OUT BINARY_
INTEGER)

specifies the name of the source queue whose messages are to be propagated, including
the schema name. If the schema name is not specified, it defaults to the schema name of
the user.

specifies the name of the destination queue where messages are to be propagated,
including the schema name. If the schema name is not specified, it defaults to the schema
name of the user.

specifies the destination dblink. The destination queue is in the database that is specified
by the dblink. If the destination is NULL, the destination queue is the same database as
the source queue. The length of this field is currently limited to 128 bytes and if the name
is not fully qualified the default domain name is used.

return code for the result of the procedure. If there is no error and if the source and
destination queue types match the result is 1, if they do not match the result is 0. If an
Oracle error is encountered it is returned in rc.

Example: Verify a Queue Type Using PL/SQL (DBMS_AQADM)

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTE DBMS_AQADM.CREATE_QUEUE (
queue_name =>'aq.g2def’,
gqueue_table =>"ag.objmsgs_qtab’);

/* Veertfy if the source and destination queues have the same type. The
function has the side effect of inserting/Updating the entry for the source
and destination queues in the dictionary table AQ$ MESSAGE _TYPES %/

DECLARE

rc BINARY_INTEGER,

Administrative Interface: Basic Operations 4-63

Verify a Queue Type

BEGIN
/*Verify ifthe queues aq.qldef and aq.q2def in the local database
have the same payload type %
DBMS_AQADM.VERIFY_QUEUE_TYPES(
Ssrc_queue_name =>'aq.qldef,
dest_queue_name =>’aq.q2def ,

rc =>rc);
DBMS_OUTPUT.PUT_LINE(rc),
END;

4-64 Application Developer’'s Guide - Advanced Queuing

Alter a Propagation Schedule

Alter a Propagation Schedule

Figure 4-22 Use Case Diagram: Alter a Propagation Schedule

Administrative Interface

name
destination
as local
database

ALTER
a propagation

User/ schedule

Program

: default continue specify
' for L until duration
' duration unschedule (seconds)
: v

. default for don't repeat
nexttime L - repeat as.

: =null specified
! OR :
luassssssssssssssssnsannnnns . .

v v
default recheck specify
for . every 60 recheck
latenc seconds interval

destination as

name

remote
database

Administrative Interface: Basic Operations 4-65

Alter a Propagation Schedule

To refer to the table of all basic operations having to do with the
Administrative Interface see:

= "Use Case Model: Administrative Interface — Basic
Operations” on page 4-2

Purpose:
To alter parameters for a propagation schedule.

Syntax:

DBMS_AQADMALTER_PROPAGATION_SCHEDULE (
queue_name IN VARCHAR?2,
destination IN VARCHAR?2 default NULL,
duration IN NUMBER default NULL,
next time IN VARCHAR?2 default NULL,
latency IN NUMBER default 60);

Usage:

Table 4-21 DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE

Parameter

Description

gueue_name
(IN VARCHAR?2)

destination
(IN VARCHAR?2)

specifies the name of the source queue whose messages are to be propagated, including
the schema name. If the schema name is not specified, it defaults to the schema name of
the user.

specifies the destination dblink. The destination queue is in the database that is specified
by the dblink. If the destination is NULL, the destination queue is the same database as
the source queue. The length of this field is currently limited to 128 bytes and if the name
is not fully qualified the default domain name is used.

4-66 Application Developer’'s Guide - Advanced Queuing

Alter a Propagation Schedule

Table 4-21 (Cont.) DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE

Parameter Description

duration specifies the duration of the propagation window in seconds. A NULL value means the
(IN NUMBER) propagation window is forever or until the propagation is unscheduled.

next_time the date function to compute the start of the next propagation window from the end of

the current window. If this value is NULL, propagation will be stopped at the end of the
current window. For example, to start the window at the same time every day, next_time
should be specified as 'SYSDATE + 1 - duration/86400’.

(IN VARCHAR?2)

latency the maximum wait, in seconds, in the propagation window for a message to be
(IN NUMBER) propagated after it is enqueued. The default value is 60. Caution: if latency is not
specified for this call, latency will over-write any existing value with the default value.

For example, if the latency is 60 seconds, then during the propagation window, if there
are no messages to be propagated, messages from that queue for the destination will not
be propagated for at least 60 more seconds. It will be at least 60 seconds before the queue
will be checked again for messages to be propagated for the specified destination. If the
latency is 600, then the queue will not be checked for 10 minutes and if the latency is 0,
then a job queue process will be waiting for messages to be enqueued for the destination
and as soon as a message is enqueued it will be propagated.

Example: Alter a Propagation Schedule Using PL/SQL (DBMS_AQADM)

Alter a Schedule from a Queue to Other Queues in the Same Database

/*Alter schedule from queuie aq.qldefto other queues in the same database ¥/
EXECUTE DBMS_AQADMALTER_PROPAGATION_SCHEDULE(
Queue name => ‘aq.qldef,
Duration => 2000,
Next tme => 'SYSDATE +3600/86400,
Latency = '32);

Alter a Schedule from a Queue to Other Queues in Another Database

/*Alter schedule from queue ag.qldef toother queues in another database
reached by the database link another_db.world */
EXECUTE DBMS_AQADMALTER_PROPAGATION_SCHEDULE(

Queue_name => ‘aq.qldef,

Destination => ‘another_db.world’,

Duration => 2000,

Next tme => 'SYSDATE +3600/86400',

Latency => '32);

Administrative Interface: Basic Operations 4-67

Enable a Propagation Schedule

Enable a Propagation Schedule

Figure 4-23 Use Case Diagram: Enable a Propagation Schedule

name
destination

name
destination as

ENABLE
a queue

L . default
Administrative Interface J| (nui
é ; e

: as local remote
User/ propagation database database
Program v
: 4 4
R e =
To refer to the table of all basic operations having to do with the
Administrative Interface see:
« "Use Case Model: Administrative Interface — Basic
Operations” on page 4-2
Purpose:

To enable a previously disabled propagation schedule.

Syntax:

DBMS_AQADM.ENABLE PROPAGATION_SCHEDULE (
queue_name IN VARCHAR?2,
destination IN VARCHAR?2 default NULL);

4-68 Application Developer’'s Guide - Advanced Queuing

Enable a Propagation Schedule

Usage:

Table 4-22 DBMS_AQADM.ENABLE_ PROPAGATION_SCHEDULE

Parameter

Description

queue_name
(IN VARCHAR?2)

destination
(IN VARCHAR?2)

specifies the name of the source queue whose messages are to be propagated, including
the schema name. If the schema name is not specified, it defaults to the schema name of
the user.

specifies the destination dblink. The destination queue is in the database that is specified
by the dblink. If the destination is NULL, the destination queue is the same database as
the source queue. The length of this field is currently limited to 128 bytes and if the name
is not fully qualified the default domain name is used.

Example: Enable a Propagation Using PL/SQL (DBMS_AQADM)

Enable Propagation from a Queue to Other Queues in the Same Database
/* Enable propagation from queue aq.qldef to other queues in the same

database */
EXECUTE DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(

Queue_name => ‘ag.qldef);

Enable Propagation from a Queue to Queues in Another Database
/* Enable propagation from queuie aq.qldefto other queuies in another
database reached by the database link another_db.world %/
EXECUTE DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
Queue_name => ‘aq.qldef,
Destination => ‘another_db.world);

Administrative Interface: Basic Operations 4-69

Disable a Propagation Schedule

Disable a Propagation Schedule

Figure 4-24 Use Case Diagram: Disable a Propagation Schedule

- . default
Administrative Interface ,| (i
4

name name

X

DaISABLE destination Y destination as
queue
ropadation as local remote
User/ propag database database
Program T
: A A
: OR :

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 4-2

Purpose:
To disable a previously disabled propagation schedule.

Syntax:

DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE (
queue_name IN VARCHAR2,
destination IN VARCHARZ default NULL);

4-70 Application Developer’'s Guide - Advanced Queuing

Disable a Propagation Schedule

Usage:

Table 4-23 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE

Parameter Description

gueue_name specifies the name of the source queue_whose messages are to be propagated, including
(IN VARCHARY) mg Ecsk;ima name. If the schema name is not specified, it defaults to the schema name of
destination specifies the destination dblink; the destination queues are in the database that is

specified by the dblink. If the destination is NULL, the destination queue is the same
database as the source queue. The length of this field is currently limited to 128 bytes
and if the name is not fully qualified the default domain name is used.

(IN VARCHAR?2)

Example: Disable a Propagation Using PL/SQL (DBMS_AQADM)

Disable Propagation from a Queue to Other Queues in the Same Database
/* Disable a propagation from queue aq.qldefto other queues in the sarme

database */
EXECUTE DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(

Queue_name => ‘ag.qldef);

Disable Propagation from a Queue to Queues in Another Database
/* Disable a propagation from queue aq.q1defto other queues in another
database reached by the database link another_db.world %/
EXECUTE DBMS_AQADM.DISABLE PROPAGATION_ SCHEDULE(
Queue_name => ‘aq.qldef,
Destination => ‘another_db.world);

Administrative Interface: Basic Operations 4-71

Disable a Propagation Schedule

Usage Notes

This section describes some troubleshooting tips to diagnose problems with mes-
sage propagation.

Message history

AQ updates the message history when a message has been successfully propagated
to a destination. The message history is stored as a collection in the queue table. An
administrator can execute a SQL query to determine if a message has been propa-
gated. For example, to check if a message with msgid

105E7A2EBFF11348E03400400B40F149 *

in queue table agadmn.queue _tab has been propagated to destination 'boston ',
the following query can be executed:

SELECT consumer, fransaction id, deq_time, deq_user, propagated _msgid
FROM THE(select cast(history as ag$_dequeue_history 1)
FROM adadmn.queue_tab
WHERE msgid="105E7A2EBFF11348E03400400B40F149)
WHERE consumer LIKE %BOSTON0"

A non-NULL transaction_id indicates that the message was successfully
propagated. Further, the deq_time indicates the time of propagation, the deq_
user indicates the userid used for propagation, and the propagated_msgid
indicates the msgid of the message that was enqueued at the destination. If the
message with the msgid cannot be found in the queue table, an administrator can
check the exception queue (if the exception queue is in a different queue table) for
the message history.

Propagation Schedules

To verify that propagation is working successfully, examine the schedule
information using the DBA_QUEUE_SCHEDULE®Rw. Check the error message field
to discover if any error occurred during propagation. If there was an error, the error
time and error date field display when the error last occurred. After you have
corrected the problem, propagation should resume.

You should also determine if the schedule has been disabled (DISABLEDfield is Y).
Propagation should resume once you have enabled the schedule by invoking
ENABLE_PROPAGATION_SCHEDUILEhe schedule is already enabled, check if the
schedule is active. A schedule is active if a PROCESS_NAM#ists for that schedule.
If one does not exist, which means that the schedule is inactive, check the time of

4-72 Application Developer’'s Guide - Advanced Queuing

Disable a Propagation Schedule

the last successful execution and when the schedule will be next executed. If the
next scheduled execution is too far away, change the NEXT_TIMEparameter of the
schedule so that schedules are executed more frequently (assuming that the
window is not set to be infinite).

Parameters of a schedule can be changed using the ALTER_PROPAGATION_
SCHEDULEall. If a schedule is active then the source queue may not have any
messages to be propagated.

Database link
There are a number of points at which propagation may break down:

« You may want to determine if the destination is reachable with regard to
whether the network connection to the destination is available. You do this by
executing a simple distributed query, or by creating a connection descriptor that
has the same connect string, and then by trying to connect to the remote data-
base.

= You need to ensure that the userid that scheduled the propagation (using
dbms_agadm.schedule_propagation) has access to the database link for
the destination.

« Verify that the userid used to login to the destination through the database link
has been granted privileges to use the AQ.

« Check if the queue name specified in the address attribute of the ag$_agent
type (in the subscriber list for the source queue or in the recipient list of the
enqueuer) both (a) exists at the specified destination, and (b) has been enabled
for enqueuing. All these and other errors that the propagator encounters are
logged into trace file(s) generated by the job_queue processes in SORACLE_
HOMEIog directory.

Type checking

AQ will not propagate messages from one queue to another if the payload-types of
the two queues are not equivalent. An administrator can verify if the source and
destination's payload types match by executing the DBMS_AQADM.VERIFY _
QUEUE_TYPES®rocedure. The results of the type checking will be stored in the ag$_
message_types table. This table can be accessed using the OID of the source queue
and the address of the destination queue (i.e. [schema.]queue_name[@destina-

tion).

Administrative Interface: Basic Operations 4-73

Disable a Propagation Schedule

4-74 Application Developer’'s Guide - Advanced Queuing

D

Administrative Interface: Views

In this chapter we describe the administrative interface with respect to views in
terms of a hybrid of use cases and state diagrams. That is, we describe each view as
a use case in terms of the operations that represents it (such as "Select All Queue
Tables in Database™). We describe each view as a state diagram in that each attribute
of the view is represented as a possible state of the view, the implication being that
any attribute (column) can be visible or invisible.

The table listing all the use cases is provided at the head of the chapter (see "Use
Case Model: Administrative Interface — Views" on page 5-2). A summary figure,
"Use Case Diagram: Administrator’s Interface — Views", locates all the use cases in
single drawing. If you are using the HTML version of this document, you can use
this figure to navigate to the use case in which you are interested by clicking on the
relevant use case title.

The individual use cases are themselves laid out as follows:

« A figure that depicts the use case (see "Preface" for a description of how to
interpret these diagrams).

« Alisting of the syntax.

Administrative Interface: Views 5-1

Use Case Model: Administrative Interface — Views

Use Case Model: Administrative Interface — Views

Table 5—-1 Use Case Model: Administrative Interface — Views

Use Case

Name of View

Select All Queue Tables in Database on page 5-4

Select User Queue Tables on page 5-7

Select All Queues in Database on page 5-10

Select All Propagation Schedules on page 5-12

Select Queues for which User has Any Privilege on page 5-17
Select Queues for which User has Queue Privilege on page 5-19
Select Messages in Queue Table on page 5-21

Select Queue Tables in User Schema on page 5-25

Select Queues In User Schema on page 5-28

Select Propagation Schedules in User Schema on page 5-30
Select Queue Subscribers on page 5-35

Select Queue Subscribers and their Rules on page 5-37

Select the Number of Messages in Different States for the Whole
Database on page 5-39

Select the Number of Messages in Different States for Specific
Instances on page 5-41

DBA_QUEUE_TABLES
ALL_QUEUE_TABLES
DBA_QUEUES
DBA_QUEUE_SCHEDULES
ALL_QUEUES
QUEUE_PRIVILEGES
AQS$<name of queue table>
USER_QUEUE_TABLES
USER_QUEUES
USER_QUEUE_SCHEDULES
AQ$<name of queue table>_S
AQ$<name of queue table>_R

GV$AQ

VSAQ

5-2 Application Developer's Guide - Advanced Queuing

Use Case

Model: Administrative Interface — Views

Figure 5-1 Use Case Model: Administrative Interface — Views

Administrative Interface — Views

DBA_
QUEUE_
TABLES

DBA_
QUEUES

DBA_
QUEUE_
SCHEDULES

SELECT
all queue tables
in database

SELECT
all queues in
database

SELECT
all propagation
schedules

DBA
Views

ALL
QUEUES

QUEUE_
PRIVILEGES User

Views

SELECT
queues for which
user has any
privilege

SELECT
queues for which
user has queue
privilige

AQ$ <name USER_
of queue QUEUE_
table> TABLES

USER_
QUEUES

DBA_
QUEUE_
SCHEDULES

SELECT
messages in
queue table

SELECT
gueue tables in
user schema

SELECT
queues in
user schema

SELECT
prop schedules in
user schema

AQ$<name
of queue
table>_S

AQ$<name
of queue
table> R

SELECT
queue
subscribers

SELECT
queue
subscribers and
their rules

Administrative Interface: Views 5-3

Select All Queue Tables in Database

Select All Queue Tables in Database

User/
Program

Figure 5-2 Use Case Diagram: Select All Queue Tables in Database

Administrative Interface

SELECT
all queue
tables in
database

DBA_QUEUE_TABLES

_ _|é| DBA view

list
attribute
names

QUEUE_
OWNER TABLE
_ /) _ name)
payload
OBJECT_TYPE| |SORT_ORDER
MESSAGE_
GROUPING COMPATIBLE
SECONDARY_ OWNER_
INSTANCE INSTANCE

List at
least one
attribute

queue table
TYPE

_____/

message
RECIPIENTS
as single or

\ mulitconsumer /

PRIMARY_
INSTANCE

______/
O

USER_
COMENT

______/

5-4 Application Developer's Guide - Advanced Queuing

Select All Queue Tables in Database

To refer to the table of all basic operations having to do with the

Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on

page 5-2

Name of View:
DBA_QUEUE_TABLES

Purpose:

This view describes the names and types of all queue tables created in the database.

Table 5-2 DBA QUEUE_TABLES

Column Name & Description Null? Type

OWNER — queue table schema VARCHAR2(30)
QUEUE_TABLE - queue table name VARCHAR2(30)
TYPE — payload type VARCHAR2(7)
OBJECT_TYPE — name of object VARCHAR2(61)
type, if any

SORT_ORDER — user specified sort VARCHAR(22)
order

RECIPIENTS — SINGLE or MULTIPLE VARCHAR2(8)
MESSAGE_GROUPING — NONE or VARCHAR(13)
TRANSACTIONAL

COMPATIBLE — indicates the lowest VARCHAR2(5)
version with which the queue

table is compatible

PRIMARY_INSTANCE — indicates NUMBER

which instance is the primary

owner of the queue table; a value
of 0 indicates that there is no
primary owner

Administrative Interface: Views 5-5

Select All Queue Tables in Database

Table 5-2 DBA QUEUE_TABLES

Column Name & Description Null? Type

SECONDARY_INSTANCE — indicates NUMBER
which owner is the secondary

owner of the queue table; this

instance becomes the owner of the

queue table if the primary owner

is not up; a value of O indicates

that there is no secondary owner

OWNER_INSTANCE — indicates which NUMBER
instance currently owns the queue

table

USER_COMMENT — user comment for VARCHAR2(50)

the queue table

5-6 Application Developer's Guide - Advanced Queuing

Select User Queue Tables

Select User Queue Tables

Figure 5-3 Use Case Diagram: Select User Queue Tables

User/
Program

Administrative Interface
SELECT .
queue tables _ _f— USER view
accessible ALL_QUEUE_TABLES
by user
T aaaaassassssssssssssssssssssssssses .
'OR .
v v
list list :
all queue attribute I';s';;ta(tme
table attributes names attribute
QUEUE_ ueue table
OWNER TABLE PE
name
4 N\ T\ [_message "\
payload RECIPIENTS
OBJECT_TYPE| |SORT_ORDER as single or
\ / / \multiconsumey
MESSAGE_ PRIMARY_
GROUPING COMPATIBLE INSTANCE
SECONDARY_ OWNER_ USER_
INSTANCE INSTANCE COMMENT

Administrative Interface: Views 5-7

Select User Queue Tables

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 5-2

Name of View:
ALL_QUEUE_TABLES

Purpose:
This view describes queue tables accessible to a user.

Table 5-3 DBA QUEUE_TABLES

Column Name & Description Null? Type

OWNER — owner of the queue table VARCHAR2(30)
QUEUE_TABLE - queue table name VARCHAR2(30)
TYPE — payload type VARCHAR2(7)
OBJECT_TYPE — object type, if any VARCHAR2(61)
SORT_ORDER — user-specified sort VARCHAR(22)
order

RECIPIENTS — SINGLE or MULTIPLE VARCHAR2(8)
recipient queue

MESSAGE_GROUPING — NONE or VARCHAR(13)
TRANSACTIONAL

COMPATIBLE — indicates the lowest VARCHAR2(5)

version with which the queue
table is compatible

PRIMARY_INSTANCE — indicates NUMBER
which instance is the primary

owner of the queue table; a value

of 0 indicates that there is no

primary owner

5-8 Application Developer's Guide - Advanced Queuing

Select User Queue Tables

Table 5-3 DBA QUEUE_TABLES

Column Name & Description

Null? Type

SECONDARY_INSTANCE — indicates
which owner is the secondary

owner of the queue table; this

instance becomes the owner of the
queue table if the primary owner

is not up; a value of O indicates
that there is no secondary owner

OWNER_INSTANCE — indicates which
instance currently owns the queue
table

USER_COMMENT — user comment for
the queue table

NUMBER

NUMBER

VARCHAR2(50)

Administrative Interface: Views 5-9

Select All Queues in Database

Select All Queues in Database

Figure 5-4 Use Case Diagram: Select All Queues in Database

SELECT
all queues in
database

£z

User/
Program

Administrative Interface

DBA view:
- DBA_QUEUES

list
all queue
attributes

list
attribute
names

List at
least one
attribute

[OWNER] [Quene] QUEL;EH;I;ABLB [QID
é) é)

MAX_RETRYS ENQUEUE._
QUEUE_TYPE of dequeve RETRY_DELAY ENABLED
\ / \ attempts / \ / (true/false)
/DEQUEUE_\ / \ / USER \

ENABLED RETENTION _

\(true/false)/ time (seconds) \COMMENT/

5-10 Application Developer's Guide - Advanced Queuing

Select All Queues in Database

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 5-2

Name of View:
DBA_QUEUES

Purpose:

Users can specify operational characteristics for individual queues. DBA_QUEUES
contains the view which contains relevant information for every queue in a
database.

Table 5-4 DBA QUEUES

Column Name & Description Null? Type

OWNER — queue schema name NOT NULL VARCHAR2(30)
NAME — queue name NOT NULL VARCHAR2(30)
QUEUE_TABLE — queue table where NOT NULL VARCHAR2(30)
this queue resides

QID — unique queue identifier NOT NULL NUMBER

QUEUE_TYPE — queue type VARCHAR2(15)
MAX_RETRIES — number of dequeue NUMBER
attempts allowed

RETRY_DELAY — number of seconds NUMBER

before retry can be attempted

ENQUEUE_ENABLED — YES/NO VARCHAR2(7)
DEQUEUE_ENABLED — YES/NO VARCHAR2(7)
RETENTION — number of seconds VARCHAR2(40)
message is retained after dequeue

USER_COMMENT — user comment for the VARCHAR2(50)
queue

Administrative Interface: Views 5-11

Select All Propagation Schedules

Select All Propagation Schedules

Figure 5-5 Use Case Diagram: Select All Propagation Schedules

Administrative Interface

list i List at
g% i all Fs,rilﬁgg‘;;ion - DBA view: all propagation attlrligbte least one
schedules DBA_QUEUE_ schedule names attribute
User/ SCHEDULES attributes
Program Y
: A

5-12 Application Developer's Guide - Advanced Queuing

continued on next page

Select All Propagation Schedules

SCHEMA DESTINATION . -
name of owner Q(')\#”{,\r?/'eE db link for original original
£ source R START_DATE START_TIME
or's source queue destination
queue queues _ /L J
function Y\ (SCHEDULE_\ [ProcESs_)
PROPAGATION_ to compute LATENCY wait DISABLED NAME
WINDOW NEXT TIME (seconds) (N = enabled, executing
(seconds) - \ Y = disabled) / sched.
/'SESSION_ID INSTANCE ontv sonticable | FAST-RUN_) ("LAST RUN_)
of the job number i prspp DATE of TIME of
executing executing Ienvironmen t successful sched. | |successful sched.
sched. sched. execution execution
_ . . : _ NG J
. - ----
/ CURRENT CURRENT_ (NEXT_RUN_\ /'NEXT RUN_\
START DATE Returns NULL START_TIME DATE of next TIME of next
- if not currently of current sched hed
of current sched. executing : : sched. sched.
execution execution _ exeution / \ execution /
T T

AX_NUMBERY) ("TOTAL TIME) (fOTAL NUMBER) 40TA|_ BYTE? / Returns NULL
of messages executing of messages propagated in if currently
propagated sched. propagated in executing sched. executing
in window \ (seconds) / @(ecutmg schey \ /
AVG_NUMBER) (MAX_BYTES\ (AVG SIZEof \ [AVG_TIMEto\ [FAILURES
of messages of bytets d a propagated propagate a number of times
propagated propagate message message execution failed
in window _in window / _ (bytes) / \ (seconds) /
T
LAST_ERROR /LAST_ERRO% (AST_ERRO% A Schedule is
_DATE of _TIME of last _MSG (error disabled on
unsucessful unsuccessful number and error 16th failure
execution \ execution @essage texy

To refer to the table of all basic operations having to do with the

Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 5-2

Administrative Interface: Views 5-13

Select All Propagation Schedules

Name of View:
DBA_QUEUE_SCHEDULES

Purpose:
This view describes the current schedules for propagating messages.

Table 5-5 DBA_QUEUE_SCHEDULES

Column Name & Description Null? Type

SCHEMA — schema name for the source NOT NULL VARCHAR2(30)
queue

QNAME — source queue name NOT NULL VARCHAR2(30)
DESTINATION — destination name, NOT NULL VARCHAR2(128)
currently limited to be a DBLINK

name

START_DATE — date to start DATE
propagation in the default date

format

START_TIME — time of day at which VARCHAR2(8)
to start propagation in HH:MI:SS

format

PROPAGATION_WINDOW — duration in NUMBER
seconds for the propagation window

NEXT_TIME — function to compute the VARCHAR2(200)
start of the next propagation

window

LATENCY — maximum wait time to NUMBER

propagate a message during the
propagation window.

SCHEDULE_DISABLED — N if enabled Y VARCHAR(1)
if disabled and schedule will not
be executed

PROCESS_NAME — The name of the SNP VARCHAR2(8)
background process executing this

schedule. NULL if not currently

executing

SESSION_ID — The session ID (SID , NUMBER
SERIAL#) of the job executing this

schedule. NULL if not currently

executing

5-14 Application Developer's Guide - Advanced Queuing

Select All Propagation Schedules

Table 5-5 DBA QUEUE_SCHEDULES

Column Name & Description Null? Type
INSTANCE — The OPS instance number NUMBER
executing this schedule

LAST_RUN_DATE — The date on the DATE
last successful execution

LAST_RUN_TIME — The time of the VARCHAR2(8)
last successful execution in

HH:MI:SS format

CURRENT_START_DATE — Date at which DATE
the current window of this schedule

was started

CURRENT_START_TIME — Time of day VARCHAR2(8)
at which the current window of this

schedule was started in HH:MI:SS

format

NEXT_RUN_DATE — Date at which the DATE
next window of this schedule will

be started

NEXT_RUN_TIME — Time of day at VARCHAR2(8)
which the next window of this

schedule will be started in

HH:MI:SS format

TOTAL_TIME — Total time in seconds NUMBER
spent in propagating messages from

the schedule

TOTAL_NUMBER — Total number of NUMBER
messages propagated in this

schedule

TOTAL_BYTES — Total number of bytes NUMBER
propagated in this schedule

MAX_NUMBER — The maximum number of NUMBER
messages propagated in a

propagation window

MAX_BYTES — The maximum number of NUMBER
bytes propagated in a propagation

window

AVG_NUMBER —Fhe average number of NUMBER

messages propagated in a propagation window

Administrative Interface: Views 5-15

Select All Propagation Schedules

Table 5-5 DBA QUEUE_SCHEDULES

Column Name & Description Null? Type
AVG_SIZE — The average size of a NUMBER
propagated message in bytes

AVG_TIME — The average time, in NUMBER
seconds, to propagate a message

FAILURES — The number of times the NUMBER

execution failed. If 16, the
schedule will be disabled

LAST _ERROR_DATE — The date of the DATE

last unsuccessful execution

LAST_ERROR_TIME — The time of the VARCHAR2(8)
last unsuccessful execution

LAST_ERROR_MSG — The error number VARCHAR2(4000)

and error message text of the last
unsuccessful execution

5-16 Application Developer's Guide - Advanced Queuing

Select Queues for which User has Any Privilege

Select Queues for which User has Any Privilege

User/
Program

Figure 5-6 Use Case Diagram: Select Queues for which User has Any Privilege

Administrative Interface

list
all queue
attributes

list
attribute
names

_kept in queue /

\ name of
OWNER NAME QUEUE_TABLE
of queue of queue queue data
/ resides in
6UEUE_TYPB /MAX RETRIES\ RETRY_DELAY
of queue allowed when interval
(RAW/Object dequeuing between retries
Type) _ J (seconds)
/" RETENTION USER
DEQUEUE_ interval COMMENT
ENABLED messages optional

information

List at
least one
attribute

QID object
number
of queue

ENQUEUE_
ENABLED

Administrative Interface: Views

5-17

Select Queues for which User has Any Privilege

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 5-2

Name of View:
ALL_QUEUES

Purpose:
This view describes all queues accessible to the user.

Table 5-6 ALL_QUEUES

Column Name & Description Null? Type

OWNER — Owner of the queue NOT NULL VARCHAR2(30)
NAME — Name of the queue NOT NULL VARCHAR2(30)
QUEUE_TABLE — Name of the table the NOT NULL VARCHAR2(30)
gueue data resides in

QID — Object number of the queue NOT NULL NUMBER
QUEUE_TYPE — Type of the queue VARCHAR2(15)
MAX_RETRIES — Maximum number of NUMBER
retries allowed when dequeuing from

the queue

RETRY_DELAY — Time interval between NUMBER
retries

ENQUEUE_ENABLED — Queue is enabled VARCHAR2(7)
for enqueue

DEQUEUE_ENABLED — Queue is enabled VARCHAR2(7)
for dequeue

RETENTION — Time interval processed VARCHAR2(40)
messages retained in the queue

USER_COMMENT — User specified VARCHAR2(50)
comment

5-18 Application Developer's Guide - Advanced Queuing

Select Queues for which User has Queue Privilege

Select Queues for which User has Queue Privilege

Figure 5—7 Use Case Diagram: Select Queues for which User has Queue Privilege

Administrative Interface
SELECT _
i ‘queues for which '} _ _ User view:
user has queue QUEUE_PRIVILEGES
User/ privilege
Program .
iOR :
v v
list list .
all queue attribute :_elasétagne
attributes names atiribute
GRANTEE
to whom OWNER NAME GRANTOR
access was of the queue of the queue who performed
grant the grant
ENQUEUE_ DEQUEUE_
PRIVILEGE to PRIVILEGE
ENQUEUE to the to DEQUEUE
queue from the queue

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on

page 5-2

Name of View:

QUEUE_PRIVILEGES

Administrative Interface: Views 5-19

Select Queues for which User has Queue Privilege

Purpose:

This view describes queues for which the user is the grantor, or grantee, or owner,
or an enabled role or the queue is granted to PUBLIC.

Table 5-7 QUEUE_PRIVILEGES

Column Name & Description Null? Type
GRANTEE — Name of the user to whom NOT NULL VARCHAR2(30)
access was granted
OWNER — Owner of the queue NOT NULL VARCHAR2(30)
NAME — Name of the queue NOT NULL VARCHAR2(30)
GRANTOR — Name of the user who NOT NULL VARCHAR2(30)
performed the grant
ENQUEUE_PRIVILEGE — Permission to NUMBER(1 if
ENQUEUE to the queue granted, O if

not)
DEQUEUE_PRIVILEGE — Permission to NUMBER(1 if
DEQUEUE to the queue granted, O if

not)

5-20 Application Developer's Guide - Advanced Queuing

Select Messages in Queue Table

Select Messages in Queue Table

Figure 5-8 Use Case Diagram: Select Messages in Queue Table

Administrative Interface

SELECT
messages in
queue table

User/

User view:
- AQ$<name of queue table>

Program

list
all queue
table attributes

list
attribute
names

List at
least one
attribute

QUEUE MSG_ID CORR_ID MSG MSG_STATE
name of the user-provided PRIORITY of this message
message identifier
message EX';}EQQION
DELAY . ENQ_TIME
(o) message expires Q_ ENQ_USER_ID ENQ_TXN_ID
(seconds)
EXCEPTION_
DEO TIME RETRY_ QUEUE_OWNER
Q_ DEQ_USER_ID DEQ_TXN_ID COUNT exception queue
schema
/ \ SENDER SENDER
EXCEPTION_ S SENDER_NAME\ /ADDRESS_of\ /PROTOCO_L\
QUEUE USER_DATA enqueing the last propagation for sender
name _ J message J _ Queue / \ address /
ORIGINAL _ / CONSUMER_ N\ [protocoL) (PROPAGATED.
ADDRESS .
; MSGID NAME of the of agent for receiving MSGID in
of message In agent receivin b , receiving agent's
source queue \g message g/ receiving /) @ents addre@ queue

Administrative Interface: Views 5-21

Select Messages in Queue Table

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 5-2

Name of View:
AQ%$<name of queue table>

Purpose:

This view describes the queue table in which message data is stored. This view is
automatically created with each queue table and should be used for querying the
gueue data. The dequeue history data (time, user identification and transaction
identification) is only valid for single consumer queues.

Table 5-8 AQ$<name of queue table>

Column Name & Description Null? Type

QUEUE — queue name VARCHAR2(30)
MSG_ID — unique identifier of the RAW(16)
message

CORR_ID — user-provided correlation VARCHAR2(128)
identifier

MSG_PRIORITY — message priority NUMBER
MSG_STATE — state of this message VARCHAR2(9)
DELAY — number of seconds the DATE

message is delayed

EXPIRATION — number of seconds in NUMBER
which the message will expire after

being READY

ENQ_TIME — enqueue time DATE
ENQ_USER_ID — enqueue user id NUMBER
ENQ_TXN_ID — enqueue transaction id NOT NULL VARCHAR2(30)
DEQ_TIME — dequeue time DATE
DEQ_USER_ID — dequeue user id NUMBER

5-22 Application Developer's Guide - Advanced Queuing

Select Messages in Queue Table

Table 5-8 AQ$<name of queue table>

Column Name & Description Null? Type
DEQ_TXN_ID — dequeue transaction id VARCHAR2(30)
RETRY_COUNT — number of retries NUMBER
EXCEPTION_QUEUE_OWNER — exception VARCHAR2(30)
gueue schema

EXCEPTION_QUEUE — exception queue VARCHAR2(30)
name

USER_DATA — user data BLOB
SENDER_NAME — name of the Agent VARCHAR2(30)

enqueuing the message (valid only
for 8.1-compatible queue tables)

SENDER_ADDRESS — queue name and VARCHAR2(1024)
database name of the source (last

propagating) queue; the database

name is not specified if the source

gueue is in the local database

(valid only for 8.1-compatible

queue tables)

SENDER_PROTOCOL — protocol for NUMBER
sender address, reserved for future

use (valid only for 8.1-compatible

queue tables)

ORIGINAL_MSGID — message id of the RAW(16)
message in the source queue (valid

only for 8.1-compatible queue

tables)

CONSUMER_NAME — name of the Agent VARCHAR2(30)
receiving the message (valid ONLY

for 8.1-compatible MULTICONSUMER

gueue tables)

ADDRESS — address (queue name and VARCHAR2(1024)
database link name) of the agent

receiving the message.The database

link name is not specified if the

address is in the local database.

The address is NULL if the

receiving agent is local to the

queue (valid ONLY for

8.1-compatible MULTICONSUMER queue

tables)

Administrative Interface: Views 5-23

Select Messages in Queue Table

Table 5-8 AQ$<name of queue table>

Column Name & Description Null? Type

PROTOCOL — protocol for receiving NUMBER
agent’s address (valid only for
8.1-compatible queue tables)

PROPAGATED_MSGID — message id of NULL RAW(16)
the message in the receiving
agent's queue (valid only for
8.1-compatible queue tables)

5-24 Application Developer's Guide - Advanced Queuing

Select Queue Tables in User Schema

Select Queue Tables in User Schema

Figure 5-9 Use Case Diagram: Select Queue Tables in User Schema

Administrative Interface
% SELECT]
queue _ User view:
] tables in user USER_QUEUE_TABLES
User/
Program .
v
list 4' .
attribute - IL(—ZES;'[a(t)ne
names attribute
QUEUE_TABLE queue table payload
name TYPE OBJECT_TYPE
4) RECIPIENTS [
SORT_ORDER (single or ggg?ﬁ:‘,?NEC—;
\ / multiconsumer) \ /
COMPATIBLE PRIMARY_ SECONDARY_
(8.0 0r8.1) INSTANCE INSTANCE
OWNER_ USER_
INSTANCE COMMENT

Administrative Interface: Views 5-25

Select Queue Tables in User Schema

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 5-2

Name of View:
USER_QUEUE_TABLES

Syntax:

This view is the same as DBA_QUEUE_TABLE®ith the exception that it only shows
gueue tables in the user’s schema. It does not contain a column for OWNER

Table 5-9 USER_QUEUE_TABLES

Column Name & Description Null? Type
QUEUE_TABLE - queue table name VARCHAR2(30)
TYPE — payload type VARCHAR2(7)
OBJECT_TYPE — name of object type, VARCHAR2(61)
if any

SORT_ORDER — user specified sort VARCHAR2(22)
order

RECIPIENTS — SINGLE or MULTIPLE VARCHAR2(8)
MESSAGE_GROUPING — NONE or VARCHAR2(13)
TRANSACTIONAL

COMPATIBLE — indicates the lowest VARCHAR2(5)
version with which the queue table

is compatible

PRIMARY_INSTANCE — indicates which NUMBER

instance is the primary owner of
the queue table; a value of 0
indicates that there is no primary
owner

5-26 Application Developer's Guide - Advanced Queuing

Select Queue Tables in User Schema

Table 5-9 USER_QUEUE_TABLES

Column Name & Description

Type

SECONDARY_INSTANCE — indicates
which owner is the secondary owner

of the queue table; this instance
becomes the owner of the queue

table if the primary owner is not

up; a value of 0 indicates that

there is no secondary owner

OWNER_INSTANCE — indicates which
instance currently owns the queue
table

USER_COMMENT — user comment for the
queue table

NUMBER

NUMBER

VARCHAR2(50)

Administrative Interface: Views 5-27

Select Queues In User Schema

Select Queues In User Schema

Figure 5-10

.Use Case Diagram: Select Queues in User Schema

Administrative Interface

User view:
- USER_QUEUES

SELECT
queues in

User/

Program

list
all queue
attributes

list
attribute
names

_A List at

least one
attribute

m/

[Quewe] EUE%EHLAB% [QID] EUEUE_TYPE
MAX RETRYS ENQUEUE_ DEQUEUE_
for dequeue RETRY_DELAY ENABLED ENABLED
attempts (true/false) (true/false)

N

USER_
COMMENT

RETENTION

time (seconds)

5-28 Application Developer's Guide - Advanced Queuing

Select Queues In User Schema

To refer to the table of all basic operations having to do with the

Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on

page 5-2

Name of View:
USER_QUEUES

Purpose:

This view is the same as DBA_QUEUE®ith the exception that it only shows queues

in the user’s schema.

Table 5-10 USER_QUEUES

Column Name & Description Type

NAME — queue name NOT NULL VARCHAR2(30)
QUEUE_TABLE — queue table where NOT NULL VARCHAR2(30)
this queue resides

QID — unique queue identifier NOT NULL NUMBER

QUEUE_TYPE — queue type VARCHAR2(15)
MAX_RETRIES — number of dequeue NUMBER
attempts allowed

RETRY_DELAY — number of seconds NUMBER

before retry can be attempted

ENQUEUE_ENABLED — YES/NO VARCHAR2(7)
DEQUEUE_ENABLED — YES/NO VARCHAR2(7)
RETENTION — number of seconds VARCHAR2(40)
message is retained after dequeue

USER_COMMENT — user comment for the VARCHAR2(50)

queue

Administrative Interface: Views 5-29

Select Propagation Schedules in User Schema

Select Propagation Schedules in User Schema

Figure 5-11 Use Case Diagram: Select Propagation Schedules in User Schema

Administrative Interface

list i List at
SELECT - . list
f): - propag schedules)- - BgeEer I%\%EUE all pr(%p(égelatlon attribute) — Ieas_é one
User/ in user schema SCHEDULES — schedule names attribute
Program attributes
: A A
:OR :

continued on next page

5-30 Application Developer's Guide - Advanced Queuing

Select Propagation Schedules in User Schema

4 QNAME h DEdSbTI'i'r\]ll/(*{J'?N original original PROPAGATION_
of the destinati START_DATE START_TIME WINDOW
source queue estination (seconds)
\ ") queues _
(" function) _ SCHEDULE_\ (PROCESS_\ (SESSION_ID
to Compute LATENCY wait DISABLED NAME - of the jOb
NEXT_TIME (seconds) (N = enabled, executing |y executing
Y = disabled) / schedule 1 __sched.
________ 1
/_Iﬁ 1
INSTANCE onl licabl LAST RUN_\ [LAST RUN_\ 1 [/ CURRENT_
number . ”preépp icable DATE of TIME of 1 | START_DATE of
executing in L t successful sched. [|successful sched. | 1 | current sched.
sched. environmen execution execution /1 __execution
1
oo oS- - - - - - - - - - - ----------____ 1
11
Returns NULL SCT%EFT{E#L—E\ (NexT RUN_Y - NEXT RUNY - Areruems nuLt
if | _ DATE of next TIME of next if currentl
If not currently of current sched. sched. sched. urrenty
executing execution)\ execution / execution executing
R ; '_________:::::::::'_;
MAX_NUMBEB TOTAL__TIME\ (fOTAL_NUMBER) FOTAL_BYTEQ @G_NUMBEE
of messages executing of messages propagated in of messages
propagated sched. propagated in executing propagated
in window (seconds) / \executing sched. / sched. _in window _/
mAX_BYTES\ AVG_SIZE of AVG_TIME to FAILURES /1 Schedule is
of bytes a propagated propagate a number of times|- - disabled on
propagated message message execution failed 16th failure
_in window /) (bytes) (seconds)
LAST ERROR LAST_ERROR LAST_ERROR
_DATE of _TIME of last _MSG (error
unsucessful unsuccessful number and error
execution execution message text)

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 5-2

Administrative Interface: Views 5-31

Select Propagation Schedules in User Schema

Name:
USER_QUEUE_SCHEDULES

Purpose:

Table 5-11 USER_QUEUE_SCHEDULES

Column Name & Description Null? Type

QNAME — source queue name NOT NULL VARCHAR2(30)
DESTINATION — destination name, NOT NULL VARCHAR2(128)
currently limited to be a DBLINK

name

START_DATE — date to start DATE
propagation in the default date

format

START_TIME — time of day at which VARCHAR2(8)
to start propagation in HH:MI:SS

format

PROPAGATION_WINDOW — duration in NUMBER
seconds for the propagation window

NEXT_TIME — function to compute the VARCHAR2(200)
start of the next propagation

window

LATENCY — maximum wait time to NUMBER

propagate a message during the
propagation window.

SCHEDULE_DISABLED —N if enabled Y if VARCHAR(1)
disabled and schedule will not be executed
PROCESS_NAME — The name of the SNP VARCHAR2(8)

background process executing this
schedule. NULL if not currently
executing

SESSION_ID — The session ID (SID, VARCHAR2(82)
SERIAL#) of the job executing this

schedule. NULL if not currently

executing

INSTANCE — The OPS instance number NUMBER
executing this schedule

5-32 Application Developer's Guide - Advanced Queuing

Select Propagation Schedules in User Schema

Table 5-11 USER_QUEUE_SCHEDULES

Column Name & Description Null? Type
LAST_RUN_DATE — The date on the DATE

last successful execution

LAST_RUN_TIME — The time of the VARCHAR2(8)

last successful execution in
HH:MI:SS format

CURRENT_START_DATE — Date at which DATE
the current window of this schedule
was started

CURRENT_START_TIME — Time of day at VARCHAR2(8)
which the current window of this
schedule was started in HH:MI:SS

format

NEXT_RUN_DATE — Date at which the DATE

next window of this schedule will

be started

NEXT_RUN_TIME — Time of day at VARCHAR2(8)

which the next window of this
schedule will be started in
HH:MI:SS format

TOTAL_TIME — Total time in seconds NUMBER
spent in propagating messages from
the schedule

TOTAL_NUMBER — Total number of NUMBER
messages propagated in this

schedule

TOTAL_BYTES — Total number of bytes NUMBER
propagated in this schedule

MAX_NUMBER — The maximum number of NUMBER

messages propagated in a
propagation window

MAX_BYTES — The maximum number of NUMBER
bytes propagated in a propagation

window

AVG_NUMBER —Fhe average number of NUMBER
messages propagated in a propagation window

AVG_SIZE — The average size of a NUMBER

propagated message in bytes

Administrative Interface: Views 5-33

Select Propagation Schedules in User Schema

Table 5-11 USER_QUEUE_SCHEDULES

Column Name & Description Null? Type
AVG_TIME — The average time, in NUMBER
seconds, to propagate a message

FAILURES — The number of times the NUMBER

execution failed. If 16, the
schedule will be disabled

LAST_ERROR_DATE — The date of the DATE

last unsuccessful execution

LAST _ERROR_TIME — The time of the VARCHAR2(8)
last unsuccessful execution

LAST_ERROR_MSG — The error number VARCHAR2(4000)

and error message text of the last
unsuccessful execution

5-34 Application Developer's Guide - Advanced Queuing

Select Queue Subscribers

Select Queue Subscribers

Figure 5-12 Use Case Diagram: Select Queue Subscribers

Administrative Interface

SELECT
queue
subscribers

£

User/
Program

User view
7| AQ$<queue_table_name>_S

list list :
all queue attribute ll_|sttat
subscriber names east one
attributes attribute
QUEUE NAME ADDRESS PROTOCOL

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 5-2

Name of View:
AQ$<queue_table_name>_S

Administrative Interface: Views 5-35

Select Queue Subscribers

Usage Notes

Purpose:

This is a view of all the subscribers for all the queues in any given queue table. This
view is generated when the queue table is created and is called ag$<queue__
table_name>_s .This view is used to query subscribers for any or all the queues in
this queue table. Note that this view is only created for 8.1-compatible queue tables.

Table 5-12 AQ$<queue_table_name>_S

Column Name & Description Null? Type

QUEUE - name of Queue for which NOT NULL VARCHAR2(30)
subscriber is defined

NAME - name of Agent VARCHAR2(30)
ADDRESS - address of Agent VARCHAR2(1024)
PROTOCOL - protocol of Agent NUMBER

For queues created in 8.1-compatible queue tables, this view provides functionality
that is equivalent to the dbms_agadm.queue_subscribers() procedure. For these
gueues, it is recommended that the view be used instead of this procedure to view
gueue subscribers.

5-36 Application Developer's Guide - Advanced Queuing

Select Queue Subscribers and their Rules

Select Queue Subscribers and their Rules

Figure 5-13 Use Case Diagram: Select Queue Subscribers and their Rules

Administrative Interface

SELECT

_ queue sub-

User/ scriber and
Program

User view
- - AQ$<queue_table_name>_R

list list :
all queue attribute II_|:st tat
subscriber names east one
attributes attribute
[QUEUE] [NAME] [ADDRESS PROTOCOL

RULE

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 5-2

Administrative Interface: Views 5-37

Select Queue Subscribers and their Rules

Name of View:
AQ%$<queue_table_name> R

Purpose:

This view displays only the rule based subscribers for all queues in a given queue
table including the text of the rule defined by each subscriber. This is a view of
subscribers with rules defined on any queues of a given queue table. This view is
generated when the queue table is created and is called ag$<queue_table_name> .
It is used to query subscribers for any or all the queues in this queue table. Note that
this view is only created for 8.1-compatible queue tables.

Table 5-13 AQ$<queue_table_name>_R

Column Name & Description Null? Type

QUEUE - name of Queue for which NOT NULL VARCHAR2(30)
subscriber is defined

NAME - name of Agent VARCHAR2(30)
ADDRESS - address of Agent VARCHAR2(1024)
PROTOCOL - protocol of Agent NUMBER

RULE - text of defined rule VARCHAR2(30)

5-38 Application Developer's Guide - Advanced Queuing

Select the Number of Messages in Different States for the Whole Database

Select the Number of Messages in Different States for the Whole
Database

Figure 5-14 GV$AQ

Administrative Interface

USER view
- GV$AQ

SELECT
number of msgs
in states for
whole db

£

User/
Program

list list .

all queue attribute ILelzétaf)ne

statistics names amibute
4 N [N R
QID number msgs number msgs

of queue WAITING READY
_ /NG /
number msgs /TOTAL_WAlT\ AVERAGE_WAD

EXPIRED seconds seconds
_ o\ el

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 5-2

Administrative Interface: Views 5-39

Select the Number of Messages in Different States for the Whole Database

Name of View:
GV$AQ

Purpose:
Provides information about the number of messages in different states for the whole
database.

Table 5-14 AQ$<queue_table_name>_R

Column Name & Description Null? Type

QID — the identity of the queue. This is the NUMBER
same as the gid inuser_queues and dba_

queues.

WAITING — the number of messages in the NUMBER
state 'WAITING'.

READY— the number of messages in state NUMBER
'READY.

EXPIRED— the number of messages in state NUMBER
'EXPIRED.

TOTAL_WAIT— the number of seconds for NUMBER

which messages in the queue have been wait-
ing in state 'READY

AVERAGE_WAIT- the average number of sec- NUMBER
onds a message in state 'READY has been wait-
ing to be dequeued.

5-40 Application Developer's Guide - Advanced Queuing

Select the Number of Messages in Different States for Specific Instances

Select the Number of Messages in Different States for Specific

Instances

Figure 5-15 V$AQ

Administrative Interface

USER view
- V$AQ

SELECT
number of msgs
in states for
instances

£

User/
Program

list
all queue
statistics

QID
of queue

number msgs
EXPIRED

____/

list
attribute
names

O Y

number msgs
WAITING

____/
(otal warr)

TOTAL_WAIT
seconds

‘ready’

List at
least one
attribute

number msgs
READY

____/

AVERAGE_WAIT
seconds

\ ‘ready’ /

To refer to the table of all basic operations having to do with the

Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on

page 5-2

Administrative Interface: Views 5-41

Select the Number of Messages in Different States for Specific Instances

Name of View:
V$AQ

Purpose:

Provides information about the number of messages in different states for specific
instances.

Table 5-15 AQ$<queue_table_name>_R

Column Name & Description Null? Type

QID — the identity of the queue. This is the NUMBER
same as the gid inuser_queues and dba_

queues.

WAITING — the number of messages in the NUMBER
state 'WAITING'.

READY— the number of messages in state NUMBER
'READY.

EXPIRED— the number of messages in state NUMBER
'EXPIRED.

TOTAL_WAIT— the number of seconds for NUMBER

which messages in the queue have been wait-
ing in state 'READY

AVERAGE_WAIT- the average number of sec- NUMBER
onds a message in state 'READY has been wait-
ing to be dequeued.

5-42 Application Developer's Guide - Advanced Queuing

6

Operational Interface: Basic Operations

In this chapter we describe the operational interface to Oracle Advanced Queuing
in terms of use cases. That is, we discuss each operation (such as "Enqueue a
Message") as a use case by that name. The table listing all the use cases is provided
at the head of the chapter (see "Use Case Model: Operational Interface — Basic
Operations" on page 6-2).

A summary figure, "Use Case Diagram: Operational Interface — Basic Operations”,
locates all the use cases in single drawing. If you are using the HTML version of this
document, you can use this figure to navigate to the use case in which you are
interested by clicking on the relevant use case title.

The individual use cases are themselves laid out as follows:

« A figure that depicts the use case (see "Preface" for a description of how to
interpret these diagrams).

« Alisting of the syntax.
« Basic examples

« Usage Notes, if any.

Operational Interface: Basic Operations 6-1

Use Case Model: Operational Interface — Basic Operations

Use Case Model: Operational Interface — Basic Operations

Table 6-1 Use Case Model: Operational Interface

Use Case

Engueue a Message on page 6-4

Enqueue a Message [Specify Options] on page 6-7

Enqueue a Message [Specify Message Properties] on page 6-9

Enqueue a Message [Add Payload] on page 6-15

Listen to One (Many) Queue(s) on page 6-18

Listen to One (Many) Single-Consumer Queue(s) on page 6-20

Listen to One (Many) Multi-Consumer Queue(s) on page 6-30

Dequeue a Message on page 6-38

Dequeue a Message from a Single-Consumer Queue [Specify Options] on page 6-41
Dequeue a Message from a Multi-Consumer Queue [Specify Options] on page 6-46
Register for Notification on page 6-50

Register for Notification [Specify Subscription Name — Single-Consumer Queue] on
page 6-54

Register for Notification [Specify Subscription Name — Multi-Consumer Queue] on
page 6-55

6-2 Application Developer's Guide - Advanced Queuing

Use Case Model: Operational Interface — Basic Operations

Figure 6-1 Use Case Model Diagram: Operational Interface

Advanced Queuing — Operational Interface

-

User/
Program
REGfIOSrTER receive
notification notification

ENQUEUE
a message

LISTEN
to
queue(s)

DEQUEUE
a message

Operational Interface: Basic Operations 6-3

Enqueue a Message

Enqueue a Message

Figure 6-2 Use Case Diagram: Enqueue a Message

Operational Interface
% i ENQUEUE \}...p specify
a message queue name
User/
Program HH
i v
specify
H- options
specify
. message
. properties
v
add
payload
To refer to the table of all basic operations having to do with the
Operational Interface see:
« "Use Case Model: Operational Interface — Basic Operations" on
page 6-2
Purpose:

Adds a message to the specified queue.

6-4 Application Developer's Guide - Advanced Queuing

Enqueue a Message

Syntax:

DBMS_AQ.ENQUEUE (

Usage:

Queue_name IN VARCHAR2,
Enqueue_options IN enqueue_options t,
Message _properties IN message_properties_t,
Payload IN "<type_name>",

Msgid OUT RAW),

Table 6-2 DBMS_AQ.ENQUEUE

Parameter

Description

queue_name

(IN VARCHAR?)
enqueue_options

(IN enqueue_option_t)
message_properties

(IN message_
properties_t)

payload
(IN "<type_name>")

msgid
(OUT RAW)

Specifies the name of the queue to which this message should be enqueued. The
gueue cannot be an exception queue.

For the definition please refer to the section titled Enqueue a Message [Specify
Options]

For the definition please refer to the section titled "Message Properties.”

Not interpreted by Oracle AQ.

The payload must be specified according to the specification in the associated
queue table. NULL s an acceptable parameter. For the definition of <type_
name> please refer to section titled "Type name".

The system generated identification of the message. This is a globally unique
identifier that can be used to identify the message at dequeue time.

Usage Notes

« The sequence_deviation parameter in enqueue_options can be used to
change the order of processing between two messages. The identity of the other
message, if any, is specified by the enqueue_options parameter relative_msgid.
The relationship is identified by the sequence_deviation parameter.

Specifying sequence_deviation for a message introduces some restrictions
for the delay and priority values that can be specified for this message. The

Operational Interface: Basic Operations 6-5

Enqueue a Message

delay of this message has to be less than or equal to the delay of the message
before which this message is to be enqueued. The priority of this message has to
be greater than or equal to the priority of the message before which this
message is to be enqueued.

« The visibility option must be immediate for non-persistent queues.
« Only local recipients are supported are supported for non-persistent queues.

« If amessage is enqueued to a multi-consumer queue with no recipient and the
gueue has no subscribers (or rule-based subscribers that match this message)
then, the Oracle error ORA 24033 is raised. This is a warning that the message
will be discarded since there are no recipients or subscribers to whom it can be
delivered.

6-6 Application Developer's Guide - Advanced Queuing

Enqueue a Message [Specify Options]

Enqueue a Message [Specify Options]

ENQUEUE

Figure 6-3 Use Case Diagram: Enqueue a Message [Specify Options]

Operational Interface

specify

a message

options

Only value
allowed for
non-persistent
queue

show
immediately

show default
on commit - for visibility

Specify a value only if
sequence deviation is
specified as BEFORE
a specified message

show
relative msgid

default for put
sequence nextin
deviation sequence

put
before all
messages

put
before specified
message

To refer to the table of all basic operations having to do with the
Operational Interface see:

» "Use Case Model: Operational Interface — Basic Operations" on
page 6-2

Operational Interface: Basic Operations 6-7

Enqueue a Message [Specify Options]

Purpose:
To specify the options available for the enqueue operation.

Syntax:

TYPE Enqueue_options_tIS RECORD (
Visibility BINARY_INTEGER DEFAULT ON_COMMIT,
Relative msgid ~ RAW(16) DEFAULT NULL,
Sequence_deviation BINARY_INTEGER DEFAULT NULL);

Usage:

Table 6-3 Enqueue a Message [Specify Options]

Parameter Description

visibility Specifies the transactional behavior of the enqueue request.

ON_COMMITThe enqueue is part of the current transaction. The operation is
complete when the transaction commits. This is the default case.

IMMEDIATE The enqueue is not part of the current transaction. The operation
constitutes a transaction on its own. This is the only value allowed when
engueuing to a non-persistent queue.

relative_msgid Specifies the message identifier of the message which is referenced in the sequence
deviation operation. This field is valid if and only if BEFORHSs specified in
sequence_deviation . This parameter will be ignored if sequence deviation is
not specified.

sequence_deviation Specifies if the message being enqueued should be dequeued before other
message(s) already in the queue.

BEFOREThe message is enqueued ahead of the message specified by relative_
msgid.

TOP The message is enqueued ahead of any other messages.
NULL Default

Usage Notes

Do not use the immediate option when you want to use LOB locators since LOB
locators are valid only for the duration of the transaction. As the immediate option
automatically commits the transaction, your locator will not be valid.

6-8 Application Developer's Guide - Advanced Queuing

Enqueue a Message [Specify Message Properties]

Enqueue a Message [Specify Message Properties]

ENQUEUE
a message

Figure 6-4 Use Case Diagram: Enqueue a Message [Specify Message Properties]

Operational Interface

specify
message
properties

record
message ID

i1 iOR
i v
i set
i default set specif
2 _ et pecific
i =1 no priority priority
OR
E v
set
set ifi
: f| _ f
: default no delay sgggf
:OR
v

set

default | no expiration

specific
expiration

specify
correlation
id

defaults

specify
to null

recipients

4 (D

default to system specify specify
provided queue [1 no exception exception

queue

queue

only with
multi-consumer
queues

|A default to NULL
1

specify
sender_id

Operational Interface: Basic Operations 6-9

Enqueue a Message [Specify Message Properties]

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Operational Interface — Basic Operations" on
page 6-2

Purpose:
The Message Properties describe the information that is used by AQ to manage
individual messages. These are set at enqueue time and their values are
returned at dequeue time.

Syntax:
TYPE Message_properties tIS RECORD (
Priority BINARY_INTEGER DEFAULT 1,
Delay BINARY_INTEGER DEFAULT NO_DELAY,

Expiration BINARY_INTEGER DEFAULT NEVER,
Correlation VARCHAR2(128) DEFAULT NULL,
Attempts BINARY_INTEGER,

Recipient list ag$_recipient list t,

Exception_queue VARCHAR2(51) DEFAULT NULL,
Enqueue_time DATE,

State BINARY_INTEGER,

Sender_id ag$_agent DEFAULT NULL,

Original_ msgid ~ RAW(16) DEFAULT NULL);

TYPE ag$ recipient list tIS TABLE OF ag$ agent
INDEX BY BINARY_INTEGER;

6-10 Application Developer's Guide - Advanced Queuing

Enqueue a Message [Specify Message Properties]

Usage:

Table 6-4 Message properties

Parameter

Description

priority
(BINARY_INTEGER)
delay
(BINARY_INTEGER)

expiration
(BINARY_INTEGER)

correlation
(VARCHAR2(128))

attempts
(BINARY_INTEGER)
recipient_list
(ag$_recipient_list_t)

exception_queue
(VARCHAR2(51))

Specifies/returns the priority of the message. A smaller number indicates higher
priority. The priority can be any number, including negative numbers.

Specifies/returns the delay of the enqueued message. The delay represents the
number of seconds after which a message is available for dequeuing. Dequeuing
by msgid overrides the delay specification. A message enqueued with delay set
will be in the WAITING state, when the delay expires the messages goes to the
READYstate. DELAYprocessing requires the queue monitor to be started. Note that
delay is set by the producer who enqueues the message.

NO_DELAYthe message is available for immediate dequeuing.
number: the number of seconds to delay the message.

Specifies/returns the expiration of the message. It determines, in seconds, the
duration the message is available for dequeuing. This parameter is an offset from
the delay. Expiration processing requires the queue monitor to be running.

NEVERmessage will not expire.

number: number of seconds message will remain in READ Ystate. If the message is
not dequeued before it expires, it will be moved to the exception queue in the
EXPIREDstate.

Returns the identification supplied by the producer for a message at enqueuing.

Returns the number of attempts that have been made to dequeue this message.
This parameter can not be set at enqueue time.

For type definition please refer to section titled "Agent".

This parameter is only valid for queues which allow multiple consumers. The
default recipients are the queue subscribers. This parameter is not returned to a
consumer at dequeue time.

Specifies/returns the name of the queue to which the message is moved if it
cannot be processed successfully. Messages are moved in two cases: The number
of unsuccessful dequeue attempts has exceeded max_retries or the message has
expired. All messages in the exception queue are in the EXPIREDstate.

The default is the exception queue associated with the queue table. If the exception
gueue specified does not exist at the time of the move the message will be moved
to the default exception queue associated with the queue table and a warning will
be logged in the alert file. If the default exception queue is used the parameter will
return a NULL value at dequeue time.

Operational Interface: Basic Operations 6-11

Enqueue a Message [Specify Message Properties]

Table 6-4 Message properties

Parameter

Description

enqueue_time
(DATE)

State
(BINARY_INTEGER)

sender_id
(ag$_agent)
original_msgid
(RAW(16))

Returns the time the message was enqueued. This value is determined by the
system and cannot be set by the user. This parameter can not be set at enqueue
time.

Returns the state of the message at the time of the dequeue. This parameter can not
be set at enqueue time.

0: The message is ready to be processed.
1: The message delay has not yet been reached.
2: The message has been processed and is retained.

3: The message has been moved to the exception queue.
Specifies/returns the application-specified sender identification.
DEFAULTNULL

This parameter is used by Oracle AQ for propagating messages.
DEFAULTNULL

Usage Notes

To view messages in a waiting or processed state, you can either dequeue or
browse by message ID, or use SELECT statements.

Message delay and expiration are enforced by the queue monitor (QMN)
background processes. You should remember to start the QMN processes for
the database if you intend to use the delay and expiration features of AQ.

6-12 Application Developer's Guide - Advanced Queuing

Enqueue a Message [Specify Message Properties [Specify Sender ID]]

Enqueue a Message [Specify Message Properties [Specify Sender ID]]

Figure 6-5 Use Case Diagram: Enqueue a Message [Specify Message Properties
[Specify Sender ID]]

Administrative Interface

SPECIFY
message
properties

SPECIFY
sender id

specify
sender
name

default
=null

specify
sender
address

default
=null

specify

sender default

=null/zero

Bk

protocol

To refer to the table of all basic operations having to do with the
Operational Interface see:

» "Use Case Model: Operational Interface — Basic Operations" on
page 6-2

Purpose:
To identify the sender (producer) of a message.

Syntax:
TYPE ag$_agent IS OBJECT (
Name VARCHAR2(30),
Address VARCHAR2(1024),
Protocol NUMBER);

Operational Interface: Basic Operations 6-13

Enqueue a Message [Specify Message Properties [Specify Sender ID]]

For more information about Agent see:

« "Agent" on page 3-5

6-14 Application Developer's Guide - Advanced Queuing

Enqueue a Message [Add Payload]

Enqueue a Message [Add Payload]

Figure 6-6 Use Case Diagram: Enqueue a Message [Add Payload]

Operational Interface

ENQUEUE add
a message payload
+ OR H
v v
add add
as object as RAW

To refer to the table of all basic operations having to do with the
Operational Interface see:

» "Use Case Model: Operational Interface — Basic Operations" on
page 6-2

Usage Notes

To store a payload of type RAWAQ will create a queue table with LOBcolumn as the
payload repository. The maximum size of the payload is determined by which
programmatic environment you use to access AQ. For PL/SQL, Java and
precompilers the limit is 32K; for the OCI the limit is 4G.

Operational Interface: Basic Operations 6-15

Enqueue a Message [Add Payload]

Example: Enqueue of Object Type Messages

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager

CREATE USER aq IDENTIFIED BY ag;

GRANT Aq_administrator_role TO aq;

EXECUTE DBMS_AQADM.CREATE_QUEUE._TABLE (
Queue_table => "ag.objmsgs_qtab),
Queue payload type => 'agmessage typ);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
Queue_name => 'ag.msg_queue’,
Queue_table => 'ag.objmsgs_qtab’);

EXECUTE DBMS_AQADM.START_QUEUE (
Queue_name =>’ag.msg_gueue,
Enqueue =>TRUE),

EXECUTE DBMS_AQADM.CREATE_QUEUE TABLE (
Queue_table =>"ag.prioritymsgs_qtab),
Sort_list =>PRIORITY,ENQ_TIME,
Queue_payload_type =>'agmessage_typ);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
Queue_name =>'aq.priority_msg_queue’,
Queue_table =>'ag.prioritymsgs_qtab’);

EXECUTE DBMS_AQADM.START_QUEUE (
Queue_name =>'aq.priority_msg_queuge’,
Enqueue =>TRUE);

Enqueue a Single Message and Specify the Queue Name and Payload.
F Enqueuetomsg queue: ¥
DECLARE

Enqueue_options DBMS_AQ.enqueue_options t;

Message_properties DBMS_AQ.message_properties t;

Message handle RAW(16);

Message agmessage_typ;

BEGIN

Message :=ag.message_typ(NORMAL MESSAGE,
‘enqueued to msg_queue first.);

DBMS_AQ.ENQUEUE(queue_name =>'msg_queuge’,
Enqueue_options =>enqueue_options,

6-16 Application Developer's Guide - Advanced Queuing

Enqueue a Message [Add Payload]

Message properies ~ =>message_properties,

Payload =>message,
Msgid =>message_handle);
COMMIT;

END;

Enqueue a Single Message and Specify the Priority
/* Thequeuename priority_msg_queue is defined as an object type queuie table.
The payload object type is message . The schema of the queue is aq. ¥

¥ Enqueue a message with priority 30: */

DECLARE
Enqueue_options dbms_ag.enqueue_options t;
Message_propertes dbms_agmessage_properties_t;
Message hande = RAW(16);
Message ag.Message _typ;

BEGIN
Message :=Message_typ(PRIORITY MESSAGE’, 'enqued at priority 30.";

message_properties.priority := 30;

DBMS_AQ.ENQUEUE(queue_name =>"priority_msg_queue’,

enqueue_options =>enqueue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);
COMMIT;

END;

Operational Interface: Basic Operations 6-17

Listen to One (Many) Queue(s)

Listen to One (Many) Queue(s)

Figure 6-7 Use Case Diagram: Listen to One(Many) Queue(s)

Advanced Queuing — Operational Interface

LISTEN
to
queue(s)

User/
Program
To refer to the table of all basic operations having to do with the
Operational Interface see:
» "Use Case Model: Operational Interface — Basic Operations" on
page 6-2
Purpose:

To monitor one or more queues on behalf of a list of agents.

Syntax:

DBMS_AQ.LISTEN (
agent_listIN ag$ _agent list t,
wait IN BINARY_INTEGER default DBMS_AQ.FOREVER,

agent OUT ag$ _agent);

TYPE ag$ _agent list tIS TABLE ofaq$_agentINDEX BY BINARY INTEGER;

6-18 Application Developer's Guide - Advanced Queuing

Listen to One (Many) Queue(s)

Usage:

Table 6-5 DBMS_AQADM.LISTEN
Parameter Description
agent_list The list of agents for which to ’listen’.

(ag$_agent_list)

wait The time-out for the listen call (seconds). By default, the call will block forever.
(integer default
DBMS_AQ.FOREVER)

agent (ag$_ The agent with a message available for consumption.
agent)

Usage Notes

The call takes a list of agents as an argument. You specify the queue to be monitored
in the address field of each agent listed. You also must specify the name of the agent
when monitoring multiconsumer queues. For single-consumer queues, an agent
name must not be specified. Only local queues are supported as addresses. Protocol
is reserved for future use.

This is a blocking call that returns when there is a message ready for consumption

for an agent in the list. If there are messages for more than one agent, only the first
agent listed is returned. If there are no messages found when the wait time expires,
an error is raised.

A successful return from the listen call is only an indication that there is a
message for one of the listed agents in one the specified queues. The interested
agent must still dequeue the relevant message.

Note that you cannot call listen on non-persistent queues.

Operational Interface: Basic Operations 6-19

Listen to One (Many) Single-Consumer Queue(s)

Listen to One (Many) Single-Consumer Queue(s)

x

User/
Program

Figure 6-8 Use Case Diagram: Listen to One(Many) Single-Consumer Queue(s)

Operational Interface

LISTEN
to queue(s)

- |é| e LISTEN to single-consumer queue(s)

specify
queue(s)

listen
with no wait

__ |é| Of the Agent, only the

address is specified.

listen
with defined
wait

default
for
wait

To refer to the table of all basic operations having to do with the

Operational Interface see:

» "Use Case Model: Operational Interface — Basic Operations" on

page 6-2

6-20 Application Developer's Guide - Advanced Queuing

Listen to One (Many) Single-Consumer Queue(s)

Example: Listen to Queue(s) Using PL/SQL (DBMS_AQ Package)

/* The listen call allowss you to monitor a list of queuies for messages for
Sspecific agents. You need to have dequeue privileges for all the queues
Yyou wish to monitor. ¥/

Listen to Single-Consumer Queue (Timeout of Zero).
DECLARE

Agent w_msg ag$_agent;
My _agent list dbms_ag.agent list t;

BEGIN
FNOTE: MCQ1, MCQ2, MCQ3 are multi-consumer queues in SCOTT's schema
* SCQL, SCQ2, SCQ3 are single consumer queues in SCOTT's schema
*

Qlist(L):= ag$_agent(NULL, 'scott SCQY, NULL);
Qist(2):= ag$_agent(NULL, 'SCQ2, NULL);
Qist(3):= ag®_agent(NULL, 'SCQ3, NULL);

/* Listen with a time-outt of zero: %/
DBMS_AQ.LISTEN(
Agent list => My_agent list,
Wat => 0,
Agent => agent w_msg);
DBMS_OUTPUT.PUT_LINE(Message in Queue - '|| agent w_msg.address);
DBMS_OUTPUT.PUT_LINE(Y);
END;

Example: Listen to Single-Consumer Queue(s) Using C (OCI)

Listening for Single Consumer Queues with Zero Timeout
#include <stdio.h>

#include <stdlib.n>

#include <string.h>

#include <oci.h>

static void checkerr(erthp, status)
OCIEnor *erthp;
sword status;

{
text enbuf[512];

Operational Interface: Basic Operations 6-21

Listen to One (Many) Single-Consumer Queue(s)

ub4 buflen;
sb4 errcode;

switch (status)

{

case OCl_SUCCESS:
break;

case OCl_SUCCESS_WITH_INFO:
printf("Eror - OCl_SUCCESS_WITH_INFO\n");
break;

case OC|_NEED_DATA:
printf("Emor - OCI_NEED_DATAWN");
break;

case OC|_NO_DATA:
printf('Error - OCl_NO_DATAWN");
break;

case OC|_ERROR:
OCIEnorGet ((dvoid *) enthp, (Ub4) 1, (text *) NULL, &errcode,
enbuf, (ub4) sizeof(errbuf), (Ub4) OCI_ HTYPE_ERROR);
printf("Error - %s\n", enbuf);
break;

case OC|_INVALID_HANDLE:
printf("Eror - OCl_INVALID_HANDLE\N");
break;

case OCl_STILL_EXECUTING:
printf("Emor - OCl_STILL_EXECUTEWN");
break;

case OC|_CONTINUE:
printf('Error - OCI_CONTINUE\n");
break;

default:

break;

}
}

* set agent into descriptor */
void SetAgent(agent, appname, queue,errhp)

OCIAQAgent *agent;
text *appname;
text *queue;

OCIEnor *erhp;
{

OCIAttrSet(agent, OCI_DTYPE._AQAGENT,

6-22 Application Developer's Guide - Advanced Queuing

Listen to One (Many) Single-Consumer Queue(s)

appname ? (dvoid *)appname : (dvoid *)"™,
appname ? strlen((const char *)appname) : O,
OCI_ATTR_AGENT_NAME, erthp);

OCIAtrSet(agent, OCI_DTYPE_AQAGENT,
queue ? (dvoid *)gueue : (dvoid *)™,
queue ? strlen((const char *)queue) : 0,
OCI_ATTR_AGENT_ADDRESS, erthp);

printf('Set agent name to %s\n'", appname ? (char *Jappname : "NULL");
printf{("Set agent address to %es\n", queue ? (char *)queue : "NULL");
}

* get agent from descriptor */
void GetAgent(agent, errhp)
OCIAQAgent *agent;
OCIEnor *erhp;

{

text *appname;

text *queue;

ub4 appsz,

ub4 queuesz;

if (lagent)
{

printf("agent was NULL \n");
retum;

}
checkerr(errhp, OClAtrGet(agent, OCI_DTYPE_AQAGENT,
(dvoid ¥)&appname, &appsz, OCI ATTR_AGENT_NAME, erthp));
checkerr(errhp, OCIAtrGet(agent, OCl_DTYPE_AQAGENT,
(dvoid »)&gueue, &queuesz, OCI ATTR_AGENT_ADDRESS, errhp));
if (appsz)
printf("agent name: NULL\n");
else printf("agent name: %.*s\n", appsz, (char *)appname);
if (lqueuesz)
printf("agent address: NULL\n");
else printf("agent address: %.*s\n", queuesz, (char *)queue);
}

int main()

{
OCIEnv *envhp;
OClServer *srvhp;
OCIEmor *enhp;

Operational Interface: Basic Operations 6-23

Listen to One (Many) Single-Consumer Queue(s)

OCISveCix *svchp;

OCISession *usthp;

OCIAQAgent *agent lis3];
OCIAQAgent *agent = (OCIAQAgent *)0;
/* added next 2 121598 %/

inti;

f* Standard OCl Initialization */

OClinitialize((ub4) OCI_OBJECT, (dvoid %0, (dvoid * (*)0) O,
(@void* (*)0) 0, (void ()0) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid *) &envhp,
(Ub4) OCI_HTYPE_ENV, 0, (dvoid *) O);

OCIEnvinit(&envhp, (ub4) OCI_DEFAULT, 0, (dvoid *) 0);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &erthp, (Ub4) OCI_HTYPE_ERROR,
0, (dvoid ™) 0);

OCIHandleAlloo((dvoid *) envhp, (dvoid *) &svhp, (ub4) OCILHTYPE_SERVER,
0, (dvoid ™) 0);

OClServerAttach(srvhp, errhp, (text*) 0, (sb4) O, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &svehp, (ub4) OCI_HTYPE_SVCCTX,
0, (dvoid *) 0);

* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (Ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
(ub4) OCI_ATTR_SERVER, (OCIEnor *) enthp);

[* allocate a user context handle */
OCIHandleAlloc((dvoid *envhp, (dvoid *)&usrhp, (ub4) OCI_ HTYPE_SESSION,
(size_1) O, (dvoid **) 0);

f* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid *)&usrhp, (ub4) OCl HTYPE_SESSION,
(size_t) 0, (dvoid **) 0);

OClAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott”, (ubd)strien('scott), OCI ATTR_USERNAME, erhp);

OCIAttrSet((dvoid *) usthp, (ub4) OCI_HTYPE._SESSION,
(cdvoid) "tiger", (ub4) strlen("tiger”),

6-24 Application Developer's Guide - Advanced Queuing

Listen to One (Many) Single-Consumer Queue(s)

(ub4) OCl_ATTR_PASSWORD, efthpy;
OCISessionBegin (svchp, errhp, usthp, OCI CRED_RDBMS, OCI_DEFAULT);

OCIAtrSet((dvoid ®)svchp, (Ub4)OCI_HTYPE_SVCCTX,
(dvoid *usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

F AQ LISTEN Initialization - allocate agent handles */
for(i=0;i<3;i++)
{
agent_listfi] = (OCIAQAgent *)0;
OClDescriptorAlloc(envhp, (dvoid *)&agent_list]l],
OCI_DTYPE_AQAGENT, 0, (dvoid *)0);
}

/k
* SCQL, SCQ2, SCQ3 are single consumer queues in SCOTT's schema
*

/

SetAgent(agent _listQ], (text *)0, "SCOTT.SCQL", erhp);
SetAgent(agent lis1], (text *)0, "SCOTT.SCQ2", erhp);
SetAgent(agent_list2], (text *)0, "SCOTT.SCQ3", erthp);

checkerr(errhp,OCIAQListen(svchp, erhp, agent_list, 3, 0, &agent, 0));

printf MESSAGE for - \n");
GetAgent(agent, errhp);
printf(\n”);

Listening for Single Consumer Queues with Timeout of 120 Seconds

#include <stdio.h>
#include <stdlib.n>
#include <string.h>
#include <oci.h>

static void checkerr(erhp, status)
OCIEnor *errhp;
sword status;
{
text embuf512];
ub4 buflen;

Operational Interface: Basic Operations

6-25

Listen to One (Many) Single-Consumer Queue(s)

sb4 errcode;

switch (status)

{

case OCl_SUCCESS:
break;

case OCl_SUCCESS WITH_INFO:
printf("Error - OCI_SUCCESS_WITH_INFO\n");
break;

case OCl_NEED_DATA:
printf("Error - OCI_NEED_DATAWN");
break;

case OCl_NO_DATA:
printf("Error - OCI_NO_DATAWn";
break;

case OCl_ERROR:
OCIEnmorGet ((dvoid *) erthp, (ub4) 1, (text *) NULL, &errcode,
enbuf, (ub4) sizeof(erbuf), (Ub4) OCI_ HTYPE_ERROR);
printf("Error - %s\n", errbuf);
break;

case OCl_INVALID_HANDLE:
printf('Error - OCI_INVALID_HANDLEW");
break;

case OCl_STILL_EXECUTING:
printf("Error - OCI_STILL EXECUTEWn');
break;

case OCl_CONTINUE:
printf("Error - OCI_CONTINUE\n");
break;

default

break;

}
}

* setagent into descriptor */
F*void SetAgent(agent, appname, queue) */
void SetAgent(agent, appname, queue,errhp)

OCIAQAgent *agent;
text *appname;
text *queue;
OCIEnor *erhp;

{

OCIAttrSet(agent, OCI_DTYPE._AQAGENT,

6-26 Application Developer's Guide - Advanced Queuing

Listen to One (Many) Single-Consumer Queue(s)

appname ? (dvoid *)appname : (dvoid *)"™,
appname ? strlen((const char *)appname) : O,
OCI_ATTR_AGENT_NAME, erthp);

OCIAtrSet(agent, OCI_DTYPE_AQAGENT,
queue ? (dvoid *)gueue : (dvoid *)™,
queue ? strlen((const char *)queue) : 0,
OCI_ATTR_AGENT_ADDRESS, erthp);

printf('Set agent name to %s\n'", appname ? (char *Jappname : "NULL");
printf{("Set agent address to %es\n", queue ? (char *)queue : "NULL");
}

* get agent from descriptor */
void GetAgent(agent, errhp)
OCIAQAgent *agent;
OCIEnor *erhp;

{

text *appname;

text *queue;

ub4 appsz,

ub4 queuesz;

if (lagent)
{

printf("agent was NULL \n");
retum;

}
checkerr(errhp, OClAtrGet(agent, OCI_DTYPE_AQAGENT,
(dvoid ¥)&appname, &appsz, OCI ATTR_AGENT_NAME, erthp));
checkerr(errhp, OCIAtrGet(agent, OCl_DTYPE_AQAGENT,
(dvoid »)&gueue, &queuesz, OCI ATTR_AGENT_ADDRESS, errhp));
if (appsz)
printf("agent name: NULL\n");
else printf("agent name: %.*s\n", appsz, (char *)appname);
if (lqueuesz)
printf("agent address: NULL\n");
else printf("agent address: %.*s\n", queuesz, (char *)queue);
}

int main()

{
OCIEnv *envhp;
OClServer *srvhp;
OCIEmor *enhp;

Operational Interface: Basic Operations 6-27

Listen to One (Many) Single-Consumer Queue(s)

OCISveCix *svchp;

OCISession *usthp;

OCIAQAgent *agent lis3];
OCIAQAgent *agent = (OCIAQAgent *)0;
/* added next 2 121598 %/

inti;

f* Standard OCl Initialization */

OClinitialize((ub4) OCI_OBJECT, (dvoid %0, (dvoid * (*)0) O,
(@void* (*)0) 0, (void ()0) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid *) &envhp,
(Ub4) OCI_HTYPE_ENV, 0, (dvoid *) O);

OCIEnvinit(&envhp, (ub4) OCI_DEFAULT, 0, (dvoid *) 0);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &erthp, (Ub4) OCI_HTYPE_ERROR,
0, (dvoid ™) 0);

OCIHandleAlloo((dvoid *) envhp, (dvoid *) &svhp, (ub4) OCILHTYPE_SERVER,
0, (dvoid ™) 0);

OClServerAttach(srvhp, errhp, (text*) 0, (sb4) O, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &svehp, (ub4) OCI_HTYPE_SVCCTX,
0, (dvoid *) 0);

* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (Ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
(ub4) OCI_ATTR_SERVER, (OCIEnor *) enthp);

[* allocate a user context handle */
OCIHandleAlloc((dvoid *envhp, (dvoid *)&usrhp, (ub4) OCI_ HTYPE_SESSION,
(size_1) O, (dvoid **) 0);

f* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid *)&usrhp, (ub4) OCl HTYPE_SESSION,
(size_t) 0, (dvoid **) 0);

OClAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott”, (ubd)strien('scott), OCI ATTR_USERNAME, erhp);

OCIAttrSet((dvoid *) usthp, (ub4) OCI_HTYPE._SESSION,
(cdvoid) "tiger", (ub4) strlen("tiger”),

6-28 Application Developer's Guide - Advanced Queuing

Listen to One (Many) Single-Consumer Queue(s)

(ub4) OCl_ATTR_PASSWORD, efthpy;
OCISessionBegin (svchp, errhp, usthp, OCI CRED_RDBMS, OCI_DEFAULT);

OCIAtrSet((dvoid ®)svchp, (Ub4)OCI_HTYPE_SVCCTX,
(dvoid *usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

F AQ LISTEN Initialization - allocate agent handles */
for(i=0;i<3;i++)
{
agent_listfi] = (OCIAQAgent *)0;
OClDescriptorAlloc(envhp, (dvoid *)&agent_list]l],
OCI_DTYPE_AQAGENT, 0, (dvoid *)0);
}

/k
* SCQL, SCQ2, SCQ3 are single consumer queues in SCOTT's schema
*

/

SetAgent(agent _listQ], (text *)0, "SCOTT.SCQL", erhp);
SetAgent(agent lis1], (text *)0, "SCOTT.SCQ2", erhp);
SetAgent(agent_list2], (text *)0, "SCOTT.SCQ3", erthp);
checkenr(errhp,OCIAQListen(svchp, erthp, agent_list, 3, 120, &agent, 0));
printf MESSAGE for - \n");

GetAgent(agent, errhp);
printf(\n");

Operational Interface: Basic Operations 6-29

Listen to One (Many) Multi-Consumer Queue(s)

Listen to One (Many) Multi-Consumer Queug(s)

Figure 6-9 Use Case Diagram: Listen to One(Many) Multi-Consumer Queue(s)

Operational Interface

LISTEN
to queue(s)

£

- _IéI @ LISTEN to at least one multi-consumer queue

User/
Program

identify
agent

Protocol must be
== set to NULL

listen) [
with no wait with defined
wait

specify

name of
listener

listen default
with indefinite)= = for
wait wait

6-30 Application Developer's Guide - Advanced Queuing

Listen to One (Many) Multi-Consumer Queue(s)

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Operational Interface — Basic Operations” on
page 6-2

Example: Listen to Queue(s) Using PL/SQL (DBMS_AQ Package)

/* The listen call allowss you to monitor a list of queuies for messages for

Specific agents. You need to have dequeue privileges for all the queues
Yyouwish to monitor. %/

Listen to Multi-Consumer Queue (Timeout of Zero).
DECLARE

Agent w_ msg ag$_agent;
My_agent list dbms_ag.agent list t;

BEGIN
FNOTE: MCQ1, MCQ2, MCQ3 are multi-consumer queues in SCOTT's schema
* SCQL, SCQ2, SCQ3 are single consumer queues in SCOTT's schema
*
!
Qiist(1):=ag$_agent(agentl', MCQL', NULL);
Qlist(2):= ag$_agent(agent2, 'scott MCQ2, NULL);
Qist(3):=ag$_agent(agent3, 'scott MCQ3, NULL);

/* Listen with a time-outt of zero: %/
DBMS_AQ.LISTEN(
agent list = My _agent list,
wait => 0,
agent => agent w_msg);
DBMS_OUTPUT.PUT_LINE(Message in Queue -'|| agent w_msg.address);
DBMS_OUTPUT.PUT_LINE();
END;
/

Listen to Mixture of Multi-Consumer Queues (Timeout 100 Seconds).
DECLARE

Agent w msg ag$_agent;
My_agent list doms_ag.agent list t;

BEGIN

Operational Interface: Basic Operations 6-31

Listen to One (Many) Multi-Consumer Queue(s)

FNOTE: MCQ1, MCQ2, MCQ3 are multi-consumer queues in SCOTT's schema
* SCQL, SCQ2, SCQ3 are single consumer queues in SCOTT's schema
*
Qlist(1):=ag$_agent(agentl', MCQL', NULL);
Qlist(2):=ag$_agent(NULL, 'scott.SQ1', NULL);
Qlist(3)=ag$_agent(agent3, 'scott MCQ3, NULL);
/* Listen with a time-out of 100 seconds %/
DBMS_AQ.LISTEN(
Agent list => My agent list,
Wait => 100,
Agent => agent w_msg);
DBMS_OUTPUT.PUT_LINE(Message in Queue - '|| agent w_msg.address
|| for agent || agent_w_msg.name);
DBMS_OUTPUT.PUT_LINE();
END;
/

Example: Listen to Multi-Consumer Queue(s) Using C (OClI)

Listening to Multi-consumer Queues with a Zero Timeout, a Timeout of 120
Seconds, and a Timeout of 100 Seconds

#include <stdio.h>
#include <stdlib.n>
#include <string.h>
#include <oci.h>

static void checkerr(erhp, status)
OCIEnor *errhp;
sword status;
{
text embuf512];
ub4 buflen;
sb4 errcode;

switch (status)

{

case OCl_SUCCESS:
break;

case OC|_SUCCESS_WITH_INFO:
printf(*Error - OCl_SUCCESS _WITH_INFO\n");
break;

case OC|_NEED_DATA:

6-32 Application Developer's Guide - Advanced Queuing

Listen to One (Many) Multi-Consumer Queue(s)

printf('Error - OCI_NEED _DATAWN");
break;

case OCl_NO_DATA:
printf("Error - OCI_NO_DATA';
break;

case OCl_ERROR:
OCIEmorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
embuf, (ubd) sizeofierbuf), (ub4) OCI_ HTYPE_ERROR);
printf{("Error - %s\n", errbuf);
break;

case OCl_INVALID_HANDLE:
printf("Error - OCI_INVALID_HANDLEW");
break;

case OCl_STILL_EXECUTING:
printf('"Error - OCI_STILL_EXECUTEWn');
break;

case OCl_CONTINUE:
printf('Error - OCI_CONTINUE\n");
break;

default:

break;

}

void SetAgent(OCIAQAgent *agent,
text *appname,
text *queue,
OCIEnor *enhp,
OCIEnv *envhp);

void GetAgent(OCIAQAgent *agent,
OCIEmor *errhp);

g *

F* OCl Listen examples for mult-consumers ¥
F *

void SetAgent(agent, appname, queue, errhp)
OCIAQAgent *agent;

text *appname;

text *queue;

OCIEnor *enhp;

OClAttrSet(agent,
OC| DTYPE_AQAGENT,
appname ? (dvoid *)appname : (dvoid *)™,

Operational Interface: Basic Operations 6-33

Listen to One (Many) Multi-Consumer Queue(s)

appname ? strlen((const char *)appname) : O,
OCI_ATTR_AGENT_NAME,
enhp);

OClAttrSet(agent,
OCI_DTYPE_AQAGENT,
queue ? (dvoid *)queue : (dvoid *)™,
queue ? strlen((const char *)queue) : 0,
OCI_ATTR_AGENT_ADDRESS,
enhp);

printf(‘Set agent name to %6s\n", appname ? (char *)appname : "NULL");
printf("Set agent address to %s\n", queue ? (char *)queue : "NULL");

}

[get agent from descriptor */
void GetAgent(agent, errhp)
OCIAQAgent *agent;
OCIEnor *errhp;

{

text *appname;

text *queue;

ub4 appsz;

ub4 queuesz

if (lagent)
{
printf("agent was NULL \n");
retum;
}
checkem(erhp, OClAtrGet(agent, OCl_ DTYPE_AQAGENT,
(dvoid *)&appname, &appsz, OCI ATTR_AGENT_NAME, errhp));
checkenr(errhp, OClAtrGet(agent, OCI_ DTYPE_AQAGENT,
(dvoid ®&queue, &queuesz, OCI_ ATTR_AGENT_ADDRESS, erhp));
if (appsz2)
printf(‘agent name: NULL\n");
else printf("agent name: %.*s\n", appsz, (char *)appname);
if (\queuesz)
printf("agent address: NULL\n");
else printf("agent address: %.*s\n", queuesz, (char *)queue);
}

Fmain from AQ Listen to Multi-Consumer Queue(s) */

F intmain() */

6-34 Application Developer's Guide - Advanced Queuing

Listen to One (Many) Multi-Consumer Queue(s)

intmain(char *argv, int argc)

{
OCIEnv *envhp;
OClServer *srvhp;
OCIEnor *erhp;
OCISvcCix *svchp;
OCISession *usthp;
OCIAQAgent *agent_lis3];
OCIAQAgent *agent;
int i

F Standard OCl Initialization */

OClinitialize((ub4) OCl_OBJECT,
(dvoid*)0,
(@void*()0) 0,
(@void*(0) 0,
(vod (0) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid) &envhp, (ubd) OCI HTYPE._ENV,
0, (dvoid *) 0);

OCIEnVinit(&envhp, (ub4) OCI_DEFAULT, 0, (dvoid *)0);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &enthp, (ub4) OCI_HTYPE_ERROR,
0, (dvoid *) 0);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &srvihp, (Ub4) OCIHTYPE_SERVER,
0, (dvoid ™) 0);

OClServerAttach(srvhp, errhp, (text*) O, (sb4) O, (ub4) OCI_DEFAULT);

OCIHandleAlloo{ (dvoid *) envhp, (dvoid *) &svehp, (ub4) OCI_HTYPE_SVCCTX,
0, (dvoid ™) 0);

* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
(ub4) OCI_ATTR_SERVER, (OCIEror *) enhp);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *envhp, (dvoid *)&usrhp, (ub4) OCl_HTYPE_SESSION,
(size_1) O, (dvoid *) 0);

f* allocate a user context handle */
OClIHandleAlloc((dvoid *)envhp, (dvoid *)&usrhp, (ub4) OCI_HTYPE_SESSION,

Operational Interface: Basic Operations 6-35

Listen to One (Many) Multi-Consumer Queue(s)

(size_1)0, (dvoid *) O);

OCIAtrSet((dvoid *)usrhp, (Ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott”, (ubd)strien('scott), OCI ATTR_USERNAME, erhp);

OCIAtrSet((dvoid *) usthp, (ub4) OCI_HTYPE_SESSION,
(dvoid *) "tiger", (ub4) strlen(tiger’),
(ub4) OCI_ ATTR_PASSWORD, erhp);

OCISessionBegin (svchp, enhp, usthp, OCI_CRED_RDBMS, OC|_DEFAULT);

OCIAttrSet((dvoid *)svchp, (Ub4)OCI HTYPE_SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, erthp);

F AQ LISTEN Initialization - allocate agent handles */
for(i=0;i<3;i++)
{
OClDescriptorAlloc(envhp, (dvoid *)&agent_listi],
OCI_DTYPE_AQAGENT, 0, (dvoid *)0);
}

lid

* MCQ1, MCQ2, MCQ3 are multi-consumer queues in SCOTT’s schema
#

F* Listening to Multi-consumer Queues with Zero Timeout */

SetAgent(agent list{0], "appl”, "MCQL", enthp);
SetAgent(agent_list1], "app2", "MCQ2", errhp);
SetAgent(agent list2], "app3", "MCQ3", errhp);

checkenr(emrhp, OCIAQListen(svchp, enhp, agent list, 3, 0, &agent, 0));
printfC MESSAGE for - \n");

GetAgent(agent, erthp);

print(\n);

F* Listening to Multi-consumer Queues with Timeout of 120 Seconds */
SetAgent(agent lis0], “appl", "SCOTT.MCQ1", erhp);

SetAgent(agent _listf1], “app2", "SCOTT.MCQ2", errhp);
SetAgent(agent listf2], “app3", "SCOTT.MCQ3", errhp);

6-36 Application Developer's Guide - Advanced Queuing

Listen to One (Many) Multi-Consumer Queue(s)

checkerr(errhp, OCIAQListen(svchp, erhp, agent list, 3, 120, &agent, 0));

printf"MESSAGE for :-\n");
GetAgent(agent, errhp);
printf(\n");

F* Listening to a Mixture of Single and Multi-consumer Queues
*with a Timeout of 100 Seconds
*

SetAgent(agent_list0], “appl”, "SCOTT.MCQ1", errhp);

SetAgent(agent _listf1], “app2", "SCOTT.MCQ2", errhp);

SetAgent(agent _list2], (text *)0, "SCOTT.SCQ3", erhp);

checkenr(errhp, OCIAQListen(svchp, ehp, agent list, 3, 100, &agent, 0));
printfc MESSAGE for - \n");

GetAgent(agent, errhp);
printf(\n”);

Operational Interface: Basic Operations 6-37

Dequeue a Message

Dequeue a Message

Figure 6-10 Use Case Diagram: Dequeue a Message

Advanced Queuing — Operational Interface

Use Case Diagram:
- = Dequeue amessage

X

DEQUEUE
amessage

User/
Program T
: v
: name
H a queue
\

specify
options

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Operational Interface — Basic Operations" on
page 6-2

Purpose:
Dequeues a message from the specified queue.

Syntax:
DBMS_AQ.DEQUEUE (
gueue_name IN VARCHARZ,
dequeue_options IN dequeue_options t,
message_properties OUT message_properties t,
payload OUT "<type_name>",
msgid OUT raw);

6-38 Application Developer's Guide - Advanced Queuing

Dequeue a Message

Usage:

Table 6-6 DBMS_AQ.DEQUEUE

Parameter

Description

queue_name
(IN VARCHAR?)
dequeue_options

(IN dequeue_option_t)
message_properties

(OUT message_
properties_t)

payload
(OUT "<type_name>")

msgid
(OUT RAW)

Specifies the name of the queue.

For the definition please refer to the section titled "DEQUEUBptions."

For the definition please refer to the section titled "Message Properties.”

Not interpreted by Oracle AQ.

The payload must be specified according to the specification in the associated
gueue table. For the definition of <type_name> please refer to section titled
"Type name".

The system generated identification of the message.

Usage Notes

Search criteria and dequeue order for messages:

The search criteria for messages to be dequeued is determined by the consumer_
name, msgid and correlation parameters in the dequeue_options. Msgid uniquely
identifies the message to be dequeued. Correlation identifiers are
application-defined identifiers that are not interpreted by AQ.

Only messages in the READYstate are dequeued unless a msgid is specified.

The dequeue order is determined by the values specified at the time the queue
table is created unless overridden by the msgid and correlation id in dequeue_
options.

The database consistent read mechanism is applicable for queue operations. For
example, a BROWSEall may not see a message that is enqueued after the
beginning of the browsing transaction.

Operational Interface: Basic Operations 6-39

Dequeue a Message

Navigating through a queue:

The default NAVIGATION parameter during dequeue is NEXT_MESSAGHhis
means that subsequent dequeues will retrieve the messages from the queue based
on the snapshot obtained in the first dequeue. In particular, a message that is
enqueued after the first dequeue command will be processed only after processing
all the remaining messages in the queue. This is usually sufficient when all the
messages have already been enqueued into the queue, or when the queue does not
have a priority-based ordering. However, applications must use the FIRST _
MESSAGE rvigation option when the first message in the queue needs to be
processed by every dequeue command. This usually becomes necessary when a
higher priority message arrives in the queue while messages already-enqueued are
being processed.

Note: It may also be more efficient to use the FIRST_MESSAGE
navigation option when there are messages being concurrently
enqueued. If the FIRST_MESSAGHption is not specified, AQ will
have to continually generate the snapshot as of the first dequeue
command, leading to poor performance. If the FIRST_MESSAGE
option is specified, AQ will use a new snapshot for every dequeue
command.

Dequeue by Message Grouping:

« Messages enqueued in the same transaction into a queue that has been enabled
for message grouping will form a group. If only one message is enqueued in the
transaction, this will effectively form a group of one message. There is no upper
limit to the number of messages that can be grouped in a single transaction.

= In queues that have not been enabled for message grouping, a dequeue in
LOCKEDr REMOVEode locks only a single message. By contrast, a dequeue
operation that seeks to dequeue a message that is part of a group will lock the
entire group. This is useful when all the messages in a group need to be
processed as an atomic unit.

=« When all the messages in a group have been dequeued, the dequeue returns an
error indicating that all messages in the group have been processed. The
application can then use the NEXT_TRANSACTIONbD start dequeuing messages
from the next available group. In the event that no groups are available, the
dequeue will time-out after the specified WAIT period.

6-40 Application Developer's Guide - Advanced Queuing

Dequeue a Message from a Single-Consumer Queue [Specify Options]

Dequeue a Message from a Single-Consumer Queue [Specify Options]

Figure 6-11 Use Case Diagram: Dequeue a Message from a Single-Consumer Queue

DEQUEUE
a message

Operational Interface

SPECIFY
options

- .| e DEQUEUE single-consumer queue

browse
unlocked
message

get

in group

A NN s s EEEE NS ASEEEES S SESEEEEEEEEEEEEEEEEEE

get
with no wait

add

N NN N N AN NN NN NN A SN NN A SN NN NN NN AN NN NN N AN N NSNS NN AN ASEES NSNS ASEEEEEEEEEEEEEE

show
immediately

first message

v
browse default for
locked remove dequeue
message amessage mode
get default
next message for
(in group) navigation
v
get g default
with defined with indefinite)= for
wait wait wait

message info.

v
show default for
on commit /)~ ~ visibility

Operational Interface: Basic Operations 6-41

Dequeue a Message from a Single-Consumer Queue [Specify Options]

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Operational Interface — Basic Operations" on
page 6-2

Purpose:
To specify the options available for the dequeue operation.

Syntax:

TYPE dequeue_options _tIS RECORD (
consumer_name VARCHAR2(30) default NULL,
dequeue_mode BINARY_INTEGER default REMOVE,
navigation BINARY_INTEGER default NEXT_MESSAGE,
vishility ~ BINARY_INTEGER default ON_COMMIT,
wait BINARY_INTEGER default FOREVER,
msgid RAW(16) defauft NULL,
coelaion VARCHAR2(128) default NULL);

6-42 Application Developer's Guide - Advanced Queuing

Dequeue a Message from a Single-Consumer Queue [Specify Options]

Usage:

Table 6-7 DEQUEUE options for a Singe-Consumer Queue

Parameter Description

consumer_name Name of the consumer. Only those messages matching the consumer name are
accessed. If a queue is not set up for multiple consumers, this field should be set to
NULL

dequeue_mode Specifies the locking behavior associated with the dequeue.

BROWSHead the message without acquiring any lock on the message. This is
equivalent to a select statement.

LOCKEDRead and obtain a write lock on the message. The lock lasts for the
duration of the transaction. This is equivalent to a select for update statement.

REMOVERead the message and update or delete it. This is the default. The message
can be retained in the queue table based on the retention properties.

REMOVE_NODATKark the message as updated or deleted. The message can be
retained in the queue table based on the retention properties.

navigation Specifies the position of the message that will be retrieved. First, the position is
determined. Second, the search criterion is applied. Finally, the message is retrieved.

NEXT_MESSAGIHRetrieve the next message which is available and matches the
search criteria. If the previous message belongs to a message group, AQ will retrieve
the next available message which matches the search criteria and belongs to the
message group. This is the default.

NEXT_TRANSACTIONSKip the remainder of the current transaction group (if any)
and retrieve the first message of the next transaction group. This option can only be
used if message grouping is enabled for the current queue.

FIRST_MESSAGERetrieves the first message which is available and matches the
search criteria. This will reset the position to the beginning of the queue.

visibility Specifies whether the new message is dequeued as part of the current
transaction.The visibility parameter is ignored when using the BROWSHEode.

ON_COMMITThe dequeue will be part of the current transaction. This is the default
case.

IMMEDIATE The dequeued message is not part of the current transaction. It
constitutes a transaction on its own.

Operational Interface: Basic Operations 6-43

Dequeue a Message from a Single-Consumer Queue [Specify Options]

Table 6-7 DEQUEUE options for a Singe-Consumer Queue

Parameter Description

wait Specifies the wait time if there is currently no message available which matches the
search criteria.

FOREVERwait forever. This is the default.
NO_WAITdo not wait
number: wait time in seconds

msgid Specifies the message identifier of the message to be dequeued.

correlation Specifies the correlation identifier of the message to be dequeued. Special pattern
matching characters, such as the percent sign (%) and the underscore (_) can be
used. If more than one message satisfies the pattern, the order of dequeuing is
undetermined.

Usage Notes

Typically, you expect the consumer of messages to access messages using the
dequeue interface. You can view processed messages or messages still to be
processed by browsing by message id or by using SELECT.

Example: Dequeue of Object Type Messages using PL/SQL (DBMS_AQ Package)
F Dequeue frommsg_queue: ¥/
DECLARE
dequeue_options dbms_ag.dequeue_options t;
message_properties dbms_ag.message_properties t;
message_hande RAW(16);
message ag.message_typ;

BEGIN
DBMS_AQ.DEQUEUE(
queue name => 'msg_queue,

dequeue options => dequeue_options,
message_properties => message_properties,
payload => message,

msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (Message: ' || message.subject ||

6-44 Application Developer's Guide - Advanced Queuing

Dequeue a Message from a Single-Consumer Queue [Specify Options]

'..." || message.text);
COMMIT;
END;

Operational Interface: Basic Operations 6-45

Dequeue a Message from a Multi-Consumer Queue [Specify Options]

Dequeue a Message from a Multi-Consumer Queue [Specify Options]

Figure 6-12 Use Case Diagram: Dequeue a Message from a Multi-Consumer Queue

DEQUEUE
a message

Operational Interface

identify

SPECIFY

options agent

(dequeuer)

- _fl @ DEQUEUE multi-consumer queue

browse
unlocked
message

get
first message
in group

get
with no wait

browse
locked
message

get
with defined
wait

add
message info.

optional
- correlation
information

N NN N N AN NN NN NN A SN NN A SN NN NN NN AN NN NN N AN N NSNS NN AN ASEES NSNS ASEEEEEEEEEEEEEE

show
immediately

v
show _
on commit

remove
a message

get
next message
(in group)

get
with indefinite
wait

default
for
visibility

default for
- dequeue
mode

default
- for
navigation

default
- for
wait

6-46 Application Developer's Guide - Advanced Queuing

Dequeue a Message from a Multi-Consumer Queue [Specify Options]

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Operational Interface — Basic Operations” on
page 6-2

Purpose:
To specify the options available for the dequeue operation.

Syntax:

TYPE dequeue_options _tIS RECORD (
consumer_name VARCHAR2(30) default NULL,
dequeue_mode BINARY_INTEGER default REMOVE,
navigation ~ BINARY_INTEGER default NEXT_MESSAGE,
vishility ~ BINARY_INTEGER default ON_COMMIT,
wait BINARY_INTEGER default FOREVER,
msgid RAW(16) default NULL,
corelaion VARCHAR2(128) default NULL);

Operational Interface: Basic Operations 6-47

Dequeue a Message from a Multi-Consumer Queue [Specify Options]

Usage:

Table 6-8 DEQUEUE options for a Multi-Consumer Queue

Parameter Description

consumer_name Name of the consumer. Only those messages matching the consumer name are
accessed. If a queue is not set up for multiple consumers, this field should be set to
NULL

dequeue_mode Specifies the locking behavior associated with the dequeue.

BROWSHead the message without acquiring any lock on the message. This is
equivalent to a select statement.

LOCKEDRead and obtain a write lock on the message. The lock lasts for the
duration of the transaction. This is equivalent to a select for update statement.

REMOVERead the message and update or delete it. This is the default. The message
can be retained in the queue table based on the retention properties.

REMOVE_NODATKark the message as updated or deleted. The message can be
retained in the queue table based on the retention properties.

navigation Specifies the position of the message that will be retrieved. First, the position is
determined. Second, the search criterion is applied. Finally, the message is retrieved.

NEXT_MESSAGIHRetrieve the next message which is available and matches the
search criteria. If the previous message belongs to a message group, AQ will retrieve
the next available message which matches the search criteria and belongs to the
message group. This is the default.

NEXT_TRANSACTIONSKip the remainder of the current transaction group (if any)
and retrieve the first message of the next transaction group. This option can only be
used if message grouping is enabled for the current queue.

FIRST_MESSAGERetrieves the first message which is available and matches the
search criteria. This will reset the position to the beginning of the queue.

visibility Specifies whether the new message is dequeued as part of the current
transaction.The visibility parameter is ignored when using the BROWSHEode.

ON_COMMITThe dequeue will be part of the current transaction. This is the default
case.

IMMEDIATE The dequeued message is not part of the current transaction. It
constitutes a transaction on its own.

6-48 Application Developer's Guide - Advanced Queuing

Dequeue a Message from a Multi-Consumer Queue [Specify Options]

Table 6-8 DEQUEUE options for a Multi-Consumer Queue

Parameter Description

wait Specifies the wait time if there is currently no message available which matches the
search criteria.

FOREVERwait forever. This is the default.
NO_WAITdo not wait

number: wait time in seconds
msgid Specifies the message identifier of the message to be dequeued.

correlation Specifies the correlation identifier of the message to be dequeued. Special pattern
matching characters, such as the percent sign (%) and the underscore (_) can be
used. If more than one message satisfies the pattern, the order of dequeuing is
undetermined.

Operational Interface: Basic Operations 6-49

Register for Notification

Reqgister for Notification

Figure 6-13 Use Case Diagram: Register for Notification

Operational Interface

REGISTER

- |4| Note: This is only available in OCI

— for
notification
User/
Program .

specify
subscription
handle

subscription

get

handle

specify
subscription
name

specify
namespiece

specify
user-defined
context

define
callback
function

specify
callback
function

S

6-50 Application Developer's Guide - Advanced Queuing

Register for Notification

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Operational Interface — Basic Operations” on
page 6-2

Purpose:
To register a callback for message notification.

Syntax:

ub4 OCISubscriptionRegister (
OCISveCtx *svchp,
OCISubscription **subscrhpp,

ub2 count,

OCIErmor *errhp,

ub4 mode);
Usage:

Table 6-9 DEQUEUE options for a Multi-Consumer Queue

Parameter

Description

svchp (IN)

subscrhpp (IN)

A V8 OCI service context. This service context should have a valid authenticated
user handle.

An array of subscription handles. Each element of this array should be a
subscription handle with the OCI_ATTR_SUBSCR_NAMBCI_ATTR_SUBSCR _
NAMESPACHECI_ATTR_SUBSCR_CBACKENd OCI_ATTR_SUBSCR_CTXAttributes
set; otherwise, an error will be returned. For information, see Subscription Handle
Attributes.

When a notification is received for the registration denoted by the subscrhppli], the
user defined callback function (OCI_ATTR_SUBSCR_CBAGQGKet for subscrhppli]
will get invoked with the context (OCI_ATTR_SUBSCR_CT)éet for subscrhppl[i].

Operational Interface: Basic Operations 6-51

Register for Notification

Table 6-9 DEQUEUE options for a Multi-Consumer Queue

Parameter Description
count (IN) The number of elements in the subscription handle array
errhp (OUT) An error handle you can pass to OCIErrorGet () for diagnostic information in the

event of an error.

mode (IN) Call-specific mode. Valid values:

« OCI_DEFAULT- executes the default call which specifies that the registration is
treated as disconnected

« OCI_NOTIFY_CONNECTEBnNotifications are received only if the client is
connected (not supported in this release)

Whenever a new client process comes up, or an old one goes down and comes back
up, it needs to register for all subscriptions of interest. If the client stays up and the
server first goes down and then comes back up, the client will continue to receive
notifications for registrations that are DISCONNECTELHowever, the client will not
receive notifications for CONNECTERegistrations as they will be lost once the server
goes down and comes back up.

Usage Notes

« This call is invoked for registration to a subscription which identifies the
subscription name of interest and the associated callback to be invoked. Interest
in several subscriptions can be registered at one time.

« This interface is only valid for the asynchronous mode of message delivery. In
this mode, a subscriber issues a registration call which specifies a callback.
When messages are received that match the subscription criteria, the callback is
invoked. The callback may then issue an explicit message_receive (dequeue)
to retrieve the message.

« The user must specify a subscription handle at registration time with the
namespace attribute set to OCI_SUBSCR_NAMESPACE_AQ

« The subscription name is the string 'schema.queue ’ if the registration is for a
single consumer queue and 'schema.queue:consumer_name '’ if the
registration is for a multiconsumer queues.

« Related Functions: OCIAQListen (), OCISubscriptionDisable 0,
OCISubscriptionEnable (), OCISubscriptionUnRegister 0

6-52 Application Developer's Guide - Advanced Queuing

Register for Notification

For more information about the OCI operation Register for
Notification see:

« Oracle Call Interface Programmer’s Guide

Operational Interface: Basic Operations 6-53

Register for Notification [Specify Subscription Name — Single-Consumer Queue]

Register for Notification [Specify Subscription Name —
Single-Consumer Queue]

Figure 6-14 Use Case Diagram: Specify Subscription Name - Single Consumer
Queue

Administrative Interface

REGISTER
for =
notification

SPECIFY
subscription
name

_.| e Single consumer queue

specify
schema
name

Optional
information

specify
queue
name

To refer to the table of all basic operations having to do with the
Operational Interface see:

» "Use Case Model: Operational Interface — Basic Operations" on
page 6-2

6-54 Application Developer's Guide - Advanced Queuing

Register for Notification [Specify Subscription Name — Multi-Consumer Queue]

Register for Notification [Specify Subscription Name — Multi-Consumer

Queue]

REGISTER
for
notification

Figure 6-15 Use Case Diagram: Specify Subscription Name - Multi-Consumer Queue

Administrative Interface

specify
subscription
name

- — |éI @ Multi-consumer queue

Optional
- information

specify
schema
name

queue

The string must be of the
format 'queue:consumer’

specify
consumer

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Operational Interface — Basic Operations" on
page 6-2

Operational Interface: Basic Operations 6-55

Register for Notification [Specify Subscription Name — Multi-Consumer Queue]

Example: Register for Notifications For Single-Consumer and Multi-Consumer
Queries Using C (OCl)

F* OCIRegister can be used by the client to register to receive nofifications
when messages are enqueued into non-persistent and normal queues. */
#include <stdio.h>

#include <stdiib.h>

#include <string.h>

#include <oci.h>

static OCIEnv *envhp;
static OClServer *srvhp;
static OCIEmor *erhp;
static OCISveCix *svehp;

/* The callback that gets invoked on notification */
ub4 notifyCB(ctx, subscrhp, pay, payl, desc, mode)

dvoid *ctx;

OCISubscription *subscrhp; /*subscription handle %
dvod “pay, /payload

ub4 payl; /*payload length "/
dvoid *desc; /*the AQ notification descriptor ¥/
ub4 mode;
{

text *subname;

ub4 size;

ub4 *number = (Ub4 *)ctx;

text *queue,

text *consumer;

OCIRaw *msgid;

OCIAQMsgProperties *msgprop;

(*number)++,

/* Get the subscription name %

OCIAtrGet((dvoid *)subscrhp, OCI_ HTYPE_SUBSCRIPTION,

(dvoid *)&subname, &size,
OCI_ATTR_SUBSCR_NAME, erthp);
printf('got notification number %d for %.*s %d \n",
*number, size, subname, payl);

/* Get the queuie name from the AQ notify descriptor %
OCIAtrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid ¥)&queue, &size,

6-56 Application Developer's Guide - Advanced Queuing

Register for Notification [Specify Subscription Name — Multi-Consumer Queue]

OCI_ATTR_QUEUE_NAVE, errhp);

/*Get the consumer name for which this notification was received %
OClAtrGet(desc, OCl_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&consumer, &size,
OCI_ATTR_CONSUMER_NAME, enthp);

/* Get the message id of the message for which we were notified %/
OCIAtrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&msgid, &size,
OCI_ATTR_NFY_MSGID, erthp);

/* Get the message properties of the message for which we were notified ¥/
OCIAtrGet{desc, OCI_ DTYPE_AQNFY_DESCRIPTOR, (dvoid ¥)&msgprop, &size,
OCI_ ATTR_MSG_PROP, erthp);

int main(argc, argv)
intargc;
char *argv;
{
OCISession *authp = (OCISession *) 0;

/* The subscription handles
OCISubscription *subscrhp[5];

/* Registrations are for AQ namespace ¥/
ub4 namespace =OCl_SUBSCR_NAMESPACE_AQ;

/* The context fot the callback %/
ub4 cx{5]={0,0,0,0,0};

printf{"Initializing OCI Process\n®);

/* The OCI Process Environment must be initialized with OCl_EVENTS %
/*OCl_OBJECT flag is set to enable us dequeue %
(void) OClInitialize((ub4) OCI_EVENTS|OCI_OBJECT, (dvoid *)0,

(dvoid * (*)(dvoid *, size 1)) 0,

(dvoid * (*)(dvoid *, dvoid *, size_1))0,

(void (*)(dvoid *, dvoid #)) 0);

printf{"Initialization successfuln’);

/* The standard OCl setup ¥/
printf{’Initializing OCI Envin';

Operational Interface: Basic Operations 6-57

Register for Notification [Specify Subscription Name — Multi-Consumer Queue]

(void) OCIEnvinit((OCIEnv *) &envhp, OCI_DEFAULT, (size_{f) O,
(@void=)0);

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI HTYPE_ERROR,
(size_1) O, (dvoid **) Q);

/* Server contexts ¥/
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCl HTYPE_SERVER,
(size_1) O, (dvoid =) Q);

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid *) &svchp, OCI HTYPE_SVCCTX,
(size 1) 0, (dvoid *) 0);

printf(‘‘connecting to server\n®;
(void) OClServerAttach(srvhp, erhp, (text *)™, stien(™),);
printf{‘connect successfuln’);

/* Set attribute server context in the service context
(void) OCIAttrSet((dvoid *) svchp, OCl_ HTYPE_SVCCTX, (dvoid *)srvhp,
(ub4) 0, OCI_ATTR_SERVER, (OCIEnor *) enthp);

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid *)&authp,
(Ub4) OCI_ HTYPE_SESSION, (size 1) 0, (dvoid) 0);

(void) OCIAtrSet((dvoid *) authp, (Ub4) OCl_HTYPE._SESSION,
(dvoid *) "scott”, (ubd) strlen('scott"),
(ub4) OCI ATTR_USERNAME, erthp);

(void) OCIAtirSet((dvoid *) authp, (ub4) OCl HTYPE_SESSION,
(dvoid *) "tiger”, (ub4) strlen("tiger”),
(ub4) OCI_ATTR_PASSWORD, erthp);

checkenr(erhp, OCISessionBegin (svchp, enhp, authp, OCI CRED_RDBMS,
(ub4) OCI_DEFAULT));

(void) OCIAtrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
(dvoid *) authp, (ub4) 0,
(ub4) OCI_ATTR_SESSION, erthp);

/* Setting the subscription handle for notification on
a NORMAL single consumer queue
printf(allocating subscription handle\n’);
subscrhp[0] = (OCISubscription *)0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[0],

6-58 Application Developer's Guide - Advanced Queuing

Register for Notification [Specify Subscription Name — Multi-Consumer Queue]

(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) O, (dvoid *¥) O);

printf{'setting subscription name\n';

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "SCOTT.SCQL", (ub4) strlen('SCOTT.SCQL"),
(ub4) OCl_ATTR_SUBSCR_NAME, errhp);

printf{"setting subscription callbackin';

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, ehp);

printf("setting subscription context \n');

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(avoid *)&ctq0], (ub4)sizeof(c(O)),
(ub4) OCI_ATTR_SUBSCR_CTX, erthp);

printf{"'setting subscription namespace\n”);

(void) OCIAtirSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(ubd) OCI_ATTR_SUBSCR_NAMESPACE, erhp);

/* Setting the subscription handle for notification on a NORMAL muli-consumer
consumer queue ¥/
subscrhp[1] = (OCISubscription *)0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid *)&subscrhp[1],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_1) 0, (dvoid **) 0);

(void) OCIAHrSet((dvoid *) subscrhp[d], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid %) "SCOTT.MCQLAPP1",
(ub4) strien("'SCOTT.MCQLAPPL"),
(Ub4) OCI ATTR_SUBSCR_NAME, erhp);

(void) OCIAtrSet((dvoid *) subscrhp[d], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) 0,
(ub4) OCI ATTR_SUBSCR_CALLBACK, erhp);

(void) OCIAttrSet((dvoid *) subscrhpfd], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *)&ctx{1], (ubd)sizeof(cdq1]),
(Ub4) OCI_ATTR_SUBSCR_CTX, erthp);

(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,

Operational Interface

: Basic Operations 6-59

Register for Notification [Specify Subscription Name — Multi-Consumer Queue]

(Ub4) OCI ATTR_SUBSCR_NAMESPACE, enhp);

/* Setting the subscription handle for notification on a non-persistent
single-consumer queue %
subscrhp[2] = (OCISubscription *)0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[2],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

(void) OCIAtrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid) "SCOTT.NP_SCQ1",
(ub4) strlen("SCOTT.NP_SCQL"),
(Ub4) OCI_ATTR_SUBSCR_NAME, erthp);

(void) OCIAttrSet((dvoid *) subscrhpi2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) 0,
(Ub4) OCI_ATTR_SUBSCR_CALLBACK, enhp);

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid $&etx(2), (ubdysizeof(c2),
(Ub4) OCI_ ATTR_SUBSCR_CTX, enthp);

(void) OCIAtirSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, erhp);

/* Setting the subscription handle for notification on
a non-persistent multi consumer queue %
/*Waiting on user specified recipient %/
subscrhp[3] = (OCISubscription *)0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid *)&subscrhp[3],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) O, (dvoid **) 0);

(void) OCIAtrSet((dvoid *) subscrhp[3], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid ¥) "SCOTT.NP_MCQL",
(ub4) strien("'SCOTT.NP_MCQL"),
(Ub4) OCI ATTR_SUBSCR_NAME, erthp);

(void) OCIAtrSet((dvoid *) subscrhp[d], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) notifyCB, (ub4) 0,
(Ub4) OCI_ATTR SUBSCR_CALLBACK, erthp);

6-60 Application Developer's Guide - Advanced Queuing

Register for Notification [Specify Subscription Name — Multi-Consumer Queue]

(void) OCIAHrSet((dvoid *) subscrhp[d], (ub4) OCI HTYPE_SUBSCRIPTION,
(dvoid)&ctx(3)], (ubd)sizeof(cdq3]),
(Ub4) OCI ATTR_SUBSCR_CTX, erthp);

(void) OCIAtrSet((dvoid *) subscrhp[3], (ub4) OC|_ HTYPE_SUBSCRIPTION,

(dvoid *) &namespace, (ub4) O,
(ub4) OCl_ATTR_SUBSCR_NAMESPACE, erthp);

printf{("Registering for all the subscriptiosn \n");

checkenr(errhp, OCISubscriptionRegister(svchp, subscrhp, 4, errhp,
OCI_DEFAULT));

printf("Waiting for notifcations \n');

F*wait for minutes for notifications */
sleep(300);

printf("Exiting\n’);

Operational Interface: Basic Operations 6-61

Register for Notification [Specify Subscription Name — Multi-Consumer Queue]

6-62 Application Developer's Guide - Advanced Queuing

v

Advanced Queuing — Java API

This chapter introduces and details the Java Application Programmer’s Interface for

Advanced Queuing under the following headings:

Introduction
AQDriverManager
APIs/Classes
AQSession
AQConstants

AQAgent
AQQueueTableProperty
AQQueueProperty
AQQueueTable
AQQueueAdmin
AQQueue
AQEnqueueOption
AQDequeueOption
AQMessage
AQMessageProperty
AQRawPayload
AQException
AQOracleSQLException

Advanced Queuing — Java API

7-1

Introduction

Introduction

The Java AQ API supports both the administrative and operational features of
Oracle AQ. In developing Java programs for messaging applications, you will use
JDBC to open a connection to the database and then the Java AQ API for message
gueuing. This means that you will no longer be required to use the PL/SQL
interfaces.

The following sections describe the common interfaces and classes based on the
current PL/SQL interfaces. The common interfaces are prefixed with "AQ". These
interfaces will have different implementations in Oracle8i and Oracle Lite. In this
document we describe the common interfaces and their corresponding Oracle8i
implementations, which are in turn prefixed with "AQOracle".

The java AQ classes are located in $SORACLE_HOMEdbms /jlib /agapi .jar .
These classes can be used with any Oracle8i JDBC driver. If your application uses
the OCI8 or thin JDBC driver, you must include $ORACLE _

HOMErdbms /Zjlib /Zagapi .jar inthe CLASSPATHIf the application is using the
KPRB driver and accessing the java AQ API from java stored procedures, you must
first load the agapi .jar file into the database using the "loadjava" utility.

Chapter 8, "Oracle Advanced Queuing by Example" contains the following
examples:

« Enqueue and Dequeue of RAW Type Messages Using Java
« Dequeue of Messages Using Java

« Dequeue of Messages Using Java

« Enqueue of Messages with Priority Using Java

Set up for the test_agjava class is described in "Setup for AQ Examples" on
page 7-10. The way to create a multi-consumer queue is described in the
"AQSession" on page 7-8.

7-2 Application Developer's Guide - Advanced Queuing

AQDriverManager

AQDriverManager

getDrivers

getAQSession

The various implementations of the Java AQ API are managed via an
AQDriverManager . Both OLite and Oracle8i will have an AQDriver which is
registered with the AQDriverManager . The driver manager is used to create an
AQSession which can be used to perform messaging tasks.

When the AQDriverManager .createAQSession () method is invoked, it calls the
appropriate AQDriver (amongst the registered drivers) depending on the
parameter passed to the createAQSession () call.

The Oracle8i AQDriver expects a valid JDBC connection to be passed in as a
parameter to create an AQSession. Users must have the execute privilege on the
DBMS_AQINpackage in order to use the AQ Java interfaces. Users can also acquire
these rights through the AQ_USER_ROLBEr the AQ_ADMINSTRATOR_ROIBsers
will also need the appropriate system and queue privileges for 8.1 style queue
tables.

Note: Currently the Oracle8i AQDriver supports only RAWype
payloads.

Purpose:

This method returns the list of drivers registered with the driver manager. It returns
a Vector of strings containing the names of the registered drivers.

Syntax:
public static java.util.Vector getDrivers()

Purpose:
This method creates an AQSession.

Advanced Queuing — Java APl 7-3

registerDriver

registerDriver

Syntax:
public static AQSession getAQSession (java.lang.Object conn) throws AQEXception

Table 7-1 getAQSession Parameters

Parameter Meaning

conn if the user is using the AQOracleDriver , then the object
passed in must be a valid JDBC connection

Multithreaded Program Support

Currently Java AQ objects are not thread safe. Therefore, methods on AQSession ,
AQQueueTable , AQQueueand other AQ objects should not be called concurrently
from different threads. You can pass these objects between threads, but the
program must ensure that the methods on these AQ objects are not invoked
concurrently.

We recommend that multithreaded programs create a different AQSession in each
thread (using the same or a different JDBC connection) and get new queue table and
gueue handles using the getQueueTable and getQueue methods in AQSession .

Purpose:

This method is used by various implementations of the AQ driver to register
themselves with the driver manager (this method is not directly called by client
programs)

Syntax:
public static void registerDriver(AQDriver aq_driver)

Note: To create an AQSession , you must first open a JDBC
connection. Then you must load the AQDriver that you need to
use in the application. Note that the driver needs to be loaded only
once (before the first createAQSession call). Loading the driver
multiple times will have no effect. For more information, see
"Setup for AQ Examples" on page 7-10.

7-4 Application Developer's Guide - Advanced Queuing

AQDriverManager

Example

Connectiondb_conn; JDBC connection*/
AQSession ag sess; /*AQSession*/

/*JDBC setup and connection creation: ¥
class.forName(“oracle jdbc.driver.OracleDriver”);
db_conn = DriverManager.getConnection (
"idbcoracle:oci8:@", "aquser”, "aquser”);
db_conn.setAutoCommit(false);

/*Load the Oracle8i AQ dhver: %/
class.forName(“oracle. AQ.AQOracleDriver”),
/*Create an AQ Session; ¥/

ag_sess = AQDriverManager.createAQSession(db_conn);

Advanced Queuing — Java API

7-5

APIs/Classes

APIs/Classes

Table 7-2 AQ Interfaces

Interface Summary Description

AQSession Open a session to the queuing system
AQQueueTable AQ Queue Table interface
AQQueueAdmin AQ Queue administrative interfaces
AQQueue AQ Queue operational interfaces
AQMessage AQ message

AQRaw Payload AQ Raw Payload

AQDriver Interface for various AQ drivers

Table 7-3 AQ Common Classes

Class Summary Description

AQConstants Constants used in AQ operations
AQAgent AQ Agent

AQDriverManager Driver Manager for various AQ drivers
AQEnqueueOption AQ Enqueue Options
AQDequeueOption AQ Dequeue options
AQMessageProperty AQ Message properties
AQQueueProperty AQ Queue properties

AQQueueTableProperty AQ Queue Table properties

7-6 Application Developer's Guide - Advanced Queuing

APIs/Classes

Table 7-4 Oracle8i AQ Classes

Class Summary Description

AQOracleSession Oracle server implementation of AQSession
AQOracleMessage Oracle Server implementation of AQMessage
AQOracleDriver Oracle server implementation of AQDriver
AQOracleQueue Oracle server implementation of AQQueue
AQOracleQueueTable Oracle server implementation of AQQueueTable
AQOracleRawPayload Oracle server implementation of AQRawPayload

In general use only the interfaces and classes that are common to both
implementations (as described in the first two tables). This will ensure that your
applications are portable between Oracle 8i and Olite AQ implementations.

The AQOracle classes should not be used unless there is a method in these classes
that is not available in the common interfaces.

Note that since the AQQueueinterface extends AQQueueAdmin, all queue
administrative and operation functionality is available via AQQueue

Advanced Queuing — Java APl 7-7

AQSession

AQSession
createQueueTable
Purpose:
This method creates a new queue table in a particular user’s schema according to
the properties specified in the AQQueueTableProperty object passed in.
Syntax:
public AQQueueTable createQueueTable(javalang.String owner,
javalang.String name,
AQQueueTableProperty property)
throws AQException
Table 7-5 createQueueTable Parameters
Parameter Meaning
owner schema (user) in which to create the queue table
g_name name of the queue table
property gueue table properties
Returns:
AQQueueTable object
getQueueTable

Purpose:
This method is used to get a handle to an existing queue table.

Syntax:

public AQQueueTable getQueueTable(ava.lang.String owner,
javalang.String name)

7-8 Application Developer's Guide - Advanced Queuing

AQSession

Table 7-6 getQueueTable Parameters

Parameter Meaning

owner schema (user) in which the queue table resides
name name of the queue table

Returns:

AQQueueTable object

createQueue

Purpose:

This method creates a queue in a queue_table with the specified queue properties. It
uses the same schema name that was used to create the queue table.

Syntax:

public AQQueue createQueue(AQQueueTable g_table,
javalang.Sting q_name,
AQQueueProperty q_property) throws AQException

Table 7-7 createQueue Parameters

Parameter Meaning

g_table gueue table in which to create queue
name name of the queue to be created
g_property queue properties

Returns:

AQQueueobject

Advanced Queuing — Java APl 7-9

getQueue

getQueue

Purpose:
This method can be used to get a handle to an existing queue.

Syntax:

public AQQueue getQueue(avalang.String owner,
javalang.String name)

Table 7-8 getQueue Parameters

Parameter Meaning

owner schema (user) in which the queue table resides

name name of the queue

Returns:
AQQueueobject

Usage Note

Currently the java AQ API supports only queues with raw payloads. If you try to
access queue tables that contain queues with object payloads you will get an
AQException with the message "payload type not supported.”

Setup for AQ Examples

1. Create an AQ User
Here an ’agjava’ user is setup as follows:

CONNECT sys/change_on_install AS sysdba

DROP USER agjava CASCADE;

GRANT CONNECT, RESOURCE, AQ_ADMINISTRATOR_ROLE TO agjava IDENTIFIED BY agjava;
GRANT EXECUTE ON SYS.DBMS_AQADM TO agjava;

GRANT EXECUTE ON SYS.DBMS_AQ TO agjava;

CONNECT agjava/agjava

7-10 Application Developer's Guide - Advanced Queuing

AQSession

2. Set up main class

Next we set up the main class from which we will call subsequent examples and
handle exceptions.

import java.sgl.;
import oracle AQ.*;

public class test_agjava
{
public static void main(String args[])
{
AQSession aq_sess=null;

ty

{
ag_sess = createSession(args);

/*now run the test: %/
runTest(aq_sess);

}

catch (Exception ex)

{
System.out.printin(*Exception-1: " + ex);
exprintStackTrace();

}

}
}

3. Create an AQ Session;

Next, an AQ Session is created for the ‘agjava’ user as shown inthe
AQDriverManager section above:
public static AQSession createSession(String argsl])
{
Connection db_conn;
AQSession ag_sess=null;

try
{

Class forName('oracle.jdbc.driver.OracleDriver”);
/¥ your actual hostname, port number, and SID will
vary from what follows. Here we use ‘dlsun736, 5521,

and ‘test’ respectively:

Advanced Queuing — Java APl 7-11

Example

db_conn=
DriverManager.getConnection(
"idbc.oraclerthin:@disun736:5521 test",
"agjava’, "agjava’);

System.out.printin('JDBC Connection opened *);
db_conn.setAutoCommit(false);

/*Load the Oracle8i AQ driver: %/
Class.forName("oracle. AQ.AQOQracleDriver”);

/* Create an AQ Session; ¥/
ag_sess = AQDriverManager.createAQSession(db_conn);
System.out.printin(‘Successfully created AQSession ™),
}
catch (Exception ex)
{
System.out.printin('Exception: " + ex);
exprintStackTrace();
}
retum aq_sess;

}

Example

1. Create a queue table and a queue

Now, with the ’ runTest’ class, called from the above main class, we will create a
gueue table and queue for the "agjava’ user.

public static void runTest(AQSession ag_sess) throws AQEXception
{
AQQueueTableProperty gtable_prop;

AQQueueProperty queue_prop;
AQQueueTable q_table;

AQQueue queue;

/* Create a AQQueuie TableProperty object (payioad type - RAW): %/
gtable_prop = new AQQueueTableProperty('RAW");

/*Create a queue table called aq_tablel in agjava schema: ¥/
g table =aq_sess.createQueueTable (‘agjava’, "aq_tablel1", gtable_prop);
System.out printin(“Successfully created ag_tablel in agjava schema');

/* Create a new AQQueuePropenty object: %/

7-12 Application Developer's Guide - Advanced Queuing

AQSession

queue_prop = new AQQueueProperty();

/*Create aqueue called aq_queuel inaq_tablel:
queue =ag_sess.createQueue (q_table, "aq_queuel", queue_prop);
System.out printin(*Successfully created aq_queuel inaq_tablel");

}

2. Get a handle to an existing queue table and queue
public static void runTest(AQSession aq_sess) throws AQEXxception
{

AQQueueTable q_table;

AQQueue queue;

/*Geta handle to queue table - aq_tablel in agjava schema:
g table =aq_sess.getQueueTable (“agjava’, "aq_table1");
System.out printin(“Successful getQueueTable™);

/*Getahandle to a queue - aq_queuel in agjava schema:

queue =ag_sess.getQueue (‘agjava’, "aq_queuel");
System.out. printin(*Successful getQueue;

Advanced Queuing — Java APl 7-13

AQConstants

AQConstants

This class contains some constants used in the java AQ API .

Visibility constants

VISIBILITY_IMMEDIATE
public static final int VISIBILITY_IMMEDIATE

VISIBILITY_ONCOMMIT
public static final int VISIBILITY_ONCOMMIT

Payload type

RAW_TYPE_PAYLOAD
public static final int RAW_TYPE_PAYLOAD

7-14 Application Developer's Guide - Advanced Queuing

AQAgent

AQAgent

Constructor

This object specifies the producer or a consumer of a message.

Purpose:

There are two implementations of the constructor, each of which allocates a new
AQAgent with the specified parameters.

Syntax:

public AQAgent(java.lang.String name,
javalang.String address,
double protocol)

public AQAgent(javalang.String name,
javalang.String address)

Table 7-9 AQAgent Parameters

Parameter Meaning

name agent name

address agent address

protocol ggent protocol (required only in the first constructor); default is

Advanced Queuing — Java APl 7-15

getName

getName

Purpose:

This method gets the agent name.

Syntax:

public java.lang.String getName() throws AQEXxception
setName

Purpose:

This method sets the agent name.

Syntax:

public void setName(java.lang.String name) throws AQException

Table 7-10 setName Parameters

Parameter Meaning

name Agent name
getAddress

Purpose:

This method gets the agent address.

Syntax:
public javalang.String getAddress() throws AQException

7-16 Application Developer's Guide - Advanced Queuing

AQAgent

setAddress

getProtocol

setProtocol

Purpose:
This method sets the agent address.

Syntax:
public void setAddress(java.lang.String address) throws AQEXxception

Table 7-11 setAddress Parameters

Parameter Meaning
address gueue at a specific destination
Purpose:

This method gets the agent protocol.

Syntax:
public int getProtocol() throws AQException

Purpose:
This method sets the agent protocol.

Syntax:
public void setProtocol(int protocal) throws AQException

Advanced Queuing — Java API

717

setProtocol

Table 7-12 setProtocol Parameters

Parameter Meaning

protocol Agent protocol

7-18 Application Developer's Guide - Advanced Queuing

AQQueueTableProperty

AQQueueTableProperty

This class represents queue table properties.

Constants for Message Grouping

Constructor

public static final int NONE
public static final int TRANSACTIONAL

Purpose:

This method creates an AQQueueTableProperty object with default property
values and the specified payload type.

Syntax:
public AQQueueTableProperty(java.lang.String p_type)

Table 7-13 AQQueueTableProperty Parameters

Parameter Meaning

p_type payload type: this is “RAW for queue tables that will contain
raw payloads or the object type for queue tables that will
contain structured payloads

Note: Currently only payloads of RAWype are supported.

Advanced Queuing — Java APl 7-19

getPayloadType

getPayloadType

Purpose:
This method returns "RAWfor raw payloads or the object type for object payloads.

Syntax:
public java.lang.String getPayload Type() throws AQEXception

setPayloadType

Purpose:
This method is used to set the payload type.

Syntax:
public void setPayloadType(javalang.String p_type) throws AQEXxception

Table 7-14 setPayloadType Parameters

Parameter Meaning

_type payload type: this is “RAW” for queue tables that will contain
raw payloads or the object type for queue tables that will
contain structured payloads

setStorageClause

Purpose:
This method is used to set the storage clause to be used to create the queue table.

Syntax:
public void setStorageClause(javalang.String s _clause) throws AQException

7-20 Application Developer's Guide - Advanced Queuing

AQQueueTableProperty

Table 7-15 setStorageClause Parameters

Parameter Meaning

s_clauses storage parameter: this clause is used in the ‘CREATE TABLE
statement when the queue table is created

getSortOrder

Purpose:
This method gets the sort order that is used.

Syntax:
public java.lang.String getSortOrder() throws AQException

Returns:
The sort order used

setSortOrder

Purpose:
This method sets the sort order to be used.

Syntax:
public void setSortOrder(javalang.String s_order) throws AQException

Table 7-16 setSortOrder Parameters

Parameter Meaning

s_order specifies the columns to be used as the sort_key in ascending
order; the string has the format <sort_columnl, sort_
column2>; the allowed columns name are priority and
eng_time.

Advanced Queuing — Java APl 7-21

isMulticonsumerEnabled

iIsMulticonsumerEnabled

Purpose:
This method queries whether the queues created in the table can have multiple
consumers per message or not.

Syntax:
public boolean isMulticonsumerEnabled() throws AQException

Returns:
TRUEIf the queues created in the table can have multiple consumers per message.

FALSEIf the queues created in the table can have only one consumer per message.

setMultiConsumer

Purpose:
This method determines whether the queues created in the table can have multiple
consumers per message or not.

Syntax:
public void setMultiConsumer(boolean enable) throws AQException

Table 7-17 setMultiConsumer Parameters

Parameter Meaning

enable FALSE if the queues created in the table can have only one
consumer per message

TRUEIf the queues created in the table can have multiple
consumers per message

7-22 Application Developer's Guide - Advanced Queuing

AQQueueTableProperty

getMessageGrouping

Purpose:
This method is used to get the message grouping behavior for the queues in this
gueue table.

Syntax:
public int getMessageGrouping() throws AQEXxception

Returns:
NONEeach message is treated individually

TRANSACTIONALall messages enqueued as part of one transaction are considered
part of the same group and can be dequeued as a group of related messages.

setMessageGrouping

Purpose:
This method is used to set the message grouping behavior for queues created in this
gueue table.

Syntax:
public void setMessageGrouping(int m_grouping) throws AQException

Table 7-18 setMessageGrouping Parameters

Parameter Meaning
m_grouping NONE or TRANSACTIONAL

Advanced Queuing — Java APl 7-23

getComment

getComment

Purpose:

This method gets the queue table comment.

Syntax:

public java.lang.String getCommenty() throws AQEXxception
setComment

Purpose:

This method sets a comment.

Syntax:

public void setComment(java.lang.String gt_comment) throws AQException

Table 7-19 setComment Parameters

Parameter Meaning

gt_comment comment
getCompatible

Purpose:

This method gets the compatible property.

Syntax:
public javalang.String getCompatible() throws AQEXxception

7-24 Application Developer's Guide - Advanced Queuing

AQQueueTableProperty

setCompatible

Purpose:
This method sets the compatible property.

Syntax:
public void setCompatible(java.lang.String gt_compatible) throws AQException

Table 7-20 setCompatible Parameters

Parameter Meaning

gt_compatible compatible property

getPrimarylnstance

Purpose:
This method gets the primary instance.

Syntax:
public int getPrimaryinstance() throws AQException

setPrimarylnstance

Purpose:
This method sets the primary instance.

Syntax:
public void setPrimaryinstance(int inst) throws AQEXxception

Advanced Queuing — Java API

7-25

setSecondarylnstance

Table 7-21 setPrimaryinstance Parameters

Parameter Meaning

inst primary instance
getSecondarylnstance

Purpose:

This method gets the secondary instance.

Syntax:
public int getSecondaryinstance() throws AQException

setSecondarylnstance

Purpose:
This method sets the secondary instance.

Syntax:
public void setSecondaryinstance(int inst) throws AQEXxception

Table 7-22 setSecondaryinstance Parameters

Parameter Meaning

inst secondary instance

Examples:

Set up the test_agjava class as described in the For more information, see "Setup
for AQ Examples" on page 7-10.

7-26 Application Developer's Guide - Advanced Queuing

AQQueueTableProperty

1. Create a queue table property object with raw payload type
public static void runTest(AQSession ag_sess) throws AQEXception
{

AQQueueTableProperty gtable_prop;

/* Create AQQueueTable Property object: %/
gtable_prop = new AQQueueTableProperty(' RAW");
gtable_prop.setSortOrder("PRIORITY");

}

2. Create a queue table property object with raw payload type (for 8.1
style queues)
public static void runTest(AQSession aq_sess) throws AQEXxception
{
AQQueueTableProperty gtable_prop;

/*Create AQQueueTable Property object: %/
gtable_prop = new AQQueueTableProperty(' RAW');
gtable_prop.setComment("Qtable with raw payload");
gtable_prop.setCompatible("8.1");

Advanced Queuing — Java APl 7-27

AQQueueProperty

AQQueueProperty

This class represents queue properties.

Constants:

public static final int NORMAL_QUEUE
public static final int EXCEPTION_QUEUE
public static final int INFINITE # infinite retention */

Constructor:

Purpose:
This method creates a new AQQueueProperty object with default property values.

Syntax:
public AQQueueProperty()

getQueueType

Purpose:
This method gets the queue type .

Syntax:
public int getQueueType() throws AQException

Returns:
NORMAL_QUEU# EXCEPTION_QUEUE

7-28 Application Developer's Guide - Advanced Queuing

AQQueueProperty

setQueueType

Purpose:
This method is used to set the queue type.

Syntax:
public void setQueueType(int g_type) throws AQEXception

Table 7-23 setQueueType Parameters

Parameter Meaning

q_type NORMAL_QUEUBr EXCEPTION_QUEUE
getMaxRetries

Purpose:

This method gets the maximum retries for dequeue with REMOVEnhode.
Syntax:

public int getMaxRetries() throws AQEXxception

setMaxRetries

Purpose:
This method sets the maximum retries for dequeue with REMOVEnode.

Syntax:

public void setMaxRetries(int retries) throws AQEXception
public void setMaxRetries(Integer retries) throws AQEXception

Advanced Queuing — Java APl 7-29

setRetrylnterval

Table 7-24 setMaxRetries Parameters

Parameter Meaning

retries maximum retries for dequeue with REMOVE mode; specifying
NULLwill use the default. The default applies to single
consumer queues and 8.1. compatible multiconsumer queues.
Max_retries is not supported for 8.0 compatible
multiconsumer queues.

setRetryInterval

Purpose:

This method sets the retry interval, that is the time before this message is scheduled
for processing after an application rollback. Default is 0.

Syntax:

public void setRetryinterval(double interval) throws AQException
public void setRetryinterval(Double interval) throws AQException

Table 7-25 setRetrylnterval Parameters

Parameter Meaning

interval retry interval; specifying NULL will use the default

getRetrylnterval

Purpose:
This method gets the retry interval.

Syntax:
public double getRetryinterval() throws AQException

7-30 Application Developer's Guide - Advanced Queuing

AQQueueProperty

getRetentionTime

Purpose:
This method gets the retention time.

Syntax:
public double getRetentionTime() throws AQEXxception

setRetentionTime

getComment

Purpose:
This method gets the retention time.

Syntax:

public void setRetentionTime(double r_time) throws AQEXxception
public void setRetentionTime(Double r_time) throws AQException

Table 7-26 setRetentionTime Parameters

Parameter Meaning
r_time retention time; specifying NULL will use the default
Purpose:

This method gets the queue comment.

Syntax:
public java.lang.String getComment() throws AQEXxception

Advanced Queuing — Java API

7-31

setComment

setComment
Purpose:
This method sets the queue comment.
Syntax:
public void setComment(java.lang.String gt_comment) throws AQException
Table 7-27 setComment Parameters
Parameter Meaning
gt_comment gueue comment
Example:

Set up the test_agjava class as described in the Setup for AQ Examples section on
on page 7-10, above.

Create a AQQueueProperty object

{
AQQueueProperty g _prop;
g_prop = new AQQueueProperty();
g_prop.setRetentionTime(15); /* set retention time %/
g_prop.setRetryinterval(30); ~setretry interval %/

7-32 Application Developer's Guide - Advanced Queuing

AQQueueTable

AQQueueTable

getOwner

getName

getProperty

The AQQueueTable interface contains methods for queue table administration.

Purpose:
This method gets the queue table owner.

Syntax:
public java.lang.String getOwner() throws AQEXception

Purpose:
This method gets the queue table name.

Syntax:
public java.lang.String getName() throws AQEXxception

Purpose:
This method gets the queue table properties.

Syntax:
public AQQueueTableProperty getProperty() throws AQException

Returns:
AQQueueTableProperty object

Advanced Queuing — Java API

7-33

drop

drop

alter

Purpose:
This method drops the current queue table.

Syntax:
public void drop(boolean force) throws AQEXception

Table 7-28 drop Parameters

Parameter Meaning

force FALSE this operation will not succeed if there are any queues
in the queue table (the default)
TRUE: all queues in the queue table are stopped and dropped
automatically

Purpose:
This method is used to alter queue table properties.

Syntax:

public void alter(java.lang.String comment,
int primary_instance,
int secondary_instance) throws AQException

public void alter(java.lang.String comment) throws AQEXxception

7-34 Application Developer's Guide - Advanced Queuing

AQQueueTable

createQueue

dropQueue

Table 7-29 alter Parameters

Parameter Meaning

comment new comment

primary_instance new value for primary instance
secondary_instance new value for secondary instance
Purpose:

This method is used to create a queue in this queue table.
Syntax:

public AQQueue createQueue(java.lang.String queue_name,
AQQueueProperty q_property) throws AQException

Table 7-30 createQueue Parameters

Parameter Meaning

gueue_name name of the queue to be created
g_property queue properties

Returns:

AQQueueobject

Purpose:

This method is used to drop a queue in this queue table.

Syntax:
public void dropQueue(javalang.String queue_name) throws AQEXxception

Advanced Queuing — Java APl 7-35

Example:

Table 7-31 dropQueue Parameters

Parameter Meaning

queue_name name of the queue to be dropped

Example:

Set up the test_agjava class as described in the Setup for AQ Examples section on
on page 7-10, above.

1. Create a queue table and a queue
public static void runTest(AQSession ag_sess) throws AQEXxception
{

AQQueueTableProperty qtable_prop;

AQQueueProperty queue_prop;
AQQueueTable q_table;

AQQueue queue;

/* Create a AQQueueTable property object (payload type - RAW): %
gtable_prop = new AQQueueTableProperty(‘RAW?);

/*Create a queue table called aq_table2 in aquser schema:
gtable =aq_sess.createQueueTable (“aquser”, “aq_table2”, gtable_prop);
System.out.printin(*Successfully createQueueTable");

/* Create a new AQQueueProperty object %/
queue_prop =new AQQueueProperty();

/*Create a queue called aq_queue2 inaq_table2: %

queue = gtable.createQueue (“aq_queue2’, queue_prop);
System.out printin(“Successful createQueue’);

}

2. Alter gueue table, get properties and drop the queue table

{
AQQueueTableProperty qtable_prop;
AQQueueTable q_table;

/*Geta handle to the queue table called aq_table2 in aquser schema:
g table =aq_sess.getQueueTable ("agjava’, "aq_table?');

7-36 Application Developer's Guide - Advanced Queuing

AQQueueTable

System.out.printin(*Successful getQueueTable');

/*Get queue table properties: ¥/
gtable_prop =q_table.getProperty();

/* Alter the quevue table:
g_table alter("altered queue table");

/*Drop the queue table (and autormatically drop queues inside it): ¥/
g_table.drop(true);
System.out. printin(*Successful drop”);

Note: Queues can be created via the AQSession.createQueue

or the AQQueueTable.createQueue interfaces . The former
expects an AQQueueTable object as a parameter in addition to the
gueue_name and queue properties.

Advanced Queuing — Java APl 7-37

AQQueueAdmin

AQQueueAdmin

start

Purpose:
This method is used to enable enqueue and dequeue on this queue.

Syntax:

public void start(boolean enqueue,
boolean dequeue) throws AQException

Table 7-32 start Parameters

Parameter Meaning

enqueue TRUE — enable enqueue on this queue
FALSE— leave current setting unchanged

dequeue TRUE — enable dequeue on this queue
FALSE— leave current setting unchanged

startEnqueue

Purpose:

This method is used to enable enqueue on this queue . This is equivalent to
start(TRUE, FALSE)

Syntax:
public void startEnqueue() throws AQEXception

7-38 Application Developer's Guide - Advanced Queuing

AQQueueAdmin

startDequeue

stop

Purpose:

This method is used to enable dequeue on this queue. This is equivalent to
start(FALSE, TRUE).

Syntax:
public void startDequeue() throws AQException

Purpose:
This method is used to disable enqueue/dequeue on this queue.

Syntax:

public void stop(boolean enqueue,
boolean dequeue,
boolean wait) throws AQEXxception

Table 7-33 stop Parameters

Parameter Meaning

enqueue TRUE — disable enqueue on this queue
FALSE— leave current setting unchanged

dequeue TRUE — disable dequeue on this queue
FALSE— leave current setting unchanged

wait TRUE — wait for outstanding transactions to complete
FALSE— return immediately either with a success or an error

Advanced Queuing — Java APl 7-39

stopEnqueue

stopEnqueue

stopDequeue

Purpose:

This method is used to disable enqueue on a queue. This is equivalent to

stop(TRUE, FALSE, wait)

Syntax:

public void stopEnqueue(boolean wait) throws AQException

Table 7-34 stopEnqueue Parameters

Parameter Meaning

wait TRUE — wait for outstanding transactions to complete
FALSE— return immediately either with a success or an error

Purpose:

This method is used to disable dequeue on a queue. This is equivalent to

stop(FALSE, TRUE, wait)

Syntax:

public void stopDequeue(boolean wait) throws AQEXxception

Table 7-35 stopDequeue Parameters

Parameter Meaning

wait TRUE — wait for outstanding transactions to complete

FALSE— return immediately either with a success or an error

7-40 Application Developer's Guide - Advanced Queuing

AQQueueAdmin

drop

alterQueue

addSubscriber

Purpose:
This method is used to drop a queue

Syntax:
public void drop() throws AQException

Purpose:
This method is used to alter queue properties

Syntax:
public void alterQueue(AQQueueProperty praperty) throws AQException

Table 7-36 alterQueue Parameters

Parameter Meaning

property AQQueueProperty object with new property values. Note
that only max_retries ,retry_delay , retention_time
and comment can be altered.

Purpose:
This method is used to add a subscriber for this queue.

Syntax:

public void addSubscriber(AQAgent subscriber,
javalang.String rule) throws AQException

Advanced Queuing — Java APl 7-41

removeSubscriber

Table 7-37 addSubscriber Parameters

Parameter Meaning

subscriber the AQAgent on whose behalf the subscription is being
defined

rule a conditional expression based on message properties, and the

message data properties

removeSubscriber

Purpose:
This method removes a subscriber from a queue.

Syntax:
public void removeSubscriber(AQAgent subscriber) throws AQEXception

Table 7-38 removeSubscriber Parameters

Parameter Meaning

subscriber the AQAgent to be removed
alterSubscriber

Purpose:

This method alters properties for a subscriber to a queue.

Syntax:

public void alterSubscriber(AQAgent subscriber,
javalang.String rule) throws AQException

7-42 Application Developer's Guide - Advanced Queuing

AQQueueAdmin

Table 7-39 alterSubscriber Parameters

Parameter Meaning
subscriber the AQAgent whose subscription is being altered
rule a conditional expression based on message properties, the

message data properties

grantQueuePrivilege

Purpose:

This method is used to grant queue privileges to users and roles. The method has
been overloaded. The second implementation is equivalent to to calling the first
imeplementation with grant_option = FALSE

Syntax:

public void grantQueuePrivilege(java.lang.String privilege,
javalang.String grantee,
boolean grant_option) throws AQException

public void grantQueuePrivilege(javalang.String privilege,
java.lang.String grantee) throws AQEXxception

Table 7-40 grantQueuePrivilege Parameters

Parameter Meaning

privilege specifies the privilege to be granted: ENQUEUE, DEQUEUBr
ALL

grantee specifies the grantee(s); the grantee(s) can be a user, a role or

the PUBLIC roles

grant_option TRUE — the grantee is allowed to use this method to grant
access to others

FALSE— default

Advanced Queuing — Java APl 7-43

revokeQueuePrivilege

revokeQueuePrivilege

Purpose:
This method is used to revoke a queue privilege.

Syntax:

public void revokeQueuePrivilege(java.lang.String privilege,
javalang.String grantee) throws AQEXxception

Table 7-41 revokeQueuePrivilege Parameters

Parameter Meaning

privilege specifies the privilege to be revoked: ENQUEUE, DEQUEUBr
ALL

grantee specifies the grantee(s); the grantee(s) can be a user, a role or

the PUBLIC roles

schedulePropagation

Purpose:
This method is used to schedule propagation from a queue to a destination
identified by a database link.

Syntax:
public void schedulePropagation(java.lang.String destination,
java.util.Date start_time,
javalang.Double duration,
javalang.String next_time,
java.lang.Double latency) throws AQEXxception

7-44 Application Developer's Guide - Advanced Queuing

AQQueueAdmin

Table 7-42

schedulePropagation Parameters

Parameter

Meaning

destination

start_time

duration

next_time

latency

specifies the destination database link. Messages in the source
gueue for recipients at the destination will be propagated.
NULL=> destination is the local database and messages will be
propagated to all other queues in the local database. Maximum
length for this field is 128 bytes. If the name is not fully
qualified, the default domain name is used.

specifies the initial start time for the propagation window for
messages from this queue to the destination. NULL=> start
time is current time.

specifies the duration of the propagation window in seconds.
NULL=> propagation window is forever or until propagation
is unscheduled

date function to compute the start of the next propagation
window from the end of the current window. (e.g use
"SYSDATH 1 - duration/86400" to start the window at the
same time everyday. NULL=> propagation will be stopped at
the end of the current window

maximum wait, in seconds, in the propagation window for the
message to be propagated after it is enqueued. NULL=> use
default value (60 seconds)

unschedulePropagation

Purpose:

This method is used to unschedule a previously scheduled propagation of messages
from the current queue to a destination identfied by a specific database link..

Syntax:

public void unschedulePropagation(java.lang.String destination)

throws AQException

Table 7-43 unschedulePropagation Parameters

Parameter

Meaning

destination

specifies the destination database link. NULL=> destination is
the local database.

Advanced Queuing — Java APl 7-45

alterPropagationSchedule

alterPropagationSchedule

Purpose:
This method is used to alter a propagation schedule.

Syntax:

public void alterPropagationSchedule(java.lang.String destination,
javalang.Double duration,
javalang.String next_time,
javalang.Double latency)throws AQException

Table 7-44 alterPropagationSchedule Parameters

Parameter Meaning

destination specifies the destination database link. NULL=> destination is
the local database.

duration specifies the duration of the propagation window in seconds.
NULL=> propagation window is forever or until propagation
is unscheduled

next_time date function to compute the start of the next propagation
window from the end of the current window. (e.g use
"SYSDATE 1 - duration/86400" to start the window at the
same time everyday. NULL=> propagation will be stopped at
the end of the current window

latency maximum wait, in seconds, in the propagation window for the
message to be propagated after it is enqueued. NULL=> use
default value (60 seconds)

7-46 Application Developer's Guide - Advanced Queuing

AQQueueAdmin

enablePropagationSchedule

Purpose:
This method is used to enable a propagation schedule.

Syntax:

public void enablePropagationSchedule(java.lang.String destination)
throws AQException

Table 7-45 enablePropagationSchedule Parameters

Parameter Meaning

destination specifies the destination database link. NULL=> destination is
the local database.

disablePropagationSchedule

Purpose:
This method is used to disable a propagation schedule.

Syntax:

public void disablePropagationSchedule(java.lang.String destination)
throws AQException

Table 7-46 disablePropagationSchedule Parameters

Parameter Meaning

destination specifies the destination database link. NULL=> destination is
the local database.

Advanced Queuing — Java APl 7-47

Examples:

Examples:

Set up the test_agjava class. For more information, see "Setup for AQ Examples" on
page 7-10

1. Create a queue and start enqueue/dequeue

{
AQQueueTableProperty qtable_prop;

AQQueueProperty queue_prop;
AQQueueTable g_table;
AQQueue queus;

/* Create a AQQueuieTable property object (payioad type - RAW): %
gtable_prop = new AQQueueTableProperty(' RAW");

gtable_prop.setCompatible('8.1");

/* Create a queue table called aq_table3 in agjava schema: %/

g table =aq sess.createQueueTable (“agjava’, "aq_table3", gtable_prop);
System.out printin(“Successful createQueueTable");

/* Create a new AQQueueProperty object: %/
queue_prop = new AQQueueProperty();

/*Create a queue called aq_queue3inaq_table3: %/
gueue =ag_sess.createQueue (q_table, "aq _queue3", queue_prop);
System.out.printin("Successful createQueue’);

/* Enable enqueue/dequeue on this queue:

queue.start();
System.out.printin(*Successful start queue”);

/*Grant enqueue_any privilege on this queue to user scott: ¥
queue.grantQueuePrivilege('ENQUEUE", "scott’);
System.out printin(*Successful grantQueuePrivilege");

}

2. Create a multi-consumer queue and add subscribers
public static void runTest(AQSession ag_sess) throws AQEXxception
{

AQQueueTableProperty qtable_prop;

AQQueueProperty queue_prop;
AQQueueTable g_table;

7-48 Application Developer's Guide - Advanced Queuing

AQQueueAdmin

AQQueue queus;
AQAgent subsl, subs2;

/*Create a AQQueueTable property object (payload type - RAW): %/
gtable_prop = new AQQueueTableProperty(' RAW');
System.out. printin(*Successful setCompatible");

/* Set multiconsumer fiag to true: %/
gtable_prop.setMultiConsumer(true);

/* Create a queue table called aq_table4 in agjava schema: %

g_table =aq_sess.createQueueTable (“agjava’, "aq_table4", gtable_prop);
System.out.printin(*Successful createQueueTable');

/*Create a new AQQueueProperty object %/
queue_prop = new AQQueueProperty();
F Create a queue called aq_queue4 in aq_tabled */

gueue = ag_sess.createQueue (q_table, "aq_queued', queue_prop);
System.out.printin(*Successful createQueue’);

/* Enable enqueue/dequeue on this queue: ¥/

queue.start();
System.out printin(*Successful start queue”);

/*Add subscribers to this queue: ¥/
subsl =new AQAgent('GREEN", null, 0);
subs2 = new AQAgent('BLUE", null, 0);

queue.addSubscriber(subs1, null); FAnorule ¥
System.out printin(*Successful addSubscriber 1');

queue.addSubscriber(subs2, "priority < 2"); Fwith rule %/
System.out. printin("Successful addSubscriber 2;

Advanced Queuing — Java APl 7-49

AQQueue

AQQueue
This interface supports the operational interfaces of queues. AQQueueextends
AQQueueAdmin. Hence, you can also use adminstrative functions through this
interface.
getOwner
Purpose:
This method gets the queue owner.
Syntax:
public java.lang.String getOwner() throws AQEXception
getName
Purpose:
This method gets the queue name.
Syntax:
public java.lang.String getName() throws AQEXxception
getQueueTableName

Purpose:
This method gets the name of the queue table in which the queue resides.

Syntax:
public java.lang.String getQueueTableName() throws AQException

7-50 Application Developer's Guide - Advanced Queuing

AQQueue

getProperty

Purpose:
This method is used to get the queue properties.

Syntax:
public AQQueueProperty getProperty() throws AQEXxception

Returns:
AQQueueProperty object

createMessage

enqueue

Purpose:
This method is used to create a new AQMessage object that can be populated with
data to be enqueued.

Syntax:

public AQMessage createMessage() throws AQEXxception

Returns:
AQMessage object

Purpose:
This method is used to enqueue a message in a queue.

Syntax:

public byte]] enqueue(AQENqueueOption eng_option,
AQMessage message) throws AQEXxception

Advanced Queuing — Java APl 7-51

dequeue

dequeue

Table 7-47 alterPropagationSchedule Parameters

Parameter Meaning

eng_option AQEnqueOption object
message AQMessage to be enqueued
Returns:

Message id of the the enqueued message. The AQMessage object’s messageld field
is also populated after the completion of this call.

Purpose:
This method is used to dequeue a message from a queue.

Syntax:
public AQMessage dequeue(AQDequeueOption deq_option) throws AQEXxception

Table 7-48 alterPropagationSchedule Parameters

Parameter Meaning
deq_option AQDequeueOption object
Returns:

AQMessage,the dequeued message

7-52 Application Developer's Guide - Advanced Queuing

AQQueue

getSubscribers

Purpose:
This method is used to get a subscriber list for the queue.

Syntax:
public AQAgent]] getSubscribers() throws AQException

Returns:
An array of AQAgents

Advanced Queuing — Java APl 7-53

AQEnqueueOption

AQEnqueueOption

This class is used to specify options available for the enqueue operation.

Constants
public static final int DEVIATION_NONE
public static final int DEVIATION_BEFORE
public static final int DEVIATION_TOP
public static final int VISIBILITY _ONCOMMIT
public static final int VISIBILITY_IMMEDIATE
Constructors

Purpose:

There are two constructors available. The first creates an object with the specified
options, the second creates an object with the default options.

Syntax:
public AQEnqueueOption(int visibility,

byte[] relative_msgid,
int sequence_deviation)

public AQEnqueueOption()

7-54 Application Developer's Guide - Advanced Queuing

AQEnqueueOption

getVisibility

setVisibility

Table 7-49 AQEnqueueOption Parameters

Parameter Meaning

visibility VISIBILITY_IMMEDIATE or VISIBILITY_ONCOMMIT
(default)

relative_msgid when DEVIATION_BEFORES used, this parameter identifies

the message identifier of the message before which the current
message is to be enqueued

sequence_deviation DEVIATION_TOP — the message is enqueued ahead of any
other messages

DEVIATION_BEFORE— the message is enqueued ahead of the
message specified by relative_msgid

DEVIATION_NONE— default

Purpose:
This method gets the visibility.

Syntax:

public int getVisibility() throws AQEXxception

Returns:
VISIBILITY_IMMEDIATE or VISIBILITY_ONCOMMIT

Purpose:
This method sets the visibility.

Syntax:
public void setVisibility(int visibility) throws AQException

Advanced Queuing — Java APl 7-55

getRelMessageld

Table 7-50 setVisibility Parameters

Parameter Meaning

visibility VISIBILITY_IMMEDIATE or VISIBILITY_ONCOMMIT
getRelMessageld

Purpose:

This method gets the relative message id.

Syntax:
public byte]] getRelMessageld() throws AQException

7-56 Application Developer's Guide - Advanced Queuing

AQEnqueueOption

getSequenceDeviation

Purpose:
This method gets the sequence deviation.

Syntax:
public int getSequenceDeviation() throws AQException

setSequenceDeviation

Purpose:
This method specfies whether the message being enqueued should be dequeued
before other message(s) already in the queue

Syntax:

public void setSequenceDeviation(int sequence_deviation,
byte] relative_msgid) throws AQException

Table 7-51 setSequenceDeviation Parameters

Parameter Meaning

sequence_deviation DEVIATION_TOP — the message is enqueued ahead of any
other messages

DEVIATION_BEFORE— the message is enqueued ahead of the
message specified by relative_msgid
DEVIATION_NONE— default

relative_msgid when DEVIATION_BEFORES used, this parameter identifies
the message identifier of the message before which the current
message is to be enqueued

Advanced Queuing — Java APl 7-57

AQDequeueOption

AQDequeueOption

This class is used to specify the options available for the dequeue option.

Constants

public static final int NAVIGATION_FIRST_MESSAGE
public static final int NAVIGATION_NEXT_TRANSACTION
public static final int NAVIGATION_NEXT_MESSAGE
public static final int DEQUEUE._ BROWSE

public static final int DEQUEUE. LOCKED

public static final int DEQUEUE._REMOVE

public static final int DEQUEUE_REMOVE_NODATA
public static final int WAIT_FOREVER

public static final int WAIT_NONE

public static final int VISIBILITY_ONCOMMIT

public static final int VISIBILITY_IMMEDIATE

Constructor

Purpose:
This method creates an object with the default options.

Syntax:
public AQDequeueOption()

7-58 Application Developer's Guide - Advanced Queuing

AQDequeueOption

getConsumerName

Purpose:
This method gets consumer name.

Syntax:
public java.lang.String getConsumerName() throws AQEXxception

setConsumerName

Purpose:
This method sets consumer name

Syntax:
public void setConsumerName(java.lang.String consumer_name) throws AQException

Table 7-52 setConsumerName Parameters

Parameter Meaning

consumer_name Agent name
getDequeueMode

Purpose:

This method gets dequeue mode

Syntax:
public int getDequeueMode() throws AQEXxception

Advanced Queuing — Java APl 7-59

setDequeueMode

Returns:
DEQUEUE_BROWSHEQUEUE_LOCKEDEQUEUE_REMOWEDEQUEUE_REMOVE
NODATA

setDequeueMode

Purpose:
This method sets the dequeue mode.

Syntax:
public void setDequeueMode(int dequeue_mode) throws AQException

Table 7-53 setDequeueMode Parameters

Parameter Meaning

dequeue_mode DEQUEUE_BROWSIEQUEUE_LOCKEDEQUEUE_REMOWE
DEQUEUE_REMOVE_NODATA

getNavigationMode

Purpose:
This method gets the navigation mode.

Syntax:

public int getNavigationMode() throws AQEXxception

Returns:

NAVIGATION_FIRST_MESSAGIBr NAVIGATION_NEXT_MESSAGH
NAVIGATION_NEXT_TRANSACTION

7-60 Application Developer's Guide - Advanced Queuing

AQDequeueOption

setNavigationMode

getVisibility

setVisibility

Purpose:
This method sets the navigation mode.

Syntax:
public void setNavigationMode(int navigation) throws AQException

Table 7-54 setNavigationMode Parameters

Parameter Meaning

navigation NAVIGATION_FIRST_MESSAGHBr NAVIGATION_NEXT
MESSAGEr NAVIGATION_NEXT_TRANSACTION

Purpose:
This method gets the visibility.

Syntax:

public int getVisibility() throws AQEXception

Returns:
VISIBILITY_IMMEDIATE or VISIBILITY_ONCOMMIT

Purpose:
This method sets the visibility.

Syntax:
public void setVisihility(int visibility) throws AQException

Advanced Queuing — Java APl 7-61

getWaitTime

Table 7-55 setVisibility Parameters

Parameter Meaning

visibility VISIBILITY_IMMEDIATE or VISIBILITY_ONCOMMIT
getWaitTime

Purpose:

This method gets the wait time.

Syntax:

public int getwWaitTime() throws AQEXxception

Returns:

WAIT_FOREVERr WAIT_NONEbr the actual time in seconds
setWaitTime

Purpose:
This method sets the wait time.

Syntax:
public void setWaitTime(int wait_time) throws AQException

Table 7-56 setWaitTime Parameters

Parameter Meaning

wait_time WAIT_FOREVER or WAIT_NONEBbr time in seconds

7-62 Application Developer's Guide - Advanced Queuing

AQDequeueOption

getMessageld

setMessageld

getCorrelation

Purpose:
This method gets the message id.

Syntax:
public byte]] getMessageld() throws AQEXxception

Purpose:
This method sets the message id.

Syntax:
public void setMessageld(byte]] message _id) throws AQEXception

Table 7-57 setMessageld Parameters

Parameter Meaning
message_id message id
Purpose:

This method gets the correlation id.

Syntax:
public java.lang.String getCorrelation() throws AQEXception

Advanced Queuing — Java API

7-63

setCorrelation

setCorrelation

Purpose:
This method sets the correlation id.

Syntax:
public void setCorrelation(java.lang.String correlation) throws AQEXxception

Table 7-58 setCorrelation Parameters

Parameter Meaning

comrelation user-supplied information

7-64 Application Developer's Guide - Advanced Queuing

AQMessage

AQMessage

This interface contains methods for AQ messages with raw or object payloads.

getMessageld

Purpose:
This method gets the message id.

Syntax:
public byte]] getMessageld() throws AQEXception

getRawPayload

Purpose:
This method gets the raw payload

Syntax:
public AQRawPayload getRawPayload() throws AQException

Returns:
AQRawPayload object

setRawPayload

Purpose:
This method sets the raw payload. It throws AQException if this is called on
messages created from object type queues.

Advanced Queuing — Java APl 7-65

getMessageProperty

Syntax:
public void setRawPayload(AQRawPayload message_payload) throws AQEXxception

Table 7-59 setRawPayload Parameters

Parameter Meaning

message_payload AQRawPayload object containing raw user data
getMessageProperty

Purpose:

This method gets the message properties

Syntax:
public AQMessageProperty getMessageProperty() throws AQException

Returns:
AQMessageProperty object

setMessageProperty

Purpose:
This method sets the message properties.

Syntax:
public void setMessageProperty(AQMessageProperty property) throws AQEXxception

Table 7-60 setObjectPayload Parameters

Parameter Meaning

property AQMessageProperty object

7-66 Application Developer's Guide - Advanced Queuing

AQMessageProperty

AQMessageProperty

The AQMessageProperty class contains information that is used by AQ to manage
individual messages. The properties are set at enqueue time and their values are
returned at dequeue time.

Constants

public static final int DELAY_NONE

public static final int EXPIRATION_NEVER
public static final int STATE_READY

public static final int STATE_ WAITING
public static final int STATE_PROCESSED
public static final int STATE_EXPIRED

Constructor

Purpose:
This method creates the AQMessageProperty object with default property values.

Syntax:
public AQMessageProperty()

getPriority

Purpose:
This method gets the message priority.

Syntax:
public int getPriority() throws AQException

Advanced Queuing — Java APl 7-67

setPriority

setPriority

Purpose:

This method sets the message priority.

Syntax:

public void setPriority(int priority) throws AQEXxception

Table 7-61 setPriority Parameters

Parameter Meaning

priority priority of the message; this can be any number, including

negative number - a smaller number indicates a higher priority

getDelay

Purpose:

This method gets the delay value.

Syntax:

public int getDelay() throws AQException
setDelay

Purpose:

This method sets delay value.

Syntax:
public void setDelay(int delay) throws AQException

7-68 Application Developer's Guide - Advanced Queuing

AQMessageProperty

Table 7-62 setDelay Parameters

Parameter Meaning

delay the delay represents the number of seconds after which the
message is available for dequeuing; with NO_DELAMhe
message is available for immediate dequeuing

getExpiration
Purpose:
This method gets expiration value
Syntax:
public int getExpiration() throws AQEXception
setExpiration

Purpose:
This method sets expiration value

Syntax:
public void setExpiration(int expiration) throws AQException

Table 7-63 setExpiration Parameters

Parameter Meaning

expiration the duration the message is available for dequeuing; this
parameter is an offset from the delay; if NEVERthe message
will not expire

Advanced Queuing — Java APl 7-69

getCorrelation

getCorrelation

setCorrelation

getAttempts

Purpose:
This method gets correlation

Syntax:
public java.lang.String getCorrelation() throws AQEXception

Purpose:
This method sets correlation

Syntax:
public void setCorrelation(java.lang.String correlation) throws AQException

Table 7-64 setCorrelation Parameters

Parameter Meaning
correlation user-supplied information
Purpose:

This method gets the number of attempts.

Syntax:
public int getAttempts() throws AQEXception

7-70 Application Developer's Guide - Advanced Queuing

AQMessageProperty

getRecipientList

Purpose:
This method gets the recipient list.

Syntax:

public java.util. Vector getRecipientList() throws AQException

Returns:
A vector of AQAgents .This parameter is not returned to a consumer at dequeue
time.

setRecipientList

Purpose:
This method sets the recipient list.

Syntax:
public void setRecipientList(java.util. Vector r_list) throws AQException

Table 7-65 setRecipientList Parameters

Parameter Meaning

r_list vector of AQAgents ; the default recipients are the queue
subscribers

Advanced Queuing — Java APl 7-71

getOrigMessageld

getOrigMessageld

Purpose:
This method gets original message id.

Syntax:
public byte]] getOrigMessageld() throws AQException

getSender
Purpose:
This method gets the sender of the message.
Syntax:
public AQAgent getSender() throws AQEXxception
setSender

Purpose:
This method sets the sender of the message.

Syntax:
public void setSender(AQAgent sender) throws AQEXxception

Table 7-66 setSender Parameters

Parameter Meaning

sender AQAgent

7-72 Application Developer's Guide - Advanced Queuing

AQMessageProperty

getExceptionQueue

Purpose:
This method gets the exception queue name.

Syntax:
public java.lang.String getExceptionQueue() throws AQEXception

setExceptionQueue

Purpose:
This method sets the exception queue name.

Syntax:
public void setExceptionQueue(java.lang.String queue) throws AQException

Table 7-67 setExceptionQueue Parameters

Parameter Meaning

queue exception gueue name
getEnqueueTime

Purpose:

This method gets the enqueue time.

Syntax:
public java.util. Date getEnqueueTime() throws AQEXxception

Advanced Queuing — Java APl 7-73

getState

getState

Purpose:
This method gets the message state.

Syntax:
public int getState() throws AQEXception

Returns:
STATE_READYor STATE_WAITINGor STATE_PROCESSE@r STATE_EXPIRED

7-74 Application Developer's Guide - Advanced Queuing

AQRawPayload

AQRawPayload

getStream

getBytes

This object represents the raw user data that is included in AQMessage.

Purpose:
This method reads some portion of the raw payload data into the specified byte
array.

Syntax:
public int getStream(byte] value, int len) throws AQEXxception

Table 7-68 getStream Parameters

Parameter Meaning

value byte array to hold the raw data
len number of bytes to be read
Returns:

The number of bytes read

Purpose:
This method retrieves the entire raw payload data as a byte array.

Syntax:
public byte]] getBytes() throws AQException

Advanced Queuing — Java APl 7-75

setStream

Returns:
byte[] - the raw payload as a byte array

setStream

Purpose:
This method sets the value of the raw payload.

Syntax:

public void setStream(byte[] value,
intlen) throws AQException

Table 7-69 getStream Parameters

Parameter Meaning
value byte array containing the raw payload
len number of bytes to be written to the raw stream

7-76 Application Developer's Guide - Advanced Queuing

AQException

AQException

This exception is raised when the user encounters any error while using the Java
AQ Api.

public class AQException extends java.lang.RuntimeException

This interface supports all methods supported by Java exceptions and some
additional methods.

getMessage

Purpose:
This method gets the error message.

getErrorCode

Purpose:
This method gets the error number (Oracle error code).

getNextException

Purpose:
This method gets the next exception in the chain if any.

Advanced Queuing — Java APl 7-77

AQOracleSQLException

AQOracleSQLEXxception

AQOracleSQLException extends AQException

When using Oracle8i AQ driver, some errors may be raised from the client side and
some from the RDBMS. The Oracle8i driver raises AQOracleSQLException for all
errors that ocuur while performing SQL.

For sophisticated users interested in differentiating between the two types of
exceptions, this interface might be useful. In general you will only use
AQException

7-78 Application Developer's Guide - Advanced Queuing

8

Oracle Advanced Queuing by Example

In this chapter we provide examples of operations using different programatic
environments:

Create Queue Tables and Queues

Create a Queue Table and Queue of Object Type
Create a Queue Table and Queue of Raw Type

Create a Prioritized Message Queue Table and Queue
Create a Multiple-Consumer Queue Table and Queue

Create a Queue to Demonstrate Propagation

Enqueue and Dequeue Of Messages

Enqueue and Dequeue of Object Type Messages Using PL/SQL
Enqueue and Dequeue of Object Type Messages Using Pro*C/C++
Enqueue and Dequeue of Object Type Messages Using OCI
Enqueue and Dequeue of RAW Type Messages Using PL/SQL
Enqueue and Dequeue of RAW Type Messages Using Pro*C/C++
Enqueue and Dequeue of RAW Type Messages Using OCI
Enqueue and Dequeue of RAW Type Messages Using Java
Dequeue of Messages Using Java

Dequeue of Messages in Browse Mode Using Java

Enqueue and Dequeue of Messages by Priority Using PL/SQL

Oracle Advanced Queuing by Example 8-1

Enqueue of Messages with Priority Using Java
Dequeue of Messages after Preview by Criterion Using PL/SQL

Enqueue and Dequeue of Messages with Time Delay and Expiration Using
PL/SQL

Enqueue and Dequeue of Messages by Correlation and Message ID Using
Pro*C/C++

Enqueue and Dequeue of Messages by Correlation and Message ID Using
OcCl

Enqueue and Dequeue of Messages to/from a Multiconsumer Queue Using
PL/SQL

Enqueue and Dequeue of Messages to/from a Multiconsumer Queue using
OcCl

Enqueue and Dequeue of Messages Using Message Grouping Using
PL/SQL

Enqueuing and Dequeuing Object Type Messages That Contain LOB
Attributes Using PL/SQL

« Propagation

Enqueue of Messages for remote subscribers/recipients to a Multiconsumer
Queue and Propagation Scheduling Using PL/SQL

Manage Propagation From One Queue To Other Queues In The Same
Database Using PL/SQL

Manage Propagation From One Queue To Other Queues In Another
Database Using PL/SQL

Unscheduling Propagation Using PL/SQL

« Drop AQ Objects

« Revoke Roles and Privileges
« Deploy AQ with XA

« AQ and Memory Usage

Enqueue Messages (Free Memory After Every Call) Using OCI
Enqueue Messages (Reuse Memory) Using OCI
Dequeue Messages (Free Memory After Every Call) Using OCI

8-2 Application Developer's Guide - Advanced Queuing

— Dequeue Messages (Reuse Memory) Using OCI

Oracle Advanced Queuing by Example 8-3

Create Queue Tables and Queues

Create Queue Tables and Queues

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/managetr;

DROP USER agadm CASCADE;

GRANT CONNECT, RESOURCE TO agadm;
CREATE USER agadm IDENTIFIED BY agadm;
GRANT EXECUTE ON DBMS_AQADM TO agadm;
GRANT Aqg_administrator_role TO agadm;

DROP USER aq CASCADE;

CREATE USER aq IDENTIFIED BY ag;

GRANT CONNECT, RESOURCE TO ag;

GRANT EXECUTE ON dbms_aq TO ag;

Create a Queue Table and Queue of Object Type

/*Create a message type: ¥/

CREATE type ag.Message_typ as object (
subject VARCHAR2(30),

text VARCHAR2(80));

| *Create a object type queue table and queue:
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table =>’ag.objmsgs80_qtab,
Queue_payload_type =>'aqMessage_typ);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
gueue_name =>'msg_(ueue’,
queue_table =>'ag.objmsgs80_gtab’);

EXECUTE DBMS_AQADM.START _QUEUE (
gueue_name =>'msg_queue);

Create a Queue Table and Queue of Raw Type

F Create a RAW type queue table and queue: kil
EXECUTE DBMS_AQADM.CREATE_QUEUE TABLE (
queue_table =>’aq.RawMsgs_qtab),

queue_payload type =>'RAW);

EXECUTE DBMS_AQADM.CREATE. QUEUE (

8-4 Application Developer's Guide - Advanced Queuing

Create Queue Tables and Queues

gQueue name =>raw_msg_ueuge’,
queue_table =>'ag.RawMsgs_qtab);

EXECUTE DBMS_AQADM.START QUEUE (
queue name =>'aw_msg_queue’);

Create a Prioritized Message Queue Table and Queue

EXECUTE DBMS_AQADM.CREATE. QUEUE_TABLE (
queue_table =>"agpriority_msg’,

sot ist =>'PRIORITY,ENQ_TIME,
queue_payload_type =>'aqMessage_typ);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
gueue name =>’priority_msg_queue,
queue_table =>"ag.priority_msg’);

EXECUTE DBMS_AQADM.START_QUEUE (
gueue_name =>’priority_msg_queue);

Create a Multiple-Consumer Queue Table and Queue

EXECUTE DBMS_AQADM.CREATE. QUEUE_TABLE (
queue_table =>'ag.MuliConsumerMsgs_qtal’,
multiple_consumers =>TRUE,

queue_payload_type =>'ag.Message_typ);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
gueue_name =>'msg_queue_muliple’,
queue_table =>'ag.MuliConsumerMsgs_gab);

EXECUTE DBMS_AQADM.START_QUEUE (
queue_name =>'msg_queue_muliple);

Create a Queue to Demonstrate Propagation

EXECUTE DBMS_AQADM.CREATE_QUEUE (
gueue_name =>‘another_msg_queue’,
queue_table =>'ag.MuliConsumerMsgs_qtab’);

EXECUTE DBMS_AQADM.START_QUEUE (

Oracle Advanced Queuing by Example 8-5

Enqueue and Dequeue Of Messages

gueue_name =>'another_msg_gqueue’);

Enqueue and Dequeue Of Messages

Enqueue and Dequeue of Object Type Messages Using PL/SQL

To enqueue a single message without any other parameters specify the queue name
and the payload.

F Enqueuetomsg queue: ¥

DECLARE

enqueue_options dbms_ag.enqueue_options _t;
message_properties dbms_ag.message_properties t;
message_hande RAW(16);

message agmessage _typ;

BEGIN

message :=message_typ(NORMAL MESSAGE,,
‘enqueued to msg_queue first.);

dbms_ag.enqueue(queue_name =>'msg_queue,
enqueue_options =>enqueue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

COMMIT;

F Dequeue frommsg _queue: ¥/

DECLARE
dequeue_options dbms_aqg.dequeue_options _t;
message_properties dbms_ag.message_properties t;
message_hande RAW(16);
message ag.message_typ;

BEGIN
DBMS_AQ.DEQUEUE(queue_name =>'msg_gueue’,
dequeue_options =>dequeue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

DBMS_OUTPUT.PUT_LINE (Message: ' || message.subject ||

8-6 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

'..." || message.text);
COMMIT;
END;

Enqueue and Dequeue of Object Type Messages Using Pro*C/C++

Note: You may need to set up data structures similar to the
following for certain examples to work:

$ cat >>message.typ
case=lower

type ag.message_typ
$

$ ot userid=ag/aq intyp=message.typ outtyp=message_o.yp\
code=c hfile=demo.h

$

$ proc intyp=message_o.typ iname=<program name>\
config=<config file> SQLCHECK=SEMANTICS userid=ag/aq

#include <stdio.h>

#include <sting.h>

#include <sglca.h>

#include <sgl2ocih>

I The header file generated by processing
object type ‘aq.Message typ* ¥
#include "pceg.h”

void sql_error(msg)

char*msg;

{

EXEC SQL WHENEVER SQLERROR CONTINUE;
printi("%es\n”, msg);

printf(\n% .800s \n", sglca.sglemm.sglemmc);

EXEC SQL ROLLBACK WORK RELEASE,;

exit(1);

}

main()

{

Message typ *message =(Message_typ*)0; /* payload */
char user[60="ag/AQ",; /*user logon password %/
char subject{30]; /*components ofthe ¥/

Oracle Advanced Queuing by Example 8-7

Enqueue and Dequeue Of Messages

char xt[80]; /* payload type %
| * ENQUEUE and DEQUEUE to an OBJECT QUEUE %/

| * Connect to database: ¥/
EXEC SQL CONNECT :user;

/*On an oracle error print the error number %/
EXEC SQL WHENEVER SQLERROR DO sq|_eror("Oracle Error),

/*Allocate memory for the host variable from the object cache : %
EXEC SQL ALLOCATE :message;

H#ENQUEUE %

strepy(subject, "NORMAL ENQUEUE™;
strepy(txt, ' The Enqueue was done through PLSQL embedded in PROC');

| *Initialize the components of message : %/
EXEC SQL OBJECT SET subject, text OF :message TO :subject, :txt;

/*Embedded PLSQL call to the AQ enqueuie procedure : %/
EXEC SQL EXECUTE

DECLARE

message_properties doms_ag.message_properties_t;
engueue_options dbms_ag.enqueue_options _t;
msgid RAW(16);

BEGIN

/*Bind the host variable ‘message’ to the payload: %/
dbms_ag.enqueue(queue_name =>'msg_queue’,
message_properties => message_properties,
enqueue_options =>enqueue_options,

payload =>:message,

msgid =>msgid);

END;

END-EXEC;

/*Commit work %/

EXEC SQL COMMIT;

printf"Enqueued Message \n");

printf("Subject :%s\n",subject);

printf(Text :%s\n",tx);

| *Dequeue ™

8-8 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

| *Embedded PLSQL call to the AQ dequeue procedure : %/
EXEC SQL EXECUTE
DECLARE
message_properties doms_ag.message_properties t;
dequeue_options dbms_ag.dequeue_options t;
msgid RAW(16);
BEGIN
/*Retum the payload into the host variable ‘message’: %/
dbms_ag.dequeue(queue_name =>'msg_queue’,
message_properties => message_properties,
dequeue_options =>dequeue_options,
payload =>:message,
msgid =>msgid);
END;
END-EXEC;

*Commitwork %/
EXEC SQL COMMIT;

| *Extract the components of message: ¥/
EXEC SQL OBJECT GET SUBJECT, TEXT FROM :message INTO :subject, txt;

printf("Dequeued Message \n'Y);
printf{("Subject :%s\n",subject);
printf(Text :%s\n",tx);

}

Enqueue and Dequeue of Object Type Messages Using OCI

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

struct message

{

OCIString *subject;
OCIString *data;

%
typedef struct message message;

struct null_message

{
OClind null_adt,
OClind null_subject;

Oracle Advanced Queuing by Example 8-9

Enqueue and Dequeue Of Messages

OClind null_data;
J
typedef struct null_message null_message;

int main()
{

OCIEnv *envhp;

OClServer *sivhp;

OCIEmor *erthp;

OCISvcCix *svchp;

dvoid *mp;

OCIType *mesg_tdo=(OCIType*)0;
message msg;

null_message nmsg;

message *mesg =&msg;
null_message *nmesg =&nmsg;
message *degmesg = (message *)0;
null_message *ndegmesg = (null_message *)0;

OClinitialize((ub4) OCI_OBJECT, (dvoid %0, (dvoid * (*)0) O,
(dvoid* () O, (void (*)() 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
52, (dvoid *¥) &mp);

OCIENnvInit&envhp, (ub4) OClI_DEFAULT, 21, (dvoid **) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &erhp, (Ub4) OCI_HTYPE_ERROR,
52, (dvoid **) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &srvhp, (ub4) OCI_HTYPE_SERVER,
52, (dvoid *¥) &mp);

OClServerAttach(srvhp, errhp, (text*) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &svchp, (ub4) OCI HTYPE_SVCCTX,
52, (dvoid *) &mp);

OCIAtrSet((dvoid *) svchp, (Ubd) OCI_HTYPE._SVCCTX, (dvoid sivhp, (ubd) 0,
(ub4) OCI_ATTR_SERVER, (OCIEmor*) erthp);

OClLogon(envhp, errhp, &svchp, "AQ", stlen("AQ"), "AQ", strlen("AQ"), 0, 0);
/*Obtain TDO of message _typ %/

OCITypeByName(envhp, erhp, svchp, (CONST text *)"AQ", strlen("AQ"),
(CONST text *)'MESSAGE_TYP", stlen('MESSAGE_TYP"),

8-10 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

(text*)0, 0, OCI_ DURATION_SESSION, OCI_TYPEGET ALL, &mesq_tdo);

/* Prepare the message payioad %/

mesg->subject = (OCIString *)0;

mesg->data = (OCIString *)0;

OCIStringAssignText(envhp, errhp,
(CONST text*)'NORMAL MESSAGE", strlen(NORMAL MESSAGE"),
&mesg->subject);

OCIStringAssignText(envhp, errhp,
(CONST text *)"OCl ENQUEUE", strien("OCI ENQUEUE"),
&mesg->data);

nmesg->null_adt = nmesg->null_subject =nmesg->null_data=0OC|_IND_NOTNULL;

/*Enquevue irto the msg_queue ¥

OCIAQENq(svchp, ermhp, (CONST text *'msg_queue”, 0, O,
mesg_tdo, (dvoid *)&mesg, (dvoid *)&nmesg, 0, 0);

OCITransCommit(svchp, errhp, (ub4) 0);

/*Dequeuie from the msg_queue ¥/

OCIAQDeq(svchp, erthp, (CONST text *)'msg_queue”, 0, O,
mesg_tdo, (dvoid *)°mesg, (dvoid *)&ndegmesg, O, 0);

printf("Subject: %s\n", OCIStringPtr(envhp, degmesg->subject));

printf{ Text: %es\n’, OCIStringPtr(envhp, degmesg->data));

OCITransCommit(svchp, errhp, (ub4) 0);

Enqueue and Dequeue of RAW Type Messages Using PL/SQL

DECLARE
enqueue_options dbms_ag.enqueue_options _t;
message_properties dbms_ag.message_properties t;
message_handle RAW(16);
message RAW(4096);

BEGIN
message := HEXTORAW(RPAD(FF 4095, FF));
DBMS_AQ.ENQUEUE(queue_name =>'raw_msg_queue’,
enqueue_options =>enqueue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handie);

Oracle Advanced Queuing by Example 8-11

Enqueue and Dequeue Of Messages

COMMIT;
END;

F Dequeue fromraw_msg_queue: *

F Dequeue fromraw_msg_queue: *

DECLARE
dequeue_options DBMS_AQ.dequeue_options _t;
message_properties DBMS_AQ.message_properties t;
message_hande RAW(16);
message RAW(4096);

BEGIN
DBMS_AQ.DEQUEUE(queue_name =>'raw_msg_queue’,
dequeue_options =>dequeue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

COMMIT;
END;

Enqueue and Dequeue of RAW Type Messages Using Pro*C/C++

Note: You may need to set up data structures similar to the
following for certain examples to work:

$ cat >>message.typ

case=lower

type ag.message_typ

$

$ ot userid=ag/aq intyp=message.typ outtyp=message _o.yp\
code=c hfile=demo.h

$

$ proc intyp=message_0.typ iname=<program name>\
config=<config file> SQLCHECK=SEMANTICS userid=ag/aq

#include <stdio.h>
#include <string.h>
#include <sglca.h>
#include <sgl2oci.h>

void sql_eror(msg)

8-12 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

char*msg;

{

EXEC SQL WHENEVER SQLERROR CONTINUE;
printf("%s\n", msg);

printf("\n% .800s \n", sglca.sglerm.sglermc);

EXEC SQL ROLLBACK WORK RELEASE;

exit(1);

}

main()

{

OCIEnv *oeh; /*OCl Env handle %

OClEmor *err; /+OCI Er handle

OCIRaw *message=(OCIRaw*)0; /* payioad ¥/

ubl message_tx100]; /*data for payload ¥/
char user{60l="ag/AQ"; /*user logon password %
int status; /* retums status of the OCl call ¥/

/*Enqueue and dequevue to a RAW queue ¥/

/*Connectto database: ¥/
EXEC SQL CONNECT :user;

/*On an oracle error printt the error number: %/
EXEC SQL WHENEVER SQLERROR DO sql_error("Oracle Error :");

Getthe OCI Env handle: ¥/
if (SQLENVGet(SQL._SINGLE_RCTX, &oeh) = OC|_SUCCESS)
{

printf(" error in SQLENVGet\n");

exit(1);

}

/*Getthe OCI Error handle: %/

if (Status = OCIHandleAlloc((dvoid *Joeh, (dvoid *)&err,
(Ub4YOCI_HTYPE_ERROR, (ub4)0, (dvoid *+)0))

{

printf(" error in OCIHandleAlloc %d \n", status);

ext(l);

}

| *Enqueue ¥

/* The bytes to be pit into the raw payload:*/
strepy(message_txt, "Enqueue to a Raw payload queue ™);

/*Assign bytes to the OCIRaw pointer :

Y

Oracle Advanced Queuing by Example 8-13

Enqueue and Dequeue Of Messages

Memory needs to be allocated explicitly to OCIRaw*: %/

if (status=OCIRawAssignBytes(oeh, err, message_txt, 100,
&message))

{

printf(" error in OCIRawAssignBytes %d \n", status);
exit(1);

}

| * Embedded PLSQL call to the AQ enqueue procedure : %/
EXEC SQL EXECUTE

DECLARE

message_properties doms_ag.message_properties_t;
enqueue_options dbms_ag.enqueue_options _t;
msgid RAW(16);

BEGIN

/*Bind the host variable message to the raw payload: %/
dbms_ag.enqueue(queue_name =>'raw_msg_queue’,
message_properties => message_properties,
enqueue_options =>enqueue_options,

payload =>:message,

msgid => msgid);

END;

END-EXEC;

Commitwork: %

EXEC SQL COMMIT;

| *Dequeue %

/¥ Embedded PLSQL call to the AQ dequeue procedure %/
EXEC SQL EXECUTE

DECLARE

message_properties doms_ag.message_properties t;
dequeue_options dbms_ag.dequeue_options t;
msgid RAW(16);

BEGIN

| *Retum the raw payload into the host variable ‘message’*/
dbms_ag.dequeue(gueue_name =>'raw_msg_queue’,
message_properties => message_properties,
dequeue_options =>dequeue_options,

payload =>:message,

msgid =>msgid);

END;

END-EXEC;

/*Commit work: %

EXEC SQL COMMIT;

}

8-14 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

Engueue and Dequeue of RAW Type Messages Using OCI

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

intmain()
{
OCIEnv *envhp;
OClServer *sivhp;
OCIEmor *enhp;
OCISveCix *svchp;
dvoid *mp;
OCIType *mesg_tdo=(OCIType*)0;
char msg_tex{100];
OCIRaw *mesg = (OCIRaw *)0;
OCIRaw *degmesg = (OCIRaw *)0;
OClind ind=0;
dvoid *indptr = (dvoid *)&nd;
int i;

OClinitalize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * ()0) 0,
(@void*()0) 0, (void ()0) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid *) &envhp, (ub4) OCI HTYPE_ENV,
52, (dvoid *) &mp);

OCIEnvinit(&envhp, (Ub4) OCI_DEFAULT, 21, (dvoid **) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (Ub4) OCI_HTYPE_ERROR,
52, (dvoid *¥) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
52, (dvoid *) &mp);

OClServerAttach(srvhp, errhp, (text*) 0, (sb4) O, (ub4) OCI_DEFAULT);

OClHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_ HTYPE_SVCCTX,
52, (dvoid **) &mp);

OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *srvhp, (ub4) 0,
(ub4) OCI_ATTR_SERVER, (OCIEror *) enthp);

Oracle Advanced Queuing by Example 8-15

Setup for AQ Examples

OClLogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

/*Obtain the TDO of the RAW data type */

OCITypeByName(envhp, erthp, svchp, (CONST text *)"AQADM", strien("AQADM"),
(CONST text *)'RAW", strlen('RAW),
(text*)0, 0, OCl|_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

/* Prepare the message payioad */
strepy(msg_text, "Enqueue to a RAW queue’);

OCIRawAssignBytes(envhp, errhp, msg_text, stlen(msg_text), &mesg);

/* Enqueue the message into raw_msg_queue %

OCIAQENq(svchp, emhp, (CONST text *)'raw_msg_queue”, 0, 0,
mesg_tdo, (dvoid *)&mesg, (dvoid *)&indptr, O, O);

OClITransCommit(svchp, erhp, (ub4) 0);

/*Dequeuie the same message into C variable deqmesg %/
OCIAQDeq(svchp, emhp, (CONST text *)'raw_msg_queue”, 0, 0,
mesg_tdo, (dvoid *)°mesg, (dvoid **)&indptr, 0, Q);
for (i =0; i < OCIRawSize(envhp, degmesg); i++)
printf('%c", *(OCIRawPtr(envhp, degmesg) +1));
OCITransCommit(svchp, errhp, (ub4) 0);

Enqueue and Dequeue of RAW Type Messages Using Java

Setup for AQ Examples

/* Create an AQ User: */
CONNECT system/manager

DROP USER agjava CASCADE;

GRANT CONNECT, RESOURCE, AQ_ADMINISTRATOR_ROLE TO agjava IDENTIFIED BY agjava;
GRANT EXECUTE ON DBMS_AQADM TO agjava;

GRANT EXECUTE ON DBMS_AQ TO acjava;

CONNECT agjava/agjava

/* Set up main class from which we will call subsequent examples and handle
exceptions: ¥

import java.sgl.;

import oracle AQ.¥;

8-16 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

public class test_agjava
{
public static void main(String args[])

{
AQSession ag_sess=null;

try

{
ag_sess = createSession(args);

/*now run the test: %/
runTest(aq_sess);

}
catch (Exception ex)

System.out.printin(*Exception-1: " + ex);

exprintStackTrace();
}
}
}

/* Create an AQ Session for the 'agjava’ user as shown in the

AQDriverManager section above: */
public static AQSession createSession(String argsl])

{
Connection db_conn;

AQSession ag_sess=null;

try
{

Class forName('oracle.jdbc.driver.OracleDriver”);
/¥ your actual hostname, port number, and SID will
vary from what follows. Here we use ‘dlsun736, 5521,

and ‘test’ respectively:

db_conn=

DriverManager.getConnection(
"idbc:oraclerthin:@disun736:5521 test",

"agjava’, "agjava’);

System.out.printin("JDBC Connection opened *);

db_conn.setAutoCommit(false);

/*Load the Oracle8i AQ diver: */

Oracle Advanced Queuing by Example 8-17

Setup for AQ Examples

Class forName('oracle. AQ.AQOracleDriver”);

/* Create an AQ Session: ¥/
ag_sess = AQDriverManager.createAQSession(db_conn);
System.out.printin("Successfully created AQSession ")

}

catch (Exception ex)

System.out.printin("Exception: " + ex);
exprintStackTrace();
}
retum aq_sess;
}

/*Create a queue table and a queue forthe agjava’ use: /#
public static void runTest(AQSession ag_sess) throws AQEXception
{

AQQueueTableProperty gtable_prop;

AQQueueProperty queue_prop;
AQQueueTable q_table;

AQQueue queue;

/* Create a AQQueueTableProperty object (payioad type - RAW): %
gtable_prop = new AQQueueTableProperty('RAW");

/*Create a queue table called aq_tablel in agjava schema: %/
g table =aq_sess.createQueueTable (‘agjava’, "aq_tablel1", gtable_prop);
System.out printin(“Successfully created ag_tablel in agjava schema');

/*Create a new AQQueuePropenty object: %/
queue_prop = new AQQueueProperty();

/*Create aqueue called aq_queuel inaq tablel: %
queue =ag_sess.createQueue (q_table, "aq_queuel", queue_prop);
System.out printin(*Successfully created aq_queuel inaq_tablel");

}

/*Get a handle to an existing queue table and queue: %/
public static void runTest(AQSession ag_sess) throws AQEXxception
{

AQQueueTable q_table;

AQQueue queue;

/*Geta handle to queie table - aq_tablel in agjava schema:
q_table =aq_sess.getQueueTable ("agjava’, "aq_table1");

8-18 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

System.out printin(*Successful getQueueTable");
/*Geta handle to a queue - aq_queuel in agjava schema: %/

queue =ag_sess.getQueue (‘agjava’, "aq_queuel");
System.out printin(“Successful getQueue;

public static void runTest(AQSession ag_sess) throws AQEXxception

{
AQQueueTable q_table;
AQQueue queue;
AQMessage message;

AQRawPayload raw_payload;
AQEnqueueOption enq_option;

String test_data="new message";
bytef] b_anay;

/*Geta handle to queue table - aq_table4 in agjava schema: %/
g table =aq_sess.getQueueTable ("agjava’, "aq_table4");
System.out.printin("Successful getQueueTable');

/*Getahandle to aqueue - aq_queued in aquser schema: %
gueue = ag_sess.getQueue (‘agjava’, "aq_queued',
System.out.printin(“Successful getQueue™);

/*Create a message to contain raw payload.: ¥/
message = queue.createMessage();

/* Get handle to the AQRawPaylioad object and populate it with raw data: %/
b_aray =test data.getBytes();

raw_payload = message.getRawPayload();
raw_payload.setStream(b_array, b_array.length);

/* Create a AQEnqueueQOption object with default options: %/
enq_option = new AQEnqueueOption();

/*Enqueue the message: ¥/
gueue.enqueue(eng_option, message);

Oracle Advanced Queuing by Example 8-19

Setup for AQ Examples

Dequeue of Messages Using Java
public static void runTest(AQSession aq_sess) throws AQEXception

{
AQQueueTable q_table;
AQQueue queue;
AQMessage message;

AQRawPayload raw_payload;
AQENqueueOption eng_option;

String test_data="new message";
AQDequeueOption deq_option;
byte[] b_array;

/*Geta handle to queue table - aq_table4 in agjava schema: %/
g_table =aq_sess.getQueueTable (“agjava’, "aq_table4");
System.out.printin(*Successful getQueueTable');

/*Getahandle to a queue - aq_queued in aquser schema: ¥
queue =ag_sess.getQueue (‘agjava’, "aq_queued;
System.out. printin(“Successful getQueue”);

/* Create a message to contain raw payioad: %
message = queue.createMessage();

/*Get handle to the AQRawPayload object and populate it with raw data: %
b_aray =test_data.getBytes();

raw_payload = message.getRawPayload();
raw_payload.setStream(b_array, b_array.length);

/* Create a AQEnqueueQption object with default gptions: %/
eng_option = new AQEnqueueOption();

/* Enqueue the message: ¥/
gueue.enqueue(eng_option, message);
System.out printin(‘Successful enqueue’);

/* Create a AQDequeueOption object with default options: %/
deq_option = new AQDequeueOption();

/*Dequeue a message: ¥/

message = queue.dequeue(deq_option);
System.out printin(*Successful dequeue”);

8-20 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

/* Retrieve raw data from the message: ¥/
raw_payload = message.getRawPayload();

b_array =raw_payload.getBytes();
}

Dequeue of Messages in Browse Mode Using Java

public static void runTest(AQSession aq_sess) throws AQEXxception
{

AQQueueTable q_table;

AQQueueTable _table;

AQQueue queue;

AQMessage message;

AQRawPayload raw_payload;

AQENqueueOption eng_option;

String test_data="new message";
AQDequeueOption deq_option;
bytel] b_amay;

/*Get a handle to queue table - aq_table4 in agjava schema: %/
g table=aq_sess.getQueueTable ("agjava’, "aq_table4";
System.out.printin("Successful getQueueTable");

/*Getahandle to aqueue - aq_queued in aquser schema: %/
queue =aq_sess.getQueue (‘agjava’, "aq_queued";
System.out.printin(*Successful getQueue');

/* Create a message to contain raw payload:
message = queue.createMessage();

/* Get handle to the AQRawPayload object and populate it with raw data:
b_array =test datagetBytes();

raw_payload = message.getRawPayload();
raw_payload.setStream(b_array, b_array.length);

/* Create a AQEnqueueOption object with defauilt options: %/
eng_option = new AQEnqueueOption();

/* Enqueue the message: ¥/

queue.enqueue(enq_option, message);
System.out.printin(‘Successful enqueue’);

Oracle Advanced Queuing by Example 8-21

Setup for AQ Examples

/* Create a AQDequeueQption object with defaullt options:
deq_option =new AQDequeueOption();

/* Set dequeue mode to BROWSE: %
deq_option.setDequeueMode(AQDequeueOption.DEQUEUE_BROWSE);

/*Setwait time to 10 seconds: ¥/
deq_option.setWaitTime(10);

/*Dequeue a message: ¥/
message = queue.dequeue(deq_option);

/* Retrieve raw data from the message: ¥/
raw_payload = message.getRawPayload();
b_array =raw_payload.getBytes();

String ret_value = new String(b_array);
System.outprinin("Dequeued message: " +ret_value);

Enqueue and Dequeue of Messages by Priority Using PL/SQL

When two messages are enqued with the same priority, the message which was
enqued earlier will be dequeued first. However, if two messages are of different
priorities, the message with the lower value (higher priority) will be dequeued first.

P Enqueue two messages with priorty 30 and 5: *
DECLARE
enqueue_options dbms_ag.enqueue_options _t;
message_properties doms_ag.message_properties t;
message_hande RAW(16);
message agmessage_typ;

BEGIN
message :=message_typ(PRIORITY MESSAGE,
‘enqued at priority 30.%;

message_properties.priority .= 30;
DBMS_AQ.ENQUEUE(queue_name =>priority_msg_queue’,

enqueue_options =>enqueue_options,
message_properties =>message_properties,

8-22 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

payload
msgid

=>message,
=>message_handle);

message :=message_typ(PRIORITY MESSAGE,
"Enqueued at priority 5.);

message_properties.priority :=5;

DBMS_AQ.ENQUEUE(queue_name =>priority_msg_queue’,

engueue_options =>enqueue_options,
message_properties =>message_properties,

payload =>message,

msgid =>message_handle);
END;
F Dequeue from prionty queue: ¥
DECLARE

dequeue_options DBMS_AQ.dequeue_options _t;

message_properties DBMS_AQ.message_properties t;

message_hande RAW(16);
message ag.message_typ;

BEGIN

DBMS_AQ.DEQUEUE(queue_name =>’priofity_msg_queue’,

dequeue_options =>dequeue_options,
message_properties =>message_properties,
payload =>message,

msgid =>message_handle);

DBMS_OUTPUT.PUT_LINE (Message:’ || message.subject ||

"..."||messagetext);

COMMIT;

DBMS_AQ.DEQUEUE(queue_name =>priority_msg_queue’,

dequeue_options =>dequeue_options,
message_properties =>message_properties,
payload =>message,

msgid =>message_handle);

DBMS_OUTPUT.PUT_LINE (Message:’ || message.subject ||

"..."[Imessage.text);
COMMIT;
END;

Oracle Advanced Queuing by Example 8-23

Setup for AQ Examples

F On retum, the second message with priority set to 5 will be retrieved before
the message with priority set to 30 since priorty takes precedence over enqueue
time. */

Enqueue of Messages with Priority Using Java
public static void runTest(AQSession ag_sess) throws AQEXxception

{
AQQueueTable q_table;
AQQueue queue;
AQMessage message;

AQMessageProperty m_property,
AQRawPayload raw_payload;

AQENqueueOption eng_option;

String test data;

bytel] b_anay;

/*Geta handle to queue table - aq_tabled in agjava schema: %
gtable =aq_sess.getQueueTable (‘agjava’, "aq_table4';
System.out.printin(*Successful getQueueTable');

/#Getahandle to aqueue - aq_queue4 in agjava schema: %/
gueue =ag_sess.getQueue (‘agjava’, "aq_queued”),
System.out printin(“Successful getQueue™);

/*Enqueue 5 messages with priorities with different priorities: */
for (inti=0;i<5;i++)
{
/* Create a message to contain raw payload:
message = queue.createMessage();
test_data="Small message "+ (i+1); /*some test data ¥/
/*Get a handle to the AQRawPayioad object and
populate it with raw data: %/
b_aray =test_data.getBytes();
raw_payload = message.getRawPayload();
raw_payload.setStream(b_array, b_array.length);

/* Set message priorty: %/
m_property = message.getMessageProperty();

8-24 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

if(i<2)
m_property.setPriority(2);

else
m_property.setPriority(3);

/* Create a AQEnqueueQption object with default options: %
eng_option = new AQEnqueueOption();

/* Enqueue the message: ¥/

queue.enqueue(end_option, message);
System.out. printin("Successful enqueue”);

Dequeue of Messages after Preview by Criterion Using PL/SQL

An application can preview messages in browse mode or locked mode without
deleting the message. The message of interest can then be removed from the queue.

P Enqueue 6 messages tomsg_queue
— GREEN, GREEN, YELLOW, VIOLET, BLUE, RED */

DECLARE
enqueue_options DBMS_AQ.enqueue_options_t;
message_properties DBMS_AQ.message_properties t;
message_hande RAW(16);
message agmessage_typ;

BEGIN

message :=message_typ(GREEN;,
"GREEN enqueued to msg_queue first);

DBMS_AQ.ENQUEUE(queue_name =>'msg_gueue’,
enqueue_options =>enqueue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

message :=message_typ(GREEN,
"GREEN also enqueued to msg_queue second.);

DBMS_AQ.ENQUEUE(queue_name =>'msg_queue’,

enqueue_options =>enqueue_options,
message_properties =>message_properties,

Oracle Advanced Queuing by Example 8-25

Setup for AQ Examples

payload =>message,
msgid =>message_handle);

message :=message_typ(YELLOW,
'YELLOW enqueued to msg_queue third.);

DBMS_AQ.ENQUEUE(queue_name =>'msg_queue’,
enqueue_options =>enqueue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

DBMS_OUTPUT.PUT_LINE (Message handle:’ || message_handie);

message :=message_typ(VIOLET,
VIOLET enqueued to msg_queue fourth.);

DBMS_AQ.ENQUEUE(queue_name =>'msg_gqueue’,
enqueue_options =>enqueue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

message :=message_typ(BLUE,
'BLUE enqueued to msg_queue fifth.);

DBMS_AQ.ENQUEUE(queue_name =>'msg_queuge,
enqueue_options =>enqueue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

message :=message_typ(RED,
'RED enqueued to msg_queue sixth.’);

DBMS_AQ.ENQUEUE(queue_name =>'msg_queue’,
enqueue_options =>enqueue_options,
message_properties =>message_properties,

payload =>message,
msgid =>message_handle);
COMMIT;
END;

F Dequeue in BROWSE mode unti RED s founa,

8-26 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

and remove RED from queue: ¥

DECLARE
dequeue_options DBMS_AQ.dequeue_options £
message_properties DBMS_AQ.message_properties t;
message_hande RAW(16);
message ag.message_typ;

BEGIN
dequeue_options.dequeue_mode := DBMS_AQ.BROWSE;

LOOP
DBMS_AQ.DEQUEUE(queue_name =>’msg_queue,
dequeue_options =>dequeue_options,
message_properties => message_properties,
payload =>message,
msgid =>message_handle);

DBMS_OUTPUT.PUT_LINE (Message:’ || message.subject ||
'..."||messagetext);

EXIT WHEN message.subject ='RED,
END LOOP;

dequeue_options.dequeue_mode := DBMS_AQ.REMOVE;
dequeue_optionsmsgid :=message_handle;

DBMS_AQ.DEQUEUE(queue_name =>'msg_queuge’,
dequeue_options =>dequeue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

DBMS_OUTPUT.PUT_LINE (Message: ' || message.subject ||
"..." || message.text);

COMMIT;
END;

P Dequeue in LOCKED mode unti BLUE is found,
and remove BLUE from queue: *

DECLARE

dequeue_options dbms_ag.dequeue_options t;
message_properties dbms_ag.message_properties t;
message_hande RAW(16);

Oracle Advanced Queuing by Example 8-27

Setup for AQ Examples

message ag.message_typ;

BEGIN
dequeue_options.dequeue_mode :=dbms_aq.LOCKED;

LOOP

dbms_ag.dequeue(queue_name =>'msg_queue’,
dequeue_options =>dequeue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

doms_outputput_line (Message:’ || message.subject ||
"..." || message.text);

EXIT WHEN message.subject ='BLUE;
END LOOP;

dequeue_options.dequeue_mode :=dbms_aq.REMOVE;
dequeue_optionsmsgid :=message_handle;

dbms_ag.dequeue(queue_name =>'msg_queue’,
dequeue_options =>dequeue_options,
message_properties =>message_properties,
payioad =>message,

msgid =>message_handle);

DBMS_OUTPUT.PUT_LINE (Message: ' || message.subject ||
"..." || message.text);

COMMIT;
END;

Enqueue and Dequeue of Messages with Time Delay and Expiration Using PL/SQL

Note: Expiration is calculated from the earliest dequeue time. So,
if an application wants a message to be dequeued no earlier than a
week from now, but no later than 3 weeks from now, this requires
setting the expiration time for 2 weeks. This scenario is described in
the following code segment.

8-28 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

P Enqueue message for delayed avaiabilty: *
DECLARE

engueue_options dbms_ag.enqueue_options t;
message_properties doms_ag.message_properties t;
message_handle RAW(16);

message ag.Message_typ;

BEGIN

message .= Message_typ(DELAYED),

This message is delayed one week.);
message_properties.delay := 7+24*60%60;
message_properties.expiration := 2¥7+24*60*60;

dbms_ag.enqueue(queue_name =>'msg_queue’,
enqueue_options =>enqueue_options,
message_properties =>message_properties,
payload =>message,

msgid =>message_handle);

COMMIT;
END;

Enqueue and Dequeue of Messages by Correlation and Message ID Using Pro*C/C++

Note: You may need to set up data structures similar to the
following for certain examples to work:

$ cat >>message.typ
case=lower

type ag.message_typ
$

$ ott userid=ag/aq intyp=message.typ outtyp=message_o.yp\
code=c hfile=demo.h

$

$ proc intyp=message_o.typ iname=<program name>\
config=<config file> SQLCHECK=SEMANTICS userid=ag/aq

#include <stdio.h>

#include <sting.h>

#include <sglca.h>

#include <sgl2ocih>

/* The header file generated by processing

Oracle Advanced Queuing by Example 8-29

Setup for AQ Examples

object type ‘aq.Message byp’ %
#include "pceg.h”

void sql_eror(msg)

char*msg;

{

EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%es\n", msg);

printf(\n% .800s \n", sgica.sglem.sglermmc);

EXEC SQL ROLLBACK WORK RELEASE;

exit(1);

}

main()

{

OCIEnv *oeh; /#OCI Env Handle %

OCIEnor e, /*OCl Error Handle

Message typ *message = (Message_typ*)0; queue payload
OCIRaw *msgid = (OCIRaw*)0; F*message id*/

ubl msgmem[16]=""; /*memory for msgid %/

char userf60l="ag/AQ"; /*user login password %/
char subject{30]; /*components of ¥/

char t80]; *Message typ ¥/

char correlation1[30]; /*message correlation %
char correlation2[30];

int status; /*code retumed by the OCl calls

| * Dequeue by correlation and msgid %

P Connect o the database: * /
EXEC SQL CONNECT :user;
EXEC SQL WHENEVER SQLERROR DO sq|_error("Oracle Error :");

| *Allocate space in the object cache for the host variable: %/
EXEC SQL ALLOCATE :message;

/*Getthe OCI Env handlle: %/

if (SQLENVGe(SQL_SINGLE_RCTX, &oeh) I=OCI_SUCCESS)
{

printf(" emor in SQLENvGet \n'";

exit(1);

}

| *Get the OCI Emror handle: %/

if (Status = OCIHandleAlloc((dvoid *Joeh, (dvoid **)&err,
(Ub4)OCl_HTYPE_ERROR, (ub4)0, (dvoid **)0))

8-30 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

{

printf(" error in OCIHandleAlloc %d \n", status);
exit(1);

}

P Assign memory for msgid:

Memory needs to be allocated explicitly to OCIRaw*: %

if (status=OCIRawAssignBytes(oeh, err, msgmem, 16, &msgid))
{

printf(" error in OCIRawAssignBytes %d \n", status);

exit(1);

}

| *First enqueue * /

strepy(correlationl, "1st message');
strepy(subject, "NORMAL ENQUEUEL"),
strepy(txt, ' The Enqueue was done through PLSQL embedded in PROC');

| *Initalize the components of message: ¥/
EXEC SQL OJECT SET subject, text OF :message TO :subject, :txt;

F Embedded PLSQL callto the AQ enqueuie procedure: ¥
EXEC SQL EXECUTE

DECLARE

message_properties doms_ag.message_properties t;

enqueue_options dbms_ag.enqueue_options _t;

BEGIN

| *Bind the host vaniable ‘correlationl’: to message corelation®/
message_properties.correlation := :correlationl;

| *Bind the host variable ‘'message’to payioad and
retum message id into host variable ‘msgid’: %/
dbms_ag.enqueue(queue_name =>'msg_queue’,
message_properties => message_properties,
enqueue_options =>enqueue_options,

payload =>:message,

msgid => :msgid);

END;

END-EXEC;

P Commitwork: %

EXEC SQL COMMIT;

printf"Enqueued Message \n");

Oracle Advanced Queuing by Example 8-31

Setup for AQ Examples

printf(*Subject :%s\n",subject);
printf(Text :%s\n"txt);

F Second enqueue ¥/

strepy(correlation2, "2nd message”);
strepy(subject, "NORMAL ENQUEUE2");
strepy(txt, " The Enqueue was done through PLSQL embedded in PROC');

/* Initialize the components of message: %/
EXEC SQL OBJECT SET subject, text OF :messsage TO :subject, txt;

F Embedded PLSQL callto the AQ enqueuie procedure: ¥/
EXEC SQL EXECUTE

DECLARE

message_properties doms_ag.message_properties_t;
enqueue_options dbms_ag.enqueue_options _t;

msgid RAW(16);

BEGIN

| *Bind the host variable correlation2’: to message coirelaiton %
message_properties.correlation := :correlation2;

| *Bind the host variable ‘message’: to payioad %
dbms_ag.enqueue(queue_name =>'msg_queue’,
message_properties => message_properties,
enqueue_options =>enqueue_options,

payload =>:message,

msgid => msgid);

END;

END-EXEC;

F - Commitwori:* /|

EXEC SQL COMMIT;

printf("Enqueued Message \n");

printf{("Subject :%s\n",subject);

printf{Text :%s\n";tx);

I Firstdequeue - by correlation * /

EXEC SQL EXECUTE

DECLARE

message_properties doms_ag.message_properties t;
dequeue_options dbms_ag.dequeue_options t;
msgid RAW(16);

BEGIN

/*Dequeue by correlation in host variable ‘correlation”:

8-32 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

dequeue_options.correlation := :correlation2;

| * Retum the payload into host variable ‘message’: ¥/
dbms_ag.dequeue(queue_name =>'msg_queue’,
message_properties => message_properties,
dequeue_options =>dequeue_options,

payload =>:message,

msgid => msgid);

END;

END-EXEC,;

F Commitwork : %

EXEC SQL COMMIT;

| *Extract the values of the components of message: ¥/
EXEC SQL OBJECT GET subject, text FROM :message INTO :subject, txt;

printf('Dequeued Message \n");
printf("Subject :%s\n",subject);
printf(Text :%s\n"txt);

P SECOND DEQUEUE -byMSGID * |

EXEC SQL EXECUTE

DECLARE

message_properties doms_ag.message_properties t;
dequeue_options dbms_ag.dequeue_options t;

msgid RAW(16);

BEGIN

| *Dequeue by msgid in host variable ‘msgid’: * /
dequeue_options.msgid := :msgid;

P Retum the payioad into host variable ‘message’: ¥
dbms_ag.dequeue(queue_name =>'msg_queue’,
message_properties => message_properties,
dequeue_options =>dequeue_options,

payload =>:message,

msgid =>msgid);

END;

END-EXEC;

F - Commitwork: %

EXEC SQL COMMIT;

}

Oracle Advanced Queuing by Example 8-33

Setup for AQ Examples

Enqueue and Dequeue of Messages by Correlation and Message ID Using OCI

#include <stdio.h>
#include <stdlib.n>
#include <string.h>
#include <oci.h>

struct message

{

OCIString *subject;
OCIString *data;

%
typedef struct message message;

struct null_message

{

OClind null_adt;
OClind null_subject;
OClind null_data;

¥
typedef struct null_message null_message;

int main()

{

OCIEnv *envhp;

OClServer *sivhp;

OCIEmor *erhp;

OCISveCix *svchp;

dvoid *mp;

OCIType *mesg_tdo=(OCIType*0;
message msg;

null_message nmsg;

message *mesg =&msg;
null_message *nmesg =&nmsg;
message *degmesy = (message *)0;
null_message *ndegmesg = (null_message *)0;

OClinitialize((ub4) OCI_OBJECT, (dvoid %0, (dvoid * ()() 0,
(@void* (*)0) 0, (void ()0) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid *) &envip, (ubd) OCI_HTYPE_ENV,
52, (dvoid *) &mp);

OCIEnVInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid) &mp);

8-34 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

OCIHandleAlloo{(dvoid *) envhp, (dvoid #) &erthp, (ubd) OC|_HTYPE._ERROR,
52, (dvoid *) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &sivhp, (ubd) OCI_HTYPE._SERVER,
52, (dvoid *) &mp);

OClServerAttach(srvhp, errhp, (text*) 0, (sb4) O, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid #) &svehp, (Ubd) OCl HTYPE_SVCCTX,
52, (dvoid *) &mp);

OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ubd) 0,
(Ub4) OCI ATTR_SERVER, (OCIEror *) erthp);

OClLogon(envhp, erhp, &svchp, "AQ", strlen(*AQ"), "AQ", strlen("AQ"), 0, 0);

/*Obtain TDO of message _typ %/
OCITypeByName(envhp, erhp, svchp, (CONST text *)"AQ", strlen("AQ"),
(CONST text*"MESSAGE_TYP", stien('MESSAGE_TYP"),
(text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg tdo);

/* Prepare the message payioad %/

mesg->subject = (OCIString *)0;

mesg->data = (OCIString *)0;

OCIStringAssignText(envhp, errhp,
(CONST text *)'NORMAL MESSAGE", strlen(NORMAL MESSAGE"),
&mesg->subject);

OCIStringAssignText(envhp, errhp,
(CONST text *)'OCI ENQUEUE", strlen("OCI ENQUEUE"),
&mesg->data);

nmesg->null_adt = nmesg->null_subject = nmesg->null_data=0OCI_IND_NOTNULL;

/*Enquevue into the msg_queue

OCIAQENq(svchp, ehp, (CONST text *)'msg_queue”, 0,0,
mesg_tdo, (dvoid *)&mesg, (dvoid *)&nmesg, 0, 0);

OCITransCommit(svchp, errhp, (ub4) 0);

/*Dequeue from the msg_queue %/

OCIAQDeq(svchp, erhp, (CONST text *)'msg_queue”, 0, O,
mesg_tdo, (dvoid *)°mesg, (dvoid *)&ndegmesg, O, 0);

printf("Subject: %6s\n", OCIStringPtr(envhp, degmesg->subject));

printf{ Text: %s\n'', OCIStingPtr(envhp, degmesg->data));

OCITransCommit(svchp, errhp, (ub4) 0);

Oracle Advanced Queuing by Example 8-35

Setup for AQ Examples

Enqueue and Dequeue of Messages to/from a Multiconsumer Queue Using PL/SQL

P Create subscriber list ¥
DECLARE
subscriber ag$_agent;

I Add subscribers RED and GREEN to the suscriber list ¥
BEGIN

subscriber :=ag$_agent(RED', NULL, NULL);

DBMS_AQADM.ADD_SUBSCRIBER(queue_name =>'msg_gueue_multiple’,

subscriber => subscriber);

subscriber = ag$_agent’GREEN', NULL, NULL);
DBMS_AQADM.ADD_SUBSCRIBER(gueue_name =>'msg_gqueue_multiple’,
subscriber => subscriber);

END;

DECLARE
enqueue_options DBMS_AQ.enqueue_options_t;
message_propertes DBMS_AQ.message_properties t;
recipients DBMS_AQ.ag$ recipient _list t;
message_hande RAW(16);
message ag.message_typ;

F Enqueue MESSAGE 1 for subscribers to the queLie
i.e. for RED and GREEN: i
BEGIN
message :=message_typ(MESSAGE 1,
"This message is queued for queue subscribers.’);

DBMS_AQ.ENQUEUE(queue_name =>'msg_queue_multiple’,
enqueue_options =>enqueue_options,

message_properties =>message_properties,

payload =>message,

msgid =>message_handle);

F Enqueue MESSAGE 2 for specified recipients i.e. for RED and BLUE. *
message ;= message_typ(MESSAGE 2,

This message is queued for two recipients.);

recipients(1) :=ag$_agent(RED’, NULL, NULL);

recipients(2) :=ag$_agent(BLUE', NULL, NULL);

message_properties.recipient_list := recipients;

DBMS_AQ.ENQUEUE(queue_name =>'msg_queue_multiple’,
enqueue_options =>enqueue_options,

8-36 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

COMMIT;
END;

Note that RED is both a subscriber to the queue, as well as being a specified
recipient of MESSAGE 2. By contrast, GREEN is only a subscriber to those messages
in the queue (in this case, MESSAGE) for which no recipients have been specified.
BLUE, while not a subscriber to the queue, is nevertheless specified to receive
MESSAGE 2.

P Dequeue messages from msg_queue_multiple: ¥
DECLARE
dequeue_options DBMS_AQ.dequeue_options _t;
message_propertes DBMS_AQ.message_properties t;
message_hande RAW(16);
message ag.message_typ;
no_messages exception;
pragma exception _init (No_messages, -25228);

BEGIN

dequeue_optionswait := DBMS_AQ.NO_WAIT;
BEGIN

F Consumer BLUE will get MESSAGE 2: ¥
dequeue_options.consumer_name :="BLUE,
dequeue_options.navigation := FIRST_MESSAGE;

LOOP

DBMS_AQ.DEQUEUE(queue_name =>'msg_queue_multiple’,
dequeue_options =>dequeue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

DBMS_OUTPUT.PUT_LINE (Message: ' || message.subject ||

"..." || message.text);
dequeue_options.navigation := NEXT_MESSAGE;

END LOOP;

EXCEPTION
WHEN no_messages THEN

Oracle Advanced Queuing by Example 8-37

Setup for AQ Examples

DBMS_OUTPUT.PUT_LINE (No more messages for BLUE);
COMMIT;
END;

BEGIN
P Consumer RED will get MESSAGE 1 and MESSAGE 2: #
dequeue_options.consumer_name :='RED;
dequeue_options.navigation := FIRST_MESSAGE;
LOOP
DBMS_AQ.DEQUEUE(queue_name =>'msg_queue_multiple’,
dequeue_options =>dequeue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

DBMS_OUTPUT.PUT_LINE (Message:’ || message.subject ||
'..." || message.text);

dequeue_options.navigation := NEXT_MESSAGE;

END LOOP;

EXCEPTION

WHEN no_messages THEN
DBMS_OUTPUT.PUT_LINE (No more messages for RED));

COMMIT;

END;

BEGIN

F Consumer GREEN will get MESSAGE 1: ¥

dequeue_options.consumer_name :='GREEN;

dequeue_options.navigation .= FIRST_MESSAGE;

LOOP

DBMS_AQ.DEQUEUE(queue_name =>'msg_queue_multiple’,

dequeue_options =>dequeue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

DBMS_OUTPUT.PUT_LINE (Message: ' || message.subject ||
"... || message.text);
dequeue_options.navigation := NEXT_MESSAGE;
END LOOP;
EXCEPTION
WHEN no_messages THEN
DBMS_OUTPUT.PUT_LINE (No more messages for GREEN);
COMMIT;
END;

8-38 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

Enqueue and Dequeue of Messages to/from a Multiconsumer Queue using OCI

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT agadm/agadm
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(
queue_table =>"ag.qtable_multi,
multiple_consumers =>true,
queue_payload_type =>'aq.message_typ);
EXECUTE DBMS_AQADM.START_QUEUE(ag.msg_queue_multiple’);
CONNECT ag/aq

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

struct message

{

OCIString *subject;
OCIString *data;

%
typedef struct message message;

struct null_message

{

OClind null_adk,
OClind null_subject;
OClind null_data;

¥
typedef struct null_message null message;

intmain()

{
OCIEnv *envhp;
OClServer *svhp;
OCIEmor *enhp;
OCISveCix *svehp;
dvoid *mp;

Oracle Advanced Queuing by Example 8-39

Setup for AQ Examples

OCIType *mesg_tdo = (OCIType*)0;

message msg;

null_message nmsg;

message *mesg = &msg;

nul_message *nNmesg = &msg;

message *degmesg = (message *)0;
null_message *ndegmesg = (null_message *)0;
OCIAQMsgProperties *msgprop = (OCIAQMsgProperties *)0;
OCIAQAgent *agents[2];

OCIAQDeqOptions *degopt = (OCIAQDeqOptions *)0;
ub4 wait=0Cl_DEQ NO_WAIT;

ub4 navigation=0OCI| DEQ FIRST_MSG;

OClinitialize((ub4) OCI_OBJECT, (dvoid %0, (dvoid * (*)0) O,
(dvoid* () O, (void (*)() 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid *¥) &envhp, (ub4) OCI_HTYPE_ENV,
52, (dvoid *¥) &mp);

OCIEnvinit{ &envhp, (ub4) OCI_ DEFAULT, 21, (dvoid *) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &errhp, (ub4) OCI_HTYPE_ERROR,
52, (dvoid *¥) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
52, (dvoid *¥) &mp);

OClServerAttach(srvhp, errhp, (text*) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid *¥) &svchp, (ub4) OCI HTYPE_SVCCTX,
52, (dvoid *¥) &mp);

OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *srvhp, (ub4) 0,
(ub4) OCI_ATTR_SERVER, (OCIEror *) enthp);

OClLogon(envhp, erthp, &svehp, "AQ", strien('AQ"), "AQ'", strlen("AQ"), 0, 0);
/*Obtain TDO of message_typ ¥/
OCITypeByName(envhp, emhp, svchp, (CONST text *)"AQ", strlen("AQ"),

(CONST text *'MESSAGE_TYP", stlen("MESSAGE_TYP"),

(text*)0, 0, OCI_DURATION_SESSION, OCl TYPEGET ALL, &mesg_tdo);

/* Prepare the message payioad */
mesg->subject = (OCIString *)0;

8-40 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

mesg->data = (OCIString *)0;
OCIStringAssignText(envhp, errhp,
(CONST text "MESSAGE 1", stlen('MESSAGE 1),
&mesg->subject);
OCIStringAssignText(envhp, errhp,
(CONST text *)'mesg for queue subscribers”,
stien("mesg for queue subscribers”), &mesg->data);
nmesg->null_adt = nmesg->null_subject =nmesg->null_data=0OC|_IND_NOTNULL;

/* Enqueue MESSAGE 1 for subscribers to the queve i.e. for RED and GREEN %
OCIAQENq(svchp, emhp, (CONST text *)'msg_queue_multiple”, 0, 0,
mesg_tdo, (dvoid *)&mesg, (dvoid *)&nmesg, 0, 0);

/* Enqueue MESSAGE 2 for specified recipients i.e. for RED and BLUE %/
/* prepare message payioad %/
OCIStringAssignText(envhp, errhp,
(CONST text *"MESSAGE 2", stlen('MESSAGE 2"),
&mesg->subject);
OCIStringAssignText(envhp, errhp,
(CONST text *)"'mesg for two recipients”,
strien("'mesg for two recipients”), &mesg->data);

/*Allocate AQ message properties and agent descriptors
OClDescriptorAlloc(envhp, (dvoid *)&msgprop,
OCI_DTYPE_AQMSG_PROPERTIES, 0, (dvoid *)0);
OClDescriptorAlloc(envhp, (dvoid *)&agents[0],
OCI_DTYPE_AQAGENT, 0, (dvoid *)0);
OClDescriptorAlloc(envhp, (dvoid *)&agents[1],
OCI_DTYPE_AQAGENT, 0, (dvoid *)0);

/* Prepare the recipient list, RED and BLUE %/

OCIAtrSet(agents[0], OCI_DTYPE_AQAGENT, "RED", strlen('RED"),
OCI_ATTR_AGENT_NAME, erthp);

OClAtrSet(agents[1], OCl_ DTYPE_AQAGENT, "BLUE", strien('BLUE"),
OCI_ATTR_AGENT_NAME, erhp);

OCIAttrSet(msgprop, OCl_ DTYPE_AQMSG_PROPERTIES, (dvoid *Jagents, 2,
OCI_ATTR_RECIPIENT_LIST, errhp);

OCIAQENq(svchp, emhp, (CONST text *)'msg_queue_multiple”, 0, msgprop,
mesg_tdo, (dvoid *)&mesg, (dvoid *)&nmesg, 0, 0);

OCITransCommit(svchp, errhp, (ub4) 0);

/* Now dequeue the messages using different consumer names *
/*Allocate dequeuie options descriptor to set the dequeue options

Oracle Advanced Queuing by Example 8-41

Setup for AQ Examples

OCIDescriptorAlloc(envhp, (dvoid *)°opt, OCI_DTYPE_AQDEQ OPTIONS, 0,
(dvoid *)0);

/* Setwait parameter to NO_WAIT so that the dequeue retums immediately
OCIAtrSet(degopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&watt, O,
OCI_ATTR_WAIT, erthpy;

/*Set navigation to FIRST_MESSAGE so that the dequieLie resets the position %/

/*aftera new consumer_name is set in the dequevie options K

OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&navigation, O,
OCI_ATTR_NAVIGATION, erthp);

/*Dequeue from the msg_queue_multiple as consumer BLUE %/
OCIAtrSet(degopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)'BLUE", strlen('BLUE"),
OCI_ATTR_CONSUMER_NAME, erthp);

while (OCIAQDeq(svchp, errhp, (CONST text *)'msg_queue_multtiple”, deqopt, O,
mesg_tdo, (dvoid *)°mesg, (dvoid *)&ndegmesg, O, 0)
=OCI_SUCCESS)

{

printf("Subject: %6s\n", OCIStringPtr(envhp, degmesg->subject));
printf(Text: %s\n'", OCIStingPtr(envhp, degmesg->data));

}

OCITransCommit(svchp, errhp, (ub4) 0);

/*Dequevie from the msg_queue _multiple as consumer RED %/
OCIAttrSet(degopt, OCI DTYPE_AQDEQ OPTIONS, (dvoid *)"RED", stlen('RED"),
OCI_ATTR_CONSUMER_NAME, erthp);

while (OCIAQDeq(svchp, errhp, (CONST text *)'msg_queue_multiple”, deqopt, O,
mesg_tdo, (dvoid *)°mesg, (dvoid *)&ndegmesg, O, 0)
==0Cl_SUCCESS)

{
printf("Subject: %s\n", OCIStringPtr(envhp, degmesg->subject));
printf(Text: %es\n'", OCIStingPtr(envhp, degmesg->data));

}

OCITransCommit(svchp, errhp, (ub4) 0);

/*Dequeuie from the msg_queue_multiple as consumer GREEN %/
OCIAtrSet(degopt, OCI DTYPE_AQDEQ_OPTIONS,(dvoid *'"GREEN" strlen('GREEN"),
OCI_ATTR_CONSUMER_NAME, errhp);

while (OCIAQDeq(svchp, errhp, (CONST text *)'msg_queue_multtiple”, deqopt, O,
mesg_tdo, (dvoid *)°mesg, (dvoid *)&ndegmesg, O, 0)
==0C|_SUCCESS)

{
printf("Subject: %s\n", OCIStringPtr(envhp, degmesg->subject));

8-42 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

printf(Text: %s\n", OCIStringPtr(envhp, degmesg->data));

}
OCITransCommit(svchp, errhp, (ub4) 0);

}

Enqueue and Dequeue of Messages Using Message Grouping Using PL/SQL
CONNECT ag/aq

EXECUTE DBMS_AQADM.CREATE_QUEUE _TABLE (
queue_table =>'ag.msggroup’,
queue_payload type =>'agmessage_typ,
message_grouping =>DBMS_AQADM.TRANSACTIONAL);

EXECUTE DBMS_AQADM.CREATE_QUEUE(
queue_name =>'msggroup_gueue’,
queue_table =>'ag.msggroup’);

EXECUTE DBMS_AQADM.START_QUEUE(
Queue_name =>'msggroup_queue);

/* Enqueuie three messages in each transaction ¥
DECLARE
enqueue_options DBMS_AQ.enqueue_options _t;
message_propertes DBMS_AQ.message_properties t;
message_hande RAW(16);
message ag.message_typ;

BEGIN

/* Logp through three times, committing after every iteration %/
FOR txnnoin 1.3 LOOP

/*Loop through three times, enqueuiing each iteration %/
FOR mesgnoin 1.3 LOOP
message :=message_typ(GROUP# || tnno,
‘Message# || mesgno || *ingroup’ || txnno);

DBMS_AQ.ENQUEUE(queue_name =>’msggroup_gueue’,
enqueue_options =>enqueue_options,
message_properties =>message_properties,

payload =>message,
msgid =>message_handle);
END LOOP;

Oracle Advanced Queuing by Example 8-43

Setup for AQ Examples

/* Commit the transaction */
COMMIT;
END LOOP,
END;

/* Now dequeuie the messages as groups %/

DECLARE
dequeue_options DBMS_AQ.dequeue_options _t;
message_properties DBMS_AQ.message_properties t;
message_hande RAW(16);
message ag.message_typ;

no_messages exception;
end_of group exception;

PRAGMA EXCEPTION_INIT (no_messages, -25228);
PRAGMA EXCEPTION_INIT (end_of_group, -25235);

BEGIN
dequeue_optionswait :=DBMS_AQ.NO_WAIT;
dequeue_options.navigation .= DBMS_AQ.FIRST_MESSAGE;

LOOP
BEGIN
DBMS_AQ.DEQUEUE(queue_name =>’msggroup_queue’,
dequeue_options =>dequeue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

DBMS_OUTPUT.PUT_LINE (Message:’ || message.subject ||
"..."||message.text);

dequeue_options.navigation := DBMS_AQ.NEXT_MESSAGE;

EXCEPTION
WHEN end_of group THEN
DBMS_OUTPUT.PUT_LINE (Finished processing a group of messages);
COMMIT;
dequeue_options.navigation := DBMS_AQ.NEXT_TRANSACTION;
END;
END LOOP;
EXCEPTION
WHEN no_messages THEN
DBMS_OUTPUT.PUT_LINE (No more messages);

8-44 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

END;

Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes Using
PL/SQL

/* Create the message payload object type with one or more LOB attributes. On
enqueue, set the LOB attribute to EMPTY _BLOB. After the enqueue completes,
before you commit your transaction. Select the LOB attribute from the

user_data column of the queue table or queue table view. You can now
use the LOB interfaces (which are available through both OCI and PL/SQL) to
write the LOB data to the queue. On dequeue, the message payload
will contain the LOB locator. You can use this LOB locator after
the dequeue, but before you commit your transaction, to read the LOB data.
K
/*Setup the accounts: ¥

connect system/manager

CREATE USER agadm IDENTIFIED BY agadm;
GRANT CONNECT, RESOURCE TO agadm;
GRANT ag_administrator_role TO agadm;

CREATE USER aq IDENTIFIED BY ag;
GRANT CONNECT, RESOURCE TO &g,
GRANT EXECUTE ON DBMS AQTOag;
CREATE TYPE agmessage AS OBJECT(d NUMBER,
subject VARCHAR2(100),
data BLOB,
trailer NUMBER);
CREATE TABLESPACE ag_tbs DATAFILE 'aq.dbs’ SIZE 2M REUSE;

/* create the queue table, queues and start the queue: %/

CONNECT agadm/agadm
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(
queue_table =>'aqqtl,
queue_payload_type =>'ag.message’);
EXECUTE DBMS_AQADM.CREATE_QUEUE(
queue_name =>'aqg.queuel’,
queue_table => 'aq.qtl);
EXECUTE DBMS_AQADM.START_QUEUE(queue_name =>’ag.queuel));

Oracle Advanced Queuing by Example 8-45

Setup for AQ Examples

/End setup: %/
/*Enqueue of Large data types: */

CONNECT ag/aq

CREATE OR REPLACE PROCEDURE hlobenqueue(msgno IN NUMBER) AS
eng_userdata ag.message;

eng_ msgid RAW(16);

enqopt DBMS_AQ.enqueue_options_t;

msgprop DBMS_AQ.message_properties _t;

lob loc BLOB;

buffer RAW(4096);

BEGIN

buffer := HEXTORAW(RPAD(FF, 4096, FF));
enq_userdata := ag.message(msgno, 'Large Lob data’, EMPTY_BLOB(), msgno);
DBMS_AQ.ENQUEUE(ag.queuel’, enqopt, msgprop, enq_userdata, enq_msgid);

—select the lob locator for the queue table
SELECT tuser_data.data INTO lob_loc
FROMqtLt
WHERE tmsgid =enq_msgid;

DBMS_LOBWRITE(ob_loc, 2000, 1, buffer);
COMMIT;
END;

/*Dequeue lob data:

CREATE OR REPLACE PROCEDURE blobdequeue AS
dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties t;
mid RAW/(16);
pload ag.message;
lob_loc BLOB;
amount BINARY_INTEGER;
buffer RAW(4096);

BEGIN
DBMS_AQ.DEQUEUE(ag.queuel’, dequeue_options, message_properties,
pload, mid);
lob_loc := pload.data;

— read the lob data info buffer

8-46 Application Developer's Guide - Advanced Queuing

Enqueue and Dequeue Of Messages

amount :=2000;
DBMS_LOB.READ(lob_loc, amount, 1, buffer);
DBMS_OUTPUT.PUT_LINE(Amount of data read: ’|lamount);
COMMIT;

END;

/*Do the enqueuies and dequeuies: ¥/
SET SERVEROUTPUT ON

BEGIN
FORIiIN1.5LO0OP
blobenqueue(i);
END LOOP;
END;

BEGIN
FORIiIN1.5LO0P
blobdequeuey);
END LOOP;
END;

Oracle Advanced Queuing by Example 8-47

Propagation

Propagation

Caution: You may need to create queues or queue tables, or start
or enable queues, for certain examples to work:

Enqueue of Messages for remote subscribers/recipients to a Multiconsumer Queue
and Propagation Scheduling Using PL/SQL

[+ Create subscriber list *
DECLARE
subscriber ag$_agent;

¥ Add subscribers RED and GREEN with different addresses o the suscriber
list
BEGIN
BEGIN
/*Add subscriber RED that will dequeue messages from another_msg_queue
quevue in the same datatbase %
subscriber =ag$_agent(RED’, 'another_msg_queue’, NULL);
DBMS_AQADM.ADD_SUBSCRIBER(queue_name =>'msg_queue_multiple’,
subscriber => subscriber);

lid Schedule propagation from msg_queue_multiple to other queues in the
same
database:
DBMS_AQADM.SCHEDULE PROPAGATION(gueue_name =>'msg_queue_multiple));

/*Add subscriber GREEN that will dequeue messages from the msg_queue
queue

in another database reached by the database link another_db.world %/
subscriber =ag$_agent(GREEN’, 'msg_queue@anocther_db.world’, NULL);
DBMS_AQADM.ADD_SUBSCRIBER(queue_name =>'msg_queue_multiple’,
subscriber => subscriber);

lid Schedule propagation from msg_queue_multiple to other queues in the
database 'another _database': *

END;

BEGIN
DBMS_AQADM.SCHEDULE_PROPAGATION(queue_name =>'msg_queue_multiple’,
destination =>'"ancther_db.world);

END;

END;

8-48 Application Developer's Guide - Advanced Queuing

Propagation

DECLARE
enqueue_options DBMS_AQ.enqueue_options_t;
message_properties DBMS_AQ.message_properties t;
recipients DBMS_AQ.ag$_recipient _list t;
message_hande RAW(16);
message ag.message_typ;

P Enqueue MESSAGE 1 for subscribers to the queue
ie. for RED at address another msg_queue and GREEN at address msg
queue@anocther_db.world: ¥
BEGIN
message :=message_typ(MESSAGE 1,
"This message is queued for queue subscribers.’);

DBMS_AQ.ENQUEUE(queue_name =>'msg_queue_multiple’,
engueue_options =>enqueue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

F Enqueue MESSAGE 2 for specified recipients i.e. for RED at address
another_msg_queue and BLUE. ¥

message ;= message_typ(MESSAGE 2,

This message is queued for two recipients.);

recipients(1) :=ag$_agent(RED', 'another_msg_queuge’, NULL);

recipients(2) :=ag$_agent(BLUE', NULL, NULL);

message_properties.recipient_list := recipients;

DBMS_AQ.ENQUEUE(queue_name =>'msg_gqueue_multiple’,
engueue_options =>enqueue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);

COMMIT;
END;

Oracle Advanced Queuing by Example 8-49

Propagation

Note: REDat address another_msg_queue is both a subscriber
to the queue, as well as being a specified recipient of MESSAGE 2
By contrast, GREENt address msg_queue@another_db .world
is only a subscriber to those messages in the queue (in this case,
MESSAGE) for which no recipients have been specified. BLUE
while not a subscriber to the queue, is nevertheless specified to
receive MESSAGE 2

Manage Propagation From One Queue To Other Queues In The Same Database Using
PL/SQL

/* Schedule propagation from queue g1defto other queues in the same database
EXECUTE DBMS_AQADM.SCHEDULE_PROPAGATION(queue_name =>'qldef);

/* Disable propagation from queue q1defto other queues in the same

database

EXECUTE DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
queue_name =>'qldef);

/*Alter schedule from queue q1def to other queues in the same database ¥
EXECUTE DBMS_AQADMALTER _PROPAGATION_SCHEDULE(
queue_name =>'qldef,
duration =>'2000,
next_time =>'SYSDATE + 3600/86400,
latency =>'32);

/* Enable propagation from queue qldefto other queues in the same database ¥
EXECUTE DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
queue_name =>'qldef);

/*Unschedule propagation from queue g1defto other queues in the same database
¥4
EXECUTE DBMS_AQADM.UNSCHEDULE_PROPAGATION(

gueue_name =>'g1def);

Manage Propagation From One Queue To Other Queues In Another Database Using
PL/SQL

/* Schedule propagation from queue q1defto other queues in another database
reached by the database link another_db.world %
EXECUTE DBMS_AQADM.SCHEDULE_PROPAGATION(

8-50 Application Developer's Guide - Advanced Queuing

Propagation

queue_name =>'qgldef,
destination =>'another_db.world);

/* Disable propagation from queue q1defto other queues in another database
reached by the database link another,_db.world %/
EXECUTE DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
queue_name =>'qldef,
destination => "another_db.world);

/*Alter schedule from queue q1defto other queues in another database reached
by the database link anotherr_db.world %
EXECUTE DBMS_AQADMALTER_PROPAGATION_SCHEDULE(
queue_name =>'qldef,
destination =>"another_db.world,
duration =>'2000,
next time =>'SYSDATE + 3600/86400,
latency =>'32);

/* Enable propagation from queue q1defto other queues in another database
reached by the database link another_db.world %
EXECUTE DBMS_AQADM.ENABLE _PROPAGATION_SCHEDULE(
queue_name =>'qldef,
destination => "ancther_db.world);

/*Unschedule propagation from queue qldefto other queues in another database
reached by the database link another_db.world %
EXECUTE DBMS_AQADM.UNSCHEDULE PROPAGATION(

queue_name =>'qldef,

destination => "ancther_db.world);

Unscheduling Propagation Using PL/SQL
/*Unschedule propagation from msg_queue _multiple to the destination another
ab.world ¥/
EXECUTE DBMS_AQADM.UNSCHEDULE._PROPAGATION(
queue_name =>'msg_queue_multiple’,
destination => "ancther_db.world);

Oracle Advanced Queuing by Example 8-51

Drop AQ Objects

For additional examples of Alter Propagation, Enable Propagation
and Disable Propagation, see:

« "Example: Alter a Propagation Schedule Using PL/SQL
(DBMS_AQADM)" on page 4-67

« "Example: Enable a Propagation Using PL/SQL (DBMS _
AQADM)" on page 4-69

« "Example: Disable a Propagation Using PL/SQL (DBMS_
AQADM)" on page 71

Drop AQ Objects

Caution: You may need to create queues or queue tables, or start,
stop, or enable queues, for certain examples to work:

P Cleans up all objects related to the object type: ¥
CONNECT ag/aq

EXECUTE DBMS_AQADM.STOP_QUEUE (
queue_name =>'msg_gueue);

EXECUTE DBMS_AQADM.DROP_QUEUE (
queue_name =>'msg_queug’),

EXECUTE DBMS_AQADM.DROP_QUEUE._TABLE (
queue_table =>'ag.0bjmsgs80_gtab);

P Cleans up all objects related to the RAW type: ¥
EXECUTE DBMS_AQADM.STOP_QUEUE (
queue_name =>raw_Mmsg_gueue’),

EXECUTE DBMS_AQADM.DROP_QUEUE (
queue_name =>’raw_msg_gueue);

EXECUTE DBMS_AQADM.DROP_QUEUE_TABLE (
queue_table =>'ag.RawMsgs_gtab’);

P Cleans up all objects related to the priority queue: ¥
EXECUTE DBMS_AQADM.STOP_QUEUE (
queue_name =>’priority_msg_gqueue’);

8-52 Application Developer's Guide - Advanced Queuing

Revoke Roles and Privileges

EXECUTE DBMS_AQADM.DROP_QUEUE (
queue_name =>'priority_msg_queue’);

EXECUTE DBMS_AQADM.DROP_QUEUE_TABLE (

queue_table =>'ag.priority_msg);
P Cleans up all objects related to the multjple-consumer queue: ¥
EXECUTE DBMS_AQADM.STOP_QUEUE (

queue_name =>'msg_queue_multiple’);

EXECUTE DBMS_AQADM.DROP_QUEUE (
queue_name =>'msg_queue_multiple’);

EXECUTE DBMS_AQADM.DROP_QUEUE_TABLE (
queue_table =>"ag.MuliConsumerMsgs_qtab’);

DROP TYPE agmessage._typ;

Revoke Roles and Privileges

CONNECT sys/change_on_install
DROP USER ag;

Oracle Advanced Queuing by Example 8-53

Deploy AQ with XA

Deploy AQ with XA

Note: You may need to set up the following data structures for

certain examples to work:

CONNECT system/managetr;
DROP USER agadm CASCADE;
GRANT CONNECT, RESOURCE TO agadm;
CREATE USER agadm IDENTIFIED BY agadm;
GRANT EXECUTE ON DBMS_AQADM TO agadm;
GRANT Aqg_administrator_role TO agadm;
DROP USER aq CASCADE;
CREATE USER aq IDENTIFIED BY ag;
GRANT CONNECT, RESOURCE TO ag;
GRANT EXECUTE ON dbms_aq TO ag;
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(
queue_table =>'aqg.qtable’,
queue_payload_type => 'RAW");

EXECUTE DBMS_AQADM.CREATE_QUEUE(
gueue_name => ‘ag.agsqueue’,
gueue_table => 'aq.qtable’);

EXECUTE DBMS_AQADM.START_QUEUE(queue_name =>
‘ag.aqsqueue’);

Vi
*The program uses the XA interface to enqueue 100 messages and then
*dequevie them.
*Login: ag/aq
* Requires: AQ_USER_ROLE to be granted to aq
* aRAW queue called "agsqueue”to be created in ags schema
* (above steps can be performed by running agaqg.sql)
*Message Format: Msgno: [0-1000] HELLO, WORLD!
* Author: schandra@us.oracle.com
%

#ifndef OCI_ORACLE

#include <oci.h>

#endif

#include <xa.h>

8-54 Application Developer's Guide - Advanced Queuing

Deploy AQ with XA

/* XA open string %/
char xaoinfo]] = "oracle_xa+ACC=P/AQ/AQ+SESTM=30+Objects=T",

/template for generating XA XIDs %
XID xidtempl ={0x1e0alale, 12, 8, "GTRIDO01BQual001"};

/* Pointer to Oracle XA function table %
extem struct xa_switch _t xaosw;
static struct xa_switch_t *xafunc = &xaosw;

/dummy stubs for ax_reg and ax_unreg ¥/
intax_reg(mid, xid, flags)
int mid;
XID *xid;
long flags;
{
xid->formatlD =-1;
reumG;
}

intax_unreg(mid, flags)
int mid;

long flags,

{

retumO;

}

Fgenerate an XID %
void xidgen(xid, serialno)
XID *xid;
int serialno;
{

char seq [11];

sprintf(seq, "%d", serialno);
memcpy((void *)xid, (void *)&xidtempl, sizeof(XID));
stmepy((&xid->data[b]), seq, 3);

}

/* check if XA gperation succeeded ¥/
#define checkXAerr(action, funcname) \
if (action) .=XA OK) \
{ \
printf('%es failed\n”, funcname); \
exit-1); \

/* Oracle XA switch %/

Oracle Advanced Queuing by Example 8-55

Deploy AQ with XA

}else

/*check if OCI operation succeeded */
static void checkOClenr(erthp, status)
OCIEnor *erthp;

sword status;

text emrbufi512];
ub4 buflen;
sbh4 errcode;

if (status = OCl|_SUCCESS) retum;
if (status == OCI_ERROR)

OCIEnorGet((dvoid *) errhp, 1, (text *)0, &errcode, enbuf,
(ubd)sizeofienbuf), OCI_ HTYPE_ERRORY);

printf("Error - %6s\n", enbuf);

}

else
printf("Error - %d\n", status);

exit (-1);

}

void main(argc, argv)

int argc;
char *argv,
{
int msgno=0; /*message being enqueued ¥/
OCIEnv *envhp; /* OCl environment handle %/
OCIEmor *erhp; /*OCI Error handle %
OCISvcCix *svchp; /*OCl Service handle ¥/
char message[128]; /*message buiffer ¥
ub4 mesglen; /length of message
OCIRaw *rawmesg = (OCIRaw *)0; /#message in OC| RAW format %/
OClind ind=0; /*OCI null indlicator %/
dvoid *indptr = (dvoid *)&nd; /*null indlicator poirtter %/
OCIType *mesg_tdo=(OCIType*)0; A TDO for RAW gatatype %
XID xid; /*XA's global transaction id */
ubd i Farmay index ¥

checkXAem(xafunc->xa_open_entry(xaoinfo, 1, TMNOFLAGS), "xacopen");

svchp = xaoSveCix((text *)0); /*get service handle from XA %

8-56 Application Developer's Guide - Advanced Queuing

Deploy AQ with XA

envhp =xaoEnv((text *)0); /* get enviomment handle from XA %
if (‘svchp || lenvhp)
{

printf("Unable to obtain OCI Handles from XANn");
exit (-1);
}

OCIHandleAlloc((dvoid *)envhp, (dvoid *)&erhp,
OCI_HTYPE_ERROR, 0, (dvoid *)0); /*allocate error handie */

/enqueue 1000 messages, 1 message per XA transaction %/
for (msgno = 0; msgno < 1000; msgno++)

sprintf((const char *)message, "Msgno: %d, Hello, World!", msgno);
mesglen = (ub4)strien((const char *)message);
xidgen(&xid, msgno); /*generate an XA xid ¥/

checkXAerm(xafunc->xa_start_entry(&xid, 1, TMNOFLAGS), “xaostart”);

checkOClerr(ermhp, OCIRawAssignBytes(envhp, errhp, (ubl *)message, mesglen,
&rawmesg));

if (‘mesg_tdo) * get Type descriptor (TDO) for RAW type */
checkOClen(errhp, OCITypeByName(envhp, errhp, svchp,
(CONST text *)"AQADM", strlen(’AQADM"),
(CONST text *)' RAW", strien('RAW"),
(text*)0, 0, OCl_DURATION_SESSION,
OC|_TYPEGET_ALL, &mesg_tdo));

checkOClerr(erhp, OCIAQENq(svchp, erhp, (CONST text *)‘agsqueue”,
0,0, mesg_tdo, (dvoid *)&rawmesg, &ndptr,
0,0));

checkXAem(xafunc->xa_end_entry(&xid, 1, TMSUCCESS), "xaoend');
checkXAem(xafunc->xa_commit_entry(&xid, 1, TMONEPHASE), "xaocommit’);
printf('%es Enqueued\n”, message);

}

F dequeue 1000 messages within one XA transaction */
xidgen(&xid, msgno); /*generate an XA xid %/
checkXAem(xafunc->xa_start_entry(&xid, 1, TMNOFLAGS), "xaostart’);
for (msgno = 0; msgno < 1000; msgno++)
{
checkOClerr(errhp, OCIAQDeq(svchp, erhp, (CONST text *)"agsqueue’,

Oracle Advanced Queuing by Example 8-57

Deploy AQ with XA

0,0, mesg_tdo, (dvoid *)&awmesg, &ndptr,
0,0))
if (ind)
printf("Null Raw Message");
else
for (1= 0; i < OCIRawSize(envhp, rawmesg); i++)
printf(*%c", *(OCIRawPtr(envhp, ravmesg) + i));
print(\n);

}

checkXAenm(xafunc->xa_end_entry(&xid, 1, TMSUCCESS), "xaoend');

checkXAem(xafunc->xa_commit_entry(&xid, 1, TMONEPHASE), "xaocommit’);
}

8-58 Application Developer's Guide - Advanced Queuing

AQ and Memory Usage

AQ and Memory Usage

Create_types.sql : Create Payload Types and Queues in Scott's Schema

Note: You may need to set up data structures for certain examples
to work, such as:

/* Create_types.sql ¥4
CONNECT system/manager
GRANT AQ_ADMINISTRATOR _ROLE, AQ_USER_ROLE TO scott;
CONNECT scottftiger
CREATE TYPE MESSAGE AS OBJECT (id NUMBER, data VARCHAR2(80));
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(
queue_table =>'qt,
queue_payload_type =>'message));
EXECUTE DBMS_AQADM.CREATE_QUEUE(msgqueue’, qt);
EXECUTE DBMS_AQADM.START_QUEUE(msgqueue’);

Enqueue Messages (Free Memory After Every Call) Using OCI

This program, engnoreuse.c , dequeues each line of text from a queue
'msgqueue’ that has been created in scott's schema via create_types.sgl, above.
Messages are enqueued using engnoreuse.c or engreuse.c (see below). If there
are no messages, it waits for 60 seconds before timing out. In this program, the
dequeue subroutine does not reuse client side objects' memory. It allocates the
required memory before dequeue and frees it after the dequeue is complete.

#ifndef OC|_ORACLE
#include <oci.h>
#endif

#include <stdio.h>

static void checkerr(OCIEror *errhp, sword status);
static void degmesg(text *buf, ub4 *bufien);

OCIEnv *envhp;
OCIEnor *enhp;
OCISvcCix *svchp;

struct message
{

Oracle Advanced Queuing by Example 8-59

AQ and Memory Usage

OCINumber id;
OCIString *data;
k
typedef struct message message;

struct null_message

OClind null_adt;
OClind null_id;

OClind null_data;
J
typedef struct null_message null_message;

static void degmesg(buf, buflen)

text *buf;

ub4 *bufien;

{
OCIType *mesgtdo =(OCIType *)0; / *type descr of SCOTT.MESSAGE */
message *mesg = (dvoid *)0; /instance of SCOTT.MESSAGE %/
null_message *mesgind = (dvoid *)0; /*nullindlicator %
OCIAQDegOptions *deqopt = (OCIAQDegOptions *)0;
ub4 wait =60; /*timeout after 60 seconds %/
ub4 navigation=0OC|_DEQ FIRST_MSG,; always gethead of q ¥/

#Getthe type descriptor object for the type SCOTT.MESSAGE: ¥/
checken(errhp, OCITypeByName(envhp, ethp, svchp,
(CONST text®)'SCOTT", stlen("SCOTT"),
(CONST text¥)'MESSAGE", stlen("MESSAGE"),
(text 90, 0, OCl_DURATION_SESSION,
OCI_TYPEGET_ALL, &mesgtdo));

/*Allocate an instance of SCOTT.MESSAGE, and get its null indlicator: %
checkenr(errhp, OCIObjectNew(envhp, emrhp, svchp, OCl TYPECODE_OBJECT,
mesgtdo, (dvoid *)0, OCl_DURATION_SESSION,
TRUE, (dvoid *)&mesg));
checkerr(errhp, OCIObjectGetind(envhp, errhp, (dvoid *)mesg,
(dvoid *)&mesgind));

/*Allocate a descriptor for dequeue options and set wait time, navigation:

checkenr(errhp, OCIDescriptorAlloc(envhp, (dvoid **)&deqgopt,
OCI_DTYPE_AQDEQ_OPTIONS, 0, (dvoid *)0));

checkerr(enthp, OCIAtrSet(degopt, OCI_DTYPE._AQDEQ_OPTIONS,
(dvoid ¥)&wait, 0, OCI_ATTR_WAIT, erthp));

checken(errhp, OClAtrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,

8-60 Application Developer's Guide - Advanced Queuing

AQ and Memory Usage

(dvoid *)&navigation, O,
OCI_ATTR_NAVIGATION, errhp));

/* Dequeuie the message and commit: %

checkenr(errhp, OCIAQDeq(svchp, erhp, (CONST text *)'msgqueue”,
degopt, 0, mesgtdo, (dvoid *)&mesg,
(dvoid *)&mesgind, 0, 0));

checkenr(emrhp, OCITransCommit(svchp, erthp, (Ub4) 0));

/* Copy the message payioad text into the user buffer: %
if (mesgind->null_data)
*puflen=0;
else
memcpy((dvoid *)buf, (dvoid *OCIStringPtr(envhp, mesg->data),
(size_t)(*buflen = OCIStringSize(envhp, mesg->data)));

/* Free the dequeue options descriptor: %/
checkerr(errhp, OClIDescriptorFree((dvoid *)degopt, OCI DTYPE_AQDEQ_OPTIONS));

/* Free the memory for the objects: ¥
Checkerr(erhp, OClObjectFree(envhp, errhp, (dvoid *)mesg,
OC|_OBJECTFREE_FORCE));
} Fend degmesg */

void main()

{

OClServer *srvhp;

OClSession *usthp;

dvoid *mp;

text buf[80]; /* payioad text
ub4 buflen;

OClinitialize((ub4) OCI_OBJECT, (dvoid %0, (dvoid * (*)0) O,
(dvoid* (*)0) 0, (void ()0) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid *¥) &envhp, (ub4) OCI_HTYPE_ENV,
52, (dvoid *¥) &mp);

OCIEnvinit(&envhp, (Ub4) OCI_DEFAULT, 21, (dvoid **) &mp);
OCIHandleAlloc((dvoid *) envhp, (dvoid *¥) &errhp, (ub4) OCI_HTYPE_ERROR,
52, (dvoid *¥) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid #) &sivhp, (ubd) OCI HTYPE._SERVER,
52, (dvoid *) &mp);

Oracle Advanced Queuing by Example 8-61

AQ and Memory Usage

OClServerAttach(srvhp, errhp, (text*) 0, (sb4) O, (ub4) OCI_DEFAULT);

OCIHandleAlloo((dvoid *) envhp, (dvoid #) &svchp, (Ub4) OCIHTYPE_SVCCTX,
52, (dvoid *) &mp);

/* Set attribute server context in the service context: %/
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR_SERVER, (OCIEror *) erthp);

/*Allocate a user coritext handle;
OCIHandleAlloc((dvoid *envhp, (dvoid *)&usrhp, (ub4) OCl_HTYPE_SESSION,
(size_1) O, (dvoid *¥) O);

OCIAttrSet((dvoid *Justhp, (Ub4)OC!_HTYPE_SESSION,
(dvoid *)'scott’, (ub4)stien(’scott’), OCI_ATTR_USERNAME, erthp);

OClAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)'tiger”, (ub4)stren(tiger"), OCl_ ATTR_PASSWORD, erthp);

checkem(errhp, OClSessionBegin (svchp, erhp, usthp, OCI CRED_RDBMS,
OC|_DEFAULT));

OCIAtrSet((dvoid ¥)svchp, (Ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (Ub4)0, OCI_ATTR_SESSION, errhp);

do{
degmesg(buf, &buflen);
printf("%.*s\n", buflen, buf);
}while();
} FHendmain?

static void checkerr(errhp, status)
OCIEnor *enhp;
sword status;

text emrbuf512];

ub4 buflen;

sb4 errcode;

if (status = OC|_SUCCESS) retum;
switch (status)

{
case OC|_ERROR:

8-62 Application Developer's Guide - Advanced Queuing

AQ and Memory Usage

OCIEnorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
enmbuf, (ubd) sizeof(embuf), (ub4) OCI_HTYPE_ERROR);

printf("Error - %s\n", erouf);
break;

case OC|_INVALID_HANDLE:
printf("Error - OCI_INVALID_HANDLEWN");
break;

default
printf("Error - %d\n", status);
break;

}

exit(-1);

} /*end checkerr ¥/

Engueue Messages (Reuse Memory) Using OCI

This program, engreuse.c , enqueues each line of text into a queue 'msgqueue’
that has been created in scott's schema by executing create_types.sq|l . Each line
of text entered by the user is stored in the queue until user enters EOF In this
program the enqueue subroutine reuses the memory for the message payload, as
well as the AQ message properties descriptor.

#indef OCI_ ORACLE
#include <oci.h>
#endif

#include <stdio.h>

static void checker(OCIEmor *errhp, sword status);
static void engmesg(ub4 msgno, text *ouf);

struct message

{

OCINumber id;
OCISting *data;
%
typedef struct message message;

struct null_message

{

OClind null_adf,
OClind null_id;
OClind null_data;
3
typedef struct null_message null_message;

Oracle Advanced Queuing by Example 8-63

AQ and Memory Usage

/*Global data reused on calls to enqueue:
OCIEnv *envhp;

OCIEnor *ehp;

OCISwcCix *svchp;

message msg;

nul_message nmsg;

OCIAQMsgProperties *msgprop;

static void engmesg(msgno, buf)

ub4 msgno;

text *buf;

{
OCIType *mesgtdo = (OCIType *)0; A type descrof SCOTT.MESSAGE %/
message *mesg = &msg; /*instance of SCOTT.MESSAGE ¥
null_message *mesgind = &nmsg; /*null indlicator %
text comid[128]; /* correlation identifier %/

/*Get the type descriptor object for the type SCOTT.MESSAGE: %/
checkerr(errhp, OCITypeByName(envhp, errhp, svchp,
(CONST text*)'SCOTT", strlen("SCOTT"),
(CONST text*)'MESSAGE", strlen('"MESSAGE"),
(text*)0, 0, OCl_DURATION_SESSION,
OCI_TYPEGET_ALL, &mesgtdo));

/*Fill in the attributes of SCOTT.MESSAGE: ¥/

checken(errhp, OCINumberFromint(errhp, &msgno, sizeof(ub4), 0, &mesg->id));

checkenr(emrhp, OCIStringAssignText(envhp, errhp, buf, strien(buf),
&mesg->data));

mesgind->null_adt = mesgind->null_id = mesgind->null_data =0;

/*Set the correlation id in the message properties descriptor: %/

sprintf{(char *)comid, "Msgi: %d", msgno);

checkenr(errhp, OCIAtrSet(msgprop, OCl DTYPE_AQMSG_PROPERTIES,
(dvoid *)&conid, strlen(corid),
OCI_ATTR_CORRELATION, erhp));

/* Enqueue the message and commit: %/

checken(errhp, OCIAQENq(svchp, emhp, (CONST text *)'msgqueue’,
0, msgprop, mesgtdo, (dvoid *)&mesg,
(dvoid *)&mesgind, 0, 0));

checkerr(errhp, OCITransCommit(svchp, errhp, (ub4) 0));
} endengmesg ¥/

8-64 Application Developer's Guide - Advanced Queuing

AQ and Memory Usage

void main()

OClServer *sivhp;

OClSession *usrhp;

dvoid *mp;

text buf{80]; /*user supplied text ¥/
int msgno=0;

OClinitialize((ub4) OCI_OBJECT, (dvoid %0, (dvoid * ()0) O,
(@void* (*)0) 0, (void ()0)0);

OCIHandleAlloc((dvoid *) NULL, (dvoid *¥) &envhp, (ub4) OCI_HTYPE_ENV,
52, (dvoid *¥) &mp);

OCIEnvinit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid #) &erthp, (ubd) OCI_HTYPE._ ERROR,
52, (dvoid *) &mp);

OCIHandleAlloc((cvoid *) envhp, (dvoid #) &svhp, (ubd) OCI HTYPE. SERVER,
52, (dvoid *) &mp);

OClServerAttach(srvhp, errhp, (text*) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid *¥) &svchp, (ub4) OCl HTYPE_SVCCTX,
52, (dvoid *¥) &mp);

/*Set attribute server context in the service context ¥/
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR_SERVER, (OCIEror *) enthp);

/*Allocate a user coritext handle: %/
OCIHandleAlloc((dvoid *)envhp, (dvoid *)&usrhp, (ub4) OCl_ HTYPE_SESSION,
(size_1) 0, (dvoid **) Q);

OClAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)'scott”, (ubd)strlen('scott’), OCI_ATTR_USERNAME, erthp);

OCIAttrSet((dvoid *usthp, (Ub4)OCI_HTYPE_SESSION,
(dvoid *)'iger”, (ub4)strlen(tiger”), OCl_ ATTR_PASSWORD, erthp);

checkemr(errhp, OClSessionBegin (svchp, errhp, usrhp, OCI CRED_RDBMS,
OCI_DEFAULT));

OCIAtrSet((dvoid *Jsvchp, (Ub4)OCI_HTYPE._SVCCTX,
(dvoid *)usrhp, (Ub4)0, OCI_ATTR_SESSION, erthp);

Oracle Advanced Queuing by Example 8-65

AQ and Memory Usage

/* Allocate a message properties descriptor o fill in correlation id %/
checken(errhp, OCIDescriptorAlloc(envhp, (dvoid **)&msgprop,
OCl|_ DTYPE_AQMSG_PROPERTIES,
0, (dvoid *)0));
do{
printf("Enter a line of text (max 80 chars):");
if (‘gets((char *)ouf))
break;
engmesg((ub4)msgno-++, buf);
Twhile(2);

/* Free the message properties descriptor: %/
checkerr(errhp, OClIDescriptorFree((dvoid *)msgprop,
OCI_DTYPE_AQMSG_PROPERTIES));

} Fendmain¥

static void checkerr(errhp, status)
OCIEror *errhp;
sword status;

{

text embuf512];
ub4 buflen;
sh4 errcode;

if (status = OC|_SUCCESS) retum;

switch (status)
{
case OC|_ERROR:
OCIEnmorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
enbuf, (ubd) sizeofienbur), (ub4) OCI_HTYPE_ERROR);
printf("Error - %s\n", errouf);
break;
case OCl_INVALID_HANDLE:
printf("Error - OCI_INVALID_HANDLEWn');
break;
default
printf("Error - %d\n', status);
break;
}
exit(-1);
} /*end checkerr %/

8-66 Application Developer's Guide - Advanced Queuing

AQ and Memory Usage

Dequeue Messages (Free Memory After Every Call) Using OCI

This program, degnoreuse.c , dequeues each line of text from a queue
'msgqueue’ that has been created in scott's schema by executing create_

types.sgl . Messages are enqueued using engnoreuse or engreuse . If there are
no messages, it waits for 60 seconds before timing out. In this program the dequeue
subroutine does not reuse client side objects' memory. It allocates the required
memory before dequeue and frees it after the dequeue is complete.

#ifndef OCI_ORACLE
#include <oci.h>
#endif

#include <stdio.h>

static void checkerr(OCIEror *errhp, sword status);
static void degmesg(text *buf, ub4 *bufien);

OCIEnv *envhp;
OCIEnor *enhp;
OCISvcCix *svchp;

struct message

{

OCINumber id;
OCISting *data;
¥
typedef struct message message;

struct null_message
{

OClind null_adt,
OClind null_id;
OClind null_data;
k
typedef struct null_message null_message;

static void degmesg(buf, buflen)

text *buf;

ubd *buflen;

{
OCIType *mesgtdo = (OCIType *)0; /type descrof SCOTT.MESSAGE %/
message *mesg = (dvoid*)0; /instance of SCOTT.MESSAGE ¥/
nul_message *mesgind = (dvoid *)0; / null indlicator %/

OCIAQDegOptions *degopt = (OCIAQDeqOptions *)0;

Oracle Advanced Queuing by Example 8-67

AQ and Memory Usage

ub4 wait =60; /* timeout after 60 seconds ¥/
ub4 navigation = OCl_DEQ FIRST_MSG,; /*always get head of q %/

/*Getthe type descriptor object for the type SCOTT.MESSAGE: ¥/
checkenr(errhp, OCITypeByName(envhp, erhp, svchp,
(CONST text®'SCOTT", strlen('SCOTT"),
(CONST text *"MESSAGE", strlen("MESSAGE"),
(text*)0, 0, OCI_DURATION_SESSION,
OC|_TYPEGET ALL, &mesgtdo));

/* Allocate an instance of SCOTT.MESSAGE, and get its null indlicator: %/
checkenr(errhp, OCIObjectNew(envhp, errhp, svchp, OCl_ TYPECODE_OBJECT,
mesgtdo, (dvoid)0, OCI_ DURATION_SESSION,
TRUE, (dvoid *)&mesg));
checken(errhp, OCIObjectGetind(envhp, errhp, (dvoid ¥)mesg,
(dvoid *)&mesgind));

/* Allocate a descriptor for dequeue options and set wait time, navigation: %/

checkerr(errhp, OCIDescriptorAlloc(envhp, (dvoid **)°opt,
OCI_DTYPE_AQDEQ_OPTIONS, O, (dvoid *)0));

checken(errhp, OClAtrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,
(dvoid ¥)&wait, 0, OCI_ATTR_WAIT, enhp));

checkerr(errhp, OCIAtrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,
(dvoid *)&navigation, O,
OCI_ATTR_NAVIGATION, erthp));

/*Dequeue the message and commit: %/

checkenr(errhp, OCIAQDeq(svchp, erthp, (CONST text *)'msgqueue”,
degopt, 0, mesgtdo, (dvoid *)&mesg,
(dvoid *)&mesgind, 0, 0));

checkerr(errhp, OCITransCommit(svchp, errhp, (ub4) 0));

/*Copy the message payioad text into the user buffer: %
if (mesgind->null_data)
*buflen=0;
else
memcpy((dvoid *)buf, (dvoid *)OCIStringPtr(envhp, mesg->data),
(size_t)(*buflen = OCIStringSize(envhp, mesg->data)));

/* Free the dequeue options descriptor: %/
checkenr(errhp, OCIDescriptorFree((dvoid *)deqopt, OCI_DTYPE_AQDEQ_OPTIONS));

/* Free the memory for the objects: ¥/
checkenr(errhp, OClObjectFree(envhp, errhp, (dvoid ¥)mesg,

8-68 Application Developer's Guide - Advanced Queuing

AQ and Memory Usage

OCI|_OBJECTFREE_FORCE));
} *enddegmesg ¥/

void main()

{

OClServer *snvhp;

OClSession *usrhp;

dvoid *mp;

text buf[80]; /*payioad text ¥/
ub4 buflen;

OClinitialize((ub4) OCI_OBJECT, (dvoid %0, (dvoid * ()() 0,
(@void* ()0) 0, (void ()0) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid *) &envhp, (ub4) OCLHTYPE_ENV,
52, (dvoid *) &mp);

OCIEnvInit(&envhp, (Ub4) OCI_DEFAULT, 21, (dvoid **) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid *¥) &erhp, (ub4) OCI_HTYPE_ERROR,
52, (dvoid *) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
52, (dvoid **) &mp);

OClServerAttach(srvhp, errhp, (text*) O, (sb4) O, (ub4) OCI_DEFAULT);

OCIHandleAlloo((dvoid *) envhp, (dvoid #) &svchp, (Ub4) OCIHTYPE_SVCCTX,

52, (dvoid *) &mp);

/* Set attribute server context in the service context.
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR_SERVER, (OCIEror *) enhp);

/*Allocate a user coritext handle:
OCIHandleAlloc((dvoid *envhp, (dvoid *)&usrhp, (ub4) OCl_ HTYPE_SESSION,
(size_1) O, (dvoid *¥) 0);

OCIAtrSet((dvoid *usthp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)'scott", (ubd)strien('scott’), OCI ATTR_USERNAME, erthp);

OClAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)'iger”, (ub4)strien(iger), OCI_ATTR_PASSWORD, erthp);

checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI CRED_RDBMS,
OCI_DEFAULT));

Oracle Advanced Queuing by Example 8-69

AQ and Memory Usage

OCIAtrSet((dvoid *Jsvchp, (Ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (Ub4)0, OCI_ATTR_SESSION, erthp);

do{
degmesg(buf, &buflen);
printf('%e.*s\n", bufien, buf);
}while(2);
} Fendmain®

static void checkerr(errhp, status)
OCIEnor *erhp;
sword status;

{

text enbufi512;
ub4 buflen;
sb4 errcode;

if (status = OC|_SUCCESS) retum;

switch (status)
{
case OC|_ERROR:
OCIEnorGet ((dvoid *) enhp, (Ub4) 1, (text *) NULL, &errcode,
embuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
printf("Error - %s\n', enbuf);
break;
case OC|_INVALID_HANDLE:
printf("Error - OCI_INVALID_HANDLEWN");
break;
default
printf("Error - %d\n”, status);
break;
}
exit(-1);
} /*end checkerr ¥/

Dequeue Messages (Reuse Memory) Using OCI

This program, degreuse.c , dequeues each line of text from a queue ‘'msgqueue’
that has been created in scott's schema by executing create_types.sq|l

Messages are enqueued using engnoreuse.c or engreuse.c . If there are no
messages, it waits for 60 seconds before timing out. In this program, the dequeue
subroutine reuses client side objects' memory between invocation of OCIAQDeq

8-70 Application Developer's Guide - Advanced Queuing

AQ and Memory Usage

During the first call to OCIAQDeq OCI automatically allocates the memory for the
message payload. During subsequent calls to OCIAQDeq the same payload
pointers are passed and OCI will automatically resize the payload memory if

necessary.

#indef OCl ORACLE
#include <oci.h>
#endif

#include <stdio.h>

static void checkerr(OCIEror *errhp, sword status);

static void degmesg(text *buf, ub4 *bufien);

struct message

{

OCINumber id;
OCIString *data;
J
typedef struct message message;

struct null_message
{

OClind null_adt;
OClind null_id;
OClind null_data;
%
typedef struct null_message null_message;

/*Global data reused on calls to enqueue:
OCIEnv *envhp;

OCIEmor *enhp;

OCISvcCix *svchp;
OCIAQDeqOptions *deqopt;

message *mesg=(message *)0;

null_message *mesgind = (hull_message *)0;

static void degmesg(buf, buflen)

text *buf;
ubd *buflen;
{

OCIType *mesgtdo =(OCIType*0;

A type descr of SCOTT.MESSAGE %/

Oracle Advanced Queuing by Example 8-71

AQ and Memory Usage

ub4 wait =60; /* timeout after 60 seconds ¥/
ub4 navigation=0OCl|_DEQ FIRST_MSG;/* always get head of q */

/*Get the type descriptor object for the type SCOTT.MESSAGE: %/
checkenr(errhp, OCITypeByName(envhp, erhp, svchp,
(CONST text®'SCOTT", strlen('SCOTT"),
(CONST text *"MESSAGE", strlen("MESSAGE"),
(text*)0, 0, OCI_DURATION_SESSION,
OC|_TYPEGET ALL, &mesgtdo));

/* Set wait time, navigation in dequeuie options: ¥/

checkem(enhp, OCIAtrSet(degopt, OCI DTYPE_AQDEQ_OPTIONS,
(dvoid ®)&wait, 0, OCI_ATTR_WAIT, erthp));

checkerr(erthp, OCIAtrSet(degopt, OCI_DTYPE._AQDEQ_OPTIONS,
(dvoid *)&navigation, O,
OCI_ATTR_NAVIGATION, erthp));

/‘k
* Dequelle the message and commit. The memory for the payioad will be
*automatically allocatedresized by OCI:
Y
checkenr(errhp, OCIAQDeq(svchp, erhp, (CONST text *)'msgqueue”,
degopt, 0, mesgdo, (dvoid *)&mesg,
(dvoid *)&mesgind, 0, 0));

checkerr(errhp, OCITransCommit(svchp, errhp, (ub4) 0));

/* Copy the message payioad text into the user buffer: %
if (mesgind->null_data)
*buflen=0;
else
memcpy((dvoid *)buf, (dvoid *)OCIStringPtr(envhp, mesg->data),
(size_t)(*buflen = OCIStringSize(envhp, mesg->data)));
} Fend degmesg ¥/

void main()

{

OClServer *sivhp;

OClSession *usrhp;

dvoid *mp;

text buf{80]; /*payioad text ¥/
ub4 buflen;

OClinitialize((ub4) OCI_OBJECT, (dvoid %0, (dvoid * (*)0) O,
(dvoid* () O, (void (*)() 0);

8-72 Application Developer's Guide - Advanced Queuing

AQ and Memory Usage

OCIHandleAlloc((dvoid *) NULL, (dvoid *) &envhp, (ub4) OCI HTYPE_ENV,
52, (dvoid *) &mp);

OCIENVInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid) &mp);

OCIHandleAlloo{(dvoid *) envhp, (dvoid #) &erthp, (ubd) OC|_HTYPE._ERROR,
52, (dvoid *) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &sivhp, (ubd) OCI_HTYPE._SERVER,
52, (dvoid *) &mp);

OClServerAttach(srvhp, errhp, (text*) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OClHandleAlloc((dvoid *) envhp, (dvoid *¥) &svchp, (ub4) OCI_HTYPE_SVCCTX,
52, (dvoid **) &mp);

/* set attnibute server context in the service context ¥/
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR_SERVER, (OCIEmor *) enthp);

/* allocate a user context handle
OCIHandleAlloc((dvoid *)envhp, (dvoid *)&usrhp, (ub4) OCl_ HTYPE_SESSION,
(size_1) O, (dvoid *¥) 0);

OCIAtrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott”, (ubd)strien('scott), OCI ATTR_USERNAME, errhp);

OCIAtrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)'iger”, (ub4)stren(tiger"), OCl_ATTR_PASSWORD, erthp);

checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI CRED_RDBMS,
OCI_DEFAULT));

OCIAtrSet((dvoid ¥)svchp, (Ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (Ub4)0, OCI_ATTR_SESSION, errhp);

/*allocate the dequeue options descriptor ¥/
checkerr(errhp, OClIDescriptorAlloc(envhp, (dvoid **)°opt,
OCI_DTYPE_AQDEQ_OPTIONS, O, (dvoid **)0));

do{
degmesg(buf, &buflen);
printf('%e.*s\n", bufien, buf);
}while(2);

Oracle Advanced Queuing by Example 8-73

AQ and Memory Usage

Vi
*This program never reaches this point as the dequeue timesouit & exits.
* If it does reach here, it will be a good place 1o free the dequeue
* gptions descriptor using OCIDescriptorFree and free the memory allocated
*by OCl for the payload using OCIObjectFree
¥4
} Fendmain?

static void checkerr(errhp, status)
OCIEnor *erthp;
sword status;
{

text emrbuf{512];

ub4 buflen;

sb4 emrcode;

if (status = OC|_SUCCESS) retum;

switch (status)

{

case OC|_ERROR:
OCIEnorGet ((dvoid *) erthp, (ub4) 1, (text *) NULL, &errcode,

enbuf, (ub4) sizeof(erbuf), (Ub4) OCI_HTYPE_ERROR);

printf("Error - %6s\n", enbuf);
break;

case OC|_INVALID_HANDLE:
printi("Eror - OCl_INVALID_HANDLE\n');
break;

default
printf("Error - %d\n”, status);
break;

}

exit(-1);

} end checkerr %/

8-74 Application Developer's Guide - Advanced Queuing

Scripts for Implementing 'BooksOnLine’

This Appendix contains the following scripts:

« tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues &
Subscribers

« tkagdocd.sql: Examples of Administrative and Operational Interfaces
« tkagdoce.sql: Operational Examples
« tkagdocp.sql: Examples of Operational Interfaces

« tkagdocc.sqgl: Clean-Up Script

Scripts for Implementing 'BooksOnLine’ A-1

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues &
Subscribers

Rem $Header: tkagdoca.sql 264an-99.17:50:37 aguserl Exp $

Rem

Rem tkagdoca.sgl

Rem

Rem Copyright (c) Oracle Corporation 1998, 1999. All Rights Reserved.
Rem

Rem NAME

Rem tkagdoca.sql - TKAQ DOCumentation Admin examples file

Rem Set up a queue admin account and individual accounts for each application
Rem

connect system/manager

set serveroutput on;

setechoon;

Rem Create a common admin account for all BooksOnLine applications

Rem

create user BOLADM identified by BOLADM,;

grant connect, resource, aq_administrator_role to BOLADM,;

grant execute on doms_aq to BOLADM,;

grant execute on doms_agadm to BOLADM,;

execute dbms_agadm.grant_system_privilege(ENQUEUE_ANY',BOLADMFALSE);
execute dbms_agadm.grant_system_priviege(DEQUEUE_ANY',BOLADM'FALSE);

Rem Create the application schemas and grant appropriate permission
Remto all schemas

Rem Create an account for Order Entry
create user OE identified by OE;

grant connect, resource to OF;

grant execute on dbms_aq to OE;
grant execute on doms_agadmto OF;

Rem Create an account for WR Shipping
create user WS identified by WS;

grant connect, resource to WS;
grantexecute ondbms_aqto WS;

grant execute on doms_agadmto WS;

Rem Create an account for ER Shipping

create user ES identified by ES;
grant connect, resource to ES;

A-2 Application Developer’s Guide - Advanced Queuing

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

grant execute on doms_aqto ES;
grant execute on doms_agadm o ES;

Rem Create an account for Overseas Shipping
create user OS identified by OS;

grant connect, resource to OS;

grantexecute ondoms_aq to OS;

grant execute on doms_agadmto OS;

Rem Create an account for Customer Biling

Rem Customer Billing, for security reason, has an admin schema that
Rem hosts all the queue tables and an application schema from where
Rem the application runs.

create user CBADM identified by CBADM,;

grant connect, resource to CBADM;

grant execute on doms_aq to CBADM,;

grant execute on doms_agadm to CBADM;

create user CB identified by CB;

grant connect, resource to CB;

grant execute on doms_aq to CB;
grant execute on doms_agadmto CB;

Rem Create an account for Customer Service
create user CS identified by CS;

grant connect, resource to CS;

grantexecute ondoms_aqto CS;

grant execute ondbms_agadmto CS;

Rem All object types are created in the administrator schema.

Rem All application schemas that host any propagation source
Rem queues are given the ENQUEUE_ANY system level privilege
Rem allowing the application schemas to enqueue to the destination
Rem queue.

Rem

connect BOLADM/BOLADM,;

Rem Create objects

create or replace type customer_typ as object (
custno number,
name varchar2(100),
street varchar2(100),
cty varchar2(30),

Scripts for Implementing 'BooksOnLine’ A-3

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

state varchar2(2),

Zip number,

country varchar2(100));
/

create or replace type book_typ as object (
tite varchar2(100),
authors varchar2(100),
ISBN number,
price numbe);
/

create or replace type orderitem_typ as object (
quantty number,
item book_typ,
subtotal number);

/

create or replace type orderitemiist_vartyp as varray (20) of orderitem_typ;
/

create or replace type order_typ as object (
ordemo number,
status varchar2(30),
ordertype varchar2(30),
orderregion varchar2(30),
customer customer_typ,
paymentmethod varchar2(30),
items orderitemlist_vartyp,
total number);

/

grant execute on order_typto OF;

grant execute on orderitemlist_vartyp to OF;

grant execute on orderitem_typ to OF;

grant execute on book_typto OE;

grant execute on customer_typ to OF;

execute doms_agadm.grant_system_privilege(ENQUEUE_ANY',OEFALSE);

grant execute on order_typto WS;

grant execute on orderitemlist_vartyp to WS;

grant execute on orderitem_typ to WS;

grant execute on book_typto WS;

grant execute on customer_typ to WS;

execute dbms_agadm.grant_system_priviege(ENQUEUE_ANY',WS'FALSE);

A-4 Application Developer’s Guide - Advanced Queuing

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

grant execute on order_typto ES;

grant execute on orderitemlist vartyp to ES;

grant execute on orderitem _typto ES;

grant execute on book typto ES;

grant execute on customer_typ to ES;

execute doms_agadm.grant_system_privilege(ENQUEUE_ANY',ES FALSE);

grant execute on order_typto OS;

grant execute on orderitemlist_vartyp to OS;

grant execute on orderitem_typ to OS;

grant execute on book_typto OS;

grant execute on customer_typ to OS;

execute doms_agadm.grant_system_privilege(ENQUEUE_ANY',OS FALSE),

grant execute on order_typ to CBADM,;

grant execute on orderitemniist_vartyp to CBADM,;
grant execute on orderitem_typ to CBADM,;
grant execute on book_typ to CBADM,;

grant execute on customer_typ to CBADM,;

grant execute on order_typto CB;

grant execute on orderitemlist_vartyp to CB;
grant execute on orderitem_typ to CB;
grant execute on book_typto CB;

grant execute on customer_typ to CB;

grant execute on order_typto CS;

grant execute on orderiterniist_vartyp to CS;
grant execute on orderitem_typto CS;
grant execute on book_typto CS;

grant execute on customer_typ to CS;

Rem Create queue tables, queues for OE

Rem

connect OE/OE;

begin

doms_agadm.create_queue_table(
queue_table =>'OE_orders_sqtab,
comment =>'Order Entry Single Consumer Orders queue table’,
queue_payload type =>'BOLADM.order_typ,
message_grouping =>DBMS_AQADM.TRANSACTIONAL,
compatible =>'8.1,
primary_instance =>1,
secondary_instance => 2);

Scripts for Implementing 'BooksOnLine’ A-5

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

end;
/

Rem Create a priority queue table for OE

begin

doms_agadm.create_queue_table(
queue_table =>'OE_orders_pr matab,
sort_list=>"priority,enq_time’,
comment =>'Order Entry Priority MuliConsumer Orders queue table',
multiple_consumers =>TRUE,
queue_payload type =>'BOLADM.order_typ,
compatible =>'8.1,
primary_instance =>2,
secondary_instance => 1),

end;
/
begin
doms_agadm.create_queue (
gueue_name =>'OE_neworders_gque',
queue_table =>'OE_orders_sqtab);
end;
/
begin
doms_agadm.create_queue (
gueue_name =>'OE_hookedorders_que,
queue_table =>'OE_orders_pr_mgtab);
end;

/

Rem Orders in OE_bookedorders_gue are being propagated to WS_bookedorders_que,
RemES_bookedorders_que and OS_bookedorders_que according to the region
Rem the books are shipped to. Atthe time an order is placed, the customer

Rem can request Fed-ex shipping (priority 1), priority air shipping (priority

Rem 2) and ground shipping (priority 3). An priority queue is created in

Rem each region, the shipping applications will dequeue from these priority

Rem queues according to the orders' shipping priorities, processes the orders
Rem and enqueue the processed orders into

Rem the shipped_orders queues or the back_orders queues. Baoth the shipped _
Rem orders queues and the back_orders queues are FIFO queues. However,
Rem orders putinto the back_orders_queues are enqueued with delay time

Rem setto 1 day, so that each order in the back_order_queues is processed
Rem only once a day until the shipment is filed.

A-6 Application Developer’s Guide - Advanced Queuing

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

Rem Create queue tables, queues for WS Shipping
connect WSMWS;

Rem Create a priority queue table for WS shipping

begin

dbms_agadm.create_queue_table(
queue_table =>"WS_orders_pr_ matab,
sort_list=>"priority,enq_time’,
comment =>"West Shipping Priority MuliConsumer Orders queue table’,
multiple_consumers =>TRUE,
queue_payload type =>'BOLADM.order_typ',
compatible =>'8.1Y;

end;

/

Rem Create a FIFO queue tables for WS shipping
begin
dbms_agadm.create_queue_table(
queue_table =>"WS_orders_mqtab),
comment =>"West Shipping Multi Consumer Orders queue table’,
multiple_consumers => TRUE,
queue_payload type =>'BOLADM.order_typ',
compatible =>'8.1Y;
end;
/

Rem Booked orders are stored in the priority queue table

begin
doms_agadm.create_queue (
queue_name =>"WS_bookedorders_que,
queue_table =>"WS_orders_pr_matab);
end;

/

Rem Shipped orders and back orders are stored in the FIFO queue table

begin

doms_agadm.create_queue (
gueue_name =>"WS_shippedorders_que’,
queue_table =>"WS_orders_mqtab);

end,;

/

begin

doms_agadm.create_queue (

Scripts for Implementing 'BooksOnLine’ A-7

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

gueue_name =>"WS_backorders_que,
queue_table =>"WS_orders_mqtab);
end;
/
Rem
Rem In order to test history, set retention to 1 DAY for the queues
Rem inWS
begin

dbms_agadm.alter_queue(
queue_name =>'WS_bookedorders_que,
retention_time =>86400);

end;

/

begin

dbms_agadm.alter_queue(
queue_name =>"'WS_shippedorders_que',
retention_time =>86400);

end;

/

begin

dbms_agadm.alter_queue(
queue_name =>'WS_backorders_gue',
retention_time => 86400);

end;

/

Rem Create queue tables, queues for ES Shipping
connect ES/ES;

Rem Create a priority queue table for ES shipping
begin
doms_agadm.create_queue_table(
queue_table =>'ES _orders_mgtab),
comment => 'East Shipping Multi Consumer Orders queue table’,
multiple_consumers =>TRUE,
queue_payload type =>'BOLADM.order_typ',
compatible =>'8.1Y;
end;
/

A-8 Application Developer’s Guide - Advanced Queuing

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

Rem Create a FIFO queue tables for ES shipping

begin

doms_agadm.create_queue_table(
queue_table=>"ES_orders_pr_matab’,
sort_list=>"priority,enq_time,
comment =>'East Shipping Priority Multi Consumer Orders queue table',
multiple_consumers =>TRUE,
queue_payload_type =>'BOLADM.order_typ',
compatible =>'8.1);

end;

/

Rem Booked orders are stored in the priority queue table

begin
doms_agadm.create_queue (
queue_name =>'ES_hookedorders_que,
queue_table =>'ES_orders_pr_maqtab);
end;

/

Rem Shipped orders and back orders are stored in the FIFO queue table

begin
doms_agadm.create_queue (
queue_name =>'ES_shippedorders_que',
queue_table =>'ES_orders_mgatab;
end;
/
begin
doms_agadm.create_queue (
gueue_name =>'ES _backorders_gque',
queue_table =>'ES orders_mgatab);
end;

/

Rem Create queue tables, queues for Overseas Shipping
connect OS/OS;

Rem Create a priority queue table for OS shipping
begin
dbms_agadm.create_queue_table(
queue_table =>'0OS_orders_pr mqtab,
sort_list=>"priority,enq_time',
comment =>'Overseas Shipping Priority MuliConsumer Orders queue

Scripts for Implementing 'BooksOnLine’

A-9

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

table',
multiple_consumers =>TRUE,
queue_payload_type =>'BOLADM.order_typ,,
compatible =>'8.1);

end;

/

Rem Create a FIFO queue tables for OS shipping
begin
doms_agadm.create_queue_table(
queue_table =>'0OS_orders_mgqtab),
comment =>'Overseas Shipping Multi Consumer Orders queue table’,
multiple_consumers => TRUE,
queue_payload_type =>'BOLADM.order_typ',
compatible =>'8.1Y;
end;
/

Rem Booked orders are stored in the priority queue table

begin
doms_agadm.create_queue (
queue_name =>'0S_hookedorders_que,
queue_table =>'0S_orders_pr_maqtab);
end;

/

Rem Shipped orders and back orders are stored in the FIFO queue table

begin
dbms_agadm.create_queue (
queue_name =>'0S_shippedorders_que',
queue_table =>'0S_orders_mgtab;
end;
/
begin
doms_agadm.create_queue (
gueue_name =>'0S_backorders_gue',
queue_table =>'0S_orders_mgtab;
end;

/

Rem Create queue tables, queues for Customer Biling
connect CBADM/CBADM,

begin

A-10 Application Developer’'s Guide - Advanced Queuing

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

doms_agadm.create_queue_table(
queue_table =>'CBADM _orders_sqtab,
comment => 'Customer Biling Single Consumer Orders queue table',
queue_payload type =>'BOLADM.order_typ,
compatible =>'8.1Y;

doms_agadm.create_queue_table(
queue_table =>'CBADM _orders_mgtab),
comment => '‘Customer Biling Multi Consumer Service queue table’,
multiple_consumers =>TRUE,
queue_payload type =>'BOLADM.order_typ',
compatible =>'8.1Y;

doms_agadm.create_queue (
gueue_name =>'CBADM _shippedorders_que',
queue_table =>'CBADM _orders_sqtab);

end;
/

Rem Grant dequeue privilege on the shopped orders queue to the Customer Biling

Rem application. The CB application retrieves shipped orders (not billed yet)

Rem from the shopped orders queue.

execute dbms_agadm.grant_queue_privilege(DEQUEUE','CBADM _shippedorders_gque',
'CB, FALSE);

begin
doms_agadm.create_queue (
queue_name =>'CBADM _biledorders_que,
queue_table =>'CBADM _orders_mattab);
end;

/

Rem Grant enqueue privilege on the billed orders queue to Customer Billing

Rem application. The CB application is allowed to put billed orders into

Rem this queue.

execute doms_agadm.grant_queue_privilege(ENQUEUE', 'CBADM _hilledorders_que',
'CB, FALSE);

Rem Customer support tracks the state of the customer request in the system
Rem

Rem At any point, customer request can be in one of the following states
Rem A.BOOKED B. SHIPPED C.BACKED D.BILLED

Rem Given the order number the customer support will retum the state

Scripts for Implementing 'BooksOnLine’ A-11

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

Rem the order is in. This state is maintained in the order_status _table
connect CS/CS;

CREATE TABLE Order_Status_Table(customer_order boladm.order_typ,
status varchar2(30));

Rem Create queue tables, queues for Customer Service

begin

dbms_agadm.create_queue_table(
queue_table=>'CS_order_status_d,
comment =>'Customer Status muli consumer queue table',
multiple_consumers =>TRUE,
queue_payload type =>'BOLADM.order_typ',

compatible =>'8.1);
doms_agadm.create_queue (

queue_name =>'CS_bookedorders_que',

queue_table =>'CS_order_status gt);
dbms_agadm.create_queue (

queue_name =>'CS_backorders_que,

queue_table =>'CS_order_status _qt);
doms_agadm.create_queue (

queue_name =>'CS_shippedorders_que),

queue_table =>'CS_order_status _qt);
doms_agadm.create_queue (

gueue_name =>'CS_hilledorders_que',

queue_table =>'CS_order_status gt);
end;

/

Rem Create the Subscribers for OE queues
Rem Add the Subscribers for the OE booked_orders queue

connect OE/OE;
Rem Add a rule-based subscriber for West Shipping
Rem West Shipping handles Westem region US orders

Rem Rush Westem region orders are handled by East Shipping
declare

A-12 Application Developer’'s Guide - Advanced Queuing

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

subscriber ag$_agent;
begin
subscriber :=ag$ _agent(West_Shipping, WS.WS_bookedorders_que', null);
dbms_agadm.add_subscriber(queue_name =>'OE.OE_bookedorders_que',
subscriber => subscriber,
rle =>‘tab.user_data.orderregion =
"WESTERN" AND tab.user_data.ordertype ="RUSH");
end;
/

Rem Add a rule-based subscriber for East Shipping
Rem East shipping handles all Easterm region orders
Rem East shipping also handles all US rush orders
declare
subscriber ag$_agent;
begin
subscriber :=ag$_agent(East_Shipping','ES.ES_bookedorders_que', null);
dbms_agadm.add_subscriber(queue_name =>'OE.OE_bookedorders_que',
subscriber => subscriber,
rue =>tab.user_data.orderregion =
"EASTERN" OR (tab.user_data.ordertype = "RUSH" AND tab.user_
data.customer.country ="USA"));
end;
/

Rem Add a rule-based subscriber for Overseas Shipping
Rem Intl Shipping handles all non-US orders
declare
subscriber ag$_agent;
begin
subscriber :=ag$_agent(Overseas_Shipping,'0S.0S_bookedorders_que', null);
dbms_agadm.add_subscriber(queue_name =>'OE.OE_bookedorders_que',
subscriber => subscriber,
rue =>‘tab.user_data.ordemegion =
"INTERNATIONAL");
end;
/

Rem Add the Customer Service order queues as a subscribers to the
Rem corresponding queues in OrderEntry, Shipping and Biling

declare
subscriber ag$_agent;
begin
F Subscribe to the booked orders queue */

Scripts for Implementing 'BooksOnLine’

A-13

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

subscriber :=ag$_agent(BOOKED_ORDER!,'CS.CS_bookedorders_que', null);
dbms_agadm.add_subscriber(queue_name =>'OE.OE_bookedorders_que',
subscriber => subscriber);
end;
/

connect WSMWS;

declare
subscriber ag$_agent;
begin
F Subscribe to the WS back orders queue */
subscriber =ag$_agent(BACK_ORDER!,'CS.CS_backorders_que, null);
dbms_agadm.add_subscriber(queue_name =>"WSWS_backorders_que',
subscriber => subscriber);
end;
/

declare
subscriber ag$_agent;
begin
F Subscribe to the WS shipped orders queue *
subscriber =ag$_agent(SHIPPED_ORDER), 'CS.CS_shippedorders_que', null);
dbms_agadm.add_subscriber(queue_name =>"WS.WS_shippedorders_que,
subscriber => subscriber);
end;
/

connect CBADM/CBADM;
declare
subscriber ag$_agent;
begin
F Subscribe to the BILLING hilled orders queue */
subscriber :=ag$_agent(BILLED ORDER,'CS.CS_hilledorders_que', null);
dbms_agadm.add_subscriber(queue_name =>'CBADM.CBADM _billedorders_que',
subscriber => subscriber);

end;
/

Rem
Rem BOLADM wil Start all the queues
Rem

A-14 Application Developer’'s Guide - Advanced Queuing

tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers

connect BOLADM/BOLADM

execute doms_agadm.start_queue(queue_name =>'OE.OE_neworders_que);

execute dbms_agadm.start_queue(queue_name =>'OE.OE_bookedorders_que);
execute dbms_agadm.start_queue(queue_name =>'WS.WS_bookedorders_que’);
execute dbms_agadm.start_queue(queue_name =>"WS.WS_shippedorders_que);
execute doms_agadm.start_queue(queue_name =>"WS.WS_backorders_que));

execute dbms_agadm.start_queue(queue_name =>'ES.ES_bookedorders_que);
execute doms_agadm.start_queue(queue_name =>'ES.ES_shippedorders_que);
execute dbms_agadm.start_queue(queue_name =>'ES.ES_backorders_que);

execute dbms_agadm.start_queue(queue_name =>'0S.0S_bookedorders_que));
execute dbms_agadm.start_queue(queue_name =>'0S.0S_shippedorders_que);
execute doms_agadm.start_queue(queue_name =>'0S.0S_backorders_que);

execute dbms_agadm.start_queue(queue_name =>'CBADM.CBADM _shippedorders_que);
execute doms_agadm.start_queue(queue_name =>'CBADM.CBADM _billedorders_que);
execute dbms_agadm.start_queue(queue_name =>'CS.CS_bookedorders_que);
execute dbms_agadm.start_queue(queue_name =>'CS.CS_backorders_que));

execute dbms_agadm.start_queue(queue_name =>'CS.CS_shippedorders_que));
execute doms_agadm.start_queue(queue_name =>'CS.CS_billedorders_que);

connect system/manager
Rem
Rem Startjob_queue_processes to handle AQ propagation

Rem

alter system setjob_queue_processes=4;

Scripts for Implementing 'BooksOnLine’ A-15

tkaqdocd.sql: Examples of Administrative and Operational Interfaces

tkagdocd.sgl: Examples of Administrative and Operational Interfaces

Rem

Rem $Header: tkagdocd.sql 264an-99.17:51:23 aquserl Exp $
Rem

Rem tkaqdocd.sql

Rem

Rem Copyright (c) Oracle Corporation 1998, 1999. All Rights Reserved.
Rem

Rem NAME

Rem tkagdocd.sql - <one-line expansion of the name>

Rem

Rem DESCRIPTION

Rem <short description of component this file declares/defines>
Rem

Rem NOTES

Rem <other useful comments, qualifications, etc.>

Rem

Rem MODIFIED (MM/DD/YY)

Rem aquserl 01/26/99 - fix comments

Rem aquserl 12/07/98 - ryaseen: convert to SQLPLUS format
Rem aquserl 10/29/98 - adjust agent list and update_status
Rem aquserl 10/27/98 - listen call, history and non-persistent queues
Rem aquserl 10/27/98 - Created

Rem

Rem
Rem Schedule propagation for the shipping, billing, order entry queues
Rem

connect OE/OE;
execute dbms_agadm.schedule_propagation(queue_name =>'OE.OE_bookedorders_que);

connect WSMWS;
execute doms_agadm.schedule_propagation(queue_name =>WSWS_backorders_que);
execute doms_agadm.schedule_propagation(queue_name =>"WSWS_shippedorders_

que);

connect CBADM/CBADM;
execute doms_agadm.schedule_propagation(queue_name =>'CBADM.CBADM _billedorders

que);

A-16 Application Developer’'s Guide - Advanced Queuing

tkaqdocd.sql: Examples of Administrative and Operational Interfaces

Rem

Rem Customer service application

Rem

Rem This application monitors the status queue for messages and updates
Rem the Order_Status table.

connect CS/CS

Rem
Rem Dequeus messages from the 'queue’ for ‘consumer’

CREATE OR REPLACE PROCEDURE DEQUEUE_MESSAGE(
queue IN VARCHARZ,
consumer IN VARCHAR2,
message OUT BOLADM.order_typ)

IS

dopt doms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;
deq_msgid raw(16);

BEGIN

doptdequeue_mode :=dbms_aq.REMOVE;
doptnavigation :=dbms_aq.FIRST_MESSAGE;
dopt.consumer_name := consumer,

dbms_ag.dequeug(
queue_name =>queue,
dequeue_options =>dopt,
message_properties =>mprop,
payload => message,
msgid =>deq_msgid);
commit,
END;
/

Rem
Rem Updates the status of the order in the status table
Rem

CREATE OR REPLACE PROCEDURE update_status(

new_status INVARCHARZ,
order_ msg INBOLADM.ORDER_TYP)

Scripts for Implementing 'BooksOnLine’ A-17

tkaqdocd.sql: Examples of Administrative and Operational Interfaces

IS

old status VARCHAR2(30);
dummy NUMBER;
BEGIN

BEGIN
¥ query old status from the table */
SELECT ststatus INTO old_status from order_status _table st
where stcustomer_order.ordemo = order_msg.ordemo;

F* Status can be BOOKED_ORDER, 'SHIPPED_ORDER', BACK_ORDER'
* and BILLED_ORDER'
*

IF new_status ='SHIPPED_ORDER' THEN
IFold_status ="BILLED_ORDER' THEN

retum; F*message about a previous state */
ENDIF;
ELSIF new_status ='BACK_ORDER' THEN
IFold_status ="SHIPPED_ORDER' OR old_status ='BILLED ORDER' THEN
retum; F* message about a previous state */
ENDIF;
ENDIF;

F update the order status */
UPDATE order_status_table st
SET st.customer_order =order_msg, ststatus = new_status
where st.customer_order.ordemo = order_msg.ordemo;

COMMIT;

EXCEPTION
WHEN OTHERS THEN /*change to no data found */
[first update for the order */
INSERT INTO order_status_table(customer_order, status)
VALUES (order_msg, new_status);
COMMIT;

END;

END;
/

Rem
Rem Monitors the customer service queues for time' seconds

A-18 Application Developer’'s Guide - Advanced Queuing

tkaqdocd.sql: Examples of Administrative and Operational Interfaces

Rem

CREATE OR REPLACE PROCEDURE MONITOR_STATUS QUEUE(time IN NUMBER)
IS

agent w_message ag$_agent;
agent list dbms_aqg.agent list t;
wait tme INTEGER :=120;
no_message EXCEPTION,;
pragma EXCEPTION_INIT(no_message, -25254);
order msg boladm.order_typ;
new _status VARCHAR2(30);
monitor BOOLEAN :=TRUE;
begin tme number;
end time number;

BEGIN

begin_time := dbms_utiity.get_time;

WHILE (monitor)

LOOP

BEGIN

agent _list(1) :=ag$_agent(BILLED_ORDER','CS_hiledorders_que', NULL);
agent _list(2) .=ag$_agent(SHIPPED_ORDER!,'CS_shippedorders_que', NULL);
agent list(3) :=ag$_agent(BACK_ORDER,'CS_backorders_que', NULL);

agent list(4) :=ag$_agent(Booked ORDER;,'CS_bookedorders_que', NULL);

Fwait for order status messages */
dbms_aglisten(agent list, wait_time, agent w_message);

dbms_outputput_line(Agent || agent w_message.name || ' Address || agent_
W_message.address);

F dequeue the message from the queue */
dequeue_message(agent w_message.address, agent w_message.name, order_msg);

F update the status of the order depending on the type of the message
*the name of the agent contains the new state
¥
update_status(agent w_message.name, order_msg);
F exit if we have been working long enough */
end_time :=dbms_utility.get_time;
IF (end_time - begin_time >time) THEN
EXIT;
ENDIF;

EXCEPTION

Scripts for Implementing 'BooksOnLine’ A-19

tkaqdocd.sql: Examples of Administrative and Operational Interfaces

WHEN no_message THEN
dboms_outputput_line(No messages in the past 2 minutes);
end_time :=dbms_utility.get_time;
[exit if we have done enough work */
IF (end_time - begin_time >time) THEN
EXIT;
ENDIF;
END;

END LOOP;
END;
/

Rem
Rem History queries
Rem

Rem

Rem Average processing time for messages in westem shipping:
Rem Difference between the ship- time and book-time for the order
Rem

Rem NOTE: we assume that order id is the correlation identifier
Rem Only processed messages are considered.

Connect WSMWS

SELECT SUM(SO.eng_time - BO.eng_time) / count (¥) AVG_PRCS_TIME
FROMWS.AQ$WS_orders_pr_ mqtab BO , WS.AQ$WS_orders_mqtab SO
WHERE SO.msg_state ='PROCESSED' and BO.msg_state ='PROCESSED'
AND SO.corr_id=BO.cor_id and SO.queue ='WS_shippedorders_que’;

Rem
Rem Average backed up time (again only processed messages are considered
Rem

SELECT SUM(BACK.deq_time - BACK.enq_time)/count (*) AVG_BACK_TIME

FROMWS.AQ$WS_orders_matab BACK
WHERE BACK.msg_state ='PROCESSED' and BACK.queue ="WS_backorders_que;

A-20 Application Developer’'s Guide - Advanced Queuing

tkagdoce.sql: Operational Examples

tkagdoce.sql: Operational Examples

Rem
Rem $Header: tkagdoce.sgl 264an-99.17:51:28 aguserl Exp $
Rem

Rem tkagdocl.sql
Rem

Rem Copyright (c) Oracle Corporation 1998, 1999. All Rights Reserved.
Rem

setechoon

Rem
Rem Demonstrate enqueuing a backorder with delay time set
Rem tolday. Thiswil guarantee that each backorder will
Rem be processed only once a day until the order is filed.
Rem

Rem Create a package that enqueue with delay set to one day

connect BOLADM/BOLADM

create or replace procedure requeue_unfiled_order(sale_region varchar2,
backorder order_typ)

as
back_order_queue_name varchar2(62);
enqgopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid raw(16);

begin

— Choose a back order queue based the the region
IF sale_region="WEST THEN
back_order_queue_name :='WSWS_backorders_que',
ELSIF sale_region="EAST THEN
back order_queue_name :='ES.ES_backorders_que};
ELSE
back order_queue_name :='0S.0OS_backorders_que’;
ENDIF;

- Enqueue the order with delay time setto 1 day
msgprop.delay := 60*60*24;
dbms_ag.enqueue(back _order_queue_name, engopt, msgprop,
backorder, enq_msgid);
end,;

Scripts for Implementing 'BooksOnLine’ A-21

tkagdocp.sql: Examples of Operational Interfaces

tkagdocp.sql: Examples of Operational Interfaces

Rem

Rem $Header: tkagdocp.sql 264an-99.17:50:54 aquserl Exp $

Rem

Rem tkagdocp.sgl

Rem

Rem Copyright (c) Oracle Corporation 1998, 1999. All Rights Reserved.
Rem

Rem NAME

Rem tkagdocp.sql - <one-line expansion of the name>

Rem

setechoon;

Rem

Rem llustrating Support for OPS

Rem

Rem Login into OE account
connect OE/OE;
set serveroutput on;

Rem check instance affinity of OE queue tables from AQ administrative view

select queue_table, primary_instance, secondary_instance, owner_instance
from user_queue_tables;

Rem alter instance affinity of OE queue tables

begin

doms_agadm.alter_queue_table(
queue_table =>'OE.OE_orders_sqtab),
primary_instance => 2,
secondary_instance => 1);

end;

/

begin

doms_agadm.alter_queue_table(
queue_table =>'OE.OE_orders_pr_matab),
primary_instance =>1,
secondary_instance => 2);

end,;

/

A-22 Application Developer’'s Guide - Advanced Queuing

tkagdocp.sqgl: Examples of Operational Interfaces

Rem check instance affinity of OE queue tables from AQ administrative view

select queue_table, primary_instance, secondary_instance, owner_instance
from user_queue_tables;

Rem
Rem llustrating Propagation Scheduling
Rem

Rem Login into OE account

setechoon;
connect OE/OE;
set serveroutput on;

Rem
Rem Schedule Propagation from bookedorders_que to shipping
Rem

execute dbms_agadm.schedule_propagation(queue_name =>'OE.OE_bookedorders_que);

Rem Login into boladm account
setechoon;

connect boladm/boladm;

set serveroutput on;

Rem create a procedure to enqueue an order
create or replace procedure order_enq(book_fitle invarchar2,
book_qty in number,
order_num in number,
shipping_priority in number,
cust state invarchar2,
cust_country in varchar2,
cust_region invarchar2,
cust_ord_typin varchar2) as

OE _enq order data BOLADM.order_typ;

OE _enq_cust data BOLADM.customer_typ;

OE _enq book data ~ BOLADM.book_typ;

OE enq_item data BOLADM.orderitem_typ;
OE_enq item list ~ BOLADM.orderitemiist_vartyp;

engopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid raw(16);

Scripts for Implementing 'BooksOnLine’ A-23

tkagdocp.sql: Examples of Operational Interfaces

begin

msgprop.correlation ;= cust_ord_typ;
OE_eng_cust_data := BOLADM.customer_typ(NULL, NULL, NULL, NULL,
cust_state, NULL, cust_country);
OE_enq_book_data := BOLADM.book_typ(book_title, NULL, NULL, NULL);
OE_enq_item_data := BOLADM.orderitem_typ(book_qty,
OE _enq_book_data, NULL);
OE_enq_item_list := BOLADM.orderitemlist_vartyp(
BOLADM .orderitem_typ(book_qty,
OE_enq_book_data, NULL));
OE_enq_order_data :=BOLADM.order_typ(order_num, NULL,
cust _ord_typ, cust_region,
OE _enq_cust data, NULL,
OE_enq_item_list, NULL);

— Put the shipping priority into message property before
—enqueueing the message
msgprop.priority := shipping_priority;
dbms_ag.enqueue(OE.OE_hookedorders_que', engopt, msgprop,
OE_enq_order_data, enq_msgid);
end;
/

show errors;
grant execute on order_enq to OE;

Rem now create a procedure to dequeue booked orders for shipment processing
create or replace procedure shipping_bookedorder_deq(

consumer in varchar2,

degmode in binary_integer) as

deq_cust data BOLADM.customer_typ;
deq_book_data BOLADM.book_typ;
deq_item data BOLADM .orderitemn_typ;

deq_msgid RAW(16);

dopt dbms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;
deq_order_data BOLADM.order_typ;
gname varchar2(30);

no_messages exception;

pragma exception_init (no_messages, -25228);
new_orders BOOLEAN :=TRUE;

A-24 Application Developer’'s Guide - Advanced Queuing

tkagdocp.sqgl: Examples of Operational Interfaces

begin

dopt.consumer_name = consumer;

doptwait :=DBMS_AQ.NO_WAIT;
doptdequeue_mode :=degmode;
doptnavigation := dbms_ag.FIRST_MESSAGE;

IF (consumer ='West_Shipping) THEN
gname :='WSWS_bookedorders_que;
ELSIF (consumer ='East_Shipping)) THEN
gname ='ES.ES_bookedorders_gque’,
ELSE
gname :='0S.0OS_bookedorders_gque’;
END IF;

WHILE (new_orders) LOOP
BEGIN
dbms_ag.dequeue(

gueue_name =>gname,
dequeue_options =>dopt,
message_properties =>mprop,
payload =>deq_order_data,
msgid =>deq_msgid);

deq_item_data :=deq_order_data.items(1);
deq_book data:=deq_item_data.itern;
deq_cust data :=deq_order_data.customer;

dbms_outputput_line(*** next booked order ***);
dbms_outputput_line(order_num:' || deq_order_data.ordemo ||
"book_tite: ' || deq_book_data.tite ||
'quantity: ' || deq_item_data.quantity);
dbms_outputput_line(ship_state: ' || deq_cust_data.state ||
"ship_country:' || deq_cust_data.country ||
'ship_order_type:' || deq_order_data.ordertype);
dopt.navigation := dbms_ag.NEXT_MESSAGE;
EXCEPTION
WHEN no_messages THEN
dbms_outputput_line (— NO MORE BOOKED ORDERS —);
new_orders :=FALSE;
END;
END LOOP;

end;

Scripts for Implementing 'BooksOnLine’ A-25

tkagdocp.sql: Examples of Operational Interfaces

/
show errors;

Rem now create a procedure to dequeue rush orders for shipment
create or replace procedure get_rushtiles(consumer in varchar2) as

deq_cust data BOLADM .customer_typ;
deq_book_data BOLADM.book_typ;
deq _item data BOLADM .orderitem_typ;

deq_msgid RAW(16);

dopt dbms_ag.dequeue_options t;
mprop dbms_ag.message_properties_t;
deq_order_data BOLADM.order_typ;
gname varchar2(30);

no_messages exception;

pragma exception_init (no_messages, -25228);
new_orders BOOLEAN :=TRUE;

begin

dopt.consumer_name := consumer;
doptwait:=1;
dopt.comelation :='RUSH;,

IF (consumer ="West_Shipping) THEN
gname :="WSWS_bookedorders_que’;
ELSIF (consumer ='East_Shipping) THEN
gname :="ES.ES_bookedorders_que’,
ELSE
gname :='0S.0S_bookedorders_gque',
END IF;

WHILE (new_orders) LOOP
BEGIN
dbms_ag.dequeue(

gueue_name =>gname,
dequeue_options => dopt,
message_properties => mprop,
payload =>deq_order_data,
msgid =>deq_msgid);

deq_item_data :=deq_order_data.items(1);
deq_book data:=deq_item_data.itern;

dbms_outputput_line(rushorder book_tite: " ||

A-26 Application Developer’'s Guide - Advanced Queuing

tkagdocp.sqgl: Examples of Operational Interfaces

deq_book_datadite ||
' quantity: ' || deq_item_data.quantity);
EXCEPTION
WHEN no_messages THEN

doms_outputput_line (— NO MORE RUSH TITLES —);
new_orders :=FALSE;

END;

END LOOP;

end;
/
show errors;

Rem now create a procedure to dequeue orders for handling North American
Rem orders
create or replace procedure get_northamerican_orders as

deq_cust data BOLADM .customer_typ;
deq_book_data BOLADM.book_typ;
deq_item data BOLADM .orderitemn_typ;

deq_msgid RAW(16);
dopt dbms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;

deq_order_data BOLADM.order_typ;
deq_order nodata ~ BOLADM.order_typ;
gname varchar2(30);

no_messages exception;

pragma exception_init (no_messages, -25228);
new_orders BOOLEAN =TRUE;

begin

dopt.consumer_name :='Overseas_Shipping’;
doptwait:= DBMS_AQ.NO_WAIT;
dopt.navigation :=dbms_aq.FIRST_MESSAGE;
doptdequeue_mode :=DBMS_AQ.LOCKED;

gname :='0S.0OS_bookedorders_gque’;

WHILE (new_orders) LOOP
BEGIN
dbms_ag.dequeue(
gueue_name =>gname,
dequeue_options => dopt,
message_properties => mprop,

Scripts for Implementing 'BooksOnLine’ A-27

tkagdocp.sql: Examples of Operational Interfaces

payload =>deq_order_data,
msgid =>deq_msgid);

deq_item_data:=deq_order_data.items(1);
deq_book data :=deq_item_data.itern;
deq_cust data :=deq_order_data.customer;

IF (deq_cust_data.country ='Canada’ OR
deq_cust _data.country ='Mexico') THEN

dopt.dequeue_mode :=dbms_aq.REMOVE_NODATA,
doptmsgid := deq_msgid;
dbms_ag.dequeue(

gueue_name =>gname,

dequeue_options => dopt,

message_properties =>mprop,

payload =>deq_order_nodata,

msgid => deq_msgid);

dbms_outputput_line(*** next booked order ***);
dbms_outputput_line(order_no:' || deq_order_data.ordemo ||
"book_title: ' || deq_book_data.title ||
' quantity: ' || deq_item_data.quantity);
dbms_outputput_line(ship_state: ' || deq_cust_data.state ||
"ship_country:' || deq_cust_data.country ||
"ship_order_type:' || deq_order_data.ordertype);

ENDIF,

commit;
doptdequeue_mode :=DBMS_AQ.LOCKED;
doptmsgid := NULL;
dopt.navigation := doms_ag.NEXT_MESSAGE;
EXCEPTION
WHEN no_messages THEN
dbms_outputput_line (— NO MORE BOOKED ORDERS —);
new_orders := FALSE;
END;
END LOOP;

end;
/
show errors;

grant execute on shipping_bookedorder_deq to WS;

A-28 Application Developer’'s Guide - Advanced Queuing

tkagdocp.sqgl: Examples of Operational Interfaces

grant execute on shipping_bookedorder_deqto ES;
grant execute on shipping_bookedorder_deqto OS;
grant execute on shipping_bookedorder_deqto CS;

grant execute on get_rushtitles to ES;
grant execute on get_northamerican_orders to OS;

Rem Login into OE account
connect OE/OE;
set serveroutput on;

Rem
Rem Enqueue some orders into OE_bookedorders_que
Rem

execute BOLADM.order_enq(My First Book, 1, 1001, 3,CA), 'USA, WESTERN,
'NORMALY);

execute BOLADM.order_enq(My Second Book, 2, 1002, 3/NY','USA,' EASTERN,
'NORMALY);

execute BOLADM.order_enq(My Third Book, 3,1003, 3,", '‘Canada,
INTERNATIONAL', NORMAL);

execute BOLADM.order_enq(My Fourth Book, 4, 1004, 2, NV, 'USA, WESTERN,
'RUSH);

execute BOLADM.order_enq(My Fifth Book, 5, 1005, 2, MA', 'USA,'EASTERN,
'RUSH);

execute BOLADM.order_enq(My Sixth Book, 6, 1006, 3" , 'UK,
INTERNATIONAL', NORMAL);

execute BOLADM.order_enq(My Seventh Book, 7,1007,1,", 'Canada,
INTERNATIONAL','RUSH));

execute BOLADM.order_enq(My Eighth Book, 8,1008, 3,", 'Mexico,,
INTERNATIONAL', NORMAL);

execute BOLADM.order_enq(My Ninth Book', 9, 1009, 1, 'CA', 'USA, WESTERN,
'RUSH);

execute BOLADM.order_enq(My Tenth Book, 8,1010,3," ,'UK,
INTERNATIONAL', NORMAL);

execute BOLADM.order_enq(My Last Book, 7,1011, 3," , Mexico,,
INTERNATIONAL', NORMAL);

commit;

/

Rem

Rem Wait for Propagation to Complete
Rem

Scripts for Implementing 'BooksOnLine’ A-29

tkagdocp.sql: Examples of Operational Interfaces

execute dbms_lock sleep(100);

Rem

Rem llustrating Dequeue Modes/Methods

Rem

connect WSMWS;
set serveroutput on;

Rem Degueue all booked orders for West_Shipping

execute BOLADM shipping_bookedorder_deq(West_Shipping, DBMS_AQ.REMOVE);
COmMIt;

/

connect ESES;
set serveroutput on;

Rem Browse all booked orders for East_Shipping
execute BOLADM .shipping_bookedorder_deq(East_Shipping, DBMS_AQ.BROWSE);

Rem Dequeue all rush order titles for East_Shipping
execute BOLADM.get_rushtites(East_Shipping);
commit;

/

Rem Dequeue all remaining booked orders (normal order) for East_Shipping

execute BOLADM .shipping_bookedorder_deq(East_Shipping, DBMS_AQ.REMOVE);
commit;

/

connect OS/OS;
set serveroutput on;

Rem Degueue all intemational North American orders for Overseas_Shipping
execute BOLADM.get_northamerican_orders;

COmMMIt;

/

Rem Dequeue rest of the booked orders for Overseas_Shipping

execute BOLADM shipping_bookedorder_deq(Overseas_Shipping, DBMS_AQ.REMOVE);
commit;

/

A-30 Application Developer’'s Guide - Advanced Queuing

tkagdocp.sqgl: Examples of Operational Interfaces

Rem

Rem llustrating Enhanced Propagation Capabilities
Rem

connect OE/OE;

set serveroutput on;

Rem

Rem Get propagation schedule information & statistics
Rem

Rem get averages

selectavg_time, avg_number, avg_size from user_queue_schedules;

Rem get totals
selecttotal_time, total_number, total_bytes from user_queue_schedules;

Rem get status information of schedule (present only when active)
select process_name, session _id, instance, schedule_disabled
from user_queue_schedules;

Rem get information about last and next execution
selectlast_run_date, last_run_time, next_run_date, next_run_time
from user_queue_schedules;

Rem get last error information if any
select failures, last_error_msg, last_emor_date, last_error_time
fromuser_queue_schedules;

Rem disable propagation schedule for booked orders

execute doms_agadm.disable_propagation_schedule(queue_name =>'OE_bookedorders_
que);

execute dbms_lock.sleep(30);

select schedule_disabled from user_queue_schedules;

Rem alter propagation schedule for booked orders to execute every
Rem 15 mins (900 seconds) for a window duration of 300 seconds

begin

dbms_agadm.alter_propagation _schedule(
queue_name =>'OE_bookedorders_que',
duration => 300,
next_time =>'SYSDATE + 900/86400,
latency => 25,

Scripts for Implementing 'BooksOnLine’ A-31

tkagdocp.sql: Examples of Operational Interfaces

end;
/

execute dbms_lock.sleep(30);
select next_time, latency, propagation_window from user_queue_schedules;

Rem enable propagation schedule for booked orders

execute dbms_agadm.enable_propagation _schedule(queue_name =>'OE_bookedorders
gjg?ﬁe dbms_lock sleep(30);

select schedule_disabled from user_queue_schedules;

Rem unschedule propagation for booked orders

execute dbms_agadm.unschedule_propagation(queue_name =>'OE.OE_bookedorders _
que);

setechoon;

Rem

Rem llustrating Message Grouping

Rem

Rem Login into boladm account
setechoon;

connect boladm/boladm;

set serveroutput on;

Rem now create a procedure to handle order entry

create or replace procedure new_order_enq(book tile in varchar2,
book gty innumber,
order num in number,
cust state invarchar2) as

OE _enq_order data BOLADM.order_typ;

OE _enq_cust data ~ BOLADM.customer_typ;

OE _enq book data ~ BOLADM.book_typ;

OE enq item data BOLADM.orderitem_typ;
OE _enq_item list ~ BOLADM.orderitemiist_vartyp;

enqopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid raw(16);

begin

A-32 Application Developer’'s Guide - Advanced Queuing

tkagdocp.sqgl: Examples of Operational Interfaces

OE_enq_cust_data:= BOLADM.customer_typ(NULL, NULL, NULL, NULL,
cust_state, NULL, NULL);
OE_enq_hook_data := BOLADM.book_typ(book_title, NULL, NULL, NULLY);
OE_enq_item_data := BOLADM.orderitem_typ(book_qty,
OE_enq_book_data, NULL);
OE_enq_item_list := BOLADM.orderitemlist_vartyp(
BOLADM.orderitem_typ(book_qty,
OE_enq_book_data, NULL));
OE_enq_order_data := BOLADM.order_typ(order_num, NULL,
NULL, NULL,
OE_enq_cust_data, NULL,
OE_enq_item_list, NULL);
dbms_ag.enqueue(OE.OE_neworders_gque', engopt, msgprop,
OE_enq_order_data, enq_msgid);
end;
/
show errors;

Rem now create a procedure to handle order enqueue
create or replace procedure same_order_enq(book _tite in varchar2,
book gty innumber) as

OE_enq_order data BOLADM.order_typ;

OE _enq book data ~ BOLADM.book_typ;

OE enq item data ~ BOLADM.orderitem_typ;
OE enq item list ~ BOLADM.orderitemiist_vartyp;

enqopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid raw(16);

begin

OE_enq_book_data := BOLADM.book_typ(book title, NULL, NULL, NULL);

OE_enq_item_data := BOLADM.orderitem_typ(book_dty,
OE_enq_book_data, NULL);

OE_enq_item_list := BOLADM.orderitemlist_vartyp(
BOLADM.orderitem_typ(book_qty,
OE_enq_book_data, NULL));

OE_enq_order_data :=BOLADM.order_typ(NULL, NULL,
NULL, NULL,

NULL, NULL,
OE_enq_item_list, NULL);
dbms_ag.enqueue(OE.OE_neworders_gque', engopt, msgprop,
OE_enq_order_data, enq_msgid);

Scripts for Implementing 'BooksOnLine’ A-33

tkagdocp.sql: Examples of Operational Interfaces

end;
/
show enrors;

grant execute on new_order_enq to OE;
grant execute on same_order_enqto OF;

Rem now create a procedure to get new orders by dequeuing
create or replace procedure get_new_orders as

deq_cust data BOLADM .customer_typ;
deq_book_data BOLADM.book_typ;
deq_item data BOLADM .orderitemn_typ;

deq_msgid RAW(16);

dopt doms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;
deq_order_data BOLADM.order_typ;
gname varchar2(30);

Nno_messages exception;

end_of_group exception;

pragma exception_init (No_messages, -25228);
pragma exception_init (end_of group, -25235);
new_orders BOOLEAN :=TRUE;

begin

doptwait:=1;
dopt.navigation := DBMS_AQ.FIRST_MESSAGE;
gname :='OE.OE_neworders_que’;
WHILE (new_orders) LOOP
BEGIN
LOOP
BEGIN
dbms_ag.dequeue(
gueue_name =>gname,
dequeue_options =>dopt,
message_properties =>mprop,
payload =>deq_order_data,
msgid =>deq_msgid);
deq_item_data :=deq_order_data.items(l);
deq_book data:=deq_item_data.itemn;
deq_cust data:=deq_order_data.customer;

IF (deq_cust_data IS NOT NULL) THEN

A-34 Application Developer’'s Guide - Advanced Queuing

tkagdocp.sqgl: Examples of Operational Interfaces

dbms_outputput_line(**** NEXT ORDER ***);
dbms_output.put_lineCorder_num:” ||
deq_order_data.ordemo);
dbms_outputput_line(ship_state: ' ||
deq_cust data.state);
ENDIF;
dbms_output.put_line(— next book — ;
dbms_outputput_line(book_titie: ' ||
deq_book_datatitie ||
' quantity: ' || deq_item_data.quantity);
EXCEPTION
WHEN end_of _group THEN
dbms_outputput_line (** END OF ORDER ***);
COmmit;
doptnavigation := DBMS_AQ.NEXT_TRANSACTION;
END;
END LOOP;
EXCEPTION
WHEN no_messages THEN
dbms_outputput_line (— NO MORE NEW ORDERS —);
new_orders = FALSE;
END;
END LOOP;

end;
/

show enors;
grant execute on get_new_orders to OE;

Rem Login into OE account
connect OE/OE;
set serveroutput on;

Rem
Rem Enqueue some orders using message grouping into OE_neworders_que
Rem

Rem First Order

execute BOLADM.new_order_eng(My First Book, 1, 1001, 'CA);
execute BOLADM.same_order_enq(My Second Book, 2);
COMMIE;

/

Scripts for Implementing 'BooksOnLine’ A-35

tkagdocp.sql: Examples of Operational Interfaces

Rem Second Order

execute BOLADM.new_order_eng(My Third Book, 1, 1002, WA);
commit;

/

Rem Third Order

execute BOLADM.new_order_enqg(My Fourth Book, 1, 1003, 'NVY);
execute BOLADM.same_order_enq(My Fith Book, 3);

execute BOLADM.same_order_enq(My Sixth Book, 2);

commit;

/

Rem Fourth Order

execute BOLADM.new_order_eng(My Seventh Book,, 1, 1004, MAY);
execute BOLADM.same_order_enqg(My Eighth Book, 3);

execute BOLADM.same_order_enq(My Ninth Book, 2);

commit;

/

Rem

Rem Dequeue the neworders

Rem

execute BOLADM.get_new_orders;

A-36 Application Developer’'s Guide - Advanced Queuing

tkagdocc.sql: Clean-Up Script

tkagdocc.sql: Clean-Up Script

Rem

Rem $Header: tkagdocc.sql 264an-99.17:51:05 aquserl Exp $

Rem

Rem tkagdocc.sq

Rem

Rem Copyright (c) Oracle Corporation 1998, 1999. All Rights Reserved.
Rem

Rem NAME

Rem tkagdocc.sql - <one-line expansion of the name>

Rem

setechoon;
connect system/manager
set serveroutput on;

drop user WS cascade;
drop user ES cascade;

drop user OS cascade;

drop user CB cascade;

drop user CBADM cascade;
drop user CS cascade;

drop user OE cascade;

drop user boladm cascade;

Scripts for Implementing 'BooksOnLine’ A-37

tkaqdocc.sql: Clean-Up Script

A-38 Application Developer’'s Guide - Advanced Queuing

A

Advanced Queuing
administrative interface
privileges and access control, 3-10
creation of queue tables and queues, 8-4
DBMS_AQADM package, 3-9
features, xx
correlation identifier, 1-8
exception handling, 1-12
integrated database level support, 1-5
integrated transactions, 1-6
local and remote recipients, 1-11
message grouping, 1-9
modes of dequeuing, 1-11
multiple recipients, 1-11
navigation of messages in dequeuing, 1-11
optimization of waiting for messages, 1-12
optional transaction protection, 1-12
priority and ordering of messages in
enqueuing, 1-9
propagation, 1-10
retention and message history, 1-6
retries with delays, 1-12
sender identification, 1-10
structured payload, 1-5
subscription & recipient list, 1-8
time specification, 1-10
tracking and event journals, 1-6
message properties, 3-5
revoking roles and privelieges, 8-53
Advanced Queuing, basics, 1-19
Advanced Queuing, multiple-consumer dequeuing
of one message, 1-23

Index

agents, definition, 1-15
Asynchronous, 1-10
Automated, 1-13

C

correlation identifier, 1-8

creation of prioritized message queue table and
queue, 4-9,4-22,8-5

creation of queue table and queue of object
type, 4-9,4-21,8-4

creation of queue table and queue of RAW
type, 4-9,4-22,8-4

creation of queue tables and queues, 8-4

D

DBA_QUEUE_TABLES, 5-5, 5-8, 5-26
DBA_QUEUES, 5-11
DBMS_AQADM.DROP_QUEUE, 4-16
DBMS_AQADM.START_QUEUE, 4-28
dequeue of messages after preview, 8-25
dropping AQ objects, 8-52

E

Enhanced, 1-14
enqueue and dequeue of messages
by Correlation and Message Id Using
Pro*C/C++, 8-29
by priority, 8-9
of object type, 8-6
of RAW type, 8-9
of RAW type using Pro*C/C++, 8-12, 8-15

Index-1

to/from multiconsumer queues, 8-36, 8-39
with time delay and expiration, 8-28

F

Features

automated coordination ofenqueuing and
dequeing, 1-13

enhanced propagation scheduling
capabilities, 1-14

non-persistent queues, 1-7

of Advanced Queuing, Xxx

publish/subscribe support, 1-7

gueue level access control, 1-6

M

message grouping, 1-9
message properties, specification, 3-5
message recipients, definition, 1-23
messages

producers and consumers, 1-15
messages, definition, 1-15

O

Oracle Advanced Queuing (Oracle AQ)
DBMS_AQADM package, 3-9

P

preface

Send Us Your Comments, xvii
Propagation, 1-13
propagation, 1-10

Q

gueue subscribers, definition, 1-23
gueue tables, definition, 1-15
gueues, definition, 1-15
queuing

DBMS_AQADM package, 3-9

Index-2

R

retention and message history, 1-6
revoking roles and privelieges (AQ), 8-53
Rule, 1-10

S
Send Us Your Comments, xvii
SQL, 1-5

structured payload, 1-5
Subscribe, 1-7

subscription & recipient lists, 1-8
Support, 1-7

	PDF Directory
	Contents
	Use Case Diagrams xxiii
	State Diagrams xxix
	1� Introduction
	The Need for Queuing in Messaging Systems 1�2
	Message Systems 1�2
	Message Persistence 1�3

	Features of Advanced Queuing (AQ) 1�5
	General Features 1�5
	ENQUEUE Features 1�8
	DEQUEUE Features 1�11
	Propagation Features 1�13

	Primary Components of Advanced Queuing (AQ) 1�15
	Message 1�15
	Queue 1�15
	Queue Table 1�15
	Agent 1�15
	Recipient 1�16
	Recipient and Subscription Lists 1�16
	Rule 1�17
	Rule Based Subscriber 1�17
	Queue Monitor 1�17

	Modeling Queue Entities 1�18
	Basic Queuing 1�19
	Illustrating Basic Queuing 1�19
	Illustrating Client-Server Communication Using AQ 1�21
	Multiple-Consumer Dequeuing of the Same Message 1�23
	Illustrating Multiple-Consumer Dequeuing of the Same Message 1�24
	Illustrating Dequeuing of Specified Messages by Specified Recipients 1�26
	Illustrating the Implementation of Workflows using AQ 1�28
	Illustrating the Implementation of Publish/Subscribe using AQ 1�29
	Message Propagation 1�32
	Illustration of Message Propagation 1�34

	Programmatic Environments for Working with AQ 1�35
	AQ and XA 1�35
	Compatibility 1�36
	Restrictions 1�37
	Auto-commit features in DBMS_AQADM package 1�37
	Collection Types in Message Payloads 1�37
	Object Type Payload Support in AQ Java API 1�37
	Synonyms on Queue Tables and Queue 1�37
	Pluggable Tablespace does not Work For 8.0 Compatible Multiconsumer Queues 1�37
	Tablespace point-in-time recovery 1�38
	Propagation from Object Queues 1�38
	Non-Persistent Queues 1�38

	Reference to Demos 1�39

	2� Implementing AQ — A Sample Application
	A Sample Application 2�3
	General Features 2�4
	System Level Access Control 2�5
	Structured Payload 2�7
	Queue Level Access Control 2�9
	Non-Persistent Queues 2�10
	Retention and Message History 2�20
	Publish/Subscribe Support 2�21
	Support for Oracle Parallel Server (OPS) 2�24
	Support for Statistics Views 2�27

	ENQUEUE Features 2�28
	Subscriptions and Recipient Lists 2�29
	Priority and Ordering of Messages 2�31
	Time Specification: Delay 2�34
	Time Specification: Expiration 2�35
	Message Grouping 2�37
	Asynchronous Notifications 2�39

	DEQUEUE Features 2�46
	Dequeue Methods 2�47
	Multiple Recipients 2�50
	Local and Remote Recipients 2�52
	Message Navigation in Dequeue 2�54
	Modes of Dequeuing 2�57
	Optimization of Waiting for Arrival of Messages 2�61
	Retry with Delay Interval 2�63
	Exception Handling 2�65
	Rule-based Subscription 2�69
	Listen Capability 2�72

	Propagation Features 2�76
	Propagation 2�77
	Propagation Scheduling 2�78
	Propagation of Messages with LOB Attributes 2�82
	Enhanced Propagation Scheduling Capabilities 2�85
	Exception Handling During Propagation 2�87

	3� Managing Oracle AQ
	INIT.ORA Parameter 3�2
	AQ_TM_PROCESSES 3�2
	JOB_QUEUE_PROCESSES 3�3

	Common Data Structures 3�4
	Object Name 3�4
	Type name 3�4
	Agent 3�5
	AQ Recipient List Type 3�6
	AQ Agent List Type 3�6
	AQ Subscriber List Type 3�6

	Enumerated Constants in the Administrative Interface 3�7
	Enumerated Constants in the Operational Interface 3�8
	Security 3�9
	Security with 8.0 and 8.1 Compatible Queues 3�9
	Privileges and Access Control 3�10
	Roles 3�11
	Administrator role 3�11
	User role 3�12
	Access to AQ Object Types 3�12
	OCI Applications 3�12
	Propagation 3�12

	Performance 3�14
	Table and index structures 3�14
	Throughput 3�14
	Availability 3�14

	Scalability 3�15
	Migrating Queue Tables 3�16
	Usage Notes 3�16
	Example: To Upgrade An 8.0 Queue Table To A 8.1-Compatible Queue Table 3�17

	Export and Import of Queue Data 3�18
	Exporting Queue Table Data 3�18
	Importing Queue Table Data 3�19

	Propagation Issues 3�21
	Enterprise Manager Support 3�23
	Using XA with AQ 3�23
	Sample DBA Actions as Preparation for Working with AQ 3�24

	4� Administrative Interface: Basic Operations
	Use Case Model: Administrative Interface — Basic Operations 4�2
	Create a Queue Table 4�4
	Usage Notes: 4�8
	Example: Create a Queue Table Using PL/SQL (DBMS_AQADM Package) 4�9

	Create a Queue Table [Set Storage Clause] 4�11
	Alter a Queue Table 4�12
	Example: Alter a Queue Table Using PL/SQL (DBMS_AQADM Package) 4�13
	Usage Notes 4�14

	Drop a Queue Table 4�15
	Example: Drop a Queue Table Using PL/SQL (DBMS_AQADM Package) 4�16

	Create a Queue 4�18
	Usage Notes 4�21
	Example: Create a Queue Using PL/SQL (DBMS_AQADM) 4�21

	Create a Non-Persistent Queue 4�24
	Usage Notes 4�25
	Example: Create a Non-Persistent Queue Using PL/SQL (DBMS_AQADM) 4�25

	Alter a Queue 4�27
	Usage Notes 4�29
	Example: Alter a Queue Using PL/SQL (DBMS_AQADM) 4�29

	Drop a Queue 4�30
	Example: Drop a Queue Using PL/SQL (DBMS_AQADM) 4�31

	Start a Queue 4�32
	Usage Notes 4�33
	Example: Start a Queue using PL/SQL (DBMS_AQADM Package) 4�33

	Stop a Queue 4�34
	Usage Notes 4�35
	Example: Stop a Queue Using PL/SQL (DBMS_AQADM) 4�36

	Grant System Privilege 4�37
	Example: Grant System Privilege Using PL/SQL (DBMS_AQADM) 4�39

	Revoke System Privilege 4�40
	Example: Revoke System Privilege Using PL/SQL (DBMS_AQADM) 4�41

	Grant Queue Privilege 4�42
	Example: Grant Queue Privilege Using PL/SQL (DBMS_AQADM) 4�43

	Revoke Queue Privilege 4�44
	Usage Notes 4�45
	Example: Revoke Queue Privilege Using PL/SQL (DBMS_AQADM) 4�45

	Add a Subscriber 4�46
	Usage Note: 4�47
	Example: Add Subscriber Using PL/SQL (DBMS_AQADM) 4�48
	Example: Add Rule-Based Subscriber Using PL/SQL (DBMS_AQADM) 4�48

	Alter a Subscriber 4�50
	Example: Alter Subscriber Using PL/SQL (DBMS_AQADM) 4�52

	Remove a Subscriber 4�53
	Usage Notes 4�54
	Example: Remove Subscriber Using PL/SQL (DBMS_AQADM) 4�55

	Schedule a Queue Propagation 4�56
	Usage Notes 4�58
	Example: Schedule a Propagation Using PL/SQL (DBMS_AQADM) 4�59

	Unschedule a Queue Propagation 4�60
	Example: Unschedule a Propagation Using PL/SQL (DBMS_AQADM) 4�61

	Verify a Queue Type 4�62
	Example: Verify a Queue Type Using PL/SQL (DBMS_AQADM) 4�63

	Alter a Propagation Schedule 4�65
	Example: Alter a Propagation Schedule Using PL/SQL (DBMS_AQADM) 4�67

	Enable a Propagation Schedule 4�68
	Example: Enable a Propagation Using PL/SQL (DBMS_AQADM) 4�69

	Disable a Propagation Schedule 4�70
	Example: Disable a Propagation Using PL/SQL (DBMS_AQADM) 4�71
	Usage Notes 4�72

	5� Administrative Interface: Views
	Use Case Model: Administrative Interface — Views 5�2
	Select All Queue Tables in Database 5�4
	Select User Queue Tables 5�7
	Select All Queues in Database 5�10
	Select All Propagation Schedules 5�12
	Select Queues for which User has Any Privilege 5�17
	Select Queues for which User has Queue Privilege 5�19
	Select Messages in Queue Table 5�21
	Select Queue Tables in User Schema 5�25
	Select Queues In User Schema 5�28
	Select Propagation Schedules in User Schema 5�30
	Select Queue Subscribers 5�35
	Usage Notes 5�36

	Select Queue Subscribers and their Rules 5�37
	Select the Number of Messages in Different States for the Whole Database 5�39
	Select the Number of Messages in Different States for Specific Instances 5�41

	6� Operational Interface: Basic Operations
	Use Case Model: Operational Interface — Basic Operations 6�2
	Enqueue a Message 6�4
	Usage Notes 6�5

	Enqueue a Message [Specify Options] 6�7
	Usage Notes 6�8

	Enqueue a Message [Specify Message Properties] 6�9
	Usage Notes 6�12

	Enqueue a Message [Specify Message Properties [Specify Sender ID]] 6�13
	Enqueue a Message [Add Payload] 6�15
	Usage Notes 6�15
	Example: Enqueue of Object Type Messages 6�16

	Listen to One (Many) Queue(s) 6�18
	Usage Notes 6�19

	Listen to One (Many) Single-Consumer Queue(s) 6�20
	Example: Listen to Queue(s) Using PL/SQL (DBMS_AQ Package) 6�21
	Example: Listen to Single-Consumer Queue(s) Using C (OCI) 6�21

	Listen to One (Many) Multi-Consumer Queue(s) 6�30
	Example: Listen to Queue(s) Using PL/SQL (DBMS_AQ Package) 6�31
	Example: Listen to Multi-Consumer Queue(s) Using C (OCI) 6�32

	Dequeue a Message 6�38
	Usage Notes 6�39

	Dequeue a Message from a Single-Consumer Queue [Specify Options] 6�41
	Usage Notes 6�44
	Example: Dequeue of Object Type Messages using PL/SQL (DBMS_AQ Package) 6�44

	Dequeue a Message from a Multi-Consumer Queue [Specify Options] 6�46
	Register for Notification 6�50
	Usage Notes 6�52

	Register for Notification [Specify Subscription Name — Single-Consumer Queue] 6�54
	Register for Notification [Specify Subscription Name — Multi-Consumer Queue] 6�55
	Example: Register for Notifications For Single-Consumer and Multi-Consumer Queries Using C (OCI) ...

	7� Advanced Queuing — Java API
	Setup for AQ Examples 7�10

	8� Oracle Advanced Queuing by Example
	Create Queue Tables and Queues 8�4
	Create a Queue Table and Queue of Object Type 8�4
	Create a Queue Table and Queue of Raw Type 8�4
	Create a Prioritized Message Queue Table and Queue 8�5
	Create a Multiple-Consumer Queue Table and Queue 8�5
	Create a Queue to Demonstrate Propagation 8�5

	Enqueue and Dequeue Of Messages 8�6
	Enqueue and Dequeue of Object Type Messages Using PL/SQL 8�6
	Enqueue and Dequeue of Object Type Messages Using Pro*C/C++ 8�7
	Enqueue and Dequeue of Object Type Messages Using OCI 8�9
	Enqueue and Dequeue of RAW Type Messages Using PL/SQL 8�11
	Enqueue and Dequeue of RAW Type Messages Using Pro*C/C++ 8�12
	Enqueue and Dequeue of RAW Type Messages Using OCI 8�15
	Enqueue and Dequeue of RAW Type Messages Using Java 8�16
	Dequeue of Messages Using Java 8�20
	Dequeue of Messages in Browse Mode Using Java 8�21
	Enqueue and Dequeue of Messages by Priority Using PL/SQL 8�22
	Enqueue of Messages with Priority Using Java 8�24
	Dequeue of Messages after Preview by Criterion Using PL/SQL 8�25
	Enqueue and Dequeue of Messages with Time Delay and Expiration Using PL/SQL 8�28
	Enqueue and Dequeue of Messages by Correlation and Message ID Using Pro*C/C++ 8�29
	Enqueue and Dequeue of Messages by Correlation and Message ID Using OCI 8�34
	Enqueue and Dequeue of Messages to/from a Multiconsumer Queue Using PL/SQL 8�36
	Enqueue and Dequeue of Messages to/from a Multiconsumer Queue using OCI 8�39
	Enqueue and Dequeue of Messages Using Message Grouping Using PL/SQL 8�43
	Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes Using PL/SQL 8�45

	Propagation 8�48
	Enqueue of Messages for remote subscribers/recipients to a Multiconsumer Queue and Propagation Sc...
	Manage Propagation From One Queue To Other Queues In The Same Database Using PL/SQL 8�50
	Manage Propagation From One Queue To Other Queues In Another Database Using PL/SQL 8�50
	Unscheduling Propagation Using PL/SQL 8�51

	Drop AQ Objects 8�52
	Revoke Roles and Privileges 8�53
	Deploy AQ with XA 8�54
	AQ and Memory Usage 8�59
	Create_types.sql : Create Payload Types and Queues in Scott's Schema 8�59
	Enqueue Messages (Free Memory After Every Call) Using OCI 8�59
	Enqueue Messages (Reuse Memory) Using OCI 8�63
	Dequeue Messages (Free Memory After Every Call) Using OCI 8�67
	Dequeue Messages (Reuse Memory) Using OCI 8�70

	A� Scripts for Implementing ’BooksOnLine’
	tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers A-2
	tkaqdocd.sql: Examples of Administrative and Operational Interfaces A-16
	tkaqdoce.sql: Operational Examples A-21
	tkaqdocp.sql: Examples of Operational Interfaces A-22
	tkaqdocc.sql: Clean-Up Script A-37

	Send Us Your Comments
	Preface
	1 Introduction
	The Need for Queuing in Messaging Systems
	Message Systems
	Message Persistence

	Features of Advanced Queuing (AQ)
	General Features
	ENQUEUE Features
	DEQUEUE Features
	Propagation Features

	Primary Components of Advanced Queuing (AQ)
	Message
	Queue
	Queue Table
	Agent
	Recipient
	Recipient and Subscription Lists
	Rule
	Rule Based Subscriber
	Queue Monitor

	Modeling Queue Entities
	Basic Queuing
	Illustrating Basic Queuing
	Illustrating Client-Server Communication Using AQ
	Multiple-Consumer Dequeuing of the Same Message
	Illustrating Multiple-Consumer Dequeuing of the Same Message
	Illustrating Dequeuing of Specified Messages by Specified Recipients
	Illustrating the Implementation of Workflows using AQ
	Illustrating the Implementation of Publish/Subscribe using AQ
	Message Propagation
	Illustration of Message Propagation

	Programmatic Environments for Working with AQ
	AQ and XA
	Compatibility
	Restrictions
	Auto-commit features in DBMS_AQADM package
	Collection Types in Message Payloads
	Object Type Payload Support in AQ Java API
	Synonyms on Queue Tables and Queue
	Pluggable Tablespace does not Work For 8.0 Compatible Multiconsumer Queues
	Tablespace point-in-time recovery
	Propagation from Object Queues
	Non-Persistent Queues

	Reference to Demos

	2 Implementing AQ — A Sample Application
	A Sample Application
	General Features
	System Level Access Control
	Structured Payload
	Queue Level Access Control
	Non-Persistent Queues
	Retention and Message History
	Publish/Subscribe Support
	Support for Oracle Parallel Server (OPS)
	Support for Statistics Views

	ENQUEUE Features
	Subscriptions and Recipient Lists
	Priority and Ordering of Messages
	Time Specification: Delay
	Time Specification: Expiration
	Message Grouping
	Asynchronous Notifications

	DEQUEUE Features
	Dequeue Methods
	Multiple Recipients
	Local and Remote Recipients
	Message Navigation in Dequeue
	Modes of Dequeuing
	Optimization of Waiting for Arrival of Messages
	Retry with Delay Interval
	Exception Handling
	Rule-based Subscription
	Listen Capability

	Propagation Features
	Propagation
	Propagation Scheduling
	Propagation of Messages with LOB Attributes
	Enhanced Propagation Scheduling Capabilities
	Exception Handling During Propagation

	3 Managing Oracle AQ
	INIT.ORA Parameter
	AQ_TM_PROCESSES
	JOB_QUEUE_PROCESSES

	Common Data Structures
	Object Name
	Type name
	Agent
	AQ Recipient List Type
	AQ Agent List Type
	AQ Subscriber List Type

	Enumerated Constants in the Administrative Interface
	Enumerated Constants in the Operational Interface
	Security
	Security with 8.0 and 8.1 Compatible Queues
	Privileges and Access Control
	Roles
	Administrator role
	User role
	Access to AQ Object Types
	OCI Applications
	Propagation

	Performance
	Table and index structures
	Throughput
	Availability

	Scalability
	Migrating Queue Tables
	Usage Notes
	Example: To Upgrade An 8.0 Queue Table To A 8.1-Compatible Queue Table

	Export and Import of Queue Data
	Exporting Queue Table Data
	Importing Queue Table Data

	Propagation Issues
	Enterprise Manager Support
	Using XA with AQ
	Sample DBA Actions as Preparation for Working with AQ

	4 Administrative Interface: Basic Operations
	Use Case Model: Administrative Interface — Basic Operations
	Create a Queue Table
	Usage Notes:
	Example: Create a Queue Table Using PL/SQL (DBMS_AQADM Package)

	Create a Queue Table [Set Storage Clause]
	Alter a Queue Table
	Example: Alter a Queue Table Using PL/SQL (DBMS_AQADM Package)
	Usage Notes

	Drop a Queue Table
	Example: Drop a Queue Table Using PL/SQL (DBMS_AQADM Package)

	Create a Queue
	Usage Notes
	Example: Create a Queue Using PL/SQL (DBMS_AQADM)

	Create a Non-Persistent Queue
	Usage Notes
	Example: Create a Non-Persistent Queue Using PL/SQL (DBMS_AQADM)

	Alter a Queue
	Usage Notes
	Example: Alter a Queue Using PL/SQL (DBMS_AQADM)

	Drop a Queue
	Example: Drop a Queue Using PL/SQL (DBMS_AQADM)

	Start a Queue
	Usage Notes
	Example: Start a Queue using PL/SQL (DBMS_AQADM Package)

	Stop a Queue
	Usage Notes
	Example: Stop a Queue Using PL/SQL (DBMS_AQADM)

	Grant System Privilege
	Example: Grant System Privilege Using PL/SQL (DBMS_AQADM)

	Revoke System Privilege
	Example: Revoke System Privilege Using PL/SQL (DBMS_AQADM)

	Grant Queue Privilege
	Example: Grant Queue Privilege Using PL/SQL (DBMS_AQADM)

	Revoke Queue Privilege
	Usage Notes
	Example: Revoke Queue Privilege Using PL/SQL (DBMS_AQADM)

	Add a Subscriber
	Usage Note:
	Example: Add Subscriber Using PL/SQL (DBMS_AQADM)
	Example: Add Rule-Based Subscriber Using PL/SQL (DBMS_AQADM)

	Alter a Subscriber
	Example: Alter Subscriber Using PL/SQL (DBMS_AQADM)

	Remove a Subscriber
	Usage Notes
	Example: Remove Subscriber Using PL/SQL (DBMS_AQADM)

	Schedule a Queue Propagation
	Usage Notes
	Example: Schedule a Propagation Using PL/SQL (DBMS_AQADM)

	Unschedule a Queue Propagation
	Example: Unschedule a Propagation Using PL/SQL (DBMS_AQADM)

	Verify a Queue Type
	Example: Verify a Queue Type Using PL/SQL (DBMS_AQADM)

	Alter a Propagation Schedule
	Example: Alter a Propagation Schedule Using PL/SQL (DBMS_AQADM)

	Enable a Propagation Schedule
	Example: Enable a Propagation Using PL/SQL (DBMS_AQADM)

	Disable a Propagation Schedule
	Example: Disable a Propagation Using PL/SQL (DBMS_AQADM)
	Usage Notes

	5 Administrative Interface: Views
	Use Case Model: Administrative Interface — Views
	Select All Queue Tables in Database
	Select User Queue Tables
	Select All Queues in Database
	Select All Propagation Schedules
	Select Queues for which User has Any Privilege
	Select Queues for which User has Queue Privilege
	Select Messages in Queue Table
	Select Queue Tables in User Schema
	Select Queues In User Schema
	Select Propagation Schedules in User Schema
	Select Queue Subscribers
	Usage Notes

	Select Queue Subscribers and their Rules
	Select the Number of Messages in Different States for the Whole Database
	Select the Number of Messages in Different States for Specific Instances

	6 Operational Interface: Basic Operations
	Use Case Model: Operational Interface — Basic Operations
	Enqueue a Message
	Usage Notes

	Enqueue a Message [Specify Options]
	Usage Notes

	Enqueue a Message [Specify Message Properties]
	Usage Notes

	Enqueue a Message [Specify Message Properties [Specify Sender ID]]
	Enqueue a Message [Add Payload]
	Usage Notes
	Example: Enqueue of Object Type Messages

	Listen to One (Many) Queue(s)
	Usage Notes

	Listen to One (Many) Single-Consumer Queue(s)
	Example: Listen to Queue(s) Using PL/SQL (DBMS_AQ Package)
	Example: Listen to Single-Consumer Queue(s) Using C (OCI)

	Listen to One (Many) Multi-Consumer Queue(s)
	Example: Listen to Queue(s) Using PL/SQL (DBMS_AQ Package)
	Example: Listen to Multi-Consumer Queue(s) Using C (OCI)

	Dequeue a Message
	Usage Notes

	Dequeue a Message from a Single-Consumer Queue [Specify Options]
	Usage Notes
	Example: Dequeue of Object Type Messages using PL/SQL (DBMS_AQ Package)

	Dequeue a Message from a Multi-Consumer Queue [Specify Options]
	Register for Notification
	Usage Notes

	Register for Notification [Specify Subscription Name — Single-Consumer Queue]
	Register for Notification [Specify Subscription Name — Multi-Consumer Queue]
	Example: Register for Notifications For Single-Consumer and Multi-Consumer Queries Using C (OCI)

	7 Advanced Queuing — Java API
	Introduction
	AQDriverManager
	getDrivers
	getAQSession
	registerDriver

	APIs/Classes
	AQSession
	createQueueTable
	getQueueTable
	createQueue
	getQueue
	Setup for AQ Examples
	Example

	AQConstants
	AQAgent
	Constructor
	getName
	setName
	getAddress
	setAddress
	getProtocol
	setProtocol

	AQQueueTableProperty
	Constants for Message Grouping
	Constructor
	getPayloadType
	setPayloadType
	setStorageClause
	getSortOrder
	setSortOrder
	isMulticonsumerEnabled
	setMultiConsumer
	getMessageGrouping
	setMessageGrouping
	getComment
	setComment
	getCompatible
	setCompatible
	getPrimaryInstance
	setPrimaryInstance
	setSecondaryInstance
	Examples:

	AQQueueProperty
	Constants:
	Constructor:
	getQueueType
	setQueueType
	getMaxRetries
	setMaxRetries
	setRetryInterval
	getRetryInterval
	getRetentionTime
	setRetentionTime
	getComment
	setComment
	Example:

	AQQueueTable
	getOwner
	getName
	getProperty
	drop
	alter
	createQueue
	dropQueue
	Example:

	AQQueueAdmin
	start
	startEnqueue
	startDequeue
	stop
	stopEnqueue
	stopDequeue
	drop
	alterQueue
	addSubscriber
	removeSubscriber
	alterSubscriber
	grantQueuePrivilege
	revokeQueuePrivilege
	schedulePropagation
	unschedulePropagation
	alterPropagationSchedule
	enablePropagationSchedule
	disablePropagationSchedule
	Examples:

	AQQueue
	getOwner
	getName
	getQueueTableName
	getProperty
	createMessage
	enqueue
	dequeue
	getSubscribers

	AQEnqueueOption
	Constants
	Constructors
	getVisibility
	setVisibility
	getRelMessageId
	getSequenceDeviation
	setSequenceDeviation

	AQDequeueOption
	Constants
	Constructor
	getConsumerName
	setConsumerName
	getDequeueMode
	setDequeueMode
	getNavigationMode
	setNavigationMode
	getVisibility
	setVisibility
	getWaitTime
	setWaitTime
	getMessageId
	setMessageId
	getCorrelation
	setCorrelation

	AQMessage
	getMessageId
	getRawPayload
	setRawPayload
	getMessageProperty
	setMessageProperty

	AQMessageProperty
	Constants
	Constructor
	getPriority
	setPriority
	getDelay
	setDelay
	getExpiration
	setExpiration
	getCorrelation
	setCorrelation
	getAttempts
	getRecipientList
	setRecipientList
	getOrigMessageId
	getSender
	setSender
	getExceptionQueue
	setExceptionQueue
	getEnqueueTime
	getState

	AQRawPayload
	getStream
	getBytes
	setStream

	AQException
	getMessage
	getErrorCode
	getNextException

	AQOracleSQLException

	8 Oracle Advanced Queuing by Example
	Create Queue Tables and Queues
	Create a Queue Table and Queue of Object Type
	Create a Queue Table and Queue of Raw Type
	Create a Prioritized Message Queue Table and Queue
	Create a Multiple-Consumer Queue Table and Queue
	Create a Queue to Demonstrate Propagation

	Enqueue and Dequeue Of Messages
	Enqueue and Dequeue of Object Type Messages Using PL/SQL
	Enqueue and Dequeue of Object Type Messages Using Pro*C/C++
	Enqueue and Dequeue of Object Type Messages Using OCI
	Enqueue and Dequeue of RAW Type Messages Using PL/SQL
	Enqueue and Dequeue of RAW Type Messages Using Pro*C/C++
	Enqueue and Dequeue of RAW Type Messages Using OCI
	Enqueue and Dequeue of RAW Type Messages Using Java
	Dequeue of Messages Using Java
	Dequeue of Messages in Browse Mode Using Java
	Enqueue and Dequeue of Messages by Priority Using PL/SQL
	Enqueue of Messages with Priority Using Java
	Dequeue of Messages after Preview by Criterion Using PL/SQL
	Enqueue and Dequeue of Messages with Time Delay and Expiration Using PL/SQL
	Enqueue and Dequeue of Messages by Correlation and Message ID Using Pro*C/C++
	Enqueue and Dequeue of Messages by Correlation and Message ID Using OCI
	Enqueue and Dequeue of Messages to/from a Multiconsumer Queue Using PL/SQL
	Enqueue and Dequeue of Messages to/from a Multiconsumer Queue using OCI
	Enqueue and Dequeue of Messages Using Message Grouping Using PL/SQL
	Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes Using PL/SQL

	Propagation
	Enqueue of Messages for remote subscribers/recipients to a Multiconsumer Queue and Propagation Sc...
	Manage Propagation From One Queue To Other Queues In The Same Database Using PL/SQL
	Manage Propagation From One Queue To Other Queues In Another Database Using PL/SQL
	Unscheduling Propagation Using PL/SQL

	Drop AQ Objects
	Revoke Roles and Privileges
	Deploy AQ with XA
	AQ and Memory Usage
	Create_types.sql : Create Payload Types and Queues in Scott's Schema
	Enqueue Messages (Free Memory After Every Call) Using OCI
	Enqueue Messages (Reuse Memory) Using OCI
	Dequeue Messages (Free Memory After Every Call) Using OCI
	Dequeue Messages (Reuse Memory) Using OCI

	A Scripts for Implementing ’BooksOnLine’
	tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
	tkaqdocd.sql: Examples of Administrative and Operational Interfaces
	tkaqdoce.sql: Operational Examples
	tkaqdocp.sql: Examples of Operational Interfaces
	tkaqdocc.sql: Clean-Up Script

	Index

