
Oracle8i

Distributed Database Systems

Release 8.1.5

February 1999

A67784-01

Oracle8i Distributed Database Systems, Release 8.1.5

A67784-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Jason Durbin

Contributing Authors: William Creekbaum, Steve Bobrowski, Peter Vasterd

Contributors: John Bellemore, Anupam Bhide, Roger Bodamer, Jacco Draaijer, Diana Foch-Laurentz,
Nina Lewis, Raghu Mani, Basab Maulik, Denise Oertel, Paul Raveling, Kendall Scott, Gordon Smith,
Katia Tarkhanov, Randy Urbano, Sandy Venning, Eric Voss, and others

Graphic Designer: Valarie Moore

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by such
use of the Programs.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. Except as may be expressly permitted in your license agreement
for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are "restricted computer software"
and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Oracle8, SQL*Forms, Net8, SQL*Plus, Oracle Call Interface,
Oracle7, Oracle7 Server, Oracle8i, Oracle Forms, PL/SQL, Pro*C, Pro*C/C++, and Enterprise Manager [is
a/are] trademark[s] or registered trademark[s] of Oracle Corporation. All other company or product
names mentioned are used for identification purposes only and may be trademarks of their respective
owners.

Contents

Send Us Your Comments .. xiii

Preface.. Preface-xv

How Oracle8i Distributed Database Systems is Organized .. Preface-xvi
Conventions Used in This Guide .. Preface-xvii

Your Comments Are Welcome.. Preface-xviii

1 Distributed Database Concepts

Oracle’s Distributed Database Architecture.. 1-2
Clients and Servers.. 1-2
The Network.. 1-4
Databases and Database Links ... 1-4
Database Links .. 1-6
Schema Object Name Resolution ... 1-6
Connecting Between Oracle Server Versions ... 1-7
Distributed Databases and Distributed Processing... 1-7
Distributed Databases and Database Replication.. 1-7

Heterogeneous Distributed Databases... 1-8
Heterogeneous Services... 1-8
Heterogeneous Services Agents ... 1-9
Features .. 1-9

Developing Distributed Database Applications .. 1-10
Distributed Query Optimization.. 1-10
Remote and Distributed SQL Statements ... 1-11
iii

Remote Procedure Calls (RPCs) ... 1-12
Remote and Distributed Transactions ... 1-12
Transparency in a Distributed Database System... 1-14

Administering an Oracle Distributed Database System... 1-16
Site Autonomy.. 1-16
Distributed Database Security .. 1-17
Tools for Administering Oracle Distributed Databases.. 1-19
Enterprise Manager .. 1-19
Third-Party Administration Tools ... 1-20
SNMP Support .. 1-20

National Language Support .. 1-20

2 Distributed Database Administration

Global Database Names and Global Object Names .. 2-2
Types of Database Links.. 2-3

Private, Public, and Global Database Links.. 2-3
Security Options for Database Links ... 2-4
Shared Database Links... 2-6
Connection Qualifiers .. 2-13
Database Link Resolution.. 2-14
Schema Object Name Resolution.. 2-15
Views, Synonyms, Procedures and Global Name Resolution ... 2-18
Dropping a Database Link... 2-19
Listing Available Database Links... 2-20
Limiting the Number of Active Database Links .. 2-20

Techniques for Location Transparency ... 2-20
Views and Location Transparency... 2-20
Synonyms and Location Transparency ... 2-22
Procedures and Location Transparency.. 2-24

Statement Transparency... 2-25
Restrictions .. 2-26
Values for Environmentally-Dependent SQL Functions .. 2-26
Shared SQL for Remote and Distributed Statements .. 2-26
iv

3 Distributed Transactions

Distributed Transaction Management ... 3-2
The Prepare and Commit Phases ... 3-2

Prepare Phase .. 3-2
Commit Phase ... 3-4

The Session Tree ... 3-5
Clients... 3-6
Servers and Database Servers ... 3-6
Local Coordinators ... 3-7
The Global Coordinator... 3-7
The Commit Point Site ... 3-8

A Case Study.. 3-11
The Scenario .. 3-11
The Process .. 3-11

Coordination of System Change Numbers.. 3-17
Read-Only Distributed Transactions .. 3-17
Limiting the Number of Distributed Transactions Per Node .. 3-18
Troubleshooting Distributed Transaction Problems ... 3-19

Failures that Interrupt Two-Phase Commit.. 3-19
Failures that Prevent Data Access .. 3-20

Manually Overriding In-Doubt Transactions ... 3-21
Manual Override Example.. 3-23
Step 1: Record User Feedback... 3-24
Step 2: Query DBA_2PC_PENDING ... 3-24
Step 3: Query DBA_2PC_NEIGHBORS .. 3-25
Manually Checking the Status of Pending Transactions at SALES.ACME.COM............. 3-27
Manually Checking the Status of Pending Transactions at HQ.ACME.COM: 3-28
Step 4: Check for Mixed Outcome.. 3-29
The Pending Transaction Table (DBA_2PC_PENDING) ... 3-29

Manually Committing In-Doubt Transactions ... 3-30
Forcing a Commit or Rollback in Enterprise Manager ... 3-31
Manually Committing or Rolling Back In-Doubt Transactions... 3-31

Changing Connection Hold Time.. 3-32
Setting a Limit on Distributed Transactions ... 3-32
Testing Distributed Transaction Recovery Features .. 3-33
v

Forcing a Distributed Transaction to Fail.. 3-33
The Recoverer (RECO) Background Process .. 3-34
Disabling and Enabling RECO.. 3-34

4 Distributed Database System Application Development

Factors Affecting the Distribution of an Application’s Data ... 4-2
Controlling Connections Established by Database Links .. 4-2
Referential Integrity in a Distributed System... 4-3
Distributed Queries.. 4-3

Tuning Distributed Queries .. 4-4
Cost Based Optimization ... 4-5
Extend Cost Based Optimization with Hints.. 4-7
Verifying Optimization.. 4-9

Handling Errors in Remote Procedures .. 4-11

5 Understanding Oracle Heterogeneous Services

What is Heterogeneous Services? .. 5-2
Heterogeneous Services Agents ... 5-2

The Services provided by Heterogeneous Services ... 5-2
Transaction Service... 5-3
SQL Service .. 5-3
Procedural Service .. 5-3

Using Heterogeneous Services ... 5-4
Heterogeneous Services Process Architecture.. 5-5
Process Architecture for Distributed External Procedures... 5-6

6 Administering Oracle Heterogeneous Services

Setting up access to Non-Oracle Systems .. 6-2
Install the Heterogeneous Services Data Dictionary ... 6-2
 Set Up Environment to Access Heterogeneous Services Agents.. 6-2
Create the Database Link to the Non-Oracle System .. 6-4
Test the Connection .. 6-4
Register Distributed External Procedures (Optional) ... 6-5

Structure of the Heterogeneous Services Data Dictionary ... 6-5
vi

The Data Dictionary Views... 6-7
General Data Dictionary Views for Heterogeneous Services .. 6-9
 Views for the Transaction Service... 6-9
Views for the SQL Service ... 6-11
Views for Distributed External Procedures .. 6-12

The DBMS_HS Package .. 6-13
Setting Initialization Parameters .. 6-13
Unsetting Initialization Parameters ... 6-14

Security for Distributed External Procedures ... 6-14
Agent Self-Registration ... 6-14

Advantages of Agent Self-Registration ... 6-15
How Does Agent Self-Registration Work? ... 6-16
Oracle Server Initialization Parameter HS_AUTOREGISTER... 6-17

7 Application Development with Heterogeneous Services

Application Development with Heterogeneous Services... 7-2
Pass-Through SQL.. 7-2

Considerations When Using Pass-Through SQL... 7-2
Executing Pass-Through SQL Statements... 7-3
Executing Queries... 7-7

Bulk Fetch... 7-8
Array Fetch Using the OCI, an Oracle Precompiler, or Another Tool.................................. 7-9
Array Fetch Between an Oracle8i Server and the Agent .. 7-9
Array Fetch Between the Agent and the Non-Oracle Datastore ... 7-10
Reblocking ... 7-10

A Heterogeneous Services Initialization Parameters

HS_COMMIT_POINT_STRENGTH.. A-2
Purpose .. A-2

HS_DB_DOMAIN .. A-3
Purpose .. A-3

HS_DB_INTERNAL_NAME .. A-4
Purpose .. A-4

HS_DB_NAME.. A-5
Purpose .. A-5
vii

HS_DESCRIBE_CACHE_HWM ... A-6
Purpose... A-6

HS_LANGUAGE .. A-7
Purpose... A-7
Character sets .. A-7
Language.. A-7
Territory ... A-8

HS_NLS_DATE_FORMAT ... A-9
Purpose... A-9

HS_NLS_DATE_LANGUAGE .. A-10
Purpose... A-10

HS_NLS_NCHAR ... A-11
HS_OPEN_CURSORS ... A-12

Purpose... A-12
HS_ROWID_CACHE_SIZE ... A-13

 Purpose.. A-13
HS_RPC_FETCH_REBLOCKING .. A-14

Purpose... A-14
HS_FDS_FETCH_ROWS .. A-15

Purpose... A-15
HS_RPC_FETCH_SIZE ... A-16

Purpose... A-16

B DBMS_HS Package Reference

DBMS_HS.CREATE_FDS_INST ... B-2
Purpose... B-2
Interface description... B-2
See Also .. B-2

DBMS_HS.CREATE_INST_INIT .. B-3
Purpose... B-3
Interface description... B-3
See Also .. B-4

DBMS_HS.DROP_FDS_INST ... B-5
Purpose... B-5
Interface Description .. B-5
viii

See Also .. B-5
DBMS_HS.DROP_INST_INIT .. B-6

Purpose .. B-6
Interface description... B-6
See Also .. B-6
... B-6

C DBMS_HS_PASSTHROUGH for Pass-Through SQL

DBMS_HS_PASSTHROUGH.BIND_VARIABLE ... C-2
Purpose .. C-2
Interface Description .. C-2
Purity Level ... C-3
See Also .. C-3

DBMS_HS_PASSTHROUGH.BIND_VARIABLE_RAW.. C-4
Purpose .. C-4
Interface Description .. C-4
Purity Level ... C-5
See Also .. C-5

DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE .. C-6
Purpose .. C-6
Interface Description .. C-6
Purity Level ... C-7
See Also .. C-7

DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE_RAW .. C-8
Purpose .. C-8
Interface Description .. C-8
Purity Level ... C-9
See Also .. C-9

DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE ... C-10
Purpose .. C-10
Interface Description .. C-10
Purity Level ... C-11
See Also .. C-11

DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE_RAW.. C-12
Purpose .. C-12
ix

Interface Description ... C-12
Purity Level .. C-13
See Also ... C-13

DBMS_HS_PASSTHROUGH.CLOSE_CURSOR ... C-14
Purpose.. C-14
Interface Description ... C-14
See Also ... C-14

DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE... C-15
Purpose.. C-15
Interface Description ... C-15
Purity Level .. C-15
See Also ... C-15

DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY ... C-16
Purpose.. C-16
Interface Description ... C-16
Purity Level .. C-16
See Also ... C-16

DBMS_HS_PASSTHROUGH.FETCH_ROW .. C-17
Purpose.. C-17
Interface Description ... C-17
Purity Level .. C-18
See Also ... C-18

DBMS_HS_PASSTHROUGH.GET_VALUE .. C-19
Purpose.. C-19
Interface Description ... C-19
Purity Level .. C-20
See Also ... C-20

DBMS_HS_PASSTHROUGH.GET_VALUE_RAW .. C-21
Purpose.. C-21
Interface Description ... C-21
Purity Level .. C-21
See Also ... C-22

DBMS_HS_PASSTHROUGH.OPEN_CURSOR ... C-23
Purpose.. C-23
Interface Description ... C-23
x

Purity Level ... C-23
See Also .. C-23

DBMS_HS_PASSTHROUGH.PARSE .. C-24
Purpose .. C-24
Interface Description .. C-24
Purity Level ... C-24
See Also .. C-24

D DBMS_DISTRIBUTED_TRUST_ADMIN Package Reference

DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ ALL .. D-2
Purpose .. D-2
Interface Description .. D-2
Purity Level ... D-2
See Also .. D-2

DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_ ALL... D-3
Purpose .. D-3
Interface Description .. D-3
Purity Level ... D-3
See Also .. D-3

DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER
(SERVER IN VARCHAR2) .. D-4

Purpose D-4
Interface Description D-4
Purity Level D-4

DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER
(SERVER IN VARCHAR2) .. D-5

Purpose D-5
Interface Description D-5
Purity Level D-5

Index
xi

xii

Send Us Your Comments

Oracle8i Distributed Database Systems, Release 8.1.5

A67784-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to the Information Development
department in the following ways:

■ Electronic mail - infodev@us.oracle.com
■ FAX - (650) 506-7228 Attn: Oracle Server Documentation
■ Postal service:

Oracle Corporation
Server Documentation Manager
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle World Wide Support Center.
xiii

xiv

Preface

This manual describes implementation issues for an Oracle8i distributed database
system. It also introduces the tools and utilities available to assist you in
implementing and maintaining your distributed system.

Oracle8i Distributed Database Systems contains information that describes the features
and functionality of the Oracle8i and the Oracle8i Enterprise Edition products.
Oracle8i and Oracle8i Enterprise Edition have the same basic features. However,
several advanced features are available only with the Enterprise Edition, and some
of these are optional.

For information about the differences between Oracle8i and the Oracle8i Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8i.
xv

How Oracle8i Distributed Database Systems is Organized
This book consists of two parts:

Part I: Distributed Database Systems

Chapter 1, "Distributed Database Concepts"

This chapter describes the basic concepts and terminology of Oracle’s distributed
database architecture. It is recommended reading for anyone planning to implement
or maintain a distributed database system.

Chapter 2, "Distributed Database Administration"

This chapter discusses issues of concern to the database administrator (DBA)
implementing or maintaining distributed databases.

Chapter 3, "Distributed Transactions"

This chapter describes how Oracle maintains the integrity of distributed
transactions using the two-phase commit mechanism.

Chapter 4, "Distributed Database System Application Development"

This chapter describes the special considerations that are necessary if you are
designing an application to run in a distributed system.

Part II: Heterogeneous Distributed Database Systems

Chapter 5, "Understanding Oracle Heterogeneous Services"

This chapter provides an overview of Oracle Heterogeneous Services.

Chapter 6, "Administering Oracle Heterogeneous Services"

This chapter explains how to implement and maintain Heterogeneous Services.

Chapter 7, "Application Development with Heterogeneous Services"

This chapter provides the information you will need to develop applications that
use Oracle Heterogeneous Services.

Appendix A, "Heterogeneous Services Initialization Parameters"

This appendix lists all Heterogeneous Services-specific initialization parameters and
their values.
xvi

Appendix B, "DBMS_HS Package Reference"

This appendix provides all the interface information for the DBMS_HS package.
The DBMS_HS package is used to administer the heterogeneous services.

Appendix C, "DBMS_HS_PASSTHROUGH for Pass-Through SQL"

This appendix provides all the interface information for the DBMS_HS_
PASSTHROUGH package for pass-through SQL.

Appendix D, "DBMS_DISTRIBUTED_TRUST_ADMIN Package Reference"

This appendix describes the procedures and functions in the package DBMS_
DISTRIBUTED_TRUST_ADMIN for administering the Trusted Servers List.

Conventions Used in This Guide
The following conventions are used in code fragments in this guide:

UPPERCASE

Uppercase text identifies text that must be entered exactly
as shown.
For example:

SQLPLUS username/password
INTO TABLENAME ‘table‘

lowercase italics Lowercase italics text is used for emphasis and to indicate
glossary terms. It also identifies a variable for which you
should substitute an appropriate value. Parentheses
should be entered as shown.
For example:

VARCHAR (length)

Vertical bars | Vertical bars indicate alternate choices. For example:

ASC | DESC

Braces { } Required items are enclosed in curly braces, meaning you
must choose one of the alternatives. For example:

{ column_name | array_def}

Square brackets [] Optional items are enclosed in square brackets. For
example:

DECIMAL (digits [, precision])

<operator> SQL operators are indicated by <operator>. For example:

WHERE x < operator> x
xvii

Your Comments Are Welcome
We value and appreciate your Comments as an Oracle user and reader of the
manuals. As we write, revise, and evaluate our documentation, your opinions are
the most important input we receive. At the back of this manual is a Reader’s
Comment Form which we encourage you to use to tell us what you like and dislike
about this manual or other Oracle manuals. If the form has been used or you would
like to contact us, please contact us at the following address:

Oracle8i Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
Fax: (650) 506-7228
Email: infodev@us.oracle.com (The Information Development department)

Ellipses ... Repeated items are indicated by enclosure in square
brackets and ellipses. For example:

WHERE column_1 <operator> x
 AND column_2 <operator> y
 [AND ...]

UPPERCASE

Uppercase text identifies text that must be entered exactly
as shown.
For example:

SQLPLUS username/password
INTO TABLENAME ‘table‘
xviii

Part I

 Distributed Database Systems

Distributed Database Con
1

Distributed Database Concepts

This chapter describes the basic concepts and terminology of Oracle’s distributed
database architecture. The chapter includes:

■ Oracle’s Distributed Database Architecture

■ Heterogeneous Distributed Databases

■ Developing Distributed Database Applications

■ Administering an Oracle Distributed Database System

■ National Language Support

For information about features new to the current Oracle8i Release, please see
Getting to Know Oracle8i.
cepts 1-1

Oracle’s Distributed Database Architecture
Oracle’s Distributed Database Architecture
A distributed database is a set of databases stored on multiple computers that
typically appears to applications as a single database. Consequently, an application
can simultaneously access and modify the data in several databases in a network.
Each Oracle database in the system is controlled by its local Oracle server but
cooperates to maintain the consistency of the global distributed database. Figure 1–1
illustrates a representative Oracle distributed database system.

Clients and Servers
A database server is the Oracle software managing a database, and a client is an
application that requests information from a server. Each computer in a system is a
node. A node in a distributed database system act as a client, a server, or both,
depending on the situation. For example, in Figure 1–1, the computer that manages
the HQ database is acting as a database server when a statement is issued against its
local data (for example, the second statement in each transaction issues a query
against the local DEPT table), and is acting as a client when it issues a statement
against remote data (for example, the first statement in each transaction is issued
against the remote table EMP in the SALES database).

Direct and Indirect Connections
A client can connect directly or indirectly to a database server. In Figure 1–1, when
the client application issues the first and third statements for each transaction, the
client is connected directly to the intermediate HQ database and indirectly to the
SALES database that contains the remote data.
1-2 Oracle8i Distributed Database Systems

Oracle’s Distributed Database Architecture
Figure 1–1 An Oracle Distributed Database System

TRANSACTION

Network

Application

Database
Server

Database
Server

DEPT Table EMP Table

TRANSACTION

INSERT INTO EMP@SALES..;

DELETE FROM DEPT..;

SELECT...
 FROM EMP@SALES...;

COMMIT;

INSERT INTO EMP@SALES..;

DELETE FROM DEPT..;

SELECT...
 FROM EMP@SALES...;

COMMIT;

.

.

.

HQ
Database

Sales
Database

CONNECT TO...
IDENTIFY BY ...

Database Link

Net8Net8
Distributed Database Concepts 1-3

Oracle’s Distributed Database Architecture
The Network
To link the individual databases of a distributed database system, a network is
necessary. The following sections explain more about network issues in an Oracle
distributed database system.

Net8
All Oracle databases in a distributed database system use Oracle’s networking
software, Net8, to facilitate inter-database communication across a network. Just as
Net8 connects clients and servers that operate on different computers of a network,
it also allows database servers to communicate across networks to support remote
and distributed transactions in a distributed database.

Net8 makes transparent the connectivity that is necessary to transmit SQL requests
and receive data for applications that use the system. Net8 takes SQL statements
from a client and packages them for transmission to an Oracle server over a
supported industry-standard communication protocol or programmatic interfaces.
Net8 also takes replies from a server and packages them for transmission back to
the appropriate client. Net8 performs all processing independent of an underlying
network operating system. For more information about Net8 and its features, see
the Net8 Administrator’s Guide.

Oracle Names
Optionally, an Oracle network can use Oracle Names to provide the system with a
global directory service. When an Oracle network supports a distributed database
system, you can use Oracle Names servers as a central repositories of information
about each database in the system to ease the configuration of distributed database
access.

Databases and Database Links
Each database in a distributed database is distinct from all other databases in the
system and has its own global database name. Oracle forms a database’s global
database name by prefixing the database’s network domain with the individual
database’s name. For example, Figure 1–2 illustrates a representative hierarchical
arrangement of databases throughout a network.
1-4 Oracle8i Distributed Database Systems

Oracle’s Distributed Database Architecture
Figure 1–2 Network Directories and Global Database Names

While several database’s can have the same individual name, each database must
have a unique global database name. For example, the network domains
US.AMERICAS.ACME_AUTO.COM and UK.EUROPE.ACME_AUTO.COM each
contain a SALES database.

SALES.US.AMERICAS.ACME_AUTO.COM
SALES.UK.EUROPE.ACME_AUTO.COM

Other Non–Commercial
Companies Organizations

COM ORGEDU

HUMAN_RESOURCES.EMP

DIVISION1 DIVISION2 DIVISION3

ACME_TOOLS

ASIA AMERICAS EUROPE

ACME_AUTO

JAPAN US MEXICO UK GERMANY

HUMAN_RESOURCES.EMP

Educational
Institutions

SalesSalesSalesSalesHQSales

MFTGSalesFinanceHQ
Distributed Database Concepts 1-5

Oracle’s Distributed Database Architecture
Database Links
To facilitate application requests in a distributed database system, Oracle uses
database links. A database link defines a one-way communication path from an
Oracle database to another database.

Database links are essentially transparent to the users of an Oracle distributed
database system, because the name of a database link is the same as the global name
of the database to which the link points.

For example, the following SQL statement creates a database link in the local
database that describes a path to the remote SALES.US.AMERICAS.ACME_
AUTO.COM database.

CREATE DATABASE LINK sales.us.americas.acme_auto.com ... ;

After creating a database link, applications connected to the local database can
access data in the remote SALES.US.AMERICAS.ACME_AUTO.COM database. The
next section explains how applications can reference remote schema objects in a
distributed database and includes examples of how SQL statements use database
links.

Schema Object Name Resolution
To resolve application references to schema objects (a process called name resolution)
Oracle forms object names using a hierarchical approach. For example, within a
single database, Oracle guarantees that each schema has a unique name, and that
within a schema, each object has a unique name. As a result, a schema object’s name
is always unique within the database. Furthermore, Oracle can easily resolve
application references to an object’s local name.

In a distributed database, a schema object such as a table is accessible to all
applications in the system. Oracle simply extends the hierarchical naming model
with global database names to effectively create global object names and resolve
references to the schema objects in a distributed database system. For example, a
query can reference a remote table by specifying its fully qualified name, including
the database in which it resides.

SELECT * FROM scott.emp@sales.us.americas.acme_auto.com;

To complete the request, the local database server implicitly uses a database link
that connects to the remote SALES database.

Note: Oracle supports several different types of database links.
For more information, see "Types of Database Links" on page 2-3.
1-6 Oracle8i Distributed Database Systems

Oracle’s Distributed Database Architecture
Connecting Between Oracle Server Versions
An Oracle distributed database system can incorporate Oracle databases of different
versions. All supported releases of Oracle can participate in a distributed database
system. However, the applications that work with the distributed database must
understand the functionality that is available at each node in the system.

For example, a distributed database application cannot expect an Oracle7 database
to understand the object SQL extensions that are available with Oracle8i.

Distributed Databases and Distributed Processing
The terms ”distributed database” and “distributed processing” are closely related,
but have very distinct meanings.

Oracle distributed database systems employ a distributed processing architecture to
function. For example, an Oracle server acts as a client when it requests data that
another Oracle server manages.

Distributed Databases and Database Replication
The terms “distributed database” and “database replication” are also closely
related, yet different. In a pure distributed database, the system manages a single
copy of all data and supporting database objects. Distributed database applications
typically use distributed transactions to access both local and remote data and
modify the global database in real-time.

Distributed Database A distributed database is a set of databases stored
on multiple computers that appears to applications
as a single database.

Distributed Processing Distributed processing occurs when an application
system distributes its tasks among different
computers in a network. For example, a database
application typically distributes front-end
presentation tasks to client PCs or NCs and allows
a back-end database server to manage shared
access to a database. Consequently, a distributed
database application processing system is more
commonly referred to as a “client-server” database
application system.

Note: This book discusses pure distributed databases.
Distributed Database Concepts 1-7

Heterogeneous Distributed Databases
Replication is the process of copying and maintaining database objects in multiple
databases that make up a distributed database system. While replication relies on
distributed database technology to function, database replication can offer
applications benefits that are not possible within a pure distributed database
environment.

Most commonly, replication is useful to improve the performance and protect the
availability of applications because alternate data access options exist. For example,
an application might normally access a local database rather than a remote server to
minimize network traffic and achieve maximum performance. Furthermore, the
application can continue to function if the local server experiences a failure, but
other servers with replicated data remain accessible.

Heterogeneous Distributed Databases
In an Oracle heterogeneous distributed database system at least one of the database
systems is a non-Oracle system. To the application, the heterogeneous distributed
database system appears as a single, local, Oracle database; the local Oracle server
will be able to hide the distribution and heterogeneity of the data. The Oracle server
accesses the non-Oracle system using Oracle8i Heterogeneous Services and a
non-Oracle system-specific Heterogeneous Services Agent.

Heterogeneous Services
Heterogeneous Services is an integrated component within the Oracle8i server and
the enabling technology for Oracle’s next generation of Open Gateway products.
Heterogeneous Services provides the common architecture and administration
mechanisms for future Oracle gateway products and other heterogeneous access
facilities, while providing upwardly compatible functionality for users of earlier
Oracle Open Gateway releases.

See Chapter 5, "Understanding Oracle Heterogeneous Services" for more
information.

Note: For more information about Oracle’s replication features,
see Oracle8i Replication.
1-8 Oracle8i Distributed Database Systems

Heterogeneous Distributed Databases
Heterogeneous Services Agents
For each non-Oracle system that you want to access, Heterogeneous Services
requires an agent to access that particular non-Oracle system. The Heterogeneous
Services agent communicates with the non-Oracle system, and with the
Heterogeneous Services component in the Oracle server. On behalf of the Oracle
server, the agent executes SQL, procedure, and transactional requests at the
non-Oracle system.

A version 8 Gateway is the Oracle product name for a Heterogeneous Services
agent that accesses a non-Oracle system procedurally or using SQL. However,
Heterogeneous Services agents will also become available as products other than
Oracle Transparent Gateways or Oracle Procedural Gateways. Throughout this
guide we will use the more generic term Heterogeneous Services agents. If you
purchased an Oracle Open Gateway version 8, you can substitute "Oracle Gateway
version 8" for Heterogeneous Services Agent.

See your "Oracle Open Gateway Installation and User’s Guide version 8.0" for detailed
information on installation and configuration of version 8 gateways.

Features
The features of the Heterogeneous Services include:

■ Distributed Transactions. A transaction can span both Oracle and non-Oracle
systems, while still guaranteeing, through Oracle’s two phase commit
mechanism, that changes are either all committed or all rolled back.

■ Transparent SQL access. Integrate data from non-Oracle systems into the Oracle
environment as if the data is stored in one single, local database. SQL
statements issued by the application are transparently transformed into SQL
statement understood by the non-Oracle system.

■ Procedural Access. Procedural systems, like messaging and queuing systems, are
accessed from an Oracle8i server using PL/SQL remote procedure calls.

■ Data Dictionary translations. To make the non-Oracle system appear as another
Oracle server, SQL statements containing references to Oracle's data dictionary
tables are transformed into SQL statements containing references to a
non-Oracle system's data dictionary tables.

■ Pass-through SQL. Optionally, application programmers can directly access a
non-Oracle system from an Oracle application using the non-Oracle system's
SQL dialect.
Distributed Database Concepts 1-9

Developing Distributed Database Applications
■ Accessing stored procedures. Stored procedures in SQL-based non-Oracle systems
are accessed as if they were PL/SQL remote procedures.

■ National Language Support. Heterogeneous Services supports multi-byte
character sets, and translate character sets between a non-Oracle system and the
Oracle8i server.

■ Multi-Threaded Agents. Multi-threaded agents take advantage of your operating
system’s threadin capabilities. Multi-threaded agents reduce the number of
required processes by taking advantage of multi-threaded server capabilities.

■ Agent Self-Registration. Agent self-registration automates the process of
updating Hetergeneous Services configuration data on remote hosts, ensuring
correct operation over heterogeneous database links.

■ Management Interface. Provides a graphic representation of active
Heterogeneous Services agents and of which user sessions are accessing those
agents.

Developing Distributed Database Applications
When you build applications on top of a distributed database system, there are
several issues to consider. The following sections explain how applications access
data in a distributed database.

Distributed Query Optimization
Distributed query optimization is a default Oracle8i feature that reduces the amount of
data transfer required between sites when you retrieve data from remote tables
referenced in distributed SQL statements.

Distributed query optimization uses Oracle’s cost-based optimizer to find or
generate SQL expressions that extract only the necessary data from remote tables,
process that data at a remote site, and send the results back to the local site for final
processing. This reduces the amount of required data transfer, when compared to
transferring all the table data to the local site for processing.

Note: Not all features listed above are necessarily supported by
your Heterogeneous Services agent or Oracle Gateway. Please see
your Heterogeneous Services agent or Oracle Open Gateway
documentation for the supported features.
1-10 Oracle8i Distributed Database Systems

Developing Distributed Database Applications
Using cost-based optimizer hints, such as DRIVING_SITE, NO_MERGE, and
INDEX hints, you can further control where Oracle processes the data and how it
accesses the data.

See "Tuning Distributed Queries" on page 4-4 for more information.

Remote and Distributed SQL Statements
A remote query is a query that selects information from one or more remote tables, all
of which reside at the same remote node. For example:

SELECT * FROM scott.dept@sales.us.americas.acme_auto.com;

A remote update is an update that modifies data in one or more tables, all of which
are located at the same remote node.

For example:

UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = ’NEW YORK’
 WHERE deptno = 10;

A distributed query retrieves information from two or more nodes. For example:

SELECT ename, dname
 FROM scott.emp e, scott.dept@sales.us.americas.acme_auto.com d
 WHERE e.deptno = d.deptno;

A distributed update modifies data on two or more nodes. A distributed update is
possible using a PL/SQL subprogram unit, such as a procedure or trigger, that
includes two or more remote updates that access data on different nodes. For
example:

Note: A remote update may include a subquery that retrieves data
from one or more remote nodes, but because the update happens at
only a single remote node, the statement is classified as a remote
update.
Distributed Database Concepts 1-11

Developing Distributed Database Applications
BEGIN
 UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = ’NEW YORK’
 WHERE deptno = 10;
 UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
END;

Statements in the program are sent to the remote nodes, and the execution of it
succeeds or fails as a unit.

Remote Procedure Calls (RPCs)
Developers can code PL/SQL packages and procedures to support applications that
work with a distributed database. Applications can make local procedure calls to
perform work at the local database and remote procedure calls (RPCs) to perform
work at a remote database. When a program calls a remote procedure, the local
server passes all procedure parameters to the remote server in the call. For example:

BEGIN
 emp_mgmt.del_emp@sales.us.americas.acme_auto.com(1257);
END;

When developing packages and procedures for distributed database systems,
developers must code with an understanding of what program units should do at
remote locations, and how to return the results to a calling application.

Remote and Distributed Transactions
A remote transaction is a transaction that contains one or more remote statements, all
of which reference the same remote node. For example:

UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = ’NEW YORK’
 WHERE deptno = 10;
UPDATE scott.emp@sales.us.americas.acme_auto.com
 SET deptno = 11
 WHERE deptno = 10;
COMMIT;

A distributed transaction is a transaction that includes one or more statements that,
individually or as a group, update data on two or more distinct nodes of a
distributed database. For example:
1-12 Oracle8i Distributed Database Systems

Developing Distributed Database Applications
UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = ’NEW YORK’
 WHERE deptno = 10;
UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
COMMIT;

Two-Phase Commit Mechanism
A DBMS must guarantee that all statements in a transaction, distributed or
non-distributed, either commit or rollback as a unit, so that if the transaction is
designed properly, the data in the logical database is always consistent. The effects
of an ongoing transaction should be invisible to all other transactions at all nodes;
this should be true for transactions that include any type of operation, including
queries, updates, or remote procedure calls.

The general mechanisms of transaction control in a non-distributed database are
discussed in the Oracle8i Concepts. In a distributed database, Oracle must coordinate
transaction control with the same characteristics over a network and maintain data
consistency, even if a network or system failure occurs.

Oracle’s two-phase commit mechanism guarantees that all database servers
participating in a distributed transaction either all commit or all roll back the
statements in the transaction. A two-phase commit mechanism also protects
implicit DML operations performed by integrity constraints, remote procedure calls,
and triggers.

Note: If all statements of a transaction reference only a single
remote node, the transaction is remote, not distributed.

Note: For more information about Oracle’s two-phase commit
mechanism, see Chapter 3, "Distributed Transactions".
Distributed Database Concepts 1-13

Developing Distributed Database Applications
Transparency in a Distributed Database System
With minimal effort, you can make the functionality of an Oracle distributed
database system transparent to users that work with the system. The goal of
transparency is to make a distributed database system appear as though it is a
single Oracle database. Consequently, the system does not burden developers and
users of the system with complexities that would otherwise make distributed
database application development challenging and detract from user productivity.
The following sections explain more about transparency in a distributed database
system.

Location Transparency
An Oracle distributed database system has features that allow application
developers and administrators to hide the physical location of database objects from
applications and users. Location transparency exists when a user can universally refer
to a database object such as a table, regardless of the node to which an application
connects. Location transparency has several benefits, including:

■ Access to remote data is simple, because database users do not need to know
the physical location of database objects.

■ Administrators can move database objects with no impact on end-users or
existing database applications.

Most typically, administrators and developers use synonyms to establish location
transparency for the tables and supporting objects in an application schema. For
example, the following statements create synonyms in a database for tables in
another, remote database.

CREATE PUBLIC SYNONYM emp
 FOR scott.emp@sales.us.americas.acme_auto.com
CREATE PUBLIC SYNONYM dept
 FOR scott.dept@sales.us.americas.acme_auto.com

Now, rather than access the remote tables with a query such as:

SELECT ename, dname
 FROM scott.emp@sales.us.americas.acme_auto.com e,
 scott.dept@sales.us.americas.acme_auto.com d
 WHERE e.deptno = d.deptno;
1-14 Oracle8i Distributed Database Systems

Developing Distributed Database Applications
an application can issue a much simpler query that does not have to account for the
location of the remote tables.

SELECT ename, dname
 FROM emp e, dept d
 WHERE e.deptno = d.deptno;

In addition to synonyms, developers can also use views and stored procedures to
establish location transparency for applications that work in a distributed database
system.

Statement and Transaction Transparency
Oracle’s distributed database architecture also provides query, update, and
transaction transparency. For example, standard SQL commands such as SELECT,
INSERT, UPDATE, and DELETE work just as they do in a non-distributed database
environment. Additionally, applications control transactions using the standard
SQL commands COMMIT, SAVEPOINT, and ROLLBACK—there is no requirement
for complex programming or other special operations to provide distributed
transaction control.

■ The statements in a single transaction can reference any number of local or
remote tables.

■ Oracle guarantees that all nodes involved in a distributed transaction take the
same action: they either all commit or all roll back the transaction.

■ If a network or system failure occurs during the commit of a distributed
transaction, the transaction is automatically and transparently resolved
globally; that is, when the network or system is restored, the nodes either all
commit or all roll back the transaction.

Internal Operations Each committed transaction has an associated system change
number (SCN) to uniquely identify the changes made by the statements within that
transaction. In a distributed database, the SCNs of communicating nodes are
coordinated when:

■ A connection is established using the path described by one or more database
links.

■ A distributed SQL statement is executed.

■ A distributed transaction is committed.
Distributed Database Concepts 1-15

Administering an Oracle Distributed Database System
Among other benefits, the coordination of SCNs among the nodes of a distributed
database system allows global distributed read-consistency at both the statement
and transaction level. If necessary, global distributed time-based recovery can also
be completed.

Replication Transparency
Oracle also provide many features to transparently replicate data among the nodes
of the system. For more information about Oracle’s replication features, see Oracle8i
Replication.

Administering an Oracle Distributed Database System
Just as there are unique issues to consider when developing applications for an
Oracle distributed database system, there are special issues to understand for
distributed database administration. The following sections explain the some
special topics for managing databases in an Oracle distributed database system. See
also Chapter 6, "Administering Oracle Heterogeneous Services"

Site Autonomy
Site autonomy means that each server participating in a distributed database is
administered independently from all other databases, as though each database
operates as a non-distributed database.

Although several databases can work together, each database is a distinct, separate
repository of data that you manage individually. Some of the benefits of site
autonomy in an Oracle distributed database include:

■ Nodes of the system can mirror the logical organization of companies or
cooperating organizations that need to maintain an “arms length” relationship.

■ Local database administrators control corresponding local data. Therefore, each
database administrator’s domain of responsibility is smaller and more
manageable.

■ Independent failures are less likely to disrupt other nodes of the distributed
database. The global Oracle database is partially available as long as one
database and the network are available; no single database failure need halt all
global operations or be a performance bottleneck.

■ Administrators can recovery from isolated system failures independent of other
nodes in the system.
1-16 Oracle8i Distributed Database Systems

Administering an Oracle Distributed Database System
■ A data dictionary exists for each local database—a global catalog is not
necessary to access local data.

■ Nodes can upgrade software independently.

Although Oracle allows you to manage each database in a distributed database
system independently, that is not to say that you should ignore the global
requirements of the system.

For example, additional user accounts might be necessary in each database are
necessary to support the links that you create to facilitate server-to-server
connections. The following sections explain more about these particular topics and
demonstrate the need for a global perspective of the entire distributed database
environment when managing individual nodes in the system.

Distributed Database Security
Oracle supports all of the security features that are available with a non-distributed
database environment for distributed database systems, including:

■ password or external service authentication for users and roles

■ login packet encryption for client-to-server and server-to-server connections

The following sections explain some additional topics to consider when configuring
an Oracle distributed database system.

Supporting User Accounts and Roles
In a distributed database system, you must carefully plan the user accounts and
roles that are necessary to support applications using the system.

■ The user accounts necessary to establish server-to-server connections must be
available in all databases of the distributed database system.

■ The roles necessary to make available application privileges to distributed
database application users must be present in all databases of the distributed
database system.

As you create the database links for the nodes in a distributed database system,
determine what user accounts and roles each site needs to support server-to-server
connections that use the links. See "Types of Database Links" on page 2-3 for more
information about the user accounts that must be available to support different
types of database links in the system.
Distributed Database Concepts 1-17

Administering an Oracle Distributed Database System
Global Users and Roles
In a distributed environment, users typically require access to many network
services. When it’s necessary to configure separate authentications for each user to
access each network service, security administration can become unwieldy,
especially for large systems.

The use of a global authentication service is a common technique for simplifying
security management for distributed environments.

In an Oracle client/server or distributed database environment, you have two
options to support global authentication for users and roles:

■ Oracle Security Server is a product that supports centralized authentication and
distributed authentication in an Oracle network.

■ When global database user and role authentication must work within the
framework of a non-Oracle authentication service (for example, DCE), an
Oracle distributed database environment can use Net8’s Advanced Networking
Option. The Net8 Advanced Networking Option is an optional product that
bundles a number of features that you can use to enhance Net8 and the security
of an Oracle distributed database system. See Oracle Advanced Security
Administrator’s Guide for more information.

Data Encryption
The Net8 Advanced Networking Option also enables Net8 and related products to
use network data encryption and checksumming so that data cannot be read or
altered. It protects data from unauthorized viewing by using the RSA Data Security
RC4 or the Data Encryption Standard (DES) encryption algorithm.

To ensure that data has not been modified, deleted, or replayed during
transmission, the security services of the Advanced Networking Option can
generate a cryptographically secure message digest and include it with each packet
sent across the network.

Note: The global user functionality that was available in Oracle8
is being modified, and is currently available to beta customers only.
It will be part of Oracle8i in a later release.
1-18 Oracle8i Distributed Database Systems

Administering an Oracle Distributed Database System
For more information about these and other features of Net8’s Advanced
Networking Option, see the Net8 Administrator’s Guide and Oracle Advanced Security
Administrator’s Guide.

Tools for Administering Oracle Distributed Databases
The database administrator has several choices for tools to use when managing an
Oracle distributed database system:

■ Oracle Enterprise Manager

■ third-party administration tools

■ SNMP support

Enterprise Manager
Enterprise Manager is Oracle’s database administration tool. The graphical
component of Enterprise Manager (Enterprise Manager/GUI) allows you to
perform database administration tasks with the convenience of a graphical user
interface (GUI).

The line mode component of Enterprise Manager provides a line-mode interface.

Enterprise Manager provides administrative functionality via an easy-to-use
interface. You can use Enterprise Manager to:

■ Perform traditional administrative tasks, such as database startup, shutdown,
backup, and recovery. Rather than manually entering the SQL commands to
perform these tasks, you can use Enterprise Manager’s graphical interface to
execute the commands quickly and conveniently by pointing and clicking with
the mouse.

■ Concurrently perform multiple tasks. Because you can open multiple windows
simultaneously in Enterprise Manager, you can perform multiple
administrative and non-administrative tasks concurrently.

■ Administer multiple databases. You can use Enterprise Manager to administer a
single database or to simultaneously administer multiple databases.

■ Centralize database administration tasks. You can administer both local and
remote databases running on any Oracle platform in any location worldwide. In
addition, these Oracle platforms can be connected by any network protocol(s)
supported by Net8.
Distributed Database Concepts 1-19

National Language Support
■ Dynamically execute SQL, PL/SQL, and Enterprise Manager commands. You
can use Enterprise Manager to enter, edit, and execute statements. Enterprise
Manager also maintains a history of statements executed.

Thus, you can re-execute statements without retyping them, a particularly
useful feature if you need to execute lengthy statements repeatedly in a
distributed database system.

■ Perform administrative tasks using Enterprise Manager’s line-mode interface
when a graphical user interface is unavailable or undesirable.

Third-Party Administration Tools
Currently more than 60 companies produce more than 150 products that help
manage Oracle databases and networks, providing a truly open environment.

SNMP Support
Besides its network administration capabilities, Oracle Simple Network Management
Protocol (SNMP) support allows an Oracle server to be located and queried by any
SNMP-based network management system. SNMP is the accepted standard
underlying many popular network management systems such as:

■ HP’s OpenView

■ Digital’s POLYCENTER Manager on NetView

■ IBM’s NetView/6000

■ Novell’s NetWare Management System

■ SunSoft’s SunNet Manager

Additional Information: See the Oracle SNMP Support Reference Guide.

National Language Support
Oracle supports client/server environments where clients and servers use different
character sets. The character set used by a client is defined by the value of the NLS_
LANG parameter for the client session. The character set used by a server is its
database character set. Data conversion is done automatically between these
character sets if they are different. For more information about National Language
Support features, refer to Oracle8i Reference.
1-20 Oracle8i Distributed Database Systems

Distributed Database Administ
2

Distributed Database Administration

This chapter discusses issues of concern to the database administrator (DBA)
implementing or maintaining distributed databases.

Topics covered include:

■ Global Database Names and Global Object Names

■ Types of Database Links

■ Techniques for Location Transparency

■ Statement Transparency
ration 2-1

Global Database Names and Global Object Names
Global Database Names and Global Object Names
In a distributed database system, each database should have a unique global name.
Global database names identify each database in the system. A global database name
consists of two components: a database name of eight characters or less (for
example, SALES) and a domain name that contains the database (see below).

The domain name component of a global database name must follow standard
Internet conventions. Levels in domain names must be separated by dots and the
order of domain names is from leaf to root, left to right. The database name and the
domain name are determined by the initialization parameters DB_NAME and DB_
DOMAIN. See the Oracle8i Reference for more information about specifying these
initialization parameters.

A database link should be given the same name as the global database name of the
remote database it references. When you set the initialization parameter GLOBAL_
NAMES to TRUE, Oracle ensures that the name of the database link is the same as
the global database name of the remote database. See the Oracle8i Reference for more
information about specifying the initialization parameter GLOBAL_NAMES.

Attention: If you set the initialization parameter GLOBAL_NAMES to FALSE, you
are not required to use global naming. However, Oracle Corporation highly
recommends that you use global naming because many useful features, including
Oracle Advanced Replication, require global naming be enforced.

Once you have enabled global naming, database links are essentially transparent to
users of a distributed database because the name of a database link is the same as
the global name of the database to which the link points. For example, the following
statement creates a database link in the local database.

CREATE PUBLIC DATABASE LINK sales.division3.acme.com ... ;

Oracle uses the global database name to globally name the schema objects using the
following naming scheme:

<schema>.<schema_object>@<global_database_name>

where

<schema> A schema is a collection of logical structures of
data, or schema objects. A schema is owned by a
database user and has the same name as that user.
Each user owns a single schema.
2-2 Oracle8i Distributed Database Systems

Types of Database Links
For example, using the previously defined database link, a user or application can
now reference remote data using the global object name:

SELECT * FROM scott.emp@sales.division3.acme.com;

Types of Database Links
To support application access to the data and schema objects throughout a
distributed database system, administrators must create all necessary database
links. The following sections compares the various types of database links that
Oracle provides.

Private, Public, and Global Database Links
Oracle allows you to create private, public, and global database links.

<schema_object> A schema object is a logical data structure like a
table, view, synonym, procedure, package, or a
database link.

<global_database_name> The name that uniquely identifies a remote
database. This name must be the same as the
concatenation of the remote database’s
initialization parameters DB_NAME and DB_
DOMAIN.

Private Database
Link

You can create a private database link in a specific schema
of a database. Only the owner of a private database link
or
PL/SQL subprograms in the schema can use a private
database link to access data and database objects in the
corresponding remote database.

Public Database Link You can create a public database link for a database. All
users and PL/SQL subprograms in the database can
use a public database link to access data and database
objects in the corresponding remote database.

Global Database Link When an Oracle network uses Oracle Names, the
names servers in the system automatically create and
manage global database links for every Oracle database in
the network. All users and PL/SQL subprograms in
any database can use a global database link to access
data and database objects in the corresponding remote
database.
Distributed Database Administration 2-3

Types of Database Links
Determining the type of database links to employ in a distributed database depends
on the specific requirements of the applications using the system.

Consider some of the advantages and disadvantages for using each type of database
link.

■ A private database link is more secure than a public or global link, because only
the owner of the private link, or subprograms within the same schema, can use
the private link to access the specified remote database.

■ When many users require an access path to a remote Oracle database, an
administrator can create a single public database link for all users in a database.

■ When an Oracle network uses Oracle Names, an administrator can
conveniently manage global database links for all databases in the system.
Database link management is centralized and simple.

Creating a Private Database Link
To create a private database link, you specify:

CREATE DATABASE LINK ...;

See the Oracle8i SQL Reference and the following sections for more information.

Creating a Public Database Link
To create a public database link, you use the keyword PUBLIC:

CREATE PUBLIC DATABASE LINK ...;

See the Oracle8i SQL Reference and the following sections for more information.

Creating a Global Database Link
You must define global database links in the Oracle Name Server. See your Net8
Administrator’s Guide for more information.

Security Options for Database Links
A database link defines a communication path from one database to another. When
an application uses a database link to access a remote database, Oracle establishes a
database session in the remote database on behalf of the local application request.
2-4 Oracle8i Distributed Database Systems

Types of Database Links
When you create a private or public database link, you can determine which
schema on the remote database the link will establish connections to by creating
fixed user, current user, and connected user database links.

Fixed User Database Links
To create a fixed user database link, you embed the credentials (in this case, a
username and password) required to access the remote database in the definition of
the link:

CREATE DATABASE LINK ... CONNECT TO username IDENTIFIED BY password ...;

When an application uses a fixed user database link, the local server always
establishes a connection to a fixed remote schema in the remote database. The local
server also sends the user’s credentials across the network when an application uses
the link to access the remote database. If an unsecure network supports a
distributed database that uses fixed user database links, consider encrypting login
packets for server-to-server connections.

Connected User and Current User Database Links
Connected user and current user database links do not include any credentials in
the definition of the link. The credentials used to connect to the remote database can
change depending on the user that references the database link and the operation
being performed by the application. To understand the difference between the two
types of database links, you must first understand the concepts of connected and
current users.

■ A connected user is a user that connects to a database using a database
application. For example, when you start SQL*Plus and connect to an Oracle
database as SCOTT, the connected user is SCOTT.

■ A current user is determined by the security context in which a database
operation executes. For example, when you connect to an Oracle database as the
user SCOTT and execute the procedure SALES.DEL_EMP, the current user
while executing the DEL_EMP procedure defaults to SALES because a stored
procedure executes within the security context of its owner.

To understand the difference between connected user and current user database
links, simply extend your understanding of the different types of users. With a
connected user database link, an operation being performed in a remote database
always occurs within the security context of the connected user at the local database.

With a current user database link, an operation performed in a remote database
always occurs within the security context of the current user at the local database.
Distributed Database Administration 2-5

Types of Database Links
For example, consider what happens when the user SCOTT calls a procedure
SALES.DEL_EMP, and the procedure deletes an employee record from a remote
database. If the procedure references a connected user database link to access the
remote database, the deletion of the remote employee record happens as SCOTT,
the connected user in the local database. However, if the procedure references a
current user database link to access the remote database, the deletion of the remote
employee record happens as SALES, the current user in the local database.

To create a connected user database link, you merely omit the CONNECT TO
clause. The following example creates a connected user database link:

CREATE DATABASE LINK sales.division3.acme.com USING ’sales’;

To create a current user database link, use the following syntax:

CREATE DATABASE LINK ... CONNECT TO CURRENT_USER ...;

To use a current user database link, the current user must be a global user that is
authenticated by the Oracle Security Server.

See the Oracle8i SQL Reference for more syntax information about creating database
links.

Shared Database Links
Every application that references a remote server using a standard database link
establishes a connection between the local database and the remote database. Many
users running applications simultaneously can cause a high number of connections
between the local and remote databases.

Shared database links enable you to limit the number of network connections required
between the local server and the remote server. To use shared database links, the
local server must run in multi-threaded server (MTS) mode. The remote server can either
run in multi-threaded server mode, or can run in dedicated server mode.

Attention: Although shared database links can reduce the number of required
connections between the local and remote server, you could cause more physical

Note: The global user functionality that was available in Oracle8
is being modified, and is currently available to beta customers only.
It will be part of Oracle8i in a later release.
2-6 Oracle8i Distributed Database Systems

Types of Database Links
connections and processes to be required than simply using standard (not shared)
database links, if you use this functionality incorrectly.

Please be sure you understand the information presented in this section before
attempting to implement a system that uses shared database links with shared
servers.

Properties of Shared Database Links
Shared database links differ from standard database links in two ways:

■ Network connections made for shared database links can be shared among
those that use the same database link schema object. When a user needs to
establish a connection to a remote server from a particular shared server
process, the shared process can reuse connections already established to the
remote server (if that connection was established on the same shared server
with the same database link).

■ When you use a shared database link, a network connection is established
directly out of the shared server in the local server. For a normal (non-shared)
database link, if the local server was a multithreaded server, this connection
would have been established through the local dispatcher, requiring context
switches for the local dispatcher, and requiring data to go through the
dispatcher.

When to Use Shared Database Links
You should look carefully at your application and your multi-threaded server
configuration to determine whether to use shared links or not.

For example, if you have designed your application to use a standard public
database link, and 100 users simultaneously require a connection, 100 network
direct network connections will also be required.

However, if your application uses shared database links, and there are ten shared
servers in the local MTS-mode database, the 100 users that use the same (shared
public) database link will require only 10 network connections (or fewer) to the
remote server. Each local shared server may only need one connection to the remote
server.

When Not to Use Shared Database Links
Shared database links are not useful in all situations. Suppose there is only one user
that accesses the remote server. If that user defines a shared database link, and there
are ten shared servers in the local database, that one user can require up to 10
Distributed Database Administration 2-7

Types of Database Links
network connections to the remote server. Every shared server may have
established a connection to the remote server, since each shared server might have
been used by that user.

Clearly, a standard database link would be preferable in this situation because it
would require (and allow) only one network connection. The lesson: shared
database links can lead to more network connections in single-user scenarios,
therefore, they should be used only when you expect that many users will need to
use the same database link. Typically, this is the case for public database links, but
may also be true for private database links if you expect many clients to use the
same local schema (and therefore the same private database link).

A rule of thumb is to use shared database links when the number of users accessing
a database link is expected to be much larger than the number of shared servers in
the local database.

Setting Up Shared Database Links
To create a shared database link you use the keyword SHARED in the SQL
CREATE DATABASE LINK command:

CREATE SHARED DATABASE LINK dblink_name
[CONNECT TO username IDENTIFIED BY password]|[CONNECT TO CURRENT_USER]
AUTHENTICATED BY schema_name IDENTIFIED BY password
[USING ’service_name’];

See the Oracle8i SQL Reference for more syntax information.

Whenever the keyword SHARED is used, the clause AUTHENTICATED BY is also
required. There must be an account on the remote database with the specified
USERID/PASSWORD and with the CREATE SESSION privilege. No other
privileges are required.

The schema specified in the AUTHENTICATED BY clause is only used for security
reasons and could be considered a "dummy" schema. It is not affected when using
shared database links, nor does it affect the users of the shared database link. The
AUTHENTICATED BY clause is required to prevent unauthorized clients from
masquerading as a database link user and gaining access to unauthorized
information.

Shared Database Link Configurations
Shared database links can be used in two configurations.
2-8 Oracle8i Distributed Database Systems

Types of Database Links
Shared Database Links to Dedicated Servers In the first configuration a shared server in
the local server owns a dedicated remote server, and a direct network transport
connection exists between the shared server and the remote dedicated server. The
advantage is that a direct network transport exists between the local shared server
and the remote dedicated server. A disadvantage of this configuration is that extra
back-end servers are needed. See Figure 2–1.

Figure 2–1 A Shared Database Link to Dedicated Server Processes

.

Note: The remote server can either be configured as a
multi-threaded server or as a dedicated server. The connection
between the local server and the remote server uses a dedicated
connection. When the remote server is configured as a
multi-threaded server, you can force a dedicated server connection
by specifying this configuration by using the
(SERVER=DEDICATED) clause in the definition of the service
name.

Oracle
Server Code

System Global Area

Oracle
Server Code

Dedicated
Server

Process
Oracle

Server Code

System Global Area

Database Server

Client Workstation

Shared
Server
Processes

Dispatcher Processes

Process
Distributed Database Administration 2-9

Types of Database Links
Shared Database Links to Multi-Threaded Servers The second configuration uses shared
servers on the remote server. This configuration eliminates the need for more dedicated
servers, but requires to go through the dispatcher on the remote server. See Figure 2–2.
Note that both the local and the remote server must be configured as
multi-threaded servers.

Figure 2–2 Shared Database Link to Multi-Threaded Server

Examples

Example 1: A Public Fixed User Database Link The following statement creates a public
fixed user database link:

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
CONNECT TO SCOTT IDENTIFIED BY TIGER
USING ’sales’;

Any user connected to the local database can use the
SALES.DIVISION3.ACME.COM database link to connect to the remote database.
Each user will connect to the same remote schema, SCOTT in the remote database.
To access the table EMP table in SCOTT’s remote schema, a user could issue the
SQL query:

SELECT * FROM emp@sales.division3.acme.com;

System Global Area

User
Process

Database Server

Client Workstation

Shared
Server
Processes

Dispatcher Processes

System Global Area

User
Process

Shared
Server
Processes

Dispatcher Processes

Oracle
Server Code

Oracle
Server Code
2-10 Oracle8i Distributed Database Systems

Types of Database Links
Note that each application or user session creates a separate connection to the
common account on the server. The connection to the remote database remains
open for the duration of the application or user session.

Example 2: A Public Fixed User Shared Database Link Consider the following example of
creating a public fixed user shared database link:

CREATE SHARED PUBLIC DATABASE LINK sales.division3.acme.com
CONNECT TO scott IDENTIFIED BY tiger
AUTHENTICATED BY scott IDENTIFIED BY tiger
USING ‘sales’;

Any user connected to the local MTS-mode server can use this database link to
connect (through a shared server process) to the remote SALES database, and query
tables in the SCOTT schema.

In the above example, each local shared server might establish one connection to the
remote server. Whenever a local shared servers process needs to access the remote
server through the SALES.DIVISION3.ACME.COM database link, the local shared
server process will reuse established network connections.

Example 3: A Public Connected User Database Link The following statement would
create a public connected user database link:

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
USING ’sales’;

Any user connected to the local database can use the
SALES.DIVISION3.ACME.COM database link. The connected user in the local
database who uses the database link determines the remote schema. If SCOTT is the
connected user and uses the database link, the database link connects to the remote
schema SCOTT. If FORD is the connected user and uses the database link, the
database link connects to FORD’s remote schema.

The following statement will fail for the user FORD in the local database if the
remote schema FORD cannot resolve the EMP schema object. That is, if the FORD

Note: The local database must be configured in multi-threaded
server mode.
Distributed Database Administration 2-11

Types of Database Links
schema in the SALES.DIVISION3.ACME.COM does not have EMP as a table, view,
or (public) synonym, an error will be returned.

SELECT * FROM emp@sales.division3.acme.com;

Example 4: A Public Connected User Shared Database Link The following statement
creates a public connected user shared database link:

CREATE SHARED PUBLIC DATABASE LINK sales.division3.acme.com AUTHENTICATED
BY ward IDENTIFIED BY orange
USING ‘sales’;

Each user connected to the local server can use this shared database link to connect
to the remote database, and query the tables in the corresponding remote schema.

In the above example, each local shared server will establish one connection to the
remote server. Whenever a local shared server process needs to access the remote
server through the SALES.DIVISION3.ACME.COM database link, the local shared
server process will reuse established network connections, even if the connected
user is a different user.

If this database link is used frequently, eventually every shared server in the local
database will have a remote connection. At that point no more physical connections
will be needed to the remote server, even if new users use this shared database link.

Example 5: A Public Current User Database Link The following statement creates a public
current user database link:

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
CONNECT TO CURRENT_USER
USING ‘sales’;

Note: The local database server must be configured in
multi-threaded server mode.

Note: to use this database link, the current user must be a global
user (Global users require authentication through the Oracle
Security Server).
2-12 Oracle8i Distributed Database Systems

Types of Database Links
SCOTT creates a local procedure FIRE_EMP, that deletes a row from the remote
EMP table, and grants execute privilege to FORD.

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN
 DELETE FROM emp@sales.division3.acme.com
 WHERE empno=enum;
END;

GRANT EXECUTE ON FIRE_EMP TO FORD;

When FORD executes the procedure SCOTT.FIRE_EMP, the procedure runs under
SCOTT’s privileges. Since a current user database link is used, the connection is
established to SCOTT’s remote schema. (Note that, were a connected user database
link used instead, the connection would be established to FORD’s remote schema.)
Note that SCOTT must be a global user and FORD may or may not be a global user.

Note that the same could have been accomplished by using a fixed user database
link that connects to SCOTT’s remote schema. However, with fixed user database
links, security can be compromised, because SCOTT’s username and password are
available in readable format in the database to DBAs.

Connection Qualifiers
In some situations, you may want to have several database links of the same type
(e.g., public) that point to the same remote database, yet establish connections to the
remote database using different communication pathways. For example, if a remote
database is using the Oracle Parallel Server, you might want to define several public
database links at your local node so that connections can be established to specific
instances of the remote database.

Note: The global user functionality that was available in Oracle8
is being modified, and is currently available to beta customers only.
It will be part of Oracle8i in a later release.

Note: The global user functionality that was available in Oracle8
is being modified, and is currently available to beta customers only.
It will be part of Oracle8i in a later release.
Distributed Database Administration 2-13

Types of Database Links
To facilitate such functionality, Oracle allows you to create a database link with an
optional connection qualifier in the database link name. When creating a database
link, a connection qualifier is specified as the trailing portion of the database link
name, separated by an at sign ("@"). For example, assume that a remote database
HQ.ACME.COM is managed by the Oracle Parallel Server. The HQ database has
two instances, named HQ_1 and HQ_2. The local database can contain the
following public database links to define pathways to the remote instances of the
HQ database:

CREATE PUBLIC DATABASE LINK hq.acme.com@hq_1
 USING ’string_to_hq_1’;

CREATE PUBLIC DATABASE LINK hq.acme.com@hq_2
 USING ’string_to_hq_2’;

CREATE PUBLIC DATABASE LINK hq.acme.com
 USING ’string_to_hq’;

Notice in the above examples that a connection qualifier is simply an extension to a
database link name. The text of the connection qualifier does not necessarily
indicate how a connection is to be established; this information is specified in the
service name of the USING clause. Also notice that in the third example, a
connection qualifier is not specified. In this case, just as when a connection qualifier
is specified, the instance is determined by the USING string.

To use a connection qualifier to specify a particular instance, include the qualifier at
the end of the global object name:

SELECT * FROM scott.emp@hq.acme.com@hq_1

Database Link Resolution
Whenever a SQL statement includes a reference to a global object name, Oracle
searches for a database link with a name that matches the database name specified
in the global object name. Oracle does this to determine the path to the specified
remote database.

Oracle always searches for matching database links in the following order:

1. Private database links in the schema of the user who issued the SQL statement.

2. Public database links in the local database.

3. Global database links (only if an Oracle Name Server is available).
2-14 Oracle8i Distributed Database Systems

Types of Database Links
If a SQL statement specifies a complete global database name; that is, both the
database and domain components are specified, Oracle searches for private, public,
and global database links that match only the explicitly specified global database
name. If any portion of the domain is specified, Oracle assumes that a complete
global database name is specified. However, if a SQL statement specifies a partial
global database name; that is, only the database component is specified, Oracle
appends the local database’s network domain component to the database name to
form a complete global database name. Then Oracle searches for private, public,
and network database links that match only the constructed global database name.
If a matching database link is not found, Oracle returns an error and the SQL
statement cannot execute.

Optimization: If a global object name references an object in the local database and
a connection qualifier is not specified, Oracle automatically detects that the object is
local and does not search for, or use, database links to resolve the object reference.

Oracle expands a global object reference, whether or not a connection qualifier is
specified. Furthermore, if a connection qualifier is specified, only database links that
match, including the connection qualifier, are used to resolve the object reference.

Oracle does not necessarily stop searching for matching database links when a first
match is found. Oracle must search for matching private, public, and network
database links until a complete path to the remote database (both a remote account
and service name) is determined.

The first match determines the remote schema; that is, if no CONNECT clause is
specified a connected user database link will be used, if the "CONNECT TO
username IDENTIFIED BY password" clause is specified a fixed user database link
will be used, and if a "CONNECT TO CURRENT_USER" clause is specified a
current user database link.

If the first match does not specify a USING clause, the search continues until a link
that specifies a database string is found. If matching database links are found and a
database string is never identified, Oracle returns an error.

Once a complete path is determined, Oracle creates a remote session, assuming an
identical connection is not already open on behalf of the same local session.

Schema Object Name Resolution
Once the local Oracle database connects to the specified remote database on behalf
of the local user that issued the SQL statement, object resolution continues as if the
remote user had issued the associated SQL statement. That is, if a fixed user
database link is used, object resolution proceeds in the specified schema; if a
Distributed Database Administration 2-15

Types of Database Links
connected user database link is used, object resolution proceeds in the connected
user’s remote schema (including synonyms) and if a current user database link is
used object resolution proceeds in the current user’s remote schema. If the object is
not found, public objects of the remote database are then checked.

If an object is not resolved, the established remote session remains but the SQL
statement cannot execute.

Examples of Name Resolution
The following are examples of global object name resolution in a distributed
database system.

For all the following examples, assume that the remote database is named
SALES.DIVISION3.ACME.COM, the local database is named
HQ.DIVISION3.ACME.COM, and an Oracle Name Server (and therefore, global
database links) is not available.

Example 1 This example illustrates how a complete global object name is resolved
and the appropriate path to the remote database is determined using both a private
and public database link.

For this example, assume that a remote table EMP is contained in the schema
TSMITH.

Consider the following statements issued at the local database:

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
 CONNECT TO guest IDENTIFIED BY network
 USING ’dbstring’;

CONNECT jward/bronco;

CREATE DATABASE LINK sales.division3.acme.com
 CONNECT TO tsmith IDENTIFIED BY radio;

UPDATE tsmith.emp@sales.division3.acme.com
 SET deptno = 40
 WHERE deptno = 10;

Oracle notices that a complete global object name is referenced in JWARD'S
UPDATE statement. Therefore, it begins searching in the local database for a
database link with a matching name. Oracle finds matching private database link in
the schema JWARD. However, the private database link
JWARD.SALES.DIVISION3.ACME.COM does not indicate a complete path to the
2-16 Oracle8i Distributed Database Systems

Types of Database Links
remote SALES database, only a remote account. Therefore, Oracle now searches for
and finds a matching public database link. From this public database link, Oracle
takes the service name. Combined with the remote account taken from the matching
private fixed user database link, a complete path is determined and Oracle proceeds
to establish a connection to the remote SALES database as the user
TSMITH/RADIO.

The remote database can now resolve the object reference to the EMP table. Oracle
searches in the specified schema, TSMITH, and finds the referenced EMP table. No
further resolution is necessary; the remote database completes the execution of the
statement, and returns the results to the local database.

Example 2 This example illustrates how a partial global object name is resolved and
the appropriate path to the remote database is determined using both a private and
public database link.

For this example, assume that a remote table EMP is contained in the schema
TSMITH and a remote public synonym named EMP points to the previously
mentioned EMP table. Also assume the creation of the public database link in
Example 1.

Consider the following statements issued at the local database:

CONNECT scott/tiger;

CREATE DATABASE LINK sales.division3.acme.com;

DELETE FROM emp@sales
 WHERE empno = 4299;

Oracle notices that a partial global object name is referenced in SCOTT’s DELETE
statement. First, the global object name is expanded to a complete global object
name using the domain name of the local database, resulting in the following
statement:

DELETE FROM emp@sales.division3.acme.com
 WHERE empno = 4299;

Now, Oracle begins searching in the local database for a database link with a
matching name. Oracle finds a matching private connected user database link in the
schema SCOTT. However, the private database link indicates no path at all. Oracle
uses the connected username/password as the remote account portion of the path
and then searches for and finds a matching public database link. Oracle takes the
Distributed Database Administration 2-17

Types of Database Links
database string from the public database link. At this point, a complete path is
determined and Oracle can connect to the remote database as SCOTT/TIGER.

Once connected to the remote database as SCOTT, the remote Oracle resolves the
reference to EMP. First, it searches for and does not find an object named EMP in the
schema SCOTT.

Next, the remote database searches for a public synonym named EMP and finds
one. The remote database then completes statement execution and returns the
results to the local database.

Views, Synonyms, Procedures and Global Name Resolution
A remote schema object can be referenced by its global object name in the definition
of a view, synonym, or PL/SQL program unit (e.g., procedure, trigger). If a
complete global object name is referenced in the definition of a view, synonym, or
program unit, Oracle stores the definition of the object as specified, without having
to perform any expansion of the global object name being referenced. However, if a
partial global object name (that is, only the database name and not the domain
name) is referenced in the definition of a view, synonym, or program unit, Oracle
must expand the partial name using the domain component of the local database’s
global database name.

The following list explains when Oracle completes the expansion of a partial global
object name for views, synonyms, and program units:

■ When a view is created, partial global object names in the defining query are
not expanded; the data dictionary stores the exact text of the defining query.
Instead, Oracle expands a partial global object name each time a statement that
uses the view is parsed.

■ When a synonym is created, partial global object names are expanded; the
definition of the synonym stored in the data dictionary includes the expanded
global object name.

■ Each time a program unit is compiled, partial global object names are
expanded.

The above behavior should be considered when creating views, synonyms, and
procedures that reference remote data using partial global object names. If the
global database name of the containing database is changed (which should rarely
happen), views and procedures may try to reference a different database than they
did before the global database name change; alternatively, synonyms do not expand
database link names at runtime, so they do not change. Depending on the situation,
this behavior may or may not be desired. For example, consider two databases
2-18 Oracle8i Distributed Database Systems

Types of Database Links
named SALES.UK.ACME.COM and HQ.UK.ACME.COM. Also, assume that the
SALES database contains the following view and synonym:

CREATE VIEW employee_names AS
 SELECT ename FROM scott.emp@hq;

CREATE SYNONYM employee FOR scott.emp@hq;

Oracle expands the EMPLOYEE synonym definition and stores it as:

"scott.emp@hq.uk.acme.com"

The company undergoes a reorganization. First, consider the situation where both
the Sales and Human Resources departments are moved to the United States.
Consequently, the corresponding global database names are both changed to
SALES.US.ACME.COM and HQ.US.ACME.COM. In this case, the defining query of
the EMPLOYEE_NAMES view still expands to the correct database when the view
is used:

"SELECT ename FROM scott.emp@hq.us.acme.com"

However, the definition of the EMPLOYEE synonym continues to reference the
previous database name, HQ.UK.ACME.COM.

Now consider that only the Sales department is moved to the United States.
Consequently, the corresponding new global database name is
SALES.US.ACME.COM, while the Human Resources database is
HQ.UK.ACME.COM. In this case, the defining query of the EMPLOYEE_NAMES
view expands to a non-existent global database name when the view is used:

"SELECT ename FROM scott.emp@hq.us.acme.com"
Alternatively, the EMPLOYEE synonym continues to reference the correct database,
HQ.UK.ACME.COM.

In summary, you should decide when you want to use partial and complete global
object names in the definition of views, synonyms, and procedures. Keep in mind
that database names should be stable and databases should not be unnecessarily
moved within a network.

Dropping a Database Link
You can drop a database link just as you can drop a table or view. The command
syntax is:

DROP DATABASE LINK dblink;
Distributed Database Administration 2-19

Techniques for Location Transparency
For example, to drop the database link NY_FIN, the command would be:

DROP DATABASE LINK ny_fin;

Listing Available Database Links
The data dictionary of each database stores the definitions of all the database links
in that database. The USER/ALL/DBA_DB_LINKS data dictionary views show the
database links that have been defined at the local database.

Any user can query the data dictionary to determine what database links are
available to that user. For information on viewing the data dictionary, see Oracle8i
Concepts or the Oracle8i SQL Reference.

Limiting the Number of Active Database Links
You can limit the number of connections from a user process to remote databases
with the initialization parameter OPEN_LINKS. This parameter controls the
number of remote connections that a single user session can use concurrently within
a single SQL statement per session. See the Oracle8i SQL Reference for more
information.

Techniques for Location Transparency
Users of a distributed database system need not (and often should not) be aware of
the location and functioning of the parts of the database with which they work. The
DBA and network administrators can ensure that the distributed nature of the
database remains transparent to users, as shown in the following sections.

Views and Location Transparency
Local views can provide location transparency for local and remote tables in a
distributed database system.

For example, assume that table EMP is stored in a local database. Another table,
DEPT, is stored in a remote database.

To make the location of, and relationship between, these tables transparent to users
of the system, a view named COMPANY can be created in the local database that
joins the data of the local and remote servers:

CREATE VIEW company AS
SELECT empno, ename, dname
FROM emp a, dept@hq.acme.com b
HERE a.deptno = b.deptno;
2-20 Oracle8i Distributed Database Systems

Techniques for Location Transparency
Figure 2–3 Views and Location Transparency

JWARD.DEPT

DEPTNO DNAME

MARKETING
SALES

20
30

Database Server

Database Server

HQ

Sales

Database

Database

SCOTT.EMP Table

EMPNO ENAME JOB

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

CLERK
SALESMAN
SALESMAN
MANAGER

MGR

7902
7698
7698
7839

HIREDATE

17–DEC–88
20–FEB–89
22–JUN–92
02–APR–93

SAL

 800.00
1600.00
1250.00
2975.00

COMM

300.00
300.00
500.00

DEPTNO

20
30
30
20

COMPANY View

EMPNO ENAME DNAME

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

MARKETING
SALES
SALES
MARKETING
Distributed Database Administration 2-21

Techniques for Location Transparency
When users access this view, they do not know, or need to know, where the data is
physically stored, or if data from more than one table is being accessed. Thus, it is
easier for them to get required information. For example:

SELECT * FROM company;

provides data from both the local and remote database table.

Figure 2–3 illustrates this example of location transparency.

Views and Privileges
Assume a local view references a remote table or view. The owner of the local view
can grant only those object privileges on his view that have been granted by the
remote user. (The remote user is implied by the type of database link). This is
similar to privilege management for views that reference local data.

Synonyms and Location Transparency
Synonyms are very useful in both distributed and non-distributed environments
because they hide the identity of the underlying object, including its location in a
distributed database system. If the underlying object must be renamed or be moved,
only the synonym needs to be redefined; applications based on the synonym
continue to function without modification. Synonyms can also simplify SQL
statements for users in a distributed database system.

A synonym can be created for any table, type, view, snapshot, sequence, procedure,
function, or package. All synonyms are stored in the data dictionary of the database
in which they are created. To simplify remote table access through database links, a
synonym can allow single-word access to remote data, isolating the specific object
name and the location from users of the synonym. The syntax to create a synonym
is:

CREATE [PUBLIC] synonym_name
FOR [schema.]object_name[@database_link_name]

where:

[PUBLIC] Specifies that this synonym is available to all users.
Omitting this parameter makes a synonym private, and
usable only by the creator. Public synonyms can be created
only by a user with CREATE PUBLIC SYNONYM system
privilege.

synonym_name Specifies the alternate object name to be referenced by
users and applications.
2-22 Oracle8i Distributed Database Systems

Techniques for Location Transparency
Assume that in every database in a distributed database system, a public synonym
is defined for the SCOTT.EMP table stored in the HQ database:

CREATE PUBLIC SYNONYM emp FOR scott.emp@hq.acme.com;

An employee management application can be designed without regard to where the
application is used, because the location of the table SCOTT.EMP@HQ.ACME.COM
is hidden by the public synonyms.

SQL statements in the application access the table by referencing the public
synonym EMP.

Furthermore, if the EMP table is moved from the HQ database to the HR database,
only the public synonyms need to be changed on the nodes of the system. The
employee management application continues to function properly on all nodes.

A synonym must be a uniquely named object for its schema. If a schema contains a
schema object and a public synonym exists with the same name, Oracle always
finds the schema object when the user that owns the schema references that name.

Synonyms and Privileges
A synonym is a reference to the actual object. A user who has access to a synonym
for a particular schema object, must also have privileges on schema object itself. For
example, if the user attempts to access a synonym but does not have privileges on
the table it identifies, an error occurs indicating that the table or view does not exist.

Assume a local synonym is an alias for a remote object. The owner of the local
synonym cannot grant any object privileges on the synonym to any other local user.
This behavior is different from privilege management for synonyms that are aliases
for local tables or views. In the case where a synonym is an alias for a remote object,

schema Specifies the schema of the object specified in object_name.
Omitting this parameter uses the creator’s schema as the
schema of the object.

object_name Specifies either a table, view, sequence, snapshot, type,
procedure, function or package as appropriate.

database_link_name Specifies the database link identifying the remote database
and schema in which the object specified in object_name is
located.

[PUBLIC] Specifies that this synonym is available to all users.
Omitting this parameter makes a synonym private, and
usable only by the creator. Public synonyms can be created
only by a user with CREATE PUBLIC SYNONYM system
privilege.
Distributed Database Administration 2-23

Techniques for Location Transparency
local privileges for the synonym cannot be granted, because this would amount to
granting privileges for the remote object, which is not allowed. Therefore, no local
privilege management can be performed when synonyms are used for location
transparency; security for the base object is controlled entirely at the remote node.
For example, the user ADMIN cannot grant any object privileges for the EMP_SYN
synonym.

Unlike a database link referenced in a view or procedure definition, a database link
referenced in a synonym is resolved by first looking for a private link owned by the
schema in effect at the time the reference to the synonym is parsed.

Therefore, to ensure the desired object resolution, it is especially important to
specify the underlying object’s schema in the definition of a synonym.

Procedures and Location Transparency
PL/SQL program units called procedures can also provide location transparency.
There are two options:

■ A local procedure references remote data

■ A local synonym references a remote procedure

The second option provides location transparency through synonyms. This is
discussed in "Synonyms and Location Transparency" on page 2-22. The first option
is discussed in the next section.

Local procedure referencing remote data
Procedures or functions (either stand-alone or in packages) can contain SQL
statements that reference remote data. For example, consider the procedure created
by the following statement:

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN
DELETE FROM emp@hq.acme.com
WHERE empno = enum;
END;

When a user or application calls the FIRE_EMP procedure, it is not apparent that a
remote table is being modified.

A second layer of location transparency is possible if the statements in a procedure
indirectly reference remote data using local procedures, views, or synonyms. For
example, the following statement defines a local synonym:
2-24 Oracle8i Distributed Database Systems

Statement Transparency
CREATE SYNONYM emp FOR emp@hq.acme.com;

Given this synonym, the FIRE_EMP procedure can be defined with the following
statement:

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN
DELETE FROM emp WHERE empno = enum;
END;

If the table EMP@HQ is renamed or moved, only the local synonym that references
the table needs to be modified. None of the procedures and applications that call the
procedure require modification.

Procedures and Privileges
Assume a local procedure includes a statement that references a remote table or
view. The owner of the local procedure can grant the EXECUTE privilege to any
user, thereby giving that user the ability to execute the procedure and, indirectly,
access remote data.

In general, procedures aid in security. Privileges for objects referenced within a
procedure do not need to be explicitly granted to the calling users.

Statement Transparency
Oracle allows the following standard DML statements to reference remote tables:

■ SELECT (queries)

■ INSERT

■ UPDATE

■ DELETE

■ SELECT... FOR UPDATE

■ LOCK TABLE

Queries including joins, aggregates, subqueries, and SELECT ... FOR UPDATE can
reference any number of local and remote tables and views. For example, the
following query joins information from two remote tables:

SELECT empno, ename, dname FROM scott.emp@sales.division3.acme.com e,
jward.dept@hq.acme.com d
 WHERE d.deptno = d.deptno;
Distributed Database Administration 2-25

Statement Transparency
UPDATE, INSERT, DELETE, and LOCK TABLE statements can reference both local
and remote tables. No programming is necessary to update remote data. For
example, the following statement inserts new rows into the remote table EMP in the
SCOTT.SALES schema by selecting rows from the EMP table in the JWARD schema
in the local database:

INSERT INTO scott.emp@sales.division3.acme.com
 SELECT * FROM jward.emp;

Restrictions
Several restrictions apply to statement transparency:

■ Within a single SQL statement, all referenced LONG and LONG RAW columns,
sequences, updated tables, and locked tables must be located at the same node.

■ Oracle does not allow remote data definition language (DDL) statements (for
example, CREATE, ALTER, and DROP).

The LIST CHAINED ROWS clause of an ANALYZE statement cannot reference
remote tables.

Values for Environmentally-Dependent SQL Functions
In a distributed database system, Oracle always evaluates
environmentally-dependent SQL functions, such as SYSDATE, USER, UID, and
USERENV with respect to the local server, no matter where the statement (or
portion of a statement) executes.

Shared SQL for Remote and Distributed Statements
The mechanics of a remote or distributed statement using shared SQL are
essentially the same as those of a local statement. The SQL text must match, the
referenced objects must match, and the bind types of any bind variables must be the
same. If available, shared SQL areas can be used for the local and remote handling
of any statement (or decomposed query).

Note: Oracle supports the USERENV function for queries only.
2-26 Oracle8i Distributed Database Systems

Distributed Transa
3

Distributed Transactions

This chapter describes how Oracle8i maintains the integrity of distributed
transactions. Topics include:

■ Distributed Transaction Management

■ The Prepare and Commit Phases

■ The Session Tree

■ A Case Study

■ Coordination of System Change Numbers

■ Read-Only Distributed Transactions

■ Limiting the Number of Distributed Transactions Per Node

■ Troubleshooting Distributed Transaction Problems

■ Manually Overriding In-Doubt Transactions

■ Manually Committing In-Doubt Transactions

■ Changing Connection Hold Time

■ Testing Distributed Transaction Recovery Features
ctions 3-1

Distributed Transaction Management
Distributed Transaction Management
All participants (nodes) in a distributed transaction should be unanimous as to the
action to take on that transaction. That is, they should either all commit or rollback.

Oracle8i automatically controls and monitors the commit or rollback of a distributed
transaction and maintains the integrity of the global database (the collection of
databases participating in the transaction) using a transaction management
mechanism known as two-phase commit. This mechanism is completely
transparent. Its use requires no programming on the part of the user or application
developer.

The next sections explain how the two-phase commit mechanism works.

The Prepare and Commit Phases
The committing a distributed transaction has two distinct phases:

When a user commits a distributed transaction with a COMMIT statement, both
phases are performed automatically. The following sections describe each phase in
further detail.

Prepare Phase
The first phase in committing a distributed transaction is the prepare phase in
which the commit of the transaction is not actually carried out. Instead, all nodes
referenced in a distributed transaction (except one, known as the commit point site,
described in the"The Commit Point Site" on page 3-8) are told to prepare (to
commit).

prepare phase The global coordinator (initiating node) asks
participants to prepare (to promise to commit or
rollback the transaction, even if there is a
failure).

commit phase If all participants respond to the coordinator
that they are prepared, the coordinator asks all
nodes to commit the transaction. If any
participants cannot prepare, the coordinator
asks all nodes to roll back the transaction.
3-2 Oracle8i Distributed Database Systems

The Prepare and Commit Phases
By preparing, a node records enough information so that it can subsequently either
commit or abort the transaction (in which case, a rollback will be performed),
regardless of intervening failures.

When a node responds to its requestor that it has prepared, the prepared node has
made a promise to be able to either commit or roll back the transaction later and not
to make a unilateral decision on whether to commit or roll back the transaction.

When a node is told to prepare, it can respond with one of three responses:

Prepare Phase Actions by Nodes
To complete the prepare phase, each node performs the following actions:

■ The node requests its descendants (nodes subsequently referenced) to prepare.

■ The node checks to see if the transaction changes data on that node or any of its
descendants. If there is no change, the node skips the next steps and replies
with a read-only message (see below).

■ The node allocates all resources it needs to commit the transaction if data is
changed.

■ The node flushes any entries corresponding to changes made by that
transaction to its local redo log.

■ The node guarantees that locks held for that transaction are able to survive a
failure.

■ The node responds to the node that referenced it in the distributed transaction
with a prepared message or, if its prepare or the prepare of one of its
descendents was unsuccessful, with an abort message (see below).

Note: Queries that start after a node has prepared cannot access
the associated locked data until all phases are complete (an
insignificant amount of time unless a failure occurs).

prepared Data on the node has been modified by a statement
in the distributed transaction, and the node has
successfully prepared.

read-only No data on the node has been, or can be, modified
(only queried), so no prepare is necessary.

abort The node cannot successfully prepare.
Distributed Transactions 3-3

The Prepare and Commit Phases
These actions guarantee that the transaction can subsequently commit or roll back
on that node. The prepared nodes then wait until a COMMIT or ROLLBACK is
sent. Once the node(s) are prepared, the transaction is said to be in-doubt.

Read-only Response
When a node is asked to prepare and the SQL statements affecting the database do
not change that node’s data, the node responds to the node that referenced it with a
read-only message. These nodes do not participate in the second phase (the commit
phase). For more information about read-only distributed transactions, see
"Read-Only Distributed Transactions" on page 3-17

Unsuccessful Prepare
When a node cannot successfully prepare, it performs the following actions:

■ That node releases any resources currently held by the transaction and rolls
back the local portion of the transaction.

■ The node responds to the node that referenced it in the distributed transaction
with an abort message.

These actions then propagate to the other nodes involved in the distributed
transaction to roll back the transaction and guarantee the integrity of the data in the
global database.

Again, this enforces the primary rule of a distributed transaction. All nodes
involved in the transaction either all commit or all roll back the transaction at the
same logical time.

Commit Phase
The second phase in committing a distributed transaction is the commit phase.
Before this phase occurs, all nodes referenced in the distributed transaction have
guaranteed that they have the necessary resources to commit the transaction. That
is, they are all prepared.

Therefore, the commit phase consists of the following steps:

1. The global coordinator send a message to all nodes telling them to commit the
transaction.

2. At each node, Oracle8i commits the local portion of the distributed transaction
(releasing locks) and records an additional redo entry in the local redo log,
indicating that the transaction has committed.
3-4 Oracle8i Distributed Database Systems

The Session Tree
When the commit phase is complete, the data on all nodes of the distributed system
are consistent with one another.

A variety of failure cases, caused by network or system failures, are possible during
both the prepare phase and the commit phase. For a description of failure situations
and how Oracle8i resolves intervening failures during two-phase commit, see
"Troubleshooting Distributed Transaction Problems" on page 3-19.

The Session Tree
As the statements in a distributed transaction are issued, Oracle8i defines a session
tree of all nodes participating in the transaction. A session tree is a hierarchical
model that describes the relationships between sessions and their roles. All nodes
participating in the session tree of a distributed transaction assume one or more
roles:

■ a client

■ a database server

■ a global coordinator

■ a local coordinator

■ the commit point site (see page 3 - 8)

The role a node plays in a distributed transaction is determined by:

■ whether the transaction is local or remote

■ the commit point strength of that node (see page 3 - 8)

■ whether all requested data is available at a node, or whether other nodes need
to be referenced to complete the transaction

■ whether the node is read-only

Figure 3–1 below illustrates a simple session tree.
Distributed Transactions 3-5

The Session Tree
Figure 3–1 An example of a Simple Session Tree

-

Clients
A node acts as a client when it references information from another node’s database.
The referenced node is a database server. In the above example, the node
SALES.ACME.COM is a client of the nodes (database servers) that serve the
WAREHOUSE and FINANCE databases.

Servers and Database Servers
 A server is a node that is directly referenced in a distributed transaction or is
requested to participate in a transaction because another node requires data from its
database. A node supporting a database is also called a database server.

INSERT INTO orders...;
UPDATE inventory @ warehouse...;
UPDATE accts_rec @ finance...;
.
COMMIT;

Global Coordinator

Commit Point Site

Database Server

Client

WAREHOUSE.ACME.COM FINANCE.ACME.COM

SALES.ACME.COM
3-6 Oracle8i Distributed Database Systems

The Session Tree
In Figure 3–1, an application at the node holding the SALES database initiates a
distributed transaction which accesses data from the nodes holing the
WAREHOUSE and FINANCE databases.

Therefore, SALES.ACME.COM has the role of client node, and WAREHOUSE and
FINANCE are both database servers. In this example, SALES is a database server
and a client because the application is also requesting a change to the SALES
database’s information.

Local Coordinators
A node that must reference data on other nodes to complete its part in the
distributed transaction is called a local coordinator. In Figure 3–1,
SALES.ACME.COM, although it happens to be the global coordinator, is also
considered a local coordinator because it coordinates the nodes it directly
references: WAREHOUSE.ACME.COM and FINANCE.ACME.COM.

A local coordinator is responsible for coordinating the transaction among the nodes
it communicates directly with by:

■ receiving and relaying transaction status information to and from those nodes

■ passing queries to those node

■ receiving queries from those nodes and passing them on to other nodes

■ returning the results of queries to the nodes that initiated them

The Global Coordinator
The node where the distributed transaction originates (to which the database
application issuing the distributed transaction is directly connected) is called the
global coordinator. This node becomes the parent or root of the session tree. The
global coordinator performs the following operations during a distributed
transaction:

■ All of the distributed transaction’s SQL statements, remote procedure calls, etc.
are sent by the global coordinator to the directly referenced nodes, thus forming
the session tree.

For example, in Figure 3–1, the transaction issued at the node
SALES.ACME.COM references information from the database servers
WAREHOUSE.ACME.COM and FINANCE.ACME.COM.

Therefore, SALES.ACME.COM is the global coordinator of this distributed
transaction.
Distributed Transactions 3-7

The Session Tree
■ The global coordinator instructs all directly referenced nodes other than the
commit point site (see below) to prepare the transaction.

■ If all nodes prepare successfully, the global coordinator instructs the commit
point site to initiate the global commit of the transaction.

■ If there is one or more abort messages, the global coordinator instructs all
nodes to initiate a global rollback of the transaction.

The Commit Point Site
The job of the commit point site is to initiate a commit or roll back as instructed by
the global coordinator. The system administrator always designates one node to be
the commit point site in the session tree by assigning all nodes a commit point
strength (see below). The node selected as commit point site should be that node
that stores the most critical data (the data most widely used)

The commit point site is distinct from all other nodes involved in a distributed
transaction with respect to the following two issues:

■ The commit point site never enters the prepared state. This is potentially
advantageous because if the commit point site stores the most critical data, this
data never remains in-doubt, even if a failure situation occurs. (In failure
situations, failed nodes remain in a prepared state, holding necessary locks on
data until in-doubt transactions are resolved.)

■ In effect, the outcome of a distributed transaction at the commit point site
determines whether the transaction at all nodes is committed or rolled back.
The global coordinator ensures that all nodes complete the transaction the same
way that the commit point site does.

A distributed transaction is considered to be committed once all nodes are prepared
and the transaction has been committed at the commit point site (even though some
participating nodes may still be only in the prepared state and the transaction not
yet actually committed).

The commit point site’s redo log is updated as soon as the distributed transaction is
committed at that node. Likewise, a distributed transaction is considered not
committed if it has not been committed at the commit point site.

Commit Point Strength
Every node acting as a database server must be assigned a commit point strength. If
a database server is referenced in a distributed transaction, the value of its commit
point strength determines what role it plays in the two-phase commit. Specifically,
3-8 Oracle8i Distributed Database Systems

The Session Tree
the commit point strength determines whether a given node is the commit point site
in the distributed transaction.

This value is specified using the initialization parameter COMMIT_POINT_
STRENGTH (see page 3 - 8). The commit point site is determined at the beginning
of the prepare phase.

The commit point site is selected only from the nodes participating in the
transaction. Once it has been determined, the global coordinator sends prepare
messages to all participating nodes. Of the nodes directly referenced by the global
coordinator, the node with the highest commit point strength is selected. Then, the
initially-selected node determines if any of its servers (other nodes that it has to
obtain information from for this transaction) has a higher commit point strength.

Either the node with the highest commit point strength directly referenced in the
transaction, or one of its servers with a higher commit point strength becomes the
commit point site. Figure 3–2 shows in a sample session tree the commit point
strengths of each node (in parentheses) and shows the node chosen as the commit
point site.

Figure 3–2 Commit Point Strengths and Determination of the Commit Point Site

SALES.ACME.COM
(45)

HQ.ACME.COM
(165)

HR.ACME.COM
(45)

FINANCE.ACME.COM
(45)

WAREHOUSE.ACME.COM
(140)
Distributed Transactions 3-9

The Session Tree
The following conditions apply when determining the commit point site:

■ A read-only node (a node which will not change its local data for the
transaction) cannot be designated as the commit point site.

■ If multiple nodes directly referenced by the global coordinator have the same
commit point strength, Oracle8i will designate one of these nodes as the commit
point site.

■ If a distributed transaction ends with a rollback, the prepare and commit phases
are not needed, consequently a commit point site is never determined. Instead,
the global coordinator sends a ROLLBACK statement to all nodes and ends the
processing of the distributed transaction.

The commit point strength only determines the commit point site in a distributed
transaction. Because the commit point site stores information about the status of the
transaction, the commit point site should not be a node that is frequently unreliable
or unavailable in case other nodes need information about the transaction’s status.

As Figure 3–2 illustrates, the commit point site and the global coordinator can be
different nodes of the session tree.

The commit point strengths of each nodes is communicated to the coordinator(s)
when the initial connections are made. The coordinator(s) retain the commit point
strengths of each node they are in direct communication with so that commit point
sites can be efficiently selected during two-phase commits. Therefore, it is not
necessary for the commit point strength to be exchanged between a coordinator and
a node each time a commit occurs.

Specifying the Commit Point Strength of an Instance
Specify a commit point strength for each node that insures that the most critical
server will be “non-blocking” if a failure occurs during a prepare or commit phase.

A node’s commit point strength is set by the initialization parameter COMMIT_
POINT_STRENGTH. The range of values is any integer from 0 to 255. For example,
to set the commit point strength of a database to 200, include the following line in
that database’s parameter file:

COMMIT_POINT_STRENGTH=200

Additional Information: See your Oracle operating system-specific documentation
for the default value.
3-10 Oracle8i Distributed Database Systems

A Case Study
A Case Study
This case study illustrates:

■ the definition of a session tree

■ how a commit point site is determined

■ when prepare messages are sent

■ when a transaction actually commits

■ what information is stored locally about the transaction

The Scenario
A company that has separate Oracle8i servers, SALES.ACME.COM and
WAREHOUSE.ACME.COM. As sales records are inserted into the SALES database,
associated records are being updated at the WAREHOUSE database.

The Process
The following steps are carried out during a distributed transaction that enters a
sales order:

1. An application issues SQL statements.

At the Sales department, a salesperson uses a database application to enter, then
commit a sales order. The application issues a number of SQL statements to
enter the order into the SALES database and update the inventory in the
WAREHOUSE database.

These SQL statements are all part of a single distributed transaction,
guaranteeing that all issued SQL statements succeed or fail as a unit. This
prevents the possibility of an order being placed but, inventory is not updated
to reflect the order. In effect, the transaction guarantees the consistency of data
in the global database. As each of the SQL statements in the transaction
executes, the session tree is defined, as shown in Figure 3–3.
Distributed Transactions 3-11

A Case Study
Figure 3–3 Defining the Session Tree

Note the following:

■ An order entry application running with the SALES database initiates the
transaction. Therefore, SALES.ACME.COM is the global coordinator for the
distributed transaction.

■ The order entry application inserts a new sales record into the SALES
database and updates the inventory at the warehouse. Therefore, the nodes
SALES.ACME.COM and WAREHOUSE.ACME.COM are both database
servers. Furthermore, because SALES.ACME.COM updates the inventory, it
is a client of WAREHOUSE.ACME.COM.

This completes the definition of the session tree for this distributed transaction.

Global Coordinator

Commit Point Site

Database Server

Client

WAREHOUSE.ACME.COM

SALES.ACME.COM

SQL

INSERT INTO orders...;
UPDATE inventory @ warehouse...;
INSERT INTO orders...;
UPDATE inventory @ warehouse...;
COMMIT;
3-12 Oracle8i Distributed Database Systems

A Case Study
Remember that each node in the tree has acquired the necessary data locks to
execute the SQL statements that reference local data. These locks remain even
after the SQL statements have been executed until the two-phase commit is
completed.

2. The application issues a COMMIT statement.

The final statement in the transaction that enters the sales order is now issued
— a COMMIT statement which begins the two-phase commit starting with the
prepare phase.

3. The global coordinator determines the commit point site.

The commit point site is determined immediately following the COMMIT
statement. SALES.ACME.COM, the global coordinator, is determined to be the
commit point site, as shown in Figure 3–4.

See "Specifying the Commit Point Strength of an Instance" on page 3-10 for
more information about how the commit point site is determined.

Figure 3–4 Determining the Commit Point Site

4. The global coordinator sends the Prepare message.

After the commit point site is determined, the global coordinator sends the
prepare message to all directly referenced nodes of the session tree, excluding
the commit point site. In this example, WAREHOUSE.ACME.COM is the only
node asked to prepare.

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.ACME.COM

SALES.ACME.COM

Commit
Distributed Transactions 3-13

A Case Study
WAREHOUSE.ACME.COM tries to prepare. If a node can guarantee that it can
commit the locally dependent part of the transaction and can record the commit
information in its local redo log, the node can successfully prepare.

In this example, only WAREHOUSE.ACME.COM receives a prepare message
because SALES.ACME.COM is the commit point site (which does not prepare).
WAREHOUSE.ACME.COM responds to SALES.ACME.COM with a prepared
message.

As each node prepares, it sends a message back to the node that asked it to
prepare. Depending on the responses, two things can happen:

■ If any of the nodes asked to prepare respond with an abort message to the
global coordinator, the global coordinator then tells all nodes to roll back
the transaction, and the process is completed.

■ If all nodes asked to prepare respond with a prepared or a read-only
message to the global coordinator. That is, they have successfully prepared,
the global coordinator asks the commit point site to commit the transaction.

Continuing with the example, Figure 3–5 illustrates the parts of Step 4.

Figure 3–5 Sending and Acknowledging the PREPARE Message

5. The commit point site commits.

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.ACME.COM

SALES.ACME.COM

Sales to Warehouse
”Please prepare”
Warehouse to Sales
”Prepared”

1.

2.
3-14 Oracle8i Distributed Database Systems

A Case Study
SALES.ACME.COM, receiving acknowledgment that
WAREHOUSE.ACME.COM is prepared, instructs the commit point site (itself,
in this example) to commit the transaction. The commit point site now commits
the transaction locally and records this fact in its local redo log.

Even if WAREHOUSE.ACME.COM has not committed yet, the outcome of this
transaction is determined, that is, the transaction will be committed at all nodes
even if the node’s ability to commit is delayed.

6. The commit point site informs the global coordinator of the commit.

The commit point site now tells the global coordinator that the transaction has
committed. In this case, where the commit point site and global coordinator are
the same node, no operation is required. The commit point site remembers it
has committed the transaction until the global coordinator confirms that the
transaction has been committed on all other nodes involved in the distributed
transaction.

After the global coordinator has been informed of the commit at the commit
point site, it tells all other directly referenced nodes to commit. In turn, any local
coordinators instruct their servers to commit, and so on. Each node, including
the global coordinator, commits the transaction and records appropriate redo
log entries locally. As each node commits, the resource locks that were being
held locally for that transaction are released.

Figure 3–6 illustrates Step 6 in this example. SALES.ACME.COM, both the
commit point site and the global coordinator, has already committed the
transaction locally. SALES now instructs WAREHOUSE.ACME.COM to commit
the transaction.
Distributed Transactions 3-15

A Case Study
Figure 3–6 The Global Coordinator and Other Servers Commit the Transaction

7. The global coordinator and commit point site complete the commit.

After all referenced nodes and the global coordinator have committed the
transaction, the global coordinator informs the commit point site.

The commit point site, which has been waiting for this message, erases the
status information about this distributed transaction and informs the global
coordinator that it is finished. In other words, the commit point site forgets
about committing the distributed transaction. This is acceptable because all
nodes involved in the two-phase commit have committed the transaction
successfully, and they will never have to determine its status in the future.

After the commit point site informs the global coordinator that it has forgotten
about the transaction, the global coordinator finalizes the transaction by
forgetting about the transaction itself.

This completes the COMMIT phase and thus completes the distributed
transaction.

All of the steps described above are accomplished automatically and in a
fraction of a second.

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.ACME.COM

SALES.ACME.COM

Sales to Warehouse:
”Commit”
3-16 Oracle8i Distributed Database Systems

Read-Only Distributed Transactions
Coordination of System Change Numbers
Each committed transaction has an associated system change number (SCN) to
uniquely identify the changes made by the SQL statements within that transaction.
In a distributed system, the SCNs of communicating nodes are coordinated when:

■ A connection occurs using the path described by one or more database links.

■ A distributed SQL statement executes (the execute phase completes).

■ A distributed transaction commits.

Among other benefits, the coordination of SCNs among the nodes of a distributed
system allows global distributed read-consistency at both the statement and
transaction level. If necessary, global distributed time-based recovery can also be
completed.

During the prepare phase, Oracle8i determines the highest SCN at all nodes
involved in the transaction. The transaction then commits with the high SCN at the
commit point site. The commit SCN is then sent to all prepared nodes with the
commit decision.

Read-Only Distributed Transactions
There are three cases in which all or part of a distributed transaction is read-only:

■ A distributed transaction can be partially read-only if:

■ only queries are issued at one or more nodes

■ it does not modify any records

■ changes are rolled back due to violations of integrity constraints or triggers
being fired

In each of these cases, the read-only nodes recognize this fact when they are
asked to prepare. They respond to their respective local coordinators with a
read-only message. By doing this, the commit phase completes faster because
Oracle eliminates the read-only nodes from subsequent processing.

■ The distributed transaction can be completely read-only (no data changed at
any node) and the transaction is not started with the SET TRANSACTION
READ ONLY statement.

In this case, all nodes recognize that they are read-only during the prepare
phase, and no commit phase is required. However, the global coordinator, not
Distributed Transactions 3-17

Limiting the Number of Distributed Transactions Per Node
knowing whether all nodes are read-only, must still perform the operations
involved in the prepare phase.

■ The distributed transaction can be completely read-only (all queries at all
nodes) and the transaction is started with a SET TRANSACTION READ ONLY
statement. In this case, only queries are allowed in the transaction, and the
global coordinator does not have to undertake a two-phase commit. Changes by
other transactions do not degrade global transaction-level read consistency,
because it is automatically guaranteed by coordination of SCNs at each node of
the distributed system.

Limiting the Number of Distributed Transactions Per Node
The initialization parameter DISTRIBUTED_TRANSACTIONS controls the number
of possible distributed transactions in which a given instance can concurrently
participate, both as a client and a server. If this limit is reached and a subsequent
user tries to issue a SQL statement referencing a remote database, the statement is
rolled back and the following error message is returned:

ORA-2042: too many global transactions

For example, assume that DISTRIBUTED_TRANSACTIONS is set to 10 for a given
instance. In this case, a maximum of ten sessions can concurrently be processing a
distributed transaction. If an eleventh session attempts to issue a DML statement
requiring distributed access, an error message is returned to the session, and the
statement is rolled back.

The database administrator should consider increasing the value of the initialization
parameter DISTRIBUTED_TRANSACTIONS when an instance regularly
participates in numerous distributed transactions and the above error message is
frequently returned as a result of the current limit. Increasing the limit allows more
users to concurrently issue distributed transactions.

If the DISTRIBUTED_TRANSACTIONS initialization parameter is set to zero, no
distributed SQL statements can be issued in any session.

Also, the RECO background process is not started at startup of the local instance.
In-doubt distributed transactions that may be present (from a previous network or
system failure) cannot be automatically resolved by Oracle8i.

Therefore, only set this initialization parameter to zero to prevent distributed
transactions when a new instance is started, and when it is certain that no in-doubt
distributed transactions remained after the last instance shut down.

Additional Information: See Oracle8i Reference for more information.
3-18 Oracle8i Distributed Database Systems

Troubleshooting Distributed Transaction Problems
Troubleshooting Distributed Transaction Problems
A network or system failure can cause the following types of problems:

■ A two-phase commit being processed when a failure occurs may not be
completed at all nodes of the session tree.

■ If a failure persists (for example, if the network is down for a long time), the
data exclusively locked by in-doubt transactions is unavailable to statements of
other transactions.

The following sections describe these situations.

Failures that Interrupt Two-Phase Commit
The user program that commits a distributed transaction is informed of a problem
by one of the following error messages:

ORA-02050: transaction ID rolled back,
 some remote dbs may be in-doubt
ORA-02051: transaction ID committed,
 some remote dbs may be in-doubt
ORA-02054: transaction ID in-doubt

A robust application should save information about a transaction if it receives any
of the above errors. This information can be used later if manual distributed
transaction recovery is desired.

No action is required by the administrator of any node that has one or more
in-doubt distributed transactions due to a network or system failure. The automatic
recovery features of Oracle8i transparently complete any in-doubt transaction so
that the same outcome occurs on all nodes of a session tree (that is, all commit or all
roll back) once the network or system failure is resolved.

However, in extended outages, the administrator may wish to force the commit or
rollback of a transaction to release any locked data. Applications must account for
such possibilities.

Note: The failure cases that prompt these error messages are
beyond the scope of this book and are unnecessary to administer
the system.
Distributed Transactions 3-19

Troubleshooting Distributed Transaction Problems
Failures that Prevent Data Access
When a user issues a SQL statement, Oracle8i attempts to lock the required
resources to successfully execute the statement. However, if the requested data is
currently being held by statements of other uncommitted transactions and
continues to remained locked for an excessive amount of time, a time-out occurs.
Consider the following two scenarios.

Transaction Time-Out
A DML SQL statement that requires locks on a remote database may be blocked
from doing so if another transaction (distributed or non-distributed) currently own
locks on the requested data. If these locks continue to block the requesting SQL
statement, a time-out occurs, the statement is rolled back, and the following error
message is returned to the user:

ORA-02049: time-out: distributed transaction waiting for lock

Because no data has been modified, no actions are necessary as a result of the
time-out. Applications should proceed as if a deadlock has been encountered. The
user who executed the statement can try to re-execute the statement later. If the lock
persists, the user should contact an administrator to report the problem.

The timeout interval in the above situation can be controlled with the initialization
parameter DISTRIBUTED_LOCK_TIMEOUT. This interval is in seconds. For
example, to set the time-out interval for an instance to 30 seconds, include the
following line in the associated parameter file:

DISTRIBUTED_LOCK_TIMEOUT=30

With the above time-out interval, the time-out errors discussed in the previous
section occur if a transaction cannot proceed after 30 seconds of waiting for
unavailable resources.

Additional Information: For more information about initialization parameters and
editing parameter files, see the Oracle8i Reference.

Lock From In-Doubt Transaction
A query or DML statement that requires locks on a local database may be blocked
from doing so indefinitely due to the locked resources of an in-doubt distributed
transaction. In this case, the following error message is immediately returned to the
user:

ORA-01591: lock held by in-doubt distributed transaction <id>
3-20 Oracle8i Distributed Database Systems

Manually Overriding In-Doubt Transactions
In this case, the SQL statement is rolled back immediately. The user who executed
the statement can try to re-execute the statement later. If the lock persists, the user
should contact an administrator to report the problem, including the ID of the
in-doubt distributed transaction.

The chances of the above situations occurring are very rare, considering the low
probability of failures during the critical portions of the two-phase commit. Even if
such a failure occurs and assuming quick recovery from a network or system
failure, problems are automatically resolved without manual intervention. Thus
problems usually resolve before they can be detected by users or database
administrators.

Manually Overriding In-Doubt Transactions
A database administrator can manually force the COMMIT or ROLLBACK of a
local in-doubt distributed transaction. However, a specific in-doubt transaction
should be manually overridden only when the following situations exist:

■ The in-doubt transaction locks data that is required by other transactions. This
happens if users complain that the ORA-01591 error message interferes with
their transactions.

■ An in-doubt transaction prevents the extents of a rollback segment to be used
by other transactions. The first portion of an in-doubt distributed transaction’s
local transaction ID corresponds to the ID of the rollback segment, as listed by
the data dictionary views DBA_2PC_PENDING and DBA_ROLLBACK_SEGS.

■ The failure that did not allow the two-phase commit phases to complete will
not be corrected in an acceptable time period. Examples of such cases might
include a telecommunication network that has been damaged or a damaged
database that needs a substantial amount of time to complete recovery.

Normally, a decision to locally force an in-doubt distributed transaction should be
made in consultation with administrators at other locations. A wrong decision can
lead to database inconsistencies which can be difficult to trace and that you must
manually correct.

If the conditions above do not apply, always allow the automatic recovery features of
Oracle8i to complete the transaction. However, if any of the above criteria are met,
the administrator should consider a local override of the in-doubt transaction.

If a decision is made to locally force the transaction to complete, the database
administrator should analyze available information with the following goals in
mind:
Distributed Transactions 3-21

Manually Overriding In-Doubt Transactions
■ Try to find a node that has either committed or rolled back the transaction. If
you can find a node that has already resolved the transaction, you can follow
the action taken at that node.

■ See if any information is given in the TRAN_COMMENT column of DBA_2PC_
PENDING for the distributed transaction. Comments are included in the
COMMENT parameter of the COMMIT command. For example, an in-doubt
distributed transaction’s Comment might indicate the origin of the transaction
and what type of transaction it is:

COMMIT COMMENT ’Finance/Accts_pay/Trans_type 10B’;

■ See if any information is given in the ADVICE column of DBA_2PC_PENDING
for the distributed transaction. An application can prescribe advice about
whether to force the commit or force the rollback of separate parts of a
distributed transaction with the ADVISE parameter of the SQL command
ALTER SESSION.

The advice sent during the prepare phase to each node is the advice in effect at
the time the most recent DML statement executed at that database in the current
transaction.

For example, consider a distributed transaction that moves an employee record
from the EMP table at one node to the EMP table at another node. The
transaction could protect the record (even when administrators independently
force the in-doubt transaction at each node) by including the following
sequence of SQL statements:

ALTER SESSION ADVISE COMMIT;
INSERT INTO emp@hq ... ; /*advice to commit at HQ */
ALTER SESSION ADVISE ROLLBACK;
DELETE FROM emp@sales ... ; /*advice to roll back at SALES*/

ALTER SESSION ADVISE NOTHING;

If you manually force the in-doubt transaction, the worst that can happen is that
each node has a copy of the employee record being moved; the record cannot
disappear.
3-22 Oracle8i Distributed Database Systems

Manually Overriding In-Doubt Transactions
Manual Override Example
The following example shows a failure during the commit of a distributed
transaction and how to go about gaining information before manually forcing the
commit or rollback of the local portion of an in-doubt distributed transaction.
Figure 3–7 illustrates the example.

Figure 3–7 An Example of an in-Doubt Distributed Transaction

In this failure case, the prepare phase completed. However, during the commit
phase, the commit point site’s commit message (the message telling the global
coordinator that the transaction was committed at the commit point site) never
made it back to the global coordinator, even though the commit point site
committed the transaction.

You are the WAREHOUSE database administrator. The inventory data locked
because of the in-doubt transaction is critical to other transactions. However, the
data cannot be accessed because the locks must be held until the in-doubt
transaction either commits or rolls back. Furthermore, you understand that the
communication link between sales and headquarters cannot be resolved
immediately.

Therefore, you decide to manually force the local portion of the in-doubt transaction
using the following steps:

1. Record user feedback.

2. Query the local DBA_2PC_PENDING view to obtain the global transaction ID
and get other information about the in-doubt transaction.

Global Coordinator

Commit Point Site

Database Server

Client

Communication break

commitprepared

prepared

WAREHOUSE.ACME.COM HQ.ACME.COM

SALES.ACME.COM
Distributed Transactions 3-23

Manually Overriding In-Doubt Transactions
3. Query the local DBA_2PC_NEIGHBORS view to begin tracing the session tree
so that you can find a node that resolved the in-doubt transaction.

4. Check the mixed outcome flag after normal communication is re-established.

The following sections explain each step in detail for this example.

Step 1: Record User Feedback
The users of the local database system that conflict with the locks of the in-doubt
transaction get the following error message:

ORA-01591: lock held by in-doubt distributed transaction 1.21.17

Here, 1.21.17 is the local transaction ID of the in-doubt distributed transaction in
this example. The local database administrator should request and record this ID
number from the users that report problems to identify in-doubt transactions that
should be forced.

Step 2: Query DBA_2PC_PENDING
Query the local DBA_2PC_PENDING (see also page 3 - 29) to gain information
about the in-doubt transaction:

SELECT * FROM sys.dba_2pc_pending WHERE local_tran_id = ’1.21.17’;

For example, when the previous query is issued at WAREHOUSE, the following
information is returned.

Figure 3–8 Results of Querying DBA_2PC_PENDING

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.21.17
GLOBAL_TRAN_ID SALES.ACME.COM.55d1c563.1.93.29
STATE prepared
MIXED no
ADVICE
TRAN_COMMENT Sales/New Order/Trans_type 10B
FAIL_TIME 31-MAY-91
FORCE_TIME
RETRY_TIME 31-MAY-91
OS_USER SWILLIAMS
OS_TERMINAL TWA139:
HOST system1
DB_USER SWILLIAMS
COMMIT#
3-24 Oracle8i Distributed Database Systems

Manually Overriding In-Doubt Transactions
The global transaction ID is the common transaction ID that is the same on every
node for a distributed transaction. It is of the form:

global_database_name.hhhhhhhh.local_transaction_id
Here, global_database_name is the database name of the global coordinator (where
the transaction originates), hhhhhhhh is an internal database ID at the global
coordinator (8 hexadecimal digits), and local_tran_id is the corresponding local
transaction ID assigned on the global coordinator. Therefore, the last portion of the
global transaction ID and the local transaction ID match at the global coordinator. In
the example, you can tell that WAREHOUSE is not the global coordinator because
these numbers do not match.

The transaction on this node is in a prepared state. Therefore, WAREHOUSE awaits
its coordinator to send either a commit or a rollback message.

The transaction’s Comment or advice may include information about this
transaction. If so, use this Comment to your advantage. In this example, the origin
(the sales order entry application) and transaction type is in the transaction’s
Comment. This information may reveal something that would help you decide
whether to commit or rollback the local portion of the transaction.

If useful Comments do not accompany an in-doubt transaction, you must complete
some extra administrative work to trace the session tree and find a node that has
resolved the transaction.

Step 3: Query DBA_2PC_NEIGHBORS
The purpose of this step is to climb the session tree so that you find coordinators,
eventually reaching the global coordinator. Along the way, you might find a
coordinator that has resolved the transaction. If not, you can eventually work your
way to the commit point site, which will always have resolved the in-doubt
transaction.

The DBA_2PC_NEIGHBORS view provides information about connections
associated with an in-doubt transaction. Information for each connection is
different, based on whether the connection is inbound or outbound:

■ If the connection is inbound, your node is subordinate (a server of) another
node. In this case, the DATABASE column lists the name of the client database
that connected to your node, and the DBUSER_OWNER column lists the local
account for the database link connection that corresponds to the in-doubt
transaction.

■ If the connection is outbound, your node is a client of other servers. In this case,
the DATABASE column lists the name of the database link that connects to the
Distributed Transactions 3-25

Manually Overriding In-Doubt Transactions
remote node. The DBUSER_OWNER column lists the owner of the database
link for the in-doubt transaction.

Additionally, the INTERFACE column tells whether the local node or a subordinate
node is the commit point site.

To trace the session tree, you can query the local DBA_2PC_NEIGHBORS view. In
this case, you query this view on the WAREHOUSE database.

SELECT * FROM sys.dba_2pc_neighbors
 WHERE local_tran_id = ’1.21.17’
 ORDER BY sess#, in_out;

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.21.17
IN_OUT in
DATABASE SALES.ACME.COM
DBUSER_OWNER SWILLIAMS
INTERFACE N
DBID 000003F4
SESS# 1
BRANCH 0100

The columns of particular interest in this view are the IN_OUT, DATABASE,
DBUSER_OWNER, and INTERFACE columns. In this example, the IN_OUT
column reveals that the WAREHOUSE database is a server for the SALES database,
as specified in the DATABASE column.

The connection to WAREHOUSE was established through a database link from the
SWILLIAMS account, as shown by the DB_OWNER column, and WAREHOUSE,
nor any of its descendants, was the commit point site, as shown by the INTERFACE
column. At this point, you can contact the administrator at the located nodes and
ask them to repeat Steps 2 and 3, using the global transaction ID.

For example, the following results are returned when Steps 2 and 3 are performed at
SALES and HQ, respectively.

Note: If you can directly connect to these nodes with another
network, you can repeat Steps 2 and 3 yourself.
3-26 Oracle8i Distributed Database Systems

Manually Overriding In-Doubt Transactions
Manually Checking the Status of Pending Transactions at SALES.ACME.COM
SELECT * FROM sys.dba_2pc_pending
 WHERE global_tran_id = ’SALES.ACME.COM.55d1c563.1.93.29’;

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.93.29
GLOBAL_TRAN_ID SALES.ACME.COM.55d1c563.1.93.29
STATE prepared
MIXED no
ADVICE
TRAN_COMMENT Sales/New Order/Trans_type 10B
FAIL_TIME 31-MAY-91
FORCE_TIME
RETRY_TIME 31-MAY-91
OS_USER SWILLIAMS
OS_TERMINAL TWA139:
HOST system1
DB_USER SWILLIAMS
COMMIT#

SELECT * FROM dba_2pc_neighbors
 WHERE global_tran_id = ’SALES.ACME.COM.55d1c563.1.93.29’
 ORDER BY sess#, in_out;

At SALES, there are three rows for this transaction (one for the connection to
WAREHOUSE, one for the connection to HQ, and one for the connection
established by the user). Information corresponding to the rows for the SALES and
HQ connections is listed below:

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.93.29
IN_OUT OUT
DATABASE WAREHOUSE.ACME.COM
DBUSER_OWNER SWILLIAMS
INTERFACE N
DBID 55d1c563
SESS# 1
BRANCH 1
Distributed Transactions 3-27

Manually Overriding In-Doubt Transactions
Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.93.29
IN_OUT OUT
DATABASE HQ.ACME.COM
DBUSER_OWNER ALLEN
INTERFACE C
DBID 00000390
SESS# 1
BRANCH 1

The information from the previous query reveals the following:

■ SALES is the global coordinator because the local transaction ID and global
transaction ID match. Also, notice that two outbound connections are
established from this node, but no inbound links (this node is not a server of
another node).

■ HQ or one of its servers (none in this example) is the commit point site.

Manually Checking the Status of Pending Transactions at HQ.ACME.COM:
SELECT * FROM dba_2pc_pending
 WHERE global_tran_id = ’SALES.ACME.COM.55d1c563.1.93.29’;

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.45.13
GLOBAL_TRAN_ID SALES.ACME.COM.55d1c563.1.93.29
STATE COMMIT
MIXED NO
ACTION
TRAN_COMMENT Sales/New Order/Trans_type 10B
FAIL_TIME 31-MAY-91
FORCE_TIME
RETRY_TIME 31-MAY-91
OS_USER SWILLIAMS
OS_TERMINAL TWA139:
HOST SYSTEM1
DB_USER SWILLIAMS
COMMIT# 129314
3-28 Oracle8i Distributed Database Systems

Manually Overriding In-Doubt Transactions
At this point, you have found a node that resolved the transaction. It has been
committed. Therefore, you can force the in-doubt transaction to commit at your
local database (see the following section for information on manually committing or
rolling back in-doubt transactions). It is a good idea to contact any other
administrators you know that could also benefit from your investigation.

Step 4: Check for Mixed Outcome
After you manually force a transaction to commit or roll back, the corresponding
row in the pending transaction table remains. The STATE of the transaction is
changed to forced commit or forced abort, depending on how you forced the
transaction.

The Pending Transaction Table (DBA_2PC_PENDING)
Every Oracle8i database has a pending transaction table which is a special table that
stores information about distributed transactions as they proceed through the
two-phase commit phases. You can query a database’s pending transaction table by
referencing the DBA_2PC_PENDING data dictionary view.

Each transaction with an entry in the pending transaction table is classified in one of
the following categories (as indicated in DBA_2PC_PENDING.STATE):

collecting This category normally applies only to the
global coordinator or local coordinators. The
node is currently collecting information from
other database servers before it can decide
whether it can prepare.

prepared The node has prepared and may or may not
have acknowledged this to its local coordinator
with a prepared message. However, no commit
message has been received. The node remains
prepared, holding any local resource locks
necessary for the transaction to commit.

committed The node (any type) has committed the
transaction, but other nodes involved in the
transaction may not have done the same. That
is, the transaction is still pending at one or more
nodes.
Distributed Transactions 3-29

Manually Committing In-Doubt Transactions
Also of particular interest in the pending transaction table is the mixed outcome flag
(as indicated in DBA_2PC_PENDING.MIXED). The database administrator can
make the wrong choice if a pending transaction is forced to commit or roll back (for
example, the local administrator rolls back the transaction, but the other nodes
commit it).

Incorrect decisions are detected automatically, and the damage flag for the
corresponding pending transaction’s record is set (MIXED=yes).

The RECO (Recoverer) background process uses the information in the pending
transaction table to finalize the status of in-doubt transactions. The information in
the pending transaction table can also be used by a database administrator, who
decides to manually override the automatic recovery procedures for pending
distributed transactions.

All transactions automatically resolved by RECO are automatically removed from
the pending transaction table. Additionally, all information about in-doubt
transactions correctly resolved by an administrator (as checked when RECO
reestablishes communication) are automatically removed from the pending
transaction table. However, all rows resolved by an administrator that result in a
mixed outcome across nodes remain in the pending transaction table of all involved
nodes until they are manually deleted.

Manually Committing In-Doubt Transactions
The local database administrator has two ways to manually force an in-doubt
transaction to commit. The DBA can use Enterprise Manager Transaction Object List
option Force Commit or the SQL command COMMIT with the FORCE option and a
text string, indicating either the local or global transaction ID of the in-doubt
transaction to commit.

forced commit A pending transaction can be forced to commit
at the discretion of a database administrator.
This entry occurs if a transaction is manually
committed at a local node by a database
administrator.

forced abort
(rollback)

A pending transaction can be forced to roll back
at the discretion of a database administrator.
This entry occurs if this transaction is manually
rolled back at a local node by a database
administrator.
3-30 Oracle8i Distributed Database Systems

Manually Committing In-Doubt Transactions
Forcing a Commit or Rollback in Enterprise Manager
To commit an in-doubt transaction, select the transaction from the Transaction
Object List and choose Force Commit from the Transaction menu.

To roll back an in-doubt transaction, select the transaction from the Transaction
Object List and choose Force Rollback from the Transaction menu.

Attention: You cannot roll back an in-doubt transaction to a savepoint.

Manually Committing or Rolling Back In-Doubt Transactions
The following SQL statement is the command to commit an in-doubt transaction.

COMMIT FORCE ’transaction_name’;

To manually rollback an in-doubt transaction, use the SQL command ROLLBACK
with the FORCE option and a text string, indicating either the local or global
transaction ID of the in-doubt transaction to rollback. For example, to rollback the
in-doubt transaction with the local transaction ID of 2.9.4, use the following
statement:

ROLLBACK FORCE ’2.9.4’;

Attention: You cannot roll back an in-doubt transaction to a savepoint.

Privileges Required to Manually Commit or Rollback In-Doubt Transactions
To manually force the commit or rollback of an in-doubt transaction issued by
yourself, you must have been granted the FORCE TRANSACTION system
privilege. To force the commit or rollback of another user’s distributed transaction,
you must have the FORCE ANY TRANSACTION system privilege. Both privileges
can be obtained either explicitly or via a role.

Forcing Rollback/Commit on the Local Pending Transaction Table
In all examples, the transaction is committed or rolled back on the local node, and
the local pending transaction table records a value of forced commit or forced abort
for the STATE column of this transaction’s row.

Note: Forcing the commit or rollback of an in-doubt distributed
transaction does not affect the status of the operator’s current
transaction.
Distributed Transactions 3-31

Changing Connection Hold Time
Specifying the SCN
Optionally, you can specify the SCN for the transaction when forcing a transaction
to commit. This feature allows you to commit an in-doubt transaction with the SCN
assigned when it was committed at other nodes.

Thus you maintain the synchronized commit time of the distributed transaction
even if there is a failure. Specify an SCN only when you can determine the SCN of
the same transaction already committed at another node.

For example, assume you want to manually commit a transaction with the global
transaction ID global_id. First, query the DBA_2PC_PENDING view of a remote
database also involved with the transaction in question.

Note the SCN used for the commit of the transaction at that node. Specify the SCN
(a decimal number) when committing the transaction at the local node. For
example, if the SCN were 829381993, you would use the command:

COMMIT FORCE ’global_id’, 829381993;

Changing Connection Hold Time
If a distributed transaction fails, the connection from the local site to the remote site
may not close immediately. Instead, it remains open in case communication can be
restored quickly, without having to re-establish the connection. You can set the
length of time that the connection remains open with the database parameter
DISTRIBUTED_RECOVERY_CONNECTION_HOLD_TIME.

A high value minimizes the cost of reconnecting after failures, but causes the local
database to consume more resources. In contrast, a lower value minimizes the cost
of resources kept locked during a failure, but increases the cost of reconnecting after
failures. The default value of the parameter is 200 seconds. See the Oracle8i Reference
for more information.

Setting a Limit on Distributed Transactions
The database parameter DISTRIBUTED_TRANSACTIONS sets a maximum on the
number of distributed transactions in which a database can participate. You should
increase the value of this parameter if your database is part of many distributed
transactions. The default value is operating system-specific.

In contrast, if your site is experiencing an abnormally high number of network
failures, you can temporarily decrease the value of this parameter. Doing so limits
the number of in-doubt transactions in which your site takes part, and thereby
3-32 Oracle8i Distributed Database Systems

Testing Distributed Transaction Recovery Features
limits the amount of locked data at your site, and the number of in-doubt
transactions you might have to resolve.

For more information on this parameter, see the Oracle8i Reference.

Testing Distributed Transaction Recovery Features
If you like, you can force the failure of a distributed transaction to observe RECO,
automatically resolving the local portion of the transaction. Alternatively, you might
be interested in forcing a distributed transaction to fail so that you can practice
manually resolving in-doubt distributed transactions and observing the results.

The following sections describes the features available and the steps necessary to
perform such operations.

Forcing a Distributed Transaction to Fail
Comments can be included in the COMMENT parameter of the COMMIT
statement. To intentionally induce a failure during the two-phase commit phases of
a distributed transaction, include the following comment in the COMMENT
parameter:

COMMIT COMMENT ’ORA-2PC-CRASH-TEST-n’;

where n is one of the following integers:

For example, the following statement returns the following messages if the local
commit point strength is greater than the remote commit point strength and both
nodes are updated:

n Effect

1 Crash commit point site after collect

2 Crash non-commit point site after collect

3 Crash before prepare (non-commit point site)

4 Crash after prepare (non-commit point site)

5 Crash commit point site before commit

6 Crash commit point site after commit

7 Crash non-commit point site before commit

8 Crash non-commit point site after commit

9 Crash commit point site before forget

10 Crash non-commit point site before forget
Distributed Transactions 3-33

Testing Distributed Transaction Recovery Features
COMMIT COMMENT ’ORA-2PC-CRASH-TEST-7’;

ORA-02054: transaction #.##.## in-doubt
ORA-02059: ORA-CRASH-TEST-n in commit comment

At this point, the in-doubt distributed transaction appears in the DBA_2PC_
PENDING view. If enabled, RECO automatically resolves the transaction rather
quickly.

Privileges Required to Induce Two-Phase Commit Failures
You can induce two-phase commit failures via the previous comments only if the
local and remote sessions have the FORCE ANY TRANSACTION system privilege.
Otherwise, an error is returned if you attempt to issue a COMMIT statement with a
crash comment.

The Recoverer (RECO) Background Process
The RECO background process of an Oracle8i instance automatically resolves
failures involving distributed transactions. At exponentially growing time intervals,
the RECO background process of a node attempts to recover the local portion of an
in-doubt distributed transaction.

RECO can use an existing connection or establish a new connection to other nodes
involved in the failed transaction. When a connection is established, RECO
automatically resolves all in-doubt transactions. Rows corresponding to any
resolved in-doubt transactions are automatically removed from each database’s
pending transaction table.

Disabling and Enabling RECO
The recoverer background process, RECO, can be enabled and disabled using the
ALTER SYSTEM command with the ENABLE/DISABLE DISTRIBUTED
RECOVERY options, respectively. For example, you might want to temporarily
disable RECO to force the failure of a two-phase commit and manually resolve the
in-doubt transaction. The following statement disables RECO:

ALTER SYSTEM DISABLE DISTRIBUTED RECOVERY;

Alternatively, the following statement enables RECO so that in-doubt transactions
are automatically resolved:

ALTER SYSTEM ENABLE DISTRIBUTED RECOVERY;
3-34 Oracle8i Distributed Database Systems

Testing Distributed Transaction Recovery Features
Additional Information: See your Oracle operating system-specific documentation
for more information about distributed transaction recovery for single-process
instances.

Note: Single-process instances (for example, a PC running
MS-DOS) have no separate background processes, and therefore no
RECO process. Therefore, when a single-process instance that
participates in a distributed system is started, distributed recovery
must be manually enabled using the statement above.
Distributed Transactions 3-35

Testing Distributed Transaction Recovery Features
3-36 Oracle8i Distributed Database Systems

Distributed Database System Application Develop
4

Distributed Database System Application

Development

This chapter describes the special considerations that are necessary if you are
designing an application to run in a distributed database system. Oracle8i Concepts
describes how Oracle eliminates much of the need to design applications
specifically to work in a distributed environment.

The topics covered include:

■ Factors Affecting the Distribution of an Application’s Data

■ Controlling Connections Established by Database Links

■ Referential Integrity in a Distributed System

■ Distributed Queries

■ Handling Errors in Remote Procedures

The Oracle8i Administrator’s Guide provides a complete discussion of implementing
Oracle8i applications. This chapter provides information specific to development
for an Oracle8i distributed database environment. See also Oracle8i Application
Developer’s Guide - Fundamentals for more information about application development in
an Oracle environment.
ment 4-1

Factors Affecting the Distribution of an Application’s Data
Factors Affecting the Distribution of an Application’s Data
In a distributed database environment, you should coordinate with the database
administrator to determine the best location for the data. Some issues to consider
are:

■ number of transactions posted from each location

■ amount of data (portion of table) used by each node

■ performance characteristics and reliability of the network

■ speed of various nodes, capacities of disks

■ importance of a node or link when it is unavailable

■ need for referential integrity among tables

Controlling Connections Established by Database Links
When a global object name is referenced in a SQL statement or remote procedure
call, database links establish a connection to a session in the remote database on
behalf of the local user. The remote connection and session are only created if the
connection has not already been established previously for the local user session.

The connections and sessions established to remote databases persist for the
duration of the local user’s session, unless the application (or user) explicitly
terminates them. Terminating remote connections established using database links
is useful for disconnecting high cost connections (such as long distance phone
connections) that are no longer required by the application.

The application developer or user can close (terminate) a remote connection and
session using the ALTER SESSION command with the CLOSE DATABASE LINK
parameter. For example, assume you issue the following query:

SELECT * FROM emp@sales;
COMMIT;

The following statement terminates the session in the remote database pointed to by
the SALES database link:

ALTER SESSION CLOSE DATABASE LINK sales;

To close a database link connection in your user session, you must have the ALTER
SESSION system privilege.
4-2 Oracle8i Distributed Database Systems

Distributed Queries
Referential Integrity in a Distributed System
Oracle does not permit declarative referential integrity constraints to be defined
across nodes of a distributed system (that is, a declarative referential integrity
constraint on one table cannot specify a foreign key that references a primary or
unique key of a remote table). However, parent/child table relationships across
nodes can be maintained using triggers. For more information about triggers to
enforce referential integrity, see Oracle8i Concepts.

For example, assume that the child table is in the SALES database and the parent
table is in the HQ database. If the network connection between the two databases
fails, some DML statements against the child table (those that insert rows into the
child table or update a foreign key value in the child table) cannot proceed because
the referential integrity triggers must have access to the parent table in the HQ
database.

Distributed Queries
A distributed query is decomposed by the local Oracle into a corresponding
number of remote queries, which are sent to the remote nodes for execution. The
remote nodes execute the queries and send the results back to the local node. The
local node then performs any necessary post-processing and returns the results to
the user or application.

If a portion of a distributed statement fails, for example, due to an integrity
constraint violation, Oracle returns error number ORA-02055. Subsequent
statements or procedure calls return error number ORA-02067 until a rollback or
rollback to savepoint is issued.

Note: Before closing a database link, you must first close all
cursors that use the link and then end your current transaction if it
uses the link.

Note: If you decide to define referential integrity across the nodes
of a distributed database using triggers, be aware that network
failures can limit the accessibility of not only the parent table, but
also the child table.
Distributed Database System Application Development 4-3

Distributed Queries
You should design your application to check for any returned error messages that
indicate that a portion of the distributed update has failed. If you detect a failure,
you should rollback the entire transaction (or rollback to a savepoint) before
allowing the application to proceed.

Tuning Distributed Queries
The most effective way of optimizing your distributed queries is to access the
remote database(s) as little as possible and to retrieve only the required data.
Specifically, if you reference 5 remote tables from two different remote databases in
a distributed query and have a complex filter (e.g. WHERE r1.salary +
r2.salary > 50000), you can improve the performance of the query by
rewriting the query to access the remote databases once and to apply the filter at the
remote site (causing less data to be transferred to the query execution site).
Rewriting your query to access the remote database once is achieved by using
collocated inline views.

With the above information in mind, the following terms need to be defined:

■ Collocated: Two or more tables located in the same database.

■ Inline View: A SELECT statement that is substituted for a table in a parent
SELECT statement. The embedded SELECT statement (in bold) is an example of
an inline view:

SELECT e.empno, e.ename, d.deptno, d.dname
 FROM (SELECT empno, ename from emp@orc1.world) e, dept d;

■ Collocated Inline View: An inline view that selects data from multiple tables
from a single database only (reduces the amount of times that the remote
database is accessed, improving the performance of a distributed query).

Though you can write a distributed query in any fashion that you like, it is highly
recommended that you form your distributed query using collocated inline views
to increase the performance of your distributed query if possible.

Oracle’s cost based optimization can transparently rewrite many of your distributed
queries to take advantage of the performance gains offered by collocated inline
views.
4-4 Oracle8i Distributed Database Systems

Distributed Queries
Cost Based Optimization
In addition to rewriting your queries with collocated inline views, the cost based
optimization method will optimize your distributed queries according to the
gathered statistics of the referenced tables and the computations performed by the
optimizer. For example, cost based optimization will analyze the following query
(notice that it analyzes the query inside a CREATE TABLE statement):

CREATE TABLE AS (SELECT l.a, l.b, r1.c, r1.d, r1.e, r2.b, r2.c
 FROM local l, remote1 r1, remote2 r2
 WHERE l.c = r.c AND r1.c = r2.c AND r.e > 300);

and rewrite it as:

CREATE TABLE AS (SELECT l.a, l.b, v.c, v.d, v.e
 FROM (SELECT r1.c, r1.d, r1.e, r2.b, r2.c FROM remote1 r1, remote2 r2
 WHERE r1.c = r2.c AND r1.e > 300) v, local l
 WHERE l.c = r1.c);

The alias V is assigned to the inline view which can then be referenced as a table in
the above SELECT statement. Creating a collocated inline view reduces the amount
of queries performed at a remote site, thereby reducing costly network traffic.

Setup Cost Based Optimization
After you have set up your system to use cost based optimization to improve the
performance of your distributed queries (as well as other types of queries - see the
Oracle8i Tuning manual for more information), the operation will be transparent to
the user, that is the optimization will occur automatically when the query is issued.

You need to complete the following tasks to set up your system to take advantage of
Oracle’s optimizer:

■ Set Up Database Environment

■ Analyze Tables (to generate table statistics)

Set Up Environment To enable cost based optimization, the OPTIMIZER_MODE
parameter must be set to CHOOSE or COST. This parameter can be persistently set by
modifying the OPTIMZER_MODE parameter in the parameter file (INIT.ORA) or set
on a session-level by issuing an ALTER SESSION command.

See the Oracle8i Tuning manual for information on setting the OPTIMZER_MODE
parameter in the parameter file (INIT.ORA) file.
Distributed Database System Application Development 4-5

Distributed Queries
Issue the following ALTER SESSION statement to set the OPTIMIZER_MODE at the
session level (this setting will be valid for the current session only):

ALTER SESSION OPTIMIZER_MODE = CHOOSE;

or

ALTER SESSION OPTIMIZER_MODE = COST;

See the Oracle8i Tuning manual for more information on configuring your system to
use a cost based optimization method.

Analyze Tables In order for cost based optimization to select the most efficient path
for your query, you must provide accurate statistics for the tables involved in the
distributed query.

The easiest way to generate statistics for a table is to execute the ANALYZE
command. For example, if you reference the EMP and DEPT tables in your
distributed query, you would execute the following to generate the necessary
statistics:

ANALYZE TABLE emp COMPUTE STATISTICS;
ANALYZE TABLE dept COMPUTE STATISTICS;

See the Oracle8i SQL Reference book for additional information on using the
ANALYZE statement.

To generate statistics for more than one object at a time, see the "Generating
Statistics" section in the Oracle8i Tuning manual. Additionally, see the "Automated
Statistics Gathering" section in the Oracle8i Tuning manual to learn how to automate
the process of keeping your statistics current, thus improving the performance and
accuracy of cost based optimization.

Note: You must connect locally with respect to the tables to
execute the ANALYZE statement. You cannot execute the
following:

ANALYZE TABLE remote@remote.com COMPUTE STATISTICS;

You must first connect to the remote site and then execute the
above ANALYZE statement.
4-6 Oracle8i Distributed Database Systems

Distributed Queries
How Does Cost Based Optimization Work?
As illustrated in the introduction to "Tuning Distributed Queries", the optimizer’s
main task is to rewrite a distributed query to use collocated inline views. This
optimization is performed in three steps:

1. All Mergeable Views are Merged

2. Optimizer Performs Collocated Query Block Test

3. Optimizer Rewrites Query Using Collocated Inline Views

After the query is rewritten, it is executed and the data set is returned to the user.

Cost Based Optimization Restrictions While cost based optimization is performed
transparently to the user, there are several distributed query scenarios that cost
based optimization is not able improve the performance upon. Specifically, if your
distributed query contains any of the following, cost based optimization will not be
effective:

■ Aggregates

■ Subqueries

■ Complex SQL

If your distributed query contains one of the above, make sure you read the "Extend
Cost Based Optimization with Hints" section to learn how you can modify your
query and use hints to improve the performance of your distributed query.

Extend Cost Based Optimization with Hints
If you have a distributed query that the optimizer cannot handle (see "Cost Based
Optimization Restrictions"), you can use hints to extend the capability of cost based
optimization. Specifically, if you write your own query that utilizes collocated inline
views, you will want to instruct the CBO to not rewrite your distributed query.

Additionally, if you have special knowledge about the database environment (i.e.
statistics, load, network and CPU limitations, distributed queries, etc.), you can
specify a hint to guide cost based optimization.

For the purposes of optimizing distributed queries, you will provide hints based on
your knowledge of the distributed query. Specifically, if you have written your own
optimized query using collocated inline views that are based on your knowledge of
the database environment, specify the NO_MERGE hint to prevent the optimizer
from rewriting your query.
Distributed Database System Application Development 4-7

Distributed Queries
This technique is especially helpful if your distributed query contains an aggregate,
subquery, or complex SQL. Since this type of distributed query cannot be rewritten
by the optimizer, specifying NO_MERGE will cause the optimizer to skip the steps
described in the "How Does Cost Based Optimization Work?" section on page 4-7.

The DRIVING_SITE hint allows you to define a site that is remote to you to act as
the query execution site. This is especially helpful when the remote site contains the
majority of the data and the query will perform better if executed from that remote
site and the resultant data set returned to the local site.

NO_MERGE The NO_MERGE hint prevents Oracle from merging an inline view into a
potentially non-collocated SQL statement (see step 1 in the "How Does Cost Based
Optimization Work?" section on page 4-7). This hint is embedded in your SELECT
statement and can appear either at the beginning of the SELECT statement with the
inline view as an argument or in the query block that defines the inline view.

With Argument:

SELECT /*+NO_MERGE(v)*/ t1.x, v.avg_y
 FROM t1, (SELECT x, AVG(y) AS avg_y FROM t2 GROUP BY x) v,
 WHERE t1.x = v.x AND t1.y = 1;

In Query Block

SELECT t1.x, v.avg_y
 FROM t1, (SELECT /*+NO_MERGE*/ x, AVG(y) AS avg_y FROM t2 GROUP BY x) v,
 WHERE t1.x = v.x AND t1.y = 1;

You will most likely use this hint if you have developed an optimized query based
on your knowledge of your database environment. For more information, see the
NO_MERGE hint in the Oracle8i Tuning manual.

DRIVING_SITE The DRIVING_SITE hint allows you to specify the site where the
query execution is performed. It is highly recommended that you let the cost based
optimization determine where the execution should be performed, but if you want
to override the optimizer (either because your statistics are stale or performance on
a particular machine has been severely degraded), you can specify the execution site
with the DRIVING_SITE hint. A SELECT statement with a DRIVING_SITE hint
might look like:

SELECT /*+DRIVING_SITE(dept)*/ * FROM emp, dept@remote.com
 WHERE emp.deptno = dept.deptno;

For more information, see DRIVING_SITE in the Oracle8i Tuning manual. For more
information about tuning distributed queries, see "Tuning Distributed Queries" on
page 4-4 and Oracle8i Tuning.
4-8 Oracle8i Distributed Database Systems

Distributed Queries
Verifying Optimization
An important aspect to tuning your distributed queries is to analyze the execution
plan for a query. The feedback that you receive from your analysis is an important
element to testing and verifying your database. This verification is increasingly
important when you want to compare the execution plan for a distributed query
that is optimized by cost based optimization versus the execution plan for a
distributed query that you manually optimize (using hints, defining collocated
inline views, etc.). See the Oracle8i Tuning manual for detailed information about
execution plans, the EXPLAIN PLAN command, and how to interpret the results.

Prepare Database
Before you can view the execution plan for you distributed query, you must prepare
you database to store the execution plan. This preparation is easily performed by
executing a script; complete the following to prepare your database to store an
execution plan:

@utlxplan.sql

After you execute the UTLXPLAN.SQL file, a PLAN_TABLE will be created in the
current schema to temporarily store the execution plan.

Generate Execution Plan
Once you have prepared your database to store the execution plan, you are ready to
view the execution plan for a specified query. Instead of directly executing the SQL
statement, you append the statement with the EXPLAIN PLAN FOR clause. For
example, you might execute the following:

EXPLAIN PLAN FOR
 SELECT d.dname FROM dept d
 WHERE d.deptno IN
 (SELECT deptno FROM emp@orc2.world
 GROUP BY deptno
 HAVING COUNT (deptno) >3);

Note: The location of the UTLXPLAN.SQL file depends on your
operating system.
Distributed Database System Application Development 4-9

Distributed Queries
View Execution Plan
After you have executed the above SQL statement, the execution plan will be stored
temporarily in the PLAN_TABLE that you created earlier. To view the results of the
execution plan, execute the following script:

@utlxpls.sql

Executing the UTLXPLS.SQL file will display the execution plan for the SELECT
statement that you specified. Your results will be formatted like the following:

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT						
NESTED LOOPS						
VIEW						
REMOTE						
TABLE ACCESS BY INDEX RO	DEPT					
INDEX UNIQUE SCAN	PK_DEPT					
--

If you are manually optimizing your distributed queries by writing your own
collocated inline views and/or using hints, you are advised to generate an
execution plan before and after your manual optimization. With both execution
plans, you can compare the effectiveness of your manual optimization and make
changes to your optimization as necessary to improve the performance of your
distributed query.

If you want to view the SQL statement that will be executed at the remote site,
execute the following select statement:

SELECT other FROM plan_table WHERE operation = ’REMOTE’;

Your output might look like the following:

SELECT DISTINCT "A1"."DEPTNO" FROM "EMP" "A1"
 GROUP BY "A1"."DEPTNO" HAVING COUNT("A1"."DEPTNO")>3

Note: The location of the UTLXPLS.SQL file depends on your
operating system.
4-10 Oracle8i Distributed Database Systems

Handling Errors in Remote Procedures
Handling Errors in Remote Procedures
When a procedure is executed locally or at a remote location, four types of
exceptions can occur:

■ PL/SQL user-defined exceptions, which must be declared using the keyword
EXCEPTION.

■ PL/SQL predefined exceptions, such as NO_DATA_FOUND keyword.

■ SQL errors, such as ORA-00900 and ORA-02015.

■ Application exceptions, which are generated using the RAISE_APPLICATION_
ERROR() procedure.

When using local procedures, all of these messages can be trapped by writing an
exception handler, such as shown in the following example:

BEGIN
 ...
EXCEPTION
 WHEN ZERO_DIVIDE THEN
 /* ...handle the exception */
END;

Notice that the WHEN clause requires an exception name. If the exception that is
raised does not have a name, such as those generated with RAISE_APPLICATION_
ERROR, one can be assigned using PRAGMA_EXCEPTION_INIT, as shown in the
following example:

DECLARE
 null_salary EXCEPTION;
 PRAGMA EXCEPTION_INIT(null_salary, -20101);
BEGIN
 ...
 RAISE_APPLICATION_ERROR(-20101, ’salary is missing’);
...
EXCEPTION
 WHEN null_salary THEN
 ...
END;

Note: If you are having difficulty viewing the entire contents of
the OTHER column, you may need to execute the following:

SET LONG 9999999
Distributed Database System Application Development 4-11

Handling Errors in Remote Procedures
When calling a remote procedure, exceptions can be handled by an exception
handler in the local procedure. The remote procedure must return an error number
to the local, calling procedure, which then handles the exception as shown in the
previous example. Note that PL/SQL user-defined exceptions always return
ORA-06510 to the local procedure.

Therefore, it is not possible to distinguish between two different user-defined
exceptions based on the error number. All other remote exceptions can be handled
in the same manner as local exceptions.
4-12 Oracle8i Distributed Database Systems

Part II

 Heterogeneous Services

Understanding Oracle Heterogeneous Se
5

Understanding Oracle Heterogeneous

Services

This chapter describes the basic concepts of the Oracle Heterogeneous Services.
Topics include:

■ What is Heterogeneous Services?

■ The Services provided by Heterogeneous Services

■ Using Heterogeneous Services

For information about features new to the current Oracle8i release, please see
Getting to Know Oracle8i.
rvices 5-1

What is Heterogeneous Services?
What is Heterogeneous Services?
Heterogeneous Services is an integrated component within the Oracle8i server, and
provides the generic technology for accessing non-Oracle systems from the Oracle
server. Heterogeneous Services enables you to:

■ Use Oracle SQL to transparently access data stored in non-Oracle systems as if
the data resides within an Oracle server.

■ Use Oracle procedure calls to transparently access non-Oracle systems, services,
or application programming interfaces (APIs), from your Oracle distributed
environment.

To access a particular non-Oracle system, you will need a complementary
Heterogeneous Services agent.

Heterogeneous Services Agents
While Heterogeneous Services provides the generic technology in the Oracle8i
server, a Heterogeneous Services agent is required to access a particular non-Oracle
system. Oracle Corporation will provide Heterogeneous Services agents in the form
of Oracle Open Gateways version 8 and higher.

Oracle Open Gateways is one family of products that will use the Heterogeneous
Services. Other products that are based on Heterogeneous Services are being
developed. These products, developed by Oracle or third-parties, may not be part of
the Oracle Open Gateways family of products. We use the phrase "Heterogeneous
Services agents" to denote all products that are based on Heterogeneous Services,
including Oracle Open Gateways.

The Services provided by Heterogeneous Services
Heterogeneous Services provides three services:

■ Transaction service

■ SQL service

■ Procedural service

Note: The phrase "non-Oracle system" denotes both non-Oracle
datastores (or databases) that are accessed using SQL, and systems
that are accessed procedurally.
5-2 Oracle8i Distributed Database Systems

The Services provided by Heterogeneous Services
Transaction Service
The transaction service allows non-Oracle systems to be integrated into Oracle
transactions and sessions. Users transparently set up an authenticated (i.e.
username and password) session in the non-Oracle system when it is accessed for
the first time over a database link within an Oracle user session. At the end of the
Oracle user session, the session is transparently closed at the non-Oracle system.
Additionally, one or more non-Oracle systems can participate in an Oracle
distributed transaction. When an application commits a transaction, Oracle’s
two-phase commit protocol will access the non-Oracle system to transparently
coordinate the distributed transaction. In fact, the Oracle server will support
distributed transaction with the non-Oracle system, even if the non-Oracle system
itself does not support two-phase commit.

Both the SQL service and procedural service use the Transaction service. Oracle’s
object transaction service will use agents that only implement the transaction
service.

See "Views for the Transaction Service" on page 6-9 for more information on
heterogeneous distributed transactions.

SQL Service
The SQL service is used to transparently access the non-Oracle system using SQL. If
an application’s SQL request requires data from a non-Oracle system,
Heterogeneous Services translates the Oracle SQL request into an equivalent SQL
request understood by the non-Oracle system, accesses the non-Oracle data, and
makes the data available to the Oracle server for (post) processing.

The SQL service provides capabilities to:

■ transform Oracle’s SQL into a SQL dialect understood by the non-Oracle system

■ transform SQL requests on Oracle’s data dictionary tables to requests on the
non-Oracle system’s data dictionary

■ map non-Oracle system datatypes onto Oracle’s datatypes

Procedural Service
Heterogeneous Services enable users to access any procedural non-Oracle system,
such as messaging and queuing systems, from an Oracle8i server. The non-Oracle
system is called from the Oracle server using a PL/SQL remote procedure call
(RPC). Heterogeneous Services translates the PL/SQL call into a procedure or
function of the non-Oracle system.
Understanding Oracle Heterogeneous Services 5-3

Using Heterogeneous Services
With the procedural service you can create distributed external procedures, that
enable you to call third generation language (3GL) routines from PL/SQL. Like
PL/SQL external procedures, the distributed external procedure maps PL/SQL
procedure and function names and arguments onto 3GL routine names and their
arguments. Both external procedures and distributed external procedures use the
same mechanisms to call 3GL routines from PL/SQL. External procedures are
designed to perform special purpose tasks that are local to the Oracle8i server,
whereas distributed external procedures are designed to access non-Oracle systems.
The primary differences between distributed external procedures and external
procedures are:

■ distributed external procedures enable the Oracle8i server to start authenticated
sessions at the non-Oracle system and to coordinate a distributed transaction
with the non-Oracle system

■ distributed external procedures are considered to run on remote systems, and
are therefore invoked through database link

PL/SQL external procedures, are covered in the PL/SQL User’s Guide and Reference.

Using Heterogeneous Services
Heterogeneous Services makes a non-Oracle system appear to be a remote Oracle
server. To access or manipulate tables or to execute procedures in the non-Oracle
system, you simply create a database link. Tables and procedures at the non-Oracle
system can be accessed by qualifying the tables and procedures with the database
link. This is identical to accessing tables and procedures at a remote Oracle server.

If a non-Oracle system is referenced, Heterogeneous Services will translate the SQL
statement or PL/SQL remote procedure call into the appropriate statement at the
non-Oracle system.

Consider the following example that accesses a non-Oracle system through a
database link:

SELECT *
FROM EMP@non_Oracle_system;

Heterogeneous Services will translate the Oracle SQL statement into the SQL dialect
and execute the SQL statement at the non-Oracle system.
5-4 Oracle8i Distributed Database Systems

Using Heterogeneous Services
Heterogeneous Services Process Architecture
An agent is required to access a particular non-Oracle system from an Oracle8i
server. The Oracle server communicates with the agent. The agent communicates
with a particular non-Oracle system.

As shown in Figure 5–1, agents can reside on the same machine as the non-Oracle
system but are not required to. The agent can also reside on the same machine as
the Oracle8i server, or it can even reside on a third machine. The agent must be
accessible by the Oracle8i server through Net8, and the agent must be able to access
the non-Oracle system using a non-Oracle system-specific communication
mechanism.

When a user session accesses a non-Oracle system through a database link on the
Oracle8i server, a Net8 Listener starts an agent process. This agent process remains
running, until the user session is disconnected, or until the database link is
explicitly closed.

Figure 5–1 Accessing Heterogeneous Non-Oracle Systems

Client
Application

O
ra

cl
e8

 S
er

ve
r

N
o

n
-O

ra
cl

e
S

ys
te

m
 "

X
"

A
ge

nt
Understanding Oracle Heterogeneous Services 5-5

Using Heterogeneous Services
Process Architecture for Distributed External Procedures
Distributed external procedures map PL/SQL procedures onto remote 3GL routines
that reside in a dynamic linked library (DLL). Whenever a distributed external
procedure is executed, the agent will load the operating system dynamic linked
library that contains the 3GL routine into the agent process, map the PL/SQL
procedure onto the 3GL routine, and invoke the 3GL routine. After the 3GL routine
finishes processing, the arguments and return values are passed back to the calling
PL/SQL program. See Figure 5–2.

To access a non-Oracle system using a distributed external procedure , you need an
agent specifically designed for that non-Oracle system . The agent contains
non-Oracle system-specific code which sets up a session at the non-Oracle system,
and integrates the transactions performed at non-Oracle system by the distributed
external procedure into an Oracle distributed transaction.

Figure 5–2 Oracle8i, Agents and Dynamic Libraries

Note: On some platforms, dynamic linked libraries are referred to
as shared libraries.

Client
Application

O
ra

cl
e8

 S
er

ve
r

DLL

A
ge

nt

N
o

n
-O

ra
cl

e
S

ys
te

m

DLL = Dynamic Linked Library
5-6 Oracle8i Distributed Database Systems

Using Heterogeneous Services
For example, you have an agent that provides access to a queuing system. To put a
message into the queue, an Oracle application issues the following statement:

SQL> EXECUTE enqueue@queuing_system(’We are out of stock’);
SQL> COMMIT;

The enqueue procedure resides in a dynamic linked library. When you execute the
statement above, the Net8 listener spawns the agent process. The agent process
loads the DLL containing the enqueue procedure, and executes the enqueue
procedure to put a message in the queuing system. When you COMMIT the
transaction, the agent will ask the queuing system, on behalf of the Oracle server, to
commit the transaction.

The agent process continues running for the duration of the Oracle user session, or
until you close the database link explicitly by using the "ALTER SESSION CLOSE
DATABASE LINK queing_system" command.
Understanding Oracle Heterogeneous Services 5-7

Using Heterogeneous Services
5-8 Oracle8i Distributed Database Systems

Administering Oracle Heterogeneous Se
6

Administering Oracle Heterogeneous

Services

This chapter describes database administration tasks required to maintain a
heterogeneous distributed environment. Topics include:

■ Setting up access to Non-Oracle Systems

■ Structure of the Heterogeneous Services Data Dictionary

■ The Data Dictionary Views

■ The DBMS_HS Package (setting initialization parameters)

■ Security for Distributed External Procedures

■ Agent Self-Registration
rvices 6-1

Setting up access to Non-Oracle Systems
Setting up access to Non-Oracle Systems
This section explains the generic steps to configure access to a non-Oracle system.
Please see your Installation and User’s Guide for your particular agent for more
installation information. Configuring your particular agent might slightly differ
from what is presented in this section.

The steps are:

1. Install the Heterogeneous Services Data Dictionary

2. Set up your environment to access Heterogeneous Services agents

3. Create the database link to the non-Oracle system

4. Test the connection

5. Optionally, register distributed external procedures

Install the Heterogeneous Services Data Dictionary
To install the data dictionary tables and views for Heterogeneous Services, you
must run a script that creates all the Heterogeneous Services data dictionary tables,
views, and packages. On most systems the script is called CATHS.SQL, and resides
in $ORACLE_HOME/rdbms/admin.

 Set Up Environment to Access Heterogeneous Services Agents
To initiate a connection to the non-Oracle system, the Oracle8i server starts an agent
process through the Net8 listener. For the Oracle8i server to be able to connect to the
agent, you must:

1. Set up a Net8 service name for the agent that can be used by the Oracle8i server.
The Net8 service name descriptor will include protocol-specific information
needed to access the Net8 listener. The service name descriptor must include
the (HS=OK) clause to make sure the connection uses Oracle8i Heterogeneous
Services.

Note: The data dictionary tables, views and packages might
already be installed on your Oracle8i server. You can confirm this
by checking for the existence of Heterogeneous Services data
dictionary views, for example SYS.HS_FDS_CLASS.
6-2 Oracle8i Distributed Database Systems

Setting up access to Non-Oracle Systems
2. The listener must be set up to listen for incoming request from the Oracle8i
server, and spawn Heterogeneous Services agents. The listener.ora file must be
modified to set up the listener to start Heterogeneous Services agents, and the
listener must be (re-)started.

A Sample Descriptor for a Net8 Service Name
The following is a sample entry for the service name in the tnsnames.ora:

MegaBase6_sales= (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)
 (HOST=dlsun206)
 (PORT=1521))

 (CONNECT_DATA = (SID=SalesDB))

 (HS = OK))

The description of this service name is defined in tnsnames.ora, the Oracle Names
server, or in third-party nameservers using the Oracle naming adapter. See the
Installation and User’s Guide for your agent for more information about how to
define the Net8 service name.

A Sample Entry in LISTENER.ORA
The following is a sample entry for the listener in listener.ora:

LISTENER =
 (ADDRESS_LIST =
 (ADDRESS= (PROTOCOL=tcp)
 (HOST = dlsun206)
 (PORT = 1521)
)
)
...
SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC = (SID_NAME=SalesDB)
 (ORACLE_HOME=/home/oracle/megabase/8.1.3)
 (PROGRAM=tg4mb80)
)
)

The value associated with PROGRAM keyword defines the name of the agent
executable. The agent executable must reside in the $ORACLE_HOME/bin
directory. The SID_NAME is typically used to define the initialization parameter file
for the agent.
Administering Oracle Heterogeneous Services 6-3

Setting up access to Non-Oracle Systems
Create the Database Link to the Non-Oracle System
To create a database link to the non-Oracle system, you just use the CREATE
DATABASE LINK command to create private or public database links.

The service name that is used in the USING clause of the CREATE DATABASE LINK
command is the Net8 service name.

For example, to create a database link to the Sales database on an MegaBase release
6 server, you could create database link as follows:

CREATE DATABASE LINK salesdb
USING ‘MegaBase6_sales’;

See Also: For more information on creating database links, see Chapter 2,
"Distributed Database Administration".

Test the Connection
To test the connection to the non-Oracle system, you can use the database link in a
SQL or PL/SQL statement. If the non-Oracle system is a SQL-based database, you
can execute a select from an existing table or view using the database link, for
example::

SELECT *
FROM product@salesdb
WHERE product_name like '%pencil%';

When you try to access the non-Oracle system for the first time, the Heterogeneous
Services agent will upload information into the Heterogeneous Services data
dictionary. The uploaded information includes:

■ Capabilities of the non-Oracle system: The agent specifies the capabilities of
the non-Oracle system. For example, whether it can perform a join, or a GROUP
BY.

■ SQL Translation information: The agent specifies how to translate Oracle
functions and operators into functions and operators of the non-Oracle system.

■ Data Dictionary translations: To make the data dictionary information of the
non-Oracle system available just as if it were an Oracle data dictionary, the
agent specifies how to translate Oracle data dictionary tables into tables and
views of the non-Oracle system.
6-4 Oracle8i Distributed Database Systems

Structure of the Heterogeneous Services Data Dictionary
Register Distributed External Procedures (Optional)
This step is only required for agents that support distributed external procedures.
Distributed external procedures enable users to procedurally access a non-Oracle
system. If the agent vendor created distributed external procedures, they will
provide a script or installer to register those distributed external procedures in the
Oracle8i server.

If you use distributed external procedures to access the non-Oracle system, use a
PL/SQL remote procedure call to execute the remote procedure:

execute foo@non_oracle_system(1,2,3)
procedure successfully completed.

Structure of the Heterogeneous Services Data Dictionary
Each non-Oracle system you access from an Oracle8i server is considered a
non-Oracle system instance and class. You can access multiple non-Oracle systems
from the same Oracle8i server. See Figure 6–1.

Note: Most agents will upload information into the Oracle8i data
dictionary automatically the first time they are accessed. However,
some agent vendors may provide scripts that you must run at the
Oracle8i server.

Note: You typically do not need distributed external procedures to
execute stored procedures in the non-Oracle system.

Note: See the Installation and User’s Guide for your agent for more
information on how to register distributed external procedures. The
distributed external procedures that can be executed at the
non-Oracle system are defined by the agent vendor. See the
Installation and User's Guide for your agent for a list of procedures
that can be executed.
Administering Oracle Heterogeneous Services 6-5

Structure of the Heterogeneous Services Data Dictionary
The Oracle8i server must know the non-Oracle system capabilities (SQL
translations, data dictionary translations) for each non-Oracle system that it
accesses. This information is stored in the Oracle8i data dictionary.

Figure 6–1 Instances

If this information were stored separately for each non-Oracle systems you access,
the amount of stored data dictionary information could become large and
sometimes redundant. For example, when you must access three non-Oracle

Client
Application

Instance

InstanceO
ra

cl
e8

 S
er

ve
r

N
o

n
-O

ra
cl

e
 S

ys
te

m
 "

Y
"

A
ge

nt

N
o

n
-O

ra
cl

e
S

ys
te

m
 "

X
"

A
ge

nt
6-6 Oracle8i Distributed Database Systems

The Data Dictionary Views
system instances of the same type, the same capabilities, SQL translations and data
dictionary translations are stored.

To avoid unnecessary redundancy, this information is organized by classes and
instances in the data dictionary. A class defines a type of non-Oracle system, an
instance defines specializations of a class for a specific non-Oracle system. Note that
instance information takes precedence over class information and class information
takes precedence over server supplied defaults.

If you access multiple non-Oracle systems of the same class (type), you may want to
set certain information, like initialization parameters, at the instance level.
Heterogeneous Services stores both class and instance information. Multiple
instances can share the same class information, but each non-Oracle system instance
will have its own instance information.

Consider an example where the Oracle8i server accesses three instances of type
Megabase release 5, and two instances of Megabase release 6. Suppose Megabase
release 5 and Megabase release 6 have different capabilities. The data dictionary will
contain two class definitions, one for release 5 and one for release 6, and 5 instance
definitions.

The Data Dictionary Views
The Heterogeneous Services data dictionary views, contain information about:

■ Names of instances and classes uploaded into the Oracle8i data dictionary. You
can view the uploaded class and instance information through the HS_FDS_
CLASS view and HS_FDS_INST view respectively.

■ Capabilities, including SQL translations, defined per class or instance.
Capability information is viewable through the HS_..._CAPS views.

■ Data Dictionary translations defined per class or instance. Data dictionary
translation information is viewable through the HS_..._DD views.

■ Initialization parameters are defined per class or instance. Initialization
parameter information is viewable through the HS_...INIT views.

■ Distributed external procedures that can be accessed from the Oracle8i server
Administering Oracle Heterogeneous Services 6-7

The Data Dictionary Views
Table 6–1 Data Dictionary Views for Heterogeneous Services.

The views can be divided into four groups:

■ General views

■ Views used for the transaction service

■ Views used for the SQL service

■ Views used for the procedural service

Most of the data dictionary views are defined for both classes and instances.
Consequently, for most types of information there is a "..._CLASS" and a "..._INST"
view defined.

See Also: "Structure of the Heterogeneous Services Data Dictionary" on page 6-5 for
more information about classes and instances.

View Name Description

HS_FDS_CLASS View identifies classes accessible from this
Oracle8i server

HS_FDS_INST View identifies instances accessible from
this Oracle8i server

HS_CLASS_INIT View identifies initialization parameters for
each class

HS_INST_INIT View identifies initialization parameters for
each instance

HS_BASE_DD View identifies all data dictionary
translation tablenames supported by
Heterogeneous Services

HS_CLASS_DD View identifies data dictionary translations
for each class

HS_INST_DD View identifies data dictionary translations
for each instance

HS_BASE_CAPS View identifies all capabilities supported by
Heterogeneous Services

HS_CLASS_CAPS View identifies capabilities for each class

HS_INST_CAPS View identifies capabilities for each instance

HS_EXTERNAL_OBJECTS View provides information about
distributed external procedures and their
associated libraries
6-8 Oracle8i Distributed Database Systems

The Data Dictionary Views
Like all Oracle data dictionary tables, these views are read only; do not use SQL to
change the content of any of the underlying tables. To make changes to any of the
underlying tables, you must use the procedures available in the package “DBMS_
HS”. See "The DBMS_HS Package" on page 6-13 for more information.

See Also : The Oracle8i Reference for more detailed information about these views

General Data Dictionary Views for Heterogeneous Services
The views that are common for all services are the views that contain:

■ Names of the instances and classes that are uploaded into the Oracle8i data
dictionary. The uploaded class and instance names can be viewed through the
HS_FDS_CLASS view and HS_FDS_INST view respectively.

■ Information about the Heterogeneous Services initialization parameters. This
information can be viewed through the HS_CLASS_INIT, and HS_INST_INIT
views.

For example, you can access both MegaBase release 5 and release 6 from an Oracle8i
server. After accessing the agent(s) for the first time, uploaded information in the
Oracle8i server could look like:

select * from hs_fds_class;

FDS_CLASS_NAME FDS_CLASS_COMMENTS FDS_CLASS_ID
--------------------- ------------------------------ ------------
MegaBase5 Uses ODBC HS driver, R1.0 1
MegaBase6 Uses ODBC HS driver, R1.0 21

Two classes are uploaded. One class to access MegaBase release 5 servers, and one
class to access MegaBase release 6 servers. The data dictionary in the Oracle8i server
now contains capability information, SQL translations and data dictionary
translations for both MegaBase5 and MegaBase6.

In addition to this information, the Oracle8i server data dictionary also contains
instance information in the HS_FDS_INST view for each non-Oracle system
instance that is accessed.

 Views for the Transaction Service
When a non-Oracle system is involved in a distributed transaction, the transaction
capabilities of the non-Oracle system (and agent) control whether it can participate
in distributed transactions. Transaction capabilities are stored in the HS_CLASS_
CAPS and HS_INST_CAPS capability tables.
Administering Oracle Heterogeneous Services 6-9

The Data Dictionary Views
The ability of the non-Oracle system (and agent) to support two-phase commit
protocols is specified by the "2PC type" capability which can specify one of the
following five types.

The transaction model supported by the driver and non-Oracle system can be
queried from Heterogeneous Services’ data dictionary views HS_CLASS_CAPS and
HS_INST_CAPS.

One of the capabilities is “2PC type”:

SELECT cap_description, translation
FROM hs_class_caps
WHERE cap_description LIKE ’2PC%’
AND fds_class_name=‘MegaBase6’;

CAP_DESCRIPTION TRANSLATION
-- -----------
2PC type (RO-SS-CC-PREP/2P-2PCC) CC

When the non-Oracle system and agent supports distributed transactions, the
non-Oracle system is treated like any other Oracle8i server. When a failure occurs

Read-only
(RO)

The non-Oracle system can only be queried with SQL
SELECT statements. Procedure calls are not allowed since
procedure calls are assumed to write data.

Single-Site (SS) The non-Oracle system can handle remote transactions but
not distributed transactions. That is, it can not participate
in the two-phase commit protocol.

Commit

Confirm (CC)

The non-Oracle system can participate in distributed
transactions. It can participate in Oracle’s two-phase
commit protocol but only as Commit Point Site. That is, it
can not prepare data, but it can remember the outcome of a
particular transaction if asked to by the global coordinator.

Two-Phase
Commit

The non-Oracle system can participate in distributed
transactions. It can participate in Oracle’s two-phase
commit protocol, as a regular two-phase commit node, but
not as a Commit Point Site. That is, it can prepare data, but
it can not remember the outcome of a particular transaction
if asked to by the global coordinator.

Two-Phase
Commit

Confirm

The non-Oracle system can participate in distributed
transactions. It can participate in Oracle’s two-phase
commit protocol as a regular two-phase commit node or as
the Commit Point Site. That is, it can prepare data and it
can remember the outcome of a particular transaction if
asked to by the global coordinator.
6-10 Oracle8i Distributed Database Systems

The Data Dictionary Views
during the two-phase commit protocol, the transaction will be recovered
automatically. If the failure persists, the in-doubt transaction might need to be
manually overridden by the database administrator. See Chapter 3, "Distributed
Transactions" for more information about distributed transactions.

Transactions with Distributed External Procedures
For distributed external procedures it is unknown whether it will make changes to
data at the non-Oracle system. To ensure the consistency of the heterogeneous
distributed database, Oracle will assume that the distributed external procedure
updates the non-Oracle system.

Accordingly, the distributed external procedure will participate in the remote or
distributed transaction, depending on whether it is the only node that was accessed
or whether other nodes were accessed as well. Therefore, to use a distributed
external procedure, the agent must at least support the "Single-Site" transaction
model.

Views for the SQL Service
Data dictionary views that are specific for the SQL service, contain information
about:

■ SQL capabilities and SQL translations of the non-Oracle data source

■ Data Dictionary translations to map Oracle data dictionary views to the data
dictionary of the non-Oracle system.

Views for Capabilities and Translations
The HS_..._CAPS data dictionary tables contain information about the SQL
capabilities of the non-Oracle data source and necessary SQL translations.

HS_..CAPS specifies whether the non-Oracle data store or the Oracle server
implements certain SQL language features. If a capability is turned off, Oracle8i
does not send any SQL statements to the non-Oracle data source that require that
particular capability but it can still do post-processing.

Views for Data Dictionary Translations
In order to make the non-Oracle system appear as an Oracle8i server, the
non-Oracle system data dictionary can be queried just as if it were an Oracle data
dictionary. Data Dictionary translations that are defined make this possible. These
translations are stored in the HS_..._DD views.
Administering Oracle Heterogeneous Services 6-11

The Data Dictionary Views
For example, the following SELECT statement will be transformed into a MegaBase
query that retrieves information about EMP tables from the MegaBase data
dictionary table:

SELECT *
FROM USER_TABLES@salesdb
WHERE UPPER(TABLE_NAME)=’EMP’;

Data dictionary tables can be “mimicked” instead of “translated”. If a data
dictionary translation is not possible, simply because the non-Oracle data source
does not have the required information stored its data dictionary, Heterogeneous
Services causes it to appear as if the data dictionary table is available, but the table
contains no information.

To retrieve information for which Oracle8i data dictionary views and/or tables are
translated or mimicked for the non-Oracle system, you issue the following query on
the HS_CLASS_DD or HS_INST_DD views view:

SELECT DD_TABLE_NAME, TRANSLATION_TYPE
FROM HS_CLASS_DD
WHERE FDS_CLASS_NAME=‘MegaBase6’;

DD_TABLE_NAME T
----------------------------- -
ALL_ARGUMENTS M
ALL_CATALOG T
ALL_CLUSTERS T
ALL_CLUSTER_HASH_EXPRESSIONS M
ALL_COLL_TYPES M
ALL_COL_COMMENTS T
ALL_COL_PRIVS M
ALL_COL_PRIVS_MADE M
ALL_COL_PRIVS_RECD M
...

The translation type ‘T’ specifies that a translation exists. When the translation type
is ‘M’, the data dictionary table is mimicked.

Views for Distributed External Procedures
Distributed external procedures and remote libraries are administered in the
Oracle8i server. The agent vendor will provide scripts to register distributed
external procedures and their libraries. Information about these registered
procedures and libraries are stored in the HS_EXTERNAL_OBJECTS data
dictionary view. The information includes:
6-12 Oracle8i Distributed Database Systems

The DBMS_HS Package
■ The name of the distributed external procedure or remote library

■ A PL/SQL prototype that gives information on the 3GL routine, including its
name, its arguments, and library name.

■ The instance name of the non-Oracle system the distributed external procedure
logically resides.

The DBMS_HS Package
The DBMS_HS package contains functions and procedures for application
developers and database administrators to set and unset Heterogeneous Services
initialization parameters, capabilities, instance names, class names, etc.

See Appendix B, "DBMS_HS Package Reference" for a reference listing off all
DBMS_HS package interface information for administering Heterogeneous Services

Setting Initialization Parameters
Initialization parameters can be set either in the Oracle8i server or in the
Heterogeneous Services agent. To set initialization parameters in the Oracle8i
server, you must use the DBMS_HS package. Please see the installation and user’s
guide for your particular agent for more information. If the same initialization
parameter is set both in the agent and the Oracle8i server, the value of initialization
parameter in the Oracle8i server will take precedence.

There are two types of initialization parameters:

■ generic initialization parameters

■ non-Oracle data store class-specific initialization parameters

Generic initialization parameters are defined by Heterogeneous Services. See
Appendix A, "Heterogeneous Services Initialization Parameters" for more
information on generic initialization parameters.

Non-Oracle data store class-specific initialization parameters are defined by the
agent vendor. Some non-Oracle data store class-specific initialization parameters
may be mandatory. For example, an initialization parameter may include
connection information required to connect to a non-Oracle system. Non-Oracle
data store class-specific parameters are documented in the installation and user’s
guide for your agent.
Administering Oracle Heterogeneous Services 6-13

Security for Distributed External Procedures
Both generic and non-Oracle data store class-specific HS initialization parameters
can be set in the Oracle server using the CREATE_INST_INIT procedure in the
DBMS_HS package.

For example, you set the HS_DB_DOMAIN initialization parameter as follows

DBMS_HS.CREATE_INST_INIT
 (FDS_INST_NAME => ‘SalesDB’,
 FDS_CLASS_NAME => ‘MegaBase6’,
 INIT_VALUE_NAME => ‘HS_DB_DOMAIN’,
 INIT_VALUE => ‘US.SALES.COM’);

See Also: See Appendix A, "Heterogeneous Services Initialization Parameters" for
more information on initialization parameters.

Unsetting Initialization Parameters
To unset a Heterogenous Services initialization parameter in the Oracle8i server,
you must use the DROP_INST_INIT procedure. For example, to delete the HS_DB_
DOMAIN entry:

DBMS_HS.DROP_INST_INIT
 (FDS_INST_NAME => ‘SalesDB’,
 FDS_CLASS_NAME => ‘MegaBase6’,
 INIT_VALUE_NAME => ‘HS_DB_DOMAIN’);

Security for Distributed External Procedures
Please see the agent-specific documentation on how to control execute privileges on
distributed external procedures.

Agent Self-Registration
Agent self-registration automates the process of updating Hetergeneous Services
configuration data describing agents on remote hosts, to ensure correct operation
over heterogeneous database links. Note that agent self-registration is default
behavior. If you do not want to use the agent self-registration feature, you must set
the value of the Oracle initialization parameter HS_AUTOREGISTER to false. See
"Oracle Server Initialization Parameter HS_AUTOREGISTER" on page 6-17 for more
information.

Note: See Appendix B, "DBMS_HS Package Reference" for a full
description of the DBMS_HS package.
6-14 Oracle8i Distributed Database Systems

Agent Self-Registration
Both the server and the agent rely on three types of information to configure and
control operation of the HS connection:

■ HS initialization parameters: these parameters provide control over various
connection-specific details of operation.

■ Capability definitions: these definitions identify details like SQL language
features supported by the non-Oracle datasource.

■ Data dictionary translations: these translations map references to Oracle data
dictionary tables and views into equivalents specific to the non-Oracle data
source.

This document refers to these three sets of information collectively as HS
configuration data.

Advantages of Agent Self-Registration
HS configuration data (that you specify using the DBMS_HS_ADMIN package
discussed in the previous section) is stored in the Oracle server’s data dictionary.
Because the agent may likely be remote, and may therefore be administered
separately, several circumstances could lead to configuration mismatches between
servers and agents:

■ An agent could be newly installed on a separate machine and the server would
have no HS data dictionary content to represent the agent’s HS configuration
data.

■ A server could be newly installed and lack the necessary HS configuration data
for existing agents and non-Oracle data stores.

■ A non-Oracle instance could be upgraded from an older version to a newer
version, requiring modification of the HS configuration data.

■ An HS agent at a remote site could be upgraded to a new version or patched,
requiring modification of the HS configuration data.

■ A DBA at the non-Oracle site could change the agent setup, possibly for tuning
or testing purposes, in a manner which affects HS configuration data.

Agent self-registration permits successful operation of Heterogeneous Services in all
these scenarios.

Specifically, agent self-registration enhances interoperability between any Oracle
server and any HS agent, provided that each is at least as recent as Version 8.0.3.
The basic mechanism for this is ability to upload HS configuration data (HS Data
Dictionary content) from agents to servers.
Administering Oracle Heterogeneous Services 6-15

Agent Self-Registration
Self-registration provides automatic updating of HS configuration data residing in
the Oracle server data dictionary (if enabled by the server initialization parameter
HS_AUTOREGISTER (see below)). Such a data dictionary update assures that the
agent self-registration uploads need to be done only once, on the initial use of a
previously unregistered agent. Instance information is uploaded on each
connection, not stored in the server data dictionary.

How Does Agent Self-Registration Work?
The HS agent self-registration feature can:

■ Identify the agent and the non-Oracle data store to the Oracle server.

■ Permit agents to define Heterogeneous Services initialization parameters for
use both by the agent and connected Oracle8i servers:

■ Upload capability definitions and data dictionary translations, if available, from
an HS agent during connection initialization.

Note that, when both the server and the agent are release 8.1 or higher, the
upload of class information occurs only when the class is undefined in the
server data dictionary. Similarly, instance information is uploaded only if the
instance is undefined in the server data dictionary.

The information required to accomplish the above is accessed in the server data
dictionary by using these agent-supplied names:

■ FDS_CLASS

■ FDS_CLASS_VERSION

FDS_CLASS and FDS_CLASS_VERSION
FDS_CLASS and FDS_CLASS_VERSION are defined by Oracle or by third party
vendors for each individual HS agent and version. Oracle Heterogeneous Services
concatenates these names to form FDS_CLASS_NAME which is used as a primary
key to access class information in the server data dictionary.

FDS_CLASS should specify the type of non-Oracle data store to be accessed and
FDS_CLASS_VERSION should specify a version number for both the non-Oracle
data store and the agent which connects to the it. Note that, when any component of
an agent changes (agent executable or uploadable definitions) FDS_CLASS_
VERSION must also change to uniquely identify the new release.
6-16 Oracle8i Distributed Database Systems

Agent Self-Registration
FDS_INST_NAME
Instance-specific information can be stored in the server data dictionary. The instance
name, FDS_INST_NAME, is configured by the DBA who administers the agent;
how the DBA does this depends on the specific agent in use. The Oracle server then
uses FDS_INST_NAME to look up instance-specific configuration information in its
data dictionary, using it as a primary key for columns of the same name in the FDS_
INST_INIT, FDS_INST_CAPS, and FDS_INST_DD views.

Server data dictionary accesses that use FDS_INST_NAME also use FDS_CLASS_
NAME to uniquely identify configuration information rows. For example, if you are
porting a database from class "MegaBase8.0.4" to class "MegaBase8.1.3", both
databases can simultaneously operate with instance name "Scott" and can use
separate sets of configuration information.

Unlike class information, instance information is not automatically self-registered in
the server data dictionary.

■ If the server data dictionary contains instance information, it represents
DBA-defined setup details which fully define the instance configuration. No
instance information is uploaded from the agent to the server.

■ If the server data dictionary contains no instance information, any instance
information made available by a connected agent is uploaded to the server for
use in that connection. The uploaded instance data is not stored in the server
data dictionary.

Oracle Server Initialization Parameter HS_AUTOREGISTER
The Oracle server initialization parameter HS_AUTOREGISTER enables or disables
automatic self-registration of HS agents. When set to TRUE, information describing
a previously unknown agent class or a new agent version is uploaded into the
server’s data dictionary.

See the Oracle8i Reference for a description and the syntax of this parameter.

It is recommended that you use the dfault value for this parameter (TRUE) which
assures that the server’s data dictionary content always correctly represents
definitions of class capabilities and data dictionary translations as used in HS
connections.

Note: This information is uploaded when you initialize each
connection.
Administering Oracle Heterogeneous Services 6-17

Agent Self-Registration
6-18 Oracle8i Distributed Database Systems

Application Development with Heterogeneous Se
7

Application Development with

Heterogeneous Services

This chapter provides information for application developers who want to use
Heterogeneous Services.

Topics covered include:

■ Application Development with Heterogeneous Services

■ Pass-Through SQL

■ Bulk Fetch
rvices 7-1

Application Development with Heterogeneous Services
Application Development with Heterogeneous Services
When writing applications, you need not be concerned that a non-Oracle system is
accessed. Heterogeneous Services makes the non-Oracle system appear as if it were
another Oracle8i server.

However, on occasion, you may need to access a non-Oracle system using that
non-Oracle system’s SQL dialect. To make this possible, Heterogeneous Services
provides a pass-through SQL feature that allows application programmers to
directly execute the native SQL statement at the non-Oracle system.

Additionally, Heterogeneous Services supports bulk fetches to optimize the data
transfers for large data sets between a non-Oracle system, agent and Oracle server.
This chapter also discusses how to tune such data transfers.

Pass-Through SQL
The pass-through SQL feature allows an application developer to send a statement
directly to a non-Oracle system without being interpreted by the Oracle8i server.
This can be useful if the non-Oracle system allows for operations in statements for
which there is no equivalent in Oracle. You can execute these statements directly at
the non-Oracle system using the PL/SQL package DBMS_HS_PASSTHROUGH.
Any statement executed with the pass-through package is executed in the same
transaction as regular "transparent" SQL statements.

The DBMS_HS_PASSTHROUGH package conceptually resides at the non-Oracle
system. Procedures and functions in the package must be invoked by using the
appropriate database link to the non-Oracle system.

Considerations When Using Pass-Through SQL
There are transaction implications when you execute a pass-through SQL statement
that (implicitly) commit or rolls back the transaction in the non-Oracle system. For
example, some systems implicitly commit the transaction when a Data Definition
Language (DDL) statement is executed. Since the Oracle server is bypassed, the
Oracle server is not aware of the commit in the non-Oracle system. This means that
the data at the non-Oracle system can be committed while the transaction in the
Oracle server is not.

If the transaction in Oracle server is rolled back, data inconsistencies between the
Oracle server and the non-Oracle server can occur (i.e. global data inconsistency).
7-2 Oracle8i Distributed Database Systems

Pass-Through SQL
Note that if the application executes a regular COMMIT, the Oracle server can
coordinate the distributed transaction with the non-Oracle system. The statement
executed with the pass-through facility are part of the distributed transaction.

Executing Pass-Through SQL Statements
The table below shows the functions and procedures provided by the DBMS_HS_
PASSTHROUGH package that allow you to execute pass-through SQL statements.
The following sections describe how to use them. The statements fall into two
classes:

■ non-queries (INSERT, DELETE, UPDATE, and DDL statements)

■ queries (SELECT statements)

Executing Non-queries
To execute non-query statements, you use the EXECUTE_IMMEDIATE function.
For example, to execute a DDL statement at a non-Oracle system that you can access
using the database link "SalesDB", you execute:

DECLARE
 num_rows INTEGER;

BEGIN
 num_rows := DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@SalesDB
 (’CREATE TABLE DEPT (n SMALLINT, loc CHARACTER(10))’);
END;

Procedure/Function Description

OPEN_CURSOR Open a cursor

CLOSE_CURSOR Close a cursor

PARSE Parse the statement

BIND_VARIABLE Bind IN variables

BIND_OUT_VARIABLE Bind OUT variables

BIND_INOUT_VARIABLE Bind IN OUT variables

EXECUTE_NON_QUERY Execute non-query

EXECUTE_IMMEDIATE Execute non-query without bind variables

FETCH_ROW Fetch rows from query

GET_VALUE Retrieve column value from SELECT
statement, or to retrieve OUT bind parameters
Application Development with Heterogeneous Services 7-3

Pass-Through SQL
The variable num_rows is assigned the number of rows affected by the execution.
For DDL statements zero will be returned.

You cannot execute a query with EXECUTE_IMMEDIATE and you cannot use bind
variables.

Bind Variables
Bind variables allow you to use the same SQL statement multiple times with
different values, reducing the number of times a SQL statement needs to be parsed.
For example, when you need to insert four rows in a particular table, you can parse
the SQL statement once and bind and execute the SQL statement for each row. One
SQL statement can have zero or more bind variables.

To execute pass-through SQL statements with bind variables, you must:

■ Open a cursor

■ Parse the SQL statement at the non-Oracle system

■ Bind the variables

■ Execute the SQL statement at the non-Oracle system

■ Close the cursor

Figure 7–1 shows the flow diagram for executing non-queries with bind variables.
7-4 Oracle8i Distributed Database Systems

Pass-Through SQL
Figure 7–1 Flow Diagram for Non-query Pass-Through SQL

IN Bind Variables How a bind variable is specified in a statement is determined by
syntax of the non-Oracle system. For example, in Oracle you define bind variables
with a preceding colon, as in:

UPDATE EMP
SET SAL=SAL*1.1
WHERE ENAME=:ename

Execute
non query

Open
Cursor

Parse

Bind
Variable

(optional)

Close
Cursor

Get
Value

(optional)
Application Development with Heterogeneous Services 7-5

Pass-Through SQL
In this statement :ename is the bind variable. In other non-Oracle systems you
might need to specify bind variables with a question mark, as in:

UPDATE EMP
SET SAL=SAL*1.1
WHERE ENAME= ?

In the bind variable step you must positionally associate host program variables (in
this case, PL/SQL) with each of these bind variables.

For example, to execute the above statement, you can use the following PL/SQL
program:

DECLARE
 c INTEGER;
 nr INTEGER;
BEGIN
 c := DBMS_HS_PASSTHROUGH.OPEN_CURSOR@SalesDB;
 DBMS_HS_PASSTHROUGH.PARSE@SalesDB(c,
 ’UPDATE EMP SET SAL=SAL*1.1 WHERE ENAME=?’);
 DBMS_HS_PASSTHROUGH.BIND_VARIABLE(c,1,’JONES’);
 nr:=DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY@SalesDB(c);
 DBMS_OUTPUT.PUT_LINE(nr||’ rows updated’);
 DBMS_HS_PASSTHROUGH.CLOSE_CURSOR@salesDB(c);
END;

OUT Bind Variables In some cases, the non-Oracle system can also support OUT bind
variables. With OUT bind variables, the value of the bind variable is not known
until after the SQL statement is executed.

Although OUT bind variables are populated after the SQL statement is executed,
the non-Oracle system must know that the particular bind variable is an OUT bind
variable before the SQL statement is executed. You must use the BIND_OUT_
VARIABLE procedure to specify that the bind variable is an OUT bind variable.

After the SQL statement is executed, you can retrieve the value of the OUT bind
variable using the GET_VALUE procedure.

IN OUT Bind Variables A bind variable can be both an IN and an OUT variable. This
means that the value of the bind variable must be known before the SQL statement
is executed but can be changed after the SQL statement is executed.

For IN OUT bind variables, you must use the BIND_INOUT_VARIABLE procedure
to provide a value before the SQL statement is executed. After the SQL statement is
executed, you must use the GET_VALUE procedure, to retrieve the new value of the
bind variable.
7-6 Oracle8i Distributed Database Systems

Pass-Through SQL
Executing Queries
The difference between queries and non-queries is that queries retrieve a result set.
The result set is retrieved by iterating over a cursor. After the SELECT statement is
parsed, each row of the result set can be fetched with the FETCH_ROW procedure.
After the row is fetched, use the GET_VALUE procedure, to retrieve the select list
items into program variables. After all rows are fetched you can close the cursor. See
Figure 7–2.

Figure 7–2 Pass-through SQL for Queries

Fetch_row

Open
Cursor

Parse

Bind
Variable

(optional)

Close
Cursor

Get
Value

For each
row

For each
column
Application Development with Heterogeneous Services 7-7

Bulk Fetch
It is not necessary to fetch all the rows. You can close the cursor at any time after
opening the cursor, for example, after fetching a few rows.

The next example executes a query:

DECLARE
 val VARCHAR2(100);
 c INTEGER;
 nr INTEGER;
BEGIN
 c := DBMS_HS_PASSTHROUGH.OPEN_CURSOR@SalesDB;
 DBMS_HS_PASSTHROUGH.PARSE@SalesDB(c,
 ’select ename
 from emp
 where deptno=10’);
 LOOP
 nr := DBMS_HS_PASSTHROUGH.FETCH_ROW@SalesDB(c);
 EXIT WHEN nr = 0;
 DBMS_HS_PASSTHROUGH.GET_VALUE@SalesDB(c, 1, val);
 DBMS_OUTPUT.PUT_LINE(val);
 END LOOP;
 DBMS_HS_PASSTHROUGH.CLOSE_CURSOR@SalesDB(c);
END;

After parsing the SELECT statement, the rows are fetched and printed in a loop,
until the function FETCH_ROW returns "0".

Bulk Fetch
When an application fetches data from a non-Oracle system, using Heterogeneous
Services, data is transferred

■ from the non-Oracle system, to the agent process

■ from the agent process to the Oracle server

■ from the Oracle server to the application

Note: Although you are fetching one row at a time,
Heterogeneous Services optimizes the round trips between the
Oracle8i server and the non-Oracle system by buffering multiple
rows, and fetching from the non-Oracle data system in one round
trip.
7-8 Oracle8i Distributed Database Systems

Bulk Fetch
Oracle allows you to optimize all three data transfers. See Figure 7–3.

Figure 7–3 Optimizing data transfers

Array Fetch Using the OCI, an Oracle Precompiler, or Another Tool
You can optimize data transfers between your application and the Oracle8i server
by using array fetches. See your application development tool documentation for
information about array fetching and how to specify the amount of data to be sent
per network round trip.

Array Fetch Between an Oracle8i Server and the Agent
When data is retrieved from a non-Oracle system, the Heterogeneous Services
initialization parameter HS_RPC_FETCH_SIZE defines the number of bytes that
will be sent per fetch between the agent and the Oracle8i server. The agent will fetch

Client

O
ra

cl
e

S
er

ve
r

A
ge

nt

N
o

n
-O

ra
cl

e
S

ys
te

m

HS_RPC_FETCH_SIZE

HS_FDS_FETCH_ROWS

Array fetch
with OCI/Pro*
or other tool
Application Development with Heterogeneous Services 7-9

Bulk Fetch
data from the non-Oracle system until it has accumulated the specified number of
bytes to sent back to the Oracle server or when the last row of the result set is
fetched from the non-Oracle system.

Array Fetch Between the Agent and the Non-Oracle Datastore
The initialization parameter HS_FDS_FETCH_ROWS determines the number of
rows to be retrieved from a non-Oracle system. Note that the array fetch must be
supported by the agent. See your agent-specific documentation to ensure your
agent supports array fetching.

Reblocking
By default, an agent fetches data from the non-Oracle system until it has enough
data retrieved to send back to the server. That is, when the number of bytes fetched
from the non-Oracle system is equal or higher than the value of HS_RPC_FETCH_
SIZE. In other words, the agent will "reblock" the data between the agent and the
Oracle server in sizes defined by the value of HS_RPC_FETCH_SIZE.

When the non-Oracle system supports array fetches, you might want to
immediately send the data fetched from the non-Oracle system by the array fetch to
the Oracle server, without waiting until the exact value of HS_RPC_FETCH_SIZE is
reached. That is, you want to stream the data from the non-Oracle system to the
Oracle server, and disable reblocking. You can do this by setting the value of
initialization parameter HS_RPC_FETCH_REBLOCKING to ’off’.

For example, you set HS_RPC_FETCH_SIZE to 64Kbytes and HS_FDS_FETCH_
ROWS to 100 rows. Assume each row is approximately 600 bytes in size, and thus
100 rows is approximately 60Kbytes. When HS_RPC_FETCH_REBLOCKING is set
to ’on’, the agent start fetching 100 rows from the non-Oracle system.

Since there is only 60K bytes of data in the agent, the agent will not sent the data
back to the Oracle server. Instead, the agent fetches the next 100 rows from the
non-Oracle system. Since there is now 120Kbytes of data in the agent, the first
64Kbytes can be sent back to the Oracle server.

Now there is 56Kbytes left in the agent. The agent will fetch another 100 rows from
the non-Oracle system, before sending the next 64Kbytes of data to the Oracle
server. By setting the initialization parameter HS_RPC_FETCH_REBLOCKING to
’off’, the first 100 rows will be immediately sent back to the Oracle8i server.
7-10 Oracle8i Distributed Database Systems

Heterogeneous Services Initialization Parame
A

Heterogeneous Services Initialization

Parameters

This appendix describes Heterogeneous Services initialization parameters.

Initialization parameters can either be set at the agent-site using an agent-specific
mechanism or they can be set in the Oracle server using the DBMS_HS package. See
Chapter 6, "Administering Oracle Heterogeneous Services" for more information on
how to set and delete initialization parameters using the DBMS_HS package.

■ HS_COMMIT_POINT_STRENGTH

■ HS_DB_DOMAIN

■ HS_DB_INTERNAL_NAME

■ HS_DB_NAME

■ HS_DESCRIBE_CACHE_HWM

■ HS_LANGUAGE

■ HS_NLS_DATE_FORMAT

■ HS_NLS_DATE_LANGUAGE

■ HS_NLS_NCHAR

■ HS_OPEN_CURSORS

■ HS_ROWID_CACHE_SIZE

■ HS_RPC_FETCH_REBLOCKING

■ HS_FDS_FETCH_ROWS

■ HS_RPC_FETCH_SIZE
ters A-1

HS_COMMIT_POINT_STRENGTH
HS_COMMIT_POINT_STRENGTH

Purpose
The parameter HS_COMMIT_POINT_STRENGTH has the same function as the
Oracle8i parameter COMMIT_POINT_STRENGTH.

Set HS_COMMIT_POINT_STRENGTH to a value relative to the importance of the
site that will be the commit point site in a distributed transaction. The Oracle server
or non-Oracle system with the highest commit point strength becomes the commit
point site. To ensure that non-Oracle system never becomes the commit point site,
set the value of HS_COMMIT_POINT_STRENGTH to zero.

HS_COMMIT_POINT_STRENGTH can be of importance only if the non-Oracle
system can participate in the two-phase protocol as an regular two-phase commit
partner and as commit point site. This is only the case if the transaction model is
two-phase commit confirm (2PCC).

See Chapter 6, "Administering Oracle Heterogeneous Services" for more
information about heterogeneous distributed transactions. See Chapter 3,
"Distributed Transactions", for more information about distributed transactions and
commit point sites.

Service: General

Default value: 0

Range of values: 0 to 255
A-2 Oracle8i Distributed Database Systems

HS_DB_DOMAIN
HS_DB_DOMAIN

Purpose
HS_DB_DOMAIN specifies a unique network sub-address for a non-Oracle system.
HS_DB_DOMAIN is used in a similar fashion to the Oracle server equivalent,
which is described in the Oracle8i Administrator’s Guide and the Oracle8i Reference.
HS_DB_DOMAIN is required if you use the Oracle Name Server. The parameters
HS_DB_NAME and HS_DB_DOMAIN define the global name of the non-Oracle
system.

Service: General

Default value: WORLD

Range of values: 1 to 119 characters

Note: HS_DB_NAME and HS_DB_DOMAIN in combination
must also be unique.
Heterogeneous Services Initialization Parameters A-3

HS_DB_INTERNAL_NAME
HS_DB_INTERNAL_NAME

Purpose
HS_DB_INTERNAL_NAME specifies a unique hexadecimal number identifying the
instance to which the Heterogeneous Services agent is connected. This parameter’s
value is used as part of a transaction ID when global name services are activated.
Specifying a non-unique number can cause problems when two-phase commit
recovery actions are necessary for a transaction.

Service: General

Default value: 01010101

Range of values: 1 to 16 hexadecimal characters
A-4 Oracle8i Distributed Database Systems

HS_DB_NAME
HS_DB_NAME

Purpose
A unique alphanumeric name for the datastore given to the non-Oracle system. This
name identifies the non-Oracle system within the cooperative server environment.
The HS_DB_NAME and HS_DB_DOMAIN define the global name of the
non-Oracle system.

Service: General

Default value: HO

Range of values: 1 to 8 characters
Heterogeneous Services Initialization Parameters A-5

HS_DESCRIBE_CACHE_HWM
HS_DESCRIBE_CACHE_HWM

Purpose
HS_DESCRIBE_CACHE_HWM specifies the maximum number of entries in the
describe cache used by Heterogeneous Services. This limit is known as the describe
cache high water mark. The cache contains descriptions of the mapped tables that
Heterogeneous Services reuses rather than re-accessing the non-Oracle datastore.
Increasing the high water mark improves performance, especially when you are
accessing many mapped tables. However, note that increasing the high water mark
improves performance at the cost of memory usage.

Service: General

Default value: 100

Range of values: 1 to 4000
A-6 Oracle8i Distributed Database Systems

HS_LANGUAGE
HS_LANGUAGE

Purpose
The HS_LANGUAGE initialization parameter provides Heterogeneous Services
with character set, language and territory information of the non-Oracle data
source. The value of the HS_LANGUAGE initialization parameter has to be of the
following format:

<language>[_<territory>.<character_set>]

Character sets
Ideally, the character sets of the Oracle8i server and the non-Oracle data source are
the same. If they are not the same, Heterogeneous Services tries to translate the
character set of the non-Oracle data source to the Oracle8i character set, and vice
versa. This can degrade performance, and in some cases Heterogeneous Services
will not be able to translate a character from one character set to another.

Language
The language part of the HS_LANGUAGE initialization parameter, determines:

■ Day and month names of dates

■ AD, BC, PM, and AM symbols for date and time

■ Default sorting mechanism

Note that HS_LANGUAGE does not determine the language for error messages for
the generic Heterogeneous Services messages (ORA-25000 through ORA-28000).
These are controlled by the session settings in the Oracle server.

Service: General

Default value: System Specific

Range of values: None

Note: The national language support initialization parameters
affect error messages, the data for the SQL Service, and parameters
in distributed external procedures.
Heterogeneous Services Initialization Parameters A-7

HS_LANGUAGE
Territory
The territory clause of the HS_LANGUAGE initialization parameter specifies the
conventions for day and week numbering, default date format, decimal character
and group separator, and ISO and local currency symbols.

■ You can override the date format using the initialization parameter HS_NLS_
DATE_FORMAT.

■ The level of National Language Support between the Oracle8i server and the
non-Oracle data source depends on how the driver is implemented. See the
installation and users’ guide for your platform for more information about the
level of National Language Support.

Note: You can set the day and month names, and the AD, BC, PM,
and AM symbols for dates and time independently from the
language, using the HS_NLS_DATE_LANGUAGE initialization
parameter.
A-8 Oracle8i Distributed Database Systems

HS_NLS_DATE_FORMAT
HS_NLS_DATE_FORMAT

Purpose
HS_NLS_DATE_FORMAT defines the date format for dates used by the target
system. This parameter has the same function as the HS_NLS_DATE_FORMAT
parameter for an Oracle server. The value of date_format can be any valid date
mask, listed in the Oracle8i Reference, but must match the date format of the target
system. For example, if the target system stores the date "February 14, 1995" as
"1995/02/14", set the parameter to:

’YYYY/MM/DD’

Service: General

Default value: Value determined by HS_LANGUAGE parameter

Range of values: None
Heterogeneous Services Initialization Parameters A-9

HS_NLS_DATE_LANGUAGE
HS_NLS_DATE_LANGUAGE

Purpose
The HS_NLS_DATE_LANGUAGE parameter specifies the language used in
character date values coming from the non-Oracle system. Date formats can be
language independent. For example, if the format is ’DD/MM/YY’, all three
components of the character date are numbers. However, in the format
’DD-MON-YY’, the month component is the name abbreviated to three characters.
This abbreviation is very much language dependent. For example, the abbreviation
for the month April is APR, in French it is AVR (Avril).

Heterogeneous Services will assume that character date values fetched from the
non-Oracle system are in this format. Also, Heterogeneous Services will sent
character date bind values in this format to the non-Oracle system.

Service: General

Default value: Value determined by HS_LANGUAGE parameter

Range of values: None
A-10 Oracle8i Distributed Database Systems

HS_NLS_NCHAR
HS_NLS_NCHAR

The HS_NLS_NCHAR parameter is used to tell the Heterogeneous Services the
value of the national character set of the non-Oracle data source. The value should
be the character set ID of a character set that is supported by Oracle’s NLSRTL
library.

See also the HS_LANGUAGE parameter.

Service: General

Default value: Value determined by HS_LANGUAGE parameter

Range of values: None
Heterogeneous Services Initialization Parameters A-11

HS_OPEN_CURSORS
HS_OPEN_CURSORS

Purpose
The HS_OPEN_CURSORS parameter defines the maximum number of cursors that
can be open on one connection to a non-Oracle system instance.

The value never exceeds the number of open cursors in the Oracle server. Therefore,
setting the same value as the HS_OPEN_CURSORS initialization parameter in the
Oracle server is recommended.

Service: General

Default value: 50

Range of values: None
A-12 Oracle8i Distributed Database Systems

HS_ROWID_CACHE_SIZE
HS_ROWID_CACHE_SIZE

 Purpose
HS_ROWID_CACHE_SIZE specifies the size of the Heterogeneous Services cache
containing the non-Oracle system equivalent of ROWIDs. The cache contains
non-Oracle system ROWIDs needed to support the WHERE CURRENT OF clause
in a SQL statement or a SELECT FOR UPDATE statement.

When the cache is full, the first slot in the cache is reused, then the second, and so
on. Only the last HS_ROWID_CACHE_SIZE non-Oracle system ROWIDs are
cached.

Service: General

Default value: 3

Range of values: 1 to 32767
Heterogeneous Services Initialization Parameters A-13

HS_RPC_FETCH_REBLOCKING
HS_RPC_FETCH_REBLOCKING

Purpose
This controls whether or not Heterogeneous Services attempts to optimize
performance of data transfer between the ORACLE server and the Heterogeneous
Services agent connected to the non-Oracle datastore. See Chapter 7, "Application
Development with Heterogeneous Services" for more information.

The value "OFF" disables reblocking of fetched data. This means that data is
immediately sent from the agent to the server. The value "ON" enables reblocking,
which means that data fetched from the non-Oracle system is buffered in the agent,
and will not be sent to the Oracle server, until the amount of fetched data is equal or
higher than HS_RPC_FETCH_SIZE.

Service: General

Default value: ON

Range of values: OFF, ON
A-14 Oracle8i Distributed Database Systems

HS_FDS_FETCH_ROWS
HS_FDS_FETCH_ROWS

Purpose
This parameter specifies the number of rows to fetch in one round trip from the
non-Oracle datastore by the agent.

Each Heterogeneous Services agent will likely have its own maximum limit for the
range of this variable. If your non-Oracle datastore does not support array fetch, the
value for this parameter must be 1. See your agent-specific documentation for more
information.

See Chapter 7, "Application Development with Heterogeneous Services" for more
information.

Service: General

Default value: 20

Range of values: Decimal integer (row count)
Heterogeneous Services Initialization Parameters A-15

HS_RPC_FETCH_SIZE
HS_RPC_FETCH_SIZE

Purpose
This initialization parameter tunes internal data buffering to optimize the data
transfer rate between the server and the agent process. Increasing the value can lead
to more optimal data transfers per round trip. However, it can increase the response
time of certain queries, since the data is not sent back to the server until the data
fetched from the non-Oracle system equals HS_RPC_FETCH_SIZE.

See Chapter 7, "Application Development with Heterogeneous Services" for more
information.

Service: General

Default value: 4000

Range of values: Decimal integer (byte count)
A-16 Oracle8i Distributed Database Systems

DBMS_HS Package Refere
B

DBMS_HS Package Reference

This appendix provides all the interface information for the DBMS_HS package for
administering Heterogeneous Services. See Chapter 6, "Administering Oracle
Heterogeneous Services" for more information about administering the
Heterogeneous Services.

Referenced in this appendix are:

■ DBMS_HS.CREATE_FDS_INST

■ DBMS_HS.CREATE_INST_INIT

■ DBMS_HS.DROP_FDS_INST

■ DBMS_HS.DROP_INST_INIT
nce B-1

DBMS_HS.CREATE_FDS_INST
DBMS_HS.CREATE_FDS_INST

Purpose
To register an instance of the non-Oracle system in the Oracle8i server. This is the
logical name of the non-Oracle system instance, as know by Heterogeneous
Services. Information about registered instances is available through the view HS_
FDS_INST.

Interface description
PROCEDURE create_fds_inst(
FDS_INST_NAME IN VARCHAR2,
FDS_CLASS_NAME IN VARCHAR2,
FDS_INST_COMMENTS IN VARCHAR2)

Parameters and Descriptions

Exceptions

See Also
DBMS_HS.DROP_FDS_INST

Parameter Description

FDS_INST_NAME Non-Oracle system instance to be registered in the
Oracle8i server

FDS_CLASS_NAME The class associated with the non-Oracle system
instance.

FDS_INST_COMMENTS Provides up to 255 bytes to describe the instance of the
non-Oracle system.

Exception Description

ORA-24270 The instance already exists

ORA-24274 The object could not be created. Did you pass an
existing CLASS or INSTANCE name?
B-2 Oracle8i Distributed Database Systems

DBMS_HS.CREATE_INST_INIT
DBMS_HS.CREATE_INST_INIT

Purpose
To create an initialization variable for an instance of the non-Oracle system. See
Chapter 6, "Administering Oracle Heterogeneous Services" for more information on
how to create initialization variables. See Appendix A, "Heterogeneous Services
Initialization Parameters" for possible initialization parameters that can be set. The
information will be available through the view HS_INST_INIT.

Interface description
PROCEDURE create_inst_init(
FDS_INST_NAME IN VARCHAR2
FDS_CLASS_NAME IN VARCHAR2
INIT_VALUE_NAME IN VARCHAR2,
INIT_VALUE IN VARCHAR2,
INIT_VALUE_TYPE IN VARCHAR2);

Parameters and Descriptions

Parameter Description

FDS_INST_NAME Non-Oracle system instance for which the initialization
parameter needs to be applied.

FDS_CLASS_NAME The class associated with the non-Oracle system
instance.

INIT_VALUE_NAME Name of the initialization parameters. See Appendix A,
"Heterogeneous Services Initialization Parameters" for
possible values.

INIT_VALUE Value of the initialization parameter

INIT_VALUE_TYPE Must be

■ ’T’ if initialization parameter must be set as an
environment variable of the agent process

■ ’F’ for a regular initialization parameter (default)
DBMS_HS Package Reference B-3

DBMS_HS.CREATE_INST_INIT
Exceptions

See Also
DBMS_HS.DROP_INST_INIT

Exception Description

ORA-24270 The initialization parameter is already defined for this
instance

ORA-24272 The INIT_VALUE_TYPE is not ’T’ or ’F’.

ORA-24274 The initialization parameter could not be created. Did
you pass an existing CLASS or INSTANCE name?
B-4 Oracle8i Distributed Database Systems

DBMS_HS.DROP_FDS_INST
DBMS_HS.DROP_FDS_INST

Purpose
To unregister a non-Oracle system instance. The view HS_FDS_INST contains
information about registered instances.

Interface Description
PROCEDURE drop_fds_inst(
FDS_INST_NAME IN VARCHAR2,
FDS_CLASS_NAME IN VARCHAR2)

Parameters and Descriptions

Exceptions

See Also
DBMS_HS.CREATE_FDS_INST

Parameter Description

FDS_INST_NAME Non-Oracle system instance to be unregistered in the
Oracle8i server.

FDS_CLASS_NAME The class associated with the non-Oracle system
instance.

Exception Description

ORA-24274 The instance could not be dropped. Did you pass an
existing CLASS or INSTANCE name?
DBMS_HS Package Reference B-5

DBMS_HS.DROP_INST_INIT
DBMS_HS.DROP_INST_INIT

Purpose
To drop an initialization variable of a specific non-Oracle system instance. You can
query initialization parameters that are defined for a particular instance using the
HS_INST_INIT and HS_ALL_INIT view.

Interface description
PROCEDURE drop_inst_init(
FDS_INST_NAME IN VARCHAR2,
FDS_CLASS_NAME IN VARCHAR2,
INIT_VALUE_NAME IN VARCHAR2)

Parameters and Descriptions

Exceptions

See Also
DBMS_HS.CREATE_INST_INIT

Parameter Description

FDS_INST_NAME Non-Oracle system instance for which the initialization
parameter needs to be dropped.

FDS_CLASS_NAME The class associated with the non-Oracle system
instance.

INIT_VALUE_NAME Name of the initialization parameters.

Exception Description

ORA-24274 The initialization parameter could not be dropped. Did
you pass an existing CLASS or INSTANCE name?
B-6 Oracle8i Distributed Database Systems

DBMS_HS_PASSTHROUGH for Pass-Through S
C

DBMS_HS_PASSTHROUGH for

Pass-Through SQL

This appendix describes the procedures and functions in the package DBMS_HS_
PASSTHROUGH for pass-through SQL of Heterogeneous Services. See Chapter 7,
"Application Development with Heterogeneous Services" for more information on
how to use this package.

Referenced in this appendix are:

■ DBMS_HS_PASSTHROUGH.BIND_VARIABLE

■ DBMS_HS_PASSTHROUGH.BIND_VARIABLE_RAW

■ DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE

■ DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE_RAW

■ DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE

■ DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE_RAW

■ DBMS_HS_PASSTHROUGH.CLOSE_CURSOR

■ DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE

■ DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY

■ DBMS_HS_PASSTHROUGH.FETCH_ROW

■ DBMS_HS_PASSTHROUGH.GET_VALUE

■ DBMS_HS_PASSTHROUGH.GET_VALUE_RAW

■ DBMS_HS_PASSTHROUGH.OPEN_CURSOR

■ DBMS_HS_PASSTHROUGH.PARSE
QL C-1

DBMS_HS_PASSTHROUGH.BIND_VARIABLE
DBMS_HS_PASSTHROUGH.BIND_VARIABLE

Purpose
To bind an "IN" variable positionally with a PL/SQL program variable. See
Chapter 7, "Application Development with Heterogeneous Services" on how to bind
variables.

Interface Description
PROCEDURE BIND_VARIABLE (c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val IN <dty>
 [,name IN VARCHAR2])

Where <dty> is one of

■ DATE

■ NUMBER

■ VARCHAR2

To bind RAW variables use the procedure DBMS_HS_PASSTHROUGH.BIND_
VARIABLE_RAW
C-2 Oracle8i Distributed Database Systems

DBMS_HS_PASSTHROUGH.BIND_VARIABLE
Parameters and Descriptions

Exceptions

Purity Level
Purity level defined: WNDS, RNDS

See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR DBMS_HS_PASSTHROUGH.PARSE
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE DBMS_HS_
PASSTHROUGH.BIND_VARIABLE_RAW

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed. using the routines
OPEN_CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts
from 1.

val Value that must be passed to the bind variable

name Optional parameter to name the bind variable. For
example, in "SELECT * FROM emp WHERE
ename=:ename", the position of the bind variable
":ename" is 1, the name is ":ename". This parameter can
be used if the non-Oracle system supports "named
binds" instead of positional binds. Note that passing the
position is still required.

Exception Description

ORA-28550 The cursor passed is invalid

ORA-28552 Procedure is not executed in right order. Did you first
open the cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range

ORA-28555 A NULL value was passed for a NOT NULL parameter
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-3

DBMS_HS_PASSTHROUGH.BIND_VARIABLE_RAW
DBMS_HS_PASSTHROUGH.BIND_VARIABLE_RAW

Purpose
To bind IN variables of type RAW.

Interface Description
 PROCEDURE BIND_VARIABLE_RAW
 (c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val IN RAW
 [,name IN VARCHAR2])

Parameters and Descriptions

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines
OPEN_CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts
from 1.

val Value that must be passed to the bind variable.

name Optional parameter to name the bind variable. For
example, in "SELECT * FROM emp WHERE
ename=:ename", the position of the bind variable
":ename" is 1, the name is ":ename". This parameter can
be used if the non-Oracle system supports "named
binds" instead of positional binds. Note that passing the
position is still required.
C-4 Oracle8i Distributed Database Systems

DBMS_HS_PASSTHROUGH.BIND_VARIABLE_RAW
Exceptions

Purity Level
Purity level defined : WNDS, RNDS

See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR DBMS_HS_PASSTHROUGH.PARSE
DBMS_HS_PASSTHROUGH.BIND_VARIABLE DBMS_HS_
PASSTHROUGH.BIND_OUT_VARIABLE

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first
open the cursor and parse the SQL statement ?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-5

DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE

Purpose
To bind an OUT variable with a PL/SQL program variable. See Chapter 7,
"Application Development with Heterogeneous Services" for more information on
binding OUT parameters.

Interface Description
PROCEDURE BIND_OUT_VARIABLE
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val OUT <dty>,
[,name IN VARCHAR2])

Where <dty> is one of

■ DATE

■ NUMBER

■ VARCHAR2

For binding OUT variables of datatype RAW, see BIND_OUT_VARIABLE_RAW
C-6 Oracle8i Distributed Database Systems

DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE
Parameters and Descriptions

Exceptions

Purity Level
Purity level defined : WNDS, RNDS

See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR DBMS_HS_PASSTHROUGH.PARSE
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE_RAW DBMS_HS_
PASSTHROUGH.BIND_VARIABLE DBMS_HS_PASSTHROUGH.BIND_
VARIABLE_RAW DBMS_HS_PASSTHROUGH.GET_VALUE

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines
OPEN_CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts
from 1.

val Variable in which the OUT bind variable will store its
value. The package will remember only the "size" of the
variable. After the SQL statement is executed, you can
use GET_VALUE to retrieve the value of the OUT
parameter. The size of the retrieved value should not
exceed the size of the parameter that was passed using
BIND_OUT_VARIABLE.

name Optional parameter to name the bind variable. For
example, in "SELECT * FROM emp WHERE
ename=:ename", the position of the bind variable
":ename" is 1, the name is ":ename". This parameter can
be used if the non-Oracle system supports "named
binds" instead of positional binds. Note that passing the
position is still required.

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first
open the cursor and parse the SQL statement ?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-7

DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE_RAW
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE_RAW

Purpose
To bind an OUT variable of datatype RAW with a PL/SQL program variable. See
Chapter 7, "Application Development with Heterogeneous Services" for more
information on binding OUT parameters.

Interface Description
PROCEDURE BIND_OUT_VARIABLE
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val OUT RAW,
,name IN VARCHAR2])

Parameters and Descriptions

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines
OPEN_CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts
from 1.

val Variable in which the OUT bind variable will store its
value. The package will remember only the "size" of the
variable. After the SQL statement is executed, you can
use GET_VALUE to retrieve the value of the OUT
parameter. The size of the retrieved value should not
exceed the size of the parameter that was passed using
BIND_OUT_VARIABLE_RAW.

name Optional parameter to name the bind variable. For
example, in "SELECT * FROM emp WHERE
ename=:ename", the position of the bind variable
":ename" is 1, the name is ":ename". This parameter can
be used if the non-Oracle system supports "named
binds" instead of positional binds. Note that passing the
position is still required.
C-8 Oracle8i Distributed Database Systems

DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE_RAW
Exceptions

Purity Level
Purity level defined : WNDS, RNDS

See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR DBMS_HS_PASSTHROUGH.PARSE
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE DBMS_HS_
PASSTHROUGH.BIND_VARIABLE DBMS_HS_PASSTHROUGH.BIND_
VARIABLE_RAW DBMS_HS_PASSTHROUGH.GET_VALUE

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first
open the cursor and parse the SQL statement ?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-9

DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE
DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE

Purpose
To bind IN OUT bind variables. See Chapter 7, "Application Development with
Heterogeneous Services" for more information on binding IN OUT parameters.

Interface Description
PROCEDURE BIND_INOUT_VARIABLE
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val IN OUT <dty>,
,name IN VARCHAR2]

Where <dty> is one of

■ DATE

■ NUMBER

■ VARCHAR2

For binding IN OUT variables of datatype RAW see BIND_INOUT_VARIABLE_
RAW.
C-10 Oracle8i Distributed Database Systems

DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE
Parameters and Descriptions

Exceptions

Purity Level
Purity level defined : WNDS, RNDS

See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR DBMS_HS_PASSTHROUGH.PARSE
DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE_RAW DBMS_HS_
PASSTHROUGH.BIND_OUT_VARIABLE DBMS_HS_PASSTHROUGH.BIND_
OUT_VARIABLE_RAW DBMS_HS_PASSTHROUGH.BIND_VARIABLE DBMS_
HS_PASSTHROUGH.BIND_VARIABLE_RAW DBMS_HS_PASSTHROUGH.GET_
VALUE

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines
OPEN_CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts
from 1.

val This value will be used for two purposes:

■ To provide the IN value before the SQL statement is
executed

■ To determine the size of the out value

name Optional parameter to name the bind variable. For
example, in "SELECT * FROM emp WHERE
ename=:ename", the position of the bind variable
":ename" is 1, the name is ":ename". This parameter can
be used if the non-Oracle system supports "named
binds" instead of positional binds. Note that passing the
position is still required.

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first
open the cursor and parse the SQL statement ?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-11

DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE_RAW
DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE_RAW

Purpose
To bind IN OUT bind variables of datatype RAW. See Chapter 7, "Application
Development with Heterogeneous Services" for more information on binding IN
OUT parameters.

Interface Description
PROCEDURE BIND_INOUT_VARIABLE
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val IN OUT RAW,
[,name IN VARCHAR2]);

Parameters and Descriptions

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed’ using the routines
OPEN_CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts
from 1.

val This value will be used for two purposes:

■ To provide the IN value before the SQL statement is
executed

■ To determine the size of the out value

name Optional parameter to name the bind variable. For
example, in "SELECT * FROM emp WHERE
ename=:ename", the position of the bind variable
":ename" is 1, the name is ":ename". This parameter can
be used if the non-Oracle system supports "named
binds" instead of positional binds. Note that passing the
position is still required.
C-12 Oracle8i Distributed Database Systems

DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE_RAW
Exceptions

Purity Level
Purity level defined : WNDS, RNDS

See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR DBMS_HS_PASSTHROUGH.PARSE
DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE DBMS_HS_
PASSTHROUGH.BIND_OUT_VARIABLE DBMS_HS_PASSTHROUGH.BIND_
OUT_VARIABLE_RAW, DBMS_HS_PASSTHROUGH.BIND_VARIABLE DBMS_
HS_PASSTHROUGH.BIND_VARIABLE_RAW DBMS_HS_PASSTHROUGH.GET_
VALUE

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first
open the cursor and parse the SQL statement ?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-13

DBMS_HS_PASSTHROUGH.CLOSE_CURSOR
DBMS_HS_PASSTHROUGH.CLOSE_CURSOR

Purpose
This function closes the cursor and releases associated memory after the SQL
statement has been executed at the non-Oracle system. If the cursor was not open,
the operation is a "no operation".

Interface Description
PROCEDURE CLOSE_CURSOR (c IN BINARY_INTEGER NOT NULL);

Parameter Description

Exceptions

Purity Level
Purity level defined : WNDS, RNDS

See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR

Parameter Description

c Cursor to be released.

Exception Description

ORA-28555 A NULL value was passed for a NOT NULL parameter.
C-14 Oracle8i Distributed Database Systems

DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE
DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE

Purpose
This function executes a SQL statement immediately. Any valid SQL command
except SELECT can be executed immediately. The statement must not contain any
bind variables. The statement is passed in as a VARCHAR2 in the argument.
Internally the SQL statement is executed using the PASSTHROUGH SQL protocol
sequence of OPEN_CURSOR, PARSE, EXECUTE_NON_QUERY, CLOSE_CURSOR.

Interface Description
FUNCTION EXECUTE_IMMEDIATE (S IN VARCHAR2 NOT NULL)
RETURN BINARY_INTEGER;

Parameter Description

Returns
The number of rows affected by the execution of the SQL statement.

Exceptions:

Purity Level
Purity level defined : NONE

See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR
DBMS_HS_PASSTHROUGH.PARSE
DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY
DBMS_HS_PASSTHROUGH.CLOSE_CURSOR

Parameter Description

s VARCHAR2 variable with the statement to be executed
immediately.

Exception Description

ORA-28544 Max open cursors.

ORA-28551 SQL statement is invalid.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-15

DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY
DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY

Purpose
This function executes a SQL statement. The SQL statement cannot be a SELECT
statement. A cursor has to be open and the SQL statement has to be parsed before
the SQL statement can be executed.

Interface Description
FUNCTION EXECUTE_NON_QUERY (c IN BINARY_INTEGER NOT NULL)
RETURN BINARY_INTEGER

Parameter Description

Returns
The number of rows affected by the SQL statement in the non-Oracle system

Exceptions

Purity Level
Purity level defined : NONE

See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR DBMS_HS_PASSTHROUGH.PARSE

Parameter Description

c Cursor associated with the pass-through SQL
statement. Cursor must be opened and parsed, using
the routines OPEN_CURSOR and PARSE respectively.

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 BIND_VARIABLE procedure is not executed in right
order. Did you first open the cursor and parse the SQL
statement ?

ORA-28555 A NULL value was passed for a NOT NULL parameter.
C-16 Oracle8i Distributed Database Systems

DBMS_HS_PASSTHROUGH.FETCH_ROW
DBMS_HS_PASSTHROUGH.FETCH_ROW

Purpose
To fetch rows from a result set. The result set is defined with a SQL SELECT
statement. When there are no more rows to be fetched, the exception NO_DATA_
FOUND is raised. Before the rows can be fetched, a cursor has to be opened, and the
SQL statement has to be parsed.

Interface Description
FUNCTION FETCH_ROW
(c IN BINARY_INTEGER NOT NULL
[,first IN BOOLEAN])
RETURN BINARY_INTEGER;

Parameters and Descriptions

Returns
The returns the number of rows fetched. The function will return "0" if the last row
was already fetched.

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines
OPEN_CURSOR and PARSE respectively.

first Optional parameter to reexecute SELECT statement.
Possible values:

■ TRUE: reexecute SELECT statement.

■ FALSE: fetch the next row, or if executed for the first
time execute and fetch rows (default).
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-17

DBMS_HS_PASSTHROUGH.FETCH_ROW
Exceptions

Purity Level
Purity level defined : WNDS

See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR DBMS_HS_PASSTHROUGH.PARSE

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first
open the cursor and parse the SQL statement ?

ORA-28555 A NULL value was passed for a NOT NULL parameter.
C-18 Oracle8i Distributed Database Systems

DBMS_HS_PASSTHROUGH.GET_VALUE
DBMS_HS_PASSTHROUGH.GET_VALUE

Purpose
This procedure has two purposes:

■ To retrieve the select list items of SELECT statements, after a row has been
fetched.

■ To retrieve the OUT bind values, after the SQL statement has been executed.

Interface Description
PROCEDURE GET_VALUE
 (c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val OUT <dty>);

Where <dty> is one of

■ DATE

■ NUMBER

■ VARCHAR2

For retrieving values of datatype RAW, see GET_VALUE_RAW.

Parameters and Descriptions

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines
OPEN_CURSOR and PARSE respectively.

pos Position of the bind variable or select list item in the
SQL statement. Starts from 1.

val Variable in which the OUT bind variable or select list
item will store its value.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-19

DBMS_HS_PASSTHROUGH.GET_VALUE
Exceptions

Purity Level
Purity level defined : WNDS

See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR DBMS_HS_PASSTHROUGH.PARSE
DBMS_HS_PASSTHROUGH.FETCH_ROW DBMS_HS_PASSTHROUGH.GET_
VALUE_RAW DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE DBMS_HS_
PASSTHROUGH.BIND_OUT_VARIABLE_RAW DBMS_HS_
PASSTHROUGH.BIND_INOUT_VARIABLE DBMS_HS_PASSTHROUGH.BIND_
INOUT_VARIABLE_RAW

Exception Description

ORA-1403 Returns NO_DATA_FOUND exception when executing
the GET_VALUE after the last row was fetched (i.e.
FETCH_ROW returned "0").

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first
open the cursor, parse and execute (or fetch) the SQL
statement ?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
C-20 Oracle8i Distributed Database Systems

DBMS_HS_PASSTHROUGH.GET_VALUE_RAW
DBMS_HS_PASSTHROUGH.GET_VALUE_RAW

Purpose
Similar to GET_VALUE, but for datatype RAW.

Interface Description
PROCEDURE GET_VALUE_RAW
(c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val OUT RAW);

Parameters and Descriptions

Exceptions

Purity Level
Purity level defined : WNDS

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines
OPEN_CURSOR and PARSE respectively.

pos Position of the bind variable or select list item in the
SQL statement. Starts from 1.

val Variable in which the OUT bind variable or select list
item will store its value.

Exception Description

ORA-1403 Returns NO_DATA_FOUND exception when executing
the GET_VALUE after the last row was fetched (i.e.
FETCH_ROW returned "0").

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first
open the cursor, parse and execute (or fetch) the SQL
statement ?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-21

DBMS_HS_PASSTHROUGH.GET_VALUE_RAW
See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR DBMS_HS_PASSTHROUGH.PARSE
DBMS_HS_PASSTHROUGH.FETCH_ROW DBMS_HS_PASSTHROUGH.GET_
VALUE DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE DBMS_HS_
PASSTHROUGH.BIND_OUT_VARIABLE_RAW DBMS_HS_
PASSTHROUGH.BIND_INOUT_VARIABLE DBMS_HS_PASSTHROUGH.BIND_
INOUT_VARIABLE_RAW
C-22 Oracle8i Distributed Database Systems

DBMS_HS_PASSTHROUGH.OPEN_CURSOR
DBMS_HS_PASSTHROUGH.OPEN_CURSOR

Purpose
To open a cursor for executing a pass-through SQL statement at the non-Oracle
system. This function must be called for any type of SQL statement The function
returns a cursor, which must be used in subsequent calls. This call allocates
memory. To deallocate the associated memory, you call the procedure DBMS_HS_
PASSTHROUGH.CLOSE_CURSOR.

Interface Description
FUNCTION OPEN_CURSOR RETURN BINARY_INTEGER;

Returns
The cursor to be used on subsequent procedure and function calls.

Exceptions

Purity Level
Purity level defined : WNDS, RNDS

See Also
DBMS_HS_PASSTHROUGH.CLOSE_CURSOR

Exception Description

ORA-28554 Maximum number of open cursor has been exceeded.
Increase Heterogeneous Services’ OPEN_CURSORS
initialization parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-23

DBMS_HS_PASSTHROUGH.PARSE
DBMS_HS_PASSTHROUGH.PARSE

Purpose
To parse SQL statement at non-Oracle system.

Interface Description
PROCEDURE GET_VALUE_RAW
(c IN BINARY_INTEGER NOT NULL,
 stmt IN VARCHAR2 NOT NULL);

Parameters and Descriptions

Exceptions

Purity Level
Purity level defined : WNDS, RNDS

See Also
DBMS_HS_PASSTHROUGH.OPEN_CURSOR DBMS_HS_PASSTHROUGH.PARSE
DBMS_HS_PASSTHROUGH.FETCH_ROW DBMS_HS_PASSTHROUGH.GET_
VALUE DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE DBMS_HS_
PASSTHROUGH.BIND_OUT_VARIABLE_RAW DBMS_HS_
PASSTHROUGH.BIND_INOUT_VARIABLE DBMS_HS_PASSTHROUGH.BIND_
INOUT_VARIABLE_RAW

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened using function OPEN_CURSOR.

stmt Statement to be parsed.

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28551 SQL statement is illegal.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
C-24 Oracle8i Distributed Database Systems

DBMS_DISTRIBUTED_TRUST_ADMIN Package Refere
D

DBMS_DISTRIBUTED_TRUST_ADMIN

Package Reference

This appendix describes the procedures and functions in the package DBMS_
DISTRIBUTED_TRUST_ADMIN for administering the Trusted Servers List.

Note that the data dictionary view TRUSTED_SERVERS can be used to see which
databases are (not) trusted by the database.

Referenced in this appendix are:

■ DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ ALL

■ DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_ ALL

■ DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER (SERVER IN
VARCHAR2)

■ DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER (SERVER IN
VARCHAR2)

Note: The Oracle Security Server functionality that was available
in Oracle8 is being modified, and is currently available to beta
customers only. It will be part of Oracle8i in a later release.
nce D-1

DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ ALL
DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ ALL

Purpose
DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ALL empties the Trusted Database
List, and inserts an entry that specifies that all servers are untrusted. The view
TRUSTED_SERVERS will show "UNTRUSTED ALL" indicating that no servers are
currently trusted. Specific servers can then be allowed access using DBMS_
DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER.

Interface Description
PROCEDURE deny_all

Parameters and Descriptions

Exceptions

Purity Level
Purity level defined: None

See Also
DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_ALL

Parameter Description

None

Exception Description

None
D-2 Oracle8i Distributed Database Systems

DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_ ALL
DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_ ALL

Purpose
DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_ALL empties the Trusted
Database List, and specifies that all servers trusted by the central authority, such as
Oracle Security Server, are allowed access.

The view TRUSTED_SERVERS will show "TRUSTED ALL" indicating that all
servers are currently trusted by the central authority, such as Oracle Security Server.

Specific servers can be made untrusted by using DBMS_DISTRIBUTED_TRUST_
ADMIN.DENY_SERVER

Interface Description
PROCEDURE allow_all

Parameters and Descriptions

Exceptions

Purity Level
Purity level defined: None

See Also
DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ALL

DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER

Parameter Description

None

Exception Description

None
DBMS_DISTRIBUTED_TRUST_ADMIN Package Reference D-3

DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER (SERVER IN VARCHAR2)
DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER
(SERVER IN VARCHAR2)

Purpose
Ensures that the specified server is considered trusted (even if you have previously
specified "deny all").

If the Trusted Servers List contains the entry “deny all”, this procedure adds a
specification indicating that a specific database (say DBx) is to be trusted.

If the Trusted Servers List contains the entry “allow all”, and there is no “deny DBx”
entry in the list, executing this procedure will cause no change.

If the Trusted Servers List contains the entry “allow all”, and there is a “deny DBx”
entry in the list, that entry will be deleted.

Interface Description
PROCEDURE allow_server(server IN VARCHAR2) SERVER_NAME

Parameters and Descriptions

Exceptions

Purity Level
Purity Level defined: None

Parameter Description

SERVER The unique, fully-qualified name of the Server to be
trusted

Exception Description

None
D-4 Oracle8i Distributed Database Systems

DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER (SERVER IN VARCHAR2)
DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER
(SERVER IN VARCHAR2)

Purpose
Ensures that the specified server is considered untrusted (even if you have
previously specified "allow all").

If the Trusted Servers List contains the entry “allow all”, this procedure adds an
entry indicating that the specified database (say DBx) is not to be trusted.

If the Trusted Servers List contains the entry “deny all”, and there is no “allow DBx”
entry in the list, this procedure causes no change.

If the Trusted Servers List contains the entry “deny all”, and there is an “allow DBx”
entry, this procedure will cause that entry to be deleted.

Interface Description
PROCEDURE deny_server(server IN VARCHAR2)

Parameters and Descriptions

Exceptions

Purity Level
Purity Level defined: None

Parameter Description

SERVER The unique, fully-qualified name of the Server to be
untrusted

Exception Description

None
DBMS_DISTRIBUTED_TRUST_ADMIN Package Reference D-5

DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER (SERVER IN VARCHAR2)
D-6 Oracle8i Distributed Database Systems

Index

Numerics
3GL routine names, 5-4

A
abort message, 3-4
access

remote integrity constraints and objects, 4-3
administration

distributed databases, 2-1
agent self-registration, 6-14
Agents, 5-5
Agent-specific initialization parameters, 6-4
aggregates, 2-25
ALL

data dictionary view, 2-20
ALTER SESSION

system privilege, 4-2
ALTER SESSION command

ADVISE option, 3-22
CLOSE DATABASE LINK option, 4-2

ALTER SYSTEM command
DISABLE DISTRIBUTED RECOVERY

option, 3-34
ENABLE DISTRIBUTED RECOVERY

option, 3-34
ANALYZE command

distributed transactions, 2-26
analyze tables, 4-6
application development

in a distributed database environment, 4-1
using Heterogeneous Services, 7-1

Application development with Heterogeneous

Services, 7-1
applications

development
constraints, 4-3
database links, controlling connections, 4-2
distributing data, 4-2
referential integrity, 4-3
remote connections, terminating, 4-2

errors
RAISE_APPLICATION_ERROR()

procedure, 4-11
AUTHENTICATED BY, 2-8

B
bind queries

executing, 7-7
BIND_INOUT_VARIABLE, 7-3
BIND_INOUT_VARIABLE procedure, 7-6
BIND_OUT_VARIABLE, 7-3
BIND_OUT_VARIABLE procedure, 7-6
BIND_VARIABLE, 7-3
buffering multiple rows, 7-8

C
calls

remote procedure, 1-12
CATHO.SQL

script to install data dictionary tables and views
for HS, 6-2

Character sets, A-7
clients

role in distributed transactions, 3-6
Index-1

client/server architectures
direct and indirect connections, 1-2
distributed databases and, 1-2

CLOSE DATABASE LINK option, 4-2
CLOSE_CURSOR, 7-3
collocated inline view, 4-4
Comments

in COMMIT statements, 3-22
commit

forcing, 3-31
COMMIT command

COMMENT parameter, 3-22, 3-33
FORCE option, 3-31
forcing, 3-21
two-phase commit and, 1-13

Commit phase, 3-15
commit phase, 3-3, 3-4
Commit point site, A-2
commit point site, 3-8

commit point strength and, 3-9
determining, 3-10

COMMIT_POINT_STRENGTH parameter, A-2
committing transactions

distributed
commit point site, 3-8

connected user database link, 2-11
connections

changing hold time, 3-32
remote

terminating, 4-2
constraints

application development issues, 4-3
ORA-02055

constrain violation, 4-3
cost based optimization, 1-10, 4-5

hints, 4-7
CREATE_INST_INIT procedure, 6-14
cursors, 7-7

and closing database links, 4-2

D
Data Definition Language (DDL)

distributed transactions, 2-26
Data Dictionary

installing for Heterogeneous Services, 6-2
data dictionary

views
ALL, 2-20
DBA_DB_LINKS, 2-20
USER, 2-20

data dictionary tables, 5-3
data dictionary view

TRUSTED_SERVERS, D-1
Data Dictionary Views, 6-7
Data manipulation statements (DML)

allowed in distributed transactions, 1-11
Database link

for a foreign system, 6-4
database link

connected user, 2-11
fixed user, 2-10

database links
and Heterogeneous Services, 5-4
closing, 4-2
controlling connections, 4-2
creating shared, 2-8
data dictionary views

ALL, 2-20
DBA_DB_LINKS, 2-20
USER, 2-20

dropping, 2-19
listing, 2-20
minimizing network connections, 2-6
overview of, 1-6
resolution, 2-14
shared, 2-6

configurations, 2-8
to multi-threaded (MTS) servers, 2-10

databases
administration, 2-1
distributed

site autonomy of, 1-16
managing

Server Manager, 1-19
datatypes

mapping, 5-3
Date

defining format, A-9
DB_DOMAIN initialization parameter, 6-14
Index-2

DB_DOMAIN parameter, A-3
DB_INTERNAL_NAME parameter, A-4
DB_NAME parameter, A-5
DBA_2PC_PENDING view, 3-29
DBA_DB_LINKS

data dictionary view, 2-20
DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_D

ATABASE, D-4
DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_

ALL, D-2
DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_DA

TABASE, D-5
DBMS_HS package, 6-13
DBMS_HS_PASSTHROUGH

list of functions and procedures, 7-3
DBMS_HS_PASSTHROUGH package, 7-2
DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIA

TE, C-15
declarative referential integrity constraints, 4-3
DigitalsPOLYCENTERManageronNetView’, 1-20
disabling

recoverer process, 3-34
distributed applications

distributing data, 4-2
distributed database systems

distributing an application’s data, 4-2
location transparency, 2-20
location transparency using synonyms, 2-22
referential integrity

application development, 4-3
transparency

queries, 2-25
updates, 2-25

distributed databases
commit point strength, 3-9
database links, 1-6
diagrammed, 1-2
distributed queries, 1-11
distributed updates, 1-11
global object names, 1-6
management tools, 1-19
nodes of, 1-2
overview of, 1-2
remote queries and updates, 1-11
site autonomy of, 1-16

testing features, 3-33
transparency of, 1-14

distributed external procedure
process architecture, 5-6

Distributed external procedures
installation, 6-5

distributed external procedures, 5-4
distributed queries, 4-3

analyze tables, 4-6
application development issues, 4-3
collocated inline views, 4-4
cost based optimization, 4-5
tuning, 4-4

distributed query optimization, 1-10
distributed systems

remote object security, 2-22
distributed transactions

clients role, 3-6
commit point site, 3-8
commit point strength, 3-9
database server role, 3-6
defined, 1-12
failure during, 3-19, 3-20
forcing to fail, 3-33
global coordinator, 3-7
hold time, 3-32
limiting number, 3-18
limiting number of, 3-32
local coordinator, 3-7
locked resources, 3-20
management, 3-1
manually overriding in-doubt, 3-21
read-only, 3-17
recovery in single-process systems, 3-35
restrictions, 2-26
session tree, 3-5
setting advice, 3-22
troubleshooting, 3-19
two-phase commit

example, 3-11
when committed, 3-8

DISTRIBUTED_LOCK_TIMEOUT parameter
controlling time-outs with, 3-20

DISTRIBUTED_RECOVERY_CONNECTION_HOL
D_TIME parameter
Index-3

setting, 3-32
DISTRIBUTED_TRANSACTIONS parameter

recoverer process (RECO), 3-18
setting, 3-18, 3-32
when to alter, 3-18

driving_site, 4-8
dropping

database links, 2-19
dynamic linked libraries, 5-6

E
enabling

recoverer process, 3-34
enqueue procedure, 5-7
environmentally-dependent SQL functions, 2-26
errors

application development, 4-4
distributed transactions, 3-19
messages

trapping, 4-11
ORA-00900

SQL error, 4-11
ORA-01591, 3-20
ORA-02015

SQL error, 4-11
ORA-02049, 3-20
ORA-02050, 3-19
ORA-02051, 3-19
ORA-02054, 3-19
ORA-02055

integrity constrain violation, 4-3
ORA-02067

rollback required, 4-3
ORA-06510

PL/SQL error, 4-12
remote procedures, 4-11

examples
manual transaction override, 3-23

EXCEPTION
PL/SQL keyword, 4-11

exception handler, 4-11
local, 4-12

exceptions
assigning names

PRAGMA_EXCEPTION_INIT, 4-11
remote procedures, 4-11
user-defined

PL/SQL, 4-11
EXECUTE_IMMEDIATE, 7-3

restrictions, 7-4
EXECUTE_NON_QUERY, 7-3

F
FDS_CLASS, 6-16
FDS_CLASS_VERSION, 6-16
FDS_INST_NAME, 6-17
FETCH_ROW, 7-3
FETCH_ROW procedure, 7-7
fetching, 7-8

optimizing round-trips, 7-8
fetching rows, 7-8
forcing

COMMIT or ROLLBACK, 3-21, 3-30
foreign key, 4-3
Foreign system

global name, A-5

G
GET_VALUE, 7-3
GET_VALUE procedure, 7-6
global coordinator, 3-7
global data inconsistency, 7-2
global database name, 2-2
global names

resolution, 2-18
global naming, 2-2
global object names, 2-2
global user, 1-18, 2-6, 2-12, 2-13
GLOBAL_NAMES initialization parameter, 2-2

H
Heterogeneous Services

agents, 5-5
application development issues, 7-1
concepts, 5-1
overview, 1-8
Index-4

process architecture, 5-5
hints, 4-7

driving_site, 4-8
no_merge, 4-8

hold time
changing, 3-32

HP’sOpenView, 1-20
HS_AUTOREGISTER, 6-17
HS_EXTERNAL_OBJECTS data dictionary

view, 6-12

I
IBMsNetView/6000', 1-20
IN bind variables, 7-5
IN OUT bind variables, 7-6
in-doubt transactions, 3-4

after a system failure, 3-19
forcing a commit, 3-31
forcing a rollback, 3-31
intentionally creating, 3-33
overriding manually, 3-21
pending transactions table, 3-29
recoverer process, 3-34
rollback segments, 3-21
rolling back, 3-31

Initialization parameters
specifying, 6-13

integrity constraints
ORA-02055

constraint violation, 4-3

J
joins, 2-25

K
keys

primary, 4-3
unique, 4-3

L
Language, A-7

LANGUAGE parameter, A-7
large data sets, 7-2
Listener, 6-2
listing database links, 2-20
local coordinator, 3-7
Location Transparency, 6-5
location transparency, 2-20

using procedures, 2-24
LOCK TABLE command

in distributed transactions, 2-26
locks

in distributed transactions, 3-20
LONG columns, 2-26
LONG RAW columns, 2-26

M
messages

error
trapping, 4-11

messaging systems, 5-3
multiple rows

buffering, 7-8
multi-threaded (MTS) servers and shared database

links, 2-10
multi-threaded server mode, 2-6

N
name resolution

in distributed databases, 1-6
National Language Support (NLS)

clients and servers may diverge, 1-20
Net3 listener, 6-2
Net8 Listener, 5-5
network connections

minimizing, 2-6
networks

distributed databases use of’, 1-2
NLS_DATE_FORMAT parameter, A-9
NLS_DATE_LANGUAGE parameter, A-11
NO_DATA_FOUND

PL/SQL keyword, 4-11
no_merge, 4-8
non-queries
Index-5

passthrough SQL, 7-3
NovellsNetWareManagementSystem’, 1-20

O
object names

resolving partial, 2-17
objects

referencing with synonyms, 2-22
OPEN_CURSOR, 7-3
OPEN_LINKS initialization parameter, 2-20
operating system dependencies, C-1
ORA-00900

SQL error, 4-11
ORA-02015

SQL error, 4-11
ORA-02055

integrity constraint violation, 4-3
ORA-02067

rollback required, 4-3
ORA-06510

PL/SQL error, 4-12
OUT Bind Variables, 7-6
OUT bind variables, 7-6

P
parent/child table relationships

maintaining, 4-3
PARSE, 7-3
partial global object name, 2-17
Pass-through SQL, 7-2
pass-through SQL

avoiding SQL interpretation, 7-2
overview, 7-2
restrictions, 7-2

passthrough SQL
non queries, 7-3
queries, 7-3

pass-through SQL statements
executing, 7-3

pass-through SQL statements with bind
variables, 7-4

pending transaction tables, 3-29
PL/SQL

error
ORA-06510, 4-12

user-defined exceptions, 4-11
PL/SQL development environment, 7-2
PL/SQL external procedures, 5-4
PRAGMA_EXCEPTION_INIT

assigning exception names, 4-11
prepare phase, 3-3

recognizing read-only nodes, 3-17
prepare/commit phases

abort response, 3-3
effects of failure, 3-20
failures during, 3-19
forcing to fail, 3-33
locked resources, 3-20
pending transaction table, 3-29
prepared response, 3-3
read-only response, 3-3
testing recovery, 3-33

primary
key, 4-3

privileges
closing a database link, 4-2
committing in-doubt transactions, 3-31
managing with procedures, 2-25
managing with synonyms, 2-24
managing with views, 2-22
rolling back in-doubt transactions, 3-31

Procedural service, 5-2
procedural services, 6-8
procedure calls

remote, 1-12
procedures

location transparency using, 2-24
remote

error handling, 4-11
process architecture for distributed external

procedures, 5-6
public database link

connected user, 2-11
fixed user, 2-10

public fixed user database link, 2-10
Index-6

Q
Queries

pass-through SQL, 7-7
queries

distributed, 1-11
application development issues, 4-3

distributed or remote, 1-11
during prepare phase, 3-3
location transparency and, 1-15
passthrough SQL, 7-3
post-processing, 4-3
remote, 4-3
remote execution, 4-3
transparency, 2-25

queuing system, 5-3

R
RAISE_APPLICATION_ERROR procedure

remote procedures, 4-11
read-only transactions

distributed, 3-17
recover in-doubt transaction dialog, 3-30
recoverer process (RECO)

disabling, 3-34
distributed transaction recovery, 3-34
DISTRIBUTED_TRANSACTIONS

parameter, 3-18
enabling, 3-34
pending transaction table, 3-34

recovery
testing distributed transactions, 3-33

referential integrity
distributed database systems

application development, 4-3
using triggers to enforce, 4-3

remote data
querying, 2-26
updating, 2-26

remote procedure calls, 1-12, 5-3
remote procedure calls (RPCs), 1-12
remote procedures

error handling
application development, 4-11

remote queries, 4-3
execution, 4-3
post-processing, 4-3

remote transactions, 1-12
restriction

distributed transactions, 2-26
rollback

forcing, 3-31
ROLLBACK command

FORCE option, 3-31
forcing, 3-21

rollback segments
in-doubt distributed transactions, 3-21

rollbacks
ORA-02067 error, 4-3

rows
buffering multiple, 7-8
fetching, 7-8

RPC, 1-12
RPCs, 5-3

S
savepoints

in-doubt transactions, 3-31
schema objects

distributed database naming conventions
for, 1-6

global names, 1-6
security

for remote objects, 2-22
using synonyms, 2-23

SELECT ... FOR UPDATE, 2-25
SERVER clause, 2-9
Server Manager, 1-19
servers

role in two-phase commit, 3-6
Service names, 6-4
sessions

setting advice for transactions, 3-22
Setting up access to Foreign Systems, 6-7
shared database links, 2-6

configurations, 2-8
creating, 2-8
to dedicated servers, 2-9
Index-7

to multi-threaded (MTS) servers, 2-10
SHARED keyword, 2-8
shared SQL for remote and distributed

statements, 2-26
Simple Network Management Protocol (SNMP)

support
database management, 1-20

single-process systems
enabling distributed recovery, 3-35

site autonomy, 1-16
SQL capabilities

data dictionary tables, 6-11
SQL dialect, 5-3
SQL errors

ORA-00900, 4-11
ORA-02015, 4-11

SQL service, 5-2
capabilities, 5-3
data dictionary views, 6-8

SQL statement
reducing parsing, 7-4

SQL statements
distributed databases and, 1-11
mapping to non-Oracle datastores, 7-2
multiple, 7-4

stored procedures
distributed query creation, 4-3
managing privileges, 2-25
remote object security, 2-25

subqueries, 2-25
in remote updates, 1-11

SunSoft’sSunNetManager, 1-20
synonyms

CREATE command, 2-22
definition and creation, 2-22
examples, 2-23
location transparency using, 2-22
managing privileges, 2-24
name resolution, 2-18
remote object security, 2-24

System Change Number (SCN)
in-doubt transactions, 3-32

system change numbers (SCN)
coordination in a distributed database

system, 3-17

T
tables

parent/child relationships
maintaining across nodes, 4-3

third generation language (3GL) routines, 5-4
transaction management

overview, 3-2
transactions

closing database links, 4-2
distributed

read-only, 3-17
restrictions, 2-26
two-phase commit and, 1-13

in-doubt, 3-4
after a system failure, 3-19
pending transactions table, 3-29
recoverer process (RECO) and, 3-34

manual overriding in-doubt, 3-21
read-only

distributed, 3-17
transactions folder

forcing a commit
Enterprise Manager, 3-31

forcing a rollback
Enterprise Manager, 3-31

transparency, 2-20
location

using procedures, 2-24
query, 2-25
update, 2-25

triggers
distributed query creation, 4-3
enforcing referential integrity, 4-3
maintaining parent/child table relationships

across nodes, 4-3
troubleshooting

distributed transactions, 3-19
TRUSTED_SERVER

data dictionary view, D-1
tuning

analyze tables, 4-6
cost based optimization, 4-5
distributed queries, 4-4

two-phase commit
Index-8

commit phase, 3-4, 3-15
described, 1-13
example of, 3-11
prepare phase, 3-3
recognizing read-only nodes, 3-17

U
unique key, 4-3
updates

location transparency and, 1-15
transparency, 2-25

USER
data dictionary view, 2-20

user-defined exceptions
PL/SQL, 4-11

V
Variables

BIND, 7-4
variables

IN bind, 7-5
IN OUT bind, 7-6
OUT bind, 7-6

views
location transparency using, 2-20
managing privileges with, 2-22
name resolution, 2-18
remote object security, 2-22
Index-9

Index-10

	PDF Directory
	Contents
	Send Us Your Comments
	Preface
	Part I� Distributed Database Systems
	1 Distributed Database Concepts
	Oracle’s Distributed Database Architecture
	Clients and Servers
	The Network
	Databases and Database Links
	Database Links
	Schema Object Name Resolution
	Connecting Between Oracle Server Versions
	Distributed Databases and Distributed Processing
	Distributed Databases and Database Replication

	Heterogeneous Distributed Databases
	Heterogeneous Services
	Heterogeneous Services Agents
	Features

	Developing Distributed Database Applications
	Distributed Query Optimization
	Remote and Distributed SQL Statements
	Remote Procedure Calls (RPCs)
	Remote and Distributed Transactions
	Transparency in a Distributed Database System

	Administering an Oracle Distributed Database System
	Site Autonomy
	Distributed Database Security
	Tools for Administering Oracle Distributed Databases
	Enterprise Manager
	Third-Party Administration Tools
	SNMP Support

	National Language Support

	2 Distributed Database Administration
	Global Database Names and Global Object Names
	Types of Database Links
	Private, Public, and Global Database Links
	Security Options for Database Links
	Shared Database Links
	Connection Qualifiers
	Database Link Resolution
	Schema Object Name Resolution
	Views, Synonyms, Procedures and Global Name Resolution
	Dropping a Database Link
	Listing Available Database Links
	Limiting the Number of Active Database Links

	Techniques for Location Transparency
	Views and Location Transparency
	Synonyms and Location Transparency
	Procedures and Location Transparency

	Statement Transparency
	Restrictions
	Values for Environmentally-Dependent SQL Functions
	Shared SQL for Remote and Distributed Statements

	3 Distributed Transactions
	Distributed Transaction Management
	The Prepare and Commit Phases
	Prepare Phase
	Commit Phase

	The Session Tree
	Clients
	Servers and Database Servers
	Local Coordinators
	The Global Coordinator
	The Commit Point Site

	A Case Study
	The Scenario
	The Process

	Coordination of System Change Numbers
	Read-Only Distributed Transactions
	Limiting the Number of Distributed Transactions Per Node
	Troubleshooting Distributed Transaction Problems
	Failures that Interrupt Two-Phase Commit
	Failures that Prevent Data Access

	Manually Overriding In-Doubt Transactions
	Manual Override Example
	Step 1: Record User Feedback
	Step 2: Query DBA_2PC_PENDING
	Step 3: Query DBA_2PC_NEIGHBORS
	Manually Checking the Status of Pending Transactions at SALES.ACME.COM
	Manually Checking the Status of Pending Transactions at HQ.ACME.COM:
	Step 4: Check for Mixed Outcome
	The Pending Transaction Table (DBA_2PC_PENDING)

	Manually Committing In-Doubt Transactions
	Forcing a Commit or Rollback in Enterprise Manager
	Manually Committing or Rolling Back In-Doubt Transactions

	Changing Connection Hold Time
	Setting a Limit on Distributed Transactions
	Testing Distributed Transaction Recovery Features
	Forcing a Distributed Transaction to Fail
	The Recoverer (RECO) Background Process
	Disabling and Enabling RECO

	4 Distributed Database System Application Development
	Factors Affecting the Distribution of an Application’s Data
	Controlling Connections Established by Database Links
	Referential Integrity in a Distributed System
	Distributed Queries
	Tuning Distributed Queries
	Cost Based Optimization
	Extend Cost Based Optimization with Hints
	Verifying Optimization

	Handling Errors in Remote Procedures

	Part II� Heterogeneous Services
	5 Understanding Oracle Heterogeneous Services
	What is Heterogeneous Services?
	Heterogeneous Services Agents

	The Services provided by Heterogeneous Services
	Transaction Service
	SQL Service
	Procedural Service

	Using Heterogeneous Services
	Heterogeneous Services Process Architecture
	Process Architecture for Distributed External Procedures

	6 Administering Oracle Heterogeneous Services
	Setting up access to Non-Oracle Systems
	Install the Heterogeneous Services Data Dictionary
	Set Up Environment to Access Heterogeneous Services Agents
	Create the Database Link to the Non-Oracle System
	Test the Connection
	Register Distributed External Procedures (Optional)

	Structure of the Heterogeneous Services Data Dictionary
	The Data Dictionary Views
	General Data Dictionary Views for Heterogeneous Services
	Views for the Transaction Service
	Views for the SQL Service
	Views for Distributed External Procedures

	The DBMS_HS Package
	Setting Initialization Parameters
	Unsetting Initialization Parameters

	Security for Distributed External Procedures
	Agent Self-Registration
	Advantages of Agent Self-Registration
	How Does Agent Self-Registration Work?
	Oracle Server Initialization Parameter HS_AUTOREGISTER

	7 Application Development with Heterogeneous Services
	Application Development with Heterogeneous Services
	Pass-Through SQL
	Considerations When Using Pass-Through SQL
	Executing Pass-Through SQL Statements
	Executing Queries

	Bulk Fetch
	Array Fetch Using the OCI, an Oracle Precompiler, or Another Tool
	Array Fetch Between an Oracle8i Server and the Agent
	Array Fetch Between the Agent and the Non-Oracle Datastore
	Reblocking

	A Heterogeneous Services Initialization Parameters
	HS_COMMIT_POINT_STRENGTH
	Purpose

	HS_DB_DOMAIN
	Purpose

	HS_DB_INTERNAL_NAME
	Purpose

	HS_DB_NAME
	Purpose

	HS_DESCRIBE_CACHE_HWM
	Purpose

	HS_LANGUAGE
	Purpose
	Character sets
	Language
	Territory

	HS_NLS_DATE_FORMAT
	Purpose

	HS_NLS_DATE_LANGUAGE
	Purpose

	HS_NLS_NCHAR
	HS_OPEN_CURSORS
	Purpose

	HS_ROWID_CACHE_SIZE
	Purpose

	HS_RPC_FETCH_REBLOCKING
	Purpose

	HS_FDS_FETCH_ROWS
	Purpose

	HS_RPC_FETCH_SIZE
	Purpose

	B DBMS_HS Package Reference
	DBMS_HS.CREATE_FDS_INST
	Purpose
	Interface description
	See Also

	DBMS_HS.CREATE_INST_INIT
	Purpose
	Interface description
	See Also

	DBMS_HS.DROP_FDS_INST
	Purpose
	Interface Description
	See Also

	DBMS_HS.DROP_INST_INIT
	Purpose
	Interface description
	See Also

	C DBMS_HS_PASSTHROUGH for Pass-Through SQL
	DBMS_HS_PASSTHROUGH.BIND_VARIABLE
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_HS_PASSTHROUGH.BIND_VARIABLE_RAW
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE_RAW
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE_RAW
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_HS_PASSTHROUGH.CLOSE_CURSOR
	Purpose
	Interface Description
	See Also

	DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_HS_PASSTHROUGH.FETCH_ROW
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_HS_PASSTHROUGH.GET_VALUE
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_HS_PASSTHROUGH.GET_VALUE_RAW
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_HS_PASSTHROUGH.OPEN_CURSOR
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_HS_PASSTHROUGH.PARSE
	Purpose
	Interface Description
	Purity Level
	See Also

	D DBMS_DISTRIBUTED_TRUST_ADMIN Package Reference
	DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ ALL
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_ ALL
	Purpose
	Interface Description
	Purity Level
	See Also

	DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER (SERVER IN VARCHAR2)
	Purpose
	Interface Description
	Purity Level

	DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER (SERVER IN VARCHAR2)
	Purpose
	Interface Description
	Purity Level

	Index

