
Oracle Call Interface

Programmer’s Guide, Volumes 1 and 2

Release 8.1.5

February 1999

Part No. A67846-01

Oracle Call Interface Programmer’s Guide, Volumes 1 and 2, Release 8.1.5

Part No. A67846-01

Release 8.1.5

Copyright © 1999, Oracle Corporation. All rights reserved.

Primary Author: Phil Locke

Contributing Author: Eric Belden

Contributors: Ruth Baylis, Allen Brumm, Sashi Chandrasekaran, Debashish Chatterjee, Ernest Chen,
Luxi Chidambaran, Sreenivas Gollapudi, Brajesh Goyal, Radhakrishna Hari, Josef Hasenberger, Don
Herkimer, Chin-Heng Hong, Nancy Ikeda, Amit Jasuja, Sanjay Kaluskar, Ravi Kasamsetty, Susan
Kotsovolos, Vishu Krishnamurthy, Srinath Krishnaswamy, Ramkumar Krishnan, Sanjeev Kumar,
Thomas Kurian, Paul Lane, Shoaib Lari, Chon Lei, Cindy Lim, Nancy Liu, Diana Lorentz, Shailendra
Mishra, Valarie Moore, Tin Nguyen, Denise Oertel, Rosanne Park, Jacqui Pons, Den Raphaely, Anindo
Roy, Tim Smith, Ekrem Soylemez, Ashwini Surpur, Alan Thiessen, Peter Vasterd, Joyo Wijaya, Sathyam
Yanamandram, Allen Zhao

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright, patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are "restricted computer software" and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Forms, SQL*Net, and SQL*Plus are registered trademarks of Oracle Corporation, Redwood
Shores, California. Oracle Call Interface, Oracle7, Oracle7 Server, Oracle8, Oracle Forms, PL/SQL, Pro*C,
Pro*C/C++, Pro*COBOL, Net8, and Trusted Oracle are trademarks of Oracle Corporation. All other
products or company names are used for identification purposes only, and may be trademarks of their
respective owners.

iii

Contents

Send Us Your Comments .. xxvii

Preface .. xxix

Part I Basic OCI Concepts

1 Introduction, New Features, and Upgrading

Overview of OCI... 1-2
Advantages of OCI ... 1-3
Building an OCI Application .. 1-4
Parts of the OCI... 1-5
Procedural and Non-Procedural Elements ... 1-5
Object Support .. 1-6
SQL Statements ... 1-7

New Features ... 1-12
Encapsulated Interfaces ... 1-13
Simplified User Authentication and Password Management ... 1-13
Extensions to Improve Application Performance and Scalability....................................... 1-14
Oracle OCI Object Support.. 1-15
Client-side Object Cache.. 1-15
Associative and Navigational Interfaces... 1-15
Runtime Environment for Objects ... 1-16
Type Management, Mapping and Manipulation Functions .. 1-17
Object Type Translator... 1-17

iv

OCI Support for Oracle Advanced Queueing .. 1-18
Simplified Migration of Existing Applications... 1-18

Compatibility, Upgrading, and Migration... 1-19
Obsolescent OCI Routines ... 1-19
OCI Routines Not Supported.. 1-21
Compatibility... 1-22
Upgrading.. 1-23
Application Linking Issues.. 1-25

2 OCI Programming Basics

Overview... 2-2
OCI Program Structure .. 2-3
OCI Data Structures ... 2-5
Handles ... 2-6

Allocating and Freeing Handles... 2-7
Environment Handle.. 2-8
Error Handle.. 2-9
Service Context and Associated Handles.. 2-9
Statement Handle, Bind Handle, and Define Handle ... 2-10
Describe Handle.. 2-11
Complex Object Retrieval Handle.. 2-11
Thread Handle .. 2-11
Subscription Handle... 2-11
Direct Path Handles.. 2-12
Process Handle.. 2-12
Handle Attributes ... 2-12
User Memory Allocation ... 2-13

Descriptors and Locators ... 2-14
Snapshot Descriptor ... 2-15
LOB/FILE Datatype Locator... 2-15
Parameter Descriptor ... 2-16
ROWID Descriptor ... 2-16
Complex Object Descriptor ... 2-16
Advanced Queueing Descriptors ... 2-17
User Memory Allocation ... 2-17

v

OCI Programming Steps ... 2-17
Initialization, Connection, and Session Creation... 2-18

Initializing an OCI Environment.. 2-18
Shared Data Mode .. 2-19
Allocate Handles and Descriptors ... 2-22
Application Initialization, Connection, and Session Creation ... 2-23

Processing SQL Statements .. 2-25
Commit or Rollback ... 2-26
Terminating the Application .. 2-26
Error Handling .. 2-27

Return and Error Codes for Truncation and Null Data.. 2-28
Functions Returning Other Values .. 2-29

Additional Coding Guidelines .. 2-30
Parameter Types ... 2-30
Nulls ... 2-31
Indicator Variables ... 2-31
Cancelling Calls .. 2-33
Positioned Updates and Deletes... 2-34
Reserved Words.. 2-35
Application Linking ... 2-36

Non-Blocking Mode ... 2-36
Setting Blocking Modes ... 2-37
Cancelling a Non-blocking Call.. 2-37
Non-blocking Example .. 2-37

Using PL/SQL in an OCI Program... 2-39

3 Datatypes

Oracle Datatypes ... 3-2
Internal Datatype Codes.. 3-3
External Datatype Codes ... 3-4

Internal Datatypes .. 3-5
LONG, RAW, LONG RAW, VARCHAR2.. 3-5
Character Strings and Byte Arrays... 3-5
Universal ROWID... 3-6

External Datatypes.. 3-7

vi

VARCHAR2... 3-8
NUMBER.. 3-10
INTEGER.. 3-11
FLOAT.. 3-11
STRING .. 3-11
VARNUM .. 3-12
LONG ... 3-13
VARCHAR... 3-13
ROWID ... 3-13
DATE .. 3-14
RAW.. 3-14
VARRAW... 3-15
LONG RAW... 3-15
UNSIGNED.. 3-15
LONG VARCHAR.. 3-16
LONG VARRAW.. 3-16
CHAR ... 3-16
CHARZ... 3-17

New Oracle External Datatypes ... 3-17
NAMED DATA TYPE (Object, VARRAY, Nested Table) .. 3-18
REF.. 3-18
LOB ... 3-18
New C Datatype Mappings... 3-21

Data Conversions .. 3-21
Typecodes ... 3-23

Relationship Between SQLT and OCI_TYPECODE Values ... 3-25
Definitions in oratypes.h... 3-27

4 SQL Statement Processing

Overview... 4-2
Processing SQL Statements... 4-2
Preparing Statements ... 4-4

Using Prepared Statements on Multiple Servers ... 4-5
Binding.. 4-5
Executing Statements ... 4-6

vii

Execution Snapshots .. 4-7
Execution Modes .. 4-7
Batch Error Mode for OCIStmtExecute() .. 4-8

Describing Select-List Items... 4-10
Implicit Describe... 4-11
Explicit Describe of Queries .. 4-13

Defining.. 4-14
Fetching Results .. 4-14

Fetching LOB Data ... 4-15
Setting Prefetch Count ... 4-15

5 Binding and Defining

Binding ... 5-2
Named Binds and Positional Binds ... 5-4
OCI Array Interface.. 5-4
Binding Placeholders in PL/SQL... 5-5
Steps Used in Binding.. 5-6
PL/SQL Example.. 5-7
Advanced Binds.. 5-9

Advanced Bind Operations... 5-9
Static Array Binds... 5-10
Named Data Type Binds ... 5-10
Binding REFs ... 5-10
Binding LOBs .. 5-10
Binding in OCI_DATA_AT_EXEC Mode ... 5-11
Binding Ref Cursor Variables ... 5-12
Summary of Bind Information.. 5-12

Defining.. 5-13
Steps Used in Defining .. 5-14
Advanced Defines .. 5-15

Advanced Define Operations... 5-16
Defining Named Data Type Output Variables .. 5-16
Defining REF Output Variables.. 5-16
Defining LOB Output Variables ... 5-17
Defining PL/SQL Output Variables .. 5-17

viii

Defining For a Piecewise Fetch... 5-17
Defining Arrays of Structures ... 5-17

Arrays of Structures .. 5-17
Skip Parameters .. 5-18
OCI Calls Used with Arrays of Structures .. 5-20
Arrays of Structures and Indicator Variables ... 5-20

DML with RETURNING Clause ... 5-21
Using DML with RETURNING Clause... 5-21
Binding RETURNING...INTO variables.. 5-22
Error Handling.. 5-23
DML with RETURNING REF...INTO clause.. 5-23
Additional Notes About Callbacks .. 5-25
 Array Interface for DML RETURNING Statements ... 5-25

NCHAR and Character Conversion Issues .. 5-26
NCHAR Issues .. 5-26
OCI_ATTR_MAXDATA_SIZE Attribute .. 5-27
Character Count Attribute... 5-28
Fixed Width Unicode Support .. 5-28

PL/SQL REF CURSORs and Nested Tables .. 5-30
Run Time Data Allocation and Piecewise Operations .. 5-32

Providing INSERT or UPDATE Data at Run Time.. 5-34
Piecewise Operations With PL/SQL.. 5-36
Providing FETCH Information at Run Time .. 5-36
Additional Information About Piecewise Operations with No Callbacks......................... 5-39

6 Describing Schema Metadata

Overview... 6-2
Using OCIDescribeAny() .. 6-2

Restrictions... 6-4
Notes on Types and Attributes... 6-4
Parameter Attributes .. 6-5
Table/View Attributes... 6-7
Procedure/Function/Subprogram Attributes ... 6-8
Package Attributes.. 6-8
Type Attributes ... 6-9

ix

Type Attribute Attributes.. 6-10
Type Method Attributes .. 6-11
Collection Attributes .. 6-13
Synonym Attributes ... 6-14
Sequence Attributes ... 6-14
Column Attributes.. 6-15
Argument/Result Attributes .. 6-16
List Attributes ... 6-18
Schema Attributes .. 6-19
Database Attributes.. 6-19

Examples... 6-20
Retrieving column data types for a table .. 6-20
Describing the stored procedure .. 6-21
Retrieving attributes of an object type... 6-23
Retrieving the collection element’s data type of a named collection type 6-25

7 LOB and FILE Operations

Overview .. 7-2
Locators ... 7-2

LOB Locators... 7-2
FILE Locators .. 7-4

Creating and Modifying Internal LOBs ... 7-4
Associating a FILE in a Table with an OS File.. 7-5
LOB Attributes of an Object... 7-5

Writing to a LOB Attribute of an Object ... 7-5
Transient Objects with LOB Attributes ... 7-6

Array Interface For LOBs .. 7-6
LOB and FILE Functions ... 7-6

Functions for Improving LOB Read/Write Performance... 7-10
LOB Buffering Functions... 7-11
Functions for Opening and Closing LOBs .. 7-11
Server Roundtrips for LOB Functions ... 7-13

LOB Read and Write Callbacks ... 7-13
The Callback Interface for Streaming .. 7-13
Reading LOBs using Callbacks... 7-14

x

Writing LOBs using Callbacks.. 7-15
Temporary LOB Support ... 7-17

Creating and Freeing Temporary LOBs .. 7-18
Temporary LOB Durations.. 7-18
Temporary LOB Example.. 7-19

8 Managing Scalable Platforms

Overview... 8-2
Transactions ... 8-2

Levels of Transactional Complexity... 8-3
Transaction Examples .. 8-8
Related Initialization Parameters ... 8-10

Password and Session Management ... 8-10
Authentication Management .. 8-10
Password Management.. 8-12
Session Management.. 8-13

Thread Safety ... 8-14
Advantages of OCI Thread Safety.. 8-14
Thread Safety and Three-Tier Architectures .. 8-14
Basic Concepts of Multi-threaded Development ... 8-15
Implementing Thread Safety... 8-15

9 OCI Programming Advanced Topics

Overview... 9-2
The OCIThread Package.. 9-2

Initialization and Termination .. 9-3
Passive Threading Primitives.. 9-4
Active Threading Primitives ... 9-7
Using the OCIThread Package.. 9-8
Example using OCIThread.. 9-9

User-defined Callback Functions .. 9-11
Registering User Callbacks.. 9-11
OCI Callbacks From External Procedures... 9-17

Application Failover Callbacks .. 9-18
Failover Callback Overview.. 9-18

xi

Failover Callback Structure and Parameters .. 9-18
Failover Callback Registration.. 9-20
Failover Callback Example.. 9-20
Handling OCI_FO_ERROR... 9-21

OCI and Advanced Queuing .. 9-25
OCI Advanced Queuing Functions ... 9-25
OCI Advanced Queuing Descriptors .. 9-25
Advanced Queuing in OCI vs. PL/SQL ... 9-26

Publish-Subscribe Notification ... 9-29
Publish-Subscribe Functions... 9-30
Notification Callback ... 9-31
Publish-Subscribe Example... 9-33

Direct Path Loading.. 9-37
Limitations and Restrictions ... 9-38
Datatypes Supported ... 9-39
Direct Path Handles ... 9-39
Direct Path Interface Functions .. 9-41
Direct Path Load Example... 9-42

Part II OCI Object Concepts

10 OCI Object-Relational Programming

Overview .. 10-2
OCI Object Overview .. 10-3
Working with Objects in the OCI ... 10-4

 Basic Object Program Structure... 10-4
Persistent Objects, Transient Objects, and Values ... 10-5

Developing an OCI Object Application... 10-7
Representing Objects in C Applications.. 10-8
Initializing Environment and Object Cache ... 10-10
Making Database Connections ... 10-10
Retrieving an Object Reference from the Server ... 10-11
Pinning an Object.. 10-12
Manipulating Object Attributes.. 10-13
Marking Objects and Flushing Changes ... 10-14

xii

Fetching Embedded Objects.. 10-15
Object Meta-Attributes... 10-17
Complex Object Retrieval .. 10-20
COR Prefetching ... 10-24
OCI vs. SQL Access to Objects.. 10-27
Pin Count and Unpinning ... 10-28
Nullness.. 10-29
Creating Objects .. 10-32
Freeing and Copying Objects.. 10-33
Object Reference and Type Reference.. 10-33
Creating Objects Based on Object Views or User-defined OIDs 10-34
Error Handling in Object Applications ... 10-35

11 Object-Relational Datatypes

Overview... 11-2
Mapping Oracle Datatypes to C... 11-2

OCI Type Mapping Methodology.. 11-4
Manipulating C Datatypes With OCI ... 11-5

Precision of Oracle Number Operations ... 11-6
Date (OCIDate).. 11-7

Date Conversion Functions ... 11-7
Date Assignment and Retrieval Functions.. 11-7
Date Arithmetic and Comparison Functions.. 11-8
Date Information Accessor Functions.. 11-8
Date Validity Checking Functions ... 11-8
Date Example .. 11-8

Number (OCINumber) .. 11-10
Number Arithmetic Functions.. 11-10
Number Conversion Functions .. 11-11
Exponential and Logarithmic Functions ... 11-12
Trigonometric Functions ... 11-12
Number Assignment, Comparison, and Evaluation Functions... 11-12
Number Example.. 11-13

Fixed or Variable-Length String (OCIString).. 11-15
String Functions .. 11-15

xiii

String Example.. 11-15
Raw (OCIRaw) .. 11-16

Raw Functions... 11-16
Raw Example... 11-17

Collections (OCITable, OCIArray, OCIColl, OCIIter).. 11-17
Generic Collection Functions .. 11-18
Collection Data Manipulation Functions .. 11-18
Collection Scanning Functions ... 11-19
Varray/Collection Iterator Example.. 11-19
Nested Table Manipulation Functions .. 11-20
Nested Table Locators.. 11-21

REF (OCIRef) ... 11-22
REF Manipulation Functions .. 11-22
REF Example ... 11-22

Object Type Information Storage and Access... 11-23
Descriptor Objects .. 11-23

12 Binding and Defining in Object Applications

Binding ... 12-2
Named Datatype Binds.. 12-2
Binding REFs ... 12-3
Information for Named Datatype and REF Binds ... 12-3

Defining.. 12-4
Defining Named Datatype Output Variables .. 12-4
Defining REF Output Variables.. 12-4
Information for Named Datatype and REF Defines, and PL/SQL OUT Binds 12-5

Binding And Defining Oracle C Datatypes .. 12-6
Bind and Define Examples .. 12-8
Salary Update Examples.. 12-10

SQLT_NTY Bind/Define Example .. 12-13
Bind Example .. 12-13
Define Example... 12-14

xiv

13 Object Cache and Object Navigation

Overview... 13-2
The Object Cache and Memory Management... 13-2

Cache Consistency and Coherency .. 13-4
Object Cache Parameters ... 13-5
Object Cache Operations ... 13-6
Operations for Loading and Removing Object Copies ... 13-7
Operations for Making Changes to Object Copies .. 13-9
Operations for Synchronizing Object Copies with Server.. 13-10
Object Locking Operations .. 13-12
Commit and Rollback in Object Applications .. 13-14
Object Duration... 13-14
Memory Layout of an Instance ... 13-16

Object Navigation ... 13-17
Simple Object Navigation.. 13-17

OCI Navigational Functions ... 13-19
Pin/Unpin/Free Functions ... 13-19
Flush and Refresh Functions... 13-20
Mark and Unmark Functions.. 13-20
Object Meta-Attribute Accessor Functions ... 13-20
Other Functions... 13-21

14 Using the Object Type Translator

OTT Overview ... 14-2
Using the Object Type Translator ... 14-2

Creating Types in the Database .. 14-5
Invoking the OTT.. 14-5

The OTT Command Line .. 14-6
OTT ... 14-6
userid .. 14-6
intype .. 14-6
outtype.. 14-6
code ... 14-7
hfile ... 14-7
initfile.. 14-7

xv

initfunc ... 14-8
The Intype File .. 14-8
OTT Datatype Mappings .. 14-10

Null Indicator Structs... 14-15
The Outtype File ... 14-16
Using the OTT with OCI Applications .. 14-18

Accessing and Manipulating Objects with OCI... 14-19
Calling the Initialization Function ... 14-20
Tasks of the Initialization Function.. 14-22

OTT Reference .. 14-22
OTT Command Line Syntax ... 14-23
OTT Parameters .. 14-24
Where OTT Parameters Can Appear... 14-28
Structure of the Intype File.. 14-29
Nested #include File Generation .. 14-31
SCHEMA_NAMES Usage... 14-33
Default Name Mapping... 14-36
Restriction .. 14-37

Part III OCI Reference

15 OCI Relational Functions

Introduction ... 15-2
Function Syntax .. 15-2
Calling OCI Functions ... 15-3
Server Roundtrips for LOB Functions ... 15-3

Advanced Queuing and Publish-Subscribe Functions ... 15-4
OCIAQDeq().. 15-5
OCIAQEnq().. 15-7
OCIAQListen() .. 15-19
OCISubscriptionDisable().. 15-20
OCISubscriptionEnable()... 15-21
OCISubscriptionPost() ... 15-22
OCISubscriptionRegister() .. 15-24
OCISubscriptionUnRegister() ... 15-26

xvi

Handle and Descriptor Functions.. 15-27
OCIAttrGet().. 15-28
OCIAttrSet()... 15-29
OCIDescriptorAlloc() ... 15-31
OCIDescriptorFree() ... 15-33
OCIHandleAlloc()... 15-34
OCIHandleFree() .. 15-37
OCIParamGet().. 15-39
OCIParamSet() .. 15-41

Bind, Define, and Describe Functions .. 15-42
OCIBindArrayOfStruct() ... 15-43
OCIBindByName() ... 15-44
OCIBindByPos() .. 15-48
OCIBindDynamic()... 15-52
OCIBindObject().. 15-56
OCIDefineArrayOfStruct() .. 15-58
OCIDefineByPos()... 15-59
OCIDefineDynamic() ... 15-63
OCIDefineObject() .. 15-65
OCIDescribeAny() .. 15-67
OCIStmtGetBindInfo() ... 15-70

Direct Path Loading Functions ... 15-72
OCIDirPathAbort() ... 15-73
OCIDirPathColArrayEntryGet()... 15-74
OCIDirPathColArrayEntrySet().. 15-76
OCIDirPathColArrayRowGet() .. 15-78
OCIDirPathColArrayReset() ... 15-79
OCIDirPathColArrayToStream().. 15-80
OCIDirPathFinish()... 15-82
OCIDirPathLoadStream() .. 15-83
OCIDirPathPrepare().. 15-85
OCIDirPathStreamReset() ... 15-86

Connect, Authorize, and Initialize Functions ... 15-87
OCIEnvCreate()... 15-88
OCIEnvInit() .. 15-91

xvii

OCIInitialize().. 15-93
OCILogoff() ... 15-96
OCILogon().. 15-97
OCIServerAttach() .. 15-99
OCIServerDetach() ... 15-101
OCISessionBegin() .. 15-102
OCISessionEnd()... 15-105
OCITerminate() ... 15-106

LOB Functions ... 15-107
OCIDurationBegin() ... 15-109
OCIDurationEnd().. 15-110
OCILobAppend().. 15-111
OCILobAssign() .. 15-112
OCILobCharSetForm()... 15-114
OCILobCharSetId() .. 15-115
OCILobClose() .. 15-116
OCILobCopy()... 15-117
OCILobCreateTemporary()... 15-119
OCILobDisableBuffering() .. 15-121
OCILobEnableBuffering() ... 15-122
OCILobErase()... 15-123
OCILobFileClose() .. 15-124
OCILobFileCloseAll()... 15-125
OCILobFileExists() ... 15-126
OCILobFileGetName()... 15-127
OCILobFileIsOpen() ... 15-129
 OCILobFileOpen() ... 15-130
OCILobFileSetName().. 15-131
OCILobFlushBuffer() ... 15-132
OCILobFreeTemporary()... 15-134
OCILobGetChunkSize()... 15-135
OCILobGetLength() ... 15-137
OCILobIsEqual() ... 15-138
OCILobIsOpen() ... 15-139
OCILobIsTemporary() ... 15-141

xviii

OCILobLoadFromFile() .. 15-142
OCILobLocatorAssign().. 15-144
OCILobLocatorIsInit()... 15-146
OCILobOpen().. 15-147
OCILobRead() .. 15-148
OCILobTrim()... 15-152
OCILobWrite().. 15-153
OCILobWriteAppend() ... 15-157

Statement Functions .. 15-160
OCIStmtExecute() .. 15-161
OCIStmtFetch()... 15-164
OCIStmtGetPieceInfo() ... 15-165
OCIStmtPrepare() .. 15-167
OCIStmtSetPieceInfo() .. 15-169

Thread Management Functions .. 15-171
OCIThreadClose().. 15-173
OCIThreadCreate() .. 15-174
OCIThreadHandleGet() .. 15-176
OCIThreadHndDestroy() ... 15-177
OCIThreadHndInit() ... 15-178
OCIThreadIdDestroy().. 15-179
OCIThreadIdGet().. 15-180
OCIThreadIdInit().. 15-181
OCIThreadIdNull().. 15-182
OCIThreadIdSame() .. 15-183
OCIThreadIdSet() .. 15-184
OCIThreadIdSetNull() .. 15-185
OCIThreadInit() ... 15-186
OCIThreadIsMulti()... 15-187
OCIThreadJoin()... 15-188
OCIThreadKeyDestroy()... 15-189
OCIThreadKeyGet() .. 15-190
OCIThreadKeyInit() .. 15-191
OCIThreadKeySet() ... 15-192
OCIThreadMutexAcquire() .. 15-193

xix

OCIThreadMutexDestroy() ... 15-194
OCIThreadMutexInit()... 15-195
OCIThreadMutexRelease().. 15-196
OCIThreadProcessInit() ... 15-197
OCIThreadTerm() ... 15-198

Transaction Functions.. 15-199
OCITransCommit()... 15-200
OCITransDetach()... 15-203
OCITransForget().. 15-204
OCITransPrepare() ... 15-205
OCITransRollback().. 15-206
OCITransStart()... 15-207

Miscellaneous Functions ... 15-215
OCIBreak() ... 15-216
OCIErrorGet() ... 15-217
OCILdaToSvcCtx() ... 15-219
OCIPasswordChange() .. 15-220
OCIReset().. 15-222
OCIServerVersion() .. 15-223
OCISvcCtxToLda() ... 15-224
OCIUserCallbackGet() ... 15-225
OCIUserCallbackRegister() ... 15-227

16 OCI Navigational and Type Functions

Introduction ... 16-2
Object Types and Lifetimes... 16-2
Terminology .. 16-4
The Function Syntax... 16-4
Navigational Function Return Values ... 16-5
Server Roundtrips for Cache and Object Functions .. 16-5
Navigational Function Error Codes... 16-6

OCI Flush or Refresh Functions .. 16-8
OCICacheFlush() .. 16-9
OCICacheRefresh()... 16-11
OCIObjectFlush() .. 16-13

xx

OCIObjectRefresh()... 16-14
OCI Mark or Unmark Object and Cache Functions... 16-16

OCICacheUnmark().. 16-17
OCIObjectMarkDelete() ... 16-18
OCIObjectMarkDeleteByRef()... 16-19
OCIObjectMarkUpdate() ... 16-20
OCIObjectUnmark() ... 16-22
OCIObjectUnmarkByRef()... 16-23

OCI Get Object Status Functions... 16-24
OCIObjectExists().. 16-25
OCIObjectGetProperty() .. 16-26
OCIObjectIsDirty().. 16-30
OCIObjectIsLocked() .. 16-31

OCI Miscellaneous Object Functions ... 16-32
OCIObjectCopy() .. 16-33
OCIObjectGetAttr() .. 16-35
OCIObjectGetInd().. 16-37
OCIObjectGetObjectRef()... 16-38
OCIObjectGetTypeRef()... 16-39
OCIObjectLock() ... 16-40
OCIObjectLockNoWait() ... 16-41
OCIObjectNew() ... 16-42
OCIObjectSetAttr() ... 16-45

OCI Pin, Unpin, and Free Functions ... 16-47
OCICacheFree()... 16-48
OCICacheUnpin() ... 16-49
OCIObjectArrayPin().. 16-50
OCIObjectFree() .. 16-52
OCIObjectPin() .. 16-54
OCIObjectPinCountReset().. 16-57
OCIObjectPinTable() .. 16-58
OCIObjectUnpin()... 16-60

OCI Type Information Accessor Functions ... 16-62
OCITypeArrayByName() .. 16-63
OCITypeArrayByRef() ... 16-66

xxi

OCITypeByName()... 16-68
OCITypeByRef().. 16-70

17 OCI Datatype Mapping and Manipulation Functions

Introduction ... 17-2
The Function Syntax... 17-2
Datatype Mapping and Manipulation Function Return Values.. 17-3
Functions Returning Other Values .. 17-3
Server Roundtrips for Datatype Mapping and Manipulation Functions 17-4
Examples.. 17-4

OCI Collection and Iterator Functions ... 17-5
OCICollAppend() ... 17-6
OCICollAssign().. 17-7
OCICollAssignElem() .. 17-8
OCICollGetElem() .. 17-10
OCICollIsLocator() ... 17-13
OCICollMax() .. 17-14
OCICollSetUpdateStatus() .. 17-15
OCICollSize()... 17-16
OCICollTrim() ... 17-18
OCIIterCreate() ... 17-19
OCIIterDelete().. 17-20
OCIIterGetCurrent()... 17-21
OCIIterInit()... 17-22
OCIIterNext() .. 17-23
OCIIterPrev()... 17-25

OCI Date Functions .. 17-27
OCIDateAddDays().. 17-28
OCIDateAddMonths() ... 17-29
OCIDateAssign()... 17-30
OCIDateCheck().. 17-31
OCIDateCompare() .. 17-33
OCIDateDaysBetween()... 17-34
OCIDateFromText().. 17-35
OCIDateGetDate() .. 17-37

xxii

OCIDateGetTime().. 17-38
OCIDateLastDay() .. 17-39
OCIDateNextDay() ... 17-40
OCIDateSetDate() ... 17-41
OCIDateSetTime()... 17-42
OCIDateSysDate()... 17-43
OCIDateToText()... 17-44
OCIDateZoneToZone() .. 17-46

OCI Number Functions ... 17-48
OCINumberAbs() ... 17-50
OCINumberAdd() .. 17-51
OCINumberArcCos() ... 17-52
OCINumberArcSin() .. 17-53
OCINumberArcTan() ... 17-54
OCINumberArcTan2() ... 17-55
OCINumberAssign() .. 17-56
OCINumberCeil() ... 17-57
OCINumberCmp().. 17-58
OCINumberCos().. 17-59
OCINumberDec().. 17-60
OCINumberDiv().. 17-61
OCINumberExp() ... 17-62
OCINumberFloor() ... 17-63
OCINumberFromInt().. 17-64
OCINumberFromReal() ... 17-65
OCINumberFromText() ... 17-66
OCINumberHypCos().. 17-68
OCINumberHypSin()... 17-69
OCINumberHypTan().. 17-70
OCINumberInc() ... 17-71
OCINumberIntPower() .. 17-72
OCINumberIsInt() .. 17-73
OCINumberIsZero() ... 17-74
OCINumberLn().. 17-75
OCINumberLog() ... 17-76

xxiii

OCINumberMod().. 17-77
OCINumberMul()... 17-78
OCINumberNeg()... 17-79
OCINumberPower()... 17-80
OCINumberPrec() .. 17-81
OCINumberRound() .. 17-82
OCINumberSetPi() ... 17-83
OCINumberSetZero() .. 17-84
OCINumberShift() .. 17-85
OCINumberSign() .. 17-86
OCINumberSin()... 17-87
OCINumberSqrt() ... 17-88
OCINumberSub() ... 17-89
OCINumberTan() ... 17-90
OCINumberToInt()... 17-91
OCINumberToReal().. 17-92
OCINumberToText().. 17-93
OCINumberTrunc().. 17-95

OCI Raw Functions .. 17-96
OCIRawAllocSize()... 17-97
OCIRawAssignBytes() ... 17-98
OCIRawAssignRaw()... 17-99
OCIRawPtr().. 17-100
OCIRawResize().. 17-101
OCIRawSize() .. 17-102

OCI Ref Functions .. 17-103
OCIRefAssign() ... 17-104
OCIRefClear().. 17-105
OCIRefFromHex() .. 17-106
OCIRefHexSize()... 17-107
OCIRefIsEqual() .. 17-108
OCIRefIsNull() .. 17-109
OCIRefToHex() ... 17-110

OCI String Functions ... 17-111
OCIStringAllocSize() ... 17-112

xxiv

OCIStringAssign() ... 17-113
OCIStringAssignText().. 17-114
OCIStringPtr() .. 17-115
OCIStringResize() .. 17-116
OCIStringSize() .. 17-117

OCI Table Functions ... 17-118
OCITableDelete() ... 17-119
OCITableExists() ... 17-120
OCITableFirst()... 17-121
OCITableLast() ... 17-122
OCITableNext() .. 17-123
OCITablePrev() .. 17-124
OCITableSize() ... 17-125

18 OCI External Procedure Functions

Introduction ... 18-2
The Function Syntax... 18-2
Return Codes ... 18-3
With_Context Type... 18-3

The OCI External Procedure Functions .. 18-4
OCIExtProcAllocCallMemory().. 18-5
OCIExtProcRaiseExcp() ... 18-6
OCIExtProcRaiseExcpWithMsg() ... 18-7
OCIExtProcGetEnv() .. 18-8

Part IV Appendices

A Handle and Descriptor Attributes

Conventions ... A-2
Environment Handle Attributes .. A-3
Error Handle Attributes ... A-6
Service Context Handle Attributes.. A-7
Server Handle Attributes... A-9
User Session Handle Attributes .. A-12

xxv

Transaction Handle Attributes... A-13
Statement Handle Attributes ... A-14
Bind Handle Attributes ... A-20
Define Handle Attributes ... A-22
Describe Handle Attributes .. A-24
Parameter Descriptor Attributes .. A-24
LOB Locator Attributes.. A-25
Complex Object Attributes ... A-25

Complex Object Retrieval Handle Attributes... A-25
Complex Object Retrieval Descriptor Attributes ... A-26

Advanced Queueing Descriptor Attributes... A-26
OCIAQEnqOptions Descriptor Attributes.. A-26
OCIAQDeqOptions Descriptor Attributes ... A-28
OCIAQMsgProperties Descriptor Attributes ... A-31
OCIAQAgent Descriptor Attributes .. A-35

Subscription Handle Attributes... A-37
Direct Path Loading Handle Attributes ... A-39

Direct Path Context Handle Attributes ... A-39
Direct Path Column Array Handle Attributes ... A-42
Direct Path Stream Handle Attributes... A-43
Direct Path Column Parameter Attributes.. A-44

Process Handle Attributes... A-49

B OCI Demonstration Programs

C OCI Function Server Roundtrips

Overview .. C-2
Relational Function Roundtrips .. C-2
LOB Function Roundtrips... C-2
Object and Cache Function Roundtrips ... C-4
Describe Operation Roundtrips... C-5
Datatype Mapping and Manipulation Function Roundtrips .. C-6
Other Local Functions .. C-6

Index

xxvi

xxvii

Send Us Your Comments

Oracle Call Interface Programmer’s Guide, Release 8.1.5

Part No. A67846-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to the Information Development

department in the following ways:

■ Electronic mail - infodev@us.oracle.com

■ FAX - (650) 506-7228 Attn: Oracle Server Documentation

■ Postal service:

Oracle Corporation

Server Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle World Wide Support Center.

xxviii

xxix

Preface

The Oracle Call Interface (OCI) is an application programming interface (API) that

allows applications written in C to interact with one or more Oracle servers. The

OCI gives your programs the capability to perform the full range of database

operations that are possible with an Oracle database server, including SQL

statement processing and object manipulation.

The Preface includes the following sections:

■ Purpose of this Guide

■ Audience

■ Feature Coverage and Availability

■ How to Use this Guide

■ How this Guide Is Organized

■ Conventions Used in this Guide

■ Your Comments Are Welcome

xxx

Purpose of this Guide
This guide provides a sound basis for developing applications using the OCI. The

guide is divided into two volumes.

Volume I contains information about the following topics:

■ overview of OCI

■ the structure of an OCI application

■ conversion of data between the server and variables in your OCI application

■ object functions that provide navigational access to objects, type management,

and data type mapping and manipulation

Volume II contains the following information:

■ a description of OCI function calls, along with syntax information and

parameter descriptions

■ a listing of OCI handle attributes

■ a listing of important OCI sample programs that are included with the Oracle

installation

■ server roundtrips required for most OCI calls

Audience
The Oracle Call Interface Programmer’s Guide is intended for programmers

developing new applications or converting existing applications to run in the

Oracle environment. This comprehensive treatment of the OCI will also be valuable

to systems analysts, project managers, and others interested in the development of

database applications.

This guide assumes that you have a working knowledge of application

programming using C. Readers should also be familiar with the use of Structured

Query Language (SQL) to access information in relational database systems. In

addition, some sections of this guide also assume a knowledge of the basic concepts

of object-oriented programming.

For information about SQL, refer to the Oracle8i SQL Reference and the Oracle8i
Administrator’s Guide. For information about basic Oracle concepts, see Oracle8i
Concepts.

xxxi

Feature Coverage and Availability
The Oracle Call Interface Programmer’s Guide contains information that describes the

features and functionality of the Oracle8i and Oracle8i Enterprise Edition products.

Oracle8i and Oracle8i Enterprise Edition have the same basic features. However,

several advanced features are included only with the Enterprise Edition, such as the

Objects Option.

For information about the differences between Oracle8i and Oracle8i Enterprise

Edition and the features and options that are available to you, see Getting to Know
Oracle8i.

For information about cartridge services, and using OCI calls to develop cartridges,

refer to Oracle8i Data Cartridge Developer’s Guide.

How to Use this Guide
The Oracle Call Interface Programmer’s Guide provides an introduction to the features

of the OCI for both new OCI programmers and those programmers who have

previously worked with earlier versions of the OCI.

VOLUME I

Part 1

Part 1 of this guide (Chapter 1 through Chapter 9) provides conceptual information

about how to program with the OCI to build scalable application solutions that

provide access to relational data in an Oracle database. This part also describes the

basics of OCI programming and the foundation for the discussion of

object-relational features in Part 2.

Part 2

Part 2 of this guide (Chapter 10 through Chapter 14) describes OCI functionality for

accessing object-relational data with the OCI. The chapters in this part describe how

to retrieve and manipulate objects through an Oracle server.

VOLUME II

Part 3

Part 3 of this book (Chapter 15 through Chapter 18) lists OCI function calls in the

Oracle OCI library.

xxxii

Part 4

Part 4 of this book (Appendix A through Appendix C) provides additional reference

information about OCI programming.

Where to Begin
Because of the many enhancements to OCI, both new and experienced users should

read the conceptual material in Part 1.

Readers familiar with the current version of the OCI and interested in its object

capabilities may want to skim Part 1 and then begin reading the chapters in Part 2.

Readers looking for reference information, such as OCI function syntax and handle

attribute descriptions, should refer to Part 3 and Part 4 of Volume II.

How this Guide Is Organized
The Oracle Call Interface Programmer’s Guide contains four parts, split between two

volumes. A brief summary of what you will find in each chapter and appendix

follows:

VOLUME I

PART 1: OCI RELATIONAL APPLICATIONS

Chapter 1, "Introduction, New Features, and Upgrading"
This chapter introduces you to the Oracle Call Interface and describes special terms

and typographical conventions that are used in describing the interface. This

chapter also discusses features new to the current release.

Chapter 2, "OCI Programming Basics"
This chapter gives you the basic concepts needed to develop an OCI program. It

discusses the essential steps each OCI program must include, and how to retrieve

and understand error messages

Chapter 3, "Datatypes"
Understanding how data is converted between Oracle tables and variables in your

host program is essential for using the OCI interfaces. This chapter discusses Oracle

internal and external datatypes, and data conversions.

Chapter 4, "SQL Statement Processing"
This chapter discusses the steps involved in SQL statements using the Oracle OCI.

xxxiii

Chapter 5, "Binding and Defining"
This chapter discusses OCI bind and define operations in detail, including a

discussion of advanced bind and define operations.

Chapter 6, "Describing Schema Metadata"
This chapter discusses how to use the OCIDescribeAny() call to obtain information

about schema objects and their associated elements.

Chapter 7, "LOB and FILE Operations"
This chapter describes the OCI support for LOB, FILE, and temporary LOB

datatypes.

Chapter 8, "Managing Scalable Platforms"
This chapter describes password management, session management, and thread

safety.

Chapter 9, "OCI Programming Advanced Topics"
This chapter covers more sophisticated OCI programming topics, including

descriptions of user callbacks, publish-subscribe notification, direct path loading,

and other functionality.

PART 2: OCI OBJECT-RELATIONAL APPLICATIONS

Chapter 10, "OCI Object-Relational Programming"
This chapter provides an introduction to the concepts involved when using the OCI

to access objects in an Oracle database server. The chapter includes a discussion of

basic object concepts and object pinning, and the basic structure of object-relational

applications.

Chapter 11, "Object-Relational Datatypes"
This chapter outlines the object datatypes used in OCI programming.

Chapter 12, "Binding and Defining in Object Applications"
This chapter discusses the C mappings of user-defined datatypes in an Oracle

database, and the functions that manipulate such data. Binding and defining using

these C mappings is also covered.

Chapter 13, "Object Cache and Object Navigation"
This chapter provides an introduction to the concepts involved when using the OCI

to access objects in an Oracle database server. This chapter also discusses the Object

Cache, and the use of the OCI navigational calls to manipulate objects retrieved

from the server.

xxxiv

Chapter 14, "Using the Object Type Translator"
This chapter discusses the use of the Object Type Translator to convert database

object definitions to C structure representations for use in OCI applications.

VOLUME II

PART 3: OCI REFERENCE

Chapter 15, "OCI Relational Functions"
This chapter contains a list of the OCI relational functions, including syntax,

comments, parameter descriptions, and other useful information.

Chapter 16, "OCI Navigational and Type Functions"
This chapter contains a list of the OCI navigational functions, including syntax,

comments, parameter descriptions, and other useful information.

Chapter 17, "OCI Datatype Mapping and Manipulation Functions"
This chapter contains a list of the OCI datatype mapping and manipulation

functions, including syntax, comments, parameter descriptions, and other useful

information.

Chapter 18, "OCI External Procedure Functions"
This chapter discusses special OCI functions used by external procedures.

See Also: For a a discussion of the OCI functions that apply to an NLS

environment, see the Oracle8i National Language Support Guide. For a discussion of

the OCI functions that apply to cartridge services, see the Oracle8i Data Cartridge
Developer’s Guide.

PART 4: APPENDICES

Appendix A, "Handle and Descriptor Attributes"
This appendix describes the attributes of OCI application handles that can be set or

read using OCI calls.

Appendix B, "OCI Demonstration Programs"
This appendix includes a listing of important OCI demonstration programs that are

included with the Oracle installation.

Appendix C, "OCI Function Server Roundtrips"
This appendix includes tables which show the number of server roundtrips

required by various OCI applications.

xxxv

Conventions Used in this Guide
The following notational and text formatting conventions are used in this guide:

[]
Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{ }
Braces enclose items of which only one is required.

|
A vertical bar separates items within braces, and may also be used to indicate that

multiple values are passed to a function parameter.

...
In code fragments, an ellipsis means that code not relevant to the discussion has

been omitted.

font change
SQL or C code examples are shown in monospaced font.

italics
Italics are used for OCI parameters, OCI routines names, file names, and data fields.

UPPERCASE
Uppercase is used for SQL or PL/SQL keywords, like SELECT or UPDATE. To view

the lists of the Oracle keywords or reserved words for SQL and PL/SQL, see the

Oracle8i SQL Reference and the PL/SQL User’s Guide and Reference.

bold
Boldface type is used to identify the names of C datatypes, like ub4 , sword , or

OCINumber .

This guide uses special text formatting to draw the reader’s attention to some

information. A paragraph that is indented and begins with a bold text label may

have special meaning. The following paragraphs describe the different types of

information that are flagged this way.

Note: The Note flag indicates that the reader should pay particular attention to

the information to avoid a common problem or increase understanding of a

concept.

xxxvi

7.x Upgrade Note: An item marked with "7.x Upgrade Note" typically alerts the

programmer to something that is done much differently in the release 8 OCI

than in the 7.x OCIs.

Warning: An item marked as Warning indicates something that an OCI

programmer must be careful to do or not do in order for an application to work

correctly.

See Also: Text marked See Also points you to another section of this guide, or

to other documentation, for additional information about the topic being

discussed.

Your Comments Are Welcome
We value and appreciate your comments as an Oracle user and reader of our

manuals. As we write, revise, and evaluate our documentation, your opinions are

the most important feedback we receive.

You can send comments and suggestions about this manual to the Information

Development department at the following e-mail address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to the

following address:

Oracle Server Documentation Manager

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7228

Part I
 Basic OCI Concepts

This part of the guide contains chapters that describe basic OCI programming

concepts:

■ Chapter 1, "Introduction, New Features, and Upgrading", provides an

introduction to the OCI and discusses features that are new to release 8i.

■ Chapter 2, "OCI Programming Basics", discusses the basic concepts of OCI

programming.

■ Chapter 3, "Datatypes", describes datatypes used in OCI applications and

within the Oracle database Server.

■ Chapter 4, "SQL Statement Processing", discusses how to process SQL

statements using the Oracle OCI.

■ Chapter 5, "Binding and Defining", discusses bind and define operations in

detail.

■ Chapter 6, "Describing Schema Metadata", discusses the OCIDescribeAny()
function.

■ Chapter 7, "LOB and FILE Operations", discusses the OCI functions that

perform operations on large objects (LOBs) in a database and external LOBs

(FILEs).

■ Chapter 8, "Managing Scalable Platforms", discusses password management,

session management, and thread safety.

■ Chapter 9, "OCI Programming Advanced Topics", covers advanced topics in

OCI programming, such as user-defined callbacks and Advanced Queuing.

Introduction, New Features, and Upgrading 1-1

1
Introduction, New Features, and Upgrading

This chapter introduces you to the Oracle Call Interface (OCI). It provides

background information that you need to develop applications using the OCI. This

chapter also introduces special terms that are used in discussing the OCI and

describes the changes in the new OCI release. The following topics are covered:

■ Overview of OCI

■ New Features

■ Compatibility, Upgrading, and Migration

Overview of OCI

1-2 Oracle Call Interface Programmer’s Guide

Overview of OCI
The Oracle Call Interface (OCI) is an application programming interface (API) that

allows you to create applications that use the native procedures or function calls of

a third-generation language to access an Oracle database server and control all

phases of SQL statement execution. OCI supports the datatypes, calling

conventions, syntax, and semantics of a number of third-generation languages

including C, C++, COBOL and FORTRAN.

OCI provides:

■ improved performance and scalability through the efficient use of system

memory and network connectivity

■ consistent interfaces for dynamic session and transaction management in a

two-tier client-server or multi-tier environment

■ N-tiered authentication

■ comprehensive support for application development using Oracle objects

■ access to external databases

■ applications that can service an increasing number of users and requests

without additional hardware investments

OCI allows you to manipulate data and schemas in an Oracle database using a host

programming language, such as C. It provides a library of standard database access

and retrieval functions in the form of a dynamic runtime library (OCI library) that

can be linked in an application at runtime. This eliminates the need to embed SQL

or PL/SQL within 3GL programs.

OCI has many new features that can be categorized into several primary areas:

■ encapsulated/opaque interfaces

■ simplified user authentication and password management

■ extensions to improve application performance and scalability

■ consistent interface for transaction management

■ OCI extensions to support client side access to Oracle objects

Overview of OCI

Introduction, New Features, and Upgrading 1-3

Advantages of OCI
OCI provides significant advantages over other methods of accessing an Oracle

database:

■ more fine-grained control over all aspects of the application design

■ high degree of control over program execution

■ use of familiar 3GL programming techniques and application development

tools such as browsers and debuggers

■ supports of dynamic SQL (method 4)

■ availability on the broadest range of platforms of all the Oracle Programmatic

Interfaces

■ dynamic bind and define using callbacks

■ describe functionality to expose layers of server metadata

■ asynchronous event notification for registered client applications

■ enhanced array data manipulation language (DML) capability for array

INSERTs, UPDATEs, and DELETEs

■ ability to associate a commit request with an execute to reduce roundtrips

■ optimization for queries using transparent prefetch buffers to reduce roundtrips

■ thread safety so you do not have to user mutual exclusive locks (mutex) on OCI

handles

Overview of OCI

1-4 Oracle Call Interface Programmer’s Guide

Building an OCI Application
As Figure 1–1 shows, you compile and link an OCI program in the same way that

you compile and link a non-database application. There is no need for a separate

preprocessing or precompilation step.

Figure 1–1 The OCI Development Process

Oracle Corporation supports most popular third-party compilers. The details of

linking an OCI program vary from system to system. On some platforms, it may be

necessary to include other libraries, in addition to the OCI library, to properly link

your OCI programs. See your Oracle system-specific documentation and the

installation guide for more information about compiling and linking an OCI

application for your specific platform.

Source Files

Host Language Compiler

Object Files

Host Linker

Application

OCI Library

Oracle
Server

Overview of OCI

Introduction, New Features, and Upgrading 1-5

Parts of the OCI
The OCI encompasses four main sets of functionality:

■ APIs to design a scalable, multi-threaded application that can support large

numbers of users securely

■ SQL access functions, for managing database access, processing SQL

statements, and manipulating objects retrieved from an Oracle database server

■ datatype mapping and manipulation functions, for manipulating data

attributes of Oracle types

■ data loading functions, for loading data directly into the database without using

SQL statements

■ external procedure functions, for writing C callbacks from PL/SQL

Procedural and Non-Procedural Elements
The Oracle Call Interface (OCI) allows you to develop scalable, multi-threaded

applications on multi-tiered architecture that combine the non-procedural data

access power of Structured Query Language (SQL) with the procedural capabilities

of most programming languages, such as C and C++.

■ In a non-procedural language program, the set of data to be operated on is

specified, but what operations will be performed, or how the operations are to

be carried out is not specified. The non-procedural nature of SQL makes it an

easy language to learn and to use to perform database transactions. It is also the

standard language used to access and manipulate data in modern relational and

object-relational database systems.

■ In a procedural language program, the execution of most statements depends

on previous or subsequent statements and on control structures, such as loops

or conditional branches, which are not available in SQL. The procedural nature

of these languages makes them more complex than SQL, but it also makes them

very flexible and powerful.

The combination of both non-procedural and procedural language elements in an

OCI program provides easy access to an Oracle database in a structured

programming environment.

The OCI supports all SQL data definition, data manipulation, query, and

transaction control facilities that are available through an Oracle database server.

For example, an OCI program can run a query against an Oracle database. The

Overview of OCI

1-6 Oracle Call Interface Programmer’s Guide

queries can require the program to supply data to the database using input (bind)

variables, as follows:

SELECT name FROM employees WHERE empno = :empnumber

In the above SQL statement, :empnumber is a placeholder for a value that will be

supplied by the application.

You can also take advantage of PL/SQL, Oracle’s procedural extension to SQL. The

applications you develop can be more powerful and flexible than applications

written in SQL alone. The OCI also provides facilities for accessing and

manipulating objects in an Oracle database server.

Object Support
With release 8i, the Oracle server has facilities for working with object types and

objects. An object type is a user-defined data structure representing an abstraction of

a real-world entity. For example, the database might contain a definition of a

person object. That object might have attributes—first_name , last_name , and

age—which represent a person’s identifying characteristics.

The object type definition serves as the basis for creating objects, which represent

instances of the object type. Using the object type as a structural definition, a

person object could be created with the attributes ’John’, ’Bonivento’, and ’30’.

Object types may also contain methods—programmatic functions that represent the

behavior of that object type.

See Also: For a more detailed explanation of object types and objects, see

Oracle8i Concepts, and Oracle8i Application Developer’s Guide - Fundamentals.

The Oracle OCI includes functions that extend the capabilities of the OCI to handle

objects in an Oracle database server. Specifically, the following capabilities have

been added to the OCI:

■ support for execution of SQL statements that manipulate object data and

schema information

■ support for passing object references and instances as input variables in SQL

statements.

■ support for declaring object references and instances as variables to receive the

output of SQL statements

■ support for fetching object references and instances from a database

Overview of OCI

Introduction, New Features, and Upgrading 1-7

■ support for describing the properties of SQL statements that return object

instances and references

■ support for describing PL/SQL procedures or functions with object parameters

or results

■ commit and rollback calls have been extended to synchronize object and

relational functionality

Additional OCI calls are provided to support manipulation of objects after they

have been accessed by way of SQL statements. For a more detailed description of

enhancements and new features, refer to "New Features" on page 1-12.

SQL Statements
One of the main tasks of an OCI application is to process SQL statements. Different

types of SQL statements require different processing steps in your program. It is

important to take this into account when coding your OCI application. Oracle

recognizes several types of SQL statements:

■ Data Definition Language

■ Control Statements

– Transaction Control

– Session Control

– System Control

■ Data Manipulation Language (DML)

■ Queries

Note: Queries are often classified as DML statements, but OCI applications

process queries differently, so they are considered separately here.

■ PL/SQL

■ Embedded SQL

Data Definition Language
Data Definition Language (DDL) statements manage schema objects in the

database. DDL statements create new tables, drop old tables, and establish other

schema objects. They also control access to schema objects.

The following is an example of creating and specifying access to a table:

Overview of OCI

1-8 Oracle Call Interface Programmer’s Guide

CREATE TABLE employees
 (name VARCHAR2(20),

ssn VARCHAR2(12),
empno NUMBER(6),
mgr NUMBER(6),
salary NUMBER(6))

GRANT UPDATE, INSERT, DELETE ON employees TO donna
REVOKE UPDATE ON employees FROM jamie

DDL statements also allow you to work with objects in the Oracle database server,

as in the following series of statements which creates an object table:

CREATE TYPE person_t AS OBJECT (
name VARCHAR2(30),
ssn VARCHAR2(12),
address VARCHAR2(50))

CREATE TABLE person_tab OF person_t

Control Statements
OCI applications treat transaction control, session control, and system control

statements like DML statements. See the Oracle8i SQL Reference for information

about these types of statements.

Data Manipulation Language
Data manipulation language (DML) statements can change data in the database

tables. For example, DML statements are used to

■ INSERT new rows into a table

■ UPDATE column values in existing rows

■ DELETE rows from a table

■ LOCK a table in the database

■ EXPLAIN the execution plan for a SQL statement

DML statements can require an application to supply data to the database using

input (bind) variables. See the section "Binding" on page 4-5 for more information

about input bind variables.

Overview of OCI

Introduction, New Features, and Upgrading 1-9

DML statements also allow you to work with objects in the Oracle database server,

as in the following example, which inserts an instance of type person_t into the

object table person_tab :

INSERT INTO person_tab
VALUES (person_t(’Steve May’,’123-45-6789’,’146 Winfield Street’))

Queries
Queries are statements that retrieve data from a database. A query can return zero,

one, or many rows of data. All queries begin with the SQL keyword SELECT, as in

the following example:

SELECT dname FROM dept
WHERE deptno = 42

Queries access data in tables, and they are often classified with DML statements.

However, OCI applications process queries differently, so they are considered

separately in this guide.

Queries can require the program to supply data to the database using input (bind)

variables, as in the following example:

SELECT name
FROM employees
WHERE empno = :empnumber

In the above SQL statement, :empnumber is a placeholder for a value that will be

supplied by the application.

When processing a query, an OCI application also needs to define output variables

to receive the returned results. In the above statement, you would need to define an

output variable to receive any name values returned from the query.

See Also: See the section "Binding" on page 5-2 for more information about

input bind variables. See the section "Defining" on page 5-13 for information

about defining output variables.

See Chapter 4, "SQL Statement Processing", for detailed information about how

SQL statements are processed in an OCI program.

PL/SQL
PL/SQL is Oracle’s procedural extension to the SQL language. PL/SQL processes

tasks that are more complicated than simple queries and SQL data manipulation

Overview of OCI

1-10 Oracle Call Interface Programmer’s Guide

language statements. PL/SQL allows a number of constructs to be grouped into a

single block and executed as a unit. Among these are:

■ one or more SQL statements

■ variable declarations

■ assignment statements

■ procedural control statements (IF...THEN...ELSE statements and loops)

■ exception handling

You can use PL/SQL blocks in your OCI program to

■ call Oracle stored procedures and stored functions

■ combine procedural control statements with several SQL statements, to be

executed as a single unit

■ access special PL/SQL features such as records, tables, cursor FOR loops, and

exception handling

■ use cursor variables

■ access and manipulate objects in an Oracle database server

The following PL/SQL example issues a SQL statement to retrieve values from a

table of employees, given a particular employee number. This example also

demonstrates the use of placeholders in PL/SQL statements.

BEGIN
SELECT ename, sal, comm INTO :emp_name, :salary, :commission
FROM emp
WHERE ename = :emp_number;

END;

Note that the placeholders in this statement are not PL/SQL variables. They

represent input values passed to Oracle when the statement is processed. These

placeholders need to be bound to C language variables in your program.

See Also: See the PL/SQL User’s Guide and Reference for information about

coding PL/SQL blocks.

See the section "Binding Placeholders in PL/SQL" on page 5-5 for information

about working with placeholders in PL/SQL.

Overview of OCI

Introduction, New Features, and Upgrading 1-11

Embedded SQL
The OCI processes SQL statements as text strings, which an application passes to

Oracle on execution. The Oracle precompilers (Pro*C/C++, Pro*COBOL,

Pro*FORTRAN) allow programmers to embed SQL statements directly into their

application code. A separate precompilation step is then necessary to generate an

executable application.

It is possible to mix OCI calls and embedded SQL in a precompiler program. Refer

to the Pro*C/C++ Precompiler Programmer’s Guide for more information.

Special OCI/SQL Terms
This guide uses special terms to refer to the different parts of a SQL statement. For

example, a SQL statement such as

SELECT customer, address
FROM customers
WHERE bus_type = 'SOFTWARE'
AND sales_volume = :sales

contains the following parts:

■ a SQL command — SELECT

■ two select-list items — customer and address

■ a table name in the FROM clause — customers

■ two column names in the WHERE clause — bus_type and sales_volume

■ a literal input value in the WHERE clause — ’SOFTWARE’

■ a placeholder for an input variable in the WHERE clause — :sales

When you develop your OCI application, you call routines that specify to the Oracle

database server the address (location) of input and output variables in your

program. In this guide, specifying the address of a placeholder variable for data

input is called a bind operation. Specifying the address of a variable to receive

select-list items is called a define operation.

For PL/SQL, both input and output specifications are called bind operations. These

terms and operations are described in Chapter 4, "SQL Statement Processing".

New Features

1-12 Oracle Call Interface Programmer’s Guide

New Features
This release of OCI provides the following new features and performance

advantages:

■ Ability to create new object with non-NULL attribute values

■ Support for universal ROWIDs

■ Support for fixed-width Unicode

■ OCIThread package for thread manipulation

■ Ability to register user-created callback functions

■ Enhanced application failover processing ability

■ Support for publish/subscribe notification

■ No-wait locking option for objects

■ Ability to detect object changes when flushing

■ Support for temporary LOBs

■ Enhancements to LOB support

■ Enhanced array DML statement execution allowing all errors to be returned in a

batch

■ Enhanced DML...RETURNING support

■ Ability to create objects based on object views or user-created object IDs

■ Support for non-blocking mode

■ Additional functional and performance enhancements

■ Publish-subscribe functionality for client notification of events

■ Direct path loading calls that provide access to the direct block formatter of the

Oracle server

■ Reduced memory usage at runtime

■ Increased runtime performance with code reduction

■ Increased query performance with streamlined and more efficient fetch protocol

Each of these features is discussed in greater detail in later chapters of this guide.

See the section "Compatibility, Upgrading, and Migration" on page 1-19 for

information about new calls that supersede existing routines. See chapters 15, 16,

New Features

Introduction, New Features, and Upgrading 1-13

17, and 18 in Part 3 for listings of OCI calls. Note that new calls, such as "Advanced

Queuing and Publish-Subscribe Functions" on page 15-4 and "Direct Path Loading

Functions" on page 15-72, have been added and various existing calls have updated.

Encapsulated Interfaces
All the data structures that are used by OCI are encapsulated in the form of opaque

interfaces that are called handles. A handle is an opaque pointer to a storage area

allocated by the OCI library that stores context information, connection information,

error information, or bind information about a SQL or PL/SQL statement. A client

allocates a certain type of handle, populates one or more of those handles through

well-defined interfaces, and sends requests to the server using those handles. In

turn, applications can access the specific information contained in the handle by

using accessor functions. The OCI library manages a hierarchy of handles.

Encapsulating the OCI interfaces using these handles has several benefits to the

application developer including:

■ Reduction in the amount of server side state information that needs to be

retained thereby reducing server side memory usage

■ Improved application developer productivity by eliminating the need for global

variables, making error reporting easier and providing consistency in the way

OCI variables are accessed and used

■ Further, the encapsulation of OCI structures in the form of handles makes them

opaque to the application developer allowing changes to be made to the

underlying structure without affecting applications

Simplified User Authentication and Password Management
The Oracle OCI provides application developers simplified user authentication and

password management in several ways:

■ Allows a single OCI application to authenticate and maintain multiple users.

■ Allows the application to update a user’s password which is particularly

helpful if an expired password message is returned by an authentication

attempt.

The Oracle OCI supports two types of login sessions:

■ a simplified login function for sessions where a single user connects to the

database using a login name and password.

New Features

1-14 Oracle Call Interface Programmer’s Guide

■ a setup in which a single OCI application authenticates and maintains multiple

sessions by separating the login session, which is the session created when a

user logs into an Oracle database, from the user sessions, which are all other

sessions created by a user. This is an important difference from Oracle 7.3, in

which sessions could be created implicitly by starting new transactions once the

user has logged in to the database, a process called session cloning. These user
sessions in Oracle 7.3 inherited the privileges and security context from the

login session. Oracle OCI requires a client to provide all the necessary

authentication information for each user session. This allows an OCI

application to support multiple users.

Extensions to Improve Application Performance and Scalability
The Oracle OCI has several enhancements to improve application performance and

scalability. Application performance has been improved by reducing the number of

client to server round trips required and scalability improvements have been

facilitated by reducing the amount of state information that needs to be retained on

the server side. Some of these features include:

■ Increased client-side processing, and reduced server-side requirements on

queries

■ Implicit prefetching of SELECT statement result sets to eliminate the describe

round trip, reduce roundtrips, and reduce memory usage

■ Elimination of open and close cursor round trips

■ Improved support for multi-threaded environments

■ Piggy-backed calls

■ Session multiplexing over connections

■ Consistent support for a variety of configurations including standard 2-tier

client-server configurations, server-to-server transaction coordination, and

3-tier TP-monitor configurations

■ Consistent support for local and global transactions including support for the

XA interface’s TM_JOIN operation

■ Improved scalability by providing the ability to concentrate connections,

processes, and sessions across users on connections and eliminating the need

for separate sessions to be created for each branch of a global transaction

■ Allowing applications to authenticate multiple users and allow transactions to

be started on their behalf

New Features

Introduction, New Features, and Upgrading 1-15

Oracle OCI Object Support
The Oracle OCI provides the most comprehensive application programming

interface for programmers seeking to use the Oracle server’s object capabilities.

These features can be divided into five major categories:

■ Client-side Object Cache

■ Runtime environment for objects

■ Associative and navigational interfaces to access and manipulate objects

■ Type management functions to access information about object types in an

Oracle database

■ Type mapping and manipulation functions for manipulating data attributes of

Oracle types

■ Object Type Translator utility, which maps internal Oracle schema information

to client-side language bind variables

Client-side Object Cache
The object cache is a client-side memory buffer that provides lookup and memory

management support for objects. It stores and tracks objects instances which have

been fetched by an OCI application from the server to the client side. The object

cache is created when the OCI environment is initialized. Multiple applications

running against the same server will each have their own object cache. The cache

tracks the objects which are currently in memory, maintains references to objects,

manages automatic object swapping and tracks the meta-attributes or type

information about objects. The cache provides the following OCI applications:

■ Improved application performance by reducing the number of client-to-server

round trips required to fetch and operate on objects

■ Enhanced scalability by supporting object swapping from the client-side cache

■ Improved concurrency by supporting object-level locking

Associative and Navigational Interfaces
Applications using the Oracle OCI can access objects in the Oracle server through

several types of interfaces:

■ Using SQL SELECT, INSERT, and UPDATE statements

New Features

1-16 Oracle Call Interface Programmer’s Guide

■ Using a C-style pointer chasing scheme to access objects in the client-side cache

by traversing the corresponding smart pointers or REFs

The Oracle OCI provides a set of functions with extensions to support object

manipulation using SQL SELECT, INSERT, and UPDATE statements. To access

Oracle objects these SQL statements use a consistent set of steps as if they were

accessing relational tables. The Oracle OCI provides the following sets of functions

required to access objects using SQL statements for:

■ Binding and defining object type instances and references as input and output

variables of SQL statements

■ Executing SQL statements that contain object type instances and references

■ Fetching object type instances and references

■ Describing a select-list item of an Oracle object type

The Oracle OCI also provides a set of functions using a C-style pointer chasing
scheme to access objects once they have been fetched into the client-side cache by

traversing the corresponding smart pointers or REFs. This navigational interface
provides functions for:

■ Instantiating a copy of a referenceable persistent object, that is, of a persistent

object with object ID in the client-side cache by pinning its smart pointer or REF.

■ Traversing a sequence of objects that are connected to each other by traversing

the REFs that point from one to the other.

■ Dynamically getting and setting values of an object’s attributes.

Runtime Environment for Objects
The Oracle OCI provides a runtime environment for objects that offers a set of

functions for managing how Oracle objects are used on the client-side. These

functions provide the necessary functionality for:

■ Connecting to an Oracle server in order to access its object functionality

including initializing a session, logging on to a database server, and registering

a connection.

■ Setting up the client-side object cache and tuning its parameters.

■ Getting errors and warning messages.

■ Controlling transactions that access objects in the server.

■ Associatively accessing objects through SQL.

New Features

Introduction, New Features, and Upgrading 1-17

■ Describing a PL/SQL procedure or function whose parameters or result are of

Oracle type system types.

Type Management, Mapping and Manipulation Functions
The Oracle OCI provides two sets of functions to work with Oracle objects:

■ Type Mapping functions allow applications to map attributes of an Oracle

schema which are represented in the server as internal Oracle datatypes such as

Oracle’s number, date and string types to their corresponding host language

types such as integer, months and days.

■ Type Manipulation functions allow host language applications to manipulate

individual attributes of an Oracle schema such as setting/getting their values

and flushing their values to the server.

Additionally, the OCIDescribeAny() function can provide information about objects

stored in the database.

Object Type Translator
The Object Type Translator (OTT) utility translates schema information about

Oracle object types into client-side language bindings. That is, the Oracle OTT

translates type information into declarations of host language variables, such as

structures and classes. The OTT takes an intype file which contains metadata

information about Oracle schema objects (an Oracle data dictionary) and generates

an outtype file and the necessary header and implementation files that must be

included in a C application that runs against the object schema. Both OCI

applications and Pro*C precompiler applications may include code generated by

the OTT. The OTT has many benefits including:

■ Improves application developer productivity: OTT eliminates the need for

application developers to write by hand the host language variables that

correspond to schema objects.

■ Maintains SQL as the data-definition language of choice: By providing the

ability to automatically map Oracle schema objects that are created using SQL

to host language variables automatically, OTT facilitates using SQL as the

data-definition language of choice. This in turn allows Oracle to support a

consistent model of the user’s data, enterprise-wide.

■ Facilitates schema evolution of object types: OTT provides the ability to

regenerate #include files when the schema is changed allowing Oracle

applications to support schema evolution.

New Features

1-18 Oracle Call Interface Programmer’s Guide

OTT is typically invoked from the command line by specifying the intype file, the

outtype file and the specific database connection. With Oracle, OTT can only

generate C structs which can either be used with OCI programs or with the Pro*C

precompiler programs.

OCI Support for Oracle Advanced Queueing
The OCI provides an interface to Oracle’s Advanced Queueing (AQ) feature. Oracle

AQ provides message queuing as an integrated part of the Oracle server. Oracle AQ

provides this functionality by integrating the queuing system with the database,

thereby creating a message-enabled database. By providing an integrated solution

Oracle AQ frees application developers to devote their efforts to their specific

business logic rather than having to construct a messaging infrastructure.

For more information about the OCI advanced queueing features, refer to "OCI and

Advanced Queuing" on page 9-25.

Simplified Migration of Existing Applications
The OCI has been significantly improved with many features. Applications written

to work with Oracle OCI release 7 have a smooth migration path to Oracle OCI

release 8i due to the interoperability of Oracle OCI release 7 client with Oracle8i and

Oracle OCI release 8i client with Oracle7 database server. Specifically:

■ Applications that use Oracle OCI release 7.3 work unchanged against Oracle8i.

■ Applications that use Oracle OCI release 8i work against an Oracle7 server

provided they do not use any of the new capabilities of the OCI or the server.

■ Oracle OCI release 7 and Oracle OCI release 8i calls can be mixed in the same

application and in the same transaction provided they are not mixed within the

statement.

As a result, customers migrating an existing Oracle OCI release 7 application have

the following three alternatives:

■ Retain Oracle7 OCI client: Customers can retain their Oracle7 OCI applications

without making any modifications - they will continue to work against an

Oracle8i server.

■ Upgrade to Oracle8i OCI client but do not modify application: Customers who

choose to upgrade from a Oracle7 OCI client to Oracle8i OCI client need only

relink the new version of OCI library and need NOT recompile their

application. Relinked Oracle7 OCI applications work unchanged against an

Oracle8i server.

Compatibility, Upgrading, and Migration

Introduction, New Features, and Upgrading 1-19

■ Upgrade to Oracle8i OCI client and modify application: To avail themselves of

the performance and scalability benefits provided by the new OCI, however,

customers will need to modify their existing applications to use the new OCI

programming paradigm, relink them with the new OCI library and run them

against an Oracle8i server.

Further, if application developers need to use any of the object capabilities of the

Oracle8i server, they will need to upgrade their client to use Oracle8i OCI.

Compatibility, Upgrading, and Migration
The OCI release 8i provides support for applications written with either the 7.x OCI

and the 8.x OCI. This section discusses changes in the OCI library routines, issues

concerning compatibility between different versions of the OCI and server, as well

as issues involved in migrating an application from the release 7.x OCI to the 8.x

OCI.

Note: For the most recently updated information about compatibility,

upgrading, and migration, refer to the Oracle8i Migration manual.

Obsolescent OCI Routines
Release 8.0 of the Oracle Call Interface introduced an entirely new set of functions

which were not available in release 7.3. Release 8i adds more new functions. The

earlier 7.x calls are still available, but Oracle strongly recommends that existing

applications use the new calls to improve performance and provide increased

functionality.

Table 1–1, "Obsolescent OCI Routines" lists the 7.x OCI calls with their release 8i
equivalents. For more information about the Oracle OCI calls, see the function

descriptions in Part III of this guide. For more information about the 7.x calls, see

the Programmer’s Guide to the Oracle Call Interface, Release 7.3. These 7.x calls are

obsoleted, meaning that OCI has replaced them with newer calls. While the

obsoleted calls are supported at this time, they may not be supported in all future

versions of the OCI.

Note: In many cases the new OCI routines do not map directly onto the 7.x

routines, so it may not be possible to simply replace one function call and

parameter list with another. Additional program logic may be required before

Compatibility, Upgrading, and Migration

1-20 Oracle Call Interface Programmer’s Guide

or after the new call is made. See the remaining chapters of this guide for more

information.

Table 1–1 Obsolescent OCI Routines

7.x OCI Routine Equivalent or Similar 8.x Oracle OCI Routine

obindps(), obndra(),
obndrn(), obndrv()

OCIBindByName(), OCIBindByPos() (Note: additional bind
calls may be necessary for some data types)

obreak() OCIBreak()

ocan() none

oclose() Note: cursors are not used in Release 8i

ocof(), ocon() OCIStmtExecute() with OCI_COMMIT_ON_SUCCESS mode

ocom() OCITransCommit()

odefin(), odefinps() OCIDefineByPos() (Note: additional define calls may be
necessary for some data types)

odescr() Note: schema objects are described with OCIDescribeAny(). A
describe, as used in release 7.x, will most often be done by
calling OCIAttrGet() on the statement handle after SQL
statement execution.

odessp() OCIDescribeAny()

oerhms() OCIErrorGet()

oexec(), oexn() OCIStmtExecute()

oexfet() OCIStmtExecute(), OCIStmtFetch() (Note: result set rows can be
implicitly prefetched)

ofen(), ofetch() OCIStmtFetch()

oflng() none

ogetpi() OCIStmtGetPieceInfo()

olog() OCILogon()

ologof() OCILogoff()

onbclr(), onbset(), onbtst() Note: non-blocking mode can be set or checked by calling
OCIAttrSet() or OCIAttrGet() on the server context handle or
service context handle

oopen() Note: cursors are not used in Release 8i

oopt() none

oparse() OCIStmtPrepare(); however, it is all local

Compatibility, Upgrading, and Migration

Introduction, New Features, and Upgrading 1-21

See Also: For information about the additional functionality provided by new

functions not listed here, see the remaining chapters of this guide.

OCI Routines Not Supported
Some OCI routines that were available in previous versions of the OCI are not

supported in Oracle8i. They are listed in Table 1–2, "OCI Routines Not Supported":

opinit() OCIInitialize()

orol() OCITransRollback()

osetpi() OCIStmtSetPieceInfo()

sqlld2() SQLSvcCtxGet or SQLEnvGet

sqllda() SQLSvcCtxGet or SQLEnvGet

odsc() Note: see odescr() above

oermsg() OCIErrorGet()

olon() OCILogon()

orlon() OCILogon()

oname() Note: see odescr() above

osql3() Note: see oparse() above

Table 1–2 OCI Routines Not Supported

OCI Routine Equivalent or Similar 8.x Oracle OCI Routine

obind() OCIBindByName(), OCIBindByPos() (Note: additional
bind calls may be necessary for some data types)

obindn() OCIBindByName(), OCIBindByPos() (Note: additional
bind calls may be necessary for some data types)

odfinn() OCIDefineByPos() (Note: additional define calls may be
necessary for some data types)

odsrbn() Note: see odescr() in Table 1–1

ologon() OCILogon()

osql() Note: see oparse() Table 1–1

Table 1–1 Obsolescent OCI Routines(Cont.)

7.x OCI Routine Equivalent or Similar 8.x Oracle OCI Routine

Compatibility, Upgrading, and Migration

1-22 Oracle Call Interface Programmer’s Guide

Compatibility
This section addresses compatibility between different versions of the OCI and

Oracle server.

7.x Applications
Existing 7.x applications with no new release 8.x OCI calls have two choices:

■ do not relink the application

■ relink with the new 8.x OCI library

In either case, the application will work against both Oracle7 and Oracle8i. The

application will not be able to use the object features of Oracle8i, and will not get

any of the performance or scalability benefits provided by the Oracle OCI release 8i.

Oracle8 Applications
New applications written completely in the Oracle OCI will work seamlessly

against both Oracle7 and Oracle8i with the following exceptions:

■ Against Oracle7 servers, none of Oracle’s object features are supported, and the

following datatypes are not supported:

– SQLT_NTY - named data type

– SQLT_REF - reference to named data type in host language representation.

– SQLT_CLOB - a character LOB data type.

– SQLT_BLOB - a binary LOB data type.

– SQLT_NCLOB - a national character set LOB data type.

– SQLT_NCHAR - fixed or varying national character set datatype.

– SQLT_BFILE - a binary FILE LOB data type.

– SQLT_RSET - result set data type.

■ Against Oracle7 Servers, the following calls or features are not supported, or are

supported with restrictions:

Table 1–3 Oracle OCI Release 8i Restrictions When Running Against Oracle7 Servers

Function Restrictions

OCIBindObject() not supported

OCIPasswordChange() not supported

Compatibility, Upgrading, and Migration

Introduction, New Features, and Upgrading 1-23

Upgrading
Programmers who wish to incorporate new release 8i functionality into existing

OCI applications have two options:

■ Completely rewrite the application to use only new OCI calls (recommended)

■ Incorporate new Oracle OCI release 8i calls into the application, while still

using 7.x calls for some operations.

This manual should provide the information necessary to rewrite an existing

application to use only new OCI calls.

Adding 8 i Oracle OCI Calls to 7.x Applications
The following guidelines apply to programmers who want to incorporate new

Oracle datatypes and features by using new OCI calls, while keeping 7.x calls for

some operations:

■ Change the existing logon to use OCILogon instead of olog() (or other logon call).

The service context handle can be used with new OCI calls or can be converted

into a Lda_Def to be used with 7.x OCI calls.

Note: See the description of OCIServerAttach() on page 15-5 and the description

of OCISessionBegin() on page 15-5 for information about the logon calls

necessary for applications which are maintaining multiple sessions.

■ After the server context handle has been initialized, it can be used with Oracle

OCI release 8i calls.

■ To use Oracle7 OCI calls, convert the server context handle to an Lda_Def using

OCISvcCtxToLda(), and pass the resulting Lda_Def to the 7.x calls.

OCIDefineObject() not supported

OCIDescribeAny() only supports description of select lists or stored procedures

OCIErrorGet() only a subset of Oracle error codes can be returned

OCIStmtFetch() prefetching options not supported

OCILob*() calls LOB/FILE calls are not supported

OCIAttrSet() setting NCHAR attributes not supported

OCIAttrGet() getting NCHAR attributes not supported

Table 1–3 Oracle OCI Release 8i Restrictions When Running Against Oracle7 Servers

Function Restrictions

Compatibility, Upgrading, and Migration

1-24 Oracle Call Interface Programmer’s Guide

Note: If there are multiple service contexts which share the same server handle,

only one can be in Oracle7 mode at any time.

■ To begin using 8i Oracle OCI calls again, the application must convert the Lda_
Def back to a server context handle using OCILdaToSvcCtx().

■ The application may toggle between the Lda_Def and server context as often as

necessary in the application.

This approach allows an application to use a single connection, but two different

APIs, to accomplish different tasks.

You can mix and match OCI 7.x and OCI 8i calls within a transaction, but not within

a statement. This allows you to execute one SQL or PL/SQL statement with OCI 7.x

calls and the next SQL or PL/SQL statement within that transaction with Oracle8i
OCI calls.

Warning: You can not open a cursor, and parse with OCI 7.x calls and then

execute the statement with OCI 8i calls.

Compatibility, Upgrading, and Migration

Introduction, New Features, and Upgrading 1-25

Application Linking Issues
This section discusses issues related to application linking, including the use of

non-deferred linking and single-task linking with various OCI versions.

Non-deferred linking
Application developers are cautioned that Oracle plans to desupport non-deferred

mode linking beginning with a future release of Oracle. It will continue to be

supported with all the releases of Oracle8i. Recognizing these plans, application

developers should no longer use non-deferred mode linking in developing new

applications. Version 7.3 of the OCI supports two linking modes:

■ Non-deferred linking: The Oracle OCI version 6 (client) only supported

non-deferred linking which meant that for each SQL statement, a parse, a bind

and a define call were each executed separately with individual round trips

between the client and the server. This significantly increased network traffic

between the client and the server and reduced both the performance and

scalability of OCI applications.

■ Deferred linking: Unlike the Oracle OCI version 6, the Oracle7 OCI supports

both non-deferred linking and deferred linking. Deferred mode linking

essentially defers the bind and define steps until the statement executes - that is

it automatically bundles and defers the bind and define calls to execution time.

Further, when the application is linked with deferred mode and a special

parsing call is used (the OPARSE call with the DEFFLG set to a non-zero value),

even the parse call can be deferred to execution time. Note that deferred mode

linking does not depend on the specific OCI calls that the application uses, only

on the link option that is selected.

Deferred mode linking therefore significantly reduces the number of round trips

between the client and the server and as a result improves the performance and

scalability of OCI applications. The default behavior of Oracle7 OCI connected to

the Oracle7 server is deferred mode linking. However, Oracle7 OCI also supports

non-deferred linking by setting specific link time options.

All the Oracle7 OCI calls are supported with Oracle8i OCI. This means that they

will work with a Oracle8i OCI client by relinking the release 8i OCI libraries.The

default mode with these calls continues to be deferred mode linking; however,

non-deferred mode linking is supported for these calls through all releases of

Oracle8i by setting link time options. However, Oracle8i-specific calls use a different

paradigm and as a result non-deferred mode linking is not necessary.

Compatibility, Upgrading, and Migration

1-26 Oracle Call Interface Programmer’s Guide

The various combinations of client-side libraries and server with which

non-deferred linking is currently supported are summarized in the following table:

Oracle will continue to support deferred-mode linking with all the releases of

Oracle8i. This has varying implications depending on the version of the OCI library

that is used.

Applications using Oracle OCI Version 6 libraries
Because the Oracle OCI 6.x library is not supported against Oracle8i, applications

using the Oracle OCI 6.x library cannot be run against Oracle8i.

Applications using Oracle7 OCI libraries
Applications using Oracle7 OCI libraries can run in two configurations against an

Oracle8i database:

■ They can be run with Oracle 7.x OCI libraries against an Oracle8i database in

non-deferred mode provided link time options are set appropriately.

■ They can also be relinked with the Oracle 8i OCI libraries and run in

non-deferred mode provided link time options are set appropriately. Oracle will

support the first configuration through all the releases of Oracle8i. However, the

second configuration will not be supported in release 9 of Oracle. Therefore,

applications that require non-deferred linking will not be able to upgrade to

Oracle 9.x client-side libraries.

Table 1–4 Supported Linking Modes for Various Client and Server Versions

Client Oracle 6.x OCI Oracle 7.x OCI Oracle 8.x OCI

(7.x calls)

Oracle 8.x OCI

(8.x calls)

Oracle 9.x OCI

Server

Oracle9 Not supported Default: deferred
Non-deferred
supported

Default: deferred
Non-deferred
supported

Not supported Not supported

Oracle8 Not supported Default: deferred
Non-deferred
supported

Default: deferred
Non-deferred
supported

Not supported Not supported

Oracle7 Non-deferred
mode only

Default: deferred
Non-deferred
supported

Default: deferred
Non-deferred
supported

Not supported Not supported

Oracle6 Non-deferred
mode only

Default: deferred
Non-deferred
supported

Not supported Not supported Not supported

Compatibility, Upgrading, and Migration

Introduction, New Features, and Upgrading 1-27

Applications using Oracle OCI release 8 i libraries
Applications using Oracle release 8i OCI calls, such as those used to access Oracle's

object types, do not need to use non-deferred mode linking since the Oracle OCI

release 8i uses a different paradigm. Applications using only Oracle7 OCI calls will

be able to use non-deferred mode linking but only through release 8.1

Single-task linking
Single-task linking is a feature used by a limited number of Oracle's customers,

primarily on the OpenVMS platform. Some Oracle platforms support single-task

linking, others no longer support it. Application developers are cautioned that

Oracle will desupport single task on ALL platforms beginning with the first server

release after Oracle8i. Oracle will continue to support single-task linking for all

Oracle 8.x releases on those platforms that do support it today. Application

developers are referred to the product-line specific documentation to determine

whether or not their platform supports single-task linking today.

With single-task linking, Oracle supports two configurations to link Oracle products

and user-written applications against the Oracle database:

■ Single-task linking: In this case, applications are directly linked against the

Oracle shareable image making single-task connection to Oracle.

■ Two-task linking: In this case, applications linked in a standalone configuration

can only connect to Oracle using Net8's two task drivers such as Net8 DECnet

or Net8 VMS Mailbox on the OpenVMS platform. This is the typical

configuration used in the large majority of client-server applications. With two

task linking applications and tools connect with the Oracle7 database through a

programmatic interface that creates a shadow process for each user connection.

This shadow process runs a copy of the Oracle shareable image on behalf of the

user process using Net8 protocols to communicate between the user and

shadow processes. Therefore, with this interface, user routines that invoke the

Oracle7 Server functions run as one process or task, and the Oracle7 routines

that execute these functions run as the second task.

Oracle will continue to support single-task linking with all the releases of the Oracle

server (all 8.* releases) but will desupport it beginning with the first release after

Oracle8i. Application developers who would like to use single-task linking to run

their applications will not be able to do so against the first server release after

Oracle8i.

Compatibility, Upgrading, and Migration

1-28 Oracle Call Interface Programmer’s Guide

OCI Programming Basics 2-1

2
OCI Programming Basics

This chapter introduces you to the basic concepts involved in programming with

the Oracle Call Interface. This chapter covers the following topics:

■ Overview

■ OCI Program Structure

■ OCI Data Structures

■ Handles

■ Descriptors and Locators

■ OCI Programming Steps

■ Initialization, Connection, and Session Creation

■ Processing SQL Statements

■ Commit or Rollback

■ Terminating the Application

■ Error Handling

■ Additional Coding Guidelines

■ Non-Blocking Mode

■ Using PL/SQL in an OCI Program

Overview

2-2 Oracle Call Interface Programmer’s Guide

Overview
This chapter provides an introduction to the concepts and procedures involved in

developing an OCI application. After reading this chapter, you should have most of

the tools necessary to understand and create a basic OCI application.

This chapter is broken down into the following major sections:

■ OCI Program Structure - covers the basic overall structure of an OCI

application, including the major steps involved in creating one.

■ OCI Data Structures - discusses handles, descriptors, and locators.

■ OCI Programming Steps - discusses in detail each of the steps involved in

coding an OCI application.

■ Error Handling - covers error handling in OCI applications.

■ Additional Coding Guidelines - provides additional useful information to keep

in mind when coding an OCI application.

■ Non-Blocking Mode - this section covers the use of non-blocking mode to

connect to an Oracle database server.

■ Using PL/SQL in an OCI Program - discusses some important points to keep in

mind when working with PL/SQL in an OCI application.

New users should pay particular attention to the information presented in this

chapter, because it forms the basis for the rest of the material presented in this

guide. The information in this chapter is supplemented by information in later

chapters. More specifically, after reading this chapter you may want to continue

with any or all of the following:

■ Chapter 3, for detailed information about OCI internal and external datatypes

■ Chapter 4, for information about processing SQL statements

■ Chapter 5, for more information about binding and defining

■ Chapter 6, for information about the OCIDescribe() call.

■ Chapter 7, for information about OCI support for LOB, FILE, and temporary

LOB datatypes.

■ Chapter 8, for a discussion of password management, session management, and

thread safety.

■ Chapter 9 for a discussion of advanced OCI concepts and techniques

OCI Program Structure

OCI Programming Basics 2-3

■ Chapter 10 through Chapter 14, for information about writing OCI applications

that take advantage of the object capabilities of the Oracle database server

■ Chapter 15 through Chapter 18, for a listing of the OCI function calls, including

descriptions, syntax, and parameters

See Also: For a a discussion of the OCI functions that apply to an NLS

environment, see the Oracle8i National Language Support Guide. For a discussion

of the OCI functions that apply to cartridge services, see the Oracle8i Data
Cartridge Developer’s Guide.

■ Appendix A, for attributes of OCI handles and descriptors

■ Appendix B, for a list of important OCI demonstration programs

■ Appendix C, for information on server roundtrips during OCI function calls

OCI Program Structure
The general goal of an OCI application is to operate on behalf of multiple users. In

an n-tiered configuration, multiple users are sending HTTP requests to the client

application. The client application may need to perform some data operations that

include exchanging data and performing data processing.

While some flexibility exists in the order in which specific tasks can be performed,

every OCI application needs to accomplish particular steps. The OCI uses the

following basic program structure:

1. Initialize the OCI programming environment and threads.

2. Allocate necessary handles, and establish server connections and user sessions.

3. Issue SQL statements to the server, and perform necessary application data

processing.

4. Free statements and handles not to be reused or reexecute prepared statements

again, or prepare a new statement.

5. Terminate user sessions and server connections.

Figure 2–1, "Basic OCI Program Flow" illustrates the flow of steps in an OCI

application. Each step is described in more detail in the section "OCI Programming

Steps" on page 2-17.

OCI Program Structure

2-4 Oracle Call Interface Programmer’s Guide

Figure 2–1 Basic OCI Program Flow

Keep in mind that the previous diagram and the list of steps present a simple

generalization of OCI programming steps. Variations are possible, depending on

the functionality of the program. OCI applications that include more sophisticated

functionality, such as managing multiple sessions and transactions and using

objects, require additional steps.

All OCI function calls are executed in the context of an environment. There can be

multiple environments within an OCI process, as illustrated in Figure 2–2, "Multiple

Environments Within an OCI Process". If an environment requires any process-level

initialization then it is performed automatically.

Note: In previous releases, a separate explicit process-level initialization was

required. This requirement has been simplified and no explicit process-level

initialization is required.

Allocate Handles
and Data Structures

Connect to Server
and Begin Session

Issue SQL
and Process Data

Free Handles
& Data Structures

Disconnect

Create
Environment

OCI Data Structures

OCI Programming Basics 2-5

Figure 2–2 Multiple Environments Within an OCI Process

Note: It is possible to have more than one active connection and statement in an

OCI application.

See Also: For information about accessing and manipulating objects, see

Chapter 10, "OCI Object-Relational Programming".

OCI Data Structures
Handles and descriptors are opaque data structures which are defined in OCI

applications and may be allocated directly, through specific allocate calls, or may be

implicitly allocated by other OCI functions.

7.x Upgrade Note: Programmers who have previously written 7.x OCI

applications will need to become familiar with these new data structures which

are used by most OCI calls.

Handles and descriptors store information pertaining to data, connections, or

application behavior. Handles are defined in more detail in the following section.

Descriptors are discussed in the section "Descriptors and Locators" on page 2-14.

Allocate Handles
and Data Structures

Connect to Server
and Begin Session

Issue SQL
and Process Data

Free Handles
& Data Structures

Disconnect

Create
Environment

OCI Process

Allocate Handles
and Data Structures

Connect to Server
and Begin Session

Issue SQL
and Process Data

Free Handles
& Data Structures

Disconnect

Create
Environment

Allocate Handles
and Data Structures

Connect to Server
and Begin Session

Issue SQL
and Process Data

Free Handles
& Data Structures

Disconnect

Create
Environment

Handles

2-6 Oracle Call Interface Programmer’s Guide

Handles
Almost all Oracle OCI calls include in their parameter list one or more handles. A

handle is an opaque pointer to a storage area allocated by the OCI library. A handle

may be used to store context or connection information, (e.g., an environment or

service context handle), or it may store information about other OCI functions or

data (e.g., an error or describe handle). Handles can make programming easier,

because the library, rather than the application, maintains this data.

Most OCI applications will need to access the information stored in handles. The

get and set attribute OCI calls, OCIAttrGet() and OCIAttrSet(), access this

information.

See Also: For more information about using handle attributes, see the section

"Handle Attributes" on page 2-12.

The following table lists the handles defined for the OCI. For each handle type, the

C datatype and handle type constant used to identify the handle type in OCI calls

are listed.

Table 2–1 OCI Handle Types

C Type Description Handle Type

OCIEnv OCI environment handle OCI_HTYPE_ENV

OCIError OCI error handle OCI_HTYPE_ERROR

OCISvcCtx OCI service context handle OCI_HTYPE_SVCCTX

OCIStmt OCI statement handle OCI_HTYPE_STMT

OCIBind OCI bind handle OCI_HTYPE_BIND

OCIDefine OCI define handle OCI_HTYPE_DEFINE

OCIDescribe OCI describe handle OCI_HTYPE_DESCRIBE

OCIServer OCI server handle OCI_HTYPE_SERVER

OCISession OCI user session handle OCI_HTYPE_SESSION

OCITrans OCI transaction handle OCI_HTYPE_TRANS

OCIComplexObject OCI complex object retrieval (COR) handle OCI_HTYPE_COMPLEXOBJECT

OCIThreadHandle OCI thread handle N/A

OCISubscription OCI subscription handle OCI_HTYPE_SUBSCRIPTION

OCIDirPathCtx OCI direct path context handle OCI_HTYPE_DIRPATH_CTX

Handles

OCI Programming Basics 2-7

Allocating and Freeing Handles
Your application allocates all handles (except the bind, define, and thread handles)

with respect to particular environment handle. You pass the environment handle as

one of the parameters to the handle allocation call. The allocated handles is then

specific to that particular environment.

The bind and define handles are allocated with respect to a statement handle, and

contain information about the statement represented by that handle.

Note: The bind and define handles are implicitly allocated by the OCI library,

and do not require user allocation.

Figure 2–3, "Hierarchy of Handles:" illustrates the relationship between the various

types of handles.

All user-allocated handles are allocated using the OCI handle allocation call,

OCIHandleAlloc().

Note: The environment handle is allocated and initialized with a call to

OCIEnvInit(), which is required by all OCI applications.

The thread handle is allocated with the OCIThreadHndInit() call.

An application must free all handles when they are no longer needed. The

OCIHandleFree() function frees handles.

Note: When a parent handle is freed, all child handles associated with it are also

freed, and may no longer be used. For example, when a statement handle is

freed, any bind and define handles associated with it are also freed.

OCIDirPathColArray OCI direct path column array handle OCI_HTYPE_DIRPATH_COLUMN_
ARRAY

OCIDirPathStream OCI direct path stream handle OCI_HTYPE_DIRPATH_STREAM

OCIProcess OCI process handle OCI_HTYPE_PROC

Table 2–1 OCI Handle Types (Cont.)

C Type Description Handle Type

Handles

2-8 Oracle Call Interface Programmer’s Guide

Figure 2–3 Hierarchy of Handles:

Handles obviate the need for global variables. Handles also make error reporting

easier. An error handle is used to return errors and diagnostic information.

See Also: For sample code demonstrating the allocation and use of OCI

handles, see the example programs listed in Appendix B, "OCI Demonstration

Programs".

The various handle types are described in more detail in the following sections.

Environment Handle
The environment handle defines a context in which all OCI functions are invoked.

Each environment handle contains a memory cache, which allows for fast memory

management in a threaded environment where each thread has its own

environment. When multiple threads share a single environment, they may block

on access to the cache.

Subscription
Handle

COR
Handle

Thread
Handle

Direct Path
Context Handle

Error
Handle

Statement
Handle

Describe
Handle

Service Context
Handle

Process
Handle

Environment
Handle

Handles

OCI Programming Basics 2-9

The environment handle is passed as the parenth parameter to the OCIHandleAlloc()
call to allocate all other handle types, except for the bind and define handles.

Error Handle
The error handle is passed as a parameter to most OCI calls. The error handle

maintains information about errors that occur during an OCI operation. If an error

occurs in a call, the error handle can be passed to OCIErrorGet() to obtain additional

information about the error that occurred.

Allocating the error handle is one of the first steps in an OCI application.

Service Context and Associated Handles
A service context handle defines attributes that determine the operational context for

OCI calls to a server. The service context contains three handles that represent a

server connection, a user session, and a transaction. These attributes are illustrated

in Figure 2–4, "Components of a Service Context"the following figure.

Figure 2–4 Components of a Service Context

■ A server handle identifies a data source. It translates into a physical connection in

a connection-oriented transport mechanism.

■ A user session handle defines a user’s roles and privileges (also known as the

user’s security domain), and the operational context on which the calls execute.

■ A transaction handle defines the transaction in which the SQL operations are

performed. The transaction context includes user session state information,

including the fetch state and package instantiation, if any.

Breaking the service context down in this way provides scalability and enables

programmers to create sophisticated three-tiered applications and transaction

processing (TP) monitors to execute requests on behalf of multiple users on multiple

application servers and different transaction contexts.

Server
Handle

Transaction
Handle

Service Context
Handle

User Session
Handle

Handles

2-10 Oracle Call Interface Programmer’s Guide

You must allocate and initialize the service context handle with OCIHandleAlloc() or

OCILogon() before you can use it. The service context handle is allocated explicitly

by OCIHandleAlloc(). It can be initialized using OCIAttrSet() with the server, session,

and transaction handle. If the service context handle is allocated implicitly using

OCILogon(), it is already initialized.

Applications maintaining only a single user session per database connection at any

time can call OCILogon() to get an initialized service context handle.

In applications requiring more complex session management, the service context

must be explicitly allocated, and the server handle and user session handle must be

explicitly set into the service context by calling OCIServerAttach() and

OCISessionBegin(), respectively.

An application may need to define a transaction explicitly if it is a global transaction

or there are multiple transactions active for sessions. It also may be able to work

with the implicit transaction created when the application makes changes to the

database.

See Also: For more information about transactions, see the section

"Transactions" on page 8-2. For more information about establishing a server

connection and user session, see the sections "Initialization, Connection, and

Session Creation" on page 2-18, and "Password and Session Management" on

page 8-10

Statement Handle, Bind Handle, and Define Handle
A statement handle is the context that identifies a SQL or PL/SQL statement and its

associated attributes.

Figure 2–5 Statement Handles

Information about input variables is stored in bind handles. The OCI library allocates

a bind handle for each placeholder bound with the OCIBindByName() or

Define
Handle

Bind
Handle

Statement
Handle

Handles

OCI Programming Basics 2-11

OCIBindByPos() function. The user does not need to allocate bind handles. They are

implicitly allocated by the bind call.

Fetched data returned by a query is converted and stored according to the

specifications of the define handles. The OCI library allocates a define handle for each

output variable defined with OCIDefineByPos(). The user does not need to allocate

define handles. They are implicitly allocated by the define call.

Bind and define handles are freed when the statement handle is freed or when a

statement is prepared on the statement handle.

Statement context data, the data associated with a statement handle, can be shared.

For information about OCI shared mode, see "Shared Data Mode" on page 2-19.

Describe Handle
The describe handle is used by the OCI describe call, OCIDescribeAny(). This call

obtains information about schema objects in a database (e.g., functions, procedures).

The call takes a describe handle as one of its parameters, along with information

about the object being described. When the call completes, the describe handle is

populated with information about the object. The OCI application can then obtain

describe information through the attributes of parameter descriptors.

See Also: See Chapter 6, "Describing Schema Metadata", for more information

about using the OCIDescribeAny() function.

Complex Object Retrieval Handle
The complex object retrieval (COR) handle is used by some OCI applications that work

with objects in an Oracle database server. This handle contains COR descriptors,
which provide instructions about retrieving objects referenced by another object.

See Also: For information about complex object retrieval and the complex

object retrieval handle, refer to "Complex Object Retrieval" on page 10-20.

Thread Handle
For information about the thread handle, refer to "The OCIThread Package" on

page 9-2.

Subscription Handle
The subscription handle is used by an OCI client application that is interested in

registering for subscriptions to receive notifications of database events or events in

Handles

2-12 Oracle Call Interface Programmer’s Guide

the AQ namespace. The subscription handle encapsulates all information related to

a registration from a client.

See Also: For information about publish-subscribe and allocating the

subscription handle, refer to "Publish-Subscribe Notification" on page 9-29.

Direct Path Handles
The direct path handles are necessary for an OCI application that utilizes the direct

path load engine in the Oracle database server. The direct path load interface allows

the application to access the direct block formatter of the Oracle server.

Figure 2–6 Direct Path Handles

See Also: For information about direct path loading and allocating the direct

path handles, refer to "Direct Path Loading" on page 9-37. For information

about the handle attributes, refer to "Direct Path Loading Handle Attributes"

on page A-39.

Process Handle
The process handle is a specialized handle for OCI applications that utilize

shared data structures mode to set global parameters. See "Shared Data Mode"

on page 2-19.

Handle Attributes
All OCI handles have attributes associated with them. These attributes represent

data stored in that handle. You can read handle attributes using the attribute get

call, OCIAttrGet(), and you can change them with the attribute set call, OCIAttrSet().

For example, the following statements set the username in the session handle by

writing to the OCI_ATTR_USERNAME attribute:

text username[] = "scott";

Direct Path
Column Array

Handle

Direct Path
Stream
Handle

Direct Path
Context Handle

Handles

OCI Programming Basics 2-13

err = OCIAttrSet ((dvoid*) mysessp, OCI_HTYPE_SESSION, (dvoid*) username,
 (ub4) strlen(username), OCI_ATTR_USERNAME,
 (OCIError *) myerrhp);

Some OCI functions require that particular handle attributes be set before the

function is called. For example, when OCISessionBegin() is called to establish a

user’s login session, the username and password must be set in the user session

handle before the call is made.

Other OCI functions provide useful return data in handle attributes after the

function completes. For example, when OCIStmtExecute() is called to execute a SQL

query, describe information relating to the select-list items is returned in the

statement handle.

ub4 parmcnt;
/* get the number of columns in the select list */
err = OCIAttrGet ((dvoid *)stmhp, (ub4)OCI_HTYPE_STMT, (dvoid *)

&parmcnt, (ub4 *) 0, (ub4)OCI_ATTR_PARAM_COUNT, errhp);

For a list of all handle attributes, refer to Appendix A, "Handle and Descriptor

Attributes".

See Also: See the description of OCIAttrGet() on page 15-28 for an example

showing the username and password handle attributes being set.

User Memory Allocation
The OCIEnvInit() call, which initializes the environment handle, and the generic

handle allocation (OCIHandleAlloc()) and descriptor/locator allocation

(OCIDescriptorAlloc()) calls have an xtramem_sz parameter in their parameter list.

This parameter is used to specify memory chunk size which is allocated along with

that handle for the user.

Typically, an application uses this parameter to allocate an application-defined

structure, such as for an application bookkeeping or storing context information, that

has the same lifetime as the handle.

Using the xtramem_sz parameter means that the application does not need to

explicitly allocate and deallocate memory as each handle is allocated and

deallocated. The memory is allocated along with the handle, and freeing the handle

frees up the user’s data structures as well.

Descriptors and Locators

2-14 Oracle Call Interface Programmer’s Guide

Descriptors and Locators
OCI descriptors and locators are opaque data structures that maintain data-specific

information. The OCI has six descriptor and locator types. The following table lists

them, along with their C datatype, and the OCI type constant that allocates a

descriptor of that type in a call to OCIDescriptorAlloc(). The OCIDescriptorFree()
function frees descriptors and locators.

Note: Although there is a single C type for OCILobLocator, this locator is

allocated with a different OCI type constant for internal and external LOBs. The

section below on LOB locators discusses this difference.

The main purpose of each descriptor type is listed here, and each descriptor type is

described in the following sections:

■ OCISnapshot - used in statement execution

■ OCILOBLocator - used for LOB (OCI_DTYPE_LOB) or FILE (OCI_DTYPE_

FILE) calls

■ OCIParam - used in describe calls

■ OCIRowid - used for binding or defining ROWID values

■ OCIComplexObjectComp - used for complex object retrieval

Table 2–2 Descriptor Types

C Type Description OCI Type Constant

OCISnapshot snapshot descriptor OCI_DTYPE_SNAP

OCILobLocator LOB datatype locator OCI_DTYPE_LOB

OCILobLocator FILE datatype locator OCI_DTYPE_FILE

OCIParam read-only parameter descriptor OCI_DTYPE_PARAM

OCIRowid ROWID descriptor OCI_DTYPE_ROWID

OCIComplexObjectComp complex object descriptor OCI_DTYPE_COMPLEXOBJECTCOMP

OCIAQEnqOptions advanced queuing enqueue options OCI_DTYPE_AQENQ_OPTIONS

OCIAQDeqOptions advanced queuing dequeue options OCI_DTYPE_AQDEQ_OPTIONS

OCIAQMsgProperties advanced queuing message properties OCI_DTYPE_AQMSG_PROPERTIES

OCIAQAgent advanced queuing agent OCI_DTYPE_AQAGENT

OCIAQNotify advanced queuing notification OCI_DTYPE_AQNFY

Descriptors and Locators

OCI Programming Basics 2-15

■ OCIAQEnqOptions, OCIAQDeqOptions, OCIAQMsgProperties,

OCIAQAgent - used for advanced queueing

■ OCIAQNotify - used for publish-subscribe notification

Snapshot Descriptor
The snapshot descriptor is an optional parameter to the execute call,

OCIStmtExecute(). It indicates that a query is being executed against a particular

database snapshot. A database snapshot represents the state of a database at a

particular point in time.

You allocate a snapshot descriptor with a call to OCIDescriptorAlloc(), by passing

OCI_DTYPE_SNAP as the type parameter.

See Also: For more information about OCIStmtExecute() and database

snapshots, see the section "Execution Snapshots" on page 4-7.

LOB/FILE Datatype Locator
A LOB (large object) is an Oracle datatype that can hold up to 4 gigabytes of binary

(BLOB) or character (CLOB) data. In the database, an opaque data structure called a

LOB locator is stored in a LOB column of a database row, or in the place of a LOB

attribute of an object. The locator serves as a pointer to the actual LOB value, which

is stored in a separate location.

The OCI LOB locator is used to perform OCI operations against a LOB (BLOB or

CLOB) or FILE (BFILE). OCI functions do not take actual LOB values as parameters;

all OCI calls operate on the LOB locator. This descriptor—OCILobLocator—is also

used for operations on FILEs.

The LOB locator is allocated with a call to OCIDescriptorAlloc(), by passing OCI_

DTYPE_LOB as the type parameter for BLOBs or CLOBs, and OCI_DTYPE_FILE for

BFILEs.

Warning: The two LOB locator types are not interchangeable. When binding or

defining a BLOB or CLOB, the application must take care that the locator is

properly allocated using OCI_DTYPE_LOB. Similarly, when binding or

defining a BFILE, the application must be sure to allocate the locator using

OCI_DTYPE_FILE.

An OCI application can retrieve a LOB locator from the server by issuing a SQL

statement containing a LOB column or attribute as an element in the select list. In

this case, the application would first allocate the LOB locator and then use it to

define an output variable. Similarly, a LOB locator can be used as part of a bind

Descriptors and Locators

2-16 Oracle Call Interface Programmer’s Guide

operation to create an association between a LOB and a placeholder in a SQL

statement.

The LOB locator datatype (OCILobLocator) is not a valid datatype when connected

to an Oracle7 Server.

See Also: For more information about OCI LOB operations, see Chapter 7,

"LOB and FILE Operations".

Parameter Descriptor
OCI applications use parameter descriptors to obtain information about select-list

columns or schema objects. This information is obtained through a describe

operation.

The parameter descriptor is the one descriptor type that is not allocated using

OCIDescriptorAlloc(). You can obtain it only as an attribute of a describe, statement,

or complex object retrieval handle by specifying the position of the parameter using

an OCIParamGet() call.

See Also: See Chapter 6, "Describing Schema Metadata", and "Describing

Select-List Items" on page 4-10 for more information about obtaining and using

parameter descriptors.

ROWID Descriptor
The ROWID descriptor (OCIRowid) is used by applications that need to retrieve

and use Oracle ROWIDs. The size and structure of the ROWID has changed from

Oracle release 7 to Oracle release 8, and is opaque to the user. To work with a

ROWID using the Oracle OCI release 8, an application can define a ROWID

descriptor for a rowid position in a SQL select-list, and retrieve a ROWID into the

descriptor. This same descriptor can later be bound to an input variable in an

INSERT statement or WHERE clause.

ROWIDs are also redirected into descriptors using OCIAttrGet() on the statement

handle following an execute.

Complex Object Descriptor
For information about the complex object descriptor and its use, refer to "Complex

Object Retrieval" on page 10-20.

OCI Programming Steps

OCI Programming Basics 2-17

Advanced Queueing Descriptors
For information about advanced queueing and its related descriptors, refer to "OCI

and Advanced Queuing" on page 9-25.

User Memory Allocation
The OCIDescriptorAlloc() call has an xtramem_sz parameter in its parameter list. This

parameter is used to specify an amount of user memory which should be allocated

along with a descriptor or locator.

Typically, an application uses this parameter to allocate an application-defined

structure that has the same lifetime as the descriptor or locator. This structure

maybe used for application bookkeeping or storing context information.

Using the xtramem_sz parameter means that the application does not need to

explicitly allocate and deallocate memory as each descriptor or locator is allocated

and deallocated. The memory is allocated along with the descriptor or locator, and

freeing the descriptor or locator (with OCIDescriptorFree()) frees up the user’s data

structures as well.

The OCIHandleAlloc() call has a similar parameter for allocating user memory which

will have the same lifetime as the handle.

The OCIEnvCreate() and OCIEnvInit() calls have a similar parameter for allocating

user memory which will have the same lifetime as the environment handle.

OCI Programming Steps
Each of the steps that you perform in an OCI application is described in greater

detail in the following sections. Some of the steps are optional. For example, you do

not need to describe or define select-list items if the statement is not a query.

Note: For an example showing the use of OCI calls for processing SQL

statements, see the first sample program in Appendix D.

The special case of dynamically providing data at run time is described in detail in

the section "Run Time Data Allocation and Piecewise Operations" on page 5-32.

Special considerations for operations involving arrays of structures are described in

the section "Arrays of Structures" on page 5-17.

Refer to the section "Error Handling" on page 2-27 for an outline of the steps

involved in processing a SQL statement within an OCI program.

Initialization, Connection, and Session Creation

2-18 Oracle Call Interface Programmer’s Guide

For information on using the OCI to write multi-threaded applications, refer to

"Thread Safety" on page 8-14.

For more information about types of SQL statements, refer to the section "SQL

Statements" on page 1-7.

The following sections describe the steps that are required of a release 8.0 OCI

application:

■ Initialization, Connection, and Session Creation

■ Processing SQL Statements

■ Commit or Rollback

■ Terminating the Application

■ Error Handling

Application-specific processing will also occur in between any and all of the OCI

function steps.

7.x Upgrade Note: OCI programmers should take note that OCI programs no

longer require an explicit parse step. This means that 8.0 applications must

issue an execute command for both DML and DDL statements.

Initialization, Connection, and Session Creation
This section describes how to initialize the Oracle OCI environment, establish a

connection to a server, and authorize a user to perform actions against a database.

The three main steps in initializing the OCI environment are described in this

section:

1. Initialize an OCI environment

2. Allocate Handles and Descriptors

3. Initialize the Application, Connection, and Session

Additionally, this section describes connection modes for OCI applications.

Initializing an OCI Environment
Each OCI function call is executed in the context of an environment that is created

with the OCIEnvCreate() call. This call must be invoked before any other OCI call.

The only exception is when setting a process-level attribute for the OCI shared

mode. See "Shared Data Mode" on page 2-19.

Initialization, Connection, and Session Creation

OCI Programming Basics 2-19

The mode parameter of OCIEnvCreate() specifies whether the application calling the

OCI library functions will run in a threaded environment (mode = OCI_

THREADED), whether or not it will use objects (mode = OCI_OBJECT), whether or

not it will utilize shared data structures (mode=OCI_SHARED), and whether or not

it will utilize subscriptions (mode=OCI_EVENTS). The mode can be set

independently in each environment.

Initializing in object mode is necessary if the application will be binding and

defining objects, or if the application will be using the OCI’s object navigation calls.

The program may also choose to use none of these features (mode = OCI_DEFAULT)

or some combination of them, separating the options with a vertical bar. For

example if mode = (OCI_THREADED | OCI_OBJECT), then the application will run

in a threaded environment and use objects.

You can also specify user-defined memory management functions for each OCI

environment.

Note: In previous releases, a separate explicit process-level initialization was

required. This requirement has been simplified and no explicit process-level

initialization is required.

See Also: See the description of OCIEnvCreate() on page 15-88 and

OCIInitialize() on page 15-93 for more information about the initialization calls.

For information about using the OCI to write multi-threaded applications, refer

to "Thread Safety" on page 8-14. For information about OCI programming with

objects, refer to Chapter 10, "OCI Object-Relational Programming". For

information about using the publish-subscribe feature, see "Publish-Subscribe

Notification" on page 9-29.

Shared Data Mode
When a SQL statement is processed, certain underlying data is associated with the

statement. This data includes information about statement text and bind data, as

well as define and describe information for queries. For applications where the

same set of SQL statements is executed on multiple instances of the application on

the same host, the data can be shared.

When an OCI application is initialized in shared mode, common statement data is

shared between multiple statement handles, thus providing memory savings for the

application. This savings may be particularly valuable for applications which create

multiple statement handles which execute the same SQL statement on different

users’ sessions but in the same schema, either on the same or multiple connections.

Initialization, Connection, and Session Creation

2-20 Oracle Call Interface Programmer’s Guide

Without the shared mode feature, each execution of the query using an OCI

statement handle would require its own memory for storing the metadata. The total

amount of memory required would be roughly equal to the number of statements

being executed in all the processes combined multiplied by the memory required

for each statement handle. Because a large part of the common memory in a

statement handle is shared among all the processes executing the same statement

with the shared mode feature, the total amount of memory in all the processes

combined would be much less than in the previous case for the same number of

processes. The memory requirement per statement handle would be much smaller

than in the case where there is no sharing, as the number of such statements

increases to a large number.

Shared data structure mode might be useful in the following scenarios:

■ When several instances of the same application are running on the same

machine to service multiple clients. Each of these instances may be executing

identical SQL statements, differentiated by different bind values.

■ When an application process forks service threads to execute the same

statement for different users either on the same connection or on multiple

connections. The same saving as above can be realized in this scenario too.

■ Where the types of applications are SQL drivers and other middle-tiered

applications.

Note: Small applications, which execute single queries non-concurrently will

not benefit from this feature.

There are several ways to use the shared OCI functionality. Existing applications

can quickly examine the benefits of this feature without changing any code. These

applications can trigger OCI shared mode by setting environment variables. New

applications should use OCI API calls to trigger shared mode functionality.

Using OCI Functions
To trigger OCI shared mode functionality, process handle parameters must be set

and OCIInitialize() must be called with the mode flag set to OCI_SHARED. For

example:

ub4 mode = OCI_SHARED | OCI_THREADED;
OCIInitialize (mode, 0, 0, 0, 0);

The first application that initializes OCI in shared mode starts up the shared

subsystem using the parameters set by that OCI application. When subsequent

applications initialize using the shared mode, they use the previously started shared

Initialization, Connection, and Session Creation

OCI Programming Basics 2-21

subsystem. For information on the parameters that can be set and read for the OCI

shared mode system, see "Process Handle Attributes" on page A-49.

If an OCI application has been initialized in shared mode, all statements that are

prepared and executed use the shared subsystem by default. If you do not want to

use the shared subsystem to execute a specific SQL statement, then you can use the

OCI_NO_SHARING flag in OCIStmtPrepare(). For example:

OCIStmtPrepare(stmthp, (CONST text *)createstmt,
 (ub4)strlen((char *)updstmt), (ub4)OCI_NTV_SYNTAX,
 (ub4)OCI_NO_SHARING);

The OCI_NO_SHARING flag has no effect if the process has not been initialized in

the shared mode. See OCIStmtPrepare() on page 15-167.

To detach a process from the shared memory subsystem, use the OCITerminate()

call. See OCITerminate() on page 15-106.

Using Environmental Variables
The environmental variables OCI_SHARED_MODE and OCI_NUM_SHARED_

PROCS can be used to set OCI shared mode functionality. However, this is not the

recommended method. This procedure has been provided to quickly examine the

benefits of using shared mode functionality in existing applications.

OCI_SHARED_MODE To trigger an OCI application to run in shared mode, set the

environment variable OCI_SHARED_MODE before executing a OCI program. To

set the variable, issue the command:

setenv OCI_SHARED_MODE number

where number is the size of the shared memory address space. For example:

setenv OCI_SHARED_MODE 20000000

If the shared subsystem is not already running, setting this variable launches the

subsystem by creating a shared memory address space with the size specified. The

size of the shared memory required is determined by the nature of the application

and depends on the size and type of the SQL statement and the underlying table(s)

that it accesses.

OCI_NUM_SHARED_PROCS To set the maximum number of processes that can

connect to the shared subsystem, set the environment variable ORA_OCI_NUM_

SHARED_PROCS. To set this variable, issue the command:

Initialization, Connection, and Session Creation

2-22 Oracle Call Interface Programmer’s Guide

setenv OCI_NUM_SHARED_PROCS number

where number is the maximum number of processes. For example:

setenv OCI_NUM_SHARED_PROCS 20

ORA_OCI_NUM_SHARED_PROCS is an initialization parameter for starting the

shared subsystem. It has no effect if the shared subsystem is already running.

Allocate Handles and Descriptors
Oracle provides OCI functions to allocate and deallocate handles and descriptors.

You must allocate handles using OCIHandleAlloc() before passing them into an OCI

call, unless the OCI call, such as OCIBindByPos(), allocates the handles for you.

You can allocate the following types of handles with OCIHandleAlloc():

■ error handle

■ service context handle

■ statement handle

■ describe handle

■ server handle

■ user session handle

■ transaction handle

■ complex object retrieval handle

■ subscription handle

■ direct path context handle

■ direct path column array handle

■ direct path stream handle

■ process handle

Depending on the functionality of your application, it will need to allocate some or

all of these handles.

See Also: See the description of OCIHandleAlloc() on page 15-34 for more

information about using this call.

Initialization, Connection, and Session Creation

OCI Programming Basics 2-23

Application Initialization, Connection, and Session Creation
An application must call OCIEnvCreate() to initialize the OCI environment handle.

Following this step, the application has two options for establishing a server

connection and beginning a user session: Single User, Single Connection; or

Multiple Sessions or Connections.

Note: OCIEnvCreate() should be used instead of the OCIInitialize() and

OCIEnvInit() calls. OCIInitialize() and OCIEnvInit() calls will be supported for

backward compatibility.

Option 1: Single User, Single Connection
This option is the simplified logon method.

If an application will maintain only a single user session per database connection at

any time, the application can take advantage of the OCI’s simplified logon

procedure.

When an application calls OCILogon(), the OCI library initializes the service context

handle that is passed to it and creates a connection to the specified server for the

user whose username and password are passed to the function.

The following is an example of what a call to OCILogon() might look like:

OCILogon(envhp, errhp, &svchp, "scott", nameLen, "tiger",
passwdLen, "oracledb", dbnameLen);

The parameters to this call include the service context handle (which will be

initialized), the username, the user’s password, and the name of the database that

will be used to establish the connection. The server and user session handles are

also implicitly allocated by this function.

If an application uses this logon method, the service context, server, and user

session handles will all be read-only, which means that the application cannot

switch session or transaction by changing the appropriate attributes of the service

context handle, using OCIAttrSet().

An application that creates its session and authorization using OCILogon() should

terminate them using OCILogoff().

Option 2: Multiple Sessions or Connections
This option uses explicit attach and begin session calls.

Initialization, Connection, and Session Creation

2-24 Oracle Call Interface Programmer’s Guide

If an application needs to maintain multiple user sessions on a database connection,

the application requires a different set of calls to set up the sessions and

connections. This includes specific calls to attach to the server and begin sessions:

■ OCIServerAttach() creates an access path to the data server for OCI operations.

■ OCISessionBegin() establishes a session for a user against a particular server.

This call is required for the user to be able to execute any operation on the

server.

Note: See "Non-Blocking Mode" on page 2-36 for information about specifying

a blocking or non-blocking connection in the OCIServerAttach() call.

These calls set up an operational environment that allows you to execute SQL and

PL/SQL statements against a database. The database must be up and running

before the calls are made, or else they will fail.

These calls are described in more detail in Chapter 15, "OCI Relational Functions".

Refer to Chapter 9, "OCI Programming Advanced Topics", for more information

about maintaining multiple sessions, transactions, and connections.

Example
The following example demonstrates the use of creating and initializing an OCI

environment. In the example, a server context is created and set in the service

handle. Then a user session handle is created and initialized using a database

username and password. For the sake of simplicity, error checking is not included.

main()
{
OCIEnv *myenvhp; /* the environment handle */
OCIServer *mysrvhp; /* the server handle */
OCIError *myerrhp; /* the error handle */
OCISession *myusrhp; /* user session handle */

(/* initialize the mode to be the threaded and object environment */

((void) OCIEnvCreate(&myenvhp, OCI_THREADED|OCI_OBJECT, (dvoid *)0,
 mymalloc, myrealloc, myfree, 0, (dvoid **)0)

(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)&mysrvhp,
 OCI_HTYPE_SVR, 0, (dvoid **) 0);

 /* allocate a server handle */

(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)&myerrhp,
 OCI_HTYPE_ERROR, 0, (dvoid **) 0);

Processing SQL Statements

OCI Programming Basics 2-25

 /* allocate an error handle */

(void) OCIServerAttach (mysrvhp, myerrhp, (text *)"inst1_alias",
 strlen ("inst1_alias"), OCI_DEFAULT);

 /* create a server context */

(void) OCIAttrSet ((dvoid *)mysvchp, OCI_HTYPE_SVCCTX,
 (dvoid *)mysrvhp, (ub4) 0, OCI_ATTR_SERVER, myerrhp);

 /* set the server context in the service context */

(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)&myusrhp,
 OCI_HTYPE_SESSION, 0, (dvoid **), 0);

 /* allocate a user session handle */

 (void) OCIAttrSet ((dvoid *)myusrhp, OCI_HTYPE_SESSION,
 (dvoid *)"scott", (ub4)strlen("scott"),
 OCI_ATTR_USERNAME, myerrhp);

 /* set username attribute in user session handle */

 (void) OCIAttrSet ((dvoid *)myusrhp, OCI_HTYPE_SESSION,
 (dvoid *)"tiger", (ub4)strlen("tiger"),
 OCI_ATTR_PASSWORD, myerrhp);

 /* set password attribute in user session handle */

 (void) OCISessionBegin ((dvoid *) mysvchp, myerrhp, myusrhp,
 OCI_CRED_RDBMS, OCI_DEFAULT);

 (void) OCIAttrSet ((dvoid *)mysvchp, OCI_HTYPE_SVCCTX,
 (dvoid *)myusrhp, (ub4) 0, OCI_ATTR_SESSION, myerrhp);
 /* set the user session in the service context */

Processing SQL Statements
For information about processing SQL statements, refer to Chapter 4, "SQL

Statement Processing".

Commit or Rollback

2-26 Oracle Call Interface Programmer’s Guide

Commit or Rollback
An application commits changes to the database by calling OCITransCommit(). This

call takes a service context as one of its parameters. The transaction currently

associated with the service context is the one whose changes are committed. This

may be a transaction explicitly created by the application or the implicit transaction

created when the application modifies the database.

Note: Using the OCI_COMMIT_ON_SUCCESS mode of the OCIExecute() call,

the application can selectively commit transactions at the end of each statement

execution, saving an extra roundtrip.

If you want to roll back a transaction, use the OCITransRollback() call.

If an application disconnects from Oracle in some way other than a normal logoff

(for example, losing a network connection), and OCITransCommit() has not been

called, all active transactions are rolled back automatically.

See Also: For more information about implicit transactions and transaction

processing, see the section "Service Context and Associated Handles" on

page 2-9, and the section "Transactions" on page 8-2.

Terminating the Application
An OCI application should perform the following three steps before it terminates:

1. Delete the user session by calling OCISessionEnd() for each session.

2. Delete access to the data source(s) by calling OCIServerDetach() for each source.

3. Explicitly deallocate all handles by calling OCIHandleFree() for each handle

4. Delete the environment handle, which deallocates all other handles associated

with it.

Note: When a parent OCI handle is freed, any child handles associated with it

are freed automatically.

The calls to OCIServerDetach() and OCISessionEnd() are not mandatory. If the

application terminates, and OCITransCommit() (transaction commit) has not been

called, any pending transactions are automatically rolled back

For an example showing handles being freed at the end of an application, refer to

the first sample program in Appendix B, "OCI Demonstration Programs".

Note: If the application has used the simplified logon method provided by

OCILogon(), then a call to OCILogoff() will terminate the session, disconnect from

Error Handling

OCI Programming Basics 2-27

the server, and free the service context and associated handles. The application

is still responsible for freeing other handles it has allocated.

Error Handling
OCI function calls have a set of return codes, listed in Table 2–3, "OCI Return

Codes", which indicate the success or failure of the call, such as OCI_SUCCESS or

OCI_ERROR, or provide other information that may be required by the application,

such as OCI_NEED_DATA or OCI_STILL_EXECUTING. Most OCI calls return one

of these codes. For exceptions, see "Functions Returning Other Values" on page 2-29.

If the return code indicates that an error has occurred, the application can retrieve

Oracle-specific error codes and messages by calling OCIErrorGet(). One of the

parameters to OCIErrorGet() is the error handle passed to the call that caused the

error.

Note: Multiple diagnostic records can be retrieved by calling OCIErrorGet()
repeatedly until there are no more records (OCI_NO_DATA is returned).

OCIErrorGet() returns at most a single diagnostic record at any time.

The following example code returns error information given an error handle and

the return code from an OCI function call. If the return code is OCI_ERROR, the

Table 2–3 OCI Return Codes

OCI Return Code Description

OCI_SUCCESS The function completed successfully.

OCI_SUCCESS_WITH_INFO The function completed successfully; a call to OCIErrorGet() will return
additional diagnostic information. This may include warnings.

OCI_NO_DATA The function completed, and there is no further data.

OCI_ERROR The function failed; a call to OCIErrorGet() will return additional
information.

OCI_INVALID_HANDLE An invalid handle was passed as a parameter or a user callback is passed an
invalid handle or invalid context. No further diagnostics are available.

OCI_NEED_DATA The application must provide run-time data.

OCI_STILL_EXECUTING The service context was established in non-blocking mode, and the current
operation could not be completed immediately. The operation must be called
again to complete. OCIErrorGet() returns ORA-03123 as the error code.

OCI_CONTINUE This code is returned only from a callback function. It indicates that the
callback function wants the OCI library to resume its normal processing.

Error Handling

2-28 Oracle Call Interface Programmer’s Guide

function prints out diagnostic information. OCI_SUCCESS results in no printout,

and other return codes print the return code information.

STATICF void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 ub4 buflen;
 ub4 errcode;

 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet (errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %s\n", errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
default:
 break;
 }
}

Return and Error Codes for Truncation and Null Data
In Table 2–4, Table 2–5, and Table 2–6, the OCI return code, Oracle error number,

indicator variable, and column return code are specified when the data fetched is

null or truncated.

Error Handling

OCI Programming Basics 2-29

Table 2–4 Normal Data - Not Null and Not Truncated

Table 2–5 Null Data

Table 2–6 Truncated Data

In Table 2–6, data_len is the actual length of the data that has been truncated if

this length is less than or equal to SB2MAXVAL. Otherwise, the indicator is set to -2.

Functions Returning Other Values
Some functions return values other than the OCI error codes listed in Table 2–3.

When using these function be sure to take into account that they return a value

Indicator - not provided Indicator - provided

Return code -
not provided

OCI_SUCCESS
error = 0

OCI_SUCCESS
error = 0
indicator = 0

Return code -
provided

OCI_SUCCESS
error = 0
return code = 0

OCI_SUCCESS
error = 0
indicator = 0
return code = 0

Indicator - not provided Indicator - provided

Return code -
not provided

OCI_ERROR
error = 1405

OCI_SUCCESS
error = 0
indicator = -1

Return code -
provided

OCI_ERROR
error = 1405
return code = 1405

OCI_SUCCESS
error = 0
indicator = -1
return code = 1405

Indicator - not provided Indicator - provided

Return code -
not provided

OCI_ERROR
error = 1406

OCI_ERROR
error = 1406
indicator = data_len

Return code -
provided

OCI_SUCCESS_WITH_INFO

error = 24345
return code = 1405

OCI_SUCCESS_WITH_INFO

error = 24345
indicator = data_len
return code = 1406

Additional Coding Guidelines

2-30 Oracle Call Interface Programmer’s Guide

directly from the function call, rather than through an OUT parameter. More

detailed information about each function and its return values is listed in Volume II.

■ OCICollMax()

■ OCIRawPtr()

■ OCIRawSize()

■ OCIRefHexSize()

■ OCIRefIsEqual()

■ OCIRefIsNull()

■ OCIStringPtr()

■ OCIStringSize()

Additional Coding Guidelines
This section explains some additional factors to keep in mind when coding

applications using the Oracle Call Interface.

Parameter Types
OCI functions take a variety of different types of parameters, including integers,

handles, and character strings. Special considerations must be taken into account

for some types of parameters, as described in the following sections.

For more information about parameter datatypes and parameter passing

conventions, refer to the introductory section in Chapter 15, "OCI Relational

Functions", which covers the function calls for the OCI.

Address Parameters
Address parameters pass the address of the variable to Oracle. You should be

careful when developing in C, which normally passes scalar parameters by value, to

make sure that the parameter is an address. In all cases, you should pass your

pointers carefully.

Integer Parameters
Binary integer parameters are numbers whose size is system dependent. Short

binary integer parameters are smaller numbers whose size is also system

Additional Coding Guidelines

OCI Programming Basics 2-31

dependent. See your Oracle system-specific documentation for the size of these

integers on your system.

Character String Parameters
Character strings are a special type of address parameter. This section describes

additional rules that apply to character string address parameters.

Each OCI routine that allows a character string to be passed as a parameter also has

a string length parameter. The length parameter should be set to the length of the

string.

7.x Upgrade Note: Unlike earlier versions of the OCI, in release 8.0 you should

not pass -1 for the string length parameter of a null-terminated string.

Nulls
You can insert a null into a database column in several ways. One method is to use a

literal NULL in the text of an INSERT or UPDATE statement. For example, the SQL

statement

INSERT INTO emp (ename, empno, deptno)
VALUES (NULL, 8010, 20)

makes the ENAME column null.

Another method is to use indicator variables in the OCI bind call. See the section

"Indicator Variables" on page 2-31 for more information.

One other method to insert a NULL is to set the buffer length and maximum length

parameters both to zero on a bind call.

Note: Following SQL92 requirements, Oracle returns an error if an attempt is

made to fetch a null select-list item into a variable that does not have an

associated indicator variable specified in the define call.

Indicator Variables
Each bind and define OCI call has a parameter that allows you to associate an

indicator variable, or an array of indicator variables if you are using arrays, with a

DML statement, PL/SQL statement, or query.

Host languages do not have the concept of null values; therefore you associate

indicator variables with input variables to specify whether the associated

Additional Coding Guidelines

2-32 Oracle Call Interface Programmer’s Guide

placeholder is a NULL. When data is passed to Oracle, the values of these indicator

variables determine whether or not a NULL is assigned to a database field.

For output variables, indicator variables determine whether the value returned

from Oracle is a NULL or a truncated value. In the case of a NULL fetch (on

OCIStmtFetch()) or a truncation (on OCIStmtExecute() or OCIStmtFetch()), the OCI

call returns OCI_SUCCESS_WITH_INFO. The corresponding indicator variable is

set to the appropriate value, as listed in Table 2–8, "Output Indicator Values". If the

application provided a return code variable in the corresponding OCIDefineByPos()
call, the OCI assigns a value of ORA-01405 (for NULL fetch) or ORA-01406 (for

truncation) to the return code variable.

The datatype of indicator variables is sb2. In the case of arrays of indicator

variables, the individual array elements should be of type sb2.

Input
For input host variables, the OCI application can assign the following values to an

indicator variable:

Table 2–7 Input Indicator Values

Output
On output, Oracle can assign the following values to an indicator variable:

Table 2–8 Output Indicator Values

Input Indicator Value Action Taken by Oracle

-1 Oracle assigns a NULL to the column, ignoring the value of the
input variable.

>=0 Oracle assigns the value of the input variable to the column.

Output Indicator Value Meaning

-2 The length of the item is greater than the length of the output
variable; the item has been truncated. Additionally, the original
length is longer than the maximum data length that can be
returned in the sb2 indicator variable.

-1 The selected value is null, and the value of the output variable is
unchanged.

Additional Coding Guidelines

OCI Programming Basics 2-33

Indicator Variables for Named Data Types and REFs
Indicator variables for most new (release 8.0) datatypes function as described

above. The only exception is SQLT_NTY (a named datatype). Data of type SQLT_

REF uses a standard scalar indicator, just like other variable types. For data of type

SQLT_NTY, the indicator variable must be a pointer to an indicator structure.

When database types are translated into C struct representations using the Object

Type Translator (OTT), a null indicator structure is generated for each object type.

This structure includes an atomic null indicator, plus indicators for each object

attribute.

See Also: See the documentation for the OTT in Chapter 14, "Using the Object

Type Translator", and the section "Nullness" on page 10-29 of this manual for

information about null indicator structures.

See the descriptions of OCIBindByName() and OCIBindByPos() in Chapter 15,

and the sections "Information for Named Datatype and REF Binds" on

page 12-3, and "Information for Named Datatype and REF Defines, and

PL/SQL OUT Binds" on page 12-5, for more information about setting indicator

parameters for named datatypes and REFs.

Cancelling Calls
On most platforms, you can cancel a long-running or repeated OCI call. You do this

by entering the operating system’s interrupt character (usually CTRL-C) from the

keyboard.

Note: This is not to be confused with cancelling a cursor, which is accomplished

by calling OCIStmtFetch() with the nrows parameter set to zero.

When you cancel the long-running or repeated call using the operating system

interrupt, the error code ORA-01013 ("user requested cancel of current operation") is

returned.

Given a particular service context pointer or server context pointer, the OCIBreak()
function performs an immediate (asynchronous) abort of any currently executing

0 Oracle assigned an intact value to the host variable.

>0 The length of the item is greater than the length of the output
variable; the item has been truncated. The positive value
returned in the indicator variable is the actual length before
truncation.

Output Indicator Value Meaning

Additional Coding Guidelines

2-34 Oracle Call Interface Programmer’s Guide

OCI function that is associated with the server. It is normally used to stop a

long-running OCI call being processed on the server. The OCIReset() function is

necessary to perform a protocol synchronization on a non-blocking connection after

an OCI application aborts a function with OCIBreak().

The status of potentially long-running calls can be monitored through the use of

non-blocking calls. See the section "Non-Blocking Mode" on page 2-36 for more

information.

Positioned Updates and Deletes
You can use the ROWID associated with a SELECT...FOR UPDATE OF... statement

in a later UPDATE or DELETE statement. The ROWID is retrieved by calling

OCIAttrGet() on the statement handle to retrieve the handle’s OCI_ATTR_ROWID

attribute.

For example, for a SQL statement such as

SELECT ename FROM emp WHERE empno = 7499 FOR UPDATE OF sal

when the fetch is performed, the ROWID attribute in the handle contains the row

identifier of the SELECTed row. You can retrieve the ROWID into a buffer in your

program by calling OCIAttrGet() as follows:

OCIRowid *rowid; /* the rowid in opaque format */
/* allocate descriptor with OCIDescriptorAlloc() */
err = OCIAttrGet ((dvoid*) mystmtp, OCI_HTYPE_STMT,

(dvoid*) &rowid, (ub4 *) 0, OCI_ATTR_ROWID, (OCIError *) myerrhp);

You can then use the saved ROWID in a DELETE or UPDATE statement. For

example, if MY_ROWID is the buffer in which the row identifier has been saved,

you can later process a SQL statement such as

UPDATE emp SET sal = :1 WHERE rowid = :2

by binding the new salary to the :1 placeholder and MY_ROWID to the :2
placeholder. Be sure to use datatype code 104 (ROWID descriptor) when binding

MY_ROWID to :2 .

Using prefetching, an array of ROWIDs can be selected for use in subsequent batch

updates. For more information on ROWIDs, see "Universal ROWID" on page 3-6

and "ROWID" on page 3-13.

Additional Coding Guidelines

OCI Programming Basics 2-35

Reserved Words
Some words are reserved by Oracle. That is, they have a special meaning to Oracle

and cannot be redefined. For this reason, you cannot use them to name database

objects such as columns, tables, or indexes. To view the lists of the Oracle keywords

or reserved words for SQL and PL/SQL, see the Oracle8i SQL Reference and the

PL/SQL User’s Guide and Reference.

Oracle Reserved Namespaces
Table 2–9, "Oracle Reserved Namespaces" contains a list of namespaces that are

reserved by Oracle. The initial characters of function names in Oracle libraries are

restricted to the character strings in this list. Because of potential name conflicts, do

not use function names that begin with these characters. For example, the SQL*Net

Transparent Network Service functions all begin with the characters NS, so you

need to avoid naming functions that begin with NS.

Table 2–9 Oracle Reserved Namespaces

Namespace Library

 XA external functions for XA applications only

 SQ external SQLLIB functions used by Oracle Precompiler and

SQL*Module applications

 O, OCI external OCI functions internal OCI functions

 UPI, KP function names from the Oracle UPI layer

NA

NC

ND

NL

NM

NR

NS

NT

NZ

OSN

TTC

SQL*Net Native services product

SQL*Net RPC project

SQL*Net Directory

SQL*Net Network Library layer

SQL*Net Net Management Project

SQL*Net Interchange

SQL*Net Transparent Network Service

SQL*Net Drivers

SQL*Net Security Service

SQL*Net V1

SQL*Net Two task

 GEN, L, ORA Core library functions

 LI, LM, LX function names from the Oracle NLS layer

 S function names from system-dependent libraries

Non-Blocking Mode

2-36 Oracle Call Interface Programmer’s Guide

The list in Table 2–9, "Oracle Reserved Namespaces" is not a comprehensive list of

all functions within the Oracle reserved namespaces. For a complete list of functions

within a particular namespace, refer to the document that corresponds to the

appropriate Oracle library.

Function Names
When creating a user function in an OCI program, do not start the function name

with OCI to avoid possible conflicts with the OCI functions.

Application Linking
For information about application linking modes, including Oracle support for

non-deferred linking and single task linking in various versions of the OCI, please

refer to "Application Linking Issues" on page 1-25.

Non-Blocking Mode
The Oracle OCI provides the ability to establish a server connection in blocking mode
or non-blocking mode. When a connection is made in blocking mode, an OCI call

returns control to an OCI client application only when the call completes, either

successfully or in error. With the non-blocking mode, control is immediately

returned to the OCI program if the call could not complete, and the call returns a

value of OCI_STILL_EXECUTING. The two modes are illustrated in Figure 2–7.

Figure 2–7 Blocking Mode vs. Non-Blocking Mode

In non-blocking mode, an application must test the return code of each OCI

function to see if it returns OCI_STILL_EXECUTING. In this case, the OCI client can

continue to process program logic while waiting to retry the OCI call to the server.

OCI Call

Blocking Mode

OCI_ERROROCI_SUCCESS

OCI Call

Non-Blocking Mode

OCI_ERROROCI_SUCCESS

OCI_STILL_EXECUTING

Non-Blocking Mode

OCI Programming Basics 2-37

The non-blocking mode returns control to an OCI program once a call has been

made so that it may perform other computations while the OCI call is being

processed by the server. This mode is particularly useful in Graphical User Interface

(GUI) applications, real-time applications, and in distributed environments.

The non-blocking mode is not interrupt-driven. Rather, it is based on a polling

paradigm, which means that the client application has to check whether the

pending call is finished at the server. The client application must check whether the

pending call has finished at the server by executing the call again with the exact same
parameters.

Note: While waiting to retry non-blocking OCI call, the application may not
issue any other OCI calls, or an ORA-03124 error will occur. The only

exceptions to this rule are OCIBreak() and OCIReset(). See "Cancelling a

Non-blocking Call" on page 2-37 for more information on these calls.

Setting Blocking Modes
You can modify or check an application’s blocking status by calling OCIAttrSet() to
set the status or OCIAttrGet() to read the status on the server context handle with

the attrtype parameter set to OCI_ATTR_NONBLOCKING_MODE. See OCI_ATTR_

NONBLOCKING_MODE on page A-9.

Note: Only functions that have server context or a service context handle as a

parameter may return OCI_STILL_EXECUTING.

Cancelling a Non-blocking Call
You can cancel a long-running OCI call by using the OCIBreak() function. After

issuing an OCIBreak() while an OCI call is in progress, you must issue an OCIReset()
call to reset the asynchronous operation and protocol.

Non-blocking Example
The following code is an example of non-blocking mode.

int main (int argc, char **argv)
{
 sword retval;

 if (retval = InitOCIHandles()) /* initialize all handles */
 {
 printf ("Unable to allocate handles..\n");
 exit (EXIT_FAILURE);

Non-Blocking Mode

2-38 Oracle Call Interface Programmer’s Guide

 }

 if (retval = logon()) /* log on */
 {
 printf ("Unable to log on...\n");
 if (retval = AllocStmtHandle ()) /* allocate statement handle */
 {
 printf ("Unable to allocate statement handle...\n");
 exit (EXIT_FAILURE);
 }
/* set non-blocking on */
 if (retval = OCIAttrSet ((dvoid *) srvhp, (ub4) OCI_HTYPE_SERVER,
 (dvoid *) 0, (ub4) 0,
 (ub4) OCI_ATTR_NONBLOCKING_MODE, errhp))
 {
 printf ("Unable to set non-blocking mode...\n");
 exit (EXIT_FAILURE);
 }

 while ((retval = OCIStmtExecute (svchp, stmhp, errhp, (ub4)0, (ub4)0,
 (OCISnapshot *) 0, (OCISnapshot *)0,
 OCI_DEFAULT)) == OCI_STILL_EXECUTING)
 printf (".");
 printf ("\n");

 if (retval != OCI_SUCCESS || retval != OCI_SUCCESS_WITH_INFO)
 {
 printf("Error in OCIStmtExecute...\n");
 exit (EXIT_FAILURE);
 }

 if (retval = logoff ()) /* log out */
 {
 printf ("Unable to logout ...\n");
 exit (EXIT_FAILURE);
 }

 cleanup();
 return (int)OCI_SUCCESS;
}

Using PL/SQL in an OCI Program

OCI Programming Basics 2-39

Using PL/SQL in an OCI Program
PL/SQL is Oracle’s procedural extension to the SQL language. PL/SQL processes

tasks that are more complicated than simple queries and SQL data manipulation

language (DML) statements. PL/SQL allows you to group a number of constructs

into a single block and execute them as a unit. These constructs include:

■ one or more SQL statements

■ variable declarations

■ assignment statements

■ procedural control statements such as IF...THEN...ELSE statements and loops

■ exception handling

You can use PL/SQL blocks in your OCI program to perform the following

operations:

■ call Oracle stored procedures and stored functions

■ combine procedural control statements with several SQL statements, to be

executed as a single unit

■ access special PL/SQL features such as records, tables, CURSOR FOR loops,

and exception handling

■ use cursor variables

■ operate on objects in an Oracle8 server

Note: While the OCI can only directly process anonymous blocks, and not

named packages or procedures, the user can always put the package or

procedure call within an anonymous block and process that block.

Warning: When writing PL/SQL code, it is important to keep in mind that the

parser treats everything that starts with "--" to a carriage return as a comment.

So if comments are indicated on each line by "--", the C compiler can

concatenate all lines in a PL/SQL block into a single line without putting a

carriage return "/n" for each line. In this particular case, the parser fails to

extract the PL/SQL code of a line if the previous line ends with a comment. To

avoid the problem, the programmer should put "/n" after each "--" comment to

make sure the comment ends there.

See the PL/SQL User’s Guide and Reference for information about coding PL/SQL

blocks.

Using PL/SQL in an OCI Program

2-40 Oracle Call Interface Programmer’s Guide

Datatypes 3-1

3
Datatypes

This chapter provides a reference to Oracle external datatypes used by OCI

applications. It also provides a general discussion of Oracle datatypes, including

special datatypes new in the latest Oracle release. The information in this chapter is

useful for understanding the conversions between internal and external

representations that occur when you transfer data between your program and

Oracle. This chapter contains the following sections:

■ Oracle Datatypes

■ Internal Datatypes

■ External Datatypes

■ New Oracle External Datatypes

■ Data Conversions

■ Typecodes

■ Definitions in oratypes.h

For detailed information about Oracle internal datatypes, see the Oracle8i SQL

Reference.

Oracle Datatypes

3-2 Oracle Call Interface Programmer’s Guide

Oracle Datatypes
One of the main functions of an OCI program is to communicate with a database

through an Oracle server. The OCI application may retrieve data from database

tables through SQL SELECT queries, or it may modify existing data in tables

through INSERTs, UPDATEs, or DELETEs.

Inside a database, values are stored in columns in tables. Internally, Oracle

represents data in particular formats known as internal datatypes. Examples of

internal datatypes include NUMBER, CHAR, and DATE.

In general, OCI applications do not work with internal datatype representations of

data. OCI applications work with host language datatypes which are predefined by

the language in which they are written. When data is transferred between an OCI

client application and a database table, the OCI libraries convert the data between

internal datatypes and external datatypes.

External datatypes are host language types that have been defined in the OCI

header files. When an OCI application binds input variables, one of the bind

parameters is an indication of the external datatype code (or SQLT code) of the

variable. Similarly, when output variables are specified in a define call, the external

representation of the retrieved data must be specified.

In some cases, external datatypes are similar to internal types. External types

provide a convenience for the programmer by making it possible to work with host

language types instead of proprietary data formats.

Note: Even though some external types are similar to internal types, an OCI

application never binds to internal datatypes. They are discussed here because

it can be useful to understand how internal types can map to external types.

The OCI is capable of performing a wide range of datatype conversions when

transferring data between Oracle and an OCI application. There are more OCI

external datatypes than Oracle internal datatypes. In some cases a single external

type maps to an internal type; in other cases multiple external types map to an

single internal type.

The many-to-one mappings for some datatypes provide flexibility for the OCI

programmer. For example, if you are processing the SQL statement

SELECT sal FROM emp WHERE empno = :employee_number

and you want the salary to come back as character data, rather than in a binary

floating-point format, specify an Oracle external string datatype, such as

VARCHAR2 (code = 1) or CHAR (code = 96) for the dty parameter in the

Oracle Datatypes

Datatypes 3-3

OCIDefineByPos() call for the sal column. You also need to declare a string variable

in your program and specify its address in the valuep parameter.

If you want the salary information to be returned as a binary floating-point value,

however, specify the FLOAT (code = 4) external datatype. You also need to define a

variable of the appropriate type for the valuep parameter.

Oracle performs most data conversions transparently. The ability to specify almost

any external datatype provides a lot of power for performing specialized tasks. For

example, you can input and output DATE values in pure binary format, with no

character conversion involved, by using the DATE external datatype (code = 12).

See the description of the DATE external datatype on page 3-14 for more

information.

To control data conversion, you must use the appropriate external datatype codes in

the bind and define routines. You must tell Oracle where the input or output

variables are in your OCI program and their datatypes and lengths.

The Oracle OCI also supports an additional set of OCI typecodes which are used by

Oracle’s type management system to represent datatypes of object type attributes.

There is a set of predefined constants which can be used to represent these

typecodes. The constants each contain the prefix OCI_TYPECODE.

In summary, the OCI programmer must be aware of the following different

datatypes or data representations:

■ Internal Oracle datatypes, which are used by table columns in an Oracle

database. These also include datatypes used by PL/SQL which are not used by

Oracle columns (e.g., indexed table, boolean, record). For more information, see

"Internal Datatypes" on page 3-5 and "Internal Datatype Codes" on page 3-3.

■ External OCI datatypes, which are used to specify host language

representations of Oracle data. For more information, see "External Datatypes"

on page 3-7, and "External Datatype Codes" on page 3-4.

■ OCI_TYPECODE values, which are used to Oracle to represent type

information for object type attributes. For more information, see "Typecodes" on

page 3-23, and "Relationship Between SQLT and OCI_TYPECODE Values" on

page 3-25.

Internal Datatype Codes
In some circumstances, an OCI application needs to know the internal

representation of Oracle data. For example, you many need to know the datatype of

a column in a dynamic SQL query so that you can define output variables to

Oracle Datatypes

3-4 Oracle Call Interface Programmer’s Guide

received the fetched data. After executing the query, you can use a combination of

the OCIParamGet() and OCIAttrGet() functions to obtain describe information about

select-list items from the statement handle. You can get the same information from a

describe handle without executing the statement by calling OCIDescribeAny(), and

then the combination of OCIParamGet() and OCIAttrGet().

Information about a column’s internal datatype is conveyed to your application in

the form of an internal datatype code. Once your application knows what type of

data will be returned, it can make appropriate decisions about how to convert and

format the output data. The Oracle internal datatype codes are listed in the section

"Internal Datatypes" on page 3-5.

See Also: For detailed information about Oracle internal datatypes, see the

Oracle8i SQL Reference. For information about describing select-list items in a

query, see the section "Describing Select-List Items" on page 4-10.

External Datatype Codes
An external datatype code indicates to Oracle how a host variable represents data in

your program. This determines how the data is converted when returned to output

variables in your program, or how it is converted from input (bind) variables to

Oracle column values. For example, if you want to convert a NUMBER in an Oracle

column to a variable-length character array, you specify the VARCHAR2 external

datatype code in the OCIDefineByPos() call that defines the output variable.

To convert a bind variable to a value in an Oracle column, specify the external

datatype code that corresponds to the type of the bind variable. For example, if you

want to input a character string such as 02-FEB-65 to a DATE column, specify the

datatype as a character string and set the length parameter to nine.

It is always the programmer’s responsibility to make sure that values are

convertible. If you try to INSERT the string MY BIRTHDAY into a DATE column,

you will get an error when you execute the statement.

For a complete list of the external datatypes and datatype codes, see Table 3–2,

"External Datatypes and Codes".

Internal Datatypes

Datatypes 3-5

Internal Datatypes
The following table lists the Oracle internal datatypes, along with each type’s

maximum internal length and datatype code.

For more information about any of these internal datatypes, see the Oracle8i SQL

Reference. The following sections provide OCI-specific information about these

datatypes.

LONG, RAW, LONG RAW, VARCHAR2
You can use the piecewise capabilities provided by OCIBindByName(),
OCIBindByPos(), OCIDefineByPos(), OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo()
to perform inserts, updates or fetches involving column data of these types.

Character Strings and Byte Arrays
You can use five Oracle internal datatypes to specify columns that contain

characters or arrays of bytes: CHAR, VARCHAR2, RAW, LONG, and LONG RAW.

Table 3–1 Internal Oracle Datatypes

Internal Oracle Datatype Maximum Internal Length Datatype Code

VARCHAR2 4000 bytes 1

NUMBER 21 bytes 2

LONG 2^31-1 bytes 8

ROWID 10 bytes 11

DATE 7 bytes 12

RAW 2000 bytes 23

LONG RAW 2^31-1 bytes 24

CHAR 2000 bytes 96

User-defined type (object type,
VARRAY, Nested Table)

<N/A> 108

REF <N/A> 111

CLOB ~4000 112

BLOB ~4000 113

UROWID 4000 bytes 208

Internal Datatypes

3-6 Oracle Call Interface Programmer’s Guide

Note: LOBs can contain characters and FILEs can contain binary data. They are

handled differently than other types, so they are not included in this discussion.

See Chapter 7, "LOB and FILE Operations", for more information about these

data types.

CHAR, VARCHAR2, and LONG columns normally hold character data. RAW and

LONG RAW hold bytes that are not interpreted as characters, for example, pixel

values in a bit-mapped graphics image. Character data can be transformed when

passed through a gateway between networks. For example, character data passed

between machines using different languages (where single characters may be

represented by differing numbers of bytes) can be significantly changed in length.

Raw data is never converted in this way.

It is the responsibility of the database designer to choose the appropriate Oracle

internal datatype for each column in the table. The OCI programmer must be aware

of the many possible ways that character and byte-array data can be represented

and converted between variables in the OCI program and Oracle tables.

When an array holds characters, the length parameter for the array in an OCI call is

always passed in and returned in bytes, not characters.

Universal ROWID
The Universal ROWID (UROWID) is a datatype that can store both logical and

physical ROWIDs of Oracle tables, and ROWIDs of the foreign tables, such as DB2

tables accessed via a gateway. Logical ROWIDs are primary key-based logical

identifiers for the rows of Index-Organized Tables (IOTs).

To use columns of the UROWID datatype, the value of the COMPATIBLE

initialization parameter must be set to 8.1 or higher.

The following host variables can be bound to Universal ROWIDs:

■ SQLT_CHR (VARCHAR2)

■ SQLT_VCS (VARCHAR)

■ SQLT_STR (Null-Terminated string)

■ SQLT_LVC (long varchar)

■ SLQT_AFC (CHAR)

■ SQLT_AVC (CHARZ)

■ SQLT_VST (OCI String)

■ SQLT_RDD (ROWID descriptor)

External Datatypes

Datatypes 3-7

External Datatypes
Table 3–2 lists datatype codes for external datatypes. For each datatype, the table

lists the program variable types for C from or to which Oracle internal data is

normally converted.

Table 3–2 External Datatypes and Codes

EXTERNAL DATATYPE
TYPE OF PROGRAM
VARIABLE OCI DEFINED CONSTANTNAME CODE

VARCHAR2 1 char[n] SQLT_CHR

NUMBER 2 unsigned char[21] SQLT_NUM

8-bit signed INTEGER 3 signed char SQLT_INT

16-bit signed INTEGER 3 signed short, signed int SQLT_INT

32-bit signed INTEGER 3 signed int, signed long SQLT_INT

FLOAT 4 float, double SQLT_FLT

Null-terminated STRING 5 char[n+1] SQLT_STR

VARNUM 6 char[22] SQLT_VNU

LONG 8 char[n] SQLT_LNG

VARCHAR 9 char[n+sizeof(short integer)] SQLT_VCS

ROWID 11 char[n] SQLT_RID (see note 1)

DATE 12 char[7] SQLT_DAT

VARRAW 15 unsigned
char[n+sizeof(short integer)]

SQLT_VBI

RAW 23 unsigned char[n] SQLT_BIN

LONG RAW 24 unsigned char[n] SQLT_LBI

UNSIGNED INT 68 unsigned SQLT_UIN

LONG VARCHAR 94 char[n+sizeof(integer)] SQLT_LVC

LONG VARRAW 95 unsigned
char[n+sizeof(integer)]

SQLT_LVB

CHAR 96 char[n] SQLT_AFC

CHARZ 97 char[n+1] SQLT_AVC

ROWID descriptor 104 OCIRowid SQLT_RDD

External Datatypes

3-8 Oracle Call Interface Programmer’s Guide

Note: Where the length is shown as n, it is a variable, and depends on the

requirements of the program (or of the operating system in the case of ROWID).

Each of the external datatypes is described below. Datatypes that are new as of

release 8.0 are described in the section "New Oracle External Datatypes" on

page 3-17.

The following three types are internal to PL/SQL and cannot be returned as values

by OCI:

■ Boolean, SQLT_BOL

■ Indexed Table, SQLT_TAB

■ Record, SQLT_REC

VARCHAR2
The VARCHAR2 datatype is a variable-length string of characters with a maximum

length of 4000 bytes.

NAMED DATA TYPE 108 struct SQLT_NTY

REF 110 OCIRef SQLT_REF

Character LOB 112 OCILobLocator (see note 3) SQLT_CLOB

Binary LOB 113 OCILobLocator (see note 3) SQLT_BLOB

Binary FILE 114 OCILobLocator SQLT_FILE

OCI string type 155 OCIString SQLT_VST (see note 2)

OCI date type 156 OCIDate SQLT_ODT (see note 2)

Notes:

(1) This type is valid only for version 7.x OCI calls. Oracle OCI release 8 applications should use the ROWID
descriptor (type 104).

(2) For more information on the use of these datatypes, refer to Chapter 11, "Object-Relational Datatypes".

(3) In applications using datatype mappings generated by OTT, CLOBs may be mapped as OCIClobLocator,
and BLOBs may be mapped as OCIBlobLocator. For more information, refer to Chapter 14, "Using the Object
Type Translator".

Table 3–2 External Datatypes and Codes (Cont.)

EXTERNAL DATATYPE
TYPE OF PROGRAM
VARIABLE OCI DEFINED CONSTANTNAME CODE

External Datatypes

Datatypes 3-9

Note: If you are using Oracle objects, you can work with a special OCIString
external datatype using a set of predefined OCI functions. Refer to Chapter 11,

"Object-Relational Datatypes" for more information about this datatype.

Input
The value_sz parameter determines the length in the OCIBindByName() or

OCIBindByPos() call.

If the value_sz parameter is greater than zero, Oracle obtains the bind variable value

by reading exactly that many bytes, starting at the buffer address in your program.

Trailing blanks are stripped, and the resulting value is used in the SQL statement or

PL/SQL block. If, in the case of an INSERT statement, the resulting value is longer

than the defined length of the database column, the INSERT fails, and an error is

returned.

Note: A trailing null is not stripped. Variables should be blank-padded but not

null-terminated.

If the value_sz parameter is zero, Oracle treats the bind variable as a null, regardless

of its actual content. Of course, a null must be allowed for the bind variable value in

the SQL statement. If you try to insert a null into a column that has a NOT NULL

integrity constraint, Oracle issues an error, and the row is not inserted.

When the Oracle internal (column) datatype is NUMBER, input from a character

string that contains the character representation of a number is legal. Input

character strings are converted to internal numeric format. If the VARCHAR2 string

contains an illegal conversion character, Oracle returns an error and the value is not

inserted into the database.

Output
Specify the desired length for the return value in the value_sz parameter of the

OCIDefineByPos() call, or the value_sz parameter of OCIBindByName() or

OCIBindByPos() for PL/SQL blocks. If zero is specified for the length, no data is

returned.

If you omit the rlenp parameter of OCIDefineByPos(), returned values are

blank-padded to the buffer length, and nulls are returned as a string of blank

characters. If rlenp is included, returned values are not blank-padded. Instead, their

actual lengths are returned in the rlenp parameter.

To check if a null is returned or if character truncation has occurred, include an

indicator parameter in the OCIDefineByPos() call. Oracle sets the indicator parameter

to -1 when a null is fetched and to the original column length when the returned

External Datatypes

3-10 Oracle Call Interface Programmer’s Guide

value is truncated. Otherwise, it is set to zero. If you do not specify an indicator

parameter and a null is selected, the fetch call returns the error code OCI_

SUCCESS_WITH_INFO. Retrieving diagnostic information on the error will return

ORA-1405.

See Also: For more information about indicator variables, see the section

"Indicator Variables" on page 2-31.

You can also request output to a character string from an internal NUMBER

datatype. Number conversion follows the conventions established by National

Language Support for your system. For example, your system might be configured

to recognize a comma rather than period as the decimal point.

NUMBER
You should not need to use NUMBER as an external datatype. If you do use it,

Oracle returns numeric values in its internal 21-byte binary format and will expect

this format on input. The following discussion is included for completeness only.

Note: If you are using objects in an Oracle database server, you can work with a

special OCINumber datatype using a set of predefined OCI functions. Refer to

Chapter 11, "Object-Relational Datatypes" for more information about this

datatype.

Oracle stores values of the NUMBER datatype in a variable-length format. The first

byte is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of

the exponent byte is the sign bit; it is set for positive numbers. The lower 7 bits

represent the exponent, which is a base-100 digit with an offset of 65.

Each mantissa byte is a base-100 digit, in the range 1..100. For positive numbers, the

digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative

numbers, instead of adding 1, the digit is subtracted from 101. So, the mantissa digit

for the number -5 is 96 (101-5). Negative numbers have a byte containing 102

appended to the data bytes. However, negative numbers that have 20 mantissa

bytes do not have the trailing 102 byte. Because the mantissa digits are stored in

base 100, each byte can represent 2 decimal digits. The mantissa is normalized;

leading zeroes are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to

be accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum

precision of 38 digits for an Oracle NUMBER.

If you specify the datatype code 2 in the dty parameter of an OCIDefineByPos() call,

your program receives numeric data in this Oracle internal format. The output

variable should be a 21-byte array to accommodate the largest possible number.

External Datatypes

Datatypes 3-11

Note that only the bytes that represent the number are returned. There is no blank

padding or null termination. If you need to know the number of bytes returned, use

the VARNUM external datatype instead of NUMBER. See the description of

VARNUM on page 3-12 for examples of the Oracle internal number format.

INTEGER
The INTEGER datatype converts numbers. An external integer is a signed binary

number; the size in bytes is system dependent. The host system architecture

determines the order of the bytes in the variable. A length specification is required

for input and output. If the number being returned from Oracle is not an integer, the

fractional part is discarded, and no error or other indication is returned. If the

number to be returned exceeds the capacity of a signed integer for the system,

Oracle returns an "overflow on conversion" error.

FLOAT
The FLOAT datatype processes numbers that have fractional parts or that exceed

the capacity of an integer. The number is represented in the host system’s

floating-point format. Normally the length is either four or eight bytes. The length

specification is required for both input and output.

The internal format of an Oracle number is decimal, and most floating-point

implementations are binary; therefore Oracle can represent numbers with greater

precision than floating-point representations.

Note: You may receive a round-off error when converting between FLOAT and

NUMBER. Thus, using a FLOAT as a bind variable in a query may return an

ORA-1403 error. You can avoid this situation by converting the FLOAT into a

STRING and then using datatype code 1 or 5 for the operation.

STRING
The null-terminated STRING format behaves like the VARCHAR2 format (datatype

code 1), except that the string must contain a null terminator character. This

datatype is most useful for C programs.

Input
The string length supplied in the OCIBindByName() or OCIBindByPos() call limits the

scan for the null terminator. If the null terminator is not found within the length

specified, Oracle issues the error

External Datatypes

3-12 Oracle Call Interface Programmer’s Guide

ORA-01480: trailing null missing from STR bind value

If the length is not specified in the bind call, the OCI uses an implied maximum

string length of 4000.

The minimum string length is two bytes. If the first character is a null terminator

and the length is specified as two, a null is inserted in the column, if permitted.

Unlike types 1 and 96, a string containing all blanks is not treated as a null on input;

it is inserted as is.

Note: Unlike earlier versions of the OCI, in release 8.0 you cannot pass -1 for the

string length parameter of a null-terminated string.

Output
A null terminator is placed after the last character returned. If the string exceeds the

field length specified, it is truncated and the last character position of the output

variable contains the null terminator.

A null select-list item returns a null terminator character in the first character

position. An ORA-01405 error is possible, as well.

VARNUM
The VARNUM datatype is like the external NUMBER datatype, except that the first

byte contains the length of the number representation. This length does not include

the length byte itself. Reserve 22 bytes to receive the longest possible VARNUM. Set

the length byte when you send a VARNUM value to Oracle.

Table 3 - 3 shows several examples of the VARNUM values returned for numbers in

an Oracle table.

Table 3–3 VARNUM Examples

Decimal
Value Length Byte

Exponent
Byte

Mantissa
Bytes

Terminator
Byte

0 1 128 n/a n/a

5 2 193 6 n/a

-5 3 62 96 102

2767 3 194 28, 68 n/a

-2767 4 61 74, 34 102

100000 2 195 11 n/a

1234567 5 196 2, 24, 46, 68 n/a

External Datatypes

Datatypes 3-13

LONG
The LONG datatype stores character strings longer than 4000 bytes. You can store

up to two gigabytes (2^31-1 bytes) in a LONG column. Columns of this type are

used only for storage and retrieval of long strings. They cannot be used in

functions, expressions, or WHERE clauses. LONG column values are generally

converted to and from character strings.

VARCHAR
The VARCHAR datatype stores character strings of varying length. The first two

bytes contain the length of the character string, and the remaining bytes contain the

string. The specified length of the string in a bind or a define call must include the

two length bytes, so the largest VARCHAR string that can be received or sent is

65533 bytes long, not 65535. For converting longer strings, use the LONG

VARCHAR external datatype.

ROWID
The ROWID datatype identifies a particular row in a database table. ROWID can be

a select-list item in a query, such as:

SELECT ROWID, ename, empno FROM emp

In this case, you can use the returned ROWID in further DELETE statements.

If you are performing a SELECT for UPDATE, the ROWID is implicitly returned.

This ROWID can be read into a user-allocated ROWID descriptor using

OCIAttrGet() on the statement handle and used in a subsequent UPDATE statement.

The prefetch operation fetches all ROWIDs on a SELECT for UPDATE; use

prefetching and then a single row fetch.

With Oracle OCI release 8, you access ROWIDs through the use of a ROWID

descriptor, which you can use as a bind or define variable. See the sections

"Descriptors and Locators" on page 2-14 and "Positioned Updates and Deletes" on

page 2-34 for more information about the use of the ROWID descriptor.

External Datatypes

3-14 Oracle Call Interface Programmer’s Guide

DATE
The DATE datatype can update, insert, or retrieve a date value using the Oracle

internal date binary format. A date in binary format contains seven bytes, as shown

in Table 3–4.

The century and year bytes are in an excess-100 notation. Dates Before Common Era

(BCE) are less than 100. The era begins on 01-JAN-4712 BCE, which is Julian day 1.

For this date, the century byte is 53, and the year byte is 88. The hour, minute, and

second bytes are in excess-1 notation. The hour byte ranges from 1 to 24, the minute

and second bytes from 1 to 60. If no time was specified when the date was created,

the time defaults to midnight (1, 1, 1).

When you enter a date in binary format using the DATE external datatype, the

database does not do consistency or range checking. All data in this format must be

carefully validated before input.

Note: There is little need to use the Oracle external DATE datatype in ordinary

database operations. It is much more convenient to convert DATEs into

character format, because the program usually deals with data in a character

format, such as DD-MON-YY.

When a DATE column is converted to a character string in your program, it is

returned using the default format mask for your session, or as specified in the

INIT.ORA file.

Note: If you are using objects in an Oracle database, you can work with a

special OCIDate datatype using a set of predefined OCI functions. Refer to

Chapter 11, "Object-Relational Datatypes" for more information about this

datatype.

RAW
The RAW datatype is used for binary data or byte strings that are not to be

interpreted by Oracle, for example, to store graphics character sequences. The

Table 3–4 Format of the DATE Datatype

Byte 1 2 3 4 5 6 7

Meaning Century Year Month Day Hour Minute Second

Example
(for 30-NOV-1992,
3:17 PM)

119 192 11 30 16 18 1

External Datatypes

Datatypes 3-15

maximum length of a RAW column is 2000 bytes. For more information, see the

Oracle8i SQL Reference.

When RAW data in an Oracle table is converted to a character string in a program,

the data is represented in hexadecimal character code. Each byte of the RAW data is

returned as two characters that indicate the value of the byte, from ’00’ to ’FF’. If

you want to input a character string in your program to a RAW column in an Oracle

table, you must code the data in the character string using this hexadecimal code.

You can use the piecewise capabilities provided by OCIDefineByPos(),
OCIBindByName(), OCIBindByPos(), OCIStmtGetPieceInfo(), and

OCIStmtSetPieceInfo() to perform inserts, updates, or fetches involving RAW (or

LONG RAW) columns.

Note: If you are using objects in an Oracle database, you can work with a

special OCIRaw datatype using a set of predefined OCI functions. Refer to

Chapter 11, "Object-Relational Datatypes" for more information about this

datatype.

VARRAW
The VARRAW datatype is similar to the RAW datatype. However, the first two

bytes contain the length of the data. The specified length of the string in a bind or a

define call must include the two length bytes. So the largest VARRAW string that

can be received or sent is 65533 bytes long, not 65535. For converting longer strings,

use the LONG VARRAW external datatype.

LONG RAW
The LONG RAW datatype is similar to the RAW datatype, except that it stores raw

data with a length up to two gigabytes (2^31-1 bytes).

UNSIGNED
The UNSIGNED datatype is used for unsigned binary integers. The size in bytes is

system dependent. The host system architecture determines the order of the bytes in

a word. A length specification is required for input and output. If the number being

output from Oracle is not an integer, the fractional part is discarded, and no error or

other indication is returned. If the number to be returned exceeds the capacity of an

unsigned integer for the system, Oracle returns an "overflow on conversion" error.

External Datatypes

3-16 Oracle Call Interface Programmer’s Guide

LONG VARCHAR
The LONG VARCHAR datatype stores data from and into an Oracle LONG

column. The first four bytes of a LONG VARCHAR contain the length of the item.

So, the maximum length of a stored item is 2^31-5 bytes.

LONG VARRAW
The LONG VARRAW datatype is used to store data from and into an Oracle LONG

RAW column. The length is contained in the first four bytes. The maximum length

is 2^31-5 bytes.

CHAR
The CHAR datatype is a string of characters, with a maximum length of 2000.

CHAR strings are compared using blank-padded comparison semantics (see the

Oracle8i SQL Reference).

Input
The length is determined by the value_sz parameter in the OCIBindByName() or

OCIBindByPos() call.

Note: The entire contents of the buffer (value_sz chars) is passed to the database,

including any trailing blanks or nulls.

If the value_sz parameter is zero, Oracle treats the bind variable as a null, regardless

of its actual content. Of course, a null must be allowed for the bind variable value in

the SQL statement. If you try to insert a null into a column that has a NOT NULL

integrity constraint, Oracle issues an error and does not insert the row.

Negative values for the value_sz parameter are not allowed for CHARs.

When the Oracle internal (column) datatype is NUMBER, input from a character

string that contains the character representation of a number is legal. Input

character strings are converted to internal numeric format. If the CHAR string

contains an illegal conversion character, Oracle returns an error and does not insert

the value. Number conversion follows the conventions established by National

Language Support settings for your system. For example, your system might be

configured to recognize a comma (,) rather than a period (.) as the decimal point.

Output
Specify the desired length for the return value in the value_sz parameter of the

OCIDefineByPos() call. If zero is specified for the length, no data is returned.

New Oracle External Datatypes

Datatypes 3-17

If you omit the rlenp parameter of OCIDefineByPos(), returned values are blank

padded to the buffer length, and nulls are returned as a string of blank characters. If

rlenp is included, returned values are not blank padded. Instead, their actual lengths

are returned in the rlenp parameter.

To check whether a null is returned or if character truncation has occurred, include

an indicator parameter or array of indicator parameters in the OCIDefineByPos() call.

An indicator parameter is set to -1 when a null is fetched and to the original column

length when the returned value is truncated. Otherwise, it is set to zero. If you do

not specify an indicator parameter and a null is selected, the fetch call returns an

ORA-01405 error.

See Also: For more information about "Indicator Variables" on page 2-31.

You can also request output to a character string from an internal NUMBER

datatype. Number conversion follows the conventions established by the National

Language Support settings for your system. For example, your system might use a

comma (,) rather than a period (.) as the decimal point.

CHARZ
The CHARZ external datatype is similar to the CHAR datatype, except that the

string must be null terminated on input, and Oracle places a null-terminator

character at the end of the string on output. The null terminator serves only to

delimit the string on input or output; it is not part of the data in the table.

On input, the length parameter must indicate the exact length, including the null

terminator. For example, if an array in C is declared as

char my_num[] = "123.45";

then the length parameter when you bind my_num must be seven. Any other value

would return an error for this example.

New Oracle External Datatypes
The following new external datatypes are being introduced with release 8.0. These

datatypes are not supported when connect to an Oracle release 7 server.

Note: Both internal and external datatypes have Oracle-defined constant values,

such as SQLT_NTY, SQLT_REF, corresponding to their datatype codes.

Although the constants are not listed for all of the types in this chapter, they are

used in this section when discussing new Oracle datatypes. The datatype

New Oracle External Datatypes

3-18 Oracle Call Interface Programmer’s Guide

constants are also used in other chapters of this guide when referring to these

new types.

Note: Named datatypes and REFs are only available if you have purchased the

Oracle8i Enterprise Edition.

NAMED DATA TYPE (Object, VARRAY, Nested Table)
Named data types are user-defined types which are specified with the CREATE

TYPE command in SQL. Examples include object types, varrays, and nested tables.

In the OCI, named data type refers to a host language representation of the type. The

SQLT_NTY datatype code is used when binding or defining named data types.

In a C application, named data types are represented as C structs. These structs can

be generated from types stored in the database by using the Object Type Translator.

These types correspond to OCI_TYPECODE_OBJECT.

See Also: For more information about working with named data types in the

OCI, refer to Part 2 of this guide.

For information about how named data types are represented as C structs, refer

to Chapter 14, "Using the Object Type Translator".

REF
This is a reference to a named data type. The C language representation of a REF is

a variable declared to be of type OCIRef *. The SQLT_REF datatype code is used

when binding or defining REFs.

Access to REFs is only possible when an OCI application has been initialized in

object mode. When REFs are retrieved from the server, they are stored in the

client-side object cache.

To allocate a REF for use in your application, you should declare a variable to be a

pointer to a REF, and then call OCIObjectNew(), passing OCI_TYPECODE_REF as

the typecode parameter.

See Also: For more information about working with REFs in the OCI, refer to

Part 2 of this guide.

LOB
A LOB (Large OBject) stores binary or character data up to 4 gigabytes in length.

Binary data is stored in a BLOB (Binary LOB), and character data is stored in a

CLOB (Character LOB) or NCLOB (National Character LOB).

New Oracle External Datatypes

Datatypes 3-19

LOB values may or may not be stored inline with other row data in the database. In

either case, LOBs have the full transactional support of the database server. A

database table stores a LOB locator which points to the LOB value which may be in a

different storage space.

When an OCI application issues a SQL query which includes a LOB column or

attribute in its select-list, fetching the result(s) of the query returns the locator,

rather than the actual LOB value. In the OCI, the LOB locator maps to a variable of

type OCILobLocator.

See Also: For more information about descriptors, including the LOB locator,

see the section "Descriptors and Locators" on page 2-14.

For more information about LOBs refer to the Oracle8i SQL Reference and the

Oracle8i Application Developer’s Guide - Large Objects (LOBs).

The OCI functions for LOBs take a LOB locator as one of their arguments. The OCI

functions assume that the locator has already been created, whether or not the LOB

to which it points contains data.

Bind and define operations are performed on the LOB locator, which is allocated

with the OCIDescriptorAlloc() function.

The locator is always fetched first using SQL or OCIObjectPin(), and then operations

are performed using the locator. The OCI functions never take the actual LOB value

as a parameter.

See Also: For more information about OCI LOB functions, see Chapter 7, "LOB

and FILE Operations".

The datatype codes available for binding or defining LOBs are:

■ SQLT_BLOB - a binary LOB data type.

■ SQLT_CLOB - a character LOB data type.

The NCLOB is a special type of CLOB with the following requirements:

■ To write into or read from an NCLOB, the user must set the character set form

(csfrm) parameter to be SQLCS_NCHAR.

■ The amount (amtp) parameter in calls involving CLOBS and NCLOBS is always

interpreted in terms of characters, rather than bytes, for fixed-width character

sets. For more information, see "LOB and FILE Functions" on page 7-6.

New Oracle External Datatypes

3-20 Oracle Call Interface Programmer’s Guide

FILE
The FILE datatype provides access to file LOBs that are stored in file systems

outside an Oracle database. Oracle8i currently supports access to binary files, or

BFILEs.

A BFILE column or attribute stores a file LOB locator, which serves as a pointer to a

binary file on the server’s file system. The locator maintains the directory alias and

the filename.

Binary file LOBs do not participate in transactions. Rather, the underlying operating

system provides file integrity and durability. The maximum file size supported is 4

gigabytes.

The database administrator must ensure that the file exists and that Oracle

processes have operating system read permissions on the file.

The BFILE datatype allows read-only support of large binary files; you cannot

modify a file through Oracle. Oracle provides APIs to access file data.

The datatype code available for binding or defining FILEs is:

■ SQLT_BFILE - a binary FILE LOB data type

For more information about directory aliases, refer to the Oracle8i Application

Developer’s Guide - Large Objects (LOBs).

BLOB
The BLOB datatype stores unstructured binary large objects. BLOBs can be thought

of as bitstreams with no character set semantics. BLOBs can store up to four

gigabytes of binary data.

BLOBs have full transactional support; changes made through the OCI participate

fully in the transaction. The BLOB value manipulations can be committed or rolled

back. You cannot save a BLOB locator in a variable in one transaction and then use

it in another transaction or session.

CLOB
The CLOB datatype stores fixed- or varying-width character data. CLOBs can store

up to 4 gigabytes of character data.

CLOBs have full transactional support; changes made through the OCI participate

fully in the transaction. The CLOB value manipulations can be committed or rolled

back. You cannot save a CLOB locator in a variable in one transaction and then use

it in another transaction or session.

Data Conversions

Datatypes 3-21

NCLOB An NCLOB is a national character version of a CLOB. It stores fixed-width,

single- or multi-byte national character set character (NCHAR), or varying-width

character sets data. NCLOBs can store up to 4 gigabytes of character text data.

NCLOBs have full transactional support; changes made through the OCI participate

fully in the transaction. NCLOB value manipulations can be committed or rolled

back. You cannot save a NCLOB locator in a variable in one transaction and then

use it in another transaction or session.

You cannot create an object with NCLOB attributes, but you can specify NCLOB

parameters in methods.

New C Datatype Mappings
The OCI now includes support for Oracle-defined C datatypes used to map

user-defined datatypes and ADT attributes to C representations (e.g. OCINumber,
OCIArray). The OCI provides a set of calls to operate on these datatypes, and to use

these datatypes in bind and define operations, in conjunction with OCI external

datatype codes. For information on using these Oracle-defined C datatypes, refer to

Chapter 11, "Object-Relational Datatypes".

Data Conversions
Table 3–5 shows the supported conversions from internal Oracle datatypes to

external datatypes, and from external datatypes into internal column

representations, for all datatypes available through release 7.3. Information about

data conversions for data types new to release 8.0 is listed here:

■ REFs stored in the database are converted to SQLT_REF on output.

■ SQLT_REF is converted to the internal representation of REFs on input.

■ Named Data Types stored in the database can be converted to SQLT_NTY (and

represented by a C struct in the application) on output.

■ SQLT_NTY (represented by a C struct in an application) is converted to the

internal representation of the corresponding type on input.

■ LOBs and BFILEs are represented by descriptors in OCI applications, so there

are no input or output conversions.

■ For information about OCIString, OCINumber, and other new Oracle

datatypes, refer to Chapter 11, "Object-Relational Datatypes" and Chapter 12,

"Binding and Defining in Object Applications".

Data Conversions

3-22 Oracle Call Interface Programmer’s Guide

Table 3–5 Data Conversions

EXTERNAL

DATATYPES

INTERNAL DATATYPES

1
VARCHAR2

2
NUMBER

8
LONG

11
ROWID

12
DATE

23
RAW

24
LONG
RAW

96
CHAR

1 VARCHAR I/O I/O I/O I/O(1) I/O(2) I/O(3) I/O(3)

2 NUMBER I/O(4) I/O I I/O(4)

3 INTEGER I/O(4) I/O I I/O(4)

4 FLOAT I/O(4) I/O I I/O(4)

5 STRING I/O I/O I/O I/O(1) I/O(2) I/O(3) I/O(3, 5) I/O

6 VARNUM I/O(4) I/O I I/O(4)

7 DECIMAL I/O(4) I/O I I/O(4)

8 LONG I/O I/O I/O I/O(1) I/O(2) I/O(3) I/O(3, 5) I/O

9 VARCHAR I/O I/O I/O I/O(1) I/O(2) I/O(3) I/O(3, 5) I/O

11 ROWID I I I/O I

12 DATE I/O I I/O I/O

15 VARRAW I/O(6) I(5, 6) I/O I/O I/O(6)

23 RAW I/O(6) I(5, 6) I/O I/O I/O(6)

24 LONG RAW O(6) I(5, 6) I/O I/O O(6)

68 UNSIGNED I/O(4) I/O I I/O(4)

94 LONG VARCHAR I/O I/O I/O I/O(1) I/O(2) I/O(3) I/O(3, 5) I/O

95 LONG VARRAW I/O(6) I(5, 6) I/O I/O I/O(6)

96 CHAR I/O I/O I/O I/O(1) I/O(2) I/O(3) I(3) I/O

Typecodes

Datatypes 3-23

Typecodes
There is a unique typecode associated with each Oracle type, whether scalar,

collection, reference, or object type. This typecode identifies the type, and is used by

Oracle to manage information about object type attributes. This typecode system is

designed to be generic and extensible, and is not tied to a direct one-to-one

mapping to Oracle datatypes. Consider the following SQL statements:

CREATE TYPE my_type AS OBJECT
(attr1 NUMBER,

attr2 INTEGER,
attr3 SMALLINT);

CREATE TABLE my_table AS TABLE OF my_type;

These statements create an object type and an object table. When it is created, my_
table will have three columns, all of which are of Oracle NUMBER type, because

SMALLINT and INTEGER map internally to NUMBER. The internal representation

of the attributes of my_type , however, maintains the distinction between the

datatypes of the three attributes: attr1 is OCI_TYPECODE_NUMBER, attr2 is

97 CHARZ I/O I/O I/O I/O(1) I/O(2) I/O(3) I(3) I/O

104 ROWID DESC.

Notes:

(1) For input, host string must be in Oracle ROWID format.
On output, column value is returned in Oracle ROWID format.

(2) For input, host string must be in the Oracle DATE character format.
On output, column value is returned in Oracle DATE format.

(3) For input, host string must be in hex format.
On output, column value is returned in hex format.

(4) For output, column value must represent a valid number.

(5) Length must be less than or equal to 2000.

(6) On input, column value is stored in hex format.
On output, column value must be in hex format.

Legend:

I = Conversion valid for input
only

O = Conversion valid for
output only

I/O = Conversion valid for
input or output

Table 3–5 Data Conversions (Cont.)

EXTERNAL

DATATYPES

INTERNAL DATATYPES

1
VARCHAR2

2
NUMBER

8
LONG

11
ROWID

12
DATE

23
RAW

24
LONG
RAW

96
CHAR

Typecodes

3-24 Oracle Call Interface Programmer’s Guide

OCI_TYPECODE_INTEGER, and attr3 is OCI_TYPECODE_SMALLINT. If an

application describes my_type , these typecodes are returned.

OCITypeCode is the C datatype of the typecode. The typecode is used by some OCI

functions, like OCIObjectNew() (where it helps determine what type of object is

created). It is also returned as the value of some attributes when an object is

described; e.g., querying the OCI_ATTR_TYPECODE attribute of a type returns an

OCITypeCode value.

Table 3–6 lists the possible values for an OCITypeCode. There is a value

corresponding to each Oracle datatype.

Table 3–6 OCITypeCode Values

Value Datatype

OCI_TYPECODE_REF REF

OCI_TYPECODE_DATE date

OCI_TYPECODE_REAL single-precision real

OCI_TYPECODE_DOUBLE double-precision real

OCI_TYPECODE_FLOAT floating-point

OCI_TYPECODE_NUMBER Oracle number

OCI_TYPECODE_DECIMAL decimal

OCI_TYPECODE_OCTET octet

OCI_TYPECODE_INTEGER integer

OCI_TYPECODE_SMALLINT smallint

OCI_TYPECODE_RAW RAW

OCI_TYPECODE_VARCHAR2 variable string ANSI SQL, i.e., VARCHAR2

OCI_TYPECODE_VARCHAR variable string Oracle SQL, i.e., VARCHAR

OCI_TYPECODE_CHAR fixed-length string inside SQL, i.e. SQL CHAR

OCI_TYPECODE_VARRAY variable-length array (varray)

OCI_TYPECODE_TABLE multiset

OCI_TYPECODE_CLOB character large object (CLOB)

OCI_TYPECODE_BLOB binary large object (BLOB)

OCI_TYPECODE_BFILE binary large object file (BFILE)

OCI_TYPECODE_OBJECT named object type

Typecodes

Datatypes 3-25

Relationship Between SQLT and OCI_TYPECODE Values
Oracle recognizes two different sets of datatype code values. One set is

distinguished by the SQLT_ prefix, the other by the OCI_TYPECODE_ prefix.

The SQLT typecodes are used by OCI to specify a datatype in a bind or define

operation. In this way, the SQL typecodes help to control data conversions between

Oracle and OCI client applications. The OCI_TYPECODE types are used by Oracle’s

type system to reference or describe predefined types when manipulating or

creating user-defined types.

In many cases there are direct mappings between SQLT and OCI_TYPECODE

values. In other cases, however, there is not a direct one-to-one mapping. For

example OCI_TYPECODE_SIGNED16, OCI_TYPECODE_SIGNED32, OCI_

TYPECODE_INTEGER, OCI_TYPECODE_OCTET, and OCI_TYPECODE_

SMALLINT are all mapped to the SQLT_INT type.

The following table illustrates the mappings between SQLT and OCI_TYPECODE

types.

OCI_TYPECODE_NAMEDCOLLECTION Domain (named primitive type)

Table 3–7 OCI_TYPECODE to SQLT Mappings

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type

BFILE OCI_TYPECODE_BFILE SQLT_BFILE

BLOB OCI_TYPECODE_BLOB SQLT_BLOB

CHAR OCI_TYPECODE_CHAR (n) SQLT_AFC(n) [note 1]

CLOB OCI_TYPECODE_CLOB SQLT_CLOB

COLLECTION OCI_TYPECODE_NAMEDCOLLECTION SQLT_NCO

DATE OCI_TYPECODE_DATE SQLT_DAT

FLOAT OCI_TYPECODE_FLOAT (b) SQLT_FLT (8) [note 2]

DECIMAL OCI_TYPECODE_DECIMAL (p) SQLT_NUM (p, 0) [note 3]

DOUBLE OCI_TYPECODE_DOUBLE SQLT_FLT (8)

INTEGER OCI_TYPECODE_INTEGER SQLT_INT (i) [note 4]

NUMBER OCI_TYPECODE_NUMBER (p, s) SQLT_NUM (p, s) [note 5]

Table 3–6 OCITypeCode Values (Cont.)

Value Datatype

Typecodes

3-26 Oracle Call Interface Programmer’s Guide

OCTECT OCI_TYPECODE_OCTECT SQLT_INT (1)

POINTER OCI_TYPECODE_PTR <NONE>

RAW OCI_TYPECODE_RAW SQLT_LVB

REAL OCI_TYPECODE_REAL SQLT_FLT (4)

REF OCI_TYPECODE_REF SQLT_REF

OBJECT OCI_TYPECODE_OBJECT SQLT_NTY

SIGNED(8) OCI_TYPECODE_SIGNED8 SQLT_INT (1)

SIGNED(16) OCI_TYPECODE_SIGNED16 SQLT_INT (2)

SIGNED(32) OCI_TYPECODE_SIGNED32 SQLT_INT (4)

SMALLINT OCI_TYPECODE_SMALLINT SQLT_INT (i) [note 4]

TABLE [note 6] OCI_TYPECODE_TABLE <NONE>

TABLE (Indexed table) OCI_TYPECODE_ITABLE SQLT_TAB

UNSIGNED(8) OCI_TYPECODE_UNSIGNED8 SQLT_UIN (1)

UNSIGNED(16) OCI_TYPECODE_UNSIGNED16 SQLT_UIN (2)

UNSIGNED(32) OCI_TYPECODE_UNSIGNED32 SQLT_UIN (4)

VARRAY [note 6] OCI_TYPECODE_VARRAY <NONE>

VARCHAR OCI_TYPECODE_VARCHAR (n) SQLT_CHR (n) [note 1]

VARCHAR2 OCI_TYPECODE_VARCHAR2 (n) SQLT_VCS (n) [note 1]

Notes:

1. n is the size of the string in bytes

2. These are floating point numbers, the precision is given in terms of binary digits. b is the precision of the
number in binary digits.

3. This is equivalent to a NUMBER with no decimal places.

4. i is the size of the number in bytes, set as part of an OCI call.

5. p is the precision of the number in decimal digits; s is the scale of the number in decimal digits.

6. Can only be part of a named collection type.

Table 3–7 OCI_TYPECODE to SQLT Mappings (Cont.)

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type

Definitions in oratypes.h

Datatypes 3-27

Definitions in oratypes.h
Throughout this guide you will see references to datatypes like ub2 or sb4, or to

constants like UB4MAXVAL. These types are defined in the oratypes.h header file,

an example of which is included here. The exact contents may vary according to the

platform you are using.

#ifndef ORATYPES
define ORATYPES
define SX_ORACLE
define SX3_ORACLE

#ifndef ORASTDDEF
include <stddef.h>
define ORASTDDEF
#endif

#ifndef ORALIMITS
include <limits.h>
define ORALIMITS
#endif

#ifndef TRUE
define TRUE 1
define FALSE 0
#endif

#ifdef lint
ifndef mips
define signed
endif
#endif

#ifdef ENCORE_88K
ifndef signed
define signed
endif
#endif

#if defined(SYSV_386) || defined(SUN_OS)
ifdef signed
undef signed
endif
define signed
#endif

Definitions in oratypes.h

3-28 Oracle Call Interface Programmer’s Guide

#ifndef lint
typedef unsigned char ub1;
typedef signed char sb1;
#else
#define ub1 unsigned char
#define sb1 signed char
#endif

#define UB1MAXVAL ((ub1)UCHAR_MAX)
#define UB1MINVAL ((ub1) 0)
#define SB1MAXVAL ((sb1)SCHAR_MAX)
#define SB1MINVAL ((sb1)SCHAR_MIN)
#define MINUB1MAXVAL ((ub1) 255)
#define MAXUB1MINVAL ((ub1) 0)
#define MINSB1MAXVAL ((sb1) 127)
#define MAXSB1MINVAL ((sb1) -127)

#ifndef lint
typedef unsigned short ub2;
typedef signed short sb2;
#else
#define ub2 unsigned short
#define sb2 signed short
#endif

#define UB2MAXVAL ((ub2)USHRT_MAX)
#define UB2MINVAL ((ub2) 0)
#define SB2MAXVAL ((sb2) SHRT_MAX)
#define SB2MINVAL ((sb2) SHRT_MIN)
#define MINUB2MAXVAL ((ub2) 65535)
#define MAXUB2MINVAL ((ub2) 0)
#define MINSB2MAXVAL ((sb2) 32767)
#define MAXSB2MINVAL ((sb2)-32767)

#ifndef lint
typedef unsigned int ub4;
typedef signed int sb4;
#else
#define eb4 int
#define ub4 unsigned int
#define sb4 signed int
#endif

#define UB4MAXVAL ((ub4)UINT_MAX)

Definitions in oratypes.h

Datatypes 3-29

#define UB4MINVAL ((ub4) 0)
#define SB4MAXVAL ((sb4) INT_MAX)
#define SB4MINVAL ((sb4) INT_MIN)
#define MINUB4MAXVAL ((ub4) 4294967295)
#define MAXUB4MINVAL ((ub4) 0)
#define MINSB4MAXVAL ((sb4) 2147483647)
#define MAXSB4MINVAL ((sb4)-2147483647)

#define UB1BITS CHAR_BIT
#define UB1MASK ((1 << ((uword)CHAR_BIT)) - 1)

typedef ub1 bitvec;
#define BITVEC(n) (((n)+(UB1BITS-1))>>3)

#ifdef lint
define OraText unsigned char
#else
 typedef unsigned char OraText;
#endif

#define max(x, y) (((x) < (y)) ? (y) : (x))
#define min(x, y) (((x) < (y)) ? (x) : (y))

#ifndef lint
typedef ub4 duword;
typedef sb4 dsword;
typedef dsword dword;

#else
#define duword ub4
#define dsword sb4
#define dword dsword
#endif

#define DUWORDMAXVAL UB4MAXVAL
#define DUWORDMINVAL UB4MINVAL
#define DSWORDMAXVAL SB4MAXVAL
#define DSWORDMINVAL SB4MINVAL
#define MINDUWORDMAXVAL MINUB4MAXVAL
#define MAXDUWORDMINVAL MAXUB4MINVAL
#define MINDSWORDMAXVAL MINSB4MAXVAL
#define MAXDSWORDMINVAL MAXSB4MINVAL
#define DEWORDMAXVAL EB4MAXVAL
#define DEWORDMINVAL EB4MINVAL
#define MINDEWORDMAXVAL MINEB4MAXVAL

Definitions in oratypes.h

3-30 Oracle Call Interface Programmer’s Guide

#define MAXDEWORDMINVAL MAXEB4MINVAL
#define DWORDMAXVAL DSWORDMAXVAL
#define DWORDMINVAL DSWORDMINVAL

#ifndef lint
typedef ub4 dsize_t;
else
define dsize_t ub4
#endif

define DSIZE_TMAXVAL UB4MAXVAL
define MINDSIZE_TMAXVAL (dsize_t)65535

#ifndef lint
typedef sb4 dboolean;
else
define dboolean sb4
#endif

#ifndef lint
typedef ub4 dptr_t;
#else
#define dptr_t ub4
#endif

#ifndef lint
typedef char eb1;
typedef short eb2;
typedef int eb4;
typedef eb4 deword;
#else
define eb1 char
define eb2 short
define eb4 int
define deword eb4
#endif

#define EB1MAXVAL ((eb1)SCHAR_MAX)
#define EB1MINVAL ((eb1) 0)
#define MINEB1MAXVAL ((eb1) 127)
#define MAXEB1MINVAL ((eb1) 0)
#define EB2MAXVAL ((eb2) SHRT_MAX)
#define EB2MINVAL ((eb2) 0)
#define MINEB2MAXVAL ((eb2) 32767)

Definitions in oratypes.h

Datatypes 3-31

#define MAXEB2MINVAL ((eb2) 0)
#define EB4MAXVAL ((eb4) INT_MAX)
#define EB4MINVAL ((eb4) 0)
#define MINEB4MAXVAL ((eb4) 2147483647)
#define MAXEB4MINVAL ((eb4) 0)

#ifndef lint
typedef sb1 b1;
#else
#define b1 sb1
#endif
#define B1MAXVAL SB1MAXVAL
#define B1MINVAL SB1MINVAL
#ifndef lint
typedef sb2 b2;
#else
#define b2 sb2
#endif
#define B2MAXVAL SB2MAXVAL
#define B2MINVAL SB2MINVAL

#ifndef lint
typedef sb4 b4;
#else
#define b4 sb4
#endif
define B4MAXVAL SB4MAXVAL
define B4MINVAL SB4MINVAL

#ifndef uiXT
typedef ub1 BITS8;
typedef ub2 BITS16;
typedef ub4 BITS32;
#endif

#if !defined(LUSEMFC)
ifdef lint
define text unsigned char
else
 typedef OraText text;
endif
#endif

#define M_IDEN 30

Definitions in oratypes.h

3-32 Oracle Call Interface Programmer’s Guide

#ifdef AIXRIOS
define SLMXFNMLEN 256
#else
define SLMXFNMLEN 512
#endif

#ifndef lint
typedef int eword;
typedef unsigned int uword;
typedef signed int sword;
#else
#define eword int
#define uword unsigned int
#define sword signed int
#endif

#define EWORDMAXVAL ((eword) INT_MAX)
#define EWORDMINVAL ((eword) 0)
#define UWORDMAXVAL ((uword)UINT_MAX)
#define UWORDMINVAL ((uword) 0)
#define SWORDMAXVAL ((sword) INT_MAX)
#define SWORDMINVAL ((sword) INT_MIN)
#define MINEWORDMAXVAL ((eword) 32767)
#define MAXEWORDMINVAL ((eword) 0)
#define MINUWORDMAXVAL ((uword) 65535)
#define MAXUWORDMINVAL ((uword) 0)
#define MINSWORDMAXVAL ((sword) 32767)
#define MAXSWORDMINVAL ((sword) -32767)

#ifndef lint
typedef unsigned long ubig_ora;
typedef signed long sbig_ora;
#else
#define ubig_ora unsigned long
#define sbig_ora signed long
#endif

#define UBIG_ORAMAXVAL ((ubig_ora)ULONG_MAX)
#define UBIG_ORAMINVAL ((ubig_ora) 0)
#define SBIG_ORAMAXVAL ((sbig_ora) LONG_MAX)
#define SBIG_ORAMINVAL ((sbig_ora) LONG_MIN)
#define MINUBIG_ORAMAXVAL ((ubig_ora) 4294967295)
#define MAXUBIG_ORAMINVAL ((ubig_ora) 0)
#define MINSBIG_ORAMAXVAL ((sbig_ora) 2147483647)
#define MAXSBIG_ORAMINVAL ((sbig_ora)-2147483647)

Definitions in oratypes.h

Datatypes 3-33

#define UBIGORABITS (UB1BITS * sizeof(ubig_ora))

#ifndef lint
#if (__STDC__ != 1)
define SLU8NATIVE
define SLS8NATIVE
#endif
#endif

#ifdef SLU8NATIVE

#ifdef SS_64BIT_SERVER
ifndef lint
 typedef unsigned long ub8;
else
define ub8 unsigned long
endif
#else
ifndef lint
 typedef unsigned long long ub8;
else
define ub8 unsigned long long
endif
#endif

#define UB8ZERO ((ub8)0)

#define UB8MINVAL ((ub8)0)
#define UB8MAXVAL ((ub8)18446744073709551615)

#define MAXUB8MINVAL ((ub8)0)
#define MINUB8MAXVAL ((ub8)18446744073709551615)

#endif

#ifdef SLS8NATIVE

#ifdef SS_64BIT_SERVER
ifndef lint
 typedef signed long sb8;
else
define sb8 signed long
endif

Definitions in oratypes.h

3-34 Oracle Call Interface Programmer’s Guide

#else
ifndef lint
 typedef signed long long sb8;
else
define sb8 signed long long
endif
#endif

#define SB8ZERO ((sb8)0)

#define SB8MINVAL ((sb8)-9223372036854775808)
#define SB8MAXVAL ((sb8) 9223372036854775807)

#define MAXSB8MINVAL ((sb8)-9223372036854775807)
#define MINSB8MAXVAL ((sb8) 9223372036854775807)

#endif

#undef CONST
#ifdef _olint
define CONST const
#else
#if defined(PMAX) && defined(__STDC__)
define CONST const
#else
ifdef M88OPEN
define CONST const
else
if defined(SEQ_PSX) && defined(__STDC__)
define CONST const
else
ifdef A_OSF
if defined(__STDC__)
define CONST const
else
define CONST
endif
else
define CONST
endif
endif
endif
#endif

Definitions in oratypes.h

Datatypes 3-35

#endif

#ifdef lint
define dvoid void
#else

ifdef UTS2
define dvoid char
else
define dvoid void
endif

#endif

typedef void (*lgenfp_t)(void);

#ifndef ORASYSTYPES
include <sys/types.h>
define ORASYSTYPES
#endif

#ifndef boolean
#ifndef lint
typedef int boolean;
#else
#define boolean int
#endif
#endif

#ifdef sparc
define SIZE_TMAXVAL SB4MAXVAL
#else
define SIZE_TMAXVAL UB4MAXVAL
#endif

#define MINSIZE_TMAXVAL (size_t)65535

#if !defined(MOTIF) && !defined(LISPL) && !defined(__cplusplus) && !defined(LUS
EMFC)

Definitions in oratypes.h

3-36 Oracle Call Interface Programmer’s Guide

typedef OraText *string;
#endif

#ifndef lint
typedef unsigned short utext;
#else
#define utext unsigned short
#endif

#endif

SQL Statement Processing 4-1

4
SQL Statement Processing

This chapter discusses the concepts and steps involved in processing SQL

statements with the Oracle Call Interface. The following topics are covered in this

chapter:

■ Overview

■ Processing SQL Statements

■ Preparing Statements

■ Binding

■ Executing Statements

■ Describing Select-List Items

■ Defining

■ Fetching Results

Overview

4-2 Oracle Call Interface Programmer’s Guide

Overview
Chapter 2 discussed the basic steps involved in any OCI application. This chapter

presents a more detailed look at the specific tasks involved in processing SQL

statements in an OCI program.

Processing SQL Statements
One of the most common tasks of an OCI program is to accept and process SQL

statements. This section outlines the specific steps involved in processing SQL.

Once you have allocated the necessary handles and attached to a server, the basic

steps in processing a SQL statement are the following, as illustrated in Figure 4–1,

"Steps In Processing SQL Statements":

1. Prepare. Define an application request using OCIStmtPrepare().

2. Bind. For DML statements and queries with input variables, perform one or

more bind calls using OCIBindByPos(), OCIBindByName(), OCIBindObject(),
OCIBindDynamic() or OCIBindArrayOfStruct() to bind the address of each input

variable (or PL/SQL output variable) or array to each placeholder in the

statement.

3. Execute. Call OCIStmtExecute() to execute the statement. For DDL statements,

no further steps are necessary.

4. Describe. Describe the select-list items, if necessary, using OCIParamGet() and

OCIAttrGet(). This is an optional step; it is not required if the number of

select-list items and the attributes of each item (such as its length and datatype)

are known at compile time.

5. Define. For queries, perform one or more define calls to OCIDefineByPos(),
OCIDefineObject(), OCIDefineDynamic(), or OCIDefineArrayOfStruct() to define an

output variable for each select-list item in the SQL statement. Note that you do

not use a define call to define the output variables in an anonymous

PL/SQL block. You have done this when you have bound the data.

6. Fetch. For queries, call OCIStmtFetch() to fetch the results of the query.

Following these steps, the application can free allocated handles and then detach

from the server, or it may process additional statements.

7.x Upgrade Note: OCI programs no longer require an explicit parse step. If a

statement must be parsed, that step takes place on execute. This means that 8.0

applications must issue an execute command for both DML and DDL

statements.

Processing SQL Statements

SQL Statement Processing 4-3

Figure 4–1 Steps In Processing SQL Statements

For each of the steps in the diagram, the corresponding OCI function calls are listed.

In some cases multiple calls may be required.

Each step above is described in detail in the following sections.

Note: Some variation in the order of steps is possible. For example, it is possible

to do the define step before the execute if the datatypes and lengths of returned

values are known at compile time. Also, as indicated by the asterisks (*), some

steps may not be required by your application.

Additional steps beyond those listed above may be required if your application

needs to do the following:

– initiate and manage multiple transactions

– manage multiple threads of execution

– perform piecewise inserts, updates, or fetches

These topics are described in Chapter 9, "OCI Programming Advanced Topics".

For information on using OCI shared mode functionality, refer to "Shared Data

Mode" on page 2-19.

Bind
Placeholders*

Execute
Statement

Describe
Select-list Items*

Define
Output Variables*

Fetch and
Process Data*

Prepare
Statement

* These steps performed
if necessary

OCIStmtPrepare()

OCIStmtExecute()

OCIStmtFetch()

OCIDefineByPos()
OCIDefineObject()
OCIDefineArrayOfStruct()
OCIDefineDynamic()

OCIParamGet()
OCIAttrGet()

OCIBindByName() or OCIBindByPos()
OCIBindObject()
OCIBindArrayOfStruct()
OCIBindDynamic()

Preparing Statements

4-4 Oracle Call Interface Programmer’s Guide

Preparing Statements
SQL and PL/SQL statements need to be prepared for execution by using the

statement prepare call and bind calls (if necessary). In this phase, the application

specifies a SQL or PL/SQL statement and binds associated placeholders in the

statement to data for execution. The client-side library allocates storage to maintain

the statement prepared for execution.

An application requests a SQL or PL/SQL statement to be prepared for execution

using the OCIStmtPrepare() call and passing it a previously allocated statement

handle. This is a completely local call, requiring no round-trip to the server. No

association is made at this point between the statement and a particular server.

Following the request call, an application can call OCIAttrGet() on the statement

handle, passing OCI_ATTR_STMT_TYPE to the attrtype parameter, to determine

what type of SQL statement was prepared. The possible attribute values, and

corresponding statement types are listed in Table 4–1.

See Also: For more information on the specifics of using PL/SQL in an OCI

application, see the section "Using PL/SQL in an OCI Program" on page 2-39.

The OCIStmtPrepare() call is described in more detail in Chapter 15, "OCI

Relational Functions".

Table 4–1 OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type

OCI_STMT_SELECT SELECT statement

OCI_STMT_UPDATE UPDATE statement

OCI_STMT_DELETE DELETE statement

OCI_STMT_INSERT INSERT statement

OCI_STMT_CREATE CREATE statement

OCI_STMT_DROP DROP statement

OCI_STMT_ALTER ALTER statement

OCI_STMT_BEGIN BEGIN... (PL/SQL)

OCI_STMT_DECLARE DECLARE... (PL/SQL)

Binding

SQL Statement Processing 4-5

Using Prepared Statements on Multiple Servers
A prepared application request can be executed on multiple servers at run time by

reassociating the statement handle with the respective service context handles for

the servers. All information cached about the current service context and statement

handle association is lost when a new association is made.

For example, consider an application such as a network manager, which manages

multiple servers. In many cases, it is likely that the same SELECT statement will

need to be executed against multiple servers to retrieve information for display. The

OCI allows the server manager application to prepare a SELECT statement once

and execute it against multiple servers. It must fetch all of the required rows from

each server prior to reassociating the prepared statement with the next server.

Note: If a prepared statement must be reexecuted frequently on the same server,

it is efficient to prepare a new statement for another service context.

Binding
Most DML statements, and some queries (such as those with a WHERE clause),

require a program to pass data to Oracle as part of a SQL or PL/SQL statement.

Such data can be constant or literal data, known when your program is compiled.

For example, the following SQL statement, which adds an employee to a database

contains several literals, such as ’BESTRY’ and 2365:

INSERT INTO emp VALUES
 (2365, ’BESTRY’, ’PROGRAMMER’, 2000, 20)

Hard coding a statement like this into an application would severely limit its

usefulness. You would need to change the statement and recompile the program

each time you add a new employee to the database. To make the program more

flexible, you can write the program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be

supplied at run time, placeholders in the SQL statement or PL/SQL block mark

where data must be supplied. For example, the following SQL statement contains

five placeholders, indicated by the leading colons (:ename), that show where input

data must be supplied by the program.

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE, INSERT, SELECT, or

UPDATE statement, or PL/SQL block, in any position in the statement where you

Executing Statements

4-6 Oracle Call Interface Programmer’s Guide

can use an expression or a literal value. In PL/SQL, placeholders can also be used

for output variables.

Note: Placeholders cannot be used to represent other Oracle objects such as

tables. For example, the following is not a valid use of the :emp placeholder:

INSERT INTO :emp VALUES
 (12345, ’OERTEL’, ’WRITER’, 50000, 30)

For each placeholder in the SQL statement or PL/SQL block, you must call an OCI

routine that binds the address of a variable in your program to the placeholder.

When the statement executes, Oracle gets the data that your program placed in the

input, or bind, variables and passes it to the server with the SQL statement.

For detailed information about implementing bind operations, please refer to

Chapter 5, "Binding and Defining".

Executing Statements
An OCI application executes prepared statements individually using

OCIStmtExecute(). See OCIStmtExecute() on page 15-161 for a syntax description.

When an OCI application executes a query, it receives data from Oracle that

matches the query specifications. Within the database, the data is stored in

Oracle-defined formats. When the results are returned, an OCI application can

request that data be converted to a particular host language format, and stored in a

particular output variable or buffer.

For each item in the select-list of a query, the OCI application must define an output

variable to receive the results of the query. The define step indicates the address of

the buffer and the type of the data to be retrieved.

Note: If output variables are defined for a SELECT statement before a call to

OCIStmtExecute(), the number of rows specified by the iters parameter are

fetched directly into the defined output buffers and additional rows equivalent

to the prefetch count are prefetched. If there are no additional rows, then the

fetch is complete without calling OCIStmtFetch().

For non-queries, the iters parameter of the OCIStmtExecute() call controls how many

times the statement is executed during array operations. For example, if an array of

10 items is bound to a placeholder for an INSERT statement, and iters is set to 10, all

10 items will be inserted in a single execute call.

See Also: See the section "Defining" on page 4-14 for more information about

defining output variables.

Executing Statements

SQL Statement Processing 4-7

Execution Snapshots
The OCIStmtExecute() call provides the ability to ensure that multiple service

contexts operate on the same consistent snapshot of the database’s committed data.

This is achieved by taking the contents of the snap_out parameter of one

OCIStmtExecute() call and passing that value in the snap_in parameter of the next

OCIStmtExecute() call.

Note: Uncommitted data in one service context is not visible to another context,

even when using the same snapshot.

The datatype of both the snap_out and snap_in parameter is OCISnapshot, an OCI

snapshot descriptor. This descriptor is allocated with the OCIDescAlloc() function.

See Also: For more information about descriptors, see the section "Descriptors

and Locators" on page 2-14.

It is not necessary to specify a snapshot when calling OCIStmtExecute(). The

following sample code shows a basic execution in which the snapshot parameters

are passed as NULL.

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)NULL, (OCISnapshot *) NULL, OCI_DEFAULT))

Note: The checkerr() function evaluates the return code from an OCI application.

The code for the function is listed in the section "Error Handling" on page 2-27.

Execution Modes
You can specify several modes for the OCIStmtExecute() call:

■ OCI_DEFAULT. Calling OCIStmtExecute() in this mode executes the statement.

It also implicitly returns describe information about the select-list.

■ OCI_DESCRIBE_ONLY. This mode is for users who wish to describe a query

prior to execution. Calling OCIStmtExecute() in this mode does not execute the

statement, but it does return the select-list description.

■ OCI_COMMIT_ON_SUCCESS - When a statement is executed in this mode, the

current transaction is committed after execution, provided that execution

completes successfully.

■ OCI_EXACT_FETCH - Used when the application knows in advance exactly

how many rows it will be fetching.

■ OCI_BATCH_ERRORS - See "Batch Error Mode for OCIStmtExecute()" on

page 4-8, for information about this mode.

Executing Statements

4-8 Oracle Call Interface Programmer’s Guide

Batch Error Mode for OCIStmtExecute()
The OCI provides the ability to perform array DML operations. For example, an

application can process an array of INSERT, UPDATE, or DELETE statements with

a single statement execution. If one of the operations fails due to an error from the

server, such as a unique constraint violation, the array operation aborts and the OCI

returns an error. Any rows remaining in the array are ignored. The application must

then re-execute the remainder of the array, and go through the whole process again

if it encounters more errors, which makes additional roundtrips.

To facilitate processing of array DML operations, the OCI provides the batch error
mode. This mode, which is specified in the OCIStmtExecute() call, simplifies DML

array processing in the event of one or more errors. In this mode, the OCI attempts

to INSERT, UPDATE, or DELETE all rows, and collects (batches) information about

any errors which occurred. The application can then retrieve this error information

and re-execute any DML operations which failed during the first call.

Note: This function is only available to applications linked with the 8.1 OCI

libraries running against a Release 8.1 server. Applications must also be recoded

to account for the new program logic described in this section.

In this way, all DML operations in the array are attempted in the first call, and any

failed operations can be reissued in a second call.

This mode is used as follows:

1. The user specifies OCI_BATCH_ERRORS as the mode parameter of the

OCIStmtExecute() call.

2. After performing an array DML operation with OCIStmtExecute(), the

application can retrieve the number of errors encountered during the operation

by calling OCIAttrGet() on the statement handle to retrieve the OCI_ATTR_

NUM_ERRORS attribute. For example:

ub4 num_errs;
OCIAttrGet(stmtp, OCI_HTYPE_STMT, &num_err, 0, OCI_ATTR_NUM_ERRORS, errhp);

3. The list of errors hangs off an error handle.

The application extracts each error, along with its row information, from the

error handle which was passed to the OCIStmtExecute() call using

OCIParamGet(). In order to retrieve the information, the application must

allocate an additional new error handle for the OCIParamGet() call. This new

error handle is populated with the batched error information. The application

obtains the syntax of each error with OCIErrorGet(), and the row offset (into the

Executing Statements

SQL Statement Processing 4-9

DML array) at which the error occurred by calling OCIAttrGet() on the new

error handle.

For example, once the num_errs amount has been retrieve, the application

might issue the following calls:

OCIError errhndl;
for (i=0; i<num_errs; i++) {

OCIParamGet(errhp, OCI_HTYPE_STMT, errhp, &errhndl, i+1);
OCIErrorGet(..., errhndl, ...);
OCIAttrGet(errhndl, OCI_HTYPE_ERR, &row_offset, 0, OCI_ATTR_ROW_NUM,

errhp);

Following this, the application could correct the bind information for the

appropriate entry in the array using the diagnostic information retrieved from

the batched error. Once the appropriate bind buffers are corrected or updated,

the application can reexecute the associated DML statements.

Because the application cannot know at compile time which rows in the first

execution will cause errors, the binds of the next execute should be done

dynamically by passing in the appropriate buffers at run-time. The user can

reuse the bind buffers used in the array binds done on the first DML operation.

Example
The following code shows an example of how this execution mode might be used.

In this example assume that we have an application which inserts five rows (with

two columns, of types NUMBER and CHAR) into a table. Furthermore, let us assume

only two rows (say, 1 and 3) are successfully inserted in the initial DML operation.

The user then proceeds to correct the data (wrong data was being inserted the first

time) and issue an update with the corrected data. The user uses statement handles

stmtp1 and stmtp2 to issue the INSERT and UPDATE respectively.

OCIBind *bindp1[2], *bindp2[2];
ub4 num_errs, row_OH[MAXROWS], number[MAXROWS] = {1,2,3,4,5};
char grade[MAXROWS] = {’A’,’B’,’C’,’D’,’E’};
 /* Array bind all the positions */
OCIBindByPos (stmtp1,&bindp1[0],errhp,1,(dvoid *)&number[0],
 sizeof(number[0]),SQLT_NUM,(dvoid *)0, (ub2 *)0,(ub2 *)0,
 0,(ub4 *)0,OCI_DEFAULT);
OCIBindByPos (stmtp1,&bindp1[1],errhp,2,(dvoid *)&grade[0],
 sizeof(grade[0],SQLT_CHR,(dvoid *)0, (ub2 *)0,(ub2 *)0,0,
 (ub4 *)0,OCI_DEFAULT);
 /* execute the array INSERT */
OCIStmtExecute (svchp,stmtp1, errhp ,5,0,0,0,OCI_BATCH_ERRORS);

Describing Select-List Items

4-10 Oracle Call Interface Programmer’s Guide

 /* get the number of errors */
OCIAttrGet (stmtp1, OCI_HTYPE_STMT, &num_errs, 0,
 OCI_ATTR_NUM_DML_ERRORS, errhp);
if (num_errs) {
 /* The user can do one of two things: 1) Allocate as many */
 /* error handles as number of errors and free all handles */
 /* at a later time; or 2) Allocate one err handle and reuse */
 /* the same handle for all the errors */
 OCIError *errhndl[num_errs];
 for (i = 0; i < num_errs; i++) {
 OCIParamGet(errhp , OCI_HTYPE_ERROR, &errhndl[i], i+1);
 OCIAttrGet (errhndl[i] , OCI_HTYPE_ERROR, &row_off[i], 0,
 OCI_ATTR_DML_ROW_OFFSET, errhp);
 OCIErrorGet (..., errhndl[i] , ...); /* get server diagnostics */
 }
}
 /* make corrections to bind data */
OCIBindByPos (stmtp2,&bindp2[0],errhp,1,(dvoid *)0,0,SQLT_NUM,
 (dvoid *)0, (ub2 *)0,(ub2 *)0,0,(ub4 *)0,OCI_DATA_AT_EXEC);
OCIBindByPos (stmtp2,&bindp2[1],errhp,2,(dvoid *)0,0,SQLT_DAT,
 (dvoid *)0, (ub2 *)0,(ub2 *)0,0,(ub4 *)0,OCI_DATA_AT_EXEC);
 /* register the callback for each bind handle */
OCIBindDynamic (bindp2[0],errhp,row_OH,my_callback,0,0);
OCIBindDynamic (bindp2[1],errhp,row_OH,my_callback,0,0);
 /* execute the UPDATE statement */
OCIStmtExecute (svchp,stmtp2,errhp,2,0,0,0,OCI_BATCH_ERRORS);

In this example, OCIBindDynamic() is used with a callback because the user does not

know at compile time what rows will return with errors. With a callback, you can

simply pass the erroneous row numbers, stored in row_OH, through the callback

context and send only those rows that need to be updated or corrected. The same

bind buffers can be shared between the INSERT and the UPDATE executes.

Describing Select-List Items
If your OCI application is processing a query, you may need to obtain more

information about the items in the select-list. This is particularly true for dynamic

queries whose contents are not known until run time. In this case, the program may

need to obtain information about the datatypes and column lengths of the select-list

items. This information is necessary to define output variables that will receive

query results.

For example, a user might enter a query such as

Describing Select-List Items

SQL Statement Processing 4-11

SELECT * FROM employees

where the program has no prior information about the columns in the employees
table.

In release 8i, there are two types of describes available: implicit and explicit. An

implicit describe is one which does not require any special calls to retrieve describe

information from the server although special calls are necessary to access the

information. An explicit describe is one which requires the application to call a

particular function to bring the describe information from the server.

An application may describe a select-list (query) either implicitly or explicitly. Other

schema elements must be described explicitly.

An implicit describe allows an application to obtain select-list information as an

attribute of the statement handle after a statement has been executed without making a

specific describe call. It is called implicit, because no describe call is required. The

describe information comes free with the execute.

Users may choose to describe a query explicitly prior to execution. To do this,

specify OCI_DESCRIBE_ONLY as the mode of OCIStmtExecute(). Calling

OCIStmtExecute() in this mode does not execute the statement, but it does return the

select-list description. For performance reasons, however, it is recommended that

applications take advantage of the implicit describe that comes free with a standard

statement execution.

An explicit describe with the OCIDescribeAny() call obtains information about

schema objects rather than select-lists.

In all cases, the specific information about columns and datatypes is retrieved by

reading handle attributes.

See Also: For information about using OCIDescribeAny() to obtain meta-data

pertaining to schema objects, refer to Chapter 6, "Describing Schema Metadata".

Implicit Describe
After a SQL statement is executed, information about the select-list is available as an

attribute of the statement handle. No explicit describe call is needed.

To retrieve information about select-list items from the statement handle, the

application must call OCIParamGet() once for each position in the select-list to

allocate a parameter descriptor for that position. Select-list positions are 1-based,

meaning that the first item in the select-list is considered to be position number 1.

Describing Select-List Items

4-12 Oracle Call Interface Programmer’s Guide

To retrieve information about multiple select-list items, an application can call

OCIParamGet() with the pos parameter set to 1 the first time, and then iterate the

value of pos and repeat the OCIParamGet() call until OCI_NO_DATA is returned. An

application could also specify any position n to get a column at random.

Once a parameter descriptor has been allocated for a position in the select-list, the

application can retrieve specific information by calling OCIAttrGet() on the

parameter descriptor. Information available from the parameter descriptor includes

the datatype and maximum size of the parameter.

The following sample code shows a loop that retrieves the column names and data

types corresponding to a query following query execution. The query was

associated with the statement handle by a prior call to OCIStmtPrepare().

OCIParam *mypard;
ub4 counter;
ub2 dtype;
text *col_name;
ub4 col_name_len;
sb4 parm_status;

...

/* Request a parameter descriptor for position 1 in the select-list */
counter = 1;
parm_status = OCIParamGet(stmthp, OCI_HTYPE_STMT, errhp, &mypard,

(ub4) counter);

/* Loop only if a descriptor was successfully retrieved for
current position, starting at 1 */

while (parm_status==OCI_SUCCESS) {

/* Retrieve the data type attribute */
checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &dtype,(ub4 *) 0, (ub4) OCI_ATTR_DATA_TYPE,
 (OCIError *) errhp));

/* Retrieve the column name attribute */
checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,

(dvoid**) &col_name,(ub4 *) &col_name_len, (ub4) OCI_ATTR_NAME,
(OCIError *) errhp));

printf("column=%s datatype=%d\n\n", col_name, dtype);
fflush(stdout);

Describing Select-List Items

SQL Statement Processing 4-13

/* increment counter and get next descriptor, if there is one */
counter++;
parm_status = OCIParamGet(stmthp, OCI_HTYPE_STMT, errhp, &mypard,

(ub4) counter);
}

Note: Error handling for the initial OCIParamGet() call is not included in this

example. Ellipses (...) indicate portions of code that have been omitted for this

example.

The checkerr() function is used for error handling. The complete listing can be

found in the first sample application in Appendix B, "OCI Demonstration

Programs".

The calls to OCIAttrGet() and OCIParamGet() are local calls that do not require a

network round trip, because all of the select-list information is cached on the client

side after the statement is executed.

See Also: See the descriptions of OCIParamGet() and OCIAttrGet() in
Chapter 15, "OCI Relational Functions", for more information about these calls.

See the section "Parameter Attributes" on page 6-5 for a list of the specific

attributes of the parameter descriptor which may be read by OCIAttrGet().

Explicit Describe of Queries
Users may choose to describe a query explicitly prior to execution. To do this,

specify OCI_DESCRIBE_ONLY as the mode of OCIStmtExecute(). Calling

OCIStmtExecute() in this mode does not execute the statement, but it does return the

select-list description.

Note: To maximize performance, it is recommended that applications execute

the statement in default mode and use the implicit describe which accompanies

the execution.

The following short example demonstrates the use of this mechanism to perform an

explicit describe of a select-list to return information about the columns in the

select-list. This pseudo-code shows how to retrieve column information (for

example, data type).

/* initialize svchp, stmhp, errhp, rowoff, iters, snap_in, snap_out */
/* set the execution mode to OCI_DESCRIBE_ONLY. Note that setting the mode to
OCI_DEFAULT does an implicit describe of the statement in addition to executing
the statement */

OCIParam *colhd; /* column handle */
checkerr(errhp, OCIStmtExecute(svchp, stmhp, errhp, iters, rowoff,

Defining

4-14 Oracle Call Interface Programmer’s Guide

snap_in, snap_out, OCI_DESCRIBE_ONLY);

/* Get the number of columns in the query */
checkerr(errhp, OCIAttrGet(stmhp, OCI_HTYPE_STMT, &numcols,
 0, OCI_ATTR_PARAM_COUNT, errh));

/* go through the column list and retrieve the data type of each column. We
start from pos = 1 */
for (i = 1; i <= numcols; i++)
{

/* get parameter for column i */
checkerr(errhp, OCIParamGet(stmhp, OCI_HTYPE_STMT, errh, &colhd, i));

/* get data-type of column i */
checkerr(errhp, OCIAttrGet(colhd, OCI_DTYPE_PARAM,

&type[i-1], 0, OCI_ATTR_DATA_TYPE, errh));
}

Defining
Query statements return data from the database to your application. When

processing a query, you must define an output variable or an array of output

variables for each item in the select-list from which you want to retrieve data. The

define step creates an association which determines where returned results are

stored, and in what format.

For example, if your OCI statement processes the following statement:

SELECT name, ssn FROM employees
WHERE empno = :empnum

you would normally need to define two output variables, one to receive the value

returned from the name column, and one to receive the value returned from the ssn
column.

For information about implementing define operations, please refer to Chapter 5,

"Binding and Defining".

Fetching Results
If an OCI application has processed a query, it is typically necessary to fetch the

results with OCIStmtFetch() after the statement has been executed.

Fetching Results

SQL Statement Processing 4-15

Fetched data is retrieved into output variables that have been specified by define

operations.

Note: If output variables are defined for a SELECT statement before a call to

OCIStmtExecute(), the number of rows specified by the iters parameter is fetched

directly into the defined output buffers.

See Also: These statements fetch data associated with the sample code in the

section "Steps Used in Defining" on page 5-14. Refer to that example for more

information.

For information about defining output variables, see the section "Defining" on

page 5-13.

Fetching LOB Data
If LOB columns or attributes are part of a select-list, LOB locators are returned as

results of the query. The actual LOB value is not returned by the fetch. The

application can perform further operations on these locators.

See Also: See Chapter 7, "LOB and FILE Operations", for more information

about working with LOB locators in the OCI.

Setting Prefetch Count
In order to minimize server round trips and maximize the performance of

applications, the OCI can prefetch result set rows when executing a query. The OCI

programmer can customize this prefetching by setting the OCI_ATTR_PREFETCH_

ROWS or OCI_ATTR_PREFETCH_MEMORY attribute of the statement handle

using the OCIAttrSet() function. The attributes are used as follows:

■ OCI_ATTR_PREFETCH_ROWS sets the number of rows to be prefetched.

■ OCI_ATTR_PREFETCH_MEMORY sets the memory allocated for rows to be

prefetched. The application then fetches as many rows as will fit into that much

memory.

When both of these attributes are set, the OCI prefetches rows up to the OCI_ATTR_

PREFETCH_ROWS limit unless the OCI_ATTR_PREFETCH_MEMORY limit is

reached, in which case the OCI returns as many rows as will fit in a buffer of size

OCI_ATTR_PREFETCH_MEMORY.

By default, prefetching is turned on, and the OCI fetches an extra row all the time.

To turn prefetching off, set both the OCI_ATTR_PREFETCH_ROWS and OCI_

ATTR_PREFETCH_MEMORY attributes to zero.

Fetching Results

4-16 Oracle Call Interface Programmer’s Guide

Note: Prefetching is not in effect if LONG columns are part of the query.

Queries containing LOB columns can be prefetched, because the LOB locator,

rather than the data, is returned by the query.

See Also: For more information about these handle attributes, see the section

"Statement Handle Attributes" on page A-14.

Binding and Defining 5-1

5
Binding and Defining

This chapter revisits the basic concepts of binding and defining that were

introduced in Chapter 2, "OCI Programming Basics", and provides more detailed

information about the different types of binds and defines you can use in OCI

applications. Additionally, this chapter discusses the use of arrays of structures, as

well as other issues involved in binding, defining, and character conversions.

This chapter includes the following sections:

■ Binding

■ Advanced Bind Operations

■ Defining

■ Advanced Define Operations

■ Arrays of Structures

■ DML with RETURNING Clause

■ NCHAR and Character Conversion Issues

■ PL/SQL REF CURSORs and Nested Tables

■ Run Time Data Allocation and Piecewise Operations

Note: For information about binding and defining new Oracle datatypes for

object applications, refer to Chapter 12, "Binding and Defining in Object

Applications".

Binding

5-2 Oracle Call Interface Programmer’s Guide

Binding
Most DML statements, and some queries (such as those with a WHERE clause),

require a program to pass data to Oracle as part of a SQL or PL/SQL statement.

Such data can be constant or literal data, known when your program is compiled.

For example, the following SQL statement, which adds an employee to a database

contains several literals, such as ’BESTRY’ and 2365:

INSERT INTO emp VALUES
 (2365, ’BESTRY’, ’PROGRAMMER’, 2000, 20)

Hard coding a statement like this into an application would severely limit its

usefulness. You would need to change the statement and recompile the program

each time you add a new employee to the database. To make the program more

flexible, you can write the program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be

supplied at run time, placeholders in the SQL statement or PL/SQL block mark

where data must be supplied. For example, the following SQL statement contains

five placeholders, indicated by the leading colons (e.g., :ename), that show where

input data must be supplied by the program.

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE, INSERT, SELECT, or

UPDATE statement, or PL/SQL block, in any position in the statement where you

can use an expression or a literal value. In PL/SQL, placeholders can also be used

for output variables.

Note: Placeholders cannot be used to name other Oracle objects such as tables

or columns.

For each placeholder in the SQL statement or PL/SQL block, you must call an OCI

routine that binds the address of a variable in your program to the placeholder.

When the statement executes, Oracle gets the data that your program placed in the

input, or bind, variables and passes it to the server with the SQL statement. Data

does not have to be in a bind variable when you perform the bind step. At the bind

step, you are only specifying the address, datatype, and length of the variable.

Note: If program variables do not contain data at bind time, make sure they

contain valid data when you execute the SQL statement or PL/SQL block using

OCIStmtExecute().

For example, given the INSERT statement

Binding

Binding and Defining 5-3

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

and the following variable declarations

text *ename, *job
sword empno, sal, deptno

the bind step makes an association between the placeholder name and the address

of the program variables. The bind also indicates the datatype and length of the

program variables, as illustrated in Figure 5–1. The code that implements this

example is found in the section "Steps Used in Binding" on page 5-6.

Figure 5–1 Using OCIBindByName() to Associate Placeholders with Program
Variables

If you change only the value of a bind variable, it is not necessary to rebind in order

to execute the statement again. The bind is a bind by reference, so as long as the

address of the bind variable and bind handle remain valid, you can reexecute a

statement that references the variable without rebinding.

Note: At the interface level, all bind variables are considered at least IN and

must be properly initialized. If the variable is a pure OUT bind variable, you

can set the variable to zero. You can also provide a NULL indicator and set that

indicator to -1 (NULL).

In the Oracle server, new datatypes have been implemented for named datatypes,

REFs and LOBs, and they may be bound as placeholders in a SQL statement.

Note: For opaque data types (descriptors or locators) whose sizes are not

known to the user, the address of the descriptor or locator pointer must be

INSERT INTO emp

OCIBindByName ()

(empno, ename, job, sal , deptno)

VALUES (:empno, :ename, :job, :sal, :deptno)

Address &empno ename job sal &deptno

Data Type integer string string integer integer

Length sizeof(empno) strlen(ename)+1 strlen(job)+1 sizeof(sal) sizeof(deptno)

Binding

5-4 Oracle Call Interface Programmer’s Guide

passed. Set the size parameter to the size of the appropriate data structure (e.g.,

sizeof(structure))

Named Binds and Positional Binds
The SQL statement in the previous section is an example of a named bind. Each

placeholder in the statement has a name associated with it, such as ’ename’ or ’sal’.

When this statement is prepared and the placeholders are associated with values in

the application, the association is made by the name of the placeholder using the

OCIBindByName() call with the name of the placeholder passed in the placeholder
parameter.

A second type of bind is known as a positional bind. In a positional bind, the

placeholders are referred to by their position in the statement rather than their

names. For binding purposes, an association is made between an input value and

the position of the placeholder, using the OCIBindByPos() call.

The example from the previous section could also be used for a positional bind:

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

The five placeholders would then each be bound by calling OCIBindByPos() and

passing the position number of the placeholder in the position parameter. For

example, the :empno placeholder would be bound by calling OCIBindByPos() with

a position of 1, :ename with a position of 2, and so on.

In the case of a duplicate bind, only a single bind call may be necessary. Consider

the following SQL statement, which queries the database for those employees

whose commission and salary are both greater than a given amount:

SELECT empno FROM emp
 WHERE sal > :some_value
 AND comm > :some_value

An OCI application could complete the binds for this statement with a single call to

OCIBindByName() to bind the :some_value placeholder by name. In this case, the

second placeholder inherits the bind information from the first placeholder.

OCI Array Interface
You can pass data to Oracle in various ways. You can execute a SQL statement

repeatedly using the OCIStmtExecute() routine and supply different input values on

each iteration. Alternatively, you can use the Oracle array interface and input many

Binding

Binding and Defining 5-5

values with a single statement and a single call to OCIStmtExecute(). In this case you

bind an array to an input placeholder, and the entire array can be passed at the

same time, under the control of the iters parameter.

The array interface significantly reduces round-trips to Oracle when you need to

update or insert a large volume of data. This reduction can lead to considerable

performance gains in a busy client/server environment. For example, consider an

application that needs to insert 10 rows into the database. Calling OCIStmtExecute()
ten times with single values results in ten network round-trips to insert all the data.

The same result is possible with a single call to OCIStmtExecute() using an input

array, which involves only one network round-trip.

Note: When using the OCI array interface to perform inserts, row triggers in the

database are fired as each row of the insert gets inserted.

Binding Placeholders in PL/SQL
You process a PL/SQL block by placing the block in a string variable, binding any

variables, and executing the statement containing the block, just as you would with

a single SQL statement.

When you bind placeholders in a PL/SQL block to program variables, you must

use OCIBindByName() or OCIBindByPos() to perform the basic bind binds. You can

use OCIBindByName() or OCIBindByPos() to bind host variables that are either

scalars or arrays.

The following short PL/SQL block contains two placeholders, which represent IN

parameters to a procedure that updates an employee’s salary, given the employee

number and the new salary amount:

char plsql_statement[] = "BEGIN\
 RAISE_SALARY(:emp_number, :new_sal);\
 END;" ;

These placeholders can be bound to input variables in the same way as placeholders

in a SQL statement.

When processing PL/SQL statements, output variables are also associated with

program variables using bind calls.

For example, in a PL/SQL block such as

BEGIN
SELECT ename,sal,comm INTO :emp_name, :salary, :commission
FROM emp
WHERE ename = :emp_number;

Binding

5-6 Oracle Call Interface Programmer’s Guide

END;

you would use OCIBindByName() to bind variables in place of the :emp_name ,

:salary , and :commission output placeholders, and in place of the input

placeholder :emp_number .

7.x Upgrade Note: In the Oracle7 OCI, it was sufficient for applications to

initialize only IN-bind buffers. In Oracle8i, all buffers, even pure OUT buffers,

must be initialized by setting the buffer length to zero in the bind call, or by

setting the corresponding indicator to -1.

See Also: For more information about binding PL/SQL placeholders see

"Information for Named Datatype and REF Binds" on page 12-3.

Steps Used in Binding
Binding placeholders is done in one or more steps. For a simple scalar or array bind,

it is only necessary to specify an association between the placeholder and the data.

This is done by using OCI bind by name (OCIBindByName()) or OCI bind by

position (OCIBindByPos()) call.

Note: See the section "Named Binds and Positional Binds" on page 5-4 for

information about the difference between these types of binds.

Once the bind is complete, the OCI library knows where to find the input data (or

where to put PL/SQL output data) when the SQL statement is executed. As

mentioned in the section "Binding" on page 5-2, program input data does not need

to be in the program variable when it is bound to the placeholder, but the data must

be there when the statement is executed.

The following code example shows handle allocation and binding for each of five

placeholders in a SQL statement.

Note: The checkerr() function evaluates the return code from an OCI application.

The code for the function is listed in the section "Error Handling" on page 2-27.

...
/* The SQL statement, associated with stmthp (the statement handle)
by calling OCIStmtPrepare() */
text *insert = (text *) "INSERT INTO emp(empno, ename, job, sal, deptno)\
 VALUES (:empno, :ename, :job, :sal, :deptno)";
...

/* Bind the placeholders in the SQL statement, one per bind handle. */
checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":ENAME",
 strlen(":ENAME"), (ub1 *) ename, enamelen+1, STRING_TYPE, (dvoid *) 0,

Binding

Binding and Defining 5-7

 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT))
checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":JOB",
 strlen(":JOB"), (ub1 *) job, joblen+1, STRING_TYPE, (dvoid *)
 &job_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT))
checkerr(errhp, OCIBindByName(stmthp, &bnd3p, errhp, (text *) ":SAL",
 strlen(":SAL"), (ub1 *) &sal, (sword) sizeof(sal), INT_TYPE,
 (dvoid *) &sal_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,
 OCI_DEFAULT))
checkerr(errhp, OCIBindByName(stmthp, &bnd4p, errhp, (text *) ":DEPTNO",
 strlen(":DEPTNO"), (ub1 *) &deptno,(sword) sizeof(deptno), INT_TYPE,
 (dvoid *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT))
checkerr(errhp, OCIBindByName(stmthp, &bnd5p, errhp, (text *) ":EMPNO",
 strlen(":EMPNO"), (ub1 *) &empno, (sword) sizeof(empno), INT_TYPE,
 (dvoid *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,OCI_DEFAULT))

PL/SQL Example
Perhaps the most common use for PL/SQL blocks in an OCI program is to call

stored procedures or stored functions. For example, assume that there is a

procedure called RAISE_SALARY stored in the database, and you want to call this

procedure from an OCI program. You do this by embedding a call to that procedure

in an anonymous PL/SQL block, then processing the PL/SQL block in the OCI

program.

The following program fragment shows how to embed a stored procedure call in an

OCI application. For the sake of brevity, only the relevant portions of the program

are reproduced here.

The program passes an employee number and a salary increase as inputs to a stored

procedure called raise_salary , which takes these parameters:

raise_salary (employee_num IN, sal_increase IN, new_salary OUT);

This procedure raises a given employee’s salary by a given amount. The increased

salary which results is returned in the stored procedure’s OUT variable new_
salary , and the program displays this value.

/* Define PL/SQL statement to be used in program. */
text *give_raise = (text *) "BEGIN\
 RAISE_SALARY(:emp_number,:sal_increase, :new_salary);\
 END;";
OCIBind *bnd1p = NULL; /* the first bind handle */
OCIBind *bnd2p = NULL; /* the second bind handle */
OCIBind *bnd3p = NULL; /* the third bind handle */

Binding

5-8 Oracle Call Interface Programmer’s Guide

static void checkerr();
sb4 status;

main()
{
 sword empno, raise, new_sal;
 dvoid *tmp;
 OCISession *usrhp = (OCISession *)NULL;
...
/* attach to database server, and perform necessary initializations
and authorizations */
...
 /* allocate a statement handle */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, 100, (dvoid **) &tmp));

 /* prepare the statement request, passing the PL/SQL text
 block as the statement to be prepared */
checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) give_raise, (ub4)
 strlen(give_raise), OCI_NTV_SYNTAX, OCI_DEFAULT));

 /* bind each of the placeholders to a program variable */
 checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":emp_number",
 -1, (ub1 *) &empno,
 (sword) sizeof(empno), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

 checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":sal_increase",
 -1, (ub1 *) &raise,
 (sword) sizeof(raise), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

 /* remember that PL/SQL OUT variable are bound, not defined */

checkerr(OCIBindByName(stmthp, &bnd3p, errhp, (text *) ":new_salary",
 -1, (ub1 *) &new_sal,
 (sword) sizeof(new_sal), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

 /* prompt the user for input values */
printf("Enter the employee number: ");
scanf("%d", &empno);
 /* flush the input buffer */
myfflush();

Advanced Bind Operations

Binding and Defining 5-9

printf("Enter employee’s raise: ");
scanf("%d", &raise);
 /* flush the input buffer */
myfflush();

 /* execute PL/SQL block*/
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT));

 /* display the new salary, following the raise */
printf("The new salary is %d\n", new_sal);
}

The following is one possible sample output from this program. Before execution,

the salary of employee 7954 is 2000.

Enter the employee number: 7954
Enter employee’s raise: 1000

The new salary is 3000.

Advanced Binds
The previous section and example demonstrated how to perform a simple scalar

bind. In that case, only a single bind call is necessary. In some cases, additional bind

calls are necessary to define specific attributes for specific bind datatypes or

execution modes. These more sophisticated bind operations are discussed in the

following section.

Oracle also provides predefined C datatypes that map ADT attributes. Information

about binding these datatypes, such as OCIDate and OCINumber, can be found in

Chapter 12, "Binding and Defining in Object Applications".

Advanced Bind Operations
The section "Binding" on page 4-5 discussed how a basic bind operation is

performed to create an association between a placeholder in a SQL statement and a

program variable using OCIBindByName() or OCIBindByPos().

This section covers more advanced bind operations, including multi-step binds, and

binds of named data types and REFs.

In certain cases, additional bind calls are necessary to define specific attributes for

certain bind data types or certain execution modes.

Advanced Bind Operations

5-10 Oracle Call Interface Programmer’s Guide

The following sections describe these special cases, and the information about

binding is summarized in Table 5–1, "Bind Information for Different Bind Types".

Static Array Binds
Static array bind attributes are set using the OCI array of structures bind call

OCIBindArrayOfStruct(). This call is made following a call to OCIBindByName() or

OCIBindByPos().

Note: A static array bind does not refer to binding a column of type ARRAY of

scalars or named data types, but a bind to a PL/SQL table or for multiple row

operations in SQL (INSERTs/UPDATEs).

The OCIBindArrayOfStruct() call is also used to define the skip parameters needed if

the application utilizes arrays of structures functionality.

See Also: For more information on using arrays of structures, see the section

"Arrays of Structures" on page 5-17.

Named Data Type Binds
For information on binding named data types (objects), refer to"Named Datatype

Binds" on page 12-2.

Binding REFs
For information on this topic, see "Binding REFs" on page 12-3.

Binding LOBs
When working with LOBs, the LOB locators, rather than the actual LOB values, are

bound. The LOB value is written or read by passing a LOB locator to the OCI LOB

functions.

Either a single locator or an array of locators can be bound in a single bind call. In

each case, the application must pass the address of a LOB locator and not the locator

itself. For example, if an application has prepared a SQL statement like

INSERT INTO some_table VALUES (:one_lob)

where :one_lob is a bind variable corresponding to a LOB column, and has made

the following declaration:

OCILobLocator * one_lob;

Advanced Bind Operations

Binding and Defining 5-11

then the following sequence of steps would be used to bind the placeholder, and

execute the statement

/* initialize single locator */
one_lob = OCIDescriptorAlloc(...OCI_DTYPE_LOB...);
...
/* pass the address of the locator */
OCIBindByName(...,(dvoid *) &one_lob,...);
OCIStmtExecute(...,1,...) /* 1 is the iters parameter */

Note: In these examples, most parameters are omitted for simplicity.

You could also do an array insert using the same SQL INSERT statement. In this

case, the application would include the following code:

OCILobLocator * lob_array[10];
...
for (i=0; i<10, i++)
lob_array[i] = OCIDescriptorAlloc(...OCI_DTYPE_LOB...);
 /* initialize array of locators */
...
OCIBindByName(...,(dvoid *) lob_array,...);
OCIStmtExecute(...,10,...); /* 10 is the iters parameter */

Note that you must allocate descriptors with the OCIDescriptorAlloc() routine before

they can be used. In the case of an array of locators, you must initialize each array

element using OCIDescriptorAlloc(). Use OCI_DTYPE_LOB as the type parameter

when allocating BLOBs, CLOBs, and NCLOBs. Use OCI_DTYPE_FILE when

allocating BFILEs.

See Also: For more information about OCI LOB functions, refer to Chapter 7,

"LOB and FILE Operations".

Binding FILEs
When using a FILE locator as a bind variable for an INSERT or UPDATE statement,

the user must first initialize the locator with a directory alias and filename (using

OCILobFileSetName()) before issuing the INSERT or UPDATE statement.

Binding in OCI_DATA_AT_EXEC Mode
If the mode parameter in a call to OCIBindByName() or OCIBindByPos() is set to OCI_

DATA_AT_EXEC, an additional call to OCIBindDynamic() is necessary if the

application will use the callback method for providing data at runtime. The call to

Advanced Bind Operations

5-12 Oracle Call Interface Programmer’s Guide

OCIBindDynamic() sets up the callback routines, if necessary, for indicating the data

or piece that is being provided.

If the OCI_DATA_AT_EXEC mode is chosen, but the standard OCI piecewise

polling method will be used instead of callbacks, the call to OCIBindDynamic() is not

necessary.

When binding RETURN clause variables, an application must use OCI_DATA_AT_

EXEC mode, and it must provide callbacks.

See Also: For more information about piecewise operations, please refer to the

section "Run Time Data Allocation and Piecewise Operations" on page 5-32.

Binding Ref Cursor Variables
Ref Cursors are bound to a statement handle with a bind datatype of SQLT_RSET.

See "PL/SQL REF CURSORs and Nested Tables" on page 5-30

Summary of Bind Information
The following table summarizes the bind calls necessary for different types of binds.

For each type, the table lists the bind datatype (passed in the dty parameter of

OCIBindByName() or OCIBindByPos()), and notes about the bind.

Table 5–1 Bind Information for Different Bind Types

Type of Bind Bind Datatype Notes

Scalar any scalar datatype Bind a single scalar using OCIBindByName() or
OCIBindByPos().

Array of Scalars any scalar datatype Bind an array of scalars using OCIBindByName() or
OCIBindByPos().

Named Data Type SQLT_NTY Two bind calls are required:

■ OCIBindByName() or OCIBindByPos()

■ OCIBindObject()

REF SQLT_REF Two bind calls are required:

■ OCIBindByName() or OCIBindByPos()

■ OCIBindObject()

LOB
BFILE

SQLT_BLOB

SQLT_CLOB

Allocate the LOB locator using OCIDescriptorAlloc(), and then
bind its address (OCILobLocator **) with OCIBindByName() or
OCIBindByPos(), using one of the LOB datatypes.

Defining

Binding and Defining 5-13

See Also: For more information about datatypes and datatype codes, see

Chapter 3, "Datatypes".

Defining
Query statements return data from the database to your application. When

processing a query, you must define an output variable or an array of output

variables for each item in the select-list from which you want to retrieve data. The

define step creates an association that determines where returned results are stored,

and in what format.

For example, if your OCI statement processes the following statement:

SELECT name, ssn FROM employees
 WHERE empno = :empnum

you would normally need to define two output variables, one to receive the value

returned from the name column, and one to receive the value returned from the ssn
column.

Note: If you were only interested in retrieving values from the name column,

you would not need to define an output variable for ssn .

If the SELECT statement being processed might return more than a single value for

a query, the output variables you define may be arrays instead of scalar values.

Note: Depending on the application, the define step can take place before or

after the execute. If the datatypes of select-list items are known when the

application is coded, the define can take place before the statement is executed.

If your application is processing dynamic SQL statements—statements entered

Array of Structures

 or Static Arrays

varies Two bind calls are required:

■ OCIBindByName() or OCIBindByPos()

■ OCIBindArrayOfStruct()

Piecewise Insert varies OCIBindByName() or OCIBindByPos() is required. The
application may also need to call OCIBindDynamic() to register
piecewise callbacks.

REF CURSOR variables SQLT_RSET Allocate a statement handle, OCIStmt, and then bind its
address (OCIStmt **) using the SQLT_RSET datatype.

Table 5–1 Bind Information for Different Bind Types (Cont.)

Type of Bind Bind Datatype Notes

Defining

5-14 Oracle Call Interface Programmer’s Guide

by the user at run time— or statements that do not have a clearly defined

select-list, such as

SELECT * FROM employees

the application must execute the statement and retrieve describe information

before defining output variables. See the section "Describing Select-List Items"

on page 4-10 for more information.

The OCI processes the define call locally, on the client side. In addition to indicating

the location of buffers where results should be stored, the define step also

determines what type of data conversions, if any, will take place when data is

returned to the application.

The dty parameter of the OCIDefineByPos() call specifies the datatype of the output

variable. The OCI is capable of a wide range of data conversions when data is

fetched into the output variable. For example, internal data in Oracle DATE format

can be automatically converted to a string datatype on output.

See Also: For more information about datatypes and conversions, refer to

Chapter 3, "Datatypes".

Steps Used in Defining
Defining output variables is done in one or more steps. A basic define is

accomplished with the OCI define by position call, OCIDefineByPos(). This step

creates an association between a select-list item and an output variable. Additional

define calls may be necessary for certain datatypes or fetch modes.

Once the define step is complete, the OCI library knows where to put retrieved data

after fetching it from the database.

Note: You can make your define calls again to redefine the output variables

without having to reprepare or reexecute the SQL statement.

The following example code shows a scalar output variable being defined following

an execute and a describe.

/* The following statement was prepared, and associated with statement
handle stmthp1.

SELECT dname FROM dept WHERE deptno = :dept_input

The input placeholder was bound earlier, and the data comes from the
user input below */

Defining

Binding and Defining 5-15

printf("Enter employee dept: ");
 scanf("%d", &deptno);
 myfflush();

/* Execute the statement. If OCIStmtExecute() returns OCI_NO_DATA, meaning that
no data matches the query, then the department number is invalid. */

if ((status = OCIStmtExecute(svchp, stmthp1, errhp, 0, 0, 0, 0,
OCI_DEFAULT))

 && (status != OCI_NO_DATA))
 {
 checkerr(errhp, status);
 do_exit(EXIT_FAILURE);
 }
 if (status == OCI_NO_DATA) {
 printf("The dept you entered doesn’t exist.\n");

return 0;
 }
/* The next two statements describe the select-list item, dept, and

return its length */
checkerr(errhp, OCIParamGet(stmthp1, errhp, &parmdp, (ub4) 1));
checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &deptlen, (ub4 *) 0, (ub4) OCI_ATTR_DATA_SIZE,
 (OCIError *) errhp));

/* Use the retrieved length of dept to allocate an output buffer, and
then define the output variable. If the define call returns an error,
exit the application */

dept = (text *) malloc((int) deptlen + 1);
 if (status = OCIDefineByPos(stmthp1, &defnp, errhp,
 1, (ub1 *) dept, deptlen+1,
 SQLT_STRING, (dvoid *) 0,
 (ub2 *) 0, OCI_DEFAULT))
 {
 checkerr(errhp, status);
 do_exit(EXIT_FAILURE);
 }
For an explanation of the describe step, see the section "Describing Select-List Items"

on page 4-10.

Advanced Defines
In some cases the define step requires more than just a call to OCIDefineByPos().
There are additional calls that define the attributes of an array fetch

(OCIDefineArrayOfStruct()) or a named data type fetch (OCIDefineObject()). For

Advanced Define Operations

5-16 Oracle Call Interface Programmer’s Guide

example, to fetch multiple rows with a column of named data types, all three calls

must be invoked for the column; but to fetch multiple rows of scalar columns,

OCIDefineArrayOfStruct() and OCIDefineByPos() are sufficient.

These more sophisticated define operations are covered in the section "Advanced

Define Operations" on page 5-16.

Oracle also provides pre-defined C datatypes that map object type attributes.

Information about defining these datatypes (e.g., OCIDate, OCINumber) can be

found in Chapter 12, "Binding and Defining in Object Applications".

Advanced Define Operations
The section "Defining" on page 4-14 discussed how a basic bind operation is

performed to create an association between a SQL select-list item and an output

buffer in an application.

This section covers more advanced defined operations, including multi-step

defines, and defines of named data types and REFs.

In some cases the define step requires more than just a call to OCIDefineByPos().
There are additional calls that define the attributes of an array fetch

(OCIDefineArrayOfStruct()) or a named data type fetch (OCIDefineObject()). For

example, to fetch multiple rows with a column of named data types, all the three

calls must be invoked for the column; but to fetch multiple rows of scalar columns

only OCIDefineArrayOfStruct() and OCIDefineByPos() are sufficient.

The following sections discuss specific information pertaining to different types of

defines.

Defining Named Data Type Output Variables
For information on defining named data type (object) output variables, refer to

"Defining Named Datatype Output Variables" on page 12-4.

Defining REF Output Variables
For information on defining REF output variables, refer to "Defining REF Output

Variables" on page 12-4.

Arrays of Structures

Binding and Defining 5-17

Defining LOB Output Variables
For LOBs, the buffer pointer must be a locator of type OCILobLocator, allocated by

the OCIDescriptorAlloc() call. LOB locators, and not LOB values, are always returned

for a LOB column. LOB values can then be fetched using OCI LOB calls on the

fetched locator.

Defining PL/SQL Output Variables
You do not use the define calls to define output variables for select-list items in a

SQL SELECT statement in a PL/SQL block. You must use OCI bind calls instead.

See Also: See the section "Information for Named Datatype and REF Defines,

and PL/SQL OUT Binds" on page 12-5 for more information about defining

PL/SQL output variables.

Defining For a Piecewise Fetch
When performing a piecewise fetch, an initial call to OCIDefineByPos() is required.

An additional call to OCIDefineDynamic() is necessary if the application will use

callbacks rather than the standard polling mechanism for fetching data.

See Also: See the section "Run Time Data Allocation and Piecewise Operations"

on page 5-32 for more information.

Defining Arrays of Structures
When using arrays of structures, an initial call to OCIDefineByPos() is required. An

additional call to OCIDefineArrayOfStruct() is necessary to set up additional

parameters, including the skip parameter necessary for arrays of structures

operations.

See Also: For more information, refer to the section "Arrays of Structures" on

page 5-17.

Arrays of Structures
The "arrays of structures" functionality of the Oracle OCI can simplify the

processing of multi-row, multi-column operations. The OCI programmer can create

a structure of related scalar data items and then fetch values from the database into

an array of these structures or insert values into the database from an array of these

structures.

Arrays of Structures

5-18 Oracle Call Interface Programmer’s Guide

For example, an application may need to fetch multiple rows of data from three

columns named NAME, AGE, and SALARY. The OCI application could include the

definition of a structure containing separate fields to hold the NAME, AGE and

SALARY data from one row in the database table. The application would then fetch

data into an array of these structures.

In order to perform a multi-row, multi-column operation using an array of

structures, the developer associates each column involved in the operation with a

field in a structure. This association, which is part of the OCIDefineArrayOfStruct()
and OCIBindArrayOfStruct() calls, specifies where fetched data will be stored, or

where inserted or updated data will be found.

Figure 5–2, "Fetching Data Into an Array of Structures" is a graphical representation

of this process. In the figure, an application fetches various fields from a database

row into a single structure in an array of structures. Each column being fetched

corresponds to one of the fields in the structure.

Figure 5–2 Fetching Data Into an Array of Structures

Skip Parameters
When you split column data across an array of structures, it is no longer

contiguous. The single array of structures stores data as though it were composed of

several interleaved arrays of scalars. Because of this fact, developers must specify a

Oracle Table

column column column

...

1 structure1 field

...

.

Array of
Structures

skip parameter

Arrays of Structures

Binding and Defining 5-19

"skip parameter" for each field they are binding or defining. This skip parameter

specifies the number of bytes that need to be skipped in the array of structures

before the same field is encountered again. In general this will be equivalent to the

byte size of one structure.

The figure below demonstrates how a skip parameter is determined. In this case the

skip parameter is the sum of the sizes of the fields field1, field2 and field3, which is 8

bytes. This equals the size of one structure.

Figure 5–3 Determining Skip Parameters.

On some systems it may be necessary to set the skip parameter to be sizeof(one array

element) rather than sizeof(struct). This is because some compilers may insert

padding into a structure. For example, consider an array of C structures consisting

of two fields, a ub4 and a ub1.

struct demo {
 ub4 field1;
 ub1 field2;
};
struct demo demo_array[MAXSIZE];

Some compilers insert three bytes of padding after the ub1 so that the ub4 which

begins the next structure in the array is properly aligned. In this case, the following

statement may return an incorrect value:

skip_parameter = sizeof(struct demo);

On some systems this will produce a proper skip parameter of eight. On other

systems, skip_parameter will be set to five bytes by this statement. In this case,

use the following statement to get the correct value for the skip parameter:

skip_parameter = sizeof(demo_array[0]);

2 bytes 2 bytes 4 bytes 2 bytes 2 bytes 4 bytes 2 bytes 2 bytes 4 bytes

Array of Structures

.field 1 field 2 field 3 field 1 field 3 field 1 field 3 field 2 field 2

skip 8 bytes skip 8 bytes

Arrays of Structures

5-20 Oracle Call Interface Programmer’s Guide

Skip Parameters for Standard Arrays
The ability to work with arrays of structures is an extension of the functionality for

binding and defining arrays of program variables. Programmers can also work with

standard arrays (as opposed to arrays of structures). When specifying a standard

array operation, the related skip will be equal to the size of the datatype of the array

under consideration. For example, for an array declared as

text emp_names[4][20]

the skip parameter for the bind or define operation will be 20. Each data element in

the array is then recognized as a separate unit, rather than being part of a structure.

OCI Calls Used with Arrays of Structures
Two OCI calls must be used when performing operations involving arrays of

structures: OCIBindArrayOfStruct() (for binding fields in arrays of structures for

input variables) and OCIDefineArrayOfStruct() (for defining arrays of structures for

output variables).

Note: When binding or defining for arrays of structures, multiple calls are

required. A call to OCIBindByName() or OCIBindByPos() must proceed a call to

OCIBindArrayOfStruct(), and a call to OCIDefineByPos() must proceed a call to

OCIDefineArrayOfStruct().

See Also: See the descriptions of OCIBindArrayOfStruct() and

OCIDefineArrayOfStruct() in Chapter 15, "OCI Relational Functions" for syntax

and parameter descriptions.

Arrays of Structures and Indicator Variables
The implementation of arrays of structures also supports the use of indicator

variables and return codes. OCI application developers can declare parallel arrays

of column-level indicator variables and return codes, corresponding to the arrays of

information being fetched, inserted, or updated. These arrays can have their own

skip parameters, which are specified during a call to OCIBindArrayOfStruct() or

OCIDefineArrayOfStruct().

You can set up arrays of structures of program values and indicator variables in

many ways. For example, consider an application that fetches data from three

database columns into an array of structures containing three fields. You can set up

a corresponding array of indicator variable structures of three fields, each of which

is a column-level indicator variable for one of the columns being fetched from the

database.

DML with RETURNING Clause

Binding and Defining 5-21

Note: A one-to-one relationship between the fields in an indicator struct and the

number of select-list items is not necessary.

See Also: See "Indicator Variables" on page 2-31 for more information about

indicator variables.

DML with RETURNING Clause
The OCI supports the use of the RETURNING clause with SQL INSERT, UPDATE,

and DELETE statements. This section outlines the rules an OCI application must

follow to correctly implement DML statements with the RETURNING clause.

Note: For more information about the use of the RETURNING clause with

INSERT, UPDATE, or DELETE statements, please refer to the descriptions of

those commands in the Oracle8i SQL Reference.

For a complete code example, see the demonstration programs included with

your Oracle installation. For additional information, refer to Appendix B, "OCI

Demonstration Programs".

Using DML with RETURNING Clause
Using the RETURNING clause with a DML statement allows you to essentially

combine two SQL statements into one, possibly saving you a server round-trip. This

is accomplished by adding an extra clause to the traditional UPDATE, INSERT, and

DELETE statements. The extra clause effectively adds a query to the DML

statement.

In the OCI, the values are returned to the application through the use of OUT bind

variables. The rules for binding these variables are described in the next section. In

the following examples, the bind variables are indicated by the preceding colon,

such as :out1 . These examples assume the existence of a table called table1 ,

which contains three columns: col1 , col2 , and col3 .

For example, the following statement inserts new values into the database and then

retrieves the column values of the affected row from the database, allowing your

application to work with inserted rows.

INSERT INTO table1 VALUES (:1, :2, :3,)
 RETURNING col1, col2, col3
 INTO :out1, :out2, :out3

The next example uses the UPDATE statement. This statement updates the values

of all columns whose col1 value falls within a certain range, and then returns the

DML with RETURNING Clause

5-22 Oracle Call Interface Programmer’s Guide

affected rows to the application, allowing the application to see which rows were

modified.

UPDATE table1 SET col1 = col1 + :1, col2 = :2, col3 = :3
 WHERE col1 >= :low AND col1 <= :high
 RETURNING col1, col2, col3
 INTO :out1, :out2, :out3

The following DELETE statement deletes the rows whose col1 value falls within a

certain range, and then returns the data from those rows so that the application can

check them.

DELETE FROM table1 WHERE col1 >= :low AND col2 <= :high
 RETURNING col1, col2, col3
 INTO :out1, :out2, :out3

Note that in both the UPDATE and DELETE examples there is the possibility that

the statement will affect multiple rows in the table. Additionally, a DML statement

could be executed multiple times in a single OCIExecute() statement. Because of this

possibility for multiple returning values, an OCI application may not know how

much data will be returned at runtime. As a result, the variables corresponding to

the RETURNING...INTO placeholders must be bound in OCI_DATA_AT_EXEC

mode. It is an additional requirement that the application must define its own

dynamic data handling callbacks rather than using the OCI_DATA_AT_EXEC

polling mechanism.

Note: Even if the application can be sure that it will only get a single value back

in the RETURNING clause, it must still bind in OCI_DATA_AT_EXEC mode

and use callbacks.

The returning clause can be particularly useful when working with LOBs.

Normally, an application must insert an empty LOB locator into the database, and

then SELECT it back out again to operate on it. Using the RETURNING clause, the

application can combine these two steps into a single statement:

INSERT INTO some_table VALUES (:in_locator)
RETURNING lob_column
INTO :out_locator

Binding RETURNING...INTO variables
An OCI application implements the placeholders in the RETURNING clause as

pure OUT bind variables. However, all binds in the RETURNING clause are

DML with RETURNING Clause

Binding and Defining 5-23

initially IN and must be properly initialized. To provide a valid value, you can

provide a NULL indicator and set that indicator to -1 (NULL).

An application must adhere to the following rules when working with bind

variables in a RETURNING clause:

1. Bind RETURNING clause placeholders in OCI_DATA_AT_EXEC mode using

OCIBindByName() or OCIBindByPos(), followed by a call to OCIBindDynamic()
for each placeholder.

Note: The OCI only supports the callback mechanism for RETURNING clause

binds. The polling mechanism is not supported.

2. When binding RETURNING clause placeholders, you must supply a valid out

bind function as the ocbfp parameter of the OCIBindDynamic() call. This function

must provide storage to hold the returned data.

3. The icbfp parameter of OCIBindDynamic() call should provide a "dummy"

function which returns NULL values when called.

4. The piecep parameter of OCIBindDynamic() must be set to OCI_ONE_PIECE.

5. No duplicate binds are allowed in a DML statement with a RETURNING

clause, such as no duplication between bind variables in the DML section and

the RETURNING section of the statement.

Error Handling
The out bind function provided to OCIBindDynamic() must be prepared to receive

partial results of a statement in the event of an error. For example, if the application

has issued a DML statement which should be executed 10 times, and an error

occurs during the fifth iteration, the server will still return the data from iterations 1

through 4. The callback function would still be called to receive data for the first

four iterations.

DML with RETURNING REF...INTO clause
The RETURNING clause can also be used to return a REF to an object which is

being inserted into or updated in the database. The following SQL statement shows

how this could be used.

UPDATE EXTADDR E SET E.ZIP = '12345', E.STATE='AZ'
 WHERE E.STATE = 'CA' AND E.ZIP='95117'
 RETURNING REF(E), ZIP
 INTO :addref, :zip

DML with RETURNING Clause

5-24 Oracle Call Interface Programmer’s Guide

This statement updates several attributes of an object in an object table and then

returns a REF to the object (along with the scalar ZIP code) in the RETURNING

clause.

Binding the REF output variable in an OCI application requires three steps:

1. The initial bind information is set using OCIBindByName()

2. Additional bind information for the REF (including the TDO) is set with

OCIBindObject()

3. A call to OCIBindDynamic()

The following pseudocode shows a function which performs the binds necessary

for the above example.

sword bind_output(stmthp, bndhp, errhp)
OCIStmt *stmthp;
OCIBind *bndhp[];
OCIError *errhp;
{
 ub4 i;

/* get TDO for BindObject call */
 if (OCITypeByName(envhp, errhp, svchp, (CONST text *) 0,
 (ub4) 0, (CONST text *) "ADDRESS_OBJECT",
 (ub4) strlen((CONST char *) "ADDRESS_OBJECT"),
 (CONST text *) 0, (ub4) 0,
 OCI_DURATION_SESSION, OCI_TYPEGET_HEADER, &addrtdo))
 {
 return OCI_ERROR;
 }

 /* initial bind call for both variables */
 if (OCIBindByName(stmthp, &bndhp[2], errhp,
 (text *) ":addref", (sb4) strlen((char *) ":addref"),
 (dvoid *) 0, (sb4) sizeof(OCIRef *), SQLT_REF,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByName(stmthp, &bndhp[3], errhp,
 (text *) ":zip", (sb4) strlen((char *) ":zip"),
 (dvoid *) 0, (sb4) MAXZIPLEN, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC))
 {
 return OCI_ERROR;
 }

DML with RETURNING Clause

Binding and Defining 5-25

 /* object bind for REF variable */
 if (OCIBindObject(bndhp[2], errhp, (OCIType *) addrtdo,
 (dvoid **) &addrref[0], (ub4 *) 0, (dvoid **) 0, (ub4 *) 0))
 {
 return OCI_ERROR;
 }

 for (i = 0; i < MAXCOLS; i++)
 pos[i] = i;

 /* dynamic binds for both RETURNING variables */
 if (OCIBindDynamic(bndhp[2], errhp, (dvoid *) &pos[0], cbf_no_data,
 (dvoid *) &pos[0], cbf_get_data)
 || OCIBindDynamic(bndhp[3], errhp, (dvoid *) &pos[1], cbf_no_data,
 (dvoid *) &pos[1], cbf_get_data))
 {
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

Additional Notes About Callbacks
When a callback function is called, the OCI_ATTR_ROWS_RETURNED attribute of

the bind handle tells the application the number of rows being returned in that

particular iteration. Thus, when the callback is called the first time in a particular

iteration (i.e., index=0), the user can allocate space for all the rows which will be

returned for that bind variable. When the callback is called subsequently (with

index>0) within the same iteration, the user can merely increment the buffer pointer

to the correct memory within the allocated space to retrieve the data.

 Array Interface for DML RETURNING Statements
OCI provides additional functionality for single-row DML operations and array

DML operations in which each iteration returns more than one row. To take

advantage of this feature, the client application must specify an OUT buffer in the

bind call which is at least as big as the iteration count specified in the

OCIStmtExecute() call. This is in addition to the method by which bind buffers are

provided through callbacks.

When the statement executes, if any of the iterations returns more than one row,

then the application receives an OCI_SUCCESS_WITH_INFO return code. In this

NCHAR and Character Conversion Issues

5-26 Oracle Call Interface Programmer’s Guide

case, the DML operation is successfully completed. At this point the application

may choose to roll back the transaction or ignore the warning.

NCHAR and Character Conversion Issues
This section discusses issues involving NCHAR data and character conversions

between the client and the server.

NCHAR Issues
Oracle provides support for NCHAR data in the database, and the Oracle OCI

provides support for binding and defining NCHAR data. If a database column

containing character data is defined to be an NCHAR column, then a bind or define

involving that column must take into account special considerations for dealing

with character set specifications.

These considerations are necessary in case the width of the client character set is

different from that on the server, and also for proper character conversion between

the client and server. During conversion of data between different character sets, the

size of the data may grow or shrink as much as fourfold. Care must be taken to

insure that buffers provided to hold the data are of sufficient size.

In some cases, it may also be easier for an application to deal with NCHAR data in

terms of numbers of characters, rather than numbers of bytes (which is the usual

case).

Each OCI bind and define handle has OCI_ATTR_CHARSET_FORM and OCI_

ATTR_CHARSET_ID attributes associated with it. An application can set these

attributes with the OCIAttrSet() call in order to specify the character form and

character set ID of the bind/define buffer.

The form attribute (OCI_ATTR_CHARSET_FORM) has two possible values:

■ SQLCS_IMPLICIT - database character set ID

■ SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT.

If the character set ID attribute (OCI_ATTR_CHARSET_ID) is not specified, then the

default value of the database or NCHAR character set ID of the client is used,

depending on the value of form. That is the value specified in the NLS_LANG and

NLS_NCHAR environment variables.

NCHAR and Character Conversion Issues

Binding and Defining 5-27

If nothing is specified, then the default database character set ID of the client is

assumed.

Note: No matter what values are assigned to the character set ID and form of

the client-side bind buffer, the data is converted and inserted into the database

according to the server’s database/NCHAR character set ID and form.

See Also: For more information about NCHAR data, refer to the Oracle8i
Reference.

OCI_ATTR_MAXDATA_SIZE Attribute
Every bind handle has a OCI_ATTR_MAXDATA_SIZE attribute. This attribute

specifies the number of bytes to be allocated on the server to accommodate the

client-side bind data after any necessary character set conversions.

Note: Character set conversions performed when data is sent to the server may

result in the data expanding or contracting, so its size on the client may not be

the same as its size on the server.

An application will typically set OCI_ATTR_MAXDATA_SIZE to the maximum size

of the column or the size of the PL/SQL variable, depending on how it is used.

Oracle issues an error if OCI_ATTR_MAXDATA_SIZE is not a large enough value

to accommodate the data after conversion, and the operation will fail.

The following scenarios demonstrate some examples of the use of the OCI_ATTR_

MAXDATA_SIZE attribute:

■ Scenario 1: CHAR (source data) -> non-CHAR (destination column)

In this case there are implicit bind conversions taking place on the data. The

recommended value of OCI_ATTR_MAXDATA_SIZE in this case would be the

size of the source buffer multiplied by the worst-case expansion between the

client and server character sets.

■ Scenario 2: CHAR (source data) -> CHAR (destination column)
or non-CHAR (source data) -> CHAR (destination column)

In either of these cases, the recommended value of OCI_ATTR_MAXDATA_

SIZE is the size of the column.

■ Scenario 3: CHAR (source data) -> PL/SQL variable

In this case, the recommended value of OCI_ATTR_MAXDATA_SIZE is the size

of the PL/SQL variable.

NCHAR and Character Conversion Issues

5-28 Oracle Call Interface Programmer’s Guide

Character Count Attribute
Bind and define handles have a character count attribute associate with them. An

application can use this attribute to work with data in terms of numbers of

characters, rather than numbers of bytes. If this attribute is set to a non-zero value, it

indicates that all calculations should be done in terms of characters instead of bytes,

and any constraint sizes should be thought of in terms of characters rather than

bytes.

This attribute can be set in addition to the OCI_ATTR_MAXDATA_SIZE attribute

for bind handles. For example, if OCI_ATTR_MAXDATA_SIZE is set to 100, and

OCI_ATTR_CHAR_COUNT is set to 0, this means that the maximum possible size

of the data on the server after conversion is 100 bytes. However, if OCI_ATTR_

MAXDATA_SIZE is set to 100, and OCI_ATTR_CHAR_COUNT is set to a non-zero

value, then if the character set has 2 bytes/character, the maximum possible

allocated size is 200 bytes (2 bytes/char * 100 chars).

Note: This attribute is valid only for fixed-width character set IDs. For

variable-width character set IDs, these values are always treated as numbers of

bytes, rather than numbers of characters.

For binds, the OCI_ATTR_CHAR_COUNT attribute sets the number of characters

that an application wants to reserve on the server to store the data being bound.

This overrides the OCI_ATTR_MAXDATA_SIZE attribute. For all datatypes that

have a length prefix as part of their value (e.g., VARCHAR2), the length prefix is

then considered to be the number of characters, rather than the number of bytes. In

this case, indicator lengths and return codes are also in characters.

Note: Regardless of the value of the OCI_ATTR_CHAR_COUNT attribute, the

buffer lengths specified in a bind or define call are always considered to be in

terms of number of bytes. The actual length values sent and received by the

user are also in characters in this case.

For defines, the OCI_ATTR_CHAR_COUNT attribute specifies the maximum

number of characters of data the client application wants to receive. This constraint

overrides the maxlength parameter specified in the OCIDefineByPos() call.

Fixed Width Unicode Support
The character set ID in bind and define of the CHAR/NCHAR variant handles can

be set to specify that all data passed via the corresponding bind and define calls is

assumed to be in UCS-2 (unicode) encoding. To specify UCS-2, set OCI_ATTR_

CHARSET_ID = OCI_UCS2ID. For more information, see the bind attribute OCI_

NCHAR and Character Conversion Issues

Binding and Defining 5-29

ATTR_CHARSET_ID on page A-20 and the define attribute OCI_ATTR_CHARSET_

ID on page A-22.

The new OCI Unicode datatype is called utext and follows the UCS-2 encoding

scheme according to the Unicode Standard Version 2.0. The internal representation

is a 16-bit unsigned integer (ub2). Platforms where the encoding scheme of the

wchar_t datatype conforms to UCS-2 (unsigned 16 Bit value) can easily convert

utext to the wchar_t datatype using cast operators.

Length semantics for the indicator variables and the return values of buffer sizes are

assumed to be in character semantics. However the buffer size in bind and define

calls is assumed to be in bytes. Users should use the new utext datatype as the

buffer for input/output data.

Note: When changing the character set on an bind handle, the maximum length

of the column should be explicitly set using OCIAttrSet() to specify the length of

the column with the OCI_ATTR_MAXDATA_SIZE attribute.

Precautions should be taken if the server is using the UTF-8 character set. Due to

the nature of UTF-8, each database column that receives text data in UTF-8 format

should be widened to three bytes per character. To ensure a character-like semantics

for column length, an additional constraint should be used to prevent buffer

overflow on the client. For example, when the columns of an UTF-8 database

contain only ASCII data the conversion to UCS-2 causes buffer overflow on the

client. The following is an example of a constraint for a specified col-width:

CONSTRAINT COL1_MAXLEN CHECK
((COL1 IS NULL) OR (LENGTH(COL1) <= <col-width>))

The following pseudocode illustrates a bind and define for unicode data:

...
OCIStmt *stmthp1, *stmthp2;
OCIDefine *dfn1p, *dfnp2;
OCIBind *bnd1p, *bnd2p;
text *insstmt=
 (text *) "INSERT INTO EMP(ENAME, ADDRESS) VALUES (:ename, :address)";
text *selname =
 (text *) "SELECT ENAME, ADDRESS FROM EMP";
utext ename[21]; /* Name - Unicode */
utext address[51]; /* Address - Unicode */
ub2 csid = OCI_UCS2ID;
sb2 ename_col_len = 20;
sb2 address_col_len = 50;
...
/* Inserting Unicode data */

PL/SQL REF CURSORs and Nested Tables

5-30 Oracle Call Interface Programmer’s Guide

OCIStmtPrepare (stmthp1, errhp, insstmt, (ub4)strlen ((char *)insstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
OCIBindByName(stmthp1, &bnd1p, errhp, (text*)":ENAME",
 (sb4)strlen((char *)":ENAME"),
 (dvoid *) ename, sizeof(ename), SQLT_STR,
 (dvoid *)&insname_ind, (ub2 *) 0, (ub2 *) 0, (ub4) 0,
 (ub4 *)0, OCI_DEFAULT);
OCIAttrSet((dvoid *) bnd1p, (ub4) OCI_HTYPE_BIND, (dvoid *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIAttrSet((dvoid *) bnd1p, (ub4) OCI_HTYPE_BIND, (dvoid *) &ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIStmtPrepare (stmthp2, errhp, selname, strlen((char *) selname),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (dvoid *)ename,
 (sb4)sizeof(ename), SQLT_STR,
 (dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);
OCIAttrSet((dvoid *) dfn1p, (ub4) OCI_HTYPE_DEFINE, (dvoid *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
...

PL/SQL REF CURSORs and Nested Tables
The OCI provides the ability to bind and define PL/SQL REF CURSORs and nested

tables. An application can use a statement handle to bind and define these types of

variables. As an example, consider this PL/SQL block:

static const text *plsql_block = (text *)
 "begin \
 OPEN :cursor1 FOR SELECT empno, ename, job, mgr, sal, deptno \
 FROM emp_rc WHERE job=:job ORDER BY empno; \
 OPEN :cursor2 FOR SELECT * FROM dept_rc ORDER BY deptno; \
 end;";
An application would allocate a statement handle for binding, by calling

OCIHandleAlloc(), and then bind the :cursor1 placeholder to the statement

handle, as in the following code, where :cursor1 is bound to stm2p . Note that the

handle allocation code is not included here.

err = OCIStmtPrepare (stm1p, errhp, (text *) nst_tab, strlen(nst_tab),
 OCI_NTV_SYNTAX, OCI_DEFAULT);
...
err = OCIBindByName (stm1p, (OCIBind **) bndp, errhp,
 (text *)":cursor1", (sb4)strlen((char *)":cursor1"),
 (dvoid *)&stm2p, (sb4) 0, SQLT_RSET, (dvoid *)0,

PL/SQL REF CURSORs and Nested Tables

Binding and Defining 5-31

 (ub2 *)0, (ub2 *)0, (ub4)0, (ub4 *)0, (ub4)OCI_DEFAULT);

In this code, stm1p is the statement handle for the PL/SQL block, while stm2p is

the statement handle which is bound as a REF CURSOR for later data retrieval. A

value of SQLT_RSET is passed for the dty parameter.

As another example, consider the following:

static const text *nst_tab = (text *)
 "SELECT ename, CURSOR(SELECT dname, loc FROM dept_rc) \
 FROM emp_rc WHERE ename = ’LOCKE’";

In this case the second position is a nested table, which an OCI application can

define as a statement handle as follows. Note that the handle allocation code is not

included here.

err = OCIStmtPrepare (stm1p, errhp, (text *) nst_tab, strlen(nst_tab),
 OCI_NTV_SYNTAX, OCI_DEFAULT);
...
err = OCIDefineByPos (stm1p, (OCIDefine **) dfn2p, errhp, (ub4)2,
 (dvoid *)&stm2p,
 (sb4)0, SQLT_RSET, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)OCI_DEFAULT);

After execution, when you fetch a row into stm2p it then becomes a valid statement

handle.

Note: If you have retrieved multiple ref cursors, you must take care when

fetching them into stm2p . If you fetch the first one, you can then perform

fetches on it to retrieve its data. However, once you fetch the second ref cursor

into stm2p , you no longer have access to the data from the first ref cursor.

Run Time Data Allocation and Piecewise Operations

5-32 Oracle Call Interface Programmer’s Guide

Run Time Data Allocation and Piecewise Operations
You can use the OCI to perform piecewise inserts and updates, and fetches of data.

You can also use the OCI to provide data dynamically in the case of array inserts or

updates, instead of providing a static array of bind values. You can insert or retrieve

a very large column as a series of chunks of smaller size, minimizing client-side

memory requirements.

The size of individual pieces is determined at run time by the application. Each

piece may be of the same size as other pieces, or it may be of a different size.

The OCI’s piecewise functionality can be particularly useful when you are

performing operations on extremely large blocks of string or binary data (for

example, operations involving database columns that store LOB, LONG or LONG

RAW data). See the section "Valid Datatypes for Piecewise Operations" on page 5-33

for information about which datatypes are valid for piecewise operations.

Figure 8–1, "Multiple Tightly Coupled Branches" shows a single long column being

inserted piecewise into a database table through a series of insert operations (i1, i2,

i3...in). In this example the inserted pieces are of varying sizes.

Figure 5–4 Piecewise Insert of a LONG Column

You can perform piecewise operations in two ways:

Column To Be Inserted Piecewise

Server

Database

i i i i
1 2 3 n

. . .

Run Time Data Allocation and Piecewise Operations

Binding and Defining 5-33

■ Use calls provided in the OCI library to execute piecewise operations under a

polling paradigm, as in release 7.3.

■ Employ user-defined callback functions to provide the necessary information

and data blocks.

When you set the mode parameter of an OCIBindByPos() or OCIBindByName() call to

OCI_DATA_AT_EXEC, this indicates that an OCI application will be providing data

for an INSERT or UPDATE dynamically at run time.

Similarly, when you set the mode parameter of an OCIDefineByPos() call to OCI_

DYNAMIC_FETCH, this indicates that an application will dynamically provide

allocation space for receiving data at the time of the fetch.

In each case, you can provide the run-time information for the INSERT, UPDATE, or

FETCH in one of two ways: through callback functions, or by using piecewise

operations. If callbacks are desired, an additional bind or define call is necessary to

register the callbacks.

The following sections give specific information about run-time data allocation and

piecewise operations for inserts, updates, and fetches.

Note: In addition to SQL statements, piecewise operations are also valid for

PL/SQL blocks.

Valid Datatypes for Piecewise Operations
Only some datatypes can be manipulated in pieces. OCI applications can perform

piecewise fetches, inserts, or updates of the following data types:

■ VARCHAR2

■ STRING

■ LONG

■ LONG RAW

Some LOB/FILE operations also provide piecewise semantics for reading or writing

data. See the descriptions of OCILobWrite() on page 15-153 and OCILobRead() on

page 15-148 for more information about these operations. For information about

streaming using callbacks with OCILobWrite() and OCILobRead(), see "LOB Read

and Write Callbacks" on page 7-13.

Another way of using this feature for all datatypes is to provide data dynamically

for array inserts or updates. Note, however, that the callbacks should always specify

Run Time Data Allocation and Piecewise Operations

5-34 Oracle Call Interface Programmer’s Guide

OCI_ONE_PIECE for the piecep parameter of the callback for datatypes that do not

support piecewise operations.

Providing INSERT or UPDATE Data at Run Time
When you specify the OCI_DATA_AT_EXEC mode in a call to OCIBindByPos() or

OCIBindByName(), the value_sz parameter defines the total size of the data that can

be provided at run time. The application must be ready to provide to the OCI

library the run-time IN data buffers on demand as many times as is necessary to

complete the operation. When the allocated buffers are not required any more, they

should be freed by the client.

Run-time data is provided in one of the two ways:

■ You can define a callback using the OCIBindDynamic() function which when

called at run time returns a piece or the whole data.

■ If no callbacks are defined, the call to OCIStmtExecute() to process the SQL

statement returns the OCI_NEED_DATA error code. The client application then

provides the IN/OUT data buffer or piece using the OCIStmtSetPieceInfo() call.

OCIStmtGetPieceInfo() provides information about which bind and which piece

are being used.

Performing a Piecewise Insert
Once the OCI environment has been initialized, and a database connection and

session have been established, a piecewise insert begins with calls to prepare a SQL

or PL/SQL statement and to bind input values. Piecewise operations using

standard OCI calls, rather than user-defined callbacks, do not require a call to

OCIBindDynamic().

Note: Additional bind variables in the statement that are not part of piecewise

operations may require additional bind calls, depending on their datatypes.

Following the statement preparation and bind, the application performs a series of

calls to OCIStmtExecute(), OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo() to
complete the piecewise operation. Each call to OCIStmtExecute() returns a value that

determines what action should be performed next. In general, the application

retrieves a value indicating that the next piece needs to be inserted, populates a

buffer with that piece, and then executes an insert. When the last piece has been

inserted, the operation is complete.

Keep in mind that the insert buffer can be of arbitrary size and is provided at run

time. In addition, each inserted piece does not need to be of the same size. The size

of each piece to be inserted is established by each OCIStmtSetPieceInfo() call.

Run Time Data Allocation and Piecewise Operations

Binding and Defining 5-35

Note: If the same piece size is used for all inserts, and the size of the data being

inserted is not evenly divisible by the piece size, the final inserted piece will be

smaller than the pieces that preceded it. For example, if a data value 10,050,036

bytes long is inserted in chunks of 500 bytes each, the last remaining piece will

be only 36 bytes. The programmer must account for this by indicating the

smaller size in the final OCIStmtSetPieceInfo() call.

The following steps outline the procedure involved in performing a piecewise

insert. The procedure is illustrated in Figure 5–5, "Steps for Performing Piecewise

Insert" on page 5-36.

Step 1. Initialize the OCI environment, allocate the necessary handles, connect

to a server, authorize a user, and prepare a statement request. These steps are

described in the section "OCI Programming Steps" on page 2-17.

Step 2. Bind a placeholder using OCIBindByName() or OCIBindByPos(). At this

point you do not need to specify the actual size of the pieces you will use, but

you must provide the total size of the data that can be provided at run time.

7.x Upgrade Note: The context pointer that was formerly part of the

obindps() and ogetpi() routines does not exist in release 8.0. Clients wishing

to provide their own context can use the callback method.

Step 3. Call OCIStmtExecute() for the first time. At this point no data is actually

inserted, and the OCI_NEED_DATA error code is returned to the application.

If any other value is returned, it indicates that an error occurred.

Step 4. Call OCIStmtGetPieceInfo() to retrieve information about the piece that

needs to be inserted. The parameters of OCIStmtGetPieceInfo() include a pointer

that returns a value indicating whether the required piece is the first piece

(OCI_FIRST_PIECE) or a subsequent piece (OCI_NEXT_PIECE).

Step 5. The application populates a buffer with the piece of data to be inserted

and calls OCIStmtSetPieceInfo(). The parameters passed to OCIStmtSetPieceInfo()
include a pointer to the piece, a pointer to the length of the piece, and a value

indicating whether this is the first piece (OCI_FIRST_PIECE), an intermediate

piece (OCI_NEXT_PIECE) or the last piece (OCI_LAST_PIECE).

Step 6. Call OCIStmtExecute() again. If OCI_LAST_PIECE was indicated in Step

5 and OCIStmtExecute() returns OCI_SUCCESS, all pieces were inserted

successfully. If OCIStmtExecute() returns OCI_NEED_DATA, go back to Step 3

for the next insert. If OCIStmtExecute() returns any other value, an error

occurred.

Run Time Data Allocation and Piecewise Operations

5-36 Oracle Call Interface Programmer’s Guide

The piecewise operation is complete when the final piece has been successfully

inserted. This is indicated by the OCI_SUCCESS return value from the final

OCIStmtExecute() call.

Figure 5–5 Steps for Performing Piecewise Insert

Piecewise updates are performed in a similar manner. In a piecewise update

operation the insert buffer is populated with the data that is being updated, and

OCIStmtExecute() is called to execute the update.

Note: For additional important information about piecewise operations, see the

section "Additional Information About Piecewise Operations with No

Callbacks" on page 5-39.

Piecewise Operations With PL/SQL
An OCI application can perform piecewise operations with PL/SQL for IN, OUT,

and IN/OUT bind variables in a method similar to that outlined above. Keep in

mind that all placeholders in PL/SQL statements are bound, rather than defined.

The call to OCIBindDynamic() specifies the appropriate callbacks for OUT or

IN/OUT parameters.

Providing FETCH Information at Run Time
When a call is made to OCIDefineByPos() with the mode parameter set to OCI_

DYNAMIC_FETCH, an application can specify information about the data buffer at

the time of fetch. The user also may need to call OCIDefineDynamic() to set up the

Bind
OCIBindByName()/

OCIBindByPos()

Execute
OCIStmtExecute()

Error
OtherOCI_NEED_DATAGet Piece Info

OCIStmtGetPieceInfo()

Set Piece Info
OCIStmtSetPieceInfo()

Done

Prepare Statement
OCIStmtPrepare()

OCI_SUCCESS

Run Time Data Allocation and Piecewise Operations

Binding and Defining 5-37

callback function that will be invoked to get information about the user’s data

buffer.

Run-time data is provided in one of the two ways:

■ You can define a callback using the OCIDefineDynamic() call. The value_sz
parameter defines the maximum size of the data that will be provided at run

time. When the client library needs a buffer to return the fetched data, the

callback will be invoked to provide a run-time buffer into which a piece or the

whole data will be returned.

■ If no callbacks are defined, the OCI_NEED_DATA error code is returned and

the OUT data buffer or piece can then be provided by the client application

using OCIStmtSetPieceInfo() call. The OCIStmtGetPieceInfo() call provides

Information about which define and which piece are involved.

See Also: For information about which datatypes are valid for piecewise

operations, refer to the section "Valid Datatypes for Piecewise Operations" on

page 5-33.

Performing a Piecewise Fetch
Once the OCI environment has been initialized, and a database connection and

session have been established, a piecewise fetch begins with calls to prepare a SQL

or PL/SQL statement and to define output variables. Piecewise operations using

standard OCI calls, rather than user-defined callbacks, do not require a call to

OCIDefineDynamic().

Following the statement preparation and define, the application performs a series of

calls to OCIStmtFetch(), OCIStmtGetPieceInfo(), and OCIStmtSetPieceInfo() to
complete the piecewise operation. Each call to OCIStmtFetch() returns a value that

determines what action should be performed next. In general, the application

retrieves a value indicating that the next piece needs to be fetched, and then fetches

that piece into a buffer. When the last piece has been fetched, the operation is

complete.

Keep in mind that the fetch buffer can be of arbitrary size. In addition, each fetched

piece does not need to be of the same size. The only requirement is that the size of

the final fetch must be exactly the size of the last remaining piece. The size of each

piece to be fetched is established by each OCIStmtSetPieceInfo() call.

The following steps outline the method for fetching a row piecewise.

Run Time Data Allocation and Piecewise Operations

5-38 Oracle Call Interface Programmer’s Guide

Step 1. Initialize the OCI environment, allocate necessary handles, connect to a

database, authorize a user, prepare a statement, and execute the statement.

These steps are described in "OCI Programming Steps" on page 2-17.

Step 2. Define an output variable using OCIDefineByPos(), with mode set to OCI_

DYNAMIC_FETCH. At this point you do not need to specify the actual size of

the pieces you will use, but you must provide the total size of the data that will

be fetched at run time.

7.x Upgrade Note: The context pointer that was part of the odefinps() and

ogetpi() routines does not exist in release 8.0. Clients wishing to provide

their own context can use the callback method.

Step 3. Call OCIStmtFetch() for the first time. At this point no data is actually

retrieved, and the OCI_NEED_DATA error code is returned to the application.

If any other value is returned, an error occurred.

Step 4. Call OCIStmtGetPieceInfo() to obtain information about the piece to be

fetched. The piecep parameter indicates whether it is the first piece (OCI_FIRST_

PIECE), a subsequent piece (OCI_NEXT_PIECE), or the last piece (OCI_LAST_

PIECE).

Step 5. Call OCIStmtSetPieceInfo() to specify the buffer into which you wish to

fetch the piece.

Step 6. Call OCIStmtFetch() again to retrieve the actual piece. If OCIStmtFetch()
returns OCI_SUCCESS, all the pieces have been fetched successfully. If

OCIStmtFetch() returns OCI_NEED_DATA, return to Step 4 to process the next

piece. If any other value is returned, an error occurred.

The piecewise fetch is complete when the final OCIStmtFetch() call returns a value of

OCI_SUCCESS.

Run Time Data Allocation and Piecewise Operations

Binding and Defining 5-39

Figure 5–6 Steps for Performing Piecewise Fetch

Additional Information About Piecewise Operations with No Callbacks
In both the piecewise fetch and insert, it is important to understand the sequence of

calls necessary for the operation to complete successfully. In particular, keep in

mind that for a piecewise insert you must call OCIStmtExecute() one time more than

the number of pieces to be inserted (if callbacks are not used). This is because the

first time OCIStmtExecute() is called, it merely returns a value indicating that the

first piece to be inserted is required. As a result, if you are inserting n pieces, you

must call OCIStmtExecute() a total of n+1 times.

Similarly, when performing a piecewise fetch, you must call OCIStmtFetch() once

more than the number of pieces to be fetched.

Users who are binding to PL/SQL tables can retrieve a pointer to the current index

of the table during the OCIStmtGetPieceInfo() calls.

Define
OCIDefineByPos()

Fetch
OCIStmtFetch()

Error
OtherOCI_NEED_DATAGet Piece Info

OCIStmtGetPieceInfo()

Set Piece Info
OCIStmtSetPieceInfo()

Done

Execute Statement
OCIStmtExecute()

OCI_SUCCESS

Run Time Data Allocation and Piecewise Operations

5-40 Oracle Call Interface Programmer’s Guide

Describing Schema Metadata 6-1

6
Describing Schema Metadata

This chapter discusses the use of the OCIDescribeAny() function to obtain

information about schema elements. The following topics are covered in this

chapter:

■ Overview

■ Using OCIDescribeAny()

■ Examples

Overview

6-2 Oracle Call Interface Programmer’s Guide

Overview
This chapter discusses the use of the OCIDescribeAny() function to describe schema

objects. For information about describing select-list items, refer to the section

"Describing Select-List Items" on page 4-10.

For additional information about the OCIDescribeAny() call and its parameters,

refer to the function description on page 15-67.

Using OCIDescribeAny()
The OCIDescribeAny() function allows you to perform an explicit describe of one of

the following schema objects, and their sub-schema objects:

■ tables and views

■ synonyms

■ procedures

■ functions

■ packages

■ sequences

■ collections

■ types

■ schemas

■ databases

Information about other schema elements (procedure/function arguments,

columns, type attributes, and type methods) is available through a describe of one

of the above schema objects or an explicit describe of the sub-schema object.

When an application describes a table, it can then retrieve information about that

table’s columns. Additionally, OCIDescribeAny() can directly describe sub-schema

objects such as columns of a table, packages of a function, or fields of a type if the

user knows the name of the sub-schema object.

The OCIDescribeAny() call requires a describe handle as one of its parameters. The

describe handle must have been previously allocated with a call to

OCIHandleAlloc(). After the call to OCIDescribeAny(), an application can retrieve

information about the described object from the describe handle.

Using OCIDescribeAny()

Describing Schema Metadata 6-3

The information returned by OCIDescribeAny() is organized hierarchically like a

tree. For example, Figure 6–1 shows how the description of a certain table might be

organized.

Figure 6–1 OCIDescribeAny() Table Description

The describe handle returned by OCIDescribeAny() points to such a tree of

descriptions. Each node of the tree has attributes associated with the node and

attributes (which are like recursive describe handles) that point to subtrees

containing more information. If all the attributes are homogenous, as in case of

elements of a list, such as a column list, then we refer to them as parameters. In this

chapter, the terms handle and parameter are used interchangeably. The attributes

associated with any node are returned by OCIAttrGet(), and the parameters are

returned by OCIParamGet().

For example, an OCIAttrGet() on the describe handle for the table can return a

handle to the column-list information. An application can then use OCIParamGet()
to retrieve the handle to the column description of a particular column in the

column-list. The handle to the column descriptor can be passed to OCIAttrGet() to
get further information about the column, such as the name and data type (as

illustrated by following the left-hand side of the above figure).

No subsequent OCIAttrGet() or OCIParamGet() call requires extra round trips, as all

the description is cached on the client side by OCIDescribeAny().

columns

column1 column2

data type name

table
description

privileges statistics

#rows indexes

index1 index2

Using OCIDescribeAny()

6-4 Oracle Call Interface Programmer’s Guide

Restrictions
The OCIDescribeAny() call limits information returned to the basic information and

stops expanding a node if it amounts to another describe. For example, if a table

column is of an object type, then the OCI does not return a subtree describing the

type since this information can be obtained by another describe.

Notes on Types and Attributes
When performing describe operations, you should be aware of the following notes.

Note on Datatype Codes
For more information about typecodes, such as the OCI_TYPCODE values returned

in the OCI_ATTR_TYPECODE attribute and the SQLT typecodes returned in the

OCI_ATTR_DATA_TYPE attribute, refer to the section "Typecodes" on page 3-23.

OCI_ATTR_TYPECODE returns typecodes which represent the types supplied by

the user when a new type is created using the CREATE TYPE statement. These

typecodes are of the enumerated type OCITypeCode, and are represented by OCI_

TYPECODE constants. Internal PL/SQL types (boolean, indexed table) are not

supported.

OCI_ATTR_DATA_TYPE returns typecodes which represent the datatypes stored in

database columns. These are similar to the describe values returned by previous

versions of Oracle. These values are represented by SQLT constants (ub2 values).

BOOLEAN types return SQLT_BOL.

Note on Describing Types
In order to describe type objects, it is necessary to initialize the OCI process in object

mode:

/* Initialize the OCI Process */
 if (OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0))
 { (void) printf("FAILED: OCIInitialize()\n");
 return OCI_ERROR; }

For more information on this function, refer to the description of OCIInitialize() on

page 15-93.

Using OCIDescribeAny()

Describing Schema Metadata 6-5

Note on Implicit and Explicit Describes
The column attribute OCI_ATTR_PRECISION can be returned using an implicit

describe with OCIStmtExecute() and an explicit describe with OCIDescribeAny().
When using an implicit describe, the precision should be set to sb2. When using an

explicit describe, the precision should be set to ub1 for a placeholder. This is

necessary to match the datatype of precision in the dictionary.

Note on OCI_ATTR_LIST_ARGUMENTS
The OCI_ATTR_LIST_ARGUMENTS attribute for type methods represents

second-level arguments for the method.

For example, given the following record my_type and the procedure my_proc
which takes an argument of type my_type:

my_rec record(a number, b char)
my_proc (my_input my_rec)

the OCI_ATTR_LIST_ARGUMENTS attribute would apply to arguments a and b
of the my_type record.

Parameter Attributes
A parameter is returned by OCIParamGet(). Parameters can describe different types

of objects or information. Parameters have attributes depending on the type of

description they contain and these are the type-specific attributes. This section

describes the attributes and handles that belong to different parameters.

The following table lists the attributes that belong to all parameters:

Table 6–1 Attributes Belonging to All Parameters

Attribute Description Attribute Datatype

OCI_ATTR_NUM_ATTRS the number of attributes ub2

OCI_ATTR_NUM_PARAMS the number of parameters ub2

OCI_ATTR_OBJ_ID object or schema Id ub4

OCI_ATTR_OBJ_NAME object, schema, or database name text*

OCI_ATTR_OBJ_SCHEMA schema where the object is located text*

Using OCIDescribeAny()

6-6 Oracle Call Interface Programmer’s Guide

The subsections that follow list the attributes and handles specific to different types

of parameters.

OCI_ATTR_PTYPE type of information described by the parameter.
Possible values are:

OCI_PTYPE_TABLE - table

OCI_PTYPE_VIEW - view

OCI_PTYPE_PROC - procedure

OCI_PTYPE_FUNC - function

OCI_PTYPE_PKG - package

OCI_PTYPE_TYPE - type

OCI_PTYPE_TYPE_ATTR - attribute of a type

OCI_PTYPE_TYPE_COLL - collection type information

OCI_PTYPE_TYPE_METHOD - a method of a type

OCI_PTYPE_SYN - synonym

OCI_PTYPE_SEQ - sequence

OCI_PTYPE_COL - column of a table or view

OCI_PTYPE_ARG - argument of a function or
procedure

OCI_PTYPE_TYPE_ARG - argument of a type method

OCI_PTYPE_TYPE_RESULT - the results of a method

OCI_PTYPE_LIST - column list for tables and views,
argument list for functions and procedures, or
subprogram list for packages.

OCI_PTYPE_SCHEMA - schema

OCI_PTYPE_DATABASE- database

ub1

OCI_ATTR_TIMESTAMP the timestamp of the object this description is based on
(in Oracle date format)

ub1 *

Table 6–1 Attributes Belonging to All Parameters

Attribute Description Attribute Datatype

Using OCIDescribeAny()

Describing Schema Metadata 6-7

Table/View Attributes
When a parameter is for a table or view (type OCI_PTYPE_TABLE or OCI_PTYPE_

VIEW), it has the following type specific attributes:

The following are additional attributes which belong to tables:

Table 6–2 Attributes Belonging to Tables or Views

Attribute Description Attribute Datatype

OCI_ATTR_OBJID object id ub4

OCI_ATTR_NUM_COLS number of columns ub2

OCI_ATTR_LIST_COLUMNS column list (type OCI_PTYPE_LIST) dvoid *

OCI_ATTR_REF_TDO REF to the TDO of the base type in case of
extent tables

OCIRef*

OCI_ATTR_IS_TEMPORARY is the table is temporary? ub1

OCI_ATTR_IS_TYPED is the table typed? ub1

OCI_ATTR_DURATION duration of a temporary table. Values can be:

OCI_DURATION_SESSION - session

OCI_DURATION_TRANS - transaction

OCI_DURATION_NULL -table not temporary

OCIDuration

Table 6–3 Attributes Specific to Tables

Attribute Description Attribute Datatype

OCI_ATTR_DBA data block address of the segment header ub4

OCI_ATTR_TABLESPACE tablespace the table resides in word

OCI_ATTR_CLUSTERED is the tableclustered? ub1

OCI_ATTR_PARTITIONED is the table partitioned? ub1

OCI_ATTR_INDEX_ONLY is the table index-only? ub1

Using OCIDescribeAny()

6-8 Oracle Call Interface Programmer’s Guide

Procedure/Function/Subprogram Attributes
When a parameter is for a procedure or function (type OCI_PTYPE_PROC or OCI_

PTYPE_FUNC), it has the following type specific attributes:

The following attributes are defined only for package subprograms:

Package Attributes
When a parameter is for a package (type OCI_PTYPE_PKG), it has the following

type specific attributes:

Table 6–4 Attribute Belonging to Procedures or Functions

Attribute Description Attribute Datatype

OCI_ATTR_LIST_ARGUMENTS argument list. See "List Attributes" on
page 6-18.

dvoid *

OCI_ATTR_IS_INVOKER_RIGHTS is the procedure or function invoker-rights? ub1

Table 6–5 Attributes Specific to Package Subprograms

Attribute Description Attribute Datatype

OCI_ATTR_NAME name of the procedure or function text *

OCI_ATTR_OVERLOAD_ID overloading ID number (relevant in case the
procedure or function is part of a package and
is overloaded). Values returned may be
different from direct query of a PL/SQL
function or procedure.

ub2

Table 6–6 Attributes Belonging to Packages

Attribute Description Attribute Datatype

OCI_ATTR_LIST_SUBPROGRAMS subprogram list. See "List Attributes" on
page 6-18.

dvoid *

OCI_ATTR_IS_INVOKER_RIGHTS is the package invoker-rights? ub1

Using OCIDescribeAny()

Describing Schema Metadata 6-9

Type Attributes
When a parameter is for a type (type OCI_PTYPE_TYPE), it has the attributes listed

in Table 6–7. These attributes are only valid if the application initialized the OCI

process in OCI_OBJECT mode in a call to OCIInitialize().

Table 6–7 Attributes Belonging to Types

Attribute Description Attribute Datatype

OCI_ATTR_REF_TDO returns the in-memory REF of the type
descriptor object for the type, if the column type
is an object type. If space has not been reserved
for the OCIRef, then it is allocated implicitly in
the cache. The caller can then pin the TDO with
OCIObjectPin().

OCIRef *

OCI_ATTR_TYPECODE typecode. See "Note on Datatype Codes" on
page 6-4. Currently can be only OCI_
TYPECODE_OBJECT or OCI_TYPECODE_
NAMEDCOLLECTION.

OCITypeCode

OCI_ATTR_COLLECTION_TYPECODE typecode of collection if type is collection;
invalid otherwise. See "Note on Datatype
Codes" on page 6-4. Currently can be only OCI_
TYPECODE_VARRAY or OCI_TYPECODE_
TABLE. Error is returned if this attribute is
queried for non-collection type.

OCITypeCode

OCI_ATTR_VERSION a null terminated string containing the
user-assigned version

text *

OCI_ATTR_IS_INCOMPLETE_TYPE is this an incomplete type? ub1

OCI_ATTR_IS_SYSTEM_TYPE is this a system type? ub1

OCI_ATTR_IS_PREDEFINED_TYPE is this a predefined type? ub1

OCI_ATTR_IS_TRANSIENT_TYPE is this a transient type? ub1

OCI_ATTR_IS_SYSTEM_

GENERATED_TYPE

 is this a system-generated type? ub1

OCI_ATTR_HAS_NESTED_TABLE does this type contain a nested table attribute? ub1

OCI_ATTR_HAS_LOB does this type contain a LOB attribute? ub1

OCI_ATTR_HAS_FILE does this type contain a FILE attribute? ub1

OCI_ATTR_COLLECTION_ELEMENT handle to collection element. See "Collection
Attributes" on page 6-13.

dvoid *

OCI_ATTR_NUM_TYPE_ATTRS number of type attributes ub4

Using OCIDescribeAny()

6-10 Oracle Call Interface Programmer’s Guide

Type Attribute Attributes
When a parameter is for an attribute of a type (type OCI_PTYPE_TYPE_ATTR), it

has the attributes listed in Table 6–8.

OCI_ATTR_LIST_TYPE_ATTRS list of type attributes. See "List Attributes" on
page 6-18.

dvoid *

OCI_ATTR_NUM_TYPE_METHODS number of type methods ub4

OCI_ATTR_LIST_TYPE_METHODS list of type methods. See "List Attributes" on
page 6-18.

dvoid *

OCI_ATTR_MAP_METHOD map method of type. See "Type Method
Attributes" on page 6-11.

dvoid *

OCI_ATTR_ORDER_METHOD order method of type. See "Type Method
Attributes" on page 6-11.

dvoid *

OCI_ATTR_IS_INVOKER_RIGHTS is the type invoker-rights? ub1

Table 6–8 Attributes Belonging to Type Attributes

Attribute Description Attribute Datatype

OCI_ATTR_DATA_SIZE the maximum size of the type attribute. This
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERs.

ub2

OCI_ATTR_TYPECODE typecode. See "Note on Datatype Codes" on
page 6-4.

OCITypeCode

OCI_ATTR_DATA_TYPE the data type of the type attribute. See "Note on
Datatype Codes" on page 6-4.

ub2

OCI_ATTR_NAME a pointer to a string which is the type attribute
name

text *

OCI_ATTR_PRECISION the precision of numeric type attributes. If the
precision is non-zero and scale is -127, then it is a
FLOAT, else it is a NUMBER(precision, scale). For
the case when precision is 0, NUMBER(precision,
scale) can be represented simply as NUMBER.

ub1

OCI_ATTR_SCALE the scale of numeric type attributes. If the
precision is non-zero and scale is -127, then it is a
FLOAT, else it is a NUMBER(precision, scale). For
the case when precision is 0, NUMBER(precision,
scale) can be represented simply as NUMBER.

sb1

Table 6–7 Attributes Belonging to Types (Cont.)

Attribute Description Attribute Datatype

Using OCIDescribeAny()

Describing Schema Metadata 6-11

Type Method Attributes
When a parameter is for a method of a type (type OCI_PTYPE_TYPE_METHOD), it

has the attributes listed in Table 6–9.

OCI_ATTR_TYPE_NAME a string which is the type name. The returned
value will contain the type name if the data type
is SQLT_NTY or SQLT_REF. If the data type is
SQLT_NTY, the name of the named data type’s
type is returned. If the data type is SQLT_REF,
the type name of the named data type pointed to
by the REF is returned

text *

OCI_ATTR_SCHEMA_NAME a string with the schema name under which the
type has been created

text *

OCI_ATTR_REF_TDO returns the in-memory REF of the TDO for the
type, if the column type is an object type. If space
has not been reserved for the OCIRef, then it is
allocated implicitly in the cache. The caller can
then pin the TDO with OCIObjectPin().

OCIRef *

OCI_ATTR_CHARSET_ID the character set id, if the type attribute is of a
string/character type

ub2

OCI_ATTR_CHARSET_FORM the character set form, if the type attribute is of a
string/character type

ub1

Table 6–9 Attributes Belonging to Type Methods

Attribute Description Attribute Datatype

OCI_ATTR_NAME name of method (procedure or function) text *

OCI_ATTR_ENCAPSULATION encapsulation level of the method (either OCI_
TYPEENCAP_PRIVATE or OCI_TYPEENCAP_
PUBLIC)

OCITypeEncap

OCI_ATTR_LIST_ARGUMENTS argument list. See "Note on OCI_ATTR_LIST_
ARGUMENTS" on page 6-5, and "List
Attributes" on page 6-18.

dvoid *

OCI_ATTR_IS_CONSTRUCTOR is method a constructor? ub1

OCI_ATTR_IS_DESTRUCTOR is method a destructor? ub1

OCI_ATTR_IS_OPERATOR is method an operator? ub1

Table 6–8 Attributes Belonging to Type Attributes (Cont.)

Attribute Description Attribute Datatype

Using OCIDescribeAny()

6-12 Oracle Call Interface Programmer’s Guide

As a reference, the following code shows the possible method flags which are used

when determining the corresponding procedure/function attributes:

OCITypeMethodFlag
{ OCI_TYPEMETHOD_INLINE = 0x0001, /* inline */
 OCI_TYPEMETHOD_CONSTANT = 0x0002, /* constant */
 OCI_TYPEMETHOD_VIRTUAL = 0x0004, /* virtual */
 OCI_TYPEMETHOD_CONSTRUCTOR = 0x0008, /* constructor */
 OCI_TYPEMETHOD_DESTRUCTOR = 0x0010, /* destructor */
 OCI_TYPEMETHOD_OPERATOR = 0x0020, /* operator */
 OCI_TYPEMETHOD_SELFISH = 0x0040, /* selfish method (generic otherwise) */

 OCI_TYPEMETHOD_MAP = 0x0080, /* map (relative ordering) */
 OCI_TYPEMETHOD_ORDER = 0x0100, /* order (relative ordering) */
 /* OCI_TYPEMETHOD_MAP and OCI_TYPEMETHOD_ORDER are mutually exclusive */

 OCI_TYPEMETHOD_RNDS= 0x0200, /* Read no Data State (default) */
 OCI_TYPEMETHOD_WNDS= 0x0400, /* Write no Data State */
 OCI_TYPEMETHOD_RNPS= 0x0800, /* Read no Process State */
 OCI_TYPEMETHOD_WNPS= 0x1000 /* Write no Process State */ }

OCI_ATTR_IS_SELFISH is method selfish? ub1

OCI_ATTR_IS_MAP is method a map method? ub1

OCI_ATTR_IS_ORDER is method an order method? ub1

OCI_ATTR_IS_RNDS is "Read No Data State" set for method? ub1

OCI_ATTR_IS_RNPS is "Read No Process State" set for method? ub1

OCI_ATTR_IS_WNDS is "Write No Data State" set for method? ub1

OCI_ATTR_IS_WNPS is "Write No Process State" set for method? ub1

Table 6–9 Attributes Belonging to Type Methods

Attribute Description Attribute Datatype

Using OCIDescribeAny()

Describing Schema Metadata 6-13

Collection Attributes
When a parameter is for a collection type (type OCI_PTYPE_COLL), it has the

attributes listed in Table 6–10.

Table 6–10 Attributes Belonging to Collection Types

Attribute Description Attribute Datatype

OCI_ATTR_DATA_SIZE the maximum size of the type attribute. This
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERs.

ub2

OCI_ATTR_TYPECODE typecode. See "Note on Datatype Codes" on
page 6-4.

OCITypeCode

OCI_ATTR_DATA_TYPE the data type of the type attribute. See "Note on
Datatype Codes" on page 6-4.

ub2

OCI_ATTR_NUM_ELEMENTS the number of elements in an array. It is only
valid for collections that are arrays

ub4

OCI_ATTR_NAME a pointer to a string which is the type attribute
name

text *

OCI_ATTR_PRECISION the precision of numeric type attributes. If the
precision is non-zero and scale is -127, then it is a
FLOAT, else it is a NUMBER(precision, scale). For
the case when precision is 0, NUMBER(precision,
scale) can be represented simply as NUMBER.

ub1

OCI_ATTR_SCALE the scale of numeric type attributes. If the
precision is non-zero and scale is -127, then it is a
FLOAT, else it is a NUMBER(precision, scale). For
the case when precision is 0, NUMBER(precision,
scale) can be represented simply as NUMBER.

sb1

OCI_ATTR_TYPE_NAME a string which is the type name. The returned
value will contain the type name if the data type
is SQLT_NTY or SQLT_REF. If the data type is
SQLT_NTY, the name of the named data type’s
type is returned. If the data type is SQLT_REF,
the type name of the named data type pointed to
by the REF is returned

text *

OCI_ATTR_SCHEMA_NAME a string with the schema name under which the
type has been created

text *

Using OCIDescribeAny()

6-14 Oracle Call Interface Programmer’s Guide

Synonym Attributes
When a parameter is for a synonym (type OCI_PTYPE_SYN), it has the attributes

listed in Table 6–11.

Sequence Attributes
When a parameter is for a sequence (type OCI_PTYPE_SEQ), it has the attributes

listed in Table 6–12.

OCI_ATTR_REF_TDO returns the in-memory REF of the TDO for the
type, if the column type is an object type. If space
has not been reserved for the OCIRef, then it is
allocated implicitly in the cache. The caller can
then pin the TDO with OCIObjectPin().

OCIRef *

OCI_ATTR_CHARSET_ID the character set id, if the type attribute is of a
string/character type

ub2

OCI_ATTR_CHARSET_FORM the character set form, if the type attribute is of a
string/character type

ub1

Table 6–11 Attributes Belonging to Synonyms

Attribute Description Attribute Datatype

OCI_ATTR_OBJID object id ub4

OCI_ATTR_SCHEMA_NAME a null-terminated string containing the schema
name of the synonym translation

text *

OCI_ATTR_NAME a null-terminated string containing the object name
of the synonym translation

text *

OCI_ATTR_LINK a null-terminated string containing the database
link name of the synonym translation

text *

Table 6–12 Attributes Belonging to Sequences

Attribute Description Attribute Datatype

OCI_ATTR_OBJID object id ub4

OCI_ATTR_MIN minimum value (in Oracle number format) ub1 *

OCI_ATTR_MAX maximum value (in Oracle number format) ub1 *

OCI_ATTR_INCR increment (in Oracle number format) ub1 *

Table 6–10 Attributes Belonging to Collection Types (Cont.)

Attribute Description Attribute Datatype

Using OCIDescribeAny()

Describing Schema Metadata 6-15

Column Attributes
When a parameter is for a column of a table or view (type OCI_PTYPE_COL), it has

the attributes listed in Table 6–13.

OCI_ATTR_CACHE number of sequence numbers cached; zero if
the sequence is not a cached sequence (in
Oracle number format)

ub1 *

OCI_ATTR_ORDER whether the sequence is ordered ub1

OCI_ATTR_HW_MARK high-water mark (in Oracle number format) ub1 *

Table 6–13 Attributes Belonging to Columns of Tables or Views

Attribute Description Attribute Datatype

OCI_ATTR_DATA_SIZE the maximum size of the column. This length is
returned in bytes and not characters for strings
and raws. It returns 22 for NUMBERs.

ub2

OCI_ATTR_DATA_TYPE the data type of the column. See "Note on
Datatype Codes" on page 6-4.

ub2

OCI_ATTR_NAME a pointer to a string which is the column name text *

OCI_ATTR_PRECISION the precision of numeric columns. If the
precision is non-zero and scale is -127, then it is
a FLOAT, else it is a NUMBER(precision, scale).
For the case when precision is 0,
NUMBER(precision, scale) can be represented
simply as NUMBER.

ub1 for explicit
describe

sb2 for implicit
describe

OCI_ATTR_SCALE the scale of numeric columns. If the precision is
non-zero and scale is -127, then it is a FLOAT,
else it is a NUMBER(precision, scale). For the
case when precision is 0, NUMBER(precision,
scale) can be represented simply as NUMBER.

sb1

OCI_ATTR_IS_NULL returns 0 if null values are not permitted for
the column

ub1

Table 6–12 Attributes Belonging to Sequences

Attribute Description Attribute Datatype

Using OCIDescribeAny()

6-16 Oracle Call Interface Programmer’s Guide

Argument/Result Attributes
When a parameter is for an argument of a procedure/function (type OCI_PTYPE_

ARG), for a type method argument (type OCI_PTYPE_TYPE_ARG) or for method

results (type OCI_PTYPE_TYPE_RESULT), it has the attributes listed in Table 6–14.

OCI_ATTR_TYPE_NAME returns a string which is the type name. The
returned value will contain the type name if
the data type is SQLT_NTY or SQLT_REF. If
the data type is SQLT_NTY, the name of the
named data type’s type is returned. If the data
type is SQLT_REF, the type name of the named
data type pointed to by the REF is returned

text *

OCI_ATTR_SCHEMA_NAME returns a string with the schema name under
which the type has been created

text *

OCI_ATTR_REF_TDO the REF of the TDO for the type, if the column
type is an object type

OCIRef *

OCI_ATTR_CHARSET_ID the character set id, if the column is of a
string/character type

ub2

OCI_ATTR_CHARSET_FORM the character set form, if the column is of a
string/character type

ub1

Table 6–14 Attributes Belonging to Arguments/Results

Attribute Description Attribute Datatype

OCI_ATTR_NAME returns a pointer to a string which is the
argument name

text *

OCI_ATTR_POSITION the position of the argument in the argument
list. Always returns zero.

ub2

OCI_ATTR_TYPECODE typecode. See "Note on Datatype Codes" on
page 6-4.

OCITypeCode

OCI_ATTR_DATA_TYPE the data type of the argument. See "Note on
Datatype Codes" on page 6-4.

ub2

OCI_ATTR_DATA_SIZE the size of the data type of the argument. This
length is returned in bytes and not characters
for strings and raws. It returns 22 for
NUMBERs.

ub2

Table 6–13 Attributes Belonging to Columns of Tables or Views (Cont.)

Attribute Description Attribute Datatype

Using OCIDescribeAny()

Describing Schema Metadata 6-17

OCI_ATTR_PRECISION the precision of numeric arguments. If the
precision is non-zero and scale is -127, then it
is a FLOAT, else it is a NUMBER(precision,
scale). For the case when precision is 0,
NUMBER(precision, scale) can be represented
simply as NUMBER.

ub1

OCI_ATTR_SCALE the scale of numeric arguments. If the
precision is non-zero and scale is -127, then it
is a FLOAT, else it is a NUMBER(precision,
scale). For the case when precision is 0,
NUMBER(precision, scale) can be represented
simply as NUMBER.

sb1

OCI_ATTR_LEVEL the data type levels. This attribute always
returns zero.

ub2

OCI_ATTR_HAS_DEFAULT indicates whether an argument has a default ub1

OCI_ATTR_LIST_ARGUMENTS the list of arguments at the next level (when
the argument is of a record or table type).

dvoid *

OCI_ATTR_IOMODE indicates the argument mode:

0 is IN (OCI_TYPEPARAM_IN),

1 is OUT (OCI_TYPEPARAM_OUT),

2 is IN/OUT (OCI_TYPEPARAM_INOUT)

OCITypeParamMode

OCI_ATTR_RADIX returns a radix (if number type) ub1

OCI_ATTR_IS_NULL returns 0 if null values are not permitted for
the column

ub1

OCI_ATTR_TYPE_NAME returns a string which is the type name, or the
package name in the case of package local
types. The returned value will contain the
type name if the data type is SQLT_NTY or
SQLT_REF. If the data type is SQLT_NTY, the
name of the named data type’s type is
returned. If the data type is SQLT_REF, the
type name of the named datatype pointed to
by the REF is returned.

text *

OCI_ATTR_SCHEMA_NAME for SQLT_NTY or SQLT_REF, returns a string
with the schema name under which the type
was created, or under which the package was
created in the case of package local types

text *

Table 6–14 Attributes Belonging to Arguments/Results (Cont.)

Attribute Description Attribute Datatype

Using OCIDescribeAny()

6-18 Oracle Call Interface Programmer’s Guide

List Attributes
When a parameter is for a list of columns, arguments, or subprograms (type OCI_

PTYPE_LIST), it has the following type specific attributes and handles (parameters):

■ The list has an OCI_ATTR_LIST_TYPE attribute which designates the list type.

The possible values are:

– OCI_LTYPE_COL - column list

– OCI_LTYPE_ARG_PROC - procedure argument list

– OCI_LTYPE_ARG_FUNC - function argument list

– OCI_LTYPE_SUBPRG - subprogram list

– OCI_LTYPE_TYPE_ATTR - type attribute list

– OCI_LTYPE_TYPE_METHOD - type method list

– OCI_LTYPE_TYPE_ARG_PROC - type method without result argument list

– OCI_LTYPE_TYPE_ARG_FUNC - type method without result argument list

– OCI_LTYPE_SCH_OBJ - object list within a schema

– OCI_LTYPE_DB_SCH - schema list within a database

OCI_ATTR_SUB_NAME for SQLT_NTY or SQLT_REF, returns a string
with the type name, in the case of package
local types

text *

OCI_ATTR_LINK for SQLT_NTY or SQLT_REF, returns a string
with the database link name of the database
on which the type exists. This can happen
only in the case of package local types, when
the package is remote.

text *

OCI_ATTR_REF_TDO returns the REF of the TDO for the type, if the
argument type is an object

OCIRef *

OCI_ATTR_CHARSET_ID returns the character set ID if the argument is
of a string/character type

ub2

OCI_ATTR_CHARSET_FORM returns the character set form if the argument
is of a string/character type

ub1

Table 6–14 Attributes Belonging to Arguments/Results (Cont.)

Attribute Description Attribute Datatype

Using OCIDescribeAny()

Describing Schema Metadata 6-19

■ The list has an OCI_ATTR_NUM_PARAMS attribute, which tells the number of

elements in the list.

■ The list has 1..OCI_ATTR_NUM_PARAMS parameters for each of the columns,

arguments, or subprograms in the list (type OCI_PTYPE_COL, OCI_PTYPE_

ARG, OCI_PTYPE_PROC, or OCI_PTYPE_FUNC). In the case of a function

argument list, position 0 has a parameter for the return value (type OCI_

PTYPE_ARG).

Schema Attributes
When a parameter is for a schema type (type OCI_PTYPE_SCHEMA), it has the

attributes listed in Table 6–15:

Database Attributes
When a parameter is for a database type (type OCI_PTYPE_DATABASE), it has the

attributes listed in Table 6–16:

Table 6–15 Attributes Specific to Schemas

Attribute Description Attribute Datatype

OCI_ATTR_LIST_OBJECTS list of objects in the schema text*

Table 6–16 Attributes Specific to Databases

Attribute Description Attribute Datatype

OCI_ATTR_VERSION database version text*

OCI_ATTR_CHARSET_ID database character set Id from the server
handle

ub2

OCI_ATTR_NCHARSET_ID database character set Id from the server
handle

ub2

OCI_ATTR_LIST_SCHEMAS list of schemas (type OCI_PTYPE_SCHEMA)
in the database

OCI_PTYPE_LIST

OCI_ATTR_MAX_PROC_LEN maximum length of a procedure name ub4

OCI_ATTR_MAX_COLUMN_LEN maximum length of a column name ub4

Examples

6-20 Oracle Call Interface Programmer’s Guide

Examples
The following examples demonstrate the use of OCIDescribeAny() for describing

different types of schema objects. For a more detailed code sample, see the

demonstration programs included with your Oracle installation. For additional

information, refer to Appendix B, "OCI Demonstration Programs".

Retrieving column data types for a table
This example illustrates the use of an explicit describe. Let us take an example

application, which needs to retrieve the column datatypes for a table. The following

pseudo-code shows how an application would be able to use the describe interface:

OCI_ATTR_CURSOR_COMMIT_
BEHAVIOR

how a COMMIT operation affects cursors and
prepared statements in the database. Values
are:

OCI_CURSOR_OPEN - preserve cursor state as
before the commit operation

OCI_CURSOR_CLOSED - cursors are closed
on COMMIT, but the application can still
re-execute the statement without re-preparing
it

ub1

OCI_ATTR_MAX_CATALOG_
NAMELEN

maximum length of a catalog (database) name ub1

OCI_ATTR_CATALOG_LOCATION position of the catalog in a qualified table.
Values are OCI_CL_START and OCI_CL_END

ub1

OCI_ATTR_SAVEPOINT_SUPPORT does database support savepoints? Values are
OCI_SP_SUPPORTED and OCI_SP_
UNSUPPORTED

ub1

OCI_ATTR_NOWAIT_SUPPORT does database support the nowait clause?
Values are OCI_NW_SUPPORTED and OCI_
NW_UNSUPPORTED

ub1

OCI_ATTR_AUTOCOMMIT_DDL is autocommit mode required for DDL
statements? Values are OCI_AC_DDL and
OCI_NO_AC_DDL

ub1

OCI_ATTR_LOCKING_MODE locking mode for the database. Values are OCI_
LOCK_IMMEDIATE and OCI_LOCK_
DELAYED

ub1

Table 6–16 Attributes Specific to Databases

Attribute Description Attribute Datatype

Examples

Describing Schema Metadata 6-21

text objptr[] = <table-name>;
ub4 objp_len = strlen(<table_name>);
OCIParam *parmh; /* parameter handle */
OCIParam *collsthd; /* handle to list of columns */
OCIParam *colhd; /* column handle */

/* get the describe handle for the table */
if (OCIDescribeAny(svch, errh, objptr, objp_len, OCI_OTYPE_NAME, 0,

OCI_PTYPE_TABLE, &dschp))
return error;

/* get the parameter handle */
if (OCIAttrGet(dschp, OCI_HTYPE_DESCRIBE, &parmh, 0, OCI_ATTR_PARAM,

errh))
return error;

/* The type information of the object, in this case, OCI_PTYPE_TABLE,
is obtained from the parameter descriptor returned by the OCIAttrGet */
/* get the number of columns in the table */
if (OCIAttrGet(parmh, OCI_DTYPE_PARAM, &numcols, 0,

OCI_ATTR_NUM_COLS, errh))
return error;

/* get the handle to the column list of the table */
if (OCIAttrGet(parmh, OCI_DTYPE_PARAM, &collsthd, 0,

OCI_ATTR_LIST_COLUMNS, errh)==OCI_NO_DATA)
return error;

/* go through the column list and retrieve the data-type of each column,
and then recursively describe column types. */

for (i = 1; i <= numcols; i++)
{

/* get parameter for column i */
if (OCIParamGet(collsthd, OCI_DTYPE_PARAM, errh, &colhd, i))

return error;
/* for example, get data type for ith column */
if (OCIAttrGet(colhd, OCI_DTYPE_PARAM, &datatype[i-1], 0,

OCI_ATTR_DATA_TYPE, errh))
return error;

}

Describing the stored procedure
Let us consider a stored procedure or a function.The difference between a

procedure and a function is that the latter has a return type at position 0 in the

argument list, while the former has no argument associated with position 0 in the

argument list. The steps required to describe type methods (also divided into

Examples

6-22 Oracle Call Interface Programmer’s Guide

functions and procedures) are identical to that of regular PL/SQL functions and

procedures. Note that procedures/functions can take default types of objects as

arguments. Let us consider the following procedure:

P1 (arg1 emp.sal%type, arg2 emp%rowtype)

Furthermore, let us assume that each row in emp table has two columns name

(VARCHAR2(20)), and sal (NUMBER). Thus, in the argument list for P1, we have

two arguments, arg1 and arg2 , at positions 1 and 2 respectively at level 0, and

arguments name and sal at positions 1and 2 respectively at level 1. Description of

P1 returns the number of arguments as two while returning the higher level (> 0)

arguments as attributes of the 0 zero level arguments.

The following pseudocode elucidates the description of P1.

text objptr[] = "P1"; /* procedure name */
ub4 objp_len = strlen("P1");
OCIParam *parmh; /* parameter handle */
OCIParam *arglst; /* list of args */
OCIParam *arg; /* argument handle */
ub2 numargs, pos, level;
text *name;
ub4 namelen;

/* get the describe handle for the table */
if (OCIDescribeAny(svch, errh, objptr, objp_len, OCI_OTYPE_NAME, 0,

OCI_PTYPE_PROC, &dschp))
return error;

/* get the parameter handle */
if (OCIAttrGet(dschp, OCI_HTYPE_DESCRIBE, &parmh, 0, OCI_ATTR_PARAM,

errh))
return error;

/* Get the number of arguments and the arg list */
if (OCIAttrGet (parmh, OCI_DTYPE_PARAM, &arglst,
0, OCI_ATTR_LIST_ARGUMENTS, errh))

return error;
if (OCIAttrGet (parmh, OCI_DTYPE_PARAM, &numargs, 0,

OCI_ATTR_NUM_PARAMS, errh))
return error;

/* For a procedure, we begin with i = 1; for a
function, we begin with i = 0. */

Examples

Describing Schema Metadata 6-23

for (i = 1; i < numargs; i++) {
OCIParamGet (arglst, OCI_DTYPE_PARAM, errh, &arg, i);
OCIAttrGet (arg, OCI_DTYPE_PARAM, &name, &namelen, OCI_ATTR_NAME,

errh);
...
/* to print the attributes of the argument of type record
(arguments at the next level), traverse the argument list */

OCIAttrGet (arg, OCI_DTYPE_PARAM, &arglst1, 0,
OCI_ATTR_LIST_ARGUMENTS, erh);

/* check if the current argument is a record. For arg1 in P1
arglst1 is NULL. */

if (arglst1) {
OCIAttrGet (arg, OCI_DTYPE_PARAM, &numargs1,0, OCI_ATTR_NUM_PARAMS,

errh);

/* Note that for both functions and procedures,the next higher level
arguments start from index 1. For arg2 in P1, the number of arguments at
the level 1 would be 2 */

for (i = 1; i < numargs1, i++) {
OCIParamGet (arglst1, OCI_DTYPE_PARAM, errh, &arg1, i);
OCIAttrGet (arg1, OCI_DTYPE_PARAM, &name1, &namelen1,

OCI_ATTR_NAME, errh);
...
}

}
}

Retrieving attributes of an object type
This example illustrates the use of an explicit describe on a named object type. We

illustrate how you can describe an object by its name or by its object reference

(OCIRef). The following pseudo-code attempts to retrieve the data type value each

of the object type’s attribute. It is very similar to the first example in section

"Retrieving column data types for a table" on page 6-20.

text type_name[] = <type_name>;
ub4 type_name_len = strlen(<type_name>);
OCIRef *type_ref = <type_ref>;
un4 numattrs;
OCIDescribe *dschp; /* describe handle */
OCIParam *parmh; /* parameter handle */

Examples

6-24 Oracle Call Interface Programmer’s Guide

OCIParam *attrlsthd; /* handle to list of attrs */
OCIParam *attrhd; /* attribute handle */

/* allocate describe handle */
if (OCIHandleAlloc((dvoid *)envh, (dvoid **)&dschp,
 (ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (dvoid **)0))

return error;

/* get the describe handle for the type */
if (describe_by_name)

if (OCIDescribeAny(svch, errh, (dvoid*)type_name, type_name_len,
OCI_OTYPE_NAME, 0, OCI_PTYPE_TYPE, dschp))
return error;

else
if (OCIDescribeAny(svch, errh, (dvoid*)type_ref, 0, OCI_OTYPE_REF,

0, OCI_PTYPE_TYPE, dschp))
return error;

/* get the parameter handle */
if (OCIAttrGet(dschp, OCI_HTYPE_DESCRIBE, &parmh, 0, OCI_ATTR_PARAM,

errh))
return error;

/* The type information of the object, in this case, OCI_PTYPE_TYPE, is
obtained from the parameter descriptor returned by the OCIAttrGet */

/* get the number of attributes in the type */
if (OCIAttrGet(parmh, OCI_DTYPE_PARAM, &numattrs, 0,

OCI_ATTR_NUM_TYPE_ATTRS, errh))
return error;

/* get the handle to the attribute list of the type */
if (OCIAttrGet(parmh, OCI_DTYPE_PARAM, (dvoid *)&attrlsthd, 0,

OCI_ATTR_LIST_TYPE_ATTRS, errh)==OCI_NO_DATA)
return error;

/* go through the attribute list and retrieve the data-type of each attribute,
and then recursively describe attribute types. */

for (i = 1; i <= numattrs; i++)
{
/* get parameter for attribute i */
if (OCIParamGet(attrlsthd, OCI_DTYPE_PARAM, errh, &attrhd, i))

return error;

Examples

Describing Schema Metadata 6-25

/* for example, get data type and typecode for attribute; note that OCI_ATTR_
DATA_TYPE returns the SQLT code, while OCI_ATTR_TYPECODE returns the Oracle Type
System typecode. */
if (OCIAttrGet(attrhd, OCI_DTYPE_PARAM,&datatype[i-1], 0,

OCI_ATTR_DATA_TYPE,errh))
return error;

/* for example, get data type for attribute*/
if (OCIAttrGet(attrhd, OCI_DTYPE_PARAM,&typecode[i-1], 0,

OCI_ATTR_TYPECODE, errh))
return error;

/* if attribute is an object type, recursively describe it */
if (typecode[i-1] == OCI_TYPECODE_OBJECT)
{
OCIRef *attr_type_ref;
OCIDescribe *nested_dschp;

/* allocate describe handle */
if (OCIHandleAlloc((dvoid *)envh,(dvoid**)&dschp,
(ub4)OCI_HTYPE_DESCRIBE,(size_t)0, (dvoid **)0))
return error;

if (OCIAttrGet(attrhd, OCI_DTYPE_PARAM,
&attr_type_ref, 0, OCI_ATTR_REF_TDO,errh))

return error;
OCIDescribeAny(svch, errh,(dvoid*)attr_type_ref, 0,

OCI_OTYPE_REF, 0, OCI_PTYPE_TYPE, nested_dschp);
/* go on describing the type... */

}
}

Retrieving the collection element’s data type of a named collection type
This example illustrates the use of an explicit describe on a named collection type.

We illustrate how you can describe an object by its name or by its object reference

(OCIRef). The following pseudo-code attempts to retrieve the data type value each

of the object type’s attribute. It is very similar to the first example in section

"Retrieving column data types for a table" on page 6-20.

text type_name[] = <type_name>;
ub4 type_name_len = strlen(<type_name>);
OCIRef *type_ref = <type_ref>;
un4 numattrs;
OCIDescribe *dschp; /* describe handle */
OCIParam *parmh; /* parameter handle */

Examples

6-26 Oracle Call Interface Programmer’s Guide

OCIParam *attrlsthd; /* handle to list of attrs */
OCIParam *attrhd; /* attribute handle */

/* allocate describe handle */
if (OCIHandleAlloc((dvoid *)envh, (dvoid **)&dschp,
 (ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (dvoid **)0))

return error;

/* get the describe handle for the type */
if (describe_by_name)

if (OCIDescribeAny(svch, errh, (dvoid*)type_name, type_name_len,
OCI_OTYPE_NAME, 0, OCI_PTYPE_TYPE, dschp))
return error;

else
if (OCIDescribeAny(svch, errh, (dvoid*)type_ref, 0, OCI_OTYPE_REF, 0,

OCI_PTYPE_TYPE, &dschp))
return error;

/* get the parameter handle */
if (OCIAttrGet(dschp, OCI_HTYPE_DESCRIBE, &parmh, 0, OCI_ATTR_PARAM,

errh))
return error;

/* get the Oracle Type System type code of the type to determine that this is a
collection type */
if (OCIAttrGet(attrhd, OCI_DTYPE_PARAM,&typecode, 0, OCI_ATTR_TYPECODE,

errh))
return error;

/* if typecode is OCI_TYPECODE_NAMEDCOLLECTION,
proceed to describe collection element */

if (typecode == OCI_TYPECODE_NAMEDCOLLECTION)
{

/* get the collection’s type: ie, OCI_TYPECODE_VARRAY or OCI_TYPECODE_TABLE */

if (OCIAttrGet(parmh, OCI_DTYPE_PARAM, (dvoid *)&collection_typecode, 0, OCI_
ATTR_COLLECTION_TYPECODE, errh))

return error;

/* get the collection element; you MUST use this to further retrieve information
about the collection’s element */
if (OCIAttrGet(parmh, OCI_DTYPE_PARAM, &collection_element_parmh, 0, OCI_ATTR_
COLLECTION_ELEMENT, errh))

return error;

Examples

Describing Schema Metadata 6-27

/* get the number of elements if collection is a VARRAY; not valid for nested
tables */
if (collection_typecode == OCI_TYPECODE_VARRAY)

if OCIAttrGet(collection_element_parmh, OCI_DTYPE_PARAM,
(dvoid *)&num_elements, 0, OCI_ATTR_NUM_ELEMENTS, errh))
return error;

/* now use the collection_element parameter handle to retrieve information about
the collection element */
if OCIAttrGet(collection_element_parmh, OCI_DTYPE_PARAM,

(dvoid *)&element_typecode, 0, OCI_ATTR_TYPECODE, errh))
return error;

/* do the same to describe additional collection element information; this is
very similar to describing type attributes */

Examples

6-28 Oracle Call Interface Programmer’s Guide

LOB and FILE Operations 7-1

7
LOB and FILE Operations

The following topics are covered in this chapter:

■ Overview

■ Locators

■ Creating and Modifying Internal LOBs

■ Associating a FILE in a Table with an OS File

■ LOB Attributes of an Object

■ Array Interface For LOBs

■ LOB and FILE Functions

■ LOB Read and Write Callbacks

■ Temporary LOB Support

Overview

7-2 Oracle Call Interface Programmer’s Guide

Overview
The Oracle OCI includes a set of functions for performing operations on large

objects (LOBs) in a database. Internal LOBs (BLOBs, CLOBs, NCLOBs) are stored in

the database tablespaces in a way that optimizes space and provides efficient access.

These LOBs have the full transactional support of the database server. External

LOBs (FILEs) are large data objects stored in the server’s operating system files

outside the database tablespaces.

The OCI also provides support for temporary LOBs, which can be used like local

variables for operating on LOB data.

The maximum length of a LOB/FILE is 4 gigabytes. FILE functionality is read-only.

Oracle currently supports only binary files (BFILEs).

See Also: For code samples showing the use of LOB operations, see the

demonstration programs included with your Oracle installation. For additional

information, refer to Appendix B, "OCI Demonstration Programs".

Customers who are interested in using the dbms_lob package to work with

LOBs should refer to Oracle8i Supplied Packages Reference. For general

information about LOBs and the LOB interfaces available, see the Oracle8i
Application Developer’s Guide - Large Objects (LOBs).

For information about temporary LOBs, refer to "Temporary LOB Support" on

page 7-17.

Locators
An OCI program uses locators to point to the data of a LOB or FILE.

LOB Locators
A database table stores a LOB locator which points to the LOB data. When an OCI

application issues a SQL query that includes a LOB column in its select-list, fetching

the result(s) of the query returns the locator, rather than the actual LOB value. In the

OCI, the LOB locator maps to the datatype OCILobLocator.

Note: The LOB value can be stored inline in a database table if it is less than

approximately 4,000 bytes.

Internal LOBs have copy semantics. Thus, if a LOB in one row is copied to a LOB in

another row, the actual LOB value is copied, and a new LOB locator is created for

the copied LOB.

Locators

LOB and FILE Operations 7-3

The OCI functions for LOBs take LOB locators as their arguments. The OCI

functions assume that the LOB to which the locator points has already been created,

whether or not the LOB contains some value.

An application first fetches the locator using SQL, and then performs further

operations using the locator. The OCI functions never take the actual LOB value as a

parameter. It is good practice to use a locator in a LOB modification call if and only

if its snapshot is recent enough that it sees the current value of the LOB data, since it

is the current value that gets modified.

You allocate memory for an internal LOB locator with a call to OCIDescriptorAlloc()
by passing OCI_DTYPE_LOB as the descriptor type. To allocate memory for an

external LOB (FILE) locator, pass OCI_DTYPE_FILE. After you have allocated the

LOB locator memory, you must initialize it before passing it to any OCI LOB

routines. You can accomplish this by any of the following methods:

■ SELECTing the LOB from the database (which contains a valid LOB locator)

into the LOB locator you have just allocated.

■ Using the locator in the RETURNING clause of a SQL INSERT or UPDATE

statement.

■ Assigning a different, already initialized LOB locator to the newly allocated

LOB locator.

You can also initialize a LOB locator to empty by calling OCIAttrSet() on the

locator’s OCI_ATTR_LOBEMPTY attribute. A locator initialized in this way may

only be used to create an empty LOB in the database. Thus, it can only be used in

the VALUES clause of a SQL INSERT statement, or as the source of the SET clause

of a SQL UPDATE statement.

Warning: Locators for LOB and FILE operations are not interchangeable.

Locators for LOB operations must be allocated as type OCI_DTYPE_LOB, and

locators for FILE operations must be allocated as type OCI_DTYPE_FILE. An

internal LOB locator may not be assigned to an external LOB (FILE) locator, and

vice versa.

See Also: For more information about locators, including the LOB locator, see

the section "Descriptors and Locators" on page 2-14. For examples showing the

use of OCI LOB calls, refer the list of demonstration programs in Appendix B,

"OCI Demonstration Programs" and the description of OCILobWrite() on

page 15-153.

For more information about LOBs, locators, and read-consistent LOBs, see the

Oracle8i Application Developer’s Guide - Large Objects (LOBs).

Creating and Modifying Internal LOBs

7-4 Oracle Call Interface Programmer’s Guide

FILE Locators
A FILE locator may be considered to be a pointer to a file on the server’s file system.

Oracle does not provide any transactional semantics on FILEs, and Oracle currently

supports only read-only operations on binary FILEs (BFILEs).

Since operations on both internal LOBs and FILEs are similar, all OCI LOB/FILE

functions expect a LOB locator as an input to all operations. The only difference is

in the way the FILE locator is allocated. When allocating a locator for FILEs, you

must pass OCI_DTYPE_FILE as the descriptor type in the OCIDescriptorAlloc() call.

Warning: Locators for LOB and FILE operations are not interchangeable.

Locators for LOB operations must be allocated as type OCI_DTYPE_LOB, and

locators for FILE operations must be allocated as type OCI_DTYPE_FILE. An

internal LOB locator may not be assigned to an external LOB (FILE) locator, and

vice versa.

See Also: For information about associating a BFILE with an OS file, see the

section "Associating a FILE in a Table with an OS File" on page 7-5.

Creating and Modifying Internal LOBs
You create a new internal LOB by initializing a new LOB locator using

OCIDescriptorAlloc(), calling OCIAttrSet() to set it to empty (using the OCI_ATTR_

LOBEMPTY attribute), and then binding the locator to a placeholder in an INSERT

statement. Doing so inserts the empty locator into a table with a LOB column or

attribute. You can then SELECT...FOR UPDATE this row to get the locator, and then

write to it using one of the OCI LOB functions.

Note: Whenever you want to modify a LOB column or attribute (write, copy,

trim, and so forth), you must lock the row containing the LOB. One way to do

this is to use a SELECT...FOR UPDATE statement to select the locator before

performing the operation.

For any LOB write command to be successful, a transaction must be open. This

means that if you commit a transaction before writing the data, then you must

relock the row (by reissuing the SELECT...FOR UPDATE, for example), because the

commit closes the transaction.

For information on creating internal LOBs using EMPTY_BLOB() and EMPTY_

CLOB() instead of OCIAttrSet(), see Oracle8i Application Developer’s Guide - Large
Objects (LOBs).

Note: For information about LOB reads and writes from within a trigger, see

Oracle8i Application Developer’s Guide - Large Objects (LOBs).

LOB Attributes of an Object

LOB and FILE Operations 7-5

See Also: For information about binding LOB locators to placeholders, and

using them in INSERT statements, refer to the section "Binding LOBs" on

page 5-10.

Associating a FILE in a Table with an OS File
The BFILENAME() function can be used in an INSERT statement to associate an

external server-side (OS) file with a BFILE column/attribute in a table. Using

BFILENAME() in an UPDATE statement associates the BFILE column or attribute

with a different OS file. OCILobFileSetName() can also be used to associate a FILE in

a table with an OS file. BFILENAME() is usually used in an INSERT or UPDATE

without bind variables and OCILobFileSetName() is used for bind variables.

See Also: For more information, see OCILobFileSetName() on page 15-131. For

more information about the BFILENAME() function, please refer to the Oracle8i

Application Developer’s Guide - Large Objects (LOBs).

LOB Attributes of an Object
An OCI application can use OCIObjectNew() to create a persistent or transient object

with a LOB attribute.

Writing to a LOB Attribute of an Object
It is possible to use the OCI to create a new persistent object with a LOB attribute

and write to that LOB attribute. The application would follow these steps:

1. Call OCIObjectNew() to create a persistent object with a LOB attribute.

2. Mark the object as dirty.

3. Flush the object, thereby inserting a row into the table

4. Repin the latest version of the object (or refresh the object), thereby retrieving

the object from the database and acquiring a valid locator for the LOB

5. Call OCILobWrite() using the LOB locator in the object to write the data.

For more information about object operations, such as marking, flushing, and

refreshing, refer to Chapter 10, "OCI Object-Relational Programming".

Array Interface For LOBs

7-6 Oracle Call Interface Programmer’s Guide

Transient Objects with LOB Attributes
An application can call OCIObjectNew() and create a transient object with an

internal LOB (BLOB, CLOB, NCLOB) attribute. However, the user cannot perform

any operations (e.g., read or write) on the LOB attribute because transient LOBs are

not currently supported. Calling OCIObjectNew() to create a transient internal LOB

type will not fail, but the application cannot use any LOB operations with the

transient LOB.

An application can, however, create a transient object with a FILE attribute and use

the FILE attribute to read data from the file stored in the server’s file system. The

application can also call OCIObjectNew() to create a transient FILE and use that FILE

to read from the server’s file.

Array Interface For LOBs
It is possible to use the OCI’s array interface with LOBs, just as with any other

datatype. Note, however, that you must do the following to allocate the descriptors:

/* First create an array of OCILocator pointers: */
OCILobLocator *lobp[10];

for (i=0; i < 10; i++)
{ OCIDescriptorAlloc (...,&lobp[i],...);

/* Then bind the descriptor as follows */
 OCIBindByPos(.......&lobp[i],);
}

LOB and FILE Functions
The functions in Table 7–1 are available to operate on LOBs and FILEs. More

detailed information about each function is found in Chapter 15, "OCI Relational

Functions". These LOB/FILE calls are not valid when an application is connected to

an Oracle release 7 server.

In all LOB operations that involve offsets into the data, the offset begins at 1. For

LOB operations, such as OCILobCopy(), OCILobErase(), OCILobLoadFromFile(), and

OCILobTrim(), the amount parameter is in characters for CLOBs and NCLOBs,

regardless of the client-side character set. These LOB operations refer to the amount

of LOB data on the server. The following general rules apply to the amount and offset
parameters in LOB calls:

LOB and FILE Functions

LOB and FILE Operations 7-7

■ amount- When the amount parameter refers to the server-side LOB, the amount

is in characters. When the amount parameter refers to the client-side buffer, the

amount is in bytes.

■ offset - Regardless of whether the client-side character set is varying-width, the

offset parameter is always in characters for CLOBs/NCLOBs and in bytes for

BLOBs/BFILEs.

Exceptions to these general rules are noted in the description of the specific LOB

call.

See Also: For more information about FILEs, refer to the description of BFILEs

in the Oracle8i Application Developer’s Guide - Large Objects (LOBs).

Table 7–1 OCI LOB and FILE Functions

Function Restrictions Purpose

OCILobAppend() Internal LOBs
only

Appends data from one internal LOB onto another internal LOB.
The source and the destination LOBs must already exist. The
destination LOB is extended to accommodate the newly written
data if it extends beyond the current length of the destination
LOB. It is an error to extend the destination LOB beyond the
maximum length allowed (4 gigabytes) or to try to append from a
NULL LOB.

OCILobAssign() Assigns one LOB/FILE locator to another. This function cannot be
used for temporary LOBs; use OCILobLocatorAssign().

OCILobCharSetForm() Gets the character set form of a CLOB/NCLOB.

OCILobCharSetId() Gets the character set ID of a CLOB/NCLOB.

OCILobClose() Closes an opened LOB or BFILE.

LOB and FILE Functions

7-8 Oracle Call Interface Programmer’s Guide

OCILobCopy() Internal LOBs
only

This function copies a portion of an internal LOB into another
internal LOB. The source and destination LOBs must already
exist. If data already exists at the destination’s start position, it is
overwritten with the source data. If the destination’s start position
is beyond the end of the current value, zero-byte fillers (BLOBs) or
spaces (CLOBs/NCLOBs) are placed in the LOB from the end of
the destination value to the beginning of the newly written data
from the source. The destination LOB is extended to
accommodate the newly written data if it extends beyond the
current length of the destination LOB. It is an error to extend the
destination LOB beyond the maximum length allowed (4
gigabytes). LOB copy operations must be performed on LOBS of
the same type; i.e., one CLOB can be copied to another CLOB, and
one BLOB can be copied to another BLOB, but a CLOB cannot be
copied to a BLOB, and vice versa.

OCILobCreateTemporary() Creates a temporary LOB.

OCILobDisableBuffering
()

Internal LOBs
only

Disables LOB buffering for a given internal locator.

OCILobEnableBuffering(
)

Internal LOBs
only

Enables LOB buffering for a given internal locator.

OCILobErase() Internal LOBs
only

Erases a specified portion of the internal LOB value starting at a
specified offset. The actual number of characters/bytes erased is
returned. The actual number of characters/bytes and the
requested number of characters/bytes will differ if the end of the
LOB data is reached before erasing the requested number of
characters/bytes. If the LOB is NULL, this routine shows that 0
characters/bytes were erased.

OCILobFileClose(),
OCILobFileCloseAll()

Closes a previously opened FILE, or all open FILEs. It is an error if
this function is called for an internal LOB. No error is returned if
the FILE exists but is not opened.

OCILobFileExists() Tests to see if a FILE exists on the server.

OCILobFileGetName() Gets the name and the directory alias of a FILE.

OCILobFileIsOpen() Tests to see if a FILE has been opened with the input locator.

OCILobFileOpen() Opens a FILE. The FILE can be opened for read-only access. It is
an error if this call is made on an internal LOB.

OCILobFileSetName() Sets the name and the directory alias of a FILE.

OCILobFlushBuffer() Internal LOBs
only

Flushes the LOB buffer.

Table 7–1 OCI LOB and FILE Functions (Cont.)

Function Restrictions Purpose

LOB and FILE Functions

LOB and FILE Operations 7-9

OCILobFreeTemporary() Frees the temporary LOB value.

OCILobGetChunkSize() Gets the usable LOB chunk size.

OCILobGetLength() This function gets the length of a LOB/FILE. If the LOB/FILE is
NULL, the length is undefined. Empty internal LOBs have a
length of zero. Regardless of whether the client-side character set
is varying-width, the output length is in characters for
CLOBs/NCLOBs and in bytes for BLOBs/BFILEs.

OCILobIsEqual() Tests to see if two LOB/FILE locators are equal. Two locators are
equal if and only if they both refer to the same LOB/FILE value.

OCILobIsOpen() Tests whether the LOB is open.

OCILobIsTemporary() Tests whether it is a temporary LOB.

OCILobLoadFromFile() Populates all or part of a LOB with data from a FILE.

OCILobLocatorAssign() Assigns a LOB/FILE locator to another LOB/FILE locator.

OCILobLocatorIsInit() Tests to see if a LOB/FILE locator is initialized.

OCILobOpen() Opens a LOB or BFILE.

OCILobRead() This function reads a portion of the LOB/FILE value into a buffer.
It is an error to try to read from a NULL LOB/FILE. If the
client-side character set is varying-width, then for CLOBs and
NCLOBs, the input amount is in characters and the output
amount is in bytes. The input amount refers to the number of
characters to read from the server-side CLOB/NCLOB. The
output amount indicates how many bytes were read into the
buffer bufp. When using polling mode, note the value of the amtp
parameter after each OCILobRead() call to see how many bytes
were read into the buffer because the buffer may not be entirely
full. When using callbacks, the len parameter, which is input to the
callback, indicates how many bytes are filled in the buffer. Be sure
to check the len parameter during the callback processing because
the entire buffer may not be filled with data.

Table 7–1 OCI LOB and FILE Functions (Cont.)

Function Restrictions Purpose

LOB and FILE Functions

7-10 Oracle Call Interface Programmer’s Guide

Functions for Improving LOB Read/Write Performance

Using OCILobGetChunkSize()
Users can take advantage of the OCILobGetChunkSize() call to improve the

performance of LOB read and write operations. OCILobGetChunkSize() returns the

usable chunk size in bytes for BLOBs and in characters for CLOBs and NCLOBs.

When a read or write is done using data whose size is a multiple of the usable

chunk size and starts on a chunk boundary, performance improves. A user can

specify the chunk size for a LOB column when creating a table that contains the

LOB.

Calling OCILobGetChunkSize() returns the usable chunk size of the LOB, and an

application can batch a series of write operations until an entire chunk can be

written, rather than issuing multiple LOB write calls that operate on the same

chunk.

To read through the end of a LOB, call OCILobRead() with an amount of 4 gigabytes.

This avoids the round-trip involved with first calling OCILobGetLength() because

OCILobRead() with an amount of 4 gigabytes reads until the end of the LOB is

reached.

Note: For LOBs which store varying width characters, OCILobGetChunkSize()
returns the number of Unicode (UCS-2) characters that fit in a LOB chunk.

OCILobTrim() Internal LOBs
only

This function truncates a LOB, trimming the LOB value to a
specified smaller length.

OCILobWrite() Internal LOBs
only

This function writes data from a buffer into an internal LOB. If
data already exists in the LOB, it is overwritten with the data
stored in the buffer. If the client-side character set is
varying-width, then for CLOBs and NCLOBs, the input amount is
in bytes and the output amount is in characters. The input amount
refers to the number of bytes of data that should be written to the
LOB. The output amount refers to the number of characters
written into the server-side CLOB/NCLOB.

OCILobWriteAppend() Writes data starting at the end of the LOB.

Table 7–1 OCI LOB and FILE Functions (Cont.)

Function Restrictions Purpose

LOB and FILE Functions

LOB and FILE Operations 7-11

Using OCILobWriteAppend()
The OCI provides a shortcut to make it more efficient to write data to the end of a

LOB. The OCILobWriteAppend() enables an application to append data to the end of

a LOB without first requiring a call to OCILobGetLength() to determine the starting

point for an OCILobWrite() operation. OCILobWriteAppend() takes care of both steps.

LOB Buffering Functions
The Oracle OCI provides several calls for controlling LOB buffering for small reads

and writes of internal LOB values:

■ OCILobEnableBuffering()

■ OCILobDisableBuffering()

■ OCILobFlushBuffer()

These functions provide performance improvements by allowing applications using

internal LOBs (BLOB, CLOB, NCLOB) to buffer small reads and writes of LOBs in

client-side buffers. This reduces the number of network roundtrips and LOB

versions, thereby improving LOB performance significantly for small reads and

writes.

See Also: For more information on LOB buffering, refer to the chapter on LOBs

in the Oracle8i Application Developer’s Guide - Large Objects (LOBs).

For a code sample showing the use of LOB buffering, see the demonstration

programs included with your Oracle installation. Refer to Appendix B, "OCI

Demonstration Programs".

Functions for Opening and Closing LOBs
The OCI provides functions to explicitly open (OCILobOpen()) and close

(OCILobClose()) a LOB, and also to test whether a particular LOB is already open

(OCILobIsOpen()). These functions allow an application to mark the beginning and

end of a series of LOB operations so that specific processing (e.g., updating indices,

etc.) can be performed when a LOB is closed.

Note: The concept of openness is associated with a LOB and not its locator. The

locator does not store any information about whether the LOB to which it refers

is open. It is possible for more than one locator to point to the same open LOB.

If an application does not wrap LOB operations between a set of OCILobOpen() and

OCILobClose() calls, then each modification to the LOB implicitly opens and closes

the LOB, thereby firing any triggers associated with changes to the LOB.

LOB and FILE Functions

7-12 Oracle Call Interface Programmer’s Guide

Note: If LOB operations are not wrapped inside open and close calls, any

extensible indices on the LOB are updated as LOB modifications are made, and

thus are always valid and may be used at any time. If the LOB is modified

between a set of OCILobOpen() and OCILobClose() calls, triggers are not fired for

individual LOB modifications. Triggers are only fired after the OCILobClose()
call, so indices are not updated until after the close call and thus are not valid in

between the open and close calls. OCILobIsOpen() can be used with internal and

external LOBs (BFILEs).

Restrictions
The LOB opening and closing mechanism has the following restrictions:

1. An application must close all previously opened LOBs before committing a

transaction. Failing to do so will result in an error. If a transaction is rolled back,

all open LOBs are discarded along with the changes made (the LOBs are not

closed), so associated triggers are not fired.

2. While there is no limit to the number of open internal LOBs, there is a limit on

the number of open files. Refer to SESSION_MAX_OPEN_FILES parameter in

Oracle8i Reference. Note that assigning an already opened locator to another

locator does not count as opening a new LOB.

3. It is an error to open or close the same LOB twice within the same transaction,

either with different locators or the same locator.

4. It is an error to close a LOB that has not been opened.

Note: The definition of a transaction within which an open LOB value must be

closed is one of the following:

■ between DML statements that start a transaction (including SELECT...FOR

UPDATE) and COMMIT.

■ within an autonomous transaction block

A LOB opened when there is no transaction must be closed before the end of

session. If there are LOBs open at the end of session, the openness will be

discarded and no triggers of extensible indexes are fired.

LOB Open/Close Examples
For examples of the use of the OCILobOpen() and OCILobCLose() calls, see the list of

online demonstration programs in Appendix B, "OCI Demonstration Programs".

LOB Read and Write Callbacks

LOB and FILE Operations 7-13

Server Roundtrips for LOB Functions
For a table showing the number of server roundtrips required for individual OCI

LOB functions, refer to Appendix C, "OCI Function Server Roundtrips".

LOB Read and Write Callbacks
The OCI LOB read and write functions provide the ability to define callback

functions which can be used to provide data to be written or handle data that was

read. This allows the client application to perform optional processing on the data.

One example usage of this would be to use the callbacks to implement a

compression algorithm for writing the data and a decompression algorithm for

reading it.

Note: The LOB read/write streaming callbacks provides a fast method for

reading/writing large amounts of LOB data.

The following sections describe the use of callbacks in more detail.

The Callback Interface for Streaming
Your application can use user-defined read and write callback functions to insert

data into or retrieve data from a LOB. This provides an alternative to the polling

method for streaming data into a LOB and retrieving data from a LOB. The

user-defined callbacks have a specific prototype which is described below. These

functions are implemented by the user and registered with OCI through the

OCILobRead() and OCILobWrite() calls. The callback functions are called by OCI

whenever required.

LOB Read and Write Callbacks

7-14 Oracle Call Interface Programmer’s Guide

Figure 7–1 User-defined Callback

Reading LOBs using Callbacks
The user-defined read callback function is registered through the OCILobRead()
function. The callback function should have the following prototype:

<CallbackFunctionName> (dvoid *ctxp, CONST dvoid *bufp, ub4 len, ub1 piece)

The first parameter, ctxp, is the context of the callback that is passed to OCI in the

OCILobRead() function call. When the callback function is called, the information

provided by the user in ctxp is passed back to the user (the OCI does not use this

information on the way IN). The bufp parameter is the pointer to the storage where

the LOB data is returned and bufl is the length of this buffer. It tells the user how

much data has been read into the buffer provided by the user.

If the buffer length provided by the user in the original OCILobRead() call is

insufficient to store all the data returned by the server, then the user-defined

callback is called. In this case the piece parameter indicates to the user whether the

information returned in the buffer in the first, next or last piece.

The following is a code fragment of a typical way to implement read callback

functions. Assume here that lobl is a valid locator that has been previously selected,

svchp is a valid service handle and errhp is a valid error handle.

...
ub4 offset = 1;
ub4 loblen = 0;
ub1 bufp[MAXBUFLEN];
ub4 amtp = 0;
sword retval;
amtp = 4294967295; /* 4 gigabytes minus 1 */
if (retval = OCILobRead(svchp, errhp, lobl, &amtp, offset, (dvoid *) bufp,
 (ub4) MAXBUFLEN, (dvoid *) bufp, cbk_read_lob,
 (ub2) 0, (ub1) SQLCS_IMPLICIT))
 {
 (void) printf("ERROR: OCILobRead() LOB.\n");

User-defined
callback

OCI

User Application

IN parameters

OUT parameters

LOB Read and Write Callbacks

LOB and FILE Operations 7-15

 report_error();
 }
...
sb4 cbk_read_lob(ctxp, bufxp, len, piece)
dvoid *ctxp;
CONST dvoid *bufxp;
ub4 len;
ub1 piece;
{
static ub4 piece_count = 0;
piece_count++;
switch (piece)
{
 case OCI_LAST_PIECE:
 /* process buffer bufxp */
 --- buffer processing code goes here ---
 (void) printf("callback read the %d th piece\n\n", piece_count);
 piece_count = 0;
 break;
 case OCI_FIRST_PIECE:
 case OCI_NEXT_PIECE:
 /* process buffer bufxp */
 --- buffer processing code goes here ---
 (void) printf("callback read the %d th piece\n", piece_count);
 break;
 default:
 (void) printf("callback read error: unkown piece = %d.\n", piece);
 return OCI_ERROR;
 }
 return OCI_CONTINUE;
}

In the above example the user defined function cbk_read_lob is repeatedly called

until all the LOB data has been read by the user.

For an example of the use of OCILobRead() using polling and callbacks, see the list of

online demonstration programs in Appendix B, "OCI Demonstration Programs".

Writing LOBs using Callbacks
Similar to read callbacks, the user-defined write callback function is registered

through the OCILobWrite() function. The callback function should have the

following prototype:

 <CallbackFunctionName> (dvoid *ctxp, dvoid *bufp, ub4 *lenp, ub1 *piecep)

LOB Read and Write Callbacks

7-16 Oracle Call Interface Programmer’s Guide

The first parameter, ctxp, is the context of the callback that is passed to OCI in the

OCILobWrite() function call. The information provided by the user in ctxp, is passed

back to the user when the callback function is called by the OCI (the OCI does not

use this information on the way IN). The bufp parameter is the pointer to a storage

area that contains the LOB data to be inserted, and bufl is the length of this storage

area. The user provides this pointer in the call to OCILobWrite(). After inserting the

data provided in the call to OCILobWrite() if there is more to write, then the user

defined callback is called. In the callback the user should provide the data to insert

in the storage indicated by bufp and also specify the length in bufl. The user should

also indicate whether it is the next (OCI_NEXT_PIECE) or the last (OCI_LAST_

PIECE) piece using the piecep parameter. Note that the user is completely

responsible for the storage pointer the application provides and should make sure

that it does not write more than the allocated size of the storage.

The following is a code fragment of a typical way to implement write callback

functions.

Assume here that lobl is a valid locator that has been locked for updating, svchp is a

valid service handle and errhp is a valid error handle

...
ub4 offset = 1;
ub1 bufp[MAXBUFLEN];
ub4 amtp = MAXBUFLEN * 20;
ub4 nbytes = MAXBUFLEN;
/* Fill bufp with some data */
-- code to fill bufp with data goes here. nbytes should reflect the size and
should be less than or equal to MAXBUFLEN --
if (retval = OCILobWrite(svchp, errhp, lobl, &amtp, offset, (dvoid*)
 bufp,(ub4)nbytes, OCI_FIRST_PIECE, (dvoid *)0, cbk_write_lob,
 (ub2) 0, (ub1) SQLCS_IMPLICIT))
 {
 (void) printf("ERROR: OCILobWrite().\n");
 report_error();
 return;
 }
 ...
sb4 cbk_write_lob(ctxp, bufxp, lenp, piecep)
dvoid *ctxp;
dvoid *bufxp;
ub4 *lenp;
ub1 *piecep;
{
 /* Fill bufxp with data */

Temporary LOB Support

LOB and FILE Operations 7-17

 -- code to fill bufxp with data goes here. *lenp should reflect the size
 and should be less than or equal to MAXBUFLEN --
 if (this is the last data buffer)
 *piecep = OCI_LAST_PIECE;
 else
 *piecep = OCI_NEXT_PIECE;;
 return OCI_CONTINUE;
}

In the above example, the user defined function cbk_write_lob is repeatedly called

until the user indicates that the application is providing the last piece using the

piecep parameter.

For an example of the use of OCILobWrite() using polling and callbacks, see the list

of online demonstration programs in Appendix B, "OCI Demonstration Programs".

Temporary LOB Support
The OCI provides functions for creating and freeing temporary LOBs,

OCILobCreateTemporary() and OCILobFreeTemporary(), plus a function for querying

whether or not a given LOB is a temporary LOB, OCILobIsTemporary().

Temporary LOBs are not permanently stored in the database, but can act like local

variables for the purpose of operating on LOB data. OCI functions which operate on

standard (persistent) LOBs can also be used on temporary LOBs.

As with standard LOBs, all functions operate on the locator for the temporary LOB,

and the actual LOB data is accessed through the locator.

Temporary LOB locators can be used as arguments to the following types of SQL

statements:

■ UPDATE - the temporary LOB locator can be used as a value in a WHERE

clause when testing for nullness or as a parameter to a function. The locator can

also be used in a SET clause.

■ DELETE - the temporary LOB locator can be used in a WHERE clause when

testing for nullness or as a parameter to a function.

■ SELECT - the temporary LOB can be used as a variable in a SELECT...INTO

statement. For example, a permanent LOB locator can be SELECTed from the

database into a client-side temporary LOB locator. Note that although the

locator is on the client side, temporary LOBs are actually created on the server

side.

Temporary LOB Support

7-18 Oracle Call Interface Programmer’s Guide

Note: If a user selects a permanent locator into a temporary locator, the

temporary locator is overwritten with the permanent locator. In this case the

temporary LOB is not implicitly freed. The user must explicitly free the

temporary LOB before the SELECT...INTO. If the temporary LOB is not freed

explicitly, it will not be freed until the end of its duration. Unless the user has

another temporary locator pointing to the same LOB, the user will no longer

have a locator pointing to the temporary LOB, because the original locator was

overwritten by the SELECT...INTO.

Creating and Freeing Temporary LOBs
A user creates a temporary LOB with the OCILobCreateTemporary() function. The

parameters passed to this function include a value for the duration of the LOB. The

default duration is for the length of the current session. At the end of the duration

all temporary LOBs are deleted. Users can reclaim temporary LOB space by

explicitly freeing the temporary LOB with the OCILobFreeTemporary() function. A

temporary LOB is empty when it is created.

When creating a temporary LOB, users can also specify whether or not the

temporary LOB is read into the server’s buffer cache.

To make a temporary LOB permanent, the application can use OCILobCopy() to copy

the data from the temporary LOB into a permanent one. The application can also

use the temporary LOB in the VALUES clause of an INSERT statement, use the

temporary LOB as the source of the assignment in an UPDATE statement, or assign

the temporary LOB to a persistent LOB attribute and the flush the object.

Temporary LOBs can be modified with the same functions which are used for

standard LOBs.

Temporary LOB Durations
The OCI supports several predefined durations for temporary LOBs and a set of

functions that the application can use to define application-specific durations. The

predefined durations are:

1. call (OCI_DURATION_CALL), only on the server side

2. session (OCI_DURATION_SESSION)

The session duration expires when the containing session/connection ends. The call
duration expires at the end of the current OCI call.

When running in object mode, a user can also define application-specific durations.

An application-specific duration, also referred to as a user duration, is defined by

Temporary LOB Support

LOB and FILE Operations 7-19

specifying the start of a duration using the OCIDurationBegin() function and the end

of the duration using the OCIDurationEnd() function.

Note: User-defined durations are only available if an application has been

initialized in object mode.

Each application-specific duration has a duration identifier that is returned by

OCIDurationBegin() and is guaranteed to be unique until OCIDurationEnd() is called

on the duration. An application-specific duration can be as long as, but not longer,

than a session duration.

At the end of a duration, all temporary LOBs associated with that duration are

freed. However, the descriptor associated with the temporary LOB must be freed

explicitly with the OCIDescriptorFree() call.

User-defined durations can be nested—one duration can be defined as a child
duration of another user duration. It is possible for a parent duration to have child

durations which, in turn, have their own child durations.

Note: When a duration is started with OCIDurationBegin(), one of the

parameters is the identifier of a parent duration. When a parent duration is

ended, all child durations are also ended. For more information, see

OCIDurationBegin() on page 15-109.

Temporary LOB Example
The following code example shows how temporary LOBs might be used:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

/* Function Prototype */
static void checkerr (/*_ OCIError *errhp, sword status _*/);
sb4 select_and_createtemp (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp);

/* This function reads in a single video Frame from the Multimedia_tab table.
Then it creates a temporary lob. The temporary LOB which is created is read
through the CACHE, and is automatically cleaned up at the end of the user’s
session, if it is not explicitly freed sooner. This function returns OCI_SUCCESS
if it completes successfully or OCI_ERROR if it fails. */

Temporary LOB Support

7-20 Oracle Call Interface Programmer’s Guide

sb4 select_and_createtemp (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCIDefine *defnp1;
 OCIBind *bndhp;
 text *sqlstmt;
 int rowind =1;
 ub4 loblen = 0;
 OCILobLocator *tblob;
 printf ("in select_and_createtemp \n");
 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob,
 (ub4)OCI_DTYPE_LOB, (size_t)0,
 (dvoid**)0))
 {
 printf("failed in OCIDescriptor Alloc in select_and_createtemp \n");
 return OCI_ERROR;
 }
 /* arbitrarily select where Clip_ID =1 */
 sqlstmt = (text *)"SELECT Frame FROM Multimedia_tab WHERE Clip_ID = 1 FOR
UPDATE";
 if (OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4) strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() sqlstmt\n");
 return OCI_ERROR;
 }
 /* Define for BLOB */
 if (OCIDefineByPos(stmthp,
 &defnp1,
 errhp,
 (ub4) 1,
 (dvoid *) &lob_loc,
 (sb4)0,
 (ub2) SQLT_BLOB,
 (dvoid *) 0,
 (ub2 *) 0,
 (ub2 *) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: Select locator: OCIDefineByPos()\n");

Temporary LOB Support

LOB and FILE Operations 7-21

 return OCI_ERROR;
 }
 /* Execute the select and fetch one row */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() sqlstmt\n");
 return OCI_ERROR;
 }
 if(OCILobCreateTemporary(svchp,
 errhp,
 tblob,
 (ub2)0,
 SQLCS_IMPLICIT,
 OCI_TEMP_BLOB,
 OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return OCI_ERROR;
 }
 if (OCILobGetLength(svchp, errhp, lob_loc, &loblen) != OCI_SUCCESS)
 {
 printf("OCILobGetLength FAILED\n");
 return OCI_ERROR;
 }
 if (OCILobCopy(svchp, errhp, tblob,lob_loc,(ub4)loblen, (ub4) 1,
 (ub4) 1))
 {
 printf("OCILobCopy FAILED \n");
 }
 if(OCILobFreeTemporary(svchp,errhp,tblob))
 {
 printf ("FAILED: OCILobFreeTemporary call \n");
 return OCI_ERROR;
 }
 return OCI_SUCCESS;
}
int main(char *argv, int argc)
{
 /* OCI Handles */

 OCIEnv *envhp;
 OCIServer *srvhp;

Temporary LOB Support

7-22 Oracle Call Interface Programmer’s Guide

 OCISvcCtx *svchp;
 OCIError *errhp;
 OCISession *authp;
 OCIStmt *stmthp;
 OCILobLocator *clob, *blob;
 OCILobLocator *lob_loc;
 int type =1;
 /* Initialize and Logon */
 (void) OCIInitialize((ub4) OCI_DEFAULT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0);
 (void) OCIEnvInit((OCIEnv **) &envhp,
 OCI_DEFAULT, (size_t) 0,
 (dvoid **) 0);
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);
 /* server contexts */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0);
 /* service context */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0);
 /* attach to Oracle */
 (void) OCIServerAttach(srvhp, errhp, (text *)"", strlen(""), 0);
 /* set attribute server context in the service context */
 (void) OCIAttrSet ((dvoid *) svchp, OCI_HTYPE_SVCCTX,
 (dvoid *)srvhp, (ub4) 0,
 OCI_ATTR_SERVER, (OCIError *) errhp);
 (void) OCIHandleAlloc((dvoid *) envhp,
 (dvoid **)&authp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);
 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "scott", (ub4)5,
 (ub4) OCI_ATTR_USERNAME, errhp);
 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "tiger", (ub4) 5,
 (ub4) OCI_ATTR_PASSWORD, errhp);
 /* Begin a User Session */
 checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,
 (ub4) OCI_DEFAULT));
 (void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) authp, (ub4) 0,
 (ub4) OCI_ATTR_SESSION, errhp);
 /* ------- Done loggin in ----------------------------------*/

Temporary LOB Support

LOB and FILE Operations 7-23

 /* allocate a statement handle */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));
 checkerr(errhp, OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &lob_loc,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0));
 /* Subroutine calls begin here */
 printf("calling select_and_createtemp\n");
 select_and_createtemp (lob_loc, errhp, svchp,stmthp,envhp);

 return 0;
}
void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode = 0;
 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %.*s\n", 512, errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:
 (void) printf("Error - OCI_CONTINUE\n");
 break;

Temporary LOB Support

7-24 Oracle Call Interface Programmer’s Guide

 default:
 break;
 }
}

Managing Scalable Platforms 8-1

8
Managing Scalable Platforms

The following topics are covered in this chapter:

■ Overview

■ Transactions

■ Password and Session Management

■ Thread Safety

Overview

8-2 Oracle Call Interface Programmer’s Guide

Overview
Chapter 2, "OCI Programming Basics" introduced the basic concepts of OCI

programming, including how a simple transactions are processed and how the

OCISessionBegin() call is used as part of OCI initialization. This chapter is designed

to introduce more advanced concepts, including the following:

■ different levels of transaction complexity, including global transactions, and the

operations that are possible through OCI calls.

■ password and session management using additional options available with

OCISessionBegin().

■ OCI support for thread safety and multithreaded application development.

Transactions
Release 8i of the Oracle Call Interface provides a set of API calls to support

operations on both local and global transactions. These calls include object support,

so that if an OCI application is running in object mode, the commit and rollback

calls will synchronize the object cache with the state of the transaction.

The functions listed below perform transaction operations. Each call takes a service

context handle that should be initialized with the proper server context and user

session handle. The transaction handle is the third element of the service context; it

stores specific information related to a transaction. When a SQL statement is

prepared, it is associated with a particular service context. When the statement is

executed, its effects (query, fetch, insert) become part of the transaction that is

currently associated with the service context.

■ OCITransStart() - marks the start of a transaction

■ OCITransDetach() - detaches a transaction

■ OCITransCommit() - commits a transaction

■ OCITransRollback() - rolls back a transaction

■ OCITransPrepare() - prepares a transaction to be committed in a distributed

processing environment

■ OCITransForget() - causes the server to forget a heuristically completed global

transaction.

Depending on the level of transactional complexity in your application, you may

need all or only a few of these calls. The following section discusses this in more

detail.

Transactions

Managing Scalable Platforms 8-3

See Also: For more specific information about these calls, refer to the function

descriptions in Chapter 15, "OCI Relational Functions".

Levels of Transactional Complexity
The OCI supports several levels of transaction complexity. Each level is described in

one of the following sections.

■ Simple Local Transactions

■ Serializable or Read-Only Local Transactions

■ Global Transactions

Simple Local Transactions
Many applications work with only simple local transactions. In these applications,

an implicit transaction is created when the application makes database changes. The

only transaction-specific calls needed by such applications are:

■ OCITransCommit() - to commit the transaction

■ OCITransRollback() - to roll back the transaction

As soon as one transaction has been committed or rolled back, the next modification

to the database creates a new implicit transaction for the application.

Only one implicit transaction can be active at any time on a service context.

Attributes of the implicit transaction are opaque to the user.

If an application creates multiple sessions, each one can have an implicit transaction

associated with it.

For sample code showing the use of simple local transactions, refer to the example

for OCITransCommit() on page 15-200.

Serializable or Read-Only Local Transactions
Applications requiring serializable or read-only transactions require an additional

OCI call beyond those needed by applications operating on simple local

transactions. To initiate a serializable or read-only transactions, the application must

create the transaction by calling OCITransStart() to start the transaction.

The call to OCITransStart() should specify OCI_TRANS_SERIALIZABLE or OCI_

TRANS_READONLY, as appropriate, for the flags parameter. If no flag is specified,

the default value is OCI_TRANS_READWRITE for a standard read-write

transaction.

Transactions

8-4 Oracle Call Interface Programmer’s Guide

Specifying the read-only option in the OCITransStart() call saves the application

from performing a server round-trip to execute a SET TRANSACTION READ

ONLY statement.

Global Transactions
Global transactions are necessary only in more sophisticated transaction-processing

applications.

Note: Users not operating in distributed or global transaction environments

may skip this section.

This section provides some background about global transactions, and then gives

specific information about using OCI calls to process global transactions.

Transaction Identifiers Three-tiered applications such as transaction processing (TP)

monitors create and manage global transactions. They supply a global transaction
identifier (XID), which a server then associates with a local transaction.

A global transaction has one or more branches. Each branch is identified by an XID.

The XID consists of a global transaction identifier (gtrid) and a branch qualifier (bqual).

This structure is based on the standard XA specification.

For example, the following is the structure for one possible XID of 1234:

See Also: For more information about transaction identifiers, refer to the

Oracle8i Distributed Database Systems manual.

The transaction identifier used by OCI transaction calls is set in the OCI_ATTR_XID

attribute of the transaction handle, using OCIAttrSet(). Alternately, the transaction

can be identified by a name set in the OCI_ATTR_TRANS_NAME attribute.

Transaction Branches Within a single global transaction, Oracle supports both tightly

coupled and loosely coupled relationships between a pair of branches.

■ Tightly coupled branches are different branches that share the same local

transaction. In this case, the gtrid references a unique local transaction, and

Component Value

gtrid 12

bqual 34

gtrid+bqual=XID 1234

Transactions

Managing Scalable Platforms 8-5

multiple branches point to that same transaction. The owner of the transaction

is the branch that was created first.

■ Loosely coupled branches are different branches that use different local

transactions. In this case the gtrid and bqual together map to a unique local

transaction. Each branch points to a different transaction.

The flags parameter of OCITransStart() allows applications to pass OCI_TRANS_

TIGHT or OCI_TRANS_LOOSE to specify the type of coupling.

In Oracle OCI release 8i, a session corresponds to a user session, created with

OCISessionBegin().

The following figure illustrates tightly coupled branches within an application. In

the figure, S1 and S2, are sessions, B1 and B2 are branches, and T is a transaction. In

this first example, the XIDs of the two branches would share the same gtrid, because

they are operating on the same transaction, but they would have a different bqual,
because they are separate branches

Figure 8–1 Multiple Tightly Coupled Branches

It is also possible for a single session to operate on different branches. In this case,

illustrated in the next figure, gtrid component of the XIDs would be different,

because they are separate global transactions

Session

Branch

Transact ion
T

B1

S1

B2

S2

Transactions

8-6 Oracle Call Interface Programmer’s Guide

Figure 8–2 Session Operating on Multiple Branches

For sample code demonstrating this scenario, refer to the examples for

OCITransStart() on page 15-207. It is possible for a single session to operate on

multiple branches that share the same transaction, but this scenario does not have

much practical value. Sample code demonstrating this scenario can be found in the

examples for OCITransStart() on page 15-207.

The following figure illustrates loosely coupled branches:

Figure 8–3 Loosely Coupled Branches

Branch States Transaction branches are classified into two states: active branches and

inactive branches.

Session

Branch

Transact ion

T1 T2

B1

S1

B2

Session

Branch

Transaction
T1 T2

B2B1

S2S1

Transactions

Managing Scalable Platforms 8-7

A branch is active if a server process is executing requests on the branch. A branch

is inactive if no server processes are executing requests in the branch. In this case no

session is the parent of the branch, and the branch becomes owned by the PMON

process in the server.

Detaching and Resuming Branches A branch becomes inactive when an OCI

application detaches it, using the OCITransDetach() call. The branch can be made

active again by resuming it with a call to OCITransStart() with the flags parameter

set to OCI_TRANS_RESUME.

When an application detaches a branch with OCITransDetach(), it utilizes the value

specified in the timeout parameter of the OCITransStart() call that created the branch.

The timeout specifies the number of seconds the transaction can remain dormant as

a child of PMON before being deleted.

When an application wants to resume a branch, it calls OCITransStart(), specifying

the XID of the branch as an attribute of the transaction handle, OCI_TRANS_

RESUME for the flags parameter, and a different timeout parameter. This timeout
value for this call specifies the length of time that the session will wait for the

branch to become available if it is currently in use by another process. If no other

processes are accessing the branch, it can be resumed immediately.

Note: A transaction can be resumed by a different process than the one that

detached it, as long as that process has the same authorization as the one that

detached the transaction.

Setting Client Database Name The server handle has OCI_ATTR_EXTERNAL_NAME

and OCI_ATTR_INTERNAL_NAME attributes associated with it. These attributes

set the client database name that will be recorded when performing global

transactions. The name can be used by the DBA to track transactions that may be

pending in a prepared state due to failures.

Warning: An OCI application should set these attributes, using OCIAttrSet(),
before logging on and using global transactions.

One-Phase Versus Two-Phase Commit Global transactions may be committed in one or

two phases. The simplest situation is when a single transaction is operating against

a single database. In this case, the application can perform a one-phase commit of

the transaction, by calling OCITransCommit(), because the default value of the call is

for one-phase commit.

The situation is more complicated if the application is processing transactions

against multiple databases or multiple Oracle servers. In this case, a two-phase

commit is necessary. A two-phase commit consists of these steps:

Transactions

8-8 Oracle Call Interface Programmer’s Guide

1. Prepare - The application issues a prepare call, OCITransPrepare() against each

transaction. The transaction returns a value indicating whether it is able to

commit its current work (OCI_SUCCESS) or not (OCI_ERROR).

2. Commit - If each prepare call returns a value of OCI_SUCCESS, the application

can issue a commit call, OCITransCommit() to each transaction. The flags
parameter of the commit call must be explicitly set to OCI_TRANS_

TWOPHASE for the appropriate behavior. The default for this call is for a

one-phase commit.

Note: The prepare call can also return OCI_SUCCESS_WITH_INFO if a

transaction needs to indicate that it is read-only, so that a commit is neither

appropriate nor necessary.

An additional call, OCITransForget() indicates that a database should forget a

heuristically completed transaction. This call is for situations in which a problem

has occurred that requires that a two-phase commit be aborted. When a server

receives a OCITransForget() call, it forgets all information about the transaction.

See Also: For more information about two-phase commit, refer to the Oracle8i

Distributed Database Systems manual.

Transaction Examples
This section provides examples of how to use the transaction OCI calls. The

following tables provide series of OCI calls and other actions, along with their

resulting behavior. For the sake of simplicity, not all parameters to these calls are

listed; rather, the flow of calls which is being demonstrated.

The OCI Action column indicates what the OCI application is doing, or what call it

is making. The XID column lists the transaction identifier, when necessary. The

Flags column lists the value(s) passed in the flags parameter. The Result column

describes the result of the call.

Transactions

Managing Scalable Platforms 8-9

Update Successfully, One-Phase Commit

Start a Transaction, Detach, Resume, Prepare, Two-Phase Commit

Read-Only Update Fails

Step OCI Action XID Flags Result

1 OCITransStart 1234 OCI_TRANS_NEW Starts new read-write transaction

2 SQL UPDATE Update rows

3 OCITransCommit Commit succeeds

Step OCI Action XID Flags Result

1 OCITransStart 1234 OCI_TRANS_NEW Starts new read-only transaction

2 SQL UPDATE Update rows

3 OCITransDetach Transaction is detached

4 OCITransStart 1234 OCI_TRANS_RESUME Transaction is resumed

5 SQL UPDATE

6 OCITransPrepare Transaction prepared for two-phase
commit

7 OCITransCommit OCI_TRANS_TWOPHASE Transaction is committed.

Note: In step 4, above, the transaction could have been resumed by a different process, as long as it had the
same authorization.

Step OCI Action XID Flags Result

1 OCITransStart 1234 OCI_TRANS_NEW |

OCI_TRANS_READONLY

Starts new read-only transaction

2 SQL UPDATE Update fails, because transaction is
read-only

3 OCITransCommit Commit has no effect

Password and Session Management

8-10 Oracle Call Interface Programmer’s Guide

Start a Read-Only Transaction, Select and Commit

Related Initialization Parameters
Two initialization parameters relate to the use of global transaction branches

and migratable open connections:

■ TRANSACTIONS - This parameter specifies the maximum number of global

transaction branches in the entire system. In contrast, MAX_TRANSACTION_

BRANCHES specifies the number of branches on a single global transaction.

■ OPEN_LINKS_PER_INSTANCE - This parameter specifies the maximum

number of migratable open connections. Migratable open connections are used

by global transactions so that connections are cached after a transaction is

committed. This is different from the OPEN_LINKS parameter, which is the

number of connections from a section (and is not applicable to applications that

use global transactions).

Password and Session Management
Beginning with release 8, the OCI provides the ability to authenticate and maintain

multiple users in an OCI application. There is also a new OCI call which allows the

application to update a user’s password. This is particularly helpful if an expired

password message is returned by an authentication attempt.

Authentication Management
The OCISessionBegin() call is used to authenticate a user against the server set in the

service context handle. For Oracle8i, OCISessionBegin() must be called for any given

server handle before requests can be made against it. Also, OCISessionBegin() only

supports authenticating the user for access to the Oracle server specified by the

server handle in the service context that is used for the OCISessionBegin() call. In

other words, after OCIServerAttach() is called to initialize a server handle,

Step OCI Action XID Flags Result

1 OCITransStart 1234 OCI_TRANS_NEW |

OCI_TRANS_READONLY

Starts new read-only transaction

2 SQL SELECT Query database

3 OCITransCommit No effect — transaction is read-only,
no changes made

Password and Session Management

Managing Scalable Platforms 8-11

OCISessionBegin() must be called to authenticate the user for that given server

identified by the server handle.

When OCISessionBegin() is called for the first time for a given server handle, the

user session may not be created in migratable mode (OCI_MIGRATE). After

OCISessionBegin() has been called for a server handle, the application may call

OCISessionBegin() again to initialize another user session handle with different or

the same credentials and different or the same operation modes. If an application

wants to authenticate a user in OCI_MIGRATE mode, the service handle must

already be associated with a non-migratable user handle. The user ID of that user

handle becomes the ownership ID of the migratable user session. Every migratable

session must have a non-migratable parent session.

If the OCI_MIGRATE mode is not specified, then the user session context can only

be used with the same server handle that was used with the OCISessionBegin(). If
OCI_MIGRATE mode is specified, then the user authentication may be set with

different server handles. However, the user session context may only be used with

server handles which resolve to the same database instance. Security checking is

done during session switching.

A migratable session is allowed to switch to a different server handle only if the

ownership ID of the session matches the user Id of a non-migratable session

currently connected to that same server.

OCI_SYSDBA, OCI_SYSOPER, and OCI_PRELIM_AUTH may only be used with a

primary user session context.

A migratable session can be switched, or migrated, to a server handle within a

given environment represented by a environment handle. It can also be migrated, or

cloned, to a server handle in another environment in the same process or in a

different process in a different mode. To perform this migration, or cloning, you

need to do the following:

1. Extract the session Id from the session handle using OCI_ATTR_MIGSESSION.

This is an array of bytes. It should not be modified by the caller. See OCI_

ATTR_MIGSESSION on page A-12.

2. Transport this session Id to any other process by any means.

3. In the new environment, create a session handle and set the session Id using

OCI_ATTR_MIGSESSION.

4. Execute OCISessionBegin(). The resulting session handle is a fully-authenticated

session handle.

Password and Session Management

8-12 Oracle Call Interface Programmer’s Guide

To provide credentials for a call to OCISessionBegin(), one of two methods are

supported. The first is to provide a valid username and password pair for database

authentication in the user session handle passed to OCISessionBegin(). This involves

using OCIAttrSet() to set the OCI_ATTR_USERNAME and OCI_ATTR_PASSWORD

attributes on the user session handle. Then OCISessionBegin() is called with OCI_

CRED_RDBMS.

Note: When the user session handle is terminated using OCISessionEnd(), the

username and password attributes remain unchanged and thus can be re-used

in a future call to OCISessionBegin(). Otherwise, they must be reset to new

values before the next OCISessionBegin() call.

The second type of credentials supported are external credentials. No attributes

need to be set on the user session handle before calling OCISessionBegin(). The

credential type is OCI_CRED_EXT. This is equivalent to the Oracle7 CONNECT

syntax. If values have been set for OCI_ATTR_USERNAME and OCI_ATTR_

PASSWORD, then these are ignored if OCI_CRED_EXT is used.

Password Management
OCI provides the OCIPasswordChange() call to allow an OCI application to modify a

user’s database password as necessary. This is particularly useful if a call to

OCISessionBegin() returns an error message or warning indicating that a user’s

password has expired.

Following is the OCI call for changing a user’s password:

OCIPasswordChange(service_handle, error_handle, user_name, user_name_len,
 old_password, old_password_len, new_password, new_password_len, mode);

Like OCISessionBegin(), OCIPasswordChange() can be called only after a server is

attached, and the service handle has been set with the server handle and the user

session handle. The effect of OCIPasswordChange() on a user session depends on

whether or not the session is established before the call:

■ If OCIPasswordChange() is called before a user session is created, the old

password is used to create the session. After the password is changed and if the

client has not requested that the session to remain active (the mode parameter is

not set to OCI_AUTH), the session is terminated at the end of the call. In other

words, OCIPasswordChange() may be used to both establish a user session as

well as to change the password.

■ If OCIPasswordChange() is called after the user session is established, the session

remains active after the call, regardless of how the mode is set.

Password and Session Management

Managing Scalable Platforms 8-13

See Also: For more information about this call and its parameters, refer to the

description of OCIPasswordChange() on page 15-220.

Session Management
Applications, such as transaction servers, that perform active user load balancing

by multiplexing user sessions over a few server connections must group these

connections into a server group. Oracle uses the server groups to identify these

connections so that sessions can be managed effectively and securely.

The attribute OCI_ATTR_SERVER_GROUP must be defined for a server context to

specify the server group name. For example:

OCIAttrSet ((dvoid *) srvhp, (ub4) OCI_HTYPE_SERVER, (dvoid *) group_name,
 (ub4) strlen ((CONST char *) group_name,
 (ub4) OCI_ATTR_SERVER_GROUP, errhp);

The server group name is an alpha-numeric string not exceeding 30 characters.

OCI_ATTR_SERVER_GROUP attribute must be set in the server context prior to

creating the first non-migratable session using that context. After the session is

created successfully and the connection is established to the server, the server group

name cannot be changed. See OCI_ATTR_SERVER_GROUP on page A-11.

All migratable sessions created on servers within a server group can only migrate to

other servers in the same server group. Servers that terminate will get removed

from the server group. New servers may be created within an existing server group

at any time.

Server groups are optional. If no server group is specified, the server will get

created in a server group called DEFAULT.

The owner of the first non-migratable session created in the first server in a server

group other than DEFAULT establishes ownership of the server group. All

subsequent non-migratable sessions for any server in this server group must be

created by the same user as the owner of the server group.

The server group feature is useful when dedicated servers are used. It has no effect

for MTS servers. In case of MTS, all shared servers will effectively belong to the

server group DEFAULT.

Thread Safety

8-14 Oracle Call Interface Programmer’s Guide

Thread Safety
The thread safety feature of the Oracle database server and OCI libraries allows

developers to use the OCI in a multi-threaded environment. With thread safety, OCI

code can be reentrant, with multiple threads of a user program making OCI calls

without side effects from one thread to another.

Note: Thread safety is not available on every platform. Check your Oracle

system-specific documentation for more information.

The following sections describe how you can use the OCI to develop multi-threaded

applications.

Advantages of OCI Thread Safety
The implementation of thread safety in the Oracle Call Interface provides the

following benefits and advantages:

■ Multiple threads of execution can make OCI calls with the same result as

successive calls made by a single thread.

■ When multiple threads make OCI calls, there are no side effects between

threads.

■ Users who do not write multithreaded programs do not pay a performance

penalty for using thread-safe OCI calls.

■ Use of multiple threads can improve program performance. Gains may be seen

on multiprocessor systems where threads run concurrently on separate

processors, and on single processor systems where overlap can occur between

slower operations and faster operations.

Thread Safety and Three-Tier Architectures
In addition to client-server applications, where the client can be a multithreaded

program, a typical use of multithreaded applications is in three-tier (also called

client-agent-server) architectures. In this architecture the client is concerned only

with presentation services. The agent (or application server) processes the

application logic for the client application. Typically, this relationship is a

many-to-one relationship, with multiple clients sharing the same application server.

The server tier in this scenario is an Oracle database. The applications server (agent)

is very well suited to being a multithreaded application server, with each thread

serving a client application. In an Oracle environment this application server is an

OCI or precompiler program.

Thread Safety

Managing Scalable Platforms 8-15

Basic Concepts of Multi-threaded Development
Threads are lightweight processes that exist within a larger process. Threads share

the same code and data segments but have their own program counters, machine

registers, and stack. Global and static variables are common to all threads, and a

mutual exclusivity mechanism may be required to manage access to these variables

from multiple threads within an application.

Once spawned, threads run asynchronously to one another. They can access

common data elements and make OCI calls in any order. Because of this shared

access to data elements, a mechanism is required to maintain the integrity of data

being accessed by multiple threads.

The mechanism to manage data access takes the form of mutexes (mutual exclusivity

locks), which ensure that no conflicts arise between multiple threads that are

accessing shared resources within an application. In Oracle OCI release 8, mutexes

are granted on a per-environment-handle basis.

Implementing Thread Safety
In order to take advantage of thread safety in the Oracle OCI release 8, an

application must be running on a thread-safe platform. Then the application must

tell the OCI layer that the application is running in multithreaded mode, by

specifying OCI_THREADED for the mode parameter of the opening call to

OCIInitialize(), which must be the first OCI function called in the application.

Note: Applications running on non-thread-safe platforms should not pass a

value of OCI_THREADED to OCIInitialize().

If an application is single-threaded, whether or not the platform is thread safe, the

application should pass a value of OCI_DEFAULT to OCIInitialize(). Single-threaded

applications which run in OCI_THREADED mode may incur performance hits.

If a multi-threaded application is running on a thread-safe platform, the OCI library

will manage mutexing for the application on a per-environment-handle basis. If the

application programmer desires, this application can override this feature and

maintain its own mutexing scheme. This is done by specifying a value of OCI_NO_

MUTEX to the OCIEnvInit() call.

The following three scenarios are possible, depending on how many connections

exist per environment handle, and how many threads will be spawned per

connection.

1. If an application has multiple environment handles, but each only has one

thread (one session exists per environment handle), no mutexing is required.

Thread Safety

8-16 Oracle Call Interface Programmer’s Guide

2. If an application (running in OCI_THREADED mode) maintains multiple

environment handles, each of which has one connection which can spawn

multiple threads, the programmer has the following options:

■ Pass a value of OCI_NO_MUTEX for the mode of OCIEnvInit(). In this case

the application must mutex OCI calls made on the same environment

handle by itself. This has the advantage that the mutexing scheme can be

optimized based on the application design. The programmer must also

insure that only one OCI call is in process on the environment handle

connection at any given time.

■ Pass a value of OCI_DEFAULT to OCIEnvInit(). In this case, the OCI library

automatically gets a mutex on every OCI call on the environment handle.

3. If an application running in OCI_THREADED mode maintains one or more

environment handles, each of which has multiple connections, it also has the

following options:

■ Pass a value of OCI_NO_MUTEX for the mode of OCIEnvInit(). In this case

the application must mutex OCI calls by made on the same environment

handle itself. This has the advantage that the mutexing scheme can be

optimized based on the application design. The programmer must also

insure that only one OCI call is in process on the environment handle

connection at any given time.

■ Pass a value of OCI_DEFAULT to OCIEnvInit(). In this case, the OCI library

automatically gets a mutex on every OCI call on the same environment

handle.

In this case, however, the programmer should be aware that if the application

has two calls on the same environment handle, and one call operating on the

server is mutexed, application performance can degrade if the mutexed call is

long-running, thus tying up the server connection.

Mixing 7.x and 8.0 OCI calls
If an application is mixing 8.0 and 7.x OCI calls, and the application has been

initialized as thread safe (with the appropriate 8.0 calls), it is not necessary to call

opinit() to achieve thread safety. The application will get 7.x behavior on any

subsequent 7.x function calls.

OCI Programming Advanced Topics 9-1

9
OCI Programming Advanced Topics

This chapter introduces advanced programming topics, including the following:

■ Overview

■ The OCIThread Package

■ User-defined Callback Functions

■ Application Failover Callbacks

■ OCI and Advanced Queuing

■ Publish-Subscribe Notification

■ Direct Path Loading

Overview

9-2 Oracle Call Interface Programmer’s Guide

Overview
Chapter 2, "OCI Programming Basics" introduced the basic concepts of OCI

programming. This chapter is designed to introduce more advanced concepts,

including the following:

The OCIThread Package This section describes the OCIThread package which

provides a number of commonly used threading primitives for use by Oracle

customers and offers a portable interface to threading capabilities native to various

platforms.

User-defined Callback Functions This section describes the OCI user callback feature.

Application Failover Callbacks This section discusses how to write and use application

failover callback functions.

OCI and Advanced Queuing This section covers the OCI functions related to Oracle’s

Advanced Queuing feature.

Publish-Subscribe Notification This section discusses how to register and receive

notifications for events.

Direct Path Loading This section discusses how to access the direct block formatter of

the Oracle database server to load data from external files into an Oracle table or a

partition of a partitioned table.

The OCIThread Package
The OCIThread package provides a number of commonly used threading

primitives for use by Oracle customers. It offers a portable interface to threading

capabilities native to various platforms. It does not implement threading on

platforms which do not have native threading capability.

OCIThread does not provide a portable implementation of multi-threaded

facilities. It only serves as a set of portable covers for native multi-threaded

facilities. Therefore, platforms that do not have native support for multi-threading

will only be able to support a limited implementation of OCIThread . As a result,

products that rely on all of OCIThread 's functionality will not port to all platforms.

Products that must port to all platforms must use only a subset of OCIThread 's

functionality. This issue is discussed further in later sections of this document.

The OCIThread Package

OCI Programming Advanced Topics 9-3

The OCIThread API is split into three main parts. Each part is described briefly

here. The following subsections describe each in greater detail. See "Using the

OCIThread Package" on page 9-8 for important additional information.

Note: Detailed descriptions of OCIThread functions, including syntax,

parameters lists, and other comments can be found in Chapter 15, "OCI

Relational Functions".

■ Initialization and Termination

These calls deal with the initialization and termination of OCIThread .

Initialization of OCIThread initializes the OCIThread context which is a

member of the OCI environment or user session handle. This context is required

for other OCIThread calls.

■ Passive Threading Primitives

The passive threading primitives include primitives to manipulate mutual

exclusion (mutex) locks, thread ID's, and thread-specific data keys.

The reason that these primitives are described as passive is that while their

specifications allow for the existence of multiple threads, they do not require it.

This means that it is possible for these primitives to be implemented according

to specification in both single-threaded and multi-threaded environments.

As a result, OCIThread clients that use only these primitives will not require

the existence of multiple threads in order to work correctly, i.e., they will be able

to work in single-threaded environments without branching code.

■ Active Threading Primitives

Active threading primitives include primitives dealing with the creation,

termination, and other manipulation of threads.

The reason that these primitives are described as active is that they can only be

used in true multi-threaded environments. Their specifications explicitly

require that it be possible to have multiple threads. If you need to determine at

runtime whether or not you are in a multi-threaded environment, call

OCIThreadIsMulti() before calling an OCIThread active primitive.

Initialization and Termination
The types and functions described in this section are associated with the

initialization and termination of the OCIThread package. OCIThread must be

properly initialized before any of its functionality can be used. OCIThread 's

The OCIThread Package

9-4 Oracle Call Interface Programmer’s Guide

process initialization function, OCIThreadProcessInit(), must be called with care, as

described below.

The observed behavior of the initialization and termination functions is the same

regardless of whether OCIThread is in single-threaded or multi-threaded

environment. You can call the initialization functions from both generic and

operating system specific (OSD) code.

OCIThread Context
Most calls to OCIThread functions take the OCI environment or user session

handle as a parameter. The OCIThread context is part of the OCI environment or

user session handle and it must be initialized by calling OCIThreadInit().
Termination of the OCIThread context occurs by calling OCIThreadTerm().

Note: The OCIThread context is an opaque data structure. Do not attempt to

examine the contents of the context.

The following functions are used to implement thread initialization and

termination. Detailed descriptions of each function can be found in Chapter 15,

"OCI Relational Functions".

Passive Threading Primitives
The passive threading primitives deal with the manipulation of mutex, thread ID's,

and thread-specific data. Since the specifications of these primitives do not require

the existence of multiple threads, they can be used both on multi-threaded and

single-threaded platforms.

OCIThreadMutex
The type OCIThreadMutex is used to represent a mutual exclusion lock (mutex). A

mutex is typically used for one of two purposes:

■ to ensure that only one thread accesses a given set of data at a time

Function Purpose

OCIThreadProcessInit() Performs OCIThread process initialization.

OCIThreadInit() Initializes OCIThread context.

OCIThreadTerm() Terminates the OCIThread layer and frees context memory.

OCIThreadIsMulti() Tells the caller whether the application is running in a
multi-threaded environment or a single-threaded environment.

The OCIThread Package

OCI Programming Advanced Topics 9-5

■ to ensure that only one thread executes a given critical section of code at a time

Mutex pointers can be declared as parts of client structures or as stand-alone

variables. Before they can be used, they must be initialized using

OCIThreadMutexInit(). Once they are no longer needed, they must be destroyed

using OCIThreadMutexDestroy(). A mutex pointer must not be used after it is

destroyed.

A thread can acquire a mutex by using OCIThreadMutexAcquire(). This ensures that

only one thread at a time is allowed to hold a given mutex. A thread that holds a

mutex can release it by calling OCIThreadMutexRelease().

OCIThreadKey
The type OCIThreadKey can be thought of as a process-wide variable that has a

thread-specific value. What this means is that all the threads in a process can use

any given key. However, each thread can examine or modify that key

independently of the other threads. The value that a thread sees when it examines

the key will always be the same as the value that it last set for the key. It will not see

any values set for the key by the other threads.

The type of the value held by a key is a dvoid * generic pointer.

Keys can be created using OCIThreadKeyInit(). When a key is created, its value is

initialized to NULL for all threads.

A thread can set a key's value using OCIThreadKeySet(). A thread can get a key's

value using OCIThreadKeyGet().

The OCIThread key functions will save and retrieve data specific to the thread.

When clients maintain a pool of threads and assign the threads to different tasks, it

may not be appropriate for a task to use OCIThread key functions to save data

associated with it. Here is a scenario of how things can fail: A thread is assigned to

execute the initialization of a task. During the initialization, the task stored some

data related to it in the thread using OCIThread key functions. After the

initialization, the thread is returned back to the threads pool. Later, the threads pool

manager assigned another thread to perform some operations on the task, and the

task needs to retrieve the data it stored earlier in initialization. Since the task is

running in another thread, it will not be able to retrieve the same data. Applications

that use thread pools should be aware of this and be cautious when using

OCIThread key functions.

The OCIThread Package

9-6 Oracle Call Interface Programmer’s Guide

OCIThreadKeyDestFunc
OCIThreadKeyDestFunc is the type of a pointer to a key's destructor routine. Keys

can be associated with a destructor routine when they are created (see

OCIThreadKeyInit ()).

A key's destructor routine will be called whenever a thread that has a non-NULL

value for the key terminates.

The destructor routine returns nothing and takes one parameter. The parameter will

be the value that was set for key when the thread terminated.

The destructor routine is guaranteed to be called on a thread's value in the key after

the termination of the thread and before process termination. No more precise

guarantee can be made about the timing of the destructor routine call; thus no code

in the process may assume any post-condition of the destructor routine. In

particular, the destructor is not guaranteed to execute before a join call on the

terminated thread returns.

OCIThreadId
OCIThreadId is the type that will be used to identify a thread. At any given time,

no two threads will ever have the same OCIThreadId. However, OCIThreadId
values can be recycled; i.e., once a thread dies, a new thread may be created that has

the same OCIThreadId as the one that died. In particular, the thread ID must

uniquely identify a thread T within a process, and it must be consistent and valid in

all threads U of the process for which it can be guaranteed that T is running

concurrently with U. The thread ID for a thread T must be retrievable within thread

T. This will be done via OCIThreadIdGet().

The OCIThreadId type supports the concept of a NULL thread ID: the NULL thread

ID will never be the same as the ID of an actual thread.

Passive Threading Functions
The following functions are used to manipulate mutexes, thread keys and thread

IDs. Complete descriptions of each function can be found in Chapter 15, "OCI

Relational Functions".

Function Purpose

OCIThreadMutexInit() Allocates and initializes a mutex.

OCIThreadMutexDestroy() Destroys and deallocates a mutex.

OCIThreadMutexAcquire() Acquires a mutex for the thread in which it is called.

The OCIThread Package

OCI Programming Advanced Topics 9-7

Active Threading Primitives
The active threading primitives deal with the manipulation of actual threads.

Because the specifications of most of these primitives require that it be possible to

have multiple threads, they work correctly only in the enabled OCIThread ; In the

disabled OCIThread , they always return failure. The exception is

OCIThreadHandleGet(); it may be called in a single-threaded environment, in which

case it has no effect.

Active primitives should only be called by code running in a multi-threaded

environment. You can call OCIThreadIsMulti() to determine whether the

environment is multi-threaded or single-threaded.

OCIThreadHandle
Type OCIThreadHandle is used to manipulate a thread in the active primitives:

OCIThreadJoin() and OCIThreadClose(). A thread handle opened by OCIThreadCreate()
must be closed in a matching call to OCIThreadClose(). A thread handle is invalid

after the call to OCIThreadClose().

The distinction between a thread ID and a thread handle in OCIThread usage

follows the distinction between the thread ID and the thread handle on Windows

NT. On many platforms, the underlying native types are the same.

OCIThreadMutexRelease() Releases a mutex.

OCIThreadKeyInit() Allocates and initializes a key.

OCIThreadKeyDestroy() Destroys and deallocates a key.

OCIThreadKeyGet() Gets the calling thread’s current value for a key.

OCIThreadKeySet() Sets the calling thread’s value for a key.

OCIThreadIdInit() Allocates and initializes a thread ID.

OCIThreadIdDestroy() Destroys and deallocates a thread ID.

OCIThreadIdSet() Sets on thread ID to another.

OCIThreadIdSetNull() Nulls a thread ID.

OCIThreadIdGet() Retrieves a thread ID for the thread in which it is called.

OCIThreadIdSame() Determines if two thread IDs represent the same thread.

OCIThreadIdNull() Determines if a thread ID is NULL.

Function Purpose

The OCIThread Package

9-8 Oracle Call Interface Programmer’s Guide

Active Threading Functions
The following functions are used to implement active threading. Complete

descriptions of the functions are available in Chapter 15, "OCI Relational

Functions".

Using the OCIThread Package
This section summarizes some of the more important details relating to the use of

OCIThread.

Process initialization
OCIThread only requires that the process initialization function

(OCIThreadProcessInit()) be called when OCIThread is being used in a

multi-threaded application. Failing to call OCIThreadProcessInit() in a

single-threaded application is not an error.

OCIThread initialization
Separate calls to OCIThreadInit() will all return the same OCIThread context.

Also, remember that each call to OCIThreadInit() must eventually be matched by a

call to OCIThreadTerm().

Active versus Passive Threading primitives
OCIThread client code written without using any active primitives can be

compiled and used without modifications on both single-threaded and

multi-threaded platforms.

OCIThread client code written using active primitives will only work correctly on

multi-threaded platforms. In order to write a version of the same application to run

on single-threaded platform, it is necessary to branch the your code, whether by

branching versions of the source file or by branching at runtime with the

OCIThreadIsMulti() call.

Function Purpose

OCIThreadHndInit() Allocates and initializes a thread handle.

OCIThreadHndDestroy() Destroys and deallocates a thread handle.

OCIThreadCreate() Creates a new thread.

OCIThreadJoin() Allows the calling thread to join with another.

OCIThreadClose() Closes a thread handle.

OCIThreadHandleGet() Retrieves a thread handle.

The OCIThread Package

OCI Programming Advanced Topics 9-9

Example using OCIThread
The following code sample illustrates the use of OCIThread. For a listing of the

complete demonstration programs, see Appendix B, "OCI Demonstration

Programs".

static OCIEnv *envhp;
static OCIError *errhp;
void parent(argc, argv)
sb4 argc;
text **argv;
{
 OCIThreadId *tidArr[5];
 OCIThreadHandle *tHndArr[5];
 ub4 i;
 OCIThreadKey *key;
 (void) OCIInitialize((ub4) OCI_DEFAULT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0);
 (void) OCIEnvInit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t) 0,
 (dvoid **) 0);
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp,
 OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0);
 OCIThreadProcessInit();
 OCIThreadInit(envhp, errhp);
 OCIThreadKeyInit(envhp, errhp, &key, (OCIThreadKeyDestFunc) NULL);
 for (i=0; i<5; i++)
 {
 OCIThreadIdInit(envhp, errhp, &(tidArr[i]));
 OCIThreadHndInit(envhp, errhp, &(tHndArr[i]));
 }
 for (i=0; i<5; i++)
 OCIThreadCreate(envhp, errhp, child, (dvoid *)key,
 tidArr[i], tHndArr[i]);
 for (i=0; i<5; i++)
 {
 OCIThreadJoin(envhp, errhp, tHndArr[i]);
 OCIThreadClose(envhp, errhp, tHndArr[i]);
 }
 for (i=0; i<5; i++)
 {
 OCIThreadIdDestroy(envhp, errhp, &(tidArr[i]));
 OCIThreadHndDestroy(envhp, errhp, &(tHndArr[i]));
 }

The OCIThread Package

9-10 Oracle Call Interface Programmer’s Guide

 OCIThreadKeyDestroy(envhp, errhp, &key);
 OCIThreadTerm(envhp, errhp);
}
void child(arg)
dvoid *arg;
{
 OCIThreadKey *key = (OCIThreadKey *)arg;
 OCIThreadId *tid;
 dvoid *keyval;
 OCIThreadIdInit(envhp, errhp, &tid);
 OCIThreadIdGet(envhp, errhp, tid);
 if (OCIThreadKeySet(envhp, errhp, key, (dvoid *)tid) != OCI_SUCCESS)
 printf("Could not set value for key\n");
 if (OCIThreadKeyGet(envhp, errhp, key, &keyval) !=OCI_SUCCESS)
 printf("Could not retrieve value for key\n");
 if (keyval != (dvoid *)tid)
 printf("Incorrect value from key after setting it\n");
 /* we must destroy thread id */
 OCIThreadIdDestroy(envhp, errhp, &tid);
}

User-defined Callback Functions

OCI Programming Advanced Topics 9-11

User-defined Callback Functions
The Oracle Call Interface has the capability to execute user-specific code in addition

to OCI calls. This functionality can be used for:

■ Adding tracing and performance measurement code to enable users to tune

their applications.

■ Performing pre- or post-processing code for specific OCI calls.

■ Accessing other data sources with OCI by using the native OCI interface for

Oracle databases and directing the OCI calls to use user callbacks for

non-Oracle data sources.

The OCI callback feature has been added by providing support for calling user code

before or after executing the OCI calls. Functionality has also been provided to

allow the user-defined code to be executed instead of executing the OCI code.

The user callback code can also be registered dynamically without modifying the

source code of the application. The dynamic registration is implemented by loading

a user-created dynamically linked library, such as a DLL or shared library, after the

initialization of the environment handle during the OCIEnvInit() or OCIEnvCreate()
calls. The user-created DLL registers the user callbacks for the selected OCI calls

transparently to the application.

Sample Application
For a listing of the complete demonstration programs that illustrate the OCI user

callback feature, see Appendix B, "OCI Demonstration Programs".

Registering User Callbacks
An application can register a user callback with the OCIUserCallbackRegister()
function. Callbacks are registered in the context of the environment handle. An

application can retrieve information about callbacks registered with a handle with

the OCIUserCallbackGet() function. For detailed descriptions of these functions and

their parameters, refer to the descriptions of OCIUserCallbackGet() and

OCIUserCallbackRegister() in Chapter 15, "OCI Relational Functions".

A user-defined callback is a subroutine that is registered against an OCI call and an

environment handle. It can be specified to be either an entry callback or an exit

callback.

■ If it is an entry callback, it is called when the program enters the OCI function.

■ If it is an exit callback, it is called just before the program exits the OCI function.

User-defined Callback Functions

9-12 Oracle Call Interface Programmer’s Guide

If the entry callback returns OCI_CONTINUE, then the program transfers control to

the normal OCI code for that call. However, if the entry callback returns anything

other than OCI_CONTINUE, such as OCI_SUCCESS or OCI_ERROR, then the OCI

code is bypassed and control is passed to the exit callback if one is registered. This

effectively means that the entry callback has replaced the OCI code for that call.

A user callback can return OCI_INVALID_HANDLE when either an invalid handle

or an invalid context is passed to it.

Note: If no exit callback is registered and the entry callback returns something

other than OCI_CONTINUE, then the return code from the entry callback is

returned from the associated OCI call. Similarly, if the exit callback returns

anything other than OCI_CONTINUE, then that return code is returned by the

OCI call.

OCIUserCallbackRegister
As user callback is registered using the OCIUserCallbackRegister() call. See

OCIUserCallbackRegister() on page 15-227 for the syntax of this call. Currently,

OCIUserCallbackRegister() is only registered on the environment handle. The user’s

callback function of typedef OCIUserCallback is registered along with its context for

the OCI call identified by the OCI function code, fcode. The type of the callback,

whether entry or exit, is specified by the when parameter.

For example, the stmtprep_entry_dyncbk_fn entry callback function and its context

dynamic_context, are registered against the environment handle hndlp for the

OCIStmtPrepare() call by calling the OCIUserCallbackRegister() function with the

following parameters.

OCIUserCallbackRegister(hndlp, OCI_HTYPE_ENV, err,
 stmtprep_entry_dyncbk_fn,
 dynamic_context,
 OCI_FNCODE_STMTPREPARE,
 OCI_UCBTYPE_ENTRY);

User Callback Function
The user callback function has to follow the following syntax:

typedef sword (*OCIUserCallback)
(dvoid *ctxp, /* context for the user callback*/
 dvoid *hndlp, /* handle for the callback, env handle for now */
 ub4 type, /* type of handlp, OCI_HTYPE_ENV for this release */
 ub4 fcode, /* function code of the OCI call */
 ub1 when, /* type of the callback, entry or exit */
 sword returnCode, /* OCI return code */

User-defined Callback Functions

OCI Programming Advanced Topics 9-13

 ub4 *errnop, /* Oracle error number */
 va_list arglist); /* parameters of the oci call */

In addition to the parameters described in the OCIUserCallbackRegister() call, the

callback is called with the return code, errnop, and all the parameters of the original

OCI as declared by the prototype definition.

The return code is always passed in as OCI_SUCCESS and *errnop is always passed

in as 0 for the entry callback. Note that *errnop refers to the content of errnop because

errnop is an IN/OUT parameter.

If the callback is not a replacement for the OCI code, then it must return OCI_

CONTINUE, and the value returned in *errnop is ignored. If on the other hand, the

callback returns any other return code than OCI_CONTINUE, then the OCI code is

bypassed, and the returned return code becomes the return code for the call. At the

this point, the value of *errnop returned is set in the error handle, or in the

environment handle if the error information is returned in the environment handle

because of the absence of the error handle for certain OCI calls such as

OCIHandleAlloc().

For the exit callback, the returnCode is the return code that the OCI call was going to

return had the exit callback not been called and *errnop is the value of the error

number being returned in the error handle. This allows the exit callback to change

the return code or error information if needed.

All the original parameters of the OCI call are passed to the callback as variable

parameters and the callback must retrieve them using the va_arg macros. The

callback demonstration programs provide examples. See Appendix B, "OCI

Demonstration Programs" for a list of available demos.

A null value can be registered to de-register a callback. That is, if the value of the

callback (OCIUserCallback) is NULL in the OCIUserCallbackRegister() call, then the

user callback is de-registered.

When using the thread-safe mode, the OCI program acquires all mutexes before

calling the user callbacks.

User-defined Callback Functions

9-14 Oracle Call Interface Programmer’s Guide

UserCallback Control Flow
The pseudo code below describes the overall processing of a typical OCI call.

OCIXyzCall()
{
 Acquire mutexes on handles;
 if (ENTRY callback registered)
 {
 errno = 0;
 retCode = (*entryCallback)(…, OCI_SUCCESS, &errno, ...);
 if (retCode != OCI_CONTINUE)
 {
 set errno in error handle or env handle;
 goto executeExitCallback;
 }
 }
 retCode = return code for XyzCall; /* normal processing of OCI call */

 executeExitCallback:
 if (EXIT callback registered)
 {
 errno = error number from error handle or env handle;
 exitRetCode = (*exitCallback)(…, retCode, &errno,...);
 if (exitRetCode != OCI_CONTINUE)
 {
 set errno in error handle or environment handle;
 retCode = exitRetCode;
 }
 }
 release mutexes;
 return retCode;
 }

UserCallback for OCIErrorGet
If the callbacks are a total replacement of the OCI code, then they would usually

maintain their own error information in the call context and would use that to

return error information in bufp and errnop parameters of the entry callback of the

OCIErrorGet() call.

If on the other hand, the callbacks are either partially overriding OCI code, or just

doing some other post processing, then they can use the exit callback to modify the

error text and errnop parameters of the OCIErrorGet() by their own error message

and error number. Note that the *errnop passed into the exit callback is the error

number in the error or the environment handle.

User-defined Callback Functions

OCI Programming Advanced Topics 9-15

Dynamic Callback Registrations
Because user callbacks are expected to be used for monitoring OCI behavior or to

access other data sources, it is desirable that the registration of the callbacks be done

transparently and non-intrusively. This is accomplished by loading a user-created

dynamically linked library (DLL) at OCI initialization time. The user-created DLL

registers the user callbacks for the selected OCI calls. These callbacks can further

register or de-register user callbacks as needed when receiving control at runtime.

A makefile (ociucb.mk) is provided with the OCI demonstration programs to

create the dynamic-linked library (DLL). The exact naming and location of this

dynamically linked library is operating system dependent. The source code for the

DLL must provide code for a special callback called the OCIEnvCallback().

The loading of the DLL is controlled by setting an operating system environment

variable ORA_OCI_UCBPKG. This variable names the DLL in a generic way. The

DLL must be located in the $ORACLE_HOME/lib directory. For example, if

ociucb.mk creates ociucb.so.1.0 on a Solaris system or ociudb.dll on an NT system,

then ORA_OCI_UCBPKG must be set to ociucb.

The prototype of the OCIEnvCallback() is as follows:

sword OCIEnvCallback(
 OCIEnv *env, /* environment handle being created */
 ub4 mode, /* mode passed to the OCIEnvCreate call */
 size_t xtramemsz, /* extra memory size in the OCIEnvInit call*/
 dvoid *usrmemp); /* extra memory allocated in OCIEnvInit */

OCIUserCallbackRegister() and OCIUserCallbackGet() can be called in the body of

OCIEnvCallback() function to register all the necessary user callbacks. No other

functions can be called in the OCIEnvCallback function and OCIEnvCallback must

return OCI_CONTINUE. Note that because an error handle is not available within

OCIEnvCallback, the environment handle must be passed as the parameter ehndlp
to retrieve information.

The OCIEnvCallback() function is called internally by OCI at the very end of the

OCIEnvInit() or OCIEnvCreate() calls if the ORA_OCI_UCBPKG operating system

environment variable is set to the name of the DLL. For example, it can be set as:

setenv ORA_OCI_UCBPKG ociucb

The setting and unsetting of this operating-system environment variable controls

whether or not the DLL would be loaded. An application has the option of further

disabling the call to OCIEnvCallback() by invoking OCIEnvInit() with a mode value

of OCI_ENV_NO_UCB or OCIEnvCreate() with a mode value of OCI_NO_UCB. If

User-defined Callback Functions

9-16 Oracle Call Interface Programmer’s Guide

OCIEnvInit() or OCIEnvCreate() is called with this mode, then OCIEnvCallback() is
not called even if the ORA_OCI_UCBPKG environment variable is set. However,

the default is to allow loading of OCIEnvCallback().

User Callback Chaining
User callbacks can both be registered statically in the application itself or

dynamically at runtime in the DLL. A mechanism is needed to allow the application

to override a previously registered callback and then later invoke the overridden

one in the newly registered callback to preserve the behavior intended by the

dynamic registrations. This can result in chaining of user callbacks.

For this purpose, the OCIUserCallbackGet() function is provided to find out which

function and context is registered for an OCI call. See OCIUserCallbackGet() on

page 15-225 for the syntax of this call.

For example, the OCIEnvCallback() registers a callback named stmtprep_entry_
dyncbk_fn for OCIStmtPrepare(). The application itself would like to register the

callback function stmtprep_entry_statcbk_fn for the same call. The application can call

the OCIUserCallbackGet() function to find out which callback is registered for

OCIStmtPrepare(). It can then save the dynamic callback function and the dynamic

context in the static context and override the callback by registering the stmtprep_
entry_statcbk_fn as the entry callback for OCIStmtPrepare(). When the control passes

to the statically registered callback, it can invoke the dynamic callback either before

or after its own code.

Accessing Other Data Sources Through OCI
Because Oracle is the predominant database accessed, applications can take

advantage of the OCI interface to access non-Oracle data by using the user callbacks

to access them. This allows an application written in OCI to access Oracle data

without any performance penalty. To access non-Oracle data sources, drivers can be

written that would access the non-Oracle data in user callbacks. Because OCI

provides a very rich interface, there is usually a straight forward mapping of OCI

calls to most data sources. This solution is better than writing applications for other

middle layers such as ODBC which introduce performance penalty for all data

sources. Using OCI would not incur any penalty for the common case of accessing

Oracle data sources, and would incur the same penalty that ODBC does for

non-Oracle data sources.

Restrictions on Callback Functions
There are certain restrictions on the usage of callback functions, including

OCIEnvCallback:

User-defined Callback Functions

OCI Programming Advanced Topics 9-17

■ A callback cannot call other OCI functions except OCIUserCallbackRegister() and

OCIUserCallbackGet().

■ A callback cannot modify OCI data structures such as the environment or error

handles.

■ A callback cannot be registered for OCIUserCallbackRegister() call itself, or for

any of the following:

■ OCIUserCallbackGet()

■ OCIEnvCreate()

■ OCIInitialize()

■ OCIEnvInit()

OCI Callbacks From External Procedures
There are several OCI functions that can be used as callbacks from external

procedures. These functions are listed in Chapter 18, "OCI External Procedure

Functions". For information about writing C subroutines that can be called from

PL/SQL code, including a list of which OCI calls can be used, and some example

code, refer to the Oracle8i Application Developer’s Guide - Fundamentals.

Application Failover Callbacks

9-18 Oracle Call Interface Programmer’s Guide

Application Failover Callbacks
Application failover callbacks can be used in the event of the failure of one database

instance, and failover to another instance. Because of the delay which can occur

during failover, the application developer may want to inform the user that failover

is in progress, and request that the user stand by. Additionally, the session on the

initial instance may have received some ALTER SESSION commands. These will

not be automatically replayed on the second instance. Consequently, the developer

may wish to replay these ALTER SESSION commands on the second instance.

See Also: For more detailed information about application failover, refer to the

Oracle8i Parallel Server Concepts and Administration manual.

Failover Callback Overview
To address the problems described above, the application developer can register a

failover callback function. In the event of failover, the callback function is invoked

several times during the course of reestablishing the user's session.

The first call to the callback function occurs when Oracle first detects an instance

connection loss. This callback is intended to allow the application to inform the user

of an upcoming delay. If failover is successful, a second call to the callback function

occurs when the connection is reestablished and usable. At this time the client may

wish to replay ALTER SESSION commands and inform the user that failover has

happened. If failover is unsuccessful, then the callback is called to inform the

application that failover will not take place. Additionally, the callback is called each

time a user handle besides the primary handle is reauthenticated on the new

connection. Since each user handle represents a server-side session, the client may

wish to replay ALTER SESSION commands for that session.

An initial attempt at failover may not always successful. The OCI provides a

mechanism for retrying failover after an unsuccessful attempt. See "Handling OCI_

FO_ERROR" on page 9-21 for more information about this scenario.

Failover Callback Structure and Parameters
The basic structure of a user-defined application failover callback function is as

follows:

sb4 appfocallback_fn (dvoid * svchp,
 dvoid * envhp,
 dvoid * fo_ctx,
 ub4 fo_type,
 ub4 fo_event);

Application Failover Callbacks

OCI Programming Advanced Topics 9-19

An example is provided in the section "Failover Callback Example" on page 9-20 for

the following parameters:

svchp
The first parameter, svchp, is the service context handle. It is of type dvoid *.

envhp
The second parameter, envhp, is the OCI environment handle. It is of type dvoid *.

fo_ctx
The third parameter, fo_ctx, is a client context. It is a pointer to memory specified by

the client. In this area the client can keep any necessary state or context. It is passed

as a dvoid *.

fo_type
The fourth parameter, fo_type, is the failover type. This lets the callback know what

type of failover the client has requested. The usual values are:

■ OCI_FO_SESSION, which indicates that the user has requested only session

failover.

■ OCI_FO_SELECT, which indicates that the user has requested select failover as

well.

fo_event
The last parameter is the failover event. This indicates to the callback why it is being

called. It has several possible values:

■ OCI_FO_BEGIN indicates that failover has detected a lost connection and

failover is starting.

■ OCI_FO_END indicates successful completion of failover.

■ OCI_FO_ABORT indicates that failover was unsuccessful, and there is no

option of retrying.

■ OCI_FO_ERROR also indicates that failover was unsuccessful, but it gives the

application the opportunity to handle the error and retry failover. See

"Handling OCI_FO_ERROR" on page 9-21 for more information about this

value.

■ OCI_FO_REAUTH indicates that a user handle has been reauthenticated. To

find out which, the application should check the OCI_ATTR_SESSION attribute

of the service context handle (which is the first parameter).

Application Failover Callbacks

9-20 Oracle Call Interface Programmer’s Guide

Failover Callback Registration
For the failover callback to be used, it must be registered on the server context

handle. This registration is done by creating a callback definition structure and

setting the OCI_ATTR_FOCBK attribute of the server handle to this structure.

The callback definition structure must be of type OCIFocbkStruct. It has two fields:

callback_function, which contains the address of the function to call, and fo_ctx which

contains the address of the client context.

An example of callback registration is included as part of the example in the next

section.

Failover Callback Example
The following code shows an example of a simple user-defined callback function

definition and registration.

Part 1, Failover Callback Definition
sb4 callback_fn(svchp, envhp, fo_ctx, fo_type, fo_event)
dvoid * svchp;
dvoid * envhp;
dvoid *fo_ctx;
ub4 fo_type;
ub4 fo_event;
{
switch (fo_event)
 {
 case OCI_FO_BEGIN:
 {
 printf(" Failing Over ... Please stand by \n");
 printf(" Failover type was found to be %s \n",
 ((fo_type==OCI_FO_SESSION) ? "SESSION"
 :(fo_type==OCI_FO_SELECT) ? "SELECT"
 : "UNKNOWN!"));
 printf(" Failover Context is :%s\n",
 (fo_ctx?(char *)fo_ctx:"NULL POINTER!"));
 break;
 }
 case OCI_FO_ABORT:
 {
 printf(" Failover aborted. Failover will not take place.\n");
 break;
 }

Application Failover Callbacks

OCI Programming Advanced Topics 9-21

 case OCI_FO_END:
 {
 printf(" Failover ended ...resuming services\n");
 break;
 }
 case OCI_FO_REAUTH:
 {
 printf(" Failed over user. Resuming services\n");
 break;
 }
 default:
 {
 printf("Bad Failover Event: %d.\n", fo_event);
 break;
 }
 }
 return 0;
}

Part 2, Failover Callback Registration
int register_callback(svrh, errh)
dvoid *svrh; /* the server handle */
OCIError *errh; /* the error handle */
{
 OCIFocbkStruct failover; /* failover callback structure */
 /* allocate memory for context */
 if (!(failover.fo_ctx = (dvoid *)malloc(strlen("my context."))))
 return(1);
 /* initialize the context. */
 strcpy((char *)failover.context_function, "my context.");
 failover.callback_function = &callback_fn;
 /* do the registration */
 if (OCIAttrSet(srvh, (ub4) OCI_HTYPE_SRV,
 (dvoid *) &failover, (ub4) 0,
 (ub4) OCI_ATTR_FOCBK, errh) != OCI_SUCCESS)
 return(2);
 /* successful conclusion */
 return (0);
}

Handling OCI_FO_ERROR
A failover attempt is not always successful. If the attempt fails, the callback function

receives a value of OCI_FO_ABORT or OCI_FO_ERROR in the fo_event parameter.

Application Failover Callbacks

9-22 Oracle Call Interface Programmer’s Guide

A value of OCI_FO_ABORT indicates that failover was unsuccessful, and no further

failover attempts are possible. OCI_FO_ERROR, on the other hand, provides the

callback function with the opportunity to handle the error in some way. For

example, the callback may choose to wait a specified period of time and then

indicate to the OCI library that it should reattempt failover.

Note: This functionality is only available to applications linked with the 8.0.5 or

later OCI libraries running against any Oracle8i server.

Consider the following timeline of events:

The callback function triggers the new failover attempt by returning a value of

OCI_FO_RETRY from the function.

The following example code shows a callback function which might be used to

implement the failover strategy similar to the scenario described above. In this case

the failover callback enters a loop in which it sleeps and then reattempts failover

until it is successful:

/*--*/
/* the user defined failover callback */
/*--*/
sb4 callback_fn(svchp, envhp, fo_ctx, fo_type, fo_event)
dvoid * svchp;
dvoid * envhp;
dvoid *fo_ctx;
ub4 fo_type;
ub4 fo_event;
{
 OCIError *errhp;

Time Event

T0 Database crashes (crash lasts until T5).

T1 Failover triggered by user activity.

T2 User attempts to reconnect; attempt fails.

T3 Failover callback invoked with OCI_FO_ERROR.

T4 Failover callback enters predetermined sleep period.

T5 Database comes back up again.

T6 Failover callback triggers new failover attempt; it is successful.

T7 User successfully reconnects

Application Failover Callbacks

OCI Programming Advanced Topics 9-23

 OCIHandleAlloc(envhp, (dvoid **)&errhp, (ub4) OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);
 switch (fo_event)
 {
 case OCI_FO_BEGIN:
 {
 printf(" Failing Over ... Please stand by \n");
 printf(" Failover type was found to be %s \n",
 ((fo_type==OCI_FO_NONE) ? "NONE"
 :(fo_type==OCI_FO_SESSION) ? "SESSION"
 :(fo_type==OCI_FO_SELECT) ? "SELECT"
 :(fo_type==OCI_FO_TXNAL) ? "TRANSACTION"
 : "UNKNOWN!"));
 printf(" Failover Context is :%s\n",
 (fo_ctx?(char *)fo_ctx:"NULL POINTER!"));
 break;
 }
 case OCI_FO_ABORT:
 {
 printf(" Failover aborted. Failover will not take place.\n");
 break;
 }
 case OCI_FO_END:
 {
 printf("\n Failover ended ...resuming services\n");
 break;
 }
 case OCI_FO_REAUTH:
 {
 printf(" Failed over user. Resuming services\n");
 break;
 }
 case OCI_FO_ERROR:
 {
 /* all invocations of this can only generate one line. The newline
 * will be put at fo_end time.
 */
 printf(" Failover error gotten. Sleeping...");
 sleep(3);
 printf("Retrying. ");
 return (OCI_FO_RETRY);
 break;
 }
 default:
 {

Application Failover Callbacks

9-24 Oracle Call Interface Programmer’s Guide

 printf("Bad Failover Event: %d.\n", fo_event);
 break;
 }
 }
 return 0;
}

The following is sample output from a program containing this failover callback

function:

executing select...
7369 SMITH CLERK
7499 ALLEN SALESMAN
 Failing Over ... Please stand by
 Failover type was found to be SELECT
 Failover Context is :My context.
 Failover error gotten. Sleeping...Retrying. Failover error gotten.
Sleeping...Retrying. Failover error gotten. Sleeping...Retrying. Failover
error gotten. Sleeping...Retrying. Failover error gotten. Sleeping...Retrying.
Failover error gotten. Sleeping...Retrying. Failover error gotten.
Sleeping...Retrying. Failover error gotten. Sleeping...Retrying. Failover
error gotten. Sleeping...Retrying. Failover error gotten. Sleeping...Retrying.
 Failover ended ...resuming services
7521 WARD SALESMAN
7566 JONES MANAGER
7654 MARTIN SALESMAN
7698 BLAKE MANAGER
7782 CLARK MANAGER
7788 SCOTT ANALYST
7839 KING PRESIDENT
7844 TURNER SALESMAN
7876 ADAMS CLERK
7900 JAMES CLERK
7902 FORD ANALYST

OCI and Advanced Queuing

OCI Programming Advanced Topics 9-25

OCI and Advanced Queuing
The OCI provides an interface to Oracle’s Advanced Queuing feature. Oracle AQ

provides message queuing as an integrated part of the Oracle server. Oracle AQ

provides this functionality by integrating the queuing system with the database,

thereby creating a message-enabled database. By providing an integrated solution

Oracle AQ frees application developers to devote their efforts to their specific

business logic rather than having to construct a messaging infrastructure.

Note: In order to use advanced queuing, you must be using the Oracle8i
Enterprise Edition.

See Also: For detailed information about AQ, including concepts, features, and

examples, refer to the chapter on Advanced Queuing in the Oracle8i Application
Developer’s Guide - Advanced Queuing.

For example code demonstrating the use of the OCI with AQ, refer to the

description of OCIAQEnq() on page 15-7.

OCI Advanced Queuing Functions
The OCI library includes several functions related to advanced queuing:

■ OCIAQEnq()

■ OCIAQDeq()

■ OCIAQListen()

Chapter 15, "OCI Relational Functions", contains complete descriptions of these

functions and their parameters.

OCI Advanced Queuing Descriptors
The following descriptors are used by OCI AQ operations:

■ OCIAQEnqOptions - equivalent to dbms_aq.enqueue_options_t

■ OCIAQDeqOptions - equivalent to dbms_aq.dequeue_options_t

■ OCIAQMsgProperties - equivalent to dbms_aq.message_properties_t

■ OCIAQAgent - equivalent to sys.aq$_agent

You can allocate these descriptors with respect to the service handle using the

standard OCIDescriptorAlloc() call. The following code shows examples of this:

OCIDescriptorAlloc(svch, &enqueue_options, OCI_DTYPE_AQENQ_OPTIONS, 0, 0);

OCI and Advanced Queuing

9-26 Oracle Call Interface Programmer’s Guide

OCIDescriptorAlloc(svch, &dequeue_options, OCI_DTYPE_AQDEQ_OPTIONS, 0, 0);
OCIDescriptorAlloc(svch, &message_properties, OCI_DTYPE_AQMSG_PROPERTIES, 0, 0);
OCIDescriptorAlloc(svch, &agent, OCI_DTYPE_AQAGENT, 0, 0);

As with other OCI descriptors, the structure of these descriptors is opaque to the

user. Each descriptor has a variety of attributes which can be set and/or read. These

attributes are described in more detail in "Advanced Queueing Descriptor

Attributes" on page A-26.

Advanced Queuing in OCI vs. PL/SQL
The following tables compare functions, parameters, and options for OCI AQ

functions and descriptors, and PL/SQL AQ functions in the dbms_aq package.

PL/SQL Function OCI Function

DBMS_AQ.ENQUEUE OCIAQEnq()

DBMS_AQ.DEQUEUE OCIAQDeq()

DBMS_AQ.LISTEN OCIAQListen()

DBMS_AQ.ENQUEUE Parameter OCIAQEnq() Parameter

queue_name queue_name

enqueue_options enqueue_options

message_properties message_properties

payload payload

msgid msgid

Note: OCIAQEnq() also requires the following additional parameters: svch,
errh, payload_tdo, payload_ind, and flags

DBMS_AQ.DEQUEUE Parameter OCIAQDeq() Parameter

queue_name queue_name

dequeue_options dequeue_options

message_properties message_properties

payload payload

OCI and Advanced Queuing

OCI Programming Advanced Topics 9-27

msgid msgid

Note: OCIAQDeq() also requires the following additional parameters: svch,
errh, payload_tdo, payload_ind, and flags

DBMS_AQ.LISTEN Parameter OCIAQListen() Parameter

agent_list agent_list

wait wait

agent agent

Note: OCIAQListen() also requires the following additional parameters:
svchp, errhp, num_agents, and flags

PL/SQL Agent Parameter OCIAQAgent Attribute

name OCI_ATTR_AGENT_NAME

address OCI_ATTR_AGENT_ADDRESS

protocol OCI_ATTR_AGENT_PROTOCOL

PL/SQL Message Property OCIAQMsgProperties Attribute

priority OCI_ATTR_PRIORITY

delay OCI_ATTR_DELAY

expiration OCI_ATTR_EXPIRATION

correlation OCI_ATTR_CORRELATION

attempts OCI_ATTR_ATTEMPTS

recipient_list OCI_ATTR_RECIPIENT_LIST

exception_queue OCI_ATTR_EXCEPTION_QUEUE

enqueue_time OCI_ATTR_ENQ_TIME

state OCI_ATTR_MSG_STATE

sender_id OCI_ATTR_SENDER_ID

DBMS_AQ.DEQUEUE Parameter OCIAQDeq() Parameter

OCI and Advanced Queuing

9-28 Oracle Call Interface Programmer’s Guide

original_msgid OCI_ATTR_ORIGINAL_MSGID

PL/SQL Enqueue Option OCIAQEnqOptions Attribute

visibility OCI_ATTR_VISIBILITY

relative_msgid OCI_ATTR_RELATIVE_MSGID

sequence_deviation OCI_ATTR_SEQUENCE_DEVIATION

PL/SQL Dequeue Option OCIAQDeqOptions Attribute

consumer_name OCI_ATTR_CONSUMER_NAME

dequeue_mode OCI_ATTR_DEQ_MODE

navigation OCI_ATTR_NAVIGATION

visibility OCI_ATTR_VISIBILITY

wait OCI_ATTR_WAIT

msgid OCI_ATTR_DEQ_MSGID

correlation OCI_ATTR_CORRELATION

PL/SQL Message Property OCIAQMsgProperties Attribute

Publish-Subscribe Notification

OCI Programming Advanced Topics 9-29

Publish-Subscribe Notification
The publish-subscribe notification feature allows an OCI application to receive

client notifications. Figure 9–1, "Publish-Subscribe Model" illustrates the process. An

OCI application can:

■ register interest in notifications in the AQ namespace and be notified when an

enqueue occurs.

■ register interest in subscriptions to database events and receive notifications

when the events are triggered.

■ mange registrations, such as disabling registrations temporarily or dropping the

registrations entirely.

■ post, or send, notifications to registered clients.

Registered clients are notified asynchronously when events are triggered or by an

explicit AQ enqueue. Clients do not need to be connected to a database.

For information on Advanced Queuing, see "OCI and Advanced Queuing" on

page 9-25.

See Also: For information on creating queues and about AQ, including

concepts, features, and examples, refer to the chapter on Advanced Queuing in

the Oracle8i Application Developer’s Guide - Advanced Queuing. For information on

creating triggers, refer to the chapter on Commands in the Oracle8i SQL
Reference.

Publish-Subscribe Notification

9-30 Oracle Call Interface Programmer’s Guide

Figure 9–1 Publish-Subscribe Model

Publish-Subscribe Functions
The following steps are required in an OCI application to register and receive

notifications for events. It is assumed that the appropriate event trigger or AQ

queue has been set up. Also, the initialization parameter COMPATIBLE must be set

to 8.1 or higher.

Detailed descriptions of the functions noted can be found in Chapter 15, "OCI

Relational Functions". For examples of the use of these functions in an application,

see "Publish-Subscribe Example" on page 9-33.

Note: The publish-subscribe feature is only available on multi-threaded

platforms.

1. Execute OCIInitialize() with OCI_EVENTS mode to specify that the application

is interested in registering for and receiving notifications. This starts a dedicated

listening process for notifications on the client.

Client
Client

Consumer

Client

Client

Channel

push

Lightwieght
Queues

Persistent
Transactional

Queues

Supplier

push

Trigger
Mechanism

System
Events

Clients

Publish-Subscribe Notification

OCI Programming Advanced Topics 9-31

2. Execute OCIHandleAlloc() with handle type OCI_HTYPE_SUBSCRIPTION to

allocate a subscription handle.

3. Execute OCIAttrSet() to set the subscription handle attributes for:

■ OCI_ATTR_SUBSCR_NAME - subscription name

■ OCI_ATTR_SUBSCR_NAMESPACE - subscription namespace

■ OCI_ATTR_SUBSCR_CALLBACK - notification callback

■ OCI_ATTR_SUBSCR_CTX - callback context

■ OCI_ATTR_SUBSCR_PAYLOAD - payload buffer for posting

All these attributes, except OCI_ATTR_SUBSCR_PAYLOAD, must be set before

registering a subscription. OCI_ATTR_SUBSCR_PAYLOAD is required before

posting to a subscription. For information on these attributes, see "Subscription

Handle Attributes" on page A-37.

4. Define the callback routine to be used with the subscription handle. For

information, see "Notification Callback" on page 9-31.

5. Execute OCISubscriptionRegister() to register with the subscription(s). This call

can register interest in several subscriptions at the same time.

The following functions are used to manage publish-subscribe notification. Detailed

descriptions of each function can be found in Chapter 15, "OCI Relational

Functions".

Notification Callback
The client needs to register a notification callback that gets invoked when there is

some activity on the subscription for which interest has been registered. In the AQ

namespace, for instance, this occurs when a message of interest is enqueued.

Table 9–1 Publish-Subscribe Functions

Function Purpose

OCISvcCtxToLda() Disables a subscription.

OCISubscriptionEnable() Enables a subscription.

OCISubscriptionPost() Posts a subscription.

OCISubscriptionRegister() Registers a subscription.

OCISubscriptionUnRegister() Unregisters a subscription.

Publish-Subscribe Notification

9-32 Oracle Call Interface Programmer’s Guide

This callback is typically set via the OCI_ATTR_SUBSCR_CALLBACK attribute of

the subscription handle. For information, see "Subscription Handle Attributes" on

page A-37.

The callback must return a value of OCI_CONTINUE and adhere to the following

specification:

typedef ub4 (*OCISubscriptionNotify) (dvoid *pCtx,
 OCISubscription *pSubscrHp,
 dvoid *pPayload,
 ub4 *iPayloadLen,
 dvoid *pDescriptor,
 ub4 iMode);

The parameters are described as follows:

pCtx (IN) A user-defined context specified when the callback was registered.

pSubscrHp (IN) The subscription handle specified when the callback was registered.

pPayload (IN) The payload for this notification. For this release, only ub1 * (a

sequence of bytes) for the payload is supported.

iPayloadLen (IN) The length of the payload for this notification.

pDescriptor (IN) The namespace-specific descriptor. Namespace-specific parameters

can be extracted from this descriptor. The structure of this descriptor is opaque to

the user and its type is dependent on the namespace.

The attributes of the descriptor are namespace-specific. For advanced queuing, the

descriptor is OCI_DTYPE_AQNFY. The attributes of this descriptor are:

■ Queue Name - OCI_ATTR_QUEUE_NAME

■ Consumer Name - OCI_ATTR_CONSUMER_NAME

■ Message Id - OCI_ATTR_NFY_MSGID

■ Message Properties - OCI_ATTR_MSG_PROP

For more information about OCI and advanced queueing, refer to "OCI and

Advanced Queuing" on page 9-25.

iMode (IN) Call-specific mode. Valid value:

■ OCI_DEFAULT - executes the default call

Publish-Subscribe Notification

OCI Programming Advanced Topics 9-33

Publish-Subscribe Example
This example shows how system events, client notification, and Advanced Queuing

work together to implement publish/subscription notification.

The following PL/SQL code creates all objects necessary to support a

publish-subscribe mechanism under the user schema, pubsub. In this code, the

Agent snoop subscribes to messages that are published at logon events. Note that

the user pubsub needs AQ_ADMINISTRATOR_ROLE and AQ_USER_ROLE

privileges to use Advance Queuing functionality. Also, the initialization parameter

_SYSTEM_TRIG_ENABLED must be set to TRUE (default) to enable triggers for

system events.

Rem --
REM create queue table for persistent multiple consumers
Rem --
connect pubsub/pubsub;
Rem Create or replace a queue table
begin
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 QUEUE_TABLE=>’pubsub.raw_msg_table’,
 MULTIPLE_CONSUMERS => TRUE,
 QUEUE_PAYLOAD_TYPE =>’RAW’,
 COMPATIBLE => ’8.1.5’);
end;
/
Rem --
Rem Create a persistent queue for publishing messages
Rem --
Rem Create a queue for logon events
begin
 DBMS_AQADM.CREATE_QUEUE(QUEUE_NAME=>’pubsub.logon’,
 QUEUE_TABLE=>’pubsub.raw_msg_table’,
 COMMENT=>’Q for error triggers’);
end;
/
Rem --
Rem Start the queue
Rem --
begin
 DBMS_AQADM.START_QUEUE(’pubsub.logon’);
end;
/
Rem --

Publish-Subscribe Notification

9-34 Oracle Call Interface Programmer’s Guide

Rem define new_enqueue for convenience
Rem --
create or replace procedure new_enqueue(queue_name in varchar2,
 payload in raw ,
correlation in varchar2 := NULL,
exception_queue in varchar2 := NULL)
as
 enq_ct dbms_aq.enqueue_options_t;
 msg_prop dbms_aq.message_properties_t;
 enq_msgid raw(16);
 userdata raw(1000);
begin
 msg_prop.exception_queue := exception_queue;
 msg_prop.correlation := correlation;
 userdata := payload;
 DBMS_AQ.ENQUEUE(queue_name,enq_ct, msg_prop,userdata,enq_msgid);
end;
/
Rem --
Rem add subscriber with rule based on current user name,
Rem using correlation_id
Rem --
declare
subscriber sys.aq$_agent;
begin
 subscriber := sys.aq$_agent(’SNOOP’, null, null);
 dbms_aqadm.add_subscriber(queue_name => ’pubsub.logon’,
 subscriber => subscriber,
 rule => ’CORRID = ’’SCOTT’’ ’);
end;
/
Rem --
Rem create a trigger on logon on database
Rem --
Rem create trigger on after logon
create or replace trigger systrig2
 AFTER LOGON
 ON DATABASE
 begin
 new_enqueue(’pubsub.logon’, hextoraw(’9999’), dbms_standard.login_user);
 end;
/

After the subscriptions are created, the client needs to register for notification using

callback functions. The following sample code performs necessary steps for

Publish-Subscribe Notification

OCI Programming Advanced Topics 9-35

registration. The initial steps of allocating and initializing session handles are

omitted here for sake of clarity.

ub4 namespace = OCI_SUBSCR_NAMESPACE_AQ;
/* callback function for notification of logon of user ’scott’ on database */
ub4 notifySnoop(ctx, subscrhp, pay, payl, desc, mode)
 dvoid *ctx;
 OCISubscription *subscrhp;
 dvoid *pay;
 ub4 payl;
 dvoid *desc;
 ub4 mode;
{
 printf("Notification : User Scott Logged on\n");
}
int main()
{
 OCISession *authp = (OCISession *) 0;
 OCISubscription *subscrhpSnoop = (OCISubscription *)0;

/***
Initialize OCI Process/Environment
Initialize Server Contexts
Connect to Server
Set Service Context
**/
 /* Registration Code Begins */
/* Each call to initSubscriptionHn allocates
 and Initialises a Registration Handle */
 initSubscriptionHn(&subscrhpSnoop, /* subscription handle */
 "PUBSUB.SNOOP:ADMIN", /* subscription name */
/* <queue_name>:<agent_name> */
 (dvoid*)notifySnoop); /* callback function */

/***
The Client Process does not need a live Session for Callbacks
End Session and Detach from Server
**/
 OCISessionEnd (svchp, errhp, authp, (ub4) OCI_DEFAULT);
 /* detach from server */
 OCIServerDetach(srvhp, errhp, OCI_DEFAULT);
 while (1) /* wait for callback */
 sleep(1);
}

Publish-Subscribe Notification

9-36 Oracle Call Interface Programmer’s Guide

void initSubscriptionHn (subscrhp,
 subscriptionName,
 func)
OCISubscription **subscrhp;
 char* subscriptionName;
 dvoid * func;
{
 /* allocate subscription handle */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)subscrhp,
 (ub4) OCI_HTYPE_SUBSCRIPTION,
 (size_t) 0, (dvoid **) 0);

 /* set subscription name in handle */
 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) subscriptionName,
 (ub4) strlen((char *)subscriptionName),
 (ub4) OCI_ATTR_SUBSCR_NAME, errhp);

 /* set callback function in handle */
 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) func, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);
 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) 0, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CTX, errhp);

 /* set namespace in handle */
 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &namespace, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);
 checkerr(errhp, OCISubscriptionRegister(svchp, subscrhp, 1, errhp,
 OCI_DEFAULT));
}

If user SCOTT logs on to the database, the client is notified and the call back

function notifySnoop is called.

Direct Path Loading

OCI Programming Advanced Topics 9-37

Direct Path Loading
The direct path load interface allows an OCI application to access the direct path

load engine of the Oracle database server to perform the functions of the Oracle

SQL*Loader utility. This functionality provides the ability to load data from external

files into Oracle database objects, either a table or a partition of a partitioned table.

Figure 9–2 Direct Path Loading

The OCI direct path load interface has the ability to load multiple rows by loading a

direct path stream which contains data for multiple rows.

To use the direct path API, the client application performs the following steps:

1. Perform the OCI initialization.

2. Allocate a direct path context handle and set the attributes.

3. Supply the name of the object (table, partition, or sub-partition) to be loaded.

4. Describe the external data types of the columns of the object(s).

5. Prepare the direct path interface.

6. Allocate one or more column arrays.

Block
Formatter

Input
Buffer

Column
Array

Client Server

Data

ColumnArrayToStream

Stream
Format

Stream
Format

Two-Task

Column
Array

OracleTable

Direct Path Loading

9-38 Oracle Call Interface Programmer’s Guide

7. Allocate one or more direct path streams.

8. Set entries in the column array to point to the input data value for each column.

9. Convert a column array to a direct path stream format.

10. Either load the direct path stream, or save the direct path stream to a file to be

loaded at a later time.

11. Retrieve any errors which may have occurred.

12. Invoke the direct path finishing function.

13. Free handles and data structures.

14. Disconnect from the server.

A direct load operation requires that the object being loaded is locked to prevent

DML on the object. Note that queries are lock free and are allowed while the object

is being loaded. The mode of the DML lock, and which DML locks are obtained

depend upon the specification of the OCI_DIRPATH_PARALLEL_LOAD option,

and if a partition or sub-partition load is being done as opposed to an entire table

load. For more information on OCI_DIRPATH_PARALLEL_LOAD, see

OCIDirPathPrepare() on page 15-85.

■ For a table load, if the OCI_DIRPATH_PARALLEL_LOAD option set to:

■ FALSE, the table DML X-Lock is acquired.

■ TRUE, the table DML S-Lock is acquired.

■ For a partition load, if the OCI_DIRPATH_PARALLEL_LOAD option set to:

■ FALSE, the table DML SX-Lock and partition DML X-Lock is acquired.

■ TRUE, the table DML SS-Lock and partition DML S-Lock is acquired.

Limitations and Restrictions
The direct path load interface has the following limitations which are the same as

SQL*Loader:

■ triggers are not supported

■ check constraints are not supported

■ referential integrity constraints are not supported

■ clustered tables are not supported

■ loading of remote objects is not supported

Direct Path Loading

OCI Programming Advanced Topics 9-39

■ user-defined types are not supported

■ LOBs must be specified after all scalar columns

■ LONGs must be specified last

Datatypes Supported
The following external datatypes are valid for columns in a direct path load

operation: SQLT_CHR, SQLT_DAT, SQLT_INT, SQLT_UIN, SQLT_FLT, SQLT_PDN,

SQLT_BIN, or SQLT_NUM. For information on setting or retrieving the datatype of

a column, see OCI_ATTR_DATA_TYPE on page A-47. For information on

datatypes, see Chapter 3, "Datatypes".

Direct Path Handles
A direct path load corresponds to a direct path array insert operation. The direct

path load interface uses the following handles to keep track of the objects loaded

and the specification of the data operated on:

■ direct path context

■ direct path column array

■ direct path stream

For information about the attributes of direct path load handles, refer to "Direct

Path Loading Handle Attributes" on page A-39. For information about column

parameter attributes, see "Direct Path Column Parameter Attributes" on page A-44.

Direct Path Context
This handle needs to be allocated for each object, either a table or a partition of a

partitioned table, being loaded. Because a OCIDirPathCtx handle is the parent

handle of the OCIDirPathColArray and OCIDirPathStream handles, freeing a

OCIDirPathCtx handle frees its child handles also. A direct path context is allocated

with OCIHandleAlloc().

OCIEnv *envp;
OCIDirPathCtx *dpctx;
sword error;

error = OCIHandleAlloc((dvoid *)envp, (dvoid **)&dpctx,
 OCI_HTYPE_DIRPATH_CTX, 0,(dvoid **)0);

Note that the parent handle of a direct path context is always the environment

handle. A direct path context is freed with OCIHandleFree().

Direct Path Loading

9-40 Oracle Call Interface Programmer’s Guide

error = OCIHandleFree(dpctx, OCI_HTYPE_DIRPATH_CTX);

Direct Path Column Array
This handle is used to present an array of rows to the direct path interface. A row is

represented by three arrays: column values, column lengths, and column flags.

Methods on a column array include: allocate the array handle and set/get values

corresponding to an array entry.

A direct path column array handle is allocated with OCIHandleAlloc(). The

following code fragment shows explicit allocation of the direct path column array

handle:

OCIDirPathCtx *dpctx;
OCIDirPathColArray *dpca;
sword error;
error = OCIHandleAlloc((dvoid *)dpctx, (dvoid **)&dpca,

 OCI_HTYPE_DIRPATH_COLUMN_ARRAY, 0, (dvoid **)0);

A direct path column array is freed with OCIHandleFree().

error = OCIHandleFree(dpca, OCI_HTYPE_DIRPATH_COLUMN_ARRAY);

Freeing a OCIDirPathColArray handle also frees the column array associated with

the handle.

Direct Path Stream
This handle is used by the conversion operation, OCIDirPathColArrayToStream(),
and by the load operation, OCIDirPathLoadStream().

Direct path stream handles is allocated by the client with OCIHandleAlloc(). The

structure of a OCIDirPathStream handle can be thought of as a pair in the form

(buffer, buffer length).

A direct path stream is a linear representation of Oracle table data. The conversion

operations always append to the end of the stream. Load operations always start

from the beginning of the stream. After a stream is completely loaded, the stream

must be reset by calling OCIDirPathStreamReset().

The following example shows a direct path stream handle allocated with

OCIHandleAlloc(). The parent handle is always a OCIDirPathCtx handle:

OCIDirPathCtx *dpctx;
OCIDirPathStream *dpstr;
sword error;
error = OCIHandleAlloc((dvoid *)dpctx, (dvoid **)&dpstr,

Direct Path Loading

OCI Programming Advanced Topics 9-41

 OCI_HTYPE_DIRPATH_STREAM, 0,(dvoid **)0);

A direct path stream handle is freed via OCIHandleFree().

error = OCIHandleFree(dpstr, OCI_HTYPE_DIRPATH_STREAM);

Note that freeing the direct path stream handle will also free any stream buffer

allocated by OCIDirPathStreamAlloc().

Direct Path Interface Functions
The functions listed in this section are used with the direct path load interface.

Detailed descriptions of each function can be found in Chapter 15, "OCI Relational

Functions".

Operations on the direct path context are performed by the functions in Table 9–2,

"Direct Path Context Functions".

Table 9–2 Direct Path Context Functions

Operations on the direct path column array are performed by the functions in

Table 9–3, "Direct Path Column Array Functions".

Table 9–3 Direct Path Column Array Functions

Function Purpose

OCIDirPathAbort() Aborts a direct path operation

OCIDirPathFinish() Commits the loaded data

OCIDirPathPrepare() Prepares direct path interface to convert or load rows

OCIDirPathLoadStream() Loads data that has been converted to direct path stream
format

Function Purpose

OCIDirPathColArrayEntryGet() Gets a specified entry in a column array

OCIDirPathColArrayEntrySet() Sets a specified entry in a column array to a specific
value

OCIDirPathColArrayRowGet() Gets the base row pointers for a specified row number

OCIDirPathColArrayReset() Resets the row array state

Direct Path Loading

9-42 Oracle Call Interface Programmer’s Guide

Operations on the direct path stream are performed by the functions inTable 9–4,

"Direct Path Stream Functions".

Table 9–4 Direct Path Stream Functions

Direct Path Load Example
The following sample code illustrates the use of several of the OCI direct path

interfaces. It is not a complete code example.

The following data structure is used in the example.

/* load control structure */
struct loadctl
{
 ub4 nrow_ctl; /* number of rows in column array */
 ub2 ncol_ctl; /* number of columns in column array */
 OCIEnv *envhp_ctl; /* environment handle */
 OCIServer *srvhp_ctl; /* server handle */
 OCIError *errhp_ctl; /* error handle */
 OCIError *errhp2_ctl; /* another error handle */
 OCISvcCtx *svchp_ctl; /* service context */
 OCISession *authp_ctl; /* authentication context */
 OCIParam *colLstDesc_ctl; /* column list parameter handle */
 OCIDirPathCtx *dpctx_ctl; /* direct path context */
 OCIDirPathColArray *dpca_ctl; /* direct path column array handle */
 OCIDirPathStream *dpstr_ctl; /* direct path stream handle */
 ub1 *buf_ctl; /* pre-alloc’d buffer for out-of-line data */
 ub4 bufsz_ctl; /* size of buf_ctl in bytes */
 ub4 bufoff_ctl; /* offset into buf_ctl which is not in use */
 ub4 *otor_ctl; /* Offset to Recnum mapping */
 ub1 *inbuf_ctl; /* buffer for input records */
 struct pctx pctx_ctl; /* partial field context */
 };

OCIDirPathColArrayToStream() Converts from a column array format to a direct path
stream format

Function Purpose

OCIDirPathStreamReset() Resets the direct stream state

Function Purpose

Direct Path Loading

OCI Programming Advanced Topics 9-43

The init_load function performs a direct path load using the direct path API on the

table described by tblp. The loadctl structure given by ctlp has an appropriately

initialized environment and service context. A connection has been made to the

server.

STATICF void
init_load(ctlp, tblp)
struct loadctl *ctlp;
struct tbl *tblp;
{
 struct col *colp;
 struct fld *fldp;
 sword ociret; /* return code from OCI calls */
 OCIDirPathCtx *dpctx; /* direct path context */
 OCIParam *colDesc; /* column parameter descriptor */
 ub1 parmtyp;
 ub1 *timestamp = (ub1 *)0;
 ub4 size;
 ub4 i;
 ub4 pos;

 /* allocate and initialize a direct path context */
 OCI_CHECK(ctlp->envhp_ctl, OCI_HTYPE_ENV, ociret, ctlp,
 OCIHandleAlloc((dvoid *)ctlp->envhp_ctl,
 (dvoid **)&ctlp->dpctx_ctl,
 (ub4)OCI_HTYPE_DIRPATH_CTX,
 (size_t)0, (dvoid **)0));

 dpctx = ctlp->dpctx_ctl; /* shorthand */

 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)dpctx, (ub4)OCI_HTYPE_DIRPATH_CTX,
 (dvoid *)tblp->name_tbl,
 (ub4)strlen((const char *)tblp->name_tbl),
 (ub4)OCI_ATTR_NAME, ctlp->errhp_ctl));
...
Additional attributes, such as OCI_ATTR_SUB_NAME and OCI_ATTR_SCHEMA_

NAME, are also set here. After the attributes have been set, prepare the load.

 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIDirPathPrepare(dpctx, ctlp->svchp_ctl, ctlp->errhp_ctl));

Allocate the column array and stream handles. Note that the direct path context

handle is the parent handle for the column array and stream handles. Also note that

Direct Path Loading

9-44 Oracle Call Interface Programmer’s Guide

Oracle errors are returned with the environment handle associated with the direct

path context.

 OCI_CHECK(ctlp->envhp_ctl, OCI_HTYPE_ENV, ociret, ctlp,
 OCIHandleAlloc((dvoid *)ctlp->dpctx_ctl, (dvoid **)&ctlp->dpca_ctl,
 (ub4)OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 (size_t)0, (dvoid **)0));

 OCI_CHECK(ctlp->envhp_ctl, OCI_HTYPE_ENV, ociret, ctlp,
 OCIHandleAlloc((dvoid *)ctlp->dpctx_ctl,(dvoid **)&ctlp->dpstr_ctl,
 (ub4)OCI_HTYPE_DIRPATH_STREAM,
 (size_t)0, (dvoid **)0));

Get number of rows and columns in the column array just allocated.

 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrGet(ctlp->dpca_ctl, (ub4)OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 &ctlp->nrow_ctl, 0, OCI_ATTR_NUM_ROWS,
 ctlp->errhp_ctl));

 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrGet(ctlp->dpca_ctl, (ub4)OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 &ctlp->ncol_ctl, 0, OCI_ATTR_NUM_COLS,
 ctlp->errhp_ctl));

Set the input data fields to their corresponding data columns.

OCIDirPathColArrayEntrySet(ctlp->dpca_ctl, ctlp->errhp_ctl,
 rowoff, colp->id_col,
 cval, clen, cflg));

Reset column array state in case a previous conversion needed to be continued or a

row is expecting more data.

(void) OCIDirPathColArrayReset(ctlp->dpca_ctl, ctlp->errhp_ctl);

Reset the stream state to start a new stream. Otherwise, data in the stream is

appended to existing data.

(void) OCIDirPathStreamReset(ctlp->dpstr_ctl, ctlp->errhp_ctl);

After inputting the data, convert the data in the column array to stream format and

filter out any bad records.

Direct Path Loading

OCI Programming Advanced Topics 9-45

ocierr = OCIDirPathColArrayToStream(ctlp->dpca_ctl, ctlp->dpctx_ctl,
 ctlp->dpstr_ctl, ctlp->errhp_ctl,
 rowcnt, startoff);

Load the stream. Note that the position in the stream is maintained internally to the

stream handle, along with offset information for the column array which produced

the stream. When the conversion to stream format is done, the data is appended to

the stream. It is the responsibility of the caller to reset the stream when appropriate.

On errors, the position is moved to the next row, or the end of the stream if the error

occurs on the last row. The next OCIDirPathLoadStream() call starts on the next row,

if any. If a OCIDirPathLoadStream() call is made, and the end of a stream has been

reached, OCI_NO_DATA is returned.

ocierr = OCIDirPathLoadStream(ctlp->dpctx_ctl, ctlp->dpstr_ctl,
 ctlp->errhp_ctl);

Finish the direct path load.

OCIDirPathFinish(ctlp->dpctx_ctl, ctlp->errhp_ctl);

Free all the direct path handles allocated. Note that direct path column array and

stream handles are freed when the parent direct path context handle is freed. The

following code statements that free the direct path column array and stream

handles are not necessary but included here as examples.

ociret = OCIHandleFree((dvoid *)ctlp->dpca_ctl,
 OCI_HTYPE_DIRPATH_COLUMN_ARRAY);
ociret = OCIHandleFree((dvoid *)ctlp->dpstr_ctl,
 OCI_HTYPE_DIRPATH_STREAM);
ociret = OCIHandleFree((dvoid *)ctlp->dpctx_ctl,
 OCI_HTYPE_DIRPATH_CTX);

Direct Path Loading

9-46 Oracle Call Interface Programmer’s Guide

Part II
 OCI Object Concepts

This part of the book contains chapters that describe the use of Oracle8 objects with

the OCI:

■ Chapter 10, "OCI Object-Relational Programming", provides an introduction to

object concepts and object-relational programming with the OCI.

■ Chapter 11, "Object-Relational Datatypes", discusses object datatypes and how

you can represent database objects as C structures. This chapter also describes

OCI functions that map and manipulate datatypes.

■ Chapter 12, "Binding and Defining in Object Applications", covers binding and

defining object-relational datatypes.

■ Chapter 13, "Object Cache and Object Navigation", describes the object cache

and how to navigate between objects.

■ Chapter 14, "Using the Object Type Translator", discusses how the OTT is used

to convert database type definitions into host language representations.

Note: The functionality described in this part of the book is only available if you

have installed the Oracle8i Enterprise Edition.

OCI Object-Relational Programming 10-1

10
OCI Object-Relational Programming

This chapter introduces the OCI’s facility for working with objects in an Oracle

database server. It also discusses the OCI’s object navigational function calls. The

following sections are included in this chapter:

■ Overview

■ OCI Object Overview

■ Working with Objects in the OCI

■ Developing an OCI Object Application

Note: The functionality described in this chapter is only available if you have

installed the Oracle8i Enterprise Edition.

Overview

10-2 Oracle Call Interface Programmer’s Guide

Overview
This chapter is divided into several sections that cover the basic concepts involved

in writing OCI applications to manipulate Oracle objects and the OCI navigational

function calls.

■ OCI Object Overview presents a brief introduction to the OCI facilities for

working with objects.

■ Working with Objects in the OCI describes the basic structure of an OCI object

application and the different types of objects with which the OCI works. This

section provides a foundation upon which the rest of the chapter builds.

■ Developing an OCI Object Application discusses each of the main elements of

an OCI object application in more detail. Simple examples illustrate the most

important points.

The following chapters contain additional information about using the OCI to work

with objects:

■ Chapter 11, "Object-Relational Datatypes", discusses the datatypes used by OCI

object-relational applications. This information supplements that found in

Chapter 3, "Datatypes". This chapter also includes a discussion of the OCI

datatype mapping and manipulation functions.

■ Chapter 12, "Binding and Defining in Object Applications", discusses

information about bind and define operations specific to object-relational

datatypes. This information supplements that in Chapter 2, "OCI Programming

Basics", and Chapter 5, "Binding and Defining".

■ Chapter 13, "Object Cache and Object Navigation", discusses the object cache

and object navigation. This chapter includes a discussion of the OCI

navigational functions.

■ Chapter 14, "Using the Object Type Translator" discusses the Object Type

Translator.

Complete descriptions of the OCI object-relational functions are contained in

Chapter 16, "OCI Navigational and Type Functions", and Chapter 17, "OCI

Datatype Mapping and Manipulation Functions". Additionally, some object

functionality is included in those functions described in Chapter 15, "OCI Relational

Functions".

OCI Object Overview

OCI Object-Relational Programming 10-3

OCI Object Overview
The Oracle Call Interface (OCI) provides functions for managing database access

and processing SQL statements. These functions are described in detail in Part I of

this guide. The SQL capabilities of the OCI relational interface allow an application

to access objects from an Oracle database server through SQL statements.

Note: The Oracle OCI release 8 libraries are supported only for C.

The OCI allows applications to access any of the datatypes found in the Oracle

database server, including scalar values, collections, and instances of any object

type. This includes all of the following:

■ objects

■ variable-length arrays (VARRAYs)

■ nested tables (multisets)

■ references (REFs)

■ LOBs

To take full advantage of Oracle server object capabilities, most applications need to

do more than just access objects. After an object has been retrieved, the application

must navigate through references from that object to other objects. The OCI

provides the capability to do this. Through the OCI’s object navigational calls, an

application can perform any of the following functions on Oracle objects:

■ creating, accessing, locking, deleting, copying, and flushing objects

■ getting references to the objects and their meta-objects

■ dynamically getting and setting values of objects’ attributes

The OCI navigational calls are discussed in more detail later in this chapter.

The OCI also provides the ability to access type information stored in an Oracle

database. The OCIDescribeAny() function enables an application to access most

information relating to types stored in the database, including information about

methods, attributes, and type meta-data. OCIDescribeAny() is discussed in

Chapter 6, "Describing Schema Metadata".

Applications interacting with Oracle objects need a way to represent those objects in

a host language format. Oracle8i provides a utility called the Object Type Translator

(OTT), which can convert type definitions in the database to C struct declarations.

The declarations are stored in a header file that can be included in an OCI

application.

Working with Objects in the OCI

10-4 Oracle Call Interface Programmer’s Guide

When type definitions are represented in C, the types of attributes are mapped to

special C variable types that are new to Oracle8i. The OCI includes a set of datatype
mapping and manipulation functions that enable an application to manipulate these

datatypes, and thus manipulate the attributes of objects. These functions are

discussed in more detail in Chapter 11, "Object-Relational Datatypes".

The terminology for objects can occasionally become confusing. In the remainder of

this chapter, the terms object and instance both refer to an object that is either stored

in the database or is present in the object cache.

Working with Objects in the OCI
Many of the programming principles that govern a relational OCI application (as

discussed in Chapter 2 through 6) are the same for an object-relational application.

An object-relational application uses the standard OCI calls to establish database

connections and process SQL statements. The difference is that the SQL statements

issued retrieve object references (or objects by value), which can then be

manipulated with the OCI’s object functions.

 Basic Object Program Structure
The basic structure of an OCI application that uses objects is essentially the same as

that for a relational OCI application, as described in the section "OCI Program

Structure" on page 2-3. That paradigm is reproduced here, with extra information

covering basic object functionality.

1. Initialize the OCI programming environment.

Note: You must initialize the environment in object mode.

Your application will most likely also need to include C struct representations

of database objects in a header file. These structs can be created by the

programmer, or, more easily, they can be generated by the Object Type

Translator (OTT), as described in Chapter 14, "Using the Object Type

Translator".

2. Allocate necessary handles, and establish a connection to a server.

3. Prepare a SQL statement for execution. This is a local (client-side) step, which

may include binding placeholders and defining output variables. In an

object-relational application, this SQL statement should return a reference (REF)

to an object.

Working with Objects in the OCI

OCI Object-Relational Programming 10-5

Note: It is also possible to fetch an entire object, rather than just a reference

(REF). If you SELECT a referenceable object, rather than pinning it, you get that

object by value. Alternately, you can select a non-referenceable object, as

described in "Fetching Embedded Objects" on page 10-15

4. Associate the prepared statement with a database server, and execute the

statement.

5. Fetch returned results.

In an object-relational application, this step entails retrieving the REF, and then

pinning the object to which it refers. Once the object is pinned, your application

will do some or all of the following:

– Manipulate the attributes of the object and mark it as dirty

– Follow a REF to another object or series of objects

– Access type and attribute information

– Navigate a complex object retrieval graph

– Flush modified objects to the server

6. Commit the transaction. This step implicitly flushes all modified objects to the

server and commits the changes.

7. Free statements and handles not to be reused or reexecute prepared statements

again.

All of these steps are discussed in more detail in the remainder of this chapter.

See Also: For information about using the OCI to connect to a server, process

SQL statements, and allocate handles, see Chapter 2, "OCI Programming Basics"

and the description of the OCI relational functions in Chapter 15, "OCI

Relational Functions".

For information about the OTT, refer to the section "Representing Objects in C

Applications" on page 10-8, and Chapter 14, "Using the Object Type Translator".

Persistent Objects, Transient Objects, and Values
Instances of an Oracle type are categorized into persistent objects and transient objects
based on their lifetime. Instances of persistent objects can be further divided into

standalone objects and embedded objects depending on whether or not they are

referenceable by way of an object identifier.

Note: The terms object and instance are used interchangeably in this manual.

Working with Objects in the OCI

10-6 Oracle Call Interface Programmer’s Guide

See Also: For more information about objects, refer to the Oracle8i Concepts

manual.

Persistent Objects
A persistent object is an object which is stored in an Oracle database. It may be

fetched into the object cache and modified by an OCI application. The lifetime of a

persistent object can exceed that of the application which is accessing it. Once it is

created, it remains in the database until it is explicitly deleted. There are two types

of persistent objects:

■ Standalone instances are stored in rows of a object table, and each one has a

unique object identifier. An OCI application can retrieve a REF to a standalone

instance, pin the object and navigate from the pinned object to other related

objects. Standalone object may also be referred to as referenceable objects.

It is also possible to SELECT a referenceable object, in which case you fetch the

object by value instead of fetching its REF.

■ Embedded instances are not stored as rows in a object table. They are

embedded within other structures. Examples of embedded objects are objects

which are attributes of another object, or instances which exist in an object

column of a database table. Embedded instances do not have object identifiers,

and OCI applications cannot get REFs to embedded instances.

Embedded objects may also be referred to as non-referenceable objects or value
instances. You may sometimes see them referred to as values, which is not to be

confused with scalar data values. The context should make the meaning clear.

The following SQL examples demonstrate the difference between these two types of

persistent objects.

Example 1, Standalone Objects
CREATE TYPE person_t AS OBJECT
 (name varchar2(30),
 age number(3));
CREATE TABLE person_tab OF person_t;

Objects which are stored in the object table person_tab are standalone instances.

They have object identifiers and are referenceable. They can be pinned in an OCI

application.

Example 2, Embedded Objects
CREATE TABLE department
 (deptno number,

Developing an OCI Object Application

OCI Object-Relational Programming 10-7

 deptname varchar2(30),
 manager person_t);

Objects which are stored in the manager column of the department table are

embedded objects. They do not have object identifiers, and they are not

referenceable. This means they cannot be pinned in an OCI application, and they

also never need to be unpinned. They are always retrieved into the object cache by
value.

Transient Objects
A transient object is an instance of an object type. It may have an object identifier,

and it has a lifetime which is determined by the application when the instance is

created. The application can also delete a transient object at any time.

Transient objects are often created by the application using the OCIObjectNew()
function to store temporary values for computation. Transient objects cannot be

converted to persistent objects. Their role is fixed at the time they are instantiated.

See Also: See the section "Creating Objects" on page 10-32 for more information

about using OCIObjectNew().

Values
In the context of this manual, a value refers to either:

■ a scalar value which is stored in a non-object column of a database table. An

OCI application can fetch values from a database by issuing SQL statements.

■ an embedded or non-referenceable object.

The context should make it clear which meaning is intended.

Note: It is possible to SELECT a referenceable object into the object cache, rather

than pinning it, in which case you fetch the object by value instead of fetching its

REF.

Developing an OCI Object Application
This section discusses the steps involved in developing a basic OCI object

application. Each step discussed in the section "Basic Object Program Structure" on

page 10-4 is described here in more detail.

Developing an OCI Object Application

10-8 Oracle Call Interface Programmer’s Guide

The following figure shows a simple program logic flow for how an application

might work with objects. For simplicity, some required steps are omitted. Each step

in this diagram is discussed in the following sections.

Figure 10–1 Basic Object Operational Flow

Representing Objects in C Applications
Before an OCI application can work with object types, those types must exist in the

database. Typically, you create types with SQL DDL statements, such as CREATE

TYPE.

When the Oracle server processes the type definition DDL commands, it stores the

type definitions in the data dictionary as type descriptor objects (TDOs).

When your application retrieves instances of object types from the database, it

needs to have a client-side representation of the objects. In a C program, the

representation of an object type is a struct . In an OCI object application, you may

also include a null indicator structure corresponding to each object type structure.

Note: Application programmers who wish to utilize object representations

other than the default structs generated by the object cache should refer to "The

Object Cache and Memory Management" on page 13-2.

Pin Object (Brings object into
client-side cache)

Operate on Object
in Cache

Mask Object
as Dirtied

Refresh Object

Flush Changes
to Object

Initialize OCI in
Object Mode

Developing an OCI Object Application

OCI Object-Relational Programming 10-9

Oracle8i provides a utility called the Object Type Translator (OTT), which generates

C struct representations of database object types for you. For example, if you have a

type in your database declared as

CREATE TYPE emp_t AS OBJECT
(name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary NUMBER);

the OTT produces the following C struct and corresponding null indicator struct:

struct emp_t
{
 OCIString * name;
 OCINumber empno;
 OCINumber deptno;
 OCIDate hiredate;
 OCINumber salary;
};
typedef struct emp_t emp_t

struct emp_t_ind
{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd deptno;
 OCIInd hiredate;
 OCIInd salary;
};
typedef struct emp_t_ind emp_t_ind;

The variable types used in the struct declarations are special types employed by the

OCI object calls. A subset of OCI functions manipulate data of these types. These

functions are mentioned later in this chapter, and are discussed in more detail in

Chapter 11, "Object-Relational Datatypes".

These struct declarations are automatically written to a .h file whose name is

determined by the OTT input parameters. You can include this header file in the

code files for an application to provide access to objects.

See Also: For more information about the OTT, see Chapter 14, "Using the

Object Type Translator".

Developing an OCI Object Application

10-10 Oracle Call Interface Programmer’s Guide

For more information on the use of the NULL indicator struct, see the section

"Nullness" on page 10-29.

Initializing Environment and Object Cache
If your OCI application will be accessing and manipulating objects, it is essential

that you specify a value of OCI_OBJECT for the mode parameter of the

OCIInitialize() call, which is the first OCI call in any OCI application. Specifying this

value for mode indicates to the OCI libraries that your application will be working

with objects. This notification has the following important effects:

■ it establishes the object run-time environment

■ it sets up the object cache

If the mode parameter of OCIInitialize() is not set to OCI_OBJECT, any attempt to use

an object-related function will result in an error.

The client-side object cache is allocated in the program's process space. This cache is

the memory for objects that have been retrieved from the server and are available to

your application.

Note: If you initialize the OCI environment in object mode, your application

allocates memory for the object cache, whether or not the application actually

uses object calls.

See Also: The object cache is mentioned throughout this chapter. For a detailed

explanation of the object cache, see Chapter 13, "Object Cache and Object

Navigation".

Making Database Connections
Once the OCI environment has been properly initialized, the application can

connect to a server. This is accomplished through the standard OCI connect calls

described in "OCI Programming Steps" on page 2-17. When using these calls, no

additional considerations need to be made because this application will be

accessing objects.

There is only one object cache allocated per OCI environment. All objects retrieved

or created via different connections within the environment use the same physical

object cache.

Developing an OCI Object Application

OCI Object-Relational Programming 10-11

Retrieving an Object Reference from the Server
In order to work with objects, your application must first retrieve one or more

objects from the server. You accomplish this by issuing a SQL statement that returns

REFs to one or more objects.

Note: It is also possible for a SQL statement to fetch embedded objects, rather

than REFs, from a database. See the section "Fetching Embedded Objects" on

page 10-15 for more information.

In the following example, the application declares a text block that stores a SQL

statement designed to retrieve a REF to a single employee object from a object table

of employees (emp_tab) in the database, given a particular employee number

which is passed as an input variable (:emp_num) at run time:

text *selemp = (text *) "SELECT REF(e)
 FROM emp_tab e
 WHERE empno = :emp_num";

Your application should prepare and process this statement in the same way that it

would handle any relational SQL statement, as described in Chapter 2:

■ Prepare an application request, using OCIStmtPrepare().

■ Bind the host input variable using the appropriate bind call(s).

■ Declare and prepare an output variable to receive the employee object

reference. Here you would use an employee object reference, like the one

declared in "Representing Objects in C Applications" on page 10-8:

OCIRef *emp1_ref = (OCIRef *) 0; /* reference to an employee object */

When defining the output variable, set the dty datatype parameter for the define

call to SQLT_REF, the datatype constant for REF.

■ Execute the statement with OCIStmtExecute().

■ Fetch the resulting REF into emp1_ref , using OCIStmtFetch().

At this point, you could use the object reference to access and manipulate an object

or objects from the database.

See Also: For general information about preparing and executing SQL

statements, see the section "OCI Programming Steps" on page 2-17. For specific

information about binding and defining REF variables, refer to the sections

"Advanced Bind Operations" on page 5-9 and "Advanced Define Operations"

on page 5-16.

Developing an OCI Object Application

10-12 Oracle Call Interface Programmer’s Guide

For a code example showing REF retrieval and pinning, see the demonstration

programs included with your Oracle installation. For additional information,

refer to Appendix B, "OCI Demonstration Programs".

Pinning an Object
Upon completion of the fetch step, your application has a REF, or pointer, to an

object. The actual object is not currently available to work with. Before you can

manipulate an object, it must be pinned. Pinning an object loads the object instance

into the object cache, and enables you to access and modify the instance’s attributes

and follow references from that object to other objects, if necessary. Your application

also controls when modified objects are written back to the server.

Note: This section deals with a simple pin operation involving a single object at

a time. For information about retrieving multiple objects through complex

object retrieval, see the section "Complex Object Retrieval" on page 10-20.

An application pins an object by calling the function OCIObjectPin(). The

parameters for this function allow you to specify the pin option, pin duration, and lock
option for the object.

The following sample code illustrates a pin operation for the employee reference we

retrieved in the previous section:

if (OCIObjectPin(env, err, &emp1_ref, (OCIComplexObject *) 0,
 OCI_PIN_ANY,
 OCI_DURATION_TRANS,
 OCI_LOCK_X, &emp1) != OCI_SUCCESS)
 process_error(err);

In this example, process_error() represents an error-handling function. If the call to

OCIObjectPin() returns anything but OCI_SUCCESS, the error-handling function is

called. The parameters of the OCIObjectPin() function are as follows:

■ env is the OCI environment handle.

■ err is the OCI error handle.

■ emp1_ref is the reference that was retrieved through SQL.

■ (OCIComplexObject *) 0 indicates that this pin operation is not utilizing

complex object retrieval.

■ OCI_PIN_ANY is the pin option. See "Pinning an Object Copy" on page 13-7 for

more information.

Developing an OCI Object Application

OCI Object-Relational Programming 10-13

■ OCI_DURATION_TRANS is the pin duration. See "Object Duration" on

page 13-14 for more information.

■ OCI_LOCK_X is the lock option. See "Locking Objects For Update" on

page 13-12 for more information.

■ emp1 is an out parameter, which returns a pointer to the pinned object.

Now that the object has been pinned, the OCI application can modify that object. In

this simple example, the object contains no references to other objects. For an

example of navigation from one instance to another, see the section "Simple Object

Navigation" on page 13-17.

Array Pin
Given an array of references, an OCI application can pin an array of objects by

calling OCIObjectArrayPin(). The references may point to objects of different types.

Manipulating Object Attributes
Once an object has been pinned, an OCI application can modify its attributes. The

OCI provides a set of function for working with datatypes of object type structs,

known as the OCI datatype mapping and manipulation functions.

Note: Changes made to objects pinned in the object cache affect only those

object copies (instances), and not the original object in the database. In order for

changes made by the application to reach the database, those changes must be

flushed/committed to the server. See "Marking Objects and Flushing Changes"

on page 10-14 for more information.

For example, assume that the employee object in the previous section was pinned so

that the employee’s salary could be increased. Assume also that at this company,

yearly salary increases are prorated for employees who have been at the company

for less than 180 days.

For this example we will need to access the employee’s hire date and check whether

it is more or less than 180 days prior to the current date. Based on that calculation,

the employee’s salary is increased by either $5000 (for more than 180 days) or $3000

(for less than 180 days). The sample code on the following page demonstrates this

process.

Note that the datatype mapping and manipulation functions work with a specific

set of datatypes; you must convert other types, like int, to the appropriate OCI

types before using them in calculations.

/* assume that sysdate has been fetched into sys_date, a string. */

Developing an OCI Object Application

10-14 Oracle Call Interface Programmer’s Guide

/* emp1 and emp1_ref are the same as in previous sections. */
/* err is the OCI error handle. */
/* NOTE: error handling code is not included in this example. */

sb4 num_days; /* the number of days between today and hiredate */
OCIDate curr_date; /* holds the current date for calculations */
int raise; /* holds the employee’s raise amount before calculations */
OCINumber raise_num; /* holds employee’s raise for calculations */
OCINumber new_sal; /* holds the employee’s new salary */

/* convert date string to an OCIDate */
OCIDateFromText(err, (text *) sys_date, (ub4) strlen(sys_date), (text *)
 NULL, (ub1) 0, (text *) NULL, (ub4) 0, &curr_date);

 /* get number of days between hire date and today */
OCIDateDaysBetween(err, &curr_date, &emp1->hiredate, &num_days);

/* calculate raise based on number of days since hiredate */
if num_days > 180
 raise = 5000
else
 raise = 3000;

/* convert raise value to an OCINumber */
OCINumberFromInt(err, (dvoid *)&raise, (uword)sizeof(raise),
 OCI_NUMBER_SIGNED, &raise_num);

/* add raise amount to salary */
OCINumberAdd(err, &raise_num, &emp1->salary, &new_sal);
OCINumberAssign(err, &new_sal, &emp1->salary);

This example points out how values must be converted to OCI datatypes (e.g.,

OCIDate, OCINumber) before being passed as parameters to the OCI datatype

mapping and manipulation functions.

See Also: For more information about the OCI datatypes and the datatype

mapping and manipulation functions, refer to Chapter 11, "Object-Relational

Datatypes".

Marking Objects and Flushing Changes
In the example in the previous section, an attribute of an object instance was

changed. At this point, however, that change exists only in the client-side object

Developing an OCI Object Application

OCI Object-Relational Programming 10-15

cache. The application must take specific steps to insure that the change is written in

the database.

The first step is to indicate that the object has been modified. This is done with the

OCIObjectMarkUpdate() function. This function marks the object as dirty (modified).

Objects that have had their dirty flag set must be flushed to the server for the

changes to be recorded in the database. You can do this in three ways:

■ Flush a single dirty object by calling OCIObjectFlush().

■ Flush the entire cache using OCICacheFlush(). In this case the OCI traverses the

dirty list maintained by the cache and flushes the dirty objects to the server.

■ Call OCITransCommit() to commit a transaction. Doing so also traverses the

dirty list and flushes objects to the server.

The flush operations work only on persistent objects in the cache. Transient objects

are never flushed to the server.

Flushing an object to the server can activate triggers in the database. In fact, on

some occasions an application may want to explicitly flush objects just to fire

triggers on the server side.

See Also: For more information about OCITransCommit() see the section

"Transactions" on page 8-2.

For information about transient and persistent objects, see the section "Creating

Objects" on page 10-32.

For information about seeing and checking object meta-attributes, such as dirty,

see the section "Object Meta-Attributes" on page 10-17.

Fetching Embedded Objects
If your application needs to fetch an embedded object instance—an object stored in

a column of a regular table, rather than an object table—you cannot use the REF

retrieval mechanism described in the section "Retrieving an Object Reference from

the Server" on page 10-11. Embedded instances do not have object identifiers, so it is

not possible to get a REF to them. This means that they cannot serve as the basis for

object navigation. There are still many situations, however, in which an application

will want to fetch embedded instances.

For example, assume that an address type has been created.

CREATE TYPE address AS OBJECT
(street1 varchar2(50),

Developing an OCI Object Application

10-16 Oracle Call Interface Programmer’s Guide

 street2 varchar2(50),
 city varchar2(30),
 state char(2),
 zip number(5))

You could then use that type as the datatype of a column in another table:

CREATE TABLE clients
(name varchar2(40),
 addr address)

Your OCI application could then issue the following SQL statement:

SELECT addr FROM clients
WHERE name=’BEAR BYTE DATA MANAGEMENT’

This statement would return an embedded address object from the clients
table. The application could then use the values in the attributes of this object for

other processing.

Your application should prepare and process this statement in the same way that it

would handle any relational SQL statement, as described in Chapter 2:

■ Prepare an application request, using OCIStmtPrepare().

■ Bind the input variable using the appropriate bind call(s).

■ Define an output variable to receive the address instance. You use a C struct

representation of the object type that was generated by the OTT, as described in

the section "Representing Objects in C Applications" on page 10-8:

addr1 *address; /* variable of the address struct type */

When defining the output variable, set the dty datatype parameter for the define

call to SQLT_NTY, the datatype constant for named data types.

■ Execute the statement with OCIStmtExecute()

■ Fetch the resulting instance into addr1 , using OCIStmtFetch().

Following this, you can access the attributes of the instance, as described in the

section "Manipulating Object Attributes" on page 10-13, or pass the instance as an

input parameter for another SQL statement.

Note: Changes made to an embedded instance can be made persistent only by

executing a SQL UPDATE statement.

Developing an OCI Object Application

OCI Object-Relational Programming 10-17

See Also: For more information about preparing and executing SQL statements,

see the section "OCI Programming Steps" on page 2-17.

Object Meta-Attributes
An object’s meta-attributes serve as flags which can provide information to an

application, or to the object cache, about the status of an object. For example, one of

the meta-attributes of an object indicates whether or not it has been flushed to the

server. These can help an application control the behavior of instances.

Persistent and transient object instances have different sets of meta-attributes. The

meta-attributes for persistent objects are further broken down into persistent
meta-attributes and transient meta-attributes. Transient meta-attributes exist only

when an instance is in memory. Persistent meta-attributes also apply to objects

stored in the server.

Persistent Object Meta-Attributes
The following table shows the meta-attributes for standalone persistent objects.

Note: Embedded persistent objects only have the nullness and allocation duration
attributes, which are transient.

The OCI provides the OCIObjectGetProperty() function, which allows an application

to check the status of a variety of attributes of an object. The syntax of the function

is:

sword OCIObjectGetProperty (OCIEnv *envh,

Persistent
Meta-Attributes Meaning

existent does the object exist?

nullness null information of the instance

locked has the object been locked?

dirty has the object been marked as dirtied?

Transient
Meta-Attributes

pinned is the object pinned?

allocation duration see "Object Duration" on page 13-14

pin duration see "Object Duration" on page 13-14

Developing an OCI Object Application

10-18 Oracle Call Interface Programmer’s Guide

 OCIError *errh,
 CONST dvoid *obj,
 OCIObjectPropId propertyId,
 dvoid *property,
 ub4 *size);

The propertyId and property parameters are used to retrieve information about any of

a variety of properties or attributes

The different property ids and the corresponding type of property argument are

given below. For more information, see OCIObjectGetProperty() on page 16-26.

OCI_OBJECTPROP_LIFETIME
This identifies whether the given object is a persistent object or a transient object or

a value instance. The property argument must be a pointer to a variable of type

OCIObjectLifetime. Possible values include:

■ OCI_OBJECT_PERSISTENT

■ OCI_OBJECT_TRANSIENT

■ OCI_OBJECT_VALUE

OCI_OBJECTPROP_SCHEMA
This returns the schema name of the table in which the object exists. An error is

returned if the given object points to a transient instance or a value. If the input

buffer is not big enough to hold the schema name an error is returned, the error

message will communicate the required size. Upon success, the size of the returned

schema name in bytes is returned via size. The property argument must be an array

of type text and size should be set to size of array in bytes by the caller.

OCI_OBJECTPROP_TABLE
This returns the table name in which the object exists. An error is returned if the

given object points to a transient instance or a value. If the input buffer is not big

enough to hold the table name an error is returned, the error message will

communicate the required size. Upon success, the size of the returned table name in

bytes is returned via size. The property argument must be an array of type text and

size should be set to size of array in bytes by the caller.

OCI_OBJECTPROP_PIN_DURATION
This returns the pin duration of the object. An error is returned if the given object

points to a value instance. The property argument must be a pointer to a variable of

type OCIDuration. Valid values include:

■ OCI_DURATION_SESSION

Developing an OCI Object Application

OCI Object-Relational Programming 10-19

■ OCI_DURATION_TRANS

For more information about durations, see "Object Duration" on page 13-14.

OCI_OBJECTPROP_ALLOC_DURATION
This returns the allocation duration of the object. The property argument must be a

pointer to a variable of type OCIDuration. Valid values include:

■ OCI_DURATION_SESSION

■ OCI_DURATION_TRANS

For more information about durations, see "Object Duration" on page 13-14.

OCI_OBJECTPROP_LOCK
This returns the lock status of the object. The possible lock status is enumerated by

OCILockOpt. An error is returned if the given object points to a transient or value

instance. The property argument must be a pointer to a variable of type

OCILockOpt. Note, the lock status of an object can also be retrieved by calling

OCIObjectIsLocked().

OCI_OBJECTPROP_MARKSTATUS
This returns the dirty status and indicates whether the object is a new object,

updated object or deleted object. An error is returned if the given object points to a

transient or value instance. The property argument must be of type

OCIObjectMarkStatus. Valid values include:

■ OCI_OBJECT_NEW

■ OCI_OBJECT_DELETED

■ OCI_OBJECT_UPDATED

The following macros are available to test the object mark status:

■ OCI_OBJECT_IS_UPDATED (flag)

■ OCI_OBJECT_IS_DELETED (flag)

■ OCI_OBJECT_IS_NEW (flag)

■ OCI_OBJECT_IS_DIRTY (flag)

OCI_OBJECTPROP_VIEW
This identifies whether the specified object is a view object or not. If the property

value returned is TRUE, it indicates the object is a view otherwise it is not. An error

is returned if the given object points to a transient or value instance. The property
argument must be of type boolean.

Developing an OCI Object Application

10-20 Oracle Call Interface Programmer’s Guide

Additional Attribute Functions
The OCI also provides routines which allow an application to set or check some of

these attributes directly or indirectly, as shown in the following table:

Transient Object Meta-Attributes
Transient objects have no persistent attributes, and the following transient

attributes:

Complex Object Retrieval
In the examples earlier in this chapter, only a single instance at a time was fetched

or pinned. In these cases, each pin operation involved a separate server round trip

to retrieve the object.

Object-oriented applications often model their problems as a set of interrelated

objects that form graphs of objects. The applications process objects by starting at

some initial set of objects, and then using the references in these initial objects to

traverse the remaining objects. In a client-server setting, each of these traversals

could result in costly network roundtrips to fetch objects.

Application performance when dealing with objects may be increased through the

use of complex object retrieval (COR). This is a prefetching mechanism in which an

Meta-Attribute Set With Check With

nullness <none> OCIObjectGetInd()

existence <none> OCIObjectExists()

locked OCIObjectLock() OCIObjectIsLocked()

dirty OCIObjectMark() OCIObjectIsDirty()

Transient
Meta-Attributes Meaning

existent does the object exist?

pinned is the object being accessed by the application?

dirty has the object been marked as dirtied?

nullness null information of the instance

allocation duration see "Object Duration" on page 13-14

pin duration see "Object Duration" on page 13-14

Developing an OCI Object Application

OCI Object-Relational Programming 10-21

application specifies a criteria for retrieving a set of linked objects in a single

operation.

Note: As described below, this does not mean that these prefetched objects are

all pinned. They are fetched into the object cache, so that subsequent pin calls

are local operations.

A complex object is a set of logically related objects consisting of a root object, and a

set of objects each of which is prefetched based on a given depth level. The root object
is explicitly fetched or pinned. The depth level is the shortest number of references

that need to be traversed from the root object to a given prefetched object in a

complex object.

An application specifies a complex object by describing its content and boundary.

The fetching of complex objects is constrained by an environment’s prefetch limit, the

amount of memory in the object cache that is available for prefetching objects.

Note: The use of COR does not add functionality; it only improves performance

so its use is optional.

As an example for this discussion, consider the following type declaration:

CREATE TYPE customer(...);
CREATE TYPE line_item(...);
CREATE TYPE line_item_varray as VARRAY(100) of REF line_item;
CREATE TYPE purchase_order AS OBJECT
(po_number NUMBER,
 cust REF customer,
 related_orders REF purchase_order,
 line_items line_item_varray)

The purchase_order type contains a scalar value for po_number , a VARRAY of

line items, and two references. The first is to a customer type, and the second is to

a purchase_order type, indicating that this type may be implemented as a linked

list.

When fetching a complex object, an application must specify the following:

1. a REF to the desired root object.

2. one or more pairs of type and depth information to specify the boundaries of

the complex object. The type information indicates which REF attributes should

be followed for COR, and the depth level indicates how many levels deep those

links should be followed.

In the case of the purchase order object above, the application must specify the

following:

Developing an OCI Object Application

10-22 Oracle Call Interface Programmer’s Guide

1. the REF to the root purchase order object

2. one or more pairs of type and depth information for cust , related_orders ,

or line_items

An application fetching a purchase order will very likely need access to the

customer information for that order. Using simple navigation, this would require

two server accesses to retrieve the two objects. Through complex object retrieval,

the customer can be prefetched when the application pins the purchase order. In

this case, the complex object would consist of the purchase order object and the

customer object it references.

In the previous example, the application would specify the purchase_order REF,

and would indicate that the cust REF attribute should be followed to a depth level

of 1:

1. REF(PO object)

2. {(customer, 1)}

If the application wanted to prefetch the purchase_order object and all objects in

the object graph it contains, the application would specify that both the cust and

related_orders should be followed to the maximum depth level possible.

1. REF(PO object)

2. {(customer, 1), (purchase_order, UB4MAXVAL)}

where UB4MAXVAL specifies that all objects of the specified type reachable through

references from the root object should be prefetched.

If an application wanted to fetch a PO and all the associated line items, it would

specify:

1. REF(PO object)

2. {(line_item, 1)}

The application can also choose to fetch all objects reachable from the root object by

way of REFs (transitive closure) to a certain depth. To do so, set the level parameter

to the depth desired. For the above two examples, the application could also specify

(PO object REF, UB4MAXVAL) and (PO object REF, 1) respectively to

prefetch required objects. Doing so results in many extraneous fetches but is quite

simple to specify, and requires only one server round trip.

Developing an OCI Object Application

OCI Object-Relational Programming 10-23

Prefetching Objects
After specifying and fetching a complex object, subsequent fetches of objects

contained in the complex object do not incur the cost of a network round trip,

because these objects have already been prefetched and are in the object cache. Keep

in mind that excessive prefetching of objects can lead to a flooding of the object

cache. This flooding, in turn, may force out other objects that the application had

already pinned leading to a performance degradation instead of performance

improvement.

Note: If there is insufficient memory in the cache to hold all prefetched objects,

some objects may not be prefetched. The application will then incur a network

round-trip when those objects are accessed later.

The SELECT privilege is needed for all prefetched objects. Objects in the complex

object for which the application does not have SELECT privilege will not be

prefetched.

Implementing Complex Object Retrieval in the OCI
Complex Object Retrieval (COR) allows an application to prefetch a complex object

while fetching the root object. The complex object specifications are passed to the

same OCIObjectPin() function used for simple objects.

An application specifies the parameters for complex object retrieval using a complex
object retrieval handle. This handle is of type OCIComplexObject and is allocated in

the same way as other OCI handles.

The complex object retrieval handle contains a list of complex object retrieval
descriptors. The descriptors are of type OCIComplexObjectComp, and are allocated

in the same way as other OCI descriptors.

Each COR descriptor contains a type REF and a depth level. The type REF specifies

a type of reference to be followed while constructing the complex object. The depth

level indicates how far a particular type of reference should be followed. Specify an

integer value, or the constant UB4MAXVAL for the maximum possible depth level.

The application can also specify the depth level in the COR handle without creating

COR descriptors for type and depth parameters. In this case, all REFs are followed

to the depth specified in the COR handle. The COR handle can also be used to

specify whether a collection attribute should be fetched separately on demand

(out-of-line) as opposed to the default case of fetching it along with the containing

object (inline).

The application uses OCIAttrSet() to set the attributes of a COR handle. The

attributes are:

Developing an OCI Object Application

10-24 Oracle Call Interface Programmer’s Guide

OCI_ATTR_COMPLEXOBJECT_LEVEL - the depth level

OCI_ATTR_COMPLEXOBJECT_COLL_OUTOFLINE - fetch collection attribute

in an object type out-of-line

The application allocates the COR descriptor using OCIDescriptorAlloc() and then

can set the following attributes:

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE - the type REF

OCI_ATTR_COMPLEXOBJECTCOMP_LEVEL - the depth level for references

of the above type

Once these attributes are set, the application calls OCIParamSet() to put the

descriptor into a complex object retrieval handle. The handle has an OCI_ATTR_
PARAM_COUNT attribute which specifies the number of descriptors on the handle.

This attribute can be read with OCIAttrGet().

Once the handle has been populated, it can be passed to the OCIObjectPin() call to

pin the root object and prefetch the remainder of the complex object.

The complex object retrieval handles and descriptors must be freed explicitly when

they are no longer needed.

See Also: For more information about handles and descriptors, see "Handles"

on page 2-6 and "Descriptors and Locators" on page 2-14.

COR Prefetching
The application specifies a complex object while fetching the root object. The

prefetched objects are obtained by doing a breadth-first traversal of the graph(s) of

objects rooted at a given root object(s). The traversal stops when all required objects

have been prefetched, or when the total size of all the prefetched objects exceeds the

prefetch limit.

COR interface
The interface for fetching complex objects is the OCI pin interface. The application

can pass an initialized COR handle to OCIObjectPin() (or an array of handles to

OCIObjectArrayPin()) to fetch the root object and the prefetched objects specified in

the COR handle.

sword OCIObjectPin (OCIEnv *env,
 OCIError *err,
 OCIRef *object_ref,
 OCIComplexObject *corhdl,
 OCIPinOpt pin_option,

Developing an OCI Object Application

OCI Object-Relational Programming 10-25

 OCIDuration pin_duration,
 OCILockOpt lock_option,
 dvoid **object);

sword OCIObjectArrayPin (OCIEnv *env,
 OCIError *err,
 OCIRef **ref_array,
 ub4 array_size,
 OCIComplexObject **cor_array,
 ub4 cor_array_size,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock,
 dvoid **obj_array,
 ub4 *pos);

Note the following points when using COR:

1. A null COR handle argument defaults to pinning just the root object.

2. A COR handle with type of the root object and a depth level of 0 fetches only

the root object and is thus equivalent to a null COR handle.

3. The lock options apply only to the root object.

Note: In order to specify lock options for prefetched objects, the application can

visit all the objects in a complex object, create an array of REFs, and lock the

entire complex object in another round trip using the array interface

(OCIObjectArrayPin()).

Example of COR
The following example illustrates how an application program can be modified to

use complex object retrieval.

Consider an application that displays a purchase order and the line items associated

with it. The code in boldface accomplishes this. The rest of the code uses complex

object retrieval for prefetching and thus enhances the application’s performance.

OCIEnv *envhp;
OCIError *errhp;
OCIRef *liref;
OCIRef *poref;
OCIIter *itr;
boolean eoc;
purchase_order *po = (purchase_order *)0;

Developing an OCI Object Application

10-26 Oracle Call Interface Programmer’s Guide

line_item *li = (line_item *)0;
OCISvcCtx *svchp;
OCIComplexObject *corhp;
OCIComplexObjectComp *cordp;
OCIType *litdo;
ub4 level = 0;

/* get COR Handle */
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &corhp, (ub4)
 OCI_HTYPE_COMPLEXOBJECT, 0, (dvoid **)0);

/* get COR descriptor for type line_item */
OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &cordp, (ub4)
 OCI_DTYPE_COMPLEXOBJECTCOMP, 0, (dvoid **) 0);

/* get type of line_item to set in COR descriptor */
OCITypeByName(envhp, errhp, svchp, (const text *) 0, (ub4) 0,
 const text *) "LINE_ITEM", (ub4) strlen((const char *)
 "LINE_ITEM"), OCI_DURATION_SESSION, &litdo);

/* set line_item type in COR descriptor */
OCIAttrSet((dvoid *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP,
 dvoid *) litdo, (ub4) sizeof(dvoid *), (ub4)
 OCI_ATTR_COMPLEXOBJECTCOMP_TYPE, (OCIError *) errhp);
level = 1;

/* set depth level for line_item_varray in COR descriptor */
OCIAttrSet((dvoid *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP,
 (dvoid *) &level, (ub4) sizeof(ub4), (ub4)
 OCI_ATTR_COMPLEXOBJECTCOMP_TYPE_LEVEL, (OCIError *) errhp);

/* put COR descriptor in COR handle */
OCIParamSet(corhp, OCI_HTYPE_COMPLEXOBJECT, &errhp, cordp,
 OCI_DTYPE_COMPLEXOBJECTCOMP, 1);

/* pin the purchase order */
OCIObjectPin(envhp, errhp, poref, corhp, OCI_PIN_LATEST,
 OCI_REFRESH_LOADED, OCI_DURATION_SESSION,
 OCI_LOCK_NONE, (ub2) 1, (dvoid **)&po)

/* free COR descriptor and COR handle */
OCIDescriptorFree((dvoid *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP);
OCIHandleFree((dvoid *) corhp, (ub4) OCI_HTYPE_COMPLEXOBJECT);

/* iterate and print line items for this purchase order */

Developing an OCI Object Application

OCI Object-Relational Programming 10-27

OCIIterCreate(envhp, errhp, po.line_items, &itr);

/* get first line item */
OCIIterNext(envhp, errhp, itr, &liref, (dvoid **)0, &eoc);
while (!eoc) /* not end of collection */
{
/* pin line item */
 OCIObjectPin(envhp, errhp, liref, (dvoid *)0, OCI_PIN_RECENT,
 OCI_REFRESH_LOADED, OCI_DURATION_SESSION,
 OCI_LOCK_NONE, (ub2) 1, (dvoid **)&li);
 display_line_item(li);

/* get next line item */
OCIIterNext(envhp, errhp, itr, &liref, (dvoid **)0, &eoc);
}

OCI vs. SQL Access to Objects
If an application needs to manipulate a graph of objects (inter-related via object

references) then it is more effective to use the OCI interface rather than the SQL

interface for accessing objects. Retrieving a graph of objects using the SQL interface

may require executing multiple SELECT statements which would mean multiple

network roundtrips. Using the complex object retrieval capability provided by the

OCI, the application can retrieve the graph of objects in one OCIObjectPin() call.

Consider the update case where the application retrieves a graph of objects and

modifies it based upon user interaction and then wishes to make the modifications

persistent in the database. Using the SQL interface, the application would have to

execute multiple UPDATE statements to update the graph of objects. If the

modifications involved creation of new objects and deletion of existing objects then

corresponding INSERT and DELETE statements would also need to be executed. In

addition, the application would have to do more bookkeeping, such as keeping

track of table names, because this information is required for executing the

INSERT/UPDATE/DELETE statements.

Using the OCI’s OCICacheFlush() function, the application can flush all

modifications (insertion, deletion and update of objects) in a single operation. The

OCI does all the bookkeeping, thereby requiring less coding on the part of the

application. So for manipulating graph of objects the OCI is not only efficient but

also provides an easy to use interface.

Consider a different case in which the application needs to fetch an object given its

REF. In the OCI this is achieved by pinning the object via the OCIObjectPin() call. In

Developing an OCI Object Application

10-28 Oracle Call Interface Programmer’s Guide

the SQL interface this can be achieved by dereferencing the REF in a SELECT

statement (e.g. SELECT DEREF(ref) from tbl;). Consider situations where the

same REF (i.e. reference to the same object) is being dereferenced multiple times in a

transaction. By calling OCIObjectPin() with the OCI_PIN_RECENT option, the

object will be fetched from the server only once for the transaction and repeated

pins on the same REF result in returning a pointer to the already-pinned object in

the cache. In the case of the SQL interface, each execution of the SELECT DEREF...

statement would result in fetching the object from the server and hence would

result in multiple roundtrips to the server and multiple copies of the same object.

Finally, consider the case in which the application needs to fetch a non-referenceable

object. For example,

CREATE TABLE department
(
deptno number,
deptname varchar2(30),
manager employee_t
);

employee_t instances stored in the manager column are non-referenceable. Only

the SQL interface can be used to fetch manager column instances. But if

employee_t has any REF attributes, OCI calls can then be used to navigate the

REF.

Pin Count and Unpinning
Each object in the object cache has a pin count associated with it. The pin count

essentially indicates the number of code modules that are concurrently accessing

the object. The pin count is set to 1 when an object is pinned into the cache for the

first time. Objects prefetched with complex object retrieval enter the object cache

with a pin count of zero.

It is possible to pin an already-pinned object. Doing so increases the pin count by

one. When a process finishes using an object, it should unpin it, using

OCIObjectUnpin(). This call decrements the pin count by one.

When the pin count of an object reaches zero, that object is eligible to be aged out of

the cache if necessary, freeing up the memory space occupied by the object.

The pin count of an object can be set to zero explicitly by calling

OCIObjectPinCountReset().

An application can unpin all objects in the cache related to a specific connection, by

calling OCICacheUnpin().

Developing an OCI Object Application

OCI Object-Relational Programming 10-29

See Also: See the section "Freeing an Object Copy" on page 13-9 for more

information about the conditions under which objects with zero pin count are

removed from the cache.

For information about explicitly flushing an object or the entire cache, see the

section "Marking Objects and Flushing Changes" on page 10-14.

See the section "Freeing an Object Copy" on page 13-9 for more information

about objects being aged out of the cache.

Nullness
If a column in a row of a database table has no value, then that column is said to be

NULL, or to contain a NULL. Two different types of nulls can apply to objects:

■ Any attribute of an object can have a null value. This indicates that the value of

that attribute of the object is not known.

■ An object instance may be atomically null. This means that the value of the entire

object is unknown.

Atomic nullness is not the same thing as nonexistence. An atomically null instance

still exists, its value is just not known. It may be thought of as an existing object

with no data.

When working with objects in the OCI, an application can define a null indicator
structure for each object type used by the application. In most cases, doing so simply

requires including the null indicator structure generated by the OTT along with the

struct declaration. When the OTT output header file is included, the null indicator

struct becomes available to your application.

For each type, the null indicator structure includes an atomic null indicator (whose

type is OCIInd), and a null indicator for each attribute of the instance. If the type

has an object attribute, the null indicator structure includes that attribute’s null

indicator structure. The following example shows the C representations of types

with their corresponding null indicator structures.

struct address
{
 OCINumber no;
 OCIString *street;
 OCIString *state;
 OCIString *zip;
};
typedef struct address address;

Developing an OCI Object Application

10-30 Oracle Call Interface Programmer’s Guide

struct address_ind
{
 OCIInd _atomic;
 OCIInd no;
 OCIInd street;
 OCIInd state;
 OCIInd zip;
};
typedef struct address_ind address_ind;

struct person
{
 OCIString *fname;
 OCIString *lname;
 OCINumber age;
 OCIDate birthday;
 OCIArray *dependentsAge;
 OCITable *prevAddr;
 OCIRaw *comment1;
 OCILobLocator *comment2;
 address addr;
 OCIRef *spouse;
};
typedef struct person person;

struct person_ind
{
 OCIInd _atomic;
 OCIInd fname;
 OCIInd lname;
 OCIInd age;
 OCIInd birthday;
 OCIInd dependentsAge;
 OCIInd prevAddr;
 OCIInd comment1;
 OCIInd comment2;
 address_ind addr;
 OCIInd spouse;
};
typedef struct person_ind person_ind;

Note: The dependentsAge field of person_ind indicates whether the entire

varray (dependentsAge field of person) is atomically null or not. Null

information of individual elements of dependentsAge can be retrieved

Developing an OCI Object Application

OCI Object-Relational Programming 10-31

through the elemind parameter of a call to OCICollGetElem(). Similarly, the

prevAddr field of person_ind indicates whether the entire nested table

(prevAddr field of person) is atomically null or not. Null information of

individual elements of prevAddr can be retrieved through the elemind
parameter of a call to OCICollGetElem().

For an object type instance, the first field of the null-indicator structure is the atomic

null indicator, and the remaining fields are the attribute null indicators whose

layout resembles the layout of the object type instance’s attributes.

Checking the value of the atomic null indicator allows an application to test

whether an instance is atomically NULL. Checking any of the others allows an

application to test the NULL status of that attribute, as in the following code

sample:

person_ind *my_person_ind
if (my_person_ind -> _atomic = OCI_IND_NULL)
{
 /* instance is atomically null */
}
if (my_person_ind -> fname = OCI_IND_NULL)
{
 /* fname attribute is NULL */
}
In the above example, the value of the atomic null indicator, or one of the attribute

null indicators, is compared to the predefined value OCI_IND_NULL to test its

nullness. The following predefined values are available for such a comparison:

■ OCI_IND_NOTNULL, indicating that the value is not NULL

■ OCI_IND_NULL, indicating that the value is NULL

■ OCI_IND_BADNULL, indicates that an enclosing object (or parent object) is

NULL. This is used by PL/SQL, and may also be referred to as an INVALID_

NULL. For example if a type instance is NULL, then its attributes are

INVALID_NULLs.

Use the OCIObjectGetInd() on page 16-37 function to allocate storage for and

retrieve the null indicator structure of an object.

See Also: For more information about OTT-generated null indicator structs,

refer to Chapter 14, "Using the Object Type Translator".

Developing an OCI Object Application

10-32 Oracle Call Interface Programmer’s Guide

Creating Objects
An OCI application can create any object using OCIObjectPin(). To create a

persistent object, the application must specify the object table where the new object

will reside. This value can be retrieved by calling OCIObjectPinTable(), and it is

passed in the table parameter. To create a transient object, the application needs to

pass only the type descriptor object (retrieved by calling OCITypeByName()) for the

type of object being created.

OCIObjectNew() can also be used to create instances of scalars (e.g., REF, LOB,

string, raw, number, and date) and collections (e.g., varray and nested table) by

passing the appropriate value for the typecode parameter.

Attribute Values of New Objects
By default, all attributes of a newly created objects have NULL values. After

initializing attribute data, the user must change the corresponding NULL status of

each attribute to non-NULL.

It is possible to have attributes set to non-NULL values when an object is created.

This is accomplished by setting the OCI_OBJECT_NEWNOTNULL attribute of the

environment handle to TRUE using OCIAttrSet(). This mode can later be turned off

by setting the attribute to FALSE.

If OCI_OBJECT_NEWNOTNULL is set to TRUE, then OCIObjectNew() creates a

non-null object. The attributes of the object have the default values described in the

following table, and the corresponding null indicators are set to not-NULL.

Table 10–1 Attribute Values for New Objects in OCI_OBJECT_NEWNOTNULL Mode

Attribute Type Default Value

REF If an object has a REF attribute, the user must set it to a valid
REF before flushing the object or an error is returned.

DATE The earliest possible date Oracle allows, which is 01-JAN-4712
BCE (equivalent to Julian day 1)

FLOAT 0.

NUMBER 0

DECIMAL 0.

RAW Raw data with length set to 0. Note: the default value for a
RAW attribute is the same as that for a null RAW attribute.

Developing an OCI Object Application

OCI Object-Relational Programming 10-33

Freeing and Copying Objects
Use OCIObjectFree() to free memory allocated through OCIObjectNew(). Freeing an

object deallocates all the memory allocated for the object, including the associated

null indicator structure. This procedure deletes an object before its lifetime expires.

An application can also use OCIObjectMarkDelete() to delete a persistent object.

An application can copy one instance to another instance of the same type using

OCIObjectCopy().

See Also: See the descriptions of these functions in Chapter 16, "OCI

Navigational and Type Functions" for more information.

Object Reference and Type Reference
The object extensions to the OCI provide the application with the flexibility to

access the contents of objects using their pointers or their references. The OCI

provides the function OCIObjectGetObjectRef() to return a reference to an object

given the object’s pointer.

For applications that also want to access the type information of objects, the OCI

provides the function OCIObjectGetProperty() to return a reference to an object’s

type descriptor object (TDO), given a pointer to the object.

VARCHAR2 OCIString with 0 length and first char set to NULL. The default
value is the same as that of a null string attribute.

CHAR OCIString with 0 length and first char set to NULL. The default
value is the same as that of a null string attribute.

VARCHAR OCIString with 0 length and first char set to NULL. The default
value is the same as that of a null string attribute.

VARRAY collection with 0 elements

NESTED TABLE table with 0 elements

CLOB empty CLOB

BLOB empty BLOB

BFILE The user must initialize the BFILE to a valid value by setting
the directory alias and filename.

Table 10–1 Attribute Values for New Objects in OCI_OBJECT_NEWNOTNULL Mode

Attribute Type Default Value

Developing an OCI Object Application

10-34 Oracle Call Interface Programmer’s Guide

Creating Objects Based on Object Views or User-defined OIDs
Applications can use the OCIObjectNew() call to create objects which are based on

object views, or on tables with user-defined OIDs. If OCIObjectNew() receives a

handle to an object view or a table with a user-defined OID, then the reference it

returns is a pseudo-reference. This pseudo-reference cannot be saved into any other

object, but it can be used to fill in the object’s attributes so that a primary-key-based

reference can be obtained with OCIObjectGetObjectRef().

This process involves the following steps:

4. Pin the object view or object table on which the new object will be based.

5. Create a new object using OCIObjectNew(), passing in the handle to the

table/view obtained by the pin operation in step 1.

6. Fill in the necessary values for the object. These include those attributes which

make up the user-defined OID for the object table or object view.

7. Use OCIObjectGetObjectRef() to obtain the primary-key-based reference to the

object, if necessary. If desired, return to step 2 to create more objects.

8. Flush the newly created object(s) to the server.

The following sample code shows how this process might be implemented to create

a new object for the emp_view object view in the scott schema:

void object_view_new ()
{
dvoid *table;
OCIRef *pkref;
dvoid *object;
....
/* Set up the service context, error handle etc.. */
...
/* Pin the object view */
OCIObjectPinTable(envp,errorp,svctx, "scott", strlen("scott"), "emp_view",

strlen("emp_view"),(dvoid *) 0, OCI_DURATION_SESSION, (dvoid **) &table);

/* Create a new object instance */
OCIObjectNew(envp, errorp, svctx, OCI_TYPECODE_OBJECT,(OCIType *)0, table,

OCI_DURATION_SESSION,FALSE,&object);

/* Populate the attributes of "object" */
OCIObjectSetAttr(...);
...
/* Allocate an object reference */

Developing an OCI Object Application

OCI Object-Relational Programming 10-35

OCIObjectNew(envp, errorp, svctx, OCI_TYPECODE_REF, (OCIType *)0, (dvoid *)0,
OCI_DURATION_SESSION,TRUE,&pkref);

/* Get the reference using OCIObjectGetObjectRef */
OCIObjectGetObjectRef(envp,errorp,object,pkref);
...
/* Flush new object(s) to server */
...
} /* end function */

Error Handling in Object Applications
Error handling in OCI applications is the same, whether or not the application uses

objects. For more information about function return codes and error messages, see

the section "Error Handling" on page 2-27.

Developing an OCI Object Application

10-36 Oracle Call Interface Programmer’s Guide

Object-Relational Datatypes 11-1

11
Object-Relational Datatypes

The OCI datatype mapping and manipulation functions provide OCI programs

with the ability to manipulate instances of Oracle predefined datatypes in a C

application. This chapter discusses those functions, and also includes information

about how object types are stored in the database. For information about bind and

define operations using the Oracle C datatypes, refer to Chapter 12, "Binding and

Defining in Object Applications".

The following topics are covered in this chapter:

■ Overview

■ Mapping Oracle Datatypes to C

■ Manipulating C Datatypes With OCI

■ Date (OCIDate)

■ Number (OCINumber)

■ Fixed or Variable-Length String (OCIString)

■ Raw (OCIRaw)

■ Collections (OCITable, OCIArray, OCIColl, OCIIter)

■ REF (OCIRef)

■ Object Type Information Storage and Access

Note: The functionality described in this chapter is only available if you have

installed the Oracle8i Enterprise Edition with the Objects Option.

Overview

11-2 Oracle Call Interface Programmer’s Guide

Overview
The OCI datatype mapping and manipulation functions provide the ability to

manipulate instances of predefined Oracle C datatypes. These datatypes are used to

represent the attributes of user-defined datatypes, including object types in Oracle.

Each group of functions within the OCI is distinguished by a particular naming

convention. The datatype mapping and manipulation functions, for example, can be

easily recognized because the function names start with the prefix OCI, followed by

the name of a datatype, as in OCIDateFromText() and OCIRawSize(). As will be

explained later, the names can be further broken down into function groups that

operate on a particular type of data.

Additionally, the predefined Oracle C types on which these functions operate are

also distinguished by names which begin with the prefix OCI, as in OCIDate or

OCIString.

The datatype mapping and manipulation functions are used when an application

needs to manipulate, bind, or define attributes of objects that are stored in an Oracle

database, or which have been retrieved by a SQL query. Retrieved objects are stored

in the client-side object cache, as was described in Chapter 13, "Object Cache and

Object Navigation".

This chapter describes the purpose and structure of each of the datatypes that can

be manipulated by the OCI datatype mapping and manipulation functions. It also

summarizes the different function groups, and gives lists of available functions and

their purposes.

This chapter also provides information about how to use these datatypes in bind

and define operations within an OCI application.

These functions are valid only when an OCI application is running in object mode.

For information about initializing the OCI in object mode, and creating an OCI

application that accesses and manipulates objects, refer to the section "Initializing

Environment and Object Cache" on page 10-10.

For detailed information about object types, attributes, and collection datatypes,

refer to Oracle8i Concepts.

Mapping Oracle Datatypes to C
Oracle provides a rich set of predefined datatypes with which you can create tables

and specify user-defined datatypes (including object types). Object types extend the

functionality of Oracle by allowing you to create datatypes that precisely model the

Mapping Oracle Datatypes to C

Object-Relational Datatypes 11-3

types of data with which they work. This can provide increased efficiency and

ease-of-use for programmers who are accessing the data.

Database tables and object types are based upon the datatypes supplied by Oracle.

These tables and types are created with SQL statements and stored using a specific

set of Oracle internal datatypes, like VARCHAR2 or NUMBER. For example, the

following SQL statements create a user-defined address datatype and an object

table to store instances of that type:

CREATE TYPE address AS OBJECT
(street1 varchar2(50),
street2 varchar2(50),
city varchar2(30),
state char(2),
zip number(5));
CREATE TABLE address_table OF address;

The new address type could also be used to create a regular table with an object

column:

CREATE TABLE employees
(name varchar2(30),
birthday date,
home_addr address);

An OCI application can manipulate information in the name and birthday
columns of the employees table using straightforward bind and define operations

in association with SQL statements. Accessing information stored as attributes of

objects requires some extra steps.

The OCI application first needs a way to represent the objects in a C-language

format. This is accomplished by using the Object Type Translator (OTT) to generate

C struct representations of user-defined types. The elements of these structs have

datatypes that represent C language mappings of Oracle datatypes. The following

table lists the available Oracle types you can use as object attribute types and their C

mappings:

Table 11–1 C Language Mappings of Object Type Attributes

Attribute Type C Mapping

BFILE OCIBFileLocator*

BLOB OCILobLocator * or
OCIBlobLocator *

Mapping Oracle Datatypes to C

11-4 Oracle Call Interface Programmer’s Guide

An additional C type, OCIInd, is used to represent null indicator information

corresponding to attributes of object types.

See Also: For more information and examples regarding the use of the OTT,

refer to Chapter 14, "Using the Object Type Translator".

OCI Type Mapping Methodology
Oracle followed a distinct design philosophy when specifying the mappings of

Oracle predefined types. The current system has the following benefits and

advantages:

■ The actual representation of datatypes like OCINumber is opaque to client

applications, and the datatypes are manipulated with a set of predefined

CHAR(N), CHARACTER(N) OCIString *

CLOB OCILobLocator * or
OCIClobLocator *

DATE OCIDate

DEC, DEC(N), DEC(N,N) OCINumber

DECIMAL, DECIMAL(N), DECIMAL(N,N) OCINumber

FLOAT, FLOAT(N), DOUBLE PRECISION OCINumber

INT, INTEGER, SMALLINT OCINumber

Nested Table OCITable *

NUMBER, NUMBER(N), NUMBER(N,N) OCINumber

NUMERIC, NUMERIC(N), NUMERIC(N,N) OCINumber

RAW(N) OCIRaw *

REAL OCINumber

REF OCIRef *

VARCHAR(N) OCIString *

VARCHAR2(N) OCIString *

VARRAY OCIArray *

Table 11–1 C Language Mappings of Object Type Attributes

Attribute Type C Mapping

Manipulating C Datatypes With OCI

Object-Relational Datatypes 11-5

functions. This allows for the internal representation to change to accommodate

future enhancements without breaking user code.

■ The implementation is consistent with object-oriented paradigms in which class

implementation is hidden and only the required operations are exposed.

■ This implementation can have advantages for programmers. Consider a C

program that wants to manipulate Oracle number variables without losing the

accuracy provided by Oracle numbers. To do this in Oracle release 7, you would

have had to issue a "SELECT...FROM DUAL" statement. In Oracle8i, this is

accomplished by invoking the OCINumber*() functions.

Manipulating C Datatypes With OCI
In an OCI application, the manipulation of data may be as simple as adding

together two integer variables and storing the result in a third variable:

integer int_1, int_2, sum;
...
/* some initialization occurs */
...
sum = int_1 + int_2;

The C language provides a set of predefined operations on simple types like

integer. However, the C datatypes listed in Table 11–1, "C Language Mappings of

Object Type Attributes" are not simple C primitives. Types like OCIString and

OCINumber are actually structs with a specific Oracle-defined internal structure. It

is not possible to simply add together two OCINumbers and store the value in the

third.

The following is not valid:

OCINumber num_1, num_2, sum;
...
/* some initialization occurs */
...
sum = num_1 + num_2; /* NOT A VALID OPERATION */

The OCI datatype mapping and manipulation functions are provided to enable you

to perform operations on these new datatypes. For example, the above addition of

OCINumbers could be accomplished as follows, using the OCINumberAdd()
function:

OCINumber num_1, num_2, sum;
...

Manipulating C Datatypes With OCI

11-6 Oracle Call Interface Programmer’s Guide

/* some initialization occurs */
...
OCINumberAdd(errhp, &num_1, &num_2, &sum): /* errhp is error handle */

The OCI provides functions to operate on each of the new datatypes. The names of

the functions provide information about the datatype on which they operate. The

first three letters, OCI, indicate that the function is part of the OCI. The next part of

the name indicates the datatype on which the function operates. The following table

shows the various function prefixes, along with example function names and the

datatype on which those functions operate:

The structure of each of the datatypes is described later in this chapter, along with a

list of the functions that manipulate that type.

Precision of Oracle Number Operations
Oracle numbers have a precision of 38 decimal digits. All Oracle number operations

are accurate to the full precision, with the following exceptions:

■ Inverse trigonometric functions are accurate to 28 decimal digits.

■ Other transcendental functions, including trigonometric functions, are accurate

to approximately 37 decimal digits.

■ Conversions to and from native floating-point types have the precision of the

relevant floating-point type, not to exceed 38 decimal digits.

Function Prefix Example Operates On

OCIColl OCICollGetElem() OCIColl,
OCIIter,
OCITable,
OCIArray

OCIDate OCIDateDaysBetween() OCIDate

OCIIter OCIIterInit() OCIIter

OCINumber OCINumberAdd() OCINumber

OCIRaw OCIRawResize() OCIRaw *

OCIRef OCIRefAssign() OCIRef *

OCIString OCIStringSize() OCIString *

OCITable OCITableLast() OCITable *

Date (OCIDate)

Object-Relational Datatypes 11-7

Date (OCIDate)
The Oracle date format is mapped in C by the OCIDate type, which is an opaque C

struct. Elements of the struct represent the year, month, day, hour, minute, and

second of the date. The specific elements can be set and retrieved using the

appropriate OCI functions.

The OCIDate datatype can be bound or defined directly using the external

typecode SQLT_ODT in the bind or define call.

The OCI date manipulation functions are listed in the following tables, which are

organized according to functionality. Unless otherwise specified, the term date in

these tables refers to a value of type OCIDate.

See Also: The prototypes and descriptions for all the functions are provided in

Chapter 17, "OCI Datatype Mapping and Manipulation Functions".

Date Conversion Functions
The following functions perform date conversion.

Date Assignment and Retrieval Functions
The following functions retrieve and assign date elements.

Function Purpose

OCIDateToText() convert date to string

OCIDateFromText() convert text string to date

OCIDateZoneToZone() convert date from one time zone to
another

Function Purpose

OCIDateAssign() OCIDate assignment

OCIDateGetDate() get the date portion of an OCIDate

OCIDateSetDate() set the date portion of an OCIDate

OCIDateGetTime() get the time portion of an OCIDate

OCIDateSetTime() set the time portion of an OCIDate

Date (OCIDate)

11-8 Oracle Call Interface Programmer’s Guide

Date Arithmetic and Comparison Functions
The following functions perform date arithmetic and comparison.

Date Information Accessor Functions
The following functions access date information.

Date Validity Checking Functions
The following function checks date validity.

Date Example
The following code provides examples of how to manipulate an attribute of type

OCIDate using OCI calls.

#define FMT "DAY, MONTH DD, YYYY"
#define LANG "American"
struct person
{
OCIDate start_date;
};
typedef struct person person;

Function Purpose

OCIDateAddDays() add days

OCIDateAddMonths() add months

OCIDateCompare() compare dates

OCIDateDaysBetween() calculate the number of days between two
dates

Function Purpose

OCIDateLastDay() the last day of the month

OCIDateNextDay() the first named day after a given date

OCIDateSysDate() the system date

Function Purpose

OCIDateCheck() check whether a given date is valid

Date (OCIDate)

Object-Relational Datatypes 11-9

OCIError *err;
person *tim;
sword status; /* error status */
uword invalid;
OCIDate last_day, next_day;
text buf[100], last_day_buf[100], next_day_buf[100];
ub4 buflen = sizeof(buf);

/* For this example, assume the OCIEnv and OCIError have been
* initialized as described in Chapter 2 . */
/* Pin tim person object in the object cache. See Chapter 13 for
* information about pinning. For this example, assume that
* tim is pointing to the pinned object. */
/* set the start date of tim */
OCIDateSetTime(&tim->start_date,8,0,0);
OCIDateSetDate(&tim->start_date,1990,10,5)

/* check if the date is valid */
if (OCIDateCheck(err, &tim->start_date, &invalid) != OCI_SUCCESS)
/* error handling code */

if (invalid)
/* error handling code */

/* get the last day of start_date’s month */
if (OCIDateLastDay(err, &tim->start_date, &last_day) != OCI_SUCCESS)
/* error handling code */

/* get date of next named day */
if (OCIDateNextDay(err, &tim->start_date, "Wednesday", strlen("Wednesday"),
&next_day) != OCI_SUCCESS)
/* error handling code */
/* convert dates to strings and print the information out */
/* first convert the date itself*/
buflen = sizeof(buf);
if (OCIDateToText(err, &tim->start_date, FMT, sizeof(FMT)-1, LANG,

sizeof(LANG)-1, &buflen, buf) != OCI_SUCCESS)
/* error handling code */

/* now the last day of the month */
buflen = sizeof(last_day_buf);
if (OCIDateToText(err, &last_day, FMT, sizeof(FMT)-1, LANG, sizeof(LANG)-1,
&buflen, last_day_buf) != OCI_SUCCESS)
/* error handling code */

Number (OCINumber)

11-10 Oracle Call Interface Programmer’s Guide

/* now the first Wednesday after this date */
buflen = sizeof(next_day_out);
if (OCIDateToText(err, &next_day, FMT, sizeof(FMT)-1, LANG,

sizeof(LANG)-1, &buflen, next_day_buf) != OCI_SUCCESS)
/* error handling code */

/* print out the info */
printf("For: %s\n", buf);
printf("The last day of the month is: %s\n", last_day_buf);
printf("The next Wednesday is: %s\n", next_day_buf);

The output will be:

For: Monday, May 13, 1996
The last day of the month is: Friday, May 31
The next Wednesday is: Wednesday, May 15

Number (OCINumber)
The OCINumber datatype is an opaque structure used to represent Oracle numeric

datatypes (NUMBER, FLOAT, DECIMAL, and so forth). You can bind or define this

type using the external typecode SQLT_VNU in the bind or define call.

The OCINumber manipulation functions are listed in the following tables, which

are organized according to functionality. Unless otherwise specified, the term

number in these tables refers to a value of type OCINumber.

See Also: The prototypes and descriptions for all the functions are provided in

Chapter 17, "OCI Datatype Mapping and Manipulation Functions".

Number Arithmetic Functions
The following functions perform arithmetic operations.

Function Purpose

OCINumberAbs() get the absolute value of a number

OCINumberAdd() add two numbers together

OCINumberCeil() get the ceiling value of a number

OCINumberDec() decrement a number

OCINumberDiv() divide one number by another

Number (OCINumber)

Object-Relational Datatypes 11-11

Number Conversion Functions
The following functions perform conversions between numbers and reals, integers,

and strings.

OCINumberFloor() get the floor value of a number

OCINumberInc() increment a number

OCINumberMod() get the modulus from the division of two numbers

OCINumberMul() multiply two numbers together

OCINumberNeg() negate a number

OCINumberRound() round a number to a specified decimal place

OCINumberShift() shifts a number a certain number of decimal places

OCINumberSign() get the sign of a number

OCINumberSqrt() get the square root of a number

OCINumberSub() subtract one number from another

OCINumberTrunc() truncate a number to a specified decimal place

OCINumberSIgn() returns the sign of a given number

Function Purpose

OCINumberToInt() convert number to integer

OCINumberFromInt() convert integer to number

OCINumberToReal() convert number to real

OCINumberFromReal() convert real to number

OCINumberToText() convert number to string

OCINumberFromText() convert string to number

Function Purpose

Number (OCINumber)

11-12 Oracle Call Interface Programmer’s Guide

Exponential and Logarithmic Functions
The following functions perform exponential and logarithmic operations.

Trigonometric Functions
The following functions perform trigonometric operations on numbers.

Number Assignment, Comparison, and Evaluation Functions
The following functions perform assign and compare operations on numbers.

Function Purpose

OCINumberPower() take a number base to a given number exponent

OCINumberExp() take the exponent with base e

OCINumberLog() take the logarithm of a given base

OCINumberLn() take the natural logarithm (base e)

OCINumberIntPower() take a number base to a given integer power

Function Purpose

OCINumberArcCos() calculate arc cosine

OCINumberArcSin() calculate arc sine

OCINumberArcTan() / OCINumberArcTan2() calculate arc tangent / of two numbers

OCINumberCos() calculate cosine

OCINumberHypCos() calculate cosine hyperbolic

OCINumberSin() calculate sine

OCINumberHypSin() calculate sine hyperbolic

OCINumberTan() calculate tangent

OCINumberHypTan() calculate tangent hyperbolic

Function Purpose

OCINumberAssign() assign one number to another

OCINumberCmp() compare two numbers

OCINumberIsInt() test if an integer

Number (OCINumber)

Object-Relational Datatypes 11-13

Number Example
The following example shows how to manipulate an attribute of type OCINumber.

struct person
{
OCINumber sal;
};
typedef struct person person;
OCIError *err;
person* steve;
person* scott;
person* jason;
OCINumber *stevesal;
OCINumber *scottsal;
OCINumber *debsal;
sword status;
int inum;
double dnum;
OCINumber ornum;
char buffer[21];
ub4 buflen;
sword result;

/* For this example, assume OCIEnv and OCIError are initialized. */
/* For this example, assume that steve, scott and jason are pointing to

person objects which have been pinned in the object cache. */
stevesal = &steve->sal;
scottsal = &scott->sal;
debsal = &jason->sal;

/* initialize steve’s salary to be $12,000 */
OCINumberInit(err, stevesal);
inum = 12000;
status = OCINumberFromInt(err, &inum, sizeof(inum), OCI_NUMBER_SIGNED,

stevesal);

OCINumberIsZero() test if equal to zero

OCINumberPrec() sets the precision

OCINumberSetPi() set a number to pi

OCINumberSetZero() initialize number to zero

Function Purpose

Number (OCINumber)

11-14 Oracle Call Interface Programmer’s Guide

if (status != OCI_SUCCESS) /* handle error from OCINumberFromInt */;

/* initialize scott’s salary to be same as steve */
OCINumberAssign(err, stevesal, scottsal);

/* initialize jason’s salary to be 20% more than steve’s */
dnum = 1.2;
status = OCINumberFromReal(err, &dnum, DBL_DIG, &ornum);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromReal */;
status = OCINumberMul(err, stevesal, &ornum, debsal);
if (status != OCI_SUCCESS) /* handle error from OCINumberMul */;

/* give scott a 50% raise */
dnum = 1.5;
status = OCINumberFromReal(err, &dnum, DBL_DIG, &ornum);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromReal */;
status = OCINumberMul(err, scottsal, &ornum, scottsal);
if (status != OCI_SUCCESS) /* handle error from OCINumberMul */;

/* double steve’s salary */
status = OCINumberAdd(err, stevesal, stevesal, stevesal);
if (status != OCI_SUCCESS) /* handle error from OCINumberAdd */;

/* get steve’s salary in integer */
status = OCINumberToInt(err, stevesal, sizeof(inum), OCI_NUMBER_SIGNED,

&inum);
if (status != OCI_SUCCESS) /* handle error from OCINumberToInt */;

/* inum is set to 24000 */
/* get jason’s salary in double */
status = OCINumberToReal(err, debsal, sizeof(dnum), &dnum);
if (status != OCI_SUCCESS) /* handle error from OCINumberToReal */;

/* dnum is set to 14400 */
/* print scott’s salary as DEM0001̀ 8000.00 */
buflen = sizeof(buffer);
status = OCINumberToText(err, scottsal, "C0999G9999D99", 13,

"NLS_NUMERIC_CHARACTERS=’.̀ ’ NLS_ISO_CURRENCY=’Germany’",
54, &buflen, buffer);

if (status != OCI_SUCCESS) /* handle error from OCINumberToText */;
printf("scott’s salary = %s\n", buffer);

/* compare steve and scott’s salaries */
status = OCINumberCmp(err, stevesal, scottsal, &result);
if (status != OCI_SUCCESS) /* handle error from OCINumberCmp */;

Fixed or Variable-Length String (OCIString)

Object-Relational Datatypes 11-15

/* result is positive */
/* read jason’s new salary from string */
status = OCINumberFromText(err, "48̀ 000.00", 9, "99G999D99", 9,

"NLS_NUMERIC_CHARACTERS=’.̀ ’", 27, debsal);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromText */;
/* jason’s salary is now 48000.00 */

Fixed or Variable-Length String (OCIString)
Fixed or variable-length string data is represented to C programs as an OCIString *.

The length of the string does not include the null character.

For binding and defining variables of type OCIString * use the external typecode

SQLT_VST.

See Also: The prototypes and descriptions for all the functions are provided in

Chapter 17, "OCI Datatype Mapping and Manipulation Functions".

String Functions
The following functions allow the C programmer to manipulate an instance of a

string.

String Example
This example assigns a text string to a string, then gets a pointer to the string part of

the string, as well as the string size, and prints it out.

Note the double indirection used in passing the vstring1 parameter in

OCIStringAssignText().

Function Purpose

OCIStringAllocSize() get allocated size of string memory in bytes

OCIStringAssign() assign one string to another

OCIStringAssignText() assign text string to string

OCIStringPtr() get pointer to string part of string

OCIStringResize() resize string memory

OCIStringSize() get string size

Raw (OCIRaw)

11-16 Oracle Call Interface Programmer’s Guide

OCIEnv *envhp;
OCIError *errhp;
OCIString *vstring1 = (OCIString *)0;
OCIString *vstring2 = (OCIString *)0;
text c_string[20];
text *text_ptr;
sword status;

strcpy(c_string, "hello world");
/* Assign a text string to an OCIString */
status = OCIStringAssignText(envhp, errhp, c_string,
 (ub4)strlen(c_string),&vstring1);
/* Memory for vstring1 is allocated as part of string assignment */

status = OCIStringAssignText(envhp, errhp, "hello again",
 (ub4)strlen("This is a longer string."),&vstring1);
/* vstring1 is automatically resized to store the longer string */

/* Get a pointer to the string part of vstring1 */
text_ptr = OCIStringPtr(envhp, vstring1);
/* text_ptr now points to "hello world" */
printf("%s\n", text_ptr);

Raw (OCIRaw)
Variable-length raw data is represented in C using the OCIRaw * datatype.

For binding and defining variables of type OCIRaw *, use the external typecode

SQLT_LVB.

See Also: The prototypes and descriptions for all the functions are provided in

Chapter 17, "OCI Datatype Mapping and Manipulation Functions".

Raw Functions
The following functions perform OCIRaw operations.

Function Purpose

OCIRawAllocSize() get the allocated size of raw memory in bytes

OCIRawAssignBytes() assign raw data (ub1 *) to OCIRaw *

OCIRawAssignRaw() assign one OCIRaw * to another

Collections (OCITable, OCIArray, OCIColl, OCIIter)

Object-Relational Datatypes 11-17

Raw Example
In this example, a raw data block is set up and a pointer to its data is obtained.

Note the double indirection in the call to OCIRawAssignBytes().

OCIEnv *envhp;
OCIError *errhp;
sword status;
ub1 data_block[10000];
ub4 data_block_len = 10000;
OCIRaw *raw1;
ub1 *raw1_pointer;

/* Set up the RAW */
/* assume ’data_block’ has been initialized */
status = OCIRawAssignBytes(envhp, errhp, data_block, data_block_len, &raw);

/* Get a pointer to the data part of the RAW */
raw1_pointer = OCIRawPtr(envhp, raw1);

Collections (OCITable, OCIArray, OCIColl, OCIIter)
Oracle provides two types of collections: variable-length arrays (varrays) and

nested tables. In C applications, varrays are represented as OCIArray *, and nested

tables are represented as OCITable *. Both of these datatypes (along with OCIColl

and OCIIter, described later) are opaque structures.

A variety of generic collection functions enable you to manipulate collection data.

You can use these functions on both varrays and nested tables. In addition, there is a

set of functions specific to nested tables; see "Nested Table Manipulation Functions"

on page 11-20.

You can allocate an instance of a varray or nested table using OCIObjectNew() and

free it using OCIObjectFree().

See Also: The prototypes and descriptions for all the functions are provided in

Chapter 17, "OCI Datatype Mapping and Manipulation Functions".

OCIRawPtr() get pointer to raw data

OCIRawResize() resize memory of variable-length raw data

OCIRawSize() get size of raw data

Function Purpose

Collections (OCITable, OCIArray, OCIColl, OCIIter)

11-18 Oracle Call Interface Programmer’s Guide

Generic Collection Functions
Oracle provides two types of collections: variable-length arrays (varrays) and

nested tables. Both varrays and nested tables can be viewed as sub-types of a

generic collection type.

In C, a generic collection is represented as OCIColl *, a varray is represented as

OCIArray *, and a nested table as OCITable *. Oracle provides a set of functions to

operate on generic collections (such as OCIColl *). These functions start with the

prefix OCIColl, as in OCICollGetElem(). The OCIColl*() functions can also be called to

operate on varrays and nested tables.

The generic collection functions are grouped into two main categories:

■ manipulating varray or nested table data

■ scanning through a collection with a collection iterator

The generic collection functions represent a complete set of functions for

manipulating varrays. Additional functions are provided to operate specifically on

nested tables. They are identified by the prefix OCITable, as in OCITableExists().
These are described in the section "Nested Table Manipulation Functions" on

page 11-20.

Note: Indexes passed to collection functions are zero-based.

Collection Data Manipulation Functions
The following generic functions manipulate collection data:

Function Purpose

OCICollAppend() append an element

OCICollAssignElem() assign element at given index

OCICollAssign() assign one collection to another

OCICollGetElem() get pointer to an element given its index

OCICollMax() get upper bound of collection

OCICollSize() get current size of collection

OCICollTrim() trim n elements from the end of the
collection

Collections (OCITable, OCIArray, OCIColl, OCIIter)

Object-Relational Datatypes 11-19

Collection Scanning Functions
The following generic functions enable you to scan collections with a collection

iterator. The iterator is of type OCIIter, and is created by first calling OCIIterCreate().

Varray/Collection Iterator Example
This example creates and uses a collection iterator to scan through a varray.

OCIEnv *envhp;
OCIError *errhp;
text *text_ptr;
sword status;
OCIArray *clients;
OCIString *client_elem;
OCIIter *iterator;
boolean eoc;
dvoid *elem;
OCIInd *elemind;

/* Assume envhp, errhp have been initialized */
/* Assume clients points to a varray */

/* Print the elements of clients */
/* To do this, create an iterator to scan the varray */
status = OCIIterCreate(envhp, errhp, clients, &iterator);

/* Get the first element of the clients varray */
printf("Clients' list:\n");
status = OCIIterNext(envhp, errhp, iterator, &elem,
 (dvoid **) &elemind, &eoc);

Function Purpose

OCIIterCreate() create an iterator for scanning collection

OCIIterDelete() delete iterator

OCIIterGetCurrent() get pointer to current element pointed by
iterator

OCIIterInit() initialize iterator to scan the given collection

OCIIterNext() get pointer to next element

OCIIterPrev() get pointer to previous element

Collections (OCITable, OCIArray, OCIColl, OCIIter)

11-20 Oracle Call Interface Programmer’s Guide

while (!eoc && (status == OCI_SUCCESS))
{
 client_elem = *(OCIString)**elem;
 /* client_elem points to the string */

 /*
 the element pointer type returned by OCIIterNext() via 'elem' is
 the same as that of OCICollGetElem(). Refer to OCICollGetElem() for
 details. */

 /*
 client_elem points to an OCIString descriptor, so to print it out,
 get a pointer to where the text begins
 */
 text_ptr = OCIStringPtr(envhp, client_elem);

 /*
 text_ptr now points to the text part of the client OCIString, which is a
NULL-terminated string
 */
 printf(" %s\n", text_ptr);
 status = OCIIterNext(envhp, errhp, iterator, &elem,
 (dvoid **)&elemind, &eoc);
}

if (status != OCI_SUCCESS)
{
 /* handle error */
}

/* destroy the iterator */
status = OCIIterDelete(envhp, errhp, &iterator);

Nested Table Manipulation Functions
As its name implies, one table may be nested or contained within another, as a

variable, attribute, parameter or column. Nested tables may have elements deleted,

by means of the OCITableDelete() function.

For example, suppose a table is created with 10 elements, and OCITableDelete() is
used to delete elements at index 0 through 4 and 9. The first existing element is now

element 5, and the last existing element is element 8.

Collections (OCITable, OCIArray, OCIColl, OCIIter)

Object-Relational Datatypes 11-21

As noted above, the generic collection functions may be used to map to and

manipulate nested tables. In addition, the following functions are specific to nested

tables. They should not be used on varrays.

Nested Table Element Ordering
When a nested table is fetched into the object cache, its elements are given a

transient ordering, numbered from zero to the number of elements, minus 1. For

example, a table with 40 elements would be numbered from 0 to 39.

You can use these position ordinals to fetch and assign the values of elements (for

example, fetch to element i, or assign to element j, where i and j are valid position

ordinals for the given table).

When the table is copied back to the database, its transient ordering is lost. Delete

operations may be performed against elements of the table. Delete operations create

transient holes; that is, they do not change the position ordinals of the remaining

table elements.

Nested Table Locators
In release 8.1, it is possible to retrieve a locator to a nested table. A locator is like a

handle to a collection value, and it contains information about the database

snapshot which exists at the time of retrieval. This snapshot information helps the

database retrieve the correct instantiation of a collection value at a later time when

collection elements are fetched using the locator.

Unlike a LOB locator, a collection locator cannot be used to modify a collection

instance, they merely locate the correct data. Using the locator enables an

application to return a handle to a nested table without having to retrieve the entire

collection, which may be quite large.

Function Purpose

OCITableDelete() delete an element at a given index

OCITableExists() test whether an element exists at a given index

OCITableFirst() return index for first existing element of table

OCITableLast() return index for last existing element of table

OCITableNext() return index for next existing element of table

OCITablePrev() return index for previous existing element of table

OCITableSize() return table size, not including deleted elements

REF (OCIRef)

11-22 Oracle Call Interface Programmer’s Guide

A user specifies when a table is created if a locator should be returned when a

collection column or attribute is fetched, using the RETURN AS LOCATOR

specification.

See Also: Refer to the Oracle8i SQL Reference for more information.

You can use the OCICollIsLocator() function to determine whether a collection is a

locator.

REF (OCIRef)
In Oracle, a REF (reference) is an identifier to an object. It is an opaque structure that

uniquely locates the object. An object may point to another object by way of a REF.

In C applications, the REF is represented by OCIRef *.

See Also: The prototypes and descriptions for all the functions are provided in

Chapter 17, "OCI Datatype Mapping and Manipulation Functions".

REF Manipulation Functions
The following functions perform REF operations.

REF Example
This example tests two REFs for NULL, compares them for equality, and assigns

one REF to another. Note the double indirection in the call to OCIRefAssign().

OCIEnv *envhp;
OCIError *errhp;
sword status;

Function Purpose

OCIRefAssign() assign one REF to another

OCIRefClear() clear or nullify a REF

OCIRefFromHex() convert hexadecimal string to a REF

OCIRefHexSize() return size of hex string representation of REF

OCIRefIsEqual() compare two REFs for equality

OCIRefIsNull() test whether a REF is NULL

OCIRefToHex() convert REF to a hexadecimal string

Object Type Information Storage and Access

Object-Relational Datatypes 11-23

boolean refs_equal;
OCIRef *ref1, ref2;

/* assume refs have been initialized to point to valid objects */
/*Compare two REFs for equality */
refs_equal = OCIRefIsEqual(envhp, ref1, ref2);
printf("After first OCIRefIsEqual:\n");
if(refs_equal)
 printf("REFs equal\n");
else
 printf("REFs not equal\n");

/*Assign ref1 to ref2 */
status = OCIRefAssign (envhp, errhp, ref1, &ref2);
if(status != OCI_SUCCESS)
/*error handling*/

/*Compare the two REFs again for equality */
refs_equal = OCIRefIsEqual(envhp, ref1, ref2);
printf("After second OCIRefIsEqual:\n");
if(refs_equal)
 printf("REFs equal\n");
else
 printf("REFs not equal\n");

Object Type Information Storage and Access

Descriptor Objects
When a given type is created with the CREATE TYPE statement, it is stored in the

server and associated with a type descriptor object (TDO). In addition, the database

stores descriptor objects for each data attribute of the type, each method of the type,

each parameter of each method, and the results returned by methods. The following

table lists the OCI datatypes associated with each type of descriptor object.

Information Type OCI Datatype

Type OCIType

Type Attributes Collection Elements
Method Parameters Method Results

OCITypeElem

Method OCITypeMethod

Object Type Information Storage and Access

11-24 Oracle Call Interface Programmer’s Guide

Several OCI functions (including OCIBindObject() and OCIObjectNew()) require a

TDO as an input parameter. An application can obtain the TDO by calling

OCITypeByName(), which gets the type’s TDO in an OCIType variable. Once you

obtain the TDO, you can pass it, as necessary to other calls.

Binding and Defining in Object Applications 12-1

12
Binding and Defining in Object Applications

The concepts of binding and defining were introduced and discussed in Chapter 2,

"OCI Programming Basics" and in Chapter 5, "Binding and Defining". This chapter

provides additional information necessary for users who are developing object

applications. This includes information about binding and defining object

datatypes, as well as additional datatypes which have been introduced to support

objects. This chapter assumes that readers are familiar with the basics of binding

and defining described in the earlier chapters.

This chapter includes the following sections:

■ Binding

■ Defining

■ Binding And Defining Oracle C Datatypes

■ SQLT_NTY Bind/Define Example

Note: The functionality described in this chapter is only available if you have

purchased the Oracle8 Enterprise Edition with the Objects Option.

Binding

12-2 Oracle Call Interface Programmer’s Guide

Binding
This section provides information on binding named datatypes, such as objects and

collections, and REFs.

Named Datatype Binds
For a named datatype (object type or collection) bind, a second bind call is

necessary following OCIBindByName(), or OCIBindByPos(). The OCI Bind Object

Type call, OCIBindObject(), sets up additional attributes specific to the object type

bind. An OCI application uses this call when fetching data from a table which has a

column with an object datatype.

The OCIBindObject() call takes, among other parameters, a Type Descriptor Object

(TDO) for the named data type. The TDO, of datatype OCIType is created and

stored in the database when a named data type is created. It contains information

about the type and its attributes. An application can obtain a TDO by calling

OCITypeByName().

The OCIBindObject() call also sets up the indicator variable or structure for the

named data type bind.

When binding a named data type, use the SQLT_NTY datatype constant to indicate

the datatype of program variable being bound. SQLT_NTY indicates that a C struct

representing the named data type is being bound. A pointer to this structure is

passed to the bind call.

It is possible that working with named data types may require the use of three bind

calls in some circumstances. For example, to bind a static array of named data types

to a PL/SQL table, three calls must be invoked: OCIBindByName(),

OCIBindArrayOfStruct(), and OCIBindObject().

See Also: For information about using these data types to fetch an embedded

object from the database, refer to the section "Fetching Embedded Objects" on

page 10-15.

For additional important information, see the section "Information for Named

Datatype and REF Binds" on page 12-3

For more information about descriptor objects, see "Descriptor Objects" on

page 11-23.

Binding

Binding and Defining in Object Applications 12-3

Binding REFs
As with named data types, binding REFs is a two-step process. First, call

OCIBindByName() or OCIBindByPos(), and then call OCIBindObject().

REFs are bound using the SQLT_REF datatype. When SQLT_REF is used, then the

program variable being bound must be of type OCIRef *.

See Also: For information about binding and pinning REFs to objects, see

"Retrieving an Object Reference from the Server" on page 10-11.

For additional important information, see the section "Information for Named

Datatype and REF Binds" on page 12-3.

Information for Named Datatype and REF Binds
This section presents some additional important information to keep in mind when

working with named data type and REF defines. It includes pointers about memory

allocation and indicator variable usage.

■ If the datatype being bound is SQLT_NTY, the indicator struct parameter of the

OCIBindObject() call (dvoid ** indpp) is used, and the scalar indicator is

completely ignored.

■ If the datatype is SQLT_REF, the scalar indicator is used, and the indicator

struct parameter of OCIBindObject() is completely ignored.

■ The use of indicator structures is optional. The user can pass a NULL pointer in

the indpp parameter for the OCIBindObject() call. During the bind, this means

that the object is not atomically NULL and none of its attributes are NULL.

■ The indicator struct size pointer, indsp, and program variable size pointer, pgvsp,

in the OCIBindObject() call is optional. Users can pass NULL if these parameters

are not needed.

Information Regarding Array Binds
For doing array binds of named data types or REFs, for array inserts or fetches, the

user needs to pass in an array of pointers to buffers (pre-allocated or otherwise) of

the appropriate type. Similarly, an array of scalar indicators (for SQLT_REF types)

or an array of pointers to indicator structs (for SQLT_NTY types) needs to be

passed.

See Also: For more information about SQLT_NTY, see the section "New Oracle

External Datatypes" on page 3-17.

Defining

12-4 Oracle Call Interface Programmer’s Guide

Defining
This section provides information on defining named data types (e.g., objects,

collections) and REFs.

Defining Named Datatype Output Variables
For a named datatype (object type, nested table, varray) define, two define calls are

necessary. The application should first call OCIDefineByPos(), specifying SQLT_

NTY in the dty parameter. Following OCIDefineByPos(), the application must call

OCIDefineObject(). In this case, the data buffer pointer in OCIDefineByPos() is

ignored and additional attributes pertaining to a named data type define are set up

using the OCI Define Object attributes call, OCIDefineObject().

There SQLT_NTY datatype constant is specified for a named datatype define. In this

case, the application fetches the result data into a host-language representation of

the named data type. In most cases, this will be a C struct generated by the Object

Type Translator.

When making an OCIDefineObject() call, a pointer to the address of the C struct

(preallocated or otherwise) must be provided. The object may have been created

with OCIObjectNew(), allocated in the cache, or with user-allocated memory.

Note: Please refer to the section"Information for Named Datatype and REF

Defines, and PL/SQL OUT Binds" on page 12-5 for more important information

about defining named data types.

Defining REF Output Variables
As with named data types, defining for a REF output variable is a two-step process.

The first step is a call to OCIDefineByPos(), and the second is a call to

OCIDefineObject(). Also as with named data types, the SQLT_REF datatype constant

is passed to the dty parameter of OCIDefineByPos().

SQLT_REF indicates that the application will be fetching the result data into a

variable of type OCIRef *. This REF can then be used as part of object pinning and

navigation, as described in Chapter 6.

Note: Please refer to the section"Information for Named Datatype and REF

Defines, and PL/SQL OUT Binds" on page 12-5 for more important information

about defining REFs.

Defining

Binding and Defining in Object Applications 12-5

Information for Named Datatype and REF Defines, and PL/SQL OUT Binds
This section presents some additional important information to keep in mind when

working with named data type and REF defines. It includes pointers about memory

allocation and indicator variable usage.

A PL/SQL OUT bind refers to binding a placeholder to an output variable in a

PL/SQL block. Unlike a SQL statement, where output buffers are set up with define

calls, in a PL/SQL block, output buffers are set up with bind calls. Refer to the

section "Binding Placeholders in PL/SQL" on page 5-5 for more information.

■ If the datatype being defined is SQLT_NTY, the indicator struct parameter of

the OCIDefineObject() call (dvoid ** indpp) is used, and the scalar indicator is

completely ignored.

■ If the datatype is SQLT_REF, the scalar indicator is used, and the indicator

struct parameter of OCIDefineObject() is completely ignored.

■ The use of indicator structures is optional. The user can pass a NULL pointer in

the indpp parameter for the OCIDefineObject() call. During a fetch or PL/SQL

OUT bind, this means that the user is not interested in any NULLness

information.

■ In a SQL define or PL/SQL OUT bind, if the user passes in preallocated

memory for either the output variable or the indicator, then that preallocated

memory is used to store result data, and all secondary memory (out-of-line

memory), if any, will get deallocated. The pre-allocated memory can either

come from the cache (the result of an OCIObjectNew() call), or from the client’s

private memory space.

Note: If a client application wants to allocate memory from its own private

memory space, instead of the cache, it must insure that there is no secondary

out-of-line memory in the object.

■ For an object define with type SQLT_NTY, client applications wanting to

pre-allocate object memory must use the OCIObjectNew() function. Client

applications should not allocate the object in its own private memory space,

such as with malloc() or on the stack. The OCIObjectNew() function allocates

the object in the object cache. The allocated object can be freed using

OCIObjectFree(). Refer to Chapter 16, "OCI Navigational and Type Functions"

for details on OCIObjectNew() and OCIObjectFree().

Note: There is no change to the behavior of OCIDefineObject() when the user

does not pre-allocate the object memory and instead initializes the output

Binding And Defining Oracle C Datatypes

12-6 Oracle Call Interface Programmer’s Guide

variable to null pointer value. In this case, the object will be implicitly allocated

in the object cache by the OCI library.

■ In a SQL define or PL/SQL OUT bind, if the user passes in a NULL address for

the output variable or the indicator, memory for the variable or the indicator

will be implicitly allocated by OCI.

■ If an output object of type SQLT_NTY is atomically NULL (in a SQL define or

PL/SQL OUT bind), only the NULL indicator struct will get allocated

(implicitly if necessary) and populated accordingly to indicate the atomic

NULLness of the object. The top-level object, itself, will not get implicitly

allocated.

■ An application can free indicators by calling OCIObjectFree(). If there is a

top-level object (as in the case of a non-atomically NULL object), then the

indicator is freed when the top-level object is freed with OCIObjectFree(). If the

object is atomically null, then there is no top-level object, so the indicator must

be freed separately.

■ The indicator struct size pointer, indsp, and program variable size pointer, pgvsp,

in the OCIDefineObject() call is optional. Users can pass NULL if these

parameters are not needed.

Information About Array Defines
For doing array defines of named data types or REFs, the user needs to pass in an

array of pointers to buffers (pre-allocated or otherwise) of the appropriate type.

Similarly, an array of scalar indicators (for SQLT_REF types) or an array of pointers

to indicator structs (for SQLT_NTY types) needs to be passed.

Binding And Defining Oracle C Datatypes
Previous chapters of this book have discussed OCI bind and define operations.

"Binding" on page 4-5 discussed the basics of OCI bind operations, while "Defining"

on page 4-14 discusses the basics of OCI define operations. Information specific to

binding and defining named data types and REFs is found in Chapter 5, "Binding

and Defining".

The sections covering basic bind and define functionality showed how an

application could use a scalar variable or array of scalars as an input (bind) value in

a SQL statement, or as an output (define) buffer for a query.

The sections covering named data types and REFs showed how to bind or define an

object or reference. Chapter 10, "OCI Object-Relational Programming" expanded on

Binding And Defining Oracle C Datatypes

Binding and Defining in Object Applications 12-7

this to talk about pinning object references, object navigation, and fetching

embedded instances.

The purpose of this section is to cover binding and defining of individual attribute

values, using the datatype mappings explained in this chapter.

Variables of one of the types defined in this chapter, such as OCINumber or

OCIString, can typically be declared in an application and used directly in an OCI

bind or define operation as long as the appropriate datatype code is specified. The

following table lists the datatypes that can be used for binds and defines, along with

their C mapping, and the OCI external datatype which must be specified in the dty
(datatype code) parameter of the bind or define call.

Note 1: Before fetching data into a define variable of type OCIString *, the size

of the string must first be set using the OCIStringResize() routine. This may

require a describe operation to obtain the length of the select-list data. Similarly,

an OCIRaw * must be first sized with OCIRawResize().

The following section presents examples of how to use C-mapped datatypes in an

OCI application.

See Also: For a discussion of OCI external datatypes, and a list of datatype

codes, refer to Chapter 3, "Datatypes".

Table 12–1 Datatype Mappings for Binds and Defines

Datatype C Mapping OCI External Datatype and Code

Oracle number OCINumber VARNUM (SQLT_VNU)

Oracle date OCIDate SQLT_ODT

VARCHAR2 OCIString * SQLT_VST (see Note 1 below)

RAW OCIRaw * SQLT_LVB (see Note 1 below)

CHAR OCIString * SQLT_VST

OBJECT struct * Named Data Type (SQLT_NTY)

REF OCIRef * REF (SQLT_REF)

VARRAY OCIArray * Named Data Type (SQLT_NTY)

Nested Table OCITable * Named Data Type (SQLT_NTY)

Binding And Defining Oracle C Datatypes

12-8 Oracle Call Interface Programmer’s Guide

Bind and Define Examples
The examples in this section demonstrate how variables of type OCINumber can be

used in OCI bind and define operations.

Note: The examples in this section are intended to demonstrate the flow of calls

used to perform certain OCI tasks. An expanded pseudocode is used for the

examples in this section. Actual function names are used, but for the sake of

simplicity not all parameters and typecasts are filled in. Additionally, other

necessary OCI calls, like handle allocations, have been omitted.

Assume, for this example, that the following person object type was created:

CREATE TYPE person AS OBJECT
(name varchar2(30),
salary number);

This type is then used to create an employees table which has a column of type

person .

CREATE TABLE employees
(emp_id number,
job_title varchar2(30),
emp person);

OTT generates the following C struct and null indicator struct for person :

struct person
{ OCIString * name;

OCINumber salary;};
typedef struct person person;

struct person_ind
{ OCIInd _atomic;

OCIInd name;
OCIInd salary;}

typedef struct person_ind person_ind;

Assume that the employees table has been populated with values, and an OCI

application has declared a person variable:

person *my_person;

and fetched an object into that variable through a SELECT statement, like

text *mystmt = (text *) "SELECT person FROM employees
WHERE emp.name=’ANDREA’";

Binding And Defining Oracle C Datatypes

Binding and Defining in Object Applications 12-9

This would require defining my_person to be the output variable for this

statement, using appropriate OCI define calls for named datatypes, as described in

the section "Advanced Define Operations" on page 5-16. Executing the statement

would retrieve the person object named ANDREA into the my_person variable.

Once the object is retrieved into my_person , the OCI application now has access to

the attributes of my_person , including the name and the salary.

The application could go on to update another employee’s salary to be the same as

Andrea’s, as in

text *updstmt = (text *) "UPDATE employees SET emp.salary = :newsal
WHERE emp.name = ’MONGO’"

Andrea’s salary (stored in my_person->salary) would be bound to the

placeholder :newsal, specifying an external datatype of VARNUM (datatype

code=6) in the bind operation:

OCIBindByName(...,":newsal",...,&my_person->salary,...,6,...);
OCIStmtExecute(...,updstmt,...)

Executing the statement updates Mongo’s salary in the database to be equal to

Andrea’s, as stored in my_person.

Conversely, the application could update Andrea’s salary to be the same as

Mongo’s, by querying the database for Mongo’s salary, and then making the

necessary salary assignment:

text *selstmt = (text *) "SELECT emp.salary FROM employees
WHERE emp.name = ’MONGO’"

OCINumber mongo_sal;
...
OCIDefineByPos(...,1,...,&mongo_sal,...,6,...);
OCIStmtExecute(...,selstmt,...);
OCINumberAssign(...,&mongo_sal, &my_person->salary);

In this case, the application declares an output variable of type OCINumber and

uses it in the define step. In this case we define an output variable for position 1,

and use the appropriate datatype code (6 for VARNUM).

The salary value is fetched into the mongo_sal OCINumber, and the appropriate

OCI function, OCINumberAssign(), is used to assign the new salary to the copy of

the Andrea object currently in the cache. To modify the data in the database, the

change must be flushed to the server.

Binding And Defining Oracle C Datatypes

12-10 Oracle Call Interface Programmer’s Guide

Salary Update Examples
The examples in the previous section should give some idea of the flexibility which

the new Oracle8 datatypes provide for bind and define operations. The goal of this

section is to show how the same operation can be performed in several different

ways. The goal is to give you some idea of the variety of ways in which these

datatypes can be used in OCI applications.

The examples in this section are intended to demonstrate the flow of calls used to

perform certain OCI tasks. An expanded pseudocode is used for the examples in

this section. Actual function names are used, but for the sake of simplicity not all

parameters and typecasts are filled in. Additionally, other necessary OCI calls, like

handle allocations, have been omitted.

The Scenario
The scenario for these examples is as follows:

1. An employee named BRUCE exists in the employees database for a hospital.

See person type and employees table creation statements in the previous

section.

2. Bruce’s current job title is RADIOLOGIST.

3. Bruce is being promoted to RADIOLOGY_CHIEF, and along with the

promotion comes a salary increase.

4. Hospital salaries are in whole dollar values, are set according to job title, and

stored in a table called salaries, defined as follows:

CREATE TABLE salaries
(job_title varchar2(20),
salary integer));

5. Bruce’s salary needs to be updated to reflect his promotion.

Accomplishing the above task requires that the application retrieve the salary

corresponding to RADIOLOGY_CHIEF from the salaries table, and update

Bruce’s salary. A separate step would write his new title and the modified object

back to the database.

Assuming that a variable of type person has been declared

person * my_person;

and the object corresponding to Bruce has been fetched into it, the following

sections present three different ways in which the salary update could be

performed.

Binding And Defining Oracle C Datatypes

Binding and Defining in Object Applications 12-11

Method 1 - fetch, convert, assign
This example uses the following method:

1. Do a traditional OCI define using an integer variable to retrieve the new salary

from the database.

2. Convert the integer to an OCINumber.

3. Assign the new salary to Bruce.

#define INT_TYPE 3 /* datatype code for sword integer define */

text *getsal = (text *) "SELECT salary FROM salaries
WHERE job_title=’RADIOLOGY_CHIEF’

sword new_sal;
OCINumber orl_new_sal;
...
OCIDefineByPos(...,1,...,new_sal,...,INT_TYPE,...);

/* define int output */
OCIStmtExecute(...,getsal,...);

/* get new salary as int */
OCINumberFromInt(...,new_sal,...,&orl_new_sal);

/* convert salary to OCINumber */
OCINumberAssign(...,&orl_new_sal, &my_person->salary);

/* assign new salary */

Method 2 - fetch, assign
This method eliminates one of the steps in Method 1:

1. Define an output variable of type OCINumber, so that no conversion is

necessary after the value is retrieved.

2. Assign the new salary to Bruce

#define VARNUM_TYPE 6 /* datatype code for defining VARNUM */

text *getsal = (text *) "SELECT salary FROM salaries
 WHERE job_title=’RADIOLOGY_CHIEF’
OCINumber orl_new_sal;
...
OCIDefineByPos(...,1,...,orl_new_sal,...,VARNUM_TYPE,...);
 /* define OCINumber output */
OCIStmtExecute(...,getsal,...); /* get new salary as OCINumber */
OCINumberAssign(...,&orl_new_sal, &my_person->salary);
 /* assign new salary */

Binding And Defining Oracle C Datatypes

12-12 Oracle Call Interface Programmer’s Guide

Method 3 - direct fetch
This method accomplishes the entire operation with a single define and fetch. No

intervening output variable is used, and the value retrieved from the database is

fetched directly into the salary attribute of the object stored in the cache.

1. Since Bruce is pinned in the object cache, use the location of his salary attribute

as the define variable, and execute/fetch directly into it.

#define VARNUM_TYPE 6 /* datatype code for defining VARNUM */

text *getsal = (text *) "SELECT salary FROM salaries
 WHERE job_title=’RADIOLOGY_CHIEF’
...
OCIDefineByPos(...,1,...,&my_person->salary,...,VARNUM_TYPE,...);
 /* define bruce’s salary in cache as output variable */
OCIStmtExecute(...,getsal,...);
 /* execute and fetch directly */

Summary and Notes
As the previous three examples show, the Oracle8 C datatypes provide flexibility for

binding and defining. In these examples an integer can be fetched, and then

converted to an OCINumber for manipulation; an OCINumber could be used as

intermediate variable to store the results of a query; or data can be fetched directly

into a desired OCINumber attribute of an object.

Note: In all of these examples it is important to keep in mind that in the Oracle8

OCI, if an output variable is defined before the execution of a query, the

resulting data will be prefetched directly into the output buffer.

In the above examples, extra steps would be necessary to insure that changes are

written to the database permanently. This may involve SQL UPDATE calls and OCI

transaction commit calls.

These examples all dealt with define operations, but a similar situation applies for

binding.

Similarly, although these examples dealt exclusively with the OCINumber type, a

similar variety of operations are possible for the other Oracle8 C types described in

the remainder of this chapter.

SQLT_NTY Bind/Define Example

Binding and Defining in Object Applications 12-13

SQLT_NTY Bind/Define Example
The following code fragments demonstrate the use of SQLT_NTY bind and define

calls, including OCIBindObject() and OCIDefineObject(). In each example, a

previously defined SQL statement is being processed.

Bind Example
/*
** This example performs a SQL insert statement
*/
STATICF void insert(envhp, svchp, stmthp, errhp, insstmt, nrows)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
text *insstmt;
ub2 nrows;
{
 orttdo *addr_tdo = NULLP(orttdo);
 address addrs;
 null_address naddrs;
 address *addr = &addrs;
 null_address *naddr = &naddrs;
 sword custno =300;
 OCIBind *bnd1p, *bnd2p;
 ub2 i;

 /* define the application request */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) insstmt,
 (ub4) strlen((char *)insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* bind the input variable */
 checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":custno",
 (sb4) -1, (dvoid *) &custno,
 (sb4) sizeof(sword), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0, (ub4) 0, (ub4 *) 0,
 (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":addr",
 (sb4) -1, (dvoid *) 0,
 (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

SQLT_NTY Bind/Define Example

12-14 Oracle Call Interface Programmer’s Guide

 checkerr(errhp, OCITypeByName(envhpx, errhp, svchpx, (const text *)
 SCHEMA, (ub4) strlen((char *)SCHEMA), (const text *)
 "ADDRESS_VALUE", (ub4) strlen((char *)"ADDRESS_VALUE"),
 OCI_DURATION_SESSION, &addr_tdo));

 if(!addr_tdo)
 {
 DISCARD printf("Null tdo returned\n");
 goto done_insert;
 }

 checkerr(errhp, OCIBindObject(bnd2p, errhp, addr_tdo, (dvoid **) &addr,
 (ub4 *) 0, (dvoid **) &naddr, (ub4 *) 0));

Define Example
/*
** This example executes a SELECT statement from a table which includes
** an object.
*/

STATICF void selectval(envhp, svchp, stmthp, errhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
{
 orttdo *addr_tdo = NULLP(orttdo);
 OCIDefine *defn1p, *defn2p;
 address *addr = (address *)NULL;
 sword custno =0;
 sb4 status;

 /* define the application request */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) selvalstmt,
 (ub4) strlen((char *)selvalstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* define the output variable */
checkerr(errhp, OCIDefineByPos(stmthp, &defn1p, errhp, (ub4) 1, (dvoid *)
 &custno, (sb4) sizeof(sword), SQLT_INT, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

checkerr(errhp, OCIDefineByPos(stmthp, &defn2p, errhp, (ub4) 2, (dvoid *)

SQLT_NTY Bind/Define Example

Binding and Defining in Object Applications 12-15

 0, (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCITypeByName(envhpx, errhp, svchpx, (const text *)
 SCHEMA, (ub4) strlen((char *)SCHEMA), (const text *)
 "ADDRESS_VALUE", (ub4) strlen((char *)"ADDRESS_VALUE"),OROODTSES,
 &addr_tdo));

 if(!addr_tdo)
 {
 printf("NULL tdo returned\n");
 goto done_selectval;
 }

 checkerr(errhp, OCIDefineObject(defn2p, errhp, addr_tdo, (dvoid **)
 &addr, (ub4 *) 0, (dvoid **) 0, (ub4 *) 0));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

SQLT_NTY Bind/Define Example

12-16 Oracle Call Interface Programmer’s Guide

Object Cache and Object Navigation 13-1

13
Object Cache and Object Navigation

This chapter introduces the OCI’s facility for working with objects in an Oracle

database server. It also discusses the OCI’s object navigational function calls. This

chapter includes the following sections:

■ Overview

■ The Object Cache and Memory Management

■ Object Navigation

■ OCI Navigational Functions

Note: The functionality described in this chapter is only available if you have

installed the Oracle8i Enterprise Edition with the Objects Option.

Overview

13-2 Oracle Call Interface Programmer’s Guide

Overview
This chapter is broken down into several main sections that discuss the basic

concepts involved in writing OCI applications to manipulate Oracle objects. The

chapter also covers the OCI navigational function calls.

The following specific sections are included:

■ The Object Cache and Memory Management - This section discusses OCI

object programming in more detail, including more sophisticated options.

■ Object Navigation - This section discusses basic object navigation using the

Oracle OCI.

■ OCI Navigational Functions - This section introduces the OCI functions that

enable an application to navigate through a graph of objects.

Complete descriptions of the OCI navigational functions can be found in

Chapter 16, "OCI Navigational and Type Functions".

The Object Cache and Memory Management
The object cache is a client-side memory buffer that provides lookup and memory

management support for objects. It stores and tracks object instances that have been

fetched by an OCI application.

When objects are fetched by the application through a SQL SELECT, or through an

OCI pin operation, a copy of the object is stored in the object cache. Objects that are

fetched directly through a SELECT statement are fetched by value, and they are

non-referenceable objects which cannot be pinned. Only referenceable objects may

be pinned.

If an object is being pinned, and an appropriate version already exists in the cache,

it does not need to be fetched from the server.

Every client program that uses the Oracle OCI to dereference REFs to retrieve

objects utilizes the object cache. A client-side object cache is allocated for every OCI

environment handle initialized in object mode. Multiple threads of a process can

share the same client-side cache by sharing the same OCI environment handle.

Exactly one copy of each referenceable object exists in the cache per connection.

Dereferencing a REF many times or dereferencing several equivalent REFs returns

the same copy of the object.

If you modify a copy of an object in the cache, you must flush the changes to the

server before they are visible to other processes. Objects that are no longer needed

The Object Cache and Memory Management

Object Cache and Object Navigation 13-3

can be unpinned or freed; they can then be swapped out of the cache, freeing the

memory space they occupied.

The object cache maintains the association between all object copies in the cache and

their corresponding objects in the database.

The cache does not manage the contents of object copies; it does not automatically

refresh object copies. The application must ensure the correctness and consistency

of the contents of object copies. For example, if the application marks an object copy

for insert, update, or delete, then aborts the transaction, the cache simply unmarks

the object copy but does not purge or invalidate the copy. The application must pin

recent or latest, or refresh the object copy in the next transaction. If it pins any, it may

get the same object copy with its uncommitted changes from the previous aborted

transaction.

See Also: For more information about pin options, see "Pinning an Object

Copy" on page 13-7.

The object cache is created when the OCI environment is initialized in object mode,

using OCIInitialize(). Each application processes running against the same server

has its own object cache, as shown in Figure 13–1, "The Object Cache".

The Object Cache and Memory Management

13-4 Oracle Call Interface Programmer’s Guide

Figure 13–1 The Object Cache

The object cache tracks the objects that are currently in memory, maintains

references to the objects, manages automatic object swapping, and tracks object

meta-attributes.

Cache Consistency and Coherency
The object cache does not automatically maintain value coherency or consistency

between object copies and their corresponding objects in the database. In other

words, if an application makes changes to an object copy, the changes are not

Application 1
Object Cache

Application 2
Object Cache

System Global
Area (SGA)

ORACLE8i
DATABASE

The Object Cache and Memory Management

Object Cache and Object Navigation 13-5

automatically applied to the corresponding object in the database, and vice versa.

The cache provides operations such as flushing a modified object copy to the

database and refreshing a stale object copy with the latest value from the database

to enable the program to maintain some coherency.

Note: Oracle does not support automatic cache coherency with the server's

buffer cache or database. Automatic cache coherency refers to the mechanism

by which the object cache refreshes local object copies when the corresponding

objects have been modified in the server's buffer cache, and the object cache

flushes the changes made to local object copies to the buffer cache before any

direct access of corresponding objects in the server. Direct access includes using

SQL, triggers, or stored procedures to read or modify objects in the server.

Object Cache Parameters
The object cache has two important parameters associated with it, which are

attributes of the environment handle:

■ OCI_ATTR_CACHE_MAX_SIZE, the maximum cache size

■ OCI_ATTR_CACHE_OPT_SIZE, the optimal cache size

These parameters refer to levels of cache memory usage, and they help to determine

when the cache automatically ages out eligible objects to free up memory.

If the memory occupied by the objects currently in the cache reaches or exceeds the

high watermark, the cache automatically begins to free unmarked objects which

have a pin count of zero. The cache continues freeing such objects until memory

usage in the cache reaches the optimal size, or until it runs out of objects eligible for

freeing.

OCI_ATTR_CACHE_MAX_SIZE is specified as a percentage of OCI_ATTR_

CACHE_OPT_SIZE. The maximum object cache size (in bytes) is computed by

incrementing OCI_ATTR_CACHE_OPT_SIZE by OCI_ATTR_CACHE_MAX_SIZE

percentage, as follows:

maximum_cache_size = optimal_size + optimal_size * max_size_percentage / 100

or

maximum_cache_size = OCI_ATTR_CACHE_OPT_SIZE + OCI_ATTR_CACHE_OPT_SIZE *
 OCI_ATTR_CACHE_MAX_SIZE / 100

The default value for OCI_ATTR_CACHE_MAX_SIZE is 10%. The default value for

OCI_ATTR_CACHE_OPT_SIZE is 200k bytes.

The Object Cache and Memory Management

13-6 Oracle Call Interface Programmer’s Guide

The cache size attributes of the environment handle can be set with the OCIAttrSet()
call and retrieved with the OCIAttrGet() function. See the section "Environment

Handle Attributes" on page A-3 for more information.

Object Cache Operations
This section describes the most important functions the object cache provides to

operate on object copies. All of the OCI’s navigational and cache/object

management functions are listed in the section "OCI Navigational Functions" on

page 13-19.

Pinning and unpinning Pinning an object copy allows the application to access it in the

cache by dereferencing the REF to it.

Unpinning an object indicates to the cache that the object currently is not being

used. Objects should be unpinned when they are no longer needed to make them

eligible for implicit freeing by the cache, thus freeing up memory.

Freeing Freeing an object copy removes it from the cache and frees its memory.

Marking and unmarking Marking an object notifies the cache that an object copy has

been updated in the cache and the corresponding object must be updated in the

server when the object copy is flushed.

Unmarking an object removes the indication that the object has been updated.

Flushing Flushing an object writes local changes made to marked object copies in

the cache to the corresponding objects in the server. When this happens, the copies

in the object cache are unmarked.

Refreshing Refreshing an object copy in the cache replaces it with the latest value of

the corresponding object in the server.

Note: Pointers to top-level object memory are valid after a refresh. Pointers to

secondary-level memory (e.g., string text pointers, collections, etc.) may become

invalid after a refresh.

The Object Cache and Memory Management

Object Cache and Object Navigation 13-7

Operations for Loading and Removing Object Copies
Pin, unpin, and free functions are discussed in this section.

Pinning an Object Copy
When an application needs to dereference a REF in the object cache, it calls

OCIObjectPin(). This call dereferences the REF and pins the object copy in the cache.

As long as the object copy is pinned, it is guaranteed to be accessible by the

application. Another variation of OCIObjectPin() is OCIObjectPinArray() which takes

an array of REFs, dereferences the REFs, and pins the object copies. Both

OCIObjectPin() and OCIObjectPinArray() take a pin option, any, recent, or latest. The

datatype of the pin option is OCIPinOpt.

■ If the any (OCI_PIN_ANY) option is specified, the object cache immediately

returns the object copy that is already in the cache, if there is one. If no copy is

in the cache, the object cache loads the latest object copy from the database and

then returns the object copy. The any option is appropriate for read-only,

informational, fact, or meta objects, such as products, salesmen, vendors,

regions, parts, or offices. These objects usually do not change often, and even if

they change, the change does not affect the application.

■ If the latest (OCI_PIN_LATEST) option is specified, the object cache loads into

the cache the latest object copy from the database and returns that copy unless

the object copy is locked in the cache, in which case the marked object copy is

returned immediately. If the object is already in the cache and not locked, the

latest object copy is loaded and overwrites the existing one. The latest option is

appropriate for operational objects, such as purchase orders, bugs, line items,

bank accounts, or stock quotes. These objects usually change often, and the

program cares to access these objects at their latest possible state.

■ If the recent (OCI_PIN_RECENT) option is specified, there are two possibilities:

■ If in the same transaction the object copy has been previously pinned using

the latest or recent option, the recent option becomes equivalent to the any
option.

■ If the previous condition does not apply, the recent option becomes

equivalent to the latest option.

When the program pins an object, the program also specifies one of two possible

values for the pin duration: session or transaction. The datatype of the duration is

OCIDuration.

The Object Cache and Memory Management

13-8 Oracle Call Interface Programmer’s Guide

■ If the pin duration is session (OCI_DURATION_SESSION), the object copy

remains pinned until the end of session (i.e., end of connection) or until it is

unpinned explicitly by the program (by calling OCIObjectUnpin()).

■ If the pin duration is transaction (OCI_DURATION_TRANS), the object copy

remains pinned until the end of transaction or until it is unpinned explicitly.

When loading an object copy into the cache from the database, the cache effectively

executes

SELECT VALUE(t) FROM t WHERE REF(t) = :r

where t is the object table storing the object, and r is the REF, and the fetched value

becomes the value of the object copy in the cache.

Since the object cache effectively executes a separate SELECT statement to load each

object copy into the cache, in a read-committed transaction, object copies are not

guaranteed to be read-consistent with each other.

In a serializable transaction, object copies pinned recent or latest are read-consistent

with each other because the SELECT statements to load these object copies are

executed based on the same database snapshot.

The object cache model is orthogonal to or independent of the Oracle transaction

model. The behavior of the object cache does not change based on the transaction

model, even though the objects that are retrieved from the server through the object

cache can be different when running the same program under different transaction

models (e.g., read committed versus serializable).

Unpinning an Object Copy
An object copy can be unpinned when it is no longer used by the program. It then

becomes available to be freed. An object copy must be both completely unpinned

and unmarked in order to become eligible to be implicitly freed by the cache when

the cache begins to run out of memory. To be completely unpinned, an object copy

that has been pinned N times must be unpinned N times.

An unpinned but marked object copy is not eligible for implicit freeing until the

object copy is flushed or explicitly unmarked by the user. However, the object cache

implicitly frees object copies only when it begins to run out of memory, so an

unpinned object copy need not necessarily be freed. If it has not been implicitly

freed and is pinned again (with the any or recent options), the program gets the

same object copy.

The Object Cache and Memory Management

Object Cache and Object Navigation 13-9

An application calls OCIObjectUnpin() or OCIObjectPinCountReset() to unpin an

object copy. In addition, a program can call OCICacheUnpin() to completely unpin

all object copies in the cache for a specific connection.

Freeing an Object Copy
Freeing an object copy removes it from the object cache and frees up its memory.

The cache supports two methods for freeing up memory:

1. Explicit freeing - A program explicitly frees or removes an object copy from the

cache by calling OCIObjectFree() which takes an option to (forcefully) free either

a marked or pinned object copy. The program can also call OCICacheFree() to
free all object copies in the cache.

2. Implicit freeing - Should the cache begin to run out of memory, it implicitly

frees object copies that are both unpinned and unmarked. Unpinned objects

that are marked are eligible for implicitly freeing only when the object copy is

flushed or unmarked. For more information, see the section "Object Cache

Parameters" on page 13-5.

For memory management reasons, it is important that applications unpin objects

when they are no longer needed. This makes these objects available for aging out of

the cache, and makes it easier for the cache to free memory when necessary.

The OCI does not provide a function to free unreferenced objects in the client-side

cache.

Operations for Making Changes to Object Copies
Functions for marking and unmarking object copies are discussed in this section.

Marking an Object Copy
 An object copy can be created, updated, and deleted locally in the cache. If the

object copy is created in the cache (by calling OCIObjectNew()), the object copy is

marked for insert by the object cache, so that the object will be inserted in the server

when the object copy is flushed.

If the object copy is updated in the cache, the user has to notify the object cache by

marking the object copy for update (by calling OCIObjectMarkUpdate()). When the

object copy is flushed, the corresponding object in the server is updated with the

value in the object copy.

If the object copy is deleted, the object copy is marked for delete in the object cache

(by calling OCIObjectMarkDelete()). When the object copy is flushed, the

The Object Cache and Memory Management

13-10 Oracle Call Interface Programmer’s Guide

corresponding object in the server is deleted. The memory of the marked object

copy is not freed until it is flushed and unpinned. When pinning an object marked

for delete, the program receives an error, as if the program is dereferencing a

dangling reference.

When a user makes multiple changes to an object copy, it is the final results of these

changes which are applied to the object in the server when the copy is flushed. For

example, if the user updates and deletes an object copy, the object in the server is

simply deleted when the object copy is flushed. Similarly, if an attribute of an object

copy is updated multiple times, it is the final value of this attribute which is

updated in the server when the object copy is flushed.

The program can mark an object copy as updated or deleted only if the object copy

has been loaded into the object cache.

Unmarking an Object Copy
A marked object copy can be unmarked in the object cache. By unmarking a marked

object copy, the changes that are made to the object copy are not flushed to the

server. The object cache does not undo the local changes that are already made to

the object copy.

A program calls OCIObjectUnmark() to unmark an object. In addition, a program can

call OCICacheUnmark() to unmark all object copies in the cache for a specific

connection.

Operations for Synchronizing Object Copies with Server
Cache/server synchronization operations (flushing, refreshing) are discussed in this

section.

Flushing Changes to Server
The local changes made to a marked object copy in the cache are written to the

server when the object copy is flushed. The program can call OCIObjectFlush() to
flush a single object copy or OCICacheFlush() to flush all marked object copies in the

cache or a list of selected marked object copies. OCICacheFlush() flushes objects

associated with a specific service context. See OCICacheFlush() on page 16-9.

After flushing an object copy, the object copy is unmarked. (Note that the object is

locked in the server after it is flushed; the object copy is therefore marked as locked

in the cache.)

Note: The OCICacheFlush() operation incurs only a single server roundtrip even

if multiple objects are being flushed.

The Object Cache and Memory Management

Object Cache and Object Navigation 13-11

If an application wishes to flush only dirty objects of a certain type, this

functionality is available through the callback function which is an optional

argument to the OCICacheFlush() call. The application can define a callback which

returns only the desired objects. In this case the operation still incurs only a single

server roundtrip for the flush.

In the default mode during OCICacheFlush(), the objects are flushed in the order that

they are marked dirty. The performance of this flush operation can be considerably

improved by setting the OCI_ATTR_CACHE_ARRAYFLUSH attribute in the

environment handle. See OCI_ATTR_CACHE_ARRAYFLUSH on page A-3

However, OCI_ATTR_CACHE_ARRAYFLUSH mode should be used only if the

order in which the objects are flushed is not important. During this mode, the dirty

objects are grouped together and sent to the server in a manner that allows the

server to efficiently update its tables. When this mode is enabled, it is not

guaranteed that the order in which the objects are marked dirty is preserved.

Refreshing an Object Copy
When refreshed, an object copy is reloaded with the latest value of the

corresponding object in the server. The latest value may contain changes made by

other committed transactions and changes made directly (not through the object

cache) in the server by the transaction. The program can change objects directly in

the server using SQL DML, triggers, or stored procedures.

To refresh a marked object copy, the program must first unmark the object copy. An

unpinned object copy is simply freed when it is refreshed (i.e., when the whole

cache is refreshed).

The program can call OCIObjectRefresh() to refresh a single object copy or

OCICacheRefresh() to refresh all object copies in the cache, all object copies that are

loaded in a transaction (i.e., object copies that are pinned recent or pinned latest), or

a list of selected object copies.

When an object is flushed to the server, triggers can be fired to modify more objects

in the server. The same objects (modified by the triggers) in the object cache become

out-of-date, and must be refreshed before they can be locked or flushed.

The various meta-attribute flags and durations of an object are modified as

described in Table 13–1 after being refreshed:

Table 13–1 Object Attributes After Refresh

Object Attribute Status After Refresh

existent set to appropriate value

The Object Cache and Memory Management

13-12 Oracle Call Interface Programmer’s Guide

During refresh, the object cache loads the new data into the top-level memory of an

object copy, thus reusing the top level memory. The top-level memory of an object

copy contains the in-line attributes of the object. On the other hand, the memory for

the out-of-line attributes of an object copy may be freed and relocated, since the

out-of-line attributes can vary in size.

See Also: See the section "Memory Layout of an Instance" on page 13-16 for

more information about object memory.

Object Locking Operations
OCI functions related to object locking are discussed in this section.

Locking Objects For Update
The program can optionally call OCIObjectLock() to lock an object for update. This

call instructs the object cache to get a row lock on the object in the database. This is

similar to executing

SELECT NULL FROM t WHERE REF(t) = :r FOR UPDATE

where t is the object table storing the object to be locked and r is the REF

identifying the object. The object copy is marked locked in the object cache after

OCIObjectLock() is called.

To lock a graph or set of objects, several OCIObjectLock() calls are required, one per

object, or the array pin OCIObjectArrayPin() call can be used for better performance.

By locking an object, the application is guaranteed that the object in the cache is

up-to-date. No other transaction can modify the object while the application has it

locked.

At the end of a transaction, all locks are released automatically by the server. The

locked indicator in the object copy is reset.

pinned unchanged

flushed reset

allocation duration unchanged

pin duration unchanged

Table 13–1 Object Attributes After Refresh

Object Attribute Status After Refresh

The Object Cache and Memory Management

Object Cache and Object Navigation 13-13

Locking With the NOWAIT Option
In some cases, an application may attempt to lock an object which is currently

locked by another user. In this case the application is blocked.

In order to avoid blocking when trying to lock an object, an application can use the

OCIObjectLockNoWait() call instead of OCIObjectLock(). This function returns an

error if it is unable to lock an object immediately because it is locked by another

user.

The NOWAIT option is also available to pin calls by passing a value of OCI_LOCK_

X_NOWAIT as the lock option parameter.

Implementing Optimistic Locking
There are two options available for implementing optimistic locking in an OCI

application.

Option 1
The first optimistic locking option is for OCI applications that run transactions at

the serializable level.

The Oracle OCI supports calls that allow you to dereference and pin objects in the

object cache without locking them, modify them in the cache (again without locking

them), and then flush them (the dirtied objects) to the database.

During the flush, if a dirty object has been modified by another committed

transaction since the beginning of your transaction, a non-serializable transaction

error is returned. If none of the dirty objects has been modified by any other any

other transaction since the beginning of your transaction, then the changes are

written to the database successfully.

Note: OCITransCommit() first flushes dirty objects into the database before

committing a transaction.

The above mechanism effectively implements an optimistic locking model.

Option2
Alternately, an application can enable object change detection mode. To do this, set

the OCI_ATTR_OBJECT_DETECTCHANGE attribute of the environment handle to

a value of TRUE.

When this mode has been activated, the application receives an ORA-08179 error

("concurrency check failed") when attempting to flush an object that has been

changed in the server by another committed transaction. The application can then

handle this error in an appropriate manner.

The Object Cache and Memory Management

13-14 Oracle Call Interface Programmer’s Guide

Commit and Rollback in Object Applications
When a transaction is committed (OCITransCommit()), all marked objects are flushed

to the server. If an object copy is pinned with a transaction duration, the object copy

is unpinned.

When a transaction is rolled back, all marked objects are unmarked. If an object

copy is pinned with a transaction duration, the object copy is unpinned.

Object Duration
In order to maintain free space in memory, the object cache attempts to reuse

objects’ memory whenever possible. The object cache reuses an object’s memory

when the object’s lifetime (allocation duration) expires or when the object’s pin
duration expires. The allocation duration is set when an object is created with

OCIObjectNew(), and the pin duration is set when an object is pinned with

OCIObjectPin(). The datatype of the duration value is OCIDuration.

Note: The pin duration for an object cannot be longer than the object’s

allocation duration.

When an object reaches the end of its allocation duration, it is automatically deleted

and its memory can be reused. The pin duration indicates when an object’s memory

can be reused, and memory is reused when the cache is full.

The OCI supports two predefined durations:

1. transaction (OCI_DURATION_TRANS)

2. session (OCI_DURATION_SESSION)

The transaction duration expires when the containing transaction ends (commits or

aborts). The session duration expires when the containing session/connection ends.

The application can explicitly unpin an object using OCIObjectUnpin. To minimize

explicit unpinning of individual objects, the application can unpin all objects

currently pinned in the object cache using the function OCICacheUnpin. By default,

all objects are unpinned at the end of the pin duration.

Durations Example
Table 13–2 illustrates the use of the different durations in an application. Four

objects are created or pinned in this application over the course of one connection

and three transactions. The first column indicates the action performed by the

database, and the second column indicates the function which performs the action.

The Object Cache and Memory Management

Object Cache and Object Navigation 13-15

The remaining columns indicate the states of the various objects at each point in the

application.

For example, Object 1 comes into existence at T2 when it is created with a

connection duration, and it exists until T19 when the connection is terminated.

Object 2 is pinned at T7 with a transaction duration, after being fetched at T6, and it

remains pinned until T9 when the transaction is committed.

Table 13–2 Example of Allocation and Pin Durations

Time Application Action Function Object 1 Object 2 Object 3 Object 4

T1 Establish connection

T2 Create object 1 - allocation
duration = connection

OCIObjectNew() exists

T5 Start Transaction1 OCITransStart() exists

T6 SQL - fetch REF to object 2 exists

T7 Pin object 2 - pin duration =
transaction

OCIObjectPin() exists pinned

T8 Process application data exists pinned

T9 Commit Transaction1 OCITransCommit() exists unpinned

T10 Start Transaction2 OCITransStart() exists

T11 Create object 3 - allocation
duration = transaction

OCIObjectNew() exists exists

T12 SQL - fetch REF to object 4 exists exists

T13 Pin object 4 -
pin duration = connection

OCIObjectPin() exists exists pinned

T14 Commit Transaction2 OCITransCommit() exists deleted pinned

T15 Terminate session1 OCIDurationEnd() exists pinned

T16 Start Transaction3 OCITransStart() exists pinned

T17 Process application data exists pinned

T18 Commit Transaction3 OCITransCommit() exists pinned

T19 Terminate connection deleted unpinned

The Object Cache and Memory Management

13-16 Oracle Call Interface Programmer’s Guide

See Also: See the descriptions of OCIObjectNew() and OCIObjectPin() in
Chapter 16, "OCI Navigational and Type Functions" for specific information

about parameter values which can be passed to these functions.

See the section "Creating Objects" on page 10-32 for information about freeing

up an object’s memory before its allocation duration has expired.

Memory Layout of an Instance
An instance in memory is composed of a top-level memory chunk of the instance, a

top-level memory of the null indicator structure and optionally, a number of

secondary memory chunks. Consider a DEPARTMENT row type,

CREATE TYPE department AS OBJECT
(dep_name varchar2(20),

budget number,
 manager person, /* person is an object type */
employees person_array); /* varray of person objects */

and its C representation

struct department
{
OCIString * dep_name;
OCINumber budget;
struct person manager;
OCIArray * employees;
);
typedef struct department department;

Each instance of DEPARTMENT has a top-level memory chunk which contains the

top-level attributes such as dep_name, budget , manager and employees . The

attributes dep_name and employees are themselves actually pointers to the

additional memory (the secondary memory chunks). The secondary memory is

used to contain the actual data for the embedded instances (e.g. employees varray

and dep_name string).

The top-level memory of the null indicator structure contains the null statuses of the

attributes in the top level memory chunk of the instance. From the above example,

the top level memory of the null structure contains the null statuses of the attributes

dep_name, budget , manager and the atomic nullness of employees .

Object Navigation

Object Cache and Object Navigation 13-17

Object Navigation
This section discusses how OCI applications can navigate through graphs of objects

in the object cache.

Simple Object Navigation
In the example in the previous sections, the object retrieved by the application was a

simple object, whose attributes were all scalar values. If an application retrieves an

object with an attribute which is a REF to another object, the application can use

OCI calls to traverse the object graph and access the referenced instance.

As an example, consider the following declaration for a new type in the database:

CREATE TYPE person_t AS OBJECT
(name VARCHAR2(30),
 mother REF person_t,
 father REF person_t);

An object table of person_t objects is created with the following statement:

CREATE TABLE person_table OF person_t;

Instances of the person_t type can now be stored in the typed table. Each instance

of person_t includes references to two other objects, which would also be stored

in the table. A NULL reference could represent a parent about whom information is

not available.

An object graph is a graphical representation of the REF links between object

instances. For example, Figure 13–2, "Object Graph of person_t Instances" on the

following page depicts an object graph of person_t instances, showing the links

from one object to another. The circles represent objects, and the arrows represent

references to other objects.

Object Navigation

13-18 Oracle Call Interface Programmer’s Guide

Figure 13–2 Object Graph of person_t Instances

In this case, each object has links to two other instances of the same object. This

need not always be the case. Objects may have links to other object types. Other

types of graphs are also possible. For example, if a set of objects is implemented as a

linked list, the object graph could be viewed as a simple chain, where each object

references the previous and/or next objects in the linked list.

You can use the methods described earlier in this chapter to retrieve a reference to a

person_t instance and then pin that instance. The OCI provides functionality

which allows you to traverse the object graph by following a reference from one

object to another.

As an example, assume that an application fetches the person1 instance in the

above graph and pins it as pers_1 . Once that has been done, the application can

access the mother instance of person1 and pin it into pers_2 through a second

pin operation:

OCIObjectPin(env, err, pers_1->mother, OCI_PIN_ANY, OCI_DURATION_TRANS, OCI_
LOCK_X, (OCIComplexObject *) 0, &pers_2);

person1

M F

person2

M F

person3

M F

person4

M F

person5

M F

person6

M F

NULL

OCI Navigational Functions

Object Cache and Object Navigation 13-19

In this case, an OCI fetch operation is not required to retrieve the second instance.

The application could then pin the father instance of person1 , or it could operate

on the reference links of person2 .

Note: Attempting to pin a NULL or dangling REF results in an error on the

OCIObjectPin() call.

OCI Navigational Functions
This section provides a brief summary of the available OCI navigational functions.

The functions are grouped according to their general functionality. More detailed

descriptions of each of these functions can be found in Chapter 16, "OCI

Navigational and Type Functions".

The use of these functions is described in the earlier sections of this chapter.

The navigational functions follow a naming scheme which uses different prefixes

for different types of functionality:

OCICache*() - these functions are Cache operations

OCIObject*() - these functions are individual Object operations

Pin/Unpin/Free Functions
The following functions are available to pin, unpin, or free objects:

Function Purpose

OCICacheFree() Free all instances in the cache

OCICacheUnpin() Unpin persistent objects in cache or connection

OCIObjectArrayPin() Pin an array of references

OCIObjectFree() Free and unpin a standalone instance

OCIObjectPin() Pin an object

OCIObjectPinCountReset() Unpin an object to zero pin count

OCIObjectPinTable() Pin a table object with a given duration

OCIObjectUnpin() Unpin an object

OCI Navigational Functions

13-20 Oracle Call Interface Programmer’s Guide

Flush and Refresh Functions
The following functions are available to flush modified objects to the server:

Mark and Unmark Functions
The following functions allow an application to mark or unmark an object by

modifying one of its meta-attributes:

Object Meta-Attribute Accessor Functions
The following functions allow an application to access the meta-attributes of an

object:

Function Purpose

OCICacheFlush() Flush modified persistent objects in cache to server

OCIObjectFlush() Flush a modified persistent object to the server

OCICacheRefresh() Refresh pinned persistent objects in the cache

OCIObjectRefresh() Refresh a single persistent object

Function Purpose

OCIObjectMarkDelByRef() Mark an object deleted given a REF

OCIObjectMarkUpd() Mark an object as updated/dirty

OCIObjectMarkDel() Mark an object deleted / delete a value instance

OCICacheUnmark() Unmarks all objects in the cache

OCIObjectUnmark() Marks a given object as updated

OCIObjectUnmarkByRef() Marks an object as updated, given a REF

Function Purpose

OCIObjectExists() Get existence status of an instance

OCIObjectFlushStatus() Get the flush status of an instance

OCIObjectGetInd() Get null structure of an instance

OCIObjectIsDirtied() Has an object been marked as updated?

OCIObjectIsLocked() Is an object locked?

OCI Navigational Functions

Object Cache and Object Navigation 13-21

Other Functions
The following functions provide additional object functionality for OCI

applications:

Function Purpose

OCIObjectCopy() Copy one instance to another

OCIObjectGetObjectRef() Return reference to a given object

OCIObjectGetTypeRef() Get a reference to a TDO of an instance

OCIObjectLock() Lock a persistent object

OCIObjectLockNoWait() Lock an object in NOWAIT mode

OCIObjectNew() Create a new instance

OCI Navigational Functions

13-22 Oracle Call Interface Programmer’s Guide

Using the Object Type Translator 14-1

14
 Using the Object Type Translator

This chapter discusses the Object Type Translator (OTT), which is used to map

database object types and named collection types to C structs for use in OCI and

Pro*C/C++ applications. The chapter includes the following sections:

■ OTT Overview

■ Using the Object Type Translator

■ The OTT Command Line

■ The Intype File

■ OTT Datatype Mappings

■ The Outtype File

■ Using the OTT with OCI Applications

■ OTT Reference

Note: For information specific to Pro*C/C++, please refer to the Pro*C/C++
Precompiler Programmer’s Guide.

OTT Overview

14-2 Oracle Call Interface Programmer’s Guide

OTT Overview
The OTT (Object Type Translator) assists in the development of C language

applications that make use of user-defined types in an Oracle server.

Through the use of SQL CREATE TYPE statements, you can create object types. The

definitions of these types are stored in the database, and can be used in the creation

of database tables. Once these tables are populated, an OCI or Pro*C/C++

programmer can access objects stored in the tables.

An application that accesses object data needs to be able to represent the data in a

host language format. This is accomplished by representing object types as C

structs. It would be possible for a programmer to code struct declarations by hand

to represent database object types, but this can be very time-consuming and

error-prone if many types are involved. The OTT simplifies this step by

automatically generating appropriate struct declarations. For Pro*C/C++, the

application only needs to include the header file generated by the OTT. In OCI, the

application also needs to call an initialization function generated by the OTT.

In addition to creating structs which represent stored datatypes, the OTT also

generates parallel indicator structs which indicate whether an object type or its

fields are null.

Using the Object Type Translator
The Object Type Translator (OTT) converts database definitions of object types and

named collection types into C struct declarations which can be included in an OCI

or Pro*C/C++ application.

You must explicitly invoke the OTT to translate database types to C representations.

You must also initialize a data structure called the Type Version Table with

information about the user-defined types required by the program. Code to perform

this initialization is generated by the OTT.

On most operating systems, the OTT is invoked on the command line. It takes as

input an intype file, and it generates an outtype file and one or more C header files and

an optional implementation file. The following is an example of a command which

invokes the OTT:

ott userid=scott/tiger intype=demoin.typ outtype=demoout.typ code=c hfile=demo.h

This command causes the OTT to connect to the database with username ’scott ’

and password ’tiger ’, and translate database types to C structs, based on

instructions in the intype file (demoin.typ). The resulting structs are output to

Using the Object Type Translator

Using the Object Type Translator 14-3

the header file (demo.h) for the host language (C) specified by the code
parameter. The outtype file (demoout.typ) receives information about the

translation.

Each of these parameters is described in more detail in later sections of this chapter.

Sample demoin.typ file:

CASE=LOWER
TYPE employee

Sample demoout.typ file:

CASE = LOWER
TYPE EMPLOYEE AS employee
 VERSION = "$8.0"
 HFILE = demo.h

In this example, the demoin.typ file contains the type to be translated, preceded

by TYPE (e.g., TYPE employee). The structure of the outtype file is similar to the

intype file, with the addition of information obtained by the OTT.

Once the OTT has completed the translation, the header file contains a C struct

representation of each type specified in the intype file, and a null indicator struct

corresponding to each type. For example, if the employee type listed in the intype

file was defined as

CREATE TYPE employee AS OBJECT
(
 name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary NUMBER
);

the header file generated by the OTT (demo.h) includes, among other items, the

following declarations:

struct employee
{
 OCIString * name;
 OCINumber empno;
 OCINumber deptno;
 OCIDate hiredate;
 OCINumber salary;
};

Using the Object Type Translator

14-4 Oracle Call Interface Programmer’s Guide

typedef struct emp_type emp_type;

struct employee_ind
{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd deptno;
 OCIInd hiredate;
 OCIInd salary;
};
typedef struct employee_ind employee_ind;

Note: Parameters in the intype file control the way generated structs are named.

In this example, the struct name employee matches the database type name

employee . The struct name is in lower case because of the line CASE=lower in

the intype file.

The datatypes which appear in the struct declarations (e.g., OCIString, OCIInd)

are special datatypes. For more information about these types, see the section

"OTT Datatype Mappings" on page 14-10.

The following sections describe these aspects of using the OTT:

■ Creating Types in the Database

■ Invoking the OTT

■ The OTT Command Line

■ The Intype File

■ OTT Datatype Mappings

■ Null Indicator Structs

■ The Outtype File

The remaining sections of the chapter discuss the use of the OTT with OCI,

followed by a reference section which describes command line syntax, parameters,

intype file structure, nested #include file generation, schema names usage, default

name mapping, and restrictions.

Using the Object Type Translator

Using the Object Type Translator 14-5

Creating Types in the Database
The first step in using the OTT is to create object types or named collection types

and store them in the database. This is accomplished through the use of the SQL

CREATE TYPE statement.

See Also: For information about the CREATE TYPE statement, refer to the

Oracle8i SQL Reference.

Invoking the OTT
The next step is to invoke the OTT. OTT parameters can be specified on the

command line, or in a file called a configuration file. Certain parameters can also be

specified in the INTYPE file.

If a parameter is specified in more than one place, its value on the command line

will take precedence over its value in the INTYPE file, which takes precedence over

its value in a user-defined configuration file, which takes precedence over its value

in the default configuration file.

Command Line
Parameters (also called options) set on the command line override any set

elsewhere. See the next section, "The OTT Command Line", for more information.

Configuration File
A configuration file is a text file that contains OTT parameters. Each non-blank line

in the file contains one parameter, with its associated value or values. If more than

one parameter is put on a line, only the first one will be used. No whitespace may

occur on any non-blank line of a configuration file.

A configuration file may be named on the command line. In addition, a default

configuration file is always read. This default configuration file must always exist,

but can be empty. The name of the default configuration file is ottcfg.cfg, and the

location of the file is system-specific. For example, on Solaris, the file specification is

$ORACLE_HOME/precomp/admin/ottcfg.cfg. See your platform-specific

documentation for further information.

INTYPE File
The INTYPE file gives a list of user defined types for the OTT to translate.

The parameters CASE, HFILE, INITFUNC, and INITFILE can appear in the INTYPE

file. See "The Intype File" on page 14-8 for more information.

The OTT Command Line

14-6 Oracle Call Interface Programmer’s Guide

The OTT Command Line
On most platforms, the OTT is invoked on the command line. You can specify the

input and output files, and the database connection information, among other

things. Consult your platform-specific documentation to see how to invoke the OTT

on your platform.

Example 1 The following is an example of an OTT invocation from the command

line:

ott userid=bren/bigkitty intype=demoin.typ outtype=demoout.typ code=c hfile=demo.h

Note: No spaces are permitted around the equals sign (=).

The following sections describe the elements of the command line used in this

example.

For a detailed discussion of the various OTT command line options, please refer to

the section "OTT Reference" on page 14-22.

OTT
Causes the OTT to be invoked. It must be the first item on the command line.

userid
Specifies the database connection information which the OTT will use.

In Example 1, the OTT will attempt to connect with username ’bren ’ and password

’bigkitty ’.

intype
Specifies the name of the intype file which will be used.

In Example 1, the name of the intype file is specified as demoin.typ .

outtype
Specifies the name of the outtype file. When the OTT generates the C header file, it

also writes information about the translated types into the outtype file. This file

contains an entry for each of the types which is translated, including its version

string, and the header file to which its C representation was written.

The OTT Command Line

Using the Object Type Translator 14-7

In "Example 1" on page 14-6, the name of the outtype file is specified as

demoout.typ .

Note: If the file specified by the outtype keyword already exists, it is

overwritten when the OTT runs. If the name of the outtype file is the same as

the name of the intype file, the outtype information overwrites the intype file.

code
Specifies the target language for the translation. The following options are available:

■ C (equivalent to ANSI_C)

■ ANSI_C (for ANSI C)

■ KR_C (for Kernighan & Ritchie C)

There is currently no default option, so this parameter is required.

Struct declarations are identical in both C dialects. The style in which the

initialization function defined in the INITFILE file is defined depends on whether

KR_C is used. If the INITFILE option is not used, all three options are equivalent.

hfile
Specifies the name of the C header file to which the generated structs should be

written.

In "Example 1" on page 14-6, the generated structs will be stored in a file called

demo.h .

Note: If the file specified by the hfile keyword already exists, it will be

overwritten when the OTT runs, with one exception: if the contents of the file as

generated by the OTT are identical to the previous contents of the file, the OTT

will not actually write to the file. This preserves the modification time of the file

so that UNIX make and similar facilities on other platforms do not perform

unnecessary recompilations.

initfile
Specifies the use of the C source file into which the type initialization function is to

be written.

Note: If the file specified by the initfile keyword already exists, it will be

overwritten when the OTT runs, with one exception: if the contents of the file as

generated by the OTT are identical to the previous contents of the file, the OTT

The Intype File

14-8 Oracle Call Interface Programmer’s Guide

will not actually write to the file. This preserves the modification time of the file

so that UNIX make and similar facilities on other platforms do not perform

unnecessary recompilations.

initfunc
Specifies the name of the initialization function to be defined in the initfile.

If this parameter is not used and an initialization function is generated, the name of

the initialization function will be the same as the base name of the initfile.

The Intype File
When running the OTT, the INTYPE file tells the OTT which database types should

be translated, and it can also control the naming of the generated structs. The intype

file can be a user-created file, or it may be the outtype file of a previous invocation

of the OTT. If the INTYPE parameter is not used, all types in the schema to which

the OTT connects are translated.

The following is a simple example of a user-created intype file:

CASE=LOWER
TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE item
TYPE "Person"
TYPE PURCHASE_ORDER AS p_o

The first line, with the CASE keyword, indicates that generated C identifiers should

be in lower case. However, this CASE option is only applied to those identifiers that

are not explicitly mentioned in the intype file. Thus, employee and ADDRESS would

always result in C structures employee and ADDRESS, respectively. The members

of these structures would be named in lower case.

See Also: See the description of "case" on page 14-27 for further information

regarding the CASE option.

The lines which begin with the TYPE keyword specify which types in the database

should be translated: in this case, the EMPLOYEE, ADDRESS, ITEM, PERSON, and

PURCHASE_ORDER types.

The Intype File

Using the Object Type Translator 14-9

The TRANSLATE...AS keywords specify that the name of an object attribute should

be changed when the type is translated into a C struct. In this case, the SALARY$

attribute of the employee type is translated to salary .

The AS keyword in the final line specifies that the name of an object type should be

changed when it is translated into a struct. In this case, the purchase_order
database type is translated into a struct called p_o .

If AS is not used to translate a type or attribute name, the database name of the type

or attribute will be used as the C identifier name, except that the CASE option will

be observed, and any characters that cannot be mapped to a legal C identifier

character will be replaced by an underscore. Reasons for translating a type or

attribute name include:

■ The name contains characters other than letters, digits, and underscores

■ The name conflicts with a C keyword

■ The type name conflicts with another identifier in the same scope. This may

happen, for example, if the program uses two types with the same name from

different schemas.

■ The programmer prefers a different name

The OTT may need to translate additional types which are not listed in the intype

file. This is because the OTT analyzes the types in the intype file for type

dependencies before performing the translation, and translates other types as

necessary. For example, if the ADDRESStype were not listed in the intype file, but

the "Person" type had an attribute of type ADDRESS, the OTT would still translate

ADDRESS because it is required to define the "Person" type.

A normal case-insensitive SQL identifier can be spelled in any combination of

upper and lower case in the INTYPE file, and is not quoted.

Use quotation marks, such as TYPE "Person", to reference SQL identifiers that have

been created in a case-sensitive manner, e.g., CREATE TYPE "Person". A SQL

identifier is case-sensitive if it was quoted when it was declared. Quotation marks

can also be used to refer to a SQL identifier that is an OTT-reserved word, e.g.,

TYPE "CASE". When a name is quoted for this reason, the quoted name must be in

upper case if the SQL identifier was created in a case-insensitive manner, e.g.,

CREATE TYPE Case. If an OTT-reserved word is used to refer to the name of a SQL

identifier but is not quoted, the OTT will report a syntax error in the INTYPE file.

See Also: For a more detailed specification of the structure of the intype file and

the available options, refer to the section "Structure of the Intype File" on

page 14-29.

OTT Datatype Mappings

14-10 Oracle Call Interface Programmer’s Guide

OTT Datatype Mappings
When the OTT generates a C struct from a database type, the struct contains one

element corresponding to each attribute of the object type. The datatypes of the

attributes are mapped to types which are used in Oracle’s object data types. The

datatypes found in Oracle include a set of predefined, primitive types, and provide

for the creation of user-defined types, like object types and collections.

The set of predefined types in Oracle includes standard types which are familiar to

most programmers, including number and character types. It also includes new

datatypes which were introduced with Oracle8 (e.g., BLOB, CLOB).

Oracle also includes a set of predefined types which are used to represent object

type attributes in C structs. As an example, consider the following object type

definition, and its corresponding OTT-generated struct declarations:

CREATE TYPE employee AS OBJECT
(name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary$ NUMBER);

The OTT output, assuming CASE=LOWER and no explicit mappings of type or

attribute names, is:

struct employee
{ OCIString * name;
 OCINumber empno;
 OCINumber department;
 OCIDate hiredate;
 OCINumber salary_;
};
typedef struct emp_type emp_type;
struct employee_ind
{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd department;
 OCIInd hiredate;
 OCIInd salary_;
}
typedef struct employee_ind employee_ind;

OTT Datatype Mappings

Using the Object Type Translator 14-11

The indicator struct (struct employee_ind) is explained in the section, "Null Indicator

Structs" on page 14-15.

The datatypes in the struct declarations—OCIString, OCINumber, OCIDate,

OCIInd—are used here to map the datatypes of the object type attributes. The

number datatype of the empno attribute, maps to the OCINumber datatype, for

example. These datatypes can also be used as the types of bind and define variables.

Mapping Object Datatypes to C
This section describes the mappings of Oracle object attribute types to C types

generated by the OTT. The following section "OTT Type Mapping Example" on

page 14-12 includes examples of many of these different mappings. The following

table lists the mappings from types which can be used as attributes to object

datatypes which are generated by the OTT.

Table 14–1 Object Datatype Mappings for Object Type Attributes

Object Attribute Types C Mapping

VARCHAR2(N) OCIString *

VARCHAR(N) OCIString *

CHAR(N), CHARACTER(N) OCIString *

NUMBER, NUMBER(N), NUMBER(N,N) OCINumber

NUMERIC, NUMERIC(N), NUMERIC(N,N) OCINumber

REAL OCINumber

INT, INTEGER, SMALLINT OCINumber

FLOAT, FLOAT(N), DOUBLE PRECISION OCINumber

DEC, DEC(N), DEC(N,N) OCINumber

DECIMAL, DECIMAL(N), DECIMAL(N,N) OCINumber

DATE OCIDate

BLOB OCIBlobLocator *

CLOB OCIClobLocator *

BFILE OCIBfileLocator *

Nested Object Type C name of the nested object type

OTT Datatype Mappings

14-12 Oracle Call Interface Programmer’s Guide

The next table shows the mappings of named collection types to Oracle object

datatypes generated by the OTT:

Note: For REF, VARRAY, and NESTED TABLE types, the OTT generates a

typedef. The type declared in the typedef is then used as the type of the data

member in the struct declaration. For examples, see the next section, "OTT Type

Mapping Example".

If an object type includes an attribute of a REF or collection type, a typedef for the

REF or collection type is first generated. Then the struct declaration corresponding

to the object type is generated. The struct includes an element whose type is a

pointer to the REF or collection type.

If an object type includes an attribute whose type is another object type, the OTT

first generates the nested type. It then maps the object type attribute to a nested

struct of the type of the nested object type.

The Oracle C datatypes to which the OTT maps non-object database attribute types

are structures, which, except for OCIDate, are opaque.

OTT Type Mapping Example
The following example is presented to demonstrate the various type mappings

created by the OTT.

REF declared using typedef; equivalent
to OCIRef *

See the following example.

RAW(N) OCIRaw *

Table 14–2 Object Datatype Mappings for Collection Types

Named Collection Type C Mapping

VARRAY declared using typedef; equivalent to
OCIArray *

See the following example.

NESTED TABLE declared using typedef; equivalent to
OCITable *

See the following example.

Table 14–1 Object Datatype Mappings for Object Type Attributes

Object Attribute Types C Mapping

OTT Datatype Mappings

Using the Object Type Translator 14-13

Given the following database types

CREATE TYPE my_varray AS VARRAY(5) of integer;

CREATE TYPE object_type AS OBJECT
(object_name VARCHAR2(20));

CREATE TYPE my_table AS TABLE OF object_type;

CREATE TYPE many_types AS OBJECT
(the_varchar VARCHAR2(30),
 the_char CHAR(3),
 the_blob BLOB,
 the_clob CLOB,
 the_object object_type,
 another_ref REF other_type,
 the_ref REF many_types,
 the_varray my_varray,
 the_table my_table,
 the_date DATE,
 the_num NUMBER,
 the_raw RAW(255));

and an intype file which includes

CASE = LOWER
TYPE many_types

the OTT would generate the following C structs:

Note: Comments are provided here to help explain the structs. These comments

are not part of actual OTT output.

#ifndef MYFILENAME_ORACLE
#define MYFILENAME_ORACLE

#ifndef OCI_ORACLE
#include <oci.h>
#endif

typedef OCIRef many_types_ref;
typedef OCIRef object_type_ref;
typedef OCIArray my_varray; /* part of many_types */
typedef OCITable my_table; /* part of many_types*/
typedef OCIRef other_type_ref;

OTT Datatype Mappings

14-14 Oracle Call Interface Programmer’s Guide

struct object_type /* part of many_types */
{
 OCIString * object_name;
};
typedef struct object_type object_type;

struct object_type_ind /*indicator struct for*/
{ /*object_types*/
 OCIInd _atomic;
 OCIInd object_name;
};
typedef struct object_type_ind object_type_ind;

struct many_types
{
 OCIString * the_varchar;
 OCIString * the_char;
 OCIBlobLocator * the_blob;
 OCIClobLocator * the_clob;
 struct object_type the_object;
 other_type_ref * another_ref;
 many_types_ref * the_ref;
 my_varray * the_varray;
 my_table * the_table;
 OCIDate the_date;
 OCINumber the_num;
 OCIRaw * the_raw;
};
typedef struct many_types many_types;

struct many_types_ind /*indicator struct for*/
{ /*many_types*/
 OCIInd _atomic;
 OCIInd the_varchar;
 OCIInd the_char;
 OCIInd the_blob;
 OCIInd the_clob;
 struct object_type_ind the_object; /*nested*/
 OCIInd another_ref;
 OCIInd the_ref;
 OCIInd the_varray;
 OCIInd the_table;
 OCIInd the_date;
 OCIInd the_num;
 OCIInd the_raw;

OTT Datatype Mappings

Using the Object Type Translator 14-15

};
typedef struct many_types_ind many_types_ind;

#endif

Notice that even though only one item was listed for translation in the intype file,

two object types and two named collection types were translated. As described in

the section "The OTT Command Line" on page 14-6, the OTT automatically

translates any types which are used as attributes of a type being translated, in order

to complete the translation of the listed type.

This is not the case for types which are only accessed by a pointer or ref in an object

type attribute. For example, although the many_types type contains the attribute

another_ref REF other_type , a declaration of struct other_type was not

generated.

This example also illustrates how typedefs are used to declare VARRAY, NESTED

TABLE, and REF types.

The typedefs occur near the beginning:

typedef OCIRef many_types_ref;
typedef OCIRef object_type_ref;
typedef OCIArray my_varray;
typedef OCITable my_table;
typedef OCIRef other_type_ref;

In the struct many_types, the VARRAY, NESTED TABLE, and REF attributes are

declared:

struct many_types
{ ...
 other_type_ref * another_ref;
 many_types_ref * the_ref;
 my_varray * the_varray;
 my_table * the_table;
 ...
}

Null Indicator Structs
Each time the OTT generates a C struct to represent a database object type, it also

generates a corresponding null indicator struct. When an object type is selected into

a C struct, null indicator information may be selected into a parallel struct.

The Outtype File

14-16 Oracle Call Interface Programmer’s Guide

For example, the following null indicator struct was generated in the example in the

previous section:

struct many_types_ind
{
OCIInd _atomic;
OCIInd the_varchar;
OCIInd the_char;
OCIInd the_blob;
OCIInd the_clob;
struct object_type_ind the_object;
OCIInd another_ref;
OCIInd the_ref;
OCIInd the_varray;
OCIInd the_table;
OCIInd the_date;
OCIInd the_num;
OCIInd the_raw;
};
typedef struct many_types_ind many_types_ind;
The layout of the null struct is important. The first element in the struct (_atomic)

is the atomic null indicator. This value indicates the null status for the object type as a

whole. The atomic null indicator is followed by an indicator element corresponding

to each element in the OTT-generated struct representing the object type.

Notice that when an object type contains another object type as part of its definition

(in the above example it is the object_type attribute), the indicator entry for that

attribute is the null indicator struct (object_type_ind) corresponding to the

nested object type.

VARRAYs and NESTED TABLEs contain the null information for their elements.

The datatype for all other elements of a null indicator struct is OCIInd.

See Also: For more information about atomic nullness, refer to the section

"Nullness" on page 10-29.

The Outtype File
The outtype file is named on the OTT command line. When the OTT generates the

C header file, it also writes the results of the translation into the outtype file. This

file contains an entry for each of the types which is translated, including its version

string, and the header file to which its C representation was written.

The Outtype File

Using the Object Type Translator 14-17

The outtype file from one OTT run can be used as the intype file for a subsequent

OTT invocation.

For example, given the simple intype file used earlier in this chapter

CASE=LOWER
TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE item
TYPE "Person"
TYPE PURCHASE_ORDER AS p_o

the user has chosen to specify the case for OTT-generated C identifiers, and has

provided a list of types which should be translated. In two of these types, naming

conventions are specified.

The following is an example of what the outtype file might look like after running

the OTT:

CASE = LOWER
TYPE EMPLOYEE AS employee
 VERSION = "$8.0"
 HFILE = demo.h
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS AS ADDRESS
 VERSION = "$8.0"
 HFILE = demo.h
TYPE ITEM AS item
 VERSION = "$8.0"
 HFILE = demo.h
TYPE "Person" AS Person
 VERSION = "$8.0"
 HFILE = demo.h
TYPE PURCHASE_ORDER AS p_o
 VERSION = "$8.0"
 HFILE = demo.h

When examining the contents of the outtype file, you might discover types listed

which were not included in the intype specification. For example, if the intype file

only specified that the person type was to be translated

CASE = LOWER
TYPE PERSON

Using the OTT with OCI Applications

14-18 Oracle Call Interface Programmer’s Guide

and the definition of the person type includes an attribute of type address , then

the outtype file will include entries for both PERSON and ADDRESS. The person
type cannot be translated completely without first translating address .

As described in the section "The OTT Command Line" on page 14-6, the OTT

analyzes the types in the intype file for type dependencies before performing the

translation, and translates other types as necessary.

Using the OTT with OCI Applications
C header and implementation files that have been generated by the OTT can be

used by an OCI application that accesses objects in an Oracle server. The header file

is incorporated into the OCI code with an #include statement.

Once the header file has been included, the OCI application can access and

manipulate object data in the host language format.

Figure 14–1, "Using the OTT with OCI" shows the steps involved in using the OTT

with the OCI:

1. SQL is used to create type definitions in the database.

2. The OTT generates a header file containing C representations of object types

and named collection types. It also generates an implementation file, as named

with the INITFILE option.

3. The application is written. User-written code in the OCI application declares

and calls the INITFUNC function.

4. The header file is included in an OCI source code file.

5. The OCI application, including the implementation file generated by the OTT, is

compiled and linked with the OCI libraries.

6. The OCI executable is run against the Oracle server.

Using the OTT with OCI Applications

Using the Object Type Translator 14-19

Figure 14–1 Using the OTT with OCI

Accessing and Manipulating Objects with OCI
Within the application, the OCI program can perform bind and define operations

using program variables declared to be of types which appear in the OTT-generated

header file.

For example, an application might fetch a REF to an object using a SQL SELECT

statement and then pin that object using the appropriate OCI function. Once the

object has been pinned, its attribute data can be accessed and manipulated with

other OCI functions.

SQL DDL

Object File

OCI library

Executable

Object File

Linker

ORACLE
Database

Type
Definitions

Compiler

OTT

Implementation
File

Header
File

OCI source
File

#include

Using the OTT with OCI Applications

14-20 Oracle Call Interface Programmer’s Guide

OCI includes a set of datatype mapping and manipulation functions which are

specifically designed to work on attributes of object types and named collection

types.

The following are examples of the available functions:

■ OCIStringSize() gets the size of an OCIString string.

■ OCINumberAdd() adds two OCINumber numbers together.

■ OCILobIsEqual() compares two LOB locators for equality.

■ OCIRawPtr() gets a pointer to an OCIRaw raw datatype.

■ OCICollAppend() appends an element to a collection type (OCIArray or

OCITable).

■ OCITableFirst() returns the index for the first existing element of a nested table

(OCITable).

■ OCIRefIsNull() tests if a REF (OCIRef) is null

These functions are described in detail in other chapters of this guide.

Calling the Initialization Function
The OTT generates a C initialization function if requested. The initialization

function tells the environment, for each object type used in the program, which

version of the type is used. You may specify a name for the initialization function

when invoking the OTT with the INITFUNC option, or may allow the OTT to select

a default name based on the name of the implementation file (INITFILE) containing

the function.

The initialization function takes two arguments, an environment handle pointer and

an error handle pointer. There is typically a single initialization function, but this is

not required. If a program has several separately compiled pieces requiring

different types, you may want to execute the OTT separately for each piece

requiring, for each piece, one initialization file, containing an initialization function.

After an environment handle is created by an explicit OCI object call, for example,

by calling OCIEnvInit(), you must also explicitly call the initialization functions. All

the initialization functions must be called for each explicitly created environment

handle. This gives each handle access to all the Oracle datatypes used in the entire

program.

If an environment handle is implicitly created via embedded SQL statements, such

as EXEC SQL CONTEXT USE and EXEC SQL CONNECT, the handle is initialized

Using the OTT with OCI Applications

Using the Object Type Translator 14-21

implicitly, and the initialization functions need not be called. This is only relevant

when Pro*C/C++ is being combined with OCI applications.

The following example shows an initialization function.

Given an intype file, ex2c.typ, containing

TYPE BREN.PERSON
TYPE BREN.ADDRESS

and the command line

ott userid=bren/bigkitty intype=ex2c outtype=ex2co hfile=ex2ch.h
initfile=ex2cv.c

the OTT generates the following to the file ex2cv.c:

#ifndef OCI_ORACLE
#include <oci.h>
#endif

sword ex2cv(OCIEnv *env, OCIError *err)
{
 sword status = OCITypeVTInit(env, err);
 if (status == OCI_SUCCESS)
 status = OCITypeVTInsert(env, err,
 "BREN", 5,
 "PERSON", 6,
 "$8.0", 4);
 if (status == OCI_SUCCESS)
 status = OCITypeVTInsert(env, err,
 "BREN", 5,
 "ADDRESS", 7,
 "$8.0", 4);
 return status;
}

The function ex2cv creates the type version table and inserts the types

BREN.PERSON and BREN.ADDRESS.

If a program explicitly creates an environment handle, all the initialization functions

must be generated, compiled, and linked, because they must be called for each

explicitly created handle. If a program does not explicitly create any environment

handles, initialization functions are not required.

A program that uses an OTT-generated header file must also use the initialization

function generated at the same time. More precisely, if a header file generated by

OTT Reference

14-22 Oracle Call Interface Programmer’s Guide

the OTT is included in a compilation that generates code that is linked into program

P, and an environment handle is explicitly created somewhere in program P, the

implementation file generated by the same invocation of the OTT must also be

compiled and linked into program P. Doing this correctly is the user’s responsibility.

Tasks of the Initialization Function
The C initialization function supplies version information about the types processed

by the OTT. It adds to the type-version table the name and version identifier of

every OTT-processed object datatype.

The type-version table is used by Oracle’s type manager to determine which

version of a type a particular program uses. Different initialization functions

generated by the OTT at different times may add some of the same types to the type

version table. When a type is added more than once, Oracle ensures the same

version of the type is registered each time.

It is the OCI programmer’s responsibility to declare a function prototype for the

initialization function, and to call the function.

Note: In the current release of Oracle, each type has only one version.

Initialization of the type version table is required only for compatibility with

future releases of Oracle.

OTT Reference
Behavior of the OTT is controlled by parameters which can appear on the OTT

command line or in a CONFIG file. Certain parameters may also appear in the

INTYPE file.

This section provides detailed information about the following topics:

■ OTT Command Line Syntax

■ OTT Parameters

■ Where OTT Parameters Can Appear

■ Structure of the Intype File

■ Nested #include File Generation

■ SCHEMA_NAMES Usage

■ Default Name Mapping

■ Restriction

OTT Reference

Using the Object Type Translator 14-23

The following conventions are used in this chapter to describe OTT syntax:

■ Angle brackets (<...>) enclose strings to be supplied by the user.

■ Strings in UPPERCASE are entered as shown, except that case is not significant.

■ OTT keywords are listed in a lower-case monospaced font in examples and

headings, but are printed in upper-case in text to make them more distinctive.

■ Square brackets [...] enclose optional items.

■ An ellipsis (...) immediately following an item (or items enclosed in brackets)

means that the item can be repeated any number of times.

■ Punctuation symbols other than those described above are entered as shown.

These include ’.’, ’@’, etc.

OTT Command Line Syntax
The OTT command-line interface is used when explicitly invoking the OTT to

translate database types into C structs. This is always required when developing

OCI applications that use objects.

An OTT command line statement consists of the keyword OTT, followed by a list of

OTT parameters.

The parameters which can appear on an OTT command line statement are as

follows:

[userid=< username> /< password> [@<db_name>]]

[intype=< in_filename >]

outtype=< out_filename >

code=<C|ANSI_C|KR_C>

[hfile=< filename >]

[errtype=< filename >]

[config=< filename >]

[initfile=< filename>]

[initfunc=< filename >]

OTT Reference

14-24 Oracle Call Interface Programmer’s Guide

[case=<SAME|LOWER|UPPER|OPPOSITE>]

[schema_name=<ALWAYS|IF_NEEDED|FROM_INTYPE>]

Note: Generally, the order of the parameters following the OTT command does

not matter, and only the OUTTYPE and CODE parameters are always required.

The HFILE parameter is almost always used. If omitted, HFILE must be

specified individually for each type in the INTYPE file. If the OTT determines

that a type not listed in the INTYPE file must be translated, an error will be

reported. Therefore, it is safe to omit the HFILE parameter only if the INTYPE

file was previously generated as an OTT OUTTYPE file.

If the INTYPE file is omitted, the entire schema will be translated. See the

parameter descriptions in the following section for more information.

The following is an example of an OTT command line statement:

OTT userid=marc/cayman intype=in.typ outtype=out.typ code=c hfile=demo.h
errtype=demo.tls case=lower

Each of the OTT command line parameters is described in the following sections.

OTT Parameters
Enter parameters on the OTT command line using the following format:

parameter =value

where parameter is the literal parameter string and value is a valid parameter setting.

The literal parameter string is not case sensitive.

Separate command-line parameters using either spaces or tabs.

Parameters can also appear within a configuration file, but, in that case, no

whitespace is permitted within a line, and each parameter must appear on a

separate line. Additionally, the parameters CASE, HFILE, INITFUNC, and

INITFILE can appear in the INTYPE file.

userid
The USERID parameter specifies the Oracle username, password, and optional

database name (Net8 database specification string). If the database name is omitted,

the default database is assumed. The syntax of this parameter is:

userid=< username / password [@db_name]>

OTT Reference

Using the Object Type Translator 14-25

If this is the first parameter, "USERID=" may be omitted as shown here:

OTT username / password...

The USERID parameter is optional. If omitted, the OTT automatically attempts to

connect to the default database as user OPS$username, where username is the user’s

operating system user name.

intype
The INTYPE parameter specifies the name of the file from which to read the list of

object type specifications. The OTT translates each type in the list.

The syntax for this parameter is

intype=< filename >

"INTYPE=" may be omitted if USERID and INTYPE are the first two parameters, in

that order, and "USERID=" is omitted. If INTYPE is not specified, all types in the

user’s schema will be translated.

OTT username / password filename...

The INTYPE file can be thought of as a makefile for type declarations. It lists the

types for which C struct declarations are needed. The format of the INTYPE file is

described in section "Structure of the Intype File" on page 14-29.

If the file name on the command line or in the INTYPE file does not include an

extension, a platform-specific extension such as "TYP" or ".typ" will be added.

outtype
The name of a file into which the OTT will write type information for all the object

datatypes it processes. This includes all types explicitly named in the INTYPE file,

and may include additional types that are translated because they are used in the

declarations of other types that need to be translated. This file may be used as an

INTYPE file in a future invocation of the OTT.

outtype=< filename >

If the INTYPE and OUTTYPE parameters refer to the same file, the new INTYPE

information replaces the old information in the INTYPE file. This provides a

convenient way for the same INTYPE file to be used repeatedly in the cycle of

altering types, generating type declarations, editing source code, precompiling,

compiling, and debugging.

OTT Reference

14-26 Oracle Call Interface Programmer’s Guide

OUTTYPE must be specified.

If the file name on the command line or in the INTYPE file does not include an

extension, a platform-specific extension such as "TYP" or ".typ" will be added.

code
This is the desired host language for OTT output, which may be specified as

CODE=C, CODE=KR_C, or CODE=ANSI_C. "CODE=C" is equivalent to

"CODE=ANSI_C".

CODE=C|KR_C|ANSI_C

There is no default value for this parameter; it must be supplied.

initfile
The INITFILE parameter specifies the name of the file where the OTT-generated

initialization file is to be written. The initialization function will not be generated if

this parameter is omitted.

For Pro*C/C++ programs, the INITFILE is not necessary, because the SQLLIB

run-time library performs the necessary initializations. An OCI program user must

compile and link the INITFILE file(s), and must call the initialization function(s)

when an environment handle is created.

If the file name of an INITFILE on the command line or in the INTYPE file does not

include an extension, a platform-specific extension such as "C" or ".c" will be added.

initfile=< filename >

initfunc
The INITFUNC parameter is only used in OCI programs. It specifies the name of

the initialization function generated by the OTT. If this parameter is omitted, the

name of the initialization function is derived from the name of the INITFILE.

initfunc=< filename >

hfile
The name of the include (.h) file to be generated by the OTT for the declarations of

types that are mentioned in the INTYPE file but whose include files are not

specified there. This parameter is required unless the include file for each type is

specified individually in the INTYPE file. This parameter is also required if a type

OTT Reference

Using the Object Type Translator 14-27

not mentioned in the INTYPE file must be generated because other types require it,

and these other types are declared in two or more different files.

If the file name of an HFILE on the command line or in the INTYPE file does not

include an extension, a platform-specific extension such as "H" or ".h" will be added.

hfile=< filename >

config
The CONFIG parameter specifies the name of the OTT configuration file, which lists

commonly used parameter specifications. Parameter specifications are also read

from a system configuration file in a platform-dependent location. All remaining

parameter specifications must appear on the command line, or in the INTYPE file.

config=< filename >

Note: A CONFIG parameter is not allowed in the CONFIG file.

errtype
If this parameter is supplied, a listing of the INTYPE file is written to the ERRTYPE

file, along with all informational and error messages. Informational and error

messages are sent to the standard output whether or not ERRTYPE is specified.

Essentially, the ERRTYPE file is a copy of the INTYPE file with error messages

added. In most cases, an error message will include a pointer to the text which

caused the error.

If the file name of an ERRTYPE on the command line or in the INTYPE file does not

include an extension, a platform-specific extension such as "TLS" or ".tls" will be

added.

errtype=< filename >

case
This parameter affects the case of certain C identifiers generated by the OTT. The

possible values of CASE are SAME, LOWER, UPPER, and OPPOSITE. If CASE =

SAME, the case of letters is not changed when converting database type and

attribute names to C identifiers. If CASE=LOWER, all uppercase letters are

converted to lowercase. If CASE=UPPER, all lowercase letters are converted to

uppercase. If CASE=OPPOSITE, all uppercase letters are converted to lower-case,

and vice-versa.

CASE=[SAME|LOWER|UPPER|OPPOSITE]

OTT Reference

14-28 Oracle Call Interface Programmer’s Guide

This option affects only those identifiers (attributes or types not explicitly listed) not

mentioned in the INTYPE file. Case conversion takes place after a legal identifier

has been generated.

Note: The case of the C struct identifier for a type specifically mentioned in the

INTYPE is the same as its case in the INTYPE file. For example, if the INTYPE

file includes the following line:

TYPE Worker

then the OTT generates

struct Worker {...};

On the other hand, if the INTYPE file were written as

TYPE wOrKeR

the OTT generates

struct wOrKeR {...};

following the case of the INTYPE file.

Case-insensitive SQL identifiers not mentioned in the INTYPE file will appear in

upper case if CASE=SAME, and in lower case if CASE=OPPOSITE. A SQL identifier

is case-insensitive if it was not quoted when it was declared.

schema_names
This option offers control in qualifying the database name of a type from the default

schema with a schema name in the OUTTYPE file. The OUTTYPE file generated by

the OTT contains information about the types processed by the OTT, including the

type names.

See "SCHEMA_NAMES Usage" on page 14-33 for further information.

Where OTT Parameters Can Appear
OTT parameters can appear on the command line, in a CONFIG file named on the

command line, or both. Some parameters are also allowed in the INTYPE file.

The OTT is invoked as follows:

OTT username/password <parameters>

OTT Reference

Using the Object Type Translator 14-29

If one of the parameters on the command line is

config=<filename>

additional parameters are read from the configuration file <filename> .

In addition, parameters are also read from a default configuration file in a

platform-dependent location. This file must exist, but can be empty. Parameters in a

configuration file must appear one per line, with no whitespace on the line.

If the OTT is executed without any arguments, an on-line parameter reference is

displayed.

The types for the OTT to translate are named in the file specified by the INTYPE

parameter. The parameters CASE, INITFILE, INITFUNC, and HFILE may also

appear in the INTYPE file. OUTTYPE files generated by the OTT include the CASE

parameter, and include the INITFILE, and INITFUNC parameters if an initialization

file was generated. The OUTTYPE file specifies the HFILE individually for each

type.

The case of the OTT command is platform-dependent.

Structure of the Intype File
The intype and outtype files list the types translated by the OTT, and provide all the

information needed to determine how a type or attribute name is translated to a

legal C identifier. These files contain one or more type specifications. These files also

may contain specifications of the following options:

■ CASE

■ HFILE

■ INITFILE

■ INITFUNC

If the CASE, INITFILE, or INITFUNC options are present, they must precede any

type specifications. If these options appear both on the command line and in the

intype file, the value on the command line is used.

For an example of a simple user-defined intype file, and of the full outtype file that

the OTT generates from it, see "The Outtype File" on page 14-16.

OTT Reference

14-30 Oracle Call Interface Programmer’s Guide

Intype File Type Specifications
A type specification in the INTYPE names an object datatype that is to be translated.

A type specification in the OUTTYPE file names an object datatype that has been

translated,

TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE PURCHASE_ORDER AS p_o

The structure of a type specification is as follows:

TYPE <type_name> [AS <type_identifier>]
[VERSION [=] <version_string>]
[HFILE [=] <hfile_name>]
[TRANSLATE{<member_name> [AS <identifier>]}...]

The syntax of type_name is:

[<schema_name>.]<type_name>

where schema_name is the name of the schema which owns the given object

datatype, and type_name is the name of the type. The default schema is that of the

user running the OTT. The default database is the local database.

The components of a type specification are described below.

■ <type_name> is the name of an Oracle object datatype.

■ <type_identifier> is the C identifier used to represent the type. If omitted,

the default name mapping algorithm will be used.

■ <version_string> is the version string of the type which was used when the

code was generated by a previous invocation of the OTT. The version string is

generated by the OTT and written to the OUTTYPE file, which may later be

used as the INTYPE file when the OTT is later executed. The version string does

not affect the OTT’s operation, but will eventually be used to select which

version of the object datatype should be used in the running program.

■ <type_identifier> is the C identifier used to represent the type. If omitted,

the default type mapping algorithm will be used. For further information, see

"Default Name Mapping" on page 14-36.

■ <hfile_name> is the name of the header file in which the declarations of the

corresponding struct or class appears or will appear. If <hfile name> is

OTT Reference

Using the Object Type Translator 14-31

omitted, the file named by the command-line HFILE parameter will be used if a

declaration is generated.

■ <member_name> is the name of an attribute (data member) which is to be

translated to the following <identifier> .

■ <identifier > is the C identifier used to represent the attribute in the user

program. Identifiers may be specified in this way for any number of attributes.

The default name mapping algorithm will be used for the attributes that are not

mentioned.

An object datatype may need to be translated for one of two reasons:

■ It appears in the INTYPE file.

■ It is required to declare another type that must be translated.

If a type that is not mentioned explicitly is required by types declared in exactly one

file, the translation of the required type is written to the same file(s) as the explicitly

declared types that require it.

If a type that is not mentioned explicitly is required by types declared in two or

more different files, the translation of the required type is written to the global

HFILE file.

Nested #include File Generation
Every HFILE generated by the OTT #includes other necessary files, and

#defines a symbol constructed from the name of the file, which may be used to

determine if the HFILE has already been included. Consider, for example, a

database with the following types:

create type px1 AS OBJECT (col1 number, col2 integer);
create type px2 AS OBJECT (col1 px1);
create type px3 AS OBJECT (col1 px1);

where the intype file contains:

CASE=lower
type pxl
 hfile tott95a.h
type px3
 hfile tott95b.h

If we invoke the OTT with

ott scott/tiger tott95i.typ outtype=tott95o.typ code=c

OTT Reference

14-32 Oracle Call Interface Programmer’s Guide

then it will generate the two following header files.

File tott95b.h is:

#ifndef TOTT95B_ORACLE
#define TOTT95B_ORACLE
#ifndef OCI_ORACLE
#include <oci.h>
#endif
#ifndef TOTT95A_ORACLE
#include "tott95a.h"
#endif
typedef OCIRef px3_ref;
struct px3
{
 struct px1 col1;
};
typedef struct px3 px3;
struct px3_ind
{
 OCIInd _atomic;
 struct px1_ind col1
};
typedef struct px3_ind px3_ind;
#endif

File tott95a.h is:

#ifndef TOTT95A_ORACLE
#define TOTT95A_ORACLE
#ifndef OCI_ORACLE
#include <oci.h>
#endif
typedef OCIRef px1_ref;
struct px1
{
 OCINumber col1;
 OCINumber col2;
}
typedef struct px1 px1;
struct px1_ind
{
 OCIInd _atomic;
 OCIInd col1;
 OCIInd col2;

OTT Reference

Using the Object Type Translator 14-33

}
typedef struct px1_ind px1_ind;
#endif

In this file, the symbol TOTT95B_ORACLE is defined first so that the programmer

may conditionally include tott95b.h without having to worry whether tott95b.h
depends on the include file using the following construct:

#ifndef TOTT95B_ORACLE
#include "tott95b.h"
#endif

Using this technique, the programmer may include tott95b.h from some file, say

foo.h, without having to know whether some other file included by foo.h also

includes tott95b.h.

After the definition of the symbol TOTT95B_ORACLE, the file oci.h is #included .

Every HFILE generated by the OTT includes oci.h, which contains type and function

declarations that the Pro*C/C++ or OCI programmer will find useful. This is the

only case in which the OTT uses angle brackets in a #include .

Next, the file tott95a.h is included. This file is included because it contains the

declaration of "struct px1 ", which tott95b.h requires. When the user’s INTYPE

file requests that type declarations be written to more than one file, the OTT

determines which other files each HFILE must include, and will generate the

necessary #includes .

Note that the OTT uses quotes in this #include . When a program including

tott95b.h is compiled, the search for tott95a.h will begin where the source program

was found, and will thereafter follow an implementation-defined search rule. If

tott95a.h cannot be found in this way, a complete file name (e.g., a UNIX absolute

pathname beginning with /) should be used in the INTYPE file to specify the

location of tott95a.h.

SCHEMA_NAMES Usage
This parameter affects whether the name of a type from the default schema to

which the OTT is connected is qualified with a schema name in the OUTTYPE file.

The name of a type from a schema other that the default schema is always qualified

with a schema name in the OUTTYPE file.

The schema name, or its absence, determines in which schema the type is found

during program execution.

OTT Reference

14-34 Oracle Call Interface Programmer’s Guide

There are three settings:

■ schema_names =ALWAYS (default)

All type names in the OUTTYPE file are qualified with a schema name.

■ schema_names =IF_NEEDED

The type names in the OUTTYPE file that belong to the default schema are not

qualified with a schema name. As always, type names belonging to other

schemas are qualified with the schema name.

■ schema_names =FROM_INTYPE

A type mentioned in the INTYPE file is qualified with a schema name in the

OUTTYPE file if, and only if, it was qualified with a schema name in the

INTYPE file. A type in the default schema that is not mentioned in the INTYPE

file but that has to be generated because of type dependencies will be written

with a schema name only if the first type encountered by the OTT that depends

on it was written with a schema name. However, a type that is not in the default

schema to which the OTT is connected will always be written with an explicit

schema name.

The OUTTYPE file generated by the OTT is an input parameter to Pro*C/C++.

From the point of view of Pro*C/C++, it is the Pro*C/C++ INTYPE file. This file

matches database type names to C struct names. This information is used at

run-time to make sure that the correct database type is selected into the struct. If a

type appears with a schema name in the OUTTYPE file (Pro*C/C++ INTYPE file),

the type will be found in the named schema during program execution. If the type

appears without a schema name, the type will be found in the default schema to

which the program connects, which may be different from the default schema the

OTT used.

An Example If SCHEMA_NAMES is set to FROM_INTYPE, and the INTYPE file

reads:

TYPE Person
TYPE david.Dept
TYPE sam.Company

then the Pro*C/C++ application that uses the OTT-generated structs will use the

types sam.Company, david.Dept , and Person . Using Person without a schema

name refers to the Person type in the schema to which the application is

connected.

OTT Reference

Using the Object Type Translator 14-35

If the OTT and the application both connect to schema david , the application will

use the same type (david.Person) that the OTT used. If the OTT connected to

schema david but the application connects to schema jana , the application will

use the type jana.Person . This behavior is appropriate only if the same "CREATE
TYPE Person " statement has been executed in schema david and schema jana .

On the other hand, the application will use type david.Dept regardless of to

which schema the application is connected. If this is the behavior you want, be sure

to include schema names with your type names in the INTYPE file.

In some cases, the OTT translates a type that the user did not explicitly name. For

example, consider the following SQL declarations:

CREATE TYPE Address AS OBJECT
(street VARCHAR2(40),

city VARCHAR(30),
state CHAR(2),
zip_code CHAR(10));

CREATE TYPE Person AS OBJECT
(name CHAR(20),

age NUMBER,
addr ADDRESS);

Now suppose that the OTT connects to schema david , SCHEMA_NAMES=FROM_

INTYPE is specified, and the user’s INTYPE files include either

TYPE Person or TYPE david.Person

but do not mention the type david.Address , which is used as a nested object type

in type david.Person . If "TYPE david.Person " appeared in the INTYPE file,

"TYPE david.Person " and "TYPE david.Address " will appear in the

OUTTYPE file. If "Type Person " appeared in the INTYPE file, "TYPE Person "

and "TYPE Address " will appear in the OUTTYPE file.

If the david.Address type is embedded in several types translated by the OTT,

but is not explicitly mentioned in the INTYPE file, the decision of whether to use a

schema name is made the first time the OTT encounters the embedded

david.Address type. If, for some reason, the user wants type david.Address to

have a schema name but does not want type Person to have one, the user should

explicitly request

TYPE david.Address

in the INTYPE FILE.

OTT Reference

14-36 Oracle Call Interface Programmer’s Guide

The main point is that in the usual case in which each type is declared in a single

schema, it is safest for the user to qualify all type names with schema names in the

INTYPE file.

Default Name Mapping
When the OTT creates a C identifier name for an object type or attribute, it

translates the name from the database character set to a legal C identifier. First, the

name is translated from the database character set to the character set used by the

OTT. Next, if a translation of the resulting name is supplied in the INTYPE file, that

translation is used. Otherwise, the OTT translates the name character-by-character

to the compiler character set, applying the CASE option. The following describes

this process in more detail.

When the OTT reads the name of a database entity, the name is automatically

translated from the database character set to the character set used by the OTT. In

order for the OTT to read the name of the database entity successfully, all the

characters of the name must be found in the OTT character set, although a character

may have different encodings in the two character sets.

The easiest way to guarantee that the character set used by the OTT contains all the

necessary characters is to make it the same as the database character set. Note,

however, that the OTT character set must be a superset of the compiler character

set. That is, if the compiler character set is 7-bit ASCII, the OTT character set must

include 7-bit ASCII as a subset, and if the compiler character set is 7-bit EBCDIC,

the OTT character set must include 7-bit EBCDIC as a subset. The user specifies the

character set that the OTT uses by setting the NLS_LANG environment variable, or

by some other platform-specific mechanism.

Once the OTT has read the name of a database entity, it translates the name from the

character set used by the OTT to the compiler's character set. If a translation of the

name appears in the INTYPE file, the OTT uses that translation.

Otherwise, the OTT attempts to translate the name as follows:

1. First, if the OTT character set is a multi-byte character set, all multi-byte

characters in the name that have single-byte equivalents are converted to those

single-byte equivalents.

2. Next, the name is converted from the OTT character set to the compiler

character set. The compiler character set is a single-byte character set such as

US7ASCII.

3. Finally, the case of letters is set according to the CASE option in effect, and any

character that is not legal in a C identifier, or that has no translation in the

OTT Reference

Using the Object Type Translator 14-37

compiler character set, is replaced by an underscore. If at least one character is

replaced by an underscore, the OTT gives a warning message. If all the

characters in a name are replaced by underscores, the OTT gives an error

message.

Character-by-character name translation does not alter underscores, digits, or

single-byte letters that appear in the compiler character set, so legal C identifiers are

not altered.

Name translation may, for example, translate accented single-byte characters such

as "o" with an umlaut or "a" with an accent grave to "o" or "a", and may translate a

multi-byte letter to its single-byte equivalent. Name translation will typically fail if

the name contains multi-byte characters that lack single-byte equivalents. In this

case, the user must specify name translations in the INTYPE file.

The OTT will not detect a naming clash caused by two or more database identifiers

being mapped to the same C name, nor will it detect a naming problem where a

database identifier is mapped to a C keyword.

Restriction
The following restriction affects the use of the OTT.

File Name Comparison
Currently, the OTT determines if two files are the same by comparing the file names

provided by the user on the command line or in the INTYPE file. But one potential

problem can occur when the OTT needs to know if two file names refer to the same

file. For example, if the OTT-generated file foo.h requires a type declaration

written to foo1.h , and another type declaration written to

/private/elias/foo1.h , the OTT should generate one #include if the two

files are the same, and two #includes if the files are different. In practice, though,

it would conclude that the two files are different, and would generate two

#includes , as follows:

#ifndef FOO1_ORACLE
#include "foo1.h"
#endif
#ifndef FOO1_ORACLE
#include "/private/elias/foo1.h"
#endif

OTT Reference

14-38 Oracle Call Interface Programmer’s Guide

If foo1.h and /private/elias/foo1.h are different files, only the first one will

be included. If foo1.h and /private/elias/foo1.h are the same file, a

redundant #include will be written.

Therefore, if a file is mentioned several times on the command line or in the

INTYPE file, each mention of the file should use exactly the same file name.

PartIII
 OCI Reference

This part of the book contains the OCI function reference chapters:

■ Chapter 15, "OCI Relational Functions"

■ Chapter 16, "OCI Navigational and Type Functions"

■ Chapter 17, "OCI Datatype Mapping and Manipulation Functions"

■ Chapter 18, "OCI External Procedure Functions"

See Also: For a a discussion of the OCI functions that apply to an NLS

environment, see the Oracle8i National Language Support Guide. For a discussion of

the OCI functions that apply to cartridge services, see the Oracle8i Data Cartridge
Developer’s Guide.

OCI Relational Functions 15-1

15
OCI Relational Functions

This chapter describes the Oracle OCI relational functions for C. It includes

information about calling OCI functions in your application, along with detailed

descriptions of each function call. This chapter contains the following sections:

■ Introduction

■ Advanced Queuing and Publish-Subscribe Functions

■ Handle and Descriptor Functions

■ Bind, Define, and Describe Functions

■ Direct Path Loading Functions

■ Connect, Authorize, and Initialize Functions

■ LOB Functions

■ Statement Functions

■ Thread Management Functions

■ Transaction Functions

■ Miscellaneous Functions

Introduction

15-2 Oracle Call Interface Programmer’s Guide

Introduction
This chapter describes the OCI relational function calls. This chapter covers those

functions in the basic OCI. The function calls for manipulating objects are described

in the next three chapters. For information about return codes and error handling,

refer to the section "Error Handling" on page 2-27.

Function Syntax
For each function, the following information is listed:

Purpose
A brief description of the action performed by the function.

Syntax
A code snippet showing the syntax for calling the function, including the ordering

and types of the parameters.

Parameters
A description of each of the function’s parameters. This includes the parameter’s

mode. The mode of a parameter has three possible values, as described below.

Comments
More detailed information about the function (if available). This may include

restrictions on the use of the function, or other information that might be useful

when using the function in an application.

Example
A complete or partial code example demonstrating the use of the function call being

described. Not all function descriptions include an example.

Related Functions
A list of related function calls.

Mode Description

IN A parameter that passes data to the OCI

OUT A parameter that receives data from the OCI on this call

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.

Introduction

OCI Relational Functions 15-3

Calling OCI Functions
Unlike earlier versions of the OCI, in release 8i you cannot pass -1 for the string

length parameter of a null-terminated string.

When you pass string lengths as parameters, do not include the NULL terminator

byte in the length. The OCI does not expect strings to be NULL-terminated.

Server Roundtrips for LOB Functions
For a table showing the number of server roundtrips required for individual OCI

LOB functions, refer to Appendix C, "OCI Function Server Roundtrips".

Advanced Queuing and Publish-Subscribe Functions

15-4 Oracle Call Interface Programmer’s Guide

Advanced Queuing and Publish-Subscribe Functions
This section describes the advanced queuing and publish-subscribe functions.

Table 15–1 OCI Quick Reference

Function Purpose

OCIAQDeq() on page 15-5 Advanced queueing dequeue

OCIAQEnq() on page 15-7 Advanced queueing enqueue

OCIAQListen() on page 15-19 Listens on one or more queues on behalf of a list of agents

OCISubscriptionEnable() on page 15-21 Enables notifications on a subscription

OCISubscriptionPost() on page 15-22 Posts to a subscription to receive notifications

OCISubscriptionRegister() on page 15-24 Registers a subscription

OCISubscriptionUnRegister() on page 15-26 Unregisters a subscription

Advanced Queuing and Publish-Subscribe Functions

OCI Relational Functions 15-5

OCIAQDeq()

Purpose
This call is used for an Advanced Queueing dequeue operation using the OCI.

Syntax
sword OCIAQDeq (OCISvcCtx *svch,
 OCIError *errh,
 text *queue_name,
 OCIAQDeqOptions *dequeue_options,
 OCIAQMsgProperties *message_properties,
 OCIType *payload_tdo,
 dvoid **payload,
 dvoid **payload_ind,
 OCIRaw **msgid,
 ub4 flags);

Parameters
svch (IN)
OCI service context.

errh (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

queue_name (IN)
The target queue for the dequeue operation.

dequeue_options (IN)
The options for the dequeue operation; stored in an OCIAQDeqOptions descriptor.

message_properties (OUT)
The message properties for the message; stored in an OCIAQMsgProperties
descriptor.

payload_tdo (IN)
The TDO (type descriptor object) of an object type. For a raw queue, this parameter

should point to the TDO of SYS.RAW.

payload (IN/OUT)
A pointer to a pointer to a program variable buffer that is an instance of an object

type. For a raw queue, this parameter should point to an instance of OCIRaw.

Memory for the payload is dynamically allocated in the object cache. The

application can optionally call OCIObjectFree() to deallocate the payload instance

OCIAQDeq()

15-6 Oracle Call Interface Programmer’s Guide

when it is no longer needed. If the pointer to the program variable buffer (*payload)

is passed as NULL, the buffer is implicitly allocated in the cache.

The application may choose to pass NULL for payload the first time OCIAQDeq() is
called, and let the OCI allocate the memory for the payload. It can then use a

pointer to that previously allocated memory in subsequent calls to OCIAQDeq().

To obtain a TDO for the payload, use OCITypeByName(), or OCITypeByRef().

The OCI provides functions which allow the user to set attributes of the payload,

such as its text. For information about setting these attributes, refer to

"Manipulating Object Attributes" on page 10-13.

payload_ind (IN/OUT)
A pointer to a pointer to the program variable buffer containing the parallel

indicator structure for the object type.

The memory allocation rules for payload_ind are the same as those for payload,

above.

msgid (OUT)
The message ID.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments
Users must have the aq_user_role or privileges to execute the dbms_aq package

in order to use this call. The OCI environment must be initialized in object mode

(using OCIInitialize()) to use this call.

For more information about OCI and Advanced Queueing, refer to "OCI and

Advanced Queuing" on page 9-25.

For additional information about Advanced Queueing, refer to Oracle8i Application
Developer’s Guide - Advanced Queuing.

Examples
For code examples, refer to the description of OCIAQEnq() on page 15-7.

Related Functions
OCIAQEnq(), OCIAQListen(), OCIInitialize()

Advanced Queuing and Publish-Subscribe Functions

OCI Relational Functions 15-7

OCIAQEnq()

Purpose
This call is used for an advanced queueing enqueue.

Syntax
sword OCIAQEnq (OCISvcCtx *svch,
 OCIError *errh,
 text *queue_name,
 OCIAQEnqOptions *enqueue_options,
 OCIAQMsgProperties *message_properties,
 OCIType *payload_tdo,
 dvoid **payload,
 dvoid **payload_ind,
 OCIRaw **msgid,
 ub4 flags);

Parameters
svch (IN)
OCI service context.

errh (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

queue_name (IN)
The target queue for the enqueue operation.

enqueue_options (IN)
The options for the enqueue operation; stored in an OCIAQEnqOptions descriptor.

message_properties (IN)
The message properties for the message; stored in an OCIAQMsgProperties
descriptor.

payload_tdo (IN)
The TDO (type descriptor object) of an object type. For a raw queue, this parameter

should point to the TDO of SYS.RAW.

payload (IN)
A pointer to a pointer to an instance of an object type. For a raw queue, this

parameter should point to an instance of OCIRaw.

OCIAQEnq()

15-8 Oracle Call Interface Programmer’s Guide

The OCI provides functions which allow the user to set attributes of the payload,

such as its text. For information about setting these attributes, refer to

"Manipulating Object Attributes" on page 10-13.

payload_ind (IN)
A pointer to a pointer to the program variable buffer containing the parallel

indicator structure for the object type.

msgid (OUT)
The message ID.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments
Users must have the aq_user_role or privileges to execute the dbms_aq package

in order to use this call.

The OCI environment must be initialized in object mode (using OCIInitialize()) to
use this call.

For more information about OCI and Advanced Queueing, refer to "OCI and

Advanced Queuing" on page 9-25.

For additional information about Advanced Queueing, refer to Oracle8i Application
Developer’s Guide - Advanced Queuing.

To obtain a TDO for the payload, use OCITypeByName(), or OCITypeByRef().

Examples
The following four examples demonstrate the use of OCIAQEnq() and OCIAQDeq()
in several different situations.

These examples assume that the database is set up as illustrated in the section

"Oracle Advanced Queueing By Example" in the advanced queueing chapter of the

Oracle8i Application Developer’s Guide - Advanced Queuing.

Example 1
Enqueue and dequeue of a payload object.

struct message
{
 OCIString *subject;
 OCIString *data;
};
typedef struct message message;

Advanced Queuing and Publish-Subscribe Functions

OCI Relational Functions 15-9

struct null_message
{
 OCIInd null_adt;
 OCIInd null_subject;
 OCIInd null_data;
};
typedef struct null_message null_message;

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 message msg;
 null_message nmsg;
 message *mesg = &msg;
 null_message *nmesg = &nmsg;
 message *deqmesg = (message *)0;
 null_message *ndeqmesg = (null_message *)0;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);
 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

OCIAQEnq()

15-10 Oracle Call Interface Programmer’s Guide

 /* obtain TDO of message_type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),
 (CONST text *)"MESSAGE_TYPE", strlen("MESSAGE_TYPE"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 mesg->subject = (OCIString *)0;
 mesg->data = (OCIString *)0;
 OCIStringAssignText(envhp, errhp, (CONST text *)"NORMAL MESSAGE",
 strlen("NORMAL MESSAGE"), &mesg->subject);
 OCIStringAssignText(envhp, errhp,(CONST text *)"OCI ENQUEUE",
 strlen("OCI ENQUEUE"), &mesg->data);
 nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

 /* enqueue into the msg_queue */
 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue */
 OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0);
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Example 2
Enqueue and dequeue using correlation IDs.

struct message
{
 OCIString *subject;
 OCIString *data;
};
typedef struct message message;

struct null_message
{
 OCIInd null_adt;
 OCIInd null_subject;
 OCIInd null_data;
};
typedef struct null_message null_message;

Advanced Queuing and Publish-Subscribe Functions

OCI Relational Functions 15-11

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 message msg;
 null_message nmsg;
 message *mesg = &msg;
 null_message *nmesg = &nmsg;
 message *deqmesg = (message *)0;
 null_message *ndeqmesg = (null_message *)0;
 OCIRaw*firstmsg = (OCIRaw *)0;
 OCIAQMsgProperties *msgprop = (OCIAQMsgProperties *)0;
 OCIAQDeqOptions *deqopt = (OCIAQDeqOptions *)0;
 text correlation1[30], correlation2[30];

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);
 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);
 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

 /* allocate message properties descriptor */
 OCIDescriptorAlloc(envhp, (dvoid **)&msgprop,
 OCI_DTYPE_AQMSG_PROPERTIES, 0, (dvoid **)0);
 strcpy(correlation1, "1st message");
 OCIAttrSet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES, (dvoid *)&correlation1,

OCIAQEnq()

15-12 Oracle Call Interface Programmer’s Guide

 strlen(correlation1), OCI_ATTR_CORRELATION, errhp);

 /* obtain TDO of message_type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),
 (CONST text *)"MESSAGE_TYPE", strlen("MESSAGE_TYPE"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 mesg->subject = (OCIString *)0;
 mesg->data = (OCIString *)0;
 OCIStringAssignText(envhp, errhp, (CONST text *)"NORMAL ENQUEUE1",
 strlen("NORMAL ENQUEUE1"), &mesg->subject);
 OCIStringAssignText(envhp, errhp,(CONST text *)"OCI ENQUEUE",
 strlen("OCI ENQUEUE"), &mesg->data);
 nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

 /* enqueue into the msg_queue, store the message id into firstmsg */
 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue", 0, msgprop,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, &firstmsg, 0);

 /* enqueue into the msg_queue with a different correlation id */
 strcpy(correlation2, "2nd message");
 OCIAttrSet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES, (dvoid*)&correlation2,
 strlen(correlation2), OCI_ATTR_CORRELATION, errhp);
 OCIStringAssignText(envhp, errhp, (CONST text *)"NORMAL ENQUEUE2",
 strlen("NORMAL ENQUEUE2"), &mesg->subject);
 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue", 0, msgprop,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);

 OCITransCommit(svchp, errhp, (ub4) 0);

 /* first dequeue by correlation id "2nd message" */
 /* allocate dequeue options descriptor and set the correlation option */
 OCIDescriptorAlloc(envhp, (dvoid **)&deqopt,
 OCI_DTYPE_AQDEQ_OPTIONS, 0, (dvoid **)0);
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)correlation2,
 strlen(correlation2), OCI_ATTR_CORRELATION, errhp);

 /* dequeue from the msg_queue */
 OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0);
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 OCITransCommit(svchp, errhp, (ub4) 0);

Advanced Queuing and Publish-Subscribe Functions

OCI Relational Functions 15-13

 /* second dequeue by message id */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&firstmsg,
 OCIRawSize(envhp, firstmsg), OCI_ATTR_DEQ_MSGID, errhp);
 /* clear correlation id option */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,
 (dvoid *)correlation2, 0, OCI_ATTR_CORRELATION, errhp);

 /* dequeue from the msg_queue */
 OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0);
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Example 3
Enqueue and dequeue of a raw queue.

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 char msg_text[100];
 OCIRaw *mesg = (OCIRaw *)0;
 OCIRaw*deqmesg = (OCIRaw *)0;
 OCIInd ind = 0;
 dvoid *indptr = (dvoid *)&ind;
 inti;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);
 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

OCIAQEnq()

15-14 Oracle Call Interface Programmer’s Guide

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);
 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

 /* obtain the TDO of the RAW data type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"SYS", strlen("SYS"),
 (CONST text *)"RAW", strlen("RAW"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 strcpy(msg_text, "Enqueue to a RAW queue");
 OCIRawAssignBytes(envhp, errhp, msg_text, strlen(msg_text), &mesg);

 /* enqueue the message into raw_msg_queue */
 OCIAQEnq(svchp, errhp, (CONST text *)"raw_msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&indptr, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue the same message into C variable deqmesg */
 OCIAQDeq(svchp, errhp, (CONST text *)"raw_msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&indptr, 0, 0);
 for (i = 0; i < OCIRawSize(envhp, deqmesg); i++)
 printf("%c", *(OCIRawPtr(envhp, deqmesg) + i));
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Example 4
Enqueue and dequeue using OCIAQAgent.

struct message
{
 OCIString *subject;
 OCIString *data;
};
typedef struct message message;

struct null_message
{
 OCIInd null_adt;
 OCIInd null_subject;

Advanced Queuing and Publish-Subscribe Functions

OCI Relational Functions 15-15

 OCIInd null_data;
};
typedef struct null_message null_message;

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 message msg;
 null_message nmsg;
 message *mesg = &msg;
 null_message *nmesg = &nmsg;
 message *deqmesg = (message *)0;
 null_message *ndeqmesg = (null_message *)0;
 OCIAQMsgProperties *msgprop = (OCIAQMsgProperties *)0;
 OCIAQAgent *agents[2];
 OCIAQDeqOptions *deqopt = (OCIAQDeqOptions *)0;
 ub4wait = OCI_DEQ_NO_WAIT;
 ub4 navigation = OCI_DEQ_FIRST_MSG;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

OCIAQEnq()

15-16 Oracle Call Interface Programmer’s Guide

 OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

 /* obtain TDO of message_type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),
 (CONST text *)"MESSAGE_TYPE", strlen("MESSAGE_TYPE"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 mesg->subject = (OCIString *)0;
 mesg->data = (OCIString *)0;
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"MESSAGE 1", strlen("MESSAGE 1"),
 &mesg->subject);
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"mesg for queue subscribers",
 strlen("mesg for queue subscribers"), &mesg->data);
 nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

 /* enqueue MESSAGE 1 for subscribers to the queue i.e. for RED and GREEN */
 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue_multiple", 0, 0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);

 /* enqueue MESSAGE 2 for specified recipients i.e. for RED and BLUE */
 /* prepare message payload */
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"MESSAGE 2", strlen("MESSAGE 2"),
 &mesg->subject);
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"mesg for two recipients",
 strlen("mesg for two recipients"), &mesg->data);

 /* allocate AQ message properties and agent descriptors */
 OCIDescriptorAlloc(envhp, (dvoid **)&msgprop,
 OCI_DTYPE_AQMSG_PROPERTIES, 0, (dvoid **)0);
 OCIDescriptorAlloc(envhp, (dvoid **)&agents[0],
 OCI_DTYPE_AQAGENT, 0, (dvoid **)0);
 OCIDescriptorAlloc(envhp, (dvoid **)&agents[1],
 OCI_DTYPE_AQAGENT, 0, (dvoid **)0);

 /* prepare the recipient list, RED and BLUE */
 OCIAttrSet(agents[0], OCI_DTYPE_AQAGENT, "RED", strlen("RED"),
 OCI_ATTR_AGENT_NAME, errhp);
 OCIAttrSet(agents[1], OCI_DTYPE_AQAGENT, "BLUE", strlen("BLUE"),
 OCI_ATTR_AGENT_NAME, errhp);
 OCIAttrSet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES, (dvoid *)agents, 2,

Advanced Queuing and Publish-Subscribe Functions

OCI Relational Functions 15-17

 OCI_ATTR_RECIPIENT_LIST, errhp);

 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue_multiple", 0, msgprop,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);

OCITransCommit(svchp, errhp, (ub4) 0);

 /* now dequeue the messages using different consumer names */
 /* allocate dequeue options descriptor to set the dequeue options */
 OCIDescriptorAlloc(envhp, (dvoid **)&deqopt, OCI_DTYPE_AQDEQ_OPTIONS, 0,
 (dvoid **)0);

 /* set wait parameter to NO_WAIT so that the dequeue returns immediately */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&wait, 0,
 OCI_ATTR_WAIT, errhp);

 /* set navigation to FIRST_MESSAGE so that the dequeue resets the position */
 /* after a new consumer_name is set in the dequeue options */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&navigation, 0,
 OCI_ATTR_NAVIGATION, errhp);

 /* dequeue from the msg_queue_multiple as consumer BLUE */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)"BLUE", strlen("BLUE"),
 OCI_ATTR_CONSUMER_NAME, errhp);
 while (OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue_multiple", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0)
 == OCI_SUCCESS)
 {
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 }
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue_multiple as consumer RED */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)"RED", strlen("RED"),
 OCI_ATTR_CONSUMER_NAME, errhp);
 while (OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue_multiple", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0)
 == OCI_SUCCESS)
 {
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 }
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue_multiple as consumer GREEN */

OCIAQEnq()

15-18 Oracle Call Interface Programmer’s Guide

 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,(dvoid *)"GREEN",strlen("GREEN"),
 OCI_ATTR_CONSUMER_NAME, errhp);
 while (OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue_multiple", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0)
 == OCI_SUCCESS)
 {
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 }
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Related Functions
OCIAQDeq(), OCIAQListen(), OCIInitialize()

Advanced Queuing and Publish-Subscribe Functions

OCI Relational Functions 15-19

OCIAQListen()

Purpose
Listens on one or more queues on behalf of a list of agents.

Syntax
sword OCIAQListen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAQAgent **agent_list,
 ub4 num_agents,
 sb4 wait,
 OCIAQAgent **agent,
 ub4 flags);

Parameters
svchpp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

agent_list (IN)
List of agents for which to monitor messages.

num_agents (IN)
Number of agents in the agent list.

wait (IN)
Time-out for the listen call.

agent (OUT)
Agent for which there is a message. OCIAgent is an OCI descriptor.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments
This is a blocking call that returns when there is a message ready for consumption

for an agent in the list. If there are no messages found when the wait time expires,

an error is returned.

Related Functions
OCIAQEnq(), OCIAQDeq(), OCISvcCtxToLda(), OCISubscriptionEnable(),
OCISubscriptionPost(), OCISubscriptionRegister(),OCISubscriptionUnRegister()

OCISubscriptionDisable()

15-20 Oracle Call Interface Programmer’s Guide

OCISubscriptionDisable()

Purpose
Disables a subscription registration which turns off all notifications.

Syntax
ub4 OCISubscriptionDisable (OCISubscription *subscrhp,
 OCIError *errhp
 ub4 mode);

Parameters
subscrhp (IN)
A subscription handle with the OCI_ATTR_SUBSCR_NAME and OCI_ATTR_

SUBSCR_NAMESPACE attributes set. For information, see Subscription Handle

Attributes on page A-37.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

mode (IN)
Call-specific mode. Valid values:

■ OCI_DEFAULT - executes the default call which discards all notifications on

this subscription until the subscription is enabled

Comments
This call is used to temporarily turn off notifications. This is useful when the

application is running a critical section of the code and should not be interrupted.

The user need not be connected or authenticated to perform this operation. A

registration must have been performed to the subscription specified by the

subscription handle before this call is made.

All notifications subsequent to an OCISubscriptionDisable() are discarded by the

system until an OCISubscriptionEnable() is performed.

Related Functions
OCIAQListen(), OCISubscriptionEnable(), OCISubscriptionPost(),
OCISubscriptionRegister(), OCISubscriptionUnRegister()

Advanced Queuing and Publish-Subscribe Functions

OCI Relational Functions 15-21

OCISubscriptionEnable()

Purpose
Enables a subscription registration that has been disabled. This turns on all

notifications.

Syntax
ub4 OCISubscriptionEnable (OCISubscription *subscrhp,
 OCIError *errhp
 ub4 mode);

Parameters
subscrhp (IN)
A subscription handle with the OCI_ATTR_SUBSCR_NAME and OCI_ATTR_

SUBSCR_NAMESPACE attributes set. For information, see Subscription Handle

Attributes on page A-37.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

mode (IN)
Call-specific mode. Valid value:

■ OCI_DEFAULT - executes the default call which buffers all notifications on this

subscription until a subsequent enable is performed

Comments
This call is used to turn on notifications after a subscription registration has been

disabled.

The user need not be connected or authenticated to perform this operation. A

registration must have been done for the specified subscription before this call is

made.

Related Functions
OCIAQListen(), OCISvcCtxToLda(), OCISubscriptionPost(), OCISubscriptionRegister(),
OCISubscriptionUnRegister()

OCISubscriptionPost()

15-22 Oracle Call Interface Programmer’s Guide

OCISubscriptionPost()

Purpose
Posts to a subscription which allows all clients who are registered for the

subscription to get notifications.

Syntax
ub4 OCISubscriptionPost (OCISvcCtx *svchp,
 OCISubscription **subscrhpp,
 ub2 count,
 OCIError *errhp
 ub4 mode);

Parameters
svchp (IN)
A V8 OCI service context. This service context should have a valid authenticated

user handle.

subscrhpp (IN)
An array of subscription handles. Each element of this array should be a

subscription handle with the OCI_ATTR_SUBSCR_NAME and OCI_ATTR_

SUBSCR_NAMESPACE attributes set. For information, see Subscription Handle

Attributes on page A-37.

The OCI_ATTR_SUBSCR_PAYLOAD attribute has to be set for each subscription

handle prior to this call. If it is not set, the payload is assumed to be NULL and no

payload is delivered when the notification is received by the clients that have

registered interest. Note that the caller will have to preserve the payload until the

post is done as the OCIAttrSet() call keeps track of the reference to the payload but

does not copy the contents.

count (IN)
The number of elements in the subscription handle array.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

mode (IN)
Call-specific mode. Valid value:

■ OCI_DEFAULT - executes the default call

Advanced Queuing and Publish-Subscribe Functions

OCI Relational Functions 15-23

Comments
Posting to a subscription involves identifying the subscription name and the

payload if desired. If no payload is associated, the payload length can be set to 0.

This call provides a best-effort guarantee. A notification does to registered clients at

most once.

This call is primarily used for light-weight notification and is useful in the case of

several system events. If the application needs more rigid guarantees, it can use the

Advanced Queuing functionality by enqueuing to queue.

Related Functions
OCIAQListen(), OCISvcCtxToLda(), OCISubscriptionEnable(),
OCISubscriptionRegister(), OCISubscriptionUnRegister()

OCISubscriptionRegister()

15-24 Oracle Call Interface Programmer’s Guide

OCISubscriptionRegister()

Purpose
Registers a callback for message notification.

Syntax
ub4 OCISubscriptionRegister (OCISvcCtx *svchp,
 OCISubscription **subscrhpp,
 ub2 count,
 OCIError *errhp
 ub4 mode);

Parameters
svchp (IN)
A V8 OCI service context. This service context should have a valid authenticated

user handle.

subscrhpp (IN)
An array of subscription handles. Each element of this array should be a

subscription handle with the OCI_ATTR_SUBSCR_NAME, OCI_ATTR_SUBSCR_

NAMESPACE, OCI_ATTR_SUBSCR_CBACK, and OCI_ATTR_SUBSCR_CTX

attributes set; otherwise, an error will be returned. For information, see Subscription

Handle Attributes on page A-37.

When a notification is received for the registration denoted by the subscrhpp[i], the

user defined callback function (OCI_ATTR_SUBSCR_CBACK) set for subscrhpp[i]

will get invoked with the context (OCI_ATTR_SUBSCR_CTX) set for subscrhpp[i].

count (IN)
The number of elements in the subscription handle array.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

mode (IN)
Call-specific mode. Valid values:

■ OCI_DEFAULT - executes the default call which specifies that the registration is

treated as disconnected

■ OCI_NOTIFY_CONNECTED - notifications are received only if the client is

connected (not supported in this release)

Advanced Queuing and Publish-Subscribe Functions

OCI Relational Functions 15-25

Whenever a new client process comes up, or an old one goes down and comes back

up, it needs to register for all subscriptions of interest. If the client stays up and the

server first goes down and then comes back up, the client will continue to receive

notifications for registrations that are DISCONNECTED. However, the client will

not receive notifications for CONNECTED registrations as they will be lost once the

server goes down and comes back up.

Comments
This call is invoked for registration to a subscription which identifies the

subscription name of interest and the associated callback to be invoked. Interest in

several subscriptions can be registered at one time.

This interface is only valid for the asynchronous mode of message delivery. In this

mode, a subscriber issues a registration call which specifies a callback. When

messages are received that match the subscription criteria, the callback is invoked.

The callback may then issue an explicit message_receive (dequeue) to retrieve the

message.

The user must specify a subscription handle at registration time with the namespace

attribute set to OCI_SUBSCR_NAMESPACE_AQ.

The subscription name is the string ’SCHEMA.QUEUE’ if the registration is for a

single-consumer queue and ’SCHEMA.QUEUE:CONSUMER’ if the registration is

for a multi-consumer queue. Specifying the SCHEMA in the subscription string is

optional. If SCHEMA is not specified, the queue is assumed to be in the login user’s

schema. The user needs DEQUEUE privileges on the queue to register for

subscriptions.

Each namespace will have its own privilege model. If the user performing the

register is not entitled to register in the namespace for the specified subscription, an

error is returned.

Related Functions
OCIAQListen(), OCISvcCtxToLda(), OCISubscriptionEnable(), OCISubscriptionPost(),
OCISubscriptionUnRegister()

OCISubscriptionUnRegister()

15-26 Oracle Call Interface Programmer’s Guide

OCISubscriptionUnRegister()

Purpose
Unregisters a subscription which turns off notifications.

Syntax
ub4 OCISubscriptionUnRegister (OCISvcCtx *svchp,
 OCISubscription *subscrhp,
 OCIError *errhp
 ub4 mode);

Parameters
svchp (IN)
A V8 OCI service context. This service context should have a valid authenticated

user handle.

subscrhp (IN)
A subscription handle with the OCI_ATTR_SUBSCR_NAME and OCI_ATTR_

SUBSCR_NAMESPACE attributes set. For information, see Subscription Handle

Attributes on page A-37.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

mode (IN)
Call-specific mode. Valid value:

■ OCI_DEFAULT - executes the default call

Comments
Unregistering to a subscription is going to ensure that the user will not receive

notifications regarding the specified subscription in future. If the user wishes to

resume notification, then the only option is to re-register to the subscription.

All notifications that would otherwise have been delivered are not delivered after a

subsequent register is performed because the user is no longer in the list of

interested clients.

Related Functions
OCIAQListen(), OCISvcCtxToLda(), OCISubscriptionEnable(), OCISubscriptionPost(),
OCISubscriptionRegister()

Handle and Descriptor Functions

OCI Relational Functions 15-27

Handle and Descriptor Functions
This section describes the OCI handle and descriptor functions.

Table 15–2 OCI Quick Reference

Function Purpose

OCIAttrGet() on page 15-28 Get the attributes of a handle

OCIAttrSet() on page 15-29 Set an attribute of a handle or descriptor

OCIDescriptorAlloc() on page 15-31 Allocate and initialize a descriptor or LOB locator

OCIDescriptorFree() on page 15-33 Free a previously allocated descriptor

OCIHandleAlloc() on page 15-34 Allocate and initialize a handle

OCIHandleFree() on page 15-37 Free a previously allocated handle

OCIParamGet() on page 15-39 Get a parameter descriptor

OCIParamSet() on page 15-41 Set parameter descriptor in COR handle

OCIAttrGet()

15-28 Oracle Call Interface Programmer’s Guide

OCIAttrGet()

Purpose
This call is used to get a particular attribute of a handle.

Syntax
sword OCIAttrGet (CONST dvoid *trgthndlp,
 ub4 trghndltyp,
 dvoid *attributep,
 ub4 *sizep,
 ub4 attrtype,
 OCIError *errhp);

Parameters
trgthndlp (IN)
Pointer to a handle type.

trghndltyp (IN)
The handle type.

attributep (OUT)
Pointer to the storage for an attribute value. The attribute value is filled in.

sizep (OUT)
The size of storage for the attribute value. This can be passed in as NULL for

parameters whose size is well known. For text* parameters, a pointer to a ub4 must

be passed in to get the length of the string.

attrtype (IN)
The type of attribute being retrieved.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

Comments
This call is used to get a particular attribute of a handle. See Appendix A, "Handle

and Descriptor Attributes", for a list of handle types and their readable attributes.

Related Functions
OCIAttrSet()

Handle and Descriptor Functions

OCI Relational Functions 15-29

OCIAttrSet()

Purpose
This call is used to set a particular attribute of a handle or a descriptor.

Syntax
sword OCIAttrSet (dvoid *trgthndlp,
 ub4 trghndltyp,
 dvoid *attributep,
 ub4 size,
 ub4 attrtype,
 OCIError *errhp);

Parameters
trgthndlp (IN/OUT)
Pointer to a handle type whose attribute gets modified.

trghndltyp (IN/OUT)
The handle type.

attributep (IN)
Pointer to an attribute value. The attribute value is copied into the target handle. If

the attribute value is a pointer, then only the pointer is copied, not the contents of

the pointer.

size (IN)
The size of an attribute value. This can be passed in as 0 for most attributes as the

size is already known by the OCI library. For text* attributes, a ub4 must be passed

in set to the length of the string.

attrtype (IN)
The type of attribute being set.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

Comments
See Appendix A, "Handle and Descriptor Attributes", for a list of handle types and

their writable attributes.

Example
The following code sample demonstrates OCIAttrSet() being used several times

near the beginning of an application.

OCIAttrSet()

15-30 Oracle Call Interface Programmer’s Guide

int main()
{
OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCISession *usrhp;

OCIInitialize((ub4) OCI_THREADED | OCI_OBJECT, (dvoid *)0,
(dvoid * (*)()) 0,(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
0, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 0, (dvoid **) &tmp);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4)

OCI_HTYPE_ERROR, 0, (dvoid **) &tmp);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4)

OCI_HTYPE_SERVER, 0, (dvoid **) &tmp);
OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp,

(ub4) OCI_HTYPE_SVCCTX, , (dvoid **) &tmp);
 /* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *) srvhp,

(ub4) 0, (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);
/* allocate a user session handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp,

(ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0);
OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"sherry",

(ub4)strlen("sherry"), OCI_ATTR_USERNAME, errhp);
OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"penfield",

(ub4)strlen("penfield"), OCI_ATTR_PASSWORD, errhp);
checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,

OCI_DEFAULT));
OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX, (dvoid *)usrhp,

(ub4)0, OCI_ATTR_SESSION, errhp);

Related Functions
OCIAttrGet()

Handle and Descriptor Functions

OCI Relational Functions 15-31

OCIDescriptorAlloc()

Purpose
Allocates storage to hold descriptors or LOB locators.

Syntax
sword OCIDescriptorAlloc (CONST dvoid *parenth,
 dvoid **descpp,
 ub4 type,
 size_t xtramem_sz,
 dvoid **usrmempp);

Parameters
parenth (IN)
An environment handle.

descpp (OUT)
Returns a descriptor or LOB locator of desired type.

type (IN)
Specifies the type of descriptor or LOB locator to be allocated:

■ OCI_DTYPE_SNAP - specifies generation of snapshot descriptor of C type

OCISnapshot

■ OCI_DTYPE_LOB - specifies generation of a LOB value type locator (for a

BLOB or CLOB) of C type OCILobLocator

■ OCI_DTYPE_FILE - specifies generation of a FILE value type locator of C type

OCILobLocator.

■ OCI_DTYPE_ROWID - specifies generation of a ROWID descriptor of C type

OCIRowid.

■ OCI_DTYPE_DATETIME - specifies generation of a DATETIME descriptor of C

type OCIDateTime

■ OCI_DTYPE_INTERVAL - specifies generation of an INTERVAL descriptor of C

type OCIInterval

■ OCI_DTYPE_COMPLEXOBJECTCOMP - specifies generation of a complex

object retrieval descriptor of C type OCIComplexObjectComp.

■ OCI_DTYPE_AQENQ_OPTIONS - specifies generation of an advanced

queueing enqueue options descriptor of C type OCIAQEnqOptions.

OCIDescriptorAlloc()

15-32 Oracle Call Interface Programmer’s Guide

■ OCI_DTYPE_AQDEQ_OPTIONS - specifies generation of an advanced

queueing dequeue options descriptor of C type OCIAQDeqOptions.

■ OCI_DTYPE_AQMSG_PROPERTIES - specifies generation of an advanced

queueing message properties descriptor of C type OCIAQMsgProperties.

■ OCI_DTYPE_AQAGENT - specifies generation of an advanced queueing agent

descriptor of C type OCIAQAgent.

xtramem_sz (IN)
Specifies an amount of user memory to be allocated for use by the application for

the lifetime of the descriptor.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramem_sz allocated by the call for the

user for the lifetime of the descriptor.

Comments
Returns a pointer to an allocated and initialized descriptor, corresponding to the

type specified in type. A non-NULL descriptor or LOB locator is returned on

success. No diagnostics are available on error.

This call returns OCI_SUCCESS if successful, or OCI_INVALID_HANDLE if an

out-of-memory error occurs.

For more information about the xtramem_sz parameter and user memory allocation,

refer to "User Memory Allocation" on page 2-13.

Related Functions
OCIDescriptorFree()

Handle and Descriptor Functions

OCI Relational Functions 15-33

OCIDescriptorFree()

Purpose
Deallocates a previously allocated descriptor.

Syntax
sword OCIDescriptorFree (dvoid *descp,
 ub4 type);

Parameters
descp (IN)
An allocated descriptor.

type (IN)
Specifies the type of storage to be freed. The specific types are:

■ OCI_DTYPE_SNAP - snapshot descriptor

■ OCI_DTYPE_LOB - a LOB value type descriptor

■ OCI_DTYPE_FILE - a FILE value type descriptor

■ OCI_DTYPE_ROWID - a ROWID descriptor

■ OCI_DTYPE_DATETIME - a DATETIME descriptor

■ OCI_DTYPE_INTERVAL - an INTERVAL descriptor

■ OCI_DTYPE_COMPLEXOBJECTCOMP - a complex object retrieval descriptor

■ OCI_DTYPE_AQENQ_OPTIONS - an AQ enqueue options descriptor

■ OCI_DTYPE_AQDEQ_OPTIONS - an AQ dequeue options descriptor

■ OCI_DTYPE_AQMSG_PROPERTIES - an AQ message properties descriptor

■ OCI_DTYPE_AQAGENT - an AQ agent descriptor

Comments
This call frees storage associated with a descriptor. Returns OCI_SUCCESS or OCI_

INVALID_HANDLE. All descriptors may be explicitly deallocated, however the

OCI will deallocate a descriptor if the environment handle is deallocated.

Related Functions
OCIDescriptorAlloc()

OCIHandleAlloc()

15-34 Oracle Call Interface Programmer’s Guide

OCIHandleAlloc()

Purpose
This call returns a pointer to an allocated and initialized handle.

Syntax
sword OCIHandleAlloc (CONST dvoid *parenth,
 dvoid **hndlpp,
 ub4 type,
 size_t xtramem_sz,
 dvoid **usrmempp);

Parameters
parenth (IN)
An environment handle.

hndlpp (OUT)
Returns a handle.

type (IN)
Specifies the type of handle to be allocated. The allowed types are:

■ OCI_HTYPE_ERROR - specifies generation of an error report handle of C type

OCIError

■ OCI_HTYPE_SVCCTX - specifies generation of a service context handle of C

type OCISvcCtx

■ OCI_HTYPE_STMT - specifies generation of a statement (application request)

handle of C type OCIStmt

■ OCI_HTYPE_DESCRIBE - specifies generation of a select list description handle

of C type OCIDescribe

■ OCI_HTYPE_SERVER - specifies generation of a server context handle of C

type OCIServer

■ OCI_HTYPE_SESSION - specifies generation of a user session handle of C type

OCISession

■ OCI_HTYPE_TRANS - specifies generation of a transaction context handle of C

type OCITrans

■ OCI_HTYPE_COMPLEXOBJECT - specifies generation of a complex object

retrieval handle of C type OCIComplexObject

Handle and Descriptor Functions

OCI Relational Functions 15-35

■ OCI_HTYPE_SECURITY - specifies generation of a security handle of C type

OCISecurity

■ OCI_HTYPE_SUBSCR - specifies a generation of a subscription handle of C

type OCISubscription

■ OCI_HTYPE_DIRPATH_CTX - specifies a generation of a direct path context

handle of C type OCIDirPathCtx

■ OCI_HTYPE_DIRPATH_COLUMN_ARRAY - specifies a generation of a direct

path column array handle of C type OCIDirPathColArray

■ OCI_HTYPE_DIRPATH_STREAM - specifies a generation of a direct path

stream handle of C type OCIDirPathStream

■ OCI_HTYPE_PROCESS - specifies a generation of a process handle of C type

OCIProcess

xtramem_sz (IN)
Specifies an amount of user memory to be allocated.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramem_sz allocated by the call for the

user.

Comments
Returns a pointer to an allocated and initialized handle, corresponding to the type

specified in type. A non-NULL handle is returned on success. All handles are

allocated with respect to an environment handle which is passed in as a parent

handle.

No diagnostics are available on error. This call returns OCI_SUCCESS if successful,

or OCI_INVALID_HANDLE if an error occurs.

Handles must be allocated using OCIHandleAlloc() before they can be passed into an

OCI call.

To allocate and initialize an environment handle, call OCIEnvInit().

See Also: For more information about using the xtramem_sz parameter for user

memory allocation, refer to "User Memory Allocation" on page 2-13.

Example
The following sample code shows OCIHandleAlloc() being used to allocate a variety

of handles at the beginning of an application:

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4)
OCI_HTYPE_ERROR, 0, (dvoid **) &tmp);

OCIHandleAlloc()

15-36 Oracle Call Interface Programmer’s Guide

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4)
OCI_HTYPE_SERVER, 0, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4)
OCI_HTYPE_SVCCTX, 0, (dvoid **) &tmp);

Related Functions
OCIHandleFree(), OCIEnvInit()

Handle and Descriptor Functions

OCI Relational Functions 15-37

OCIHandleFree()

Purpose
This call explicitly deallocates a handle.

Syntax
sword OCIHandleFree (dvoid *hndlp,
 ub4 type);

Parameters
hndlp (IN)
A handle allocated by OCIHandleAlloc().

type (IN)
Specifies the type of storage to be freed. The specific types are:

■ OCI_HTYPE_ENV - an environment handle

■ OCI_HTYPE_ERROR - an error report handle

■ OCI_HTYPE_SVCCTX - a service context handle

■ OCI_HTYPE_STMT - a statement (application request) handle

■ OCI_HTYPE_DESCRIBE - a select list description handle

■ OCI_HTYPE_SERVER - a server handle

■ OCI_HTYPE_SESSION - a user session handle

■ OCI_HTYPE_TRANS - a transaction handle

■ OCI_HTYPE_COMPLEXOBJECT - a complex object retrieval handle

■ OCI_HTYPE_SECURITY - a security handle

■ OCI_HTYPE_SUBSCR - a subscription handle

■ OCI_HTYPE_DIRPATH_CTX - direct path context handle

■ OCI_HTYPE_DIRPATH_COLUMN_ARRAY - direct path column array handle

■ OCI_HTYPE_DIRPATH_STREAM - direct path stream handle

■ OCI_HTYPE_PROCESS - process handle

Comments
This call frees up storage associated with a handle, corresponding to the type

specified in the type parameter.

OCIHandleFree()

15-38 Oracle Call Interface Programmer’s Guide

This call returns either OCI_SUCCESS or OCI_INVALID_HANDLE.

All handles may be explicitly deallocated. The OCI will deallocate a child handle if

the parent is deallocated.

Related Functions
OCIHandleAlloc(), OCIEnvInit()

Handle and Descriptor Functions

OCI Relational Functions 15-39

OCIParamGet()

Purpose
Returns a descriptor of a parameter specified by position in the describe handle or

statement handle.

Syntax
sword OCIParamGet (CONST dvoid *hndlp,
 ub4 htype,
 OCIError *errhp,
 dvoid **parmdpp,
 ub4 pos);

Parameters
hndlp (IN)
A statement handle or describe handle. The OCIParamGet() function will return a

parameter descriptor for this handle.

htype (IN)
the type of the handle passed in the handle parameter. Valid types are

■ OCI_DTYPE_PARM, for a parameter descriptor

■ OCI_HTYPE_COR, for a complex object retrieval handle

■ OCI_HTYPE_STMT, for a statement handle

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

parmdpp (OUT)
A descriptor of the parameter at the position given in the pos parameter.

pos (IN)
Position number in the statement handle or describe handle. A parameter

descriptor will be returned for this position.

Note: OCI_NO_DATA may be returned if there are no parameter descriptors

for this position.

Comments
This call returns a descriptor of a parameter specified by position in the describe

handle or statement handle. Parameter descriptors are always allocated internally

by the OCI library. They are read-only.

OCIParamGet()

15-40 Oracle Call Interface Programmer’s Guide

OCI_NO_DATA may be returned if there are no parameter descriptors for this

position.

See Appendix A, "Handle and Descriptor Attributes", for more detailed information

about parameter descriptor attributes.

Related Functions
OCIAttrGet(), OCIAttrSet(), OCIParamSet()

Handle and Descriptor Functions

OCI Relational Functions 15-41

OCIParamSet()

Purpose
Used to set a complex object retrieval (COR) descriptor into a COR handle.

Syntax
sword OCIParamSet (dvoid *hndlp,
 ub4 htype,
 OCIError *errhp,
 CONST dvoid *dscp,
 ub4 dtyp,
 ub4 pos);

Parameters
hndlp (IN/OUT)
Handle pointer.

htype (IN)
Handle type.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

dscp (IN)
Complex object retrieval descriptor pointer.

dtyp (IN)
Descriptor type. The descriptor type for a COR descriptor is OCI_DTYPE_

COMPLEXOBJECTCOMP.

pos (IN)
Position number.

Comments
The COR handle must have been previously allocated using OCIHandleAlloc(), and

the descriptor must have been previously allocated using OCIDescriptorAlloc().
Attributes of the descriptor are set using OCIAttrSet().

For more information about complex object retrieval, see "Complex Object

Retrieval" on page 10-20.

Related Functions
OCIParamGet()

Bind, Define, and Describe Functions

15-42 Oracle Call Interface Programmer’s Guide

Bind, Define, and Describe Functions
This section describes the bind, define, and describe functions.

Table 15–3 OCI Quick Reference

Function Purpose

OCIBindArrayOfStruct() on page 15-43 Set skip parameters for static array bind

OCIBindByName() on page 15-44 Bind by name

OCIBindByPos() on page 15-48 Bind by position

OCIBindDynamic() on page 15-52 Sets additional attributes after bind with OCI_DATA_AT_EXEC
mode

OCIBindObject() on page 15-56 Set additional attributes for bind of named data type

OCIDefineArrayOfStruct() on page 15-58 Set additional attributes for static array define

OCIDefineByPos() on page 15-59 Define an output variable association

OCIDefineDynamic() on page 15-63 Sets additional attributes for define in OCI_DYNAMIC_FETCH
mode

OCIDefineObject() on page 15-65 Set additional attributes for define of named data type

OCIDescribeAny() on page 15-67 Describe existing schema objects

OCIStmtGetBindInfo() on page 15-70 Get bind and indicator variable names and handle

Bind, Define, and Describe Functions

OCI Relational Functions 15-43

OCIBindArrayOfStruct()

Purpose
This call sets up the skip parameters for a static array bind.

Syntax
sword OCIBindArrayOfStruct (OCIBind *bindp,
 OCIError *errhp,
 ub4 pvskip,
 ub4 indskip,
 ub4 alskip,
 ub4 rcskip);

Parameters
bindp (IN/OUT)
The handle to a bind structure.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

pvskip (IN)
Skip parameter for the next data value.

indskip (IN)
Skip parameter for the next indicator value or structure.

alskip (IN)
Skip parameter for the next actual length value.

rcskip (IN)
Skip parameter for the next column-level return code value.

Comments
This call sets up the skip parameters necessary for a static array bind. It follows a

call to OCIBindByName() or OCIBindByPos(). The bind handle returned by that initial

bind call is used as a parameter for the OCIBindArrayOfStruct() call. For information

about skip parameters, see the section "Arrays of Structures" on page 5-17.

Related Functions
OCIBindByName(), OCIBindByPos()

OCIBindByName()

15-44 Oracle Call Interface Programmer’s Guide

OCIBindByName()

Purpose
Creates an association between a program variable and a placeholder in a SQL

statement or PL/SQL block.

Syntax
sword OCIBindByName (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 CONST text *placeholder,
 sb4 placeh_len,
 dvoid *valuep,
 sb4 value_sz,
 ub2 dty,
 dvoid *indp,
 ub2 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

Parameters
stmtp (IN/OUT)
The statement handle to the SQL or PL/SQL statement being processed.

bindpp (IN/OUT)
An address of a bind handle which is implicitly allocated by this call. The bind

handle maintains all the bind information for this particular input value. The

handle is freed implicitly when the statement handle is deallocated. On input, the

value of the pointer must be NULL or a valid bind handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

placeholder (IN)
The placeholder attributes are specified by name if OCIBindByName() is being

called.

placeh_len (IN)
The length of the placeholder name specified in placeholder.

Bind, Define, and Describe Functions

OCI Relational Functions 15-45

valuep (IN/OUT)
An address of a data value or an array of data values of the type specified in the dty
parameter. An array of data values can be specified for mapping into a PL/SQL

table or for providing data for SQL multiple-row operations. When an array of bind

values is provided, this is called an array bind in OCI terms.

For SQLT_NTY or SQLT_REF binds, the valuep parameter is ignored. The pointers

to OUT buffers are set in the pgvpp parameter initialized by OCIBindObject().

If the OCI_ATTR_CHARSET_ID is attribute is set to OCI_UCS2ID (Unicode), all

data passed to and received with the corresponding bind call is assumed to be in

UCS-2 encoding. For more information, refer to OCI_ATTR_CHARSET_ID on

page A-20.

value_sz (IN)
The size of a data value. In the case of an array bind, this is the maximum size of

any element possible with the actual sizes being specified in the alenp parameter.

For descriptors, locators, or REFs, whose size is unknown to client applications use

the size of the structure you are passing in; e.g., sizeof (OCILobLocator *).

dty (IN)
The data type of the value(s) being bound. Named data types (SQLT_NTY) and

REFs (SQLT_REF) are valid only if the application has been initialized in object

mode. For named data types, or REFs, additional calls must be made with the bind

handle to set up the datatype-specific attributes.

indp (IN/OUT)
Pointer to an indicator variable or array. For all data types except SQLT_NTY, this is

a pointer to sb2 or an array of sb2s.

For SQLT_NTY, this pointer is ignored and the actual pointer to the indicator

structure or an array of indicator structures is initialized in a subsequent call to

OCIBindObject(). This parameter is ignored for dynamic binds.

See the section "Indicator Variables" on page 2-31 for more information about

indicator variables.

alenp (IN/OUT)
Pointer to array of actual lengths of array elements. Each element in alenp is the

length of the data in the corresponding element in the bind value array before and

after the execute. This parameter is ignored for dynamic binds.

rcodep (OUT)
Pointer to array of column level return codes. This parameter is ignored for

dynamic binds.

OCIBindByName()

15-46 Oracle Call Interface Programmer’s Guide

maxarr_len (IN)
The maximum possible number of elements of type dty in a PL/SQL binds. This

parameter is not required for non-PL/SQL binds. If maxarr_len is non-zero, then

either OCIBindDynamic() or OCIBindArrayOfStruct() can be invoked to set up

additional bind attributes.

curelep (IN/OUT)
A pointer to the actual number of elements. This parameter is only required for

PL/SQL binds.

mode (IN)
The valid modes for this parameter are:

OCI_DEFAULT - This is default mode.

OCI_DATA_AT_EXEC - When this mode is selected, the value_sz parameter

defines the maximum size of the data that can be ever provided at runtime. The

application must be ready to provide the OCI library runtime IN data buffers at

any time and any number of times. Runtime data is provided in one of the two

ways:

■ callbacks using a user-defined function which must be registered with a

subsequent call to OCIBindDynamic().

■ a polling mechanism using calls supplied by the OCI. This mode is

assumed if no callbacks are defined.

For more information about using the OCI_DATA_AT_EXEC mode, see the

section "Run Time Data Allocation and Piecewise Operations" on page 5-32.

When the allocated buffers are not required any more, they should be freed by

the client.

Comments
This call is used to perform a basic bind operation. The bind creates an association

between the address of a program variable and a placeholder in a SQL statement or

PL/SQL block. The bind call also specifies the type of data which is being bound,

and may also indicate the method by which data will be provided at runtime.

This function also implicitly allocates the bind handle indicated by the bindpp
parameter. If a non-NULL pointer is passed in **bindpp, the OCI assumes that this

points to a valid handle that has been previously allocated with a call to

OCIHandleAlloc() or OCIBindByName().

Data in an OCI application can be bound to placeholders statically or dynamically.

Binding is static when all the IN bind data and the OUT bind buffers are

well-defined just before the execute. Binding is dynamic when the IN bind data and

Bind, Define, and Describe Functions

OCI Relational Functions 15-47

the OUT bind buffers are provided by the application on demand at execute time to

the client library. Dynamic binding is indicated by setting the mode parameter of this

call to OCI_DATA_AT_EXEC.

See Also: For more information about dynamic binding, see the section "Run

Time Data Allocation and Piecewise Operations" on page 5-32.

Both OCIBindByName() and OCIBindByPos() take as a parameter a bind handle,

which is implicitly allocated by the bind call A separate bind handle is allocated for

each placeholder the application is binding.

Additional bind calls may be required to specify particular attributes necessary

when binding certain data types or handling input data in certain ways:

■ If arrays of structures are being utilized, OCIBindArrayOfStruct() must be called

to set up the necessary skip parameters.

■ If data is being provided dynamically at runtime, and the application will be

using user-defined callback functions, OCIBindDynamic() must be called to

register the callbacks.

■ If a named data type is being bound, OCIBindObject() must be called to specify

additional necessary information.

■ If a statement with RETURNING clause is used, a call to OCIBindDynamic()
must follow this call.

Related Functions
OCIBindDynamic(), OCIBindObject(), OCIBindArrayOfStruct()

OCIBindByPos()

15-48 Oracle Call Interface Programmer’s Guide

OCIBindByPos()

Purpose
Creates an association between a program variable and a placeholder in a SQL

statement or PL/SQL block.

Syntax
sword OCIBindByPos (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 ub4 position,
 dvoid *valuep,
 sb4 value_sz,
 ub2 dty,
 dvoid *indp,
 ub2 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

Parameters
stmtp (IN/OUT)
The statement handle to the SQL or PL/SQL statement being processed.

bindpp (IN/OUT)
An address of a bind handle which is implicitly allocated by this call. The bind

handle maintains all the bind information for this particular input value. The

handle is freed implicitly when the statement handle is deallocated. On input, the

value of the pointer must be NULL or a valid bind handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

position (IN)
The placeholder attributes are specified by position if OCIBindByPos() is being

called.

valuep (IN/OUT)
An address of a data value or an array of data values of the type specified in the dty
parameter. An array of data values can be specified for mapping into a PL/SQL

table or for providing data for SQL multiple-row operations. When an array of bind

values is provided, this is called an array bind in OCI terms.

Bind, Define, and Describe Functions

OCI Relational Functions 15-49

For SQLT_NTY or SQLT_REF binds, the valuep parameter is ignored. The pointers

to OUT buffers are set in the pgvpp parameter initialized by OCIBindObject().

If the OCI_ATTR_CHARSET_ID is attribute is set to OCI_UCS2ID (Unicode), all

data passed to and received with the corresponding bind call is assumed to be in

UCS-2 encoding. For more information, refer to OCI_ATTR_CHARSET_ID on

page A-20.

value_sz (IN)
The size of a data value. In the case of an array bind, this is the maximum size of

any element possible with the actual sizes being specified in the alenp parameter.

For descriptors, locators, or REFs, whose size is unknown to client applications use

the size of the structure you are passing in; e.g., sizeof (OCILobLocator *).

dty (IN)
The data type of the value(s) being bound. Named data types (SQLT_NTY) and

REFs (SQLT_REF) are valid only if the application has been initialized in object

mode. For named data types, or REFs, additional calls must be made with the bind

handle to set up the datatype-specific attributes.

indp (IN/OUT)
Pointer to an indicator variable or array. For all data types, this is a pointer to sb2 or

an array of sb2s. The only exception is SQLT_NTY, when this pointer is ignored and

the actual pointer to the indicator structure or an array of indicator structures is

initialized by OCIBindObject(). Ignored for dynamic binds.

See the section "Indicator Variables" on page 2-31 for more information about

indicator variables.

alenp (IN/OUT)
Pointer to array of actual lengths of array elements. Each element in alenp is the

length of the data in the corresponding element in the bind value array before and

after the execute. This parameter is ignored for dynamic binds.

rcodep (OUT)
Pointer to array of column level return codes. This parameter is ignored for

dynamic binds.

maxarr_len (IN)
The maximum possible number of elements of type dty in a PL/SQL binds. This

parameter is not required for non-PL/SQL binds. If maxarr_len is non-zero, then

either OCIBindDynamic() or OCIBindArrayOfStruct() can be invoked to set up

additional bind attributes.

OCIBindByPos()

15-50 Oracle Call Interface Programmer’s Guide

curelep (IN/OUT)
A pointer to the actual number of elements. This parameter is only required for

PL/SQL binds.

mode (IN)
The valid modes for this parameter are:

OCI_DEFAULT - This is default mode.

OCI_DATA_AT_EXEC - When this mode is selected, the value_sz parameter

defines the maximum size of the data that can be ever provided at runtime. The

application must be ready to provide the OCI library runtime IN data buffers at

any time and any number of times. Runtime data is provided in one of the two

ways:

■ callbacks using a user-defined function which must be registered with a

subsequent call to OCIBindDynamic().

■ a polling mechanism using calls supplied by the OCI. This mode is

assumed if no callbacks are define.

For more information about using the OCI_DATA_AT_EXEC mode, see the

section "Run Time Data Allocation and Piecewise Operations" on page 5-32.

When the allocated buffers are not required any more, they should be freed by

the client.

Comments
This call is used to perform a basic bind operation. The bind creates an association

between the address of a program variable and a placeholder in a SQL statement or

PL/SQL block. The bind call also specifies the type of data which is being bound,

and may also indicate the method by which data will be provided at runtime.

This function also implicitly allocates the bind handle indicated by the bindpp
parameter. If a non-NULL pointer is passed in **bindpp, the OCI assumes that this

points to a valid handle that has been previously allocated with a call to

OCIHandleAlloc() or OCIBindByPos().

Data in an OCI application can be bound to placeholders statically or dynamically.

Binding is static when all the IN bind data and the OUT bind buffers are

well-defined just before the execute. Binding is dynamic when the IN bind data and

the OUT bind buffers are provided by the application on demand at execute time to

the client library. Dynamic binding is indicated by setting the mode parameter of this

call to OCI_DATA_AT_EXEC.

See Also: For more information about dynamic binding, see the section "Run

Time Data Allocation and Piecewise Operations" on page 5-32.

Bind, Define, and Describe Functions

OCI Relational Functions 15-51

Both OCIBindByName() and OCIBindByPos() take as a parameter a bind handle,

which is implicitly allocated by the bind call A separate bind handle is allocated for

each placeholder the application is binding.

Additional bind calls may be required to specify particular attributes necessary

when binding certain data types or handling input data in certain ways:

■ If arrays of structures are being utilized, OCIBindArrayOfStruct() must be called

to set up the necessary skip parameters.

■ If data is being provided dynamically at runtime, and the application will be

using user-defined callback functions, OCIBindDynamic() must be called to

register the callbacks.

■ If a named data type is being bound, OCIBindObject() must be called to specify

additional necessary information.

■ If a statement with RETURNING clause is used, a call to OCIBindDynamic()
must follow this call.

Related Functions
OCIBindDynamic(), OCIBindObject(), OCIBindArrayOfStruct()

OCIBindDynamic()

15-52 Oracle Call Interface Programmer’s Guide

OCIBindDynamic()

Purpose
This call is used to register user callbacks for dynamic data allocation.

Syntax
sword OCIBindDynamic (OCIBind *bindp,
 OCIError *errhp,
 dvoid *ictxp,
 OCICallbackInBind (icbfp)(/*_
 dvoid *ictxp,
 OCIBind *bindp,
 ub4 iter,
 ub4 index,
 dvoid **bufpp,
 ub4 *alenp,
 ub1 *piecep,
 dvoid **indpp */),
 dvoid *octxp,
 OCICallbackOutBind (ocbfp)(/*_
 dvoid *octxp,
 OCIBind *bindp,
 ub4 iter,
 ub4 index,
 dvoid **bufpp,
 ub4 **alenpp,
 ub1 *piecep,
 dvoid **indpp,
 ub2 **rcodepp _*/));

Parameters
bindp (IN/OUT)
A bind handle returned by a call to OCIBindByName() or OCIBindByPos().

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

ictxp (IN)
The context pointer required by the call back function icbfp.

icbfp (IN)
The callback function which returns a pointer to the IN bind value or piece at run

time. The callback takes in the following parameters:

Bind, Define, and Describe Functions

OCI Relational Functions 15-53

ictxp (IN/OUT)
The context pointer for this callback function.

bindp (IN)
The bind handle passed in to uniquely identify this bind variable.

iter (IN)
0-based execute iteration value.

index (IN)
Index of the current array, for an array bind in PL/SQL. For SQL it is the row

index. The value is 0-based and not greater than curelep parameter of the bind

call.

bufpp (OUT)
The pointer to the buffer or storage. For descriptors, *bufpp contains a pointer to

the descriptor. For example if you define

OCILOBLocator *lobp;

then you would set *bufpp to lobp not *lobp.

For REFs, pass the address of the ref; i.e., pass &my_ref for *bufpp.

If the OCI_ATTR_CHARSET_ID is attribute is set to OCI_UCS2ID (Unicode),

all data passed to and received with the corresponding bind call is assumed to

be in UCS-2 encoding. For more information, refer to OCI_ATTR_CHARSET_ID

on page A-20.

alenp (OUT)
A pointer to a storage for OCI to fill in the size of the bind

value/piece after it has been read. For descriptors, pass the size of the pointer to

the descriptor; e.g., sizeof(OCILobLocator *) .

piecep (OUT)
Which piece of the bind value. This can be one of the following values OCI_

ONE_PIECE, OCI_FIRST_PIECE, OCI_NEXT_PIECE and OCI_LAST_PIECE.

For datatypes that do not support piecewise operations, you must pass OCI_

ONE_PIECE or an error will be generated.

indp (OUT)
Contains the indicator value. This is a pointer to either an sb2 value or a pointer

to an indicator structure for binding named data types.

octxp (IN)
The context pointer required by the callback function ocbfp.

OCIBindDynamic()

15-54 Oracle Call Interface Programmer’s Guide

ocbfp (IN)
The callback function which returns a pointer to the OUT bind value or piece at run

time. The callback takes in the following parameters:

octxp (IN/OUT)
The context pointer for this call back function.

bindp (IN)
The bind handle passed in to uniquely identify this bind variable.

iter (IN)
0-based execute iteration value.

index (IN)
For PL/SQL index of the current array, for an array bind. For SQL, the index is

the row number in the current iteration. It is 0-based, and must not be greater

than curelep parameter of the bind call.

bufpp (OUT)
A pointer to a buffer to write the bind value/piece.

If the OCI_ATTR_CHARSET_ID is attribute is set to OCI_UCS2ID (Unicode),

all data passed to and received with the corresponding bind call is assumed to

be in UCS-2 encoding. For more information, refer to OCI_ATTR_CHARSET_ID

on page A-20.

alenpp (IN/OUT)
A pointer to a storage for OCI to fill in the size of the bind value/piece after it

has been read.

piecep (IN/OUT)
Returns a piece value from the callback (application) to Oracle, as follows:

■ IN - The value can be OCI_ONE_PIECE or OCI_NEXT_PIECE.

■ OUT - Depends on the IN value:

If IN value is OCI_ONE_PIECE, then OUT value can be OCI_ONE_

PIECE or OCI_FIRST_PIECE

If IN value is OCI_NEXT_PIECE then OUT value can be OCI_NEXT_

PIECE or OCI_LAST_PIECE

indpp (OUT)
Returns a pointer to contain the indicator value which either an sb2 value or a

pointer to an indicator structure for named data types.

Bind, Define, and Describe Functions

OCI Relational Functions 15-55

rcodepp (OUT)
Returns a pointer to contains the return code.

Comments
This call is used to register user-defined callback functions for providing or

receiving data if OCI_DATA_AT_EXEC mode was specified in a previous call to

OCIBindByName() or OCIBindByPos().

The callback function pointers must return OCI_CONTINUE if it the call is

successful. Any return code other than OCI_CONTINUE signals that the client

wishes to abort processing immediately.

For more information about the OCI_DATA_AT_EXEC mode, see the section "Run

Time Data Allocation and Piecewise Operations" on page 5-32.

When passing the address of a storage area, make sure that the storage area will

exist even after the application returns from the callback. This means that you

should not allocate such storage on the stack.

Related Functions
OCIBindByName(), OCIBindByPos()

OCIBindObject()

15-56 Oracle Call Interface Programmer’s Guide

OCIBindObject()

Purpose
This function sets up additional attributes which are required for a named data type

(object) bind.

Syntax
sword OCIBindObject (OCIBind *bindp,
 OCIError *errhp,
 CONST OCIType *type,
 dvoid **pgvpp,
 ub4 *pvszsp,
 dvoid **indpp,
 ub4 *indszp,);

Parameters
bindp (IN/OUT)
The bind handle returned by the call to OCIBindByName() or OCIBindByPos().

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

type (IN)
Points to the TDO which describes the type of the program variable being bound.

Retrieved by calling OCITypeByName(). Optional for REFs in SQL, but required for

REFs in PL/SQL.

pgvpp (IN/OUT)
Address of the program variable buffer. For an array, pgvpp points to an array of

addresses. When the bind variable is also an OUT variable, the OUT Named Data

Type value or REF is allocated in the Object Cache, and a REF is returned.

pgvpp is ignored if the OCI_DATA_AT_EXEC mode is set. Then the Named Data

Type buffers are requested at runtime. For static array binds, skip factors may be

specified using the OCIBindArrayOfStruct() call. The skip factors are used to

compute the address of the next pointer to the value, the indicator structure and

their sizes.

pvszsp (OUT) [optional]
Points to the size of the program variable. The size of the named data type is not

required on input. For an array, pvszsp is an array of ub4s. On return, for OUT bind

variables, this points to size(s) of the Named Data Types and REFs received. pvszsp

Bind, Define, and Describe Functions

OCI Relational Functions 15-57

is ignored if the OCI_DATA_AT_EXEC mode is set. Then the size of the buffer is

taken at runtime.

indpp (IN/OUT) [optional]
Address of the program variable buffer containing the parallel indicator structure.

For an array, points to an array of pointers. When the bind variable is also an OUT

bind variable, memory is allocated in the object cache, to store the OUT indicator

values. At the end of the execute when all OUT values have been received, indpp
points to the pointer(s) to these newly allocated indicator structure(s). Required

only for SQLT_NTY binds. indpp is ignored if the OCI_DATA_AT_EXEC mode is

set. Then the indicator is requested at runtime.

indszp (IN/OUT)
Points to the size of the IN indicator structure program variable. For an array, it is

an array of sb2s. On return for OUT bind variables, this points to size(s) of the

received OUT indicator structures. indszp is ignored if the OCI_DATA_AT_EXEC

mode is set. Then the indicator size is requested at runtime.

Comments
This function sets up additional attributes which binding a named data type or a

REF. An error will be returned if this function is called when the OCI environment

has been initialized in non-object mode.

This call takes as a parameter a type descriptor object (TDO) of datatype OCIType
for the named data type being defined. The TDO can be retrieved with a call to

OCITypeByName().

If the OCI_DATA_AT_EXEC mode was specified in OCIBindByName() or

OCIBindByPos(), the pointers to the IN buffers are obtained either using the callback

icbfp registered in the OCIBindDynamic() call or by the OCIStmtSetPieceInfo() call.

The buffers are dynamically allocated for the OUT data and the pointers to these

buffers are returned either by calling ocbfp() registered by the OCIBindDynamic() or

by setting the pointer to the buffer in the buffer passed in by OCIStmtSetPieceInfo()
called when OCIStmtExecute() returned OCI_NEED_DATA. The memory of these

client library-allocated buffers must be freed when not in use anymore by using the

OCIObjectFree() call.

Related Functions
OCIBindByName(), OCIBindByPos()

OCIDefineArrayOfStruct()

15-58 Oracle Call Interface Programmer’s Guide

OCIDefineArrayOfStruct()

Purpose
This call specifies additional attributes necessary for a static array define, used in an

array of structures (multi-row, multi-column) fetch.

Syntax
sword OCIDefineArrayOfStruct (OCIDefine *defnp,
 OCIError *errhp,
 ub4 pvskip,
 ub4 indskip,
 ub4 rlskip,
 ub4 rcskip);

Parameters
defnp (IN/OUT)
The handle to the define structure which was returned by a call to OCIDefineByPos().

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

pvskip (IN)
Skip parameter for the next data value.

indskip (IN)
Skip parameter for the next indicator location.

rlskip (IN)
Skip parameter for the next return length value.

rcskip (IN)
Skip parameter for the next return code.

Comments
This call follows a call to OCIDefineByPos().

If the application is binding an array of structures involving objects, it must call

OCIDefineObject() first, and then call OCIDefineArrayOfStruct().

For more information about skip parameters, see the section "Skip Parameters" on

page 5-18.

Related Functions
OCIDefineByPos(), OCIDefineObject()

Bind, Define, and Describe Functions

OCI Relational Functions 15-59

OCIDefineByPos()

Purpose
Associates an item in a select-list with the type and output data buffer.

Syntax
sword OCIDefineByPos (OCIStmt *stmtp,
 OCIDefine **defnpp,
 OCIError *errhp,
 ub4 position,
 dvoid *valuep,
 sb4 value_sz,
 ub2 dty,
 dvoid *indp,
 ub2 *rlenp,
 ub2 *rcodep,
 ub4 mode);

Parameters
stmtp (IN/OUT)
A handle to the requested SQL query operation.

defnpp (IN/OUT)
A pointer to a pointer to a define handle. If this parameter is passed as NULL, this

call implicitly allocates the define handle. In the case of a redefine, a non-NULL

handle can be passed in this parameter. This handle is used to store the define

information for this column.

Note: The user must keep track of this pointer. If a second call to

OCIDefineByPos() is made for the same column position, there is no guarantee

that the same pointer is returned.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

position (IN)
The position of this value in the select list. Positions are 1-based and are numbered

from left to right. For example, in the SELECT statement

SELECT empno, ssn, mgrno FROM employees;

empno is at position 1, ssn is at position 2, and mgrno is at position 3.

OCIDefineByPos()

15-60 Oracle Call Interface Programmer’s Guide

valuep (IN/OUT)
A pointer to a buffer or an array of buffers of the type specified in the dty parameter.

A number of buffers can be specified when results for more than one row are

desired in a single fetch call.

value_sz (IN)
The size of each valuep buffer in bytes. If the data is stored internally in VARCHAR2

format, the number of characters desired, if different from the buffer size in bytes,

may be additionally specified by the using OCIAttrSet().

In an NLS conversion environment, a truncation error will be generated if the

number of bytes specified is insufficient to handle the number of characters desired.

If the OCI_ATTR_CHARSET_ID is attribute is set to OCI_UCS2ID (Unicode), all

data passed to and received with the corresponding define call is assumed to be in

UCS-2 encoding. For more information, refer to OCI_ATTR_CHARSET_ID on

page A-22.

dty (IN)
The data type. Named data type (SQLT_NTY) and REF (SQLT_REF) are valid only

if the environment has been initialized with in object mode. For a listing of datatype

codes and values, refer to Chapter 3, "Datatypes".

indp (IN)
pointer to an indicator variable or array. For scalar data types, pointer to sb2 or an

array of sb2s. Ignored for SQLT_NTY defines. For SQLT_NTY defines, a pointer to a

named data type indicator structure or an array of named data type indicator

structures is associated by a subsequent OCIDefineObject() call.

See the section "Indicator Variables" on page 2-31 for more information about

indicator variables.

rlenp (IN/OUT)
Pointer to array of length of data fetched. Each element in rlenp is the length of the

data in the corresponding element in the row after the fetch.

rcodep (OUT)
Pointer to array of column-level return codes

mode (IN)
The valid modes are:

■ OCI_DEFAULT - This is the default mode.

■ OCI_DYNAMIC_FETCH - For applications requiring dynamically allocated

data at the time of fetch, this mode must be used. The user may additionally call

OCIDefineDynamic() to set up a callback function that will be invoked to receive

Bind, Define, and Describe Functions

OCI Relational Functions 15-61

the dynamically allocated buffers and. The valuep and value_sz parameters are

ignored in this mode.

Comments
This call defines an output buffer which will receive data retrieved from Oracle. The

define is a local step which is necessary when a SELECT statement returns data to

your OCI application.

This call also implicitly allocates the define handle for the select-list item. If a

non-NULL pointer is passed in *defnpp, the OCI assumes that this points to a valid

handle that has been previously allocated with a call to OCIHandleAlloc() or

OCIDefineByPos(). This would be true in the case of an application which is

redefining a handle to a different addresses so it can reuse the same define handle

for multiple fetches.

Defining attributes of a column for a fetch is done in one or more calls. The first call

is to OCIDefineByPos(), which defines the minimal attributes required to specify the

fetch.

Following the call to OCIDefineByPos() additional define calls may be necessary for

certain data types or fetch modes:

■ A call to OCIDefineArrayOfStruct() is necessary to set up skip parameters for an

array fetch of multiple columns.

■ A call to OCIDefineObject() is necessary to set up the appropriate attributes of a

named data type (i.e., object or collection) or REF fetch. In this case the data

buffer pointer in OCIDefineByPos() is ignored.

■ Both OCIDefineArrayOfStruct() and OCIDefineObject() must be called after

OCIDefineByPos() in order to fetch multiple rows with a column of named data

types.

For a LOB define, the buffer pointer must be a pointer to a lob locator of type

OCILobLocator, allocated by the OCIDescriptorAlloc() call. LOB locators, and not

LOB values, are always returned for a LOB column. LOB values can then be fetched

using OCI LOB calls on the fetched locator. This same mechanism is true for all

descriptor datatypes.

For NCHAR (fixed and varying length), the buffer pointer must point to an array of

bytes sufficient for holding the required NCHAR characters.

Nested table columns are defined and fetched like any other named data type.

When defining an array of descriptors or locators, you should pass in an array of

pointers to descriptors or locators.

OCIDefineByPos()

15-62 Oracle Call Interface Programmer’s Guide

When doing an array define for character columns, you should pass in an array of

character buffers.

If the mode parameter is this call is set to OCI_DYNAMIC_FETCH, the client

application can fetch data dynamically at runtime. Runtime data can be provided in

one of two ways:

■ callbacks using a user-defined function which must be registered with a

subsequent call to OCIDefineDynamic(). When the client library needs a buffer to

return the fetched data, the callback will be invoked and the runtime buffers

provided will return a piece or the whole data.

■ a polling mechanism using calls supplied by the OCI. This mode is assumed if

no callbacks are defined. In this case, the fetch call returns the OCI_NEED_

DATA error code, and a piecewise polling method is used to provide the data.

See Also: For more information about using the OCI_DYNAMIC_FETCH

mode, see the section "Run Time Data Allocation and Piecewise Operations" on

page 5-32.

For more information about defines, see "Defining" on page 5-13.

Related Functions
OCIDefineArrayOfStruct(), OCIDefineDynamic(), OCIDefineObject()

Bind, Define, and Describe Functions

OCI Relational Functions 15-63

OCIDefineDynamic()

Purpose
This call is used to set the additional attributes required if the OCI_DYNAMIC_

FETCH mode was selected in OCIDefineByPos().

Syntax
sword OCIDefineDynamic (OCIDefine *defnp,
 OCIError *errhp,
 dvoid *octxp,
 OCICallbackDefine (ocbfp)(/*_
 dvoid *octxp,
 OCIDefine *defnp,
 ub4 iter,
 dvoid **bufpp,
 ub4 **alenpp,
 ub1 *piecep,
 dvoid **indpp,
 ub2 **rcodep _*/));

Parameters
defnp (IN/OUT)
The handle to a define structure returned by a call to OCIDefineByPos().

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

octxp (IN)
Points to a context for the callback function.

ocbfp (IN)
Points to a callback function. This is invoked at runtime to get a pointer to the

buffer into which the fetched data or a piece of it will be retrieved. The callback also

specifies the indicator, the return code and the lengths of the data piece and

indicator.

Warning: When working with callback parameters, it is important to keep in

mind what is meant by IN and OUT for the parameter mode. Normally, in an

OCI function, an IN parameter refers to data being passed to Oracle, and an

OUT parameter refers to data coming back from Oracle. In the case of callbacks,

this is reversed. IN means data is coming from Oracle into the callback, and

OUT means data is coming out of the callback and going to Oracle.

OCIDefineDynamic()

15-64 Oracle Call Interface Programmer’s Guide

The callback parameters are listed below:

octxp (IN/OUT)
A context pointer passed as an argument to all the callback functions.

defnp (IN)
The define handle.

iter (IN)
Which row of this current fetch; 0-based.

bufpp (OUT)
Returns to Oracle a pointer to a buffer to store the column value, i.e., *bufpp
points to some appropriate storage for the column value.

alenpp (IN/OUT)
Used by the application to set the size of the storage it is providing in *bufpp.

After data is fetched into the buffer, alenpp indicates the actual size of the data.

piecep (IN/OUT)
Returns a piece value from the callback (application) to Oracle, as follows:

■ IN - The value can be OCI_ONE_PIECE or OCI_NEXT_PIECE.

■ OUT - Depends on the IN value:

If IN value is OCI_ONE_PIECE, then OUT value can be OCI_ONE_

PIECE or OCI_FIRST_PIECE

If IN value is OCI_NEXT_PIECE then OUT value can be OCI_NEXT_

PIECE or OCI_LAST_PIECE

indpp (IN)
Indicator variable pointer

rcodep (IN)
Return code variable pointer

Comments
This call is used to set the additional attributes required if the OCI_DYNAMIC_

FETCH mode has been selected in a call to OCIDefineByPos(). If OCI_DYNAMIC_

FETCH mode was selected, and the call to OCIDefineDynamic() is skipped, then the

application can fetch data piecewise using OCI calls (OCIStmtGetPieceInfo() and

OCIStmtSetPieceInfo()). For more information about OCI_DYNAMIC_FETCH mode,

see the section "Run Time Data Allocation and Piecewise Operations" on page 5-32.

Related Functions
OCIDefineByPos()

Bind, Define, and Describe Functions

OCI Relational Functions 15-65

OCIDefineObject()

Purpose
Sets up additional attributes necessary for a Named Data Type or REF define.

Syntax
sword OCIDefineObject (OCIDefine *defnp,
 OCIError *errhp,
 CONST OCIType *type,
 dvoid **pgvpp,
 ub4 *pvszsp,
 dvoid **indpp,
 ub4 *indszp);

Parameters
defnp (IN/OUT)
A define handle previously allocated in a call to OCIDefineByPos().

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

type (IN) [optional]
Points to the Type Descriptor Object (TDO) which describes the type of the program

variable. Only used for program variables of type SQLT_NTY. This parameter is

optional, and may be passed as NULL if it is not being used.

pgvpp (IN/OUT)
Points to a pointer to a program variable buffer. For an array, pgvpp points to an

array of pointers. Memory for the fetched named data type instance(s) is

dynamically allocated in the object cache. At the end of the fetch when all the values

have been received, pgvpp points to the pointer(s) to these newly allocated named

data type instance(s). The application must call OCIObjectFree() to deallocate the

named data type instance(s) when they are no longer needed.

Note: If the application wants the buffer to be implicitly allocated in the cache,

*pgvpp should be passed in as NULL.

pvszsp (IN/OUT)
Points to the size of the program variable. For an array, it is an array of ub4s.

indpp (IN/OUT)
Points to a pointer to the program variable buffer containing the parallel indicator

structure. For an array, points to an array of pointers. Memory is allocated to store

OCIDefineObject()

15-66 Oracle Call Interface Programmer’s Guide

the indicator structures in the object cache. At the end of the fetch when all values

have been received, indpp points to the pointer(s) to these newly allocated indicator

structure(s).

indszp (IN/OUT)
Points to the size(s) of the indicator structure program variable. For an array, it is an

array of ub4s.

Comments
This function follows a call to OCIDefineByPos() to set initial define information.

This call sets up additional attributes necessary for a Named Data Type define. An

error will be returned if this function is called when the OCI environment has been

initialized in non-Object mode.

This call takes as a parameter a type descriptor object (TDO) of datatype OCIType
for the named data type being defined. The TDO can be retrieved with a call to

OCIDescribeAny().

See Also: See the description of OCIInitialize() on page 15-93 for more

information about initializing the OCI process environment.

Related Functions
OCIDefineByPos()

Bind, Define, and Describe Functions

OCI Relational Functions 15-67

OCIDescribeAny()

Purpose
Describes existing schema and sub-schema objects.

Syntax
sword OCIDescribeAny (OCISvcCtx *svchp,
 OCIError *errhp,
 dvoid *objptr,
 ub4 objptr_len,
 ub1 objptr_typ,
 ub1 info_level,
 ub1 objtyp,
 OCIDescribe *dschp);

Parameters
svchp (IN)
A service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

objptr (IN)
This parameter can be:

1. a string containing the name of the object to be described

2. a pointer to a REF to the TDO (for a type)

3. a pointer to a TDO (for a type).

These cases are distinguished by passing the appropriate value for objptr_typ. This

parameter must be non-NULL.

In case 1, the string containing the object name should be in the format

<name1>[.<name2>.<name3>...][@<linkname>], such as scott.emp.empno@mydb.

Database links are only allowed to Oracle8i databases. The object name is

interpreted by the following SQL rules:

■ If only <name1> is entered and objtyp is equal to OCI_PTYPE_SCHEMA, then

the name refers to the named schema. The Oracle database must be release 8.1

or greater.

OCIDescribeAny()

15-68 Oracle Call Interface Programmer’s Guide

■ If only <name1> is entered and objtyp is equal to OCI_PTYPE_DATABASE,

then the name refers to the named database. When describing a remote

database with database_name@db_link_name, the remote Oracle database must be

release 8.1 or greater.

■ If only <name1> is entered and objtyp is not equal to OCI_PTYPE_SCHEMA or

OCI_PTYPE_DATABASE, then the name refers to the named object (of type

table / view / procedure / function / package / type / synonym / sequence)

in the current schema of the current user. When connected to an Oracle7 Server,

the only valid types are procedure and function.

■ If <name1>.<name2>.<name3>... is entered, the object name refers to a

schema/sub-schema object in the schema named <name1>. For example, in the

string scott.emp.deptno, scott is the name of the schema, emp is the name of a

table in the schema, and deptno is the name of a column in the table.

objnm_len (IN)
The length of the name string pointed to by objptr. Must be non-zero if a name is

passed. Can be zero if objptr is a pointer to a TDO or its REF.

objptr_typ (IN)
The type of object passed in objptr. Valid values are:

■ OCI_OTYPE_NAME, if objptr points to the name of a schema object

■ OCI_OTYPE_REF, if objptr is a pointer to a REF to a TDO

■ OCI_OTYPE_PTR, if objptr is a pointer to a TDO

info_level (IN)
Reserved for future extensions. Pass OCI_DEFAULT.

objtyp (IN/OUT)
The type of schema object being described. Valid values are:

■ OCI_PTYPE_TABLE, for tables

■ OCI_PTYPE_VIEW, for views

■ OCI_PTYPE_PROC, for procedures

■ OCI_PTYPE_FUNC, for functions

■ OCI_PTYPE_PKG, for packages

■ OCI_PTYPE_TYPE, for types

■ OCI_PTYPE_SYN, for synonyms

■ OCI_PTYPE_SEQ, for sequences

Bind, Define, and Describe Functions

OCI Relational Functions 15-69

■ OCI_PTYPE_SCHEMA, for schemas

■ OCI_PTYPE_DATABASE, for databases

■ OCI_PTYPE_UNK, for unknown schema objects

A value for this argument must be specified. If OCI_PTYPE_UNK is specified, then

the description of an object with the specified name in the current schema is

returned, if such an object exists, along with the actual type of the object.

dschp (IN/OUT)
A describe handle that is populated with describe information about the object after

the call. Must be non-NULL.

Comments
This is a generic describe call that describes existing schema objects: tables, views,

synonyms, procedures, functions, packages, sequences, types, schemas, and

databases. This call also describes sub-schema objects, such as a column in a table.

This call populates the describe handle with the object-specific attributes which can

be obtained through an OCIAttrGet() call.

An OCIParamGet() on the describe handle returns a parameter descriptor for a

specified position. Parameter positions begin with 1. Calling OCIAttrGet() on the

parameter descriptor returns the specific attributes of a stored procedure or

function parameter, or a table column descriptor. These subsequent calls do not

need an extra round trip to the server because the entire schema object description

is cached on the client side by OCIDescribeAny(). Calling OCIAttrGet() on the

describe handle also returns the total number of positions.

If the OCI_ATTR_DESC_PUBLIC attribute is set on the describe handle, then the

object named is looked up as a public synonym when the object does not exist in the

current schema and only <name1> is specified.

For more information about describe operations, see Chapter 6, "Describing Schema

Metadata".

Related Functions
OCIAttrGet(), OCIParamGet()

OCIStmtGetBindInfo()

15-70 Oracle Call Interface Programmer’s Guide

OCIStmtGetBindInfo()

Purpose
Gets the bind and indicator variable names.

Syntax
sword OCIStmtGetBindInfo (OCIStmt *stmtp,
 OCIError *errhp,
 ub4 size,
 ub4 startloc,
 sb4 *found,
 text *bvnp[],
 ub1 bvnl[],
 text *invp[],
 ub1 inpl[],
 ub1 dupl[],
 OCIBind *hndl[]);

Parameters
stmtp (IN)
The statement handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

size (IN)
The number of elements in each array.

startloc (IN)
Position of the bind variable at which to start getting bind information.

found (IN)
Abs(found) gives the total number of bind variables in the statement irrespective of

the start position. Positive value if the number of bind variables returned is less

than the size provided, otherwise negative.

bvnp (OUT)
Array of pointers to hold bind variable names.

bvnl (OUT)
Array to hold the length of the each bvnp element.

invp (OUT)
Array of pointers to hold indicator variable names.

Bind, Define, and Describe Functions

OCI Relational Functions 15-71

inpl (OUT)
Array of pointers to hold the length of the each invp element.

dupl (OUT)
An array whose element value is 0 or 1 depending on whether the bind position is

duplicate of another.

hndl (OUT)
An array which returns the bind handle if binds have been done for the bind

position. No handle is returned for duplicates.

Comments
This call returns information about bind variables after a statement has been

prepared. This includes bind names, indicator names, and whether or not binds are

duplicate binds. This call also returns an associated bind handle if there is one. The

call sets the found parameter to the total number of bind variables and not just the

number of distinct bind variables.

This function does not include SELECT INTO list variables, because they are not

considered to be binds.

The statement must have been prepared with a call to OCIStmtPrepare() prior to this

call.

This call is processed locally.

Related Functions
OCIStmtPrepare()

Direct Path Loading Functions

15-72 Oracle Call Interface Programmer’s Guide

Direct Path Loading Functions
This section describes the direct path loading functions.

Table 15–4 OCI Quick Reference

Function Purpose

OCIDirPathAbort() on page 15-73 Aborts a direct path operation

OCIDirPathColArrayEntryGet() on page 15-74 Gets a specified entry in a column array

OCIDirPathColArrayEntrySet() on page 15-76 Sets a specified entry in a column array to a specific value

OCIDirPathColArrayRowGet() on page 15-78 Gets the base row pointers for a specified row number

OCIDirPathColArrayReset() on page 15-79 Resets the row array state

OCIDirPathColArrayToStream() on page 15-80 Converts from a column array to a direct path stream format

OCIDirPathFinish() on page 15-82 Finishes and commits the loaded data

OCIDirPathLoadStream() on page 15-83 Loads data that has been converted to direct path stream format

OCIDirPathPrepare() on page 15-85 Prepares direct path interface to convert or load rows

OCIDirPathStreamReset() on page 15-86 Resets the direct stream state

Direct Path Loading Functions

OCI Relational Functions 15-73

OCIDirPathAbort()

Purpose
Aborts a direct path operation.

Syntax
sword OCIDirPathAbort (OCIDirPathCtx *dpctx,
 OCIError *errhp);

Parameters
dpctx (IN)
Direct path context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

Comments
All state maintained by the server on behalf of the direct path operation is

destroyed by an abort. For a direct path load, the data loaded prior to the abort will

not be visible to any queries. However, the data may still consume space in the

segments that are being loaded. Any load completion operations, such as index

maintenance operations, are not performed.

Related Functions
OCIDirPathFinish(), OCIDirPathLoadStream(), OCIDirPathPrepare(),
OCIDirPathLoadStream(), OCIDirPathStreamReset()

OCIDirPathColArrayEntryGet()

15-74 Oracle Call Interface Programmer’s Guide

OCIDirPathColArrayEntryGet()

Purpose
Gets a specified entry in a column array.

Syntax
sword OCIDirPathColArrayEntryGet (OCIDirPathColArray *dpca,
 OCIError *errhp,
 ub4 rownum,
 ub2 colIdx,
 ub1 **cvalpp,
 ub4 *clenp,
 ub1 *cflgp);

Parameters
dpca (IN/OUT)
Direct path column array handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

rownum (IN)
Zero-based row offset

colIdx (IN)
Column identifier (index), the column ID is returned by OCIDirPathColAttrSet()

cvalpp (IN/OUT)
Pointer to pointer to column data

clenp (IN/OUT)
Pointer to length of column data

cflgp (IN/OUT)
Pointer to column flag.

One of the following values is returned:

■ OCI_DIRPATH_COL_COMPLETE - all data for column is present

■ OCI_DIRPATH_COL_NULL - column is null

■ OCI_DIRPATH_COL_PARTIAL - partial column data is being supplied

Direct Path Loading Functions

OCI Relational Functions 15-75

Comments
If cflgp is set to NULL, the cvalp and clenp parameters are not set by this operation.

Related Functions
OCIDirPathColArrayEntrySet(), OCIDirPathColArrayRowGet(),
OCIDirPathColArrayReset(), OCIDirPathColArrayToStream()

OCIDirPathColArrayEntrySet()

15-76 Oracle Call Interface Programmer’s Guide

OCIDirPathColArrayEntrySet()

Purpose
 Sets a specified entry in a column array to the supplied values.

Syntax
sword OCIDirPathColArrayEntrySet (OCIDirPathColArray *dpca,
 OCIError *errhp,
 ub4 rownum,
 ub2 colIdx,
 ub1 *cvalp,
 ub4 clen,
 ub1 cflg);

Parameters
dpca (IN/OUT)
Direct path column array handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

rownum (IN)
Zero-based row offset

colIdx (IN)
Column identifier (index), the column ID is returned by OCIDirPathColAttrSet()

cvalp (IN)
Pointer to column data

clen (IN)
Length of column data

cflg (IN)
Column flag. One of the following values is returned:

■ OCI_DIRPATH_COL_COMPLETE - all data for column is present

■ OCI_DIRPATH_COL_NULL - column is null

■ OCI_DIRPATH_COL_PARTIAL - partial column data is being supplied

Comments
If cflg is set to NULL, the cval and clen parameters are not used.

Direct Path Loading Functions

OCI Relational Functions 15-77

Example
This example sets the source of data for the first row in a column array to addr, with

a length of len. In this example, the column is identified by colId.

err = OCIDirPathColArrayEntrySet(dpca, errhp, (ub2)0, colId, addr, len,
 OCI_DIRPATH_COL_COMPLETE);

Related Functions
OCIDirPathColArrayEntryGet(), OCIDirPathColArrayRowGet(),
OCIDirPathColArrayReset(), OCIDirPathColArrayToStream()

OCIDirPathColArrayRowGet()

15-78 Oracle Call Interface Programmer’s Guide

OCIDirPathColArrayRowGet()

Purpose
Gets the column array row pointers for a given row number

Syntax
sword OCIDirPathColArrayRowGet (OCIDirPathColArray *dpca,
 OCIError *errhp,
 ub4 rownum,
 ub1 ***cvalppp,
 ub4 **clenpp,
 ub1 **cflgpp);

Parameters
dpca (IN/OUT)
Direct path column array handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

rownum (IN)
Zero-based row offset

cvalppp (IN/OUT)
Pointer to vector of pointers to column data

clenpp (IN/OUT)
Pointer to vector of column data lengths

cflgpp (IN/OUT)
Pointer to vector of column flags

Comments
The application does simple pointer arithmetic to iterate across the columns of the

specific row. This interface can be used to efficiently get or set the column array

entries of a row, as opposed to calling OCIDirPathColArrayEntrySet() for every

column. The application is also responsible for not de-referencing memory beyond

the column array boundaries. The dimensions of the column array are available as

attributes of the column array.

Related Functions
OCIDirPathColArrayEntryGet(), OCIDirPathColArrayEntrySet(),
OCIDirPathColArrayReset(), OCIDirPathColArrayToStream()

Direct Path Loading Functions

OCI Relational Functions 15-79

OCIDirPathColArrayReset()

Purpose
 Resets the column array state.

Syntax
sword OCIDirPathColArrayReset (OCIDirPathColArray *dpca,
 OCIError *errhp);

Parameters
dpca (IN)
Direct path column array handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

Comments
Resetting the column array state is necessary when piecing in a large column and an

error occurs in the middle of loading the column.

Related Functions
OCIDirPathColArrayEntryGet(), OCIDirPathColArrayEntrySet(),
OCIDirPathColArrayRowGet(), OCIDirPathColArrayToStream()

OCIDirPathColArrayToStream()

15-80 Oracle Call Interface Programmer’s Guide

OCIDirPathColArrayToStream()

Purpose
Converts from column array format to a direct path stream format.

Syntax
sword OCIDirPathColArrayToStream (OCIDirPathColArray *dpca,
 OCIDirPathCtx const *dpctx,
 OCIDirPathStream *dpstr,
 OCIError *errhp,
 ub4 rowcnt,
 ub4 rowoff);

Parameters
dpca (IN)
Direct path column array handle.

dpctx (IN)
Direct path context handle for the object being loaded.

dpstr (IN/OUT)
Direct path stream handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

rowcnt (IN)
Number of rows in the column array.

rowoff (IN)
Starting index in the column array.

Comments
This interface is used to convert a column array representation of data in its external

format as specified by OCIDirPathColAttrSet() to a direct path stream format. The

converted format is suitable for loading with OCIDirPathLoadStream().

The column data in direct path stream format is converted to its Oracle internal

representation. All conversions are done on the client side of the two-task interface,

all conversion errors occur synchronously with the call to this interface. Information

concerning which row and column that an error occurred on is available as an

attribute of the column array handle.

Direct Path Loading Functions

OCI Relational Functions 15-81

Note that in a threaded environment concurrent OCIDirPathColArrayToStream()
operations can be referencing the same direct path context handle. However, the

direct path context handle is not modified by this interface.

The return codes for this call are:

■ OCI_SUCCESS - All data in the column array was successfully converted to

stream format. The column array attribute OCI_ATTR_ROW_COUNT is the

row index into the column array of the last successfully converted row.

■ OCI_ERROR - An error occurred during conversion, the error handle contains

the error information. The column array attribute OCI_ATTR_ROW_COUNT,

or OCI_ATTR_COL_COUNT, contains the row, or column, index into the

column array of the row, or column, which caused the error.

■ OCI_CONTINUE - Not all of the data in the column array could be converted

to stream format. The stream buffer is not large enough to contain all of the

column array data. The caller should either load the data, save the data to a file,

or use another stream and call OCIDirPathArrayToStream() again to convert the

remainder of the column array data. Note that the column array has internal

state to know where to resume conversion from. The column array attribute

OCI_ATTR_ROW_COUNT contains the row index into the column array of the

row which could not be completely converted.

■ OCI_NEED_DATA - All of the data in the column array was successfully

converted, but a partial column was encountered. The caller should load the

resulting stream, and supply the remainder of the row, iteratively if necessary.

The column array attribute OCI_ATTR_ROW_COUNT, or OCI_ATTR_COL_

COUNT, contains the row, or column, index into the column array of the row,

or column, which is marked partial.

Related Functions
OCIDirPathColArrayEntryGet(), OCIDirPathColArrayEntrySet(),
OCIDirPathColArrayRowGet(), OCIDirPathColArrayReset()

OCIDirPathFinish()

15-82 Oracle Call Interface Programmer’s Guide

OCIDirPathFinish()

Purpose
Finishes the direct path load operation.

Syntax
sword OCIDirPathFinish (OCIDirPathCtx *dpctx,
 OCIError *errhp);

Parameters
dpctx (IN)
Direct path context handle for the object loaded.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

Comments
After the load has completed, and the loaded data is to be committed, the direct

path finishing function is called.

A return value of OCI_SUCCESS indicates that the back-end has properly

terminated the load.

Related Functions
OCIDirPathAbort(), OCIDirPathLoadStream(), OCIDirPathPrepare(),
OCIDirPathLoadStream(), OCIDirPathStreamReset()

Direct Path Loading Functions

OCI Relational Functions 15-83

OCIDirPathLoadStream()

Purpose
Loads the data converted to direct path stream format.

Syntax
sword OCIDirPathLoadStream (OCIDirPathCtx *dpctx,
 OCIDirPathStream *dpstr,
 OCIError *errhp);

Parameters
dpctx (IN)
Direct path context handle for the object loaded.

dpstr (IN)
Direct path stream handle for the stream to load.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

Comments
When the interface returns an error, information concerning the row in the column

array that sourced the stream can be obtained as an attribute of the direct path

stream. Also, the offset into the stream where the error occurred can be obtained as

an attribute of the stream.

Return codes for this function are:

■ OCI_SUCCESS - All data in the stream was successfully loaded.

■ OCI_ERROR - An error occurred while loading the data. The problem could be

a partition mapping error, a null constraint violation, functional index

evaluation error, or an out of space condition, such as cannot allocate extent.

The attribute OCI_ATTR_STREAM_OFFSET of the direct path stream is the

offset into the stream which corresponds to the offending row. If the stream was

sourced from a column array, the attribute OCI_ATTR_ROW_COUNT is the

row index into the column array corresponding to the bad row.

■ OCI_NEED_DATA - Last row was not complete. The caller needs to supply

another row piece. If the stream was sourced from a column array, the attribute

OCI_ATTR_ROW_COUNT, or OCI_ATTR_COL_COUNT, is the row, or

column, index into the column array of corresponding to the partial row, or

column.

OCIDirPathLoadStream()

15-84 Oracle Call Interface Programmer’s Guide

■ OCI_NO_DATA - Attempt to load an empty stream, or a stream which has been

completely processed. If the stream was sourced from a column array, the

attribute OCI_ATTR_ROW_COUNT, or OCI_ATTR_COL_COUNT, is the row,

or column, index into the column array of corresponding to the bad row, or

column.

Related Functions
OCIDirPathAbort(), OCIDirPathFinish(), OCIDirPathLoadStream(),
OCIDirPathPrepare(), OCIDirPathStreamReset()

Direct Path Loading Functions

OCI Relational Functions 15-85

OCIDirPathPrepare()

Purpose
Prepares the direct path load interface before any rows can be converted or loaded.

Syntax
sword OCIDirPathPrepare (OCIDirPathCtx *dpctx,
 OCISvcCtx *svchp,
 OCIError *errhp);

Parameters
dpctx (IN)
Direct path context handle for the object loaded.

svchp (IN)
Service context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

Comments
After the name of the object to be operated on is set, the external attributes of the

column data is set, and all load options are set, the direct path interface must be

prepared with OCIDirPathPrepare() before any rows can be converted or loaded.

A return value of OCI_SUCCESS indicates that the back-end has been properly

initialized for a direct path load operation. A non-zero return indicates an error.

Possible errors are:

■ invalid context

■ not connected to a server

■ object name not set

■ already prepared (cannot prepare twice)

■ object not suitable for a direct path operation

Related Functions
OCIDirPathAbort(), OCIDirPathFinish(), OCIDirPathLoadStream(),
OCIDirPathLoadStream(), OCIDirPathStreamReset()

OCIDirPathStreamReset()

15-86 Oracle Call Interface Programmer’s Guide

OCIDirPathStreamReset()

Purpose
Resets the direct path stream state.

Syntax
sword OCIDirPathStreamReset (OCIDirPathStream *dpstr,
 OCIError *errhp,

Parameters
dpstr (IN)
Direct path stream handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

Comments
A direct path stream maintains the state that indicates where the next

OCIDirPathColArrayToStream() call should start writing into the stream. Normally,

data is appended to the end of the stream. When the caller wants to start a new

stream after a stream is successfully loaded, or discard the data in a stream, the

stream must be reset with this call.

Related Functions
OCIDirPathAbort(), OCIDirPathFinish(), OCIDirPathLoadStream(),
OCIDirPathPrepare(), OCIDirPathLoadStream()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-87

Connect, Authorize, and Initialize Functions
This section describes the OCI connect, authorize, and initialize functions.

Table 15–5 OCI Quick Reference

Function Purpose

OCIEnvCreate() on page 15-88 creates and initializes an OCI environment

OCIEnvInit() on page 15-91 Initialize an environment handle

OCIInitialize() on page 15-93 Initialize OCI process environment

OCILogon() on page 15-97 Simplified single-session logon

OCIServerAttach() on page 15-99 Attach to a server; initialize server context handle

OCIServerDetach() on page 15-101 Detach from a server; uninitialize server context handle

OCISessionBegin() on page 15-102 Authenticate a user

OCISessionEnd() on page 15-105 Terminate a user session

OCITerminate() on page 15-106 Detaches from a shared memory subsystem.

OCIEnvCreate()

15-88 Oracle Call Interface Programmer’s Guide

OCIEnvCreate()

Purpose
Creates and initializes an environment for OCI functions to work under.

Syntax
sword OCIEnvCreate (OCIEnv **envhpp,
 ub4 mode,
 CONST dvoid *ctxp,
 CONST dvoid *(*malocfp)
 (dvoid *ctxp,
 size_t size),
 CONST dvoid *(*ralocfp)
 (dvoid *ctxp,
 dvoid *memptr,
 size_t newsize),
 CONST void (*mfreefp)
 (dvoid *ctxp,
 dvoid *memptr))
 size_t xtramemsz,
 dvoid **usrmempp);

Parameters
envhpp (OUT)
A pointer to a handle to the environment.

mode (IN)
Specifies initialization of the mode. Valid modes are:

■ OCI_DEFAULT- uses default mode.

■ OCI_THREADED - uses threaded environment. Internal data structures not

exposed to the user are protected from concurrent accesses by multiple threads.

■ OCI_OBJECT - uses object features.

■ OCI_SHARED - utilizes shared data structures.

■ OCI_EVENTS - utilizes publish-subscribe notifications.

■ OCI_NO_UCB - suppresses the calling of the dynamic callback routine

OCIEnvCallback. The default behavior is to allow calling of OCIEnvCallback at

the time that the environment is created. See "Dynamic Callback Registrations"

on page 9-15 for more information.

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-89

■ OCI_ENV_NO_MUTEX - no mutexing in this mode. All OCI calls done on the

environment handle, or on handles derived from the environment handle, must

be serialized.

ctxp (IN)
Specifies the user-defined context for the memory callback routines.

malocfp (IN)
Specifies the user-defined memory allocation function. If mode is OCI_

THREADED, this memory allocation routine must be thread safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory allocation function.

size (IN)
Specifies the size of memory to be allocated by the user-defined memory allocation

function.

ralocfp (IN)
Specifies the user-defined memory re-allocation function. If the mode is OCI_

THREADED, this memory allocation routine must be thread safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory reallocation function.

memp (IN)
Pointer to memory block.

newsize (IN)
Specifies the new size of memory to be allocated

mfreefp (IN)
Specifies the user-defined memory free function. If mode is OCI_THREADED, this

memory free routine must be thread safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory free function.

memptr (IN)
Pointer to memory to be freed

xtramemsz (IN)
Specifies the amount of user memory to be allocated for the duration of the

environment.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramemsz allocated by the call for the

user.

OCIEnvCreate()

15-90 Oracle Call Interface Programmer’s Guide

Comments
This call creates an environment for all the OCI calls using the modes specified by

the user. This call should be invoked before any other OCI call and should be used

instead of the OCIInitialize() and OCIEnvInit() calls. OCIInitialize() and OCIEnvInit()
calls will be supported for backward compatibility.

This call returns an environment handle which is then used by the remaining OCI

functions. There can be multiple environments in OCI, each with its own

environment modes. This function also performs any process level initialization if

required by any mode. For example if the user wants to initialize an environment as

OCI_THREADED, then all libraries that are used by OCI are also initialized in the

threaded mode.

If you are writing a DLL or a shared library using OCI library then this call should

definitely be used instead of OCIInitialize() and OCIEnvInit() call.

For more information about the xtramemsz parameter and user memory allocation,

refer to "User Memory Allocation" on page 2-13.

Related Functions
OCIHandleAlloc(), OCIHandleFree(),OCIEnvInit(), OCIInitialize(), OCITerminate()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-91

OCIEnvInit()

Purpose
Allocates and initializes an OCI environment handle.

Syntax
sword OCIEnvInit (OCIEnv **envhpp,
 ub4 mode,
 size_t xtramemsz,
 dvoid **usrmempp);

Parameters
envhpp (OUT)
A pointer to a handle to the environment.

mode (IN)
Specifies initialization of an environment mode. Valid modes are:

■ OCI_DEFAULT

■ OCI_NO_MUTEX

■ OCI_ENV_NO_UCB

In OCI_DEFAULT mode, the OCI library always mutexes handles. In OCI_NO_

MUTEX modes, there is no mutexing in this environment.

In OCI_NO_MUTEX mode, all OCI calls done on the environment handle, or on

handles derived from the environment handle, must be serialized. This can be done

by either doing your own mutexing or by having only one thread operating on the

environment handle.

The OCI_ENV_NO_UCB mode is used to suppress the calling of the dynamic

callback routine OCIEnvCallback at environment initialization time. The default

behavior is to allow such a call to be made. See "Dynamic Callback Registrations"

on page 9-15 for more information.

xtramemsz (IN)
Specifies the amount of user memory to be allocated for the duration of the

environment.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramemsz allocated by the call for the

user for the duration of the environment.

OCIEnvInit()

15-92 Oracle Call Interface Programmer’s Guide

Comments
Note: OCIEnvCreate() should be used instead of the OCIInitialize() and

OCIEnvInit() calls. OCIInitialize() and OCIEnvInit() calls will be supported for

backward compatibility.

This call allocates and initializes an OCI environment handle. No changes are done

to an already initialized handle. If OCI_ERROR or OCI_SUCCESS_WITH_INFO is

returned, the environment handle can be used to obtain ORACLE specific errors

and diagnostics.

This call is processed locally, without a server round-trip.

The environment handle can be freed using OCIHandleFree().

For more information about the xtramemsz parameter and user memory allocation,

refer to "User Memory Allocation" on page 2-13.

Related Functions
OCIHandleAlloc(), OCIHandleFree(), OCIEnvCreate(), OCITerminate()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-93

OCIInitialize()

Purpose
Initializes the OCI process environment.

Syntax
sword OCIInitialize (ub4 mode,
 CONST dvoid *ctxp,
 CONST dvoid *(*malocfp)
 (/* dvoid *ctxp,
 size_t size _*/),
 CONST dvoid *(*ralocfp)
 (/*_ dvoid *ctxp,
 dvoid *memptr,
 size_t newsize _*/),
 CONST void (*mfreefp)
 (/*_ dvoid *ctxp,
 dvoid *memptr _*/));

Parameters
mode (IN)
Specifies initialization of the mode. The valid modes are:

■ OCI_DEFAULT - default mode.

■ OCI_THREADED - threaded environment. In this mode, internal data

structures not exposed to the user are protected from concurrent accesses by

multiple threads.

■ OCI_OBJECT - will use object features.

■ OCI_SHARED - will utilize shared data structures.

■ OCI_EVENTS - will utilize publish-subscribe notifications.

ctxp (IN)
User defined context for the memory call back routines.

malocfp (IN)
User-defined memory allocation function. If mode is OCI_THREADED, this memory

allocation routine must be thread safe.

ctxp (IN/OUT)
Context pointer for the user-defined memory allocation function.

OCIInitialize()

15-94 Oracle Call Interface Programmer’s Guide

size (IN)
Size of memory to be allocated by the user-defined memory allocation function

ralocfp (IN)
User-defined memory re-allocation function. If mode is OCI_THREADED, this

memory allocation routine must be thread safe.

ctxp (IN/OUT)
Context pointer for the user-defined memory reallocation function.

memptr (IN/OUT)
Pointer to memory block

newsize (IN)
New size of memory to be allocated

mfreefp (IN)
User-defined memory free function. If mode is OCI_THREADED, this memory free

routine must be thread safe.

ctxp (IN/OUT)
Context pointer for the user-defined memory free function.

memptr (IN/OUT)
Pointer to memory to be freed

Comments
Note: OCIEnvCreate() should be used instead of the OCIInitialize() and

OCIEnvInit() calls. OCIInitialize() and OCIEnvInit() calls will be supported for

backward compatibility.

This call initializes the OCI process environment. OCIInitialize() must be invoked

before any other OCI call.

This function provides the ability for the application to define its own memory

management functions through callbacks. If the application has defined such

functions (i.e., memory allocation, memory re-allocation, memory free), they should

be registered using the callback parameters in this function.

These memory callbacks are optional. If the application passes NULL values for the

memory callbacks in this function, the default process memory allocation

mechanism is used.

Shared Data Structures Mode
When a SQL statement is processed, certain underlying data is associated with the

statement. This data includes information about statement text and bind data, as

well as define and describe information for queries. This data remains the same

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-95

from one execution of a statement to another, even if the statement is executed by

different users.

When an OCI application is initialized in OCI_SHARED mode, common statement

data is shared between multiple statement handles, thus providing memory savings

for the application. This savings may be particularly valuable for applications

which create multiple statement handles which execute the same SQL statement on

different users’ sessions, either on the same or multiple connections. For more

information, refer to "Shared Data Mode" on page 2-19.

See Also: For information about using the OCI to write multi-threaded

applications, refer to "Thread Safety" on page 8-14.

For information about OCI programming with objects, refer to Chapter 10, "OCI

Object-Relational Programming".

Example
The following statement shows an example of how to call OCIInitialize() in both

threaded and object mode, with no user-defined memory functions:

OCIInitialize((ub4) OCI_THREADED | OCI_OBJECT, (dvoid *)0,
(dvoid * (*)()) 0, (dvoid * (*)()) 0, (void (*)()) 0);

Related Functions
OCIHandleAlloc(), OCIHandleFree(), OCIEnvCreate(),OCIEnvInit(), OCITerminate()

OCILogoff()

15-96 Oracle Call Interface Programmer’s Guide

OCILogoff()

Purpose
This function is used to terminate a connection and session created with

OCILogon().

Syntax
sword OCILogoff (OCISvcCtx *svchp
 OCIError *errhp);

Parameters
svchp (IN)
The service context handle which was used in the call to OCILogon().

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

Comments
This call is used to terminate a session and connection which were created with

OCILogon(). This call implicitly deallocates the server, user session, and service

context handles.

Note: For more information on logging on and off in an application, refer to the

section "Application Initialization, Connection, and Session Creation" on

page 2-23.

Related Functions
OCILogon()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-97

OCILogon()

Purpose
This function is used to create a simple logon session.

Syntax
sword OCILogon (OCIEnv *envhp,
 OCIError *errhp,
 OCISvcCtx **svchp,
 CONST text *username,
 ub4 uname_len,
 CONST text *password,
 ub4 passwd_len,
 CONST text *dbname,
 ub4 dbname_len);

Parameters
envhp (IN)
The OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

svchp (IN/OUT)
The service context pointer.

username (IN)
The username.

uname_len (IN)
The length of username.

password (IN)
The user’s password.

passwd_len (IN)
The length of password.

dbname (IN)
The name of the database to connect to.

dbname_len (IN)
The length of dbname.

OCILogon()

15-98 Oracle Call Interface Programmer’s Guide

Comments
This function is used to create a simple logon session for an application.

Note: Users requiring more complex sessions, such as TP monitor applications,

should refer to the section "Application Initialization, Connection, and Session

Creation" on page 2-23.

This call allocates the service context handles that are passed to it. This call also

implicitly allocates server and user session handles associated with the session.

These handles can be retrieved by calling OCIAttrGet() on the service context

handle.

Related Functions
Statement Functions

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-99

OCIServerAttach()

Purpose
Creates an access path to a data source for OCI operations.

Syntax
sword OCIServerAttach (OCIServer *srvhp,
 OCIError *errhp,
 CONST text *dblink,
 sb4 dblink_len,
 ub4 mode);

Parameters
srvhp (IN/OUT)
An uninitialized server handle, which gets initialized by this call. Passing in an

initialized server handle causes an error.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

dblink (IN)
Specifies the database (server) to use. This parameter points to a character string

which specifies a connect string or a service point. If the connect string is NULL,

then this call attaches to the default host. The length of dblink is specified in dblink_
len. The dblink pointer may be freed by the caller on return.

dblink_len (IN)
The length of the string pointed to by dblink. For a valid connect string name or

alias, dblink_len must be non-zero.

mode (IN)
Specifies the various modes of operation. For release 8.0, pass as OCI_DEFAULT. In

this mode, calls made to the server on this server context are made in blocking

mode.

Comments
This call is used to create an association between an OCI application and a

particular server.

This call initializes a server context handle, which must have been previously

allocated with a call to OCIHandleAlloc(). The server context handle initialized by

this call can be associated with a service context through a call to OCIAttrSet(). Once

OCIServerAttach()

15-100 Oracle Call Interface Programmer’s Guide

that association has been made, OCI operations can be performed against the

server.

If an application is operating against multiple servers, multiple server context

handles can be maintained. OCI operations are performed against whichever server

context is currently associated with the service context.

When OCIServerAttach() is successfully completed, an Oracle shadow process is

started. OCISessionEnd() and OCIServerDetach() should be called to clean up the

Oracle shadow process. Otherwise, the shadow processes accumulate and cause the

Unix system to run out of processes. If the database is restarted and there are not

enough processes, the database may not startup.

Example
The following example demonstrates the use of OCIServerAttach(). This code

segment allocates the server handle, makes the attach call, allocates the service

context handle, and then sets the server context into it.

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4)
OCI_HTYPE_SERVER, 0, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4)

OCI_HTYPE_SVCCTX, 0, (dvoid **) &tmp);
/* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *) srvhp,

(ub4) 0, (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

Related Functions
OCIServerDetach()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-101

OCIServerDetach()

Purpose
Deletes an access to a data source for OCI operations.

Syntax
sword OCIServerDetach (OCIServer *srvhp,
 OCIError *errhp,
 ub4 mode);

Parameters
srvhp (IN)
A handle to an initialized server context, which gets reset to uninitialized state. The

handle is not de-allocated.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

mode (IN)
Specifies the various modes of operation. The only valid mode is OCI_DEFAULT

for the default mode.

Comments
This call deletes an access to data source for OCI operations, which was established

by a call to OCIServerAttach().

Related Functions
OCIServerAttach()

OCISessionBegin()

15-102 Oracle Call Interface Programmer’s Guide

OCISessionBegin()

Purpose
Creates a user session and begins a user session for a given server.

Syntax
sword OCISessionBegin (OCISvcCtx *svchp,
 OCIError *errhp,
 OCISession *usrhp,
 ub4 credt,
 ub4 mode);

Parameters
svchp (IN)
A handle to a service context. There must be a valid server handle set in svchp.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

usrhp (IN/OUT)
A handle to an user session context, which is initialized by this call.

credt (IN)
Specifies the type of credentials to use for establishing the user session. Valid values

for credt are:

■ OCI_CRED_RDBMS - authenticate using a database username and password

pair as credentials. The attributes OCI_ATTR_USERNAME and OCI_ATTR_

PASSWORD should be set on the user session context before this call.

■ OCI_CRED_EXT - authenticate using external credentials. No username or

password is provided.

mode (IN)
Specifies the various modes of operation. Valid modes are:

■ OCI_DEFAULT - in this mode, the user session context returned may only ever

be set with the same server context specified in svchp.

■ OCI_MIGRATE - in this mode, the new user session context may be set in a

service handle with a different server handle. This mode establishes the user

session context. To create a migratable session, the service handle must already

be set with a non-migratable user session. A migratable session must have a

non-migratable parent session.

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-103

■ OCI_SYSDBA - in this mode, the user is authenticated for SYSDBA access.

■ OCI_SYSOPER - in this mode, the user is authenticated for SYSOPER access.

■ OCI_PRELIM_AUTH - this mode may only be used with OCI_SYSDBA or

OCI_SYSOPER to authenticate for certain administration tasks.

Comments
The OCISessionBegin() call is used to authenticate a user against the server set in the

service context handle.

Note: Check for any errors returned when trying to start a session. For example, if

the password for the account has expired, an ORA-28001 error is returned.

For Oracle8i, OCISessionBegin() must be called for any given server handle before

requests can be made against it. Also, OCISessionBegin() only supports

authenticating the user for access to the Oracle server specified by the server handle

in the service context. In other words, after OCIServerAttach() is called to initialize a

server handle, OCISessionBegin() must be called to authenticate the user for that

given server.

When OCISessionBegin() is called for the first time for a given server handle, the

user session may not be created in migratable (OCI_MIGRATE) mode.

After OCISessionBegin() has been called for a server handle, the application may call

OCISessionBegin() again to initialize another user session handle with different (or

the same) credentials and different (or the same) operation modes. If an application

wants to authenticate a user in OCI_MIGRATE mode, the service handle must

already be associated with a non-migratable user handle. The user ID of that user

handle becomes the ownership ID of the migratable user session. Every migratable

session must have a non-migratable parent session.

If the OCI_MIGRATE mode is not specified, then the user session context can only

be used with the same server handle set in svchp. If OCI_MIGRATE mode is

specified, then the user authentication may be set with different server handles.

However, the user session context may only be used with server handles which

resolve to the same database instance. Security checking is done during session

switching. A process or circuit is allowed to switch to a migratable session only if

the ownership ID of the session matches the user ID of a non-migratable session

currently connected to that same process or circuit, unless it is the creator of the

session.

OCI_SYSDBA, OCI_SYSOPER, and OCI_PRELIM_AUTH may only be used with a

primary user session context.

OCISessionBegin()

15-104 Oracle Call Interface Programmer’s Guide

To provide credentials for a call to OCISessionBegin(), one of two methods are

supported. The first is to provide a valid username and password pair for database

authentication in the user session handle passed to OCISessionBegin(). This involves

using OCIAttrSet() to set the OCI_ATTR_USERNAME and OCI_ATTR_PASSWORD

attributes on the user session handle. Then OCISessionBegin() is called with OCI_

CRED_RDBMS.

Note: When the user session handle is terminated using OCISessionEnd(), the

username and password attributes remain unchanged and thus can be re-used

in a future call to OCISessionBegin(). Otherwise, they must be reset to new

values before the next OCISessionBegin() call.

The second type of credentials supported are external credentials. No attributes

need to be set on the user session handle before calling OCISessionBegin(). The

credential type is OCI_CRED_EXT. This is equivalent to the Oracle7 ’connect /’

syntax. If values have been set for OCI_ATTR_USERNAME and OCI_ATTR_

PASSWORD, then these are ignored if OCI_CRED_EXT is used.

Another way of setting credentials is to use the session Id of an already

authenticated user with the OCI_MIGSESSION attribute. This Id can be extracted

from the session handle of an authenticated user using the OCIAttrGet() call.

Example
The following example demonstrates the use of OCISessionBegin(). This code

segment allocates the user session handle, sets the username and password

attributes, calls OCISessionBegin(), and then sets the user session into the service

context.

/* allocate a user session handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4)

OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0);
OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"jessica",

(ub4)strlen("jessica"), OCI_ATTR_USERNAME, errhp);
OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"doogie",

(ub4)strlen("doogie"), OCI_ATTR_PASSWORD, errhp);
checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,

OCI_DEFAULT));
OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX, (dvoid *)usrhp,

(ub4)0, OCI_ATTR_SESSION, errhp);

Related Functions
OCISessionEnd()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-105

OCISessionEnd()

Purpose
Terminates a user session context created by OCISessionBegin()

Syntax
sword OCISessionEnd (OCISvcCtx *svchp,
 OCIError *errhp,
 OCISession *usrhp,
 ub4 mode);

Parameters
svchp (IN/OUT)
The service context handle. There must be a valid server handle and user session

handle associated with svchp.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

usrhp (IN)
De-authenticate this user. If this parameter is passed as NULL, the user in the

service context handle is de-authenticated.

mode (IN)
The only valid mode is OCI_DEFAULT.

Comments
The user security context associated with the service context is invalidated by this

call. Storage for the user session context is not freed. The transaction specified by

the service context is implicitly committed. The transaction handle, if explicitly

allocated, may be freed if not being used. Resources allocated on the server for this

user are freed. The user session handle may be reused in a new call to

OCISessionBegin().

Related Functions
OCISessionBegin()

OCITerminate()

15-106 Oracle Call Interface Programmer’s Guide

OCITerminate()

Purpose
Detaches the process from the shared memory subsystem.

Syntax
sword OCITerminate (ub4 mode);

Parameters
mode (IN)
Call-specific mode. Valid value:

■ OCI_DEFAULT - executes the default call

Comments
OCITerminate() should be called only once per process and is the counterpart of

OCIInitialize() call. The call will try to detach the process from the shared memory

subsystem and shut it down if no other process is attached to it. It also performs

additional process cleanup operations.

Related Functions
OCIInitialize()

LOB Functions

OCI Relational Functions 15-107

LOB Functions
This section describes the LOB functions.

Table 15–6 OCI Quick Reference

Function Purpose

OCIDurationBegin() on page 15-109 Start user duration for temporary LOB

OCIDurationEnd() on page 15-110 End user duration for temporary LOB

OCILobAppend() on page 15-111 Append one LOB to another

OCILobAssign() on page 15-112 Assign one LOB locator to another

OCILobCharSetForm() on page 15-114 Get character set form from LOB locator

OCILobCharSetId() on page 15-115 Get character set ID from LOB locator

OCILobClose() on page 15-116 Close a previously opened LOB

OCILobCopy() on page 15-117 Copy all or part of one LOB to another

OCILobCreateTemporary() on page 15-119 Create a temporary LOB

OCILobDisableBuffering() on page 15-121 Turn LOB buffering off

OCILobEnableBuffering() on page 15-122 Turn LOB buffering on

OCILobErase() on page 15-123 Erase a portion of a LOB

OCILobFileClose() on page 15-124 Close a previously opened FILE

OCILobFileCloseAll() on page 15-125 Close all previously opened files

OCILobFileExists() on page 15-126 Check if a file exists on the server

OCILobFileGetName() on page 15-127 Get directory alias and file NaMe from the LOB locator

OCILobFileIsOpen() on page 15-129 Check if file on server is open via this locator

OCILobFileOpen() on page 15-130 Open a FILE

OCILobFileSetName() on page 15-131 Set directory alias and file name in the LOB locator

OCILobFlushBuffer() on page 15-132 Flush the LOB buffer

OCILobFreeTemporary() on page 15-134 Free a temporary LOB

OCILobGetChunkSize() on page 15-135 Get the chunk size of a LOB

OCILobGetLength() on page 15-137 Get length of a LOB

OCILobIsEqual() on page 15-138 Compare two LOB locators for Equality

OCILobIsOpen() on page 15-139 Check to see if a LOB is open

LOB Functions

15-108 Oracle Call Interface Programmer’s Guide

Note the following for parameters in the OCI LOB calls:

■ For fixed-width client-side character sets, the offset and amount parameters are

always in characters for CLOBs and NCLOBs, and in bytes for BLOBs and

BFILEs.

■ For varying-width client-side character sets, these rules generally apply:

■ amount (amtp) parameter - When the amount parameter refers to the

server-side LOB, the amount is in characters. When the amount parameter

refers to the client-side buffer, the amount is in bytes. For more information,

see individual LOB calls, such as OCILobGetLength(), OCILobRead(), and

OCILobWrite().

■ offset (offset) parameter - Regardless of whether the client-side character set

is varying-width, the offset parameter is always in characters for CLOBs

and NCLOBs and in bytes for BLOBs and BFILEs.

■ For many of the LOB operations, regardless of the client-side character set, the

amount parameter is in characters for CLOBs and NCLOBs. These LOB

operations include OCILobCopy(), OCILobErase(), OCILobGetLength(),

OCILobLoadFromFile(), and OCILobTrim(). All these operations refer to the

amount of LOB data on the server.

OCILobIsTemporary() on page 15-141 Determine if a given LOB is a temporary LOB

OCILobLoadFromFile() on page 15-142 Load a LOB from a FILE

OCILobLocatorAssign() on page 15-144 Assigns one LOB locator to another

OCILobLocatorIsInit() on page 15-146 Check to see if a LOB locator is initialized

OCILobOpen() on page 15-147 Open a LOB

OCILobRead() on page 15-148 Read a portion of a LOB

OCILobTrim() on page 15-152 Truncate a LOB

OCILobWrite() on page 15-153 Write into a LOB

OCILobWriteAppend() on page 15-157 Write data beginning at the end of a LOB

Table 15–6 OCI Quick Reference (Cont.)

Function Purpose

LOB Functions

OCI Relational Functions 15-109

OCIDurationBegin()

Purpose
Begin of a user duration

Syntax
sword OCIDurationBegin (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCIDuration parent,
 OCIDuration *duration);

Parameters
env (IN/OUT)
Pass as a NULL pointer.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

svc (IN)
An OCI service context handle. Must be non-NULL.

parent (IN)
The duration number of the parent duration.

duration (OUT)
An identifier unique to the newly created user duration.

Comments
This function starts an user duration. In Release 8.1, user durations can be used

when creating temporary LOBs. An user can have multiple active user durations

simultaneously. The user durations do not have to be nested. The dur parameter is

used to return a number which uniquely identifies the duration created by this call.

For more information about user durations, see the section "Temporary LOB

Durations" on page 7-18.

Related Functions
OCIDurationEnd()

OCIDurationEnd()

15-110 Oracle Call Interface Programmer’s Guide

OCIDurationEnd()

Purpose
Terminates a user duration

Syntax
sword OCIDurationEnd (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCIDuration duration);

Parameters
env (IN/OUT)
Pass as a NULL pointer.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

svc (IN)
OCI service context handle. Must be non-NULL.

duration (IN)
A number to identify the user duration.

Comments
This function terminates an user duration. Temporary LOBs that are allocated for

the user duration are freed.

For more information about user durations, see the section "Temporary LOB

Durations" on page 7-18.

Related Functions
OCIDurationBegin()

LOB Functions

OCI Relational Functions 15-111

OCILobAppend()

Purpose
Appends a LOB value at the end of another LOB as specified.

Syntax
sword OCILobAppend (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

dst_locp (IN/OUT)
An internal LOB locator uniquely referencing the destination LOB. This locator

must be a locator that was obtained from the server specified by svchp.

src_locp (IN)
An internal LOB locator uniquely referencing the source LOB. This locator must be

a locator that was obtained from the server specified by svchp.

Comments
Appends a LOB value at the end of another LOB as specified. The data is copied

from the source to the end of the destination. The source and destination LOBs must

already exist. The destination LOB is extended to accommodate the newly written

data. It is an error to extend the destination LOB beyond the maximum length

allowed (4 gigabytes) or to try to copy from a NULL LOB.

The source and the destination LOB locators must be of the same type (i.e., they

must both be BLOBs or both be CLOBs). LOB buffering must not be enabled for

either type of locator. This function does not accept a FILE locator as the source or

the destination.

Related Functions
OCILobTrim(), OCILobWrite(), OCILobCopy(), OCIErrorGet(), OCILobWriteAppend()

OCILobAssign()

15-112 Oracle Call Interface Programmer’s Guide

OCILobAssign()

Purpose
Assigns one LOB/FILE locator to another.

Syntax
sword OCILobAssign (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *src_locp,
 OCILobLocator **dst_locpp);

Parameters
envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

src_locp (IN)
LOB/FILE locator to copy from.

dst_locpp (IN/OUT)
LOB/FILE locator to copy to. The caller must have allocated space for the

destination locator by calling OCIDescriptorAlloc().

Comments
Assign source locator to destination locator. After the assignment, both locators refer

to the same LOB value. For internal LOBs, the source locator's LOB value gets

copied to the destination locator's LOB value only when the destination locator gets

stored in the table. Therefore, issuing a flush of the object containing the destination
locator will copy the LOB value.

OCILobAssign() cannot be used for temporary LOBs; it will generate an OCI_

INVALID_HANDLE error. For temporary LOBs, use OCILobLocatorAssign().

For FILEs, only the locator that refers to the file is copied to the table. The OS file

itself is not copied.

It is an error to assign a FILE locator to an internal LOB locator, and vice versa.

If the source locator is for an internal LOB that was enabled for buffering, and the

source locator has been used to modify the LOB data through the LOB buffering

subsystem, and the buffers have not been flushed since the write, then the source

LOB Functions

OCI Relational Functions 15-113

locator may not be assigned to the destination locator. This is because only one

locator per LOB may modify the LOB data through the LOB buffering subsystem.

The value of the input destination locator must have already been allocated with a

call to OCIDescriptorAlloc(). For example, assume the following declarations:

OCILobLocator *source_loc = (OCILobLocator *) 0;
OCILobLocator *dest_loc = (OCILobLocator *) 0;

An application could allocate the source_loc locator as follows:

if (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &source_loc,
(ub4) OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0))
handle_error;

Assume that it then selects a LOB from a table into the source_loc in order to

initialize it. The application must allocate the destination locator, dest_loc , before

issuing the OCILobAssign() call to assign the value of source_loc to dest_loc .

For example:

if (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &dest_loc,
(ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0))
handle_error;

if (OCILobAssign(envhp, errhp, source_loc, &dest_loc))
handle_error;

Related Functions
OCIErrorGet(), OCILobIsEqual(), OCILobLocatorAssign(), OCILobLocatorIsInit(),
OCILobEnableBuffering()

OCILobCharSetForm()

15-114 Oracle Call Interface Programmer’s Guide

OCILobCharSetForm()

Purpose
Gets the LOB locator’s character set form, if any.

Syntax
sword OCILobCharSetForm (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *locp,
 ub1 *csfrm);

Parameters
envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN)
LOB locator for which to get the character set form.

csfrm (OUT)
Character set form of the input LOB locator. If the input locator is for a BLOB or a

BFILE, csfrm is set to 0 since there is no concept of a character set for binary

LOBs/FILEs. The caller must allocate space for the csfrm ub1.

Comments
Returns the character set form of the input LOB locator in the csfrm output

parameter. This function makes sense only for character LOBs (i.e., CLOBs and

NCLOBs).

Related Functions
OCIErrorGet(), OCILobCharSetId(), OCILobLocatorIsInit()

LOB Functions

OCI Relational Functions 15-115

OCILobCharSetId()

Purpose
Gets the LOB locator’s character set ID, if any.

Syntax
sword OCILobCharSetId (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *locp,
 ub2 *csid);

Parameters
envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN)
LOB locator for which to get the character set ID.

csid (OUT)
Character set ID of the input LOB locator. If the input locator is for a BLOB or a

BFILE, csid is set to 0 since there is no concept of a character set for binary

LOBs/FILEs. The caller must allocate space for the csid ub2.

Comments
Returns the character set ID of the input LOB locator in the csid output parameter.

This function makes sense only for character LOBs (i.e., CLOBs, NCLOBs).

Related Functions
OCIErrorGet(), OCILobCharSetForm(), OCILobLocatorIsInit()

OCILobClose()

15-116 Oracle Call Interface Programmer’s Guide

OCILobClose()

Purpose
Closes a previously opened LOB or FILE.

Syntax
sword OCILobClose (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN/OUT)
The LOB to close. The locator can refer to an internal or external LOB.

Comments
Closes a previously opened internal or external LOB. No error is returned if the

BFILE exists but is not opened. An error is returned if the internal LOB is not open.

Closing a LOB requires a round-trip to the server for both internal and external

LOBs. For internal LOBs, close will trigger other code that relies on the close call

and for external LOBs (BFILEs), close actually closes the server-side operating

system file.

See Also: Refer to "Functions for Opening and Closing LOBs" on page 7-11 for

more information.

Related Functions
OCIErrorGet(), OCILobOpen(), OCILobIsOpen()

LOB Functions

OCI Relational Functions 15-117

OCILobCopy()

Purpose
Copies all or a portion of a LOB value into another LOB value

Syntax
sword OCILobCopy (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp,
 ub4 amount,
 ub4 dst_offset,
 ub4 src_offset);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

dst_locp (IN/OUT)
An internal LOB locator uniquely referencing the destination LOB. This locator

must be a locator that was obtained from the server specified by svchp.

src_locp (IN)
An internal LOB locator uniquely referencing the source LOB. This locator must be

a locator that was obtained from the server specified by svchp.

amount (IN)
The number of characters for CLOBs/NCLOBs or bytes for BLOBs to be copied

from the source LOB to the destination LOB.

dst_offset (IN)
This is the absolute offset for the destination LOB. For character LOBs it is the

number of characters from the beginning of the LOB at which to begin writing. For

binary LOBs it is the number of bytes from the beginning of the LOB from which to

begin writing. The offset starts at 1.

src_offset (IN)
This is the absolute offset for the source LOB. For character LOBs it is the number of

characters from the beginning of the LOB, for binary LOBs it is the number of bytes.

Starts at 1.

OCILobCopy()

15-118 Oracle Call Interface Programmer’s Guide

Comments
Copies all or a portion of an internal LOB value into another internal LOB as

specified. The data is copied from the source to the destination. The source (src_locp)
and the destination (dst_locp) LOBs must already exist.

If the data already exists at the destination’s start position, it is overwritten with the

source data. If the destination’s start position is beyond the end of the current data,

zero-byte fillers (for BLOBs) or spaces (for CLOBs) are written into the destination

LOB from the end of the current data to the beginning of the newly written data

from the source. The destination LOB is extended to accommodate the newly

written data if it extends beyond the current length of the destination LOB. It is an

error to extend the destination LOB beyond the maximum length allowed (i.e., 4

gigabytes) or to try to copy from a NULL LOB.

Both the source and the destination LOB locators must be of the same type (i.e., they

must both be BLOBs or both be CLOBs). LOB buffering must not be enabled for

either locator.

This function does not accept a FILE locator as the source or the destination.

Note: You can call OCILobGetLength() to determine the length of the source

LOB.

Related Functions
OCIErrorGet(), OCILobRead(), OCILobAppend(), OCILobCopy(), OCILobWrite(),
OCILobWriteAppend()

LOB Functions

OCI Relational Functions 15-119

OCILobCreateTemporary()

Purpose
Create a temporary LOB

Syntax
sword OCILobCreateTemporary(OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub2 csid,
 ub1 csfrm,
 ub1 lobtype,
 boolean cache,
 OCIDuration duration);

Parameters
svchp (IN)
The OCI service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN/OUT)
A locator which points to the temporary LOB. You must allocate the locator using

OCIDescriptorAlloc() before passing it to this function. It does not matter whether or

not this locator already points to a LOB, it will get overwritten either way.

csid (IN)
The LOB character set ID. For Oracle8i, pass as OCI_DEFAULT.

csfrm (IN)
The LOB character set form of the buffer data. For Oracle8i, pass as OCI_DEFAULT.

lobtype (IN)
The type of LOB to create. Valid values include:

■ OCI_TEMP_BLOB - for a temporary BLOB

■ OCI_TEMP_CLOB - for a temporary CLOB

■ OCI_TEMP_NCLOB - for a temporary NCLOB

OCILobCreateTemporary()

15-120 Oracle Call Interface Programmer’s Guide

cache (IN)
Pass TRUE if the temporary LOB should be read into the cache; FALSE, if it should

not. The default is FALSE for NOCACHE functionality.

duration (IN)
The duration of the temporary LOB. The following are valid values:

■ OCI_DURATION_SESSION

■ OCI_DURATION_CALL

Comments
This function creates a temporary LOB and its corresponding index in the user’s

temporary tablespace.

When this function is complete, the locp parameter points to an empty temporary

LOB whose length is zero.

The lifetime of the temporary LOB is determined by the duration parameter. At the

end of its duration the temporary LOB is freed. An application can free a temporary

LOB sooner with the OCILobFreeTemporary() call.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

For more information about temporary LOBs and their durations, refer to

"Temporary LOB Support" on page 7-17.

Related functions
OCILobFreeTemporary(), OCILobIsTemporary(), OCIDescriptorAlloc(), OCIErrorGet()

LOB Functions

OCI Relational Functions 15-121

OCILobDisableBuffering()

Purpose
Disable LOB buffering for the input locator.

Syntax
sword OCILobDisableBuffering (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN/OUT)
An internal LOB locator uniquely referencing the LOB.

Comments
Disables LOB buffering for the input internal LOB locator. The next time data is

read from or written to the LOB through the input locator, the LOB buffering

subsystem is not used. Note that this call does not implicitly flush the changes made

in the buffering subsystem. The user must explicitly call OCILobFlushBuffer() to do

this.

This function does not accept a FILE locator.

Related Functions
OCILobEnableBuffering(), OCIErrorGet(), OCILobFlushBuffer()

OCILobEnableBuffering()

15-122 Oracle Call Interface Programmer’s Guide

OCILobEnableBuffering()

Purpose
Enable LOB buffering for the input locator.

Syntax
sword OCILobEnableBuffering (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN/OUT)
An internal LOB locator uniquely referencing the LOB.

Comments
Enables LOB buffering for the input internal LOB locator. The next time data is read

from or written to the LOB through the input locator, the LOB buffering subsystem

is used.

If LOB buffering is enabled for a locator and that locator is passed to one of the

following routines, an error is returned: OCILobAppend(), OCILobCopy(),
OCILobErase(), OCILobGetLength(), OCILobLoadFromFile(), OCILobTrim(), or

OCILobWriteAppend().

This function does not accept a FILE locator.

Related Functions
OCILobDisableBuffering(), OCIErrorGet(), OCILobWrite(), OCILobRead(),
OCILobFlushBuffer(), OCILobWriteAppend()

LOB Functions

OCI Relational Functions 15-123

OCILobErase()

Purpose
Erases a specified portion of the internal LOB data starting at a specified offset.

Syntax
sword OCILobErase (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amount,
 ub4 offset);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must be a

locator that was obtained from the server specified by svchp.

amount (IN/OUT)
The number of characters for CLOBs/NCLOBs or bytes for BLOBs to erase. On IN,

the value signifies the number of characters or bytes to erase. On OUT, the value

identifies the actual number of characters or bytes erased.

offset (IN)
Absolute offset in characters for CLOBs/NCLOBs or bytes for BLOBs from the

beginning of the LOB value from which to start erasing data. Starts at 1.

Comments
The actual number of characters/bytes erased is returned. For BLOBs, erasing

means that zero-byte fillers overwrite the existing LOB value. For CLOBs, erasing

means that spaces overwrite the existing LOB value.

This function is valid only for internal LOBs; FILEs are not allowed.

Related Functions
OCIErrorGet(), OCILobRead(), OCILobAppend(), OCILobCopy(), OCILobWrite(),
OCILobWriteAppend()

OCILobFileClose()

15-124 Oracle Call Interface Programmer’s Guide

OCILobFileClose()

Purpose
Closes a previously opened FILE.

Syntax
sword OCILobFileClose (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

filep (IN/OUT)
A pointer to a FILE locator that refers to the FILE to be closed.

Comments
Closes a previously opened FILE. It is an error if this function is called for an

internal LOB. No error is returned if the FILE exists but is not opened.

This function is only meaningful the first time it is called for a particular FILE

locator. Subsequent calls to this function using the same FILE locator have no effect.

See Also: For more information about FILEs, refer to the description of BFILEs

in the Oracle8i Application Developer’s Guide - Large Objects (LOBs).

Related Functions
OCIErrorGet(), OCILobClose(), OCILobFileCloseAll(), OCILobFileExists(),
OCILobFileIsOpen(), OCILobFileOpen(), OCILobOpen(), OCILobIsOpen()

LOB Functions

OCI Relational Functions 15-125

OCILobFileCloseAll()

Purpose
Closes all open FILEs on a given service context.

Syntax
sword OCILobFileCLoseAll (OCISvcCtx *svchp,
 OCIError *errhp);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

Comments
Closes all open FILEs on a given service context. It is an error to call this function

for an internal LOB.

See Also: For more information about FILEs, refer to the description of BFILEs

in the Oracle8i Application Developer’s Guide - Large Objects (LOBs).

Related Functions
OCILobFileClose(), OCIErrorGet(), OCILobFileExists(), OCILobFileIsOpen()

OCILobFileExists()

15-126 Oracle Call Interface Programmer’s Guide

OCILobFileExists()

Purpose
Tests to see if the FILE exists on the server’s operating system.

Syntax
sword OCILobFileExists (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep,
 boolean *flag);

Parameters
svchp (IN)
The OCI service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

filep (IN)
Pointer to the FILE locator that refers to the file.

flag (OUT)
Returns TRUE if the FILE exists on the server; FALSE if it does not.

Comments
Checks to see if the FILE exists on the server’s file system. It is an error to call this

function for an internal LOB.

See Also: For more information about FILEs, refer to the description of BFILEs

in the Oracle8i Application Developer’s Guide - Large Objects (LOBs).

Related Functions
OCIErrorGet(), OCILobFileClose(), OCILobFileCloseAll(), OCILobFileIsOpen(),
OCILobOpen(), OCILobIsOpen()

LOB Functions

OCI Relational Functions 15-127

OCILobFileGetName()

Purpose
Gets the FILE locator’s directory alias and file name.

Syntax
sword OCILobFileGetName (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *filep,
 text *dir_alias,
 ub2 *d_length,
 text *filename,
 ub2 *f_length);

Parameters
envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

filep (IN)
FILE locator for which to get the directory alias and file name.

dir_alias (OUT)
Buffer into which the directory alias name is placed. The caller must allocate

enough space for the directory alias name. The maximum length for the directory

alias is 30 bytes.

d_length (IN/OUT)
Serves the following purposes

■ IN: length of the input dir_alias string

■ OUT: length of the returned dir_alias string

filename (OUT)
Buffer into which the file name is placed. The caller must allocate enough space for

the file name. The maximum length for the file name is 255 bytes.

f_length (IN/OUT)
Serves the following purposes

■ IN: length of the input filename buffer

OCILobFileGetName()

15-128 Oracle Call Interface Programmer’s Guide

■ OUT: length of the returned filename string

Comments
Returns the directory alias and file name associated with this FILE locator. It is an

error to call this function for an internal LOB.

See Also: For more information about FILEs, refer to the description of BFILEs

in the Oracle8i Application Developer’s Guide - Large Objects (LOBs).

Related Functions
OCILobFileSetName(), OCIErrorGet()

LOB Functions

OCI Relational Functions 15-129

OCILobFileIsOpen()

Purpose
Tests to see if the FILE is open

Syntax
sword OCILobFileIsOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep,
 boolean *flag);

Parameters
svchp (IN)
The OCI service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

filep (IN)
Pointer to the FILE locator being examined.

flag (OUT)
Returns TRUE if the FILE was opened using this particular locator; FALSE if it was

not.

Comments
Checks to see if a file on the server was opened with the filep FILE locator. It is an

error to call this function for an internal LOB.

If the input FILE locator was never passed to the OCILobFileOpen() or OCILobOpen()
command, the file is considered not to be opened by this locator. However, a

different locator may have the file open. Openness is associated with a particular

locator.

See Also: For more information about FILEs, refer to the description of BFILEs

in the Oracle8i Application Developer’s Guide - Large Objects (LOBs).

Related Functions
OCIErrorGet(), OCILobClose(), OCILobFileCloseAll(), OCILobFileExists(),
OCILobFileClose(), OCILobFileOpen(), OCILobOpen(), OCILobIsOpen()

OCILobFileOpen()

15-130 Oracle Call Interface Programmer’s Guide

 OCILobFileOpen()

Purpose
Opens a FILE on the file system of the server for read-only access.

Syntax
sword OCILobFileOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep,
 ub1 mode);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

filep (IN/OUT)
The FILE to open. It is an error if the locator does not refer to a FILE.

mode (IN)
Mode in which to open the file. The only valid mode is OCI_FILE_READONLY.

Comments
Opens a FILE on the file system of the server. The FILE can be opened for read-only

access. FILEs may not be written through Oracle. It is an error to call this function

for an internal LOB.

This function is only meaningful the first time it is called for a particular FILE

locator. Subsequent calls to this function using the same FILE locator have no effect.

See Also: For more information about FILEs, refer to the description of BFILEs

in the Oracle8i Application Developer’s Guide - Large Objects (LOBs).

Related Functions
OCIErrorGet(), OCILobClose(), OCILobFileCloseAll(), OCILobFileExists(),
OCILobFileClose(), OCILobFileIsOpen(), OCILobOpen(), OCILobIsOpen()

LOB Functions

OCI Relational Functions 15-131

OCILobFileSetName()

Purpose
Sets the directory alias and file name in the FILE locator.

Syntax
sword OCILobFileSetName (OCIEnv *envhp,
 OCIError *errhp,
 OCILobLocator **filepp,
 CONST text *dir_alias,
 ub2 d_length,
 CONST text *filename,
 ub2 f_length);

Parameters
envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

filepp (IN/OUT)
FILE locator for which to set the directory alias and file name.

dir_alias (IN)
Buffer that contains the directory alias name to set in the FILE locator.

d_length (IN)
Length of the input dir_alias parameter.

filename (IN)
Buffer that contains the file name to set in the FILE locator.

f_length (IN)
Length of the input filename parameter.

Comments
It is an error to call this function for an internal LOB.

See Also: For more information about FILEs, refer to the description of BFILEs

in the Oracle8i Application Developer’s Guide - Large Objects (LOBs).

Related Functions
OCILobFileGetName(), OCIErrorGet()

OCILobFlushBuffer()

15-132 Oracle Call Interface Programmer’s Guide

OCILobFlushBuffer()

Purpose
Flush/write all buffers for this lob to the server.

Syntax
sword OCILobFlushBuffer (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp
 ub4 flag);

Parameters
svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN/OUT)
An internal locator uniquely referencing the LOB.

flag (IN)
When set to OCI_LOB_BUFFER_FREE, the buffer resources for the LOB are freed

after the flush. See comments below.

Comments
Flushes to the server, changes made to the buffering subsystem that are associated

with the LOB referenced by the input locator. This routine will actually write the

data in the buffer to the LOB in the database. LOB buffering must have already been

enabled for the input LOB locator.

The flush operation, by default, does not free the buffer resources for reallocation to

another buffered LOB operation. However, if you want to free the buffer explicitly,

you can set the flag parameter to OCI_LOB_BUFFER_FREE.

If the client application intends to read the buffer value after the flush and knows in

advance that the current value in the buffer is the desired value, there is no need to

reread the data from the server.

The effects of freeing the buffer are mostly transparent to the user, except that the

next access to the same range in the LOB involves a round-trip to the server, and

also the cost of acquiring buffer resources and initializing it with the data read from

LOB Functions

OCI Relational Functions 15-133

the LOB. This option is intended for client environments that have low on-board

memory.

Related Functions
OCILobEnableBuffering(), OCIErrorGet(), OCILobWrite(), OCILobRead(),
OCILobDisableBuffering(), OCILobWriteAppend()

OCILobFreeTemporary()

15-134 Oracle Call Interface Programmer’s Guide

OCILobFreeTemporary()

Purpose
Free a temporary LOB

Syntax
sword OCILobFreeTemporary(OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp);

Parameters
svchp (IN/OUT)
The OCI service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN/OUT)
A locator uniquely referencing the LOB to be freed.

Comments
This function frees the contents of the temporary LOB to which this locator points.

Note that the locator itself is not freed until OCIDescriptorFree() is called.

This function returns an error if the LOB locator passed in the locp parameter does

not point to a temporary LOB, which might be due to any of the following:

■ It points to a permanent LOB

■ It pointed to a temporary LOB which has already been freed

■ It has never pointed to anything

Related functions
OCILobCreateTemporary(), OCILobIsTemporary(), OCIErrorGet()

LOB Functions

OCI Relational Functions 15-135

OCILobGetChunkSize()

Purpose
Gets the chunk size of a LOB.

Syntax
sword OCILobGetChunkSize (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *chunk_size);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN/OUT)
The internal LOB for which to get the usable chunk size.

chunk_size (OUT)
The amount of a chunk’s space that is used to store the internal LOB value. This is

the amount that users should use when reading/writing the LOB value. If possible,

users should start their writes at chunk boundaries, such as the beginning of a

chunk, and write a chunk at a time.

chunk_size will be returned in terms of bytes for BLOBs and in terms of characters

for CLOBs and NCLOBs. For varying width character sets, the value will be the

number of Unicode characters that fit in a chunk.

Comments
When creating a table that contains an internal LOB, the user can specify the

chunking factor, which can be a multiple of Oracle blocks. This corresponds to the

chunk size used by the LOB data layer when accessing/modifying the LOB value.

Part of the chunk is used to store system-related information and the rest stores the

LOB value. This function returns the amount of space used in the LOB chunk to

store the LOB value. Performance will be improved if the application issues

read/write requests using a multiple of this chunk size. For writes, there is an

added benefit since LOB chunks are versioned and, if all writes are done on a chunk

basis, no extra/excess versioning is done nor duplicated. Users could batch up the

OCILobGetChunkSize()

15-136 Oracle Call Interface Programmer’s Guide

write until they have enough for a chunk instead of issuing several write calls for

the same chunk.

See Also: Refer to "Functions for Improving LOB Read/Write Performance" on

page 7-10 for more information.

Related Functions
OCIErrorGet(), OCILobRead(), OCILobAppend(), OCILobCopy(), OCILobWrite(),
OCILobWriteAppend()

LOB Functions

OCI Relational Functions 15-137

OCILobGetLength()

Purpose
Gets the length of a LOB.

Syntax
sword OCILobGetLength (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *lenp);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN)
A LOB locator that uniquely references the LOB. For internal LOBs, this locator

must be a locator that was obtained from the server specified by svchp. For FILEs,

the locator can be set via OCILobFileSetName(), via a SELECT statement, or via

OCIObjectPin.

lenp (OUT)
On output, it is the length of the LOB if the LOB is not NULL. For character LOBs, it

is the number of characters, for binary LOBs and BFILEs it is the number of bytes in

the LOB.

Comments
Gets the length of a LOB. If the LOB is NULL, the length is undefined. The length of

a FILE includes the EOF, if it exists. The length of an empty internal LOB is zero.

Regardless of whether the client-side character set is varying-width, the output

length is in characters for CLOBs and NCLOBs, and in bytes for BLOBs and BFILEs.

Note: Any zero-byte or space fillers in the LOB written by previous calls to

OCILobErase() or OCILobWrite() are also included in the length count.

Related Functions
OCIErrorGet(), OCILobFileSetName(), OCILobRead(), OCILobWrite(), OCILobCopy(),
OCILobAppend(), OCILobLoadFromFile(), OCILobWriteAppend()

OCILobIsEqual()

15-138 Oracle Call Interface Programmer’s Guide

OCILobIsEqual()

Purpose
Compares two LOB/FILE locators for equality.

Syntax
sword OCILobIsEqual (OCIEnv *envhp,
 CONST OCILobLocator *x,
 CONST OCILobLocator *y,
 boolean *is_equal);

Parameters
envhp (IN)
The OCI environment handle.

x (IN)
LOB locator to compare.

y (IN)
LOB locator to compare.

is_equal (OUT)
TRUE, if the LOB locators are equal; FALSE if they are not.

Comments
Compares the given LOB/FILE locators for equality. Two LOB/FILE locators are

equal if and only if they both refer to the same LOB/FILE value.

Two NULL locators are considered not equal by this function.

Related Functions
OCILobAssign(), OCILobLocatorIsInit()

LOB Functions

OCI Relational Functions 15-139

OCILobIsOpen()

Purpose
Tests whether a LOB/FILE is open.

Syntax
sword OCILobIsOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 boolean *flag);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in

the event of an error.

locp (IN)
Pointer to the LOB locator being examined. The locator can refer to an internal or

external LOB.

flag (OUT)
Returns TRUE if the internal LOB is open or if the BFILE was opened using the

input locator. Returns FALSE if it was not.

Comments
Checks to see if the internal LOB is open or if the BFILE was already opened using

the input locator.

For BFILES
If the input BFILE locator was never passed to OCILobOpen() or OCILobFileOpen(),
the BFILE is considered not to be opened by this BFILE locator. However, a different

BFILE locator may have opened the BFILE. More than one open can be performed

on the same BFILE using different locators. In other words, openness is associated

with a specific locator for BFILEs.

For internal LOBs
Openness is associated with the LOB, not with the locator. If locator1 opened the

LOB then locator2 also sees the LOB as open.

For internal LOBs, this call requires a server round-trip because it checks the state

on the server to see if the LOB is indeed open. For external LOBs (BFILEs), this call

OCILobIsOpen()

15-140 Oracle Call Interface Programmer’s Guide

also requires a round-trip because the actual operating system file on the server side

must be checked to see if it is actually open.

See Also: Refer to "Functions for Opening and Closing LOBs" on page 7-11 for

more information.

Related Functions
OCIErrorGet(), OCILobClose(), OCILobFileCloseAll(), OCILobFileExists(),
OCILobFileClose(), OCILobFileIsOpen(), OCILobFileOpen(), OCILobOpen()

LOB Functions

OCI Relational Functions 15-141

OCILobIsTemporary()

Purpose
 Tests if a locator points to a temporary LOB

Syntax
sword OCILobIsTemporary(OCIEnv *envhp,
 OCIError *errhp,
 OCILobLocator *locp,
 boolean *is_temporary);

Parameters
envhp (IN)
The OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN)
The locator to test.

is_temporary (OUT)
Returns TRUE if the LOB locator points to a temporary LOB; FALSE if it does not.

Comments
This function tests a locator to determine if it points to a temporary LOB. If so, is_
temporary is set to TRUE. If not, is_temporary is set to FALSE.

Related Functions
OCILobCreateTemporary(), OCILobFreeTemporary()

OCILobLoadFromFile()

15-142 Oracle Call Interface Programmer’s Guide

OCILobLoadFromFile()

Purpose
Load/copy all or a portion of the file into an internal LOB.

Syntax
sword OCILobLoadFromFile (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp,
 ub4 amount,
 ub4 dst_offset,
 ub4 src_offset);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

dst_locp (IN/OUT)
A locator uniquely referencing the destination internal LOB which may be of type

BLOB, CLOB, or NCLOB.

src_locp (IN/OUT)
A locator uniquely referencing the source FILE.

amount (IN)
The number of bytes to be loaded.

dst_offset (IN)
This is the absolute offset for the destination LOB. For character LOBs it is the

number of characters from the beginning of the LOB at which to begin writing. For

binary LOBs it is the number of bytes from the beginning of the LOB from which to

begin reading. The offset starts at 1.

src_offset (IN)
This is the absolute offset for the source FILE. It is the number of bytes from the

beginning of the FILE. The offset starts at 1.

LOB Functions

OCI Relational Functions 15-143

Comments
Loads/copies a portion or all of a FILE value into an internal LOB as specified. The

data is copied from the source FILE to the destination internal LOB (BLOB/CLOB).

No character set conversions are performed when copying the FILE data to a

CLOB/NCLOB. Also, when binary data is loaded into a BLOB, no character set

conversions are performed. Therefore, the FILE data must already be in the same

character set as the LOB in the database. No error checking is performed to verify

this.

The source (src_locp) and the destination (dst_locp) LOBs must already exist. If the

data already exists at the destination's start position, it is overwritten with the

source data. If the destination's start position is beyond the end of the current data,

zero-byte fillers (for BLOBs) or spaces (for CLOBs) are written into the destination

LOB from the end of the data to the beginning of the newly written data from the

source. The destination LOB is extended to accommodate the newly written data if

it extends beyond the current length of the destination LOB.

It is an error to extend the destination LOB beyond the maximum length allowed (4

gigabytes) or to try to copy from a NULL FILE.

Related Functions
OCIErrorGet(), OCILobAppend(), OCILobWrite(), OCILobTrim(), OCILobCopy(),
OCILobGetLength(), OCILobWriteAppend()

OCILobLocatorAssign()

15-144 Oracle Call Interface Programmer’s Guide

OCILobLocatorAssign()

Purpose
Assigns one LOB/FILE locator to another.

Syntax
sword OCILobLocatorAssign (OCISvcCtx *svchp,
 OCIError *errhp,
 CONST OCILobLocator *src_locp,
 OCILobLocator **dst_locpp);

Parameters
svchp (IN/OUT)
The OCI service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

src_locp (IN)
The LOB/BFILE locator to copy from.

dst_locpp (IN/OUT)
The LOB/FILE locator to copy to. The caller must allocate space for the

OCILobLocator by calling OCIDescriptorAlloc().

Comments
This call assigns the source locator to the destination locator. After the assignment,

both locators refer to the same LOB data. For internal LOBs, the source locator’s

LOB data gets copied to the destination locator’s LOB data only when the

destination locator gets stored in the table. Therefore, issuing a flush of the object

containing the destination locator copies the LOB data. For FILEs only the locator

that refers to the OS file is copied to the table; the OS file is not copied.

Note that this call is similar to OCILobAssign() but OCILobLocatorAssign() takes an

OCI service handle pointer instead of an OCI environment handle pointer. Also,

OCILobLocatorAssign() can be used for temporary LOBs and OCILobAssign() cannot

be used for temporary LOBs.

Note: If the OCILobLocatorAssign() function fails, the target locator will not be

restored to its previous state. The target locator should not be used in

subsequent operations unless it is reinitialized.

LOB Functions

OCI Relational Functions 15-145

If the destination locator is for a temporary LOB, the destination temporary LOB is

freed before assigning the source LOB locator to it. If the source LOB locator refers

to a temporary LOB, the source temporary LOB is deep copied and a destination

locator is created to refer to the new deep copy of the temporary LOB. To avoid this

deep copy, the user should use the equal sign to ensure that two LOB locator

pointers refer to the same LOB locator.

Related Functions
OCIErrorGet(), OCILobAssign(), OCILobIsEqual(), OCILobLocatorIsInit()

OCILobLocatorIsInit()

15-146 Oracle Call Interface Programmer’s Guide

OCILobLocatorIsInit()

Purpose
Tests to see if a given LOB/FILE locator is initialized.

Syntax
sword OCILobLocatorIsInit (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *locp,
 boolean *is_initialized);

Parameters
envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN)
The LOB/FILE locator being tested

is_initialized (OUT)
Returns TRUE if the given LOB/FILE locator is initialized; FALSE if it is not.

Comments
Tests to see if a given LOB/FILE locator is initialized.

Internal LOB locators can be initialized by one of the following methods:

■ SELECTing a non-NULL LOB into the locator,

■ pinning an object that contains a non-NULL LOB attribute via OCIObjectPin()

■ setting the locator to empty via OCIAttrSet() (see "LOB Locator Attributes" on

page A-25 for more information.)

FILE locators can be initialized by one of the following methods:

■ SELECTing a non-NULL FILE into the locator

■ pinning an object that contains a non-NULL FILE attribute via OCIObjectPin()

■ calling OCILobFileSetName()

Related Functions
OCIErrorGet(), OCILobIsEqual()

LOB Functions

OCI Relational Functions 15-147

OCILobOpen()

Purpose
Opens a LOB, internal or external, in the indicated mode.

Syntax
sword OCILobOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub1 mode);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN/OUT)
The LOB to open. The locator can refer to an internal or external LOB.

mode (IN)
The mode in which to open the LOB/BFILE. In Oracle8i, valid modes for LOBs are

OCI_LOB_READONLY and OCI_LOB_READWRITE. Note that OCI_FILE_

READONLY exists in Oracle8 as input to OCILobFileOpen(). OCI_FILE_READONLY

can be used with OCILobOpen() if the input locator is for a BFILE.

Comments
It is an error to open the same LOB twice. BFILEs cannot be opened in read-write

mode. Note that if the LOB/BFILE was opened in read-only mode and the user tries

to write to the LOB/BFILE, an error will be returned.

Opening a LOB requires a round-trip to the server for both internal and external

LOBs. For internal LOBs, the open will trigger other code that relies on the open

call. For external LOBs (BFILEs), open requires a round-trip because the actual

operating system file on the server side is being opened.

See Also: Refer to "Functions for Opening and Closing LOBs" on page 7-11 for

more information.

Related Functions
OCIErrorGet(), OCILobClose(), OCILobFileCloseAll(), OCILobFileExists(),
OCILobFileClose(), OCILobFileIsOpen(), OCILobFileOpen(), OCILobIsOpen()

OCILobRead()

15-148 Oracle Call Interface Programmer’s Guide

OCILobRead()

Purpose
Reads a portion of a LOB/FILE, as specified by the call, into a buffer.

Syntax
sword OCILobRead (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amtp,
 ub4 offset,
 dvoid *bufp,
 ub4 bufl,
 dvoid *ctxp,
 OCICallbackLobRead (cbfp)
 (dvoid *ctxp,
 CONST dvoid *bufp,
 ub4 len,
 ub1 piece)
 ub2 csid,
 ub1 csfrm);

Parameters
svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN)
A LOB/FILE locator that uniquely references the LOB/FILE. This locator must be a

locator that was obtained from the server specified by svchp.

amtp (IN/OUT)
On input, the number of characters (for CLOBs or NCLOBs) or bytes (for BLOBs

and BFILEs) to be read. On output, the actual number of bytes or characters read.

*amtp is the total amount of data read if:

■ data is not read in streamed mode (only one piece read and there is no polling

or callback)

■ data is read in streamed mode with a callback

LOB Functions

OCI Relational Functions 15-149

*amtp is the length of the last piece read if the data is read in streamed mode using

polling.

If the amount of bytes to be read is larger than the buffer length it is assumed that

the LOB is being read in a streamed mode from the input offset until the end of the

LOB, or until the specified number of bytes have been read, whichever comes first. On

input if this value is 0, then the data shall be read in streamed mode from the input

offset until the end of the LOB.

The streamed mode (implemented with either polling or callbacks) reads the LOB

value sequentially from the input offset.

If the data is read in pieces, *amtp always contains the length of the piece just read.

If a callback function is defined, then this callback function will be invoked each

time bufl bytes are read off the pipe. Each piece will be written into bufp.

If the callback function is not defined, then the OCI_NEED_DATA error code will be

returned. The application must call OCILobRead() over and over again to read more

pieces of the LOB until the OCI_NEED_DATA error code is not returned. The buffer

pointer and the length can be different in each call if the pieces are being read into

different sizes and locations.

If the client-side character set is varying-width, then the input amount is in

characters and the output amount is in bytes for CLOBs and NCLOBs. The input

amount refers to the number of characters to read from the server-side

CLOB/NCLOB. The output amount indicates how many bytes were read into the

buffer bufp.

offset (IN)
On input, this is the absolute offset from the beginning of the LOB value. For

character LOBs (CLOBs, NCLOBs) it is the number of characters from the beginning

of the LOB, for binary LOBs/FILEs it is the number of bytes. The first position is 1.

bufp (IN/OUT)
The pointer to a buffer into which the piece will be read. The length of the allocated

memory is assumed to be bufl.

bufl (IN)
The length of the buffer in octets. This value will differ from the amtp value for

CLOBs and for NCLOBs (csfrm=SQLCS_NCHAR) if the amtp parameter is specified

in terms of characters, while the bufl parameter is specified in terms of bytes.

ctxp (IN)
The context pointer for the callback function. Can be NULL.

OCILobRead()

15-150 Oracle Call Interface Programmer’s Guide

cbfp (IN)
A callback that may be registered to be called for each piece. If this is NULL, then

OCI_NEED_DATA will be returned for each piece.

The callback function must return OCI_CONTINUE for the read to continue. If any

other error code is returned, the LOB read is aborted.

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece.

len (IN)
The length in bytes of the current piece in bufp.

piece (IN)
Which piece: OCI_FIRST_PIECE, OCI_NEXT_PIECE or OCI_LAST_PIECE.

csid (IN)
The character set ID of the buffer data.

csfrm (IN)
The character set form of the buffer data. The csfrm parameter must be consistent

with the type of the LOB. In other words, if the LOB is a CLOB, then csfrm should

not indicate NCHAR, and if the LOB is an NCLOB, then csfrm should indicate

NCHAR.

Comments
Reads a portion of a LOB/FILE as specified by the call into a buffer. It is an error to

try to read from a NULL LOB/FILE.

Note: When reading or writing LOBs, the character set form (csfrm) specified

should match the form of the locator itself.

For FILEs, the operating system file must already exist on the server, and it must

have been opened via OCILobFileOpen() or OCILobOpen() using the input locator.

Oracle must have permission to read the OS file, and the user must have read

permission on the directory object.

When using the polling mode for OCILobRead(), the first call needs to specify values

for offset and amtp, but on subsequent polling calls to OCILobRead(), the user need

not specify these values.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

Note: To abort an OCILobRead() operation and free the statement handle, use

the OCIBreak() call.

LOB Functions

OCI Relational Functions 15-151

The following apply to client-side varying-width character sets for CLOBs and

NCLOBs:

■ When using polling mode, be sure to look at the value of the amtp parameter

after each OCILobRead() call to see how many bytes were read into the buffer

because the buffer may not be entirely full.

■ When using callbacks, the len parameter, which is input to the callback,

indicates how many bytes are filled in the buffer. Check the len parameter

during your callback processing since the entire buffer may not be filled with

data.

The following applies to client-side fixed-width character sets and server-side

varying-width character sets for CLOBs and NCLOBs:

■ When reading a CLOB or NCLOB value, if the database CHAR or NCHAR

character set is varying-width, the entire user buffer may not be filled with data.

The amtp parameter will indicate the number of bytes that were actually read

into the user buffer.

To read data in UCS-2 format, set the csid parameter to OCI_UCS2ID. If the csid
parameter is set, it overrides the NLS_LANG environment variable. For additional

information on UCS-2 (unicode) format, see "Fixed Width Unicode Support" on

page 5-28.

See Also: For more information about FILEs, refer to the description of BFILEs

in the Oracle8i Application Developer’s Guide - Large Objects (LOBs).

For a code sample showing the use of LOB reads and writes, see the

demonstration programs included with your Oracle installation. For additional

information, refer to Appendix B, "OCI Demonstration Programs".

For general information about piecewise OCI operations, refer to "Run Time

Data Allocation and Piecewise Operations" on page 5-32.

Related Functions
OCIErrorGet(), OCILobWrite(), OCILobFileSetName(), OCILobWriteAppend()

OCILobTrim()

15-152 Oracle Call Interface Programmer’s Guide

OCILobTrim()

Purpose
Trims/truncates the LOB value to a shorter length.

Syntax
sword OCILobTrim (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 newlen);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must be a

locator that was obtained from the server specified by svchp.

newlen (IN)
The new length of the LOB value, which must be less than or equal to the current

length.

Comments
This function trims the LOB data to a specified shorter length. The function returns

an error if newlen is greater than the current LOB length. This function is valid only

for internal LOBs. FILEs are not allowed.

Related Functions
OCIErrorGet(), OCILobRead(), OCILobAppend(), OCILobCopy(), OCILobErase(),
OCILobWrite(), OCILobWriteAppend()

LOB Functions

OCI Relational Functions 15-153

OCILobWrite()

Purpose
Writes a buffer into a LOB

Syntax
sword OCILobWrite (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amtp,
 ub4 offset,
 dvoid *bufp,
 ub4 buflen,
 ub1 piece,
 dvoid *ctxp,
 OCICallbackLobWrite (cbfp)
 (/*_
 dvoid *ctxp,
 dvoid *bufp,
 ub4 *lenp,
 ub1 *piecep */)
 ub2 csid,
 ub1 csfrm);

Parameters
svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must be a

locator that was obtained from the server specified by svchp.

amtp (IN/OUT)
On input, takes the number of characters for CLOBs and NCLOBs or bytes for

BLOBs to be written. On output, returns the actual number of bytes or characters

written. This should always be a non-NULL pointer. If you want to specify

write-until-end-of-file, then you must declare a variable, set it equal to zero, and

pass its address for this parameter.

OCILobWrite()

15-154 Oracle Call Interface Programmer’s Guide

If the amount is specified on input, and the data is written in pieces, *amtp will

contain the total length of the pieces written at the end of the call (last piece written)

and is undefined in between. Note that it is different from the piecewise read case.

An error is returned if that amount is not sent to the server.

If amtp is zero, then streaming mode is assumed, and data is written until the user

specifies OCI_LAST_PIECE.

If the client-side character set is varying-width, then the input amount is in bytes

and the output amount is in characters for CLOBs and NCLOBs. The input amount

refers to the number of bytes of data that the user wants to write into the LOB and

not the number of bytes in the bufp, which is specified by buflen. In the case where

data is written in pieces, the amount of bytes to write may be larger than the buflen.

The output amount refers to the number of characters written into the server-side

CLOB/NCLOB.

offset (IN)
On input, it is the absolute offset from the beginning of the LOB value. For character

LOBs it is the number of characters from the beginning of the LOB, for binary LOBs

it is the number of bytes. The first position is 1.

bufp (IN)
The pointer to a buffer from which the piece will be written. The length of the data

in the buffer is assumed to be the value passed in buflen. Even if the data is being

written in pieces using the polling method, bufp must contain the first piece of the

LOB when this call is invoked. If a callback is provided, bufp must not be used to

provide data or an error will result.

buflen (IN)
The length, in bytes, of the data in the buffer. This value will differ from the amtp
value for CLOBs and NCLOBs if the amtp parameter is specified in terms of

characters, while the buflen parameter is specified in terms of bytes.

Note: This parameter assumes an 8-bit byte. If your platform uses a longer byte,

you must adjust the value of buflen accordingly.

piece (IN)
Which piece of the buffer is being written. The default value for this parameter is

OCI_ONE_PIECE, indicating the buffer will be written in a single piece.

The following other values are also possible for piecewise or callback mode: OCI_

FIRST_PIECE, OCI_NEXT_PIECE and OCI_LAST_PIECE.

ctxp (IN)
The context for the callback function. Can be NULL.

LOB Functions

OCI Relational Functions 15-155

cbfp (IN)
A callback that may be registered to be called for each piece in a piecewise write. If

this is NULL, the standard polling method will be used.

The callback function must return OCI_CONTINUE for the write to continue. If any

other error code is returned, the LOB write is aborted. The callback takes the

following parameters:

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece. This is the same as the bufp passed as an input to the

OCILobWrite() routine.

lenp (IN/OUT)
The length, in bytes, of the data in the buffer (IN), and the length in bytes of current

piece in bufp (OUT).

piecep (OUT)
Which piece: OCI_NEXT_PIECE or OCI_LAST_PIECE.

csid (IN)
The character set ID of the buffer data.

csfrm (IN)
The character set form of the buffer data. The csfrm parameter must be consistent

with the type of the LOB. In other words, if the LOB is a CLOB, then csfrm should

not indicate NCHAR, and if the LOB is an NCLOB, then csfrm should indicate

NCHAR.

Comments
Writes a buffer into an internal LOB as specified. If LOB data already exists it is

overwritten with the data stored in the buffer. The buffer can be written to the LOB

in a single piece with this call, or it can be provided piecewise using callbacks or a

standard polling method.

Note: When reading or writing LOBs, the character set form (csfrm) specified

should match the form of the locator itself.

When using the polling mode for OCILobWrite(), the first call needs to specify

values for offset and amtp, but on subsequent polling calls to OCILobWrite(), the user

need not specify these values.

If the value of the piece parameter is OCI_FIRST_PIECE, data may need to be

provided through callbacks or polling.

OCILobWrite()

15-156 Oracle Call Interface Programmer’s Guide

If a callback function is defined in the cbfp parameter, then this callback function

will be invoked to get the next piece after a piece is written to the pipe. Each piece

will be written from bufp. If no callback function is defined, then OCILobWrite()
returns the OCI_NEED_DATA error code. The application must call OCILobWrite()
again to write more pieces of the LOB. In this mode, the buffer pointer and the

length can be different in each call if the pieces are of different sizes and from

different locations.

A piece value of OCI_LAST_PIECE terminates the piecewise write, regardless of

whether the polling or callback method is used.

If the amount of data passed to Oracle (through either input mechanism) is less

than the amount specified by the amtp parameter, an ORA-22993 error is returned.

This function is valid for internal LOBs only. FILEs are not allowed, since they are

read-only. If the LOB is a BLOB, the csid and csfrm parameters are ignored.

If the client-side character set is varying-width, then the input amount is in bytes

and the output amount is in characters for CLOBs and NCLOBs. The input amount

refers to the number of bytes of data that the user wants to write into the LOB and

not the number of bytes in the bufp, which is specified by buflen. In the case where

data is written in pieces, the amount of bytes to write may be larger than the buflen.

The output amount refers to the number of characters written into the server-side

CLOB/NCLOB.

To write data in UCS-2 format, set the csid parameter to OCI_UCS2ID. If the csid
parameter is set, it overrides the NLS_LANG environment variable. For additional

information on UCS-2 (unicode) format, see "Fixed Width Unicode Support" on

page 5-28.

See Also: For a code sample showing the use of LOB reads and writes, see the

demonstration programs included with your Oracle installation. For additional

information, refer to Appendix B, "OCI Demonstration Programs".

For general information about piecewise OCI operations, refer to "Run Time

Data Allocation and Piecewise Operations" on page 5-32.

Related Functions
OCIErrorGet(), OCILobRead(), OCILobAppend(), OCILobCopy(), OCILobWriteAppend()

LOB Functions

OCI Relational Functions 15-157

OCILobWriteAppend()

Purpose
Writes data starting at the end of a LOB.

Syntax
sword OCILobWriteAppend (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amtp,
 dvoid *bufp,
 ub4 buflen,
 ub1 piece,
 dvoid *ctxp,
 OCICallbackLobWrite (cbfp)
 (/*_
 dvoid *ctxp,
 dvoid *bufp,
 ub4 *lenp,
 ub1 *piecep */)
 ub2 csid,
 ub1 csfrm);

Parameters
svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

locp (IN/OUT)
An internal LOB locator that uniquely references a LOB.

amtp (IN/OUT)
On input, takes the number of characters for CLOBs/NCLOBs or bytes for BLOBs

to be written. On output, returns the actual number of bytes or characters written. If

the amount specified on input, and the data is written in pieces, *amtp will contain

the total length of the pieces written at the end of the call (last piece written) and is

undefined in between. (Note it is different from the piecewise read case). An error is

returned if that amount is not sent to the server. If amtp is zero, then streaming

mode is assumed, and data is written until the user specifies OCI_LAST_PIECE.

OCILobWriteAppend()

15-158 Oracle Call Interface Programmer’s Guide

If the client-side character set is varying-width, then the input amount is in bytes,

not characters, for CLOBs/NCLOBs.

bufp (IN)
The pointer to a buffer from which the piece will be written. The length of the data

in the buffer is assumed to be the value passed in buflen. Even if the data is being

written in pieces, bufp must contain the first piece of the LOB when this call is

invoked. If a callback is provided, bufp must not be used to provide data or an error

will result.

buflen (IN)
The length, in bytes, of the data in the buffer. Note that this parameter assumes an

8-bit byte. If your platform uses a longer byte, the value of buflen must be adjusted

accordingly.

piece (IN)
Which piece of the buffer is being written. The default value for this parameter is

OCI_ONE_PIECE, indicating the buffer will be written in a single piece. The

following other values are also possible for piecewise or callback mode: OCI_

FIRST_PIECE, OCI_NEXT_PIECE and OCI_LAST_PIECE.

ctxp (IN)
The context for the call back function. Can be NULL.

cbfp (IN)
A callback that may be registered to be called for each piece in a piecewise write. If

this is NULL, the standard polling method will be used. The callback function must

return OCI_CONTINUE for the write to continue. If any other error code is

returned, the LOB write is aborted. The callback takes the following parameters:

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece.

lenp (IN/OUT)
The length, in bytes, of the data in the buffer (IN), and the length in bytes of current

piece in bufp (OUT).

piecep (OUT)
Which piece: OCI_NEXT_PIECE or OCI_LAST_PIECE.

csid (IN)
The character set ID of the buffer data.

LOB Functions

OCI Relational Functions 15-159

csfrm (IN)
The character set form of the buffer data.

Comments
The buffer can be written to the LOB in a single piece with this call, or it can be

provided piecewise using callbacks or a standard polling method. If the value of the

piece parameter is OCI_FIRST_PIECE, data must be provided through callbacks or

polling. If a callback function is defined in the cbfp parameter, then this callback

function will be invoked to get the next piece after a piece is written to the pipe.

Each piece will be written from bufp. If no callback function is defined, then

OCILobWriteAppend() returns the OCI_NEED_DATA error code.

The application must call OCILobWriteAppend() again to write more pieces of the

LOB. In this mode, the buffer pointer and the length can be different in each call if

the pieces are of different sizes and from different locations. A piece value of OCI_

LAST_PIECE terminates the piecewise write.

OCILobWriteAppend() is not supported if LOB buffering is enabled.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

If the client-side character set is varying-width, then the input amount is in bytes,

not characters, for CLOBs/NCLOBs.

See Also: Refer to "Functions for Improving LOB Read/Write Performance" on

page 7-10 for more information.

Related Functions
OCIErrorGet(), OCILobRead(), OCILobAppend(), OCILobCopy(), OCILobWrite()

Statement Functions

15-160 Oracle Call Interface Programmer’s Guide

Statement Functions
This section describes the statement functions.

Table 15–7 OCI Quick Reference

Function Purpose

OCIStmtExecute() on page 15-161 Send statements to server for execution

OCIStmtFetch() on page 15-164 Fetch rows from a query

OCIStmtGetPieceInfo() on page 15-165 Get piece information for piecewise operations

OCIStmtPrepare() on page 15-167 Establish an application request

OCIStmtSetPieceInfo() on page 15-169 Set piece information for piecewise operations

Statement Functions

OCI Relational Functions 15-161

OCIStmtExecute()

Purpose
This call associates an application request with a server.

Syntax
sword OCIStmtExecute (OCISvcCtx *svchp,
 OCIStmt *stmtp,
 OCIError *errhp,
 ub4 iters,
 ub4 rowoff,
 CONST OCISnapshot *snap_in,
 OCISnapshot *snap_out,
 ub4 mode);

Parameters
svchp (IN/OUT)
Service context handle.

stmtp (IN/OUT)
An statement handle. It defines the statement and the associated data to be executed

at the server. It is invalid to pass in a statement handle that has bind of data types

only supported in release 8 when svchp points to an Oracle7 server.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

iters (IN)
For non-SELECT statements, the number of times this statement is executed.

For SELECT statements, if iters is non-zero, then defines must have been done for

the statement handle. The execution fetches iters rows into these predefined buffers

and prefetches more rows depending upon the prefetch row count. If you do not

know how many rows the SELECT statement will retrieve, set iters to zero.

This function returns an error if iters=0 for non-SELECT statements.

rowoff (IN)
The starting index from which the data in an array bind is relevant for this multiple

row execution.

OCIStmtExecute()

15-162 Oracle Call Interface Programmer’s Guide

snap_in (IN)
This parameter is optional. if supplied, must point to a snapshot descriptor of type

OCI_DTYPE_SNAP. The contents of this descriptor must be obtained from the snap_
out parameter of a previous call. The descriptor is ignored if the SQL is not a

SELECT. This facility allows multiple service contexts to ORACLE to see the same

consistent snapshot of the database’s committed data. However, uncommitted data

in one context is not visible to another context even using the same snapshot.

snap_out (OUT)
This parameter optional. if supplied, must point to a descriptor of type OCI_

DTYPE_SNAP. This descriptor is filled in with an opaque representation which is

the current ORACLE "system change number" suitable as a snap_in input to a

subsequent call to OCIStmtExecute(). This descriptor should not be used longer than

necessary in order to avoid "snapshot too old" errors.

mode (IN)
The modes are:

■ OCI_DEFAULT - Calling OCIStmtExecute() in this mode executes the statement.

It also implicitly returns describe information about the select-list.

■ OCI_DESCRIBE_ONLY - This mode is for users who wish to describe a query

prior to execution. Calling OCIStmtExecute() in this mode does not execute the

statement, but it does return the select-list description. To maximize

performance, it is recommended that applications execute the statement in

default mode and use the implicit describe which accompanies the execution.

■ OCI_COMMIT_ON_SUCCESS - When a statement is executed in this mode, the

current transaction is committed after execution, provided that execution

completes successfully.

■ OCI_EXACT_FETCH - Used when the application knows in advance exactly

how many rows it will be fetching. This mode turns prefetching off for Oracle

release 8 mode, and requires that defines be done before the execute call. Using

this mode cancels the cursor after the desired rows are fetched and may result

in reduced server-side resource usage.

■ OCI_BATCH_ERRORS - See "Batch Error Mode for OCIStmtExecute()" on

page 4-8, for information about this mode.

The modes are not mutually exclusive and can be used together.

Comments
This function is used to execute a prepared SQL statement. Using an execute call,

the application associates a request with a server.

Statement Functions

OCI Relational Functions 15-163

If a SELECT statement is executed, the description of the select-list is available

implicitly as a response. This description is buffered on the client side for describes,

fetches and define type conversions. Hence it is optimal to describe a select list only

after an execute. See "Describing Select-List Items" on page 4-10 for more

information.

Also for SELECT statements, some results are available implicitly. Rows will be

received and buffered at the end of the execute. For queries with small row count, a

prefetch causes memory to be released in the server if the end of fetch is reached, an

optimization that may result in memory usage reduction. Set attribute call has been

defined to set the number of rows to be prefetched per result set.

For SELECT statements, at the end of the execute, the statement handle implicitly

maintains a reference to the service context on which it is executed. It is the user’s

responsibility to maintain the integrity of the service context. The implicit reference

is maintained until the statement handle is freed or the fetch is cancelled or an end

of fetch condition is reached.

Note: If output variables are defined for a SELECT statement before a call to

OCIStmtExecute(), the number of rows specified by iters will be fetched directly

into the defined output buffers and additional rows equivalent to the prefetch

count will be prefetched. If there are no additional rows, then the fetch is

complete without calling OCIStmtFetch().

Related Functions
OCIStmtPrepare()

OCIStmtFetch()

15-164 Oracle Call Interface Programmer’s Guide

OCIStmtFetch()

Purpose
Fetches rows from a query.

Syntax
sword OCIStmtFetch (OCIStmt *stmtp,
 OCIError *errhp,
 ub4 nrows,
 ub2 orientation,
 ub4 mode);

Parameters
stmtp (IN)
A statement (application request) handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

nrows (IN)
Number of rows to be fetched from the current position.

orientation (IN)
For release 8.0, the only acceptable value is OCI_FETCH_NEXT, which is also the

default value.

mode (IN)
Pass as OCI_DEFAULT.

Comments
The fetch call is a local call, if prefetched rows suffice. However, this is transparent

to the application.

If LOB columns are being read, LOB locators are fetched for subsequent LOB

operations to be performed on these locators. Prefetching is turned off if LONG

columns are involved.

This function can return OCI_SUCCESS_WITH_INFO if the data is truncated or

EOF is reached. If you call OCIStmtFetch() with the nrows parameter set to zero, this

cancels the cursor.

Related Functions
OCIStmtExecute()

Statement Functions

OCI Relational Functions 15-165

OCIStmtGetPieceInfo()

Purpose
Returns piece information for a piecewise operation.

Syntax
sword OCIStmtGetPieceInfo(CONST OCIStmt *stmtp,
 OCIError *errhp,
 dvoid **hndlpp,
 ub4 *typep,
 ub1 *in_outp,
 ub4 *iterp,
 ub4 *idxp,
 ub1 *piecep);

Parameters
stmtp (IN)
The statement when executed returned OCI_NEED_DATA.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

hndlpp (OUT)
Returns a pointer to the bind or define handle of the bind or define whose runtime

data is required or is being provided.

typep (OUT)
The type of the handle pointed to by hndlpp: OCI_HTYPE_BIND (for a bind handle)

or OCI_HTYPE_DEFINE (for a define handle).

in_outp (OUT)
Returns OCI_PARAM_IN if the data is required for an IN bind value. Returns OCI_

PARAM_OUT if the data is available as an OUT bind variable or a define position

value.

iterp (OUT)
Returns the row number of a multiple row operation.

idxp (OUT)
The index of an array element of a PL/SQL array bind operation.

OCIStmtGetPieceInfo()

15-166 Oracle Call Interface Programmer’s Guide

piecep (OUT)
Returns one of the following defined values OCI_ONE_PIECE, OCI_FIRST_PIECE,

OCI_NEXT_PIECE and OCI_LAST_PIECE.

Comments
When an execute/fetch call returns OCI_NEED_DATA to get/return a dynamic

bind/define value or piece, OCIStmtGetPieceInfo() returns the relevant information:

bind/define handle, iteration, index number and which piece.

See the section "Run Time Data Allocation and Piecewise Operations" on page 5-32

for more information about using OCIStmtGetPieceInfo().

Related Functions
OCIAttrGet(), OCIAttrSet(), OCIStmtExecute(), OCIStmtFetch(), OCIStmtSetPieceInfo()

Statement Functions

OCI Relational Functions 15-167

OCIStmtPrepare()

Purpose
This call prepares a SQL or PL/SQL statement for execution.

Syntax
sword OCIStmtPrepare (OCIStmt *stmtp,
 OCIError *errhp,
 CONST text *stmt,
 ub4 stmt_len,
 ub4 language,
 ub4 mode);

Parameters
stmtp (IN)
A statement handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

stmt (IN)
SQL or PL/SQL statement to be executed. Must be a null-terminated string. The

pointer to the text of the statement must be available as long as the statement is

executed, or data is fetched from it.

stmt_len (IN)
Length of the statement. Must not be zero.

language (IN)
Specifies V7, or native syntax. Possible values are:

■ OCI_V7_SYNTAX - V7 ORACLE parsing syntax

■ OCI_NTV_SYNTAX - syntax depends upon the version of the server.

mode (IN)
The possible values are:

■ OCI_DEFAULT - default mode

■ OCI_NO_SHARING - disables sharing mode for the SQL statement. See

"Shared Data Mode" on page 2-19.

OCIStmtPrepare()

15-168 Oracle Call Interface Programmer’s Guide

Comments
An OCI application uses this call to prepare a SQL or PL/SQL statement for

execution. The OCIStmtPrepare() call defines an application request.

This is a purely local call. Data values for this statement initialized in subsequent

bind calls will be stored in a bind handle which will hang off this statement handle.

This call does not create an association between this statement handle and any

particular server.

See the section "Preparing Statements" on page 4-4 for more information about

using this call.

Related Functions
OCIAttrGet(), OCIStmtExecute()

Statement Functions

OCI Relational Functions 15-169

OCIStmtSetPieceInfo()

Purpose
Sets piece information for a piecewise operation.

Syntax
sword OCIStmtSetPieceInfo (dvoid *hndlp,
 ub4 type,
 OCIError *errhp,
 CONST dvoid *bufp,
 ub4 *alenp,
 ub1 piece,
 CONST dvoid *indp,
 ub2 *rcodep);

Parameters
hndlp (IN/OUT)
The bind/define handle.

type (IN)
Type of the handle.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

bufp (IN/OUT)
A pointer to a storage containing the data value or the piece when it is an IN bind

variable, otherwise bufp is a pointer to storage for getting a piece or a value for OUT

binds and define variables. For named data types or REFs, a pointer to the object or

REF is returned.

alenp (IN/OUT)
The length of the piece or the value.

piece (IN)
The piece parameter. Valid values:

■ OCI_ONE_PIECE

■ OCI_FIRST_PIECE

■ OCI_NEXT_PIECE

■ OCI_LAST_PIECE

OCIStmtSetPieceInfo()

15-170 Oracle Call Interface Programmer’s Guide

This parameter is used for IN bind variables only.

indp (IN/OUT)
Indicator. A pointer to a sb2 value or pointer to an indicator structure for named

data types (SQLT_NTY) and REFs (SQLT_REF), i.e., *indp is either an sb2 or a

dvoid * depending upon the data type.

rcodep (IN/OUT)
Return code.

Comments
When an execute call returns OCI_NEED_DATA to get a dynamic IN/OUT bind

value or piece, OCIStmtSetPieceInfo() sets the piece information: the buffer, the

length, which piece is currently being processed, the indicator, and the return code

for this column.

For more information about using OCIStmtSetPieceInfo() see the section "Run Time

Data Allocation and Piecewise Operations" on page 5-32.

Related Functions
OCIAttrGet(), OCIAttrSet(), OCIStmtExecute(), OCIStmtFetch(), OCIStmtGetPieceInfo()

Thread Management Functions

OCI Relational Functions 15-171

Thread Management Functions
This section describes the thread management functions.

Table 15–8 OCI Quick Reference

Function Purpose

OCIThreadClose() on page 15-173 Closes a thread handle

OCIThreadCreate() on page 15-174 Creates a new thread

OCIThreadHandleGet() on page 15-176 Retrieves the OCIThreadHandle of the thread in which it is
called

OCIThreadHndDestroy() on page 15-177 Destroys and deallocates the thread handle

OCIThreadHndInit() on page 15-178 Allocates and initializes the thread handle

OCIThreadIdDestroy() on page 15-179 Destroys and deallocates a thread id

OCIThreadIdGet() on page 15-180 Retrieves the OCIThreadId of the thread in which it is called

OCIThreadIdInit() on page 15-181 Allocate and initialize the thread id

OCIThreadIdNull() on page 15-182 Determines whether or not a given OCIThreadId is the NULL
thread ID

OCIThreadIdSame() on page 15-183 Determines whether or not two OCIThreadIds represent the
same thread

OCIThreadIdSet() on page 15-184 Sets one OCIThreadId to another

OCIThreadIdSetNull() on page 15-185 Sets the NULL thread ID to a given OCIThreadId

OCIThreadInit() on page 15-186 Initializes OCIThread context

OCIThreadIsMulti() on page 15-187 Tells the caller whether the application is running in a
multi-threaded environment or a single-threaded environment

OCIThreadJoin() on page 15-188 Allows the calling thread to join with another thread

OCIThreadKeyDestroy() on page 15-189 Destroy and deallocate the key pointed to by key

OCIThreadKeyGet() on page 15-190 Gets the calling threads current value for a key

OCIThreadKeyInit() on page 15-191 Creates a key

OCIThreadKeySet() on page 15-192 Sets the calling threads value for a key

OCIThreadMutexAcquire() on page 15-193 Acquires a mutex for the thread in which it is called

OCIThreadMutexDestroy() on page 15-194 Destroys and deallocate a mutex

OCIThreadMutexInit() on page 15-195 Allocates and initializes a mutex

Thread Management Functions

15-172 Oracle Call Interface Programmer’s Guide

OCIThreadMutexRelease() on page 15-196 Releases a mutex

OCIThreadProcessInit() on page 15-197 Performs OCIThread process initialization

OCIThreadTerm() on page 15-198 Releases the OCIThread context

Table 15–8 OCI Quick Reference (Cont.)

Function Purpose

Thread Management Functions

OCI Relational Functions 15-173

OCIThreadClose()

Purpose
Closes a thread handle.

Syntax
sword OCIThreadClose (dvoid *hndl,
 OCIError *err,
 OCIThreadHandle *tHnd);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

tHnd (IN/OUT)
The OCIThread thread handle to close.

Comments
tHnd should be initialized by OCIThreadHndInit(). Both thread handle and the

thread ID that was returned by the same call to OCIThreadCreate() are invalid after

the call to OCIThreadClose().

Related Functions
OCIThreadCreate()

OCIThreadCreate()

15-174 Oracle Call Interface Programmer’s Guide

OCIThreadCreate()

Purpose
Creates a new thread.

Syntax
sword OCIThreadCreate (dvoid *hndl,
 OCIError *err,
 void (*start) (dvoid
 dvoid *arg,
 OCIThreadId *tid,
 OCIThreadHandle *tHnd);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

start (IN)
The function in which the new thread should begin execution.

arg (IN)
The argument to give the function pointed to by start.

tid (IN/OUT)
If not NULL, gets the ID for the new thread.

tHnd (IN/OUT)
If not NULL, gets the handle for the new thread.

Comments
The new thread starts by executing a call to the function pointed to by start with the

argument given by arg. When that function returns, the new thread will terminate.

The function should not return a value and should accept one parameter, a dvoid.

The call to OCIThreadCreate() must be matched by a call to OCIThreadClose() if and

only if tHnd is non-NULL.

If tHnd is NULL, a thread ID placed in *tid will not be valid in the calling thread

because the timing of the spawned threads termination is unknown.

Thread Management Functions

OCI Relational Functions 15-175

tid should be initialized by OCIThreadIdInit() and tHnd should be initialized by

OCIThreadHndInit().

Related Functions
OCIThreadClose(), OCIThreadIdInit(), OCIThreadHndInit()

OCIThreadHandleGet()

15-176 Oracle Call Interface Programmer’s Guide

OCIThreadHandleGet()

Purpose
Retrieves the OCIThreadHandle of the thread in which it is called.

Syntax
sword OCIThreadHandleGet (dvoid *hndl,
 OCIError *err,
 OCIThreadHandle *tHnd);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

tHnd (IN/OUT)
If not NULL, the location to place the thread handle for the thread.

Comments
tHnd should be initialized by OCIThreadHndInit().

The thread handle tHnd retrieved by this function must be closed with

OCIThreadClose() and destroyed by OCIThreadHndDestroy() after it is used.

Related Functions
OCIThreadHndDestroy(), OCIThreadHndInit()

Thread Management Functions

OCI Relational Functions 15-177

OCIThreadHndDestroy()

Purpose
Destroys and deallocates the thread handle.

Syntax
sword OCIThreadHndDestroy (dvoid *hndl,
 OCIError *err,
 OCIThreadHandle **thnd);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

thnd (IN/OUT)
The address of pointer to the thread handle to destroy.

Comments
thnd should be initialized by OCIThreadHndInit().

Related Functions
OCIThreadHandleGet(), OCIThreadHndInit()

OCIThreadHndInit()

15-178 Oracle Call Interface Programmer’s Guide

OCIThreadHndInit()

Purpose
Allocates and initializes the thread handle.

Syntax
sword OCIThreadHndInit (dvoid *hndl,
 OCIError *err,
 OCIThreadHandle **thnd);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

thnd (OUT)
The address of pointer to the thread handle to initialize.

Related Functions
OCIThreadHandleGet(), OCIThreadHndDestroy()

Thread Management Functions

OCI Relational Functions 15-179

OCIThreadIdDestroy()

Purpose
Destroys and deallocates a thread Id.

Syntax
sword OCIThreadIdDestroy (dvoid *hndl,
 OCIError *err,
 OCIThreadId **tid);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is

recorded in err and diagnostic information can be obtained by calling

OCIErrorGet().

tid (IN/OUT)
Pointer to the thread ID to destroy.

Comments
tid should be initialized by OCIThreadIdInit().

Related Functions
OCIThreadIdGet(), OCIThreadIdInit(), OCIThreadIdNull(), OCIThreadIdSame(),
OCIThreadIdSet(), OCIThreadIdSetNull()

OCIThreadIdGet()

15-180 Oracle Call Interface Programmer’s Guide

OCIThreadIdGet()

Purpose
Retrieves the OCIThreadId of the thread in which it is called.

Syntax
sword OCIThreadIdGet (dvoid *hndl,
 OCIError *err,
 OCIThreadId *tid);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

tid (OUT)
This should point to the location in which to place the ID of the calling thread.

Comments
tid should be initialized by OCIThreadIdInit(). When OCIThread is used in a

single-threaded environment, OCIThreadIdGet() will always place the same value in

the location pointed to by tid. The exact value itself is not important. The important

thing is that it is not the same as the NULL thread ID and that it is always the same

value.

Related Functions
OCIThreadIdDestroy(), OCIThreadIdInit(), OCIThreadIdNull(), OCIThreadIdSame(),
OCIThreadIdSet(), OCIThreadIdSetNull()

Thread Management Functions

OCI Relational Functions 15-181

OCIThreadIdInit()

Purpose
Allocate and initialize the thread Id tid.

Syntax
sword OCIThreadIdInit (dvoid *hndl,
 OCIError *err,
 OCIThreadId **tid);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR

is returned, the error is recorded in err and diagnostic information can be obtained

by calling OCIErrorGet().

tid (OUT)
Pointer to the thread ID to initialize.

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdNull(), OCIThreadIdSame(),
OCIThreadIdSet(), OCIThreadIdSetNull()

OCIThreadIdNull()

15-182 Oracle Call Interface Programmer’s Guide

OCIThreadIdNull()

Purpose
Determines whether or not a given OCIThreadId is the NULL thread Id.

Syntax
sword OCIThreadIdNull (dvoid *hndl,
 OCIError *err,
 OCIThreadId *tid,
 boolean *result);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

tid (IN)
Pointer to the OCIThreadId to check.

result (IN/OUT)
Pointer to the result.

Comments
If tid is the NULL thread ID, result is set to TRUE. Otherwise, result is set to FALSE.

tid should be initialized by OCIThreadIdInit().

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(), OCIThreadIdSame(),
OCIThreadIdSet(), OCIThreadIdSetNull()

Thread Management Functions

OCI Relational Functions 15-183

OCIThreadIdSame()

Purpose
Determines whether or not two OCIThreadIds represent the same thread.

Syntax
sword OCIThreadIdSame (dvoid *hndl,
 OCIError *err,
 OCIThreadId *tid1,
 OCIThreadId *tid2,
 boolean *result);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

tid1 (IN)
Pointer to the first OCIThreadId.

tid2 (IN)
Pointer to the second OCIThreadId.

result (IN/OUT)
Pointer to the result.

Comments
If tid1 and tid2 represent the same thread, result is set to TRUE. Otherwise, result is
set to FALSE. result is set to TRUE if both tid1 and tid2 are the NULL thread ID. ti1d
and tid2 should be initialized by OCIThreadIdInit().

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(), OCIThreadIdNull(),
OCIThreadIdSet(), OCIThreadIdSetNull()

OCIThreadIdSet()

15-184 Oracle Call Interface Programmer’s Guide

OCIThreadIdSet()

Purpose
Sets one OCIThreadId to another.

Syntax
sword OCIThreadIdSet (dvoid *hndl,
 OCIError *err,
 OCIThreadId *tidDest,
 OCIThreadId *tidSrc);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is

recorded in err and diagnostic information can be obtained by calling

OCIErrorGet().

tidDest (OUT)
This should point to the location of the OCIThreadId to be set to.

tidSrc (IN)
This should point to the OCIThreadId to set from.

Comments
tid should be initialized by OCIThreadIdInit().

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(), OCIThreadIdNull(),
OCIThreadIdSame(), OCIThreadIdSetNull()

Thread Management Functions

OCI Relational Functions 15-185

OCIThreadIdSetNull()

Purpose
Sets the NULL thread ID to a given OCIThreadId.

Syntax
sword OCIThreadIdSetNull (dvoid *hndl,
 OCIError *err,
 OCIThreadId *tid);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

tid (OUT)
This should point to the OCIThreadId in which to put the NULL thread Id.

Comments
tid should be initialized by OCIThreadIdInit().

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(), OCIThreadIdNull(),
OCIThreadIdSame(), OCIThreadIdSet()

OCIThreadInit()

15-186 Oracle Call Interface Programmer’s Guide

OCIThreadInit()

Purpose
Initializes the OCIThread context.

Syntax
sword OCIThreadInit (dvoid *hndl,
 OCIError *err);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is

recorded in err and diagnostic information can be obtained by calling

OCIErrorGet().

Comments
It is illegal for OCIThread clients to try an examine the memory pointed to by the

returned pointer. It is safe to make concurrent calls to OCIThreadInit(). Unlike

OCIThreadProcessInit(), there is no need to have a first call that occurs before all the

others.

The first time OCIThreadInit() is called, it initializes the OCI Thread context. It also

saves a pointer to the context in some system dependent manner. Subsequent calls

to OCIThreadInit() will return the same context.

Each call to OCIThreadInit() must eventually be matched by a call to

OCIThreadTerm().

Related Functions
OCIThreadTerm()

Thread Management Functions

OCI Relational Functions 15-187

OCIThreadIsMulti()

Purpose
Tells the caller whether the application is running in a multi-threaded environment

or a single-threaded environment.

Syntax
boolean OCIThreadIsMulti ();

Returns
TRUE if the environment is multi-threaded;

FALSE if the environment is single-threaded.

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(), OCIThreadIdNull(),
OCIThreadIdSame(), OCIThreadIdSet()

OCIThreadJoin()

15-188 Oracle Call Interface Programmer’s Guide

OCIThreadJoin()

Purpose
Allows the calling thread to join with another thread.

Syntax
sword OCIThreadJoin (dvoid *hndl,
 OCIError *err,
 OCIThreadHandle *tHnd);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

tHnd (IN)
The OCIThreadHandle of the thread to join with.

Comments
This function blocks the caller until the specified thread terminates.

tHnd should be initialized by OCIThreadHndInit(). The result of multiple threads all

trying to join with the same thread is undefined.

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(), OCIThreadIdNull(),
OCIThreadIdSame(), OCIThreadIdSet()

Thread Management Functions

OCI Relational Functions 15-189

OCIThreadKeyDestroy()

Purpose
Destroy and deallocate the key pointed to by key.

Syntax
sword OCIThreadKeyDestroy (dvoid *hndl,
 OCIError *err,
 OCIThreadKey **key);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is

recorded in err and diagnostic information can be obtained by calling

OCIErrorGet().

key (IN/OUT)
The OCIThreadKey in which to destroy the key.

Comments
This is different from the destructor function callback passed to the key create

routine. This new destroy function OCIThreadKeyDestroy() is used to terminate any

resources OCI THREAD acquired when it created key. The OCIThreadKeyDestFunc
callback of OCIThreadKeyInit() is a key VALUE destructor; it does in no way operate

on the key itself.

This must be called once the user has finished using the key. Not calling the key

destroy function may result in memory leaks.

Related Functions
OCIThreadKeyGet(), OCIThreadKeyInit(), OCIThreadKeySet()

OCIThreadKeyGet()

15-190 Oracle Call Interface Programmer’s Guide

OCIThreadKeyGet()

Purpose
Gets the calling threads current value for a key.

Syntax
sword OCIThreadKeyGet (dvoid *hndl,
 OCIError *err,
 OCIThreadKey *key,
 dvoid **pValue);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is

recorded in err and diagnostic information can be obtained by calling

OCIErrorGet().

key (IN)
The key.

pValue (IN/OUT)
The location in which to place the thread-specific key value.

Comments
It is illegal to use this function on a key that has not been created using

OCIThreadKeyInit().

If the calling thread has not yet assigned a value to the key, NULL is placed in the

location pointed to by pValue.

Related Functions
OCIThreadKeyDestroy(), OCIThreadKeyInit(), OCIThreadKeySet()

Thread Management Functions

OCI Relational Functions 15-191

OCIThreadKeyInit()

Purpose
Creates a key.

Syntax
sword OCIThreadKeyInit (dvoid *hndl,
 OCIError *err,
 OCIThreadKey **key,
 OCIThreadKeyDestFunc destFn);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is

recorded in err and diagnostic information can be obtained by calling

OCIErrorGet().

key (OUT)
The OCIThreadKey in which to create the new key.

destFn (IN)
The destructor for the key. NULL is permitted.

Comments
Each call to this routine allocate and generates a new key that is distinct from all

other keys. After this function executes successfully, a pointer to an allocated and

initialized key is return. That key can be used with OCIThreadKeyGet() and

OCIThreadKeySet(). The initial value of the key will be NULL for all threads.

It is illegal for this function to be called more than once with the same value for the

key parameter.

If the destFn parameter is not NULL, the routine pointed to by destFn will be called

whenever a thread that has a non-NULL value for the key terminates. The routine

will be called with one parameter. The parameter will be the keys value for the

thread at the time at which the thread terminated. If the key does not need a

destructor function, pass NULL for destFn.

Related Functions
OCIThreadKeyDestroy(), OCIThreadKeyGet(), OCIThreadKeySet()

OCIThreadKeySet()

15-192 Oracle Call Interface Programmer’s Guide

OCIThreadKeySet()

Purpose
Sets the calling threads value for a key.

Syntax
sword OCIThreadKeySet (dvoid *hndl,
 OCIError *err,
 OCIThreadKey *key,
 dvoid *value);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is

recorded in err and diagnostic information can be obtained by calling

OCIErrorGet().

key (IN/OUT)
The key.

value (IN)
The thread-specific value to set in the key.

Comments
It is illegal to use this function on a key that has not been created using

OCIThreadKeyInit().

Related Functions
OCIThreadKeyDestroy(), OCIThreadKeyGet(), OCIThreadKeyInit()

Thread Management Functions

OCI Relational Functions 15-193

OCIThreadMutexAcquire()

Purpose
Acquires a mutex for the thread in which it is called.

Syntax
sword OCIThreadMutexAcquire (dvoid *hndl,
 OCIError *err,
 OCIThreadMutex *mutex);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

mutex (IN/OUT)
The mutex to acquire.

Comments
If the mutex is held by another thread, the calling thread is blocked until it can

acquire the mutex.

It is illegal to attempt to acquire an uninitialized mutex.

This functions behavior is undefined if it is used by a thread to acquire a mutex that

is already held by that thread.

Related Functions
OCIThreadMutexDestroy(), OCIThreadMutexInit(), OCIThreadMutexRelease()

OCIThreadMutexDestroy()

15-194 Oracle Call Interface Programmer’s Guide

OCIThreadMutexDestroy()

Purpose
Destroys and deallocate a mutex.

Syntax
sword OCIThreadMutexDestroy (dvoid *hndl,
 OCIError *err,
 OCIThreadMutex **mutex);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is

recorded in err and diagnostic information can be obtained by calling

OCIErrorGet().

mutex (IN/OUT)
The mutex to destroy.

Comments
Each mutex must be destroyed once it is no longer needed.

It is not legal to destroy a mutex that is uninitialized or is currently held by a thread.

The destruction of a mutex must not occur concurrently with any other operations

on the mutex. A mutex must not be used after it has been destroyed.

Related Functions
OCIThreadMutexAcquire(), OCIThreadMutexInit(), OCIThreadMutexRelease()

Thread Management Functions

OCI Relational Functions 15-195

OCIThreadMutexInit()

Purpose
Allocates and initializes a mutex.

Syntax
sword OCIThreadMutexInit (dvoid *hndl,
 OCIError *err,
 OCIThreadMutex **mutex);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is

recorded in err and diagnostic information can be obtained by calling

OCIErrorGet().

mutex (OUT)
The mutex to initialize.

Comments
All mutexes must be initialized prior to use.

Multiple threads must not initialize the same mutex simultaneously. Also, a mutex

must not be reinitialized until it has been destroyed (see OCIThreadMutexDestroy()).

Related Functions
OCIThreadMutexDestroy(), OCIThreadMutexAcquire(), OCIThreadMutexRelease()

OCIThreadMutexRelease()

15-196 Oracle Call Interface Programmer’s Guide

OCIThreadMutexRelease()

Purpose
Releases a mutex.

Syntax
sword OCIThreadMutexRelease (dvoid *hndl,
 OCIError *err,
 OCIThreadMutex *mutex);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is

recorded in err and diagnostic information can be obtained by calling

OCIErrorGet().

mutex (IN/OUT)
The mutex to release.

Comments
If there are any threads blocked on the mutex, one of them will acquire it and

become unblocked.

It is illegal to attempt to release an uninitialized mutex. It is also illegal for a thread

to release a mutex that it does not hold.

Related Functions
OCIThreadMutexDestroy(), OCIThreadMutexInit(), OCIThreadMutexAcquire()

Thread Management Functions

OCI Relational Functions 15-197

OCIThreadProcessInit()

Purpose
Performs OCIThread process initialization.

Syntax
void OCIThreadProcessInit ();

Comments
Whether or not this function needs to be called depends on how OCI Thread is

going to be used.

In a single-threaded application, calling this function is optional. If it is called at all,

the first call to it must occur before calls to any other OCIThread functions.

Subsequent calls can be made without restriction; they will not have any effect.

In a multi-threaded application, this function MUST be called. The first call to it

MUST occur strictly before any other OCIThread calls; i.e., no other calls to

OCIThread functions (including other calls to this one) can be concurrent with the

first call.

Subsequent calls to this function can be made without restriction; they will not have

any effect.

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(), OCIThreadIdNull(),
OCIThreadIdSame(), OCIThreadIdSet()

OCIThreadTerm()

15-198 Oracle Call Interface Programmer’s Guide

OCIThreadTerm()

Purpose
Releases the OCIThread context.

Syntax
sword OCIThreadTerm (dvoid *hndl,
 OCIError *err);

Parameters
hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is

recorded in err and diagnostic information can be obtained by calling

OCIErrorGet().

Comments
This function should be called exactly once for each call made to OCIThreadInit().

It is safe to make concurrent calls to OCIThreadTerm(). OCIThreadTerm() will not do

anything until it has been called as many times as OCIThreadInit() has been called.

When that happens, it terminates the OCIThread layer and frees the memory

allocated for the context. Once this happens, the context should not be re-used. It

will be necessary to obtain a new one by calling OCIThreadInit().

Related Functions
OCIThreadInit()

Transaction Functions

OCI Relational Functions 15-199

Transaction Functions
This section describes the transaction functions.

Table 15–9 OCI Quick Reference

Function Purpose

OCITransCommit() on page 15-200 Commit a transaction on a service context

OCITransDetach() on page 15-203 Detach a transaction from a service context

OCITransForget() on page 15-204 Forget a prepared global transaction

OCITransPrepare() on page 15-205 Prepare a global transaction for commit

OCITransRollback() on page 15-206 Roll back a transaction

OCITransStart() on page 15-207 Start a transaction on a service context

OCITransCommit()

15-200 Oracle Call Interface Programmer’s Guide

OCITransCommit()

Purpose
Commits the transaction associated with a specified service context.

Syntax
sword OCITransCommit (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters
svchp (IN)
The service context handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

flags (IN)
A flag used for one-phase commit optimization in global transactions.

If the transaction is non-distributed, the flags parameter is ignored, and OCI_

DEFAULT can be passed as its value. OCI applications managing global

transactions should pass a value of OCI_TRANS_TWOPHASE to the flags

parameter for a two-phase commit. The default is one-phase commit.

Comments
The transaction currently associated with the service context is committed. If it is a

global transaction that the server cannot commit, this call additionally retrieves the

state of the transaction from the database to be returned to the user in the error

handle.

If the application has defined multiple transactions, this function operates on the

transaction currently associated with the service context. If the application is

working with only the implicit local transaction created when database changes are

made, that implicit transaction is committed.

If the application is running in the object mode, then the modified or updated

objects in the object cache for this transaction are also flushed and committed.

Under normal circumstances, OCITransCommit() returns with a status indicating

that the transaction has either been committed or rolled back. With global

transactions, it is possible that the transaction is now in-doubt, meaning that it is

Transaction Functions

OCI Relational Functions 15-201

neither committed nor aborted. In this case, OCITransCommit() attempts to retrieve

the status of the transaction from the server. The status is returned.

Example
The following example demonstrates the use of a simple local transaction, as

described in the section "Simple Local Transactions" on page 8-3.

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCIStmt *stmthp;
 dvoid *tmp;
 text sqlstmt[128];

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 0, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&stmthp, OCI_HTYPE_STMT, 0, 0);

 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp, 0,
 OCI_ATTR_SERVER, errhp);

 OCILogon(envhp, errhp, &svchp, "SCOTT", strlen("SCOTT"),
 "TIGER", strlen("TIGER"), 0, 0);

 /* update scott.emp empno=7902, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMP SET SAL = SAL + 1 WHERE EMPNO = 7902");

OCITransCommit()

15-202 Oracle Call Interface Programmer’s Guide

 OCIStmtPrepare(stmthp, errhp, sqlstmt, strlen(sqlstmt), OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* update scott.emp empno=7902, increment salary again, but rollback */
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);
 OCITransRollback(svchp, errhp, (ub4) 0);
}

Related Functions
OCITransRollback()

Transaction Functions

OCI Relational Functions 15-203

OCITransDetach()

Purpose
Detaches a transaction.

Syntax
sword OCITransDetach (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters
svchp (IN)
The service context handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

flags (IN)
You must pass a value of OCI_DEFAULT for this parameter.

Comments
Detaches a global transaction from the service context handle. The transaction

currently attached to the service context handle becomes inactive at the end of this

call. The transaction may be resumed later by calling OCITransStart(), specifying a

flags value of OCI_TRANS_RESUME.

When a transaction is detached, the value which was specified in the timeout

parameter of OCITransStart() when the transaction was started is used to determine

the amount of time the branch can remain inactive before being deleted by the

server’s PMON process.

Note: The transaction can be resumed by a different process than the one that

detached it, provided that the transaction has the same authorization. If this

function is called before a transaction is actually started, this function is a

no-op.

For example code demonstrating the use of OCITransDetach() see the description of

OCITransStart().

Related Functions
OCITransStart()

OCITransForget()

15-204 Oracle Call Interface Programmer’s Guide

OCITransForget()

Purpose
Causes the server to forget a heuristically completed global transaction.

Syntax
sword OCITransForget (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters
svchp (IN)
The service context handle in which the transaction resides.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

flags (IN)
You must pass OCI_DEFAULT for this parameter.

Comments
Forgets a heuristically completed global transaction. The server deletes the status of

the transaction from the system’s pending transaction table.

You set the XID of the transaction to be forgotten as an attribute of the transaction

handle (OCI_ATTR_XID).

Related Functions
OCITransCommit(), OCITransRollback()

Transaction Functions

OCI Relational Functions 15-205

OCITransPrepare()

Purpose
Prepares a transaction for commit.

Syntax
sword OCITransPrepare (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters
svchp (IN)
The service context handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

flags (IN)
You must pass OCI_DEFAULT for this parameter.

Comments
Prepares the specified global transaction for commit.

This call is valid only for global transactions.

The call returns OCI_SUCCESS_WITH_INFO if the transaction has not made any

changes. The error handle will indicate that the transaction is read-only. The flag

parameter is not currently used.

Related Functions
OCITransCommit(), OCITransForget()

OCITransRollback()

15-206 Oracle Call Interface Programmer’s Guide

OCITransRollback()

Purpose
Rolls back the current transaction.

Syntax
sword OCITransRollback (dvoid *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters
svchp (IN)
A service context handle. The transaction currently set in the service context handle

is rolled back.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

flags (IN)
You must pass a value of OCI_DEFAULT for this parameter.

Comments
The current transaction— defined as the set of statements executed since the last

OCITransCommit() or since OCISessionBegin()—is rolled back.

If the application is running under object mode then the modified or updated

objects in the object cache for this transaction are also rolled back.

Attempting to roll back a global transaction that is not currently active causes an

error.

Examples
For example code demonstrating the use of OCITransRollback() see the description of

OCITransCommit().

Related Functions
OCITransCommit()

Transaction Functions

OCI Relational Functions 15-207

OCITransStart()

Purpose
Sets the beginning of a transaction.

Syntax
sword OCITransStart (OCISvcCtx *svchp,
 OCIError *errhp,
 uword timeout,
 ub4 flags);

Parameters
svchp (IN/OUT)
The service context handle. The transaction context in the service context handle is

initialized at the end of the call if the flag specified a new transaction to be started.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

timeout (IN)
The time, in seconds, to wait for a transaction to become available for resumption

when OCI_TRANS_RESUME is specified. When OCI_TRANS_NEW is specified,

the timeout parameter indicates the number of seconds the transaction can be

inactive before it is automatically aborted by the system. A transaction is inactive

between the time it is detached (with OCITransDetach()) and the time it is resumed

with OCITransStart().

flags (IN)
Specifies whether a new transaction is being started or an existing transaction is

being resumed. Also specifies serializiability or read-only status. More than a single

value can be specified. By default, a read/write transaction is started. The flag

values are:

■ OCI_TRANS_NEW - starts a new transaction branch. By default starts a tightly

coupled and migratable branch.

■ OCI_TRANS_TIGHT - explicitly specifies a tightly coupled branch

■ OCI_TRANS_LOOSE - specifies a loosely coupled branch

■ OCI_TRANS_RESUME - resumes an existing transaction branch.

■ OCI_TRANS_READONLY - start a read-only transaction

OCITransStart()

15-208 Oracle Call Interface Programmer’s Guide

■ OCI_TRANS_SERIALIZABLE - start a serializable transaction

Comments
This function sets the beginning of a global or serializable transaction. The

transaction context currently associated with the service context handle is initialized

at the end of the call if the flags parameter specifies that a new transaction should

be started.

The XID of the transaction is set as an attribute of the transaction handle (OCI_

ATTR_XID)

Examples
The following examples demonstrate the use of OCI transactional calls for

manipulating global transactions.

Example 1
This example shows a single session operating on different branches. This concept

is illustrated by Figure 8–2, "Session Operating on Multiple Branches" on page 8-6.

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCISession *usrhp;
 OCIStmt *stmthp1, *stmthp2;
 OCITrans *txnhp1, *txnhp2;
 dvoid *tmp;
 XID gxid;
 text sqlstmt[128];

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 0, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

Transaction Functions

OCI Relational Functions 15-209

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&stmthp1, OCI_HTYPE_STMT, 0, 0);
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&stmthp2, OCI_HTYPE_STMT, 0, 0);

 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp, 0,
 OCI_ATTR_SERVER, errhp);

 /* set the external name and internal name in server handle */
 OCIAttrSet((dvoid *)srvhp, OCI_HTYPE_SERVER, (dvoid *) "demo", 0,
 OCI_ATTR_EXTERNAL_NAME, errhp);
 OCIAttrSet((dvoid *)srvhp, OCI_HTYPE_SERVER, (dvoid *) "txn demo", 0,
 OCI_ATTR_INTERNAL_NAME, errhp);

 /* allocate a user context handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"scott",
 (ub4)strlen("scott"), OCI_ATTR_USERNAME, errhp);
 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"tiger",
 (ub4)strlen("tiger"),OCI_ATTR_PASSWORD, errhp);

 OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS, 0);

 OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

 /* allocate transaction handle 1 and set it in the service handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&txnhp1, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 123, 1] */
 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 123 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 3;
 gxid.bqual_length = 1; /* bqual = 1 */
 gxid.data[3] = 1;

 OCIAttrSet((dvoid *)txnhp1, OCI_HTYPE_TRANS, (dvoid *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

OCITransStart()

15-210 Oracle Call Interface Programmer’s Guide

 /* start global transaction 1 with 60 second time to live when detached */
 OCITransStart(svchp, errhp, 60, OCI_TRANS_NEW);

 /* update scott.emp empno=7902, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMP SET SAL = SAL + 1 WHERE EMPNO = 7902");
 OCIStmtPrepare(stmthp1, errhp, sqlstmt, strlen(sqlstmt), OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp1, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* allocate transaction handle 2 and set it in the service handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&txnhp2, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 124, 1] */
 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 124 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 4;
 gxid.bqual_length = 1; /* bqual = 1 */
 gxid.data[3] = 1;

 OCIAttrSet((dvoid *)txnhp2, OCI_HTYPE_TRANS, (dvoid *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 2 with 90 second time to live when detached */
 OCITransStart(svchp, errhp, 90, OCI_TRANS_NEW);

 /* update scott.emp empno=7934, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMP SET SAL = SAL + 1 WHERE EMPNO = 7934");
 OCIStmtPrepare(stmthp2, errhp, sqlstmt, strlen(sqlstmt), OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp2, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* Resume transaction 1, increment salary and commit it */
 /* Set transaction handle 1 into the service handle */
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);

 /* attach to transaction 1, wait for 10 seconds if the transaction is busy */
 /* The wait is clearly not required in this example because no other */
 /* process/thread is using the transaction. It is only for illustration */

Transaction Functions

OCI Relational Functions 15-211

 OCITransStart(svchp, errhp, 10, OCI_TRANS_RESUME);
 OCIStmtExecute(svchp, stmthp1, errhp, 1, 0, 0, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* attach to transaction 2 and commit it */
 /* set transaction handle2 into the service handle */
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Example 2
This example demonstrates a single session operating on multiple branches that

share the same transaction.

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCISession *usrhp;
 OCIStmt *stmthp;
 OCITrans *txnhp1, *txnhp2;
 dvoid *tmp;
 XID gxid;
 text sqlstmt[128];

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 0, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

OCITransStart()

15-212 Oracle Call Interface Programmer’s Guide

 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&stmthp, OCI_HTYPE_STMT, 0, 0);

 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp, 0,
 OCI_ATTR_SERVER, errhp);

 /* set the external name and internal name in server handle */
 OCIAttrSet((dvoid *)srvhp, OCI_HTYPE_SERVER, (dvoid *) "demo", 0,
 OCI_ATTR_EXTERNAL_NAME, errhp);
 OCIAttrSet((dvoid *)srvhp, OCI_HTYPE_SERVER, (dvoid *) "txn demo2", 0,
 OCI_ATTR_INTERNAL_NAME, errhp);

 /* allocate a user context handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"scott",
 (ub4)strlen("scott"), OCI_ATTR_USERNAME, errhp);
 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"tiger",
 (ub4)strlen("tiger"),OCI_ATTR_PASSWORD, errhp);

 OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS, 0);

 OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

 /* allocate transaction handle 1 and set it in the service handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&txnhp1, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 123, 1] */
 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 123 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 3;
 gxid.bqual_length = 1; /* bqual = 1 */
 gxid.data[3] = 1;

 OCIAttrSet((dvoid *)txnhp1, OCI_HTYPE_TRANS, (dvoid *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 1 with 60 second time to live when detached */
 OCITransStart(svchp, errhp, 60, OCI_TRANS_NEW);

 /* update scott.emp empno=7902, increment salary */

Transaction Functions

OCI Relational Functions 15-213

 sprintf((char *)sqlstmt, "UPDATE EMP SET SAL = SAL + 1 WHERE EMPNO = 7902");
 OCIStmtPrepare(stmthp, errhp, sqlstmt, strlen(sqlstmt), OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* allocate transaction handle 2 and set it in the service handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&txnhp2, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 123, 2] */
 /* The global transaction will be tightly coupled with earlier transaction */
 /* There is not much practical value in doing this but the example */
 /* illustrates the use of tightly-coupled transaction branches */
 /* In a practical case the second transaction that tightly couples with */
 /* the first can be executed from a different process/thread */

 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 123 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 3;
 gxid.bqual_length = 1; /* bqual = 2 */
 gxid.data[3] = 2;

 OCIAttrSet((dvoid *)txnhp2, OCI_HTYPE_TRANS, (dvoid *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 2 with 90 second time to live when detached */
 OCITransStart(svchp, errhp, 90, OCI_TRANS_NEW);

 /* update scott.emp empno=7902, increment salary */
 /* This is possible even if the earlier transaction has locked this row */
 /* because the two global transactions are tightly coupled */
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* Resume transaction 1 and prepare it. This will return */
 /* OCI_SUCCESS_WITH_INFO because all branches except the last branch */
 /* are treated as read-only transactions for tightly-coupled transactions */

 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);

OCITransStart()

15-214 Oracle Call Interface Programmer’s Guide

 if (OCITransPrepare(svchp, errhp, (ub4) 0) == OCI_SUCCESS_WITH_INFO)
 {
 text errbuf[512];
 ub4 buflen;
 sb4 errcode;

 OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 printf("OCITransPrepare - %s\n", errbuf);
 }

 /* attach to transaction 2 and commit it */
 /* set transaction handle2 into the service handle */
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Related Functions
OCITransDetach()

Miscellaneous Functions

OCI Relational Functions 15-215

Miscellaneous Functions
This section describes the miscellaneous OCI functions.

Table 15–10 OCI Quick Reference

Function Purpose

OCIBreak() on page 15-216 Perform an immediate asynchronous break

OCIErrorGet() on page 15-217 Return error message and Oracle error

OCILdaToSvcCtx() on page 15-219 Toggle Lda_Def to service context handle

OCIPasswordChange() on page 15-220 Change password

OCIReset() on page 15-222 Called after OCIBreak() to reset asynchronous operation and
protocol

OCIServerVersion() on page 15-223 Get the Oracle version string

OCISvcCtxToLda() on page 15-224 Toggle service context handle to Lda_Def

OCIUserCallbackGet() on page 15-225 Identifies the callback that is registered for handle

OCIUserCallbackRegister() on page 15-227 Registers a user-created callback function

OCIBreak()

15-216 Oracle Call Interface Programmer’s Guide

OCIBreak()

Purpose
This call performs an immediate (asynchronous) abort of any currently executing

OCI function that is associated with a server.

Syntax
sword OCIBreak (dvoid *hndlp,
 OCIError *errhp);

Parameters
hndlp (IN/OUT)
The service context handle or the server context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

Comments
This call performs an immediate (asynchronous) abort of any currently executing

OCI function that is associated with a server. It is normally used to stop a

long-running OCI call being processed on the server.

This call can take either the service context handle or the server context handle as a

parameter to identify the function to be aborted.

Related Functions
OCIReset()

Miscellaneous Functions

OCI Relational Functions 15-217

OCIErrorGet()

Purpose
Returns an error message in the buffer provided and an ORACLE error.

Syntax
sword OCIErrorGet (dvoid *hndlp,
 ub4 recordno,
 text *sqlstate,
 sb4 *errcodep,
 text *bufp,
 ub4 bufsiz,
 ub4 type);

Parameters
hndlp (IN)
The error handle, in most cases, or the environment handle (for errors on

OCIEnvInit(), OCIHandleAlloc()).

recordno (IN)
Indicates the status record from which the application seeks info. Starts from 1.

sqlstate (OUT)
Not supported in release 8.0.

errcodep (OUT)
An ORACLE Error is returned.

bufp (OUT)
The error message text is returned.

bufsiz (IN)
The size of the buffer provide to get the error message.

type (IN)
The type of the handle (OCI_HTYPE_ERR or OCI_HTYPE_ENV).

Comments
Returns an error message in the buffer provided and an ORACLE error code. This

function does not support SQL state. This function can be called multiple times if

there are more than one diagnostic record for an error.

The error handle is originally allocated with a call to OCIHandleAlloc().

OCIErrorGet()

15-218 Oracle Call Interface Programmer’s Guide

Example
The following sample code demonstrates how you can use OCIErrorGet() in an

error-handling routine. This routine prints out the type of status code returned by

an OCI function, and if an error occurred, OCIErrorGet() retrieves the text of the

message, which is printed.

static void checkerr(errhp, status)
OCIError *errhp;
sword status;
{ text errbuf[512];
 ub4 buflen;
 ub4 errcode;
switch (status)
{ case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 printf("ErrorOCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 printf("ErrorOCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 printf("ErrorOCI_NO_DATA\n");
 break;
 case OCI_ERROR:
 OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 printf("Error%s\n", errbuf);
 break;
 case OCI_INVALID_HANDLE:
 printf("ErrorOCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 printf("ErrorOCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:
 printf("ErrorOCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

Related Functions
OCIHandleAlloc()

Miscellaneous Functions

OCI Relational Functions 15-219

OCILdaToSvcCtx()

Purpose
Converts a V7 Lda_Def to a V8 service context handle.

Syntax
sword OCILdaToSvcCtx (OCISvcCtx **svchpp,
 OCIError *errhp,
 Lda_Def *ldap);

Parameters
svchpp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

ldap (IN/OUT)
The Oracle7 logon data area returned by OCISvcCtxToLda() from this service

context.

Comments
Converts an Oracle7 Lda_Def to an Oracle release 8 service context handle. The

action of this call can be reversed by passing the resulting service context handle to

the OCISvcCtxToLda() function.

If the Service context has been converted to an Lda_Def, only Oracle7 calls may be

used. It is illegal to make Oracle OCI release 8 calls without first resetting the Lda_
Def to a service context.

The OCI_ATTR_IN_V8_MODE attribute of the server handle or service context

handle enables an application to determine whether the application is currently in

Oracle release 7 mode or Oracle release 8 mode. See Appendix A, "Handle and

Descriptor Attributes", for more information.

Related Functions
OCISvcCtxToLda()

OCIPasswordChange()

15-220 Oracle Call Interface Programmer’s Guide

OCIPasswordChange()

Purpose
This call allows the password of an account to be changed.

Syntax
sword OCIPasswordChange (OCISvcCtx *svchp,
 OCIError *errhp,
 CONST text *user_name,
 ub4 usernm_len,
 CONST text *opasswd,
 ub4 opasswd_len,
 CONST text *npasswd,
 sb4 npasswd_len,
 ub4 mode);

Parameters
svchp (IN/OUT)
A handle to a service context. The service context handle must be initialized and

have a server context handle associated with it.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

user_name (IN)
Specifies the user name. It points to a character string, whose length is specified in

usernm_len. This parameter must be NULL if the service context has been initialized

with an user session handle.

usernm_len (IN)
The length of the user name string specified in user_name. For a valid user name

string, usernm_len must be non-zero.

opasswd (IN)
Specifies the user’s old password. It points to a character string, whose length is

specified in opasswd_len.

opasswd_len (IN)
The length of the old password string specified in opasswd. For a valid password

string, opasswd_len must be non-zero.

Miscellaneous Functions

OCI Relational Functions 15-221

npasswd (IN)
Specifies the user’s new password. It points to a character string, whose length is

specified in npasswd_len which must be non-zero for a valid password string. If the

password complexity verification routine is specified in the user’s profile to verify

the new password’s complexity, the new password must meet the complexity

requirements of the verification function.

npasswd_len (IN)
Then length of the new password string specified in npasswd. For a valid password

string, npasswd_len must be non-zero.

mode (IN)
Can be OCI_DEFAULT and/or OCI_AUTH. If set to OCI_AUTH, the following

happens:

■ If a user session context is not created, this call creates the user session context

and changes the password. At the end of the call, the user session context is not

cleared. Hence the user remains logged in.

If the user session context is already created, this call just changes the password and

the flag has no effect on the session. Hence the user still remains logged in.

Comments
This call allows the password of an account to be changed. This call is similar to

OCISessionBegin() with the following differences:

■ If the user session is already established, it authenticates the account using the

old password and then changes the password to the new password

■ If the user session is not established, it establishes a user session and

authenticates the account using the old password, then changes the password

to the new password.

This call is useful when the password of an account has expired and

OCISessionBegin() returns an error (ORA-28001) or warning that indicates that the

password has expired.

Related Functions
OCISessionBegin()

OCIReset()

15-222 Oracle Call Interface Programmer’s Guide

OCIReset()

Purpose
Resets the interrupted asynchronous operation and protocol. Must be called if a

OCIBreak call had been issued while a non-blocking operation was in progress.

Syntax
sword OCIReset (dvoid *hndlp,
 OCIError *errhp);

Comments
This call is called in non-blocking mode ONLY. Resets the interrupted asynchronous

operation and protocol. Must be called if a OCIBreak call had been issued while a

non-blocking operation was in progress.

Parameters
hndlp (IN)
The service context handle or the server context handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

Related Functions
OCIBreak()

Miscellaneous Functions

OCI Relational Functions 15-223

OCIServerVersion()

Purpose
Returns the version string of the Oracle server.

Syntax
sword OCIServerVersion (dvoid *hndlp,
 OCIError *errhp,
 text *bufp,
 ub4 bufsz
 ub1 hndltype);

Parameters
hndlp (IN)
The service context handle or the server context handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

bufp (IN)
The buffer in which the version information is returned.

bufsz (IN)
The length of the buffer.

hndltype (IN)
The type of handle passed to the function.

Comments
This call returns the version string of the Oracle server. For example, the following

might be returned as the version string if an application is running on a 7.3.2 server:

Oracle7 Server Release 7.3.2.0.0 Production Release
PL/SQL Release 2.3.2.0.0 Production
CORE Version 3.5.2.0.0 Production
TNS for SEQUENT DYNIX/ptx: Version 2.3.2.0.0 Production
NLSRTL Version 3.2.2.0.0 Production

Related Functions
OCIErrorGet()

OCISvcCtxToLda()

15-224 Oracle Call Interface Programmer’s Guide

OCISvcCtxToLda()

Purpose
Toggles between a V8 service context handle and a V7 Lda_Def.

Syntax
sword OCISvcCtxToLda (OCISvcCtx *srvhp,
 OCIError *errhp,
 Lda_Def *ldap);

Parameters
svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the

event of an error.

ldap (IN/OUT)
A Logon Data Area for Oracle7-style OCI calls which is initialized by this call.

Comments
Toggles between an Oracle OCI release 8 service context handle and an Oracle7

Lda_Def.

This function can only be called after a service context has been properly initialized.

Once the service context has been translated to an Lda_Def, it can be used in release

7.x OCI calls (e.g., obindps(), ofen()).

Note: If there are multiple service contexts which share the same server handle,

only one can be in Oracle7 mode at any time.

The action of this call can be reversed by passing the resulting Lda_Def to the

OCILdaToSvcCtx() function.

The OCI_ATTR_IN_V8_MODE attribute of the server handle or service context

handle enables an application to determine whether the application is currently in

Oracle release 7 mode or Oracle release 8 mode. See Appendix A, "Handle and

Descriptor Attributes", for more information.

Related Functions
OCILdaToSvcCtx()

Miscellaneous Functions

OCI Relational Functions 15-225

OCIUserCallbackGet()

Purpose
Determines the callback that is registered for a handle.

Syntax
sword OCIUserCallbackGet (dvoid *hndlp,
 ub4 type,
 dvoid *ehndlp,
 ub4 fcode,
 ub1 when
 OCIUserCallback (*callbackp)
 (/*_
 dvoid *ctxp,
 dvoid *hndlp,
 ub4 type,
 ub4 fcode,
 ub1 when,
 sword returnCode,
 ub4 *errnop,
 va_list arglist
 _*/),
 dvoid **ctxpp);

Parameters
hndlp (IN)
This is the handle whose type is specified by the type parameter.

type (IN)
The handle type. The valid handle type is:

■ OCI_HTYPE_ENV - The callback is registered for all calls of the function

specified by fcode made on the environment handle.

ehndlp (IN)
The OCI error or environment handle. If there is an error, it is recorded in ehndlp
and this function returns OCI_ERROR. Diagnostic information can be obtained by

calling OCIErrorGet().

fcode (IN)
A unique function code of an OCI function. These are listed in Table 15–11, "OCI

Function Codes" on page 15-230.

OCIUserCallbackGet()

15-226 Oracle Call Interface Programmer’s Guide

when (IN)
Defines when the callback is invoked. Valid modes are:

■ OCI_CBTYPE_ENTRY - the callback is invoked on entry into the OCI function.

■ OCI_CBTYPE_EXIT - the callback is invoked before exit from the OCI function.

callbackp (OUT)
A pointer to a callback function pointer. This returns the function that is currently

registered for these values of fcode, when, and hndlp. The value returned would be

NULL if no callback is registered for this case. For information about the parameters

of callbackp see the description of OCIUserCallbackRegister() on page 15-227.

ctxpp (OUT)
A pointer to return context for the currently registered callback.

Comments
This function finds out what callback is registered for a particular handle.

For information on the restrictions of the use of callback functions, see "Restrictions

on Callback Functions" on page 9-16.

Related Functions
OCIUserCallbackRegister()

Miscellaneous Functions

OCI Relational Functions 15-227

OCIUserCallbackRegister()

Purpose
Register a user-created callback function

Syntax
sword OCIUserCallbackRegister (dvoid *hndlp,
 ub4 type,
 dvoid *ehndlp,
 OCIUserCallback (callback)
 (/*_
 dvoid *ctxp,
 dvoid *hndlp,
 ub4 type,
 ub4 fcode,
 ub1 when,
 sword returnCode,
 ub4 *errnop,
 va_list arglist
 _*/),
 dvoid *ctxp,
 ub4 fcode,
 ub1 when);

Parameters
hndlp (IN)
This is the handle whose type is specified by the type parameter.

type (IN)
The handle type. The valid handle type is:

■ OCI_HTYPE_ENV - The callback is registered for all calls of the function

specified by fcode made on the environment handle.

ehndlp (IN)
The OCI error or environment handle. If there is an error, it is recorded in ehndlp
and this function returns OCI_ERROR. Diagnostic information can be obtained by

calling OCIErrorGet(). Note that the because an error handle is not available within

OCIEnvCallback, so the environment handle is passed in as a ehndlp.

callback (IN)
A callback function pointer. The variable argument list in the OCIUserCallback

function prototype are the parameters passed to the OCI function. The typedef for

OCIUserCallback is described below later.

OCIUserCallbackRegister()

15-228 Oracle Call Interface Programmer’s Guide

If the entry callback returns anything other than OCI_CONTINUE, then the OCI

code is skipped and control is transferred to the exit callback if one exists.

If the exit callback returns anything other than OCI_CONTINUE, then that returned

value is returned by the OCI function; otherwise, the return value from the OCI

code or the entry callback (if the entry callback did not return OCI_CONTINUE and

essentially bypassed the OCI code) is returned by the call.

If a NULL value is passed in for callback, then the callback is removed for the when
value and the specified handle.

ctxp (IN)
A context pointer for the callback.

fcode (IN)
A unique function code of an OCI function. These are listed in Table 15–11, "OCI

Function Codes" on page 15-230.

when (IN)
Defines when the callback is invoked. Valid modes are:

■ OCI_CBTYPE_ENTRY - the callback is invoked on entry into the OCI function.

■ OCI_CBTYPE_EXIT - the callback is invoked before exit from the OCI function.

Comments
This function is used to register a user-created callback function. The OCI provides

the ability to register user-created callback functions with the OCI environment.

Such callbacks allow an application to:

1. Trace OCI calls for debugging and performance measurements.

2. Perform additional pre- or post-processing after selected OCI calls.

3. Substitute the body of a given function with proprietary code to execute on a

foreign data source.

The OCI supports two kinds of callbacks: entry callbacks and exit callbacks.

Entry callbacks are executed when a program enters an OCI function. If the entry

callback returns a value of OCI_CONTINUE, then the normal OCI-specific code is

executed. If the callback returns anything other than OCI_CONTINUE, the OCI

code does not execute.

After an OCI function successfully executes, or after a callback returns something

other than OCI_CONTINUE, program control transfers to the exit callback (if one is

registered).

Miscellaneous Functions

OCI Relational Functions 15-229

Note: If no exit callback is registered and the entry callback returns something

other than OCI_CONTINUE, then the return code from the entry callback is

returned from the associated OCI call. Similarly, if the exit callback returns

anything other than OCI_CONTINUE, then that return code is returned by the

OCI call.

To find out the callback that is registered for handle, you can use

OCIUserCallbackGet(). The prototype of this call is:.

The prototype of the OCIUserCallback typedef is:

typedef sword (*OCIUserCallback)
 (dvoid *ctxp,
 dvoid *hndlp,
 ub4 type,
 ub4 fcode,
 ub1 when,
 sword returnCode,
 ub4 *errnop,
 va_list arglist
);

The parameters to the OCIUserCallback function prototype are:

ctxp (IN)
The context passed in as ctxp in the register callback function.

hndlp (IN)
This is the handle whose type is specified in the type parameter. Essentially, it is the

handle on which the callback is invoked. Because we only allow a type of OCI_

HTYPE_ENV, therefore, the environment handle, env, would be passed-in here.

type (IN)
The type registered for the hndlp. The valid handle type is:

■ OCI_HTYPE_ENV - The callback is registered for all calls of the function

specified by fcode made on the environment handle.

fcode (IN)
The function code of the OCI call. These are listed in Table 15–11, "OCI Function

Codes" on page 15-230. Please note that callbacks can be registered for only the OCI

calls listed in Table 15–11, "OCI Function Codes".

when (IN)
The when value of the callback.

OCIUserCallbackRegister()

15-230 Oracle Call Interface Programmer’s Guide

returnCode (IN)
This is the return code from the previous callback or the OCI code. For the entry

callback, OCI_SUCCESS will always be passed in. For the exit callback, the return

code from the OCI code or the entry callback (if entry callback did not return OCI_

CONTINUE) is passed in.

errnop (IN/OUT)
When the entry callback is called, the input value of *errnop is 0. If the entry callback

is returning any value other than an OCI_CONTINUE, then it must also set an error

number in *errnop. This value is the set in the error handle passed in the OCI call.

For the exit callback, the input value of *errnop is the value of error number in the

error handle. Therefore, if the entry callback did not return OCI_CONTINUE, then

the out value of *errnop from the entry callback would be the one in the error

handle, and that value would be passed in here to the exit callback. If, on the other

hand, the entry callback returned OCI_CONTINUE, and the normal OCI code got

executed, then whatever value that is in the error handle due to the OCI call would

be passed in here.

Like the entry callback, if the exit callback returns anything other than an OCI_

CONTINUE, then it must also set the value of *errnop. If OCI_CONTINUE is not

returned by the exit callback, then the value of *errnop is set in the error handle.

Note that if a non-Oracle error number is returned in *errnop, then a callback must

also be registered for the OCIErrorGet() function to return appropriate text for the

error number.

arglist (IN)
These are the parameters to the OCI call passed in here as variable number of

arguments. They should be de-referenced using va_arg, as illustrated in the user

callback demonstration programs. See Appendix B, "OCI Demonstration Programs"

for a list of the available demonstration programs.

Table 15–11 OCI Function Codes

OCI Routine # OCI Routine # OCI Routine

1 OCIInitialize 33 OCITransStart 65 OCIDefineByPos

2 OCIHandleAlloc 34 OCITransDetach 66 OCIBindByPos

3 OCIHandleFree 35 OCITransCommit 67 OCIBindByName

4 OCIDescriptorAlloc 36 (not used) 68 OCILobAssign

5 OCIDescriptorFree 37 OCIErrorGet 69 OCILobIsEqual

6 OCIEnvInit 38 OCILobFileOpen 70 OCILobLocatorIsInit

Miscellaneous Functions

OCI Relational Functions 15-231

Related Functions
OCIUserCallbackGet()

7 OCIServerAttach 39 OCILobFileClose 71 OCILobEnableBuffering

8 OCIServerDetach 40 (not used) 72 OCILobCharSetID

9 (not used) 41 (not used) 73 OCILobCharSetForm

10 OCISessionBegin 42 OCILobCopy 74 OCILobFileSetName

11 OCISessionEnd 43 OCILobAppend 75 OCILobFileGetName

12 OCIPasswordChange 44 OCILobErase 76 OCILogon

13 OCIStmtPrepare 45 OCILobGetLength 77 OCILogoff

14 (not used) 46 OCILobTrim 78 OCILobDisableBuffering

15 (not used) 47 OCILobRead 79 OCILobFlushBuffer

16 (not used) 48 OCILobWrite 80 OCILobLoadFromFile

17 OCIBindDynamic 49 (not used) 81 OCILobOpen

18 OCIBindObject 50 OCIBreak 82 OCILobClose

19 (not used) 51 OCIServerVersion 83 OCILobIsOpen

20 OCIBindArrayOfStruct 52 (not used) 84 OCILobFileIsOpen

21 OCIStmtExecute 53 (not used) 85 OCILobFileExists

22 (not used) 54 OCIAttrGet 86 OCILobFileCloseAll

23 (not used) 55 OCIAttrSet 87 OCILobCreateTemporary

24 (not used) 56 OCIParamSet 88 OCILobFreeTemporary

25 OCIDefineObject 57 OCIParamGet 89 OCILobIsTemporary

26 OCIDefineDynamic 58 OCIStmtGetPieceInfo 90 OCIAQEnq

27 OCIDefineArrayOfStruct 59 OCILdaToSvcCtx 91 OCIAQDeq

28 OCIStmtFetch 60 (not used) 92 OCIReset

29 OCIStmtGetBindInfo 61 OCIStmtSetPieceInfo 93 OCISvcCtxToLda

30 (not used) 62 OCITransForget 94 OCILobLocatorAssign

31 (not used) 63 OCITransPrepare 95 (not used)

32 OCIDescribeAny 64 OCITransRollback 96 OCIAQListen

OCI Routine # OCI Routine # OCI Routine

OCIUserCallbackRegister()

15-232 Oracle Call Interface Programmer’s Guide

OCI Navigational and Type Functions 16-1

16
OCI Navigational and Type Functions

This chapter describes the OCI navigational functions which are used to navigate

through objects retrieved from an Oracle database server. It also contains the

descriptions of the functions which are used to obtain type descriptor objects

(TDOs). The chapter contains the following sections:

■ Introduction

■ OCI Flush or Refresh Functions

■ OCI Mark or Unmark Object and Cache Functions

■ OCI Get Object Status Functions

■ OCI Miscellaneous Object Functions

■ OCI Pin, Unpin, and Free Functions

■ OCI Type Information Accessor Functions

Note: The functions described in this chapter are only available if you have

installed the Oracle8i Enterprise Edition.

Introduction

16-2 Oracle Call Interface Programmer’s Guide

Introduction
In an object navigational paradigm, data is represented as a graph of objects

connected by references. Objects in the graph are reached by following the

references. The OCI provides a navigational interface to objects in the Oracle server.

Those calls are described in this chapter.

The OCI object environment is initialized when the application calls OCIInitialize()
in OCI_OBJECT mode.

See Also: For more information about using the calls in this chapter, refer to

Chapter 10, "OCI Object-Relational Programming", and Chapter 13, "Object

Cache and Object Navigation".

Object Types and Lifetimes
An object instance is an occurrence of a type defined in an Oracle database. This

section describes how an object instance can be represented in OCI. See Figure 16–1

on page 16-3. In OCI, an object instance can be classified based on the type, the

lifetime and referenceability:

■ A persistent object is an instance of an object type. A persistent object resides in

a row of a table in the server and can exist longer than the duration of a session

(connection). Persistent objects can be identified by object references which

contain the object identifiers. A persistent object is obtained by pinning its

object reference.

■ A transient object is an instance of an object type. A transient object cannot exist

longer than the duration of a session, and it is used to contain temporary

computing results. Transient objects can also be identified by references which

contain transient object identifiers.

■ A value is an instance of an user-defined type (object type or collection type) or

any built-in Oracle type. Unlike objects, values of object types are identified by

memory pointers, rather than by references.

A value can be standalone or embedded. A standalone value is usually obtained by

issuing a select statement. OCI also allows the client program to select a row of

object table into a value by issuing a SQL statement. A referenceable object in the

database can be represented as a value which cannot be identified by a reference. A

standalone value can also be an out-of-line attribute in an object, such as

VARCHAR or raw, or an out-of-line element in a collection, such as VARCHAR,

raw, or object.

Introduction

OCI Navigational and Type Functions 16-3

An embedded value is physically included in a containing instance. An embedded

value can be an in-line attribute in an object. such as number or nested object, or an

in-line element in a collection.

All values are considered to be transient by OCI, which means that OCI does not

support automatic flushing a value to the database, and the client has to explicitly

execute a SQL statement to store a value into the database. For embedded values,

they are flushed when their containing instance are flushed.

Figure 16–1 shows how instances can be classified according to their type and

lifetime:

Figure 16–1 Classification of Instances by Type and Lifetime

The distinction between various instances is further illustrated by the following

table:

Persistent Object Transient Object Value

Type object type object type object type, built-in,
collection

Maximum Lifetime until object is deleted session session

Referenceable yes yes no

Embeddable no no yes

Lifetime

Type

Instance

OBJECT VALUE

PERSISTENT TRANSIENT

Introduction

16-4 Oracle Call Interface Programmer’s Guide

Terminology
In the remainder of this chapter, the following terms will be used:

■ An object can be generally used to refer to a persistent object, a transient object,

a standalone value of object type, or an embedded value of object type.

■ A referenceable object refers to a persistent object or a transient object.

■ A standalone object refers to a persistent object, a transient object or a standalone

value of object type.

■ An embedded object refers to a embedded value of object type.

■ An object is dirty if it has been created (newed), or marked updated or deleted.

For a further discussion of the terms used to refer to different types of objects,

please see "Persistent Objects, Transient Objects, and Values" on page 10-5.

The Function Syntax
The entries for each function contain the following information:

Purpose
A brief description of what the function does.

Syntax
A code snippet showing the syntax for calling the function, including the ordering

and types of the parameters.

Comments
Detailed information about the function if available. This may include restrictions

on the use of the function, or other information that might be useful when using the

function in an application.

Parameters
A description of each of the function’s parameters. This includes the parameter’s

mode. The mode of a parameter has three possible values, as described below:

Mode Description

IN A parameter that passes data to Oracle

OUT A parameter that receives data from Oracle on this or a subsequent call

IN/OUT A parameter that passes data on the call and receives data on the return
from this or a subsequent call.

Introduction

OCI Navigational and Type Functions 16-5

Returns
A description of what value is returned by the function if the function returns

something other than the standard return codes listed above.

Related Functions
A list of related calls which may provide additional useful information.

Navigational Function Return Values
The OCI navigational functions typically return one of the following values:

Function-specific return information follows the description of each function in this

chapter. Information about specific error codes returned by each function is

presented in the following section.

See Also: For more information about return codes and error handling, see the

section "Error Handling" on page 2-27.

Server Roundtrips for Cache and Object Functions
For a table showing the number of server roundtrips required for individual

OCI cache and object functions, refer to Appendix C, "OCI Function Server

Roundtrips".

Return Value Meaning

OCI_SUCCESS The operation succeeded

OCI_ERROR The operation failed. The specific error can be retrieved by
calling OCIErrorGet() on the error handle passed to the
function.

OCI_INVALID_HANDLE The environment or error handle passed to the function is
NULL.

Introduction

16-6 Oracle Call Interface Programmer’s Guide

Navigational Function Error Codes
Table 16–1 lists the external Oracle error codes which can be returned by each of the

OCI navigational functions. The list following the table identifies what each error

represents.

Table 16–1 OCI Navigational Functions Error Codes

Function Possible ORA Errors

OCICacheFlush() 24350, 21560, 21705

OCICacheFree() 24350, 21560, 21705

OCICacheRefresh() 24350, 21560, 21705

OCICacheUnmark() 24350, 21560, 21705

OCICacheUnpin() 24350, 21560, 21705

OCIObjectArrayPin() 24350, 21560

OCIObjectCopy() 24350, 21560, 21705, 21710

OCIObjectExists() 24350, 21560, 21710

OCIObjectFlush() 24350, 21560, 21701, 21703, 21708, 21710

OCIObjectFree() 24350, 21560, 21603, 21710

OCIObjectGetAttr() 21560, 21600, 22305

OCIObjectGetInd() 24350, 21560, 21710

OCIObjectGetTypeRef() 24350, 21560, 21710

OCIObjectIsDirty() 24350, 21560, 21710

OCIObjectIsLocked() 24350, 21560, 21710

OCIObjectLock() 24350, 21560, 21701, 21708, 21710

OCIObjectLockNoWait() 24350, 21560, 21701, 21708, 21710

OCIObjectMarkDelete() 24350, 21560, 21700, 21701, 21702, 21710

OCIObjectMarkDeleteByRef() 24350, 21560

OCIObjectMarkUpdate() 24350, 21560, 21700, 21701, 21710

OCIObjectNew() 24350, 21560, 21705, 21710

OCIObjectPin() 24350, 21560, 21700, 21702

OCIObjectPinCountReset() 24350, 21560, 21710

OCIObjectPinTable() 24350, 21560, 21705

Introduction

OCI Navigational and Type Functions 16-7

The ORA errors in Table 16–1 have the following meanings.

■ ORA-21560 - name argument should not be NULL

■ ORA-21600 - path expression too long

■ ORA-21601 - attribute is not an instance of user-defined type

■ ORA-21603 - cannot free a dirtied persistent object

■ ORA-21700 - object does not exist or has been deleted

■ ORA-21701 - invalid object

■ ORA-21702 - object is not instantiated in the cache

■ ORA-21703 - cannot flush an object that is not modified

■ ORA-21704 - terminate cache or connection without flushing

■ ORA-21705 - service context is invalid

■ ORA-21708 - operations cannot be performed on a transient object

■ ORA-21709 - operations can only be performed on a current object

■ ORA-21710 - invalid pointer or value passed to the function

■ ORA-22279 - cannot perform operation with LOB buffering enabled

■ ORA-22305 - name argument is invalid

■ ORA-24350 - this OCI call is not allowed from external subroutines

OCIObjectRefresh() 24350, 21560, 21709, 21710

OCIObjectSetAttr() 21560, 21600, 22305, 22279, 21601

OCIObjectUnmark() 24350, 21560, 21710

OCIObjectUnmarkByRef() 24350, 21560

OCIObjectUnpin() 24350, 21560, 21710

OCIOjectGetObjectRef() 24350, 21560, 21710

Table 16–1 OCI Navigational Functions Error Codes (Cont.)

Function Possible ORA Errors

OCI Flush or Refresh Functions

16-8 Oracle Call Interface Programmer’s Guide

OCI Flush or Refresh Functions
This section describes the OCI flush or refresh functions.

Table 16–2 OCI Flush or Refresh Functions Quick Reference

Function/Page Purpose

OCICacheFlush() on page 16-9 Flush modified persistent objects in cache to server

OCICacheRefresh() on page 16-11 Refresh pinned persistent objects

OCIObjectFlush() on page 16-13 Flush a modified persistent object to the server

OCIObjectRefresh() on page 16-14 Refresh a persistent object

OCI Flush or Refresh Functions

OCI Navigational and Type Functions 16-9

OCICacheFlush()

Purpose
Flushes modified persistent objects to the server

Syntax
sword OCICacheFlush (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 dvoid *context,
 OCIRef *(*get)
 (dvoid *context,
 ub1 *last),
 OCIRef **ref);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context.

context (IN) [optional]
Specifies an user context that is an argument to the client callback function get. This

parameter is set to NULL if there is no user context.

get (IN) [optional]
A client-defined function which acts an iterator to retrieve a batch of dirty objects

that need to be flushed. If the function is not NULL, this function will be called to

get a reference of a dirty object. This is repeated until a null reference is returned by

the client function or the parameter last is set to TRUE. The parameter context is
passed to get() for each invocation of the client function. This parameter should be

NULL if user callback is not given. If the object that is returned by the client

function is not a dirtied persistent object, the object is ignored.

All the objects that are returned from the client function must be newed or pinned

using the same service context, otherwise an error is signalled. Note that the cache

flushes the returned objects in the order in which they were marked dirty.

OCICacheFlush()

16-10 Oracle Call Interface Programmer’s Guide

If this parameter is passed as NULL (e.g., no client-defined function is provided),

then all dirty persistent objects for the given service context are flushed in the order

in which they were dirtied.

ref (OUT) [optional]
If there is an error in flushing the objects (*ref) will point to the object that is causing

the error. If ref is NULL, then the object will not be returned. If *ref is NULL, then a

reference will be allocated and set to point to the object. If *ref is not NULL, then the

reference of the object is copied into the given space. If the error is not caused by

any of the dirtied object, the given REF is initialized to be a NULL reference

(OCIRefIsNull(*ref) is TRUE).

The REF is allocated for session duration (OCI_DURATION_SESSION). The

application can free the allocated REF using the OCIObjectFree() function.

Comments
This function flushes the modified persistent objects from the object cache to the

server. The objects are flushed in the order that they are newed or marked updated

or deleted. See OCIObjectFlush() for more information about flushing.

This function incurs at most one network round-trip.

Related Functions
OCIObjectFlush()

OCI Flush or Refresh Functions

OCI Navigational and Type Functions 16-11

OCICacheRefresh()

Purpose
Refreshes all pinned persistent objects in the cache.

Syntax
sword OCICacheRefresh (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCIRefreshOpt option,
 dvoid *context,
 OCIRef *(*get)(dvoid *context),
 OCIRef **ref);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context.

option (IN) [optional]
If OCI_REFRESH_LOADED is specified, all objects that are loaded within the

transaction are refreshed. If the option is OCI_REFRESH_LOADED and the

parameter get is not NULL, this function will ignore the parameter.

context (IN) [optional]
Specifies an user context that is an argument to the client callback function get. This

parameter is set to NULL if there is no user context.

get (IN) [optional]
A client-defined function which acts an iterator to retrieve a batch of objects that

need to be refreshed. If the function is not NULL, this function will be called to get a

reference of an object. If the reference is not NULL, then the object will be refreshed.

These steps are repeated until a null reference is returned by this function. The

parameter context is passed to get() for each invocation of the client function. This

parameter should be NULL if user callback is not given.

OCICacheRefresh()

16-12 Oracle Call Interface Programmer’s Guide

ref (OUT) [optional]
If there is an error in refreshing the objects, (*ref) will point to the object that is

causing the error. If ref is NULL, then the object will not be returned. If *ref is NULL,

then a reference will be allocated and set to point to the object. If *ref is not NULL,

then the reference of the object is copied into the given space. If the error is not

caused by any of the object, the given ref is initialized to be a NULL reference

(OCIRefIsNull(*ref) is TRUE).

Comments
This function refreshes all pinned persistent objects and all unpinned persistent

objects are freed from the object cache.

For more information about refreshing, see the description of OCIObjectRefresh(),
and the section "Refreshing an Object Copy" on page 13-11.

Warning: When objects are refreshed, the secondary-level memory of those

objects could potentially move to a different place in memory. As a result, any

pointers to attributes which were saved prior to this call may be invalidated.

Examples of attributes using secondary-level memory include OCIString *,

OCIColl *, and OCIRaw *.

Related Functions
OCIObjectRefresh()

OCI Flush or Refresh Functions

OCI Navigational and Type Functions 16-13

OCIObjectFlush()

Purpose
Flushes a modified persistent object to the server.

Syntax
sword OCIObjectFlush (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object. The object must be pinned before this call.

Comments
This function flushes a modified persistent object to the server. An exclusive lock is

obtained implicitly for the object when it is flushed. When the object is written to

the server, triggers may be fired. This function returns an error for transient objects

and values, and for unmodified persistent objects.

Objects can be modified by triggers at the server. To keep objects in the cache

consistent with the database, an application can free or refresh objects in the cache.

If the object to flush contains an internal LOB attribute and the LOB attribute was

modified due to an OCIObjectCopy(), OCILobAssign(), or OCILobLocatorAssign() or by

assigning another LOB locator to it, then the flush makes a copy of the LOB value

that existed in the source LOB at the time of the assignment or copy of the internal

LOB locator or object. For more information on LOB functions, see "LOB Functions"

on page 15-107.

Related Functions
OCIObjectPin(), OCICacheFlush()

OCIObjectRefresh()

16-14 Oracle Call Interface Programmer’s Guide

OCIObjectRefresh()

Purpose
Refreshes a persistent object from the most current database snapshot.

Syntax
sword OCIObjectRefresh (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object, which must already be pinned.

Comments
This function refreshes an object with data retrieved from the latest snapshot in the

server. An object should be refreshed when the objects in the object cache are

inconsistent with the objects at the server.

Note: When an object is flushed to the server, triggers can be fired to modify

more objects in the server. The same objects (modified by the triggers) in the

object cache become out-of-date, and must be refreshed before they can be

locked or flushed.

This occurs when the user issues a SQL statement or PL/SQL procedure to

modify any object in the server.

Warning: Modifications made to objects (dirty objects) since the last flush are

lost if object are refreshed by this function.

The various meta-attribute flags and durations of an object are modified after being

refreshed:

Object Attribute Status After Refresh

existent set to appropriate value

OCI Flush or Refresh Functions

OCI Navigational and Type Functions 16-15

The object that is refreshed will be replaced-in-place. When an object is

replaced-in-place, the top-level memory of the object will be reused so that new

data can be loaded into the same memory address. The top level memory of the null

structure is also reused. Unlike the top-level memory chunk, the secondary memory

chunks will be freed and reallocated.

You should be careful when writing functionality that holds on to a pointer to the

secondary memory chunk, such as assigning the address of a secondary memory to

a local variable, because this pointer can become invalid after the object is refreshed.

This function does nothing for transient objects or values.

Related Functions
OCICacheRefresh()

pinned unchanged

allocation duration unchanged

pin duration unchanged

Object Attribute Status After Refresh

OCI Mark or Unmark Object and Cache Functions

16-16 Oracle Call Interface Programmer’s Guide

OCI Mark or Unmark Object and Cache Functions
This section describe the OCI mark or unmark Object and Cache functions.

Table 16–3 OCI Navigational Functions Quick Reference

Function/Page Purpose

OCICacheUnmark() on page 16-17 Unmarks objects in the cache

OCIObjectMarkDelete() on page 16-18 Mark an object deleted / delete a value instance

OCIObjectMarkDeleteByRef() on
page 16-19

Mark an object deleted given a ref

OCIObjectMarkUpdate() on page 16-20 Mark an object as updated/dirty

OCIObjectUnmark() on page 16-22 Unmarks an object

OCIObjectUnmarkByRef() on page 16-23 Unmarks an object, given a ref to it

OCI Mark or Unmark Object and Cache Functions

OCI Navigational and Type Functions 16-17

OCICacheUnmark()

Purpose
Unmarks all dirty objects in the object cache.

Syntax
sword OCICacheUnmark (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context.

Comments
If a connection is specified, this function unmarks all dirty objects in that

connection. Otherwise, all dirty objects in the cache are unmarked. See

OCIObjectUnmark() on page 16-22 for more information about unmarking an object.

Related Functions
OCIObjectUnmark()

OCIObjectMarkDelete()

16-18 Oracle Call Interface Programmer’s Guide

OCIObjectMarkDelete()

Purpose
Marks a standalone instance as deleted, given a pointer to the instance.

Syntax
sword OCIObjectMarkDelete (OCIEnv *env,
 OCIError *err,
 dvoid *instance);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to the instance. It must be standalone, and if it is an object it must be

pinned.

Comments
This function accepts a pointer to a standalone instance and marks the object as

deleted. The object is freed according to the following rules:

For Persistent Objects
The object is marked deleted. The memory of the object is not freed. The object is

deleted in the server when the object is flushed.

For Transient Objects
The object is marked deleted. The memory of the object is not freed.

For Values
This function frees a value immediately.

Related Functions
OCIObjectMarkDeleteByRef(), OCIObjectGetProperty()

OCI Mark or Unmark Object and Cache Functions

OCI Navigational and Type Functions 16-19

OCIObjectMarkDeleteByRef()

Purpose
Marks an object as deleted, given a reference to the object.

Syntax
sword OCIObjectMarkDeleteByRef (OCIEnv *env,
 OCIError *err,
 OCIRef *object_ref);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object_ref (IN)
Reference to the object to be deleted.

Comments
This function accepts a reference to an object, and marks the object designated by

object_ref as deleted. The object is marked and freed as follows:

For Persistent Objects
If the object is not loaded, then a temporary object is created and is marked deleted.

Otherwise, the object is marked deleted.

The object is deleted in the server when the object is flushed.

For Transient Objects
The object is marked deleted. The object is not freed until it is unpinned.

Related Functions
OCIObjectMarkDelete(), OCIObjectGetProperty()

OCIObjectMarkUpdate()

16-20 Oracle Call Interface Programmer’s Guide

OCIObjectMarkUpdate()

Purpose
Marks a persistent object as updated, or dirty.

Syntax
sword OCIObjectMarkUpdate (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object, which must already be pinned.

Comments
This function marks a persistent object as updated, or dirty. The following special

rules apply to different types of objects. The dirty status of an object may be checked

by calling OCIObjectIsLocked().

For Persistent Objects
This function marks the specified persistent object as updated.

The persistent objects will be written to the server when the object cache is flushed.

The object is not locked or flushed by this function. It is an error to update a deleted

object.

After an object is marked updated and flushed, this function must be called again to

mark the object as updated if it has been dirtied after it is being flushed.

For Transient Objects
This function marks the specified transient object as updated. The transient objects

will NOT be written to the server. It is an error to update a deleted object.

For Values
This function is an no-op for values.

OCI Mark or Unmark Object and Cache Functions

OCI Navigational and Type Functions 16-21

For more information about the use of this function, see "Marking Objects and

Flushing Changes" on page 10-14.

Related Functions
OCIObjectPin(), OCIObjectGetProperty()

OCIObjectUnmark()

16-22 Oracle Call Interface Programmer’s Guide

OCIObjectUnmark()

Purpose
Unmarks an object as dirty.

Syntax
sword OCIObjectUnmark (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
Pointer to the persistent object. It must be pinned.

Comments

For Persistent Objects and Transient Objects
This function unmarks the specified persistent object as dirty. Changes that are

made to the object will not be written to the server. If the object is marked locked, it

remains marked locked. The changes that have already made to the object will not

be undone implicitly.

For Values
This function is an no-op for values. This means that the function will have no effect

if called on a value.

Related Functions
OCIObjectUnmarkByRef()

OCI Mark or Unmark Object and Cache Functions

OCI Navigational and Type Functions 16-23

OCIObjectUnmarkByRef()

Purpose
Unmarks an object as dirty, given a REF to the object.

Syntax
sword OCIObjectUnmarkByRef (OCIEnv *env,
 OCIError *err,
 OCIRef *ref);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ref (IN)
Reference of the object. It must be pinned.

Comments
This function unmarks an object as dirty. This function is identical to

OCIObjectUnmark(), except that it takes a REF to the object as an argument.

For Persistent Objects and Transient Objects
This function unmarks the specified persistent object as dirty. Changes that are

made to the object will not be written to the server. If the object is marked locked, it

remains marked locked. The changes that have already made to the object will not

be undone implicitly.

For Values
This function is a no-op for values.

Related Functions
OCIObjectUnmark()

OCI Get Object Status Functions

16-24 Oracle Call Interface Programmer’s Guide

OCI Get Object Status Functions
This section describes the OCI get object status functions.

Table 16–4 OCI Navigational Functions Quick Reference

Function/Page Purpose

OCIObjectExists() on page 16-25 Get the existent status of an instance

OCIObjectGetProperty() on page 16-26 Get the status of a particular object property

OCIObjectIsLocked() on page 16-31 Get the dirtied status of an instance

OCIObjectIsLocked() on page 16-31 Get the locked status of an instance

OCI Get Object Status Functions

OCI Navigational and Type Functions 16-25

OCIObjectExists()

Purpose
Returns the existence meta-attribute of a standalone instance.

Syntax
sword OCIObjectExists (OCIEnv *env,
 OCIError *err,
 dvoid *ins,
 boolean *exist);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ins (IN)
Pointer to an instance. If it is an object, it must be pinned.

exist (OUT)
Return value for the existence status.

Comments
This function returns the existence of an instance. If the instance is a value, this

function always returns TRUE. The instance must be a standalone persistent or

transient object.

For more information about object meta-attributes, see "Object Meta-Attributes" on

page 10-17.

Related Functions
OCIObjectPin()

OCIObjectGetProperty()

16-26 Oracle Call Interface Programmer’s Guide

OCIObjectGetProperty()

Purpose
Retrieve a given property of an object.

Syntax
sword OCIObjectGetProperty (OCIEnv *envh,
 OCIError *errh,
 CONST dvoid *obj,
 OCIObjectPropId propertyId,
 dvoid *property,
 ub4 *size);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

obj (IN)
The object whose property is returned.

propertyId (IN)
The identifier which identifies the desired property.

property (OUT)
The buffer into which the desired property is copied.

size (IN/OUT)
On input, this parameter specifies the size of the property buffer passed by caller.

On output it contains the size in bytes of the property returned. This parameter is

required for string-type properties only, such as OCI_OBJECTPROP_SCHEMA,

OCI_OBJECTPROP_TABLE). For non-string properties this parameter is ignored

since the size is fixed.

Comments
This function returns the specified property of the object. The desired property is

identified by propertyId. The property value is copied into property and for string

typed properties the string size is returned via size.

OCI Get Object Status Functions

OCI Navigational and Type Functions 16-27

Objects are classified as persistent, transient and value depending upon the lifetime

and referenceability of the object. Some of the properties are applicable only to

persistent objects and some others only apply to persistent and transient objects. An

error is returned if the user tries to get a property which in not applicable to the

given object. To avoid such an error, the user should first check whether the object is

persistent or transient or value (OCI_OBJECTPROP_LIFETIME property) and then

appropriately query for other properties.

The different property ids and the corresponding type of property argument are

given below.

OCI_OBJECTPROP_LIFETIME
This identifies whether the given object is a persistent object or a transient object or

a value instance. The property argument must be a pointer to a variable of type

OCIObjectLifetime. Possible values include:

■ OCI_OBJECT_PERSISTENT

■ OCI_OBJECT_TRANSIENT

■ OCI_OBJECT_VALUE

OCI_OBJECTPROP_SCHEMA
This returns the schema name of the table in which the object exists. An error is

returned if the given object points to a transient instance or a value. If the input

buffer is not big enough to hold the schema name an error is returned, the error

message will communicate the required size. Upon success, the size of the returned

schema name in bytes is returned via size. The property argument must be an array

of type text and size should be set to size of array in bytes by the caller.

OCI_OBJECTPROP_TABLE
This returns the table name in which the object exists. An error is returned if the

given object points to a transient instance or a value. If the input buffer is not big

enough to hold the table name an error is returned, the error message will

communicate the required size. Upon success, the size of the returned table name in

bytes is returned via size. The property argument must be an array of type text and

size should be set to size of array in bytes by the caller.

OCI_OBJECTPROP_PIN_DURATION
This returns the pin duration of the object. An error is returned if the given object

points to a value instance. The property argument must be a pointer to a variable of

type OCIDuration. Valid values include

■ OCI_DURATION_SESSION

■ OCI_DURATION_TRANS

OCIObjectGetProperty()

16-28 Oracle Call Interface Programmer’s Guide

For more information about durations, see "Object Duration" on page 13-14.

OCI_OBJECTPROP_ALLOC_DURATION
This returns the allocation duration of the object. The property argument must be a

pointer to a variable of type OCIDuration. Valid values include:

■ OCI_DURATION_SESSION

■ OCI_DURATION_TRANS

For more information about durations, see "Object Duration" on page 13-14.

OCI_OBJECTPROP_LOCK
This returns the lock status of the object. The possible lock statuses are enumerated

by OCILockOpt. An error is returned if the given object points to a transient or

value instance. The property argument must be a pointer to a variable of type

OCILockOpt. Note, the lock status of an object can also be retrieved by calling

OCIObjectIsLocked(). Valid values include:

■ OCI_LOCK_NONE - for no lock

■ OCI_LOCK_X - for an exclusive lock

■ OCI_LOCK_X_NOWAIT - for an exclusive lock with the NOWAIT option.

See Also: For information about the NOWAIT option, see "Locking With the

NOWAIT Option" on page 13-13.

OCI_OBJECTPROP_MARKSTATUS
This returns the dirty status and indicates whether the object is a new object,

updated object or deleted object. An error is returned if the given object points to a

transient or value instance. The property argument must be of type

OCIObjectMarkStatus. Valid values include:

■ OCI_OBJECT_NEW

■ OCI_OBJECT_DELETED

■ OCI_OBJECT_UPDATED

The following macros are available to test the object mark status:

■ OCI_OBJECT_IS_UPDATED (flag)

■ OCI_OBJECT_IS_DELETED (flag)

■ OCI_OBJECT_IS_NEW (flag)

■ OCI_OBJECT_IS_DIRTY (flag)

OCI Get Object Status Functions

OCI Navigational and Type Functions 16-29

OCI_OBJECTPROP_VIEW
This identifies whether the specified object is a view object or not. If the property

value returned is TRUE, it indicates the object is a view otherwise it is not. An error

is returned if the given object points to a transient or value instance. The property
argument must be of type boolean.

Related Functions
OCIObjectLock(), OCIObjectMarkDelete(), OCIObjectMarkUpdate(), OCIObjectPin(),
OCIObjectPin()

OCIObjectIsDirty()

16-30 Oracle Call Interface Programmer’s Guide

OCIObjectIsDirty()

Purpose
Checks to see if an object is marked as dirty.

Syntax
sword OCIObjectIsDirty (OCIEnv *env,
 OCIError *err,
 dvoid *ins,
 boolean *dirty);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ins (IN)
Pointer to an instance.

dirty (OUT)
Return value for the dirty status.

Comments
The instance passed to this function must be standalone. If the instance is an object,

the instance must be pinned.

This function returns the dirty status of an instance. If the instance is a value, this

function always returns FALSE for the dirty status.

Related Functions
OCIObjectMarkUpdate(), OCIObjectGetProperty()

OCI Get Object Status Functions

OCI Navigational and Type Functions 16-31

OCIObjectIsLocked()

Purpose
Get lock status of an object.

Syntax
sword OCIObjectIsLocked (OCIEnv *env,
 OCIError *err,
 dvoid *ins,
 boolean *lock);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ins (IN)
Pointer to an instance. The instance must be standalone, and if it is an object it must

be pinned.

lock (OUT)
Return value for the lock status.

Comments
This function returns the lock status of an instance. If the instance is a value, this

function always returns FALSE.

Related Functions
OCIObjectLock(), OCIObjectGetProperty()

OCI Miscellaneous Object Functions

16-32 Oracle Call Interface Programmer’s Guide

OCI Miscellaneous Object Functions
This section describes the miscellaneous object functions.

Table 16–5 OCI Navigational Functions Quick Reference

Function/Page Purpose

OCIObjectCopy() on page 16-33 Copy one instance to another

OCIObjectGetAttr() on page 16-35 Gets an object attribute

OCIObjectGetInd() on page 16-37 Get null structure of an instance

OCIObjectGetObjectRef() on page 16-38 Return reference to a given object

OCIObjectGetTypeRef() on page 16-39 Get a reference to a TDO of an instance

OCIObjectLock() on page 16-40 Lock a persistent object

OCIObjectLockNoWait() on page 16-41 Lock a persistent object but do not wait for the lock

OCIObjectPin() on page 16-54 Create a new instance

OCIObjectSetAttr() on page 16-45 Sets an object attribute

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 16-33

OCIObjectCopy()

Purpose
Copies a source instance to a destination.

Syntax
sword OCIObjectCopy (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 dvoid *source,
 dvoid *null_source,
 dvoid *target,
 dvoid *null_target,
 OCIType *tdo,
 OCIDuration duration,
 ub1 option);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
An OCI service context handle, specifying the service context on which the copy

operation is taking place

source (IN)
A pointer to the source instance; if it is an object, it must be pinned. See

OCIObjectPin() on page 16-54.

null_source (IN)
Pointer to the NULL structure of the source object.

target (IN)
A pointer to the target instance; if it is an object is must be pinned.

null_target (IN)
A pointer to the NULL structure of the target object.

OCIObjectCopy()

16-34 Oracle Call Interface Programmer’s Guide

tdo (IN)
The TDO for both the source and the target. Can be retrieved with

OCIDescribeAny().

duration (IN)
Allocation duration of the target memory.

option (IN)
This parameter is currently unused. Pass as zero or OCI_DEFAULT.

Comments
This function copies the contents of the source instance to the target instance. This

function performs a deep-copy such that all of the following is copied:

■ all the top level attributes (see the exceptions below)

■ all secondary memory (of the source) reachable from the top level attributes

■ the NULL structure of the instance

Memory is allocated with the duration specified in the duration parameter.

Certain data items are not copied:

■ If the option OCI_OBJECTCOPY_NOREF is specified in the option parameter,

then all references in the source are not copied. Instead, the references in the

target are set to NULL.

■ If the attribute is an internal LOB, then only the LOB locator from the source

object is copied. A copy of the LOB data is not made until OCIObjectFlush() is
called. Before the target object is flushed, both the source and the target locators

refer to the same LOB value.

The target or the containing instance of the target must be already have been

created. This may be done with OCIObjectPin().

The source and target instances must be of the same type. If the source and target are

located in a different databases, then the same type must exist in both databases.

Related Functions
OCIObjectPin()

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 16-35

OCIObjectGetAttr()

Purpose
Retrieves an object attribute.

Syntax
sword OCIObjectGetAttr (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 dvoid *null_struct,
 struct OCIType *tdo,
 CONST text **names,
 CONST ub4 *lengths,
 CONST ub4 name_count,
 CONST ub4 *indexes,
 CONST ub4 index_count,
 OCIInd *attr_null_status,
 dvoid **attr_null_struct,
 dvoid **attr_value,
 struct OCIType **attr_tdo);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to an object.

null_struct (IN)
The null structure of the object or array.

tdo (IN)
Pointer to the TDO.

names (IN)
Array of attribute names. This is used to specify the names of the attributes in the

path expression.

OCIObjectGetAttr()

16-36 Oracle Call Interface Programmer’s Guide

lengths (IN)
Array of lengths of attribute names.

name_count (IN)
Number of element in the array names.

indexes (IN) [optional]
Not currently supported. Pass as (ub4 *)0.

index_count (IN) [optional]
Not currently supported. Pass as (ub4)0.

attr_null_status (OUT)
The null status of the attribute if the type of attribute is primitive.

attr_null_struct (OUT)
The null structure of an object or collection attribute.

attr_value (OUT)
Pointer to the attribute value.

attr_tdo (OUT)
Pointer to the TDO of the attribute.

Comments
This function gets a value from an object or from an array. If the parameter instance
points to an object, then the path expression specifies the location of the attribute in

the object. It is assumed that the object is pinned and that the value returned is valid

until the object is unpinned.

Related Functions
OCIObjectSetAttr()

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 16-37

OCIObjectGetInd()

Purpose
Gets the NULL structure of a standalone instance.

Syntax
sword OCIObjectGetInd (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 dvoid **null_struct);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
A pointer to the instance whose NULL structure is being retrieved. The instance

must be standalone. If instance is an object, it must already be pinned.

null_struct (OUT)
The NULL structure for the instance.

Comments
None.

Related Functions
OCIObjectPin()

OCIObjectGetObjectRef()

16-38 Oracle Call Interface Programmer’s Guide

OCIObjectGetObjectRef()

Purpose
Returns a reference to a given persistent object.

Syntax
sword OCIObjectGetObjectRef (OCIEnv *env,
 OCIError *err,
 dvoid *object,
 OCIRef *object_ref);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
Pointer to a persistent object. It must already be pinned.

object_ref (OUT)
A reference to the object specified in object. The reference must already be allocated.

This can be accomplished with OCIObjectNew().

Comments
This function returns a reference to the given persistent object, given a pointer to the

object. Passing a value (rather than an object) to this function causes an error.

See Also: For more information about object meta-attributes, see "Object

Meta-Attributes" on page 10-17.

Related Functions
OCIObjectPin(), OCIObjectPin()

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 16-39

OCIObjectGetTypeRef()

Purpose
Returns a reference to the type descriptor object (TDO) of a standalone instance.

Syntax
sword OCIObjectGetTypeRef (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 OCIRef *type_ref);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
A pointer to the standalone instance. It must be standalone, and if it is an object, it

must already be pinned.

type_ref (OUT)
A reference to the type of the object. The reference must already be allocate. This

can be accomplished with OCIObjectNew().

Comments
None.

Related Functions
OCIObjectPin(), OCIObjectPin()

OCIObjectLock()

16-40 Oracle Call Interface Programmer’s Guide

OCIObjectLock()

Purpose
Locks a persistent object at the server.

Syntax
sword OCIObjectLock (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object being locked. It must already be pinned.

Comments
This function will return an error for transient objects and values. It also returns an

error if the object does not exist.

For more information about object locking, see "Locking Objects For Update" on

page 13-12.

Related Functions
OCIObjectPin(), OCIObjectIsLocked(), OCIObjectGetProperty(), OCIObjectLockNoWait()

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 16-41

OCIObjectLockNoWait()

Purpose
Locks a persistent object at the server but does not wait for the lock. and returns an

error if the lock is unavailable.

Syntax
sword OCIObjectLockNoWait (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object being locked. It must already be pinned.

Comments
This function locks a persistent object at the server. However, unlike

OCIObjectLock(), this function does not wait if another user holds the lock on the

desired object and an error is returned if the object is currently locked by another

user. This function also returns an error for transient objects and values, or objects

that do not exist.

The lock of an object is released at the end of a transaction. For more information

about object locking, see "Locking Objects For Update" on page 13-12.

OCIObjectLockNoWait() returns the following values:

■ OCI_INVALID_HANDLE, if the environment handle or error handle is null.

■ OCI_SUCCESS, if the operation suceeds.

■ OCI_ERROR, if the operation fails.

Related Functions
OCIObjectPin(), OCIObjectIsLocked(), OCIObjectGetProperty(), OCIObjectLock()

OCIObjectNew()

16-42 Oracle Call Interface Programmer’s Guide

OCIObjectNew()

Purpose
Creates a standalone instance

Syntax
sword OCIObjectNew (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCITypeCode typecode,
 OCIType *tdo,
 dvoid *table,
 OCIDuration duration,
 boolean value,
 dvoid **instance);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN) [optional]
OCI service handle. It must be given if the program wants to associate the duration

of an instance with an OCI service (e.g. free a string when the transaction is

committed). This parameter is ignored if the TDO is given.

typecode (IN)
The typecode of the type of the instance. See "Typecodes" on page 3-23 for more

information.

tdo (IN) [optional]
Pointer to the type descriptor object. The TDO describes the type of the instance

that is to be created. Refer to OCITypeByName() for obtaining a TDO. The TDO is

required for creating a named type, such as an object or a collection.

table (IN) [optional]
Pointer to a table object which specifies a table in the server. This parameter can be

set to NULL if no table is given. See the following description to find out how the

table object and the TDO are used together to determine the kind of instances

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 16-43

(persistent, transient, value) to be created. Also see OCIObjectPinTable() for

retrieving a table object.

duration (IN)
This is an overloaded parameter. The use of this parameter is based on the kind of

the instance that is to be created.

■ Persistent object. This parameter specifies the pin duration.

■ Transient object. This parameter specifies the allocation duration and pin

duration.

■ Value. This parameter specifies the allocation duration.

value (IN)
Specifies whether the created object is a value. If TRUE, then a value is created.

Otherwise, a referenceable object is created. If the instance is not an object, then this

parameter is ignored.

instance (OUT)
Address of the newly created instance

Comments
This function creates a new instance of the type specified by the typecode or the

TDO. For more information about typecodes, see "Typecodes" on page 3-23. Based

on the parameters typecode (or tdo), value and table, different instances are created:

This function allocates the top-level memory chunk of an instance. The attributes in

the top-level memory are initialized which means that an attribute of varchar2 is

initialized to a OCIString of 0 length. If the instance is an object, the object is

marked existed but is atomically null.

See Also: For information about creating new objects based on object views or

user-created OIDs, see "Creating Objects Based on Object Views or User-defined

OIDs" on page 10-34.

Value of table Parameter

TYPE Not NULL NULL

object type (value=TRUE) value value

object type (value=FALSE) persistent object transient object

built-in type value value

collection type value value

OCIObjectNew()

16-44 Oracle Call Interface Programmer’s Guide

For Persistent Objects
The object is marked dirty and existed. The allocation duration for the object is

session. The object is pinned and the pin duration is specified by the given

parameter duration. Creating a persistent object does not cause any entries to be

made into a database table until the object is flushed to the server.

For Transient Objects
The object is pinned. The allocation duration and the pin duration are specified by

the given parameter duration.

For Values
The allocation duration is specified by the given parameter duration.

Attribute Values of New Objects
By default, all attributes of a newly created objects have NULL values. After

initializing attribute data, the user must change the corresponding NULL status of

each attribute to non-NULL.

It is possible to have attributes set to non-NULL values when an object is created.

This is accomplished by setting the OCI_OBJECT_NEWNOTNULL attribute of the

environment handle to TRUE using OCIAttrSet(). This mode can later be turned off

by setting the attribute to FALSE. If OCI_OBJECT_NEWNOTNULL is set to TRUE,

then OCIObjectNew() creates a non-null object. For more information, refer to

"Attribute Values of New Objects" on page 10-32.

Objects with LOB Attributes
If the object contains an internal LOB attribute, the LOB is set to empty. The object

must be marked as dirty and flushed (in order to insert the object into the table) and

repinned before the user can start writing data into the LOB. When pinning the

object after creating it, you must use the OCI_PIN_LATEST pin option in order to

retrieve the newly updated LOB locator from the server.

If the object contains an external LOB attribute (FILE), the FILE locator is allocated

but not initialized. The user must call OCILobFileSetName() to initialize the FILE

attribute before flushing the object to the database. It is an error to INSERT or

UPDATE a FILE without first indicating a directory alias and filename. Once the

filename is set, the user can start reading from the FILE.

Note: Oracle8i supports only binary FILEs (BFILEs).

Related Functions
OCIObjectPinTable(), OCIObjectFree()

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 16-45

OCIObjectSetAttr()

Purpose
Set an object attribute.

Syntax
sword OCIObjectSetAttr (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 dvoid *null_struct,
 struct OCIType *tdo,
 CONST text **names,
 CONST ub4 *lengths,
 CONST ub4 name_count,
 CONST ub4 *indexes,
 CONST ub4 index_count,
 CONST OCIInd null_status,
 CONST dvoid *attr_null_struct,
 CONST dvoid *attr_value);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to an object instance.

null_struct (IN)
The null structure of the object instance or array.

tdo (IN)
Pointer to the TDO.

names (IN)
Array of attribute names. This is used to specify the names of the attributes in the

path expression.

lengths (IN)
Array of lengths of attribute names.

OCIObjectSetAttr()

16-46 Oracle Call Interface Programmer’s Guide

name_count (IN)
Number of element in the array names.

indexes (IN) [optional]
Not currently supported. Pass as (ub4 *)0.

index_count (IN) [optional]
Not currently supported. Pass as (ub4)0.

attr_null_status (IN)
The null status of the attribute if the type of attribute is primitive.

attr_null_struct (IN)
The null structure of an object or collection attribute.

attr_value (IN)
Pointer to the attribute value.

Comments
This function sets the attribute of the given object with the given value. The position

of the attribute is specified as a path expression which is an array of names and an

array of indexes.

Example
For the path expression stanford.cs.stu[5].addr, the arrays will look like:

names = {"stanford", "cs", "stu", "addr"}

lengths = {8, 2, 3, 4}

indexes = {5}

Related Functions
OCIObjectMarkDelete()

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 16-47

OCI Pin, Unpin, and Free Functions
This section describes the OCI pin unpin, and free functions.

Table 16–6 OCI Pin, Unpin, and Free Functions Quick Reference

Function/Page Purpose

OCICacheFree() on page 16-48 Free objects in the cache

OCICacheUnpin() on page 16-49 Unpin persistent objects in cache or connection

OCIObjectArrayPin() on page 16-50 Pin an array of references

OCIObjectFree() on page 16-52 Free a previously allocated object

OCIObjectPin() on page 16-54 Pin an object

OCIObjectPinCountReset() on page 16-57 Unpin an object to zero pin count

OCIObjectPinTable() on page 16-58 Pin a table object with a given duration

OCIObjectUnpin() on page 16-60 Unpin an object

OCICacheFree()

16-48 Oracle Call Interface Programmer’s Guide

OCICacheFree()

Purpose
Frees all objects and values in the cache for the specified connection.

Syntax
sword OCICacheFree (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
An OCI service context.

Comments
If a connection is specified, this function frees the persistent objects, transient objects

and values allocated for that connection. Otherwise, all persistent objects, transient

objects and values in the object cache are freed. Objects are freed regardless of their

pin count.

See OCIObjectFree() for more information about freeing an instance.

Related Functions
OCIObjectFree()

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 16-49

OCICacheUnpin()

Purpose
Unpins persistent objects.

Syntax
sword OCICacheUnpin (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
An OCI service context handle. The objects on the specified connection are

unpinned.

Comments
This function completely unpins all of the persistent objects for the given

connection. The pin count for the objects is reset to zero.

For more information about pinning and unpinning, see "Pinning an Object" on

page 10-12, and "Pin Count and Unpinning" on page 10-28.

Related Functions
OCIObjectUnpin()

OCIObjectArrayPin()

16-50 Oracle Call Interface Programmer’s Guide

OCIObjectArrayPin()

Purpose
Pins an array of references.

Syntax
sword OCIObjectArrayPin (OCIEnv *env,
 OCIError *err,
 OCIRef **ref_array,
 ub4 array_size,
 OCIComplexObject **cor_array,
 ub4 cor_array_size,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock,
 dvoid **obj_array,
 ub4 *pos);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ref_array (IN)
Array of references to be pinned

array_size (IN)
Number of elements in the array of references

cor_array
An array of COR handles corresponding to the objects being pinned.

cor_array_size
The number of elements in cor_array.

pin_option (IN)
Pin option. See OCIObjectPin() on page 16-54.

pin_duration (IN)
Pin duration. See OCIObjectPin().

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 16-51

lock (IN)
Lock option. See OCIObjectPin().

obj_array (OUT)
If this argument is not NULL, the pinned objects will be returned in the array. The

user must allocate this array with element type being dvoid *. The size of this array

is identical to array_size.

pos (OUT)
If there is an error, this argument indicates the element that is causing the error.

Note that this argument is set to 1 for the first element in the ref_array.

Comments
All the pinned objects are retrieved from the database in one network roundtrip. If

the user specifies an output array (obj_array), then the address of the pinned objects

will be assigned to the elements in the array.

Related Functions
OCIObjectPin()

OCIObjectFree()

16-52 Oracle Call Interface Programmer’s Guide

OCIObjectFree()

Purpose
Frees and unpins an object instance.

Syntax
sword OCIObjectFree (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 ub2 flags);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to a standalone instance. If it is an object, it must be pinned.

flags (IN)
If OCI_OBJECTFREE_FORCE is passed, free the object even if it is pinned or dirty.

If OCI_OBJECTFREE_NONULL is passed, the null structure is not freed.

Comments
This function deallocates all the memory allocated for an object instance, including

the null structure. The following rules apply for different instance types:

For Persistent Objects
This function returns an error if the client is attempting to free a dirty persistent

object that has not been flushed. The client should either flush the persistent object,

unmark it, or set the parameter flags to OCI_OBJECTFREE_FORCE.

This function calls OCIObjectUnpin() once to check if the object can be completely

unpin. If it succeeds, the rest of the function proceeds to free the object. If it fails,

then an error is returned unless the parameter flag is set to OCI_OBJECTFREE_

FORCE.

Freeing a persistent object in memory does not change the persistent state of that

object at the server. For example, the object remains locked after the object is freed.

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 16-53

For Transient Objects
This function will call OCIObjectUnpin() once to check if the object can be

completely unpin. If it succeeds, the rest of the function will proceed to free the

object. If it fails, then an error is returned unless the parameter flag is set to OCI_

OBJECTFREE_FORCE.

For Values
The memory of the object is freed immediately.

Related Functions
OCICacheFree()

OCIObjectPin()

16-54 Oracle Call Interface Programmer’s Guide

OCIObjectPin()

Purpose
Pin a referenceable object.

Syntax
sword OCIObjectPin (OCIEnv *env,
 OCIError *err,
 OCIRef *object_ref,
 OCIComplexObject *corhdl,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock_option,
 dvoid **object);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object_ref (IN)
The reference to the object.

corhdl (IN)
Handle for complex object retrieval.

pin_option (IN)
Used to specify the copy of the object that is to be retrieved.

pin_duration (IN)
The duration of which the object is being accessed by a client. The object is

implicitly unpinned at the end of the pin duration. If OCI_DURATION_NULL is

passed, there is no pin promotion if the object is already loaded into the cache. If the

object is not yet loaded, then the pin duration is set to OCI_DURATION_DEFAULT

in the case of OCI_DURATION_NULL.

lock_option (IN)
Lock option (e.g., exclusive). If a lock option is specified, the object is locked in the

server. Note, the lock status of an object can also be retrieved by calling

OCIObjectIsLocked(). Valid values include:

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 16-55

■ OCI_LOCK_NONE - for no lock

■ OCI_LOCK_X - for an exclusive lock

■ OCI_LOCK_X_NOWAIT - for an exclusive lock with the NOWAIT option.

See Also: For information about the NOWAIT option, see "Locking With the

NOWAIT Option" on page 13-13

object (OUT)
The pointer to the pinned object.

Comments
This function pins a referenceable object instance given the object reference. The

process of pinning serves two purposes:

■ locate an object given its reference. This is done by the object cache which keeps

track of the objects in the object cache.

■ notify the object cache that a persistent object is being in use such that the

persistent object cannot be aged out. Since a persistent object can be loaded

from the server whenever is needed, the memory utilization can be increased if

a completely unpinned persistent object can be freed (aged out), even before the

allocation duration is expired. An object can be pinned many times. A pinned

object will remain in memory until it is completely unpinned. See

OCIObjectPin() on page 16-54.

Also see OCIObjectUnpin() for more information about unpinning.

For Persistent Objects
When pinning a persistent object, if it is not in the cache, the object will be fetched

from the persistent store. The allocation duration of the object is session. If the

object is already in the cache, it is returned to the client. The object will be locked in

the server if a lock option is specified.

This function will return an error for a non-existent object.

A pin option is used to specify the copy of the object that is to be retrieved:

■ If pin_option is OCI_PIN_ANY (pin any), then if the object is already in the

object cache, return this object. Otherwise, the object is retrieved from the

database. In this case, it is the same as OCI_PIN_LATEST. This option is useful

when the client knows that he has the exclusive access to the data in a session.

■ If pin_option is OCI_PIN_LATEST (pin latest), if the object is not locked, it is

retrieved from the database. If the object is cached, it is refreshed with the latest

version. See OCIObjectRefresh() for more information about refreshing.

OCIObjectPin()

16-56 Oracle Call Interface Programmer’s Guide

■ If pin_option is OCI_PIN_RECENT (pin recent), if the object is loaded into the

cache in the current transaction, the object is returned. If the object is not loaded

in the current transaction, the object is refreshed from the server.

For Transient Objects
This function will return an error if the transient object has already been freed. This

function does not return an error if an exclusive lock is specified in the lock option.

Related Functions
OCIObjectUnpin(), OCIObjectPinCountReset()

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 16-57

OCIObjectPinCountReset()

Purpose
Completely unpins an object, setting its pin count to zero.

Syntax
sword OCIObjectPinCountReset (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to an object, which must already be pinned.

Comments
This function completely unpins an object, setting its pin count to zero. When an

object is completely unpinned, it can be freed implicitly by the OCI at any time

without error. The following rules apply for specific object types:

For Persistent Objects
When a persistent object is completely unpinned, it becomes a candidate for aging.

The memory of an object is freed when it is aged out. Aging is used to maximize the

utilization of memory. An dirty object cannot be aged out unless it is flushed.

For Transient Objects
The pin count of the object is decremented. A transient can be freed only at the end

of its allocation duration or when it is explicitly freed by calling OCIObjectFree().

For Values
This function will return an error for value.

For more information about the use of this function, see "Pin Count and Unpinning"

on page 10-28.

Related Functions
OCIObjectPin(), OCIObjectUnpin()

OCIObjectPinTable()

16-58 Oracle Call Interface Programmer’s Guide

OCIObjectPinTable()

Purpose
Pins a table object for a specified duration.

Syntax
sword OCIObjectPinTable (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 CONST text *schema_name,
 ub4 s_n_length,
 CONST text *object_name,
 ub4 o_n_length,
 dvoid *not_used,
 OCIDuration pin_duration,
 dvoid **object);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
The OCI service context handle.

schema_name (IN) [optional]
The schema name of the table.

s_n_length (IN) [optional]
The length of the schema name indicated in schema_name.

object_name (IN)
The name of the table.

o_n_length (IN)
The length of the table name specified in object_name.

not_used (IN/OUT)
This parameter is not currently used. Pass as NULL.

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 16-59

pin_duration (IN)
The pin duration. See description in OCIObjectPin() on page 16-54.

object (OUT)
The pinned table object.

Comments
This function pins a table object with the specified pin duration. The client can

unpin the object by calling OCIObjectUnpin().

The table object pinned by this call can be passed as a parameter to OCIObjectNew()
to create a standalone persistent object.

Related Functions
OCIObjectPin(), OCIObjectUnpin()

OCIObjectUnpin()

16-60 Oracle Call Interface Programmer’s Guide

OCIObjectUnpin()

Purpose
Unpins an object.

Syntax
sword OCIObjectUnpin (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to an object, which must already be pinned.

Comments
There is a pin count associated with each object which is incremented whenever an

object is pinned. When the pin count of the object is zero, the object is said to be

completely unpinned. An unpinned object can be freed implicitly by the OCI at any

time without error.

This function unpins an object. An object is completely unpinned when any of the

following is true:

1. The object’s pin count reaches zero (i.e., it is unpinned a total of N times after

being pinned a total of N times).

2. It is the end of the object’s pin duration.

3. The function OCIObjectPinCountReset() is called on the object.

When an object is completely unpinned, it can be freed implicitly by the OCI at any

time without error.

The following rules apply for unpinning different types of objects:

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 16-61

For Persistent Objects
When a persistent object is completely unpinned, it becomes a candidate for aging.

The memory of an object is freed when it is aged out. Aging is used to maximize the

utilization of memory. An dirty object cannot be aged out unless it is flushed.

For Transient Objects
The pin count of the object is decremented. A transient can be freed only at the end

of its allocation duration or when it is explicitly deleted by calling OCIObjectFree().

For Values
This function returns an error for values.

Related Functions
OCIObjectPin(), OCIObjectPinCountReset()

OCI Type Information Accessor Functions

16-62 Oracle Call Interface Programmer’s Guide

OCI Type Information Accessor Functions
This section describes the OCI type information accessor functions.

Table 16–7 OCI Type Information Accessor Functions Quick Reference

Function/Page Purpose

OCITypeArrayByName() on page 16-63 Get an array of TDOs given an array of object names

OCITypeArrayByRef() on page 16-66 Get an array of TDOs given an array of object references

OCITypeByName() on page 16-68 Get a TDO given an object name

OCITypeByRef() on page 16-70 Get a TDO given an object reference

OCI Type Information Accessor Functions

OCI Navigational and Type Functions 16-63

OCITypeArrayByName()

Purpose
Get an array of types given an array of names.

Syntax
sword OCITypeArrayByName (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCISvcCtx *svc,
 ub4 array_len,
 CONST text *schema_name[],
 ub4 s_length[],
 CONST text *type_name[],
 ub4 t_length[],
 CONST text *version_name[],
 ub4 v_length[],
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType *tdo[]);

Parameters
envhp (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service handle.

array_len (IN)
Number of schema_name/type_name/version_name entries to be retrieved.

schema_name (IN, optional)
Array of schema names associated with the types to be retrieved. The array must

have array_len elements if specified. If 0 is supplied, the default schema is assumed,

otherwise it MUST have array_len number of elements. 0 can be supplied for one or

more of the entries to indicate that the default schema is desired for those entries.

s_length (IN)
Array of schema_name lengths with each entry corresponding to the length of the

corresponding schema_name entry in the schema_name array in bytes. The array must

OCITypeArrayByName()

16-64 Oracle Call Interface Programmer’s Guide

either have array_len number of elements or it MUST be 0 if schema_name is not

specified.

type_name (IN)
Array of the names of the types to retrieve. This MUST have array_len number of

elements.

t_length (IN)
Array of the lengths of type names in the type_name array in bytes.

version_name (IN)
Array of the version names of the types to retrieve corresponding. This can be 0 to

indicate retrieval of the most current versions, or it MUST have array_len number of

elements.

If 0 is supplied, the most current version is assumed, otherwise it MUST have array_
len number of elements. 0 can be supplied for one or more of the entries to indicate

that the current version is desired for those entries.

Note: In release 8.0 the version parameters are ignored.

v_length (IN)
Array of the lengths of version names in the version_name array in bytes.

Note: In release 8.0 the version parameters are ignored.

pin_duration (IN)
Pin duration (e.g. until the end of current transaction) for the types retrieved. See

oro.h for a description of each option.

get_option (IN)
Options for loading the types. It can be one of two values:

■ OCI_TYPEGET_HEADER - for only the header to be loaded, or

■ OCI_TYPEGET_ALL - for the TDO and all ADO and MDOs to be loaded.

tdo (OUT)
Output array for the pointers to each pinned type in the object cache. It must have

space for array_len pointers. Use OCIObjectGetObjectRef() to obtain the CREF to each

pinned type descriptor.

Comments
Gets pointers to the existing types associated with the schema/type name array.

The get_option parameter can be used to control the portion of the TDO that gets

loaded per roundtrip.

OCI Type Information Accessor Functions

OCI Navigational and Type Functions 16-65

This function returns an error if any of the required parameters is null or any object

types associated with a schema/type name entry do not exist.

To retrieve a single type, rather than an array, use OCITypeByName().

Related Functions
OCITypeArrayByRef(), OCITypeByName(), OCITypeByRef()

OCITypeArrayByRef()

16-66 Oracle Call Interface Programmer’s Guide

OCITypeArrayByRef()

Purpose
Get an array of types given an array of references.

Syntax
sword OCITypeArrayByRef (OCIEnv *envhp,
 OCIError *errhp,
 ub4 array_len,
 CONST OCIRef *type_ref[],
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType *tdo[]);

Parameters
envhp (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

array_len (IN)
Number of schema_name/type_name/version_name entries to be retrieved.

type_ref (IN)
Array of OCIRef * pointing to the particular version of the type descriptor object to

obtain. The array must have array_len elements if specified.

pin_duration (IN)
Pin duration (e.g. until the end of current transaction) for the types retrieved. See

oro.h for a description of each option.

get_option (IN)
Options for loading the types. It can be one of two values:

■ OCI_TYPEGET_HEADER - for only the header to be loaded

■ OCI_TYPEGET_ALL - for the TDO and all ADO and MDOs to be loaded.

tdo (OUT)
Output array for the pointers to each pinned type in the object cache. It must have

space for array_len pointers. Use OCIObjectGetObjectRef() to obtain the CREF to each

pinned type descriptor.

OCI Type Information Accessor Functions

OCI Navigational and Type Functions 16-67

Comments
Gets pointers to the with the schema/type name array.

This function returns an error if:

■ any of the required parameters is null.

■ one or more object types associated with a schema/type name entry does not

exist.

To retrieve a single type, rather than an array of types, use OCITypeByName().

Related Functions
OCITypeArrayByName(), OCITypeByRef(), OCITypeByName()

OCITypeByName()

16-68 Oracle Call Interface Programmer’s Guide

OCITypeByName()

Purpose
Get the most current version of an existing type by name.

Syntax
sword OCITypeByName (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 CONST text *schema_name,
 ub4 s_length,
 CONST text *type_name,
 ub4 t_length,
 CONST text *version_name,
 ub4 v_length,
 OCIDuration pin_duration,
 OCITypeGetOpt get_option
 OCIType **tdo);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service handle.

schema_name (IN, optional)
Name of schema associated with the type. By default, the user's schema name is

used.

s_length (IN)
Length of the schema_name parameter.

type_name (IN)
Name of the type to get.

t_length (IN)
Length of the type_name parameter.

OCI Type Information Accessor Functions

OCI Navigational and Type Functions 16-69

version_name (IN, optional)
User-readable version of the type. Pass as (text *) 0 to retrieve the most current

version. For release 8.0 only a single version is supported.

v_length (IN)
Length of version_name in bytes. Pass as 0 if the most current version is to be

retrieved.

pin_duration (IN)
Pin duration. Refer to the section "Object Duration" on page 13-14 for more

information.

get_option ((IN)
Options for loading the types. It can be one of two values:

■ OCI_TYPEGET_HEADER for only the header to be loaded, or

■ OCI_TYPEGET_ALL for the TDO and all ADO and MDOs to be loaded.

tdo (OUT)
Pointer to the pinned type in the object cache.

Comments
This function gets a pointer to the existing type associated with schema/type name.

It returns an error if any of the required parameters is NULL, or if the object type

associated with schema/type name does not exist.

Note: Schema and type names are CASE-SENSITIVE. If they have been created

with SQL, you need to use uppercase names.

An application can retrieve an array of TDOs by calling OCITypeArrayByName(), or

OCITypeArrayByRef().

Related Functions
OCITypeByRef(), OCITypeArrayByName(), OCITypeArrayByRef()

OCITypeByRef()

16-70 Oracle Call Interface Programmer’s Guide

OCITypeByRef()

Purpose
Get a type given a reference.

Syntax
sword OCITypeByRef (OCIEnv *env,
 OCIError *err,
 CONST OCIRef *type_ref,
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType *tdo);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

type_ref (IN)
An OCIRef * pointing to the version of the type descriptor object to obtain.

pin_duration (IN)
Pin duration until the end of current transaction for the type to retrieve. See oro.h

for a description of each option.

get_option (IN)
Options for loading the type. It can be one of two values:

■ OCI_TYPEGET_HEADER - for only the header to be loaded, or

■ OCI_TYPEGET_ALL - for the TDO and all ADO and MDOs to be loaded.

tdo (OUT)
Pointer to the pinned type in the object cache.

Comments
OCITypeByRef() returns an error if: any of the required parameters is null or any

object types associated with a schema/type name entry do not exist.

Related Functions
OCITypeByName(), OCITypeArrayByName(), OCITypeArrayByRef()

OCI Datatype Mapping and Manipulation Functions 17-1

17
OCI Datatype Mapping and Manipulation

Functions

This chapter describes the OCI datatype mapping and manipulation functions,

which is Oracle’s external C Language interface to Oracle predefined types. The

following sections are included in this chapter:

■ Introduction

■ OCI Collection and Iterator Functions

■ OCI Date Functions

■ OCI Number Functions

■ OCI Raw Functions

■ OCI Ref Functions

■ OCI String Functions

■ OCI Table Functions

Note: The functions described in this chapter are only available if you have

installed the Oracle8i Enterprise Edition with the Objects Option.

Introduction

17-2 Oracle Call Interface Programmer’s Guide

Introduction
This chapter describes the OCI datatype mapping and manipulation functions in

detail.

See Also: For more information about the functions listed in this chapter, refer

to Chapter 11, "Object-Relational Datatypes".

The Function Syntax
The entries for each function contain the following information:

Purpose
A brief statement of the purpose of the function.

Syntax
A code snippet showing the syntax for calling the function, including the ordering

and types of the parameters.

Comments
Detailed information about the function if available. This may include restrictions

on the use of the function, or other information that might be useful when using the

function in an application.

Parameters
A description of each of the function’s parameters. This includes the parameter’s

mode. The mode of a parameter has three possible values, as described below:

Returns
A description of what value is returned by the function if the function returns

something other than the standard return codes listed in Table 17–1, "Function

Return Values" on page 17-3.

Related Functions
A list of related functions.

Mode Description

IN A parameter that passes data to Oracle

OUT A parameter that receives data from Oracle on this or a
subsequent call

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.

Introduction

OCI Datatype Mapping and Manipulation Functions 17-3

Datatype Mapping and Manipulation Function Return Values
The OCI datatype mapping and manipulation functions typically return one of the

following values:

Function-specific return information follows the description of each function in this

chapter. For more information about return codes and error handling, see the

section "Error Handling" on page 2-27.

Functions Returning Other Values
Some functions return values other than those listed in Table 17–1. When using

these function be sure to take into account that they return a value directly from the

function call, rather than through an OUT parameter.

■ OCICollMax()

■ OCIRawPtr()

■ OCIRawSize()

■ OCIRefHexSize()

■ OCIRefIsEqual()

■ OCIRefIsNull()

■ OCIStringPtr()

■ OCIStringSize()

Table 17–1 Function Return Values

Return Value Meaning

OCI_SUCCESS The operation succeeded

OCI_ERROR The operation failed. The specific error can be
retrieved by calling OCIErrorGet() on the error
handle passed to the function.

OCI_INVALID_HANDLE The environment or error handle passed to the
function is NULL.

Introduction

17-4 Oracle Call Interface Programmer’s Guide

Server Roundtrips for Datatype Mapping and Manipulation Functions
For a table showing the number of server roundtrips required for individual

OCI datatype mapping and manipulation functions, refer to Appendix C, "OCI

Function Server Roundtrips".

Examples
For more information about these functions, including some code examples,

refer to Chapter 11, "Object-Relational Datatypes".

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 17-5

OCI Collection and Iterator Functions
This section describes the Collection and Iterator functions.

Table 17–2 OCI Collection and Iterator Functions Quick Reference

Function/Page Purpose

OCICollAppend() on page 17-6 Collection append element

OCICollAssign() on page 17-7 Assign collection

OCICollAssignElem() on page 17-8 Collection assign element

OCICollGetElem() on page 17-10 Get pointer to an element

OCICollIsLocator() on page 17-13 Indicates whether a collection is locator-based or not

OCICollMax() on page 17-14 Return maximum number of elements in collection

OCICollSetUpdateStatus() on page 17-15 Set the update status of a collection

OCICollSize() on page 17-16 Get current size of collection (in number of elements)

OCICollTrim() on page 17-18 Trim elements from the collection

OCIIterCreate() on page 17-19 Create iterator to scan the varray elements

OCIIterDelete() on page 17-20 Delete iterator

OCIIterGetCurrent() on page 17-21 Get current collection element

OCIIterInit() on page 17-22 Initialize iterator to scan the given collection

OCIIterNext() on page 17-23 Get next collection element

OCIIterPrev() on page 17-25 Get previous collection element,

OCICollAppend()

17-6 Oracle Call Interface Programmer’s Guide

OCICollAppend()

Purpose
Appends an element to the end of a collection.

Syntax
sword OCICollAppend (OCIEnv *env,
 OCIError *err,
 CONST dvoid *elem,
 CONST dvoid *elemind,
 OCIColl *coll);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

elem (IN)
Pointer to the element which is appended to the end of the given collection.

elemind (IN) [optional]
Pointer to the element’s null indicator information. If (elemind == NULL) then the

null indicator information of the appended element will be set to non-null.

coll (IN/OUT)
Updated collection.

Comments
Appending an element is equivalent to increasing the size of the collection by 1

element and updating (deep-copying) the last element’s data with the given

element’s data. Note that the pointer to the given element elem is not saved by this

function, which means that elem is strictly an input parameter.

This function returns an error if the current size of the collection is equal to the max

size (upper-bound) of the collection prior to appending the element. This function

also returns an error if any of the input parameters is NULL.

Related Functions
OCIErrorGet()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 17-7

OCICollAssign()

Purpose
Assigns (deep-copies) one collection to another.

Syntax
sword OCICollAssign (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *rhs,
 OCIColl *lhs);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) collection to be assigned from.

lhs (OUT)
Left-hand side (target) collection to be assigned to.

Comments
Assigns rhs (source) to lhs (target). The lhs collection may be decreased or increased

depending upon the size of rhs. If the lhs contains any elements then the elements

will be deleted prior to the assignment. This function performs a deep copy. The

memory for the elements comes from the object cache.

An error is returned if the element types of the lhs and rhs collections do not match.

Also, an error is returned if the upper-bound of the lhs collection is less than the

current number of elements in the rhs collection. An error is also returned if:

■ any of the input parameters is NULL

■ there is a type mismatch between the lhs and rhs collections

■ the upper bound of lhs collection is less than the current number of elements in

the rhs collection

Related Functions
OCIErrorGet(), OCICollAssignElem()

OCICollAssignElem()

17-8 Oracle Call Interface Programmer’s Guide

OCICollAssignElem()

Purpose
Assigns the given element value elem to the element at coll[index].

Syntax
sword OCICollAssignElem (OCIEnv *env,
 OCIError *err,
 sb4 index,
 CONST dvoid *elem,
 CONST dvoid *elemind,
 OCIColl *coll);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index of the element whose is assigned to.

elem (IN)
Element which is assigned from (source element).

elemind (IN) [optional]
Pointer to the element’s null indicator information; if (elemind == NULL) then the

null indicator information of the assigned element will be set to non-null.

coll (IN/OUT)
Collection to be updated.

Comments
If the collection is of type nested table, the element at the given index may not exist,

as in the case when an element has been deleted. In this case, the given element is

inserted at index. Otherwise, the element at index is updated with the value of elem.

Note that the given element is deep-copied and elem is strictly an input parameter.

This function returns an error if any input parameter is NULL or if the given index

is beyond the bounds of the given collection.

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 17-9

Related Functions
OCIErrorGet(), OCICollAssign()

OCICollGetElem()

17-10 Oracle Call Interface Programmer’s Guide

OCICollGetElem()

Purpose
Gets a pointer to the element at the given index.

Syntax
sword OCICollGetElem (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 sb4 index,
 boolean *exists,
 dvoid **elem,
 dvoid **elemind);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Pointer to the element in this collection is returned.

index (IN)
Index of the element whose pointer is returned.

exists (OUT)
Set to FALSE if the element at the specified index does not exist; otherwise, set to

TRUE.

elem (OUT)
Address of the desired element is returned.

elemind (OUT) [optional]
Address of the null indicator information is returned. If (elemind == NULL), then

the null indicator information will NOT be returned.

Comments
Gets the address of the element at the given position. Optionally this function also

returns the address of the element's null indicator information.

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 17-11

The following table describes for each collection element type what the

corresponding element pointer type is. The element pointer is returned with the

elem parameter of OCICollGetElem().

The element pointer returned by OCICollGetElem() is in a form such that it can not

only be used to access the element data but also is in a form that can be used as the

target (left-hand-side) of an assignment statement.

For example, assume the user is iterating over the elements of a collection whose

element type is object reference (OCIRef*). A call to OCICollGetElem() returns

pointer to a reference handle (OCIRef**). After getting, the pointer to the collection

element, the user may wish to modify it by assigning a new reference.

This can be accomplished via the ref assignment function as follows:

sword OCIRefAssign(OCIEnv *env,
 OCIError *err,
 CONST OCIRef *source,
 OCIRef **target);

Note that the target parameter of OCIRefAssign() is of type OCIRef**. Hence

OCICollGetElem() returns OCIRef**. If *target equals NULL, a new REF will be

allocated by OCIRefAssign() and returned via the target parameter.

Similarly, if the collection element was of type string (OCIString*),

OCICollGetElem() returns pointer to string handle (i.e. OCIString**). If a new string

is assigned, via OCIStringAssign() or OCIStringAssignText() the type of the target

must be OCIString **.

If the collection element is of type Oracle number, OCICollGetElem() returns

OCINumber*. The prototype of OCINumberAssign() is:

Element Type *elem is set to

Oracle Number (OCINumber) OCINumber*

Date (OCIDate) OCIDate*

Variable-length string (OCIString*) OCIString**

Variable-length raw (OCIRaw*) OCIRaw**

object reference (OCIRef*) OCIRef**

lob locator (OCILobLocator*) OCILobLocator**

object type (such as person) person*

OCICollGetElem()

17-12 Oracle Call Interface Programmer’s Guide

sword OCINumberAssign(OCIError *err,
 CONST OCINumber *from,
 OCINumber *to);

This function returns an error if any of the input parameters is NULL.

Related Functions
OCIErrorGet(), OCICollAssignElem()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 17-13

OCICollIsLocator()

Purpose
Indicates whether a collection is locator-based or not.

Syntax
sword OCICollIsLocator (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 boolean *result);

Parameters
env (IN)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
A collection item.

result (OUT)
Returns TRUE if the collection item is locator-based, FALSE otherwise.

Comments
This function tests to see whether or not a collection is locator-based. Returns TRUE

in the result parameter if the collection item is locator-based, otherwise it returns

FALSE.

Related Functions
OCIErrorGet()

OCICollMax()

17-14 Oracle Call Interface Programmer’s Guide

OCICollMax()

Purpose
Gets the maximum size in number of elements of the given collection.

Syntax
sb4 OCICollMax (OCIEnv *env,
 CONST OCIColl *coll);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

coll (IN)
Collection whose number of elements is returned. coll must point to a valid

collection descriptor.

Comments
Returns the maximum number of elements that the given collection can hold. A

value of zero indicates that the collection has no upper bound.

Returns
The upper bound of the given collection.

Related Functions
OCIErrorGet(), OCICollSize()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 17-15

OCICollSetUpdateStatus()

Purpose
Set the update status of a collection.

Syntax
sword OCICollSetUpdateStatus (OCIEnv *env,
 OCIError *err,
 OCIColl *coll,
 ub1 status);

Parameters
env (IN)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
The collection whose update-status is to be set.

status (IN)
The status of the collection:

■ OCICOLL_DIRTY - to mark it updated

■ OCICOLL_NOT_DIRTY - to mark it not dirty.

Comments
This function sets the status of the collection to indicate whether it should be

marked updated (dirty) or should be marked as not dirty.

 Related Functions
OCIErrorGet()

OCICollSize()

17-16 Oracle Call Interface Programmer’s Guide

OCICollSize()

Purpose
Gets the current size in number of elements of the given collection.

Syntax
sword OCICollSize (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll
 sb4 *size);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Collection whose number of elements is returned. Must point to a valid collection

descriptor.

size (OUT)
Current number of elements in the collection.

Comments
Returns the current number of elements in the given collection. For the case of

nested table, this count will NOT be decremented upon deleting elements. So, this

count includes any holes created by deleting elements. A trim operation

(OCICollTrim()) will decrement the count by the number of trimmed elements. To

get the count minus the deleted elements use OCITableSize().

The following pseudocode shows some examples:

OCICollSize(...);
// assume 'size' returned is equal to 5
OCITableDelete(...); // delete one element
OCICollSize(...);
// 'size' returned is still 5

To get the count minus the deleted elements use OCITableSize(). Continuing the

above example:

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 17-17

OCITableSize(...)
// 'size' returned is equal to 4

A trim operation (OCICollTrim()) decrements the count by the number of trimmed

elements. Continuing the above example:

OCICollTrim(..,1..); // trim one element
OCICollSize(...);
// 'size' returned is equal to 4

This function returns an error if an error occurs during the loading of the collection

into object cache or if any of the input parameters is null.

Related Functions
OCIErrorGet(), OCICollMax()

OCICollTrim()

17-18 Oracle Call Interface Programmer’s Guide

OCICollTrim()

Purpose
Trims the given number of elements from the end of the collection.

Syntax
sword OCICollTrim (OCIEnv *env,
 OCIError *err,
 sb4 trim_num,
 OCIColl *coll);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

trim_num (IN)
Number of elements to trim.

coll (IN/OUT)
This function removes (frees) trim_num elements from the end of coll.

Comments
The elements are removed from the end of the collection. An error is returned if

trim_num is greater than the current size of the collection.

Related Functions
OCIErrorGet(), OCICollSize()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 17-19

OCIIterCreate()

Purpose
Creates an iterator to scan the elements or the collection.

Syntax
sword OCIIterCreate (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 OCIIter **itr);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Collection which will be scanned. For this release, valid collection types include

varrays and nested tables.

itr (OUT)
Address to the allocated collection iterator is returned by this function.

Comments
The iterator is created in the object cache. The iterator is initialized to point to the

beginning of the collection.

If OCIIterNext() is called immediately after creating the iterator then the first

element of the collection is returned. If OCIIterPrev() is called immediately after

creating the iterator then a "at beginning of collection" error is returned.

This function returns an error if any of the input parameters is NULL.

Related Functions
OCIErrorGet(), OCIIterDelete()

OCIIterDelete()

17-20 Oracle Call Interface Programmer’s Guide

OCIIterDelete()

Purpose
Deletes a collection iterator.

Syntax
sword OCIIterDelete (OCIEnv *env,
 OCIError *err,
 OCIIter **itr);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN/OUT)
The allocated collection iterator which is destroyed and set to NULL prior to

returning.

Comments
Deletes an iterator which was previously created by a call to OCIIterCreate().

This function returns an error if any of the input parameters is null.

Related Functions
OCIErrorGet(), OCIIterCreate()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 17-21

OCIIterGetCurrent()

Purpose
Gets a pointer to the current iterator collection element.

Syntax
sword OCIIterGetCurrent (OCIEnv *env,
 OCIError *err,
 CONST OCIIter *itr,
 dvoid **elem,
 dvoid **elemind);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN)
Iterator which points to the current element.

elem (OUT)
Address of the element pointed by the iterator is returned.

elemind (OUT) [optional]
Address of the element’s NULL indicator information is returned; if (elem_ind ==

NULL) then the NULL indicator information will not be returned.

Comments
Returns pointer to the current iterator collection element and its corresponding

NULL information. This function returns an error if any input parameter is NULL.

Related Functions
OCIErrorGet(), OCIIterNext(), OCIIterPrev()

OCIIterInit()

17-22 Oracle Call Interface Programmer’s Guide

OCIIterInit()

Purpose
Initializes an iterator to scan a collection.

Syntax
sword OCIIterInit (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 OCIIter *itr);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Collection which will be scanned. For release 8i, valid collection types include

varrays and nested tables.

itr (IN/OUT)
Pointer to an allocated collection iterator.

Comments
Initializes given iterator to point to the beginning of given collection. Returns an

error if any input parameter is NULL. This function can be used to:

■ reset an iterator to point back to the beginning of the collection, or

■ reuse an allocated iterator to scan a different collection.

Related Functions
OCIErrorGet()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 17-23

OCIIterNext()

Purpose
Gets a pointer to the next iterator collection element.

Syntax
sword OCIIterNext (OCIEnv *env,
 OCIError *err,
 OCIIter *itr,
 dvoid **elem,
 dvoid **elemind,
 boolean *eoc);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN/OUT)
Iterator is updated to point to the next element.

elem (OUT)
After updating the iterator to point to the next element, address of the element is

returned.

elemind (OUT) [optional]
Address of the element’s NULL indicator information is returned; if (elem_ind ==

NULL) then the NULL indicator information will not be returned.

eoc (OUT)
TRUE if iterator is at End of Collection (i.e. next element does not exist); otherwise,

FALSE.

Comments
This function returns a pointer to the next iterator collection element and its

corresponding NULL information. It also updates the iterator to point to the next

element.

OCIIterNext()

17-24 Oracle Call Interface Programmer’s Guide

If the iterator is pointing to the last element of the collection prior to executing this

function, then calling this function will set the eoc flag to TRUE. The iterator will be

left unchanged in that case.

This function returns an error if any input parameter is NULL.

Related Functions
OCIErrorGet(), OCIIterGetCurrent(), OCIIterPrev()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 17-25

OCIIterPrev()

Purpose
Gets a pointer to the previous iterator collection element.

Syntax
sword OCIIterPrev (OCIEnv *env,
 OCIError *err,
 OCIIter *itr,
 dvoid **elem,
 dvoid **elemind,
 boolean *boc);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN/OUT)
Iterator which is updated to point to the previous element.

elem (OUT)
Address of the previous element; returned after the iterator is updated to point to it.

elemind (OUT) [optional]
Address of the element’s NULL indicator; if (elem_ind == NULL) then the NULL

indicator will not be returned.

boc (OUT)
TRUE if iterator is at beginning of collection (i.e. previous element does not exist);

otherwise, FALSE.

Comments
This function returns a pointer to the previous iterator collection element and its

corresponding NULL information. The iterator is updated to point to the previous

element.

If the iterator is pointing to the first element of the collection prior to executing this

function, then calling this function will set boc to TRUE. The iterator is left

unchanged in that case.

OCIIterPrev()

17-26 Oracle Call Interface Programmer’s Guide

This function returns an error if any input parameter is NULL.

Related Functions
OCIErrorGet(), OCIIterGetCurrent(), OCIIterNext()

OCI Date Functions

OCI Datatype Mapping and Manipulation Functions 17-27

OCI Date Functions
This section describes the OCI Date functions.

Table 17–3 OCI Date Functions Quick Reference

Function/Page Purpose

OCIDateAddDays() on page 17-28 Add or subtract days

OCIDateAddMonths() on page 17-29 Add or subtract months

OCIDateAssign() on page 17-30 Assign date

OCIDateCheck() on page 17-31 Check if the given date is valid

OCIDateCompare() on page 17-33 Compare dates

OCIDateDaysBetween() on page 17-34 Get number of days between two dates

OCIDateFromText() on page 17-35 Convert string to date

OCIDateGetDate() on page 17-37 Get the date portion of a date

OCIDateGetTime() on page 17-38 Get the time portion of a date

OCIDateLastDay() on page 17-39 Get date of last day of month

OCIDateNextDay() on page 17-40 get date of next day

OCIDateSetDate() on page 17-41 Set the date portion of a date

OCIDateSetTime() on page 17-42 Set the time portion of a date

OCIDateSysDate() on page 17-43 Get current system date and time

OCIDateToText() on page 17-44 Convert date to String

OCIDateZoneToZone() on page 17-46 Convert date from one time zone to another zone

OCIDateAddDays()

17-28 Oracle Call Interface Programmer’s Guide

OCIDateAddDays()

Purpose
Adds or subtracts days from a given date.

Syntax
sword OCIDateAddDays (OCIError *err,
 CONST OCIDate *date,
 sb4 num_days,
 OCIDate *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
The given date from which to add or subtract.

num_days (IN)
Number of days to be added or subtracted. A negative value is subtracted.

result (IN/OUT)
Result of adding days to, or subtracting days from, date.

Comments
This function returns and error if an invalid date is passed to it.

Related Functions
OCIErrorGet(), OCIDateAddMonths()

OCI Date Functions

OCI Datatype Mapping and Manipulation Functions 17-29

OCIDateAddMonths()

Purpose
Adds or subtracts months from a given date.

Syntax
sword OCIDateAddMonths (OCIError *err,
 CONST OCIDate *date,
 sb4 num_months,
 OCIDate *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
The given date from which to add or subtract.

num_months (IN)
Number of months to be added or subtracted. A negative value is subtracted.

result (IN/OUT)
Result of adding days to, or subtracting days from, date.

Comments
If the input date is the last day of a month, then the appropriate adjustments are

made to ensure that the output date is also the last day of the month. For example,

Feb. 28 + 1 month = March 31, and November 303 months = August 31. Otherwise

the result date has the same day component as date.

This function returns an error if invalid date is passed to it.

Related Functions
OCIErrorGet(), OCIDateAddDays()

OCIDateAssign()

17-30 Oracle Call Interface Programmer’s Guide

OCIDateAssign()

Purpose
Performs a date assignment.

Syntax
sword OCIDateAssign (OCIError *err,
 CONST OCIDate *from,
 OCIDate *to);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

from (IN)
Date to be assigned.

to (OUT)
Target of assignment.

Comments
This function assigns a value from one OCIDate variable to another.

Related Functions
OCIErrorGet(), OCIDateCheck()

OCI Date Functions

OCI Datatype Mapping and Manipulation Functions 17-31

OCIDateCheck()

Purpose
Checks if the given date is valid.

Syntax
sword OCIDateCheck (OCIError *err,
 CONST OCIDate *date,
 uword *valid);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Date to be checked

valid (OUT)
Returns zero for a valid date. Otherwise, the OR’ed combination of all error bits

specified as follows:

Macro Name Bit Number Error

OCI_DATE_INVALID_DAY 0x1 Bad day

OCI_DATE_DAY_BELOW_VALID 0x2 Bad day low/high bit (1=low)

OCI_DATE_INVALID_MONTH 0x4 Bad month

OCI_DATE_MONTH_BELOW_VALID 0x8 Bad month low/high bit (1=low)

OCI_DATE_INVALID_YEAR 0x10 Bad year

OCI_DATE_YEAR_BELOW_VALID 0x20 Bad year low/high bit (1=low)

OCI_DATE_INVALID_HOUR 0x40 Bad hour

OCI_DATE_HOUR_BELOW_VALID 0x80 Bad hour low/high bit (1=low)

OCI_DATE_INVALID_MINUTE 0x100 Bad minute

OCI_DATE_MINUTE_BELOW_VALID 0x200 Bad minute low/high bit (1=low)

OCI_DATE_INVALID_SECOND 0x400 Bad second

OCI_DATE_SECOND_BELOW_VALID 0x800 Bad second low/high bit (1=low)

OCIDateCheck()

17-32 Oracle Call Interface Programmer’s Guide

For example, if the date passed in was 2/0/1990 25:61:10 in (month/day/year

hours:minutes:seconds format), the error returned would be:

OCI_DATE_INVALID_DAY | OCI_DATE_DAY_BELOW_VALID | OCI_DATE_INVALID_HOUR |
 OCI_DATE_INVALID_MINUTE.

Comments
This function returns an error if date or valid pointer is NULL.

Related Functions
OCIErrorGet(), OCIDateCompare()

OCI_DATE_DAY_MISSING_FROM_
1582

0x1000 Day is one of those "missing" from
1582

OCI_DATE_YEAR_ZERO 0x2000 Year may not equal zero

OCI_DATE_INVALID_FORMAT 0x8000 Bad date format input

Macro Name Bit Number Error

OCI Date Functions

OCI Datatype Mapping and Manipulation Functions 17-33

OCIDateCompare()

Purpose
Compares two dates.

Syntax
sword OCIDateCompare (OCIError *err,
 CONST OCIDate *date1,
 CONST OCIDate *date2,
 sword *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1, date2 (IN)
Dates to be compared.

result (OUT)
Comparison result:

Comments
This function returns and error if an invalid date is passed to it.

Related Functions
OCIErrorGet(), OCIDateCheck()

Comparison result Output in result parameter

date1 < date2 -1

date1 = date2 0

date1 > date2 1

OCIDateDaysBetween()

17-34 Oracle Call Interface Programmer’s Guide

OCIDateDaysBetween()

Purpose
Gets the number of days between two dates.

Syntax
sword OCIDateDaysBetween (OCIError *err,
 CONST OCIDate *date1,
 CONST OCIDate *date2,
 sb4 *num_days);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1 (IN)
Input date.

date2 (IN)
Input date.

num_days (OUT)
Number of days between date1 and date2.

Comments
When the number of days between date1 and date2 is computed, the time is ignored.

This function returns an error if invalid date is passed to it.

Related Functions
OCIErrorGet(), OCIDateCheck()

OCI Date Functions

OCI Datatype Mapping and Manipulation Functions 17-35

OCIDateFromText()

Purpose
Converts a character string to a date type according to the specified format.

Syntax
sword OCIDateFromText (OCIError *err,
 CONST text *date_str,
 ub4 d_str_length,
 CONST text *fmt,
 ub1 fmt_length,
 CONST text *lang_name,
 ub4 lang_length,
 OCIDate *date);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date_str (IN)
Input string to be converted to Oracle date.

d_str_length (IN)
Size of the input string, if the length is -1 then date_str is treated as a NULL

terminated string.

fmt (IN)
Conversion format. If fmt is a null pointer, then the string is expected to be in

’DD-MON-YY’ format.

fmt_length (IN)
Length of the fmt parameter.

lang_name (IN)
Language in which the names and abbreviations of days and months are specified.

If lang_name is a NULL string, (text *) 0, then the default language of the session is

used.

lang_length (IN)
Length of the lang_name parameter.

date (OUT)
Given string converted to date.

OCIDateFromText()

17-36 Oracle Call Interface Programmer’s Guide

Comments
Refer to the TO_DATE conversion function described in Chapter 3 of the Oracle8i
SQL Reference for a description of format and NLS arguments.

This function returns an error if it receives an invalid format, language, or input

string.

Related Functions
OCIErrorGet(), OCIDateToText()

OCI Date Functions

OCI Datatype Mapping and Manipulation Functions 17-37

OCIDateGetDate()

Purpose
Get the year, month, and day stored in an Oracle date.

Syntax
void OCIDateGetDate (CONST OCIDate *date,
 sb2 *year,
 ub1 *month,
 ub1 *day);

Parameters
date (IN)
Oracle date whose year, month, day data is retrieved.

year (OUT)
Year value returned.

month (OUT)
Month value returned.

day (OUT)
Day value returned.

Comments
None.

Related Functions
OCIDateSetDate(), OCIDateGetTime()

OCIDateGetTime()

17-38 Oracle Call Interface Programmer’s Guide

OCIDateGetTime()

Purpose
Gets the time stored in an Oracle date.

Syntax
void OCIDateGetTime (CONST OCIDate *date,
 ub1 *hour,
 ub1 *min,
 ub1 *sec);

Parameters
date (IN)
Oracle date whose time data is retrieved.

hour (OUT)
Hour value returned.

min (OUT)
Minute value returned.

sec (OUT)
Second value returned.

Comments
Returns the time information returned in the form: hour, minute and seconds.

Related Functions
OCIDateSetTime(), OCIDateGetDate()

OCI Date Functions

OCI Datatype Mapping and Manipulation Functions 17-39

OCIDateLastDay()

Purpose
Gets the date of the last day of the month in a specified date.

Syntax
sword OCIDateLastDay (OCIError *err,
 CONST OCIDate *date,
 OCIDate *last_day);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Input date.

last_day (OUT)
Last day of the month in date.

Comments
This function returns an error if invalid date is passed to it.

Related Functions
OCIErrorGet(), OCIDateGetDate()

OCIDateNextDay()

17-40 Oracle Call Interface Programmer’s Guide

OCIDateNextDay()

Purpose
Gets the date of next day of the week, after a given date.

Syntax
sword OCIDateNextDay (OCIError *err,
 CONST OCIDate *date,
 CONST text *day,
 ub4 day_length,
 OCIDate *next_day);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Returned date should be later than this date.

day (IN)
First day of week named by this is returned.

day_length (IN)
Length in bytes of string day.

next_day (OUT)
First day of the week named by day later than date.

Comments
Returns the date of the first day of the week named by day that is later than date.

Example
Get the date of the next Monday after April 18, 1996 (a Thursday).

OCIDateNextDay(&err, ’18-APR-96’, ’MONDAY’, strlen(’MONDAY’), &next_day)

OCIDateNextDay() returns ’22-APR-96’.

This function returns and error if an invalid date or day is passed to it.

Related Functions
OCIErrorGet(), OCIDateGetDate()

OCI Date Functions

OCI Datatype Mapping and Manipulation Functions 17-41

OCIDateSetDate()

Purpose
Set the values in an Oracle date.

Syntax
void OCIDateSetDate (OCIDate *date,
 sb2 year,
 ub1 month,
 ub1 day);

Parameters
date (OUT)
Oracle date whose time data is set.

year (IN)
Year value to be set.

month (IN)
Month value to be set.

day (IN)
Day value to be set.

Comments
None.

Related Functions
OCIDateGetDate()

OCIDateSetTime()

17-42 Oracle Call Interface Programmer’s Guide

OCIDateSetTime()

Purpose
Sets the time information in an Oracle date.

Syntax
void OCIDateSetTime (OCIDate *date,
 ub1 hour,
 ub1 min,
 ub1 sec);

Parameters
date (OUT)
Oracle date whose time data is set.

hour (IN)
Hour value to be set.

min (IN)
Minute value to be set.

sec (IN)
Second value to be set.

Comments
None.

Related Functions
OCIDateGetTime()

OCI Date Functions

OCI Datatype Mapping and Manipulation Functions 17-43

OCIDateSysDate()

Purpose
Gets the current system date and time.

Syntax
sword OCIDateSysDate (OCIError *err,
 OCIDate *sys_date);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sys_date (OUT)
Current system date and time.

Comments
None.

Related Functions
OCIErrorGet()

OCIDateToText()

17-44 Oracle Call Interface Programmer’s Guide

OCIDateToText()

Purpose
Converts a date type to a character string.

Syntax
sword OCIDateToText (OCIError *err,
 CONST OCIDate *date,
 CONST text *fmt,
 ub1 fmt_length,
 CONST text *lang_name,
 ub4 lang_length,
 ub4 *buf_size,
 text *buf);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Oracle date to be converted.

fmt (IN)
Conversion format, if NULL string pointer, (text *) 0 , then the date is converted

to a character string in the default date format, DD-MON-YY.

fmt_length (IN)
Length of the fmt parameter.

lang_name (IN)
Specifies the language in which names and abbreviations of months and days are

returned; default language of session is used if lang_name is NULL ((text *) 0).

lang_length (IN)
Length of the lang_name parameter.

buf_size (IN/OUT)
■ Size of the buffer (IN);

■ Size of the resulting string is returned with this parameter (OUT).

buf (OUT)
Buffer into which the converted string is placed.

OCI Date Functions

OCI Datatype Mapping and Manipulation Functions 17-45

Comments
Converts the given date to a string according to the specified format. The converted

NULL-terminated date string is stored in buf.

Refer to the TO_DATE conversion function described in Chapter 3 of the Oracle8i
SQL Reference for a description of format and NLS arguments.

This function returns an error if the buffer is too small, or if the function is passed

an invalid format or unknown language. Overflow also causes an error. For

example, converting a value of 10 into format ’9’ causes an error.

Related Functions
OCIErrorGet(), OCIDateFromText()

OCIDateZoneToZone()

17-46 Oracle Call Interface Programmer’s Guide

OCIDateZoneToZone()

Purpose
Converts a date from one time zone to another.

Syntax
sword OCIDateZoneToZone (OCIError *err,
 CONST OCIDate *date1,
 CONST text *zon1,
 ub4 zon1_length,
 CONST text *zon2,
 ub4 zon2_length,
 OCIDate *date2);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1 (IN)
Date to convert.

zon1 (IN)
Zone of input date.

zon1_length (IN)
Length in bytes of zon1.

zon2 (IN)
Zone to be converted to.

zon2_length (IN)
Length in bytes of zon2.

date2 (OUT)
Converted date (in zon2).

Comments
Converts a given date date1 in time zone zon1 to a date date2 in time zone zon2.

For a list of valid zone strings, refer to the description of the NEW_TIME function in

Chapter 3 of the Oracle8i SQL Reference. Examples of valid zone strings include:

■ AST, Atlantic Standard Time

■ ADT, Atlantic Daylight Time

OCI Date Functions

OCI Datatype Mapping and Manipulation Functions 17-47

■ BST, Bering Standard Time

■ BDT, Bering Daylight Time

This function returns and error if an invalid date or time zone is passed to it.

Related Functions
OCIErrorGet(), OCIDateCheck()

OCI Number Functions

17-48 Oracle Call Interface Programmer’s Guide

OCI Number Functions
This section describes the OCI Number functions.

Table 17–4 OCI Number Functions Quick Reference

Function/Page Purpose

OCINumberAbs() on page 17-50 Computes the absolute value

OCINumberAdd() on page 17-51 Adds numbers

OCINumberArcCos() on page 17-52 Computes the arc cosine

OCINumberArcSin() on page 17-53 Computes the arc sine

OCINumberArcTan() on page 17-54 Computes the arc tangent

OCINumberArcTan2() on page 17-55 Computes the arc tangent of two numbers

OCINumberAssign() on page 17-56 Assigns one number to another

OCINumberCeil() on page 17-57 Computes the ceiling of number

OCINumberCmp() on page 17-58 Compares numbers

OCINumberCos() on page 17-59 Computes the cosine

OCINumberDec() on page 17-60 Decrements an OCI number

OCINumberDiv() on page 17-61 Divides two numbers

OCINumberExp() on page 17-62 Raises e to the specified Oracle number power

OCINumberFloor() on page 17-63 Computes the floor of a number

OCINumberFromInt() on page 17-64 Converts an integer to an Oracle number

OCINumberFromReal() on page 17-65 Convert a real to an Oracle number

OCINumberFromText() on page 17-66 Convert a string to an Oracle number

OCINumberHypCos() on page 17-68 Computes the hyperbolic cosine

OCINumberHypSin() on page 17-69 Computes the hyperbolic sine

OCINumberHypTan() on page 17-70 Computes the hyperbolic tangent

OCINumberInc() on page 17-71 Increments an Oracle number

OCINumberIntPower() on page 17-72 Raises a given base to an integer power

OCINumberIsInt() on page 17-73 Tests if a number is an integer

OCINumberIsZero() on page 17-74 Tests if a number is zero

OCINumberLn() on page 17-75 Computes the natural logarithm

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-49

OCINumberLog() on page 17-76 Computes the logarithm to an arbitrary base

OCINumberMod() on page 17-77 Modulo division

OCINumberMul() on page 17-78 Multiplies numbers

OCINumberNeg() on page 17-79 Negates a number

OCINumberPower() on page 17-80 Exponentiation to base e

OCINumberPrec() on page 17-81 Rounds a number to a specified number of decimal places

OCINumberRound() on page 17-82 Rounds an Oracle number to a specified decimal place

OCINumberSetPi() on page 17-83 Initializes a number to Pi

OCINumberSetZero() on page 17-84 Initializes a number to zero

OCINumberShift() on page 17-85 Multiplies by 10, shifting specified number of decimal places

OCINumberSign() on page 17-86 Obtains the sign of an Oracle number

OCINumberSin() on page 17-87 Computes the sine

OCINumberSqrt() on page 17-88 Computes the square root of a number

OCINumberSub() on page 17-89 Subtracts numbers

OCINumberTan() on page 17-90 Computes the tangent

OCINumberToInt() on page 17-91 Converts an Oracle number to an integer

OCINumberToReal() on page 17-92 Converts an Oracle number to a real

OCINumberToText() on page 17-93 Converts an Oracle number to a string

OCINumberTrunc() on page 17-95 Truncates an Oracle number at a specified decimal place

Table 17–4 OCI Number Functions Quick Reference (Cont.)

Function/Page Purpose

OCINumberAbs()

17-50 Oracle Call Interface Programmer’s Guide

OCINumberAbs()

Purpose
Computes the absolute value of an Oracle number.

Syntax
sword OCINumberAbs (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input number.

result (OUT)
The absolute value of the input number.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberSign()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-51

OCINumberAdd()

Purpose
Adds two Oracle numbers together.

Syntax
sword OCINumberAdd (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1, number2 (IN)
Numbers to be added.

result (OUT)
Result of adding number1 to number2.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberSub()

OCINumberArcCos()

17-52 Oracle Call Interface Programmer’s Guide

OCINumberArcCos()

Purpose
Takes the arc cosine in radians of an Oracle number.

Syntax
sword OCINumberArcCos (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the arc cosine.

result (OUT)
Result of the arc cosine in radians.

Comments
This function returns an error if any of the number arguments is NULL, or if number
is less than -1 or if number is greater than 1.

Related Functions
OCIErrorGet(), OCINumberCos()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-53

OCINumberArcSin()

Purpose
Takes the arc sine in radians of an Oracle number.

Syntax
sword OCINumberArcSin (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the arc sine.

result (OUT)
Result of the arc sine in radians.

Comments
This function returns an error if any of the number arguments is NULL, or if number
is less than -1 or if number is greater than 1.

Related Functions
OCIErrorGet(), OCINumberSin()

OCINumberArcTan()

17-54 Oracle Call Interface Programmer’s Guide

OCINumberArcTan()

Purpose
Takes the arc tangent in radians of an Oracle number.

Syntax
sword OCINumberArcTan (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the arc tangent.

result (OUT)
Result of the arc tangent in radians.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberTan()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-55

OCINumberArcTan2()

Purpose
Takes the arc tangent of two Oracle numbers.

Syntax
sword OCINumberArcTan2 (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Argument 1 of the arc tangent.

number2 (IN)
Argument 2 of the arc tangent.

result (OUT)
Result of the arc tangent in radians.

Comments
This function returns an error if any of the number arguments is NULL, or if

number2 is equal to 0.

Related Functions
OCIErrorGet(), OCINumberTan()

OCINumberAssign()

17-56 Oracle Call Interface Programmer’s Guide

OCINumberAssign()

Purpose
Assigns one Oracle number to another Oracle number.

Syntax
sword OCINumberAssign (OCIError *err,
 CONST OCINumber *from,
 OCINumber *to);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

from (IN)
Number to be assigned.

to (OUT)
Number copied into.

Comments
Assigns the number idenitified by from to the number identified by to.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberCmp()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-57

OCINumberCeil()

Purpose
Computes the ceiling value of an Oracle number.

Syntax
sword OCINumberCeil (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input number.

result (OUT)
Output which will contain the ceiling value of the input number.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberFloor()

OCINumberCmp()

17-58 Oracle Call Interface Programmer’s Guide

OCINumberCmp()

Purpose
Compares two Oracle numbers.

Syntax
sword OCINumberCmp (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 sword *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1, number2 (IN)
Numbers to compare.

result (OUT)
Comparison result:

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberAssign()

Comparison result Output in result parameter

number1 < number2 negative

number1 = number2 0

number1 > number2 positive

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-59

OCINumberCos()

Purpose
Computes the cosine in radians of an Oracle number.

Syntax
sword OCINumberCos (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the cosine in radians.

result (OUT)
Result of the cosine.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberArcCos()

OCINumberDec()

17-60 Oracle Call Interface Programmer’s Guide

OCINumberDec()

Purpose
Decrements an OCINumber.

Syntax
OCINumberInc (OCIError *err,
 OCINumber *number);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN/OUT)
A positive Oracle number to be decremented.

 Comments
Decrements an Oracle number in place. It is assumed that the input is an integer

between 0 and 100^21-2. If the is input too large, it will be treated as 0 - the result

will be an Oracle number 1. If the input is not a positive integer, the result will be

unpredictable.

This function returns an error if the input number is NULL.

Related Functions
OCINumberInc(), OCINumberInc()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-61

OCINumberDiv()

Purpose
Divides two Oracle numbers.

Syntax
sword OCINumberDiv (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Pointer to the numerator.

number2 (IN)
Pointer to the denominator.

result (OUT)
Division result.

Comments
Divides number1 by number2 and returns result in result.

This function returns an error if:

■ any of the number arguments is NULL

■ there is an underflow error

■ there is a divide-by-zero error

Related Functions
OCIErrorGet(), OCINumberMul()

OCINumberExp()

17-62 Oracle Call Interface Programmer’s Guide

OCINumberExp()

Purpose
Raises e to the specified Oracle number power.

Syntax
sword OCINumberExp (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
This function raises e to this Oracle number power.

result (OUT)
Output of exponentiation.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberLn()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-63

OCINumberFloor()

Purpose
Computes the floor value of an Oracle number.

Syntax
sword OCINumberFloor (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input number.

result (OUT)
The floor value of the input number.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberCeil()

OCINumberFromInt()

17-64 Oracle Call Interface Programmer’s Guide

OCINumberFromInt()

Purpose
Converts an integer to an Oracle number.

Syntax
sword OCINumberFromInt (OCIError *err,
 CONST dvoid *inum,
 uword inum_length,
 uword inum_s_flag,
 OCINumber *number);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inum (IN)
Pointer to the integer to convert.

inum_length (IN)
Size of the integer.

inum_s_flag (IN)
Flag that designates the sign of the integer, as follows:

■ OCI_NUMBER_UNSIGNED - Unsigned values

■ OCI_NUMBER_SIGNED - Signed values

number (OUT)
Given integer converted to Oracle number.

Comments
This is a native type conversion function. It converts any Oracle standard

machine-native integer type, such as ub4 or sb2, to an Oracle number.

This function returns an error if the number is too big to fit into an Oracle number, if

number or inum is NULL, or if an invalid sign flag value is passed in inum_s_flag.

Related Functions
OCIErrorGet(), OCINumberToInt()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-65

OCINumberFromReal()

Purpose
Converts a real (floating-point) type to an Oracle number.

Syntax
sword OCINumberFromReal (OCIError *err,
 CONST dvoid *rnum,
 uword rnum_length,
 OCINumber *number);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rnum (IN)
Pointer to the floating point number to convert.

rnum_length (IN)
The size of the desired result, which equals sizeof({float | double | long double}).

number (OUT)
Given float converted to Oracle number.

Comments
This is a native type conversion function. It converts a machine-native floating point

type to an Oracle number.

This function returns an error if number or rnum is NULL, or if rnum_length equals

zero.

Related Functions
OCIErrorGet(), OCINumberToReal()

OCINumberFromText()

17-66 Oracle Call Interface Programmer’s Guide

OCINumberFromText()

Purpose
Converts character string to Oracle number.

Syntax
sword OCINumberFromText (OCIError *err,
 CONST text *str,
 ub4 str_length,
 CONST text *fmt,
 ub4 fmt_length,
 CONST text *nls_params,
 ub4 nls_p_length,
 OCINumber *number);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

str (IN)
Input string to convert to Oracle number.

str_length (IN)
Size of the input string.

fmt (IN)
Conversion format.

fmt_length (IN)
Length of the fmt parameter.

nls_params (IN)
NLS format specification, if NULL string ("") then the default parameters for the

session is used.

nls_p_length (IN)
Length of the nls_params parameter.

number (OUT)
Given string converted to number.

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-67

Comments
Converts the given string to a number according to the specified format. Refer to

the TO_NUMBER conversion function described in the Oracle8i SQL Reference for a

description of format and NLS parameters.

This function returns an error if there is an invalid format, an invalid NLS format,

or an invalid input string, if number or str is NULL, or if str_length is zero.

Related Functions
OCIErrorGet(), OCINumberToText()

OCINumberHypCos()

17-68 Oracle Call Interface Programmer’s Guide

OCINumberHypCos()

Purpose
Computes the hyperbolic cosine of an Oracle number.

Syntax
sword OCINumberHypCos (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the cosine hyperbolic.

result (OUT)
Result of the cosine hyperbolic.

Comments
This function returns an error if any of the number arguments is NULL.

Warning: An Oracle number overflow causes an unpredictable result value.

Related Functions
OCIErrorGet(), OCINumberHypSin(), OCINumberHypTan()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-69

OCINumberHypSin()

Purpose
Computes the hyperbolic sine of an Oracle number.

Syntax
sword OCINumberHypSin (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the sine hyperbolic.

result (OUT)
Result of the sine hyperbolic.

Comments
This function returns an error if any of the number arguments is NULL.

Warning: An Oracle number overflow causes an unpredictable result value.

Related Functions
OCIErrorGet(), OCINumberHypCos(), OCINumberHypTan()

OCINumberHypTan()

17-70 Oracle Call Interface Programmer’s Guide

OCINumberHypTan()

Purpose
Computes the hyperbolic tangent of an Oracle number.

Syntax
sword OCINumberHypTan (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the tangent hyperbolic.

result (OUT)
Result of the tangent hyperbolic.

Comments
This function returns an error if any of the number arguments is NULL.

Warning: An Oracle number overflow causes an unpredictable result value.

Related Functions
OCIErrorGet(), OCINumberHypCos(), OCINumberHypSin()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-71

OCINumberInc()

Purpose
Increments an OCINumber.

Syntax
OCINumberInc (OCIError *err,
 OCINumber *number);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN/OUT)
A positive Oracle number to be incremented.

 Comments
Increments an Oracle number in place. It is assumed that the input is an integer

between 0 and 100^21-2. If the is input too large, it will be treated as 0 - the result

will be an Oracle number 1. If the input is not a positive integer, the result will be

unpredictable.

This function returns an error if the input number is NULL.

Related Functions
OCINumberDec()

OCINumberIntPower()

17-72 Oracle Call Interface Programmer’s Guide

OCINumberIntPower()

Purpose
Raises a given base to a given integer power.

Syntax
sword OCINumberIntPower (OCIError *err,
 CONST OCINumber *base,
 CONST sword exp,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

base (IN)
Base of the exponentiation.

exp (IN)
Exponent to which the base is raised.

result (OUT)
Output of exponentiation.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberPower()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-73

OCINumberIsInt()

Purpose
Tests if an OCINumber is an integer.

Syntax
sword OCINumberIsInt (OCIError *err,
 CONST OCINumber *number,
 boolean *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
number to be tested

result (OUT)
set to TRUE if integer value else FALSE

 Comments
This function returns an error if number or result is NULL.

Related Functions
OCIErrorGet(), OCINumberRound(), OCINumberTrunc()

OCINumberIsZero()

17-74 Oracle Call Interface Programmer’s Guide

OCINumberIsZero()

Purpose
Tests if the given number is equal to zero.

Syntax
sword OCINumberIsZero (OCIError *err,
 CONST OCINumber *number,
 boolean *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Number to compare.

result (OUT)
Set to TRUE if equal to zero; otherwise, set to FALSE.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberSetZero()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-75

OCINumberLn()

Purpose
Takes the natural logarithm (base e) of an Oracle number.

Syntax
sword OCINumberLn (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Logarithm of this number is computed.

result (OUT)
Logarithm result.

Comments
This function returns an error if any of the number arguments is NULL, or if

numberI is less than or equal to zero.

Related Functions
OCIErrorGet(), OCINumberExp(), OCINumberLog()

OCINumberLog()

17-76 Oracle Call Interface Programmer’s Guide

OCINumberLog()

Purpose
Takes the logarithm, to any base, of an Oracle number.

Syntax
sword OCINumberLog (OCIError *err,
 CONST OCINumber *base,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

base (IN)
Base of the logarithm.

number (IN)
Operand.

result (OUT)
Logarithm result.

Comments
This function returns an error if:

■ any of the number arguments is NULL.

■ number <= 0

■ base <= 0

Related Functions
OCIErrorGet(), OCINumberLn()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-77

OCINumberMod()

Purpose
Gets the modulus (remainder) of the division of two Oracle numbers.

Syntax
sword OCINumberMod (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Pointer to the numerator.

number2 (IN)
Pointer to the denominator.

result (OUT)
Remainder of the result.

Comments
This function returns an error if number1 or number2 is NULL, or if there is a

divide-by-zero error.

Related Functions
OCIErrorGet(), OCINumberDiv()

OCINumberMul()

17-78 Oracle Call Interface Programmer’s Guide

OCINumberMul()

Purpose
Multiplies two Oracle numbers.

Syntax
sword OCINumberMul (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Number to multiply.

number2 (IN)
Number to multiply.

result (OUT)
Multiplication result.

Comments
Multiplies number1 with number2 and returns result in result.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberDiv()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-79

OCINumberNeg()

Purpose
Negates an Oracle number.

Syntax
sword OCINumberNeg (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Number to negate.

result (OUT)
Contains negated value of number.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberAbs(), OCINumberSign()

OCINumberPower()

17-80 Oracle Call Interface Programmer’s Guide

OCINumberPower()

Purpose
Raises a given base to a given exponent.

Syntax
sword OCINumberPower (OCIError *err,
 CONST OCINumber *base,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

base (IN)
Base of the exponentiation.

number (IN)
Exponent to which the base is to be raised.

result (OUT)
Output of exponentiation.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberExp()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-81

OCINumberPrec()

Purpose
Rounds an OCINumber to a specified number of decimal digits.

Syntax
sword OCINumberPrec (OCIError *err,
 CONST OCINumber *number,
 eword nDigs,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
The number for which to set precision.

nDigs (IN)
The number of decimal digits desired in the result.

result (OUT)
The result.

 Comments
Performs a floating point round with respect to the number of digits.

This function returns an error any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberRound()

OCINumberRound()

17-82 Oracle Call Interface Programmer’s Guide

OCINumberRound()

Purpose
Rounds an Oracle number to a specified decimal place.

Syntax
sword OCINumberRound (OCIError *err,
 CONST OCINumber *number,
 sword decplace,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Number to round.

decplace (IN)
Number of decimal digits to the right of the decimal point to round to. Negative

values are allowed.

result (OUT)
Output of rounding.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberTrunc()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-83

OCINumberSetPi()

Purpose
Sets an OCINumber to Pi.

Syntax
void OCINumberSetPi (OCIError *err,
 OCINumber *num);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

num (OUT)
Number set to the value of Pi.

Comments
Initializes the given number to the value of Pi.

Related Functions
OCIErrorGet()

OCINumberSetZero()

17-84 Oracle Call Interface Programmer’s Guide

OCINumberSetZero()

Purpose
Initializes an Oracle number to zero.

Syntax
void OCINumberSetZero (OCIError *err
 OCINumber *num);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

num (IN/OUT)
Number to initialize to zero value.

Comments
None.

Related Functions
OCIErrorGet()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-85

OCINumberShift()

Purpose
Multiplies a number by a power of 10 by shifting it a specified number of decimal

places.

Syntax
sword OCINumberShift (OCIError *err,
 CONST OCINumber *number,
 CONST sword nDig,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Oracle Number to be shifted.

nDig (IN)
Number of decimal places to shift.

result (OUT)
Shift result.

 Comments
Multiplies number by 10^nDig and sets product to the result.

This function returns an error if the input number is NULL.

Related Functions
OCIErrorGet()

OCINumberSign()

17-86 Oracle Call Interface Programmer’s Guide

OCINumberSign()

Purpose
Gets sign of an Oracle number.

Syntax
sword OCINumberSign (OCIError *err,
 CONST OCINumber *number,
 sword *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Number whose sign is returned.

result (OUT)
Possible values:

Comments
This function returns an error if number or result is NULL.

Related Functions
OCIErrorGet(), OCINumberAbs()

Value of number Output in result parameter

number < 0 -1

number == 0 0

number > 0 1

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-87

OCINumberSin()

Purpose
Computes the sine in radians of an Oracle number.

Syntax
sword OCINumberSin (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the sine in radians.

result (OUT)
Result of the sine.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberArcSin()

OCINumberSqrt()

17-88 Oracle Call Interface Programmer’s Guide

OCINumberSqrt()

Purpose
Computes the square root of an Oracle number.

Syntax
sword OCINumberSqrt (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input number.

result (OUT)
Output which will contain the square root of the input number.

Comments
This function returns an error if number is NULL or number is negative.

Related Functions
OCIErrorGet(), OCINumberPower()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-89

OCINumberSub()

Purpose
Subtract two Oracle numbers.

Syntax
sword OCINumberSub (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1, number2 (IN)
This function subtracts number2 from number1.

result (OUT)
Subtraction result.

Comments
Subtracts number2 from number1 and returns result in result.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberAdd()

OCINumberTan()

17-90 Oracle Call Interface Programmer’s Guide

OCINumberTan()

Purpose
Computes the tangent in radians of an Oracle number.

Syntax
sword OCINumberTan (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the tangent in radians.

result (OUT)
Result of the tangent.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberArcTan(), OCINumberArcTan2()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-91

OCINumberToInt()

Purpose
Converts an Oracle number type to integer.

Syntax
sword OCINumberToInt (OCIError *err,
 CONST OCINumber *number,
 uword rsl_length,
 uword rsl_flag,
 dvoid *rsl);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Number to convert.

rsl_length (IN)
Size of the desired result.

rsl_flag (IN)
Flag that designates the sign of the output, as follows:

■ OCI_NUMBER_UNSIGNED - Unsigned values

■ OCI_NUMBER_SIGNED - Signed values

rsl (OUT)
Pointer to space for the result.

Comments
This is a native type conversion function. It converts the given Oracle number into

an integer of the form xbn, such as ub2, ub4, or sb2.

This function returns an error if number or rsl is NULL, if number is too big

(overflow) or too small (underflow), or if an invalid sign flag value is passed in rsl_
flag.

Related Functions
OCIErrorGet(), OCINumberFromInt()

OCINumberToReal()

17-92 Oracle Call Interface Programmer’s Guide

OCINumberToReal()

Purpose
Converts an Oracle number type to Real.

Syntax
sword OCINumberToReal (OCIError *err,
 CONST OCINumber *number,
 uword rsl_length,
 dvoid *rsl);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Number to convert.

rsl_length (IN)
The size of the desired result, which equals sizeof({ float | double | long double}).

rsl (OUT)
Pointer to space for storing the result.

Comments
This is a native type conversion function. It converts an Oracle number into a

machine-native real type. This function only converts numbers up to LDBL_DIG,

DBL_DIG, or FLT_DIG digits of precision and removes trailing zeroes. The above

constants are defined in float.h.

This function returns an error if number or rsl is NULL, or if rsl_length = 0.

Related Functions
OCIErrorGet(), OCINumberFromReal()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-93

OCINumberToText()

Purpose
Converts an Oracle number to a character string according to a specified format.

Syntax
sword OCINumberToText (OCIError *err,
 CONST OCINumber *number,
 CONST text *fmt,
 ub4 fmt_length,
 CONST text *nls_params,
 ub4 nls_p_length,
 ub4 *buf_size,
 text *buf);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Oracle number to convert.

fmt (IN)
Conversion format.

fmt_length (IN)
Length of the fmt parameter.

nls_params (IN)
NLS format specification. If a NULL string ((text *)0), then the default

parameters for the session is used.

nls_p_length (IN)
Length of the nls_params parameter.

buf_size (IN)
Size of the buffer.

buf (OUT)
Buffer into which the converted string is placed.

Comments
Refer to the TO_NUMBER conversion function described in the Oracle8i SQL
Reference for a description of format and NLS parameters.

OCINumberToText()

17-94 Oracle Call Interface Programmer’s Guide

The converted number string is stored in buf, up to a maximum of buf_size bytes.

This function returns an error if:

■ number or buf is NULL

■ buffer is too small

■ invalid format or invalid NLS format is passed

■ number to text translation for given format causes an overflow

Related Functions
OCIErrorGet(), OCINumberFromText()

OCI Number Functions

OCI Datatype Mapping and Manipulation Functions 17-95

OCINumberTrunc()

Purpose
Truncates an Oracle number at a specified decimal place.

Syntax
sword OCINumberTrunc (OCIError *err,
 CONST OCINumber *number,
 sword decplace,
 OCINumber *result);

Parameters
err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input number.

decplace (IN)
Number of decimal digits to the right of the decimal point at which to truncate.

Negative values are allowed.

result (OUT)
Output of truncation.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberRound()

OCI Raw Functions

17-96 Oracle Call Interface Programmer’s Guide

OCI Raw Functions
This section describes the OCI Raw functions.

Table 17–5 OCI Raw Functions Quick Reference

Function/Page Purpose

OCIRawAllocSize() on page 17-97 Get allocated size of raw memory in bytes

OCIRawAssignBytes() on page 17-98 Assign raw bytes to raw

OCIRawAssignRaw() on page 17-99 Assign raw to raw

OCIRawPtr() on page 17-100 Get raw data Pointer

OCIRawResize() on page 17-101 Resize memory of variable-length raw

OCIRawSize() on page 17-102 Get raw size

OCI Raw Functions

OCI Datatype Mapping and Manipulation Functions 17-97

OCIRawAllocSize()

Purpose
Gets allocated size of raw memory in bytes.

Syntax
sword OCIRawAllocSize (OCIEnv *env,
 OCIError *err,
 CONST OCIRaw *raw,
 ub4 *allocsize);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

raw (IN)
Raw data whose allocated size in bytes is returned. This must be a non-NULL

pointer.

allocsize (OUT)
The allocated size of raw memory in bytes is returned.

Comments
The allocated size is greater than or equal to the actual raw size.

Related Functions
OCIErrorGet(), OCIRawResize(), OCIRawSize()

OCIRawAssignBytes()

17-98 Oracle Call Interface Programmer’s Guide

OCIRawAssignBytes()

Purpose
Assigns raw bytes of type ub1* to Oracle OCIRaw* datatype.

Syntax
sword OCIRawAssignBytes (OCIEnv *env,
 OCIError *err,
 CONST ub1 *rhs,
 ub4 rhs_len,
 OCIRaw **lhs);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment, of datatype ub1.

rhs_len (IN)
Length of the rhs raw bytes.

lhs (IN/OUT)
Left-hand side (target) of the assignment OCIRaw data.

Comments
Assigns rhs raw bytes to lhs raw datatype. The lhs raw may be resized depending

upon the size of the rhs. The raw bytes assigned are of type ub1.

Related Functions
OCIErrorGet(), OCIRawAssignRaw()

OCI Raw Functions

OCI Datatype Mapping and Manipulation Functions 17-99

OCIRawAssignRaw()

Purpose
Assign one Oracle raw datatype to another Oracle raw datatype.

Syntax
sword OCIRawAssignRaw (OCIEnv *env,
 OCIError *err,
 CONST OCIRaw *rhs,
 OCIRaw **lhs);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment; OCIRaw data.

lhs (IN/OUT)
Left-hand side (target) of the assignment; OCIRaw data.

Comments
Assigns rhs raw to lhs raw. The lhs raw may be resized depending upon the size of

the rhs.

Related Functions
OCIErrorGet(), OCIRawAssignBytes()

OCIRawPtr()

17-100 Oracle Call Interface Programmer’s Guide

OCIRawPtr()

Purpose
Gets the pointer to raw data.

Syntax
ub1 *OCIRawPtr (OCIEnv *env,
 CONST OCIRaw *raw);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

raw (IN)
Pointer to the data of a given raw is returned.

Comments
None.

Related Functions
OCIErrorGet(), OCIRawAssignRaw()

OCI Raw Functions

OCI Datatype Mapping and Manipulation Functions 17-101

OCIRawResize()

Purpose
Resizes the memory of a given variable-length raw.

Syntax
sword OCIRawResize (OCIEnv *env,
 OCIError *err,
 ub2 new_size,
 OCIRaw **raw);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

new_size (IN)
New size of the raw data in bytes.

raw (IN)
Variable-length raw pointer; the raw is resized to new_size.

Comments
This function resizes the memory of the given variable-length raw in the object

cache. The previous contents of the raw are not preserved. This function may

allocate the raw in a new memory region in which case the original memory

occupied by the given raw will be freed. If the input raw is NULL (raw == NULL),

then this function will allocate memory for the raw data.

If the new_size is 0, then this function frees the memory occupied by raw and a

NULL pointer value is returned.

Related Functions
OCIErrorGet(), OCIRawAllocSize(), OCIRawSize()

OCIRawSize()

17-102 Oracle Call Interface Programmer’s Guide

OCIRawSize()

Purpose
Returns the size of a given raw in bytes.

Syntax
ub4 OCIRawSize (OCIEnv *env,
 CONST OCIRaw *raw);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

raw (IN/OUT)
Raw whose size is returned.

Comments
None.

Related Functions
OCIErrorGet(), OCIRawAllocSize(), OCIRawSize()

OCI Ref Functions

OCI Datatype Mapping and Manipulation Functions 17-103

OCI Ref Functions
This section describes the OCI Ref functions.

Table 17–6 OCI Datatype Mapping and Manipulation Functions Quick Reference

Function/Page Purpose

OCIRefAssign() on page 17-104 Assign one REF to another

OCIRefClear() on page 17-105 Clear or nullify a REF

OCIRefFromHex() on page 17-106 Convert hexadecimal string to REF

OCIRefHexSize() on page 17-107 Return size of hexadecimal representation of REF

OCIRefIsEqual() on page 17-108 Compare two REFs for equality

OCIRefIsNull() on page 17-109 Test if a REF is NULL

OCIRefToHex() on page 17-110 Convert REF to hexadecimal string

OCIRefAssign()

17-104 Oracle Call Interface Programmer’s Guide

OCIRefAssign()

Purpose
Assigns one REF to another, such that both reference the same object.

Syntax
sword OCIRefAssign (OCIEnv *env,
 OCIError *err,
 CONST OCIRef *source,
 OCIRef **target);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

source (IN)
REF to copy from.

target (IN/OUT)
REF to copy to.

Comments
Copies source REF to target REF; both then reference the same object. If the target
REF pointer is NULL (i.e. *target == NULL), then OCIRefAssign() will allocate

memory for the target REF in the OCI object cache prior to the copy.

Related Functions
OCIErrorGet(), OCIRefIsEqual()

OCI Ref Functions

OCI Datatype Mapping and Manipulation Functions 17-105

OCIRefClear()

Purpose
Clears or nullifies a given REF.

Syntax
void OCIRefClear (OCIEnv *env,
 OCIRef *ref);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

ref (IN/OUT)
REF to clear.

Comments
A REF is considered to be a NULL REF if it no longer points to an object. Logically,

a NULL REF is a dangling REF.

Note that a null ref is still a valid SQL value and is not SQL null. It can be used as a

valid non-null constant ref value for NOT NULL column or attribute of a row in a

table.

If a NULL pointer value is passed as a REF, then this function is non-operational.

Related Functions
OCIErrorGet(), OCIRefIsNull()

OCIRefFromHex()

17-106 Oracle Call Interface Programmer’s Guide

OCIRefFromHex()

Purpose
Converts the given hexadecimal string into a REF.

Syntax
sword OCIRefFromHex (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 CONST text *hex,
 ub4 length,
 OCIRef **ref);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context handle; if the resulting ref is initialized with this service context.

hex (IN)
Hexadecimal text string, previously output by OCIRefToHex(), to convert into a REF.

length (IN)
Length of the hexadecimal text string.

ref (IN/OUT)
The REF into which the hexadecimal string is converted. If *ref is NULL on input,

then space for the REF is allocated in the object cache, otherwise the memory

occupied by the given REF is re-used.

Comments
This function ensures that the resulting REF is well formed. It does not ensure that

the object pointed to by the resulting REF exists or not.

Related Functions
OCIErrorGet(), OCIRefToHex()

OCI Ref Functions

OCI Datatype Mapping and Manipulation Functions 17-107

OCIRefHexSize()

Purpose
Returns the size of the hex representation of a REF.

Syntax
ub4 OCIRefHexSize (OCIEnv *env,
 CONST OCIRef *ref);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

ref (IN)
REF whose size in hexadecimal representation in bytes is returned.

Returns
The size of the hexadecimal representation of the REF.

Comments
Returns the size of the buffer in bytes required for the hexadecimal representation

of the ref. A buffer of at least this size must be passed to the ref-to-hex

(OCIRefToHex()) conversion function.

Related Functions
OCIErrorGet(), OCIRefFromHex()

OCIRefIsEqual()

17-108 Oracle Call Interface Programmer’s Guide

OCIRefIsEqual()

Purpose
Compares two REFs to determine if they are equal.

Syntax
boolean OCIRefIsEqual (OCIEnv *env,
 CONST OCIRef *x,
 CONST OCIRef *y);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

x (IN)
REF to compare.

y (IN)
REF to compare.

Returns
TRUE if the two REFs are equal

FALSE if the two REFs are not equal, or x is NULL, or y is NULL

Comments
Two REFs are equal if and only if they are both referencing the same object, whether

persistent or transient.

Note: Two NULL REFs are considered not equal by this function.

Related Functions
OCIErrorGet(), OCIRefAssign()

OCI Ref Functions

OCI Datatype Mapping and Manipulation Functions 17-109

OCIRefIsNull()

Purpose
Tests if a REF is NULL.

Syntax
boolean OCIRefIsNull (OCIEnv *env,
 CONST OCIRef *ref);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

ref (IN)
REF to test for NULL.

Returns
Returns TRUE if the given REF is NULL; otherwise, returns FALSE.

Comments
A REF is NULL if and only if:

■ it is supposed to be referencing a persistent object, but the object’s identifier is

NULL

■ it is supposed to be referencing a transient object, but it is currently not pointing

to an object.

Note: A REF is a dangling REF if the object that it points to does not exist.

Related Functions
OCIErrorGet(), OCIRefClear()

OCIRefToHex()

17-110 Oracle Call Interface Programmer’s Guide

OCIRefToHex()

Purpose
Converts a REF to a hexadecimal string.

Syntax
sword OCIRefToHex (OCIEnv *env,
 OCIError *err,
 CONST OCIRef *ref,
 text *hex,
 ub4 *hex_length);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ref (IN)
REF to be converted into a hexadecimal string; if ref is a NULL REF (i.e.

OCIRefIsNull(ref) == TRUE) then zero hex_length value is returned.

hex (OUT)
Buffer that is large enough to contain the resulting hexadecimal string; the contents

of the string is opaque to the caller.

hex_length (IN/OUT)
On input specifies the size of the hex buffer on output specifies the actual size of the

hexadecimal string being returned in hex.

Comments
Converts the given REF into a hexadecimal string, and returns the length of the

string. The resulting string is opaque to the caller.

This function returns an error if the given buffer is not big enough to hold the

resulting string.

Related Functions
OCIErrorGet(), OCIRefFromHex(), OCIRefHexSize(), OCIRefIsNull()

OCI String Functions

OCI Datatype Mapping and Manipulation Functions 17-111

OCI String Functions
This section describes the OCI string functions.

Table 17–7 OCI String Functions Quick Reference

Function/Page Purpose

OCIStringAllocSize() on page 17-112 Get allocated size of string memory in bytes

OCIStringAssign() on page 17-113 Assign string to string

OCIStringAssignText() on page 17-114 Assign text string to string

OCIStringPtr() on page 17-115 Get string pointer

OCIStringResize() on page 17-116 Resize string memory

OCIStringSize() on page 17-117 Get string size

OCIStringAllocSize()

17-112 Oracle Call Interface Programmer’s Guide

OCIStringAllocSize()

Purpose
Gets allocated size of string memory in bytes.

Syntax
sword OCIStringAllocSize (OCIEnv *env,
 CONST OCIString *vs,
 ub4 *allocsize);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

vs (IN)
String whose allocated size in bytes is returned. vs must be a non-NULL pointer.

allocsize (OUT)
The allocated size of string memory in bytes is returned.

Comments
The allocated size is greater than or equal to the actual string size.

Related Functions
OCIErrorGet(), OCIStringResize(), OCIStringSize()

OCI String Functions

OCI Datatype Mapping and Manipulation Functions 17-113

OCIStringAssign()

Purpose
Assigns one string to another string.

Syntax
sword OCIStringAssign (OCIEnv *env,
 OCIError *err,
 CONST OCIString *rhs,
 OCIString **lhs);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment.

lhs (IN/OUT)
Left-hand side (target) of the assignment.

Comments
Assigns rhs string to lhs string. The lhs string may be resized depending upon the

size of the rhs. The assigned string is NULL-terminated. The length field will not

include the extra byte needed for null termination.

This function returns an error if the assignment operation runs out of space.

Related Functions
OCIErrorGet(), OCIStringAssignText()

OCIStringAssignText()

17-114 Oracle Call Interface Programmer’s Guide

OCIStringAssignText()

Purpose
Assigns the source text string to the target string.

Syntax
sword OCIStringAssignText (OCIEnv *env,
 OCIError *err,
 CONST text *rhs,
 ub2 rhs_len,
 OCIString **lhs);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment, a text string.

rhs_len (IN)
Length of the rhs string.

lhs (IN/OUT)
Left-hand side (target) of the assignment.

Comments
Assigns rhs string to lhs string. The lhs string may be resized depending upon the

size of the rhs. The assigned string is NULL-terminated. The length field will not

include the extra byte needed for null termination.

Related Functions
OCIErrorGet(), OCIStringAssign()

OCI String Functions

OCI Datatype Mapping and Manipulation Functions 17-115

OCIStringPtr()

Purpose
Gets a pointer to the text of a given string.

Syntax
text *OCIStringPtr (OCIEnv *env,
 CONST OCIString *vs);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

vs (IN)
Pointer to the text of this string is returned.

Comments
None.

Related Functions
OCIErrorGet(), OCIStringAssign()

OCIStringResize()

17-116 Oracle Call Interface Programmer’s Guide

OCIStringResize()

Purpose
Resizes the memory of a given string.

Syntax
sword OCIStringResize (OCIEnv *env,
 OCIError *err,
 ub4 new_size,
 OCIString **str);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

new_size (IN)
New memory size of the string in bytes. new_size must include space for the NULL

character (’\0’) as string terminator.

str (IN/OUT)
Allocated memory for the string which is freed from the OCI object cache.

Comments
This function resizes the memory of the given variable-length string in the object

cache. Contents of the string are not preserved. This function may allocate the string

in a new memory region, in which case the original memory occupied by the given

string is freed. If str is NULL, this function allocates memory for the string. If new_
size is 0, this function frees the memory occupied by str and a NULL pointer value is

returned.

Related Functions
OCIErrorGet(), OCIStringAllocSize(), OCIStringSize()

OCI String Functions

OCI Datatype Mapping and Manipulation Functions 17-117

OCIStringSize()

Purpose
Gets the size of the given string in bytes.

Syntax
ub4 OCIStringSize (OCIEnv *env,
 CONST OCIString *vs);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

vs (IN)
String whose size is returned.

Comments
The returned size does not include an extra byte for NULL termination.

Related Functions
OCIErrorGet(), OCIStringResize()

OCI Table Functions

17-118 Oracle Call Interface Programmer’s Guide

OCI Table Functions
This section describes the OCI Table functions.

Table 17–8 OCI Table Functions Quick Reference

Function/Page Purpose

OCITableDelete() on page 17-119 Delete element

OCITableExists() on page 17-120 Test whether element exists

OCITableFirst() on page 17-121 Return first index of table

OCITableLast() on page 17-122 Return last index of table

OCITableNext() on page 17-123 Return next available index of table

OCITablePrev() on page 17-124 Return previous available index of table

OCITableSize() on page 17-125 Return current size of table

OCI Table Functions

OCI Datatype Mapping and Manipulation Functions 17-119

OCITableDelete()

Purpose
Deletes the element at the specified index.

Syntax
sword OCITableDelete (OCIEnv *env,
 OCIError *err,
 sb4 index,
 OCITable *tbl);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index of the element which must be deleted.

tbl (IN)
Table whose element is deleted.

Comments
This function returns an error if the element at the given index has already been

deleted or if the given index is not valid for the given table. It is also an error if any

input parameter is NULL.

Note: The position ordinals of the remaining elements of the table are not

changed by OCITableDelete(). The delete operation creates holes in the table.

Related Functions
OCIErrorGet(), OCITableExists()

OCITableExists()

17-120 Oracle Call Interface Programmer’s Guide

OCITableExists()

Purpose
Tests whether an element exists at the given index.

Syntax
sword OCITableExists (OCIEnv *env,
 OCIError *err,
 CONST OCITable *tbl,
 sb4 index,
 boolean *exists);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Table in which the given index is checked.

index (IN)
Index of the element which is checked for existence.

exists (OUT)
Set to TRUE if element at given index exists; otherwise, it is set to FALSE.

Comments
This function returns an error if any input parameter is NULL.

Related Functions
OCIErrorGet(), OCITableDelete()

OCI Table Functions

OCI Datatype Mapping and Manipulation Functions 17-121

OCITableFirst()

Purpose
Returns the index of the first existing element in a given table.

Syntax
sword OCITableFirst (OCIEnv *env,
 OCIError *err,
 CONST OCITable *tbl,
 sb4 *index);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Table to scan.

index (OUT)
First index of the element which exists in the given table is returned.

Comments
For example, if OCITableDelete() deleted the first 5 elements of a table,

OCITableFirst() returns 6. See OCITableDelete() for information regarding non-data

holes in tables.

This function returns an error if the table is empty.

Related Functions
OCIErrorGet(), OCITableDelete(), OCITableLast()

OCITableLast()

17-122 Oracle Call Interface Programmer’s Guide

OCITableLast()

Purpose
Returns the index of the last existing element of a table.

Syntax
sword OCITableLast (OCIEnv *env,
 OCIError *err,
 CONST OCITable *tbl,
 sb4 *index);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Table to scan.

index (OUT)
Index of the last existing element in the table.

Comments
This function returns an error if the table is empty.

Related Functions
OCIErrorGet(), OCITableFirst(), OCITableNext(), OCITablePrev()

OCI Table Functions

OCI Datatype Mapping and Manipulation Functions 17-123

OCITableNext()

Purpose
Returns the index of the next existing element of a table.

Syntax
sword OCITableNext (OCIEnv *env,
 OCIError *err,
 sb4 index,
 CONST OCITable *tbl,
 sb4 *next_index
 boolean *exists);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index for starting point of scan.

tbl (IN)
Table to scan.

next_index (OUT)
Index of the next existing element after tbl(index).

exists (OUT)
FALSE if no next index is available, else TRUE.

Comments
Returns the smallest position j, greater than index, such that exists(j) is TRUE.

See Also: Refer to the description of OCIStringAllocSize(), regarding the

existence of non-data holes in tables.

Related Functions
OCIErrorGet(), OCITablePrev()

OCITablePrev()

17-124 Oracle Call Interface Programmer’s Guide

OCITablePrev()

Purpose
Returns the index of the previous existing element of a table.

Syntax
sword OCITablePrev (OCIEnv *env,
 OCIError *err,
 sb4 index,
 CONST OCITable *tbl,
 sb4 *prev_index
 boolean *exists);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index for starting point of scan.

tbl (IN)
Table to scan.

prev_index (OUT)
Index of the previous existing element before tbl(index).

exists (OUT)
FALSE if no previous index is available, else TRUE.

Comments
Return the largest position j, less than index, such that exists(j) is TRUE.

See Also: Refer to the description of OCIStringAllocSize(), regarding the

existence of non-data holes in tables.

Related Functions
OCITableNext()

OCI Table Functions

OCI Datatype Mapping and Manipulation Functions 17-125

OCITableSize()

Purpose
Returns the size of the given table, not including deleted elements.

Syntax
sword OCITableSize (OCIEnv *env,
 OCIError *err,
 CONST OCITable *tbl
 sb4 *size);

Parameters
env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of

OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Nested table whose number of elements is returned.

size (OUT)
Current number of elements in the nested table. The count does not include deleted

elements.

Comments
The count will be decremented upon deleting elements from the nested table. So

this count does not include any holes created by deleting elements. To get the count

not including the deleted elements, use OCICollSize().

For example:

OCITableSize(...);
// assume 'size' returned is equal to 5
OCITableDelete(...); // delete one element
OCITableSize(...);
// 'size' returned is equal to 4

To get the count plus the count of deleted elements use OCICollSize(). Continuing

the previous example:

OCICollSize(...)
// 'size' returned is still equal to 5

OCITableSize()

17-126 Oracle Call Interface Programmer’s Guide

This function returns an error if an error occurs during the loading of the nested

table into the object cache, or if any of the input parameters is NULL.

Related Functions
OCICollSize()

OCI External Procedure Functions 18-1

18
OCI External Procedure Functions

The chapter contains the following sections:

■ Introduction

■ The OCI External Procedure Functions

Introduction

18-2 Oracle Call Interface Programmer’s Guide

Introduction
This chapter describes the OCI External Procedure Functions. These functions

enable users of external procedures to raise errors, allocate some memory, and get

OCI context information. For more information about using these functions, refer to

the Oracle8i Application Developer’s Guide - Fundamentals.

The Function Syntax
 For each function, the following information is listed:

Purpose
A brief description of the action performed by the function.

Syntax
A code snippet showing the syntax for calling the function, including the ordering

and types of the parameters.

Parameters
A description of each of the function’s parameters. This includes the parameter’s

mode. The mode of a parameter has three possible values, as described below:

Comments
More detailed information about the function (if available). This may include

restrictions on the use of the function, or other information that might be useful

when using the function in an application.

Returns
A list of possible return values for the function.

Example
A complete or partial code example demonstrating the use of the function call being

described. Not all function descriptions include an example.

Mode Description

IN A parameter that passes data to Oracle

OUT A parameter that receives data from Oracle on this or a subsequent call

IN/OUT A parameter that passes data on the call and receives data on the return
from this or a subsequent call.

Introduction

OCI External Procedure Functions 18-3

Related Functions
A list of related function calls.

Return Codes
Success and error return codes are defined for certain external procedure interface

functions. If a particular interface function returns OCIEXTPROC_SUCCESS or

OCIEXTPROC_ERROR, then applications must use these macros to check for return

values.

■ OCIEXTPROC_SUCCESS - External Procedure Success Return Code

■ OCIEXTPROC_ERROR - External Procedure Failure Return Code

With_Context Type
The C callable interface to PL/SQL external procedures requires the with_context
parameter to be passed. The type of this structure is OCIExtProcContext, which is

opaque to the user.

The user can declare the with_context parameter in the application as

OCIExtProcContext *with_context;

The OCI External Procedure Functions

18-4 Oracle Call Interface Programmer’s Guide

The OCI External Procedure Functions
The remainder of this chapter specifies the OCI external procedure functions for C.

Table 18–1 OCI External Procedure Functions Quick Reference

Function/Page Purpose

OCIExtProcAllocCallMemory() on page 18-5 Allocates memory for the duration of the External Procedure

OCIExtProcRaiseExcp() on page 18-6 Raises an Exception to PL/SQL

OCIExtProcRaiseExcpWithMsg() on page 18-7 Raises an exception with a message

OCIExtProcGetEnv() on page 18-8 Gets the OCI environment, service context, and error handles

The OCI External Procedure Functions

OCI External Procedure Functions 18-5

OCIExtProcAllocCallMemory()

Purpose
Allocate N bytes of memory for the duration of the External Procedure.

Syntax
dvoid * OCIExtProcAllocCallMemory (OCIExtProcContext *with_context,
 size_t amount)

Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See "With_

Context Type" on page 18-3.

amount (IN)
The number of bytes to allocate.

Comments
This call allocates amount bytes of memory for the duration of the call of the external

procedure.

Any memory allocated by this call is freed by PL/SQL upon return from the

external procedure. The application must not use any kind of free function on

memory allocated by OCIExtProcAllocCallMemory(). Use this function to allocate

memory for function returns.

A zero return value should be treated as an error

Returns
An untyped (opaque) Pointer to the allocated memory.

Example
text *ptr = (text *)OCIExtProcAllocCallMemory(wctx, 1024)

Related Functions
OCIErrorGet()

OCIExtProcRaiseExcp()

18-6 Oracle Call Interface Programmer’s Guide

OCIExtProcRaiseExcp()

Purpose
Raise an Exception to PL/SQL.

Syntax
size_t OCIExtProcRaiseExcp (OCIExtProcContext *with_context,
 int errnum)

 Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See "With_

Context Type" on page 18-3.

errnum (IN)
Oracle Error number to signal to PL/SQL. errnum must be a positive number and in

the range 1 to 32767.

Comments
Calling this function signals an exception back to PL/SQL. After a successful return

from this function, the external procedure must start its exit handling and return

back to PL/SQL. Once an exception is signalled to PL/SQL, IN/OUT and OUT

arguments, if any, are not processed at all.

Returns
This function returns OCIEXTPROC_SUCCESS if the call was successful. It returns

OCIEXTPROC_ERROR if the call has failed.

Related Functions
OCIExtProcRaiseExcpWithMsg()

The OCI External Procedure Functions

OCI External Procedure Functions 18-7

OCIExtProcRaiseExcpWithMsg()

Purpose
Raise an exception with a message.

Syntax
size_t OCIExtProcRaiseExcpWithMsg (OCIExtProcContext *with_context,
 int errnum,
 char *errmsg,
 size_t msglen)

 Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See "With_

Context Type" on page 18-3.

errnum (IN)
Oracle Error number to signal to PL/SQL. The value of errnum must be a positive

number and in the range 1 to 32767

errmsg (IN)
The error message associated with the errnum.

len (IN)
The length of the error message. Pass zero if errmsg is a null terminated string.

Comments
Raise an exception to PL/SQL. In addition, substitute the following error message

string within the standard Oracle error message string. See the description of

OCIExtProcRaiseExcp() for more information.

Returns
This function returns OCIEXTPROC_SUCCESS if the call was successful. It returns

OCIEXTPROC_ERROR if the call has failed.

Related Functions
OCIExtProcRaiseExcp()

OCIExtProcGetEnv()

18-8 Oracle Call Interface Programmer’s Guide

OCIExtProcGetEnv()

Purpose
Gets the OCI environment, service context, and error handles.

Syntax
sword OCIExtProcGetEnv (OCIExtProcContext *with_context,
 OCIEnv envh,
 OCISvcCtx svch,
 OCIError errh)

Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See "With_

Context Type" on page 18-3.

envh (OUT)
The OCI Environment handle.

svch (OUT)
The OCI Service handle.

errh (OUT)
The OCI Error handle.

Comments
The primary purpose of this function is to allow OCI callbacks to use the database

in the same transaction. The OCI handles obtained by this function should be used

in OCI callbacks to the database. If these handles are obtained through standard

OCI calls, then these handles use a new connection to the database and cannot be

used for callbacks in the same transaction. In one external procedure you can use

either callbacks or a new connection, but not both.

Returns
This function returns OCI_SUCCESS if the call was successful; otherwise, it returns

OCI_ERROR.

Related Functions
OCIEnvCreate(), OCIAttrGet(), OCIHandleAlloc()

Part IV
 Appendices

This part of the book contains the appendices:

■ Appendix A, "Handle and Descriptor Attributes", lists the attributes of the OCI

handles.

■ Appendix B, "OCI Demonstration Programs", lists important demonstration

programs that provide code examples of OCI features.

■ Appendix C, "OCI Function Server Roundtrips", provides information about the

server roundtrips required by most OCI functions.

Handle and Descriptor Attributes A-1

A
Handle and Descriptor Attributes

This appendix describes the attributes for OCI handles and descriptors, which can

be read with OCIAttrGet(), and modified with OCIAttrSet().

■ Conventions

■ Environment Handle Attributes

■ Error Handle Attributes

■ Service Context Handle Attributes

■ Server Handle Attributes

■ User Session Handle Attributes

■ Transaction Handle Attributes

■ Statement Handle Attributes

■ Bind Handle Attributes

■ Define Handle Attributes

■ Describe Handle Attributes

■ Parameter Descriptor Attributes

■ LOB Locator Attributes

■ Complex Object Attributes

■ Advanced Queueing Descriptor Attributes

■ Subscription Handle Attributes

■ Direct Path Loading Handle Attributes

■ Process Handle Attributes

Conventions

A-2 Oracle Call Interface Programmer’s Guide

Conventions
For each handle type, the attributes which can be read or changed are listed. Each

attribute listing includes the following information:

Mode
The following modes are possible:

READ - the attribute can be read using OCIAttrGet()

WRITE - the attribute can be modified using OCIAttrSet()

READ/WRITE - the attribute can be read using OCIAttrGet(), and it can be

modified using OCIAttrSet().

Description
This is a description of the purpose of the attribute.

Attribute Datatype
This is the datatype of the attribute. If necessary, a distinction is made between the

datatype for READ and WRITE modes.

Possible Values
In some cases, only certain values are allowed, and they are listed here.

Example
In some cases an example is included.

Environment Handle Attributes

Handle and Descriptor Attributes A-3

Environment Handle Attributes

OCI_ATTR_CACHE_ARRAYFLUSH

Mode
READ/WRITE

Description
When this attribute is set to TRUE, during OCICacheFlush() the objects that belong

to the same table are flushed together, which can considerably improve

performance. This mode should only be used when the order in which the objects

are flushed is not important. During this mode it is not guaranteed that the order in

which the objects are marked dirty is preserved. See "Object Cache Parameters" on

page 13-5 and "Flushing Changes to Server" on page 13-10 for more information.

Attribute Datatype
boolean

OCI_ATTR_CACHE_MAX_SIZE

Mode
READ/WRITE

Description
Sets the maximum size (high watermark) for the client-side object cache as a

percentage of the optimal size. The default value is 10%. See the section "Object

Cache Parameters" on page 13-5 for more information.

Attribute Datatype
ub4 *

OCI_ATTR_CACHE_OPT_SIZE

Mode
READ/WRITE

Description
Sets the optimal size for the client-side object cache in bytes. The default value is

200k bytes. See the section "Object Cache Parameters" on page 13-5 for more

information.

Attribute Datatype
ub4 *

Environment Handle Attributes

A-4 Oracle Call Interface Programmer’s Guide

OCI_ATTR_OBJECT

Mode
READ

Description
Returns TRUE if the environment was initialized in object mode.

Attribute Datatype
boolean *

OCI_ATTR_PINOPTION

Mode
READ/WRITE

Description
This attribute sets the value of OCI_PIN_DEFAULT for the application associated

with the environment handle.

For example, if OCI_ATTR_PINOPTION is set to OCI_PIN_RECENT, then if

OCIObjectPin() is called with the pin_option parameter set to OCI_PIN_DEFAULT,

then the object is pinned in OCI_PIN_RECENT mode.

Attribute Datatype
OCIPinOpt *

OCI_ATTR_ALLOC_DURATION

Mode
READ/WRITE

Description
This attribute sets the value of OCI_DURATION_DEFAULT for allocation durations

for the application associated with the environment handle.

Attribute Datatype
OCIDuration *

OCI_ATTR_PIN_DURATION

Mode
READ/WRITE

Environment Handle Attributes

Handle and Descriptor Attributes A-5

Description
This attribute sets the value of OCI_DURATION_DEFAULT for pin durations for

the application associated with the environment handle.

Attribute Datatype
OCIDuration *

OCI_ATTR_HEAPALLOC

Mode
READ

Description
The current size of the memory allocated from the environment handle. This may

help you track where memory is being used most in an application.

Attribute Datatype
ub4 *

OCI_ATTR_OBJECT_NEWNOTNULL

Mode
READ/WRITE

Description
When this attribute is set to TRUE, newly created objects have non-NULL

attributes. For more information refer to "Creating Objects" on page 10-32.

Attribute Datatype
boolean *

OCI_ATTR_OBJECT_DETECTCHANGE

Mode
READ/WRITE

Description
When this attribute is set to TRUE, applications receive an ORA-08179 error when

attempting to flush an object which has been modified in the server by another

committed transaction.

For more information, refer to "Implementing Optimistic Locking" on page 13-13.

Attribute Datatype
boolean *

Error Handle Attributes

A-6 Oracle Call Interface Programmer’s Guide

OCI_ATTR_SHARED_HEAP_ALLOC

Mode
READ

Description
Returns the size of the memory currently allocated from the shared pool. This

attribute works on any environment handle but the process must be initialized in

shared mode to return a meaningful value. This attribute is read as follows:

ub4 heapsz = 0;
OCIAttrGet((dvoid *)envhp, (ub4)OCI_HTYPE_ENV,
 (dvoid *) &heapsz, (ub4 *) 0,
 (ub4)OCI_ATTR_SHARED_HEAPALLOC, errhp);

Attribute Datatype
ub4 *

Error Handle Attributes

OCI_ATTR_DML_ROW_OFFSET

Mode
READ

Description
Returns the offset (into the DML array) at which the error occurred.

Attribute Datatype
ub4 *

Service Context Handle Attributes

Handle and Descriptor Attributes A-7

Service Context Handle Attributes

OCI_ATTR_ENV

Mode
READ

Description
returns the environment context associated with the service context.

Attribute Datatype
OCIEnv **

OCI_ATTR_SERVER

Mode
READ/WRITE

Description
When read, returns the pointer to the server context attribute of the service context.

When changed, sets the server context attribute of the service context.

Attribute Datatype
OCIServer ** (READ) / OCIServer * (WRITE)

OCI_ATTR_SESSION

Mode
READ/WRITE

Description
When read, returns the pointer to the authentication context attribute of the service

context.

When changed, sets the authentication context attribute of the service context.

Attribute Datatype
OCISession ** (READ) / OCISession * (WRITE)

OCI_ATTR_TRANS

Mode
READ/WRITE

Service Context Handle Attributes

A-8 Oracle Call Interface Programmer’s Guide

Description
When read, returns the pointer to the transaction context attribute of the service

context.

When changed, sets the transaction context attribute of the service context.

Attribute Datatype
OCITrans ** (READ) / OCITrans * (WRITE)

OCI_ATTR_IN_V8_MODE

Mode
READ

Description
Allows you to determine whether an application has switched to Oracle release 7

mode (e.g., through an OCISvcCtxToLda() call). A non-zero (true) return value

indicates that the application is currently running in Oracle release 8 mode, a zero

(false) return value indicates that the application is currently running in Oracle

release 7 mode.

Attribute Datatype
ub1 *

Example
The following code sample shows how this parameter might be used:

in_v8_mode = 0;
OCIAttrGet ((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX, (ub1 *)&in_v8_mode,
 (ub4) 0, OCI_ATTR_IN_V8_MODE, errhp);
if (in_v8_mode)

fprintf (stdout, "In V8 mode\n");
else

fprintf (stdout, "In V7 mode\n");

Server Handle Attributes

Handle and Descriptor Attributes A-9

Server Handle Attributes

OCI_ATTR_NONBLOCKING_MODE

Mode
READ/WRITE

Description
This attribute determines the blocking mode.

When read, the attribute value returns TRUE if the server context is in non-blocking

mode. When set, it toggles the non-blocking mode attribute. See "Non-Blocking

Mode" on page 2-36 for more information.

Attribute Datatype
The attribute value is of type ub1.

OCI_ATTR_ENV

Mode
READ

Description
Returns the environment context associated with the server context.

Attribute Datatype
OCIEnv **

OCI_ATTR_EXTERNAL_NAME

Mode
READ/WRITE

Description
The external name is the user-friendly global name stored in sys.props$.value$

where name = ’GLOBAL_DB_NAME’. It is not guaranteed to be unique unless all

databases register their names with a network directory service.

Database names can be exchanged with the server in case of distributed transaction

coordination. Server database names can only be accessed if the database is open at

the time the OCISessionBegin() call is issued.

Server Handle Attributes

A-10 Oracle Call Interface Programmer’s Guide

Attribute Datatype
text ** (READ) / text * (WRITE)

OCI_ATTR_INTERNAL_NAME

Mode
READ/WRITE

Description
Sets the client database name that will be recorded when performing global

transactions. The name can be used by the DBA to track transactions that may be

pending in a prepared state due to failures.

Attribute Datatype
text ** (READ) / text * (WRITE)

OCI_ATTR_IN_V8_MODE

Mode
READ

Description
Allows you to determine whether an application has switched to Oracle release 7

mode (e.g., through an OCISvcCtxToLda() call). A non-zero (true) return value

indicates that the application is currently running in Oracle release 8 mode, a zero

(false) return value indicates that the application is currently running in Oracle

release 7 mode.

Attribute Datatype
ub1 *

OCI_ATTR_FOCBK

Mode
READ/WRITE

Description
See "Application Failover Callbacks" on page 9-18 for more information.

Attribute Datatype
OCIFocbkStruct *

Server Handle Attributes

Handle and Descriptor Attributes A-11

OCI_ATTR_SERVER_GROUP

Mode
READ/WRITE

Description
An alpha-numeric string not exceeding 30 characters specifying the server group.

See "Password and Session Management" on page 8-10 for more information.

Attribute Datatype
ub4

User Session Handle Attributes

A-12 Oracle Call Interface Programmer’s Guide

User Session Handle Attributes

OCI_ATTR_USERNAME

Mode
WRITE

Description
Specifies a username to use for authentication.

Attribute Datatype
text *

OCI_ATTR_MIGSESSION

Mode
READ/WRITE

Description
Specifies the session identified for the session handle. Allows you to clone a session

from one environment to another, in the same process or between processes. These

processes can be on the same machine or different machines. For a session to be

cloned, the session must be authenticated as migratable. See "Password and Session

Management" on page 8-10 for more information.

Attribute Datatype
ub1 *

Example
The following code sample shows how this attribute might be used:

OCIAttrSet ((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) mig_session,
 (ub4) sz, (ub4) OCI_ATTR_MIGSESSION, errhp);

OCI_ATTR_PASSWORD

Mode
WRITE

Description
Specifies a password to use for authentication.

Attribute Datatype
text *

Transaction Handle Attributes

Handle and Descriptor Attributes A-13

Transaction Handle Attributes

OCI_ATTR_TRANS_NAME

Mode
READ/WRITE

Description
Can be used to establish or read a text string which identifies a transaction. This is

an alternative to using the XID to identify the transaction. The text string can be up

to 64 bytes long.

Attribute Datatype
text ** (READ) / text * (WRITE)

OCI_ATTR_XID

Mode
READ/WRITE

Description
Can set or read an XID which identifies a transaction.

Attribute Datatype
XID ** (READ) / XID * (WRITE)

Statement Handle Attributes

A-14 Oracle Call Interface Programmer’s Guide

Statement Handle Attributes

OCI_ATTR_NUM_DML_ERRORS

Mode
READ

Description
Returns the number of errors in the DML operation.

Attribute Datatype
ub4 *

OCI_ATTR_ROW_COUNT

Mode
READ

Description
Returns the number of rows processed so far. The default value is 1.

Attribute Datatype
ub4 *

OCI_ATTR_SQLFNCODE

Mode
READ

Description
Returns the function code of the SQL command associated with the statement.

Attribute Datatype
ub2 *

Notes
The SQL command codes are listed in Table A–1, "SQL Command Codes" on

page A-15.

Statement Handle Attributes

Handle and Descriptor Attributes A-15

Table A–1 SQL Command Codes

Code SQL Function Code SQL Function Code SQL Function

01 CREATE TABLE 43 DROP EXTERNAL
DATABASE

85 TRUNCATE TABLE

02 SET ROLE 44 CREATE DATABASE 86 TRUNCATE CLUSTER

03 INSERT 45 ALTER DATABASE 87 CREATE BITMAPFILE

04 SELECT 46 CREATE ROLLBACK
SEGMENT

88 ALTER VIEW

05 UPDATE 47 ALTER ROLLBACK
SEGMENT

89 DROP BITMAPFILE

06 DROP ROLE 48 DROP ROLLBACK
SEGMENT

90 SET CONSTRAINTS

07 DROP VIEW 49 CREATE TABLESPACE 91 CREATE FUNCTION

08 DROP TABLE 50 ALTER TABLESPACE 92 ALTER FUNCTION

09 DELETE 51 DROP TABLESPACE 93 DROP FUNCTION

10 CREATE VIEW 52 ALTER SESSION 94 CREATE PACKAGE

11 DROP USER 53 ALTER USER 95 ALTER PACKAGE

12 CREATE ROLE 54 COMMIT (WORK) 96 DROP PACKAGE

13 CREATE SEQUENCE 55 ROLLBACK 97 CREATE PACKAGE
BODY

14 ALTER SEQUENCE 56 SAVEPOINT 98 ALTER PACKAGE BODY

15 (NOT USED) 57 CREATE CONTROL FILE 99 DROP PACKAGE BODY

16 DROP SEQUENCE 58 ALTER TRACING 157 CREATE DIRECTORY

17 CREATE SCHEMA 59 CREATE TRIGGER 158 DROP DIRECTORY

18 CREATE CLUSTER 60 ALTER TRIGGER 159 CREATE LIBRARY

19 CREATE USER 61 DROP TRIGGER 160 CREATE JAVA

20 CREATE INDEX 62 ANALYZE TABLE 161 ALTER JAVA

21 DROP INDEX 63 ANALYZE INDEX 162 DROP JAVA

22 DROP CLUSTER 64 ANALYZE CLUSTER 163 CREATE OPERATOR

23 VALIDATE INDEX 65 CREATE PROFILE 164 CREATE INDEXTYPE

24 CREATE PROCEDURE 66 DROP PROFILE 165 DROP INDEXTYPE

Statement Handle Attributes

A-16 Oracle Call Interface Programmer’s Guide

OCI_ATTR_ENV

Mode
READ

Description
Returns the environment context associated with the statement.

Attribute Datatype
OCIEnv **

25 ALTER PROCEDURE 67 ALTER PROFILE 166 ALTER INDEXTYPE

26 ALTER TABLE 68 DROP PROCEDURE 167 DROP OPERATOR

27 EXPLAIN 69 (NOT USED) 168 ASSOCIATE STATISTICS

28 GRANT 70 ALTER RESOURCE COST 169 DISASSOCIATE
STATISTICS

29 REVOKE 71 CREATE SNAPSHOT LOG 170 CALL METHOD

30 CREATE SYNONYM 72 ALTER SNAPSHOT LOG 171 CREATE SUMMARY

31 DROP SYNONYM 73 DROP SNAPSHOT LOG 172 ALTER SUMMARY

32 ALTER SYSTEM SWITCH
LOG

74 CREATE SNAPSHOT 73 DROP SUMMARY

33 SET TRANSACTION 75 ALTER SNAPSHOT 174 CREATE DIMENSION

34 PL/SQL EXECUTE 76 DROP SNAPSHOT 175 ALTER DIMENSION

35 LOCK 77 CREATE TYPE 176 DROP DIMENSION

36 NOOP 78 DROP TYPE 177 CREATE CONTEXT

37 RENAME 79 ALTER ROLE 178 DROP CONTEXT

38 COMMENT 80 ALTER TYPE 179 ALTER OUTLINE

39 AUDIT 81 CREATE TYPE BODY 180 CREATE OUTLINE

40 NO AUDIT 82 ALTER TYPE BODY 181 DROP OUTLINE

41 ALTER INDEX 83 DROP TYPE BODY 182 UPDATE INDEXES

42 CREATE EXTERNAL
DATABASE

84 DROP LIBRARY 183 ALTER OPERATOR

Table A–1 SQL Command Codes (Cont.)

Code SQL Function Code SQL Function Code SQL Function

Statement Handle Attributes

Handle and Descriptor Attributes A-17

OCI_ATTR_STMT_TYPE

Mode
READ

Description
The type of statement associated with the handle. Possible values are:

■ OCI_STMT_SELECT

■ OCI_STMT_UPDATE

■ OCI_STMT_DELETE

■ OCI_STMT_INSERT

■ OCI_STMT_CREATE

■ OCI_STMT_DROP

■ OCI_STMT_ALTER

■ OCI_STMT_BEGIN (PL/SQL statement)

■ OCI_STMT_DECLARE (PL/SQL statement)

Attribute Datatype
ub2 *

OCI_ATTR_ROWID

Mode
READ

Description
Returns the ROWID descriptor allocated with OCIDescriptorAlloc(). For additional

information, see "Positioned Updates and Deletes" on page 2-34 and "ROWID" on

page 3-13.

Attribute Datatype
OCIRowid *

OCI_ATTR_PARAM_COUNT

Mode
READ

Statement Handle Attributes

A-18 Oracle Call Interface Programmer’s Guide

Description
This attribute can be used to get the number of columns in the select-list for the

statement associated with the statement handle.

Attribute Datatype
ub4 *

Example
The following code sample shows how this attribute might be used:

/* Describe of a select-list */
text *selstmt = "SELECT * FROM EMP";
ub4 parmcnt;
OCIParam *parmdp;

err = OCIStmtPrepare (stmhp, errhp, selstmt,
(ub4)strlen((char *)selstmt),

(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
err = OCIStmtExecute (svchp, stmhp, errhp, (ub4)1, (ub4)0,

(const OCISnapshot*) 0, (OCISnapshot*)0, OCI_DESCRIBE_ONLY);

/* get the number of columns in the select list */
err = OCIAttrGet ((dvoid *)stmhp, (ub4)OCI_HTYPE_STMT, (dvoid *)

&parmcnt, (ub4 *) 0, (ub4)OCI_ATTR_PARAM_COUNT, errhp);

/* get describe information for each column */
for (i = 0; i < parmcnt; i++) {
 OCIParamGet (dvoid *)stmhp, OCI_HTYPE_STMT, errhp, &parmdp, i);
/* get the attributes for each column */
 }

OCI_ATTR_PREFETCH_ROWS

Mode
WRITE

Description
Sets the number of top level rows to be prefetched. The default value is 1 row.

Attribute Datatype
ub4 *

OCI_ATTR_PREFETCH_MEMORY

Mode
WRITE

Statement Handle Attributes

Handle and Descriptor Attributes A-19

Description
Sets the memory level for top level rows to be prefetched. Rows up to the specified

top level row count are fetched if it occupies no more than the specified memory

usage limit. The default value is 0, which means that memory size is not included in

computing the number of rows to prefetch.

Attribute Datatype
ub4 *

OCI_ATTR_PARSE_ERROR_OFFSET

Mode
READ

Description
Returns the parse error offset for a statement.

Attribute Datatype

Bind Handle Attributes

A-20 Oracle Call Interface Programmer’s Guide

Bind Handle Attributes

OCI_ATTR_CHAR_COUNT

Mode
WRITE

Description
See "Character Count Attribute" on page 5-28.

Attribute Datatype
ub4 *

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
Character set ID of the bind handle. If the character set of the input data is UCS-2

(Unicode), the user has to set the character set Id to OCI_UCS2ID. The bind value

buffer is assumed to be a utext buffer and length semantics for input length pointers

and return values changes to character semantics (number of utexts). However the

size of the bind value buffer in the preceeding OCIBind call has to be stated in bytes.

For more information, see "Fixed Width Unicode Support" on page 5-28.

When changing the character set on an bind handle, it is necessary to explicitly state

the maximum length of the corresponding column in the database (schema

definition). This is done using OCIAttrSet() and specifying the value of the OCI_

ATTR_MAXDATA_SIZE attribute on the define handle.

Attribute Datatype
ub2 *

OCI_ATTR_CHARSET_FORM

Mode
READ/WRITE

Description
Character set form of the bind handle.

Attribute Datatype
ub1 *

Bind Handle Attributes

Handle and Descriptor Attributes A-21

OCI_ATTR_MAXDATA_SIZE

Mode
READ/WRITE

Description
See "OCI_ATTR_MAXDATA_SIZE Attribute" on page 5-27.

Attribute Datatype
sb4 *

OCI_ATTR_PDPRC

Mode
WRITE

Description
Specifies packed decimal precision. For SQLT_PDN values, the precision should be

equal to 2*(value_sz-1). For SQLT_SLS values, the precision should be equal to

(value_sz-1).

After a bind or define, this value is initialized to zero. The OCI_ATTR_PDPRC

attribute should be set first, followed by OCI_ATTR_PDSCL. If either of these

values needs to be changed, a rebind/redefine should be done first, and then the

two attributes should be reset in order.

Attribute Datatype
ub2 *

OCI_ATTR_PDSCL

Mode
WRITE

Description
Specifies the scale for packed decimal values.

After a bind or define, this value is initialized to zero. The OCI_ATTR_PDPRC

attribute should be set first, followed by OCI_ATTR_PDSCL. If either of these

values needs to be changed, a rebind/redefine should be done first, and then the

two attributes should be reset in order.

Attribute Datatype
sb2 *

Define Handle Attributes

A-22 Oracle Call Interface Programmer’s Guide

OCI_ATTR_ROWS_RETURNED

Mode
READ

Description
This attribute returns the number of rows that are going to be returned in the

current iteration when we are in the OUT callback function for binding a DML

statement with RETURNING clause.

Attribute Datatype
ub4 *

Define Handle Attributes

OCI_ATTR_CHAR_COUNT

Mode
WRITE

Description
Sets the number of characters in a character type data. This specifies the number of

characters desired in the define buffer. The define buffer length as specified in the

define call must be greater than number of characters.

Attribute Datatype
ub4 *

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
The character set ID of the define handle. If the character set of the output data

should be UCS-2 (Unicode), the user has to set the character set Id to OCI_UCS2ID.

The define value buffer is assumed to be a utext buffer and length semantics for

indicators and return values changes to character semantics (number of utexts).

However the size of the define value buffer in the preceeding OCIDefine call has to

be stated in bytes. For more information, see "Fixed Width Unicode Support" on

page 5-28.

Attribute Datatype
ub2 *

Define Handle Attributes

Handle and Descriptor Attributes A-23

OCI_ATTR_CHARSET_FORM

Mode
READ/WRITE

Description
The character set form of the define handle.

Attribute Datatype
ub1 *

OCI_ATTR_PDPRC

Mode
WRITE

Description
Specifies packed decimal precision. For SQLT_PDN values, the precision should be

equal to 2*(value_sz-1). For SQLT_SLS values, the precision should be equal to

(value_sz-1).

After a bind or define, this value is initialized to zero. The OCI_ATTR_PDPRC

attribute should be set first, followed by OCI_ATTR_PDSCL. If either of these

values needs to be changed, a rebind/redefine should be done first, and then the

two attributes should be reset in order.

Attribute Datatype
ub2 *

OCI_ATTR_PDSCL

Mode
WRITE

Description
Specifies the scale for packed decimal values.

After a bind or define, this value is initialized to zero. The OCI_ATTR_PDPRC

attribute should be set first, followed by OCI_ATTR_PDSCL. If either of these

values needs to be changed, a rebind/redefine should be done first, and then the

two attributes should be reset in order.

Attribute Datatype
sb2 *

Describe Handle Attributes

A-24 Oracle Call Interface Programmer’s Guide

Describe Handle Attributes

OCI_ATTR_PARAM

Mode
READ

Description
Points to the root of the description. Used for subsequent calls to OCIAttrGet() and

OCIParamGet().

Attribute Datatype
ub4 *

OCI_ATTR_PARAM_COUNT

Mode
READ

Description
Returns the number of parameters in the describe handle. When the describe

handle is a description of the select list, this refers to the number of columns in the

select list.

Attribute Datatype
ub4 *

Parameter Descriptor Attributes
For a detailed list of parameter descriptor attributes, refer to Chapter 6, "Describing

Schema Metadata".

Complex Object Attributes

Handle and Descriptor Attributes A-25

LOB Locator Attributes

OCI_ATTR_LOBEMPTY

Mode
WRITE

Description
Sets the internal LOB locator to empty. The locator can then be used as a bind

variable for an INSERT or UPDATE statement to initialize the LOB to empty. Once

the LOB is empty, OCILobWrite() can be called to populate the LOB with data. This

attribute is only valid for internal LOBs (i.e., BLOB, CLOB, NCLOB).

Applications should pass address of a ub4 which has a value of 0; e.g., declare

ub4 lobEmpty = 0

then pass address &lobEmpty .

Attribute Datatype
ub4 *

Complex Object Attributes
For information about complex object retrieval, see "Complex Object Retrieval" on

page 10-20.

Complex Object Retrieval Handle Attributes

OCI_ATTR_COMPLEXOBJECT_LEVEL

Mode
WRITE

Description
The depth level for complex object retrieval.

Attribute Datatype
ub4 *

OCI_ATTR_COMPLEXOBJECT_COLL_OUTOFLINE

Mode
WRITE

Advanced Queueing Descriptor Attributes

A-26 Oracle Call Interface Programmer’s Guide

Description
Whether to fetch collection attributes in an object type out-of-line.

Attribute Datatype
ub1 *

Complex Object Retrieval Descriptor Attributes

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE

Mode
WRITE

Description
A type of REF to follow for complex object retrieval.

Attribute Datatype
dvoid *

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE_LEVEL

Mode
WRITE

Description
Depth level for following REFs of type OCI_ATTR_COMPLEXOBJECT_COMP_

TYPE.

Attribute Datatype
ub4 *

Advanced Queueing Descriptor Attributes
For more information about Advanced Queueing, properties, and options, refer to

the Advanced Queueing chapter of the Oracle8i Application Developer’s Guide -

Fundamentals.

OCIAQEnqOptions Descriptor Attributes
The following attributes are properties of the OCIAQEnqOptions descriptor:

Advanced Queueing Descriptor Attributes

Handle and Descriptor Attributes A-27

OCI_ATTR_RELATIVE_MSGID

Mode
READ/WRITE

Description
Specifies the message identifier of the message which is referenced in the sequence

deviation operation. This value is valid if and only if OCI_ENQ_BEFORE is

specified in OCI_ATTR_SEQUENCE_DIVISION. This value is ignored if the

sequence deviation is not specified.

Attribute Datatype
OCIRaw *

OCI_ATTR_SEQUENCE_DEVIATION

Mode
READ/WRITE

Description
Specifies whether the message being enqueued should be dequeued before other

message(s) already in the queue.

Attribute Datatype
ub4

Possible Values
The only valid values are:

■ OCI_ENQ_BEFORE - the message is enqueued ahead of the message specified

by OCI_ATTR_RELATIVE_MSGID.

■ OCI_ENQ_TOP - the message is enqueued ahead of any other messages.

OCI_ATTR_VISIBILITY

Mode
READ/WRITE

Description
Specifies the transactional behavior of the enqueue request.

Attribute Datatype
ub4

Possible Values
The only valid values are:

Advanced Queueing Descriptor Attributes

A-28 Oracle Call Interface Programmer’s Guide

■ OCI_ENQ_ON_COMMIT - the enqueue is part of the current transaction. The

operation is complete when the transaction commits. This is the default case.

■ OCI_ENQ_IMMEDIATE - the enqueue is not part of the current transaction.

The operation constitutes a transaction of its own.

OCIAQDeqOptions Descriptor Attributes
The following attributes are properties of the OCIAQDeqOptions descriptor:

OCI_ATTR_CONSUMER_NAME

Mode
READ/WRITE

Description
Name of the consumer. Only those messages matching the consumer name are

accessed. If a queue is not set up for multiple consumers, this field should be set to

NULL.

Attribute Datatype
text *

OCI_ATTR_CORRELATION

Mode
READ/WRITE

Description
Specifies the correlation identifier of the message to be dequeued. Special pattern

matching characters, such as the percent sign (%) and the underscore (_) can be

used. If more than one message satisfies the pattern, the order of dequeuing is

undetermined.

Attribute Datatype
text *

OCI_ATTR_DEQ_MODE

Mode
READ/WRITE

Description
Specifies the locking behavior associated with the dequeue.

Advanced Queueing Descriptor Attributes

Handle and Descriptor Attributes A-29

Attribute Datatype
ub4

Possible Values
The only valid values are:

■ OCI_DEQ_BROWSE - read the message without acquiring any lock on the

message. This is equivalent to a SELECT statement.

■ OCI_DEQ_LOCKED - read and obtain a write lock on the message. The lock

lasts for the duration of the transaction. This is equivalent to a SELECT FOR

UPDATE statement.

■ OCI_DEQ_REMOVE - read the message and update or delete it. This is the

default. The message can be retained in the queue table based on the retention

properties.

■ OCI_DEQ_NO_DATA - confirm receipt of the message, but do not deliver the

actual message content.

OCI_ATTR_DEQ_MSGID

Mode
READ/WRITE

Description
Specifies the message identifier of the message to be dequeued.

Attribute Datatype
OCIRaw *

OCI_ATTR_NAVIGATION

Mode
READ/WRITE

Description
Specifies the position of the message that will be retrieved. First, the position is

determined. Second, the search criterion is applied. Finally, the message is retrieved.

Attribute Datatype
ub4

Possible Values
The only valid values are:

Advanced Queueing Descriptor Attributes

A-30 Oracle Call Interface Programmer’s Guide

■ OCI_DEQ_FIRST_MSG - retrieves the first message which is available and

matches the search criteria. This will reset the position to the beginning of the

queue.

■ OCI_DEQ_NEXT_MSG - retrieves the next message which is available and

matches the search criteria. If the previous message belongs to a message group,

AQ will retrieve the next available message which matches the search criteria

and belongs to the message group. This is the default.

■ OCI_DEQ_NEXT_TRANSACTION - skips the remainder of the current

transaction group (if any) and retrieves the first message of the next transaction

group. This option can only be used if message grouping is enabled for the

current queue.

OCI_ATTR_VISIBILITY

Mode
READ/WRITE

Description
Specifies whether the new message is dequeued as part of the current

transaction.The visibility parameter is ignored when using the BROWSE mode.

Attribute Datatype
ub4

Possible Values
The only valid values are:

■ OCI_DEQ_ON_COMMIT - the dequeue will be part of the current transaction.

This is the default case.

■ OCI_DEQ_IMMEDIATE - the dequeued message is not part of the current

transaction. It constitutes a transaction on its own.

OCI_ATTR_WAIT

Mode
READ/WRITE

Description
Specifies the wait time if there is currently no message available which matches the

search criteria. This parameter is ignored if messages in the same group are being

dequeued.

Advanced Queueing Descriptor Attributes

Handle and Descriptor Attributes A-31

Attribute Datatype
ub4

Possible Values
Any ub4 value is valid, but the following predefined constants are provided:

■ OCI_DEQ_WAIT_FOREVER - wait forever. This is the default.

■ OCI_DEQ_NO_WAIT - do not wait.

OCIAQMsgProperties Descriptor Attributes
The following attributes are properties of the OCIAQMsgProperties descriptor:

OCI_ATTR_ATTEMPTS

Mode
READ

Description
Specifies the number of attempts that have been made to dequeue the message. This

parameter cannot be set at enqueue time.

Attribute Datatype
sb4

Possible Values
Any sb4 value is valid.

OCI_ATTR_CORRELATION

Mode
READ/WRITE

Description
Specifies the identification supplied by the producer for a message at enqueuing.

Attribute Datatype
text *

Possible Values
Any string up to 128 bytes is valid.

Advanced Queueing Descriptor Attributes

A-32 Oracle Call Interface Programmer’s Guide

OCI_ATTR_DELAY

Mode
READ/WRITE

Description
Specifies the number of seconds to delay the enqueued message. The delay

represents the number of seconds after which a message is available for dequeuing.

Dequeuing by msgid overrides the delay specification. A message enqueued with

delay set will be in the WAITING state, when the delay expires the messages goes to

the READY state. DELAY processing requires the queue monitor to be started. Note

that delay is set by the producer who enqueues the message.

Attribute Datatype
sb4

Possible Values
Any sb4 value is valid, but the following predefined constant is available:

■ OCI_MSG_NO_DELAY - indicates the message is available for immediate

dequeuing.

OCI_ATTR_ENQ_TIME

Mode
READ

Description
Specifies the time the message was enqueued. This value is determined by the

system and cannot be set by the user.

Attribute Datatype
OCIDate

OCI_ATTR_EXCEPTION_QUEUE

Mode
READ/WRITE

Description
Specifies the name of the queue to which the message is moved to if it cannot be

processed successfully. Messages are moved in two cases: If the number of

unsuccessful dequeue attempts has exceeded max_retries; or if the message has

expired. All messages in the exception queue are in the EXPIRED state.

Advanced Queueing Descriptor Attributes

Handle and Descriptor Attributes A-33

The default is the exception queue associated with the queue table. If the exception

queue specified does not exist at the time of the move the message will be moved to

the default exception queue associated with the queue table and a warning will be

logged in the alert file. If the default exception queue is used, the parameter will

return a NULL value at dequeue time.

This attribute must refer to a valid queue name.

Attribute Datatype
text *

OCI_ATTR_EXPIRATION

Mode
READ/WRITE

Description
Specifies the expiration of the message. It determines, in seconds, the duration the

message is available for dequeuing. This parameter is an offset from the delay.

Expiration processing requires the queue monitor to be running.

While waiting for expiration, the message remains in the READY state. If the

message is not dequeued before it expires, it will be moved to the exception queue

in the EXPIRED state.

Attribute Datatype
sb4

Possible Values
Any sb4 value is valid, but the following predefined constant is available:

■ OCI_MSG_NO_EXPIRATION - the message will not expire.

OCI_ATTR_MSG_STATE

Mode
READ

Description
Specifies the state of the message at the time of the dequeue. This parameter cannot

be set at enqueue time.

Attribute Datatype
ub4

Advanced Queueing Descriptor Attributes

A-34 Oracle Call Interface Programmer’s Guide

Possible Values
These are the only values which are returned:

■ OCI_MSG_WAITING - the message delay has not yet been reached.

■ OCI_MSG_READY - the message is ready to be processed.

■ OCI_MSG_PROCESSED - the message has been processed and is retained.

■ OCI_MSG_EXPIRED - the message has been moved to the exception queue.

OCI_ATTR_PRIORITY

Mode
READ/WRITE

Description
Specifies the priority of the message. A smaller number indicates higher priority.

The priority can be any number, including negative numbers.

The default value is zero.

Attribute Datatype
sb4

OCI_ATTR_RECIPIENT_LIST

Mode
WRITE

Description
This parameter is only valid for queues which allow multiple consumers. The

default recipients are the queue subscribers. This parameter is not returned to a

consumer at dequeue time.

Attribute Datatype
OCIAQAgent **

OCI_ATTR_SENDER_ID

Mode
READ/WRITE

Description
Identifies the original sender of a message.

Advanced Queueing Descriptor Attributes

Handle and Descriptor Attributes A-35

Attribute Datatype
OCIAgent *

OCI_ATTR_ORIGINAL_MSGID

Mode
READ/WRITE

Description
The ID of the last queue that generated this message. When a message is

propagated from one queue to another, this attribute identifies the ID of the queue

from which it was last propagated. When a message has been propagated through

multiple queues, this attribute identifies the last queue, not the first queue.

Attribute Datatype
OCIRaw *

OCIAQAgent Descriptor Attributes
The following attributes are properties of the OCIAQAgent descriptor:

OCI_ATTR_AGENT_ADDRESS

Mode
READ/WRITE

Description
Protocol-specific address of the recipient. If the protocol is 0 (default), the address is

of the form [schema.]queue[@dblink].

Attribute Datatype
text *

Possible Values
Can be any string up to 128 bytes.

OCI_ATTR_AGENT_NAME

Mode
READ/WRITE

Description
Name of a producer or consumer of a message.

Advanced Queueing Descriptor Attributes

A-36 Oracle Call Interface Programmer’s Guide

Attribute Datatype
text *

Possible Values
Can be any Oracle identifier, up to 30 bytes.

OCI_ATTR_AGENT_PROTOCOL

Mode
READ/WRITE

Description
Protocol to interpret the address and propagate the message. The default (and

currently the only supported) value is 0.

Attribute Datatype
ub1

Possible Values
The only valid value is zero, which is also the default.

Subscription Handle Attributes

Handle and Descriptor Attributes A-37

Subscription Handle Attributes
See Also: For information about direct path loading and allocating the direct path

handles, refer to "Publish-Subscribe Notification" on page 9-29.

OCI_ATTR_SUBSCR_CALLBACK

Mode
READ/WRITE

Description
Subscription callback. This attribute needs to be set before the subscription handle

can be passed into the registration call OCISubscriptionRegister().

Attribute Datatype
OCISubscriptionNotify *

OCI_ATTR_SUBSCR_CTX

Mode
READ/WRITE

Description
Context that the client wants to get passed to the user callback denoted by OCI_

ATTR_SUBSCR_CALLBACK when it gets invoked by the system. This attribute

needs to be set before the subscription handle can be passed into the registration

call OCISubscriptionRegister().

Attribute Datatype
dvoid *

OCI_ATTR_SUBSCR_NAMESPACE

Mode
READ/WRITE

Description
Namespace in which the subscription handle is used. This release only supports

OCI_SUBSCR_NAMESPACE_AQ and that value must be set explicitly. The

subscription name that is set for the subscription handle must be consistent with its

namespace.

Attribute Datatype
ub4 *

Subscription Handle Attributes

A-38 Oracle Call Interface Programmer’s Guide

OCI_ATTR_SUBSCR_NAME

Mode
READ/WRITE

Description
Subscription name. All subscriptions are identified by a subscription name. A

subscription name consists of a sequence of bytes of specified length. The length in

bytes of the name needs to be specified as it is not assumed that the name will be

null-terminated. This is important because the name could contain NLS characters.

Clients will be able to set the subscription name attribute of a Subscription handle

using an OCIAttrSet() call and by specifying a handle type of OCI_HTYPE_SUBSCR

and an attribute type of OCI_ATTR_SUBSCR_NAME.

All of the subscription callbacks need a subscription handle with the OCI_ATTR_

SUBSCR_NAME and OCI_ATTR_SUBSCR_NAMESPACE attributes set. If the

attributes are not set, an error is returned. The subscription name that is set for the

subscription handle must be consistent with its namespace.

Attribute Datatype
text *

OCI_ATTR_SUBSCR_PAYLOAD

Mode
READ/WRITE

Description
Buffer that corresponds to the payload that needs to be sent along with the

notification. The length of the buffer can also be specified in the same set attribute

call. This attribute needs to be set before a post can be performed on a subscription.

For this release, only an untyped (ub1 *) payload is supported.

Attribute Datatype
ub1 *

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-39

Direct Path Loading Handle Attributes
See Also: For information about direct path loading and allocating the direct

path handles, refer to "Direct Path Loading" on page 9-37.

Direct Path Context Handle Attributes

OCI_ATTR_BUF_SIZE

Mode
READ/WRITE

Description
Sets the size of the stream transfer buffer. Default value is 64KB.

Attribute Datatype
ub4 */ub4 *

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
Default character set ID for the character data. Note that the character set ID can be

overridden at the column level. If character set ID is not specified at the column

level or the table level, then the NLS environment setting is used.

Attribute Datatype
ub2 */ub2 *

OCI_ATTR_DATEFORMAT

Mode
READ/WRITE

Description
Default date format string for SQLT_CHAR to DTYDAT conversions. Note that the

date format string can be overridden at the column level. If date format string is not

specified at the column level or the table level, then the NLS environment setting is

used.

Attribute Datatype
text **/text *

Direct Path Loading Handle Attributes

A-40 Oracle Call Interface Programmer’s Guide

OCI_ATTR_DIRPATH_MODE

Mode
READ/WRITE

Description
Mode of the direct path context:

■ OCI_DIRPATH_LOAD-load operation (default)

■ OCI_DIRPATH_CONVERT - convert only operation

Attribute Datatype
ub1 */ub1 *

OCI_ATTR_DIRPATH_NOLOG

Mode
READ/WRITE

Description
The NOLOG attribute of each segment determines whether image redo or

invalidation redo is generated:

■ 0 - Use the attribute of the segment being loaded.

■ 1 - No logging. Overrides DDL statement, if necessary.

Attribute Datatype
ub1 */ub1 *

OCI_ATTR_DIRPATH_PARALLEL

Mode
READ/WRITE

Description
Setting this value to 1 allows multiple load sessions to load the same segment

concurrently. The default is 0 (not parallel).

Attribute Datatype
ub1 */ub1 *

OCI_ATTR_LIST_COLUMNS

Mode
READ

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-41

Description
Returns the handle to the parameter descriptor for the column list associated with

the direct path context. The column list parameter descriptor can be retrieved after

the number of columns is set with the OCI_ATTR_NUM_COLS attribute. See

"Accessing Column Parameter Attributes" on page A-44.

Attribute Datatype
OCIParam* *

OCI_ATTR_NAME

Mode
READ/WRITE

Description
Name of the table to be loaded.

Attribute Datatype
text**/text *

OCI_ATTR_NUM_COLS

Mode
READ/WRITE

Description
Number of columns being loaded in the table.

Attribute Datatype
ub2 */ub2 *

OCI_ATTR_SCHEMA_NAME

Mode
READ/WRITE

Description
Name of the schema where the table being loaded resides. If not specified, the

schema defaults to that of the connected user.

Attribute Datatype
text **/text *

Direct Path Loading Handle Attributes

A-42 Oracle Call Interface Programmer’s Guide

OCI_ATTR_SUB_NAME

Mode
READ/WRITE

Description
Name of the partition, or subpartition, to be loaded. If not specified, the entire table

is loaded. The name must be a valid partition or subpartition name which belongs

to the table.

Attribute Datatype
text **/text *

Direct Path Column Array Handle Attributes

OCI_ATTR_COL_COUNT

Mode
READ

Description
Last column of the last row processed.

Attribute Datatype
ub2 *

OCI_ATTR_NUM_COLS

Mode
READ

Description
Column dimension of the column array.

Attribute Datatype
ub2 *

OCI_ATTR_NUM_ROWS

Mode
READ

Description
Row dimension of the column array.

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-43

Attribute Datatype
ub4 *

OCI_ATTR_ROW_COUNT

Mode
READ

Description
Last row processed.

Attribute Datatype
ub4 *

Direct Path Stream Handle Attributes

OCI_ATTR_BUF_ADDR

Mode
READ

Description
Buffer address of the beginning of the stream data.

Attribute Datatype
ub1 **

OCI_ATTR_BUF_SIZE

Mode
READ

Description
Size of the stream data in bytes.

Attribute Datatype
ub4 *

OCI_ATTR_ROW_COUNT

Mode
READ

Direct Path Loading Handle Attributes

A-44 Oracle Call Interface Programmer’s Guide

Description
Column array index of the last row processed. This attribute is valid only if the data

was sourced from a column array.

Attribute Datatype
ub4 *

OCI_ATTR_STREAM_OFFSET

Mode
READ

Description
Offset into the stream buffer of the last processed row.

Attribute Datatype
ub4 *

Direct Path Column Parameter Attributes
The application specifies which columns are to be loaded, and the external format

of the data by setting attributes on each column parameter descriptor. The column

parameter descriptors are obtained as parameters of the column parameter list via

OCIParamGet(). The column parameter list is obtained from the OCI_ATTR_LIST_

COLUMNS attribute of the direct path context. Note that all parameters are

1-based.

Accessing Column Parameter Attributes
The following code sample illustrates the use of the direct path column parameter

attributes. Before the attributes are accessed, you must first set the number of

columns to be loaded and get the column parameter list from the OCI_ATTR_LIST_

COLUMNS attribute.

 /* set number of columns to be loaded */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)dpctx, (ub4)OCI_HTYPE_DIRPATH_CTX,
 (dvoid *)&tblp->ncol_tbl,
 (ub4)0, (ub4)OCI_ATTR_NUM_COLS, ctlp->errhp_ctl));

 /* get the column parameter list */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrGet((dvoid *)dpctx,
 OCI_HTYPE_DIRPATH_CTX,
 (dvoid *)&ctlp->colLstDesc_ctl, (ub4 *)0,

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-45

 OCI_ATTR_LIST_COLUMNS, ctlp->errhp_ctl));

Now you can set the parameter attributes.

 /* set the attributes of each column by getting a parameter handle on each
 * column, then setting attributes on the parameter handle for the column.
 * Note that positions within a column list descriptor are 1-based. */

 for (i = 0, pos = 1, colp = tblp->col_tbl, fldp = tblp->fld_tbl;
 i < tblp->ncol_tbl;
 i++, pos++, colp++, fldp++)
 {
 /* get parameter handle on the column */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIParamGet((CONST dvoid *)ctlp->colLstDesc_ctl,
 (ub4)OCI_DTYPE_PARAM, ctlp->errhp_ctl,
 (dvoid **)&colDesc, pos));

 colp->id_col = i; /* position in column array */

 /* set external attributes on the column */
 /* column name */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)colp->name_col,
 (ub4)strlen((const char *)colp->name_col),
 (ub4)OCI_ATTR_NAME, ctlp->errhp_ctl));

 /* column type */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)&colp->exttyp_col, (ub4)0,
 (ub4)OCI_ATTR_DATA_TYPE, ctlp->errhp_ctl));

 /* max data size */
OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)&fldp->maxlen_fld, (ub4)0,
 (ub4)OCI_ATTR_DATA_SIZE, ctlp->errhp_ctl));

 if (colp->datemask_col) /* set column (input field) date mask */
 {
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)colp->datemask_col,

Direct Path Loading Handle Attributes

A-46 Oracle Call Interface Programmer’s Guide

 (ub4)strlen((const char *)colp->datemask_col),
 (ub4)OCI_ATTR_DATEFORMAT, ctlp->errhp_ctl));
 }
 if (colp->prec_col)
 {
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)&colp->prec_col, (ub4)0,
 (ub4)OCI_ATTR_PRECISION, ctlp->errhp_ctl));
 }
 if (colp->scale_col)
 {
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)&colp->scale_col, (ub4)0,
 (ub4)OCI_ATTR_SCALE, ctlp->errhp_ctl));
 }
 if (colp->csid_col)
 {
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)&colp->csid_col, (ub4)0,
 (ub4)OCI_ATTR_CHARSET_ID, ctlp->errhp_ctl));
 }
 /* free the parameter handle to the column descriptor */
 OCI_CHECK((dvoid *)0, 0, ociret, ctlp,
 OCIDescriptorFree((dvoid *)colDesc, OCI_DTYPE_PARAM));
 }

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
Character set ID for character column. If not set, the character set ID defaults to the

character set ID set in the direct path context.

Attribute Datatype
ub2 */ub2 *

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-47

OCI_ATTR_DATA_SIZE

Mode
READ/WRITE

Description
Maximum size in bytes of the external data for the column. This can affect

conversion buffer sizes.

Attribute Datatype
ub4 */ub4 *

OCI_ATTR_DATA_TYPE

Mode
READ/WRITE

Description
Returns or sets the external datatype of the column. Valid datatypes are: SQLT_

CHR, SQLT_DAT, SQLT_INT, SQLT_UIN, SQLT_FLT, SQLT_PDN, SQLT_BIN, or

SQLT_NUM.

Attribute Datatype
ub2 */ub2 *

OCI_ATTR_DATEFORMAT

Mode
READ/WRITE

Description
Date conversion mask for the column. If not set, the date format defaults to the date

conversion mask set in the direct path context.

Attribute Datatype
text **/text *

OCI_ATTR_NAME

Mode
READ/WRITE

Description
Returns or sets the name of the column that is being loaded.

Direct Path Loading Handle Attributes

A-48 Oracle Call Interface Programmer’s Guide

Attribute Datatype
text **/text *

OCI_ATTR_PRECISION

Mode
READ/WRITE

Description
Returns of sets the precision.

Attribute Datatype
ub1 */ub1 *

OCI_ATTR_SCALE

Mode
READ/WRITE

Description
Returns or sets the scale (number of digits to the right of the decimal point) for

conversions from packed and zoned decimal input data types.

Attribute Datatype
sb1 */sb1 *

Process Handle Attributes

Handle and Descriptor Attributes A-49

Process Handle Attributes
The parameters for the shared system can be set and read using the OCIAttrSet()

and OCIAttrGet() calls.The handle type to be used is the process handle OCI_

HTYPE_PROC. Refer also to OCI_ATTR_SHARED_HEAP_ALLOC on page A-6.

The OCI_ATTR_MEMPOOL_APPNAME, OCI_ATTR_MEMPOOL_HOMENAME,

and OCI_ATTR_MEMPOOL_INSTNAME attributes specify the application, home,

and instance names that can be used together to map the process to the right shared

pool area. If these attributes are not provided, internal default values are used. The

following are possible settings of the attributes for specific behaviors:

■ Instance name, application name (unqualified): This allows only executables

with a specific name to attach to the same shared subsystem. For example, this

allows an OCI application named Office to connect to the same shared

subsystem regardless of the directory Office resides in.

■ Instance name, home name: This allows a set of executables in a specific home

directory to attach to the same instance of the shared subsystem. For example,

this allows all OCI applications residing in the ORACLE_HOME directory to

use the same shared subsystem.

■ Instance name, home name, application name (unqualified): This allows only a

specific executable to attach to a shared subsystem. For example, this allows one

application named Office in the ORACLE_HOME directory to attach to a given

shared subsystem.

OCI_ATTR_MEMPOOL_APPNAME

Mode
READ/WRITE

Description
Executable name or fully-qualified path name of the executable.

Attribute Datatype
text *

OCI_ATTR_MEMPOOL_HOMENAME

Mode
READ/WRITE

Process Handle Attributes

A-50 Oracle Call Interface Programmer’s Guide

Description
Directory name where the executables that use the same shared subsystem instance

are located.

Attribute Datatype
text *

OCI_ATTR_MEMPOOL_INSTNAME

Mode
READ/WRITE

Description
Any user-defined name to identify an instance of the shared subsystem.

Attribute Datatype
text *

OCI_ATTR_MEMPOOL_SIZE

Mode
READ/WRITE

Description
Size of the shared pool in bytes. This attribute is set as follows:

ub4 plsz = 1000000;
OCIAttrSet((dvoid *)0, (ub4) OCI_HTYPE_PROC,
 (dvoid *)&plsz, (ub4) 0, (ub4) OCI_ATTR_POOL_SIZE, 0)

Attribute Datatype
ub4 *

OCI_ATTR_PROC_MODE

Mode
READ

Description
Returns all the currently set process modes. The value read contains the OR’ed

value of all the currently set OCI process modes. To determine is a specific mode is

set, the value should be OR’ed with that mode. For example:

ub4 mode;
boolean is_shared;

Process Handle Attributes

Handle and Descriptor Attributes A-51

OCIAttrGet((dvoid *)0, (ub4)OCI_HTYPE_PROC,
 (dvoid *) &mode, (ub4 *) 0,
 (ub4)OCI_ATTR_PROC_MODE, 0);

is_shared = (mode & OCI_SHARED);

Attribute Datatype
ub4 *

Process Handle Attributes

A-52 Oracle Call Interface Programmer’s Guide

OCI Demonstration Programs B-1

B
OCI Demonstration Programs

Oracle provides code examples illustrating the use of OCI calls. These programs are

provided for demonstration purposes, and are not guaranteed to run on all

platforms.

The demonstration programs are available with your Oracle installation. The

location, names, and availability of the programs may vary on different platforms.

On a Unix workstation, the programs are installed in the ORACLE_HOME/demo
directory. On a Windows NT machine, the programs are located in the ORACLE_
HOME\Oci\Samples directory.

When a specific header or SQL file is required by the application, these files are also

included. Review the information included at the beginning of the demonstration

programs for setups and hints on running the programs.

Table B–1, "OCI Demonstration Programs" lists the important demonstration

programs and the OCI features that they illustrate.

Table B–1 OCI Demonstration Programs

Program Name Features Illustrated

cdemo1.c Using basic SQL processing

cdemo81.c Using basic SQL processing with release 8
functionality

cdemo82.c Performing basic processing of user-defined objects

cdmocor.c Using complex object retrieval (COR) to improve
performance

cdemodr1.c, cdemodr2.c,
cdemodr3.c

Using INSERT/UPDATE/DELETE statements with
RETURNING clause used with LOBs and REFs

cdemodsa.c Describing information about a table

B-2 Oracle Call Interface Programmer’s Guide

cdemodsc.c Describing information about a user-defined type

cdemofo.c Registering and operating application failover
callbacks

cdemolb.c Creating, accessing, and manipulating LOB objects

cdemolb2.c Writing and reading of CLOB/BLOB columns with
stream mode and callback functions

cdemolbs.c Writing and reading to LOBs with the LOB buffering
system

cdemobj.c Pinning and navigation of REF object

cdemorid.c Using INSERT/UPDATE/DELETE statements and
fetches to get multiple Rowids in one roundtrip

cdemoses.c Using session switching and migration

cdemothr.c Using the OCIThread package

cdemosyev.c Registering predefined subscriptions and specifying
a callback function to be invoked for client
notifications

cdemodp_lip.c Loading data with the direct path load functions

cdemoucb.c, cdemoucbl.c Using dynamic and static user callbacks

Program Name Features Illustrated

OCI Function Server Roundtrips C-1

C
OCI Function Server Roundtrips

This appendix provides information about server roundtrips incurred during

various OCI calls. This information can be useful to programmers when

determining the most efficient way to accomplish a particular task in an application.

The appendix contains the following sections:

■ Overview

■ Relational Function Roundtrips

■ LOB Function Roundtrips

■ Object and Cache Function Roundtrips

■ Describe Operation Roundtrips

■ Datatype Mapping and Manipulation Function Roundtrips

■ Other Local Functions

Overview

C-2 Oracle Call Interface Programmer’s Guide

Overview
This appendix provides information about server roundtrips incurred during

various OCI calls. This information can be useful when determining the most

efficient way to accomplish a particular task in an application.

Relational Function Roundtrips
The number of server round trips required by OCI relational functions are listed in

Table C–1:

LOB Function Roundtrips
Table C–2 lists the server roundtrips incurred by the OCILob*() calls. Information

about the read and write calls is listed after the table.

Table C–1 Server Roundtrips for Relational Operations

Function # of Server Roundtrips

OCIStmtGetPieceInfo() 1

OCIStmtSetPieceInfo() 1

Table C–2 Server Roundtrips for OCILob*() Calls

Function # of Server Roundtrips

OCILobAppend() 1

OCILobAssign() 0

OCILobCharSetForm() 0

OCILobCharSetId() 0

OCILobCopy() 1

OCILobCreateTemporary()

OCILobDisableBuffering() 0

OCILobEnableBuffering() 0

OCILobErase() 1

OCILobFileClose() 1

OCILobFileCloseAll() 1

OCILobFileExists() 1

LOB Function Roundtrips

OCI Function Server Roundtrips C-3

OCILobRead()
The number of roundtrips required depends on how the call is used:

■ In polling mode without callbacks, 1 roundtrip required to open the pipe and

then data is streamed for each OCILobRead() call.

■ In polling mode with callbacks, 1 roundtrip is required, and then the callback

function is called until all data is read.

■ If data is read in one piece using the input buffer, 1 roundtrip is required.

OCILobWrite(), OCILobWriteAppend()
The number of roundtrips required depends on how the call is used:

OCILobFileGetName() 0

OCILobFileIsOpen() 1

OCILobFileOpen() 1

OCILobFileSetName() 0

OCILobFlushBuffer() 1 per modified page in the buffer for this LOB

OCILobFreeTemporary()

OCILobGetLength() 1

OCILobIsEqual() 0

OCILobIsTemporary()

OCILobLoadFromFile() 1

OCILobLocatorAssign() 1 roundtrip if the source and/or the
destination locator refers to a temporary LOB

OCILobLocatorIsInit() 0

OCILobTrim() 1

OCILobOpen() 1

OCILobClose() 1

OCILobIsOpen() 1

OCILobGetChunkSize() 1

Table C–2 Server Roundtrips for OCILob*() Calls (Cont.)

Function # of Server Roundtrips

Object and Cache Function Roundtrips

C-4 Oracle Call Interface Programmer’s Guide

■ In polling mode without callbacks, 1 roundtrip required to open the pipe and

then data is streamed for each OCILobWrite() call.

■ In polling mode with callbacks, 1 roundtrip is required, and then the callback

function is called until all data is written.

■ If data is written in one piece using the input buffer, 1 roundtrip is required.

Object and Cache Function Roundtrips
Table C–3 lists the number of server round trips required for the object and cache

functions. These values assume the cache is in a warm state, meaning that the type

descriptor objects required by the application have been loaded.

Table C–3 Server Roundtrips for Object and Cache Functions

Function # of Server Roundtrips

OCIObjectNew() 0

OCIObjectPin() 1; 0 if the desired object is already in cache

OCIObjectUnpin() 0

OCIObjectPinCountReset() 0

OCIObjectLock() 1

OCIObjectMarkUpdate() 0

OCIObjectUnmark() 0

OCIObjectUnmarkByRef() 0

OCIObjectFree() 0

OCIObjectMarkDelete() 0

OCIObjectMarkDeleteByRef() 0

OCIObjectFlush() 1

OCIObjectRefresh() 1

OCIObjectCopy() 0

OCIObjectGetTypeRef() 0

OCIObjectGetObjectRef() 0

OCIObjectGetInd() 0

OCIObjectExists() 0

Describe Operation Roundtrips

OCI Function Server Roundtrips C-5

Describe Operation Roundtrips
The number of server round trips required by OCIDescribeAny(), OCIAttrGet(), and

OCIParamGet() are listed in Table C–4:

OCIObjectIsLocked() 0

OCIObjectIsDirty() 0

OCIObjectPinTable() 1

OCIObjectArrayPin() 1

OCICacheFlush() 1

OCICacheRefresh() 1

OCICacheUnpin() 0

OCICacheFree() 0

OCICacheUnmark() 0

Table C–4 Server Roundtrips for Describe Operations

Function # of Server Roundtrips

OCIDescribeAny() 1 roundtrip to get the REF of the type descriptor object

OCIAttrGet() 2 roundtrips to describe a type if the type objects are not in
the object cache

1 roundtrip for each collection element, or each type attribute,
method, or method argument descriptor. 1 more roundtrip if
using OCI_ATTR_TYPE_NAME, or OCI_ATTR_SCHEMA_
NAME on the collection element, type attribute, or method
argument.

0 if all the type objects to be described are already in the
object cache following the first OCIAttrGet() call.

OCIParamGet() 0

Table C–3 Server Roundtrips for Object and Cache Functions (Cont.)

Function # of Server Roundtrips

Datatype Mapping and Manipulation Function Roundtrips

C-6 Oracle Call Interface Programmer’s Guide

Datatype Mapping and Manipulation Function Roundtrips
The number of round trips for the datatype mapping and manipulation functions

are listed in Table C–5. The asterisks in the table indicate that all functions with a

particular prefix incur the same number of server roundtrips. For example,

OCINumberAdd(), OCINumberPower(), and OCINumberFromText() all incur zero

server roundtrips.

Other Local Functions
The functions listed in Table C–6 are local and do not require a server roundtrip:

Table C–5 Server Roundtrips for Datatype Manipulation Functions

Function # of Server Roundtrips

OCINumber*() 0

OCIDate*() 0

OCIString*() 0

OCIRaw*() 0

OCIRef*() 0

OCIColl*() 0; 1 if the collection is not loaded in the cache

OCITable*() 0; 1 if the nested table is not loaded in the cache

OCIIter*() 0; 1 if the collection is not loaded in the cache

Table C–6 Locally Processed Functions

Local Function Name Notes

OCIAttrGet()

OCIAttrSet()

OCIBindByName()

OCIBindByPos()

OCIBindDynamic()

OCIBindObject()

OCIBindArrayOfStruct()

OCIDefineByPos()

OCIDefineDynamic()

Other Local Functions

OCI Function Server Roundtrips C-7

OCIDefineArrayOfStruct()

OCIDefineObject()

OCIDescriptorAlloc()

OCIDescriptorFree()

OCIEnvInit()

OCIErrorGet()

OCIHandleAlloc()

OCIHandleFree()

OCILdaToSvcCtx()

OCISvcCtxToLda()

OCIStmtGetBindInfo()

OCIStmtPrepare()

OCIStmtGetBindInfo()

OCIStmtPrepare()

OCIStmtFetch() may be local if retrieving pre-fetched rows

Table C–6 Locally Processed Functions

Local Function Name Notes

Other Local Functions

C-8 Oracle Call Interface Programmer’s Guide

Index-1

Index
A
aborting OCI calls, 2-33

abstract data type

representing in C applications, 10-8

ADO. See attribute descriptor object

ADT. See abstract data type

advanced queueing

dequeue function, 15-5

description, 9-25

enqueue function, 15-7

examples, 15-8

OCI and, 9-25

OCI descriptors for, 9-25

OCI functions for, 9-25

OCI vs. PL/SQL, 9-26

advanced queuing functions, 15-4

advantages

OCI, 1-3

allocation duration

example, 13-14

of objects, 13-14

application failover

callback example, 9-20

callback registration, 9-20

OCI callbacks, 9-18

applications

linking, 2-36

AQ. See advanced queueing

arguments

attributes, 6-16

arrays

binds, 12-3

defines, 12-6

skip parameter for, 5-20

arrays of structures, 5-17

indicator variables, 5-20

OCI calls used, 5-20

skip parameters, 5-18

atomic nullness, 10-29

attribute descriptor object, 11-23

attributes

of handles, 2-12

of objects, 10-17

of parameter descriptors, 6-5

of parameters, 6-5

authentication management, 8-10

authorize functions, 15-87

B
BFILE

datatype, 3-20

bind functions, 15-42

bind handle

attributes, A-20

description, 2-10

bind operation, 4-5, 5-2, 12-2

associations made, 5-3

example, 5-6

initializing variables, 5-3

LOBs, 5-10

named datatypes, 5-10, 12-2

named vs. positional, 5-4

OCI array interface, 5-4

OCI_DATA_AT_EXEC mode, 5-11

PL/SQL, 5-5

positional vs. named, 5-4

Index-2

ref cursor variables, 5-12

REFs, 5-10, 12-3

static arrays, 5-10

steps used, 5-6

binding

arrays, 12-3

OCINumber, 12-8

PL/SQL placeholders, 2-39

summary, 5-12

BLOB

datatype, 3-20

blocking modes, 2-36

branches

detaching, 8-7

resuming, 8-7

buffering LOB operations, 7-11

C
C datatypes

manipulating with OCI, 11-5

cache functions

server roundtrips, C-4

callbacks

application failover, 9-18

dynamic registrations, 9-15

for LOB operations, 7-13

for reading LOBs, 7-14

for writing LOBs, 7-15

from external procedures, 9-17

LOB streaming interface, 7-13

parameter modes, 15-63

registration for application failover, 9-20

restrictions, 9-16

user-defined functions, 9-11

canceling OCI calls, 2-33

CASE OTT parameter, 14-27

CHAR

external datatype, 3-16

character set form, 5-26

character set Id, 5-26

Unicode, A-20, A-22

CHARZ

external datatype, 3-17

checkerr() function

code listing, 2-28

CLOB

datatype, 3-20

code

example programs, B-1

list of demonstration programs, B-1

CODE OTT parameter, 14-26

codes

functions, 15-230

coding guidelines

function names, 2-36

reserved words, 2-35

coherency

of object cache, 13-4

collections

attributes, 6-13

data manipulation functions, 11-18

describing, 6-2

description, 11-17

functions for manipulating, 11-18

scanning functions, 11-19

columns

attributes, 6-5, 6-15

commit, 2-26

in object applications, 13-14

one-phase for global transactions, 8-7

two-phase for global transactions, 8-7

complex object retrieval, 10-20

implementing, 10-23

navigational prefetching, 10-24

complex object retrieval (COR) descriptor, 2-16

attributes, A-26

complex object retrieval (COR) handle, 2-11

attributes, A-25

CONFIG OTT parameter, 14-27

connect functions, 15-87

connection mode

non-blocking, 2-36

consistency

of object cache, 13-4

copying

objects, 10-32

COR. See complex object retrieval

creating

objects, 10-32

Index-3

D
data cartridges

OCI functions, xxxiv, 2-3

data definition language

SQL statements, 1-7

data manipulation language

SQL statements, 1-8

data structures

new for 8.0, 2-5

database connection

for object applications, 10-10

databases

attributes, 6-19

describing, 6-2

datatype code

internal, 3-5

datatype mapping

Oracle methodology, 11-4

OTT, 14-10

datatype mapping and manipulation functions

server roundtrips, C-6

datatypes

BFILE, 3-20

BLOB, 3-20

CLOB, 3-20

conversions, 3-21

direct path loading, 9-39, A-47

external, 3-4, 3-7

FILE, 3-20

for piecewise operations, 5-33

internal, 3-3, 3-5

manipulating with OCI, 11-5

mapping from Oracle to C, 11-2

NCLOB, 3-21

Oracle, 3-2

DATE

external datatype, 3-14

DDL. See data definition language

default file name extensions

OTT, 14-36

default name mapping

OTT, 14-36

define

arrays, 12-6

return and error codes, 2-28

define functions, 15-42

define handle

attributes, A-22

description, 2-10

define operation, 4-14, 5-13, 12-4

example, 5-14

LOBs, 5-17

named datatypes, 5-16, 12-4

piecewise fetch, 5-17

PL/SQL output variables, 5-17

REFs, 5-16, 12-4

static arrays, 5-17

steps used, 5-14

defining

OCINumber, 12-8

deletes

positioned, 2-34

demonstration programs, B-1

list, B-1

describe

explicit, 4-13

explicit and implicit, 6-5

implicit, 4-11

of collections, 6-2

of databases, 6-2

of packages, 6-2

of schemas, 6-2

of sequences, 6-2

of stored functions, 6-2

of stored procedures, 6-2

of synonyms, 6-2

of tables, 6-2

of types, 6-2

of views, 6-2

select-list, 4-10

describe functions, 15-42

describe handle

attributes, A-24

description, 2-11

describe operation

server roundtrips, C-5

descriptor, 2-14

allocating, 2-22

complex object retrieval, 2-16

Index-4

objects, 11-23

parameter, 2-16

ROWID, 2-16

snapshot, 2-15

descriptor functions, 15-27

descriptor objects, 11-23

detaching branches, 8-7

direct path handles, 2-12

direct path loading, 9-37

column array handle attributes, A-42

column parameter attributes, A-44

context handle attributes, A-39

datatypes of columns, 9-39, A-47

direct path column array handle, 9-40

direct path context handle, 9-39

direct path stream handle, 9-40

example, 9-42

functions, 9-41

handle attributes, A-39

handles, 9-39

limitations, 9-38

stream handle attributes, A-43

direct path loading functions, 15-72

DML. See data manipulation language

DML with RETURNING clause.

See RETURNING clause

duration

example, 13-14

of objects, 13-14

E
embedded objects

fetching, 10-15

embedded SQL, 1-11

mixing with OCI calls, 1-11

environment handle

attributes, A-3

description, 2-8

error codes

define calls, 2-28

navigational functions, 16-6

error handle

attributes, A-6

description, 2-9

errors

example of handling, 2-28

handling, 2-27

handling in object applications, 10-35

ERRTYPE OTT parameter, 14-27

example

demonstration programs, B-1

non-blocking mode, 2-37

using OCIThread, 9-9

executing SQL statements, 4-6

execution

against multiple servers, 4-5

modes, 4-7

execution snapshots, 4-7

extensions

OTT default file name, 14-36

external datatypes, 3-4, 3-7

CHAR, 3-16

CHARZ, 3-17

conversions, 3-21

DATE, 3-14

FLOAT, 3-11

INTEGER, 3-11

LOBs, 3-18

LONG, 3-13

LONG RAW, 3-15

LONG VARCHAR, 3-16

LONG VARRAW, 3-16

named data types, 3-18

NUMBER, 3-10

RAW, 3-14

REF, 3-18

ROWID, 3-13

SQLT_BLOB, 3-18

SQLT_CLOB, 3-18

SQLT_NCLOB, 3-18

SQLT_NTY, 3-18

SQLT_REF, 3-18

STRING, 3-11

UNSIGNED, 3-15

VARCHAR, 3-13

VARCHAR2, 3-8

VARNUM, 3-12

VARRAW, 3-15

external procedure functions

Index-5

return codes, 18-3

with_context type, 18-3

external procedures

OCI callbacks, 9-17

F
fetch

piecewise, 5-32, 5-36

fetch operation, 4-14

LOB data, 4-15

setting prefetch count, 4-15

FILE

associating with OS file, 7-5

datatype, 3-20

locator, 7-4

FLOAT

external datatype, 3-11

flushing, 13-10

object changes, 10-14

objects, 13-10

freeing

objects, 10-32, 13-9

function names

coding guidelines, 2-36

functions

attributes, 6-8

codes, 15-230

new and updated calls, 1-12

G
global transactions, 8-4

GTRID. See transaction identifier

H
handle attributes, 2-12

reading, 2-12

setting, 2-12

handle functions, 15-27

handles, 2-6

advantages of, 2-8

allocating, 2-7, 2-22

bind handle, 2-10

C datatypes, 2-6

child freed when parent freed, 2-7

define handle, 2-10

describe handle, 2-11

direct path, 2-12

environment handle, 2-8

error handle, 2-9

freeing, 2-7

hierarchy of, 2-8

process, 2-12

process attributes, A-49

server handle, 2-9

service context handle, 2-9

statement handle, 2-10

subscription, 2-11, 9-31

transaction handle, 2-9

types, 2-6

user session handle, 2-9

HFILE OTT parameter, 14-26

I
indicator variable, 2-31

arrays of structures, 5-20

for named datatypes, 2-31, 2-33

for REF, 2-31

for REFs, 2-33

named datatype defines, 12-5

PL/SQL OUT binds, 12-5

REF defines, 12-5

with named datatype bind, 12-3

with REF bind, 12-3

INITFILE OTT parameter, 14-26

INITFUNC OTT parameter, 14-26

initialize functions, 15-87

inserts

piecewise, 5-32, 5-34

INTEGER

external datatype, 3-11

internal datatypes, 3-3, 3-5

conversions, 3-21

datatype codes, 3-5

intype file

providing when running OTT, 14-8

structure of, 14-29

Index-6

INTYPE OTT parameter, 14-25

K
key words, xxxv, 2-35

L
linking, 2-36

issues, 1-25

modes, 1-25

support for single-task, 1-27

lists

attributes, 6-18

LOB, 7-2

amount and offset parameters, 15-108

attributes of transient objects, 7-6

binding, 5-10

buffering, 7-11

callbacks, 7-13

character sets, 15-108

creating, 7-4

creating temporary, 7-18

defining, 5-17

duration of temporary, 7-18

example of temporary, 7-19

external datatypes, 3-18

fetching data, 4-15

fixed-width character sets, 15-108

freeing temporary, 7-18

locator, 2-15

modifying, 7-4

OCI functions, 7-6

temporary, 7-17

varying-width character sets, 15-108

LOB functions, 15-107

server roundtrips, C-2

LOB locator, 2-15, 7-2

attributes, A-25

locator, 2-14

for FILEs, 7-4

for LOB datatype, 2-15, 7-2

locking, 13-12

objects, 13-12

optimistic model, 13-13

LONG

external datatype, 3-13

LONG RAW

external datatype, 3-15

LONG VARCHAR

external datatype, 3-16

LONG VARRAW

external datatype, 3-16

M
marking

objects, 13-9

MDO. See method descriptor object

meta-attributes

of objects, 10-17

of persistent objects, 10-17

of transient objects, 10-20

method descriptor object, 11-23

migration

7.x to 8.0, 1-22

session, 8-11, 15-103

miscellaneous functions, 15-215

multiple servers

executing statement against, 4-5

multi-threaded development

basic concepts, 8-15

N
named datatypes

binding, 5-10, 12-2

binding and defining, 12-6

defining, 5-16, 12-4

definition, 3-18

external datatypes, 3-18

indicator variable for, 2-31

indicator variables, 2-33

navigation, 13-17

navigational functions

error codes, 16-6

return values, 16-5

terminology, 16-4

NCHAR

issues, 5-26

Index-7

NCLOB

datatype, 3-21

nested table

element ordering, 11-21

functions for manipulating, 11-20

new features, 1-12

benefits, 1-12

introduction, 1-12

NLS

OCI functions, xxxiv, 2-3

non-blocking mode, 2-36

example, 2-37

no-op

definition, 16-22

null indicator struct, 10-29

generated by OTT, 10-9

nullness

atomic, 10-29

of objects, 10-29

NULLs

detecting, 2-32

inserting, 2-32

inserting into database, 2-31

inserting using indicator variables, 2-31

NUMBER

external datatype, 3-10

O
object applications

commit, 13-14

database connection, 10-10

rollback, 13-14

object cache, 13-2

coherency, 13-4

consistency, 13-4

initializing, 10-10

loading objects, 13-7

memory parameters, 13-5

operations on, 13-6

removing objects, 13-7

setting the size of, 13-5

object functions

See also navigational functions

server roundtrips, C-4

object identifier

for persistent objects, 10-5

object reference, 10-33

object reference. See REF

object runtime environment

initializing, 10-10

object type translator

sample output, 10-9

See OTT

use with OCI, 10-8

objects

accessing with OCI, 14-19

allocation duration, 13-14

array pin, 10-13

attributes, 10-17

manipulating, 10-13

client-side cache, 13-2

copying, 10-32

creating, 10-32

duration, 13-14

flushing, 13-10

flushing changes, 10-14

freeing, 10-32, 13-9

lifetime, 16-2

LOB attribute of, 7-5

LOB attributes of transient objects, 7-6

locking, 13-12

manipulating with OCI, 14-19

marking, 10-14, 13-9

memory layout of instance, 13-16

memory management, 13-2

meta-attributes, 10-17

navigation, 13-17

simple, 13-17

nullness, 10-29

OCI object application structure, 10-4

persistent, 10-5, 10-6

pin count, 10-28

pin duration, 13-14

pinning, 10-12, 13-7

refreshing, 13-11

secondary memory, 13-16

terminology, 16-2

top-level memory, 13-16

transient, 10-5, 10-7

Index-8

types, 10-5, 16-2

unmarking, 13-10

unpinning, 10-28, 13-8

use with OCI, 10-3

OCI

accessing and manipulating objects, 14-19

advantages, 1-3

new features, 1-12

object support, 1-6

overview, 1-2

parts of, 1-5

OCI application

compiling, 1-4

general structure, 2-3

initialization example, 2-24

linking, 1-4

steps, 2-17

structure, 2-3

structure using objects, 10-4

terminating, 2-26

using the OTT with, 14-18

with objects

initializing, 10-10

OCI environment

initializing for objects, 10-10

OCI functions

canceling calls, 2-33

codes, 15-230

data cartridges, xxxiv, 2-3

new and updated calls, 1-12

NLS, xxxiv, 2-3

not supported, 1-21

obsolescent, 1-19

return codes, 2-27, 2-29

OCI navigational functions, 13-19

flush functions, 13-20

mark functions, 13-20

meta-attribute accessor functions, 13-20

miscellaneous functions, 13-21

naming scheme, 13-19

pin/unpin/free functions, 13-19

OCI process

initializing for objects, 10-10

OCI program. See OCI application

OCI relational functions

advanced queuing and publish-subscribe, 15-4

connect, authorize, and initialize, 15-87

guide to reference entries, 18-2

OCI_ATTR_ALLOC_DURATION

environment handle attribute, A-4

OCI_ATTR_AUTOCOMMIT_DDL

attribute, 6-20

OCI_ATTR_BUF_ADDR, A-43

OCI_ATTR_BUF_SIZE, A-39, A-43

OCI_ATTR_CACHE

attribute, 6-15

OCI_ATTR_CACHE_ARRAYFLUSH

environment handle attribute, A-3

OCI_ATTR_CACHE_MAX_SIZE

environment handle attribute, A-3

OCI_ATTR_CACHE_OPT_SIZE

environment handle attribute, A-3

OCI_ATTR_CATALOG_LOCATION

attribute, 6-20

OCI_ATTR_CHAR_COUNT

bind handle attribute, A-20

define handle attribute, A-22

use of, 5-28

OCI_ATTR_CHARSET_FORM

attribute, 6-11, 6-14, 6-16

bind handle attribute, A-20

define handle attribute, A-23

OCI_ATTR_CHARSET_ID, A-39, A-46

attribute, 6-11, 6-14, 6-16, 6-18, 6-19

bind handle attribute, A-20

define handle attribute, A-22

OCI_ATTR_CLUSTERED

attribute, 6-7

OCI_ATTR_COL_COUNT, A-42

OCI_ATTR_COLLECTION_ELEMENT

attribute, 6-9

OCI_ATTR_COLLECTION_TYPECODE

attribute, 6-9

OCI_ATTR_COMPLEXOBJECT_ COLL_

OUTOFLINE

COR handle attribute, A-25

OCI_ATTR_COMPLEXOBJECT_LEVEL

COR handle attribute, A-25

OCI_ATTR_COMPLEXOBJECTCOMP _TYPE_

LEVEL

Index-9

COR descriptor attribute, A-26

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE

COR descriptor attribute, A-26

OCI_ATTR_CURSOR_COMMIT_ BEHAVIOR

attribute, 6-20

OCI_ATTR_DATA_SIZE, A-47

attribute, 6-10, 6-13, 6-15, 6-16

OCI_ATTR_DATA_TYPE, A-47

attribute, 6-10, 6-13, 6-15, 6-16

OCI_ATTR_DATE_FORMAT, A-39

OCI_ATTR_DATEFORMAT, A-47

OCI_ATTR_DBA

attribute, 6-7

OCI_ATTR_DIRPATH_MODE, A-40

OCI_ATTR_DIRPATH_NOLOG, A-40

OCI_ATTR_DIRPATH_PARALLEL, A-40

OCI_ATTR_DML_ROW_OFFSET, A-6

OCI_ATTR_DURATION

attribute, 6-7

OCI_ATTR_ENCAPSULATION

attribute, 6-11

OCI_ATTR_ENV

server handle attribute, A-9

service context handle attribute, A-7

OCI_ATTR_EXTERNAL_NAME

server handle attribute, A-9

OCI_ATTR_FOCBK

server handle attribute, A-10

OCI_ATTR_HAS_DEFAULT

attribute, 6-17

OCI_ATTR_HAS_FILE

attribute, 6-9

OCI_ATTR_HAS_LOB

attribute, 6-9

OCI_ATTR_HAS_NESTED_TABLE

attribute, 6-9

OCI_ATTR_HW_MARK

attribute, 6-15

OCI_ATTR_IN_V8_MODE

server handle attribute, A-10

service context handle attribute, A-8

OCI_ATTR_INCR

attribute, 6-14

OCI_ATTR_INDEX_ONLY

attribute, 6-7

OCI_ATTR_INTERNAL_NAME

server handle attribute, A-10

OCI_ATTR_IOMODE

attribute, 6-17

OCI_ATTR_IS_CONSTRUCTOR

attribute, 6-11

OCI_ATTR_IS_DESTRUCTOR

attribute, 6-11

OCI_ATTR_IS_INCOMPLETE_TYPE

attribute, 6-9

OCI_ATTR_IS_INVOKER_RIGHTS

attribute, 6-8, 6-10

OCI_ATTR_IS_MAP

attribute, 6-12

OCI_ATTR_IS_NULL

attribute, 6-15, 6-17

OCI_ATTR_IS_OPERATOR

attribute, 6-11

OCI_ATTR_IS_ORDER

attribute, 6-12

OCI_ATTR_IS_PREDEFINED_TYPE

attribute, 6-9

OCI_ATTR_IS_RNDS

attribute, 6-12

OCI_ATTR_IS_RNPS

attribute, 6-12

OCI_ATTR_IS_SELFISH

attribute, 6-12

OCI_ATTR_IS_SYSTEM_GENERATED_TYPE

attribute, 6-9

OCI_ATTR_IS_SYSTEM_TYPE

attribute, 6-9

OCI_ATTR_IS_TEMPORARY

attribute, 6-7

OCI_ATTR_IS_TRANSIENT_TYPE

attribute, 6-9

OCI_ATTR_IS_WNDS

attribute, 6-12

OCI_ATTR_IS_WNPS

attribute, 6-12

OCI_ATTR_LEVEL

attribute, 6-17

OCI_ATTR_LINK

attribute, 6-14, 6-18

OCI_ATTR_LIST_ARGUMENTS

Index-10

attribute, 6-8, 6-11

OCI_ATTR_LIST_COLUMNS, A-40

attribute, 6-7

OCI_ATTR_LIST_OBJECTS

attribute, 6-19

OCI_ATTR_LIST_SCHEMAS

attribute, 6-19

OCI_ATTR_LIST_SUBPROGRAMS

attribute, 6-8

OCI_ATTR_LIST_TYPE

attribute, 6-18

OCI_ATTR_LIST_TYPE_ATTRS

attribute, 6-10

OCI_ATTR_LIST_TYPE_METHODS

attribute, 6-10

OCI_ATTR_LOBEMPTY

LOB locator attribute, A-25

OCI_ATTR_LOCKING_MODE

attribute, 6-20

OCI_ATTR_MAP_METHOD

attribute, 6-10

OCI_ATTR_MAX

attribute, 6-14

OCI_ATTR_MAX_CATALOG_ NAMELEN

attribute, 6-20

OCI_ATTR_MAX_COLUMN_ NAMELEN

attribute, 6-19

OCI_ATTR_MAX_PROC_NAMELEN

attribute, 6-19

OCI_ATTR_MAXDATA_SIZE

bind handle attribute, A-21

use with binding, 5-27

OCI_ATTR_MEMPOOL_APPNAME, A-49

OCI_ATTR_MEMPOOL_HOMENAME, A-49

OCI_ATTR_MEMPOOL_INSTNAME, A-50

OCI_ATTR_MEMPOOL_SIZE, A-50

OCI_ATTR_MIGSESSION

user session handle attribute, A-12

OCI_ATTR_MIN

attribute, 6-14

OCI_ATTR_NAME, A-41, A-47

attribute, 6-8, 6-10, 6-11, 6-13, 6-14, 6-15, 6-16

OCI_ATTR_NCHARSET_ID

attribute, 6-19

OCI_ATTR_NONBLOCKING_MODE

server handle attribute, A-9

OCI_ATTR_NOWAIT_SUPORT

attribute, 6-20

OCI_ATTR_NUM_ATTRS

attribute, 6-5

OCI_ATTR_NUM_COLS, A-41, A-42

attribute, 6-7

OCI_ATTR_NUM_DML_ERRORS, A-14

OCI_ATTR_NUM_ELEMENTS

attribute, 6-13

OCI_ATTR_NUM_HANDLES

attribute, 6-19

OCI_ATTR_NUM_PARAMS

attribute, 6-5

OCI_ATTR_NUM_ROWS, A-42

OCI_ATTR_NUM_TYPE_ATTRS

attribute, 6-9

OCI_ATTR_NUM_TYPE_METHODS

attribute, 6-10

OCI_ATTR_OBJECT

environment handle attribute, A-4

OCI_ATTR_OBJECT_DETECTCHANGE

environment handle attribute, 13-13

OCI_ATTR_OBJID

attribute, 6-7, 6-14

OCI_ATTR_ORDER

attribute, 6-15

OCI_ATTR_ORDER_METHOD

attribute, 6-10

OCI_ATTR_OVERLOAD

attribute, 6-8

OCI_ATTR_PARAM

describe handle attribute, A-24

OCI_ATTR_PARAM_COUNT

describe handle attribute, A-24

statement handle attribute, A-17

OCI_ATTR_PARTITIONED

attribute, 6-7

OCI_ATTR_PASSWORD

user session handle attribute, A-12

OCI_ATTR_PDSCL

bind handle attribute, A-21, A-23

OCI_ATTR_PIN_DURATION

environment handle attribute, A-4

OCI_ATTR_PINOPTION

Index-11

environment handle attribute, A-4

OCI_ATTR_POSITION

attribute, 6-16

OCI_ATTR_PRECISION, A-48

attribute, 6-5, 6-10, 6-13, 6-15, 6-17

OCI_ATTR_PREFETCH_MEMORY

statement handle attribute, A-18

OCI_ATTR_PREFETCH_ROWS

statement handle attribute, A-18

OCI_ATTR_PROC_MODE, A-50

OCI_ATTR_PTYPE

attribute, 6-6

OCI_ATTR_RADIX

attribute, 6-17

OCI_ATTR_REF_TDO

attribute, 6-7, 6-9, 6-11, 6-14, 6-16, 6-18

OCI_ATTR_ROW_COUNT, A-43

OCI_ATTR_ROWID

statement handle attribute, A-17

OCI_ATTR_ROWS_RETURNED

bind handle attribute, A-22

use with callbacks, 5-25

OCI_ATTR_SAVEPOINT_SUPPORT

attribute, 6-20

OCI_ATTR_SCALE, A-48

attribute, 6-10, 6-13, 6-15, 6-17

OCI_ATTR_SCHEMA_NAME, A-41

attribute, 6-11, 6-13, 6-14, 6-16, 6-17

OCI_ATTR_SEQ

attributes, 6-14

OCI_ATTR_SERVER

service context handle attribute, A-7

OCI_ATTR_SERVER_GROUP

server handle attribute, A-11

OCI_ATTR_SESSION

service context handle attribute, A-7

OCI_ATTR_SHARED_HEAP_ALLOC, A-6

OCI_ATTR_STMT_TYPE

statement handle attribute, A-17

OCI_ATTR_STREAM_OFFSET, A-44

OCI_ATTR_SUB_NAME, A-42

attribute, 6-18

OCI_ATTR_SUBSCR_CALLBACK, A-37

OCI_ATTR_SUBSCR_CTX, A-37

OCI_ATTR_SUBSCR_NAME, A-38

OCI_ATTR_SUBSCR_NAMESPACE, A-37

OCI_ATTR_SUBSCR_PAYLOAD, A-38

OCI_ATTR_TABLESPACE

attribute, 6-7

OCI_ATTR_TIMESTAMP

attribute, 6-6

OCI_ATTR_TRANS

service context handle attribute, A-7

OCI_ATTR_TRANS_NAME

transaction handle attribute, A-13

OCI_ATTR_TYPE_NAME

attribute, 6-11, 6-13, 6-16, 6-17

OCI_ATTR_TYPECODE

attribute, 6-9, 6-10, 6-13, 6-16

OCI_ATTR_USRNAME

user session handle attribute, A-12

OCI_ATTR_VERSION

attribute, 6-9, 6-19

OCI_ATTR_XID

transaction handle attribute, A-13

OCI_EVENTS

mode for receiving notifications, 9-30

OCI_LOCK_X_NOWAIT

parameter usage, 13-13

OCI_NUM_SHARED_PROCS, 2-22

OCI_PTYPE_ARG

attributes, 6-16

OCI_PTYPE_COL

attributes, 6-15

OCI_PTYPE_COLL

attributes, 6-13

OCI_PTYPE_DATABASE

attributes, 6-19

OCI_PTYPE_FUNC

attributes, 6-8

OCI_PTYPE_LIST

attributes, 6-18

OCI_PTYPE_PKG

attributes, 6-8

OCI_PTYPE_PROC

attributes, 6-8

OCI_PTYPE_SCHEMA

attributes, 6-19

OCI_PTYPE_SYN

attributes, 6-14

Index-12

OCI_PTYPE_TABLE

attributes, 6-7

OCI_PTYPE_TYPE

attributes, 6-9

OCI_PTYPE_TYPE_ATTR

attributes, 6-10

OCI_PTYPE_TYPE_FUNC

attributes, 6-11

OCI_PTYPE_TYPE_PROC

attributes, 6-11

OCI_PTYPE_VIEW

attributes, 6-7

OCI_SHARED_MODE, 2-21

OCI_TYPECODE

values, 3-23, 3-24, 3-25

OCIAQAgent

descriptor attributes, A-35

OCIAQDeq(), 15-5

OCIAQDeqOptions

descriptor attributes, A-28

OCIAQEnq(), 15-7

OCIAQEnqOptions

descriptor attributes, A-26

OCIAQListen(), 15-19

OCIAQMsgProperties

descriptor attributes, A-31

OCIArray, 11-17

binding and defining, 11-17, 12-6

OCIArray manipulation

code example, 11-19

OCIAttrGet(), 15-28

used for describing, 4-11

OCIAttrSet(), 15-29

OCIBindArrayOfStruct(), 15-43

OCIBindByName(), 15-44

OCIBindByPos(), 15-48

OCIBindDynamic(), 15-52

OCIBindObject(), 15-56

OCIBreak(), 15-216

use of, 2-33, 2-37

OCICacheFlush(), 16-9

OCICacheFree(), 16-48

OCICacheRefresh(), 16-11

OCICacheUnmark(), 16-17

OCICacheUnpin(), 16-49

OCIColl, 11-17

binding and defining, 11-17

OCICollAppend(), 17-6

OCICollAssign(), 17-7

OCICollAssignElem(), 17-8

OCICollGetElem(), 17-10

OCICollIsLocator(), 17-13

OCICollMax(), 17-14

OCICollSetUpdateStatus(), 17-15

OCICollSize(), 17-16

OCICollTrim(), 17-18

OCIComplexObject

use of, 10-23

OCIComplexObjectComp

use of, 10-23

OCIDate, 11-7

binding and defining, 11-7, 12-6

OCIDate manipulation

code example, 11-8

OCIDateAddDays(), 17-28

OCIDateAddMonths(), 17-29

OCIDateAssign(), 17-30

OCIDateCheck(), 17-31

OCIDateCompare(), 17-33

OCIDateDaysBetween(), 17-34

OCIDateFromText(), 17-35

OCIDateGetDat(), 17-37

OCIDateGetTime(), 17-38

OCIDateLastDay(), 17-39

OCIDateNextDay(), 17-40

OCIDateSetDate(), 17-41

OCIDateSetTime(), 17-42

OCIDateSysDate(), 17-43

OCIDateToText(), 17-44

OCIDateZoneToZone(), 17-46

OCIDefineArrayOfStruct(), 15-58

OCIDefineByPos(), 15-59

OCIDefineDynamic(), 15-63

OCIDefineObject(), 15-65

OCIDescAlloc(), 15-31

OCIDescFree(), 15-33

OCIDescribeAny(), 15-67

usage examples, 6-20

using, 6-2

OCIDirPathAbort(), 15-73

Index-13

OCIDirPathColArrayEntryGet(), 15-74

OCIDirPathColArrayEntrySet(), 15-76

OCIDirPathColArrayReset(), 15-79

OCIDirPathColArrayRowGet(), 15-78

OCIDirPathColArrayToStream(), 15-80

OCIDirPathFinish(), 15-82

OCIDirPathFlushRow(), 15-83

OCIDirPathPrepare(), 15-85

OCIDirPathStreamLoad(), 15-83

OCIDirPathStreamReset(), 15-86

OCIDuration

use of, 13-7, 13-14

OCIDurationBegin(), 15-109

OCIDurationEnd(), 15-110

OCIEnvCallback, 9-15

OCIEnvCreate(), 15-88

OCIEnvInit(), 15-91

OCIErrorGet(), 15-217

OCIExtProcAllocCallmemory(), 18-5

OCIExtProcGetEnv(), 18-8

OCIExtProcRaiseExcp(), 18-6

OCIExtProcRaiseExcpWithMsg(), 18-7

OCIHandleAlloc(), 15-34

OCIHandleFree(), 15-37

OCIInd

use of, 10-29

OCIInitialize(), 15-93

shared mode, 2-20

OCIIter, 11-17

binding and defining, 11-17

usage example, 11-19

OCIIterCreate(), 17-19

OCIIterDelete(), 17-20

OCIIterGetCurrent(), 17-21

OCIIterInit(), 17-22

OCIIterNext(), 17-23

OCIIterPrev(), 17-25

OCILdaToSvcCtx(), 15-219

OCILobAppend(), 15-111

OCILobAssign(), 15-112

OCILobCharSet(), 15-114, 15-115

OCILobClose(), 15-116

OCILobCopy(), 15-117

OCILobCreateTemporary(), 15-119

OCILobDisableBuffering(), 15-121

OCILobEnableBuffering(), 15-122

OCILobErase(), 15-123

OCILobFileClose(), 15-124

OCILobFileCloseAll(), 15-125

OCILobFileExists(), 15-126

OCILobFileIsOpen(), 15-129

OCILobFileOpen(), 15-130

OCILobFlushBuffer(), 15-132

OCILobFreeTemporary(), 15-134

OCILobGetChunkSize(), 15-135

OCILobGetFileName(), 15-127

OCILobGetLength(), 15-137

OCILobIsEqual(), 15-138

OCILobIsOpen(), 15-139

OCILobIsTemporary(), 15-141

OCILobLoadFromFile(), 15-142

OCILobLocatorAssign(), 15-144

OCILobLocatorIsInit(), 15-146

OCILobOpen(), 15-147

OCILobRead(), 15-148

OCILobSetFileName(), 15-131

OCILobTrim(), 15-152

OCILobWrite(), 15-153

OCILobWriteAppend(), 15-157

OCILockOpt

possible values, 16-28, 16-54

OCILogoff(), 15-96

OCILogon(), 15-97

using, 2-23

OCINumber, 11-10

bind example, 12-8

binding and defining, 11-10, 12-6

define example, 12-8

OCINumber manipulation

code example, 10-13, 11-13

OCINumberAbs(), 17-50

OCINumberAdd(), 17-51

OCINumberArcCos(), 17-52

OCINumberArcSin(), 17-53

OCINumberArcTan(), 17-54

OCINumberArcTan2(), 17-55

OCINumberAssign(), 17-56

OCINumberCeil(), 17-57

OCINumberCompare(), 17-58

OCINumberCos(), 17-59

Index-14

OCINumberDec(), 17-60

OCINumberDiv(), 17-61

OCINumberExp(), 17-62

OCINumberFloor(), 17-63

OCINumberFromInt(), 17-64

OCINumberFromReal(), 17-65

OCINumberFromText(), 17-66

OCINumberHypCos(), 17-68

OCINumberHypSin(), 17-69

OCINumberHypTan(), 17-70

OCINumberInc(), 17-71

OCINumberIntPower(), 17-72

OCINumberIsInt(), 17-73

OCINumberIsZero(), 17-74

OCINumberLn(), 17-75

OCINumberLog(), 17-76

OCINumberMod(), 17-77

OCINumberMul(), 17-78

OCINumberNeg(), 17-79

OCINumberPower(), 17-80

OCINumberPrec(), 17-81

OCINumberRound(), 17-82

OCINumberSetPi(), 17-83

OCINumberSetZero(), 17-84

OCINumberShift(), 17-85

OCINumberSign(), 17-86

OCINumberSin(), 17-87

OCINumberSqrt(), 17-88

OCINumberSub(), 17-89

OCINumberTan(), 17-90

OCINumberToInt(), 17-91

OCINumberToReal(), 17-92

OCINumberToText(), 17-93

OCINumberTrunc(), 17-95

OCIObjectArrayPin(), 16-50

OCIObjectCopy(), 16-33

OCIObjectExists(), 16-25

OCIObjectFlush(), 16-13

OCIObjectFree(), 16-52

OCIObjectGetAttr(), 16-35

OCIObjectGetInd(), 16-37

OCIObjectGetObjectRef(), 16-38

OCIObjectGetTypeRef(), 16-39

OCIObjectIsDirty(), 16-30

OCIObjectIsLocked(), 16-31

OCIObjectLifetime

possible values, 16-27

OCIObjectLock(), 16-40

OCIObjectLockNoWait(), 16-41

OCIObjectMarkDelete(), 16-18

OCIObjectMarkDeleteByRef(), 16-19

OCIObjectMarkStatus

possible values, 16-28

OCIObjectMarkUpdate(), 16-20

OCIObjectNew(), 16-42

OCIObjectPin(), 16-54

OCIObjectPinCountReset(), 16-57

OCIObjectPinTable(), 16-58

OCIObjectRefresh(), 16-14

OCIObjectSetAttr(), 16-45

OCIObjectUnmark(), 16-22

OCIObjectUnmarkByRef(), 16-23

OCIObjectUnpin(), 16-60

OCIParamGet(), 15-39

used for describing, 4-11

OCIParamSet(), 15-41

OCIPasswordChange(), 15-220

OCIPinOpt

use of, 13-7

OCIRaw, 11-16

binding and defining, 11-16, 12-6

OCIRaw manipulation

code example, 11-17

OCIRawAllocSize(), 17-97

OCIRawAssignBytes(), 17-98

OCIRawAssignRaw(), 17-99

OCIRawPtr(), 17-100

OCIRawResize(), 17-101

OCIRawSize(), 17-102

OCIRef, 11-22

binding and defining, 11-22

usage example, 11-22

OCIRefAssign(), 17-104

OCIRefClear(), 17-105

OCIRefFromHex(), 17-106

OCIRefHexSize(), 17-107

OCIRefIsEqual(), 17-108

OCIRefIsNull(), 17-109

OCIRefToHex(), 17-110

OCIReset(), 15-222

Index-15

use of, 2-37

OCIRowid, 2-16

OCIServerAttach(), 15-99

shadow processes, 15-100

OCIServerDetach(), 15-101

OCIServerVersion(), 15-223

OCISessionBegin(), 15-102

OCISessionEnd(), 15-105

OCIStmtExecute(), 15-161

prefetch during, 4-6

use of iters parameter, 4-6

OCIStmtFetch(), 15-164

OCIStmtGetBind(), 15-70

OCIStmtGetPieceInfo(), 15-165

OCIStmtPrepare(), 15-167

preparing SQL statements, 4-4

shared mode, 2-21

OCIStmtSetPieceInfo(), 15-169

OCIString, 11-15

binding and defining, 11-15, 12-6

OCIString manipulation

code example, 11-15

OCIStringAllocSize(), 17-112

OCIStringAssign(), 17-113

OCIStringAssignText(), 17-114

OCIStringPtr(), 17-115

OCIStringResize(), 17-116

OCIStringSize(), 17-117

OCISubscriptionDisable(), 15-20

OCISubscriptionEnable(), 15-21

OCISubscriptionPost(), 15-22

OCISubscriptionRegister(), 15-24

OCISubscriptionUnRegister(), 15-26

OCISvcCtxToLda(), 15-224

OCITable, 11-17

binding and defining, 11-17, 12-6

OCITableDelete(), 17-119

OCITableExists(), 17-120

OCITableFirst(), 17-121

OCITableLast(), 17-122

OCITableNext(), 17-123

OCITablePrev(), 17-124

OCITableSize(), 17-125

OCITerminate(), 15-106

OCIThreadClose(), 15-173

OCIThreadCreate(), 15-174

OCIThreadHandleGet(), 15-176

OCIThreadHndDestroy(), 15-177

OCIThreadHndInit(), 15-178

OCIThreadIdDestroy(), 15-179

OCIThreadIdGet(), 15-180

OCIThreadIdInit(), 15-181

OCIThreadIdNull(), 15-182

OCIThreadIdSame(), 15-183

OCIThreadIdSet(), 15-184

OCIThreadIdSetNull(), 15-185

OCIThreadInit(), 15-186

OCIThreadIsMulti(), 15-187

OCIThreadJoin(), 15-188

OCIThreadKeyDestroy(), 15-189

OCIThreadKeyGet(), 15-190

OCIThreadKeyInit(), 15-191

OCIThreadKeySet(), 15-192

OCIThreadMutexAcquire(), 15-193

OCIThreadMutexDestroy(), 15-194

OCIThreadMutexInit(), 15-195

OCIThreadMutexRelease(), 15-196

OCIThreadProcessInit(), 15-197

OCIThreadTerm(), 15-198

OCITransCommit(), 15-200

OCITransDetach(), 15-203

OCITransForget(), 15-204

OCITransPrepare(), 15-205

OCITransRollback(), 15-206

OCITransStart(), 15-207

OCIType

description, 11-23

OCITypeArrayByName(), 16-63

OCITypeArrayByRef(), 16-66

OCITypeByName(), 16-68

OCITypeByRef(), 16-70

OCITypeElem

description, 11-23

OCITypeMethod

description, 11-23

OCIUserCallbackGet(), 15-225

OCIUserCallbackRegister(), 15-227

OID. See object identifier

optimistic locking

implementing, 13-13

Index-16

Oracle Call Interface. See OCI

Oracle datatypes, 3-2

mapping to C, 11-2

Oracle8 datatypes

binding and defining, 12-6

oratypes.h

contents, 3-27

ORE. See object runtime environment

OTT

command line, 14-6

command line syntax, 14-23

creating types in the database, 14-5

datatype mapping, 14-10

intype file, 14-29

outtype file, 14-16

overview, 14-2

parameters, 14-24

providing an intype file, 14-8

reference, 14-22

restriction, 14-37

using, 14-1

OTT initialization function

calling, 14-20

tasks of, 14-22

OTT parameters

CASE, 14-27

CODE, 14-26

CONFIG, 14-27

ERRTYPE, 14-27

HFILE, 14-26

INITFILE, 14-26

INITFUNC, 14-26

INTYPE, 14-25

OUTTYPE, 14-25

SCHEMA_NAMES, 14-28

USERID, 14-24

where they appear, 14-28

OTT. See object type translator

outtype file, 14-29

when running OTT, 14-16

OUTTYPE OTT parameter, 14-25

P
packages

attributes, 6-8

describing, 6-2

parameter descriptor, 2-16

attributes, 6-5, A-24

parameter descriptor object, 11-23

parameters

attributes, 6-5

modes, 15-2, 18-2

passing strings, 2-31

string length, 15-3

password management, 8-10, 8-12

PDO. See parameter descriptor object

persistent objects, 10-6

meta-attributes, 10-17

piecewise fetch, 5-36

piecewise operations, 5-34

fetch, 5-32, 5-37

in PL/SQL, 5-36

insert, 5-32

update, 5-32

valid datatypes, 5-33

pin count, 10-28

pin duration

example, 13-14

of objects, 13-14

pinning, 13-7

pinning objects, 13-7

PL/SQL, 1-9

binding and defining nested tables, 5-30

binding and defining ref cursors, 5-30

binding placeholders, 2-39

defining output variables, 5-17

piecewise operations, 5-36

uses in OCI applications, 2-39

using in OCI applications, 2-39

using in OCI programs, 5-7

positioned, 2-34

deletes, 2-34

prefetching

during OCIStmtExecute(), 4-6

setting prefetch memory size, 4-15

setting row count, 4-15

Index-17

procedures

attributes, 6-8

process

handle attributes, A-49

process handle, 2-12

publish-subscribe

_SYSTEM_TRIG_ENABLED parameter, 9-33

COMPATIBLE parameter, 9-30

example, 9-33

functions, 9-30

handle attributes, 9-31, A-37

notification callback, 9-31

notification feature, 9-29

subscription handle, 9-31

publish-subscribe functions, 15-4

Q
query

explicit describe, 4-13

query. See SQL query

R
RAW

external datatype, 3-14

REF

binding, 5-10, 12-3

defining, 5-16, 12-4

external datatype, 3-18

indicator variable for, 2-31

retrieving from server, 10-11

ref cursor variables

binding, 5-12

ref cursors

binding and defining, 5-30

reference. See REF

refreshing, 13-11

objects, 13-11

REFs

indicator variables for, 2-33

registering

user callbacks, 9-11

relational functions

server roundtrips, C-2, C-6

release enhancements, 1-12

reserved namespaces, 2-35

reserved words, xxxv, 2-35

resuming branches, 8-7

return values

navigational functions, 16-5

RETURNING clause

binding with, 5-22

error handling, 5-23

initializing variables, 5-23

using with OCI

with REFs, 5-23

rollback, 2-26

in object applications, 13-14

roundtrips. See server roundtrips

ROWID

external datatype, 3-13

logical, 3-6

Universal ROWID, 3-6

used for positioned updates and deletes, 2-34

ROWID descriptor, 2-16

S
sample programs, B-1

sb1

definition, 3-27

sb2

definition, 3-27

sb4

definition, 3-27

SCHEMA_NAMES OTT parameter, 14-28

usage, 14-33

schemas

attributes, 6-19

describing, 6-2

secondary memory

of object, 13-16

select-list

describing, 4-10

sequences

attributes, 6-14

describing, 6-2

server handle

attributes, A-9

Index-18

description, 2-9

setting in service context, 2-10

server roundtrips

cache functions, C-4

datatype mapping and manipulation

functions, C-6

describe operation, C-5

LOB functions, C-2

object functions, C-4

relational functions, C-2, C-6

service context handle

attributes, A-7

description, 2-9

elements of, 2-9

session

migration, 8-11, 15-103

session management, 8-10, 8-13

shared data structures mode, 2-19

shared mode, 2-19

OCIInitialize(), 2-20

OCIStmtPrepare(), 2-21

using environmental variables, 2-21

single-task linking

support, 1-27

skip parameters

for arrays of structures, 5-18

for standard arrays, 5-20

snapshot descriptor, 2-15

snapshots

executing against, 4-7

SQL query

binding placeholders. See bind operation

defining output variables, 4-14, 5-13, 12-4

defining output variables. See define operation

fetching results, 4-14

statement type, 1-9

SQL statements, 1-7

binding placeholders in, 4-5, 5-2, 12-2

determining type prepared, 4-4

executing, 4-6

preparing for execution, 4-4

processing, 4-2

types

control statements, 1-8

data definition language, 1-7

data manipulation language, 1-8

embedded SQL, 1-11

PL/SQL, 1-9

queries, 1-9

SQLT typecodes, 3-25

SQLT_NTY

bind example, 12-13

define example, 12-14

description, 3-18

pre-allocating object memory, 12-5

SQLT_REF

definition, 3-18

description, 3-18

statement handle

attributes, A-14

description, 2-10

static arrays

binding, 5-10

defining, 5-17

stored functions

describing, 6-2

stored procedures

describing, 6-2

STRING

external datatype, 3-11

strings

passing as parameters, 2-31

structures

arrays of, 5-17

subscription handle, 2-11

attributes, A-37

sword

definition, 3-27

synonyms

attributes, 6-14

describing, 6-2

T
tables

attributes, 6-7

describing, 6-2

TDO

definition, 12-2

description, 11-23

Index-19

obtaining, 11-23

terminology

navigational functions, 16-4

used in this manual, 1-11

thread management functions, 15-171

thread safety, 8-14

advantages of, 8-14

and three-tier architectures, 8-14

basic concepts, 8-15

implementing with OCI, 8-15

mixing 7.x and 8.0 calls, 8-16

required OCI calls, 8-15

three-tier architectures

and thread safety, 8-14

top-level memory

of object, 13-16

transaction functions, 15-199

transaction handle

attributes, A-13

description, 2-9

transaction identifier, 8-4

transactional complexity

levels in OCI, 8-3

transactions

committing, 2-26

global, 8-4

branch states, 8-6

branches, 8-4

one-phase commit, 8-7

transactions identifier, 8-4

two-phase commit, 8-7

global examples, 8-8

initialization parameters, 8-10

local, 8-3

OCI functions for

transactions, 8-2

read-only, 8-3

rolling back, 2-26

serializable, 8-3

transient objects, 10-7

LOB

attributes, 7-6

meta-attributes, 10-20

type attributes

attributes, 6-10

type descriptor object, 11-23

See also TDO

type functions

attributes, 6-11

type procedures

attributes, 6-11

type reference, 10-33

typecodes, 3-23

types

attributes, 6-9

describing, 6-2

U
ub1

definition, 3-27

ub2

definition, 3-27

ub4

definition, 3-27

Unicode

and UTF-8, 5-29

character set Id, A-20, A-22

fixed width support, 5-28

OCILobRead(), 15-151

OCILobWrite(), 15-156

precautions, 5-29

Universal ROWID, 3-6

unmarking, 13-10

objects, 13-10

unpinning, 10-28, 13-8

objects, 13-8

UNSIGNED

external datatype, 3-15

updates, 2-34

piecewise, 5-32, 5-34

positioned, 2-34

upgrading

7.x to 8.0, 1-22

7.x to 8.0 OCI, 1-23

UROWID

Universal ROWID, 3-6

user memory

allocating, 2-17

user session handle

Index-20

attributes, A-12

description, 2-9

setting in service context, 2-10

user-defined callback functions, 9-11

registering, 9-11

USERID OTT parameter, 14-24

utext

Unicode datatype, 5-29

V
values, 10-5

in object applications, 10-7

VARCHAR

external datatype, 3-13

VARCHAR2

external datatype, 3-8

VARNUM

external datatype, 3-12

VARRAW

external datatype, 3-15

views

attributes, 6-7

describing, 6-2

W
with_context

argument to external procedure functions, 18-3

X
XID. See transaction identifier

xtramem_sz parameter

using, 2-17

	PDF Directory
	Contents
	Send Us Your Comments
	Preface
	Part I� Part I� Basic OCI Concepts
	1 Introduction, New Features, and Upgrading
	Overview of OCI
	Advantages of OCI
	Building an OCI Application
	Parts of the OCI
	Procedural and Non-Procedural Elements
	Object Support
	SQL Statements

	New Features
	Encapsulated Interfaces
	Simplified User Authentication and Password Management
	Extensions to Improve Application Performance and Scalability
	Oracle OCI Object Support
	Client-side Object Cache
	Associative and Navigational Interfaces
	Runtime Environment for Objects
	Type Management, Mapping and Manipulation Functions
	Object Type Translator
	OCI Support for Oracle Advanced Queueing
	Simplified Migration of Existing Applications

	Compatibility, Upgrading, and Migration
	Obsolescent OCI Routines
	OCI Routines Not Supported
	Compatibility
	Upgrading
	Application Linking Issues

	2 OCI Programming Basics
	Overview
	OCI Program Structure
	OCI Data Structures
	Handles
	Allocating and Freeing Handles
	Environment Handle
	Error Handle
	Service Context and Associated Handles
	Statement Handle, Bind Handle, and Define Handle
	Describe Handle
	Complex Object Retrieval Handle
	Thread Handle
	Subscription Handle
	Direct Path Handles
	Process Handle
	Handle Attributes
	User Memory Allocation

	Descriptors and Locators
	Snapshot Descriptor
	LOB/FILE Datatype Locator
	Parameter Descriptor
	ROWID Descriptor
	Complex Object Descriptor
	Advanced Queueing Descriptors
	User Memory Allocation

	OCI Programming Steps
	Initialization, Connection, and Session Creation
	Initializing an OCI Environment
	Shared Data Mode
	Allocate Handles and Descriptors
	Application Initialization, Connection, and Session Creation

	Processing SQL Statements
	Commit or Rollback
	Terminating the Application
	Error Handling
	Return and Error Codes for Truncation and Null Data
	Functions Returning Other Values

	Additional Coding Guidelines
	Parameter Types
	Nulls
	Indicator Variables
	Cancelling Calls
	Positioned Updates and Deletes
	Reserved Words
	Application Linking

	Non-Blocking Mode
	Setting Blocking Modes
	Cancelling a Non-blocking Call
	Non-blocking Example

	Using PL/SQL in an OCI Program

	3 Datatypes
	Oracle Datatypes
	Internal Datatype Codes
	External Datatype Codes

	Internal Datatypes
	LONG, RAW, LONG RAW, VARCHAR2
	Character Strings and Byte Arrays
	Universal ROWID

	External Datatypes
	VARCHAR2
	NUMBER
	INTEGER
	FLOAT
	STRING
	VARNUM
	LONG
	VARCHAR
	ROWID
	DATE
	RAW
	VARRAW
	LONG RAW
	UNSIGNED
	LONG VARCHAR
	LONG VARRAW
	CHAR
	CHARZ

	New Oracle External Datatypes
	NAMED DATA TYPE (Object, VARRAY, Nested Table)
	REF
	LOB
	New C Datatype Mappings

	Data Conversions
	Typecodes
	Relationship Between SQLT and OCI_TYPECODE Values

	Definitions in oratypes.h

	4 SQL Statement Processing
	Overview
	Processing SQL Statements
	Preparing Statements
	Using Prepared Statements on Multiple Servers

	Binding
	Executing Statements
	Execution Snapshots
	Execution Modes
	Batch Error Mode for OCIStmtExecute()

	Describing Select-List Items
	Implicit Describe
	Explicit Describe of Queries

	Defining
	Fetching Results
	Fetching LOB Data
	Setting Prefetch Count

	5 Binding and Defining
	Binding
	Named Binds and Positional Binds
	OCI Array Interface
	Binding Placeholders in PL/SQL
	Steps Used in Binding
	PL/SQL Example
	Advanced Binds

	Advanced Bind Operations
	Static Array Binds
	Named Data Type Binds
	Binding REFs
	Binding LOBs
	Binding in OCI_DATA_AT_EXEC Mode
	Binding Ref Cursor Variables
	Summary of Bind Information

	Defining
	Steps Used in Defining
	Advanced Defines

	Advanced Define Operations
	Defining Named Data Type Output Variables
	Defining REF Output Variables
	Defining LOB Output Variables
	Defining PL/SQL Output Variables
	Defining For a Piecewise Fetch
	Defining Arrays of Structures

	Arrays of Structures
	Skip Parameters
	OCI Calls Used with Arrays of Structures
	Arrays of Structures and Indicator Variables

	DML with RETURNING Clause
	Using DML with RETURNING Clause
	Binding RETURNING...INTO variables
	Error Handling
	DML with RETURNING REF...INTO clause
	Additional Notes About Callbacks
	Array Interface for DML RETURNING Statements

	NCHAR and Character Conversion Issues
	NCHAR Issues
	OCI_ATTR_MAXDATA_SIZE Attribute
	Character Count Attribute
	Fixed Width Unicode Support

	PL/SQL REF CURSORs and Nested Tables
	Run Time Data Allocation and Piecewise Operations
	Providing INSERT or UPDATE Data at Run Time
	Piecewise Operations With PL/SQL
	Providing FETCH Information at Run Time
	Additional Information About Piecewise Operations with No Callbacks

	6 Describing Schema Metadata
	Overview
	Using OCIDescribeAny()
	Restrictions
	Notes on Types and Attributes
	Parameter Attributes
	Table/View Attributes
	Procedure/Function/Subprogram Attributes
	Package Attributes
	Type Attributes
	Type Attribute Attributes
	Type Method Attributes
	Collection Attributes
	Synonym Attributes
	Sequence Attributes
	Column Attributes
	Argument/Result Attributes
	List Attributes
	Schema Attributes
	Database Attributes

	Examples
	Retrieving column data types for a table
	Describing the stored procedure
	Retrieving attributes of an object type
	Retrieving the collection element’s data type of a named collection type

	7 LOB and FILE Operations
	Overview
	Locators
	LOB Locators
	FILE Locators

	Creating and Modifying Internal LOBs
	Associating a FILE in a Table with an OS File
	LOB Attributes of an Object
	Writing to a LOB Attribute of an Object
	Transient Objects with LOB Attributes

	Array Interface For LOBs
	LOB and FILE Functions
	Functions for Improving LOB Read/Write Performance
	LOB Buffering Functions
	Functions for Opening and Closing LOBs
	Server Roundtrips for LOB Functions

	LOB Read and Write Callbacks
	The Callback Interface for Streaming
	Reading LOBs using Callbacks
	Writing LOBs using Callbacks

	Temporary LOB Support
	Creating and Freeing Temporary LOBs
	Temporary LOB Durations
	Temporary LOB Example

	8 Managing Scalable Platforms
	Overview
	Transactions
	Levels of Transactional Complexity
	Transaction Examples
	Related Initialization Parameters

	Password and Session Management
	Authentication Management
	Password Management
	Session Management

	Thread Safety
	Advantages of OCI Thread Safety
	Thread Safety and Three-Tier Architectures
	Basic Concepts of Multi-threaded Development
	Implementing Thread Safety

	9 OCI Programming Advanced Topics
	Overview
	The OCIThread Package
	Initialization and Termination
	Passive Threading Primitives
	Active Threading Primitives
	Using the OCIThread Package
	Example using OCIThread

	User-defined Callback Functions
	Registering User Callbacks
	OCI Callbacks From External Procedures

	Application Failover Callbacks
	Failover Callback Overview
	Failover Callback Structure and Parameters
	Failover Callback Registration
	Failover Callback Example
	Handling OCI_FO_ERROR

	OCI and Advanced Queuing
	OCI Advanced Queuing Functions
	OCI Advanced Queuing Descriptors
	Advanced Queuing in OCI vs. PL/SQL

	Publish-Subscribe Notification
	Publish-Subscribe Functions
	Notification Callback
	Publish-Subscribe Example

	Direct Path Loading
	Limitations and Restrictions
	Datatypes Supported
	Direct Path Handles
	Direct Path Interface Functions
	Direct Path Load Example

	Part II� OCI Object Concepts
	10 OCI Object-Relational Programming
	Overview
	OCI Object Overview
	Working with Objects in the OCI
	Basic Object Program Structure
	Persistent Objects, Transient Objects, and Values

	Developing an OCI Object Application
	Representing Objects in C Applications
	Initializing Environment and Object Cache
	Making Database Connections
	Retrieving an Object Reference from the Server
	Pinning an Object
	Manipulating Object Attributes
	Marking Objects and Flushing Changes
	Fetching Embedded Objects
	Object Meta-Attributes
	Complex Object Retrieval
	COR Prefetching
	OCI vs. SQL Access to Objects
	Pin Count and Unpinning
	Nullness
	Creating Objects
	Freeing and Copying Objects
	Object Reference and Type Reference
	Creating Objects Based on Object Views or User-defined OIDs
	Error Handling in Object Applications

	11 Object-Relational Datatypes
	Overview
	Mapping Oracle Datatypes to C
	OCI Type Mapping Methodology

	Manipulating C Datatypes With OCI
	Precision of Oracle Number Operations

	Date (OCIDate)
	Date Conversion Functions
	Date Assignment and Retrieval Functions
	Date Arithmetic and Comparison Functions
	Date Information Accessor Functions
	Date Validity Checking Functions
	Date Example

	Number (OCINumber)
	Number Arithmetic Functions
	Number Conversion Functions
	Exponential and Logarithmic Functions
	Trigonometric Functions
	Number Assignment, Comparison, and Evaluation Functions
	Number Example

	Fixed or Variable-Length String (OCIString)
	String Functions
	String Example

	Raw (OCIRaw)
	Raw Functions
	Raw Example

	Collections (OCITable, OCIArray, OCIColl, OCIIter)
	Generic Collection Functions
	Collection Data Manipulation Functions
	Collection Scanning Functions
	Varray/Collection Iterator Example
	Nested Table Manipulation Functions
	Nested Table Locators

	REF (OCIRef)
	REF Manipulation Functions
	REF Example

	Object Type Information Storage and Access
	Descriptor Objects

	12 Binding and Defining in Object Applications
	Binding
	Named Datatype Binds
	Binding REFs
	Information for Named Datatype and REF Binds

	Defining
	Defining Named Datatype Output Variables
	Defining REF Output Variables
	Information for Named Datatype and REF Defines, and PL/SQL OUT Binds

	Binding And Defining Oracle C Datatypes
	Bind and Define Examples
	Salary Update Examples

	SQLT_NTY Bind/Define Example
	Bind Example
	Define Example

	13 Object Cache and Object Navigation
	Overview
	The Object Cache and Memory Management
	Cache Consistency and Coherency
	Object Cache Parameters
	Object Cache Operations
	Operations for Loading and Removing Object Copies
	Operations for Making Changes to Object Copies
	Operations for Synchronizing Object Copies with Server
	Object Locking Operations
	Commit and Rollback in Object Applications
	Object Duration
	Memory Layout of an Instance

	Object Navigation
	Simple Object Navigation

	OCI Navigational Functions
	Pin/Unpin/Free Functions
	Flush and Refresh Functions
	Mark and Unmark Functions
	Object Meta-Attribute Accessor Functions
	Other Functions

	14 Using the Object Type Translator
	OTT Overview
	Using the Object Type Translator
	Creating Types in the Database
	Invoking the OTT

	The OTT Command Line
	OTT
	userid
	intype
	outtype
	code
	hfile
	initfile
	initfunc

	The Intype File
	OTT Datatype Mappings
	Null Indicator Structs

	The Outtype File
	Using the OTT with OCI Applications
	Accessing and Manipulating Objects with OCI
	Calling the Initialization Function
	Tasks of the Initialization Function

	OTT Reference
	OTT Command Line Syntax
	OTT Parameters
	Where OTT Parameters Can Appear
	Structure of the Intype File
	Nested #include File Generation
	SCHEMA_NAMES Usage
	Default Name Mapping
	Restriction

	Part III� Part III� OCI Reference
	15 OCI Relational Functions
	Introduction
	Function Syntax
	Calling OCI Functions
	Server Roundtrips for LOB Functions

	Advanced Queuing and Publish-Subscribe Functions
	OCIAQDeq()
	OCIAQEnq()
	Example 1
	Example 2
	Example 3
	Example 4

	OCIAQListen()
	OCISubscriptionDisable()
	OCISubscriptionEnable()
	OCISubscriptionPost()
	OCISubscriptionRegister()
	OCISubscriptionUnRegister()

	Handle and Descriptor Functions
	OCIAttrGet()
	OCIAttrSet()
	OCIDescriptorAlloc()
	OCIDescriptorFree()
	OCIHandleAlloc()
	OCIHandleFree()
	OCIParamGet()
	OCIParamSet()

	Bind, Define, and Describe Functions
	OCIBindArrayOfStruct()
	OCIBindByName()
	OCIBindByPos()
	OCIBindDynamic()
	OCIBindObject()
	OCIDefineArrayOfStruct()
	OCIDefineByPos()
	OCIDefineDynamic()
	OCIDefineObject()
	OCIDescribeAny()
	OCIStmtGetBindInfo()

	Direct Path Loading Functions
	OCIDirPathAbort()
	OCIDirPathColArrayEntryGet()
	OCIDirPathColArrayEntrySet()
	OCIDirPathColArrayRowGet()
	OCIDirPathColArrayReset()
	OCIDirPathColArrayToStream()
	OCIDirPathFinish()
	OCIDirPathLoadStream()
	OCIDirPathPrepare()
	OCIDirPathStreamReset()

	Connect, Authorize, and Initialize Functions
	OCIEnvCreate()
	OCIEnvInit()
	OCIInitialize()
	OCILogoff()
	OCILogon()
	OCIServerAttach()
	OCIServerDetach()
	OCISessionBegin()
	OCISessionEnd()
	OCITerminate()

	LOB Functions
	OCIDurationBegin()
	OCIDurationEnd()
	OCILobAppend()
	OCILobAssign()
	OCILobCharSetForm()
	OCILobCharSetId()
	OCILobClose()
	OCILobCopy()
	OCILobCreateTemporary()
	OCILobDisableBuffering()
	OCILobEnableBuffering()
	OCILobErase()
	OCILobFileClose()
	OCILobFileCloseAll()
	OCILobFileExists()
	OCILobFileGetName()
	OCILobFileIsOpen()
	OCILobFileOpen()
	OCILobFileSetName()
	OCILobFlushBuffer()
	OCILobFreeTemporary()
	OCILobGetChunkSize()
	OCILobGetLength()
	OCILobIsEqual()
	OCILobIsOpen()
	OCILobIsTemporary()
	OCILobLoadFromFile()
	OCILobLocatorAssign()
	OCILobLocatorIsInit()
	OCILobOpen()
	OCILobRead()
	OCILobTrim()
	OCILobWrite()
	OCILobWriteAppend()

	Statement Functions
	OCIStmtExecute()
	OCIStmtFetch()
	OCIStmtGetPieceInfo()
	OCIStmtPrepare()
	OCIStmtSetPieceInfo()

	Thread Management Functions
	OCIThreadClose()
	OCIThreadCreate()
	OCIThreadHandleGet()
	OCIThreadHndDestroy()
	OCIThreadHndInit()
	OCIThreadIdDestroy()
	OCIThreadIdGet()
	OCIThreadIdInit()
	OCIThreadIdNull()
	OCIThreadIdSame()
	OCIThreadIdSet()
	OCIThreadIdSetNull()
	OCIThreadInit()
	OCIThreadIsMulti()
	OCIThreadJoin()
	OCIThreadKeyDestroy()
	OCIThreadKeyGet()
	OCIThreadKeyInit()
	OCIThreadKeySet()
	OCIThreadMutexAcquire()
	OCIThreadMutexDestroy()
	OCIThreadMutexInit()
	OCIThreadMutexRelease()
	OCIThreadProcessInit()
	OCIThreadTerm()

	Transaction Functions
	OCITransCommit()
	OCITransDetach()
	OCITransForget()
	OCITransPrepare()
	OCITransRollback()
	OCITransStart()

	Miscellaneous Functions
	OCIBreak()
	OCIErrorGet()
	OCILdaToSvcCtx()
	OCIPasswordChange()
	OCIReset()
	OCIServerVersion()
	OCISvcCtxToLda()
	OCIUserCallbackGet()
	OCIUserCallbackRegister()

	16 OCI Navigational and Type Functions
	Introduction
	Object Types and Lifetimes
	Terminology
	The Function Syntax
	Navigational Function Return Values
	Server Roundtrips for Cache and Object Functions
	Navigational Function Error Codes

	OCI Flush or Refresh Functions
	OCICacheFlush()
	OCICacheRefresh()
	OCIObjectFlush()
	OCIObjectRefresh()

	OCI Mark or Unmark Object and Cache Functions
	OCICacheUnmark()
	OCIObjectMarkDelete()
	For Persistent Objects
	For Transient Objects
	For Values

	OCIObjectMarkDeleteByRef()
	For Persistent Objects
	For Transient Objects

	OCIObjectMarkUpdate()
	For Persistent Objects
	For Transient Objects
	For Values

	OCIObjectUnmark()
	For Persistent Objects and Transient Objects
	For Values

	OCIObjectUnmarkByRef()
	For Persistent Objects and Transient Objects
	For Values

	OCI Get Object Status Functions
	OCIObjectExists()
	OCIObjectGetProperty()
	OCIObjectIsDirty()
	OCIObjectIsLocked()

	OCI Miscellaneous Object Functions
	OCIObjectCopy()
	OCIObjectGetAttr()
	OCIObjectGetInd()
	OCIObjectGetObjectRef()
	OCIObjectGetTypeRef()
	OCIObjectLock()
	OCIObjectLockNoWait()
	OCIObjectNew()
	For Persistent Objects
	For Transient Objects
	For Values

	OCIObjectSetAttr()

	OCI Pin, Unpin, and Free Functions
	OCICacheFree()
	OCICacheUnpin()
	OCIObjectArrayPin()
	OCIObjectFree()
	For Persistent Objects
	For Transient Objects
	For Values

	OCIObjectPin()
	For Persistent Objects
	For Transient Objects

	OCIObjectPinCountReset()
	For Persistent Objects
	For Transient Objects
	For Values

	OCIObjectPinTable()
	OCIObjectUnpin()
	For Persistent Objects
	For Transient Objects
	For Values

	OCI Type Information Accessor Functions
	OCITypeArrayByName()
	OCITypeArrayByRef()
	OCITypeByName()
	OCITypeByRef()

	17 OCI Datatype Mapping and Manipulation Functions
	Introduction
	The Function Syntax
	Datatype Mapping and Manipulation Function Return Values
	Functions Returning Other Values
	Server Roundtrips for Datatype Mapping and Manipulation Functions
	Examples

	OCI Collection and Iterator Functions
	OCICollAppend()
	OCICollAssign()
	OCICollAssignElem()
	OCICollGetElem()
	OCICollIsLocator()
	OCICollMax()
	OCICollSetUpdateStatus()
	OCICollSize()
	OCICollTrim()
	OCIIterCreate()
	OCIIterDelete()
	OCIIterGetCurrent()
	OCIIterInit()
	OCIIterNext()
	OCIIterPrev()

	OCI Date Functions
	OCIDateAddDays()
	OCIDateAddMonths()
	OCIDateAssign()
	OCIDateCheck()
	OCIDateCompare()
	OCIDateDaysBetween()
	OCIDateFromText()
	OCIDateGetDate()
	OCIDateGetTime()
	OCIDateLastDay()
	OCIDateNextDay()
	OCIDateSetDate()
	OCIDateSetTime()
	OCIDateSysDate()
	OCIDateToText()
	OCIDateZoneToZone()

	OCI Number Functions
	OCINumberAbs()
	OCINumberAdd()
	OCINumberArcCos()
	OCINumberArcSin()
	OCINumberArcTan()
	OCINumberArcTan2()
	OCINumberAssign()
	OCINumberCeil()
	OCINumberCmp()
	OCINumberCos()
	OCINumberDec()
	OCINumberDiv()
	OCINumberExp()
	OCINumberFloor()
	OCINumberFromInt()
	OCINumberFromReal()
	OCINumberFromText()
	OCINumberHypCos()
	OCINumberHypSin()
	OCINumberHypTan()
	OCINumberInc()
	OCINumberIntPower()
	OCINumberIsInt()
	OCINumberIsZero()
	OCINumberLn()
	OCINumberLog()
	OCINumberMod()
	OCINumberMul()
	OCINumberNeg()
	OCINumberPower()
	OCINumberPrec()
	OCINumberRound()
	OCINumberSetPi()
	OCINumberSetZero()
	OCINumberShift()
	OCINumberSign()
	OCINumberSin()
	OCINumberSqrt()
	OCINumberSub()
	OCINumberTan()
	OCINumberToInt()
	OCINumberToReal()
	OCINumberToText()
	OCINumberTrunc()

	OCI Raw Functions
	OCIRawAllocSize()
	OCIRawAssignBytes()
	OCIRawAssignRaw()
	OCIRawPtr()
	OCIRawResize()
	OCIRawSize()

	OCI Ref Functions
	OCIRefAssign()
	OCIRefClear()
	OCIRefFromHex()
	OCIRefHexSize()
	OCIRefIsEqual()
	OCIRefIsNull()
	OCIRefToHex()

	OCI String Functions
	OCIStringAllocSize()
	OCIStringAssign()
	OCIStringAssignText()
	OCIStringPtr()
	OCIStringResize()
	OCIStringSize()

	OCI Table Functions
	OCITableDelete()
	OCITableExists()
	OCITableFirst()
	OCITableLast()
	OCITableNext()
	OCITablePrev()
	OCITableSize()

	18 OCI External Procedure Functions
	Introduction
	The Function Syntax
	Return Codes
	With_Context Type

	The OCI External Procedure Functions
	OCIExtProcAllocCallMemory()
	OCIExtProcRaiseExcp()
	OCIExtProcRaiseExcpWithMsg()
	OCIExtProcGetEnv()

	Part IV� Appendices
	A Handle and Descriptor Attributes
	Conventions
	Environment Handle Attributes
	OCI_ATTR_CACHE_ARRAYFLUSH
	OCI_ATTR_CACHE_MAX_SIZE
	OCI_ATTR_CACHE_OPT_SIZE
	OCI_ATTR_OBJECT
	OCI_ATTR_PINOPTION
	OCI_ATTR_ALLOC_DURATION
	OCI_ATTR_PIN_DURATION
	OCI_ATTR_HEAPALLOC
	OCI_ATTR_OBJECT_NEWNOTNULL
	OCI_ATTR_OBJECT_DETECTCHANGE
	OCI_ATTR_SHARED_HEAP_ALLOC

	Error Handle Attributes
	OCI_ATTR_DML_ROW_OFFSET

	Service Context Handle Attributes
	OCI_ATTR_ENV
	OCI_ATTR_SERVER
	OCI_ATTR_SESSION
	OCI_ATTR_TRANS
	OCI_ATTR_IN_V8_MODE

	Server Handle Attributes
	OCI_ATTR_NONBLOCKING_MODE
	OCI_ATTR_ENV
	OCI_ATTR_EXTERNAL_NAME
	OCI_ATTR_INTERNAL_NAME
	OCI_ATTR_IN_V8_MODE
	OCI_ATTR_FOCBK
	OCI_ATTR_SERVER_GROUP

	User Session Handle Attributes
	OCI_ATTR_USERNAME
	OCI_ATTR_MIGSESSION
	OCI_ATTR_PASSWORD

	Transaction Handle Attributes
	OCI_ATTR_TRANS_NAME
	OCI_ATTR_XID

	Statement Handle Attributes
	OCI_ATTR_NUM_DML_ERRORS
	OCI_ATTR_ROW_COUNT
	OCI_ATTR_SQLFNCODE
	OCI_ATTR_ENV
	OCI_ATTR_STMT_TYPE
	OCI_ATTR_ROWID
	OCI_ATTR_PARAM_COUNT
	OCI_ATTR_PREFETCH_ROWS
	OCI_ATTR_PREFETCH_MEMORY
	OCI_ATTR_PARSE_ERROR_OFFSET

	Bind Handle Attributes
	OCI_ATTR_CHAR_COUNT
	OCI_ATTR_CHARSET_ID
	OCI_ATTR_CHARSET_FORM
	OCI_ATTR_MAXDATA_SIZE
	OCI_ATTR_PDPRC
	OCI_ATTR_PDSCL
	OCI_ATTR_ROWS_RETURNED

	Define Handle Attributes
	OCI_ATTR_CHAR_COUNT
	OCI_ATTR_CHARSET_ID
	OCI_ATTR_CHARSET_FORM
	OCI_ATTR_PDPRC
	OCI_ATTR_PDSCL

	Describe Handle Attributes
	OCI_ATTR_PARAM
	OCI_ATTR_PARAM_COUNT

	Parameter Descriptor Attributes
	LOB Locator Attributes
	OCI_ATTR_LOBEMPTY

	Complex Object Attributes
	Complex Object Retrieval Handle Attributes
	OCI_ATTR_COMPLEXOBJECT_LEVEL
	OCI_ATTR_COMPLEXOBJECT_COLL_OUTOFLINE

	Complex Object Retrieval Descriptor Attributes
	OCI_ATTR_COMPLEXOBJECTCOMP_TYPE
	OCI_ATTR_COMPLEXOBJECTCOMP_TYPE_LEVEL

	Advanced Queueing Descriptor Attributes
	OCIAQEnqOptions Descriptor Attributes
	OCI_ATTR_RELATIVE_MSGID
	OCI_ATTR_SEQUENCE_DEVIATION
	OCI_ATTR_VISIBILITY

	OCIAQDeqOptions Descriptor Attributes
	OCI_ATTR_CONSUMER_NAME
	OCI_ATTR_CORRELATION
	OCI_ATTR_DEQ_MODE
	OCI_ATTR_DEQ_MSGID
	OCI_ATTR_NAVIGATION
	OCI_ATTR_VISIBILITY
	OCI_ATTR_WAIT

	OCIAQMsgProperties Descriptor Attributes
	OCI_ATTR_ATTEMPTS
	OCI_ATTR_CORRELATION
	OCI_ATTR_DELAY
	OCI_ATTR_ENQ_TIME
	OCI_ATTR_EXCEPTION_QUEUE
	OCI_ATTR_EXPIRATION
	OCI_ATTR_MSG_STATE
	OCI_ATTR_PRIORITY
	OCI_ATTR_RECIPIENT_LIST
	OCI_ATTR_SENDER_ID
	OCI_ATTR_ORIGINAL_MSGID

	OCIAQAgent Descriptor Attributes
	OCI_ATTR_AGENT_ADDRESS
	OCI_ATTR_AGENT_NAME
	OCI_ATTR_AGENT_PROTOCOL

	Subscription Handle Attributes
	OCI_ATTR_SUBSCR_CALLBACK
	OCI_ATTR_SUBSCR_CTX
	OCI_ATTR_SUBSCR_NAMESPACE
	OCI_ATTR_SUBSCR_NAME
	OCI_ATTR_SUBSCR_PAYLOAD

	Direct Path Loading Handle Attributes
	Direct Path Context Handle Attributes
	OCI_ATTR_BUF_SIZE
	OCI_ATTR_CHARSET_ID
	OCI_ATTR_DATEFORMAT
	OCI_ATTR_DIRPATH_MODE
	OCI_ATTR_DIRPATH_NOLOG
	OCI_ATTR_DIRPATH_PARALLEL
	OCI_ATTR_LIST_COLUMNS
	OCI_ATTR_NAME
	OCI_ATTR_NUM_COLS
	OCI_ATTR_SCHEMA_NAME
	OCI_ATTR_SUB_NAME

	Direct Path Column Array Handle Attributes
	OCI_ATTR_COL_COUNT
	OCI_ATTR_NUM_COLS
	OCI_ATTR_NUM_ROWS
	OCI_ATTR_ROW_COUNT

	Direct Path Stream Handle Attributes
	OCI_ATTR_BUF_ADDR
	OCI_ATTR_BUF_SIZE
	OCI_ATTR_ROW_COUNT
	OCI_ATTR_STREAM_OFFSET

	Direct Path Column Parameter Attributes
	OCI_ATTR_CHARSET_ID
	OCI_ATTR_DATA_SIZE
	OCI_ATTR_DATA_TYPE
	OCI_ATTR_DATEFORMAT
	OCI_ATTR_NAME
	OCI_ATTR_PRECISION
	OCI_ATTR_SCALE

	Process Handle Attributes
	OCI_ATTR_MEMPOOL_APPNAME
	OCI_ATTR_MEMPOOL_HOMENAME
	OCI_ATTR_MEMPOOL_INSTNAME
	OCI_ATTR_MEMPOOL_SIZE
	OCI_ATTR_PROC_MODE

	B OCI Demonstration Programs
	C OCI Function Server Roundtrips
	Overview
	Relational Function Roundtrips
	LOB Function Roundtrips
	Object and Cache Function Roundtrips
	Describe Operation Roundtrips
	Datatype Mapping and Manipulation Function Roundtrips
	Other Local Functions

	Index

