
Oracle8 i

SQL Reference

Release 8.1.5

February 1999

Part No. A67779-01

SQL Reference, Release 8.1.5

Part No. A67779-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Authors: Diana Lorentz, Denise Oertel

Contributors: Alan Downing, Alex Tsukerman, Alok Pareek, Amit Ganesh, Andre Kruglikov, Andrew
Witkowski, Angela Amor, AnhTuan Tran, Ann Rhee, Aravind Yalamanchi, Ari Mozes, Arvind
Nithrakashyap, Ashok Joshi, Ashwini Surpur, Bhaskar Himatsingka, Bill Courington, Bill Waddington,
Brajesh Goyal, Cetin Ozbutun, Chin-Heng Hong, Chon Lei, Daniel Wong, Dinesh Das, Edward Waugh, Eric
Magrath, Franco Putzolu, Guhan Viswanathan, Harry Sun, Harvey Eneman, Jack Raitto, Jags Srinivasan,
Janaki Krishnaswami, Jerry Schwarz, Jianping Yang, Jim Finnerty, John Haydu, Joyo Wijaya, Juan Tellez,
Karuna Muthiah, Lilian Hobbs, Lois Price, Maria Pratt, Mark Jungerman, Michael Depledge, Mohamed
Zait, Muralidhar Krishnaprasad, Namit Jain, Nipun Agarwal, Paul Justus, Paul Raveling, Qin Yu,
Radhakrishna Hari, Ravi Murthy, Rick Anderson, Rick Wessman, Robert Jenkins, Rosanne Park, Sanjay
Kaluskar, Sankar Subramanian, Sophia Yeung, Sriram Samu, Steve Vivian, Subramanian Muralidhar,
Sukhjit Singh, Susan Kotsovolos, Thong Bui, Thuvan Hoang, Vikas Arora, Vinay Srihari, Vishu
Krishnamurthy, Vishy Karra, Wei Huang, Wei Wang

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by such
use of the Programs.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form
or by any means, electronic or mechanical, for any purpose, without the express written permission of
Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Pro*COBOL, SQL*Plus, Net8, Oracle Call Interface, Oracle7, Oracle7
Server, Oracle8, Oracle8 Server, Oracle8i, Oracle Forms, PL/SQL, Pro*C, Pro*C/C++, and Trusted Oracle
are registered trademarks or trademarks of Oracle Corporation. All other company or product names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface .. xi

Features and Functionality... xi
Audience... xii
How this Reference Is Organized.. xii
What’s New in This Release? .. xiii
Conventions Used in this Reference... xv
Your Comments Are Welcome.. xx

1 Introduction

History of SQL... 1-1
SQL Standards... 1-2
Embedded SQL ... 1-3
Lexical Conventions ... 1-4
Tools Support... 1-5

2 Basic Elements of Oracle SQL

Literals... 2-2
Datatypes .. 2-5
Format Models... 2-33
Nulls .. 2-49
Pseudocolumns ... 2-51
Comments... 2-56
 iii

Database Objects... 2-63
Schema Object Names and Qualifiers .. 2-67
Referring to Schema Objects and Parts .. 2-71

3 Operators

Unary and Binary Operators ... 3-1
Precedence .. 3-2
Arithmetic Operators.. 3-3
Concatenation Operator... 3-3
Comparison Operators ... 3-5
Logical Operators .. 3-10
Set Operators.. 3-12
Other Built-In Operators ... 3-15
User-Defined Operators ... 3-16

4 Functions

SQL Functions ... 4-1
User-Defined Functions ... 4-56

5 Expressions, Conditions, and Queries

Expressions... 5-1
Conditions .. 5-13
Queries and Subqueries .. 5-18

6 About SQL Statements

Summary of SQL Statements.. 6-1
Finding the Right SQL Statement ... 6-5

7 SQL Statements

ALTER CLUSTER ... 7-2
ALTER DATABASE .. 7-6
ALTER DIMENSION ... 7-24
ALTER FUNCTION.. 7-27
 iv

ALTER INDEX... 7-29
ALTER JAVA .. 7-43
ALTER MATERIALIZED VIEW / SNAPSHOT.. 7-45
ALTER MATERIALIZED VIEW LOG / SNAPSHOT LOG.. 7-54
ALTER OUTLINE ... 7-58
ALTER PACKAGE .. 7-59
ALTER PROCEDURE .. 7-62
ALTER PROFILE... 7-64
ALTER RESOURCE COST ... 7-68
ALTER ROLE ... 7-71
ALTER ROLLBACK SEGMENT ... 7-73
ALTER SEQUENCE.. 7-76
ALTER SESSION .. 7-78
ALTER SNAPSHOT ... 7-93
ALTER SNAPSHOT LOG ... 7-94
ALTER SYSTEM ... 7-95
ALTER TABLE ... 7-113
ALTER TABLESPACE .. 7-164
ALTER TRIGGER ... 7-171
ALTER TYPE .. 7-173
ALTER USER ... 7-179
ALTER VIEW ... 7-183
ANALYZE ... 7-185
ASSOCIATE STATISTICS .. 7-194
AUDIT sql_statements... 7-197
AUDIT schema_objects .. 7-205
CALL ... 7-210
COMMENT.. 7-212
COMMIT .. 7-214
constraint_clause... 7-217
CREATE CLUSTER .. 7-236
CREATE CONTEXT ... 7-243
CREATE CONTROLFILE.. 7-245
CREATE DATABASE ... 7-249
CREATE DATABASE LINK.. 7-255
 v

CREATE DIMENSION .. 7-259
CREATE DIRECTORY ... 7-264
CREATE FUNCTION ... 7-266
CREATE INDEX .. 7-273
CREATE INDEXTYPE .. 7-291
CREATE JAVA.. 7-293
CREATE LIBRARY ... 7-298
CREATE MATERIALIZED VIEW / SNAPSHOT ... 7-300
CREATE MATERIALIZED VIEW LOG / SNAPSHOT LOG ... 7-314
CREATE OPERATOR... 7-320
CREATE OUTLINE... 7-323
CREATE PACKAGE ... 7-325
CREATE PACKAGE BODY .. 7-328
CREATE PROCEDURE.. 7-333
CREATE PROFILE .. 7-338
CREATE ROLE .. 7-344
CREATE ROLLBACK SEGMENT ... 7-346
CREATE SCHEMA ... 7-348
CREATE SEQUENCE ... 7-350
CREATE SNAPSHOT .. 7-354
CREATE SNAPSHOT LOG .. 7-355
CREATE SYNONYM.. 7-356
CREATE TABLE .. 7-359
CREATE TABLESPACE ... 7-394
CREATE TEMPORARY TABLESPACE .. 7-399
CREATE TRIGGER .. 7-401
CREATE TYPE ... 7-411
CREATE TYPE BODY .. 7-421
CREATE USER... 7-425
CREATE VIEW .. 7-430
DELETE... 7-438
DISASSOCIATE STATISTICS ... 7-444
DROP CLUSTER... 7-446
DROP CONTEXT.. 7-448
DROP DATABASE LINK .. 7-449
 vi

DROP DIMENSION .. 7-450
DROP DIRECTORY ... 7-451
DROP FUNCTION ... 7-452
DROP INDEX .. 7-454
DROP INDEXTYPE.. 7-456
DROP JAVA ... 7-457
DROP LIBRARY ... 7-458
DROP MATERIALIZED VIEW / SNAPSHOT ... 7-459
DROP MATERIALIZED VIEW LOG / SNAPSHOT LOG ... 7-461
DROP OPERATOR... 7-463
DROP OUTLINE .. 7-464
DROP PACKAGE ... 7-465
DROP PROCEDURE.. 7-467
DROP PROFILE .. 7-468
DROP ROLE .. 7-469
DROP ROLLBACK SEGMENT... 7-470
DROP SEQUENCE ... 7-471
DROP SNAPSHOT .. 7-472
DROP SNAPSHOT LOG .. 7-473
DROP SYNONYM.. 7-474
DROP TABLE .. 7-475
DROP TABLESPACE ... 7-477
DROP TRIGGER .. 7-479
DROP TYPE ... 7-480
DROP TYPE BODY .. 7-482
DROP USER .. 7-483
DROP VIEW .. 7-485
EXPLAIN PLAN .. 7-486
filespec ... 7-490
GRANT system_privileges_and_roles ... 7-493
GRANT object_privileges .. 7-505
INSERT ... 7-512
LOCK TABLE... 7-520
NOAUDIT sql_statements .. 7-523
NOAUDIT schema_objects ... 7-525
 vii

RENAME .. 7-527
REVOKE system_privileges_and_roles ... 7-529
REVOKE schema_object_privileges ... 7-532
ROLLBACK.. 7-537
SAVEPOINT... 7-539
SELECT and Subqueries ... 7-541
SET CONSTRAINT(S)... 7-568
SET ROLE ... 7-570
SET TRANSACTION... 7-572
storage_clause .. 7-575
TRUNCATE.. 7-581
UPDATE.. 7-584

A Syntax Diagrams

B Oracle and Standard SQL

Conformance with Standard SQL... B - 1
Oracle Extensions to Standard SQL ... B - 5

C Oracle Reserved Words
 viii

Send Us Your Comments

SQL Reference, Release 8.1.5

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). Please send your comments to:

Server Technologies Documentation Manager

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7228

or e-mail comments to the Information Development department at the following e-mail address:

infodev@us.oracle.com
ix

x

Preface

Well begun is half done.

Aristotle, Nicomachean Ethics

This reference contains a complete description of the Structured Query Language

(SQL) used to manage information in an Oracle database. Oracle SQL is a superset

of the American National Standards Institute (ANSI) and the International

Standards Organization (ISO) SQL92 standard at entry level conformance.

For information on PL/SQL, Oracle’s procedural language extension to SQL, see

PL/SQL User’s Guide and Reference.

Detailed descriptions of Oracle embedded SQL can be found in the Pro*C/C++
Precompiler Programmer’s Guide, SQL*Module for Ada Programmer’s Guide, and the

Pro*COBOL Precompiler Programmer’s Guide.

Features and Functionality
Oracle8i SQL Reference contains information about the features and functionality of

the Oracle8i and the Oracle8i Enterprise Edition products. Oracle8i and Oracle8i
Enterprise Edition have the same basic features. However, several advanced

features are available only with the Enterprise Edition, and some of these are

optional.

For information about the differences between Oracle8i and the Oracle8i Enterprise

Edition and the available features and options, see Getting to Know Oracle8i. That

book also describes all the features that are new in Oracle8i.
xi

Audience
This reference is intended for all users of Oracle SQL.

How this Reference Is Organized
This reference is divided into the following parts:

Volume 1

Chapter 1, "Introduction"
This chapter defines SQL and describes its history as well as the advantages of

using it to access relational databases.

Chapter 2, "Basic Elements of Oracle SQL"
This chapter describes the basic building blocks of an Oracle database and Oracle

SQL.

Chapter 3, "Operators"
This chapter describes how to use SQL operators to combine data into expressions

and conditions.

Chapter 4, "Functions"
This chapter describes how to use SQL functions to combine data into expressions

and conditions.

Chapter 5, "Expressions, Conditions, and Queries"
This chapter describes SQL expressions and conditions and discusses the various

ways of extracting information from your database through queries.

Chapter 6, "About SQL Statements"
This chapter lists the various types of SQL statements, and provides a table to help

you find the appropriate SQL statement for your database task.

Volume 2

Chapter 7, "SQL Statements"
This chapter lists and describes all Oracle SQL statements in alphabetical order.
xii

Appendix A, "Syntax Diagrams"
This appendix describes how to read the syntax diagrams in this reference.

Appendix B, "Oracle and Standard SQL"
This appendix describes Oracle compliance with ANSI and ISO standards.

Appendix C, "Oracle Reserved Words"
This appendix lists words that are reserved for internal use by Oracle.

What’s New in This Release?
Oracle8i contains many new features, which are documented throughout this

reference. For a description of all features new to this release, see Getting to Know
Oracle8i.

The following top-level SQL statements are new to Oracle8i:

■ ALTER DIMENSION on page 7-24

■ ALTER JAVA on page 7-43

■ ALTER OUTLINE on page 7-58

■ ASSOCIATE STATISTICS on page 7-194

■ CALL on page 7-210

■ CREATE CONTEXT on page 7-243

■ CREATE DIMENSION on page 7-259

■ CREATE INDEXTYPE on page 7-291

■ CREATE JAVA on page 7-293

■ CREATE OPERATOR on page 7-320

■ CREATE OUTLINE on page 7-323

■ CREATE TEMPORARY TABLESPACE on page 7-399

■ DISASSOCIATE STATISTICS on page 7-444

■ DROP CONTEXT on page 7-448

■ DROP DIMENSION on page 7-450

■ DROP INDEXTYPE on page 7-456
xiii

■ DROP JAVA on page 7-457

■ DROP OPERATOR on page 7-463

■ DROP OUTLINE on page 7-464

In addition, users familiar with the Release 8.0 documentation will find that the

following sections have been moved or renamed:

■ The section "Format Models" now appears in Chapter 2 on page 2-33.

■ Chapter 3 has been divided into several smaller chapters:

■ Chapter 3, "Operators"

■ Chapter 4, "Functions"

■ Chapter 5, "Expressions, Conditions, and Queries". The last section,

"Queries and Subqueries" on page 5-18, provides background for the

syntactic and semantic information in "SELECT and Subqueries" on

page 7-541.

■ A new chapter, Chapter 6, "About SQL Statements", has been added to help

you find the correct SQL statement for a particular task.

■ The archive_log_clause is no longer a separate section, but has been

incorporated into "ALTER SYSTEM" on page 7-95.

■ The deallocate_unused_clause is no longer a separate section, but has been

incorporated into "ALTER TABLE" on page 7-113, "ALTER CLUSTER" on

page 7-2, and "ALTER INDEX" on page 7-29.

■ The disable_clause is no longer a separate section, but has been incorporated

into "CREATE TABLE" on page 7-359 and "ALTER TABLE" on page 7-113.

■ The drop_clause is no longer a separate section. It has become the drop_
constraint_clause of the ALTER TABLE statement (to distinguish it from the new

drop_column_clause of that statement). See "ALTER TABLE" on page 7-113.

■ The enable_clause is no longer a separate section, but has been incorporated

into "CREATE TABLE" on page 7-359 and "ALTER TABLE" on page 7-113.

■ The parallel_clause is no longer a separate section. The clause has been

simplified, and has been incorporated into the various statements where it is

relevant.

■ The recover_clause is no longer a separate section. Recovery functionality has

been enhanced, and because it is always implemented through the ALTER
xiv

DATABASE statement, it has been incorporated into that section. See "ALTER

DATABASE" on page 7-6.

■ The sections on snapshots and snapshot logs have been moved and renamed.

Snapshot functionality has been greatly enhanced, and these objects are now

called materialized views. See "CREATE MATERIALIZED VIEW /

SNAPSHOT" on page 300, "ALTER MATERIALIZED VIEW / SNAPSHOT" on

page 7-45, "DROP MATERIALIZED VIEW / SNAPSHOT" on page 7-459,

"CREATE MATERIALIZED VIEW LOG / SNAPSHOT LOG" on page 7-314,

"ALTER MATERIALIZED VIEW LOG / SNAPSHOT LOG" on page 7-54, and

"DROP MATERIALIZED VIEW LOG / SNAPSHOT LOG" on page 7-461.

■ The section on subqueries has now been combined with the SELECT

statement. See "SELECT and Subqueries" on page 7-541.

Conventions Used in this Reference
This section explains the conventions used in this book including:

■ Text

■ Syntax Diagrams and Notation

■ Code Examples

■ Example Data

Text
The text in this reference adheres to the following conventions:

Syntax Diagrams and Notation

Syntax Diagrams This reference uses syntax diagrams to show SQL statements in

Chapter 7, “SQL Statements”, and to show other elements of the SQL language in

Chapter 2, “Basic Elements of Oracle SQL”, Chapter 3, “Operators”, Chapter 4,

UPPERCASE Uppercase text calls attention to SQL keywords,

filenames, and initialization parameters.

italics Italicized text calls attention to parameters of SQL

statements.

boldface Boldface text calls attention to definitions of terms.
xv

“Functions”, and Chapter 5, “Expressions, Conditions, and Queries”. These syntax

diagrams use lines and arrows to show syntactic structure, as shown here:

If you are not familiar with this type of syntax diagram, refer to Appendix A,

“Syntax Diagrams”, for a description of how to read them. This section describes

the components of syntax diagrams and gives examples of how to write SQL

statements. Syntax diagrams are made up of these items:

Keywords Keywords have special meanings in the SQL language. In the syntax

diagrams, keywords appear in UPPERCASE. You must use keywords in your SQL

statements exactly as they appear in the syntax diagram, except that they can be

either uppercase or lowercase. For example, you must use the CREATE keyword to

begin your CREATE TABLE statements just as it appears in the CREATE TABLE

syntax diagram.

Parameters Parameters act as placeholders in syntax diagrams. They appear in

lowercase. Parameters are usually names of database objects, Oracle datatype

names, or expressions. When you see a parameter in a syntax diagram, substitute

an object or expression of the appropriate type in your SQL statement. For

example, to write a CREATE TABLE statement, use the name of the table you want

to create, such as EMP, in place of the table parameter in the syntax diagram. (Note

that parameter names appear in italics in the text.)

This lists shows parameters that appear in the syntax diagrams and provides

examples of the values you might substitute for them in your statements:

Parameter Description Examples

table The substitution value must be the name

of an object of the type specified by the

parameter. For a list of all types of objects,

see the section, "Schema Objects" on

page 2-63.

emp

c The substitution value must be a single

character from your database character set.

T

s

COMMIT
WORK

COMMENT ’ text ’

FORCE ’ text ’
, integer

;

xvi

’text’ The substitution value must be a text

string in single quotes. See the syntax

description of ’text’ in "Text" on page 2-2.

’Employee records’

char The substitution value must be an

expression of datatype CHAR or

VARCHAR2 or a character literal in single

quotes.

ename

’Smith’

condition The substitution value must be a condition

that evaluates to TRUE or FALSE. See the

syntax description of condition in

"Conditions" on page 5-13.

ename >’A’

date

d

The substitution value must be a date

constant or an expression of DATE

datatype.

TO_DATE(

’01-Jan-1994’,

’DD-MON-YYYY’)

expr The substitution value can be an

expression of any datatype as defined in

the syntax description of expr in

"Expressions" on page 5-1.

sal + 1000

integer The substitution value must be an integer

as defined by the syntax description of

integer in "Integer" on page 2-3.

72

number

m

n

The substitution value must be an

expression of NUMBER datatype or a

number constant as defined in the syntax

description of number in "Number" on

page 2-4.

AVG(sal)

15 * 7

raw The substitution value must be an

expression of datatype RAW.

HEXTORAW(’7D’)

subquery The substitution value must be a SELECT

statement that will be used in another SQL

statement. See "SELECT and Subqueries"

on page 7-541.

SELECT ename

FROM emp

db_name The substitution value must be the name

of a nondefault database in an embedded

SQL program.

sales_db

Parameter Description Examples
xvii

Code Examples
This reference contains many examples of SQL statements. These examples show

you how to use elements of SQL. The following example shows a CREATE TABLE

statement:

CREATE TABLE accounts
 (accno NUMBER,
 owner VARCHAR2(10),
 balance NUMBER(7,2));

Note that examples appear in a different font than the text.

Examples follow these conventions:

■ Keywords, such as CREATE and NUMBER, appear in uppercase.

■ Names of database objects and their parts, such as ACCOUNTS and ACCNO,

appear in lowercase, although they appear in uppercase in the text.

■ PL/SQL blocks appear in italics. Keywords and parameters in these blocks

may not be documented in this reference unless they are also SQL keywords

and parameters. For more information see PL/SQL User’s Guide and Reference.

SQL is not case sensitive (except for quoted identifiers), so you need not follow

these conventions when writing your own SQL statements. However, your

statements may be easier for you to read if you do.

Some Oracle tools require you to terminate SQL statements with a special character.

For example, the code examples in this reference were issued through SQL*Plus,

and therefore are terminated with a semicolon (;). If you issue these example

statements to Oracle, you must terminate them with the special character expected

by the Oracle tool you are using.

Example Data
Many of the examples in this reference operate on sample tables. The definitions of

some of these tables appear in a SQL script available on your distribution medium.

db_string The substitution value must be the

database identification string for a Net8

database connection. For details, see the

user’s guide for your specific Net8

protocol.

Parameter Description Examples
xviii

On most operating systems the name of this script is UTLSAMPL.SQL, although its

exact name and location depend on your operating system. This script creates

sample users and creates these sample tables in the schema of the user SCOTT:

CREATE TABLE dept
 (deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13));
CREATE TABLE emp
 (empno NUMBER(4) CONSTRAINT pk_emp PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT fk_deptno REFERENCES dept);
CREATE TABLE bonus
 (ename VARCHAR2(10),
 job VARCHAR2(9),
 sal NUMBER,
 comm NUMBER);
CREATE TABLE salgrade
 (grade NUMBER,
 losal NUMBER,
 hisal NUMBER);

The script also fills the sample tables with this data:

SELECT * FROM dept;

DEPTNO DNAME LOC
------- ---------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

SELECT * FROM emp;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ------- --------- ------ --------- ------ ------ -------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
xix

 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10
 7788 SCOTT ANALYST 7566 19-APR-87 3000 20
 7839 KING PRESIDENT 17-NOV-81 5000 10
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
 7876 ADAMS CLERK 7788 23-MAY-87 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10

SELECT * FROM salgrade;

GRADE LOSAL HISAL
----- ----- -----
1 700 1200
2 1201 1400
3 1401 2000
4 2001 3000
5 3001 9999

To perform all the operations of the script, run it when you are logged into Oracle

as the user SYSTEM.

Your Comments Are Welcome
We value and appreciate your comments as an Oracle user and reader of our

references. As we write, revise, and evaluate, your opinions are the most important

input we receive. At the front of this reference is a reader’s comment form that we

encourage you to use to tell us both what you like and what you dislike about this

(or other) Oracle manuals. If the form is missing, or you would like to contact us,

please use the following address or fax number:

Server Technologies Documentation Manager

Oracle Corporation

500 Oracle Parkway

Redwood City, CA 94065

FAX: 650-506-7228

You can also e-mail your comments to the Information Development department at

the following e-mail address: infodev@us.oracle.com
xx

Introdu
1

Introduction

The chief merit of language is clearness

Galen, On the Natural Faculties

Structured Query Language (SQL) is the set of statements with which all programs

and users access data in an Oracle database. Application programs and Oracle tools

often allow users access to the database without using SQL directly, but these

applications in turn must use SQL when executing the user’s request. This chapter

provides background information on SQL as used by most relational database

systems. Topics include:

■ History of SQL

■ SQL Standards

■ Embedded SQL

■ Lexical Conventions

■ Tools Support

History of SQL
Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared

Data Banks", in June 1970 in the Association of Computer Machinery (ACM)

journal, Communications of the ACM. Codd’s model is now accepted as the definitive

model for relational database management systems (RDBMS). The language,

Structured English Query Language ("SEQUEL") was developed by IBM

Corporation, Inc., to use Codd’s model. SEQUEL later became SQL (still

pronounced "sequel"). In 1979, Relational Software, Inc. (now Oracle Corporation)

introduced the first commercially available implementation of SQL. Today, SQL is

accepted as the standard RDBMS language.
ction 1-1

SQL Standards
SQL Standards
Oracle SQL complies with industry-accepted standards. Oracle Corporation

ensures future compliance with evolving SQL standards by participating actively

in SQL standards committees. Industry-accepted committees are the American

National Standards Institute (ANSI) and the International Standards Organization

(ISO), which is affiliated with the International Electrotechnical Commission (IEC).

Both ANSI and the ISO/IEC have accepted SQL as the standard language for

relational databases. When a new SQL standard is simultaneously published by

these organizations, the names of the standards conform to conventions used by

the organization, but the standards are technically identical.

The latest SQL standard published by ANSI and ISO is often called SQL92 (and

sometimes SQL2). The formal names of the new standard are:

■ ANSI X3.135-1992, "Database Language SQL"

■ ISO/IEC 9075:1992, "Database Language SQL"

SQL92 defines four levels of compliance: Entry, Transitional, Intermediate, and Full.

A conforming SQL implementation must support at least Entry SQL. Oracle8i fully

supports Entry SQL and has many features that conform to Transitional,

Intermediate, or Full SQL.

Oracle8i is 100% compliant with Entry-level SQL92 as outlined in Federal

Information Processing Standard (FIPS) PUB 127-2.

How SQL Works
The strengths of SQL provide benefits for all types of users, including application

programmers, database administrators, managers, and end users. Technically

speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface

to a relational database such as Oracle, and all SQL statements are instructions to

the database. In this SQL differs from general-purpose programming languages

like C and BASIC. Among the features of SQL are the following:

■ It processes sets of data as groups rather than as individual units.

■ It provides automatic navigation to the data.

■ It uses statements that are complex and powerful individually, and that

therefore stand alone. Flow-control statements were not part of SQL originally,

but they are found in the recently accepted optional part of SQL, ISO/IEC

Additional Information: For more information about Oracle and

standard SQL, see Appendix B, "Oracle and Standard SQL".
1-2 SQL Reference

Embedded SQL
9075-5: 1996. Flow-control statements are commonly known as "persistent

stored modules" (PSM), and Oracle’s PL/SQL extension to SQL is similar to

PSM.

Essentially, SQL lets you work with data at the logical level. You need to be

concerned with the implementation details only when you want to manipulate the

data. For example, to retrieve a set of rows from a table, you define a condition

used to filter the rows. All rows satisfying the condition are retrieved in a single

step and can be passed as a unit to the user, to another SQL statement, or to an

application. You need not deal with the rows one by one, nor do you have to worry

about how they are physically stored or retrieved. All SQL statements use the

optimizer, a part of Oracle that determines the most efficient means of accessing

the specified data. Oracle also provides techniques you can use to make the

optimizer perform its job better.

SQL provides statements for a variety of tasks, including:

■ Querying data

■ Inserting, updating, and deleting rows in a table

■ Creating, replacing, altering, and dropping objects

■ Controlling access to the database and its objects

■ Guaranteeing database consistency and integrity

SQL unifies all of the above tasks in one consistent language.

Common Language for All Relational Databases
All major relational database management systems support SQL, so you can

transfer all skills you have gained with SQL from one database to another. In

addition, all programs written in SQL are portable. They can often be moved from

one database to another with very little modification.

Embedded SQL
Embedded SQL refers to the use of standard SQL statements embedded within a

procedural programming language. The embedded SQL statements are

documented in the Oracle precompiler books, SQL*Module for Ada Programmer’s
Guide, Pro*C/C++ Precompiler Programmer’s Guide, and Pro*COBOL Precompiler
Programmer’s Guide.
Introduction 1-3

Lexical Conventions
Embedded SQL is a collection of these statements:

■ All SQL commands, such as SELECT and INSERT, available with SQL with

interactive tools

■ Dynamic SQL execution commands, such as PREPARE and OPEN, which

integrate the standard SQL statements with a procedural programming

language

Embedded SQL also includes extensions to some standard SQL statements.

Embedded SQL is supported by the Oracle precompilers. The Oracle precompilers

interpret embedded SQL statements and translate them into statements that can be

understood by procedural language compilers.

Each of these Oracle precompilers translates embedded SQL programs into a

different procedural language:

■ Pro*C/C++ precompiler

■ Pro*COBOL precompiler

■ SQL*Module for ADA

Lexical Conventions
The following lexical conventions for issuing SQL statements apply specifically to

Oracle’s implementation of SQL, but are generally acceptable in other SQL

implementations.

When you issue a SQL statement, you can include one or more tabs, carriage

returns, spaces, or comments anywhere a space occurs within the definition of the

statement. Thus, Oracle evaluates the following two statements in the same manner:

 SELECT ENAME,SAL*12,MONTHS_BETWEEN(HIREDATE,SYSDATE) FROM EMP;

 SELECT ENAME,
 SAL * 12,
 MONTHS_BETWEEN(HIREDATE, SYSDATE)
 FROM EMP;

Additional Information: For a definition of the Oracle

precompilers and the embedded SQL statements, see SQL*Module
for Ada Programmer’s Guide, Pro*C/C++ Precompiler Programmer’s
Guide, and Pro*COBOL Precompiler Programmer’s Guide.
1-4 SQL Reference

Tools Support
Case is insignificant in reserved words, keywords, identifiers and parameters.

However, case is significant in text literals and quoted names. See the syntax

description in "Text" on page 2-2.

Tools Support
Most (but not all) Oracle tools support all features of Oracle’s SQL. This reference

describes the complete functionality of SQL. If the Oracle tool that you are using

does not support this complete functionality, you can find a discussion of the

restrictions in the manual describing the tool, such as SQL*Plus User’s Guide and
Reference.

If you are using Trusted Oracle, see your Trusted Oracle documentation for

information about SQL statements specific to that environment.
Introduction 1-5

Tools Support
1-6 SQL Reference

Basic Elements of Oracle
2

Basic Elements of Oracle SQL

Once the whole is divided, the parts need names.

Lao Tsu, Tao Te Ching: Thirty-Two

This chapter contains reference information on the basic elements of Oracle SQL.

These elements are simplest building blocks of SQL statements. Therefore, before

using the statements described in Chapter 7, "SQL Statements", you should

familiarize yourself with the concepts covered in this chapter, as well as in

Chapter 3, "Operators", Chapter 4, "Functions", Chapter 5, "Expressions,

Conditions, and Queries", and Chapter 6, "About SQL Statements":

■ Literals

■ Text

■ Integer

■ Number

■ Datatypes

■ Format Models

■ Nulls

■ Pseudocolumns

■ Comments

■ Database Objects

■ Schema Object Names and Qualifiers

■ Referring to Schema Objects and Parts
 SQL 2-1

Literals
Literals
The terms literal and constant value are synonymous and refer to a fixed data

value. For example, ’JACK’, ’BLUE ISLAND’, and ’101’ are all character literals;

5001 is a numeric literal. Note that character literals are enclosed in single quotation

marks, which enable Oracle to distinguish them from schema object names.

Many SQL statements and functions require you to specify character and numeric

literal values. You can also specify literals as part of expressions and conditions.

You can specify character literals with the ’text’ notation, national character literals

with the N’text’ notation, and numeric literals with the integer or number notation,

depending on the context of the literal. The syntactic forms of these notations

appear in the sections that follow.

Text
Text specifies a text or character literal. You must use this notation to specify values

whenever ’text’ or char appear in expressions, conditions, SQL functions, and SQL

statements in other parts of this reference.

The syntax of text is as follows:

text::=

where

A text literal must be enclosed in single quotation marks. This reference uses the

terms text literal and character literal interchangeably.

Text literals have properties of both the CHAR and VARCHAR2 datatypes:

N specifies representation of the literal using the national character set. Text

entered using this notation is translated into the national character set by

Oracle when used.

c is any member of the user’s character set, except a single quotation mark

(’).

’ ’ are two single quotation marks that begin and end text literals. To

represent one single quotation mark within a literal, enter two single

quotation marks.

N
’ c ’
2-2 SQL Reference

Literals
■ Within expressions and conditions, Oracle treats text literals as though they

have the datatype CHAR by comparing them using blank-padded comparison

semantics. See "Blank-Padded Comparison Semantics" on page 2-28.

■ A text literal can have a maximum length of 4000 bytes.

Here are some valid text literals:

’Hello’
’ORACLE.dbs’
’Jackie’’s raincoat’
’09-MAR-98’
N’nchar literal’

For more information, see the syntax description of expr in "Expressions" on

page 5-1.

Integer
You must use the integer notation to specify an integer whenever integer appears in

expressions, conditions, SQL functions, and SQL statements described in other

parts of this reference.

The syntax of integer is as follows:

integer::=

where

An integer can store a maximum of 38 digits of precision.

Here are some valid integers:

7
+255

For more information, see the syntax description of expr in "Expressions" on

page 5-1.

digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

+

–
digit
Basic Elements of Oracle SQL 2-3

Literals
Number
You must use the number notation to specify values whenever number appears in

expressions, conditions, SQL functions, and SQL statements in other parts of this

reference.

The syntax of number is as follows:

number::=

where

A number can store a maximum of 38 digits of precision.

If you have established a decimal character other than a period (.) with the

initialization parameter NLS_NUMERIC_CHARACTERS, you must specify

numeric literals with ’text’ notation. In such cases, Oracle automatically converts

the text literal to a numeric value.

For example, if the NLS_NUMERIC_CHARACTERS parameter specifies a decimal

character of comma, specify the number 5.123 as follows:

’5,123’

For more information on this parameter, see "ALTER SESSION" on page 7-78 and

Oracle8i Reference.

+, - indicates a positive or negative value. If you omit the sign, a positive

value is the default.

digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9.

e, E indicates that the number is specified in scientific notation. The digits

after the E specify the exponent. The exponent can range from -130 to 125.

+

– digit
. digit

. digit

E

e

+

–
digit
2-4 SQL Reference

Datatypes
Here are some valid representations of number:

25
+6.34
0.5
25e-03
-1
For more information, see the syntax description of expr in "Expressions" on

page 5-1.

Datatypes
Each literal or column value manipulated by Oracle has a datatype. A value’s

datatype associates a fixed set of properties with the value. These properties cause

Oracle to treat values of one datatype differently from values of another. For

example, you can add values of NUMBER datatype, but not values of RAW

datatype.

When you create a table or cluster, you must specify a datatype for each of its

columns. When you create a procedure or stored function, you must specify a

datatype for each of its arguments. These datatypes define the domain of values

that each column can contain or each argument can have. For example, DATE

columns cannot accept the value February 29 (except for a leap year) or the values 2

or ’SHOE’. Each value subsequently placed in a column assumes the column’s

datatype. For example, if you insert ’01-JAN-98’ into a DATE column, Oracle treats

the ’01-JAN-98’ character string as a DATE value after verifying that it translates to

a valid date.

Oracle provides a number of built-in datatypes as well as several categories for

user-defined types, as shown in Figure 2–1.
Basic Elements of Oracle SQL 2-5

Datatypes
Figure 2–1 Oracle Type Categories

The syntax of the Oracle built-in datatypes appears in the next diagram. Table 2–1

summarizes Oracle built-in datatypes. The rest of this section describes these

datatypes as well as the various kinds of user-defined types.

Note: The Oracle precompilers recognize other datatypes in

embedded SQL programs. These datatypes are called external
datatypes and are associated with host variables. Do not confuse

built-in and user-defined datatypes with external datatypes. For

information on external datatypes, including how Oracle converts

between them and built-in or user-defined datatypes, see

Pro*COBOL Precompiler Programmer’s Guide, Pro*C/C++ Precompiler
Programmer’s Guide, and SQL*Module for Ada Programmer’s Guide.

Built-in Datatypes

User-defined type category

structured type category

object types

collection type category

varrays

nested tables

REFS (to object types)
2-6 SQL Reference

Datatypes
built-in datatypes:

The ANSI-supported datatypes appear in the figure that follows. Table 2–2 shows

the mapping of ANSI-supported datatypes to Oracle build-in datatypes.

CHAR (size)

VARCHAR2 (size)

NCHAR (size)

NVARCHAR2 (size)

NUMBER
(precision

, scale
)

LONG

LONG RAW

RAW (size)

DATE

BLOB

CLOB

NCLOB

BFILE

ROWID

UROWID
(size)

ANSI_supported_types
Basic Elements of Oracle SQL 2-7

Datatypes
ANSI-supported datatypes:

CHARACTER (size)

CHARACTER VARYING (size)

CHAR VARYING (size)

VARCHAR (size)

NATIONAL CHARACTER (size)

NATIONAL CHAR (size)

NATIONAL CHARACTER VARYING (size)

NATIONAL CHAR VARYING (size)

NCHAR VARYING (size)

NUMERIC
(precision

, scale
)

DECIMAL
(precision

, scale
)

DEC
(precision

, scale
)

INTEGER

INT

SMALLINT

FLOAT
(size)

DOUBLE PRECISION

REAL
2-8 SQL Reference

Datatypes
Table 2–1 Built-In Datatype Summary

Codea Built-In Datatype Description

1 VARCHAR2(size) Variable-length character string having maximum
length size bytes. Maximum size is 4000, and
minimum is 1. You must specify size for
VARCHAR2.

1 NVARCHAR2(size) Variable-length character string having maximum
length size characters or bytes, depending on the
choice of national character set. Maximum size is
determined by the number of bytes required to
store each character, with an upper limit of 4000
bytes. You must specify size for NVARCHAR2.

2 NUMBER(p,s) Number having precision p and scale s. The
precision p can range from 1 to 38. The scale s can
range from -84 to 127.

8 LONG Character data of variable length up to 2 gigabytes,

or 231 -1 bytes.

12 DATE Valid date range from January 1, 4712 BC to
December 31, 9999 AD.

23 RAW(size) Raw binary data of length size bytes. Maximum size
is 2000 bytes. You must specify size for a RAW value.

24 LONG RAW Raw binary data of variable length up to 2
gigabytes.

69 ROWID Hexadecimal string representing the unique
address of a row in its table. This datatype is
primarily for values returned by the ROWID
pseudocolumn.

208 UROWID [(size)] Hexadecimal string representing the logical address
of a row of an index-organized table. The optional
size is the size of a column of type UROWID. The
maximum size and default is 4000 bytes.

96 CHAR(size) Fixed-length character data of length size bytes.
Maximum size is 2000 bytes. Default and minimum
size is 1 byte.

a The codes listed for the datatypes are used internally by Oracle. The datatype code of a column
or object attribute is returned when you use the DUMP function.
Basic Elements of Oracle SQL 2-9

Datatypes
Character Datatypes
Character datatypes store character (alphanumeric) data, which are words and

free-form text, in the database character set or national character set. They are less

restrictive than other datatypes and consequently have fewer properties. For

example, character columns can store all alphanumeric values, but NUMBER

columns can store only numeric values.

Character data is stored in strings with byte values corresponding to one of the

character sets, such as 7-bit ASCII or EBCDIC Code Page 500, specified when the

database was created. Oracle supports both single-byte and multibyte character

sets.

These datatypes are used for character data:

■ CHAR Datatype

96 NCHAR(size) Fixed-length character data of length size characters
or bytes, depending on the choice of national
character set. Maximum size is determined by the
number of bytes required to store each character,
with an upper limit of 2000 bytes. Default and
minimum size is 1 character or 1 byte, depending on
the character set.

112 CLOB A character large object containing single-byte
characters. Both fixed-width and variable-width
character sets are supported, both using the CHAR
database character set. Maximum size is 4 gigabytes.

112 NCLOB A character large object containing multibyte
characters. Both fixed-width and variable-width
character sets are supported, both using the
NCHAR database character set. Maximum size is 4
gigabytes. Stores national character set data.

113 BLOB A binary large object. Maximum size is 4 gigabytes.

114 BFILE Contains a locator to a large binary file stored
outside the database. Enables byte stream I/O
access to external LOBs residing on the database
server. Maximum size is 4 gigabytes.

Table 2–1 (Cont.) Built-In Datatype Summary

Codea Built-In Datatype Description

a The codes listed for the datatypes are used internally by Oracle. The datatype code of a column
or object attribute is returned when you use the DUMP function.
2-10 SQL Reference

Datatypes
■ NCHAR Datatype

■ NVARCHAR2 Datatype

■ VARCHAR2 Datatype

CHAR Datatype
The CHAR datatype specifies a fixed-length character string. When you create a

table with a CHAR column, you supply the column length in bytes. Oracle

subsequently ensures that all values stored in that column have this length. If you

insert a value that is shorter than the column length, Oracle blank-pads the value to

column length. If you try to insert a value that is too long for the column, Oracle

returns an error.

The default length for a CHAR column is 1 character and the maximum allowed is

2000 characters. A zero-length string can be inserted into a CHAR column, but the

column is blank-padded to 1 character when used in comparisons. For information

on comparison semantics, see "Datatype Comparison Rules" on page 2-27.

NCHAR Datatype
The NCHAR datatype specifies a fixed-length national character set character

string. When you create a table with an NCHAR column, you define the column

length either in characters or in bytes. You define the national character set when

you create your database.

If the national character set of the database is fixed width, such as JA16EUCFIXED,

then you declare the NCHAR column size as the number of characters desired for

the string length. If the national character set is variable width, such as JA16SJIS,

you declare the column size in bytes. The following statement creates a table with

one NCHAR column that can store strings up to 30 characters in length using

JA16EUCFIXED as the national character set:

CREATE TABLE tab1 (col1 NCHAR(30));

The column’s maximum length is determined by the national character set

definition. Width specifications of character datatype NCHAR refer to the number

of characters if the national character set is fixed width and refer to the number of

bytes if the national character set is variable width. The maximum column size

allowed is 2000 bytes. For fixed-width, multibyte character sets, the maximum

length of a column allowed is the number of characters that fit into no more than

2000 bytes.
Basic Elements of Oracle SQL 2-11

Datatypes
If you insert a value that is shorter than the column length, Oracle blank-pads the

value to column length. You cannot insert a CHAR value into an NCHAR column,

nor can you insert an NCHAR value into a CHAR column.

The following example compares the COL1 column of TAB1 with national character

set string NCHAR literal :

SELECT * FROM tab1 WHERE col1 = N’NCHAR literal’;

NVARCHAR2 Datatype
The NVARCHAR2 datatype specifies a variable-length national character set

character string. When you create a table with an NVARCHAR2 column, you

supply the maximum number of characters or bytes it can hold. Oracle

subsequently stores each value in the column exactly as you specify it, provided

the value does not exceed the column’s maximum length.

The column’s maximum length is determined by the national character set

definition. Width specifications of character datatype NVARCHAR2 refer to the

number of characters if the national character set is fixed width and refer to the

number of bytes if the national character set is variable width. The maximum

column size allowed is 4000 bytes. For fixed-width, multibyte character sets, the

maximum length of a column allowed is the number of characters that fit into no

more than 4000 bytes.

The following statement creates a table with one NVARCHAR2 column of 2000

characters in length (stored as 4000 bytes, because each character takes two bytes)

using JA16EUCFIXED as the national character set:

CREATE TABLE tab1 (col1 NVARCHAR2(2000));

VARCHAR2 Datatype
The VARCHAR2 datatype specifies a variable-length character string. When you

create a VARCHAR2 column, you supply the maximum number of bytes of data

that it can hold. Oracle subsequently stores each value in the column exactly as you

specify it, provided the value does not exceed the column’s maximum length. If

you try to insert a value that exceeds the specified length, Oracle returns an error.

You must specify a maximum length for a VARCHAR2 column. This maximum

must be at least 1 byte, although the actual length of the string stored is permitted

to be zero. The maximum length of VARCHAR2 data is 4000 bytes. Oracle

compares VARCHAR2 values using nonpadded comparison semantics. For

information on comparison semantics, see "Datatype Comparison Rules" on

page 2-27.
2-12 SQL Reference

Datatypes
VARCHAR Datatype
The VARCHAR datatype is currently synonymous with the VARCHAR2 datatype.

Oracle recommends that you use VARCHAR2 rather than VARCHAR. In the

future, VARCHAR might be defined as a separate datatype used for variable-length

character strings compared with different comparison semantics.

NUMBER Datatype
The NUMBER datatype stores zero, positive, and negative fixed and floating-point

numbers with magnitudes between 1.0 x 10-130 and 9.9...9 x 10125 (38 nines

followed by 88 zeroes) with 38 digits of precision. If you specify an arithmetic

expression whose value has a magnitude greater than or equal to 1.0 x 10126, Oracle

returns an error.

Specify a fixed-point number using the following form:

NUMBER(p,s)

where:

Specify an integer using the following form:

Specify a floating-point number using the following form:

Scale and Precision
Specify the scale and precision of a fixed-point number column for extra integrity

checking on input. Specifying scale and precision does not force all values to a

fixed length. If a value exceeds the precision, Oracle returns an error. If a value

exceeds the scale, Oracle rounds it.

p is the precision, or the total number of digits. Oracle guarantees

the portability of numbers with precision ranging from 1 to 38.

s is the scale, or the number of digits to the right of the decimal

point. The scale can range from -84 to 127.

NUMBER(p) is a fixed-point number with precision p and scale 0. This is

equivalent to NUMBER(p,0).

NUMBER is a floating-point number with decimal precision 38. Note that a

scale value is not applicable for floating-point numbers. (See

"Floating-Point Numbers" on page 2-15 for more information.)
Basic Elements of Oracle SQL 2-13

Datatypes
The following examples show how Oracle stores data using different precisions

and scales.

Negative Scale
If the scale is negative, the actual data is rounded to the specified number of places

to the left of the decimal point. For example, a specification of (10,-2) means to

round to hundreds.

Scale Greater than Precision
You can specify a scale that is greater than precision, although it is uncommon. In

this case, the precision specifies the maximum number of digits to the right of the

decimal point. As with all number datatypes, if the value exceeds the precision,

Oracle returns an error message. If the value exceeds the scale, Oracle rounds the

value. For example, a column defined as NUMBER(4,5) requires a zero for the first

digit after the decimal point and rounds all values past the fifth digit after the

decimal point. The following examples show the effects of a scale greater than

precision:

Actual Data Specified As Stored As

7456123.89 NUMBER 7456123.89

7456123.89 NUMBER(9) 7456124

7456123.89 NUMBER(9,2) 7456123.89

7456123.89 NUMBER(9,1) 7456123.9

7456123.89 NUMBER(6) exceeds precision

7456123.89 NUMBER(7,-2) 7456100

7456123.89 NUMBER(-7,2) exceeds precision

Actual Data Specified As Stored As

.01234 NUMBER(4,5) .01234

.00012 NUMBER(4,5) .00012

.000127 NUMBER(4,5) .00013

.0000012 NUMBER(2,7) .0000012

.00000123 NUMBER(2,7) .0000012
2-14 SQL Reference

Datatypes
Floating-Point Numbers
Oracle allows you to specify floating-point numbers, which can have a decimal

point anywhere from the first to the last digit or can have no decimal point at all. A

scale value is not applicable to floating-point numbers, because the number of

digits that can appear after the decimal point is not restricted.

You can specify floating-point numbers with the form discussed in "NUMBER

Datatype" on page 2-13. Oracle also supports the ANSI datatype FLOAT. You can

specify this datatype using one of these syntactic forms:

LONG Datatype
LONG columns store variable-length character strings containing up to 2

gigabytes, or 231-1 bytes. LONG columns have many of the characteristics of

VARCHAR2 columns. You can use LONG columns to store long text strings. The

length of LONG values may be limited by the memory available on your computer.

You can reference LONG columns in SQL statements in these places:

■ SELECT lists

■ SET clauses of UPDATE statements

■ VALUES clauses of INSERT statements

The use of LONG values is subject to some restrictions:

■ A table cannot contain more than one LONG column.

FLOAT specifies a floating-point number with decimal precision 38, or

binary precision 126.

FLOAT(b) specifies a floating-point number with binary precision b. The

precision b can range from 1 to 126. To convert from binary to

decimal precision, multiply b by 0.30103. To convert from decimal

to binary precision, multiply the decimal precision by 3.32193.

The maximum of 126 digits of binary precision is roughly

equivalent to 38 digits of decimal precision.

Note: Oracle Corporation strongly recommends that you convert

LONG columns to LOB columns. LOB columns are subject to far

fewer restrictions than LONG columns. For more information, see

"TO_LOB" on page 4-45.
Basic Elements of Oracle SQL 2-15

Datatypes
■ You cannot create an object type with a LONG attribute.

■ LONG columns cannot appear in integrity constraints (except for NULL and

NOT NULL constraints).

■ LONG columns cannot be indexed.

■ A stored function cannot return a LONG value.

■ Within a single SQL statement, all LONG columns, updated tables, and locked

tables must be located on the same database.

LONG columns cannot appear in certain parts of SQL statements:

■ WHERE clauses, GROUP BY clauses, ORDER BY clauses, or CONNECT BY

clauses or with the DISTINCT operator in SELECT statements

■ The UNIQUE operator of a SELECT statement

■ The column list of a CREATE CLUSTER statement

■ The CLUSTER clause of a CREATE MATERIALIZED VIEW statement

■ SQL functions (such as SUBSTR or INSTR)

■ Expressions or conditions

■ SELECT lists of queries containing GROUP BY clauses

■ SELECT lists of subqueries or queries combined by set operators

■ SELECT lists of CREATE TABLE ... AS SELECT statements

■ SELECT lists in subqueries in INSERT statements

Triggers can use the LONG datatype in the following manner:

■ A SQL statement within a trigger can insert data into a LONG column.

■ If data from a LONG column can be converted to a constrained datatype (such

as CHAR and VARCHAR2), a LONG column can be referenced in a SQL

statement within a trigger.

■ Variables in triggers cannot be declared using the LONG datatype.

■ :NEW and :OLD cannot be used with LONG columns.

You can use the Oracle Call Interface functions to retrieve a portion of a LONG

value from the database. See Oracle Call Interface Programmer’s Guide.
2-16 SQL Reference

Datatypes
DATE Datatype
The DATE datatype stores date and time information. Although date and time

information can be represented in both CHAR and NUMBER datatypes, the DATE

datatype has special associated properties. For each DATE value, Oracle stores the

following information: century, year, month, day, hour, minute, and second.

To specify a date value, you must convert a character or numeric value to a date

value with the TO_DATE function. Oracle automatically converts character values

that are in the default date format into date values when they are used in date

expressions. The default date format is specified by the initialization parameter

NLS_DATE_FORMAT and is a string such as ’DD-MON-YY’. This example date

format includes a two-digit number for the day of the month, an abbreviation of

the month name, and the last two digits of the year.

If you specify a date value without a time component, the default time is 12:00:00

AM (midnight). If you specify a time value without a date, the default date is the

first day of the current month.

The date function SYSDATE returns the current date and time. For information on

the SYSDATE and TO_DATE functions and the default date format, see "Date

Format Models" on page 2-40 and Chapter 4, "Functions".

Date Arithmetic
You can add and subtract number constants as well as other dates from dates.

Oracle interprets number constants in arithmetic date expressions as numbers of

days. For example, SYSDATE + 1 is tomorrow. SYSDATE - 7 is one week ago.

SYSDATE + (10/1440) is ten minutes from now. Subtracting the HIREDATE

column of the EMP table from SYSDATE returns the number of days since each

employee was hired. You cannot multiply or divide DATE values.

Oracle provides functions for many common date operations. For example, the

ADD_MONTHS function lets you add or subtract months from a date. The

MONTHS_BETWEEN function returns the number of months between two dates.

The fractional portion of the result represents that portion of a 31-day month. For

more information on date functions, see "Date Functions" on page 4-4.

Because each date contains a time component, most results of date operations

include a fraction. This fraction means a portion of one day. For example, 1.5 days

is 36 hours.
Basic Elements of Oracle SQL 2-17

Datatypes
Using Julian Dates
A Julian date is the number of days since January 1, 4712 BC. Julian dates allow

continuous dating from a common reference. You can use the date format model "J"

with date functions TO_DATE and TO_CHAR to convert between Oracle DATE

values and their Julian equivalents.

Example This statement returns the Julian equivalent of January 1, 1997:

SELECT TO_CHAR(TO_DATE(’01-01-1997’, ’MM-DD-YYYY’),’J’)
 FROM DUAL;

TO_CHAR

2450450

For a description of the DUAL table, see "Selecting from the DUAL Table" on

page 5-24.

RAW and LONG RAW Datatypes
The RAW and LONG RAW datatypes store data that is not to be interpreted (not

explicitly converted when moving data between different systems) by Oracle.

These datatypes are intended for binary data or byte strings. For example, you can

use LONG RAW to store graphics, sound, documents, or arrays of binary data, for

which the interpretation is dependent on the use.

RAW is a variable-length datatype like VARCHAR2, except that Net8 (which

connects user sessions to the instance) and the Import and Export utilities do not

perform character conversion when transmitting RAW or LONG RAW data. In

contrast, Net8 and Import/Export automatically convert CHAR, VARCHAR2, and

LONG data from the database character set to the user session character set (which

you can set with the NLS_LANGUAGE parameter of the ALTER SESSION

statement), if the two character sets are different.

Note: Oracle Corporation strongly recommends that you convert

LONG RAW columns to binary LOB (BLOB) columns. LOB

columns are subject to far fewer restrictions than LONG columns.

For more information, see "TO_LOB" on page 4-45.
2-18 SQL Reference

Datatypes
When Oracle automatically converts RAW or LONG RAW data to and from CHAR

data, the binary data is represented in hexadecimal form, with one hexadecimal

character representing every four bits of RAW data. For example, one byte of RAW

data with bits 11001011 is displayed and entered as ’CB’.

Large Object (LOB) Datatypes
The built-in LOB datatypes BLOB, CLOB, and NCLOB (stored internally), and the

BFILE (stored externally), can store large and unstructured data such as text, image,

video, and spatial data up to 4 gigabytes in size.

When creating a table, you can optionally specify different tablespace and storage

characteristics for LOB columns or LOB object attributes from those specified for

the table.

LOB columns contain LOB locators that can refer to out-of-line or in-line LOB

values. Selecting a LOB from a table actually returns the LOB’s locator and not the

entire LOB value. The DBMS_LOB package and Oracle Call Interface (OCI)

operations on LOBs are performed through these locators. For more information

about these interfaces and LOBs, see Oracle8i Supplied Packages Reference and Oracle
Call Interface Programmer’s Guide. For information on creating temporary LOBs, see

Oracle8i Application Developer’s Guide - Large Objects (LOBs).

LOBs are similar to LONG and LONG RAW types, but differ in the following ways:

■ LOBs can be attributes of a user-defined datatype (object).

■ The LOB locator is stored in the table column, either with or without the actual

LOB value. BLOB, NCLOB, and CLOB values can be stored in separate

tablespaces. BFILE data is stored in an external file on the server.

■ When you access a LOB column, the locator is returned.

■ A LOB can be up to 4 gigabytes in size. BFILE maximum size is operating

system dependent, but cannot exceed 4 gigabytes.

■ LOBs permit efficient, random, piece-wise access to and manipulation of data.

■ You can define more than one LOB column in a table.

■ With the exception of NCLOB, you can define one or more LOB attributes in an

object.

■ You can declare LOB bind variables.

■ You can select LOB columns and LOB attributes.
Basic Elements of Oracle SQL 2-19

Datatypes
■ You can insert a new row or update an existing row that contains one or more

LOB columns and/or an object with one or more LOB attributes. (You can set

the internal LOB value to NULL, empty, or replace the entire LOB with data.

You can set the BFILE to NULL or make it point to a different file.)

■ You can update a LOB row/column intersection or a LOB attribute with

another LOB row/column intersection or LOB attribute.

■ You can delete a row containing a LOB column or LOB attribute and thereby

also delete the LOB value. Note that for BFILEs, the actual operating system file

is not deleted.

For more information, please see the discussion of LOB restrictions in Oracle8i
Application Developer’s Guide - Large Objects (LOBs). For more information on

converting LONG columns to LOB columns, see "TO_LOB" on page 4-45.

To access and populate rows of an internal LOB column (a LOB column stored in

the database), use the INSERT statement first to initialize the internal LOB value to

empty. Once the row is inserted, you can select the empty LOB and populate it

using the DBMS_LOB package or the OCI.

The following example creates a table with LOB columns:

CREATE TABLE person_table (name CHAR(40),
 resume CLOB,
 picture BLOB)
 LOB (resume) STORE AS
 (TABLESPACE resumes
 STORAGE (INITIAL 5M NEXT 5M));

BFILE Datatype
The BFILE datatype enables access to binary file LOBs that are stored in file

systems outside the Oracle database. A BFILE column or attribute stores a BFILE

locator, which serves as a pointer to a binary file on the server’s file system. The

locator maintains the directory alias and the filename. See "CREATE DIRECTORY"

on page 7-264.

Binary file LOBs do not participate in transactions and are not recoverable. Rather,

the underlying operating system provides file integrity and durability. The

maximum file size supported is 4 gigabytes.

The database administrator must ensure that the file exists and that Oracle

processes have operating system read permissions on the file.

The BFILE datatype allows read-only support of large binary files. You cannot

modify or replicate such a file. Oracle provides APIs to access file data. The
2-20 SQL Reference

Datatypes
primary interfaces that you use to access file data are the DBMS_LOB package and

the OCI. For more information about LOBs, see Oracle8i Application Developer’s
Guide - Large Objects (LOBs) and Oracle Call Interface Programmer’s Guide.

BLOB Datatype
The BLOB datatype stores unstructured binary large objects. BLOBs can be thought

of as bitstreams with no character set semantics. BLOBs can store up to 4 gigabytes

of binary data.

BLOBs have full transactional support. Changes made through SQL, the DBMS_

LOB package, or the OCI participate fully in the transaction. BLOB value

manipulations can be committed and rolled back. Note, however, that you cannot

save a BLOB locator in a PL/SQL or OCI variable in one transaction and then use it

in another transaction or session.

CLOB Datatype
The CLOB datatype stores single-byte character data. Both fixed-width and

variable-width character sets are supported, and both use the CHAR database

character set. CLOBs can store up to 4 gigabytes of character data.

CLOBs have full transactional support. Changes made through SQL, the DBMS_

LOB package, or the OCI participate fully in the transaction. CLOB value

manipulations can be committed and rolled back. Note, however, that you cannot

save a CLOB locator in a PL/SQL or OCI variable in one transaction and then use it

in another transaction or session.

NCLOB Datatype
The NCLOB datatype stores multibyte national character set character (NCHAR)

data. Both fixed-width and variable-width character sets are supported. NCLOBs

can store up to 4 gigabytes of character text data.

NCLOBs have full transactional support. Changes made through SQL, the DBMS_

LOB package, or the OCI participate fully in the transaction. NCLOB value

manipulations can be committed and rolled back. Note, however, that you cannot

save an NCLOB locator in a PL/SQL or OCI variable in one transaction and then

use it in another transaction or session.

ROWID Datatype
Each row in the database has an address. You can examine a row’s address by

querying the pseudocolumn ROWID. Values of this pseudocolumn are
Basic Elements of Oracle SQL 2-21

Datatypes
hexadecimal strings representing the address of each row. These strings have the

datatype ROWID. For more information on the ROWID pseudocolumn, see

"Pseudocolumns" on page 2-51. You can also create tables and clusters that contain

actual columns having the ROWID datatype. Oracle does not guarantee that the

values of such columns are valid rowids.

Restricted Rowids
Beginning with Oracle8, Oracle SQL incorporated an extended format for rowids to

efficiently support partitioned tables and indexes and tablespace-relative data

block addresses (DBAs) without ambiguity.

Character values representing rowids in Oracle7 and earlier releases are called

restricted rowids. Their format is as follows:

block.row.file

where:

Extended Rowids
The extended ROWID datatype stored in a user column includes the data in the

restricted rowid plus a data object number. The data object number is an

identification number assigned to every database segment. You can retrieve the

data object number from data dictionary views USER_OBJECTS, DBA_OBJECTS,

and ALL_OBJECTS. Objects that share the same segment (clustered tables in the

same cluster, for example) have the same object number.

Extended rowids are not available directly. You can use a supplied package, DBMS_

ROWID, to interpret extended rowid contents. The package functions extract and

provide information that would be available directly from a restricted rowid, as

well as information specific to extended rowids. For information on the functions

available with the DBMS_ROWID package and how to use them, see Oracle8i
Supplied Packages Reference.

block is a hexadecimal string identifying the data block of the datafile

containing the row. The length of this string depends on your

operating system.

row is a four-digit hexadecimal string identifying the row in the data

block. The first row of the block has a digit of 0.

file is a hexadecimal string identifying the database file containing

the row. The first datafile has the number 1. The length of this

string depends on your operating system.
2-22 SQL Reference

Datatypes
Compatibility and Migration
The restricted form of a rowid is still supported in Oracle8i for backward

compatibility, but all tables return rowids in the extended format. For information

regarding compatibility and migration issues, see Oracle8i Migration.

UROWID Datatype
Each row in a database has an address (as discussed in "ROWID Datatype" on

page 2-21). However, the rows of some tables have addresses that are not physical

or permanent, or were not generated by Oracle. For example, the row addresses of

index-organized tables are stored in index leaves, which can move. Rowids of

foreign tables (such as DB2 tables accessed through a gateway) are not standard

Oracle rowids.

Oracle uses "universal rowids" (urowids) to store the addresses of index-organized

and foreign tables. Index-organized tables have logical urowids and foreign tables

have foreign urowids. Both types of urowid are stored in the ROWID

pseudocolumn (as are the physical rowids of heap-organized tables).

Oracle creates logical rowids based on a table’s primary key. The logical rowids do

not change as long as the primary key does not change. The ROWID

pseudocolumn of an index-organized table has a datatype of UROWID. You can

access this pseudocolumn as you would the ROWID pseudocolumn of a

heap-organized (that is, using the SELECT ROWID statement). If you wish to store

the rowids of an index-organized table, you can define a column of type UROWID

for the table and retrieve the value of the ROWID pseudocolumn into that column.

For more information on the UROWID datatype and how Oracle generates and

manipulates universal rowids, see Oracle8i Concepts and Oracle8i Tuning.

ANSI, DB2, and SQL/DS Datatypes
SQL statements that create tables and clusters can also use ANSI datatypes and

datatypes from IBM’s products SQL/DS and DB2. Oracle recognizes the ANSI or

IBM datatype name and records it as the name of the datatype of the column, and

then stores the column’s data in an Oracle datatype based on the conversions

shown in Table 2–2 and Table 2–3.

Note: Heap-organized tables have physical rowids. Oracle

Corporation does not recommend that you specify a column of

datatype UROWID for a heap-organized table.
Basic Elements of Oracle SQL 2-23

Datatypes
Table 2–2 ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype

CHARACTER(n)

CHAR(n)

CHAR(n)

CHARACTER VARYING(n)

CHAR VARYING(n)

VARCHAR(n)

NATIONAL CHARACTER(n)

NATIONAL CHAR(n)

NCHAR(n)

NCHAR(n)

NATIONAL CHARACTER VARYING(n)

NATIONAL CHAR VARYING(n)

NCHAR VARYING(n)

NVARCHAR2(n)

NUMERIC(p,s)

DECIMAL(p,s)a

NUMBER(p,s)

INTEGER

INT

SMALLINT

NUMBER(38)

FLOAT(b)b

DOUBLE PRECISIONc

REALd

NUMBER

aThe NUMERIC and DECIMAL datatypes can specify only fixed-point numbers. For these
datatypes, s defaults to 0.

bThe FLOAT datatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

cThe DOUBLE PRECISION datatype is a floating-point number with binary precision 126.
dThe REAL datatype is a floating-point number with a binary precision of 63, or 18 decimal.
2-24 SQL Reference

Datatypes
Do not define columns with these SQL/DS and DB2 datatypes, because they have

no corresponding Oracle datatype:

■ GRAPHIC

■ LONG VARGRAPHIC

■ VARGRAPHIC

■ TIME

■ TIMESTAMP

Note that data of type TIME and TIMESTAMP can also be expressed as Oracle

DATE data.

User-Defined Type Categories
User-defined datatypes use Oracle built-in datatypes and other user-defined

datatypes as the building blocks of types that model the structure and behavior of

data in applications. For information about Oracle built-in datatypes, see Oracle8i
Concepts. For information about creating user-defined types, see "CREATE TYPE"

on page 7-411 and the "CREATE TYPE BODY" on page 7-421. For information

about using user-defined types, see Oracle8i Application Developer’s Guide -
Fundamentals.

Table 2–3 SQL/DS and DB2 Datatypes Converted to Oracle Datatypes

SQL/DS or DB2 Datatype Oracle Datatype

CHARACTER(n) CHAR(n)

VARCHAR(n) VARCHAR(n)

LONG VARCHAR(n) LONG

DECIMAL(p,s)a NUMBER(p,s)

INTEGER

SMALLINT

NUMBER(38)

FLOAT(b)b NUMBER

aThe DECIMAL datatype can specify only fixed-point numbers. For this datatype, s defaults
to 0.

bThe FLOAT datatype is a floating-point number with a binary precision b. This default
precision for this datatype is 126 binary, or 38 decimal.
Basic Elements of Oracle SQL 2-25

Datatypes
The sections that follow describe the various categories of user-defined types.

Object Types
Object types are abstractions of the real-world entities, such as purchase orders,

that application programs deal with. An object type is a schema object with three

kinds of components:

■ A name, which identifies the object type uniquely within that schema.

■ Attributes, which are built-in types or other user-defined types. Attributes

model the structure of the real-world entity.

■ Methods, which are functions or procedures written in PL/SQL and stored in

the database, or written in a language like C or Java and stored externally.

Methods implement operations the application can perform on the real-world

entity.

REFs
An object identifier (OID) uniquely identifies an object and enables you to

reference the object from other objects or from relational tables. A datatype

category called REF represents such references. A REF is a container for an object

identifier. REFs are pointers to objects.

When a REF value points to a nonexistent object, the REF is said to be "dangling". A

dangling REF is different from a null REF. To determine whether a REF is dangling

or not, use the predicate IS [NOT] DANGLING . For example, given table DEPT

with column MGR whose type is a REF to type EMP_T:

SELECT t.mgr.name
 FROM dept t
 WHERE t.mgr IS NOT DANGLING;

Varrays
An array is an ordered set of data elements. All elements of a given array are of the

same datatype. Each element has an index, which is a number corresponding to the

element’s position in the array.

The number of elements in an array is the size of the array. Oracle arrays are of

variable size, which is why they are called varrays. You must specify a maximum

size when you declare the array.

When you declare a varray, it does not allocate space. It defines a type, which you

can use as:
2-26 SQL Reference

Datatypes
■ The datatype of a column of a relational table

■ An object type attribute

■ A PL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (that is, as part of the row data)

or out of line (in a LOB), depending on its size. However, if you specify separate

storage characteristics for a varray, Oracle will store it out of line, regardless of its

size (see the varray_storage_clause of "CREATE TABLE" on page 7-359).

Nested Tables
A nested table type models an unordered set of elements. The elements may be

built-in types or user-defined types. You can view a nested table as a single-column

table or, if the nested table is an object type, as a multicolumn table, with a column

for each attribute of the object type.

A nested table definition does not allocate space. It defines a type, which you can

use to declare:

■ Columns of a relational table

■ Object type attributes

■ PL/SQL variables, parameters, and function return values

When a nested table appears as the type of a column in a relational table or as an

attribute of the underlying object type of an object table, Oracle stores all of the

nested table data in a single table, which it associates with the enclosing relational

or object table.

Datatype Comparison Rules
This section describes how Oracle compares values of each datatype.

Number Values
A larger value is considered greater than a smaller one. All negative numbers are

less than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

Date Values
A later date is considered greater than an earlier one. For example, the date

equivalent of ’29-MAR-1997’ is less than that of ’05-JAN-1998’ and ’05-JAN-1998

1:35pm’ is greater than ’05-JAN-1998 10:09am’.
Basic Elements of Oracle SQL 2-27

Datatypes
Character String Values
Character values are compared using one of these comparison rules:

■ blank-padded comparison semantics

■ nonpadded comparison semantics

The following sections explain these comparison semantics. The results of

comparing two character values using different comparison semantics may vary.

The table below shows the results of comparing five pairs of character values using

each comparison semantic. Usually, the results of blank-padded and nonpadded

comparisons are the same. The last comparison in the table illustrates the

differences between the blank-padded and nonpadded comparison semantics.

Blank-Padded Comparison Semantics If the two values have different lengths, Oracle

first adds blanks to the end of the shorter one so their lengths are equal. Oracle then

compares the values character by character up to the first character that differs. The

value with the greater character in the first differing position is considered greater.

If two values have no differing characters, then they are considered equal. This rule

means that two values are equal if they differ only in the number of trailing blanks.

Oracle uses blank-padded comparison semantics only when both values in the

comparison are either expressions of datatype CHAR, NCHAR, text literals, or

values returned by the USER function.

Nonpadded Comparison Semantics Oracle compares two values character by

character up to the first character that differs. The value with the greater character

in that position is considered greater. If two values of different length are identical

up to the end of the shorter one, the longer value is considered greater. If two

values of equal length have no differing characters, then the values are considered

equal. Oracle uses nonpadded comparison semantics whenever one or both values

in the comparison have the datatype VARCHAR2 or NVARCHAR2.

Blank-Padded Nonpadded

’ab’ > ’aa’ ’ab’ > ’aa’

’ab’ > ’a ’ ’ab’ > ’a ’

’ab’ > ’a’ ’ab’ > ’a’

’ab’ = ’ab’ ’ab’ = ’ab’

’a ’ = ’a’ ’a ’ > ’a’
2-28 SQL Reference

Datatypes
Single Characters
Oracle compares single characters according to their numeric values in the

database character set. One character is greater than another if it has a greater

numeric value than the other in the character set. Oracle considers blanks to be less

than any character, which is true in most character sets.

These are some common character sets:

■ 7-bit ASCII (American Standard Code for Information Interchange)

■ EBCDIC Code (Extended Binary Coded Decimal Interchange Code) Page 500

■ ISO 8859/1 (International Standards Organization)

■ JEUC Japan Extended UNIX

Portions of the ASCII and EBCDIC character sets appear in Table 2–4 and Table 2–5.

Note that uppercase and lowercase letters are not equivalent. Also, note that the

numeric values for the characters of a character set may not match the linguistic

sequence for a particular language.

Table 2–4 ASCII Character Set

Symbol Decimal value Symbol Decimal value

blank 32 ; 59

! 33 < 60

" 34 = 61

35 > 62

$ 36 ? 63

% 37 @ 64

& 38 A-Z 65-90

’ 39 [91

(40 \ 92

) 41] 93

* 42 ^^ 94

+ 43 _ 95

, 44 ‘ 96

- 45 a-z 97-122
Basic Elements of Oracle SQL 2-29

Datatypes
Object Values
Object values are compared using one of two comparison functions: MAP and

ORDER. Both functions compare object type instances, but they are quite different

from one another. These functions must be specified as part of the object type.

. 46 { 123

/ 47 | 124

0-9 48-57 } 125

: 58 ~ 126

Table 2–5 EBCDIC Character Set

Symbol Decimal value Symbol Decimal value

blank 64 % 108

¢ 74 _ 109

. 75 > 110

< 76 ? 111

(77 : 122

+ 78 # 123

| 79 @ 124

& 80 ’ 125

! 90 = 126

$ 91 " 127

* 92 a-i 129-137

) 93 j-r 145-153

; 94 s-z 162-169

ÿ 95 A-I 193-201

- 96 J-R 209-217

/ 97 S-Z 226-233

Table 2–4 (Cont.) ASCII Character Set

Symbol Decimal value Symbol Decimal value
2-30 SQL Reference

Datatypes
For a description of MAP and ORDER methods and the values they return, see

"CREATE TYPE" on page 7-411. See also Oracle8i Application Developer’s Guide -
Fundamentals for more information.

Varrays and Nested Tables
You cannot compare varrays and nested tables in Oracle8i.

Data Conversion
Generally an expression cannot contain values of different datatypes. For example,

an expression cannot multiply 5 by 10 and then add ’JAMES’. However, Oracle

supports both implicit and explicit conversion of values from one datatype to

another.

Implicit Data Conversion
Oracle automatically converts a value from one datatype to another when such a

conversion makes sense. Oracle performs conversions in these cases:

■ When an INSERT or UPDATE statement assigns a value of one datatype to a

column of another, Oracle converts the value to the datatype of the column.

■ When you use a SQL function or operator with an argument with a datatype

other than the one it accepts, Oracle converts the argument to the accepted

datatype.

■ When you use a comparison operator on values of different datatypes, Oracle

converts one of the expressions to the datatype of the other.

Example 1 The text literal ’10’ has datatype CHAR. Oracle implicitly converts it to

the NUMBER datatype if it appears in a numeric expression as in the following

statement:

SELECT sal + ’10’
 FROM emp;

Example 2 When a condition compares a character value and a NUMBER value,

Oracle implicitly converts the character value to a NUMBER value, rather than

converting the NUMBER value to a character value. In the following statement,

Oracle implicitly converts ’7936’ to 7936:

SELECT ename
 FROM emp
 WHERE empno = ’7936’;
Basic Elements of Oracle SQL 2-31

Datatypes
Example 3 In the following statement, Oracle implicitly converts ’12-MAR-1993’

to a DATE value using the default date format ’DD-MON-YYYY’:

SELECT ename
 FROM emp
 WHERE hiredate = ’12-MAR-1993’;

Example 4 In the following statement, Oracle implicitly converts the text literal

’AAAAZ8AABAAABvlAAA’ to a rowid value:

SELECT ename
 FROM emp
 WHERE ROWID = ’AAAAZ8AABAAABvlAAA’;

Explicit Data Conversion
You can also explicitly specify datatype conversions using SQL conversion

functions. Table 2–6 shows SQL functions that explicitly convert a value from one

datatype to another.

For information on these functions, see "Conversion Functions" on page 4-4.

Table 2–6 SQL Functions for Datatype Conversion

 TO:

FROM:

CHAR NUMBER DATE RAW ROWID
LONG/

LONG RAW LOB

CHAR
— TO_NUMBER TO_DATE HEXTORAW CHARTO-

ROWID

NUMBER
TO_CHAR

— TO_DATE

(number,’
J’)

DATE
TO_CHAR

TO_CHAR

(date,’J’
)

—

RAW RAWTOHEX —

ROWID
ROWID-
TOCHAR

—

LONG /
LONG RAW

— TO_LOB

LOB —
2-32 SQL Reference

Format Models
Implicit vs. Explicit Data Conversion
Oracle recommends that you specify explicit conversions rather than rely on

implicit or automatic conversions for these reasons:

■ SQL statements are easier to understand when you use explicit datatype

conversion functions.

■ Automatic datatype conversion can have a negative impact on performance,

especially if the datatype of a column value is converted to that of a constant

rather than the other way around.

■ Implicit conversion depends on the context in which it occurs and may not

work the same way in every case.

■ Algorithms for implicit conversion are subject to change across software

releases and among Oracle products. Behavior of explicit conversions is more

predictable.

Format Models
A format model is a character literal that describes the format of DATE or

NUMBER data stored in a character string. You can use a format model as an

argument of the TO_CHAR and TO_DATE functions:

■ To specify the format for Oracle to use to return a value from the database

■ To specify the format for a value you have specified for Oracle to store in the

database

See "TO_CHAR (date conversion)" on page 4-43, "TO_CHAR (number conversion)"

on page 4-43, and "TO_DATE" on page 4-45. Note that a format model does not

change the internal representation of the value in the database.

This section describes how to use:

■ Number format models

Note: You cannot specify LONG and LONG RAW values in cases

in which Oracle can perform implicit datatype conversion. For

example, LONG and LONG RAW values cannot appear in

expressions with functions or operators. For information on the

limitations on LONG and LONG RAW datatypes, see "LONG

Datatype" on page 2-15.
Basic Elements of Oracle SQL 2-33

Format Models
■ Date format models

■ Format model modifiers

Changing the Return Format
You can use a format model to specify the format for Oracle to use to return values

from the database to you.

Example 1 The following statement selects the commission values of the

employees in Department 30 and uses the TO_CHAR function to convert these

commissions into character values with the format specified by the number format

model ’$9,990.99’:

SELECT ename employee, TO_CHAR(comm, ’$9,990.99’) commission
 FROM emp
 WHERE deptno = 30;

EMPLOYEE COMMISSION
---------- ----------
ALLEN $300.00
WARD $500.00
MARTIN $1,400.00
BLAKE
TURNER $0.00
JAMES

Because of this format model, Oracle returns commissions with leading dollar

signs, commas every three digits, and two decimal places. Note that TO_CHAR

returns null for all employees with null in the COMM column.

Example 2 The following statement selects the date on which each employee from

Department 20 was hired and uses the TO_CHAR function to convert these dates

to character strings with the format specified by the date format model ’fmMonth

DD, YYYY’:

 SELECT ename, TO_CHAR(Hiredate,’fmMonth DD, YYYY’) hiredate
 FROM emp
 WHERE deptno = 20;

ENAME HIREDATE
---------- ------------------
SMITH December 17, 1980
JONES April 2, 1981
2-34 SQL Reference

Format Models
SCOTT April 19, 1987
ADAMS May 23, 1987
FORD December 3, 1981
LEWIS October 23, 1997

With this format model, Oracle returns the hire dates (as specified by "fm" and

discussed in "Format Model Modifiers" on page 2-46) without blank padding, two

digits for the day, and the century included in the year.

Supplying the Correct Format
You can use format models to specify the format of a value that you are converting

from one datatype to another datatype required for a column. When you insert or

update a column value, the datatype of the value that you specify must correspond

to the column’s datatype. For example, a value that you insert into a DATE column

must be a value of the DATE datatype or a character string in the default date

format (Oracle implicitly converts character strings in the default date format to the

DATE datatype). If the value is in another format, you must use the TO_DATE

function to convert the value to the DATE datatype. You must also use a format

model to specify the format of the character string.

Example The following statement updates BAKER’s hire date using the TO_

DATE function with the format mask ’YYYY MM DD’ to convert the character

string ’1998 05 20’ to a DATE value:

UPDATE emp
 SET hiredate = TO_DATE(’1998 05 20’,’YYYY MM DD’)
 WHERE ename = ’BLAKE’;

Number Format Models
You can use number format models:

■ In the TO_CHAR function to translate a value of NUMBER datatype to

VARCHAR2 datatype

■ In the TO_NUMBER function to translate a value of CHAR or VARCHAR2

datatype to NUMBER datatype

All number format models cause the number to be rounded to the specified

number of significant digits. If a value has more significant digits to the left of the

decimal place than are specified in the format, pound signs (#) replace the value. If

a positive value is extremely large and cannot be represented in the specified

format, then the infinity sign (~) replaces the value. Likewise, if a negative value is
Basic Elements of Oracle SQL 2-35

Format Models
extremely small and cannot be represented by the specified format, then the

negative infinity sign replaces the value (-~). This event typically occurs when you

are using TO_CHAR() with a restrictive number format string, causing a rounding

operation.

Number Format Elements
A number format model is composed of one or more number format elements.

Table 2–7 lists the elements of a number format model. Examples are shown in

Table 2–8.

Negative return values automatically contain a leading negative sign and positive

values automatically contain a leading space unless the format model contains the

MI, S, or PR format element.

Table 2–7 Number Format Elements

Element Example Description

, (comma) 9,999 Returns a comma in the specified position. You can specify
multiple commas in a number format model.

Restrictions:

■ A comma element cannot begin a number format model.

■ A comma cannot appear to the right of a decimal character
or period in a number format model.

. (period) 99.99 Returns a decimal point, which is a period (.) in the specified
position.

Restriction: You can specify only one period in a number
format model.

$ $9999 Returns value with a leading dollar sign.

0 0999

9990

Returns leading zeros.

Returns trailing zeros.

9 9999 Returns value with the specified number of digits with a
leading space if positive or with a leading minus if negative.

Leading zeros are blank, except for a zero value, which returns
a zero for the integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number
when the integer part is zero (regardless of "0"s in the format
model).

C C999 Returns in the specified position the ISO currency symbol (the
current value of the NLS_ISO_CURRENCY parameter).
2-36 SQL Reference

Format Models
D 99D99 Returns in the specified position the decimal character, which is
the current value of the NLS_NUMERIC_CHARACTER parameter.
The default is a period (.).

Restriction: You can specify only one decimal character in a
number format model.

EEEE 9.9EEEE Returns a value using in scientific notation.

FM FM90.9 Returns a value with no leading or trailing blanks.

G 9G999 Returns in the specified position the group separator (the
current value of the NLS_NUMERIC_CHARACTER parameter).
You can specify multiple group separators in a number format
model.

Restriction: A group separator cannot appear to the right of a
decimal character or period in a number format model.

L L999 Returns in the specified position the local currency symbol (the
current value of the NLS_CURRENCY parameter).

MI 9999MI Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing blank.

Restriction: The MI format element can appear only in the last
position of a number format model.

PR 9999PR Returns negative value in <angle brackets>.

Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last
position of a number format model.

RN

rn

RN

rn

Returns a value as Roman numerals in uppercase.

Returns a value as Roman numerals in lowercase.

Value can be an integer between 1 and 3999.

S S9999

9999S

Returns negative value with a leading minus sign (-).

Returns positive value with a leading plus sign (+).

Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or
last position of a number format model.

Table 2–7 (Cont.) Number Format Elements

Element Example Description
Basic Elements of Oracle SQL 2-37

Format Models
The values of some formats are determined by the value of initialization

parameters. For such formats, you can specify the characters returned by these

format elements implicitly using the initialization parameter NLS_TERRITORY. For

information on these parameters, see Oracle8i Reference and Oracle8i National
Language Support Guide.

You can change the default date format for your session with the ALTER SESSION

statement. For information on changing the settings of these parameters, see

"ALTER SESSION" on page 7-78.

TM TM "Text minimum". Returns (in decimal output) the smallest
number of characters possible. This element is case-insensitive.

The default is TM9, which returns the number in fixed notation
unless the output exceeds 64 characters. If output exceeds 64
characters, Oracle automatically returns the number in scientific
notation.

Restrictions:

■ You cannot precede this element with any other element.

■ You can follow this element only with 9 or E (only one) or e
(only one).

U U9999 Returns in the specified position the "Euro" (or other) dual
currency symbol (the current value of the NLS_DUAL_
CURRENCY parameter).

V 999V99 Returns a value multiplied by 10n (and if necessary, round it
up), where n is the number of 9’s after the "V".

X XXXX

xxxx

Returns the hexadecimal value of the specified number of
digits. If the specified number is not an integer, Oracle rounds it
to an integer.

Restrictions:

■ This element accepts only positive values or 0. Negative
values return an error.

■ You can precede this element only with 0 (which returns
leading zeroes) or FM. Any other elements return an error.
If you specify neither 0 nor FM with X, the return always
has 1 leading blank.

Table 2–7 (Cont.) Number Format Elements

Element Example Description
2-38 SQL Reference

Format Models
Example Table 2–8 shows the results of the following query for different values of

number and ’fmt’:

SELECT TO_CHAR(number, ’fmt’)
 FROM DUAL;

Table 2–8 Results of Example Number Conversions

number ’fmt’ Result

-1234567890 9999999999S ’1234567890-’

 0 99.99 ’ .00’

 +0.1 99.99 ’ 0.10’

 -0.2 99.99 ’ -.20’

 0 90.99 ’ 0.00’

 +0.1 90.99 ’ 0.10’

 -0.2 90.99 ’ -0.20’

 0 9999 ’ 0’

 1 9999 ’ 1’

 0 B9999 ’ ’

 1 B9999 ’ 1’

 0 B90.99 ’ ’

 +123.456 999.999 ’ 123.456’

 -123.456 999.999 ’-123.456’

 +123.456 FM999.009 ’123.456’

 +123.456 9.9EEEE ’ 1.2E+02’

 +1E+123 9.9EEEE ’ 1.0E+123’

 +123.456 FM9.9EEEE ’1.23E+02’

 +123.45 FM999.009 ’123.45’

 +123.0 FM999.009 ’123.00’

 +123.45 L999.99 ’ $123.45’

 +123.45 FML99.99 ’$123.45’

+1234567890 9999999999S ’1234567890+’
Basic Elements of Oracle SQL 2-39

Format Models
Date Format Models
You can use date format models:

■ In the TO_CHAR function to translate a DATE value that is in a format other

than the default date format

■ In the TO_DATE function to translate a character value that is in a format other

than the default date format

Default Date Format
The default date format is specified either explicitly with the initialization

parameter NLS_DATE_FORMAT or implicitly with the initialization parameter

NLS_TERRITORY. For information on these parameters, see Oracle8i Reference.

You can change the default date format for your session with the ALTER SESSION

statement. For information, see "ALTER SESSION" on page 7-78.

Maximum Length
The total length of a date format model cannot exceed 22 characters.

Date Format Elements
A date format model is composed of one or more date format elements as listed in

Table 2–9.

■ For input format models, format items cannot appear twice, and format items

that represent similar information cannot be combined. For example, you

cannot use ’SYYYY’ and ’BC’ in the same format string.

■ Some of the date format elements cannot be used in the TO_DATE function, as

noted in Table 2–9.

Capitalization of Date Format Elements Capitalization in a spelled-out word,

abbreviation, or Roman numeral follows capitalization in the corresponding format

element. For example, the date format model ’DAY’ produces capitalized words

like ’MONDAY’; ’Day’ produces ’Monday’; and ’day’ produces ’monday’.

Punctuation and Character Literals in Date Format Models You can also include these

characters in a date format model:

■ punctuation such as hyphens, slashes, commas, periods, and colons

■ character literals, enclosed in double quotation marks
2-40 SQL Reference

Format Models
These characters appear in the return value in the same location as they appear in

the format model.

Table 2–9 Date Format Elements

Element
Specify in TO_

DATE? Meaning

-
/
,
.
;
:
’text’

Yes Punctuation and quoted text is reproduced in the
result.

AD
A.D.

Yes AD indicator with or without periods.

AM
A.M.

Yes Meridian indicator with or without periods.

BC
B.C.

Yes BC indicator with or without periods.

CC
SCC

No One greater than the first two digits of a four-digit
year; "S" prefixes BC dates with "-". For example, ’20’
from ’1900’.

D Yes Day of week (1-7).

DAY Yes Name of day, padded with blanks to length of 9
characters.

DD Yes Day of month (1-31).

DDD Yes Day of year (1-366).

DY Yes Abbreviated name of day.

E Yes Abbreviated era name (Japanese Imperial, ROC
Official, and Thai Buddha calendars).

EE Yes Full era name (Japanese Imperial, ROC Official, and
Thai Buddha calendars).

HH Yes Hour of day (1-12).

HH12 Yes Hour of day (1-12).

HH24 Yes Hour of day (0-23).

IW No Week of year (1-52 or 1-53) based on the ISO standard.
Basic Elements of Oracle SQL 2-41

Format Models
IYY
IY
I

No Last 3, 2, or 1 digit(s) of ISO year.

IYYY No 4-digit year based on the ISO standard.

J Yes Julian day; the number of days since January 1, 4712
BC. Number specified with ’J’ must be integers.

MI Yes Minute (0-59).

MM Yes Two-digit numeric abbreviation of month (01-12; JAN
= 01)

MON Yes Abbreviated name of month.

MONTH Yes Name of month, padded with blanks to length of 9
characters.

PM
P.M.

No Meridian indicator with or without periods.

Q No Quarter of year (1, 2, 3, 4; JAN-MAR = 1)

RM Yes Roman numeral month (I-XII; JAN = I).

RR Yes Given a year with 2 digits:

■ Returns a year in the next century if the year is
<50 and the last 2 digits of the current year are
>=50.

■ Returns a year in the preceding century if the year
is >=50 and the last 2 digits of the current year are
<50.

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If
2-digit, provides the same return as RR. If you don’t
want this functionality, enter the 4-digit year.

SS Yes Second (0-59).

SSSSS Yes Seconds past midnight (0-86399).

WW No Week of year (1-53) where week 1 starts on the first day
of the year and continues to the seventh day of the year.

W No Week of month (1-5) where week 1 starts on the first
day of the month and ends on the seventh.

Table 2–9 (Cont.) Date Format Elements

Element
Specify in TO_

DATE? Meaning
2-42 SQL Reference

Format Models
Oracle returns an error if an alphanumeric character is found in the date string

where punctuation character is found in the format string. For example:

TO_CHAR (TO_DATE(’0297’,’MM/YY’), ’MM/YY’)

returns an error.

Date Format Elements and National Language Support
The functionality of some date format elements depends on the country and

language in which you are using Oracle. For example, these date format elements

return spelled values:

■ MONTH

■ MON

■ DAY

■ DY

■ BC or AD or B.C. or A.D.

■ AM or PM or A.M or P.M.

The language in which these values are returned is specified either explicitly with

the initialization parameter NLS_DATE_LANGUAGE or implicitly with the

initialization parameter NLS_LANGUAGE. The values returned by the YEAR and

SYEAR date format elements are always in English.

Y,YYY Yes Year with comma in this position.

YEAR
SYEAR

No Year, spelled out. "S" prefixes BC dates with "-".

YYYY
SYYYY

Yes 4-digit year. "S" prefixes BC dates with "-".

YYY
YY
Y

Yes Last 3, 2, or 1 digit(s) of year.

Table 2–9 (Cont.) Date Format Elements

Element
Specify in TO_

DATE? Meaning
Basic Elements of Oracle SQL 2-43

Format Models
The date format element D returns the number of the day of the week (1-7). The

day of the week that is numbered 1 is specified implicitly by the initialization

parameter NLS_TERRITORY.

For information on national language support initialization parameters, see

Oracle8i Reference and Oracle8i National Language Support Guide.

ISO Standard Date Format Elements
Oracle calculates the values returned by the date format elements IYYY, IYY, IY, I,

and IW according to the ISO standard. For information on the differences between

these values and those returned by the date format elements YYYY, YYY, YY, Y, and

WW, see the discussion of national language support in Oracle8i National Language
Support Guide.

The RR Date Format Element
The RR date format element is similar to the YY date format element, but it

provides additional flexibility for storing date values in other centuries. The RR

date format element allows you to store 21st century dates in the 20th century by

specifying only the last two digits of the year. It will also allow you to store 20th

century dates in the 21st century in the same way if necessary.

If you use the TO_DATE function with the YY date format element, the date value

returned is always in the current century. If you use the RR date format element

instead, the century of the return value varies according to the specified two-digit

year and the last two digits of the current year. Table 2–10 summarizes the behavior

of the RR date format element.

The following examples demonstrate the behavior of the RR date format element.

Example 1 Assume these queries are issued between 1950 and 1999:

SELECT TO_CHAR(TO_DATE(’27-OCT-98’, ’DD-MON-RR’) ,’YYYY’) "Year"

Table 2–10 The RR Date Element Format

If the specified two-digit year is

 0 - 49 50 - 99

If the last
two digits of
the current
year are:

0-49 The return date is in the
current century.

The return date is in the
preceding century.

50-99 The return date is in the
next century.

The return date is in the
current century.
2-44 SQL Reference

Format Models
 FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE(’27-OCT-17’, ’DD-MON-RR’) ,’YYYY’) "Year";
 FROM DUAL;

Year

2017

Example 2 Assume these queries are issued between 2000 and 2049:

SELECT TO_CHAR(TO_DATE(’27-OCT-98’, ’DD-MON-RR’) ,’YYYY’) "Year";
 FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE(’27-OCT-17’, ’DD-MON-RR’) ,’YYYY’) "Year";
 FROM DUAL;

Year

2017

Note that the queries return the same values regardless of whether they are issued

before or after the year 2000. The RR date format element allows you to write SQL

statements that will return the same values after the turn of the century.

Date Format Element Suffixes
Table 2–11 lists suffixes that can be added to date format elements:

Table 2–11 Date Format Element Suffixes

Suffix Meaning Example Element Example Value

TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH
Basic Elements of Oracle SQL 2-45

Format Models
Format Model Modifiers
The FM and FX modifiers, used in format models in the TO_CHAR function,

control blank padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each

subsequent occurrence toggles the effects of the modifier. Its effects are enabled for

the portion of the model following its first occurrence, and then disabled for the

portion following its second, and then reenabled for the portion following its third,

and so on.

FM "Fill mode". This modifier suppresses blank padding in the return value of the

TO_CHAR function:

■ In a date format element of a TO_CHAR function, this modifier suppresses

blanks in subsequent character elements (such as MONTH) and suppresses

leading zeroes for subsequent number elements (such as MI) in a date format

model. Without FM, the result of a character element is always right padded

with blanks to a fixed length, and leading zeroes are always returned for a

number element. With FM, because there is no blank padding, the length of the

return value may vary.

■ In a number format element of a TO_CHAR function, this modifier suppresses

blanks added to the left of the number, so that the result is left-justified in the

output buffer. Without FM, the result is always right-justified in the buffer,

resulting in blank-padding to the left of the number.

FX "Format exact". This modifier specifies exact matching for the character

argument and date format model of a TO_DATE function:

■ Punctuation and quoted text in the character argument must exactly match

(except for case) the corresponding parts of the format model.

■ The character argument cannot have extra blanks. Without FX, Oracle ignores

extra blanks.

Restrictions:

■ When you add one of these suffixes to a date format element, the return value is
always in English.

■ Date suffixes are valid only on output. You cannot use them to insert a date into
the database.

Table 2–11 Date Format Element Suffixes

Suffix Meaning Example Element Example Value
2-46 SQL Reference

Format Models
■ Numeric data in the character argument must have the same number of digits

as the corresponding element in the format model. Without FX, numbers in the

character argument can omit leading zeroes.

When FX is enabled, you can disable this check for leading zeroes by using the

FM modifier as well.

If any portion of the character argument violates any of these conditions, Oracle

returns an error message.

Example 1 The following statement uses a date format model to return a

character expression:

SELECT TO_CHAR(SYSDATE, ’fmDDTH’)||’ of ’||TO_CHAR
 (SYSDATE, ’Month’)||’, ’||TO_CHAR(SYSDATE, ’YYYY’) "Ides"
 FROM DUAL;

Ides

3RD of April, 1998

Note that the statement above also uses the FM modifier. If FM is omitted, the

month is blank-padded to nine characters:

SELECT TO_CHAR(SYSDATE, ’DDTH’)||’ of ’||
 TO_CHAR(Month, YYYY’) "Ides"
 FROM DUAL;

Ides

03RD of April , 1998

Example 2 The following statement places a single quotation mark in the return

value by using a date format model that includes two consecutive single quotation

marks:

SELECT TO_CHAR(SYSDATE, ’fmDay’)||’’’s Special’) "Menu"
 FROM DUAL;

Menu

Tuesday’s Special

Two consecutive single quotation marks can be used for the same purpose within a

character literal in a format model.
Basic Elements of Oracle SQL 2-47

Format Models
Example 3 Table 2–12 shows whether the following statement meets the matching

conditions for different values of char and ’fmt’ using FX:

UPDATE table
 SET date_column = TO_DATE(char, ’fmt’);

String-to-Date Conversion Rules
The following additional formatting rules apply when converting string values to

date values (unless you have used the FX or FXFM modifiers in the format model

to control exact format checking):

■ You can omit punctuation included in the format string from the date string if

all the digits of the numerical format elements, including leading zeros, are

specified. In other words, specify 02 and not 2 for two-digit format elements

such as MM, DD, and YY.

■ You can omit time fields found at the end of a format string from the date

string.

■ If a match fails between a date format element and the corresponding

characters in the date string, Oracle attempts alternative format elements, as

shown in Table 2–13.

Table 2–12 Matching Character Data and Format Models with the FX Format Model
Modifier

char ’fmt’ Match or Error?

’15/ JAN /1998’ ’DD-MON-YYYY’ Match

’ 15! JAN % /1998’ ’DD-MON-YYYY’ Error

’15/JAN/1998’ ’FXDD-MON-YYYY’ Error

’15-JAN-1998’ ’FXDD-MON-YYYY’ Match

’1-JAN-1998’ ’FXDD-MON-YYYY’ Error

’01-JAN-1998’ ’FXDD-MON-YYYY’ Match

’1-JAN-1998’ ’FXFMDD-MON-YYYY’ Match

Table 2–13 Oracle Format Matching

Original Format
Element

Additional Format
Elements to Try in
Place of the Original

’MM’ ’MON’ and ’MONTH’
2-48 SQL Reference

Nulls
Nulls
If a column in a row has no value, then the column is said to be null, or to contain a

null. Nulls can appear in columns of any datatype that are not restricted by NOT

NULL or PRIMARY KEY integrity constraints. Use a null when the actual value is

not known or when a value would not be meaningful.

Do not use null to represent a value of zero, because they are not equivalent.

(Oracle currently treats a character value with a length of zero as null. However,

this may not continue to be true in future releases, and Oracle recommends that

you do not treat empty strings the same as NULLs.) Any arithmetic expression

containing a null always evaluates to null. For example, null added to 10 is null. In

fact, all operators (except concatenation) return null when given a null operand.

Nulls in SQL Functions
All scalar functions (except NVL and TRANSLATE) return null when given a null

argument. You can use the NVL function to return a value when a null occurs. For

example, the expression NVL(COMM,0) returns 0 if COMM is null or the value of

COMM if it is not null.

Most aggregate functions ignore nulls. For example, consider a query that averages

the five values 1000, null, null, null, and 2000. Such a query ignores the nulls and

calculates the average to be (1000+2000)/2 = 1500.

Nulls with Comparison Operators
To test for nulls, use only the comparison operators IS NULL and IS NOT NULL. If

you use any other operator with nulls and the result depends on the value of the

null, the result is UNKNOWN. Because null represents a lack of data, a null cannot

be equal or unequal to any value or to another null. However, Oracle considers two

’MON ’MONTH’

’MONTH’ ’MON’

’YY’ ’YYYY’

’RR’ ’RRRR’

Table 2–13 Oracle Format Matching

Original Format
Element

Additional Format
Elements to Try in
Place of the Original
Basic Elements of Oracle SQL 2-49

Nulls
nulls to be equal when evaluating a DECODE expression. For syntax and

additional information, see "DECODE Expressions" on page 5-12.

Oracle also considers two nulls to be equal if they appear in compound keys. That

is, Oracle considers identical two compound keys containing nulls if all the

non-null components of the keys are equal.

Nulls in Conditions
A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a

SELECT statement with a condition in the WHERE clause that evaluates to

UNKNOWN returns no rows. However, a condition evaluating to UNKNOWN

differs from FALSE in that further operations on an UNKNOWN condition

evaluation will evaluate to UNKNOWN. Thus, NOT FALSE evaluates to TRUE, but

NOT UNKNOWN evaluates to UNKNOWN.

Table 2–14 shows examples of various evaluations involving nulls in conditions. If

the conditions evaluating to UNKNOWN were used in a WHERE clause of a

SELECT statement, then no rows would be returned for that query.

For the truth tables showing the results of logical expressions containing nulls, see

Table 3–6 on page 3-11, as well as Table 3–7 and Table 3–8.

Table 2–14 Conditions Containing Nulls

If A is: Condition Evaluates to:

10 a IS NULL FALSE

10 a IS NOT NULL TRUE

NULL a IS NULL TRUE

NULL a IS NOT NULL FALSE

10 a = NULL UNKNOWN

10 a != NULL UNKNOWN

NULL a = NULL UNKNOWN

NULL a != NULL UNKNOWN

NULL a = 10 UNKNOWN

NULL a != 10 UNKNOWN
2-50 SQL Reference

Pseudocolumns
Pseudocolumns
A pseudocolumn behaves like a table column, but is not actually stored in the

table. You can select from pseudocolumns, but you cannot insert, update, or delete

their values. This section describes these pseudocolumns:

■ CURRVAL and NEXTVAL

■ LEVEL

■ ROWID

■ ROWNUM

CURRVAL and NEXTVAL
A sequence is a schema object that can generate unique sequential values. These

values are often used for primary and unique keys. You can refer to sequence

values in SQL statements with these pseudocolumns:

You must qualify CURRVAL and NEXTVAL with the name of the sequence:

sequence.CURRVAL
sequence.NEXTVAL

To refer to the current or next value of a sequence in the schema of another user,

you must have been granted either SELECT object privilege on the sequence or

SELECT ANY SEQUENCE system privilege, and you must qualify the sequence

with the schema containing it:

schema.sequence.CURRVAL
schema.sequence.NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the

sequence with a complete or partial name of a database link:

schema.sequence.CURRVAL@dblink
schema.sequence.NEXTVAL@dblink

For more information on referring to database links, see "Referring to Objects in

Remote Databases" on page 2-74.

CURRVAL returns the current value of a sequence.

NEXTVAL increments the sequence and returns the next value.
Basic Elements of Oracle SQL 2-51

Pseudocolumns
Where to Use Sequence Values
You can use CURRVAL and NEXTVAL in:

■ The SELECT list of a SELECT statement that is not contained in a subquery,

snapshot, or view

■ The SELECT list of a subquery in an INSERT statement

■ The VALUES clause of an INSERT statement

■ The SET clause of an UPDATE statement

You cannot use CURRVAL and NEXTVAL:

■ A subquery in a DELETE, SELECT, or UPDATE statement

■ A view’s query or snapshot’s query

■ A SELECT statement with the DISTINCT operator

■ A SELECT statement with a GROUP BY clause or ORDER BY clause

■ A SELECT statement that is combined with another SELECT statement with

the UNION, INTERSECT, or MINUS set operator

■ The WHERE clause of a SELECT statement

■ DEFAULT value of a column in a CREATE TABLE or ALTER TABLE statement

■ The condition of a CHECK constraint

Also, within a single SQL statement that uses CURVAL or NEXTVAL, all

referenced LONG columns, updated tables, and locked tables must be located on

the same database.

How to Use Sequence Values
When you create a sequence, you can define its initial value and the increment

between its values. The first reference to NEXTVAL returns the sequence’s initial

value. Subsequent references to NEXTVAL increment the sequence value by the

defined increment and return the new value. Any reference to CURRVAL always

returns the sequence’s current value, which is the value returned by the last

reference to NEXTVAL. Note that before you use CURRVAL for a sequence in your

session, you must first initialize the sequence with NEXTVAL.

Within a single SQL statement, Oracle will increment the sequence only once. If a

statement contains more than one reference to NEXTVAL for a sequence, Oracle

increments the sequence once and returns the same value for all occurrences of

NEXTVAL. If a statement contains references to both CURRVAL and NEXTVAL,
2-52 SQL Reference

Pseudocolumns
Oracle increments the sequence and returns the same value for both CURRVAL and

NEXTVAL regardless of their order within the statement.

A sequence can be accessed by many users concurrently with no waiting or

locking. For information on sequences, see "CREATE SEQUENCE" on page 7-350.

Example 1 This example selects the current value of the employee sequence:

SELECT empseq.currval
 FROM DUAL;

Example 2 This example increments the employee sequence and uses its value for

a new employee inserted into the employee table:

INSERT INTO emp
 VALUES (empseq.nextval, ’LEWIS’, ’CLERK’,
 7902, SYSDATE, 1200, NULL, 20);

Example 3 This example adds a new order with the next order number to the

master order table. It then adds suborders with this number to the detail order

table:

INSERT INTO master_order(orderno, customer, orderdate)
 VALUES (orderseq.nextval, ’Al’’s Auto Shop’, SYSDATE);

INSERT INTO detail_order (orderno, part, quantity)
 VALUES (orderseq.currval, ’SPARKPLUG’, 4);

INSERT INTO detail_order (orderno, part, quantity)
 VALUES (orderseq.currval, ’FUEL PUMP’, 1);

INSERT INTO detail_order (orderno, part, quantity)
 VALUES (orderseq.currval, ’TAILPIPE’, 2);

LEVEL
For each row returned by a hierarchical query, the LEVEL pseudocolumn

returns 1 for a root node, 2 for a child of a root, and so on. A root node is the

highest node within an inverted tree. A child node is any nonroot node. A parent
node is any node that has children. A leaf node is any node without children.

Figure 2–2 shows the nodes of an inverted tree with their LEVEL values.
Basic Elements of Oracle SQL 2-53

Pseudocolumns
Figure 2–2 Hierarchical Tree

To define a hierarchical relationship in a query, you must use the START WITH and

CONNECT BY clauses. For more information on using the LEVEL pseudocolumn,

see "SELECT and Subqueries" on page 7-541.

ROWID
For each row in the database, the ROWID pseudocolumn returns a row’s address.

Oracle8i rowid values contain information necessary to locate a row:

■ the data object number of the object

■ which data block in the datafile

■ which row in the data block (first row is 0)

■ which datafile (first file is 1). The file number is relative to the tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in

different tables that are stored together in the same cluster can have the same rowid.

Values of the ROWID pseudocolumn have the datatype ROWID or UROWID. For

more information, see "ROWID Datatype" on page 2-21 and "UROWID Datatype"

on page 2-23.

Rowid values have several important uses:

■ They are the fastest way to access a single row.

■ They can show you how a table’s rows are stored.

Level 1

Level 2

Level 3

Level 4 child/
leaf

parent/
child

root/
parent

parent/
child

child/
leaf

child/
leaf

child/
leaf

child/
leaf

parent/
child

parent/
child
2-54 SQL Reference

Pseudocolumns
■ They are unique identifiers for rows in a table.

You should not use ROWID as a table’s primary key. If you delete and reinsert a

row with the Import and Export utilities, for example, its rowid may change. If you

delete a row, Oracle may reassign its rowid to a new row inserted later.

Although you can use the ROWID pseudocolumn in the SELECT and WHERE

clause of a query, these pseudocolumn values are not actually stored in the

database. You cannot insert, update, or delete a value of the ROWID

pseudocolumn.

Example This statement selects the address of all rows that contain data for

employees in department 20:

SELECT ROWID, ename
 FROM emp
 WHERE deptno = 20;

ROWID ENAME
------------------ ----------
AAAAqYAABAAAEPvAAA SMITH
AAAAqYAABAAAEPvAAD JONES
AAAAqYAABAAAEPvAAH SCOTT
AAAAqYAABAAAEPvAAK ADAMS
AAAAqYAABAAAEPvAAM FORD

ROWNUM
For each row returned by a query, the ROWNUM pseudocolumn returns a number

indicating the order in which Oracle selects the row from a table or set of joined

rows. The first row selected has a ROWNUM of 1, the second has 2, and so on.

You can use ROWNUM to limit the number of rows returned by a query, as in this

example:

SELECT * FROM emp WHERE ROWNUM < 10;

If an ORDER BY clause follows ROWNUM in the same subquery, the rows will be

reordered by the ORDER BY clause. The results can vary depending on the way the

rows are accessed. For example, if the ORDER BY clause causes Oracle to use an

index to access the data, Oracle may retrieve the rows in a different order than

without the index. Therefore, the following statement will not have the same effect

as the preceding example:

SELECT * FROM emp WHERE ROWNUM < 11 ORDER BY empno;
Basic Elements of Oracle SQL 2-55

Comments
If you embed the ORDER BY clause in a subquery and place the ROWNUM

condition in the top-level query, you can force the ROWNUM condition to be

applied after the ordering of the rows. For example, the following query returns the

10 smallest employee numbers. This is sometimes referred to as a "top-N query":

SELECT * FROM
 (SELECT empno FROM emp ORDER BY empno)
 WHERE ROWNUM < 11;

In the preceding example, the ROWNUM values are those of the top-level SELECT

statement, so they are generated after the rows have already been ordered by

EMPNO in the subquery. For more information about top-N queries, see Oracle8i
Application Developer’s Guide - Fundamentals.

Conditions testing for ROWNUM values greater than a positive integer are always

false. For example, this query returns no rows:

SELECT * FROM emp
 WHERE ROWNUM > 1;

The first row fetched is assigned a ROWNUM of 1 and makes the condition false.

The second row to be fetched is now the first row and is also assigned a ROWNUM

of 1 and makes the condition false. All rows subsequently fail to satisfy the

condition, so no rows are returned.

You can also use ROWNUM to assign unique values to each row of a table, as in

this example:

UPDATE tabx
 SET col1 = ROWNUM;

Comments
You can associate comments with SQL statements and schema objects.

Comments Within SQL Statements
Comments within SQL statements do not affect the statement execution, but they

may make your application easier for you to read and maintain. You may want to

Note: Using ROWNUM in a query can affect view optimization.

For more information, see Oracle8i Concepts.
2-56 SQL Reference

Comments
include a comment in a statement that describes the statement’s purpose within

your application.

A comment can appear between any keywords, parameters, or punctuation marks

in a statement. You can include a comment in a statement using either of these

means:

■ Begin the comment with a slash and an asterisk (/*). Proceed with the text of

the comment. This text can span multiple lines. End the comment with an

asterisk and a slash (*/). The opening and terminating characters need not be

separated from the text by a space or a line break.

■ Begin the comment with -- (two hyphens). Proceed with the text of the

comment. This text cannot extend to a new line. End the comment with a line

break.

A SQL statement can contain multiple comments of both styles. The text of a

comment can contain any printable characters in your database character set.

Example These statements contain many comments:

SELECT ename, sal + NVL(comm, 0), job, loc
/* Select all employees whose compensation is
greater than that of Jones.*/
 FROM emp, dept
 /*The DEPT table is used to get the department name.*/
 WHERE emp.deptno = dept.deptno
 AND sal + NVL(comm,0) > /* Subquery: */
 (SELECT sal + NLV(comm,0)
 /* total compensation is sal + comm */
 FROM emp
 WHERE ename = ’JONES’);

SELECT ename, -- select the name
 sal + NVL(comm, 0), -- total compensation
 job, -- job
 loc -- and city containing the office
 FROM emp, -- of all employees
 dept

Note: You cannot use these styles of comments between SQL

statements in a SQL script. Use the SQL*Plus REMARK command

for this purpose. For information on these statements, see SQL*Plus
User’s Guide and Reference.
Basic Elements of Oracle SQL 2-57

Comments
 WHERE emp.deptno = dept.deptno
 AND sal + NVL(comm, 0) > -- whose compensation
 -- is greater than
 (SELECT sal + NVL(comm,0) -- the compensation
 FROM emp
 WHERE ename = ’JONES’); -- of Jones.

Comments on Schema Objects
You can associate a comment with a table, view, snapshot, or column using the

COMMENT command described in Chapter 7, "SQL Statements". Comments

associated with schema objects are stored in the data dictionary.

Hints
You can use comments in a SQL statement to pass instructions, or hints, to the

Oracle optimizer. The optimizer uses these hints as suggestions for choosing an

execution plan for the statement.

A statement block can have only one comment containing hints, and that comment

must follow the SELECT, UPDATE, INSERT, or DELETE keyword. The syntax

below shows hints contained in both styles of comments that Oracle supports

within a statement block.

{DELETE|INSERT|SELECT|UPDATE} /*+ hint [text] [hint[text]]... */

or

{DELETE|INSERT|SELECT|UPDATE} --+ hint [text] [hint[text]]...

where

DELETE

INSERT

SELECT

UPDATE

is a DELETE, INSERT, SELECT, or UPDATE

keyword that begins a statement block. Comments

containing hints can appear only after these

keywords.

+ is a plus sign that causes Oracle to interpret the

comment as a list of hints. The plus sign must follow

immediately after the comment delimiter (no space

is permitted).
2-58 SQL Reference

Comments
Table 2–15 lists hint syntax and descriptions. For more information on hints, see

Oracle8i Tuning and Oracle8i Concepts.

hint is one of the hints discussed in this section and in

Oracle8i Tuning. The space between the plus sign and

the hint is optional. If the comment contains

multiple hints, separate the hints by at least one

space.

text is other commenting text that can be interspersed

with the hints.

Table 2–15 Hint Syntax and Descriptions

Hint Syntax Description

Optimization Approaches and Goals

/*+ ALL_ROWS */ Explicitly chooses the cost-based approach to optimize a
statement block with a goal of best throughput (that is,
minimum total resource consumption).

/*+ CHOOSE */ Causes the optimizer to choose between the rule-based
approach and the cost-based approach for a SQL statement
based on the presence of statistics for the tables accessed by
the statement.

/*+ FIRST_ROWS */ Explicitly chooses the cost-based approach to optimize a
statement block with a goal of best response time (minimum
resource usage to return first row).

/*+ RULE */ Explicitly chooses rule-based optimization for a statement
block.

Access Methods

/*+ AND_EQUAL(table index) */ Explicitly chooses an execution plan that uses an access path
that merges the scans on several single-column indexes.

/*+ CLUSTER(table) */ Explicitly chooses a cluster scan to access the specified table.

/*+ FULL(table) */ Explicitly chooses a full table scan for the specified table.

/*+ HASH(table) */ Explicitly chooses a hash scan to access the specified table.

/*+ HASH_AJ(table) */ Transforms a NOT IN subquery into a hash anti-join to access
the specified table.

/*+ HASH_SJ(table) */ Transforms a NOT IN subquery into a hash semi-join to access
the specified table.
Basic Elements of Oracle SQL 2-59

Comments
/*+ INDEX(table index) */ Explicitly chooses an index scan for the specified table.

/*+ INDEX_ASC(table index) */ Explicitly chooses an ascending-range index scan for the
specified table.

/*+ INDEX_COMBINE(table index) */ If no indexes are given as arguments for the INDEX_
COMBINE hint, the optimizer uses whatever Boolean
combination of bitmap indexes has the best cost estimate. If
particular indexes are given as arguments, the optimizer tries
to use some Boolean combination of those particular bitmap
indexes.

/*+ INDEX_DESC(table index) */ Explicitly chooses a descending-range index scan for the
specified table.

/*+ INDEX_FFS(table index) */ Causes a fast full index scan to be performed rather than a full
table scan.

/*+ MERGE_AJ(table) */ Transforms a NOT IN subquery into a merge anti-join to
access the specified table.

/*+ MERGE_SJ(table) */ Transforms a correlated EXISTS subquery into a merge
semi-join to access the specified table.

/*+ NO_EXPAND */ Prevents the optimizer from considering OR expansion for
queries having OR or IN conditions in the WHERE clause.

/*+ NO_INDEX(table index) */ Instructs the optimizer not to consider a scan on the specified
index or indexes. If no indexes are specified, the optimizer
does not consider a scan on any index defined on the table.

/*+ NOREWRITE */ Disables query rewrite for the query block, overriding a TRUE
setting of the QUERY_REWRITE_ENABLED parameter.

/*+ ORDERED_PREDICATES */ Forces the optimizer to preserve the order of predicate
evaluation (except predicates used in index keys), as specified
in the WHERE clause of SELECT statements.

/*+ REWRITE (view [,...]) */ Enforces query rewrite. If you specify a view list and the list
contains an eligible materialized view, Oracle will use that
view regardless of the cost. No views outside of the list are
considered. If you do not specify a view list, Oracle will search
for an eligible materialized view and always use it regardless
of the cost.

/*+ ROWID(table) */ Explicitly chooses a table scan by rowid for the specified table.

/*+ USE_CONCAT */ Forces combined OR conditions in the WHERE clause of a
query to be transformed into a compound query using the
UNION ALL set operator.

Table 2–15 (Cont.) Hint Syntax and Descriptions

Hint Syntax Description
2-60 SQL Reference

Comments
Join Orders

/*+ ORDERED */ Causes Oracle to join tables in the order in which they appear
in the FROM clause.

/*+ STAR */ Forces the large table to be joined last using a nested-loops
join on the index.

Join Operations

/*+ DRIVING_SITE(table) */ Forces query execution to be done at a different site from that
selected by Oracle.

/*+ USE_HASH(table) */ Causes Oracle to join each specified table with another row
source with a hash join.

/*+ USE_MERGE(table) */ Causes Oracle to join each specified table with another row
source with a sort-merge join.

/*+ USE_NL(table) */ Causes Oracle to join each specified table to another row
source with a nested-loops join using the specified table as the
inner table.

Parallel Execution

Note: Oracle ignores parallel hints on a temporary table. For more information on temporary tables, see
"CREATE TABLE" on page 7-359 and Oracle8i Concepts.

/*+ APPEND */

/*+ NOAPPEND */

Specifies that data is simply appended (or not) to a table;
existing free space is not used. Use these hints only following
the INSERT keyword.

/*+ NOPARALLEL(table) */ Disables parallel scanning of a table, even if the table was
created with a PARALLEL clause.

Restriction: You cannot parallelize a query involving a nested
table.

Table 2–15 (Cont.) Hint Syntax and Descriptions

Hint Syntax Description
Basic Elements of Oracle SQL 2-61

Comments
/*+ PARALLEL(table)

/*+ PARALLEL(table, integer) */

Lets you specify parallel execution of DML and queries on the
table; integer specifies the desired degree of parallelism, which
is the number of parallel threads that can be used for the
operation. Each parallel thread may use one or two parallel
execution servers. If you do not specify integer, Oracle
computes a value using the PARALLEL_THREADS_PER_
CPU parameter. If no parallel hint is specified, Oracle uses the
existing degree of parallelism for the table.

DELETE, INSERT, and UPDATE operations are considered for
parallelization only if the session is in a PARALLEL DML
enabled mode. (Use ALTER SESSION ENABLE PARALLEL
DML to enter this mode.)

/*+ PARALLEL_INDEX Allows you to parallelize fast full index scans for partitioned
and nonpartitioned indexes that have the PARALLEL attribute.

/*+ PQ_DISTRIBUTE

(table, outer_distribution, inner_
distribution) */

Specifies how rows of joined tables should be distributed
between producer and consumer query servers. The four
possible distribution methods are NONE, HASH,
BROADCAST, and PARTITION. However, only a subset of the
combinations of outer and inner distributions are valid. For
the permitted combinations of distributions for the outer and
inner join tables, see Oracle8i Tuning.

/*+ NOPARALLEL_INDEX */ Overrides a PARALLEL attribute setting on an index.

Other Hints

/*+ CACHE */ Specifies that the blocks retrieved for the table in the hint are
placed at the most recently used end of the LRU list in the
buffer cache when a full table scan is performed.

/*+ NOCACHE */ Specifies that the blocks retrieved for this table are placed at
the least recently used end of the LRU list in the buffer cache
when a full table scan is performed.

/*+ MERGE(table) */ Causes Oracle to evaluate complex views or subqueries before
the surrounding query.

/*+ NO_MERGE(table) */ Causes Oracle not to merge mergeable views.

/*+ PUSH_JOIN_PRED(table) */ Causes the optimizer to evaluate, on a cost basis, whether to
push individual join predicates into the view.

Table 2–15 (Cont.) Hint Syntax and Descriptions

Hint Syntax Description
2-62 SQL Reference

Database Objects
Database Objects
Oracle recognizes objects that are associated with a particular schema and objects

that are not associated with a particular schema, as described in the sections that

follow.

Schema Objects
A schema is a collection of logical structures of data, or schema objects. A schema is

owned by a database user and has the same name as that user. Each user owns a

single schema. Schema objects can be created and manipulated with SQL and

include the following types of objects:

■ clusters

■ database links

■ database triggers

■ dimensions

■ external procedure libraries

■ index-organized tables

■ indexes

■ indextypes

■ materialized views / snapshots

■ materialized view logs / snapshot logs

■ object tables

■ object types

■ object views

/*+ NO_PUSH_JOIN_PRED(table) */ Prevents pushing of a join predicate into the view.

/*+ PUSH_SUBQ */ Causes nonmerged subqueries to be evaluated at the earliest
possible place in the execution plan.

/*+ STAR_TRANSFORMATION */ Makes the optimizer use the best plan in which the
transformation has been used.

Table 2–15 (Cont.) Hint Syntax and Descriptions

Hint Syntax Description
Basic Elements of Oracle SQL 2-63

Database Objects
■ operators

■ packages

■ sequences

■ stored functions

■ stored procedures

■ synonyms

■ tables

■ views

Nonschema Objects
Other types of objects are also stored in the database and can be created and

manipulated with SQL but are not contained in a schema:

■ contexts

■ directories

■ profiles

■ roles

■ rollback segments

■ tablespaces

■ users

In this reference, each type of object is briefly defined in Chapter 7, "SQL

Statements", in the section describing the statement that creates the database object.

These statements begin with the keyword CREATE. For example, for the definition

of a cluster, see "CREATE CLUSTER" on page 7-236. For an overview of database

objects, see Oracle8i Concepts.

You must provide names for most types of schema objects when you create them.

These names must follow the rules listed in the following sections.

Parts of Schema Objects
Some schema objects are made up of parts that you can or must name, such as:

■ columns in a table or view
2-64 SQL Reference

Database Objects
■ index and table partitions and subpartitions

■ integrity constraints on a table

■ packaged procedures, packaged stored functions, and other objects stored

within a package

Partitioned Tables and Indexes
Tables and indexes can be partitioned. When partitioned, these schema objects

consist of a number of parts called partitions, all of which have the same logical

attributes. For example, all partitions in a table share the same column and

constraint definitions, and all partitions in an index share the same index columns.

When you partition a table or index using the range method, you specify a

maximum value for the partitioning key column(s) for each partition. When you

partition a table or index using the hash method, you instruct Oracle to distribute

the rows of the table into partitions based on a system-defined hash function on the

partitioning key column(s). When you partition a table or index using the

composite-partitioning method, you specify ranges for the partitions, and Oracle

distributes the rows in each partition into one or more hash subpartitions based on

a hash function. Each subpartition of a table or index partitioned using the

composite method has the same logical attributes.

Partition-Extended and Subpartition-Extended Table Names
Partition-extended and subpartition-extended table names let you perform some

partition-level and subpartition-level operations, such as deleting all rows from a

partition or subpartition, on only one partition or subpartition. Without extended

table names, such operations would require that you specify a predicate (WHERE

clause). For range-partitioned tables, trying to phrase a partition-level operation

with a predicate can be cumbersome, especially when the range partitioning key

uses more than one column. For hash partitions and subpartitions, using a

predicate is more difficult still, because these partitions and subpartitions are based

on a system-defined hash function.

Partition-extended table names let you use partitions as if they were tables. An

advantage of this method, which is most useful for range-partitioned tables, is that

you can build partition-level access control mechanisms by granting (or revoking)

privileges on these views to (or from) other users or roles.To use a partition as a

table, create a view by selecting data from a single partition, and then use the view

as a table.
Basic Elements of Oracle SQL 2-65

Database Objects
You can specify partition-extended or subpartition-extended table names for the

following DML statements:

■ DELETE

■ INSERT

■ LOCK TABLE

■ SELECT

■ UPDATE

Syntax The basic syntax for using partition-extended and subpartition-extended

table names is:

Restrictions Currently, the use of partition-extended and subpartition-extended

table names has the following restrictions:

■ No remote tables: A partition-extended or subpartition-extended table name

cannot contain a database link (dblink) or a synonym that translates to a table

with a dblink. To use remote partitions and subpartitions, create a view at the

remote site that uses the extended table name syntax and then refer to the

remote view.

■ No direct PL/SQL support: A SQL statement using the extended table name

syntax cannot be used in a PL/SQL block, although it can be used through

dynamic SQL by using the DBMS_SQL package. To refer to a partition or

subpartition within a PL/SQL block, use views that in turn use the extended

table name syntax.

Note: For application portability and ANSI syntax compliance,

Oracle strongly recommends that you use views to insulate

applications from this Oracle proprietary extension.

schema . table

view

@ dblink

PARTITION (partition)

SUBPARTITION (subpartition)
2-66 SQL Reference

Schema Object Names and Qualifiers
■ No synonyms: A partition or subpartition extension must be specified with a

base table. You cannot use synonyms, views, or any other objects.

Example In the following statement, SALES is a partitioned table with partition

JAN97. You can create a view of the single partition JAN97, and then use it as if it

were a table. This example deletes rows from the partition.

CREATE VIEW sales_jan97 AS
 SELECT * FROM sales PARTITION (jan97);
DELETE FROM sales_jan97 WHERE amount < 0;

Schema Object Names and Qualifiers
This section provides:

■ rules for naming schema objects and schema object location qualifiers

■ guidelines for naming schema objects and qualifiers

Schema Object Naming Rules
The following rules apply when naming schema objects:

1. Names must be from 1 to 30 characters long with these exceptions:

■ Names of databases are limited to 8 characters.

■ Names of database links can be as long as 128 characters.

2. Names cannot contain quotation marks.

3. Names are not case sensitive.

4. A name must begin with an alphabetic character from your database character

set unless surrounded by double quotation marks.

5. Names can contain only alphanumeric characters from your database character

set and the underscore (_), dollar sign ($), and pound sign (#). Oracle strongly

discourages you from using $ and #. Names of database links can also contain

periods (.) and "at" signs (@).

If your database character set contains multibyte characters, Oracle

recommends that each name for a user or a role contain at least one single-byte

character.
Basic Elements of Oracle SQL 2-67

Schema Object Names and Qualifiers
6. A name cannot be an Oracle reserved word. Appendix C, "Oracle Reserved

Words", lists all Oracle reserved words.

Depending on the Oracle product you plan to use to access a database object,

names might be further restricted by other product-specific reserved words.

For a list of a product’s reserved words, see the manual for the specific product,

such as PL/SQL User’s Guide and Reference.

7. Do not use the word DUAL as a name for an object or part. DUAL is the name

of a dummy table.

8. The Oracle SQL language contains other words that have special meanings.

These words include datatypes (see "Datatypes" on page 2-5), function names

(see "SQL Functions" on page 4-1), and keywords (the uppercase words in SQL

statements, such as DIMENSION, SEGMENT, ALLOCATE, DISABLE, and so

forth). These words are not reserved. However, Oracle uses them internally.

Therefore, if you use these words as names for objects and object parts, your

SQL statements may be more difficult to read and may lead to unpredictable

results.

In particular, do not use words beginning with "SYS_" as schema object names,

and do not use the names of SQL built-in functions for the names of schema

objects or user-defined functions.

9. Within a namespace, no two objects can have the same name.

Figure 2–3 shows the namespaces for schema objects. Each box is a namespace.

Tables and views are in the same namespace. Therefore, a table and a view in

the same schema cannot have the same name. However, tables and indexes are

in different namespaces. Therefore, a table and an index in the same schema

can have the same name.

Each schema in the database has its own namespaces for the objects it contains.

This means, for example, that two tables in different schemas are in different

namespaces and can have the same name.

Note: You cannot use special characters from European or Asian

character sets in a database name, global database name, or

database link names. For example, characters with an umlaut are

not allowed.
2-68 SQL Reference

Schema Object Names and Qualifiers
Figure 2–3 Namespaces for Schema Objects

Figure 2–4 shows the namespaces for nonschema objects. Because the objects in

these namespaces are not contained in schemas, these namespaces span the

entire database.

Figure 2–4 Namespaces for Nonschema Objects

10. Columns in the same table or view cannot have the same name. However,

columns in different tables or views can have the same name.

11. Procedures or functions contained in the same package can have the same

name, provided that their arguments are not of the same number and

datatypes. Creating multiple procedures or functions with the same name in

the same package with different arguments is called overloading the procedure

or function.

12. A name can be enclosed in double quotation marks. Such names can contain

any combination of characters, including spaces, ignoring rules 3 through 7 in

INDEXES

CONSTRAINTS

CLUSTERS

DATABASE TRIGGERS

PRIVATE DATABASE LINKS

DIMENSIONS

TABLES

VIEWS

SEQUENCES

PRIVATE SYNONYMS

STAND-ALONE PROCEDURES

STAND-ALONE STORED FUNCTIONS

PACKAGES

MATERIALIZED VIEWS/
SNAPSHOTS

USER

PUBLIC SYNONYMS

PUBLIC DATABASE LINKS

TABLESPACES

ROLLBACK SEGMENTS

PROFILES

ROLES
Basic Elements of Oracle SQL 2-69

Schema Object Names and Qualifiers
this list. This exception is allowed for portability, but Oracle recommends that

you do not break rules 3 through 7.

If you give a schema object a name enclosed in double quotation marks, you

must use double quotation marks whenever you refer to the object.

Enclosing a name in double quotes allows it to:

■ Contain spaces

■ Be case sensitive

■ Begin with a character other than an alphabetic character, such as a

numeric character

■ Contain characters other than alphanumeric characters and _, $, and #

■ Be a reserved word

By enclosing names in double quotation marks, you can give the following

names to different objects in the same namespace:

emp
"emp"
"Emp"
"EMP "

Note that Oracle interprets the following names the same, so they cannot be

used for different objects in the same namespace:

emp
EMP
"EMP"

If you give a user or password a quoted name, the name cannot contain

lowercase letters.

Database link names cannot be quoted.

Schema Object Naming Examples
The following examples are valid schema object names:

ename
horse
scott.hiredate
"EVEN THIS & THAT!"
a_very_long_and_valid_name
2-70 SQL Reference

Referring to Schema Objects and Parts
Although column aliases, table aliases, usernames, and passwords are not objects

or parts of objects, they must also follow these naming rules with these exceptions:

■ Column aliases and table aliases exist only for the execution of a single SQL

statement and are not stored in the database, so rule 12 does not apply to them.

■ Passwords do not have namespaces, so rule 9 does not apply to them.

■ Do not use quotation marks to make usernames and passwords case sensitive.

For additional rules for naming users and passwords, see "CREATE USER" on

page 7-425.

Schema Object Naming Guidelines
Here are several helpful guidelines for naming objects and their parts:

■ Use full, descriptive, pronounceable names (or well-known abbreviations).

■ Use consistent naming rules.

■ Use the same name to describe the same entity or attribute across tables.

When naming objects, balance the objective of keeping names short and easy to use

with the objective of making names as descriptive as possible. When in doubt,

choose the more descriptive name, because the objects in the database may be used

by many people over a period of time. Your counterpart ten years from now may

have difficulty understanding a database with a name like PMDD instead of

PAYMENT_DUE_DATE.

Using consistent naming rules helps users understand the part that each table plays

in your application. One such rule might be to begin the names of all tables

belonging to the FINANCE application with FIN_.

Use the same names to describe the same things across tables. For example, the

department number columns of the sample EMP and DEPT tables are both named

DEPTNO.

Referring to Schema Objects and Parts
This section tells you how to refer to schema objects and their parts in the context

of a SQL statement. This section shows you:

■ the general syntax for referring to an object

■ how Oracle resolves a reference to an object
Basic Elements of Oracle SQL 2-71

Referring to Schema Objects and Parts
■ how to refer to objects in schemas other than your own

■ how to refer to objects in remote databases

The following diagram shows the general syntax for referring to an object or a part:

where:

You can include spaces around the periods separating the components of the

reference to the object, but it is conventional to omit them.

object is the name of the object.

schema is the schema containing the object. The schema qualifier

allows you to refer to an object in a schema other than your

own. You must be granted privileges to refer to objects in other

schemas. If you omit schema, Oracle assumes that you are

referring to an object in your own schema.

Only schema objects can be qualified with schema. Schema

objects are shown in Figure 2–3 on page 2-69. Nonschema

objects, shown in Figure 2–4 on page 2-69, cannot be qualified

with schema because they are not schema objects. (An exception

is public synonyms, which can optionally be qualified with

"PUBLIC". The quotation marks are required.)

part is a part of the object. This identifier allows you to refer to a

part of a schema object, such as a column or a partition of a

table. Not all types of objects have parts.

dblink applies only when you are using Oracle’s distributed

functionality. This is the name of the database containing the

object. The dblink qualifier lets you refer to an object in a

database other than your local database. If you omit dblink,

Oracle assumes that you are referring to an object in your local

database. Not all SQL statements allow you to access objects

on remote databases.

schema .
object

. part @ dblink
2-72 SQL Reference

Referring to Schema Objects and Parts
How Oracle Resolves Schema Object References
When you refer to an object in a SQL statement, Oracle considers the context of the

SQL statement and locates the object in the appropriate namespace. After locating

the object, Oracle performs the statement’s operation on the object. If the named

object cannot be found in the appropriate namespace, Oracle returns an error.

The following example illustrates how Oracle resolves references to objects within

SQL statements. Consider this statement that adds a row of data to a table

identified by the name DEPT:

INSERT INTO dept
 VALUES (50, ’SUPPORT’, ’PARIS’);

Based on the context of the statement, Oracle determines that DEPT can be:

■ a table in your own schema

■ a view in your own schema

■ a private synonym for a table or view

■ a public synonym

Oracle always attempts to resolve an object reference within the namespaces in

your own schema before considering namespaces outside your schema. In this

example, Oracle attempts to resolve the name DEPT as follows:

1. First, Oracle attempts to locate the object in the namespace in your own schema

containing tables, views, and private synonyms. If the object is a private

synonym, Oracle locates the object for which the synonym stands. This object

could be in your own schema, another schema, or on another database. The

object could also be another synonym, in which case Oracle locates the object

for which this synonym stands.

2. If the object is in the namespace, Oracle attempts to perform the statement on

the object. In this example, Oracle attempts to add the row of data to DEPT. If

the object is not of the correct type for the statement, Oracle returns an error. In

this example, DEPT must be a table, view, or a private synonym resolving to a

table or view. If DEPT is a sequence, Oracle returns an error.

3. If the object is not in any namespace searched in thus far, Oracle searches the

namespace containing public synonyms (see Figure 2–4 on page 2-69). If the

object is in that namespace, Oracle attempts to perform the statement on it. If

the object is not of the correct type for the statement, Oracle returns an error. In

this example, if DEPT is a public synonym for a sequence, Oracle returns an

error.
Basic Elements of Oracle SQL 2-73

Referring to Schema Objects and Parts
Referring to Objects in Other Schemas
To refer to objects in schemas other than your own, prefix the object name with the

schema name:

schema.object

For example, this statement drops the EMP table in the schema SCOTT:

DROP TABLE scott.emp

Referring to Objects in Remote Databases
To refer to objects in databases other than your local database, follow the object

name with the name of the database link to that database. A database link is a

schema object that causes Oracle to connect to a remote database to access an object

there. This section tells you:

■ How to create database links

■ How to use database links in your SQL statements

Creating Database Links
You create a database link with the CREATE DATABASE LINK statement

described in Chapter 7, "SQL Statements". The statement allows you to specify this

information about the database link:

■ The name of the database link

■ The database connect string to access the remote database

■ The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

Database Link Names When you create a database link, you must specify its name.

Database link names are different from names of other types of objects. They can be

as long as 128 bytes and can contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the

database to which the database link refers and the location of that database in the

hierarchy of database names. The following syntax diagram shows the form of the

name of a database link:
2-74 SQL Reference

Referring to Schema Objects and Parts
dblink::=

where:

The combination database.domain is sometimes called the "service name". For more

information, see Net8 Administrator’s Guide.

Username and Password Oracle uses the username and password to connect to the

remote database. The username and password for a database link are optional.

Database Connect String The database connect string is the specification used by

Net8 to access the remote database. For information on writing database connect

strings, see the Net8 documentation for your specific network protocol. The

database string for a database link is optional.

database should specify name portion of the global name of

the remote database to which the database link

connects. This global name is stored in the data

dictionary of the remote database; you can see this

name in the GLOBAL_NAME view.

domain should specify the domain portion of the global

name of the remote database to which the

database link connects. If you omit domain from

the name of a database link, Oracle qualifies the

database link name with the domain of your local

database as it currently exists in the data

dictionary.

connect_descriptor allows you to further qualify a database link.

Using connect descriptors, you can create

multiple database links to the same database. For

example, you can use connect descriptors to

create multiple database links to different

instances of the Oracle Parallel Server that access

the same database.

database
. domain @ connect_descriptor
Basic Elements of Oracle SQL 2-75

Referring to Schema Objects and Parts
Referring to Database Links
Database links are available only if you are using Oracle’s distributed functionality.

When you issue a SQL statement that contains a database link, you can specify the

database link name in one of these forms:

Oracle performs these tasks before connecting to the remote database:

1. If the database link name specified in the statement is partial, Oracle expands

the name to contain the domain of the local database as found in the global

database name stored in the data dictionary. (You can see the current global

database name in the GLOBAL_NAME data dictionary view.)

2. Oracle first searches for a private database link in your own schema with the

same name as the database link in the statement. Then, if necessary, it searches

for a public database link with the same name.

■ Oracle always determines the username and password from the first

matching database link (either private or public). If the first matching

database link has an associated username and password, Oracle uses it. If it

does not have an associated username and password, Oracle uses your

current username and password.

■ If the first matching database link has an associated database string, Oracle

uses it. If not, Oracle searches for the next matching (public) database link.

If no matching database link is found, or if no matching link has an

associated database string, Oracle returns an error.

3. Oracle uses the database string to access the remote database. After accessing

the remote database, if the value of the GLOBAL_NAMES parameter is TRUE,

Oracle verifies that the database.domain portion of the database link name

matches the complete global name of the remote database. If this condition is

true, Oracle proceeds with the connection, using the username and password

chosen in Step 2. If not, Oracle returns an error.

4. If the connection using the database string, username, and password is

successful, Oracle attempts to access the specified object on the remote

database using the rules for resolving object references and referring to objects

in other schemas discussed earlier in this section.

complete is the complete database link name as stored in the data

dictionary, including the database, domain, and optional connect_
descriptor components.

partial is the database and optional connect_descriptor components, but

not the domain component.
2-76 SQL Reference

Referring to Schema Objects and Parts
You can disable the requirement that the database.domain portion of the database

link name must match the complete global name of the remote database by setting

to FALSE the initialization parameter GLOBAL_NAMES or the GLOBAL_NAMES

parameter of the ALTER SYSTEM or ALTER SESSION statement.

For more information on remote name resolution, see Oracle8i Distributed Database
Systems.

Referencing Object Type Attributes and Methods
To reference object type attributes or methods in a SQL statement, you must fully

qualify the reference with a table alias. Consider the following example:

CREATE TYPE person AS OBJECT
 (ssno VARCHAR(20),
 name VARCHAR (10));

CREATE TABLE emptab (pinfo person);

In a SQL statement, reference to the SSNO attribute must be fully qualified using a

table alias, as illustrated below:

SELECT e.pinfo.ssno FROM emptab e;

UPDATE emptab e SET e.pinfo.ssno = ’510129980’
 WHERE e.pinfo.name = ’Mike’;

To reference an object type’s member method that does not accept arguments, you

must provide "empty" parentheses. For example, assume that AGE is a method in

the person type that does not take arguments. In order to call this method in a SQL

statement, you must provide empty parentheses as shows in this example:

SELECT e.pinfo.age() FROM emptab e
 WHERE e.pinfo.name = ’Mike’;

For more information, see the sections on user-defined datatypes in Oracle8i
Concepts.
Basic Elements of Oracle SQL 2-77

Referring to Schema Objects and Parts
2-78 SQL Reference

Ope
3

Operators

With affection beaming in one eye, and calculation shining out of the other.

Charles Dickens, Martin Chuzzlewit

An operator manipulates individual data items and returns a result. The data items

are called operands or arguments. Operators are represented by special characters or

by keywords. For example, the multiplication operator is represented by an asterisk

(*) and the operator that tests for nulls is represented by the keywords IS NULL.

This chapter discusses the following topics:

■ Unary and Binary Operators

■ Precedence

■ Arithmetic Operators

■ Concatenation Operator

■ Comparison Operators

■ Logical Operators

■ Set Operators

■ Other Built-In Operators

■ User-Defined Operators

Unary and Binary Operators
The two general classes of operators are:
rators 3-1

Precedence
Other operators with special formats accept more than two operands. If an

operator is given a null operand, the result is always null. The only operator that

does not follow this rule is concatenation (||).

Precedence
Precedence is the order in which Oracle evaluates different operators in the same

expression. When evaluating an expression containing multiple operators, Oracle

evaluates operators with higher precedence before evaluating those with lower

precedence. Oracle evaluates operators with equal precedence from left to right

within an expression.

Table 3–1 lists the levels of precedence among SQL operators from high to low.

Operators listed on the same line have the same precedence.

Example In the following expression, multiplication has a higher precedence than

addition, so Oracle first multiplies 2 by 3 and then adds the result to 1.

1+2*3

unary A unary operator operates on only one operand. A unary

operator typically appears with its operand in this format:

operator operand

binary A binary operator operates on two operands. A binary

operator appears with its operands in this format:

operand1 operator operand2

Table 3–1 SQL Operator Precedence

Operator Operation

+, - identity, negation

*, / multiplication, division

+, -, || addition, subtraction, concatenation

=, !=, <, >, <=, >=, IS NULL,
LIKE, BETWEEN, IN

comparison

NOT exponentiation, logical negation

AND conjunction

OR disjunction
3-2 SQL Reference

Concatenation Operator
You can use parentheses in an expression to override operator precedence. Oracle

evaluates expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNION, UNION ALL, INTERSECT, and MINUS),

which combine sets of rows returned by queries, rather than individual data items.

All set operators have equal precedence.

Arithmetic Operators
You can use an arithmetic operator in an expression to negate, add, subtract,

multiply, and divide numeric values. The result of the operation is also a numeric

value. Some of these operators are also used in date arithmetic. Table 3–2 lists

arithmetic operators.

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate

double negation or the subtraction of a negative value. The characters -- are used to

begin comments within SQL statements. You should separate consecutive minus

signs with a space or a parenthesis. For more information on comments within SQL

statements, see "Comments" on page 2-56.

Concatenation Operator
The concatenation operator manipulates character strings. Table 3–3 describes the

concatenation operator.

Table 3–2 Arithmetic Operators

Operator Purpose Example

+ - Denotes a positive or negative
expression. These are unary
operators.

SELECT * FROM orders
 WHERE qtysold = -1;
SELECT * FROM emp
 WHERE -sal < 0;

* / Multiplies, divides. These are
binary operators.

UPDATE emp
 SET sal = sal * 1.1;

+ - Adds, subtracts. These are
binary operators.

SELECT sal + comm FROM emp
 WHERE SYSDATE - hiredate
 > 365;
Operators 3-3

Concatenation Operator
The result of concatenating two character strings is another character string. If both

character strings are of datatype CHAR, the result has datatype CHAR and is

limited to 2000 characters. If either string is of datatype VARCHAR2, the result has

datatype VARCHAR2 and is limited to 4000 characters. Trailing blanks in character

strings are preserved by concatenation, regardless of the strings’ datatypes. For

more information on the differences between the CHAR and VARCHAR2

datatypes, see "Character Datatypes" on page 2-10.

On most platforms, the concatenation operator is two solid vertical bars, as shown

in Table 3–3. However, some IBM platforms use broken vertical bars for this

operator. When moving SQL script files between systems having different character

sets, such as between ASCII and EBCDIC, vertical bars might not be translated into

the vertical bar required by the target Oracle environment. Oracle provides the

CONCAT character function as an alternative to the vertical bar operator for cases

when it is difficult or impossible to control translation performed by operating

system or network utilities. Use this function in applications that will be moved

between environments with differing character sets.

Although Oracle treats zero-length character strings as nulls, concatenating a

zero-length character string with another operand always results in the other

operand, so null can result only from the concatenation of two null strings.

However, this may not continue to be true in future versions of Oracle. To

concatenate an expression that might be null, use the NVL function to explicitly

convert the expression to a zero-length string.

Example This example creates a table with both CHAR and VARCHAR2

columns, inserts values both with and without trailing blanks, and then selects

these values and concatenates them. Note that for both CHAR and VARCHAR2

columns, the trailing blanks are preserved.

CREATE TABLE tab1 (col1 VARCHAR2(6), col2 CHAR(6),
 col3 VARCHAR2(6), col4 CHAR(6));

Table created.

INSERT INTO tab1 (col1, col2, col3, col4)
 VALUES (’abc’, ’def ’, ’ghi ’, ’jkl’);

Table 3–3 Concatenation Operator

Operator Purpose Example

|| Concatenates
character strings.

SELECT ’Name is ’ || ename
 FROM emp;
3-4 SQL Reference

Comparison Operators
1 row created.

SELECT col1||col2||col3||col4 "Concatenation"
 FROM tab1;

Concatenation

abcdef ghi jkl

Comparison Operators
Comparison operators compare one expression with another. The result of such a

comparison can be TRUE, FALSE, or UNKNOWN. For information on conditions,

see "Conditions" on page 5-13. Table 3–4 lists comparison operators.

Table 3–4 Comparison Operators

Operator Purpose Example

= Equality test. SELECT *
 FROM emp
 WHERE sal = 1500;

!=
^=
< >
¬=

Inequality test. Some forms of the
inequality operator may be
unavailable on some platforms.

SELECT *
 FROM emp
 WHERE sal != 1500;

>

<

"Greater than" and "less than"
tests.

SELECT * FROM emp
 WHERE sal > 1500;
SELECT * FROM emp
 WHERE sal < 1500;

>=

<=

"Greater than or equal to" and
"less than or equal to" tests.

SELECT * FROM emp
 WHERE sal >= 1500;
SELECT * FROM emp
 WHERE sal <= 1500;

IN "Equal to any member of" test.
Equivalent to "= ANY".

SELECT * FROM emp
 WHERE job IN
 (’CLERK’,’ANALYST’);
SELECT * FROM emp
 WHERE sal IN
 (SELECT sal FROM emp
 WHERE deptno = 30);
Operators 3-5

Comparison Operators
NOT IN Equivalent to "!=ALL". Evaluates
to FALSE if any member of the set
is NULL.

SELECT * FROM emp
 WHERE sal NOT IN
 (SELECT sal FROM emp
 WHERE deptno = 30);
SELECT * FROM emp
 WHERE job NOT IN
 (’CLERK’, ANALYST’);

ANY
SOME

Compares a value to each value
in a list or returned by a query.
Must be preceded by =, !=, >, <,
<=, >=.

Evaluates to FALSE if the query
returns no rows.

SELECT * FROM emp
 WHERE sal = ANY
 (SELECT sal FROM emp
 WHERE deptno = 30);

ALL Compares a value to every value
in a list or returned by a query.
Must be preceded by =, !=, >, <,
<=, >=.

Evaluates to TRUE if the query
returns no rows.

SELECT * FROM emp
 WHERE sal >=
 ALL (1400, 3000);

[NOT]
BETWEEN x
AND y

[Not] greater than or equal to x
and less than or equal to y.

SELECT * FROM emp
 WHERE sal
 BETWEEN 2000 AND 3000;

EXISTS TRUE if a subquery returns at
least one row.

SELECT ename, deptno
 FROM dept
 WHERE EXISTS
 (SELECT * FROM emp
 WHERE dept.deptno
 = emp.deptno);

x [NOT]
LIKE y

[ESCAPE ’z’]

TRUE if x does [not] match the
pattern y. Within y, the character
"%" matches any string of zero or
more characters except null. The
character "_" matches any single
character. Any character,
excepting percent (%) and
underbar (_) may follow
ESCAPE. A wildcard character is
treated as a literal if preceded by
the character designated as the
escape character.

See "LIKE Operator" on
page 3-7.
SELECT * FROM tab1
 WHERE col1 LIKE
 ’A_C/%E%’ ESCAPE ’/’;

Table 3–4 (Cont.) Comparison Operators

Operator Purpose Example
3-6 SQL Reference

Comparison Operators
Additional information on the NOT IN and LIKE operators appears in the sections

that follow.

NOT IN Operator
If any item in the list following a NOT IN operation is null, all rows evaluate to

UNKNOWN (and no rows are returned). For example, the following statement

returns the string ’TRUE’ for each row:

SELECT ’TRUE’
 FROM emp
 WHERE deptno NOT IN (5,15);

However, the following statement returns no rows:

SELECT ’TRUE’
 FROM emp
 WHERE deptno NOT IN (5,15,null);

The above example returns no rows because the WHERE clause condition

evaluates to:

deptno != 5 AND deptno != 15 AND deptno != null

Because all conditions that compare a null result in a null, the entire expression

results in a null. This behavior can easily be overlooked, especially when the NOT

IN operator references a subquery.

LIKE Operator
The LIKE operator is used in character string comparisons with pattern matching.

The syntax for a condition using the LIKE operator is shown in this diagram:

IS [NOT]
NULL

Tests for nulls. This is the only
operator that you should use to
test for nulls. See "Nulls" on
page 2-49.

SELECT ename, deptno
 FROM emp
 WHERE comm IS NULL;

Table 3–4 (Cont.) Comparison Operators

Operator Purpose Example
Operators 3-7

Comparison Operators
where:

Whereas the equal (=) operator exactly matches one character value to another, the

LIKE operator matches a portion of one character value to another by searching the

first value for the pattern specified by the second. Note that blank padding is not
used for LIKE comparisons.

With the LIKE operator, you can compare a value to a pattern rather than to a

constant. The pattern must appear after the LIKE keyword. For example, you can

issue the following query to find the salaries of all employees with names

beginning with ’SM’:

SELECT sal
 FROM emp
 WHERE ename LIKE ’SM%’;

The following query uses the = operator, rather than the LIKE operator, to find the

salaries of all employees with the name ’SM%’:

SELECT sal
 FROM emp

char1 is a value to be compared with a pattern. This value can have

datatype CHAR or VARCHAR2.

NOT logically inverts the result of the condition, returning FALSE if

the condition evaluates to TRUE and TRUE if it evaluates to

FALSE.

char2 is the pattern to which char1 is compared. The pattern is a

value of datatype CHAR or VARCHAR2 and can contain the

special pattern matching characters % and _.

ESCAPE identifies a single character as the escape character. The escape

character can be used to cause Oracle to interpret % or _

literally, rather than as a special character.

If you wish to search for strings containing an escape character,

you must specify this character twice. For example, if the

escape character is ’/’, to search for the string ’client/server’,

you must specify, ’client//server’.

char1
NOT

LIKE char2
ESCAPE ’ esc_char ’
3-8 SQL Reference

Comparison Operators
 WHERE ename = ’SM%’;

The following query finds the salaries of all employees with the name ’SM%’.

Oracle interprets ’SM%’ as a text literal, rather than as a pattern, because it precedes
the LIKE operator:

SELECT sal
 FROM emp
 WHERE ’SM%’ LIKE ename;

Patterns typically use special characters that Oracle matches with different

characters in the value:

■ An underscore (_) in the pattern matches exactly one character (as opposed to

one byte in a multibyte character set) in the value.

■ A percent sign (%) in the pattern can match zero or more characters (as

opposed to bytes in a multibyte character set) in the value. Note that the

pattern ’%’ cannot match a null.

Case Sensitivity and Pattern Matching Case is significant in all conditions

comparing character expressions including the LIKE and equality (=) operators.

You can use the UPPER() function to perform a case-insensitive match, as in this

condition:

UPPER(ename) LIKE ’SM%’

Pattern Matching on Indexed Columns When LIKE is used to search an indexed

column for a pattern, Oracle can use the index to improve the statement’s

performance if the leading character in the pattern is not "%" or "_". In this case,

Oracle can scan the index by this leading character. If the first character in the

pattern is "%" or "_", the index cannot improve the query’s performance because

Oracle cannot scan the index.

Example 1 This condition is true for all ENAME values beginning with "MA":

ename LIKE ’MA%’

All of these ENAME values make the condition TRUE:

MARTIN, MA, MARK, MARY

Case is significant, so ENAME values beginning with "Ma," "ma," and "mA" make

the condition FALSE.
Operators 3-9

Logical Operators
Example 2 Consider this condition:

ename LIKE ’SMITH_’

This condition is true for these ENAME values:

SMITHE, SMITHY, SMITHS

This condition is false for ’SMITH’, since the special character "_" must match

exactly one character of the ENAME value.

ESCAPE Option You can include the actual characters "%" or "_" in the pattern by

using the ESCAPE option. The ESCAPE option identifies the escape character. If the

escape character appears in the pattern before the character "%" or "_" then Oracle

interprets this character literally in the pattern, rather than as a special pattern

matching character.

Example: To search for employees with the pattern ’A_B’ in their name:

SELECT ename
 FROM emp
 WHERE ename LIKE ’%A_B%’ ESCAPE ’\’;

The ESCAPE option identifies the backslash (\) as the escape character. In the

pattern, the escape character precedes the underscore (_). This causes Oracle to

interpret the underscore literally, rather than as a special pattern matching

character.

Patterns Without % If a pattern does not contain the "%" character, the condition

can be TRUE only if both operands have the same length.

Example: Consider the definition of this table and the values inserted into it:

CREATE TABLE freds (f CHAR(6), v VARCHAR2(6));
INSERT INTO freds VALUES (’FRED’, ’FRED’);

Because Oracle blank-pads CHAR values, the value of F is blank-padded to 6 bytes.

V is not blank-padded and has length 4.

Logical Operators
A logical operator combines the results of two component conditions to produce a

single result based on them or to invert the result of a single condition. Table 3–5

lists logical operators.
3-10 SQL Reference

Logical Operators
For example, in the WHERE clause of the following SELECT statement, the AND

logical operator is used to ensure that only those hired before 1984 and earning

more than $1000 a month are returned:

SELECT *
 FROM emp
 WHERE hiredate < TO_DATE(’01-JAN-1984’, ’DD-MON-YYYY’)
 AND sal > 1000;

NOT Operator
Table 3–6 shows the result of applying the NOT operator to a condition.

AND Operator
Table 3–7 shows the results of combining two expressions with AND.

Table 3–5 Logical Operators

Operator Function Example

NOT Returns TRUE if the
following condition is
FALSE. Returns FALSE if it is
TRUE. If it is UNKNOWN, it
remains UNKNOWN.

SELECT *
 FROM emp
 WHERE NOT (job IS NULL);
SELECT *
 FROM emp
 WHERE NOT
 (sal BETWEEN 1000 AND 2000);

AND Returns TRUE if both
component conditions are
TRUE. Returns FALSE if
either is FALSE. Otherwise
returns UNKNOWN.

SELECT *
 FROM emp
 WHERE job = ’CLERK’
 AND deptno = 10;

OR Returns TRUE if either
component condition is
TRUE. Returns FALSE if both
are FALSE. Otherwise
returns UNKNOWN.

SELECT *
 FROM emp
 WHERE job = ’CLERK’
 OR deptno = 10;

Table 3–6 NOT Truth Table

TRUE FALSE UNKNOWN

NOT FALSE TRUE UNKNOWN
Operators 3-11

Set Operators
OR Operator
Table 3–8 shows the results of combining two expressions with OR.

Set Operators
Set operators combine the results of two component queries into a single result.

Queries containing set operators are called compound queries. Table 3–9 lists SQL

set operators.

All set operators have equal precedence. If a SQL statement contains multiple set

operators, Oracle evaluates them from the left to right if no parentheses explicitly

specify another order.

Table 3–7 AND Truth Table

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Table 3–8 OR Truth Table

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

Table 3–9 Set Operators

Operator Returns

UNION All rows selected by either query.

UNION ALL All rows selected by either query,
including all duplicates.

INTERSECT All distinct rows selected by both queries.

MINUS All distinct rows selected by the first
query but not the second.
3-12 SQL Reference

Set Operators
The corresponding expressions in the select lists of the component queries of a

compound query must match in number and datatype. If component queries select

character data, the datatype of the return values are determined as follows:

■ If both queries select values of datatype CHAR, the returned values have

datatype CHAR.

■ If either or both of the queries select values of datatype VARCHAR2, the

returned values have datatype VARCHAR2.

Examples Consider these two queries and their results:

SELECT part
 FROM orders_list1;

PART

SPARKPLUG
FUEL PUMP
FUEL PUMP
TAILPIPE

SELECT part
 FROM orders_list2;

PART

CRANKSHAFT
TAILPIPE
TAILPIPE

The following examples combine the two query results with each of the set

operators.

UNION Example The following statement combines the results with the UNION

operator, which eliminates duplicate selected rows. This statement shows how

datatype must match when columns do not exist in one or the other table:

SELECT part, partnum, to_date(null) date_in
 FROM orders_list1
UNION
SELECT part, to_date(null), date_in
 FROM orders_list2;

PART PARTNUM DATE_IN
Operators 3-13

Set Operators
---------- ------- --------
SPARKPLUG 3323165
SPARKPLUG 10/24/98
FUEL PUMP 3323162
FUEL PUMP 12/24/99
TAILPIPE 1332999
TAILPIPE 01/01/01
CRANKSHAFT 9394991
CRANKSHAFT 09/12/02

SELECT part
 FROM orders_list1
UNION
SELECT part
 FROM orders_list2;

PART

SPARKPLUG
FUEL PUMP
TAILPIPE
CRANKSHAFT

UNION ALL Example The following statement combines the results with the

UNION ALL operator, which does not eliminate duplicate selected rows:

SELECT part
 FROM orders_list1
UNION ALL
SELECT part
 FROM orders_list2;

PART

SPARKPLUG
FUEL PUMP
FUEL PUMP
TAILPIPE
CRANKSHAFT
TAILPIPE
TAILPIPE

Note that the UNION operator returns only distinct rows that appear in either

result, while the UNION ALL operator returns all rows. A PART value that appears
3-14 SQL Reference

Other Built-In Operators
multiple times in either or both queries (such as ’FUEL PUMP’) is returned only

once by the UNION operator, but multiple times by the UNION ALL operator.

INTERSECT Example The following statement combines the results with the

INTERSECT operator, which returns only those rows returned by both queries:

SELECT part
 FROM orders_list1
INTERSECT
SELECT part
 FROM orders_list2;

PART

TAILPIPE

MINUS Example The following statement combines results with the MINUS

operator, which returns only rows returned by the first query but not by the second:

SELECT part
 FROM orders_list1
MINUS
SELECT part
 FROM orders_list2;

PART

SPARKPLUG
FUEL PUMP

Other Built-In Operators
Table 3–10 lists other SQL operators.
Operators 3-15

User-Defined Operators
User-Defined Operators
Like built-in operators, user-defined operators take a set of operands as input and

return a result. However, you create them with the CREATE OPERATOR

statement, and they are identified by names (e.g., MERGE). They reside in the same

namespace as tables, views, types, and stand-alone functions.

Once you have defined a new operator, you can use it in SQL statements like any

other built-in operator. For example, you can use user-defined operators in the

select list of a SELECT statement, the condition of a WHERE clause, or in ORDER

BY clauses and GROUP BY clauses. However, you must have EXECUTE privilege

on the operator to do so, because it is a user-defined object.

For example, if you define an operator CONTAINS, which takes as input a text

document and a keyword and returns 1 if the document contains the specified

keyword, you can then write the following SQL query:

SELECT * FROM emp WHERE contains (resume, ’Oracle and UNIX’) = 1;

For more information on user-defined operators, see "CREATE OPERATOR" on

page 7-320 and Oracle8i Data Cartridge Developer’s Guide .

Table 3–10 Other SQL Operators

Operator Purpose Example

(+) Indicates that the preceding column is the outer
join column in a join. See "Outer Joins" on
page 5-22.

SELECT ename, dname
 FROM emp, dept
 WHERE dept.deptno =
 emp.deptno(+);

PRIOR Evaluates the following expression for the parent
row of the current row in a hierarchical, or
tree-structured, query. In such a query, you must
use this operator in the CONNECT BY clause to
define the relationship between parent and child
rows. You can also use this operator in other parts
of a SELECT statement that performs a
hierarchical query. The PRIOR operator is a unary
operator and has the same precedence as the
unary + and - arithmetic operators. See
"Hierarchical Queries" on page 5-19.

SELECT empno, ename, mgr
 FROM emp
 CONNECT BY
 PRIOR empno = mgr;
3-16 SQL Reference

Fun
4

Functions

Form ever follows function.

Louis Henri Sullivan, The Tall Office Building Artistically Considered

Functions are similar to operators in that they manipulate data items and return a

result. Functions differ from operators in the format in which they appear with

their arguments. This format allows them to operate on zero, one, two, or more

arguments:

function(argument, argument, ...)

This chapter describes two types of functions:

■ SQL Functions

■ User-Defined Functions

SQL Functions
SQL functions are built into Oracle and are available for use in various appropriate

SQL statements. Do not confuse SQL functions with user functions written in

PL/SQL. User functions are described in "User-Defined Functions" on page 4-56.

For information about functions used with Oracle interMedia, see Oracle8i
interMedia Audio, Image, and Video User’s Guide and Reference.

If you call a SQL function with an argument of a datatype other than the datatype

expected by the SQL function, Oracle implicitly converts the argument to the

expected datatype before performing the SQL function. See "Data Conversion" on

page 2-31.
ctions 4-1

SQL Functions
If you call a SQL function with a null argument, the SQL function automatically

returns null. The only SQL functions that do not follow this rule are CONCAT,

DECODE, DUMP, NVL, and REPLACE.

In the syntax diagrams for SQL functions, arguments are indicated by their

datatypes, following the conventions described in "Syntax Diagrams and Notation"

in the Preface of this reference. When the parameter "function" appears in SQL

syntax, replace it with one of the functions described in this section. Functions are

grouped by the datatypes of their arguments and their return values. The general

syntax is as follows:

function::=

Table 4–1 lists the built-in SQL functions in each of the groups illustrated above

except user-defined functions. All of the built-in SQL functions are then described

in alphabetical order. User-defined functions are described at the end of this

chapter.

number_function

character_function

date_function

conversion_function

miscellaneous_single_row_function

object_reference_function

aggregate_function

user_defined_function
4-2 SQL Reference

SQL Functions
Table 4–1 SQL Function Groups

Group Functions Description

Single-Row Functions Single-row functions return a single result row for every row of a queried table or view.

Single-row functions can appear in select lists (if the SELECT statement does not contain a
GROUP BY clause), WHERE clauses, START WITH clauses, and CONNECT BY clauses.

Number
Functions

Number functions accept numeric input and return numeric values. Most of these
functions return values that are accurate to 38 decimal digits. The transcendental functions
COS, COSH, EXP, LN, LOG, SIN, SINH, SQRT, TAN, and TANH are accurate to 36
decimal digits. The transcendental functions ACOS, ASIN, ATAN, and ATAN2 are
accurate to 30 decimal digits.

ABS

ACOS

ADD_MONTHS

ATAN

ATAN2

CEIL

COS

COSH

EXP

FLOOR

LN

LOG

MOD

POWER

ROUND (Number
Function)

SIGN

SIN

SINH

SQRT

TAN

TANH

TRUNC (Number
Function)

Character
Functions

returning
character values

Character functions that return character values, unless otherwise noted, return values
with the datatype VARCHAR2 and are limited in length to 4000 bytes. Functions that
return values of datatype CHAR are limited in length to 2000 bytes. If the length of the
return value exceeds the limit, Oracle truncates it and returns the result without an error
message.

CHR

CONCAT

INITCAP

LOWER

LPAD

LTRIM

NLS_INITCAP

NLS_LOWER

NLSSORT

NLS_UPPER

REPLACE

RPAD

RTRIM

SOUNDEX

SUBSTR

SUBSTRB

TRANSLATE

TRIM

UPPER

Character
Functions

All of the functions listed below return number values.

returning
number values

ASCII

INSTR

INSTRB

LENGTH

LENGTHB
Functions 4-3

SQL Functions
Date Functions Date functions operate on values of the DATE datatype. All date functions return a value
of DATE datatype, except the MONTHS_BETWEEN function, which returns a number.

ADD_MONTHS

LAST_DAY

MONTHS_BETWEEN

NEW_TIME

NEXT_DAY

ROUND (Date Function)

SYSDATE

TRUNC (Date Function)

Conversion
Functions

Conversion functions convert a value from one datatype to another. Generally, the form of
the function names follows the convention datatype TO datatype. The first datatype is the
input datatype. The second datatype is the output datatype. This section lists the SQL
conversion functions.

CHARTOROWID

CONVERT

HEXTORAW

RAWTOHEX

ROWIDTOCHAR

TO_CHAR (date
conversion)

TO_CHAR (number
conversion)

TO_DATE

TO_LOB

TO_MULTI_BYTE

TO_NUMBER

TO_SINGLE_BYTE

TRANSLATE ... USING

Miscellaneous
Single Row
Functions

The following single-row functions do not fall into any of the other single-row function
categories.

BFILENAME

DUMP

EMPTY_[B | C]LOB

GREATEST

LEAST

NLS_CHARSET_DECL_LEN

NLS_CHARSET_ID

NLS_CHARSET_NAME

NVL

SYS_CONTEXT

SYS_GUID

UID

USER

USERENV

VSIZE

Object Reference
Functions

Object functions manipulate REFs, which are references to objects of specified object types.
For more information about REFs, see Oracle8i Concepts and Oracle8i Application Developer’s
Guide - Fundamentals.

DEREF

MAKE_REF

REF

REFTOHEX

VALUE

Table 4–1 SQL Function Groups

Group Functions Description
4-4 SQL Reference

SQL Functions
ABS

Aggregate Functions Aggregate functions return a single row based on groups of rows, rather than on single
rows.

Aggregate functions can appear in select lists and HAVING clauses. If you use the GROUP
BY clause in a SELECT statement, Oracle divides the rows of a queried table or view into
groups. In a query containing a GROUP BY clause, all elements of the select list must be
expressions from the GROUP BY clause, expressions containing aggregate functions, or
constants. Oracle applies the aggregate functions in the select list to each group of rows
and returns a single result row for each group.

If you omit the GROUP BY clause, Oracle applies aggregate functions in the select list to
all the rows in the queried table or view. You use aggregate functions in the HAVING
clause to eliminate groups from the output based on the results of the aggregate functions,
rather than on the values of the individual rows of the queried table or view. For more
information on the GROUP BY clause and HAVING clauses, see the "GROUP BY
Examples" on page 7-553 and the "HAVING" clause on page 7-550.

Many aggregate functions accept these options:

■ DISTINCT causes an aggregate function to consider only distinct values of the
argument expression.

■ ALL causes an aggregate function to consider all values, including all duplicates.

For example, the DISTINCT average of 1, 1, 1, and 3 is 2; the ALL average is 1.5. If neither
option is specified, the default is ALL.

All aggregate functions except COUNT(*) and GROUPING ignore nulls. You can use the
NVL in the argument to an aggregate function to substitute a value for a null.

If a query with an aggregate function returns no rows or only rows with nulls for the
argument to the aggregate function, the aggregate function returns null.

AVG

COUNT

GROUPING

MAX

MIN

STDDEV

SUM

VARIANCE

Syntax

Purpose Returns the absolute value of n.

Table 4–1 SQL Function Groups

Group Functions Description

ABS (n)
Functions 4-5

SQL Functions
ACOS

ADD_MONTHS

ASCII

Example SELECT ABS(-15) "Absolute" FROM DUAL;

 Absolute

 15

Syntax

Purpose Returns the arc cosine of n. Inputs are in the range of -1 to 1, and outputs
are in the range of 0 to π and are expressed in radians.

Example SELECT ACOS(.3)"Arc_Cosine" FROM DUAL;

Arc_Cosine

1.26610367

Syntax

Purpose Returns the date d plus n months. The argument n can be any integer. If d
is the last day of the month or if the resulting month has fewer days than
the day component of d, then the result is the last day of the resulting
month. Otherwise, the result has the same day component as d.

Example SELECT TO_CHAR(
 ADD_MONTHS(hiredate,1),
 ’DD-MON-YYYY’) "Next month"
 FROM emp
 WHERE ename = ’SMITH’;

Next Month

17-JAN-1981

Syntax

ACOS (n)

ADD_MONTHS (d , n)

ASCII (char)
4-6 SQL Reference

SQL Functions
ASIN

ATAN

Purpose Returns the decimal representation in the database character set of the first
character of char. If your database character set is 7-bit ASCII, this function
returns an ASCII value. If your database character set is EBCDIC Code
Page 500, this function returns an EBCDIC value. There is no similar
EBCDIC character function.

Example SELECT ASCII(’Q’)
 FROM DUAL;

ASCII(’Q’)

 81

Syntax

Purpose Returns the arc sine of n. Inputs are in the range of -1 to 1, and outputs are
in the range of -π/2 to π/2 and are expressed in radians.

Example SELECT ASIN(.3) "Arc_Sine" FROM DUAL;

 Arc_Sine

.304692654

Syntax

Purpose Returns the arc tangent of n. Inputs are in an unbounded range, and
outputs are in the range of -π/2 to π/2 and are expressed in radians.

Example SELECT ATAN(.3) "Arc_Tangent" FROM DUAL;

Arc_Tangent

.291456794

ASIN (n)

ATAN (n)
Functions 4-7

SQL Functions
ATAN2

AVG

BFILENAME

Syntax

Purpose Returns the arc tangent of n and m. Inputs are in an unbounded range, and
outputs are in the range of -π to π, depending on the signs of n and m, and
are expressed in radians. ATAN2(n,m) is the same as ATAN2(n/m)

Example SELECT ATAN2(.3, .2) "Arc_Tangent2" FROM DUAL;

Arc_Tangent2

 .982793723

Syntax

Purpose Returns average value of n. See also "Aggregate Functions" on page 4-5.

Example SELECT AVG(sal) "Average"
 FROM emp;

 Average

2077.21429

Syntax

ATAN2 (n
,

/
m)

AVG (

DISTINCT

ALL
n)

BFILENAME (’ directory ’ , ’ filename ’)
4-8 SQL Reference

SQL Functions
CEIL

CHARTOROWID

Purpose Returns a BFILE locator that is associated with a physical LOB binary file
on the server’s file system. A directory is an alias for a full pathname on
the server’s file system where the files are actually located, and ’filename’
is the name of the file in the server’s file system.

Neither ’directory’ nor ’filename’ needs to point to an existing object on
the file system at the time you specify BFILENAME. However, you must
associate a BFILE value with a physical file before performing subsequent
SQL, PL/SQL, DBMS_LOB package, or OCI operations. For more
information, see "CREATE DIRECTORY" on page 7-264.

For more information about LOBs, see Oracle8i Application Developer’s
Guide - Large Objects (LOBs) and Oracle Call Interface Programmer’s Guide.

Example INSERT INTO file_tbl
 VALUES (BFILENAME (’lob_dir1’, ’image1.gif’));

Syntax

Purpose Returns smallest integer greater than or equal to n.

Example SELECT CEIL(15.7) "Ceiling" FROM DUAL;

 Ceiling

 16

Syntax

Purpose Converts a value from CHAR or VARCHAR2 datatype to ROWID
datatype.

Example SELECT ename FROM emp
 WHERE ROWID = CHARTOROWID(’AAAAfZAABAAACp8AAO’);

ENAME

LEWIS

CEIL (n)

CHARTOROWID (char)
Functions 4-9

SQL Functions
CHR

CONCAT

Syntax

Purpose Returns the character having the binary equivalent to n in either the
database character set or the national character set.

If USING NCHAR_CS is not specified, this function returns the character
having the binary equivalent to n as a VARCHAR2 value in the database
character set.

If USING NCHAR_CS is specified, this function returns the character
having the binary equivalent to n as a NVARCHAR2 value in the national
character set.

Example 1 SELECT CHR(67)||CHR(65)||CHR(84) "Dog"
 FROM DUAL;

Dog

CAT

Example 2 SELECT CHR(16705 USING NCHAR_CS) FROM DUAL;

C
-
A

Syntax

Purpose Returns char1 concatenated with char2. This function is equivalent to the
concatenation operator (||). For information on this operator, see
"Concatenation Operator" on page 3-3.

Example This example uses nesting to concatenate three character strings:

SELECT CONCAT(CONCAT(ename, ’ is a ’), job) "Job"
FROM emp
WHERE empno = 7900;

Job

JAMES is a CLERK

CHR (n
USING NCHAR_CS

)

CONCAT (char1 , char2)
4-10 SQL Reference

SQL Functions
CONVERT

Syntax

Purpose Converts a character string from one character set to another.

The char argument is the value to be converted.

The dest_char_set argument is the name of the character set to which char is
converted.

The source_char_set argument is the name of the character set in which char
is stored in the database. The default value is the database character set.

Both the destination and source character set arguments can be either
literals or columns containing the name of the character set.

For complete correspondence in character conversion, it is essential that
the destination character set contains a representation of all the characters
defined in the source character set. Where a character does not exist in the
destination character set, a replacement character appears. Replacement
characters can be defined as part of a character set definition.

Example SELECT CONVERT(’Groß’, ’US7ASCII’, ’WE8HP’)
 "Conversion" FROM DUAL;

Conversion

Gross

Common character sets include:

US7ASCII

WE8DEC

WE8HP

F7DEC

WE8EBCDIC500

WE8PC850

WE8ISO8859P1

US 7-bit ASCII character set

DEC West European 8-bit character set

HP West European Laserjet 8-bit character set

DEC French 7-bit character set

IBM West European EBCDIC Code Page 500

IBM PC Code Page 850

ISO 8859-1 West European 8-bit character set

CONVERT (char , dest_char_set
, source_char_set

)

Functions 4-11

SQL Functions
COS

COSH

COUNT

Syntax

Purpose Returns the cosine of n (an angle expressed in radians).

Example SELECT COS(180 * 3.14159265359/180)
"Cosine of 180 degrees" FROM DUAL;

Cosine of 180 degrees

 -1

Syntax

Purpose Returns the hyperbolic cosine of n.

Example SELECT COSH(0) "Hyperbolic cosine of 0" FROM DUAL;

Hyperbolic cosine of 0

 1

Syntax

Purpose Returns the number of rows in the query.

If you specify expr, this function returns rows where expr is not null. You
can count either all rows, or only distinct values of expr.

If you specify the asterisk (*), this function returns all rows, including
duplicates and nulls. See also "Aggregate Functions" on page 4-5.

COS (n)

COSH (n)

COUNT (

*

DISTINCT

ALL
expr

)

4-12 SQL Reference

SQL Functions
DEREF

Example 1 SELECT COUNT(*) "Total"
 FROM emp;

 Total

 18

Example 2 SELECT COUNT(job) "Count"
 FROM emp;

 Count

 14

Example 3 SELECT COUNT(DISTINCT job) "Jobs"
 FROM emp;

 Jobs

 5

Syntax

Purpose Returns the object reference of argument e. Argument e must be an expression
that returns a REF to an object.

Example CREATE TYPE emp_type AS OBJECT
 (eno NUMBER, ename VARCHAR2(20), salary NUMBER);
CREATE TABLE emp_table OF emp_type
 (primary key (eno, ename));
CREATE TABLE dept_table
 (dno NUMBER, mgr REF emp_type SCOPE IS emp_table);
INSERT INTO emp_table VALUES (10, 'jack', 50000);
INSERT INTO dept_table SELECT 10, REF(e) FROM emp_table e;
SELECT DEREF(mgr) from dept_table;

DEREF(MGR)(ENO, ENAME, SALARY)
--
EMP_TYPE(10, 'jack', 50000)

DEREF (e)
Functions 4-13

SQL Functions
DUMP

Syntax

Purpose Returns a VARCHAR2 value containing the datatype code, length in bytes, and
internal representation of expr. The returned result is always in the database
character set. For the datatype corresponding to each code, see Table 2–1 on
page 2-9.

The argument return_fmt specifies the format of the return value and can have
any of the values listed below.

By default, the return value contains no character set information. To retrieve

the character set name of expr, specify any of the format values below, plus

1000. For example, a return_fmt of 1008 returns the result in octal, plus provides

the character set name of expr.

8 returns result in octal notation.

10 returns result in decimal notation.

16 returns result in hexadecimal notation.

17 returns result as single characters.

The arguments start_position and length combine to determine which portion of
the internal representation to return. The default is to return the entire internal
representation in decimal notation.

If expr is null, this function returns ’NULL’.

Example 1 SELECT DUMP(’abc’, 1016)
 FROM DUAL;

DUMP(’ABC’,1016)
--
Typ=96 Len=3 CharacterSet=WE8DEC: 61,62,63

Example 2 SELECT DUMP(ename, 8, 3, 2) "OCTAL"
 FROM emp
 WHERE ename = ’SCOTT’;

OCTAL

Type=1 Len=5: 117,124

DUMP (expr
, return_fmt

, start_position
, length

)

4-14 SQL Reference

SQL Functions
EMPTY_[B | C]LOB

EXP

FLOOR

Example 3 SELECT DUMP(ename, 10, 3, 2) "ASCII"
 FROM emp
 WHERE ename = ’SCOTT’;

ASCII

Type=1 Len=5: 79,84

Syntax

Purpose Returns an empty LOB locator that can be used to initialize a LOB variable
or in an INSERT or UPDATE statement to initialize a LOB column or
attribute to EMPTY. EMPTY means that the LOB is initialized, but not
populated with data.

You cannot use the locator returned from this function as a parameter to
the DBMS_LOB package or the OCI.

Examples INSERT INTO lob_tab1 VALUES (EMPTY_BLOB());
UPDATE lob_tab1
 SET clob_col = EMPTY_BLOB();

Syntax

Purpose Returns e raised to the nth power, where e = 2.71828183 ...

Example SELECT EXP(4) "e to the 4th power" FROM DUAL;

e to the 4th power

 54.59815

Syntax

EMPTY_BLOB

EMPTY_CLOB
()

EXP (n)

FLOOR (n)
Functions 4-15

SQL Functions
GREATEST

GROUPING

Purpose Returns largest integer equal to or less than n.

Example SELECT FLOOR(15.7) "Floor" FROM DUAL;

 Floor

 15

Syntax

Purpose Returns the greatest of the list of exprs. All exprs after the first are
implicitly converted to the datatype of the first expr before the comparison.
Oracle compares the exprs using nonpadded comparison semantics.
Character comparison is based on the value of the character in the
database character set. One character is greater than another if it has a
higher character set value. If the value returned by this function is
character data, its datatype is always VARCHAR2.

Example SELECT GREATEST (’HARRY’, ’HARRIOT’, ’HAROLD’)
 "Greatest" FROM DUAL;

Greatest

HARRY

Syntax

Purpose This function is applicable only in a SELECT statement that contains a
GROUP BY extension, such as ROLLUP or CUBE. These operations
produce superaggregate rows that contain null values representing the set
of all values. You can use the GROUPING function to distinguish a null
value that represents the set of all values from an actual null value.

GREATEST (expr

,

)

GROUPING (expr)
4-16 SQL Reference

SQL Functions
HEXTORAW

The expr in the GROUPING function must match one of the expressions in
the GROUP BY clause. The function returns a value of 1 if the value of expr
in the row is a null representing the set of all values. Otherwise, it returns
zero. The datatype of the value returned by the GROUPING function is an
Oracle NUMBER datatype. See the group_by_clause of the SELECT
statement on page 7-549 for a discussion of these terms.

Example SELECT DECODE(GROUPING(dname), 1, 'All Departments',
 dname) AS dname,
 DECODE(GROUPING(job), 1, 'All Jobs', job) AS job,
 COUNT(*) "Total Empl", AVG(sal) * 12 "Average Sal"
 FROM emp, dept
 WHERE dept.deptno = emp.deptno
 GROUP BY ROLLUP (dname, job);

DNAME JOB Total Empl Average Sa
--------------- --------- ---------- ----------
ACCOUNTING CLERK 1 15600
ACCOUNTING MANAGER 1 29400
ACCOUNTING PRESIDENT 1 60000
ACCOUNTING All Jobs 3 35000
RESEARCH ANALYST 2 36000
RESEARCH CLERK 2 11400
RESEARCH MANAGER 1 35700
RESEARCH All Jobs 5 26100
SALES CLERK 1 11400
SALES MANAGER 1 34200
SALES SALESMAN 4 16800
SALES All Jobs 6 18800
All Departments All Jobs 14 24878.5714

Syntax

Purpose Converts char containing hexadecimal digits to a raw value.

Example INSERT INTO graphics (raw_column)
 SELECT HEXTORAW(’7D’) FROM DUAL;

HEXTORAW (char)
Functions 4-17

SQL Functions
INITCAP

INSTR

Syntax

Purpose Returns char, with the first letter of each word in uppercase, all other
letters in lowercase. Words are delimited by white space or characters that
are not alphanumeric.

Example SELECT INITCAP(’the soap’) "Capitals" FROM DUAL;

Capitals

The Soap

Syntax

Purpose Searches char1 beginning with its nth character for the mth occurrence of
char2 and returns the position of the character in char1 that is the first
character of this occurrence. If n is negative, Oracle counts and searches
backward from the end of char1. The value of m must be positive. The
default values of both n and m are 1, meaning Oracle begins searching at
the first character of char1 for the first occurrence of char2. The return value
is relative to the beginning of char1, regardless of the value of n, and is
expressed in characters. If the search is unsuccessful (if char2 does not
appear m times after the nth character of char1) the return value is 0.

Example 1 SELECT INSTR(’CORPORATE FLOOR’,’OR’, 3, 2)
 "Instring" FROM DUAL;

 Instring

 14

Example 2 SELECT INSTR(’CORPORATE FLOOR’,’OR’, -3, 2)
"Reversed Instring"
 FROM DUAL;

Reversed Instring

 2

INITCAP (char)

INSTR (char1 , char2
, n

, m

)

4-18 SQL Reference

SQL Functions
INSTRB

LAST_DAY

Syntax

Purpose The same as INSTR, except that n and the return value are expressed in
bytes, rather than in characters. For a single-byte database character set,
INSTRB is equivalent to INSTR.

Example This example assumes a double-byte database character set.

SELECT INSTRB(’CORPORATE FLOOR’,’OR’,5,2)
"Instring in bytes"
FROM DUAL;

Instring in bytes

 27

Syntax

Purpose Returns the date of the last day of the month that contains d. You might
use this function to determine how many days are left in the current
month.

Example 1 SELECT SYSDATE,
 LAST_DAY(SYSDATE) "Last",
 LAST_DAY(SYSDATE) - SYSDATE "Days Left"
 FROM DUAL;

SYSDATE Last Days Left
--------- --------- ----------
23-OCT-97 31-OCT-97 8

INSTRB (char1 , char2
, n

, m

)

LAST_DAY (d)
Functions 4-19

SQL Functions
LEAST

LENGTH

Example 2 SELECT TO_CHAR(
 ADD_MONTHS(
 LAST_DAY(hiredate),5),
 ’DD-MON-YYYY’) "Five months"
 FROM emp
 WHERE ename = ’MARTIN’;

Five months

28-FEB-1982

Syntax

Purpose Returns the least of the list of exprs. All exprs after the first are implicitly
converted to the datatype of the first expr before the comparison. Oracle
compares the exprs using nonpadded comparison semantics. If the value
returned by this function is character data, its datatype is always
VARCHAR2.

Example SELECT LEAST(’HARRY’,’HARRIOT’,’HAROLD’) "LEAST"
 FROM DUAL;

LEAST

HAROLD

Syntax

Purpose Returns the length of char in characters. If char has datatype CHAR, the
length includes all trailing blanks. If char is null, this function returns null.

Example SELECT LENGTH(’CANDIDE’) "Length in characters"
FROM DUAL;

Length in characters

 7

LEAST (expr

,

)

LENGTH (char)
4-20 SQL Reference

SQL Functions
LENGTHB

LN

LOG

Syntax

Purpose Returns the length of char in bytes. If char is null, this function returns null. For
a single-byte database character set, LENGTHB is equivalent to LENGTH.

Example This example assumes a double-byte database character set.

SELECT LENGTHB (’CANDIDE’) "Length in bytes"
 FROM DUAL;

Length in bytes

 14

Syntax

Purpose Returns the natural logarithm of n, where n is greater than 0.

Example SELECT LN(95) "Natural log of 95" FROM DUAL;

Natural log of 95

 4.55387689

Syntax

Purpose Returns the logarithm, base m, of n. The base m can be any positive
number other than 0 or 1 and n can be any positive number.

Example SELECT LOG(10,100) "Log base 10 of 100" FROM DUAL;

Log base 10 of 100

 2

LENGTHB (char)

LN (n)

LOG (m , n)
Functions 4-21

SQL Functions
LOWER

LPAD

LTRIM

Syntax

Purpose Returns char, with all letters lowercase. The return value has the same
datatype as the argument char (CHAR or VARCHAR2).

Example SELECT LOWER(’MR. SCOTT MCMILLAN’) "Lowercase"
 FROM DUAL;

Lowercase

mr. scott mcmillan

Syntax

Purpose Returns char1, left-padded to length n with the sequence of characters in
char2; char2 defaults to a single blank. If char1 is longer than n, this
function returns the portion of char1 that fits in n.

The argument n is the total length of the return value as it is displayed on
your terminal screen. In most character sets, this is also the number of
characters in the return value. However, in some multibyte character sets,
the display length of a character string can differ from the number of
characters in the string.

Example SELECT LPAD(’Page 1’,15,’*.’) "LPAD example"
 FROM DUAL;

LPAD example

..*.*.*Page 1

Syntax

LOWER (char)

LPAD (char1 , n
, char2

)

LTRIM (char
, set

)

4-22 SQL Reference

SQL Functions
MAKE_REF

Purpose Removes characters from the left of char, with all the leftmost characters
that appear in set removed; set defaults to a single blank. If char is a
character literal, you must enclose it in single quotes. Oracle begins
scanning char from its first character and removes all characters that
appear in set until reaching a character not in set and then returns the
result.

Example SELECT LTRIM(’xyxXxyLAST WORD’,’xy’) "LTRIM example"
 FROM DUAL;

LTRIM example

XxyLAST WORD

Syntax

Purpose Creates a REF to a row of an object view or a row in an object table whose
object identifier is primary key based. For more information about object
views, see Oracle8i Application Developer’s Guide - Fundamentals.

Example CREATE TABLE emp (eno NUMBER, ename VARCHAR2(20),
 salary NUMBER, PRIMARY KEY (eno, ename));
CREATE TYPE emp_type AS OBJECT
 (eno NUMBER, ename CHAR(20), salary NUMBER);
CREATE VIEW emp_view OF emp_type
 WITH OBJECT IDENTIFIER (eno, ename)
 AS SELECT * FROM emp;
SELECT MAKE_REF(emp_view, 1, 'jack') FROM DUAL;

MAKE_REF(EMP_VIEW,1,'JACK')
--
000067030A0063420D06E06F3C00C1E03400400B40DCB10000001C2
60100010002002900000000000F0600810100140100002A0007000A
8401FE0000001F02C102146A61636B2020202020202020202020202
020202000

MAKE_REF (
table

view
, key

,

)

Functions 4-23

SQL Functions
MAX

MIN

MOD

Syntax

Purpose Returns maximum value of expr. See also "Aggregate Functions" on
page 4-5.

Example SELECT MAX(sal) "Maximum" FROM emp;

 Maximum

 5000

Syntax

Purpose Returns minimum value of expr. See also "Aggregate Functions" on page 4-5.

Example SELECT MIN(hiredate) "Earliest" FROM emp;

Earliest

17-DEC-80

Syntax

Purpose Returns remainder of m divided by n. Returns m if n is 0.

Example SELECT MOD(11,4) "Modulus" FROM DUAL;

 Modulus

 3

MAX (

DISTINCT

ALL
expr)

MIN (

DISTINCT

ALL
expr)

MOD (m , n)
4-24 SQL Reference

SQL Functions
MONTHS_BETWEEN

NEW_TIME

This function behaves differently from the classical mathematical modulus
function when m is negative. The classical modulus can be expressed
using the MOD function with this formula:

m - n * FLOOR(m/n)

The following statement illustrates the difference between the MOD
function and the classical modulus:

SELECT m, n, MOD(m, n),
m - n * FLOOR(m/n) "Classical Modulus"
 FROM test_mod_table;

 M N MOD(M,N) Classical Modulus
---------- ---------- ---------- -----------------
 11 4 3 3
 11 -4 3 -1
 -11 4 -3 1
 -11 -4 -3 -3

Syntax

Purpose Returns number of months between dates d1 and d2. If d1 is later than d2,
result is positive; if earlier, negative. If d1 and d2 are either the same days
of the month or both last days of months, the result is always an integer.
Otherwise Oracle calculates the fractional portion of the result based on a
31-day month and considers the difference in time components of d1 and
d2.

Example SELECT MONTHS_BETWEEN
 (TO_DATE(’02-02-1995’,’MM-DD-YYYY’),
 TO_DATE(’01-01-1995’,’MM-DD-YYYY’)) "Months"
 FROM DUAL;

 Months

1.03225806

Syntax

MONTHS_BETWEEN (d1 , d2)

NEW_TIME (d , z1 , z2)
Functions 4-25

SQL Functions
NEXT_DAY

Purpose Returns the date and time in time zone z2 when date and time in time
zone z1 are d. The arguments z1 and z2 can be any of these text strings:

AST

ADT

Atlantic Standard or Daylight Time

BST

BDT

Bering Standard or Daylight Time

CST

CDT

Central Standard or Daylight Time

EST

EDT

Eastern Standard or Daylight Time

GMT Greenwich Mean Time

HST

HDT

Alaska-Hawaii Standard Time or Daylight Time.

MST

MDT

Mountain Standard or Daylight Time

NST Newfoundland Standard Time

PST

PDT

Pacific Standard or Daylight Time

YST

YDT

Yukon Standard or Daylight Time

Syntax

Purpose Returns the date of the first weekday named by char that is later than the
date d. The argument char must be a day of the week in your session’s date
language, either the full name or the abbreviation. The minimum number
of letters required is the number of letters in the abbreviated version. Any
characters immediately following the valid abbreviation are ignored. The
return value has the same hours, minutes, and seconds component as the
argument d.

NEXT_DAY (d , char)
4-26 SQL Reference

SQL Functions
NLS_CHARSET_DECL_LEN

NLS_CHARSET_ID

Example This example returns the date of the next Tuesday after March 15, 1998.

SELECT NEXT_DAY(’15-MAR-98’,’TUESDAY’) "NEXT DAY"
 FROM DUAL;

NEXT DAY

16-MAR-98

Syntax

Purpose Returns the declaration width (in number of characters) of an NCHAR
column. The bytecnt argument is the width of the column. The csid
argument is the character set ID of the column.

Example

SELECT NLS_CHARSET_DECL_LEN
 (200, nls_charset_id(’ja16eucfixed’))
 FROM DUAL;

NLS_CHARSET_DECL_LEN(200,NLS_CHARSET_ID(’JA16EUCFIXED’))
--
 100

Syntax

Purpose Returns the NLS character set ID number corresponding to NLS character
set name, text. The text argument is a run-time VARCHAR2 value. The text
value ’CHAR_CS’ returns the server’s database character set ID number.
The text value ’NCHAR_CS’ returns the server’s national character set ID
number.

Invalid character set names return null.

For a list of character set names, see Oracle8i Reference.

NLS_CHARSET_DECL_LEN (bytecnt , csid)

NLS_CHARSET_ID (text)
Functions 4-27

SQL Functions
NLS_CHARSET_NAME

Example I SELECT NLS_CHARSET_ID(’ja16euc’)
 FROM DUAL;

NLS_CHARSET_ID(’JA16EUC’)

 830

Example 2 SELECT NLS_CHARSET_ID(’char_cs’)
 FROM DUAL;

 NLS_CHARSET_ID(’CHAR_CS’)

 2

Example 3 SELECT NLS_CHARSET_ID(’nchar_cs’)
 FROM DUAL;

NLS_CHARSET_ID(’NCHAR_CS’)

 2

Syntax

Purpose Returns the name of the NLS character set corresponding to ID number n.
The character set name is returned as a VARCHAR2 value in the database
character set.

If n is not recognized as a valid character set ID, this function returns null.

For a list of character set IDs, see Oracle8i Reference.

Example SELECT NLS_CHARSET_NAME(2)
 FROM DUAL;

NLS_CH

WE8DEC

NLS_CHARSET_NAME (n)
4-28 SQL Reference

SQL Functions
NLS_INITCAP

NLS_LOWER

Syntax

Purpose Returns char, with the first letter of each word in uppercase, all other
letters in lowercase. Words are delimited by white space or characters that
are not alphanumeric. The value of ’nlsparam’ can have this form:

’NLS_SORT = sort’

where sort is either a linguistic sort sequence or BINARY. The linguistic
sort sequence handles special linguistic requirements for case conversions.
Note that these requirements can result in a return value of a different
length than the char. If you omit ’nlsparam’, this function uses the default
sort sequence for your session. For information on sort sequences, see
Oracle8i Reference.

Example SELECT NLS_INITCAP
 (’ijsland’, ’NLS_SORT = XDutch’) "Capitalized"
 FROM DUAL;

Capital

IJsland

Syntax

Purpose Returns char, with all letters lowercase. The ’nlsparam’ can have the same
form and serve the same purpose as in the NLS_INITCAP function.

Example SELECT NLS_LOWER
 (’CITTA’’’, ’NLS_SORT = XGerman’) "Lowercase"
 FROM DUAL;

Lower

cittá

NLS_INITCAP (char
, ’ nlsparam ’

)

NLS_LOWER (char
, ’ nlsparam ’

)

Functions 4-29

SQL Functions
NLSSORT

NLS_UPPER

Syntax

Purpose Returns the string of bytes used to sort char. The value of ’nlsparams’ can have
the form

’NLS_SORT = sort’

where sort is a linguistic sort sequence or BINARY. If you omit ’nlsparams’, this
function uses the default sort sequence for your session. If you specify
BINARY, this function returns char. For information on sort sequences, see
Oracle8i National Language Support Guide.

Example This function can be used to specify comparisons based on a linguistic sort
sequence rather on the binary value of a string:

SELECT ename FROM emp
 WHERE NLSSORT (ename, ’NLS_SORT = German’)
 > NLSSORT (’S’, ’NLS_SORT = German’) ORDER BY ename;

ENAME

SCOTT
SMITH
TURNER
WARD

Syntax

Purpose Returns char, with all letters uppercase. The ’nlsparam’ can have the same
form and serve the same purpose as in the NLS_INITCAP function.

Example SELECT NLS_UPPER
 (’große’, ’NLS_SORT = XGerman’) "Uppercase"
 FROM DUAL;

Upper

GROSS

NLSSORT (char
, ’ nlsparam ’

)

NLS_UPPER (char
, ’ NLS_param = param_value ’
4-30 SQL Reference

SQL Functions
NVL

POWER

RAWTOHEX

Syntax

Purpose If expr1 is null, returns expr2; if expr1 is not null, returns expr1. The
arguments expr1 and expr2 can have any datatype. If their datatypes
are different, Oracle converts expr2 to the datatype of expr1 before
comparing them. The datatype of the return value is always the same
as the datatype of expr1, unless expr1 is character data, in which case
the return value’s datatype is VARCHAR2.

Example SELECT ename, NVL(TO_CHAR(COMM), ’NOT APPLICABLE’)
 "COMMISSION" FROM emp
 WHERE deptno = 30;

ENAME COMMISSION
---------- -------------------------------------
ALLEN 300
WARD 500
MARTIN 1400
BLAKE NOT APPLICABLE
TURNER 0
JAMES NOT APPLICABLE

Syntax

Purpose Returns m raised to the nth power. The base m and the exponent n can be
any numbers, but if m is negative, n must be an integer.

Example SELECT POWER(3,2) "Raised" FROM DUAL;

 Raised

 9

Syntax

Purpose Converts raw to a character value containing its hexadecimal equivalent.

NVL (expr1 , expr2)

POWER (m , n)

RAWTOHEX (raw)
Functions 4-31

SQL Functions
REF

REFTOHEX

Example SELECT RAWTOHEX(raw_column) "Graphics"
 FROM graphics;

Graphics

7D

Syntax

Purpose In a SQL statement, REF takes as its argument a correlation variable (table
alias) associated with a row of an object table or an object view. A REF
value is returned for the object instance that is bound to the variable or
row. For more information about REFs, see Oracle8i Concepts.

Examples CREATE TYPE emp_type AS OBJECT
 (eno NUMBER, ename VARCHAR2(20), salary NUMBER);
CREATE TABLE emp_table OF emp_type
 (primary key (eno, ename));
INSERT INTO emp_table VALUES (10, 'jack', 50000);
SELECT REF(e) FROM emp_table e;

REF(E)

0000280209420D2FEABD9400C3E03400400B40DCB1420D2FEABD930
0C3E03400400B40DCB1004049EE0000

Syntax

Purpose Converts argument r to a character value containing its hexadecimal
equivalent.

REF (correlation_variable)

REFTOHEX (r)
4-32 SQL Reference

SQL Functions
REPLACE

ROUND (Number Function)

Example CREATE TYPE emp_type AS OBJECT
 (eno NUMBER, ename VARCHAR2(20), salary NUMBER);
CREATE TABLE emp_table OF emp_type
 (primary key (eno, ename));
CREATE TABLE dept
 (dno NUMBER, mgr REF emp_type SCOPE IS emp);
INSERT INTO emp_table VALUES (10, 'jack', 50000);
INSERT INTO dept SELECT 10, REF(e) FROM emp_table e;
SELECT REFTOHEX(mgr) FROM dept;

REFTOHEX(MGR)
--
0000220208420D2FEABD9400C3E03400400B40DCB1420D2FEABD930
0C3E03400400B40DCB1

Syntax

Purpose Returns char with every occurrence of search_string replaced with replacement_
string. If replacement_string is omitted or null, all occurrences of search_string
are removed. If search_string is null, char is returned. This function provides a
superset of the functionality provided by the TRANSLATE function.
TRANSLATE provides single-character, one-to-one substitution. REPLACE
lets you substitute one string for another as well as to remove character
strings.

Example SELECT REPLACE(’JACK and JUE’,’J’,’BL’) "Changes"
 FROM DUAL;

Changes

BLACK and BLUE

Syntax

REPLACE (char , search_string
, replacement_string

)

ROUND (n
, m

)

Functions 4-33

SQL Functions
ROUND (Date Function)

ROWIDTOCHAR

Purpose Returns n rounded to m places right of the decimal point. If m is omitted, n
is rounded to 0 places. m can be negative to round off digits left of the
decimal point. m must be an integer.

Example 1 SELECT ROUND(15.193,1) "Round" FROM DUAL;

 Round

 15.2

Example 2 SELECT ROUND(15.193,-1) "Round" FROM DUAL;

 Round

 20

Syntax

Purpose Returns d rounded to the unit specified by the format model fmt. If you
omit fmt, d is rounded to the nearest day. See "ROUND and TRUNC Date
Functions" on page 4-55 for the permitted format models to use in fmt.

Example SELECT ROUND (TO_DATE (’27-OCT-92’),’YEAR’)
 "New Year" FROM DUAL;

New Year

01-JAN-93

Syntax

Purpose Converts a rowid value to VARCHAR2 datatype. The result of this
conversion is always 18 characters long.

ROUND (d
, fmt

)

ROWIDTOCHAR (rowid)
4-34 SQL Reference

SQL Functions
RPAD

RTRIM

Example SELECT ROWID
 FROM offices
 WHERE
 ROWIDTOCHAR(ROWID) LIKE ’%Br1AAB%’;

ROWID

AAAAZ6AABAAABr1AAB

Syntax

Purpose Returns char1, right-padded to length n with char2, replicated as many
times as necessary; char2 defaults to a single blank. If char1 is longer than
n, this function returns the portion of char1 that fits in n.

The argument n is the total length of the return value as it is displayed on
your terminal screen. In most character sets, this is also the number of
characters in the return value. However, in some multibyte character sets,
the display length of a character string can differ from the number of
characters in the string.

Example SELECT RPAD(’MORRISON’,12,’ab’) "RPAD example"
 FROM DUAL;

RPAD example

MORRISONabab

Syntax

Purpose Returns char, with all the rightmost characters that appear in set removed;
set defaults to a single blank. If char is a character literal, you must enclose
it in single quotes. RTRIM works similarly to LTRIM. See "LTRIM" on
page 4-22.

RPAD (char1 , n
, char2

)

RTRIM (char
, set

)

Functions 4-35

SQL Functions
SIGN

SIN

SINH

Example SELECT RTRIM(’BROWNINGyxXxy’,’xy’) "RTRIM e.g."
 FROM DUAL;

RTRIM e.g

BROWNINGyxX

Syntax

Purpose If n<0, the function returns -1. If n=0, the function returns 0. If n>0, the
function returns 1.

Example SELECT SIGN(-15) "Sign" FROM DUAL;

 Sign

 -1

Syntax

Purpose Returns the sine of n (an angle expressed in radians).

Example SELECT SIN(30 * 3.14159265359/180)
 "Sine of 30 degrees" FROM DUAL;

Sine of 30 degrees

 .5

Syntax

Purpose Returns the hyperbolic sine of n.

SIGN (n)

SIN (n)

SINH (n)
4-36 SQL Reference

SQL Functions
SOUNDEX

Example SELECT SINH(1) "Hyperbolic sine of 1" FROM DUAL;

Hyperbolic sine of 1

 1.17520119

Syntax

Purpose Returns a character string containing the phonetic representation of char. This
function allows you to compare words that are spelled differently, but sound
alike in English.

The phonetic representation is defined in The Art of Computer Programming,
Volume 3: Sorting and Searching, by Donald E. Knuth, as follows:

■ Retain the first letter of the string and remove all other occurrences of the
following letters: a, e, h, i, o, u, w, y.

■ Assign numbers to the remaining letters (after the first) as follows:

b, f, p, v = 1
c, g, j, k, q, s, x, z = 2
d, t = 3
l = 4
m, n = 5
r = 6

■ If two or more letters with the same assigned number are adjacent, remove
all but the first.

■ Return the first four bytes padded with 0.

Example SELECT ename
 FROM emp
 WHERE SOUNDEX(ename)
 = SOUNDEX(’SMYTHE’);

ENAME

SMITH

SOUNDEX (char)
Functions 4-37

SQL Functions
SQRT

STDDEV

SUBSTR

Syntax

Purpose Returns square root of n. The value n cannot be negative. SQRT returns a
"real" result.

Example SELECT SQRT(26) "Square root" FROM DUAL;

Square root

5.09901951

Syntax

Purpose Returns standard deviation of x, a number. Oracle calculates the standard
deviation as the square root of the variance defined for the VARIANCE
aggregate function. See also "Aggregate Functions" on page 4-5.

Example SELECT STDDEV(sal) "Deviation"
 FROM emp;

 Deviation

1182.50322

Syntax

SQRT (n)

STDDEV (

DISTINCT

ALL
x)

SUBSTR (char , m
, n

)

4-38 SQL Reference

SQL Functions
SUBSTRB

Purpose Returns a portion of char, beginning at character m, n characters long.

■ If m is 0, it is treated as 1.

■ If m is positive, Oracle counts from the beginning of char to find the
first character.

■ If m is negative, Oracle counts backwards from the end of char.

■ If n is omitted, Oracle returns all characters to the end of char. If n is
less than 1, a null is returned.

Floating-point numbers passed as arguments to SUBSTR are automatically
converted to integers.

Example 1 SELECT SUBSTR(’ABCDEFG’,3,4) "Substring"
 FROM DUAL;

Substring

CDEF

Example 2 SELECT SUBSTR(’ABCDEFG’,-5,4) "Substring"
 FROM DUAL;

Substring

CDEF

Syntax

Purpose The same as SUBSTR, except that the arguments m and n are expressed in
bytes, rather than in characters. For a single-byte database character set,
SUBSTRB is equivalent to SUBSTR.

Floating-point numbers passed as arguments to SUBSTRB are
automatically converted to integers.

SUBSTRB (char , m
, n

)

Functions 4-39

SQL Functions
SUM

SYS_CONTEXT

Example Assume a double-byte database character set:

SELECT SUBSTRB(’ABCDEFG’,5,4.2)
 "Substring with bytes"
 FROM DUAL;

Substring with bytes

CD

Syntax

Purpose Returns sum of values of n. See also "Aggregate Functions" on page 4-5.

Example SELECT SUM(sal) "Total"
 FROM emp;

 Total

 29081

Syntax

Purpose Returns the value of attribute_name as defined in the package currently
associated with the context namespace. See "CREATE CONTEXT" on page 7-243.
The argument attribute_name can have any of the following predefined values:

’NLS_TERRITORY’ returns the territory

’NLS_CURRENCY’ returns the currency symbol

’NLS_CALENDAR’ returns the NLS calendar used for dates

’NLS_DATE_FORMAT’ returns the current date format

’NLS_DATE_LANGUAGE’ returns the language used for days of the week,
months, and so forth, in dates

SUM (

DISTINCT

ALL
n)

SYS_CONTEXT (’ namespace ’ , ’ attribute_name ’)
4-40 SQL Reference

SQL Functions
SYS_GUID

’NLS_SORT’ indicates whether the sort base is binary or
linguistic

’SESSION_USER’ returns the name of the user who logged on

’CURRENT_USER’ returns the current session user name, which may
be different from SESSION_USER from within a
stored procedure (such as an invoker-rights
procedure).

’CURRENT_SCHEMA’ returns the current schema name, which may be
changed with an ALTER SESSION SET SCHEMA
statement.

’CURRENT SCHEMAID’ returns the current schema ID

’SESSION_USERID returns the logged on user ID

’CURRENT_USERID’ returns the current session user ID

You can also specify SYS_CONTEXT (’USERENV’,’IP_ADDRESS’) to obtain
the IP address of the client if the client is connected to Oracle using the TCP
protocol.

Example The following example returns the group number specified as the value for the
attribute GROUP_NO in the PL/SQL package that was associated with the
context ABC when ABC was created:

SELECT SYS_CONTEXT (’abc’, ’group_no’) "User Group"
 FROM DUAL;

User Group

Sales

Syntax

Purpose Generates and returns a globally unique identifier (RAW value) made
up of 16 bytes. On most platforms, the generated identifier consists of
a host identifier and a process or thread identifier of the process or
thread invoking the function, and a nonrepeating value (sequence of
bytes) for that process or thread.

Example The second line of this example returns the 32-character hexadecimal
representation of the 16-byte raw value of the global unique identifier.

INSERT INTO my_table VALUES (’BOB’, SYS_GUID());
SELECT SYS_GUID() FROM DUAL;

SYS_GUID ()
Functions 4-41

SQL Functions
SYSDATE

TAN

TANH

Syntax

Purpose Returns the current date and time. Requires no arguments. In distributed
SQL statements, this function returns the date and time on your local
database. You cannot use this function in the condition of a CHECK
constraint.

Example SELECT TO_CHAR
 (SYSDATE, ’MM-DD-YYYY HH24:MI:SS’)"NOW"
 FROM DUAL;

NOW

10-29-1993 20:27:11

Syntax

Purpose Returns the tangent of n (an angle expressed in radians).

Example SELECT TAN(135 * 3.14159265359/180)
"Tangent of 135 degrees" FROM DUAL;

Tangent of 135 degrees

 - 1

Syntax

Purpose Returns the hyperbolic tangent of n.

Example SELECT TANH(.5) "Hyperbolic tangent of .5"
 FROM DUAL;

Hyperbolic tangent of .5

 .462117157

SYSDATE

TAN (n)

TANH (n)
4-42 SQL Reference

SQL Functions
TO_CHAR (date conversion)

TO_CHAR (number conversion)

Syntax

Purpose Converts d of DATE datatype to a value of VARCHAR2 datatype in the
format specified by the date format fmt. If you omit fmt, d is converted to a
VARCHAR2 value in the default date format. For information on date
formats, see "Format Models" on page 2-33.

The ’nlsparams’ specifies the language in which month and day names and
abbreviations are returned. This argument can have this form:

’NLS_DATE_LANGUAGE = language’

If you omit nlsparams, this function uses the default date language for your
session.

Example SELECT TO_CHAR(HIREDATE, ’Month DD, YYYY’)
 "New date format" FROM emp
 WHERE ename = ’BLAKE’;

New date format

May 01, 1981

Syntax

TO_CHAR (d
, fmt

, ’ nlsparam ’

)

TO_CHAR (n
, fmt

, ’ nlsparam ’

)

Functions 4-43

SQL Functions
Purpose Converts n of NUMBER datatype to a value of VARCHAR2 datatype,
using the optional number format fmt. If you omit fmt, n is converted to a
VARCHAR2 value exactly long enough to hold its significant digits. For
information on number formats, see "Format Models" on page 2-33.

The ’nlsparams’ specifies these characters that are returned by number
format elements:

■ decimal character

■ group separator

■ local currency symbol

■ international currency symbol

This argument can have this form:

’NLS_NUMERIC_CHARACTERS = ’’dg’’
NLS_CURRENCY = ’’text’’
NLS_ISO_CURRENCY = territory ’

The characters d and g represent the decimal character and group
separator, respectively. They must be different single-byte characters. Note
that within the quoted string, you must use two single quotation marks
around the parameter values. Ten characters are available for the currency
symbol.

If you omit ’nlsparams’ or any one of the parameters, this function uses the
default parameter values for your session.

Example 1 In this example, the output is blank padded to the left of the currency
symbol.

SELECT TO_CHAR(-10000,’L99G999D99MI’) "Amount"
 FROM DUAL;

Amount

 $10,000.00-

Example 2 SELECT TO_CHAR(-10000,’L99G999D99MI’,
’NLS_NUMERIC_CHARACTERS = ’’,.’’
NLS_CURRENCY = ’’AusDollars’’ ’) "Amount"
 FROM DUAL;

Amount

AusDollars10.000,00-

Note: In the optional number format fmt, L designates local currency symbol and MI
designates a trailing minus sign. See Table 2–7 on page 2-36 for a complete listing of
number format elements.
4-44 SQL Reference

SQL Functions
TO_DATE

TO_LOB

Syntax

Purpose Converts char of CHAR or VARCHAR2 datatype to a value of DATE
datatype. The fmt is a date format specifying the format of char. If you omit
fmt, char must be in the default date format. If fmt is ’J’, for Julian, then char
must be an integer. For information on date formats, see "Format Models"
on page 2-33.

The ’nlsparams’ has the same purpose in this function as in the TO_CHAR
function for date conversion.

Do not use the TO_DATE function with a DATE value for the char
argument. The returned DATE value can have a different century value
than the original char, depending on fmt or the default date format.

For information on date formats, see "Date Format Models" on page 2-40.

Example INSERT INTO bonus (bonus_date)
 SELECT TO_DATE(
 ’January 15, 1989, 11:00 A.M.’,
 ’Month dd, YYYY, HH:MI A.M.’,
 ’NLS_DATE_LANGUAGE = American’)
 FROM DUAL;

Syntax

Purpose Converts LONG or LONG RAW values in the column long_column to LOB
values. You can apply this function only to a LONG or LONG RAW
column, and only in the SELECT list of a subquery in an INSERT
statement (see "INSERT" on page 7-512).

Before using this function, you must create a LOB column to receive the
converted LONG values. To convert LONGs, the LOB column must be of
type CLOB or NCLOB. To convert LONG RAWs, the LOB column must be
of type BLOB.

TO_DATE (char
, fmt

, ’ nlsparam ’

)

TO_LOB (long_column)
Functions 4-45

SQL Functions
TO_MULTI_BYTE

TO_NUMBER

Example Given the following tables:

CREATE TABLE long_table (n NUMBER, long_col LONG);
CREATE TABLE lob_table (n NUMBER, lob_col CLOB);

use this function to convert LONG to LOB values as follows:

INSERT INTO lob_table
 SELECT n, TO_LOB(long_col) FROM long_table;

Syntax

Purpose Returns char with all of its single-byte characters converted to their
corresponding multibyte characters. Any single-byte characters in char
that have no multibyte equivalents appear in the output string as
single-byte characters. This function is useful only if your database
character set contains both single-byte and multibyte characters.

Syntax

Purpose Converts char, a value of CHAR or VARCHAR2 datatype containing a
number in the format specified by the optional format model fmt, to a value
of NUMBER datatype.

Example 1 UPDATE emp SET sal = sal +
 TO_NUMBER(’100.00’, ’9G999D99’)
 WHERE ename = ’BLAKE’;

The ’nlsparams’ string in this function has the same purpose as it does in the
TO_CHAR function for number conversions. See also "TO_CHAR (number
conversion)" on page 4-43.

TO_MULTI_BYTE (char)

TO_NUMBER (char
, fmt

, ’ nlsparam ’

)

4-46 SQL Reference

SQL Functions
TO_SINGLE_BYTE

TRANSLATE

Example 2 SELECT TO_NUMBER(’-AusDollars100’,’L9G999D99’,
 ’ NLS_NUMERIC_CHARACTERS = ’’,.’’
 NLS_CURRENCY = ’’AusDollars’’
 ’) "Amount"
 FROM DUAL;

 Amount

 -100

Syntax

Purpose Returns char with all of its multibyte character converted to their
corresponding single-byte characters. Any multibyte characters in char
that have no single-byte equivalents appear in the output as multibyte
characters. This function is useful only if your database character set
contains both single-byte and multibyte characters.

Syntax

Purpose Returns char with all occurrences of each character in from replaced by its
corresponding character in to. Characters in char that are not in from are not
replaced. The argument from can contain more characters than to. In this
case, the extra characters at the end of from have no corresponding
characters in to. If these extra characters appear in char, they are removed
from the return value. You cannot use an empty string for to to remove all
characters in from from the return value. Oracle interprets the empty string
as null, and if this function has a null argument, it returns null.

Example 1 The following statement translates a license number. All letters ’ABC...Z’ are
translated to ’X’ and all digits ’012 . . . 9’ are translated to ’9’:

TO_SINGLE_BYTE (char)

TRANSLATE (’ char ’ , ’ from ’ , ’ to ’)
Functions 4-47

SQL Functions
TRANSLATE ... USING

SELECT TRANSLATE(’2KRW229’,
’0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’,
’9999999999XXXXXXXXXXXXXXXXXXXXXXXXXX’) "License"
 FROM DUAL;

License

9XXX999

Example 2 The following statement returns a license number with the characters
removed and the digits remaining:

SELECT TRANSLATE(’2KRW229’,
’0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’, ’0123456789’)
"Translate example"
 FROM DUAL;

Translate example

2229

Syntax

Purpose Converts text into the character set specified for conversions between the
database character set and the national character set.

The text argument is the expression to be converted.

Specifying the USING CHAR_CS argument converts text into the database
character set. The output datatype is VARCHAR2.

Specifying the USING NCHAR_CS argument converts text into the
national character set. The output datatype is NVARCHAR2.

This function is similar to the Oracle CONVERT function, but must be
used instead of CONVERT if either the input or the output datatype is
being used as NCHAR or NVARCHAR2.

TRANSLATE (text USING
CHAR_CS

NCHAR_CS
)

4-48 SQL Reference

SQL Functions
TRIM

Example 1 CREATE TABLE t1 (char_col CHAR(20),
 nchar_col nchar(20));
INSERT INTO t1
 VALUES (’Hi’, N’Bye’);
SELECT * FROM t1;

CHAR_COL NCHAR_COL
-------- ---------
Hi Bye

Example 2 UPDATE t1 SET
 nchar_col = TRANSLATE(char_col USING NCHAR_CS);
UPDATE t1 SET
 char_col = TRANSLATE(nchar_col USING CHAR_CS);
SELECT * FROM t1;

CHAR_COL NCHAR_COL
-------- ---------
Hi Hi

Example 3 UPDATE t1 SET
 nchar_col = TRANSLATE(’deo’ USING NCHAR_CS);
UPDATE t1 SET
 char_col = TRANSLATE(N’deo’ USING CHAR_CS);
SELECT * FROM t1;

CHAR_COL NCHAR_COL
-------- ---------
deo deo

Syntax

TRIM (

LEADING

TRAILING

BOTH trim_character FROM

trim_source)
Functions 4-49

SQL Functions
TRUNC (Number Function)

Purpose enables you to trim heading or trailing characters (or both) from a character
string. If trim_character or trim_source is a character literal, you must enclose it
in single quotes.

■ If you specify LEADING, Oracle removes any leading characters equal to
trim_character.

■ If you specify TRAILING, Oracle removes any trailing characters equal
to trim_character.

■ If you specify BOTH or none of the three, Oracle removes leading and
trailing characters equal to trim_character.

■ If you do not specify trim_character, the default value is a blank space.

■ The function returns a value with datatype VARCHAR2. The maximum
length of the value is the length of trim_source.

■ If either trim_source or trim_character is a null value, then the TRIM func-
tion returns a null value.

Example This example trims leading and trailing zeroes from a number:

SELECT TRIM (0 FROM 0009872348900) "TRIM Example"
 FROM DUAL;

TRIM example

 98723489

Syntax

Purpose Returns n truncated to m decimal places. If m is omitted, n is truncated to 0
places. m can be negative to truncate (make zero) m digits left of the
decimal point.

Examples SELECT TRUNC(15.79,1) "Truncate" FROM DUAL;

 Truncate

 15.7

TRUNC (n
, m

)

4-50 SQL Reference

SQL Functions
TRUNC (Date Function)

UID

UPPER

SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL;

 Truncate

 10

Syntax

Purpose Returns d with the time portion of the day truncated to the unit specified by
the format model fmt. If you omit fmt, d is truncated to the nearest day. See
"ROUND and TRUNC Date Functions" on page 4-55 for the permitted format
models to use in fmt.

Example SELECT TRUNC(TO_DATE(’27-OCT-92’,’DD-MON-YY’), ’YEAR’)
 "New Year" FROM DUAL;

New Year

01-JAN-92

Syntax

Purpose Returns an integer that uniquely identifies the current user.

Syntax

Purpose Returns char, with all letters uppercase. The return value has the same
datatype as the argument char.

TRUNC (d
, fmt

)

UID

UPPER (char)
Functions 4-51

SQL Functions
USER

USERENV

Example SELECT UPPER(’Large’) "Uppercase"
 FROM DUAL;

Upper

LARGE

Syntax

Purpose Returns the current Oracle user with the datatype VARCHAR2. Oracle
compares values of this function with blank-padded comparison
semantics.

In a distributed SQL statement, the UID and USER functions identify the
user on your local database. You cannot use these functions in the
condition of a CHECK constraint.

Example SELECT USER, UID FROM DUAL;

USER UID
------------------------------ ----------
SCOTT 19

Syntax

Purpose Returns information of VARCHAR2 datatype about the current session. This
information can be useful for writing an application-specific audit trail table or
for determining the language-specific characters currently used by your session.
You cannot use USERENV in the condition of a CHECK constraint. The
argument option can have any of these values:

’ISDBA’ returns ’TRUE’ if you currently have the ISDBA role
enabled and ’FALSE’ if you do not.

’LANGUAGE’ returns the language and territory currently used by your
session along with the database character set in this form:

language_territory.characterset

USER

USERENV (option)
4-52 SQL Reference

SQL Functions
VALUE

’TERMINAL’ returns the operating system identifier for your current
session’s terminal. In distributed SQL statements, this
option returns the identifier for your local session. In a
distributed environment, this is supported only for remote
SELECTs, not for remote INSERTs, UPDATEs, or
DELETEs.

’SESSIONID’ returns your auditing session identifier. You cannot use
this option in distributed SQL statements.

’ENTRYID’ returns available auditing entry identifier. You cannot use
this option in distributed SQL statements. To use this
keyword in USERENV, the initialization parameter
AUDIT_TRAIL must be set to TRUE.

’LANG’ Returns the ISO abbreviation for the language name, a
shorter form than the existing ’LANGUAGE’ parameter.

’INSTANCE’ Returns the instance identification number of the current
instance.

’CLIENT_INFO’ returns up to 64 bytes of user session information that can
be stored by an application using the DBMS_
APPLICATION_INFO package.

CAUTION: Some commercial applications may be using
this context value. Check the applicable documentation
for those applications to determine what restrictions they
may impose on use of this context area.

Oracle recommends that you use the application context
feature or the SYS_CONTEXT function with the
USERENV option. These alternatives are more secure and
flexible. For information on application context, see
Oracle8i Concepts. See also "CREATE CONTEXT" on
page 7-243 and "SYS_CONTEXT" on page 4-40.

Example SELECT USERENV(’LANGUAGE’) "Language" FROM DUAL;

Language

AMERICAN_AMERICA.WE8DEC

Syntax

VALUE (correlation_variable)
Functions 4-53

SQL Functions
VARIANCE

Purpose In a SQL statement, VALUE takes as its argument a correlation variable
(table alias) associated with a row of an object table and returns object
instances stored in the object table. The type of the object instances is the
same type as the object table.

Example CREATE TYPE emp_type AS OBJECT
 (eno NUMBER, ename VARCHAR2(20), salary NUMBER);
CREATE TABLE emp_table OF emp_type
 (primary key (eno, ename));
INSERT INTO emp_table VALUES (10, 'jack', 50000);
SELECT VALUE(e) FROM emp_table e;

VALUE(E)(ENO, ENAME, SALARY)
--
EMP_TYPE(10, 'jack', 50000)

Syntax

Purpose Returns variance of x, a number. Oracle calculates the variance of x using
this formula:

where:

xi is one of the elements of x.

n is the number of elements in the set x. If n is 1, the variance is defined to
be 0. See also "Aggregate Functions" on page 4-5.

Example SELECT VARIANCE(sal) "Variance"
 FROM emp;

Variance

1389313.87

VARIANCE (

DISTINCT

ALL
x)

xi
2

i 1=

n

∑ 1
n
--- xi

i 1=

n

∑
2

–

n 1–
--
4-54 SQL Reference

SQL Functions
VSIZE

ROUND and TRUNC Date Functions
Table 4–2 lists the format models you can use with the ROUND and TRUNC date

functions and the units to which they round and truncate dates. The default model,

’DD’, returns the date rounded or truncated to the day with a time of midnight.

Syntax

Purpose Returns the number of bytes in the internal representation of expr. If
expr is null, this function returns null.

Example SELECT ename, VSIZE (ename) "BYTES"
 FROM emp
 WHERE deptno = 10;

ENAME BYTES
---------- ----------
CLARK 5
KING 4
MILLER 6

Table 4–2 Date Format Models for the ROUND and TRUNC Date Functions

Format Model Rounding or Truncating Unit

CC
SCC

One greater than the first two digits of a four-digit year.

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year (rounds up on July 1)

IYYY
IY
IY
I

ISO Year

Q Quarter (rounds up on the sixteenth day of the second month of the
quarter)

VSIZE (expr)
Functions 4-55

User-Defined Functions
The starting day of the week used by the format models DAY, DY, and D is

specified implicitly by the initialization parameter NLS_TERRITORY. For

information on this parameter, see Oracle8i Reference.

User-Defined Functions
You can write user functions in PL/SQL or Java to provide functionality that is not

available in SQL or SQL functions. User functions can appear in a SQL statement

anywhere SQL functions can appear, that is, wherever an expression can occur.

For example, user functions can be used in the following:

■ The select list of a SELECT statement

■ The condition of a WHERE clause

■ CONNECT BY, START WITH, ORDER BY, and GROUP BY clauses

■ The VALUES clause of an INSERT statement

MONTH
MON
MM
RM

Month (rounds up on the sixteenth day)

WW Same day of the week as the first day of the year.

IW Same day of the week as the first day of the ISO year.

W Same day of the week as the first day of the month.

DDD
DD
J

Day

DAY
DY
D

Starting day of the week

HH
HH12
HH24

Hour

MI Minute

Table 4–2 (Cont.) Date Format Models for the ROUND and TRUNC Date Functions

Format Model Rounding or Truncating Unit
4-56 SQL Reference

User-Defined Functions
■ The SET clause of an UPDATE statement

For information on creating functions, including restrictions on user-defined

functions, see "CREATE FUNCTION" on page 7-266. For a complete description on

the creation and use of user functions, see Oracle8i Application Developer’s Guide -
Fundamentals.

Prerequisites
User functions must be created as top-level functions or declared with a package

specification before they can be named within a SQL statement. Create user

functions as top-level functions by using the CREATE FUNCTION statement

described in "CREATE FUNCTION" on page 7-266. To specify packaged functions,

see "CREATE PACKAGE" on page 7-325.

To use a user function in a SQL expression, you must own or have EXECUTE

privilege on the user function. To query a view defined with a user function, you

must have SELECT privileges on the view. No separate EXECUTE privileges are

needed to select from the view.

Name Precedence
Within a SQL statement, the names of database columns take precedence over the

names of functions with no parameters. For example, if user SCOTT creates the

following two objects in his own schema:

CREATE TABLE emp(new_sal NUMBER, ...);
CREATE FUNCTION new_sal RETURN NUMBER IS BEGIN ... END ;

then in the following two statements, the reference to NEW_SAL refers to the

column EMP.NEW_SAL:

SELECT new_sal FROM emp;
SELECT emp.new_sal FROM emp;

To access the function NEW_SAL, you would enter:

SELECT scott.new_sal FROM emp;

Here are some sample calls to user functions that are allowed in SQL expressions.

circle_area (radius)
payroll.tax_rate (empno)
scott.payroll.tax_rate (dependent, empno)@ny
Functions 4-57

User-Defined Functions
Example For example, to call the TAX_RATE user function from schema SCOTT,

execute it against the SS_NO and SAL columns in TAX_TABLE, and place the

results in the variable INCOME_TAX, specify the following:

SELECT scott.tax_rate (ss_no, sal)
 INTO income_tax
 FROM tax_table
 WHERE ss_no = tax_id;

Naming Conventions
If only one of the optional schema or package names is given, the first identifier can

be either a schema name or a package name. For example, to determine whether

PAYROLL in the reference PAYROLL.TAX_RATE is a schema or package name,

Oracle proceeds as follows:

■ Check for the PAYROLL package in the current schema.

■ If a PAYROLL package is not found, look for a schema name PAYROLL that

contains a top-level TAX_RATE function. If no such function is found, return

an error.

■ If the PAYROLL package is found in the current schema, look for a TAX_RATE

function in the PAYROLL package. If no such function is found, return an error.

You can also refer to a stored top-level function using any synonym that you have

defined for it.
4-58 SQL Reference

Expressions, Conditions, and Qu
5

Expressions, Conditions, and Queries

The ideal condition would be, I admit, that men should be right by instinct.

Sophocles, Oedipus Rex

This chapter describes how to combine the values, operators, and functions

described in earlier chapters evaluate to a value. Topics include:

■ Expressions

■ Conditions

■ Queries and Subqueries

Expressions
An expression is a combination of one or more values, operators, and SQL functions

that evaluate to a value. An expression generally assumes the datatype of its

components.

This simple expression evaluates to 4 and has datatype NUMBER (the same

datatype as its components):

2*2

The following expression is an example of a more complex expression that uses

both functions and operators. The expression adds seven days to the current date,

removes the time component from the sum, and converts the result to CHAR

datatype:

TO_CHAR(TRUNC(SYSDATE+7))

You can use expressions in:

■ The select list of the SELECT statement
eries 5-1

Expressions
■ A condition of the WHERE clause and HAVING clause

■ The CONNECT BY, START WITH, and ORDER BY clauses

■ The VALUES clause of the INSERT statement

■ The SET clause of the UPDATE statement

For example, you could use an expression in place of the quoted string ’smith’ in

this UPDATE statement SET clause:

SET ename = ’smith’;

This SET clause has the expression LOWER(ename) instead of the quoted string

’smith’:

SET ename = LOWER(ename);

Expressions have several forms, as shown in the following syntax:

expr::=

Oracle does not accept all forms of expressions in all parts of all SQL statements.

You must use appropriate expression notation whenever expr appears in

conditions, SQL functions, or SQL statements in other parts of this reference. The

description of each statement in Chapter 7, "SQL Statements", documents the

simple_expression

compound_expression

variable_expression

built_in_function_expression

user_defined_function_expression

type_constructor_expression

CAST_expression

CURSOR_expression

object_access_expression

DECODE_expression

expression_list
5-2 SQL Reference

Expressions
restrictions on the expressions in the statement. The sections that follow describe

and provide examples of the various forms of expressions.

Simple Expressions
A simple expression specifies column, pseudocolumn, constant, sequence number,

or NULL.

simple_expression::=

In addition to the schema of a user, schema can also be "PUBLIC" (double quotation

marks required), in which case it must qualify a public synonym for a table, view,

or snapshot. Qualifying a public synonym with "PUBLIC" is supported only in data

manipulation language (DML) statements, not data definition language (DDL)

statements.

The pseudocolumn can be either LEVEL, ROWID, or ROWNUM. You can use a

pseudocolumn only with a table, not with a view or snapshot. NCHAR and

NVARCHAR2 are not valid pseudocolumn datatypes. For more information on

pseudocolumns, see "Pseudocolumns" on page 2-51.

Some valid simple expressions are:

emp.ename
’this is a text string’
10
N’this is an NCHAR string’

schema .
table

view

snapshot

.

column

pseudocolumn

text

number

sequence .
CURRVAL

NEXTVAL

NULL
Expressions, Conditions, and Queries 5-3

Expressions
Compound Expressions
A compound expression specifies a combination of other expressions.

compound_expression::=

Note that some combinations of functions are inappropriate and are rejected. For

example, the LENGTH function is inappropriate within an aggregate function.

Some valid compound expressions are:

(’CLARK’ || ’SMITH’)
LENGTH(’MOOSE’) * 57
SQRT(144) + 72
my_fun(TO_CHAR(sysdate,’DD-MMM-YY’)

Variable Expressions
A variable expression specifies a host variable with an optional indicator variable.

Note that this form of expression can appear only in embedded SQL statements or

SQL statements processed in an Oracle Call Interface (OCI) program.

variable_expression::=

(expr)

+

–

PRIOR

expr

expr

*

/

+

–

| |

expr

: host_variable

INDICATOR
: indicator_variable
5-4 SQL Reference

Expressions
Some valid variable expressions are:

:employee_name INDICATOR :employee_name_indicator_var
:department_location

Built-In Function Expressions
A built-in function expression specifies a call to a single-row SQL function.

built_in_function_expression::=

Some valid built-in function expressions are:

LENGTH(’BLAKE’)
ROUND(1234.567*43)
SYSDATE

For information on built-in functions, see "SQL Functions" on page 4-1. See also

"Aggregate Functions" on page 4-5.

User-Defined Function Expressions
A user-defined function expression specifies a call to a user-defined function.

user_defined_function_expression::=

Some valid user-defined function expressions are:

function
(

DISTINCT

ALL
expr

,

)

schema .
package .

function

user_defined_operator

@ dblink . (argument

,

)

Expressions, Conditions, and Queries 5-5

Expressions
circle_area(radius)
payroll.tax_rate(empno)
scott.payrol.tax_rate(dependents, empno)@ny

For information on user-defined functions, see "User-Defined Functions" on

page 4-56. For information on user-defined operators, see "CREATE OPERATOR"

on page 7-320 and Oracle8i Data Cartridge Developer’s Guide.

Type Constructor Expressions
A type constructor expression specifies a call to a type constructor. The argument to
the type constructor is any expression or subquery.

type_constructor_expression::=

If type_name is an object type, then the argument list must be an ordered list, where

the first argument is a value whose type matches the first attribute of the object

type, the second argument is a value whose type matches the second attribute of

the object type, and so on. The total number of arguments to the constructor must

match the total number of attributes of the object type.

If type_name is a varray or nested table type, then the argument list can contain

zero or more arguments. Zero arguments implies construction of an empty

collection. Otherwise, each argument corresponds to an element value whose type

is the element type of the collection type.

If type_name is an object type, a varray, or a nested table type, the maximum

number of arguments it can contain is 1000 minus some overhead.

Expression Example This example shows the use of an expression in the call to

a type constructor.

CREATE TYPE address_t AS OBJECT
 (no NUMBER, street CHAR(31), city CHAR(21), state CHAR(3), zip NUMBER);
CREATE TYPE address_book_t AS TABLE OF address_t;
DECLARE
 /* Object Type variable initialized via Object Type Constructor */
 myaddr address_t = address_t(500, ’Oracle Parkway’, ’Redwood Shores’, ’CA’, 94065);

schema .
type_name (

expr

subquery

,

)

5-6 SQL Reference

Expressions
 /* nested table variable initialized to an empty table via a constructor*/
 alladdr address_book_t = address_book_t();
BEGIN
 /* below is an example of a nested table constructor with two elements
 specified, where each element is specified as an object type constructor. */
 insert into employee values (666999, address_book_t(address_t(500,
 ’Oracle Parkway’, ’Redwood Shores’, ’CA’, 94065), address_t(400,
 ’Mission Street’, ’Fremont’, ’CA’, 94555)));
END;

Subquery Example This example illustrates the use of a subquery in the call to

the type constructor.

CREATE TYPE employee AS OBJECT (
 empno NUMBER,
 ename VARCHAR2(20));
CREATE TABLE emptbl of EMPLOYEE;
INSERT INTO emptbl VALUES(7377, ’JOHN’);
CREATE TYPE project AS OBJECT (
 pname VARCHAR2(25),
 empref REF employee);
CREATE TABLE depttbl (dno number, proj project);
INSERT INTO depttbl values(10, project(’SQL Extensions’,
 (SELECT REF(p) FROM emptbl p
 WHERE ename=’JOHN’)));

CAST Expressions
A CAST expression converts one built-in datatype or collection-typed value into

another built-in datatype or collection-typed value.

CAST_expression::=

CAST allows you to convert built-in datatypes or collection-typed values of one

type into another built-in datatype or collection type. You can cast an unnamed

operand (such as a date or the result set of a subquery) or a named collection (such

as a varray or a nested table) into a type-compatible datatype or named collection.

CAST (

expr

(subquery)

MULTISET (subquery)

AS type_name)
Expressions, Conditions, and Queries 5-7

Expressions
The type_name must be the name of a built-in datatype or collection type and the

operand must be a built-in datatype or must evaluate to a collection value.

For the operand, expr can be either a built-in datatype or a collection type, and

subquery must return a single value of collection type or built-in type. MULTISET

informs Oracle to take the result set of the subquery and return a collection value.

Table 5–1 shows which built-in datatypes can be cast into which other built-in

datatypes. (CAST does not support LONG, LONG RAW, or any of the LOB

datatypes.)

To cast a named collection type into another named collection type, the elements of

both collections must be of the same type.

If the result set of subquery can evaluate to multiple rows, you must specify the

MULTISET keyword. The rows resulting from the subquery form the elements of

the collection value into which they are cast. Without the MULTISET keyword, the

subquery is treated as a scalar subquery, which is not supported in the CAST

expression. In other words, scalar subqueries as arguments of the CAST operator

are not valid in Oracle8i.

Built-In Datatype Examples

SELECT CAST (’1997-10-22’ AS DATE) FROM DUAL;
SELECT * FROM t1 WHERE CAST (ROWID AS VARCHAR2) = ’01234’;

Table 5–1 Casting Built-In Datatypes

From/

To
CHAR,

VARCHAR2 NUMBER DATE RAW
ROWID,
UROWID

NCHAR,
NVARCHAR2

CHAR,
VARCHAR2

X X X X X

NUMBER X X

DATE X X

RAW X X

ROWID, UROWID X Xa

NCHAR,
NVARCHAR2

X X X X X

a You cannot cast a UROWID to a ROWID if the UROWID contains the value of a ROWID of an
index-organized table.
5-8 SQL Reference

Expressions
Collection Examples The CAST examples that follow use the following

user-defined types and tables:

CREATE TYPE address_t AS OBJECT
 (no NUMBER, street CHAR(31), city CHAR(21), state CHAR(2));
CREATE TYPE address_book_t AS TABLE OF address_t;
CREATE TYPE address_array_t AS VARRAY(3) OF address_t;
CREATE TABLE emp_address (empno NUMBER, no NUMBER, street CHAR(31),
 city CHAR(21), state CHAR(2));
CREATE TABLE employees (empno NUMBER, name CHAR(31));
CREATE TABLE dept (dno NUMBER, addresses address_array_t);

This example casts a subquery:

SELECT e.empno, e.name, CAST(MULTISET(SELECT ea.no, ea.street,
 ea.city, ea.state
 FROM emp_address ea
 WHERE ea.empno = e.empno)
 AS address_book_t)
 FROM employees e;

CAST converts a varray type column into a nested table:

SELECT CAST(d.addresses AS address_book_t)
 FROM dept d
 WHERE d.dno = 111);

The following example casts a MULTISET expression with an ORDER BY clause:

CREATE TABLE projects (empid NUMBER, projname VARCHAR2(10));
CREATE TABLE employees (empid NUMBER, ename VARCHAR2(10));
CREATE TYPE projname_table_type AS TABLE OF VARCHAR2(10);

An example of a MULTISET expression with the above schema is:

SELECT e.ename, CAST(MULTISET(SELECT p.projname
 FROM projects p
 WHERE p.empid=e.empid
 ORDER BY p.projname)
 AS projname_table_type)
 FROM employees e;

CURSOR Expressions
A CURSOR expression returns a nested cursor. This form of expression is similar to

the PL/SQL REF cursor.
Expressions, Conditions, and Queries 5-9

Expressions
CURSOR_expression::=

A nested cursor is implicitly opened when the containing row is fetched from the

parent cursor. The nested cursor is closed only when:

■ The nested cursor is explicitly closed by the user

■ The parent cursor is reexecuted

■ The parent cursor is closed

■ The parent cursor is cancelled

■ An error arises during fetch on one of its parent cursors (it is closed as part of

the clean-up)

Restrictions: The following restrictions apply to the CURSOR expression:

■ Nested cursors can appear only in a SELECT statement that is not nested in

any other query expression, except when it is a subquery of the CURSOR

expression itself.

■ Nested cursors can appear only in the outermost SELECT list of the query

specification.

■ Nested cursors cannot appear in views.

■ You cannot perform BIND and EXECUTE operations on nested cursors.

Example

SELECT d.deptno, CURSOR(SELECT e.empno, CURSOR(SELECT p.projnum,
 p.projname
 FROM projects p
 WHERE p.empno = e.empno)
 FROM TABLE(d.employees) e)
 FROM dept d
 WHERE d.dno = 605;

Object Access Expressions
An object access expression specifies attribute reference and method invocation.

CURSOR (subquery)
5-10 SQL Reference

Expressions
object_access_expression::=

The column parameter can be an object or REF column.

When a type’s member function is invoked in the context of a SQL statement, if the

SELF argument is null, Oracle returns null and the function is not invoked.

Examples in this section use the following user-defined types and tables:

CREATE OR REPLACE TYPE employee_t AS OBJECT
 (empid NUMBER,
 name VARCHAR2(31),
 birthdate DATE,
 MEMBER FUNCTION age RETURN NUMBER,
 PRAGMA RESTRICT_REFERENCES (age, RNPS, WNPS, WNDS)
);

CREATE OR REPLACE TYPE BODY employee_t AS
 MEMBER FUNCTION age RETURN NUMBER IS
 var NUMBER;
 BEGIN
 var := TRUNC(MONTHS_BETWEEN(SYSDATE, birthdate) /12);
 RETURN(var);
 END;
 END;

CREATE TABLE department (dno NUMBER, manager EMPLOYEE_T);

Examples The following examples update and select from the object columns and

method defined above.

UPDATE department d
 SET d.manager.empid = 100;
SELECT d.manager.name, d.manager.age()
 FROM department d;

table_alias . column .

object_table_alias

attribute

.
. method (

argument

,

)

method (
argument

,

)

Expressions, Conditions, and Queries 5-11

Expressions
DECODE Expressions
A DECODE expression uses the special DECODE syntax:

DECODE_expression::=

To evaluate this expression, Oracle compares expr to each search value one by one. If

expr is equal to a search, Oracle returns the corresponding result. If no match is

found, Oracle returns default, or, if default is omitted, returns null. If expr and search
contain character data, Oracle compares them using nonpadded comparison

semantics. For information on these semantics, see the section"Datatype

Comparison Rules" on page 2-27.

The search, result, and default values can be derived from expressions. Oracle

evaluates each search value only before comparing it to expr, rather than evaluating

all search values before comparing any of them with expr. Consequently, Oracle

never evaluates a search if a previous search is equal to expr.

Oracle automatically converts expr and each search value to the datatype of the first

search value before comparing. Oracle automatically converts the return value to

the same datatype as the first result. If the first result has the datatype CHAR or if

the first result is null, then Oracle converts the return value to the datatype

VARCHAR2. For information on datatype conversion, see "Data Conversion" on

page 2-31.

In a DECODE expression, Oracle considers two nulls to be equivalent. If expr is

null, Oracle returns the result of the first search that is also null.

The maximum number of components in the DECODE expression, including expr,
searches, results, and default is 255.

Example This expression decodes the value DEPTNO. If DEPTNO is 10, the

expression evaluates to ’ACCOUNTING’; if DEPTNO is 20, it evaluates to

’RESEARCH’; etc. If DEPTNO is not 10, 20, 30, or 40, the expression returns

’NONE’.

DECODE (deptno,10, ’ACCOUNTING’,
 20, ’RESEARCH’,
 30, ’SALES’,
 40, ’OPERATION’,
 ’NONE’)

DECODE (expr , search , result

,
, default

) ;
5-12 SQL Reference

Conditions
Expression List
An expression list is a series of expressions separated by a comma. The entire series

is enclosed in parentheses.

expression_list::=

An expression list can contain up to 1000 expressions. Some valid expression lists

are:

(10, 20, 40)
(’SCOTT’, ’BLAKE’, ’TAYLOR’)
(LENGTH(’MOOSE’) * 57, -SQRT(144) + 72, 69)

Conditions
A condition specifies a combination of one or more expressions and logical

operators that evaluates to either TRUE, FALSE, or unknown. You must use this

syntax whenever condition appears in SQL statements in Chapter 7, "SQL

Statements".

You can use a condition in the WHERE clause of these statements:

■ DELETE

■ SELECT

■ UPDATE

You can use a condition in any of these clauses of the SELECT statement:

■ WHERE

■ START WITH

■ CONNECT BY

■ HAVING

A condition could be said to be of the "logical" datatype, although Oracle does not

formally support such a datatype.

The following simple condition always evaluates to TRUE:

(expr

,

)

Expressions, Conditions, and Queries 5-13

Conditions
1 = 1

The following more complex condition adds the SAL value to the COMM value

(substituting the value 0 for null) and determines whether the sum is greater than

the number constant 2500:

NVL(sal, 0) + NVL(comm, 0) > 2500

Logical operators can combine multiple conditions into a single condition. For

example, you can use the AND operator to combine two conditions:

(1 = 1) AND (5 < 7)

Here are some valid conditions:

name = ’SMITH’
emp.deptno = dept.deptno
hiredate > ’01-JAN-88’
job IN (’PRESIDENT’, ’CLERK’, ’ANALYST’)
sal BETWEEN 500 AND 1000
comm IS NULL AND sal = 2000

Conditions can have several forms, as shown in the following syntax. The

description of each statement in Chapter 7, "SQL Statements", documents the

restrictions on the conditions in the statement. The sections that follow describe the

various forms of conditions.

condition::=

simple_comparison_condition

group_comparison_condition

membership_condition

range_condition

NULL_condition

EXISTS_condition

LIKE_condition

compound_condition
5-14 SQL Reference

Conditions
Simple Comparison Conditions
A simple comparison condition specifies a comparison with expressions or

subquery results.

simple_comparison_condition::=

For information on comparison operators, see "Comparison Operators" on page 3-5.

Group Comparison Conditions
A group comparison condition specifies a comparison with any or all members in a

list or subquery.

group_comparison_condition::=

expr

=

!=

^=

<>

>

<

>=

<=

expr

(subquery)

expr_list

=

!=

^=

<>

(subquery)
Expressions, Conditions, and Queries 5-15

Conditions
See "SELECT and Subqueries" on page 7-541.

Membership Conditions
A membership condition tests for membership in a list or subquery.

membership_condition::=

Range Conditions
A range condition tests for inclusion in a range.

expr

=

!=

^=

<>

>

<

>=

<=

ANY

SOME

ALL

expr_list

(subquery)

expr_list

=

!=

^=

<>

ANY

SOME

ALL

(
expr_list

subquery

,

)

expr
NOT

IN
expr_list

(subquery)

expr_list
NOT

IN (
expr_list

subquery

,

)

5-16 SQL Reference

Conditions
range_condition::=

NULL Conditions
A NULL condition tests for nulls.

NULL_condition::=

EXISTS Conditions
An EXISTS condition tests for existence of rows in a subquery.

EXISTS_condition::=

LIKE Conditions
A LIKE condition specifies a test involving pattern matching.

LIKE_condition::=

Compound Conditions
A compound condition specifies a combination of other conditions.

compound_condition::=

expr
NOT

BETWEEN expr AND expr

expr IS
NOT

NULL

EXISTS (subquery)

char1
NOT

LIKE char2
ESCAPE ’ esc_char ’
Expressions, Conditions, and Queries 5-17

Queries and Subqueries
Queries and Subqueries
A query is an operation that retrieves data from one or more tables or views. In this

reference, a top-level query is called a SELECT statement, and a query nested

within a SELECT statement is called a subquery.

This section describes some types of queries and how to use them. The full syntax

of all the clauses, and the semantics of the keywords and parameters, appear in

"SELECT and Subqueries" on page 7-541.

Creating Simple Queries
The list of expressions that appears after the SELECT keyword and before the

FROM clause is called the select list. Each expression expr becomes the name of one

column in the set of returned rows, and each table.* becomes a set of columns, one

for each column in the table in the order they were defined when the table was

created. The datatype and length of each expression is determined by the elements

of the expression.

If two or more tables have some column names in common, you must qualify

column names with names of tables. Otherwise, fully qualified column names are

optional. However, it is always a good idea to qualify table and column references

explicitly. Oracle often does less work with fully qualified table and column names.

You can use a column alias, c_alias, to label the preceding expression in the select

list so that the column is displayed with a new heading. The alias effectively

renames the select list item for the duration of the query. The alias can be used in

the ORDER BY clause, but not other clauses in the query.

You can use comments in a SELECT statement to pass instructions, or hints, to the

Oracle optimizer. The optimizer uses hints to choose an execution plan for the

statement. For more information on hints, see "Hints" on page 2-58 and Oracle8i
Tuning.

(condition)

NOT condition

condition
AND

OR
condition
5-18 SQL Reference

Queries and Subqueries
Hierarchical Queries
If a table contains hierarchical data, you can select rows in a hierarchical order

using the hierarchical query clause:

Oracle uses the information from the hierarchical query clause clause to form the

hierarchy using the following steps:

1. Oracle selects the root row(s) of the hierarchy—those rows that satisfy the

START WITH condition.

2. Oracle selects the child rows of each root row. Each child row must satisfy the

condition of the CONNECT BY condition with respect to one of the root rows.

3. Oracle selects successive generations of child rows. Oracle first selects the

children of the rows returned in step 2, and then the children of those children,

and so on. Oracle always selects children by evaluating the CONNECT BY

condition with respect to a current parent row.

4. If the query contains a WHERE clause, Oracle eliminates all rows from the

hierarchy that do not satisfy the condition of the WHERE clause. Oracle

evaluates this condition for each row individually, rather than removing all the

children of a row that does not satisfy the condition.

5. Oracle returns the rows in the order shown in Figure 5–1. In the diagram

children appear below their parents.

START WITH specifies the root row(s) of the hierarchy.

CONNECT BY specifies the relationship between parent rows and child rows

of the hierarchy. Some part of condition must use the PRIOR

operator to refer to the parent row. See the PRIOR operator on

page 3-16.

WHERE restricts the rows returned by the query without affecting other

rows of the hierarchy.

START WITH condition
CONNECT BY condition
Expressions, Conditions, and Queries 5-19

Queries and Subqueries
Figure 5–1 Hierarchical Queries

To find the children of a parent row, Oracle evaluates the PRIOR expression of the

CONNECT BY condition for the parent row and the other expression for each row

in the table. Rows for which the condition is true are the children of the parent. The

CONNECT BY condition can contain other conditions to further filter the rows

selected by the query. The CONNECT BY condition cannot contain a subquery.

If the CONNECT BY condition results in a loop in the hierarchy, Oracle returns an

error. A loop occurs if one row is both the parent (or grandparent or direct

ancestor) and a child (or a grandchild or a direct descendent) of another row.

Sorting Query Results
You can use the ORDER BY clause to order the rows selected by a query. Sorting by

position is useful in the following cases:

■ To order by a lengthy select list expression, you can specify its position, rather

than duplicate the entire expression, in the ORDER BY clause.

■ For compound queries (containing set operators UNION, INTERSECT,

MINUS, or UNION ALL), the ORDER BY clause must use positions, rather

than explicit expressions. Also, the ORDER BY clause can appear only in the

last component query. The ORDER BY clause orders all rows returned by the

entire compound query.

The mechanism by which Oracle sorts values for the ORDER BY clause is specified

either explicitly by the NLS_SORT initialization parameter or implicitly by the

NLS_LANGUAGE initialization parameter. For information on these parameters,

see Oracle8i National Language Support Guide. You can change the sort mechanism

1

7

8

ROOT

2 9

3 4 10 12

1165
5-20 SQL Reference

Queries and Subqueries
dynamically from one linguistic sort sequence to another using the ALTER

SESSION statement. You can also specify a specific sort sequence for a single query

by using the NLSSORT function with the NLS_SORT parameter in the ORDER BY

clause.

Joins
A join is a query that combines rows from two or more tables, views, or

materialized views ("snapshots"). Oracle performs a join whenever multiple tables

appear in the query’s FROM clause. The query’s select list can select any columns

from any of these tables. If any two of these tables have a column name in

common, you must qualify all references to these columns throughout the query

with table names to avoid ambiguity.

Join Conditions
Most join queries contain WHERE clause conditions that compare two columns,

each from a different table. Such a condition is called a join condition. To execute a

join, Oracle combines pairs of rows, each containing one row from each table, for

which the join condition evaluates to TRUE. The columns in the join conditions

need not also appear in the select list.

To execute a join of three or more tables, Oracle first joins two of the tables based on

the join conditions comparing their columns and then joins the result to another

table based on join conditions containing columns of the joined tables and the new

table. Oracle continues this process until all tables are joined into the result. The

optimizer determines the order in which Oracle joins tables based on the join

conditions, indexes on the tables, and, in the case of the cost-based optimization

approach, statistics for the tables.

In addition to join conditions, the WHERE clause of a join query can also contain

other conditions that refer to columns of only one table. These conditions can

further restrict the rows returned by the join query.

Equijoins
An equijoin is a join with a join condition containing an equality operator. An

equijoin combines rows that have equivalent values for the specified columns.

Depending on the internal algorithm the optimizer chooses to execute the join, the

total size of the columns in the equijoin condition in a single table may be limited to

the size of a data block minus some overhead. The size of a data block is specified

by the initialization parameter DB_BLOCK_SIZE. See the "Equijoin Examples" on

page 7-558.
Expressions, Conditions, and Queries 5-21

Queries and Subqueries
Self Joins
A self join is a join of a table to itself. This table appears twice in the FROM clause

and is followed by table aliases that qualify column names in the join condition. To

perform a self join, Oracle combines and returns rows of the table that satisfy the

join condition. See the "Self Join Example" on page 7-559.

Cartesian Products
If two tables in a join query have no join condition, Oracle returns their Cartesian
product. Oracle combines each row of one table with each row of the other. A

Cartesian product always generates many rows and is rarely useful. For example,

the Cartesian product of two tables, each with 100 rows, has 10,000 rows. Always

include a join condition unless you specifically need a Cartesian product. If a query

joins three or more tables and you do not specify a join condition for a specific pair,

the optimizer may choose a join order that avoids producing an intermediate

Cartesian product.

Outer Joins
An outer join extends the result of a simple join. An outer join returns all rows that

satisfy the join condition and those rows from one table for which no rows from the

other satisfy the join condition. Such rows are not returned by a simple join. To

write a query that performs an outer join of tables A and B and returns all rows

from A, apply the outer join operator (+) to all columns of B in the join condition.

For all rows in A that have no matching rows in B, Oracle returns NULL for any

select list expressions containing columns of B. See the syntax for an outer join in

"SELECT and Subqueries" on page 7-541.

Outer join queries are subject to the following rules and restrictions:

■ The (+) operator can appear only in the WHERE clause or, in the context of

left-correlation (that is, when specifying the TABLE clause) in the FROM

clause, and can be applied only to a column of a table or view.

■ If A and B are joined by multiple join conditions, you must use the (+) operator

in all of these conditions. If you do not, Oracle will return only the rows

resulting from a simple join, but without a warning or error to advise you that

you do not have the results of an outer join.

■ The (+) operator can be applied only to a column, not to an arbitrary

expression. However, an arbitrary expression can contain a column marked

with the (+) operator.
5-22 SQL Reference

Queries and Subqueries
■ A condition containing the (+) operator cannot be combined with another

condition using the OR logical operator.

■ A condition cannot use the IN comparison operator to compare a column

marked with the (+) operator with an expression.

■ A condition cannot compare any column marked with the (+) operator with a

subquery.

If the WHERE clause contains a condition that compares a column from table B

with a constant, the (+) operator must be applied to the column so that Oracle

returns the rows from table A for which it has generated NULLs for this column.

Otherwise Oracle will return only the results of a simple join.

In a query that performs outer joins of more than two pairs of tables, a single table

can be the NULL-generated table for only one other table. For this reason, you

cannot apply the (+) operator to columns of B in the join condition for A and B and

the join condition for B and C.

Using Subqueries
Use subqueries for the following purposes:

■ To define the set of rows to be inserted into the target table of an INSERT or

CREATE TABLE statement

■ To define the set of rows to be included in a view or materialized view

("snapshot) in a CREATE VIEW or CREATE MATERIALIZED VIEW statement

■ To define one or more values to be assigned to existing rows in an UPDATE

statement

■ To provide values for conditions in a WHERE clause, HAVING clause, or

START WITH clause of SELECT, UPDATE, and DELETE statements

■ To provide values for a specified column in an INSERT ... VALUES list

■ To provide values for arguments of a type constructor or a user-defined

function

■ To define a table to be operated on by a containing query.

You do this by placing the subquery in the FROM clause of the containing

query as you would a table name. You may use subqueries in place of tables in

this way as well in INSERT, UDPATE, and DELETE statements.

Subqueries so used can employ correlation variables, but only those defined

within the subquery itself, not outer references. Outer references
Expressions, Conditions, and Queries 5-23

Queries and Subqueries
("left-correlated subqueries") are allowed only in the FROM clause of a SELECT

statement. See table_collection_expression on page 7-547.

A subquery answers multiple-part questions. For example, to determine who

works in Taylor’s department, you can first use a subquery to determine the

department in which Taylor works. You can then answer the original question with

the parent SELECT statement.

A subquery can contain another subquery. Oracle places no limit on the level of

query nesting.

If tables in a subquery have the same name as tables in the containing statement,

you must prefix any reference to the column of the table from the containing

statement with the table name or alias. To make your statements easier for you to

read, always qualify the columns in a subquery with the name or alias of the table,

view, or materialized view.

Oracle performs a correlated subquery when the subquery references a column

from a table referred to in the parent statement. A correlated subquery is evaluated

once for each row processed by the parent statement. The parent statement can be a

SELECT, UPDATE, or DELETE statement. See the "Correlated Subquery Examples"

on page 7-566.

A correlated subquery answers a multiple-part question whose answer depends on

the value in each row processed by the parent statement. For example, you can use

a correlated subquery to determine which employees earn more than the average

salaries for their departments. In this case, the correlated subquery specifically

computes the average salary for each department.

Selecting from the DUAL Table
DUAL is a table automatically created by Oracle along with the data dictionary.

DUAL is in the schema of the user SYS, but is accessible by the name DUAL to all

users. It has one column, DUMMY, defined to be VARCHAR2(1), and contains one

row with a value ’X’. Selecting from the DUAL table is useful for computing a

constant expression with the SELECT statement. Because DUAL has only one row,

the constant is returned only once. Alternatively, you can select a constant,

pseudocolumn, or expression from any table, but the value will be returned as

many times as there are rows in the table. See "SQL Functions" on page 4-1 for

many examples of selecting a constant value from DUAL.
5-24 SQL Reference

Queries and Subqueries
Distributed Queries
Oracle’s distributed database management system architecture allows you to access

data in remote databases using Net8 and an Oracle server. You can identify a

remote table, view, or materialized view by appending @dblink to the end of its

name. The dblink must be a complete or partial name for a database link to the

database containing the remote table, view, or materialized view. For more

information on referring to database links, see "Referring to Objects in Remote

Databases" on page 2-74.

Distributed queries are currently subject to the restriction that all tables locked by a

FOR UPDATE clause and all tables with LONG columns selected by the query

must be located on the same database. For example, the following statement will

raise an error:

SELECT emp_ny.*
 FROM emp_ny@ny, dept
 WHERE emp_ny.deptno = dept.deptno
 AND dept.dname = ’ACCOUNTING’
 FOR UPDATE OF emp_ny.sal;

The following statement fails because it selects LONG_COLUMN, a LONG value,

from the EMP_REVIEW table on the NY database and locks the EMP table on the

local database:

SELECT emp.empno, review.long_column, emp.sal
 FROM emp, emp_review@ny review
 WHERE emp.empno = emp_review.empno
 FOR UPDATE OF emp.sal;
Expressions, Conditions, and Queries 5-25

Queries and Subqueries
5-26 SQL Reference

About SQL Statem
6

About SQL Statements

. . . he is eminently plain and direct . . . both in his syntax and in his words

Matthew Arnold, On Translating Homer

This chapter describes the various types of Oracle SQL statements, and provides

guidelines for finding the right SQL statement for your task. Topics include:

■ Summary of SQL Statements

■ Finding the Right SQL Statement

Summary of SQL Statements
The tables in the following sections provide a functional summary of SQL

statements and are divided into these categories:

■ Data Definition Language (DDL) Statements

■ Data Manipulation Language (DML) Statements

■ Transaction Control Statements

■ Session Control Statements

■ System Control Statements

Data Definition Language (DDL) Statements
Data definition language (DDL) statements enable you to perform these tasks:

■ Create, alter, and drop schema objects

■ Grant and revoke privileges and roles

■ Analyze information on a table, index, or cluster
ents 6-1

Summary of SQL Statements
■ Establish auditing options

■ Add comments to the data dictionary

The CREATE, ALTER, and DROP commands require exclusive access to the

specified object. For example, an ALTER TABLE statement fails if another user has

an open transaction on the specified table.

The GRANT, REVOKE, ANALYZE, AUDIT, and COMMENT commands do not

require exclusive access to the specified object. For example, you can analyze a

table while other users are updating the table.

Oracle implicitly commits the current transaction before and after every DDL

statement.

Many DDL statements may cause Oracle to recompile or reauthorize schema

objects. For information on how Oracle recompiles and reauthorizes schema objects

and the circumstances under which a DDL statement would cause this, see Oracle8i
Concepts.

DDL statements are supported by PL/SQL with the use of the DBMS_SQL

package. For more information, see Oracle8i Supplied Packages Reference.

Table 6–1 lists the DDL statements.
6-2 SQL Reference

Summary of SQL Statements
Table 6–1 Data Definition Language Statements

ALTER CLUSTER

ALTER DATABASE

ALTER DIMENSION

ALTER FUNCTION

ALTER INDEX

ALTER MATERIALIZED VIEW
/ SNAPSHOT

ALTER MATERIALIZED VIEW
/ SHAPSHOT LOG

ALTER PACKAGE

ALTER PROCEDURE

ALTER PROFILE

ALTER RESOURCE COST

ALTER ROLE

ALTER ROLLBACK SEGMENT

ALTER SEQUENCE

ALTER SNAPSHOT

ALTER SHAPSHOT LOG

ALTER TABLE

ALTER TABLESPACE

ALTER TRIGGER

ALTER TYPE

ALTER USER

ALTER VIEW

ANALYZE

ASSOCIATE STATISTICS

AUDIT

COMMENT

CREATE CLUSTER

CREATE CONTEXT

CREATE CONTROLFILE

CREATE DATABASE

CREATE DATABASE LINK

CREATE DIMENSION

CREATE DIRECTORY

CREATE FUNCTION

CREATE INDEX

CREATE INDEXTYPE

CREATE LIBRARY

CREATE MATERIALIZED VIEW
/ SHAPSHOT

CREATE MATERIALIZED VIEW
/ SNAPSHOT LOG

CREATE OPERATOR

CREATE PACKAGE

CREATE PACKAGE BODY

CREATE PROCEDURE

CREATE PROFILE

CREATE ROLE

CREATE ROLLBACK SEGMENT

CREATE SCHEMA

CREATE SEQUENCE

CREATE SHAPSHOT

CREATE SNAPSHOT LOG

CREATE SYNONYM

CREATE TABLE

CREATE TABLESPACE

CREATE TEMPORARY
TABLESPACE

CREATE TRIGGER

CREATE TYPE

CREATE USER

CREATE VIEW

DISASSOCIATE STATISTICS

DROP CLUSTER

DROP CONTEXT

DROP DATABASE LINK

DROP DIMENSION

DROP DIRECTORY

DROP FUNCTION

DROP INDEX

DROP INDEXTYPE

DROP LIBRARY

DROP MATERIALIZED VIEW /
SNAPSHOT

DROP MATERIALIZED VIEW /
SNAPSHOT LOG

DROP OPERATOR

DROP PACKAGE

DROP PROCEDURE

DROP PROFILE

DROP ROLE

DROP ROLLBACK SEGMENT

DROP SEQUENCE

DROP SNAPSHOT

DROP SNAPSHOT LOG

DROP SYNONYM

DROP TABLE

DROP TABLESPACE

DROP TRIGGER

DROP TYPE

DROP USER

DROP VIEW

GRANT

NOAUDIT

RENAME

REVOKE

TRUNCATE
About SQL Statements 6-3

Summary of SQL Statements
Data Manipulation Language (DML) Statements
Data manipulation language (DML) statements query and manipulate data in

existing schema objects. These statements do not implicitly commit the current

transaction.

The CALL and EXPLAIN PLAN statements are supported in PL/SQL only when

executed dynamically. All other DML statements are fully supported in PL/SQL.

Transaction Control Statements
Transaction control statements manage changes made by DML statements.

All transaction control statements except certain forms of the COMMIT and

ROLLBACK commands are supported in PL/SQL. For information on the

restrictions, see "COMMIT" on page 7-214 and "ROLLBACK" on page 7-537.

Table 6–2 Data Manipulation Language Statements

Statement

CALL

DELETE

EXPLAIN PLAN

INSERT

LOCK TABLE

SELECT

UPDATE

Table 6–3 Transaction Control Statements

Statement

COMMIT

ROLLBACK

SAVEPOINT

SET TRANSACTION
6-4 SQL Reference

Finding the Right SQL Statement
Session Control Statements
Session control statements dynamically manage the properties of a user session.

These statements do not implicitly commit the current transaction.

PL/SQL does not support session control statements.

System Control Statement
The single system control statement dynamically manages the properties of an

Oracle instance. This statement does not implicitly commit the current transaction.

ALTER SYSTEM is not supported in PL/SQL.

Embedded SQL Statements
Embedded SQL statements place DDL, DML, and transaction control statements

within a procedural language program. Embedded SQL is supported by the Oracle

precompilers and is documented in the following books:

■ Pro*COBOL Precompiler Programmer’s Guide

■ Pro*C/C++ Precompiler Programmer’s Guide

■ SQL*Module for Ada Programmer’s Guide

Finding the Right SQL Statement
The particular SQL statement you use to accomplish a given database task is

sometimes obvious and sometimes difficult to predict. For example, you create a

table with the CREATE TABLE statement. However, you don’t enable a constraint

with the ENABLE CONSTRAINT statement, because such a statement doesn’t

exist. Rather, you modify the column options using the ALTER TABLE statement.

Table 6–4 Session Control Statements

Statement

ALTER SESSION

SET ROLE

Table 6–5 System Control Statement

Statement

ALTER SYSTEM
About SQL Statements 6-5

Finding the Right SQL Statement
This section lists, by database object and task, the appropriate SQL statement to use

to accomplish various database tasks. You can then refer to Chapter 7, "SQL

Statements", for the syntax and semantics of each SQL statement.

Note: Your ability to use the SQL statements listed in this section

depends on the version and edition of Oracle you are using, as

well as the options you have installed. Be sure to read the detailed

descriptions in Chapter 7, "SQL Statements", before using these

statements.

Database Object /
Task Operation SQL Statement

application allowing to connect as a user ALTER USER proxy_clause

application server allowing to connect as a user ALTER USER proxy_clause

auditing of database events CREATE TRIGGER

call limit CPU time for CPU_PER_CALL parameter

limit data blocks read LOGICAL_READS_PER_CALL parameter

checkpoint perform explicitly ALTER SYSTEM CHECKPOINT

clone database mount ALTER DATABASE MOUNT

cluster cluster key, change columns of prohibited

extent, allocate for ALTER CLUSTER allocate_extent_clause

migrated or chained rows,
identify

ANALYZE

parallelism of, change ALTER CLUSTER parallel_clause

rename prohibited

storage characteristics of, change ALTER CLUSTER physical_attributes_clause

tablespace of, change prohibited

unused space in, release ALTER CLUSTER deallocate_unused_clause

column add to a table or modify ALTER TABLE add_column_options, modify_column_
options

define CREATE TABLE

drop from a table ALTER TABLE drop_column_clause
6-6 SQL Reference

Finding the Right SQL Statement
generate derived values
automatically

CREATE TRIGGER

organization of, define CREATE TABLE

commit operation prevent procedure or function
from issuing

ALTER SESSION

compilation avoid run-time of ALTER FUNCTION ... COMPILE

constraint add to a table or modify ALTER TABLE add_column_options, modify_column_
options

business, enforce CREATE TRIGGER

enable, disable, or drop ALTER TABLE enable_disable_clause, drop_
constraint_clause

specify CREATE TABLE

control file back up ALTER DATABASE controlfile_clauses

standby, create ALTER DATABASE CREATE STANDBY
CONTROLFILE

currency symbol reset for session ALTER SESSION SET NLS_CURRENCY

data frequently used, caching ALTER TABLE cache_clause

specify as temporary or
permanent

CREATE TABLE

data dictionary convert from Oracle7 to Oracle8i ALTER DATABASE CONVERT

data independence provide CREATE SYNONYM

database character set of, change ALTER DATABASE CHARACTER SET

create script for ALTER DATABASE controlfile_clauses

database character set for, specify CREATE DATABASE

datafiles for, specify CREATE DATABASE

datafiles of, modify ALTER DATABASE

datafiles, establish number of CREATE DATABASE

downgrade to an earlier release ALTER DATABASE RESET COMPATIBILITY

global name of, change ALTER DATABASE RENAME GLOBAL_NAME

Database Object /
Task Operation SQL Statement
About SQL Statements 6-7

Finding the Right SQL Statement
global name resolution, enable
for the session

ALTER SESSION SET GLOBAL_NAMES

instances, establish number of CREATE DATABASE

media recovery, design ALTER DATABASE general_recovery_clause

media recovery, perform ongoing ALTER DATABASE managed_recovery_clause

mount ALTER DATABASE MOUNT

move a subset to a different
Oracle database

ALTER TABLE exchange_partition_clause

national character set for, specify CREATE DATABASE

national character set of, change ALTER DATABASE CHARACTER SET

open ALTER DATABASE OPEN

parallelize recovery of ALTER DATABASE parallel_clause

place in read-only mode ALTER DATABASE OPEN

place in read-write mode ALTER DATABASE OPEN

place in sustained standby
recovery mode

ALTER DATABASE general_recovery_clause

prepare to re-create ALTER DATABASE controlfile_clauses

recover ALTER DATABASE recover_clauses

redo log file groups, establish
number of

CREATE DATABASE

redo log files for, specify CREATE DATABASE

redo log files of, create or modify ALTER DATABASE

redo log files, establish number of CREATE DATABASE

redo log, choose mode for CREATE DATABASE

upgrade to Oracle8i ALTER DATABASE

database character set specify for a database CREATE DATABASE

database events transparent logging of CREATE TRIGGER

database link close ALTER SESSION

database security enforce authorizations CREATE TRIGGER

Database Object /
Task Operation SQL Statement
6-8 SQL Reference

Finding the Right SQL Statement
datafile automatic extension of, allow ALTER DATABASE DATAFILE autoextend_clause

create ALTER DATABASE CREATE DATAFILE

put online ALTER DATABASE DATAFILE ONLINE

reconstruct damaged ALTER DATABASE general_recovery_clause

reconstruct lost or damaged ALTER DATABASE CREATE DATAFILE

recover specified ALTER DATABASE general_recovery_clause

replace an old, for recovery ALTER DATABASE CREATE DATAFILE

resize ALTER DATABASE DATAFILE RESIZE

take offline ALTER DATABASE DATAFILE
ONLINE/OFFLINE

begin or end backup of ALTER TABLESPACE ... BACKUP

number of, establish for a
database

CREATE DATABASE

online, update instance
information on

ALTER SYSTEM check_datafiles_clause

specify for a database CREATE DATABASE

dates format of See Table 2–9, "Date Format Elements" on
page 2-40.

decimal character reset for session ALTER SESSION SET NLS_NUMERIC_
CHARACTERS

dimension add a level, hierarchy, or attribute
to

ALTER DIMENSION ... ADD

change the relationships of ALTER DIMENSION

drop a level, hierarchy, or
attribute from

ALTER DIMENSION ... DROP

explicitly compile ALTER DIMENSION ... COMPILE

dispatcher processes multi-threaded server, manage MTS_ parameters of ALTER SYSTEM

domain index alter ALTER INDEX ... PARAMETERS

rebuild ALTER INDEX rebuild_clause

dump file limit the size of ALTER SESSION SET MAX_DUMP_FILE_SIZE

Database Object /
Task Operation SQL Statement
About SQL Statements 6-9

Finding the Right SQL Statement
error messages language in which displayed,
change

ALTER SESSION SET NLS_LANGUAGE

function allow to or prevent from
committing a transaction

ALTER SESSION

declaration of, change CREATE OR REPLACE FUNCTION

definition of, change CREATE OR REPLACE FUNCTION

recompile explicitly ALTER FUNCTION

function-based index disable ALTER INDEX ... [rebuild_clause] DISABLE

disabled, re-enable ALTER INDEX ... [rebuild_clause] ENABLE

global names enforce resolution of GLOBAL_NAMES parameter of ALTER SYSTEM

hash join operations data blocks for, allocate ALTER SESSION SET HASH_MULTIBLOCK_IO_
COUNT

in queries, enable or disable ALTER SESSION SET HASH_JOIN_ENABLED ...

memory for, allocate ALTER SESSION SET HASH_AREA_SIZE

index allow DML operations during
rebuilding of

ALTER INDEX rebuild_clause

based on a function; see
"function-based index"

CREATE INDEX ... column_expression

based on an indextype; see
"domain index"

CREATE INDEX domain_index_clause

collect statistics during rebuilding
of

ALTER INDEX rebuild_clause

default attribute values of, change ALTER INDEX partitioning_clauses

degree of parallelism for, change ALTER INDEX parallel_clause

direct-load INSERT operations,
write to a log

ALTER INDEX physical_attributes_clause

extent for, allocate new ALTER INDEX allocate_extent_clause

key compression, enable ALTER INDEX rebuild_clause

key values, eliminate repetition of ALTER INDEX rebuild_clause

merge block contents of ALTER INDEX rebuild_clause

Database Object /
Task Operation SQL Statement
6-10 SQL Reference

Finding the Right SQL Statement
physical attributes of a partition
of, change

ALTER INDEX physical_attributes_clause

physical attributes of a
subpartition of, change the

ALTER INDEX physical_attributes_clause

physical attributes of, change ALTER INDEX physical_attributes_clause

re-create ALTER INDEX rebuild_clause

rebuild operations, write to a log ALTER INDEX rebuild_clause

SQL*Loader operations against,
write to a log

ALTER INDEX physical_attributes_clause

store bytes in reverse order ALTER INDEX rebuild_clause

tablespace for, specify ALTER INDEX rebuild_clause

tell Oracle not to use ALTER INDEX ... [rebuild_clause] UNUSABLE

unused space, release ALTER INDEX deallocate_unused_clause

rename ALTER INDEX rebuild_clause

index partition create-time attributes, change ALTER INDEX rebuild_clause

log direct-load INSERT operations ALTER INDEX physical_attributes_clause

log SQL*Loader operations
against

ALTER INDEX physical_attributes_clause

move to a different tablespace ALTER INDEX rebuild_clause

physical attributes of, change ALTER INDEX physical_attributes_clause

physical, logging, or storage
characteristics of, change

ALTER INDEX partitioning_clauses

re-create ALTER INDEX rebuild_clause

remove from the database ALTER INDEX partitioning_clauses

specify a tablespace for ALTER INDEX rebuild_clause

split into two partitions ALTER INDEX partitioning_clauses

tell Oracle not to use ALTER INDEX ... UNUSABLE

index subpartition change a create-time attributes,
change

ALTER INDEX rebuild_clause

log direct-load INSERT operations ALTER INDEX physical_attributes_clause

Database Object /
Task Operation SQL Statement
About SQL Statements 6-11

Finding the Right SQL Statement
log SQL*Loader operations
against

ALTER INDEX physical_attributes_clause

move to a different tablespace ALTER INDEX rebuild_clause

physical attributes, change ALTER INDEX physical_attributes_clause

physical, logging, or storage
characteristics, change

ALTER INDEX partitioning_clauses

re-create ALTER INDEX rebuild_clause

tablespace for, specify ALTER INDEX rebuild_clause

tell Oracle not to use ALTER INDEX ... UNUSABLE

index-organized table characteristics, change ALTER TABLE

indexes on a cluster CREATE INDEX

on a nested table storage table CREATE INDEX

on a partitioned table CREATE INDEX

on an index-organized table CREATE INDEX

on columns of a table CREATE INDEX

on scalar typed object attributes CREATE INDEX

instance dynamically modify ALTER SYSTEM

make an index extent available to ALTER INDEX allocate_extent_clause

switch to a different ALTER SESSION SET INSTANCE

instance recovery continue after interruption ALTER DATABASE general_recovery_clause

instances number of, establish for a
database

CREATE DATABASE

Java class force resolution of ALTER JAVA

Java resource force compilation of ALTER JAVA

Java source force compilation of ALTER JAVA

licensing changing limits or thresholds LICENSE_ parameters of ALTER SYSTEM

LOB columns add to a table or modify ALTER TABLE add_column_options, modify_column_
options, LOB_storage_clause

location transparency provide CREATE SYNONYM

Database Object /
Task Operation SQL Statement
6-12 SQL Reference

Finding the Right SQL Statement
materialized view automatic refresh, change the
mode or timing of

ALTER MATERIALIZED VIEW refresh_clause

change from rowid-based to
primary-key-based

ALTER MATERIALIZED VIEW

ALTER MATERIALIZED VIEW LOG

degree of parallelism, specify or
change

ALTER MATERIALIZED VIEW parallel_clause

divide into partitions ALTER MATERIALIZED VIEW partitioning_
clauses

LOB storage characteristics,
change

ALTER MATERIALIZED VIEW modify_LOB_
storage_clause

LOB storage characteristics,
specify

ALTER MATERIALIZED VIEW LOB_storage_clause

log changes to ALTER MATERIALIZED VIEW ... LOGGING

make eligible for query rewrite ALTER MATERIALIZED VIEW ... QUERY
REWRITE

ALTER SESSION SET QUERY_REWRITE_
ENABLED

make frequently accessed data
accessible

ALTER MATERIALIZED VIEW ... CACHE

revalidate ALTER MATERIALIZED VIEW ... COMPILE

storage characteristics, change ALTER MATERIALIZED VIEW physical_attributes_
clause

materialized view log automatic refresh, change the
mode and timing of

ALTER MATERIALIZED VIEW LOG

change from rowid-based to
primary-key-based

ALTER MATERIALIZED VIEW LOG

divide into partitions ALTER MATERIALIZED VIEW LOG partitioning_
clauses

physical and storage
characteristics, change

ALTER MATERIALIZED VIEW LOG ... physical_
attributes_clause

save both old and new values ALTER MATERIALIZED VIEW LOG ...NEW
VALUES

store primary key of changed
rows

ALTER MATERIALIZED VIEW LOG ... ADD

Database Object /
Task Operation SQL Statement
About SQL Statements 6-13

Finding the Right SQL Statement
store rowid of changed rows ALTER MATERIALIZED VIEW LOG ... ADD

media recovery avoid on startup ALTER DATABASE DATAFILE END BACKUP

from specified redo log file ALTER DATABASE general_recovery_clause

prepare for ALTER DATABASE ARCHIVELOG

national character set specify for a database CREATE DATABASE

national language
support

change settings for the session ALTER SESSION SET NLS_ parameters

nested table update in a view create an INSTEAD OF trigger

nested table columns indexing CREATE INDEX

numbers format See Table 2–7, "Number Format Elements" on
page 2-36.

object references. See REFs

online redo log reinitialize ALTER DATABASE CLEAR LOGFILE

outline assign to a different category ALTER OUTLINE ... CHANGE CATEGORY TO

recompile ALTER OUTLINE ... REBUILD

rename ALTER OUTLINE ... RENAME

automatically create and store ALTER SESSION SET CREATE_STORED_
OUTLINES

use to generate execution plans ALTER SESSION SET USE_STORED_OUTLINES

package avoid run-time compilation ALTER PACKAGE

compile explicitly ALTER PACKAGE

package body avoid run-time compilation ALTER PACKAGE

recompile explicitly ALTER PACKAGE

parallelism specify for a table CREATE TABLE

specify for DML on a table CREATE TABLE

parameter,
initialization

change the setting for the current
session

ALTER SESSION set_clause

parameter, session set or change the setting of ALTER SESSION set_clause

partition add to a table or modify ALTER TABLE

Database Object /
Task Operation SQL Statement
6-14 SQL Reference

Finding the Right SQL Statement
default attributes, change ALTER TABLE modify_default_attributes_clause

logging characteristics, change ALTER TABLE logging_clause

merge with another partition ALTER TABLE merge_partitions_clause

point to data in a nonpartitioned
table

ALTER TABLE exchange_partition_clause

real attributes, change ALTER TABLE modify_partition_clause

password complexity of, guarantee PASSWORD_VERIFY_FUNCTION parameter

make unavailable PASSWORD_REUSE_TIME parameter

number of days account will be
locked after failed login attempts,
specify

PASSWORD_LOCK_TIME parameter

number of days before reuse, limit PASSWORD_REUSE_TIME parameter

number of days in grace period,
specify

PASSWORD_GRACE_TIME parameter

number of days usable, limit PASSWORD_LIFE_TIME parameter

number of times reused, limit PASSWORD_REUSE_MAX parameter

special characters in, allow PASSWORD_VERIFY_FUNCTION parameter

performance optimize for index access path ALTER SESSION SET OPTIMIZER_INDEX_
COST_ADJ

optimize for nested loop joins ALTER SESSION SET OPTIMIZER_INDEX_
CACHING

specify an optimizer search limit ALTER SESSION SET OPTIMIZER_SEARCH_
LIMIT

specify the optimizer approach
for the session

ALTER SESSION SET OPTIMIZER_MODE

procedure allow to or prevent from
committing a transaction

ALTER SESSION

avoid run-time compilation ALTER PROCEDURE

recompile explicitly ALTER PROCEDURE

profile resource limit, add to ALTER PROFILE

resource limit, change ALTER PROFILE

Database Object /
Task Operation SQL Statement
About SQL Statements 6-15

Finding the Right SQL Statement
resource limit, drop from ALTER PROFILE

recovery distributed, enable or disable ALTER SYSTEM distributed_recovery_clause

recovery data discard ALTER DATABASE RESETLOGS

redo log remove changes from ALTER DATABASE OPEN RESETLOGS

reset sequence of ALTER DATABASE OPEN RESETLOGS

specify mode of CREATE DATABASE

redo log file add ALTER DATABASE ADD LOGFILE MEMBER

automatically generates names for ALTER DATABASE general_recovery_clause

clear ALTER DATABASE CLEAR LOGFILE

drop ALTER DATABASE DROP LOGFILE

enable or disable thread ALTER DATABASE ENABLE THREAD

rename ALTER DATABASE RENAME FILE

number of, establish for a
database

CREATE DATABASE

archive manually or automatically ALTER SYSETM archive_log_clause

number of, establish for a
database

CREATE DATABASE

specify a path for ALTER SESSION SET LOG_ARCHIVE_DEST_n

switch manually ALTER SYSTEM switch_logfile_clause

REFS validate and update ANALYZE

role change authorization required ALTER ROLE

rollback segment bring online ALTER ROLLBACK SEGMENT

reduce in size ALTER ROLLBACK SEGMENT

storage characteristics, change ALTER ROLLBACK SEGMENT

take offline ALTER ROLLBACK SEGMENT

rowid examine query the ROWID pseudocolumn

extended, interpreting contents DBMS_ROWID package; see Oracle8i Supplied
Packages Reference

Database Object /
Task Operation SQL Statement
6-16 SQL Reference

Finding the Right SQL Statement
schema change during the session ALTER SESSION SET CURRENT_SCHEMA

schema object reference without referencing its
location

CREATE SYNONYM

reference without referencing its
owner

CREATE SYNONYM

specify another name for CREATE SYNONYM

validate structure of ANALYZE

sequence cached sequence values, change
number of

ALTER SEQUENCE cache_clause

consecutive order of values,
guarantee

CREATE SEQUENCE ... ORDER

ALTER SEQUENCE ... ORDER

create CREATE SEQUENCE

determine current value of See "CURRVAL and NEXTVAL" on page 2-51.

increment value, set CREATE SEQUENCE ... INCREMENT BY

ALTER SEQUENCE ... INCREMENT BY

maximum or minimum value,
eliminate

ALTER SEQUENCE

minimum or maximum value, set CREATE SEQUENCE

ALTER SEQUENCE

preallocate values for faster access CREATE SEQUENCE

ALTER SEQUENCE

restart after a predefined limit CREATE SEQUENCE ... CYCLE

ALTER SEQUENCE ... CYCLE

starting value, set CREATE SEQUENCE

server processes multi-threaded server, manage MTS_ parameters of ALTER SYSTEM

session CPU time for, limit CPU_PER_SESSION parameter

data blocks read, limit LOGICAL_READS_PER_SESSION parameter

enable or disable parallel
transactions in

ALTER SESSION

inactive period duration, limit IDLE_TIME parameter

Database Object /
Task Operation SQL Statement
About SQL Statements 6-17

Finding the Right SQL Statement
private SGA space for, limit PRIVATE_SGA parameter

resource costs allowed, change ALTER RESOURCE COST

restrict to privileged users ALTER SYSTEM restricted_session_clause

terminate ALTER SYSTEM kill_session_clause

total elapsed time, limit CONNECT_TIME parameter

total resources for, limit COMPOSITE_LIMIT parameter

SGA flush data from shared pool ALTER SYSTEM flush_shared_pool_clause

shared pool flush ALTER SYSTEM flush_shared_pool_clause

snapshot. See "materialized view".

sort operations linguistic sequence, change ALTER SESSION SET NLS_SORT

standby database activate ALTER DATABASE ACTIVATE STANDBY
DATABASE

recover ALTER DATABASE recover_clauses

statistics on a schema object, collect ANALYZE

on a schema object, delete ANALYZE

on scalar object attributes, collect ANALYZE

subpartition add to a table or modify ALTER TABLE

default attributes, change ALTER TABLE modify_default_attributes_clause,
modify_partition_clause

logging characteristics, change ALTER TABLE logging_clause

real attributes, change ALTER TABLE modify_subpartition_clause

system resources enable or disable RESOURCE_LIMITS parameter of ALTER
SYSTEM

table allocate space for ALTER TABLE allocate_extent_clause

characteristics, change ALTER TABLE physical_attributes_clause, storage_
clauses

column, drop from table ALTER TABLE drop_column_clause

degree of parallelism, change ALTER TABLE parallel_clause

logging characteristics, change ALTER TABLE logging_clause

Database Object /
Task Operation SQL Statement
6-18 SQL Reference

Finding the Right SQL Statement
make read-only, read-write ALTER TABLE

migrated or chained rows,
identify

ANALYZE

organization, define CREATE TABLE

partition, point to the contents of
another table

ALTER TABLE exchange_partition_clause

partitioning, specify CREATE TABLE

rename ALTER TABLE

unused space of, release ALTER TABLE deallocate_unused_clause

heap or index organized CREATE TABLE

include in a cluster CREATE TABLE

replicate asynchronous, maintain CREATE TRIGGER

storage characteristics of, set CREATE TABLE

tablespace allow or disallow writing to ALTER TABLESPACE READ WRITE/ONLY

datafiles, add or rename ALTER TABLESPACE datafile/tempfile_clauses

logging characteristics, change ALTER TABLESPACE

minimum extent length, change ALTER TABLESPACE

reconstruct damaged ALTER DATABASE general_recovery_clause

reconstruct lost or damaged ALTER DATABASE CREATE DATAFILE

recover specified ALTER DATABASE general_recovery_clause

specifying for a table CREATE TABLE

storage characteristics, change ALTER TABLESPACE

take online or offline ALTER TABLESPACE

user quota on, change ALTER USER

assign to a user CREATE USER

space quota for a user, allocate CREATE USER

tempfile allow for automatic extension of ALTER DATABASE TEMPFILE

resize ALTER DATABASE TEMPFILE

Database Object /
Task Operation SQL Statement
About SQL Statements 6-19

Finding the Right SQL Statement
transaction distributed, force commit of ALTER SESSION

distributed, force rollback of ALTER SESSION

trigger enable or disable ALTER TABLE

user authentication, change ALTER USER

database resources limits, change ALTER USER profile_clause

default roles, change ALTER USER

failed attempts to log in, limit FAILED_LOGIN_ATTEMPTS parameter

number of sessions, limit SESSIONS_PER_USER parameter

password, change ALTER USER

resource limits, set CREATE USER

restrict access to Oracle ALTER SYSTEM restricted_session_clause

tablespace quota, allocate CREATE USER

tablespaces, assign CREATE USER

Database Object /
Task Operation SQL Statement
6-20 SQL Reference

SQL Statem
7

SQL Statements

A whole is that which has a beginning, a middle, and an end.

Aristotle, Poetics

This chapter describes, in alphabetical order, Oracle SQL statements and major

clauses. The description of each statement or clause contains the following sections:

Syntax shows the keywords and parameters that make up the

statement.

Caution: Not all keywords and parameters are valid in all
circumstances. Be sure to refer to the "Keywords and
Parameters" section of each statement and clause to learn
about any restrictions on the syntax.

Purpose describes the basic uses of the statement.

Prerequisites lists privileges you must have and steps that you must take

before using the statement. In addition to the prerequisites

listed, most statements also require that the database be

opened by your instance, unless otherwise noted.

Keywords and
Parameters

describes the purpose of each keyword and parameter. (The

conventions for keywords and parameters used in this

chapter are explained in the Preface of this reference.)

Restrictions and usage notes also appear in this section.

Examples shows how to use various clauses and parameters of the

statement.
ents 7-1

ALTER CLUSTER
7SQL Statements

ALTER CLUSTER

Syntax

physical_attributes_clause ::=

storage_clause : See "storage_clause" on page 7-575.

ALTER CLUSTER
schema .

cluster

physical_attributes_clause

SIZE integer

K

M

allocate_extent_clause

deallocate_unused_clause

parallel_clause
;

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause
7-2 SQL Reference

ALTER CLUSTER
allocate_extent_clause ::=

deallocate_unused_clause ::=

parallel_clause ::=

Purpose
To redefine storage and parallelism characteristics of a cluster.

For information on creating a cluster, see "CREATE CLUSTER" on page 7-236.

To remove tables from a cluster, see "DROP CLUSTER" on page 7-446 and "DROP

TABLE" on page 7-475.

Note: You cannot use this statement to change the number or the

name of columns in the cluster key, and you cannot change the

tablespace in which the cluster is stored.

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

DEALLOCATE UNUSED
KEEP integer

K

M

NOPARALLEL

PARALLEL
integer
SQL Statements 7-3

ALTER CLUSTER
Prerequisites
The cluster must be in your own schema or you must have ALTER ANY CLUSTER

system privilege.

Keywords and Parameters

schema is the schema containing the cluster. If you omit schema, Oracle assumes the cluster is in your
own schema.

cluster is the name of the cluster to be altered.

physical_
attributes_clause

changes the values of the PCTUSED, PCTFREE, INITRANS, and MAXTRANS parameters of
the cluster. For a description of these parameters, see "CREATE CLUSTER" on page 7-236.

storage_clause changes the storage characteristics for the cluster. See the "storage_
clause" on page 7-575.

Restriction: You cannot change the values of the storage parameters
INITIAL and MINEXTENTS for a cluster.

SIZE integer determines how many cluster keys will be stored in data blocks allocated to the cluster. For a
description of the SIZE parameter, see "CREATE CLUSTER" on page 7-236.

Restriction: You can change the SIZE parameter only for an indexed cluster, not for a hash
cluster.

allocate_extent_
clause

explicitly allocates a new extent for the cluster.

Restriction: You can allocate a new extent only for an indexed cluster, not for a hash cluster.

SIZE specifies the size of the extent in bytes. Use K or M to specify the extent
size in kilobytes or megabytes.

When you explicitly allocate an extent with this clause, Oracle does not
evaluate the cluster’s storage parameters and determine a new size for
the next extent to be allocated (as it does when you create a table).
Therefore, specify SIZE if you do not want Oracle to use a default value.

DATAFILE specifies one of the datafiles in the cluster’s tablespace to contain the new
extent. If you omit this parameter, Oracle chooses the datafile.

INSTANCE makes the new extent available to the specified instance. An instance is
identified by the value of its initialization parameter INSTANCE_
NUMBER. If you omit INSTANCE, the extent is available to all instances.
Use this parameter only if you are using Oracle with the Parallel
Server option in parallel mode.
7-4 SQL Reference

ALTER CLUSTER
Examples
The following statement alters the CUSTOMER cluster in the schema SCOTT:

ALTER CLUSTER scott.customer
 SIZE 512
 STORAGE (MAXEXTENTS 25);

Oracle allocates 512 bytes for each cluster key value. Assuming a data block size of

2 kilobytes, future data blocks within this cluster contain 4 cluster keys per data

block, or 2 kilobytes divided by 512 bytes. The cluster can have a maximum of 25

extents.

The following statement deallocates unused space from the CUSTOMER cluster,

keeping 30 kilobytes of unused space for future use:

ALTER CLUSTER scott.customer
 DEALLOCATE UNUSED KEEP 30 K;

deallocate_
unused_clause

explicitly deallocates unused space at the end of the cluster and makes the freed space
available for other segments. Only unused space above the high water mark can be freed.

KEEP specifies the number of bytes above the high water mark that the cluster
will have after deallocation. If the number of remaining extents is less
than MINEXTENTS, then MINEXTENTS is set to the current number of
extents. If the initial extent becomes smaller than INITIAL, then INITIAL
is set to the value of the current initial extent. If you omit KEEP, all
unused space is freed.

For a more complete description of this clause, see "ALTER TABLE" on page 7-113.

parallel_clause changes the default degree of parallelism for queries and DML on the cluster. For more
detailed information, see the Notes to the parallel_clause of "CREATE TABLE" on page 7-359.

NOPARALLEL specifies serial execution. This is the default.

PARALLEL causes Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL
integer

specifies the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use one
or two parallel execution processes. Normally Oracle calculates the
optimum degree of parallelism, so it is not necessary for you to specify
integer.

Restriction: If the tables in cluster contain any columns of LOB or user-defined object type,
this statement as well as subsequent INSERT, UPDATE, or DELETE operations on cluster are
executed serially without notification.
SQL Statements 7-5

ALTER DATABASE
ALTER DATABASE

Syntax

ALTER DATABASE
database

MOUNT

STANDBY

CLONE
DATABASE

CONVERT

OPEN

READ WRITE RESETLOGS

NORESETLOGS

READ ONLY

ACTIVATE STANDBY DATABASE

recover_clauses

RENAME GLOBAL_NAME TO database . domain

RENAME FILE ’ filename ’

,

TO ’ filename ’

,

RESET COMPATIBILITY

ENABLE
PUBLIC

THREAD integer

DISABLE THREAD integer

CHARACTER SET character_set

NATIONAL CHARACTER SET character_set

datafile/tempfile_clauses

logfile_clauses

controlfile_clauses

;

7-6 SQL Reference

ALTER DATABASE
recover_clauses::=

general_recovery_clause ::=

RECOVER
general_recovery_clause

managed_recovery_clause

parallel_clause
;

AUTOMATIC FROM ’ location ’

STANDBY
DATABASE

UNTIL

CANCEL

TIME date

CHANGE integer

USING BACKUP CONTROLFILE

STANDBY

TABLESPACE tablespace

,

DATAFILE ’ filename ’

, UNTIL
CONSISTENT WITH

CONTROLFILE

TABLESPACE tablespace

,

DATAFILE ’ filename ’

,

LOGFILE ’ filename ’

CONTINUE
DEFAULT

CANCEL
SQL Statements 7-7

ALTER DATABASE
managed_recovery_clause ::=

datafile/tempfile_clauses ::=

filespec : See "filespec" on page 7-490.

MANAGED STANDBY DATABASE

TIMEOUT integer

CANCEL
IMMEDIATE

CREATE DATAFILE ’ filename ’
AS filespec

DATAFILE ’ filename ’

ONLINE

OFFLINE
DROP

RESIZE integer

K

M

autoextend_clause

END BACKUP

TEMPFILE , filename ,

RESIZE integer

K

M

autoextend_clause

DROP

ONLINE

OFFLINE
7-8 SQL Reference

ALTER DATABASE
controlfile_clauses ::=

logfile_clauses ::=

CREATE STANDBY CONTROLFILE AS ’ filename ’
REUSE

BACKUP CONTROLFILE TO

’ filename ’
REUSE

TRACE

RESETLOGS

NORESETLOGS

ARCHIVELOG

NOARCHIVELOG

ADD LOGFILE
THREAD integer GROUP integer

filespec

,

ADD LOGFILE MEMBER ’ filename ’
REUSE

,

TO logfile_descriptor

,

DROP LOGFILE logfile_descriptor

,

DROP LOGFILE MEMBER ’ filename ’

,

CLEAR
UNARCHIVED

LOGFILE logfile_descriptor

,
UNRECOVERABLE DATAFILE
SQL Statements 7-9

ALTER DATABASE
logfile_descriptor::=

autoextend_clause ::=

maxsize_clause::=

parallel_clause ::=

Purpose
To modify, maintain, or recover an existing database.

For more information on using the ALTER DATABASE statement for database

maintenance, see the Oracle8i Administrator’s Guide.

GROUP integer

(’ filename ’

,

)

’ filename ’

AUTOEXTEND

OFF

ON
NEXT integer

K

M
maxsize_clause

MAXSIZE

UNLIMITED

integer

K

M

NOPARALLEL

PARALLEL
integer
7-10 SQL Reference

ALTER DATABASE
For examples of performing media recovery, see Oracle8i Administrator’s Guide and

Oracle8i Backup and Recovery Guide.

For information on creating a database, see "CREATE DATABASE" on page 7-249.

Prerequisites
You must have ALTER DATABASE system privilege.

To specify the RECOVER clause, you must also have the OSDBA role enabled.

Keywords and Parameters

database identifies the database to be altered. The database name can contain only ASCII
characters. If you omit database, Oracle alters the database identified by the value of the
initialization parameter DB_NAME. You can alter only the database whose control files
are specified by the initialization parameter CONTROL_FILES. The database identifier is
not related to the Net8 database specification.

You can use the following clauses only when the database is not mounted by your instance:

MOUNT mounts the
database.

STANDBY

DATABASE

mounts the standby database. For more information, see the Oracle8i
Backup and Recovery Guide.

CLONE

DATABASE

mounts the clone database. For more information, see the Oracle8i
Backup and Recovery Guide.

CONVERT completes the conversion of the Oracle7 data dictionary. After you use this clause, the
Oracle7 data dictionary no longer exists in the Oracle database. Use this clause only
when you are migrating to Oracle8i. For more information, see Oracle8i Migration.

ACTIVATE
STANDBY
DATABASE

changes the state of a standby database to an active database. For more information, see

Oracle8i Backup and Recovery Guide.

OPEN opens the database, making it available for normal use. You must mount the database
before you can open it. You must activate a standby database before you can open it.

READ ONLY restricts users to read-only transactions, preventing them from
generating redo logs. You can use this clause to make a standby
database available for queries even while archive logs are being
copied from the primary database site.
SQL Statements 7-11

ALTER DATABASE
Restrictions:

■ You cannot open a database READ ONLY if it is currently opened
READ WRITE by another instance.

■ You cannot open a database READ ONLY if it requires recovery.

■ You cannot take tablespaces offline while the database is open
READ ONLY. However, you can take datafiles offline and online,
and you can recover offline datafiles and tablespaces while the
database is open READ ONLY.

READ WRITE opens the database in read-write mode, allowing users to generate
redo logs. This is the default.

RESETLOGS resets the current log sequence number to 1 and discards any redo
information that was not applied during recovery, ensuring that it will
never be applied. This effectively discards all changes that are in the
redo log, but not in the database. You must use this clause to open the
database after performing media recovery with an incomplete
recovery using the RECOVER clause or with a backup control file.
After opening the database with this clause, you should perform a
complete database backup.

NORESETLOGS leaves the log sequence number and redo log files in their current
state.

Restriction: You can specify RESETLOGS and NORESETLOGS only after performing
incomplete media recovery or complete media recovery with a backup control file. In any
other case, Oracle uses the NORESETLOGS automatically.

You can use any of the following clauses when your instance has the database mounted, open or closed, and
the files involved are not in use:

general_recovery_
clause

lets you design media recovery for the database or standby database, or for specified
tablespaces or files. For more information on media recovery, see Oracle8i Backup and
Recovery Guide.

Note: If you do not have special media requirements, Oracle Corporation recommends

that you use the SQL*Plus RECOVER statement. For more information, see SQL*Plus
User’s Guide and Reference.

Restrictions:

■ You can recover the entire database only when the database is closed.

■ Your instance must have the database mounted in exclusive mode.

■ You can recover tablespaces or datafiles when the database is open or closed,
provided that the tablespaces or datafiles to be recovered are offline.

■ You cannot perform media recovery if you are connected to Oracle through the
multi-threaded server architecture.
7-12 SQL Reference

ALTER DATABASE
AUTOMATIC automatically generates the name of the next archived redo log file needed to continue
the recovery operation. Oracle uses the LOG_ARCHIVE_DEST (or LOG_ARCHIVE_
DEST_1) and LOG_ARCHIVE_FORMAT parameters (or their defaults) to generate the
target redo log filename. If the file is found, the redo contained in that file is applied. If the
file is not found, Oracle prompts you for a filename, displaying the generated filename as
a suggestion.

If you specify neither AUTOMATIC nor LOGFILE, Oracle prompts you for a filename,
displaying the generated filename as a suggestion. You can then accept the generated
filename or replace it with a fully qualified filename. If you know the archived filename
differs from what Oracle would generate, you can save time by using the LOGFILE clause.

FROM ’location’ specifies the location from which the archived redo log file group is read. The value of
location must be a fully specified file location following the conventions of your operating
system. If you omit this parameter, Oracle assumes the archived redo log file group is in
the location specified by the initialization parameter LOG_ARCHIVE_DEST or LOG_
ARCHIVE_DEST_1.

STANDBY
DATABASE

recovers the standby database using the control file and archived redo log files copied
from the primary database. The standby database must be mounted but not open.

DATABASE recovers the entire database. This is the default. You can use this clause only when the
database is closed.

Note: This clause recovers only online datafiles.

UNTIL specifies the duration of the recovery operation.

■ CANCEL performs cancel-based recovery. This clause recovers
the database until you issue the ALTER DATABASE RECOVER
statement with the RECOVER CANCEL clause.

■ TIME performs time-based recovery. This parameter recovers the
database to the time specified by the date. The date must be a
character literal in the format ’YYYY-MM-DD:HH24:MI:SS’.

■ CHANGE performs change-based recovery. This parameter
recovers the database to a transaction-consistent state
immediately before the system change number (SCN) specified
by integer.

USING BACKUP
CONTROLFILE

specifies that a backup control file is being used instead of the current
control file.

TABLESPACE recovers only the specified tablespaces. You can use this clause if the database is open or
closed, provided the tablespaces to be recovered are offline.

DATAFILE recovers the specified datafiles. You can use this clause when the database is open or
closed, provided the datafiles to be recovered are offline.
SQL Statements 7-13

ALTER DATABASE
STANDBY
TABLESPACE |
DATAFILE

reconstructs a lost or damaged datafile or tablespace in the standby database using
archived redo log files copied from the primary database and a control file.

UNTIL
[CONSISTENT
WITH]
CONTROLFILE

specifies that the recovery of an old standby datafile or tablespace
uses the current standby database control file. However, any redo in
advance of the standby controlfile will not be applied. The keywords
CONSISTENT WITH are optional and are provided for semantic
clarity.

LOGFILE continues media recovery by applying the specified redo log file.

CONTINUE continues multi-instance recovery after it has been interrupted to disable a thread.

CONTINUE
DEFAULT

continues recovery using the redo log file that Oracle would automatically generate if no
other logfile were specified. This clause is equivalent to specifying AUTOMATIC, except
that Oracle does not prompt for a filename.

CANCEL terminates cancel-based recovery.

managed_
recovery_clause

specifies sustained standby recovery mode. This mode assumes that the standby database
is an active component of an overall standby database architecture. A primary database
actively archives its redo log files to the standby site. As these archived redo logs arrive at
the standby site, they become available for use by a managed standby recovery operation.
Sustained standby recovery is restricted to media recovery. For more information on the
parameters of this clause, see Oracle8i Backup and Recovery Guide.

Restrictions: The same restrictions apply as are listed under general_recovery_clause.

TIMEOUT integer specifies in minutes the wait period of the sustained recovery operation. The recovery
process waits for integer minutes for a requested archived log redo to be available for
writing to the standby database. If the redo log file does not become available within that
time, the recovery process terminates with an error message. You can then issue the
statement again to return to sustained standby recovery mode.

If you do not specify this clause, the database remains in sustained standby recovery
mode until you reissue the statement with the RECOVER CANCEL clause or until
instance shutdown or failure.

CANCEL terminates the sustained recovery operation after applying all the redo in the current
archived redo file.

CANCEL
IMMEDIATE

terminates the sustained recovery operation after applying all the redo in the current
archived redo file or after the next redo log file read, whichever comes first.

Restriction: This clause cannot be issued from the same session that issued the RECOVER
MANAGED STANDBY DATABASE statement.

parallel_clause specifies whether the recovery of media will be parallelized. For additional information,
see the Notes to the parallel_clause of "CREATE TABLE" on page 7-359.

NOPARALLEL specifies serial execution. This is the default.
7-14 SQL Reference

ALTER DATABASE
PARALLEL causes Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL
integer

specifies the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use
one or two parallel execution processes. Normally Oracle calculates
the optimum degree of parallelism, so it is not necessary for you to
specify integer.

RENAME
GLOBAL_NAME

changes the global name of the database. The database is the new database name and can
be as long as eight bytes. The optional domain specifies where the database is effectively

located in the network hierarchy. For more information on global names, see Oracle8i
Distributed Database Systems.

Note: Renaming your database does not change global references to your database from
existing database links, synonyms, and stored procedures and functions on remote
databases. Changing such references is the responsibility of the administrator of the
remote databases.

RENAME FILE renames datafiles, tempfiles, or redo log file members. This clause renames only files in
the control file. It does not actually rename them on your operating system. You must
specify each filename using the conventions for filenames on your operating system
before specifying this clause.

RESET
COMPATIBILITY

marks the database to be reset to an earlier version of Oracle when the database is next
restarted.

Note: RESET COMPATIBILITY works only if you have successfully disabled Oracle
features that affect backward compatibility. For more information on downgrading to an

earlier version of Oracle, see Oracle8i Migration.

You can use the following clauses only when your instance has the database open:

ENABLE THREAD in a parallel server, enables the specified thread of redo log file groups. The thread must
have at least two redo log file groups before you can enable it.

PUBLIC makes the enabled thread available to any instance that does not
explicitly request a specific thread with the initialization parameter
THREAD. If you omit PUBLIC, the thread is available only to the
instance that explicitly requests it with the initialization parameter
THREAD.

DISABLE
THREAD

disables the specified thread, making it unavailable to all instances. You cannot disable a
thread if an instance using it has the database mounted.
SQL Statements 7-15

ALTER DATABASE
CHARACTER SET

NATIONAL
CHARACTER SET

CHARACTER SET changes the character set the database uses to store data. NATIONAL
CHARACTER SET changes the national character set used to store data in columns
specifically defined as NCHAR, NCLOB, or NVARCHAR2. Specify character_set without
quotation marks.

WARNING: You cannot roll back an ALTER DATABASE CHARACTER SET or ALTER
DATABASE NATIONAL CHARACTER SET statement. Therefore, you should perform
a full backup before issuing either of these statements.

Restrictions:

■ You must have SYSDBA system privilege, and you must start up the database in
restricted mode (for example, with the SQL*Plus STARTUP RESTRICT command).

■ The current character set must be a strict subset of the character set to which you
change. That is, each character represented by a codepoint value in the source
character set must be represented by the same codepoint value in the target character
set. For a list of valid character sets, see Oracle8i National Language Support Guide.

datafile/tempfile_
clauses

let you modify datafiles and tempfiles.

You can use any of the following clauses when your instance has the database mounted, open or closed, and
the files involved are not in use:

CREATE
DATAFILE

creates a new empty datafile in place of an old one. You can use this clause to re-create a
datafile that was lost with no backup. The ’filename’ must identify a file that is or was once
part of the database. The filespec specifies the name and size of the new datafile. If you
omit the AS clause, Oracle creates the new file with the name and size as the file specified
by ’filename’.

During recovery, all archived redo logs written to since the original datafile was created
must be applied to the new, empty version of the lost datafile.

Oracle creates the new file in the same state as the old file when it was created. You must
perform media recovery on the new file to return it to the state of the old file at the time it
was lost.

Restriction: You cannot create a new file based on the first datafile of the SYSTEM
tablespace.

DATAFILE affects your database files as follows:

ONLINE brings the datafile online.

OFFLINE takes the datafile offline. If the database is open, you must perform
media recovery on the datafile before bringing it back online, because
a checkpoint is not performed on the datafile before it is taken offline.

DROP takes a datafile offline when the database is in
NOARCHIVELOG mode.
7-16 SQL Reference

ALTER DATABASE
RESIZE attempts to increase or decrease the size of the datafile to the
specified absolute size in bytes. Use K or M to specify this size in
kilobytes or megabytes. There is no default, so you must specify a size.

If sufficient disk space is not available for the increased size, or if the
file contains data beyond the specified decreased size, Oracle returns
an error.

autoextend_
clause

enables or disables the automatic extension of a datafile. If you do not
specify this clause, datafiles are not automatically extended.

OFF disables autoextend if it is turned on. NEXT and MAXSIZE are
set to zero. Values for NEXT and MAXSIZE must be respecified in
further ALTER DATABASE AUTOEXTEND statements.

ON enables autoextend.

NEXT specifies in bytes the size of the next increment of disk space to
be automatically allocated to the datafile when more extents are
required. Use K or M to specify this size in kilobytes or megabytes.
The default is one data block.

MAXSIZE specifies the maximum disk space allowed for automatic
extension of the datafile.

UNLIMITED sets no limit on allocating disk space to the datafile.

END BACKUP avoids media recovery on database startup after an online tablespace
backup was interrupted by a system failure or instance failure or
SHUTDOWN ABORT.

WARNING: Do not use ALTER TABLESPACE ... END BACKUP if you have restored
any of the files affected from a backup. Media recovery is fully described in Oracle8i
Backup and Recovery Guide.

TEMPFILE Lets you resize your temporary datafile or specify the autoextend_clause, with the same

effect as with a permanent datafile.

Restriction: You cannot specify TEMPFILE unless the database is open.

DROP drops tempfile from the database. The tablespace remains.

logfile_clauses lets you add, drop, or modify log files.

ARCHIVELOG specifies that the contents of a redo log file group must be archived before the group can
be reused. This mode prepares for the possibility of media recovery. Use this clause only
after shutting down your instance normally or immediately with no errors and then
restarting it, mounting the database in parallel server disabled mode.

NOARCHIVELOG specifies that the contents of a redo log file group need not be archived so that the group
can be reused. This mode does not prepare for recovery after media failure.
SQL Statements 7-17

ALTER DATABASE
Use the ARCHIVELOG clause and NOARCHIVELOG clause only if your instance has the database mounted
in parallel server disabled mode, but not open.

ADD LOGFILE adds one or more redo log file groups to the specified thread, making them available to
the instance assigned the thread.

THREAD integer is applicable only if you are using Oracle with the Parallel Server
option in parallel mode. If you omit THREAD, the redo log file group
is added to the thread assigned to your instance.

GROUP integer uniquely identifies the redo log file group among all groups in all
threads and can range from 1 to the MAXLOGFILES value. You
cannot add multiple redo log file groups having the same GROUP
value. If you omit this parameter, Oracle generates its value
automatically. You can examine the GROUP value for a redo log file
group through the dynamic performance view V$LOG.

filespec Each filespec specifies a redo log file group containing one or more

members, or copies. See the syntax description of filespec in "filespec"
on page 7-490.

ADD LOGFILE
MEMBER

adds new members to existing redo log file groups. Each new member is specified by
’filename’. If the file already exists, it must be the same size as the other group members,
and you must specify REUSE. If the file does not exist, Oracle creates a file of the correct
size. You cannot add a member to a group if all of the group’s members have been lost
through media failure.

You can specify an existing redo log file group in one of these ways:

GROUP integer Specify the value of the GROUP parameter that identifies the redo log
file group.

list of filenames List all members of the redo log file group. You must fully specify
each filename according to the conventions of your operating system.

DROP LOGFILE drops all members of a redo log file group. Specify a redo log file group as indicated for
the ADD LOGFILE MEMBER clause.

■ To drop the current log file group, you must first issue an ALTER SYSTEM SWITCH
LOGFILE statement. See "ALTER SYSTEM" on page 7-95.

■ You cannot drop a redo log file group if it needs archiving.

■ You cannot drop a redo log file group if doing so would cause the redo thread to
contain less than two redo log file groups.

DROP LOGFILE
MEMBER

drops one or more redo log file members. Each ’filename’ must fully specify a member
using the conventions for filenames on your operating system.

■ To drop a log file in the current log, you must first issue an ALTER SYSTEM SWITCH
LOGFILE statement. See "ALTER SYSTEM" on page 7-95.

■ You cannot use this clause to drop all members of a redo log file group that contains
valid data. To perform this operation, use the DROP LOGFILE clause.
7-18 SQL Reference

ALTER DATABASE
CLEAR LOGFILE reinitializes an online redo log, optionally without archiving the redo log. CLEAR
LOGFILE is similar to adding and dropping a redo log, except that the statement may be
issued even if there are only two logs for the thread and also may be issued for the
current redo log of a closed thread.

UNARCHIVED You must specify UNARCHIVED if you want to reuse a redo log that
was not archived.

WARNING: Specifying UNARCHIVED makes backups unusable if
the redo log is needed for recovery.

Do not use CLEAR LOGFILE to clear a log needed for media recovery. If it is necessary to
clear a log containing redo after the database checkpoint, you must first perform
incomplete media recovery. The current redo log of an open thread can be cleared. The
current log of a closed thread can be cleared by switching logs in the closed thread.

If the CLEAR LOGFILE statement is interrupted by a system or instance failure, then the
database may hang. If this occurs, reissue the statement after the database is restarted. If
the failure occurred because of I/O errors accessing one member of a log group, then that
member can be dropped and other members added.

UNRECOVER-
ABLE DATAFILE

You must specify UNRECOVERABLE DATAFILE if you have taken
the datafile offline with the database in ARCHIVELOG mode (that is,
you specified ALTER DATABSE ... DATAFILE OFFLINE without the
DROP keyword), and if the unarchived log to be cleared is needed to
recover the datafile before bringing it back online. In this case, you
must drop the datafile and the entire tablespace once the CLEAR
LOGFILE statement completes.

controlfile_clauses

CREATE
STANDBY
CONTROLFILE

creates a control file to be used to maintain a standby database. For more information, see

Oracle8i Backup and Recovery Guide. If the file already exists, you must specify REUSE.

BACKUP
CONTROLFILE

backs up the current control file.

TO ’filename’ specifies the file to which the control file is backed up. You must fully
specify the filename using the conventions for your operating system.
If the specified file already exists, you must specify REUSE.

TO TRACE writes SQL statements to the database’s trace file rather than making a
physical backup of the control file. The SQL statements can start up
the database, re-create the control file, and recover and open the
database appropriately, based on the created control file.

You can copy the statements from the trace file into a script file, edit
the statements as necessary, and use the database if all copies of the
control file are lost (or to change the size of the control file).
SQL Statements 7-19

ALTER DATABASE
Examples

READ ONLY / READ WRITE Example The first statement below opens the

database in read-only mode. The second statement returns the database to

read-write mode and clears the online redo logs:

ALTER DATABASE OPEN READ ONLY;

ALTER DATABASE OPEN READ WRITE RESETLOGS;

PARALLEL Example The following statement performs tablespace recovery using

parallel recovery processes:

ALTER DATABASE
 RECOVER TABLESPACE binky
 PARALLEL;

Redo Log File Group Example The following statement adds a redo log file group

with two members and identifies it with a GROUP parameter value of 3:

ALTER DATABASE stocks
 ADD LOGFILE GROUP 3
 (’diska:log3.log’ ,
 ’diskb:log3.log’) SIZE 50K;

Redo Log File Group Member Example The following statement adds a member

to the redo log file group added in the previous example:

ALTER DATABASE stocks
 ADD LOGFILE MEMBER ’diskc:log3.log’
 TO GROUP 3;

Dropping a Log File Member The following statement drops the redo log file

member added in the previous example:

ALTER DATABASE stocks
 DROP LOGFILE MEMBER ’diskc:log3.log’;

■ RESETLOGS specifies that the SQL statement written to the trace
file for starting the database is ALTER DATABASE OPEN
RESETLOGS.

■ NORESETLOGS specifies that the SQL statement written to the
trace file for starting the database is ALTER DATABASE OPEN
NORESETLOGS.
7-20 SQL Reference

ALTER DATABASE
Renaming a Log File Member The following statement renames a redo log file

member:

ALTER DATABASE stocks
 RENAME FILE ’diskb:log3.log’ TO ’diskd:log3.log’;

The above statement only changes the member of the redo log group from one file

to another. The statement does not actually change the name of the file

’DISKB:LOG3.LOG’ to ’DISKD:LOG3.LOG’. You must perform this operation

through your operating system.

Dropping All Log File Group Members The following statement drops all

members of the redo log file group 3:

ALTER DATABASE stocks DROP LOGFILE GROUP 3;

Adding a Redo Log File Group The following statement adds a redo log file

group containing three members to thread 5 (in an Oracle Parallel Server

environment) and assigns it a GROUP parameter value of 4:

ALTER DATABASE stocks
 ADD LOGFILE THREAD 5 GROUP 4
 (’diska:log4.log’,
 ’diskb:log4:log’,
 ’diskc:log4.log’);

Disabling a Parallel Server Thread The following statement disables thread 5 in a

parallel server:

ALTER DATABASE stocks
 DISABLE THREAD 5;

Enabling a Parallel Server Thread The following statement enables thread 5 in a

parallel server, making it available to any Oracle instance that does not explicitly

request a specific thread:

ALTER DATABASE stocks
 ENABLE PUBLIC THREAD 5;

Creating a New Datafile The following statement creates a new datafile

’DISK2:DB1.DAT’ based on the file ’DISK1:DB1.DAT’:

ALTER DATABASE
 CREATE DATAFILE ’disk1:db1.dat’ AS ’disk2:db1.dat’;
SQL Statements 7-21

ALTER DATABASE
Changing the Global Database Name The following statement changes the global

name of the database and includes both the database name and domain:

ALTER DATABASE
 RENAME GLOBAL_NAME TO sales.australia.acme.com;

Character Set Example The following statements change the database character

set and national character set to the WE8ISO8859P1 character set:

ALTER DATABASE db1 CHARACTER SET WE8ISO8859P1;
ALTER DATABASE db1 NATIONAL CHARACTER SET WE8ISO8859P1;

The database name is optional, and the character set name is specified without

quotation marks.

Resizing a Datafile The following statement attempts to change the size of

datafile ’DISK1:DB1.DAT’:

ALTER DATABASE
 DATAFILE ’disk1:db1.dat’ RESIZE 10 M;

Clearing a Log File The following statement clears a log file:

ALTER DATABASE
 CLEAR LOGFILE ’disk3:log.dbf’;

Database Recovery Examples The following statement performs complete

recovery of the entire database, letting Oracle generate the name of the next

archived redo log file needed:

ALTER DATABASE
 RECOVER AUTOMATIC DATABASE;

The following statement explicitly names a redo log file for Oracle to apply:

ALTER DATABASE
 RECOVER LOGFILE ’diska:arch0006.arc’;

The following statement performs time-based recovery of the database:

ALTER DATABASE
 RECOVER AUTOMATIC UNTIL TIME ’1998-10-27:14:00:00’;

Oracle recovers the database until 2:00 pm on October 27, 1998.

The following statement recovers the tablespace USER5:
7-22 SQL Reference

ALTER DATABASE
ALTER DATABASE
 RECOVER TABLESPACE user5;

The following statement recovers the standby datafile /FINANCE/STBS_21.f,

using the corresponding datafile in the original standby database, plus all relevant

archived logs and the current standby database control file:

ALTER DATABASE
 RECOVER STANDBY DATAFILE ’/finance/stbs_21.f’
 UNTIL CONTROLFILE;

Managed Standby Database Examples The following statement recovers the

standby database in managed (sustained) standby recovery mode:

ALTER DATABASE
 RECOVER MANAGED STANDBY DATABASE;

The following statement puts the database in managed standby recovery mode.

The sustained recovery process will wait up to 60 minutes for the next archive log:

ALTER DATABASE
 RECOVER MANAGED STANDBY DATABASE TIMEOUT 60;

 If each subsequent log arrives within 60 minutes of the last log, sustained recovery

continues indefinitely or until manually terminated.

The following statement terminates the managed recovery operation:

ALTER DATABASE
 RECOVER MANAGED STANDBY DATABASE CANCEL IMMEDIATE;

The sustained recovery operation terminates before the next group of redo is read

from the current redo log file. Media recovery ends in the "middle" of applying

redo from the current redo log file.
SQL Statements 7-23

ALTER DIMENSION
ALTER DIMENSION

Syntax

level_clause::=

hierarchy_clause::=

ALTER DIMENSION
schema .

dimension

ADD

level_clause

hierarchy_clause

attribute_clause

DROP

LEVEL level

RESTRICT

CASCADE

HIERARCHY hierarchy

ATTRIBUTE level

COMPILE

;

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

HIERARCHY hierarchy (child_level CHILD OF parent_level
join_clause

)

7-24 SQL Reference

ALTER DIMENSION
join_clause::=

attribute_clause::=

Purpose
To change the hierarchical relationships or dimension attributes of a dimension. For

more information on dimensions, see "CREATE DIMENSION" on page 7-259.

Prerequisites
The dimension must be in your schema or you must have the ALTER ANY

DIMENSION system privilege to use this statement.

A dimension is always altered under the rights of the owner.

Keywords and Parameters
The following keywords and parameters have meaning unique to ALTER

DIMENSION. The remaining keywords and parameters have the same

functionality that they have in the CREATE DIMENSION statement. See "CREATE

DIMENSION" on page 7-259.

schema is the schema of the dimension you want to modify. If you do not specify schema, Oracle
assumes the dimension is in your own schema.

dimension is the name of the dimension. This dimension must already exist.

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

SQL Statements 7-25

ALTER DIMENSION
Examples
This example modifies the TIME dimension:

ALTER DIMENSION time
 DROP HIERARCHY week_month;
ALTER DIMENSION time
 DROP ATTRIBUTE cur_date;
ALTER DIMENSION time
 ADD LEVEL day IS time_tab.t_day
 ADD ATTRIBUTE day DETERMINES t_holiday;

ADD lets you add a level, hierarchy, or attribute to the dimension. Adding one of these elements
does not invalidate any existing materialized view.

Oracle processes ADD LEVEL clauses prior to any other ADD clauses.

DROP lets you drop a level, hierarchy, or attribute from the dimension. Any level, hierarchy, or
attribute you specify must already exist.

Restriction: If any attributes or hierarchies reference a level, you cannot drop the level until
you either drop all the referencing attributes and hierarchies or specify CASCADE.

CASCADE causes Oracle to drop any attributes or hierarchies that reference the
level, along with the level itself.

RESTRICT prevents Oracle from dropping a level that is referenced by any
attributes or hierarchies. This is the default.

COMPILE explicitly recompiles an invalidated dimension. Oracle automatically compiles a dimension
when you issue an ADD clause or DROP clause. However, if you alter an object referenced
by the dimension (for example, if you drop and then re-create a table referenced in the
dimension), the dimension will be invalidated, and you must recompile it explicitly.
7-26 SQL Reference

ALTER FUNCTION
ALTER FUNCTION

Syntax

Purpose
To recompile an invalid standalone stored function. Explicit recompilation

eliminates the need for implicit run-time recompilation and prevents associated

run-time compilation errors and performance overhead.

The ALTER FUNCTION statement is similar to "ALTER PROCEDURE" on

page 7-62. For information on how Oracle recompiles functions and procedures, see

Oracle8i Concepts.

Prerequisites
The function must be in your own schema or you must have ALTER ANY

PROCEDURE system privilege.

Keywords and Parameters

Note: This statement does not change the declaration or

definition of an existing function. To redeclare or redefine a

function, use the CREATE FUNCTION statement with the OR

REPLACE clause; see "CREATE FUNCTION" on page 7-266.

schema is the schema containing the function. If you omit schema, Oracle assumes the function is
in your own schema.

function is the name of the function to be recompiled.

COMPILE causes Oracle to recompile the function. The COMPILE keyword is required. If Oracle
does not compile the function successfully, you can see the associated compiler error
messages with the SQL*Plus command SHOW ERRORS.

DEBUG instructs the PL/SQL compiler to generate and store the code for use by the PL/SQL
debugger.

ALTER FUNCTION
schema .

function COMPILE
DEBUG

;

SQL Statements 7-27

ALTER FUNCTION
Example
To explicitly recompile the function GET_BAL owned by the user

MERRIWEATHER, issue the following statement:

ALTER FUNCTION merriweather.get_bal
 COMPILE;

If Oracle encounters no compilation errors while recompiling GET_BAL, GET_BAL

becomes valid. Oracle can subsequently execute it without recompiling it at run

time. If recompiling GET_BAL results in compilation errors, Oracle returns an

error, and GET_BAL remains invalid.

Oracle also invalidates all objects that depend upon GET_BAL. If you subsequently

reference one of these objects without explicitly recompiling it first, Oracle

recompiles it implicitly at run time.
7-28 SQL Reference

ALTER INDEX
ALTER INDEX

Syntax

deallocate_unused_clause ::=

ALTER INDEX
schema .

index

deallocate_unused_clause

allocate_extent_clause

parallel_clause

physical_attributes_clause

LOGGING

NOLOGGING

rebuild_clause

PARAMETERS (’ alter_parameters ’)

ENABLE

DISABLE

UNUSABLE

RENAME TO new_index_name

COALESCE

partitioning_clauses

;

DEALLOCATE UNUSED
KEEP integer

K

M

SQL Statements 7-29

ALTER INDEX
allocate_extent_clause ::=

parallel_clause ::=

physical_attributes_clause ::=

storage_clause : See "storage_clause" on page 7-575.

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

NOPARALLEL

PARALLEL
integer

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause
7-30 SQL Reference

ALTER INDEX
rebuild_clause ::=

compression_clause::=

partitioning_clauses::=

REBUILD

PARTITION partition

SUBPARTITION subpartition

parallel_clause

TABLESPACE tablespace

ONLINE

COMPUTE STATISTICS

physical_attributes_clause

compression_clause

LOGGING

NOLOGGING

REVERSE

NOREVERSE

PARAMETERS (’ rebuild_parameters ’)

COMPRESS
integer

NOCOMPRESS

modify_default_attributes_clause

modify_partition_clause

rename_partition/subpartition_clause

drop_partition_clause

split_partition_clause

modify_subpartition_clause
SQL Statements 7-31

ALTER INDEX
modify_default_attributes_clause ::=

modify_partition_clause ::=

rename_partition/ subpartition_clause ::=

drop_partition_clause ::=

MODIFY DEFAULT ATTRIBUTES
FOR PARTITION partition

physical_attributes_clause

TABLESPACE
tablespace

DEFAULT

LOGGING

NOLOGGING

MODIFY PARTITION partition

physical_attributes_clause

LOGGING

NOLOGGING

deallocate_unused_clause

allocate_extent_clause

COALESCE

UNUSABLE

RENAME
PARTITION

SUBPARTITION
current_name TO new_name

DROP PARTITION partition_name
7-32 SQL Reference

ALTER INDEX
split_partition_clause ::=

partition_description::=

modify_subpartition_clause ::=

Purpose
To change or rebuild an existing index.

For information on creating an index, see "CREATE INDEX" on page 7-273.

Prerequisites
The index must be in your own schema or you must have ALTER ANY INDEX

system privilege.

Schema object privileges are granted on the parent index, not on individual index

partitions or subpartitions.

You must have tablespace quota to modify, rebuild, or split an index partition or to

modify or rebuild an index subpartition.

SPLIT PARTITION partition_name_old AT (value_list)

INTO (partition_description , partition_description) parallel_clause

PARTITION
partition

segment_attributes_clause

compression_clause

MODIFY SUBPARTITION subpartition

UNUSABLE

allocate_extent_clause

deallocate_unused_clause
SQL Statements 7-33

ALTER INDEX
Keywords and Parameters

schema is the schema containing the index. If you omit schema, Oracle assumes the index is in
your own schema.

index is the name of the index to be altered.

Restrictions:

■ If index is a domain index, you can specify only the PARAMETERS clause, the
RENAME clause, or the rebuild_clause (with or without the PARAMETERS clause).
No other clauses are valid.

■ You cannot alter or rename a domain index that is marked LOADING or FAILED. If
an index is marked FAILED, the only clause you can specify is REBUILD. For

information on the LOADING and FAILED states of domain indexes, see Oracle8i
Data Cartridge Developer’s Guide.

deallocate_unused_
clause

explicitly deallocates unused space at the end of the index and makes the freed space
available for other segments in the tablespace. Only unused space above the high water
mark can be freed. For more information on this clause, see "ALTER TABLE" on
page 7-113.

If index is range-partitioned or hash-partitioned, Oracle deallocates unused space from
each index partition. If index is a local index on a composite-partitioned table, Oracle
deallocates unused space from each index subpartition.

Restrictions:

■ You cannot specify this clause for an index on a temporary table.

■ You cannot specify this clause and also specify the rebuild_clause.

KEEP specifies the number of bytes above the high water mark that the
index will have after deallocation. If the number of remaining extents
are less than MINEXTENTS, then MINEXTENTS is set to the current
number of extents. If the initial extent becomes smaller than INITIAL,
then INITIAL is set to the value of the current initial extent. If you
omit KEEP, all unused space is freed.

For a complete description of this clause, see "ALTER TABLE" on page 7-113.

allocate_extent_
clause

explicitly allocates a new extent for the index. For a local index on a hash-partitioned
table, Oracle allocates a new extent for each partition of the index.

Restriction: You cannot specify this clause for an index on a temporary table or for a
range-partitioned or composite-partitioned index.

SIZE specifies the size of the extent in bytes. Use K or M to specify the
extent size in kilobytes or megabytes. If you omit SIZE, Oracle
determines the size based on the values of the index’s storage
parameters.
7-34 SQL Reference

ALTER INDEX
DATAFILE specifies one of the datafiles in the index’s tablespace to contain the
new extent. If you omit DATAFILE, Oracle chooses the datafile.

INSTANCE makes the new extent available to the specified instance. An instance
is identified by the value of its initialization parameter INSTANCE_
NUMBER. If you omit this parameter, the extent is available to all
instances. Use this parameter only if you are using Oracle with the
Parallel Server option in parallel mode.

Explicitly allocating an extent with this clause does not change the values of the NEXT
and PCTINCREASE storage parameters, so does not affect the size of the next extent to be
allocated.

parallel_clause changes the default degree of parallelism for queries and DML on the index. For
additional information, see the Notes to the parallel_clause of "CREATE TABLE" on
page 7-359.

NOPARALLEL specifies serial execution. This is the default.

PARALLEL causes Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances multiplied by the value
of the PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL
integer

specifies the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use
one or two parallel execution processes. Normally Oracle calculates
the optimum degree of parallelism, so it is not necessary for you to
specify integer.

Restriction: You cannot specify this clause for an index on a temporary table.

physical_attributes_
clause

lets you change the values of parameters for a nonpartitioned index, all partitions and
subpartitions of a partitioned index, a specified partition, or all subpartitions of a
specified partition. See these parameters in "CREATE TABLE" on page 7-359.

Restrictions:

■ You cannot specify this clause for an index on a temporary table.

■ You cannot specify the PCTUSED parameter when altering an index.

■ You cannot change the value of the PCTFREE parameter for the index as a whole
(ALTER INDEX) or for a partition (ALTER INDEX ... MODIFY PARTITION). You can
specify PCTFREE in all other forms of the ALTER INDEX statement.

storage_clause changes the storage parameters for a nonpartitioned index, index
partition, or all partitions of a partitioned index, or default values of
these parameters for a partitioned index. See the "storage_clause" on
page 7-575.
SQL Statements 7-35

ALTER INDEX
LOGGING|
NOLOGGING

LOGGING|NOLOGGING specifies that subsequent Direct Loader (SQL*Loader) and
direct-load INSERT operations against a nonpartitioned index, a range or hash index
partition, or all partitions or subpartitions of a composite-partitioned index will be logged
(LOGGING) or not logged (NOLOGGING) in the redo log file.

In NOLOGGING mode, data is modified with minimal logging (to mark new extents
invalid and to record dictionary changes). When applied during media recovery, the
extent invalidation records mark a range of blocks as logically corrupt, because the redo
data is not logged. Therefore, if you cannot afford to lose this index, you must take a
backup after the operation in NOLOGGING mode.

If the database is run in ARCHIVELOG mode, media recovery from a backup taken
before an operation in LOGGING mode will re-create the index. However, media
recovery from a backup taken before an operation in NOLOGGING mode will not
re-create the index.

An index segment can have logging attributes different from those of the base table and
different from those of other index segments for the same base table.

Restriction: You cannot specify this clause for an index on a temporary table.

For more information about LOGGING and parallel DML, see Oracle8i Concepts and the
Oracle8i Parallel Server Concepts and Administration.

RECOVERABLE|
UNRECOVERABLE

These keywords are deprecated and have been replaced with LOGGING and
NOLOGGING, respectively. Although RECOVERABLE and UNRECOVERABLE are
supported for backward compatibility, Oracle Corporation strongly recommends that you
use the LOGGING and NOLOGGING keywords.

RECOVERBLE is not a valid keyword for creating partitioned tables or LOB storage
characteristics. UNRECOVERABLE is not a valid keyword for creating partitioned or
index-organized tables. Also, it can be specified only with the AS subquery clause of
CREATE INDEX.

rebuild_clause re-creates an existing index or one of its partitions or subpartitions. For a function-based
index, this clause also enables the index. If the function on which the index is based does
not exist, the rebuild statement will fail.

Restrictions:

■ You cannot rebuild an index on a temporary table.

■ You cannot rebuild an entire partitioned index. You must rebuild each partition or
subpartition, as described below.

■ You cannot also specify the deallocate_unused_clause in this statement.

■ You cannot change the value of the PCTFREE parameter for the index as a whole
(ALTER INDEX) or for a partition (ALTER INDEX ... MODIFY PARTITION). You can
specify PCTFREE in all other forms of the ALTER INDEX statement.
7-36 SQL Reference

ALTER INDEX
PARTITION
partition

rebuilds one partition of an index. You can also use this clause to
move an index partition to another tablespace or to change a
create-time physical attribute. For more information about partition
maintenance operations, see the Oracle8i Administrator’s Guide.

Restriction: You cannot specify this clause for a local index on a
composite-partitioned table. Instead, use the REBUILD
SUBPARTITION clause.

SUBPARTITION
subpartition

rebuilds one subpartition of an index. You can also use this clause to
move an index subpartition to another tablespace. If you do not
specify TABLESPACE, the subpartition is rebuilt in the same
tablespace.

Restrictions: The only parameters you can specify for a subpartition
are TABLESPACE and the parallel_clause.

REVERSE |
NOREVERSE

specifies whether the bytes of the index block are stored in reverse
order.

■ REVERSE stores the bytes of the index block in reverse order and
excludes the rowid when the index is rebuilt.

■ NOREVERSE stores the bytes of the index block without
reversing the order when the index is rebuilt. Rebuilding a
REVERSE index without the NOREVERSE keyword produces a
rebuilt, reverse-keyed index.

Restrictions:

■ You cannot reverse a bitmap index or an index-organized table.

■ You cannot specify REVERSE or NOREVERSE for a partition or
subpartition.

TABLESPACE specifies the tablespace where the rebuilt index, index partition, or
index subpartition will be stored. The default is the default tablespace
where the index or partition resided before you rebuilt it.

COMPRESS enables key compression, which eliminates repeated occurrence of
key column values. Use integer to specify the prefix length (number of
prefix columns to compress).

■ For unique indexes, the range of valid prefix length values is
from 1 to the number of key columns minus 1. The default prefix
length is the number of key columns minus 1.

■ For nonunique indexes, the range of valid prefix length values is
from 1 to the number of key columns. The default prefix length is
number of key columns.

Oracle compresses only nonpartitioned indexes that are nonunique or
unique indexes of at least two columns.

Restriction: You cannot specify COMPRESS for a bitmapped index.
SQL Statements 7-37

ALTER INDEX
NOCOMPRESS disables key compression. This is the default.

ONLINE specifies that DML operations on the table or partition are allowed
during rebuilding of the index.

Restriction: Parallel DML is not supported during online index
building. If you specify ONLINE and then issue parallel DML
statements, Oracle returns an error.

COMPUTE
STATISTICS

enables you to collect statistics at relatively little cost during the
rebuilding of an index. These statistics are stored in the data
dictionary for ongoing use by the optimizer in choosing a plan of
execution for SQL statements.

The types of statistics collected depend on the type of index you are
rebuilding.

Note: If you create an index using another index (instead of a table),
the original index might not provide adequate statistical information.
Therefore, Oracle generally uses the base table to compute the
statistics, which will improve the statistics but may negatively affect
performance.

. Additional methods of collecting statistics are available in PL/SQL

packages and procedures. See Oracle8i Supplied Packages Reference.

LOGGING |
NOLOGGING

specifies whether the ALTER INDEX...REBUILD operation will be
logged.

PARAMETERS applies only to domain indexes. This clause specifies the parameter string for altering the
index (or, in the rebuild_clause, rebuilding the index). The maximum length of the
parameter string is 1000 characters. This string is passed uninterpreted to the appropriate

indextype routine. For more information on these routines, see Oracle8i Data Cartridge
Developer’s Guide. For more information on domain indexes, see "CREATE INDEX" on
page 7-273.

Restrictions:

■ You cannot specify this clause for any indexes other than domain indexes.

■ The parameter string is passed to the appropriate routine only if index is not marked
UNUSABLE.

ENABLE applies only to a function-based index that has been disabled because a user-defined
function used by the index was dropped or replaced. This clause enables such an index if

■ the function is currently valid,

■ the signature of the current function matches the signature of the function when the
index was created, and

■ the function is currently marked as DETERMINISTIC.

Restriction: You cannot specify any other clauses of ALTER INDEX in the same statement
with ENABLE.
7-38 SQL Reference

ALTER INDEX
DISABLE applies only to a function-based index. This clause enables you to disable the use of a
function-based index. You might want to do so, for example, while working on the body
of the function. Afterward you can either rebuild the index or specify another ALTER
INDEX statement with the ENABLE keyword.

UNUSABLE marks the index or index partition(s) or index subpartition(s) UNUSABLE. An unusable
index must be rebuilt, or dropped and re-created, before it can be used. While one
partition is marked UNUSABLE, the other partitions of the index are still valid. You can
execute statements that require the index if the statements do not access the unusable
partition. You can also split or rename the unusable partition before rebuilding it.

Restriction: You cannot specify this clause for an index on a temporary table.

RENAME TO renames index to new_index_name. The new_index_name is a single identifier and does not
include the schema name.

COALESCE instructs Oracle to merge the contents of index blocks where possible to free blocks for
reuse. For more information on space management and coalescing indexes, see Oracle8i
Administrator’s Guide.

Restriction: You cannot specify this clause for an index on a temporary table.

partitioning_clauses: The remainder of the clauses of the ALTER INDEX statement are valid only for partitioned
indexes.

Restrictions:

■ You cannot specify any of these clauses for an index on a temporary table.

■ You can combine several operations on the base index into one ALTER INDEX
statement (except RENAME and REBUILD), but you cannot combine partition
operations with other partition operations or with operations on the base index.

modify_default_
attributes_clause

specifies new values for the default attributes of a partitioned index.

Restriction: The only attribute you can specify for an index on a hash-partitioned or
composite-partitioned table is TABLESPACE.

TABLESPACE specifies the default tablespace for new partitions of an index or
subpartitions of an index partition.

LOGGING |
NOLOGGING

specifies the default logging attribute of a partitioned index or an
index partition.

FOR PARTITION
partition

specifies the default attributes for the subpartitions of a partition of a
local index on a composite-partitioned table.

modify_partition_
clause

modifies the real physical attributes, logging attribute, or storage characteristics of index
partition partition or its subpartitions.

Restriction: You cannot specify the physical_attributes_clause for an index on a
hash-partitioned table.
SQL Statements 7-39

ALTER INDEX
Examples

Modifying Real Attributes This statement alters SCOTT’s CUSTOMER index so

that future data blocks within this index use 5 initial transaction entries and an

incremental extent of 100 kilobytes:

ALTER INDEX scott.customer
 INITRANS 5
 STORAGE (NEXT 100K);

If the SCOTT.CUSTOMER index is partitioned, this statement also alters the default

attributes of future partitions of the index. New partitions added in the future will

use 5 initial transaction entries and an incremental extent of 100K.

Note: If the index is a local index on a composite-partitioned table, the changes you
specify here will override any attributes specified earlier for the subpartitions of index, as
well as establish default values of attributes for future subpartitions of that partition. To
change the default attributes of the partition without overriding the attributes of
subpartitions, use ALTER TABLE ... MODIFY DEFAULT ATTRIBUTES OF PARTITION.

rename_partition/
subpartition_clause

renames index partition or subpartition to new_name.

drop_partition_
clause

removes a partition and the data in it from a partitioned global index. When you drop a
partition of a global index, Oracle marks the index’s next partition UNUSABLE. You
cannot drop the highest partition of a global index.

split_partition_
clause

splits a partition of a global partitioned index into two partitions, adding a new partition
to the index.

Splitting a partition marked UNUSABLE results in two partitions, both marked
UNUSABLE. You must rebuild the partitions before you can use them.

Splitting a usable partition results in two partitions populated with index data. Both new
partitions are usable.

AT (value_list) specifies the new noninclusive upper bound for split_partition_1. The
value_list must evaluate to less than the presplit partition bound for
partition_name_old and greater than the partition bound for the next
lowest partition (if there is one).

INTO describes the two partitions resulting from the split.

partition_
description

specifies (optionally) the name and physical attributes of each of two partitions resulting
from a split.

modify_
subpartition_clause

lets you mark UNUSABLE or allocate or deallocate storage for a subpartition of a local
index on a composite-partitioned table. All other attributes of such a subpartition are
inherited from partition-level default attributes.
7-40 SQL Reference

ALTER INDEX
Dropping an Index Partition The following statement drops index partition IX_

ANTARTICA:

ALTER INDEX sales_area_ix
 DROP PARTITION ix_antarctica;

Modifying Default Attributes This statement alters the default attributes of local

partitioned index SALES_IX3. New partitions added in the future will use 5 initial

transaction entries and an incremental extent of 100K:

ALTER INDEX sales_ix3
 MODIFY DEFAULT ATTRIBUTES INITRANS 5 STORAGE (NEXT 100K);

Marking an Index Unusable The following statement marks the IDX_ACCTNO

index as UNUSABLE:

ALTER INDEX idx_acctno UNUSABLE;

Marking a Partition Unusable The following statement marks partition IDX_

FEB96 of index IDX_ACCTNO as UNUSABLE:

ALTER INDEX idx_acctno MODIFY PARTITION idx_feb96 UNUSABLE;

Changing MAXEXTENTS The following statement changes the maximum number

of extents for partition BRIX_NY and changes the logging attribute:

ALTER INDEX branch_ix MODIFY PARTITION brix_ny
 STORAGE(MAXEXTENTS 30) LOGGING;

Disabling Parallel Queries The following statement sets the parallel attributes for

index ARTIST_IX so that scans on the index will not be parallelized:

ALTER INDEX artist_ix NOPARALLEL;

Rebuilding a Partition The following statement rebuilds partition P063 in index

ARTIST_IX. The rebuilding of the index partition will not be logged:

ALTER INDEX artist_ix
 REBUILD PARTITION p063 NOLOGGING;

Renaming an Index The following statement renames an index:

ALTER INDEX emp_ix1 RENAME TO employee_ix1;
SQL Statements 7-41

ALTER INDEX
Renaming an Index Partition The following statement renames an index partition:

ALTER INDEX employee_ix1 RENAME PARTITION emp_ix1_p3
 TO employee_ix1_p3;

Splitting a Partition The following statement splits partition PARTNUM_IX_P6 in

partitioned index PARTNUM_IX into PARTNUM_IX_P5 and PARTNUM_IX_P6:

ALTER INDEX partnum_ix
 SPLIT PARTITION partnum_ix_p6 AT (5001)
 INTO (PARTITION partnum_ix_p5 TABLESPACE ts017 LOGGING,
 PARTITION partnum_ix_p6 TABLESPACE ts004);

The second partition retains the name of the old partition.

Storing Index Blocks in Reverse Order The following statement rebuilds index

EMP_IX so that the bytes of the index block are stored in REVERSE order:

ALTER INDEX emp_ix REBUILD REVERSE;

Collecting Index Statistics The following statement collects statistics on the

nonpartitioned EMP_INDX index:

ALTER INDEX emp_indx REBUILD COMPUTE STATISTICS;

The type of statistics collected depends on the type of index you are rebuilding. For

more information, refer to Oracle8i Concepts.

PARALLEL Example The following statement causes the index to be rebuilt from

the existing index by using parallel parallel execution processes to scan the old and

to build the new index:

ALTER INDEX emp_idx
 REBUILD
 PARALLEL;
7-42 SQL Reference

ALTER JAVA
ALTER JAVA

Syntax

invoker_rights_clause ::=

Purpose
To force the resolution of a Java class schema object or compilation of a Java source

schema object. (You cannot call the methods of a Java class before all its external

references to Java names are associated with other classes.)

For more information on resolving Java classes and compiling Java sources, see

Oracle8i Java Stored Procedures Developer’s Guide.

Prerequisites
The Java source or class must be in your own schema, or you must have the ALTER

ANY PROCEDURE system privilege. You must also have the EXECUTE object

privilege on Java classes.

Keywords and Parameters

JAVA SOURCE compiles a Java source schema object.

ALTER JAVA
SOURCE

CLASS

schema .
object_name

RESOLVER ((match_string
, schema_name

–
)) COMPILE

RESOLVE

invoker_rights_clause

;

AUTHID
CURRENT_USER

DEFINER
SQL Statements 7-43

ALTER JAVA
Example
The following statement forces the resolution of a Java class:

ALTER JAVA CLASS "Agent"
 RESOLVER (("/home/java/bin/*" scott)(* public))
 RESOLVE;

JAVA CLASS resolves a Java class schema object.

object_name specifies a previously created Java class or source schema object.

RESOLVER specifies how schemas are searched for referenced fully specified Java names, using the
mapping pairs specified when the Java class or source was created. For more information,
see "CREATE JAVA" on page 7-293.

RESOLVE |
COMPILE

are synonymous keywords. They specify that Oracle should attempt to resolve the
primary Java class schema object.

■ When applied to a class, resolution of referenced names to other class schema objects
occurs.

■ When applied to a source, source compilation occurs.

invoker_rights_
clause

specifies whether the methods of the class execute with the privileges and in the schema
of the user who defined it or with the privileges and in the schema of CURRENT_USER.
For information on how CURRENT_USER is determined, see Oracle8i Concepts and

Oracle8i Application Developer’s Guide - Fundamentals.

This clause also determines how Oracle resolves external names in queries, DML
operations, and dynamic SQL statements in the member functions and procedures of the
type. For more information refer to Oracle8i Java Stored Procedures Developer’s Guide.

AUTHID
CURRENT_USER

specifies that the methods of the class execute with the privileges of
CURRENT_USER. This clause is the default and creates an
"invoker-rights class."

This clause also specifies that external names in queries, DML
operations, and dynamic SQL statements resolve in the schema of
CURRENT_USER. External names in all other statements resolve in
the schema in which the methods reside.

AUTHID
DEFINER

specifies that the methods of the class execute with the privileges of
the user who defined it.

This clause also specifies that external names resolve in the schema
where the methods reside.
7-44 SQL Reference

ALTER MATERIALIZED VIEW / SNAPSHOT
ALTER MATERIALIZED VIEW / SNAPSHOT

Syntax

LOB_storage_clause : See "ALTER TABLE" on page 7-113.

modify_LOB_storage_clause : See "ALTER TABLE" on page 7-113.

partitioning_clauses: See "ALTER TABLE" on page 7-113.

ALTER
MATERIALIZED VIEW

SNAPSHOT

schema.
materialized_view / snapshot

physical_attributes_clause

LOB_storage_clause

,

modify_LOB_storage_clause

,

partitioning_clauses

parallel_clause

LOGGING

NOLOGGING

CACHE

NOCACHE

USING INDEX physical_attributes_clause refresh_clause

ENABLE

DISABLE
QUERY REWRITE

COMPILE
;

SQL Statements 7-45

ALTER MATERIALIZED VIEW / SNAPSHOT
parallel_clause ::=

refresh_clause ::=

physical_attributes_clause ::=

storage_clause : See the "storage_clause" on page 7-575.

NOPARALLEL

PARALLEL
integer

REFRESH

FAST

COMPLETE

FORCE

ON
DEMAND

COMMIT

START WITH

NEXT
date

WITH PRIMARY KEY

USING
DEFAULT MASTER ROLLBACK SEGMENT

MASTER ROLLBACK SEGMENT rollback_segment

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause
7-46 SQL Reference

ALTER MATERIALIZED VIEW / SNAPSHOT
Purpose
To change the storage characteristics, refresh mode or time, or type of an existing

materialized view.

To enable or disable query rewrite.

The terms "snapshot" and "materialized view" are synonymous. Both refer to a

table that contains the results of a query of one or more tables, each of which may

be located on the same or on a remote database.

Replication and warehouse environments sometimes use different terms to

describe the same thing. In this reference, master tables (a replication term) and

detail tables (a warehouse term) both refer to the tables referenced by a

materialized view.

For more information on materialized views, including a brief description of the

different types of materialized views, see "CREATE MATERIALIZED VIEW /

SNAPSHOT" on page 7-300. For information on materialized views in a replication

environment, see Oracle8i Replication. For information on materialized views in a

data warehousing environment, see Oracle8i Tuning.

Prerequisites
To alter a materialized view’s storage parameters, the materialized view must be

contained in your own schema, or you must have the ALTER ANY SNAPSHOT or

ALTER ANY MATERIALIZED VIEW system privilege.

To enable a materialized view for query rewrite:

■ If all the master tables in the materialized view are in your schema, you must

have the QUERY REWRITE privilege.

■ If any of the master tables are in another schema, you must have the GLOBAL

QUERY REWRITE privilege.

■ If the materialized view is in another user’s schema, both you and the owner of
that schema must have the appropriate QUERY REWRITE privilege described in

the preceding two items.

For detailed information about the prerequisites for ALTER MATERIALIZED

VIEW, see Oracle8i Replication.
SQL Statements 7-47

ALTER MATERIALIZED VIEW / SNAPSHOT
Keywords and Parameters

schema is the schema containing the materialized view. If you omit schema, Oracle assumes the
materialized view is in your own schema.

materialized view /
snapshot

is the name of the materialized view to be altered.

physical_
attributes_clause

change the values of the PCTFREE, PCTUSED, INITRANS, and MAXTRANS parameters
and the storage characteristics for the internal table that Oracle uses to maintain the
materialized view’s data. For more information, see "ALTER TABLE" on page 7-113 and
the "storage_clause" on page 7-575.

LOGGING|
NOLOGGING

specifies the logging attribute. For information about LOGGING and NOLOGGING, see
"ALTER TABLE" on page 7-113.

CACHE|
NOCACHE

For data that will be accessed frequently, specifies whether the blocks retrieved for this
table are placed at the most recently used end of the LRU list in the buffer cache when a
full table scan is performed. This attribute is useful for small lookup tables. For
information about specifying CACHE or NOCACHE, see "ALTER TABLE" on page 7-113.

LOB_storage_
clause

specifies the LOB storage characteristics. For information about specifying the parameters
of this clause, see "ALTER TABLE" on page 7-113.

modify_LOB_
storage_clause

modifies the physical attributes of the LOB attribute lob_item or LOB object attribute. For
information about specifying the parameters of this clause, see "ALTER TABLE" on
page 7-113.

partitioning_
clauses:

The syntax and general functioning of the following partitioning clauses is the same as
for the ALTER TABLE statement. See "ALTER TABLE" on page 7-113.

Restrictions:

■ You cannot use the LOB_storage_clause or modify_LOB_storage_clause when modifying
a materialized view.

■ If you attempt to drop, truncate, or exchange a materialized view partition, Oracle
raises an error.

Note: After dropping or truncating a table partition, all materialized views on the table
must be refreshed manually. A fast refresh will probably produce incorrect results, but
Oracle will not raise an error.

parallel_clause specifies the degree of parallelism for the materialized view. For additional information,
see the Notes to the parallel_clause of "CREATE TABLE" on page 7-359.

When this clause is set for master tables, performance for materialized view creation and
refresh may improve (depending on the materialized view definition query).

NOPARALLEL specifies serial execution. This is the default.
7-48 SQL Reference

ALTER MATERIALIZED VIEW / SNAPSHOT
PARALLEL causes Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL
integer

specifies the degree of parallelism, which is number of parallel
threads used in the parallel operation. Each parallel thread may use
one or two parallel execution processes. Normally Oracle calculates
the optimum degree of parallelism, so it is not necessary for you to
specify integer.

MODIFY PARTITION UNUSABLE LOCAL INDEXES

marks UNUSABLE all the local index partitions associated with partition.

MODIFY PARTITION REBUILD UNUSABLE LOCAL INDEXES

rebuilds the unusable local index partitions associated with partition.

USING INDEX changes the value of INITRANS, MAXTRANS, and STORAGE parameters for the index
Oracle uses to maintain the materialized view’s data. If USING INDEX is not specified,
then default values are used for the index.

Restriction: You cannot specify the PCTUSED or PCTFREE parameters in this clause.

refresh_clause changes the mode and times for automatic refreshes.

FAST specifies a fast refresh. A fast refresh uses the materialized view log
associated with the detail table or, if you also specify ON DEMAND,
with the direct loader log. Oracle creates the direct loader log
automatically. No user intervention is needed.

Several restrictions exist on the types of materialized views that you
can fast refresh. For a complete explanation of when you can fast
refresh a materialized view used for replication, see Oracle8i
Replication. For a complete explanation of when you can fast refresh a
materialized view used for data warehousing, see Oracle8i Tuning.

COMPLETE specifies a complete refresh, or a refresh that re-creates the
materialized view during each refresh.

FORCE specifies a fast refresh if one is possible or a complete refresh if a fast
refresh is not possible. Oracle decides whether a fast refresh is
possible at refresh time.

ON COMMIT specifies that the refresh is to occur automatically at the next
COMMIT operation.

Restriction: This clause is supported only for materialized views that
either include no aggregations or that include no joins. For more
information, see Oracle8i Tuning.
SQL Statements 7-49

ALTER MATERIALIZED VIEW / SNAPSHOT
ON DEMAND specifies that a refresh will occur when you explicitly invoke a refresh
procedure. This method is also called "warehouse refresh", and you
can also specify it by calling the DBMS_MVIEW.REFRESH procedure.
The types of materialized views you can create by specifying refresh
on demand are described in Oracle8i Tuning.

Alternatively, this clause specifies that a fast refresh will occur only if
you add data using a direct-path method.

If you specify ON COMMIT or ON DEMAND, you cannot also specify START WITH or
NEXT.

START WITH specifies a date expression for the next automatic refresh time.

NEXT specifies a new date expression for calculating the interval between
automatic refreshes.

START WITH and NEXT values must evaluate to times in the future.

WITH PRIMARY
KEY

changes a rowid materialized view to a primary key materialized
view. Primary key materialized views allow materialized view master
tables to be reorganized without affecting the materialized view’s
ability to continue to fast refresh. The master table must contain an
enabled primary key constraint.

For detailed information about primary key materialized views, see
Oracle8i Replication.

USING
ROLLBACK
SEGMENT

changes the remote rollback segment to be used during materialized
view refresh; rollback_segment is the name of the rollback segment to
be used.

■ DEFAULT specifies that Oracle will choose automatically which
rollback segment to use. If you specify DEFAULT, you cannot
specify rollback_segment.

■ MASTER specifies the remote rollback segment to be used at the
remote master for the individual materialized view. (To change
the local materialized view rollback segment, use the DBMS_
REFRESH package, described in Oracle8i Replication.)

The master rollback segment is stored on a per-materialized-view
basis and is validated during materialized view creation and refresh.
If the materialized view is complex, the master rollback segment, if
specified, is ignored.

QUERY
REWRITE

specifies whether the materialized view is eligible to be used for query rewrite.

ENABLE enables the materialized view for query rewrite. For more information
on query rewrite, see Oracle8i Concepts.
7-50 SQL Reference

ALTER MATERIALIZED VIEW / SNAPSHOT
Examples

Periodic Refresh Example The following statement changes the automatic refresh

mode for the HQ_EMP materialized view to FAST:

ALTER SNAPSHOT hq_emp
 REFRESH FAST;

The next automatic refresh of the materialized view will be a fast refresh provided

it is a simple materialized view and its master table has a materialized view log

that was created before the materialized view was created or last refreshed.

Because the REFRESH clause does not specify START WITH or NEXT values, the

refresh intervals established by the REFRESH clause when the HQ_EMP

materialized view was created or last altered are still used.

Restrictions:

■ If the materialized view is in an invalid or unusable state, the
ENABLE mode will not take effect until the materialized view is
valid and usable.

■ You can enable query rewrite only if all user-defined functions in
the materialized view are DETERMINISTIC. For more
information, see "CREATE FUNCTION" on page 7-266.

■ If you use bind variables in a query, the query will not be
rewritten to use materialized views even if you enable query
rewrite.

■ You can enable query rewrite only if the statement contains only
repeatable expressions. For example, you cannot include
CURRENT_TIME or USER. For more information, see Oracle8i
Tuning.

DISABLE specifies that the materialized view is not eligible for use by query
rewrite. (If a materialized view is in invalid state, it is not eligible for
use by query rewrite, whether or not it is disabled.) However, a
disabled materialized view can be refreshed.

COMPILE explicitly revalidates a materialized view. If an object upon which the materialized view
depends is dropped or altered, the materialized view remains accessible, but it is
invalidated for purposes of query rewrite. You can use this clause to explicitly revalidate
the materialized view to make it eligible for query rewrite.

If the materialized view fails to revalidate, it cannot be either fast refreshed ON
DEMAND or used for query rewrite.
SQL Statements 7-51

ALTER MATERIALIZED VIEW / SNAPSHOT
NEXT Example The following statement stores a new interval between automatic

refreshes for the BRANCH_EMP materialized view:

ALTER SNAPSHOT branch_emp
 REFRESH NEXT SYSDATE+7;

Because the REFRESH clause does not specify a START WITH value, the next

automatic refresh occurs at the time established by the START WITH and NEXT

values specified when the BRANCH_EMP materialized view was created or last

altered.

At the time of the next automatic refresh, Oracle refreshes the materialized view,

evaluates the NEXT expression SYSDATE+7 to determine the next automatic

refresh time, and continues to refresh the materialized view automatically once a

week.

Because the REFRESH clause does not explicitly specify a refresh mode, Oracle

continues to use the refresh mode specified by the REFRESH clause of a previous

CREATE MATERIALIZED VIEW or ALTER MATERIALIZED VIEW statement.

Complete Refresh Example The following statement specifies a new refresh

mode, next refresh time, and new interval between automatic refreshes of the SF_

EMP materialized view:

ALTER SNAPSHOT sf_emp
 REFRESH COMPLETE
 START WITH TRUNC(SYSDATE+1) + 9/24
 NEXT SYSDATE+7;

The START WITH value establishes the next automatic refresh for the materialized

view to be 9:00 a.m. tomorrow. At that point, Oracle performs a complete refresh of

the materialized view, evaluates the NEXT expression, and subsequently refreshes

the materialized view every week.

Enabling Query Rewrite Example The following statement enables query rewrite

on the materialized view MV1 and explicitly revalidates it.

ALTER MATERIALIZED VIEW mv1
 ENABLE QUERY REWRITE COMPILE;

Rollback Segment Examples The following statement changes the remote master

rollback segment used during materialized view refresh to MASTER_SEG:

ALTER SNAPSHOT inventory
7-52 SQL Reference

ALTER MATERIALIZED VIEW / SNAPSHOT
 REFRESH USING MASTER ROLLBACK SEGMENT master_seg;

The following statement changes the remote master rollback segment used during

materialized view refresh to one chosen by Oracle:

ALTER SNAPSHOT sales REFRESH USING DEFAULT MASTER ROLLBACK SEGMENT;

Primary Key Example The following statement changes a rowid materialized

view to a primary key materialized view:

ALTER SNAPSHOT emp_rs
 REFRESH WITH PRIMARY KEY;

COMPILE Example The following statement recompiles the materialized view

STORE_MV:

ALTER MATERIALIZED VIEW store_mv COMPILE;

Query Rewrite Example The following statement enables query rewrite on the

materialized view STORE_MV:

ALTER MATERIALIZED VIEW store_mv ENABLE QUERY REWRITE;

Modifying Refresh Mode Example The following statement changes the refresh

method of materialized view STORE_MV to FAST;

ALTER MATERIALIZED VIEW store_mv refresh fast;
SQL Statements 7-53

ALTER MATERIALIZED VIEW LOG / SNAPSHOT LOG
ALTER MATERIALIZED VIEW LOG / SNAPSHOT LOG

Syntax

physical_attributes_clause ::=

storage_clause: See "storage_clause" on page 7-575.

partitioning_clauses : See "ALTER TABLE" on page 7-113.

ALTER
MATERIALIZED VIEW

SNAPSHOT
LOG ON

schema.
table

physical_attributes_clause

partitioning_clauses

parallel_clause

LOGGING

NOLOGGING

CACHE

NOCACHE
ADD

PRIMARY KEY

ROWID

(filter_column

,

)

INCLUDING

EXCLUDING
NEW VALUES

;

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause
7-54 SQL Reference

ALTER MATERIALIZED VIEW LOG / SNAPSHOT LOG
parallel_clause ::=

Purpose
To alter the storage characteristics, refresh mode or time, or type of an existing

materialized view log.

The terms "snapshot" and "materialized view" are synonymous. Both refer to a

table that contains the results of a query of one or more tables, each of which may

be located on the same or on a remote database. For more information on

materialized views, including refreshing them, see "ALTER MATERIALIZED VIEW

/ SNAPSHOT" on page 7-45. For a description of the various types of materialized

views, see "CREATE MATERIALIZED VIEW / SNAPSHOT" on page 7-300.

Prerequisites
Only the owner of the master table or a user with the SELECT privilege for the

master table can alter a materialized view log. For detailed information about the

prerequisites for ALTER SNAPSHOT LOG, see Oracle8i Replication.

Keywords and Parameters

schema is the schema containing the master table. If you omit schema, Oracle assumes the
materialized view log is in your own schema.

table is the name of the master table associated with the materialized view log to be altered.

physical_
attributes_clause

changes the value of PCTFREE, PCTUSED, INITRANS, and MAXTRANS parameters for
the table, partition, the overflow data segment, or the default characteristics of a
partitioned table. For a description of these parameters, see "CREATE TABLE" on
page 7-359. See also the "Storage Example" on page 7-57.

NOPARALLEL

PARALLEL
integer
SQL Statements 7-55

ALTER MATERIALIZED VIEW LOG / SNAPSHOT LOG
partitioning_
clauses

The syntax and general functioning of the partitioning clauses is the same as for the
ALTER TABLE statement; see "ALTER TABLE" on page 7-113.

Restrictions:

■ You cannot use the LOB_storage_clause or modify_LOB_storage_clause when modifying
a materialized view log.

■ If you attempt to drop, truncate, or exchange a materialized view log partition,
Oracle raises an error.

parallel_clause specifies the degree of parallelism for the materialized view. For additional information,
see the Notes to the parallel_clause of "CREATE TABLE" on page 7-359.

When this clause is set for master tables, performance for materialized view creation and
refresh may improve (depending on the materialized view definition query).

NOPARALLEL specifies serial execution. This is the default.

PARALLEL causes Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL
integer

specifies the degree of parallelism, which is number of parallel
threads used in the parallel operation. Each parallel thread may use
one or two parallel execution processes. Normally Oracle calculates
the optimum degree of parallelism, so it is not necessary for you to
specify integer.

LOGGING |
NOLOGGING

specifies the logging attribute. For information about specifying this attribute, see
"ALTER TABLE" on page 7-113.

CACHE |
NOCACHE

for data that will be accessed frequently, specifies whether the blocks retrieved for this
table are placed at the most recently used end of the LRU list in the buffer cache when a
full table scan is performed. This attribute is useful for small lookup tables. For
information about specifying CACHE or NOCACHE, see "ALTER TABLE" on page 7-113.

ADD changes the materialized view log so that it records the primary key values or rowid
values when rows in the materialized view master table are updated. This clause can also
be used to record additional filter columns.

To stop recording any of this information, you must first drop the materialized view log
and then re-create it. Dropping the materialized view log and then re-creating it forces all
existing materialized views on the master table to complete refresh.

PRIMARY KEY specifies that the primary-key values of all rows updated should be
recorded in the materialized view log.

ROWID specifies that the rowid values of all rows updated should be
recorded in the materialized view log.

filter_column(s) are non-primary-key columns referenced by materialized views. For
information about filter columns, see Oracle8i Replication.
7-56 SQL Reference

ALTER MATERIALIZED VIEW LOG / SNAPSHOT LOG
Examples

Storage Example The following statement changes the MAXEXTENTS value of a

materialized view log:

ALTER SNAPSHOT LOG ON dept
 STORAGE MAXEXTENTS 50;

PRIMARY KEY Example The following statement alters an existing rowid

materialized view log to also record primary key information:

ALTER SNAPSHOT LOG ON sales
 ADD PRIMARY KEY;

NEW VALUES specifies whether Oracle saves both old and new values in the materialized view log.

INCLUDING saves old as well as new values in the log. If you are creating a log for
a materialized aggregate view with only one master table, and if you
want the materialized view to be eligible for fast refresh, you must
specify INCLUDING.

EXCLUDING saves only new values in the log. This is the default. To save
overhead, use this clause for materialized join views and for
materialized aggregate views with more than one master table. Such
views do not require the old values.
SQL Statements 7-57

ALTER OUTLINE
ALTER OUTLINE

Syntax

Purpose
To rename a stored outline, reassign it to a different category, or regenerate it by

compiling the outline’s SQL statement and replacing the old outline data with the

outline created under current conditions.

For more information on outlines, see "CREATE OUTLINE" on page 7-323 and

Oracle8i Tuning.

Prerequisites
To modify an outline, you must have the ALTER ANY OUTLINE system privilege.

Keywords and Parameters

Example
The following statement regenerates a stored outline called SALARIES by

compiling the outline’s text and replacing the old outline data with the outline

created under current conditions.

ALTER OUTLINE salaries REBUILD;

outline is the name of the outline to be modified.

REBUILD regenerates the execution plan for outline using current conditions.

RENAME TO new_
outline_name

specifies an outline name to replace outline.

CHANGE CATEGORY
TO new_category_name

specifies the name of the category into which the outline will be moved.

ALTER OUTLINE outline

REBUILD

RENAME TO new_outline_name

CHANGE CATEGORY TO new_category_name

;

7-58 SQL Reference

ALTER PACKAGE
ALTER PACKAGE

Syntax

Purpose
To explicitly recompile either a package specification, body, or both. Explicit

recompilation eliminates the need for implicit run-time recompilation and prevents

associated run-time compilation errors and performance overhead.

Because all objects in a package are stored as a unit, the ALTER PACKAGE

statement recompiles all package objects together. You cannot use the ALTER

PROCEDURE statement or ALTER FUNCTION statement to recompile

individually a procedure or function that is part of a package.

Prerequisites
The package must be in your own schema or you must have ALTER ANY

PROCEDURE system privilege.

Keywords and Parameters

Note: This statement does not change the declaration or

definition of an existing package. To redeclare or redefine a

package, use the "CREATE PACKAGE" or the "CREATE

PACKAGE BODY" statement with the OR REPLACE clause.

schema is the schema containing the package. If you omit schema, Oracle assumes the package is
in your own schema.

package is the name of the package to be recompiled.

ALTER PACKAGE
schema.

package COMPILE
DEBUG

PACKAGE

SPECIFICATION

BODY
;

SQL Statements 7-59

ALTER PACKAGE
Examples
This statement explicitly recompiles the specification and body of the

ACCOUNTING package in the schema BLAIR:

ALTER PACKAGE blair.accounting
 COMPILE PACKAGE;

If Oracle encounters no compilation errors while recompiling the ACCOUNTING

specification and body, ACCOUNTING becomes valid. BLAIR can subsequently

call or reference all package objects declared in the specification of ACCOUNTING

without run-time recompilation. If recompiling ACCOUNTING results in

compilation errors, Oracle returns an error and ACCOUNTING remains invalid.

COMPILE recompiles the package specification or body. The COMPILE keyword is required.

If recompiling the package results in compilation errors, Oracle returns an error and the
body remains invalid. You can see the associated compiler error messages with the
SQL*Plus command SHOW ERRORS.

SPECIFICATION recompiles only the package specification, regardless of whether it is invalid. You might
want to recompile a package specification to check for compilation errors after modifying
the specification.

When you recompile a package specification, Oracle invalidates any local objects that
depend on the specification, such as procedures that call procedures or functions in the
package. The body of a package also depends on its specification. If you subsequently
reference one of these dependent objects without first explicitly recompiling it, Oracle
recompiles it implicitly at run time.

BODY recompiles only the package body regardless of whether it is invalid. You might want to
recompile a package body after modifying it. Recompiling a package body does not
invalidate objects that depend upon the package specification.

When you recompile a package body, Oracle first recompiles the objects on which the
body depends, if any of those objects are invalid. If Oracle recompiles the body
successfully, the body becomes valid.

PACKAGE recompiles both the package specification and the package body if one exists, regardless
of whether they are invalid. This is the default. The recompilation of the package
specification and body lead to the invalidation and recompilation as described above for
SPECIFICATION and BODY.

For information on how Oracle maintains dependencies among schema objects, including

remote objects, see Oracle8i Concepts.

DEBUG instructs the PL/SQL compiler to generate and store the code for use by the PL/SQL
debugger.

For information on debugging packages, see Oracle8i Application Developer’s Guide -
Fundamentals.
7-60 SQL Reference

ALTER PACKAGE
Oracle also invalidates all objects that depend upon ACCOUNTING. If you

subsequently reference one of these objects without explicitly recompiling it first,

Oracle recompiles it implicitly at run time.

To recompile the body of the ACCOUNTING package in the schema BLAIR, issue

the following statement:

ALTER PACKAGE blair.accounting
 COMPILE BODY;

If Oracle encounters no compilation errors while recompiling the package body, the

body becomes valid. BLAIR can subsequently call or reference all package objects

declared in the specification of ACCOUNTING without run-time recompilation. If

recompiling the body results in compilation errors, Oracle returns an error message

and the body remains invalid.

Because this statement recompiles the body and not the specification of

ACCOUNTING, Oracle does not invalidate dependent objects.
SQL Statements 7-61

ALTER PROCEDURE
ALTER PROCEDURE

Syntax

Purpose
To explicitly recompile a stand-alone stored procedure. Explicit recompilation

eliminates the need for implicit run-time recompilation and prevents associated

run-time compilation errors and performance overhead.

To recompile a procedure that is part of a package, recompile the entire package

using the ALTER PACKAGE statement (see "ALTER PACKAGE" on page 7-59).

The ALTER PROCEDURE statement is quite similar to the ALTER FUNCTION

statement (see "ALTER FUNCTION" on page 7-27).

Prerequisites
The procedure must be in your own schema or you must have ALTER ANY

PROCEDURE system privilege.

Keywords and Parameters

Note: This statement does not change the declaration or

definition of an existing procedure. To redeclare or redefine a

procedure, use the CREATE PROCEDURE statement with the OR

REPLACE clause (see "CREATE PROCEDURE" on page 7-333)

schema is the schema containing the procedure. If you omit schema, Oracle assumes the procedure
is in your own schema.

procedure is the name of the procedure to be recompiled.

ALTER PROCEDURE
schema.

procedure COMPILE
DEBUG

;

7-62 SQL Reference

ALTER PROCEDURE
Example
To explicitly recompile the procedure CLOSE_ACCT owned by the user HENRY,

issue the following statement:

ALTER PROCEDURE henry.close_acct
 COMPILE;

If Oracle encounters no compilation errors while recompiling CLOSE_ACCT,

CLOSE_ACCT becomes valid. Oracle can subsequently execute it without

recompiling it at run time. If recompiling CLOSE_ACCT results in compilation

errors, Oracle returns an error and CLOSE_ACCT remains invalid.

Oracle also invalidates all dependent objects. These objects include any procedures,

functions, and package bodies that call CLOSE_ACCT. If you subsequently

reference one of these objects without first explicitly recompiling it, Oracle

recompiles it implicitly at run time.

COMPILE causes Oracle to recompile the procedure. The COMPILE keyword is required. Oracle
recompiles the procedure regardless of whether it is valid or invalid.

■ Oracle first recompiles objects upon which the procedure depends, if any of those
objects are invalid.

■ Oracle also invalidates any local objects that depend upon the procedure, such as
procedures that call the recompiled procedure or package bodies that define
procedures that call the recompiled procedure.

■ If Oracle recompiles the procedure successfully, the procedure becomes valid. If
recompiling the procedure results in compilation errors, then Oracle returns an error
and the procedure remains invalid. You can see the associated compiler error
messages with the SQL*Plus command SHOW ERRORS.

For information on how Oracle maintains dependencies among schema objects, including
remote objects, see Oracle8i Concepts.

DEBUG instructs the PL/SQL compiler to generate and store the code for use by the PL/SQL
debugger.

For information on debugging procedures, see Oracle8i Application Developer’s Guide -
Fundamentals.
SQL Statements 7-63

ALTER PROFILE
ALTER PROFILE

Syntax

resource_parameters::=

ALTER PROFILE profile LIMIT
resource_parameters

password_parameters
;

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

integer

K

M

UNLIMITED

DEFAULT
7-64 SQL Reference

ALTER PROFILE
password_parameters::=

Purpose
To add, modify, or remove a resource limit or password management parameter in

a profile.

Changes made to a profile with an ALTER PROFILE statement affect users only in

their subsequent sessions, not in their current sessions.

For information on creating a profile, see "CREATE PROFILE" on page 7-338.

Prerequisites
You must have ALTER PROFILE system privilege to change profile resource limits.

To modify password limits and protection, you must have ALTER PROFILE and

ALTER USER system privileges.

Keywords and Parameters
The keywords and parameters in the ALTER PROFILE statement all have the same

meaning as in the CREATE PROFILE statement. See "CREATE PROFILE" on

page 7-338.

Note: You cannot remove a limit from the DEFAULT profile.

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT
SQL Statements 7-65

ALTER PROFILE
 Examples

Making a Password Unavailable The following statement makes a password

unavailable for reuse for 90 days:

ALTER PROFILE prof
 LIMIT PASSWORD_REUSE_TIME 90
 PASSWORD_REUSE_MAX UNLIMITED;

Setting Default Values The following statement defaults the PASSWORD_REUSE_

TIME value to its defined value in the DEFAULT profile:

ALTER PROFILE prof
 LIMIT PASSWORD_REUSE_TIME DEFAULT
 PASSWORD_REUSE_MAX UNLIMITED;

Limiting Login Attempts and Password Lock Time The following statement alters

profile PROF with FAILED_LOGIN_ATTEMPTS set to 5 and PASSWORD_LOCK_

TIME set to 1:

ALTER PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LOCK_TIME 1;

This statement causes PROF’s account to become locked for 1 day after 5

unsuccessful login attempts.

Changing Password Lifetime and Grace Period The following statement modifies

profile PROF’s PASSWORD_LIFE_TIME to 60 days and PASSWORD_GRACE_

TIME to 10 days:

ALTER PROFILE prof LIMIT
 PASSWORD_LIFE_TIME 60
 PASSWORD_GRACE_TIME 10;

Limiting Concurrent Sessions This statement defines a new limit of 5 concurrent

sessions for the ENGINEER profile:

ALTER PROFILE engineer LIMIT SESSIONS_PER_USER 5;

If the ENGINEER profile does not currently define a limit for SESSIONS_PER_

USER, the above statement adds the limit of 5 to the profile. If the profile already

defines a limit, the above statement redefines it to 5. Any user assigned the

ENGINEER profile is subsequently limited to 5 concurrent sessions.
7-66 SQL Reference

ALTER PROFILE
Removing Limits This statement removes the IDLE_TIME limit from the

ENGINEER profile:

ALTER PROFILE engineer LIMIT IDLE_TIME DEFAULT;

Any user assigned the ENGINEER profile is subject in their subsequent sessions to

the IDLE_TIME limit defined in the DEFAULT profile.

Limiting Idle Time This statement defines a limit of 2 minutes of idle time for the

DEFAULT profile:

ALTER PROFILE default LIMIT IDLE_TIME 2;

This IDLE_TIME limit applies to these users:

■ Users who are not explicitly assigned any profile

■ Users who are explicitly assigned a profile that does not define an IDLE_TIME

limit

This statement defines unlimited idle time for the ENGINEER profile:

ALTER PROFILE engineer LIMIT IDLE_TIME UNLIMITED;

Any user assigned the ENGINEER profile is subsequently permitted unlimited idle

time.
SQL Statements 7-67

ALTER RESOURCE COST
ALTER RESOURCE COST

Syntax

Purpose
To specify or change the formula by which Oracle calculates the total resource cost

used in a session. The weight that you assign to each resource determines how

much the use of that resource contributes to the total resource cost. If you do not

assign a weight to a resource, the weight defaults to 0 and use of the resource

subsequently does not contribute to the cost. The weights you assign apply to all

subsequent sessions in the database.

Oracle calculates the total resource cost by first multiplying the amount of each

resource used in the session by the resource’s weight, and then summing the

products for all four resources. For any session, this cost is limited by the value of

the COMPOSITE_LIMIT parameter in the user’s profile. Both the products and the

total cost are expressed in units called service units.

Although Oracle monitors the use of other resources, only the four resources

shown in the syntax can contribute to the total resource cost for a session. For

information on all resources, see "CREATE PROFILE" on page 7-338.

Once you have specified a formula for the total resource cost, you can limit this cost

for a session with the COMPOSITE_LIMIT parameter of the CREATE PROFILE

statement. If a session’s cost exceeds the limit, Oracle aborts the session and returns

an error. For information on establishing resource limits, see "CREATE PROFILE"

on page 7-338. If you use the ALTER RESOURCE COST statement to change the

weight assigned to each resource, Oracle uses these new weights to calculate the

total resource cost for all current and subsequent sessions.

Prerequisites
You must have ALTER RESOURCE COST system privilege.

ALTER RESOURCE COST

CPU_PER_SESSION

CONNECT_TIME

LOGICAL_READS_PER_SESSION

PRIVATE_SGA

integer ;
7-68 SQL Reference

ALTER RESOURCE COST
Keywords and Parameters

Example
The following statement assigns weights to the resources CPU_PER_SESSION and

CONNECT_TIME:

ALTER RESOURCE COST
 CPU_PER_SESSION 100
 CONNECT_TIME 1;

The weights establish this cost formula for a session:

T = (100 * CPU_PER_SESSION) + (1 * CONNECT_TIME)

where the values of CPU_PER_SESSION and CONNECT_TIME are either values in

the DEFAULT profile or in the profile of the user of the session.

Because the above statement assigns no weight to the resources LOGICAL_READS_

PER_SESSION and PRIVATE_SGA, these resources do not appear in the formula.

If a user is assigned a profile with a COMPOSITE_LIMIT value of 500, a session

exceeds this limit whenever T exceeds 500. For example, a session using 0.04

seconds of CPU time and 101 minutes of elapsed time exceeds the limit. A session

0.0301 seconds of CPU time and 200 minutes of elapsed time also exceeds the limit.

You can subsequently change the weights with another ALTER RESOURCE

statement:

ALTER RESOURCE COST
 LOGICAL_READS_PER_SESSION 2
 CONNECT_TIME 0;

These new weights establish a new cost formula:

CPU_PER_SESSION is the amount of CPU time used by a session measured in hundredth of seconds.

CONNECT_TIME is the elapsed time of a session measured in minutes.

LOGICAL_READS_PER_
SESSION

is the number of data blocks read during a session, including blocks read from
both memory and disk.

PRIVATE_SGA is the number of bytes of private space in the system global area (SGA) used by a
session. This limit applies only if you are using the multi-threaded server
architecture and allocating private space in the SGA for your session.

integer is the weight of each resource.
SQL Statements 7-69

ALTER RESOURCE COST
T = (100 * CPU_PER_SESSION) + (2 * LOGICAL_READ_PER_SECOND)

where the values of CPU_PER_SESSION and LOGICAL_READS_PER_SECOND

are either the values in the DEFAULT profile or in the profile of the user of this

session.

This ALTER RESOURCE COST statement changes the formula in these ways:

■ The statement omits a weight for the CPU_PER_SESSION resource and the

resource was already assigned a weight, so the resource remains in the formula

with its original weight.

■ The statement assigns a weight to the LOGICAL_READS_PER_SESSION

resource, so this resource now appears in the formula.

■ The statement assigns a weight of 0 to the CONNECT_TIME resource, so this

resource no longer appears in the formula.

■ The statement omits a weight for the PRIVATE_SGA resource and the resource

was not already assigned a weight, so the resource still does not appear in the

formula.
7-70 SQL Reference

ALTER ROLE
ALTER ROLE

Syntax

Purpose
To change the authorization needed to enable a role. For information on creating a

role, see "CREATE ROLE" on page 7-344. For information on enabling or disabling

a role for your session, see "SET ROLE" on page 7-570.

Prerequisites
You must either have been granted the role with the ADMIN OPTION or have

ALTER ANY ROLE system privilege.

Before you alter a role to IDENTIFIED GLOBALLY, you must:

■ Revoke all grants of roles identified externally to the role and

■ Revoke the grant of the role from all users, roles, and PUBLIC.

The one exception to this rule is that you should not revoke the role from the user

who is currently altering the role.

Keywords and Parameters
The keywords and parameters in the ALTER ROLE statement all have the same

meaning as in the CREATE ROLE statement. See "CREATE ROLE" on page 7-344.

ALTER ROLE role

NOT IDENTIFIED

IDENTIFIED

BY password

EXTERNALLY

GLOBALLY

;

SQL Statements 7-71

ALTER ROLE
Examples
The following statement changes the role ANALYST to IDENTIFIED GLOBALLY:

ALTER ROLE analyst IDENTIFIED GLOBALLY;

This statement changes the password on the TELLER role to LETTER:

ALTER ROLE teller
 IDENTIFIED BY letter;

Users granted the TELLER role must subsequently enter the new password "letter"

to enable the role.

Note: If you have the ALTER ANY ROLE system privilege and

you change a role that is IDENTIFIED GLOBALLY to IDENTIFIED

BY password, IDENTIFIED EXTERNALLY, or NOT IDENTIFIED,

then Oracle grants you the altered role with the ADMIN OPTION,

as it would have if you had created the role identified nonglobally.
7-72 SQL Reference

ALTER ROLLBACK SEGMENT
ALTER ROLLBACK SEGMENT

Syntax

storage_clause : See "storage_clause" on page 7-575.

Purpose
To bring a rollback segment online or offline, to change its storage characteristics,

or to shrink it to an optimal or specified size.

For information on creating a rollback segment, see "CREATE ROLLBACK

SEGMENT" on page 7-346.

Prerequisites
You must have ALTER ROLLBACK SEGMENT system privilege.

Keywords and Parameters

rollback_segment specifies the name of an existing rollback segment.

ONLINE brings the rollback segment online. When you create a rollback segment, it is initially
offline and not available for transactions. This clause brings the rollback segment online,
making it available for transactions by your instance. You can also bring a rollback
segment online when you start your instance with the initialization parameter
ROLLBACK_SEGMENTS.

ALTER ROLLBACK SEGMENT rollback_segment

ONLINE

OFFLINE

storage_clause

SHRINK
TO integer

K

M

;

SQL Statements 7-73

ALTER ROLLBACK SEGMENT
Examples
This statement brings the rollback segment RSONE online:

ALTER ROLLBACK SEGMENT rsone ONLINE;

OFFLINE takes the rollback segment offline.

■ If the rollback segment does not contain any information needed to roll back an
active transactions, Oracle takes it offline immediately.

■ If the rollback segment does contain information for active transactions, Oracle
makes the rollback segment unavailable for future transactions and takes it offline
after all the active transactions are committed or rolled back.

Once the rollback segment is offline, it can be brought online by any instance.

To see whether a rollback segment is online or offline, query the data dictionary view
DBA_ROLLBACK_SEGS. Online rollback segments have a STATUS value of IN_USE.
Offline rollback segments have a STATUS value of AVAILABLE. For more information on
making rollback segments available and unavailable, see Oracle8i Administrator’s Guide.

Restriction: You cannot take the SYSTEM rollback segment offline.

storage_clause changes the rollback segment’s storage characteristics. See the "storage_clause" on
page 7-575 for syntax and additional information.

Restriction: You cannot change the values of the INITIAL and MINEXTENTS for an
existing rollback segment.

SHRINK attempts to shrink the rollback segment to an optimal or specified size. The success and
amount of shrinkage depend on the available free space in the rollback segment and how
active transactions are holding space in the rollback segment.

The value of integer is in bytes, unless you specify K or M for kilobytes or megabytes.

If you do not specify TO integer, then the size defaults to the OPTIMAL value of the
storage_clause of the CREATE ROLLBACK SEGMENT statement that created the rollback
segment. If OPTIMAL was not specified, then the size defaults to the MINEXTENTS
value of the storage_clause of the CREATE ROLLBACK SEGMENT statement.

Regardless of whether you specify TO integer:

■ The value to which Oracle shrinks the rollback segment is valid for the execution of
the statement. Thereafter, the size reverts to the OPTIMAL value of the CREATE
ROLLBACK SEGMENT statement.

■ The rollback segment cannot shrink to less than two extents.

To determine the actual size of a rollback segment after attempting to shrink it, query the
BYTES, BLOCKS, and EXTENTS columns of the DBA_SEGMENTS view.

Restriction: For a parallel server, you can shrink only rollback segments that are online to
your instance.
7-74 SQL Reference

ALTER ROLLBACK SEGMENT
This statement changes the STORAGE parameters for RSONE:

ALTER ROLLBACK SEGMENT rsone
 STORAGE (NEXT 1000 MAXEXTENTS 20);

This statement attempts to resize a rollback segment to 100 megabytes:

ALTER ROLLBACK SEGMENT rsone
 SHRINK TO 100 M;
SQL Statements 7-75

ALTER SEQUENCE
ALTER SEQUENCE

Syntax

Purpose
To change the increment, minimum and maximum values, cached numbers, and

behavior of an existing sequence. This statement affects only future sequence

numbers. For additional information on sequences, see "CREATE SEQUENCE" on

page 7-350.

Prerequisites
The sequence must be in your own schema, or you must have the ALTER object

privilege on the sequence, or you must have the ALTER ANY SEQUENCE system

privilege.

Keywords and Parameters
The keywords and parameters in this statement serve the same purposes described

in "CREATE SEQUENCE" on page 7-350. In addition:

ALTER SEQUENCE
schema .

sequence

INCREMENT BY integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER

;

7-76 SQL Reference

ALTER SEQUENCE
■ To restart the sequence at a different number, you must drop and re-create it

(see "DROP SEQUENCE" on page 7-471).

■ If you change the INCREMENT BY value before the first invocation of NEXTVAL,

some sequence numbers will be skipped. Therefore, if you want to retain the

original START WITH value, you must drop the sequence and re-create it with

the original START WITH value and the new INCREMENT BY value.

■ Oracle performs some validations. For example, a new MAXVALUE cannot be

imposed that is less than the current sequence number.

Examples
This statement sets a new maximum value for the ESEQ sequence:

ALTER SEQUENCE eseq
 MAXVALUE 1500;

This statement turns on CYCLE and CACHE for the ESEQ sequence:

ALTER SEQUENCE eseq
 CYCLE
 CACHE 5;
SQL Statements 7-77

ALTER SESSION
7SQL Statements

ALTER SESSION

Syntax

set_clause ::=

Purpose
To specify or modify any of the conditions or parameters that affect your

connection to the database. The statement stays in effect until you disconnect from

the database.

Prerequisites
To enable and disable the SQL trace facility, you must have ALTER SESSION

system privilege.

You do not need any privileges to perform the other operations of this statement

unless otherwise indicated.

ALTER SESSION

ADVISE

COMMIT

ROLLBACK

NOTHING

CLOSE DATABASE LINK dblink

ENABLE

DISABLE
COMMIT IN PROCEDURE

ENABLE

DISABLE

FORCE

PARALLEL
DML

DDL

PARALLEL integer

set_clause

;

SET parameter_name = parameter_value
7-78 SQL Reference

ALTER SESSION
Keywords and Parameters

ADVISE sends advice to a remote database to force a distributed transaction. The advice appears in
the ADVICE column of the DBA_2PC_PENDING view on the remote database (the value ’C’
for COMMIT, ’R’ for ROLLBACK, and ’ ’ for NOTHING). If the transaction becomes in
doubt, the administrator of that database can use this advice to decide whether to commit or
roll back the transaction.

You can send different advice to different remote databases by issuing multiple ALTER
SESSION statements with the ADVISE clause in a single transaction. Each such statement
sends advice to the databases referenced in the following statements in the transaction until
another such statement is issued. For more information on distributed transactions and how

to decide whether to commit or roll back in-doubt distributed transactions, see Oracle8i
Distributed Database Systems.

CLOSE
DATABASE
LINK

closes the database link dblink. When you issue a statement that uses a database link, Oracle
creates a session for you on the remote database using that link. The connection remains
open until you end your local session or until the number of database links for your session
exceeds the value of the initialization parameter OPEN_LINKS. If you want to reduce the
network overhead associated with keeping the link open, use this clause to close the link
explicitly if you do not plan to use it again in your session. You must first close all cursors
that use the link and then end your current transaction if it uses the link.

ENABLE |
DISABLE
COMMIT IN
PROCEDURE

Procedures and stored functions written in PL/SQL can issue COMMIT and ROLLBACK
statements. If your application would be disrupted by a COMMIT or ROLLBACK statement
not issued directly by the application itself, use the DISABLE form of this clause to prevent
procedures and stored functions called during your session from issuing these statements.

You can subsequently allow procedures and stored functions to issue COMMIT and
ROLLBACK statements in your session by issuing the ENABLE form of this clause.

Some applications (such as SQL*Forms) automatically prohibit COMMIT and ROLLBACK
statements in procedures and stored functions. Refer to your application documentation.

Note: This statement does not apply to database triggers. Triggers can never issue COMMIT
or ROLLBACK statements.

PARALLEL
DML | DDL

specifies whether all subsequent DML or DDL transactions in the session will be considered
for parallel execution. This clause enables you to override the degree of parallelism of tables
during the current session without changing the tables themselves. You can execute this
clause only between committed transactions. Uncommitted transactions must either be
committed or rolled back prior to executing this clause.

ENABLE executes subsequent statements in the session in parallel. This is the
default for DDL statements.
SQL Statements 7-79

ALTER SESSION
■ DML: executes the session’s DML statements in parallel mode if a
parallel hint or a parallel clause is specified.

■ DDL: executes the session’s DDL statements in parallel mode if a
parallel clause is specified.

Restriction: You cannot specify the optional PARALLEL integer with
ENABLE.

DISABLE specifies that subsequent statements will be executed serially. This is the
default for DML statements.

■ DML: executes the session’s DML statements serially.

■ DDL: executes the session’s DDL statements serially.

Restriction: You cannot specify the optional PARALLEL integer with
DISABLE.

FORCE forces parallel execution of subsequent statements in the session if no
parallel DML restrictions are violated (see below). If no parallel clause or
hint is specified, then a default degree of parallelism is used. This clause
overrides any parallel_clause specified in subsequent statements in the
session, but is overridden by a parallel hint.

Using FORCE automatically causes all tables created in this session to be
created with a default level of parallelism. The effect is the same as if you
had specified the parallel_clause (with default degree) with the CREATE
TABLE statement.

■ DML: executes subsequent DML statements in the session with the
default degree of parallelism, unless a specific degree is specified in
this clause.

■ DDL: executes subsequent DDL statements in the session with the
default degree of parallelism, unless a specific degree is specified in
this clause. Resulting database objects will have associated with
them the prevailing degree of parallelism.

■ PARALLEL integer: explicitly specifies a degree of parallelism,
which overrides any parallel_clause specified in a subsequent DDL
statement in the session, but is overridden by any parallel hint
specified in a subsequent DML statement.

The following types of DML operations are not parallelized regardless of this clause:

■ operations on clustered tables

■ operations with embedded functions that either write or read database or package states

■ operations on tables with triggers that could fire

■ operations on tables or schema objects containing object types, or LONG or LOB
datatypes.

For a detailed description of parallel DML features and hints, see Oracle8i Tuning.
7-80 SQL Reference

ALTER SESSION
set_clause sets the session parameters that follow. You can set values for multiple parameters in the
same set_clause.

CAUTION: Unless otherwise indicated, the parameters described here are initialization
parameters, and the descriptions indicate only the general nature of the parameters.
Before changing the values of initialization parameters, please refer to their full
description in Oracle8i Reference or Oracle8i National Language Support Guide.

CONSTRAINT{S} = {IMMEDIATE | DEFERRED | DEFAULT }

determines when conditions specified by a deferrable constraint are enforced.
CONSTRAINT{S} is a session parameter only, not an initialization parameter.

■ IMMEDIATE indicates that the conditions specified by the deferrable constraint are
checked immediately after each DML statement. This setting is equivalent to issuing the
SET CONSTRAINTS ALL IMMEDIATE statement at the beginning of each transaction
in your session. See the IMMEDIATE parameter of "SET CONSTRAINT(S)" on
page 7-568.

■ DEFERRED indicates that the conditions specified by the deferrable constraint are
checked when the transaction is committed. This setting is equivalent to issuing the SET
CONSTRAINTS ALL DEFERRED statement at the beginning of each transaction in your

session. See the DEFERRED parameter of "SET CONSTRAINT(S)" on page 7-568.

■ DEFAULT restores all constraints at the beginning of each transaction to their initial state
of DEFERRED or IMMEDIATE.

CREATE_STORED_OUTLINES = { TRUE | FALSE | ’category_name’ }

determines whether Oracle should automatically create and store an outline for each query
submitted during the session. CREATE_STORED_OUTLINES is not an initialization
parameter.

■ TRUE enables automatic outline creation for subsequent queries in the same session.
These outlines receive a unique system-generated name and are stored in the DEFAULT
category. If a particular query already has an outline defined for it in the DEFAULT
category, that outline will remain and a new outline will not be created.

■ FALSE disables automatic outline creation during the session. This is the default.

■ category_name has the same behavior as TRUE except that any outline created during the
session is stored in the category_name category.

CURRENT_SCHEMA = schema

changes the current schema of the session to the specified schema. Subsequent unqualified
references to schema objects during the session will resolve to objects in the specified
schema. The setting persists for the duration of the session or until you issue another ALTER
SESSION SET CURRENT_SCHEMA statement.
SQL Statements 7-81

ALTER SESSION
This setting offers a convenient way to perform operations on objects in a schema other than
that of the current user without having to qualify the objects with the schema name. This
setting changes the current schema, but it does not change the session user or the current
user, nor does it give you any additional system or object privileges for the session. For more
information on this parameter, see Oracle8i Application Developer’s Guide - Fundamentals.

DB_BLOCK_CHECKING = {TRUE | FALSE}

controls whether data block checking is done. The default is FALSE, for compatibility with
earlier releases where block checking is disabled as a default.

DB_FILE_MULTIBLOCK_READ_COUNT = integer

specifies with integer the maximum number of blocks read in one I/O operation during a
sequential scan. The default is 8.

FAST_START_IO_TARGET

specifies the target number of IOs (reads and writes) to and from buffer cache that Oracle
should perform upon crash or instance recovery. Oracle continuously calculates the actual
number of IOs that would be needed for recovery and compares that number against the
target. If the actual number is greater than the target, Oracle attempts to write additional
dirty buffers to advance the checkpoint, while minimizing the affect on performance.

For information on how to tune this parameter, see Oracle8i Tuning.

FLAGGER = { ENTRY | INTERMEDIATE | FULL | OFF }

specifies FIPS flagging, which causes an error message to be generated when a SQL
statement issued is an extension of ANSI SQL92. In Oracle, there is currently no difference
between Entry, Intermediate, or Full level flagging. Once flagging is set in a session, a
subsequent ALTER SESSION SET FLAGGER statement will work, but generates the
message, ORA-00097. This allows FIPS flagging to be altered without disconnecting the
session. OFF turns off flagging.

GLOBAL_NAMES = { TRUE | FALSE }

When you start an instance, Oracle determines whether to enforce global name resolution for
remote objects accessed in SQL statements based on the value of the initialization parameter
GLOBAL_NAMES. This parameter enables or disables global name resolution for the
duration of the session. TRUE enables the enforcement of global names. FALSE disables the
enforcement of global names. You can also enable or disable global name resolution for your
instance with the GLOBAL_NAMES parameter of the ALTER SYSTEM statement.

Oracle recommends that you enable global name resolution if you use or plan to use
distributed processing. For more information on global name resolution and how Oracle
enforces it, see "Referring to Objects in Remote Databases" on page 2-74 and Oracle8i
Distributed Database Systems.

HASH_AREA_SIZE = integer

specifies in bytes the amount of memory to use for hash join operations. The default is twice
the value of the SORT_AREA_SIZE initialization parameter.
7-82 SQL Reference

ALTER SESSION
HASH_JOIN_ENABLED = {TRUE | FALSE}

enables or disables the use of the hash join operation in queries. The default is TRUE, which
enables hash joins.

HASH_MULTIBLOCK_IO_COUNT = integer

specifies the number of data blocks to read and write during a hash join operation. The value
multiplied by the DB_BLOCK_SIZE initialization parameter should not exceed 64 K. The
default value for this parameter is 1. If the multi-threaded server is used, the value is always
1, and any value specified here is ignored.

INSTANCE = integer

in a parallel server, accesses database files as if the session were connected to the instance
specified by integer. INSTANCE is a session parameter only, not an initialization parameter.
For optimum performance, each instance of a parallel server uses its own private rollback
segments, freelist groups, and so on. In a parallel server, you normally connect to a
particular instance and access data that is partitioned primarily for your use. If you must
connect to another instance, the data partitioning can be lost. Setting this parameter lets you
access an instance as if you were connected to your own instance.

ISOLATION_LEVEL = { SERIALIZABLE | READ COMMITTED }

specifies how transactions containing database modifications are handled. ISOLATION_
LEVEL is a session parameter only, not an initialization parameter.

■ SERIALIZABLE indicates that transactions in the session use the serializable transaction
isolation mode as specified in SQL92. That is, if a serializable transaction attempts to
execute a DML statement that updates rows currently being updated by another
uncommitted transaction at the start of the serializable transaction, then the DML
statement fails. A serializable transaction can see its own updates.

■ READ COMMITTED indicates that transactions in the session will use the default Oracle
transaction behavior. Thus, if the transaction contains DML that requires row locks held
by another transaction, then the DML statement will wait until the row locks are
released.

LOG_ARCHIVE_DEST_n = {null_string | {LOCATION=pathname | SERVICE=servicename}

 [MANDATORY | OPTIONAL] [REOPEN[=retry_time_in_seconds]]}

specifies up to five session-specific valid operating system pathnames or Oracle service
names (plus other related options) as destinations for archive redo log file groups (n =

integers 1 through 5). For a description of the options, refer to Oracle8i Reference.

Restrictions: If you set a value for this parameter,

■ You cannot have definitions for the parameters LOG_ARCHIVE_DEST and LOG_
ARCHIVE_DUPLEX_DEST in your initialization parameter file, nor can you set values for
those parameters with the ALTER SYSTEM statement.

■ You cannot start archiving to a specific location using the ALTER SYSTEM ARCHIVE
LOG TO location statement.
SQL Statements 7-83

ALTER SESSION
LOG_ARCHIVE_DEST_STATE_n = {ENABLE | DEFER}

specifies the session-specific state associated with the corresponding LOG_ARCHIVE_DEST_
n parameter.

■ ENABLE specifies that any associated valid destination can be used for archiving. This is
the default.

■ DEFER specifies that Oracle will not consider for archiving any destination associated
with the corresponding LOG_ARCHIVE_DEST_n parameter.

LOG_ARCHIVE_MIN_SUCCEED_DEST = integer

specifies the session-specific minimum number of destinations that must succeed in order
for the online log file to be available for reuse.

MAX_DUMP_FILE_SIZE = { size | UNLIMITED }

specifies the upper limit of trace dump file size. Specify the maximum size as either a
nonnegative integer that represents the number of blocks, or as UNLIMITED. If you specify
UNLIMITED, no upper limit is imposed.

NLS parameters: When you start an instance, Oracle establishes support based on the values of initialization
parameters that begin with "NLS". You can query the dynamic performance table V$NLS_PARAMETERS to see
the current NLS attributes for your session. For more information about NLS parameters, see Oracle8i National
Language Support Guide.

NLS_CALENDAR = ’text’

explicitly specifies a new calendar type.

NLS_COMP = ’text’

specifies that linguistic comparison is to be used according to the NLS_SORT parameter. This
parameter obviates the need to specify NLS_SORT in SQL statements.

NLS_CURRENCY = ’text’

explicitly specifies a new value for the L number format element (the local currency symbol).
The symbol cannot exceed 10 characters.

NLS_DATE_FORMAT = ’fmt’

explicitly specifies a new default date format. The ’fmt’ value must be a date format model as
specified in the section "Date Format Elements" on page 2-40.

NLS_DATE_LANGUAGE = language

explicitly changes the language for names and abbreviations of days and months, and for
spelled-out values of other date format elements.

NLS_ISO_CURRENCY = territory

explicitly specifies the territory whose ISO currency symbol should be used. That territory’s
currency symbol then becomes the value of the C number format element.
7-84 SQL Reference

ALTER SESSION
NLS_LANGUAGE = language

changes the language in which Oracle returns errors and other messages. This parameter
also implicitly specifies new values for these items:

■ language for day and month names and abbreviations and spelled values of other
elements

■ linguistic sort sequences or binary sorts

■ B.C. and A.D. indicators

■ A.M. and P.M. meridian indicators

NLS_NUMERIC_CHARACTERS = ’text’

explicitly specifies a new decimal character and group separator. The ’text’ value must have
this form:

’dg’

where: d is the new decimal character, and g is the new group separator.

The decimal character and the group separator must be two different single-byte characters,
and cannot be a numeric value or any of the following characters: plus sign ("+"), minus sign
or hyphen ("–"), less-than sign ("<"), or greater-than sign (">").

If the decimal character is not a period (.), you must use single quotation marks to enclose all
number values that appear in expressions in your SQL statements. When not using a period
for the decimal point, use the TO_NUMBER function to ensure that a valid number is
retrieved.

NLS_SORT = { sort | BINARY}

changes the sequence into which Oracle sorts character values. sort specifies the name of a
linguistic sort sequence. BINARY specifies a binary sort. The default is BINARY.

NLS_TERRITORY = territory

implicitly specifies new values for these items:

■ default date format

■ decimal character and group separators

■ local currency symbol

■ ISO currency symbol

■ first day of the week for D date format element

NLS_DUAL_CURRENCY = ’text’

explicitly specifies a new "Euro" (or other) dual currency symbol. The value of text is
returned by the number format element U (see "Number Format Elements" on page 2-36);
text cannot exceed 10 characters.
SQL Statements 7-85

ALTER SESSION
OBJECT_CACHE_MAX_SIZE_PERCENT = integer

specifies the percentage of the optimal cache size that the session object cache can grow
beyond the optimal size. The default is 10.

OBJECT_CACHE_OPTIMAL_SIZE = integer

specifies (in kilobytes) the size to which the session object cache is reduced when it exceeds
maximum size. The default is 100.

OPTIMIZER_INDEX_CACHING = integer

lets you tune the optimizer to favor nested loops joins. The value of integer indicates the
percentage of the index blocks assumed to be in the cache.

OPTIMIZER_INDEX_COST_ADJ = integer

let you tune optimizer behavior for access path selection to make the optimizer more likely
to select an index access path than a full table scan. The value of integer is a percentage
indicating the importance the optimizer attaches to the index path compared with "normal".
The default is 100 (indicating 100%), which makes the optimizer cost index access paths at
the regular cost.

OPTIMIZER_MAX_PERMUTATIONS = integer

lets you limit the amount of work the optimizer expends on optimizing queries with large
joins. The value of integer is the number of permutations of the tables the optimizer will
consider with large joins.

OPTIMIZER_MODE = { ALL_ROWS | FIRST_ROWS | RULE | CHOOSE }

specifies the approach and mode of the optimizer for your session. For information on how
to choose a goal for the cost-based approach based on the characteristics of your application,
see Oracle8i Concepts and Oracle8i Tuning.

■ ALL_ROWS specifies the cost-based approach and optimizes for best throughput.

■ FIRST_ROWS specifies the cost-based approach and optimizes for best response time.

■ RULE specifies the rule-based approach. (The rule-based optimizer does not use
function-based indexes.)

■ CHOOSE causes the optimizer to choose an optimization approach based on the presence
of statistics in the data dictionary.

OPTIMIZER_PERCENT_PARALLEL = integer

specifies the amount of parallelism the optimizer uses in its cost functions. The default is 0
(no parallelism).

OPTIMIZER_SEARCH_LIMIT = integer

specifies the search limit for the optimizer. The default is 5.
7-86 SQL Reference

ALTER SESSION
PARALLEL_BROADCAST_ENABLED = { TRUE | FALSE }

lets you enhance performance during hash and merge joins.

PARALLEL_INSTANCE_GROUP = ’ text ’

identifies the parallel instance group to be used for spawning parallel query slaves. The
default is all active instances. Set this parameter only if you are running Oracle Parallel
Server in parallel mode.

PARALLEL_MIN_PERCENT = integer

specifies the minimum percent of threads required for parallel query. The default is 0 (no
parallelism).

PARTITION_VIEW_ENABLED = { TRUE | FALSE }

When set to TRUE, this parameter causes the optimizer to skip unnecessary table accesses in
a partition view.

Note: For important information on partition views, see "Partition Views" on page 7-431.

PLSQL_V2_COMPATIBILITY = { TRUE | FALSE }

if TRUE, modifies the compile-time behavior of PL/SQL programs to allow language

constructs that are illegal in Oracle8 and Oracle8i (PL/SQL V3), but were legal in Oracle7
(PL/SQL V2). FALSE disallows illegal Oracle7 PL/SQL V2 constructs. This is the default.

See the PL/SQL User’s Guide and Reference and Oracle8i Reference for more information about
this session parameter.

REMOTE_DEPENDENCIES_MODE = { TIMESTAMP | SIGNATURE }

specifies how dependencies of remote stored procedures are handled by the session. For
more information, refer to Oracle8i Application Developer’s Guide - Fundamentals.

QUERY_REWRITE_ENABLED = { TRUE | FALSE }

enables or disables query rewrite on all materialized views that have not been explicitly
disabled. Query rewrite is disabled by default. It is also disabled by rule-based optimization
(that is, if the OPTIMIZER_MODE parameter is set to RULE).

This parameter has the following additional effect on the use of function-based indexes:

■ If this parameter is set to TRUE, Oracle will use function-based indexes to derive values
of SQL expressions. If in addition the QUERY_REWRITE_INTEGRITY parameter is set to
any value other than ENFORCED, Oracle will derive such values even if the index is
based on a user-defined (rather than SQL) function.

■ If this parameter is set to FALSE, Oracle will not use function-based indexes to derive
values of SQL expressions, but it will use such indexes to obtain values of real columns
in the index.
SQL Statements 7-87

ALTER SESSION
Enabling or disabling query rewrite does not affect descending indexes.

For more information on query rewrite, see Oracle8i Tuning.

QUERY_REWRITE_INTEGRITY = { ENFORCED | TRUSTED | STALE_TOLERATED }

sets the minimum consistency level for query rewrite. The following values are permitted:

■ ENFORCED is the safest level. It relies only on system-enforced relationships so that data
integrity and correctness can be guaranteed. This level ensures that query rewrite will
not use any function-based index or any materialized view that includes a call to a
user-defined function.

In addition, this level ensures that query rewrite will not use any dimensional
information or any constraints enabled with the RELY keyword.

■ TRUSTED specifies that materialized views created with the ON PREBUILT TABLE
clause are supported, and trusted but unenforced join relationships are accepted. Query
rewrite uses join information from dimensions and enables unenforced constraints with
the RELY keyword.

■ STALE_TOLERATED specifies that any stale, usable materialized view may be used.

This parameter does not affect descending indexes.

For more information on query rewrite integrity level, see Oracle8i Tuning. For information
on dimensions, see "CREATE DIMENSION" on page 7-259. For information on constraints
enabled with the RELY keyword, see "constraint_clause" on page 7-217.

SESSION_CACHED_CURSORS = integer

specifies the number of frequently used cursors that can be retained in the cache. The cursors
can be open or closed, which is particularly useful for Oracle tools that close all session
cursors associated with a form when switching to another form. In such cases, frequently
used cursors do not have to be reparsed. A least recently used algorithm ages out entries in
the cache to make room for new entries when needed. For more information on session
cursor caching, see Oracle8i Tuning.

SKIP_UNUSABLE_INDEXES = { TRUE | FALSE }

controls the use and reporting of tables with unusable indexes or index partitions.

■ TRUE disables error reporting of indexes marked UNUSABLE. Allows inserts, deletes,
and updates to tables with unusable indexes or index partitions.

■ FALSE enables error reporting of indexes marked UNUSABLE. Does not allow inserts,
deletes, and updates to tables with unusable indexes or index partitions. This is the
default.

SORT_AREA_RETAINED_SIZE = integer

specifies (in bytes) the maximum amount of memory that each sort operation will retain
after the first fetch is done, until the cursor ends. The default is the value of the SORT_
AREA_SIZE parameter.
7-88 SQL Reference

ALTER SESSION
Examples

PARALLEL Example Issue the following statement to enable parallel DML mode

for the current session:

ALTER SESSION ENABLE PARALLEL DML;

SORT_AREA_SIZE = integer

specifies (in bytes) the maximum amount of memory to use for each sort operation. The
default is OS-dependent.

SORT_MULTIBLOCK_READ_COUNT = integer

specifies the number of database blocks to read each time a sort performs a read from
temporary segments. The default is 2.

SQL_TRACE = { TRUE | FALSE }

The SQL trace facility generates performance statistics for the processing of SQL statements.
When you begin a session, Oracle enables or disables the SQL trace facility based on the
value of this parameter. You can subsequently enable or disable the SQL trace facility for
your own session with the SQL_TRACE parameter of the ALTER SESSION statement. TRUE
enables the SQL trace facility. FALSE disables it.

For more information on the SQL trace facility, including how to format and interpret its
output, see Oracle8i Tuning.

STAR_TRANSFORMATION_ENABLED = { TRUE | FALSE }

determines whether a cost-based query transformation will be applied to star queries. The
default is FALSE.

TIMED_STATISTICS = {TRUE | FALSE }

specifies whether the server requests the time from the operating system when generating
time-related statistics. The default is FALSE.

USE_STORED_OUTLINES = { TRUE | FALSE | ’category_name’ }

determines whether the optimizer will use stored outlines to generate execution plans. USE_
STORED_OUTLINES is not an initialization parameter.

■ TRUE causes the optimizer to use outlines stored in the DEFAULT category when
compiling requests.

■ FALSE specifies that the optimizer should not use stored outlines. This is the default.

■ category_name causes the optimizer to use outlines stored in the category_name category
when compiling requests.
SQL Statements 7-89

ALTER SESSION
ADVISE Example The following transaction inserts an employee record into the

EMP table on the database identified by the database link SITE1 and deletes an

employee record from the EMP table on the database identified by SITE2:

ALTER SESSION
 ADVISE COMMIT;

INSERT INTO emp@site1
 VALUES (8002, ’FERNANDEZ’, ’ANALYST’, 7566,
 TO_DATE(’04-OCT-1992’, ’DD-MON-YYYY’), 3000, NULL, 20);

ALTER SESSION
 ADVISE ROLLBACK;

DELETE FROM emp@site2
 WHERE empno = 8002;

COMMIT;

This transaction has two ALTER SESSION statements with the ADVISE clause. If

the transaction becomes in doubt, SITE1 is sent the advice ’COMMIT’ by virtue of

the first ALTER SESSION statement and SITE2 is sent the advice ’ROLLBACK’ by

virtue of the second.

CLOSE DATABASE LINK Example This statement updates the employee table on

the SALES database using a database link, commits the transaction, and explicitly

closes the database link:

UPDATE emp@sales
 SET sal = sal + 200
 WHERE empno = 9001;

COMMIT;

ALTER SESSION
 CLOSE DATABASE LINK sales;

Date Format Example The following statement dynamically changes the default

date format for your session to ’YYYY MM DD-HH24:MI:SS’:

ALTER SESSION
 SET NLS_DATE_FORMAT = ’YYYY MM DD HH24:MI:SS’;

Oracle uses the new default date format:

SELECT TO_CHAR(SYSDATE) Today
7-90 SQL Reference

ALTER SESSION
 FROM DUAL;

TODAY

1997 08 12 14:25:56

Date Language Example The following statement changes the language for date

format elements to French:

ALTER SESSION
 SET NLS_DATE_LANGUAGE = French;

SELECT TO_CHAR(SYSDATE, ’Day DD Month YYYY’) Today
 FROM DUAL;

TODAY

Mardi 28 Février 1997

ISO Currency Example The following statement dynamically changes the ISO

currency symbol to the ISO currency symbol for the territory America:

ALTER SESSION
 SET NLS_ISO_CURRENCY = America;

SELECT TO_CHAR(SUM(sal), ’C999G999D99’) Total
 FROM emp;

TOTAL

USD29,025.00

Decimal Character and Group Separator Example The following statement

dynamically changes the decimal character to comma (,) and the group separator to

period (.):

ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ’,.’ ;

Oracle returns these new characters when you use their number format elements:

SELECT TO_CHAR(SUM(sal), ’L999G999D99’) Total FROM emp ;

TOTAL

FF29.025,00
SQL Statements 7-91

ALTER SESSION
NLS Currency Example The following statement dynamically changes the local

currency symbol to ’DM’:

ALTER SESSION
 SET NLS_CURRENCY = ’DM’;

SELECT TO_CHAR(SUM(sal), ’L999G999D99’) Total
 FROM emp;

TOTAL

DM29.025,00

NLS Language Example The following statement dynamically changes to French

the language in which error messages are displayed:

ALTER SESSION
 SET NLS_LANGUAGE = FRENCH;

SELECT * FROM DMP;

ORA-00942: Table ou vue inexistante

Linguistic Sort Example The following statement dynamically changes the

linguistic sort sequence to Spanish:

ALTER SESSION
 SET NLS_SORT = XSpanish;

Oracle sorts character values based on their position in the Spanish linguistic sort

sequence.

SQL Trace Example To enable the SQL trace facility for your session, issue the

following statement:

ALTER SESSION
 SET SQL_TRACE = TRUE;

Query Rewrite Example This statement enables query rewrite in the current

session for all materialized views that have not been explicitly disabled:

ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE;
7-92 SQL Reference

ALTER SNAPSHOT
ALTER SNAPSHOT

In Oracle8i, "snapshots" are synonymous with "materialized views." Please see

"ALTER MATERIALIZED VIEW / SNAPSHOT" on page 7-45.
SQL Statements 7-93

ALTER SNAPSHOT LOG
ALTER SNAPSHOT LOG

In Oracle8i, "snapshots" are synonymous with "materialized views." Please see

"ALTER MATERIALIZED VIEW LOG / SNAPSHOT LOG" on page 7-54.
7-94 SQL Reference

ALTER SYSTEM
ALTER SYSTEM

Syntax

ALTER SYSTEM

archive_log_clause

CHECKPOINT

GLOBAL

LOCAL

CHECK DATAFILES

GLOBAL

LOCAL

DISCONNECT SESSION ’ integer1 , integer2 ’ POST_TRANSACTION

ENABLE

DISABLE
DISTRIBUTED RECOVERY

ENABLE

DISABLE
RESTRICTED SESSION

FLUSH SHARED_POOL

KILL SESSION ’ integer1 , integer2 ’

SWITCH LOGFILE

SUSPEND

RESUME

set_clause

;

SQL Statements 7-95

ALTER SYSTEM
archive_log_clause ::=

set_clause ::=

Purpose
To dynamically alter your Oracle instance. The settings stay in effect as long as the

database is mounted.

Prerequisites
You must have ALTER SYSTEM system privilege.

To specify the archive_log_clause, you must have the OSDBA or OSOPER role

enabled.

Keywords and Parameters

archive_log_
clause

manually archives redo log files or enables or disables automatic archiving. To use this
clause, your instance must have the database mounted. The database can be either open or
closed unless otherwise noted.

ARCHIVE LOG
THREAD integer

SEQUENCE integer

CHANGE integer

CURRENT

GROUP integer

LOGFILE ’ filename ’

NEXT

ALL

START

TO ’ location ’

STOP

SET parameter_name = parameter_value
7-96 SQL Reference

ALTER SYSTEM
Notes:

■ You can also manually archive redo log file groups with the ARCHIVE LOG SQL*Plus
statement. For information on this statement, see the SQL*Plus User’s Guide and Reference.

■ You can also have Oracle archive redo log files groups automatically. For information on
automatic archiving, see Oracle8i Administrator’s Guide. You can always manually
archive redo log file groups regardless of whether automatic archiving is enabled.

THREAD specifies the thread containing the redo log file group to be archived. Set
this parameter only if you are using Oracle with the Parallel Server
option in parallel mode.

SEQUENCE manually archives the online redo log file group identified by the log
sequence number integer in the specified thread. If you omit the
THREAD parameter, Oracle archives the specified group from the thread
assigned to your instance.

CHANGE manually archives the online redo log file group containing the redo log
entry with the system change number (SCN) specified by integer in the
specified thread. If the SCN is in the current redo log file group, Oracle
performs a log switch. If you omit the THREAD parameter, Oracle
archives the groups containing this SCN from all enabled threads. You
can use this clause only when your instance has the database open.

CURRENT manually archives the current redo log file group of the specified thread,
forcing a log switch. If you omit the THREAD parameter, Oracle archives
all redo log file groups from all enabled threads, including logs previous
to current logs. You can use this clause only when your instance has the
database open.

Note: If you specify a redo log file group for archiving with the CHANGE or CURRENT
clause, and earlier redo log file groups are not yet archived, Oracle archives all unarchived
groups up to and including the specified group.

GROUP manually archives the online redo log file group with the GROUP value
specified by integer. You can determine the GROUP value for a redo log
file group by examining the data dictionary view DBA_LOG_FILES. If
you specify both the THREAD and GROUP parameters, the specified
redo log file group must be in the specified thread.

LOGFILE manually archives the online redo log file group containing the redo log
file member identified by ’filename’. If you specify both the THREAD and
LOGFILE parameters, the specified redo log file group must be in the
specified thread.

Restriction: You must archive redo log file groups in the order in which
they are filled. If you specify a redo log file group for archiving with the
LOGFILE parameter, and earlier redo log file groups are not yet
archived, Oracle returns an error.
SQL Statements 7-97

ALTER SYSTEM
NEXT manually archives the next online redo log file group from the specified
thread that is full but has not yet been archived. If you omit the
THREAD parameter, Oracle archives the earliest unarchived redo log file
group from any enabled thread.

ALL manually archives all online redo log file groups from the specified
thread that are full but have not been archived. If you omit the THREAD
parameter, Oracle archives all full unarchived redo log file groups from
all enabled threads.

START enables automatic archiving of redo log file groups.

Restriction: You can enable automatic archiving only for the thread
assigned to your instance.

TO ’location’ specifies the primary location to which the redo log file groups are
archived. The value of this parameter must be a fully specified file
location following the conventions of your operating system. If you omit
this parameter, Oracle archives the redo log file group to the location
specified by the initialization parameters LOG_ARCHIVE_DEST or LOG_
ARCHIVE_DEST_n.

Note: You can enhance recovery reliability by setting the related archive
parameters LOG_ARCHIVE_DEST_DUPLEX and LOG_ARCHIVE_MIN_
SUCCEED_DEST.

STOP disables automatic archiving of redo log file groups. You can disable
automatic archiving only for the thread assigned to your instance.

CHECKPOINT explicitly forces Oracle to perform a checkpoint, ensuring that all changes made by
committed transactions are written to datafiles on disk. You can specify this clause only
when your instance has the database open. Oracle does not return control to you until the
checkpoint is complete.

GLOBAL in an Oracle Parallel Server environment, performs a checkpoint for all
instances that have opened the database. This is the default.

LOCAL in an Oracle Parallel Server environment, performs a checkpoint only for
the thread of redo log file groups for your instance.

For more information on checkpoints, see Oracle8i Concepts.

CHECK
DATAFILES

in a distributed database system, such as an Oracle Parallel Server environment, updates an
instance’s SGA from the database control file to reflect information on all online datafiles.

GLOBAL performs this synchronization for all instances that have opened the
database. This is the default.

LOCAL performs this synchronization only for the local instance.

Your instance should have the database open. For more information, see Oracle8i Parallel
Server Concepts and Administration.
7-98 SQL Reference

ALTER SYSTEM
DISCONNECT
SESSION ...
POST_
TRANSACTION

disconnects the current session by destroying the dedicated server process (or virtual circuit
if the connection was made by way of a multi-threaded server). This clause allows ongoing
transactions to complete before the session is disconnected, in contrast to the KILL SESSION
clause.To use this clause, your instance must have the database open.

If system parameters are appropriately configured, application failover will take effect. For
more information about application failover see Oracle8i Tuning and Oracle8i Parallel Server
Concepts and Administration. You must identify the session with both of the following values
from the V$SESSION view:

integer1 is the value of the SID column.

integer2 is the value of the SERIAL# column.

DISTRIBUTED
RECOVERY

specifies whether or not distributed recovery is enabled. To use this clause, your instance
must have the database open.

ENABLE enables distributed recovery. In a single-process environment, you must
use this clause to initiate distributed recovery.

You may need to issue the ENABLE DISTRIBUTED RECOVERY
statement more than once to recover an in-doubt transaction if the
remote node involved in the transaction is not accessible. In-doubt
transactions appear in the data dictionary view DBA_2PC_PENDING.
For more information about distributed transactions and distributed
recovery, see Oracle8i Distributed Database Systems.

DISABLE disables distributed recovery.

RESTRICTED
SESSION

specifies whether logon to Oracle is restricted

ENABLE allows only users with RESTRICTED SESSION system privilege to log
on to Oracle. Existing sessions are not terminated.

DISABLE reverses the effect of the ENABLE RESTRICTED SESSION clause,
allowing all users with CREATE SESSION system privilege to log on to
Oracle. This is the default.

You can use this clause regardless of whether your instance has the database dismounted or
mounted, open or closed.

FLUSH
SHARED_POOL

clears all data from the shared pool in the system global area (SGA). The shared pool stores

■ cached data dictionary information and

■ shared SQL and PL/SQL areas for SQL statements, stored procedures, function,
packages, and triggers.

This statement does not clear shared SQL and PL/SQL areas for items that are currently
being executed. You can use this clause regardless of whether your instance has the database
dismounted or mounted, open or closed.
SQL Statements 7-99

ALTER SYSTEM
KILL SESSION terminates a session, rolls back ongoing transactions, releases all session locks, and frees all
session resources. To use this clause, your instance must have the database open. You must
identify the session with both of the following values from the V$SESSION view:

integer1 is the value of the SID column.

integer2 is the value of the SERIAL# column.

If the session is performing some activity that must be completed, such as waiting for a reply
from a remote database or rolling back a transaction, Oracle waits for this activity to
complete, kills the session, and then returns control to you. If the waiting lasts a minute,
Oracle marks the session to be killed and returns control to you with a message that the
session is marked to be killed. Oracle then kills the session when the activity is complete.

Restriction: You can kill a session only on the same instance as your current session.

SWITCH
LOGFILE

explicitly forces Oracle to begin writing to a new redo log file group, regardless of whether
the files in the current redo log file group are full. When you force a log switch, Oracle
begins to perform a checkpoint. Oracle returns control to you immediately rather than when
the checkpoint is complete. To use this clause, your instance must have the database open.

SUSPEND suspends all I/O (datafile, control file, and file header) as well as queries, in all instances,
enabling you to make copies of the database without having to handle ongoing transactions.

Restrictions:

■ Do not use this clause unless you have put the database tablespaces in hot backup mode.

■ If you start a new instance while the system is suspended, that new instance will not be
suspended.

RESUME makes the database available once again for queries and I/O.

For more information on the SUSPEND clause and RESUME clause, refer to Oracle8i Backup
and Recovery Guide.

set_clause sets the system parameters that follow. You can set values for multiple parameters in the
same set_clause.

The DEFERRED keyword sets or modifies the value of the parameter for future sessions
that connect to the database.

CAUTION: Unless otherwise noted, these parameters are initialization parameters, and
the descriptions provided here indicate only the general nature of the parameters. Before
changing the values of initialization parameters, please refer to their full description in
Oracle8i Reference and Oracle8i National Language Support Guide.

AQ_TM_PROCESSES = integer

is an Advanced Queuing parameter that specifies whether a time manager process is created.
Accepted values are 1 (creates one time manager process to monitor messages) and 0 (does
not create a time manager process).
7-100 SQL Reference

ALTER SYSTEM
BACKGROUND_DUMP_DEST = ’text’

specifies the pathname for a directory where debugging trace files for the background
processes are written during Oracle operations.

BACKUP_TAPE_IO_SLAVES = {TRUE | FALSE} [DEFERRED]

specifies whether I/O slaves are used by the Recovery Manager to back up, copy, or restore
data to tape.

CONTROL_FILE_RECORD_KEEP_TIME = integer [DEFERRED]

specifies (in days) the minimum age of a record in a reusable control file section at which the
record can be reused.

CREATE_STORED_OUTLINES = { TRUE | FALSE | ’category_name’ } [NOOVERRIDE]

determines whether Oracle should automatically create and store an outline for each query
submitted on the system. CREATE_STORED_OUTLINES is not an initialization parameter.

■ TRUE enables automatic outline creation for subsequent queries in the system. These
outlines receive a unique system-generated name and are stored in the DEFAULT
category. If a particular query already has an outline defined for it in the DEFAULT
category, that outline will remain and a new outline will not be created.

■ FALSE disables automatic outline creation for the system. This is the default.

■ category_name has the same behavior as TRUE except that any outline created in the
system is stored in the category_name category.

■ NOOVERRIDE specifies that this system setting will not override the setting for any
session in which this parameter was explicitly set. If you do not specify NOOVERRIDE,
this setting takes effect in all sessions.

DB_BLOCK_CHECKING = {TRUE | FALSE} DEFERRED

controls whether data block checking is done. The default is FALSE, for compatibility with
earlier releases where block checking is disabled as a default.

DB_BLOCK_CHECKSUM = {TRUE | FALSE}

specifies whether the database writer background process and the direct loader will calculate
a checksum and store it in the cache header of every data lock when writing to disk.

DB_BLOCK_MAX_DIRTY_TARGET = integer

limits to integer the number of dirty buffers in the cache and the number of buffers that will
need to be read during crash or instance recovery. This parameter does not relate to media
recovery. A value of 0 disables this parameter. The minimum accepted value to enable the
parameter is 1000.

DB_FILE_MULTIBLOCK_READ_COUNT = integer

specifies the maximum number of blocks read in one I/O operation during a sequential scan.
SQL Statements 7-101

ALTER SYSTEM
FAST_START_IO_TARGET

specifies the target number of IOs (reads and writes) to and from buffer cache that Oracle
should perform upon crash or instance recovery. Oracle continuously calculates the actual
number of IOs that would be needed for recovery and compares that number against the
target. If the actual number is greater than the target, Oracle attempts to write additional
dirty buffers to advance the checkpoint, while minimizing the affect on performance.

For information on how to tune this parameter, see Oracle8i Tuning.

FAST_START_PARALLEL_ROLLBACK = { FALSE | LOW | HIGH}

specifies the number of processes spawned to perform parallel recovery.

■ FALSE specifies no parallel recovery. SMON will serially recover dead transactions.

■ LOW specifies that the number of recovery servers may not exceed twice the value of
the CPU_COUNT parameter.

■ HIGH specifies that the number of recovery servers may not exceed four times the value
of the CPU_COUNT parameter.

FIXED_DATE = { ’DD_MM_YY’ | ’YYYY_MI_DD_HH24_MI-SS’ }

specifies a constant date for SYSDATE instead of the current date.

GC_DEFER_TIME = integer

specifies the time (in hundredths of seconds) that Oracle waits before responding to
forced-write requests from other instances.

GLOBAL_NAMES = {TRUE | FALSE}

When you start an instance, Oracle determines whether to enforce global name resolution for
remote objects accessed in SQL statements based on the value of the initialization parameter
GLOBAL_NAMES. This system parameter enables or disables global name resolution while
your instance is running. TRUE enables the enforcement of global names. FALSE disables
the enforcement of global names. You can also enable or disable global name resolution for
your session with the GLOBAL_NAMES parameter of the ALTER SESSION statement.

Oracle recommends that you enable global name resolution if you use or plan to use
distributed processing. For more information on global name resolution and how Oracle
enforces it, see "Referring to Objects in Remote Databases" on page 2-74 and Oracle8i
Distributed Database Systems.

HASH_MULTIBLOCK_IO_COUNT = integer

specifies the number of data blocks to read and write during a hash join operation. The value
multiplied by the DB_BLOCK_SIZE initialization parameter should not exceed 64 K. The
default value for this parameter is 1. If the multi-threaded server is used, the value is always
1, and any value given here is ignored.
7-102 SQL Reference

ALTER SYSTEM
HS_AUTOREGISTER = {TRUE | FALSE}

enables or disables automatic self-registration of non-Oracle system characteristics in the
Oracle server’s data dictionary by Heterogeneous Services agents. For more information on
accessing non-Oracle systems through Heterogeneous Services, see Oracle8i Distributed
Database Systems.

JOB_QUEUE_PROCESSES = integer

specifies the number of job queue processes per instance (SNPn, where n is 0 to 9 followed
by A to Z). Set this parameter to 1 or higher if you wish to have your snapshots updated
automatically. One job queue process is usually sufficient unless you have many snapshots
that refresh simultaneously.

Oracle also uses job queue processes to process requests created by the DBMS_JOB package.
For more information on managing table snapshots, see Oracle8i Replication.

LICENSE_MAX_SESSIONS = integer

resets (for the current instance) the value of the initialization parameter LICENSE_MAX_
SESSIONS, which establishes the concurrent usage licensing limit, or the limit for concurrent
sessions. Once this limit is reached, only users with RESTRICTED SESSION system privilege
can connect. A value of 0 disables the limit.

If you reduce the limit on sessions below the current number of sessions, Oracle does not
end existing sessions to enforce the new limit. However, users without RESTRICTED
SESSION system privilege can begin new sessions only when the number of sessions falls
below the new limit.

Do not disable or raise session limits unless you have appropriately upgraded your
Oracle license. For more information, contact your Oracle sales representative.

LICENSE_MAX_USERS = integer

resets (for the current instance) the value of the initialization parameter LICENSE_MAX_
USERS, which establishes the limit for users connected to your database. Once this limit is
reached, more users cannot connect. A value of 0 disables the limit.

Restriction: You cannot reduce the limit on users below the current number of users created
for the database.

Do not disable or raise user limits unless you have appropriately upgraded your Oracle
license. For more information, contact your Oracle sales representative.

LICENSE_SESSIONS_WARNING = integer

resets (for the current instance) the value of the initialization parameter LICENSE_
SESSIONS_WARNING, which establishes a warning threshold for concurrent usage. Once
this threshold is reached, Oracle writes warning messages to the database ALERT file for
each subsequent session. Also, users with RESTICTED SESSION system privilege receive
warning messages when they begin subsequent sessions. A value of 0 disables the warning
threshold.
SQL Statements 7-103

ALTER SYSTEM
If you reduce the warning threshold for sessions below the current number of sessions,
Oracle writes a message to the ALERT file for all subsequent sessions.

LOG_ARCHIVE_DEST = string

specifies a valid operating system pathname as the primary destination for all archive redo
log file groups.

Restrictions: If you set a value for this parameter:

■ You cannot have a value for LOG_ARCHIVE_DEST_n in your initialization parameter
file, nor can you set a value for that parameter using the ALTER SESSION or ALTER
SYSTEMstatement.

■ You cannot set a value for the parameter LOG_ARCHIVE_MIN_SUCCEED_DEST using
the ALTER SESSION statement.

LOG_ARCHIVE_DEST_n = null_string

 |{LOCATION=pathname | SERVICE=servicename}
 [MANDATORY | OPTIONAL]
 [REOPEN[=retry_time_in_seconds]]

specifies up to five valid operating system pathnames or Oracle service names (plus other
related options) as destinations for archive redo log file groups (n = integers 1 through 5).

For a description of the options, refer to Oracle8i Reference.

Restrictions: If you set a value for this parameter:

■ You cannot have definitions for the parameters LOG_ARCHIVE_DEST or LOG_ARCHIVE_
DUPLEX_DEST in your initialization parameter file, nor can you set values for those
parameters using the ALTER SYSTEM statement.

■ You cannot start archiving to a specific location using the ALTER SYSTEM ARCHIVE
LOG TO location statement.

LOG_ARCHIVE_DEST_STATE_n = {ENABLE | DEFER}

specifies the state associated with the corresponding LOG_ARCHIVE_DEST_n parameter.

■ ENABLE specifies that any associated valid destination can be used for archiving. This is
the default.

■ DEFER specifies that Oracle will not consider for archiving any destination associated
with the corresponding LOG_ARCHIVE_DEST_n parameter.

LOG_ARCHIVE_DUPLEX_DEST = string

specifies a valid operating system pathname as the secondary destination for all archive redo
log file groups.
7-104 SQL Reference

ALTER SYSTEM
Restriction: If you set a value for this parameter:

■ You must have a definition for LOG_ARCHIVE_DEST.

■ You cannot have a value for the parameter LOG_ARCHIVE_DEST_n in your
initialization parameter file, nor can you set a value for that parameter using the
ALTER SYSTEM or ALTER SESSION statement.

■ You cannot set a value for the parameter LOG_ARCHIVE_MIN_SUCCEED_DEST using
the ALTER SESSION statement.

LOG_ARCHIVE_MAX_PROCESSES = integer

specifies the number of archiver processes that are invoked. Permitted values are integers 1
through 10, inclusive. The default is 1.

LOG_ARCHIVE_MIN_SUCCEED_DEST = integer

specifies the minimum number of destinations that must succeed in order for the online log
file to be available for reuse.

LOG_CHECKPOINT_INTERVAL = integer

limits to integer the number of redo blocks that can exist between an incremental checkpoint
and the last block written to the redo log.

LOG_CHECKPOINT_TIMEOUT = integer

limits the incremental checkpoint to be at the position where the last write to the redo log
(sometimes called the "tail of the log") was integer seconds ago, and signifies that no buffer
will remain dirty (in the cache) for more than integer seconds. The default is 1800 seconds.

MAX_DUMP_FILE_SIZE = { size | ’UNLIMITED’} [DEFERRED]

specifies the trace dump file size upper limit for all user sessions. Specify the maximum size
as either a nonnegative integer that represents the number of blocks, or as ’UNLIMITED’. If
you specify ’UNLIMITED’, no upper limit is imposed.

Multi-Threaded Server Parameters: When you start your instance, Oracle creates shared server processes and
dispatcher processes for the multi-threaded server architecture based on the values of the MTS_SERVERS and
MTS_DISPATCHERS initialization parameters. You can set the MTS_SERVERS and MTS_DISPATCHERS
session parameters to perform one of the following operations while the instance is running:

■ Create additional shared server processes by increasing the minimum number of shared server processes.

■ Terminate existing shared server processes after their current calls finish processing.

■ Create more dispatcher processes for a specific protocol, up to a maximum across all protocols specified by
the initialization parameter MTS_MAX_DISPATCHERS.

■ Terminate existing dispatcher processes for a specific protocol after their current user processes disconnect
from the instance.

For more information on multi-threaded server architecture, see Oracle8i Concepts, Oracle8i Tuning, and Oracle8i
Parallel Server Concepts and Administration.
SQL Statements 7-105

ALTER SYSTEM
MTS_DISPATCHERS = ’dispatch_clause’

dispatch_clause::=

(PROTOCOL = protocol) |
(ADDRESS = address) |
(DESCRIPTION = description)
[options_clause]

options_clause::=

(DISPATCHERS = integer |
 SESSIONS = integer |
 CONNECTIONS = integer |
 TICKS = seconds |
 POOL = { 1 | ON | YES | TRUE | BOTH | ({IN|OUT} = ticks) |
 0 | OFF | NO | FALSE | ticks} |
 MULTIPLEX = {1 | ON | YES | TRUE | 0 | OFF | NO |
 FALSE | BOTH | IN | OUT} |
 LISTENER = tnsname |
 SERVICE = service |
 PRESENTATION = { TTC | RO | GIOP | ejb_presentation_class } |
 INDEX = integer)

modifies or creates the configuration of dispatcher processes.

You can specify multiple MTS_DISPATCHERS parameters in a single statement for multiple
network protocols. For more information on this parameter, see Net8 Administrator’s Guide
and Oracle8i Administrator’s Guide.

MTS_SERVERS = integer

specifies a new minimum number of shared server processes.

QUERY_REWRITE_ENABLED = { TRUE | FALSE } [DEFERRED | NOOVERRIDE]

enables or disables query rewrite on all materialized views that have not been explicitly
disabled. By default, TRUE enables query rewrite for all sessions immediately. Query rewrite
is superseded and disabled by rule-based optimization (that is, if the OPTIMIZER_MODE
parameter is set to RULE). Also enables or disables use of any function-based indexes

defined on the materialized view.

■ DEFERRED specifies that query rewrite is enabled or disabled only for future sessions.

■ NOOVERRIDE specifies that query rewrite is enabled or disabled for all sessions that
have not explicitly set this parameter using ALTER SESSION.

Note: Enabling or disabling query rewrite does not affect queries that have already been
compiled, even if they are reissued. Enabling or disabling query rewrite does not affect

descending indexes. For more information on query rewrite, see Oracle8i Tuning.
7-106 SQL Reference

ALTER SYSTEM
OBJECT_CACHE_MAX_SIZE_PERCENT = integer [DEFERRED]

specifies the percentage of the optimal cache size that the session object cache can grow past
the optimal size.

OBJECT_CACHE_OPTIMAL_SIZE = integer [DEFERRED]

specifies (in kilobytes) the size to which the session object cache is reduced if it exceeds the
maximum size.

PARALLEL_ADAPTIVE_MULTI_USER = {TRUE | FALSE}

specifies that Oracle should vary the degree of parallelism based on the total perceived load
on the system.

PARALLEL_INSTANCE_GROUP = ’text’

specifies the name of the Oracle Parallel Server instance group to be used for spawning
parallel query slaves.

PARALLEL_THREADS_PER_CPU = integer

used to compute the degree of parallelism for parallel operations where the degree of
parallelism is unset. The default is operating system dependent.

PLSQL_V2_COMPATIBILITY = {TRUE | FALSE} [DEFERRED]

modifies the compile-time behavior of PL/SQL programs to allow language constructs that

are illegal in Oracle8 and Oracle8i (PL/SQL V3), but were legal in Oracle7 (PL/SQL V2). See
PL/SQL User’s Guide and Reference and Oracle8i Reference for more information about this
system parameter.

TRUE enables Oracle8i PL/SQL V3 programs to execute Oracle7 PL/SQL V2
constructs.

FALSE disallows illegal Oracle7 PL/SQL V2 constructs. This is the default.

REMOTE_DEPENDENCIES_MODE = {TIMESTAMP | SIGNATURE}

specifies how dependencies of remote stored procedures are handled by the server. For more
information, see Oracle8i Application Developer’s Guide - Fundamentals.

RESOURCE_LIMIT = {TRUE | FALSE}

When you start an instance, Oracle enforces resource limits assigned to users based on the
value of the RESOURCE_LIMIT initialization parameter. This system parameter enables or
disables resource limits for subsequent sessions. TRUE enables resource limits. FALSE
disables resource limits.

Enabling resource limits only causes Oracle to enforce the resource limits already assigned to
users. To choose resource limit values for a user, you must create a profile and assign that
profile to the user. For more information, see "CREATE PROFILE" on page 7-338 and
"CREATE USER" on page 7-425.
SQL Statements 7-107

ALTER SYSTEM
RESOURCE_MANAGER_PLAN = plan_name

specifies the name of the resource plan Oracle should use to allocate system resources among
resource consumer groups. For information on resource consumer groups and resource
plans, refer to Oracle8i Administrator’s Guide.

SORT_AREA_RETAINED_SIZE = integer DEFERRED

specifies (in bytes) the maximum amount of memory that each sort operation will retain
after the first fetch is done, until the cursor ends. The default is the value of the SORT_
AREA_SIZE parameter.

SORT_AREA_SIZE = integer DEFERRED

specifies (in bytes) the maximum amount of memory to use for each sort operation. The
default is operating system dependent.

SORT_MULTIBLOCK_READ_COUNT = integer DEFERRED

specifies the number of database blocks to read each time a sort performs a read from
temporary segments. The default is 2.

STANDBY_ARCHIVE_DEST = string

specifies a valid operating system pathname as the standby database destination for the
archive redo log files.

TIMED_STATISTICS = {TRUE | FALSE}

specifies whether the server requests the time from the operating system when generating
time-related statistics. The default is FALSE.

TIMED_OS_STATISTICS = integer

specifies that operating system statistics will be collected when a request is made from a
client to the server or when a request completes.

TRANSACTION_AUDITING = {TRUE | FALSE} DEFERRED

specifies whether the transaction layer generates a special redo record containing session
and user information.

USE_STORED_OUTLINES = { TRUE | FALSE | ’category_name’ } [NOOVERRIDE]

determines whether the optimizer will use stored outlines to generate execution plans. USE_
STORED_OUTLINES is not an initialization parameter.

■ TRUE causes the optimizer to use outlines stored in the DEFAULT category when
compiling requests.

■ FALSE specifies that the optimizer should not use stored outlines. This is the default.

■ category_name causes the optimizer to use outlines stored in the category_name category
when compiling requests.
7-108 SQL Reference

ALTER SYSTEM
Examples

Archive Log Examples The following statement manually archives the redo log

file group with the log sequence number 4 in thread number 3:

ALTER SYSTEM ARCHIVE LOG THREAD 3 SEQUENCE 4;

The following statement manually archives the redo log file group containing the

redo log entry with the SCN 9356083:

ALTER SYSTEM ARCHIVE LOG CHANGE 9356083;

The following statement manually archives the redo log file group containing a

member named ’DISKL:LOG6.LOG’ to an archived redo log file in the location

’DISKA:[ARCH$]’:

ALTER SYSTEM ARCHIVE LOG
 LOGFILE ’diskl:log6.log’
 TO ’diska:[arch$]’;

Query Rewrite Example This statement enables query rewrite in all sessions for

all materialized views that have not been explicitly disabled:

ALTER SYSTEM SET QUERY_REWRITE_ENABLED = TRUE;

Restricted Session Example You may want to restrict logons if you are

performing application maintenance and you want only application developers

with RESTRICTED SESSION system privilege to log on. To restrict logons, issue the

following statement:

ALTER SYSTEM ENABLE RESTRICTED SESSION;

You can then terminate any existing sessions using the KILL SESSION clause of the

ALTER SYSTEM statement.

After performing maintenance on your application, issue the following statement

to allow any user with CREATE SESSION system privilege to log on:

■ NOOVERRIDE specifies that this system setting will not override the setting for any
session in which this parameter was explicitly set. If you do not specify NOOVERRIDE,
this setting takes effect in all sessions.

USER_DUMP_DEST = ’directory_name’

specifies the pathname where Oracle will write debugging trace files on behalf of a user
process.
SQL Statements 7-109

ALTER SYSTEM
ALTER SYSTEM DISABLE RESTRICTED SESSION;

Shared Pool Example You might want to clear the shared pool before beginning

performance analysis. To clear the shared pool, issue the following statement:

ALTER SYSTEM FLUSH SHARED_POOL;

CHECKPOINT Example The following statement forces a checkpoint:

ALTER SYSTEM CHECKPOINT;

Resource Limit Example This ALTER SYSTEM statement dynamically enables

resource limits:

ALTER SYSTEM SET RESOURCE_LIMIT = TRUE;

Multi-Threaded Server Examples The following statement changes the minimum

number of shared server processes to 25:

ALTER SYSTEM SET MTS_SERVERS = 25;

If there are currently fewer than 25 shared server processes, Oracle creates more. If

there are currently more than 25, Oracle terminates some of them when they are

finished processing their current calls if the load could be managed by the

remaining 25.

The following statement dynamically changes the number of dispatcher processes

for the TCP/IP protocol to 5 and the number of dispatcher processes for the

DECNET protocol to 10:

ALTER SYSTEM
 SET MTS_DISPATCHERS =
 ’(INDEX=0)(PROTOCOL=TCP)(DISPATCHERS=5)’,
 ’(INDEX=1)(PROTOCOL=DECNet)(DISPATCHERS=10)’;

If there are currently fewer than 5 dispatcher processes for TCP, Oracle creates new

ones. If there are currently more than 5, Oracle terminates some of them after the

connected users disconnect.

If there are currently fewer than 10 dispatcher processes for DECnet, Oracle creates

new ones. If there are currently more than 10, Oracle terminates some of them after

the connected users disconnect.

If there are currently existing dispatchers for another protocol, the above statement

does not affect the number of dispatchers for that protocol.
7-110 SQL Reference

ALTER SYSTEM
Licensing Examples The following statement dynamically changes the limit on

sessions for your instance to 64 and the warning threshold for sessions on your

instance to 54:

ALTER SYSTEM
 SET LICENSE_MAX_SESSIONS = 64
 LICENSE_SESSIONS_WARNING = 54;

If the number of sessions reaches 54, Oracle writes a warning message to the

ALERT file for each subsequent session. Also, users with RESTRICTED SESSION

system privilege receive warning messages when they begin subsequent sessions.

If the number of sessions reaches 64, only users with RESTRICTED SESSION

system privilege can begin new sessions until the number of sessions falls below 64

again.

The following statement dynamically disables the limit for sessions on your

instance. After you issue the above statement, Oracle no longer limits the number

of sessions on your instance.

ALTER SYSTEM SET LICENSE_MAX_SESSIONS = 0;

The following statement dynamically changes the limit on the number of users in

the database to 200. After you issue the above statement, Oracle prevents the

number of users in the database from exceeding 200.

ALTER SYSTEM SET LICENSE_MAX_USERS = 200;

SWITCH LOGFILE Example You may want to force a log switch to drop or

rename the current redo log file group or one of its members, because you cannot

drop or rename a file while Oracle is writing to it. The forced log switch affects only

your instance’s redo log thread. The following statement forces a log switch:

ALTER SYSTEM
 SWITCH LOGFILE;

Distributed Recovery Example The following statement enables distributed

recovery:

ALTER SYSTEM ENABLE DISTRIBUTED RECOVERY;

You may want to disable distributed recovery for demonstration or testing

purposes.You can disable distributed recovery in both single-process and

multiprocess mode with the following statement:

ALTER SYSTEM DISABLE DISTRIBUTED RECOVERY;
SQL Statements 7-111

ALTER SYSTEM
When your demonstration or testing are complete, you can then enable distributed

recovery again by issuing an ALTER SYSTEM statement with the ENABLE

DISTRIBUTED RECOVERY clause.

KILL SESSION Example You may want to kill the session of a user that is holding

resources needed by other users. The user receives an error message indicating that

the session has been killed. That user can no longer make calls to the database

without beginning a new session. Consider this data from the V$SESSION dynamic

performance table:

SELECT sid, serial, username
FROM v$session

 SID SERIAL USERNAME
----- --------- ----------------
 1 1
 2 1
 3 1
 4 1
 5 1
 7 1
 8 28 OPS$BQUIGLEY
 10 211 OPS$SWIFT
 11 39 OPS$OBRIEN
 12 13 SYSTEM
 13 8 SCOTT

The following statement kills the session of the user SCOTT using the SID and

SERIAL# values from V$SESSION:

ALTER SYSTEM KILL SESSION ’13, 8’;

DISCONNECT SESSION Example The following statement disconnects user

SCOTT’s session, using the SID and SERIAL# values from V$SESSION:

ALTER SYSTEM DISCONNECT SESSION ’13, 8’ POST_TRANSACTION;

For more information about application failover, see Oracle8i Parallel Server Concepts
and Administration and Oracle8i Tuning.
7-112 SQL Reference

ALTER TABLE
7SQL Statements

ALTER TABLE

Syntax

ALTER TABLE
schema .

table

ADD (add_column_options)

MODIFY (modify_column_options)

move_table_clause

physical_attributes_clause

LOGGING

NOLOGGING

modify_collection_retrieval_clause

storage_clauses

MODIFY CONSTRAINT constraint constraint_state

drop_constraint_clause

drop_column_clause

allocate_extent_clause

deallocate_unused_clause

CACHE

NOCACHE

MONITORING

NOMONITORING

RENAME TO new_table_name

records_per_block_clause

alter_overflow_clause

partitioning_clauses
SQL Statements 7-113

ALTER TABLE
add_column_options ::=

column_constraint, table_constraint, column_ref_constraint, table_ref_constraint, constraint_state: See the
"constraint_clause" on page 7-217.

LOB_storage_clause ::=

parallel_clause

enable_disable_clause

ENABLE

DISABLE

TABLE LOCK

ALL TRIGGERS
;

column datatype
DEFAULT expr column_ref_constraint column_constraint

table_constraint

table_ref_constraint

,

LOB_storage_clause (partition_LOB_storage_clause

,

)

LOB

(LOB_item

,

) STORE AS (LOB_parameters)

(LOB_item) STORE AS

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)
7-114 SQL Reference

ALTER TABLE
LOB_parameters::=

storage_clause : See "storage_clause" on page 7-575.

partition_LOB_storage_clause ::=

modify_column_options ::=

TABLESPACE tablespace

ENABLE

DISABLE
STORAGE IN ROW

storage_clause

CHUNK integer

PCTVERSION integer

CACHE

NOCACHE

LOGGING

NOLOGGING

PARTITION partition LOB_storage_clause
(SUBPARTITION subpartition LOB_storage_clause)

column
datatype DEFAULT expr column_constraint

NESTED TABLE

VARRAY
collection_item

RETURN AS
LOCATOR

VALUE

,

SQL Statements 7-115

ALTER TABLE
move_table_clause ::=

segment_attributes_clause::=

physical_attributes_clause ::=

index_organized_table_clause::=

MOVE
ONLINE segment_attributes_clause

index_organized_table_clause

LOB_storage_clause

physical_attributes_clause

TABLESPACE tablespace

LOGGING

NOLOGGING

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

segment_attributes_clause

PCTTHRESHOLD integer

compression_clause

index_organized_overflow_clause
7-116 SQL Reference

ALTER TABLE
compression_clause::=

index_organized_overflow_clause::=

modify_collection_retrieval_clause ::=

storage_clauses::=

modify_LOB_storage_clause::=

COMPRESS
integer

NOCOMPRESS

INCLUDING column_name
OVERFLOW

segment_attributes_clause

MODIFY NESTED TABLE collection_item RETURN AS
LOCATOR

VALUE

modify_LOB_storage_clause

,

varray_storage_clause

,

modify_varray_storage_clause

nested_table_storage_clause

,

MODIFY LOB (LOB_item) (modify_LOB_storage_parameters)
SQL Statements 7-117

ALTER TABLE
modify_LOB_storage_parameters::=

allocate_extent_clause ::=

deallocate_unused_clause ::=

varray_storage_clause ::=

storage_clause

PCTVERSION integer

CACHE

NOCACHE

LOGGING

NOLOGGING

allocate_extent_clause

deallocate_unused_clause

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

DEALLOCATE UNUSED
KEEP integer

K

M

VARRAY varray_item STORE AS LOB

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)
7-118 SQL Reference

ALTER TABLE
modify_varray_storage_clause ::=

nested_table_storage_clause ::=

object_properties::=

physical_properties::=

MODIFY VARRAY varray_item
modify_LOB_storage_parameters

NESTED TABLE nested_item STORE AS storage_table

((object_properties)
physical_properties

)

RETURN AS
LOCATOR

VALUE

column

attribute

DEFAULT expr column_ref_constraint column_constraint

table_constraint

table_ref_constraint

segment_attributes_clause

ORGANIZATION
HEAP

segment_attributes_clause

INDEX index_organized_table_clause

CLUSTER cluster (column

,

)

LOB_storage_clause

varray_storage_clause

nested_table_storage_clause
SQL Statements 7-119

ALTER TABLE
drop_constraint_clause ::=

drop_column_clause ::=

records_per_block_clause ::=

DROP

PRIMARY

UNIQUE (column

,

)

CASCADE

CONSTRAINT constraint

SET UNUSED

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE

DROP

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE CHECKPOINT integer

DROP
UNUSED COLUMNS

COLUMNS CONTINUE

CHECKPOINT integer

MINIMIZE

NOMINIMIZE
RECORDS_PER_BLOCK
7-120 SQL Reference

ALTER TABLE
alter_overflow_clause ::=

overflow_clause ::=

add_overflow_clause ::=

PCTTHRESHOLD integer

INCLUDING column

overflow_clause

add_overflow_clause

OVERFLOW

physical_attributes_clause

allocate_extent_clause

deallocate_unused_clause

LOGGING

NOLOGGING

ADD OVERFLOW
segment_attributes_clause (PARTITION

segment_attributes_clause

,

)

SQL Statements 7-121

ALTER TABLE
partitioning_clauses ::=

modify_default_attributes_clause ::=

modify_default_attributes_clause

modify_partition_clause

modify_subpartition_clause

move_partition_clause

move_subpartition_clause

add_range_partition_clause

add_hash_partition_clause

coalesce_partition_clause

drop_partition_clause

rename_partition/subpartition_clause

truncate_partition/subpartition_clause

split_partition_clause

merge_partitions_clause

exchange_partition/subpartition_clause

row_movement_clause

MODIFY DEFAULT ATTRIBUTES
FOR PARTITION partition

segment_attributes_clause

PCTTHRESHOLD integer

COMPRESS

NOCOMPRESS

overflow_clause LOB LOB_item LOB_parameters
7-122 SQL Reference

ALTER TABLE
modify_partition_clause ::=

partition_attributes::=

add_subpartition_clause ::=

subpartition_description::=

MODIFY PARTITION partition

partition_attributes

add_subpartition_clause

COALESCE SUBPARTITION
parallel_clause

REBUILD
UNUSABLE LOCAL INDEXES

physical_attributes_clause

LOGGING

NOLOGGING

allocate_extent_clause

deallocate_unused_clause

OVERFLOW physical_attributes_clause LOB LOB_item modify_LOB_storage_parameters

ADD SUBPARTITION
subpartition

subpartition_description

TABLESPACE tablespace

LOB_storage_clause

varray_storage_clause parallel_clause
SQL Statements 7-123

ALTER TABLE
modify_subpartition_clause ::=

move_partition_clause ::=

partition_description::=

partition_level_subpartitioning ::=

MODIFY SUBPARTITION subpartition

allocate_extent_clause

deallocate_unused_clause

LOB LOB_item modify_LOB_storage_parameters

REBUILD
UNUSABLE LOCAL INDEXES

MOVE PARTITION partition
partition_description parallel_clause

segment_attributes_clause
compression_clause

OVERFLOW
segment_attributes_clause

LOB_storage_clause

varray_storage_clause

partition_level_subpartitioning

SUBPARTITIONS quantity
STORE IN (tablespace

,

)

(SUBPARTITION
subpartition partitioning_storage_clause

,

)

7-124 SQL Reference

ALTER TABLE
partitioning_storage_clause::=

move_subpartition_clause ::=

add_range_partition_clause ::=

add_hash_partition_clause ::=

coalesce_partition_clause ::=

drop_partition_clause ::=

TABLESPACE tablespace

LOB_storage_clause

varray_storage_clause

MOVE SUBPARTITION subpartition subpartition_description

ADD PARTITION
partition

VALUES LESS THAN (value_list)
partition_description

ADD PARTITION

partition
TABLESPACE tablespace

LOB_storage_clause

varray_storage_clause parallel_clause

COALESCE PARTITION
parallel_clause

DROP PARTITION partition
SQL Statements 7-125

ALTER TABLE
rename_partition/ subpartition_clause ::=

truncate_partition_clause /truncate_partition_clause ::=

split_partition_clause ::=

merge_partitions_clause ::=

RENAME
PARTITION

SUBPARTITION
current_name TO new_name

TRUNCATE
PARTITION partition

SUBPARTITION subpartition

DROP

REUSE
STORAGE

SPLIT PARTITION partition_name_old AT (value_list)

INTO (partition_description , partition_description) parallel_clause

MERGE PARTITIONS partition_1 , partition_2

INTO PARTITION
new_partition

partition_description
7-126 SQL Reference

ALTER TABLE
exchange_partition_clause /exchange_partition_clause ::=

row_movement_clause ::=

parallel_clause ::=

enable_disable_clause ::=

EXCHANGE
PARTITION partition

SUBPARTITION subpartition
WITH TABLE nonpartitioned_table

INCLUDING

EXCLUDING
INDEXES

WITH

WITHOUT
VALIDATION

EXCEPTIONS INTO
schema .

table

ENABLE

DISABLE
ROW MOVEMENT

NOPARALLEL

PARALLEL
integer

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint

using_index_clause EXCEPTIONS INTO
schema .

table CASCADE
SQL Statements 7-127

ALTER TABLE
using_index_clause::=

Purpose
To alter the definition of a nonpartitioned table, a partitioned table, a table

partition, or a table subpartition.

Prerequisites
The table must be in your own schema, or you must have ALTER privilege on the

table, or you must have ALTER ANY TABLE system privilege. For some operations

you may also need the CREATE ANY INDEX privilege.

In addition, if you are not the owner of the table, you need the DROP ANY TABLE

privilege in order to use the drop_partition_clause or truncate_partition_clause.

You must also have space quota in the tablespace in which space is to be acquired

in order to use the add_partition_clause, modify_partition_clause, move_partition_clause,

and split_partition_clause.

To enable a UNIQUE or PRIMARY KEY constraint, you must have the privileges

necessary to create an index on the table. You need these privileges because Oracle

creates an index on the columns of the unique or primary key in the schema

containing the table. See "CREATE INDEX" on page 7-273.

To enable or disable triggers, the triggers must be in your schema or you must have

the ALTER ANY TRIGGER system privilege.

USING INDEX

PCTFREE integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

storage_clause

NOSORT

LOGGING

NOLOGGING
7-128 SQL Reference

ALTER TABLE
To use an object type in a column definition when modifying a table, either that

object must belong to the same schema as the table being altered, or you must have

either the EXECUTE ANY TYPE system privilege or the EXECUTE schema object

privilege for the object type.

Keywords and Parameters

The clauses described below have specialized meaning in the ALTER TABLE statement. For descriptions of the
remaining keywords, see "CREATE TABLE" on page 7-359.

Note: Operations performed by the ALTER TABLE statement can cause Oracle to invalidate procedures and
stored functions that access the table. For information on how and when Oracle invalidates such objects, see
Oracle8i Concepts.

schema is the schema containing the table. If you omit schema, Oracle assumes the table is in your
own schema.

table is the name of the table to be altered.

You can modify, or drop columns from, or rename a temporary table. However, for a
temporary table, you cannot:

■ Add columns of nested-table or varray type. You can add columns of other types.

■ Specify referential integrity (foreign key) constraints for an added or modified
column

■ Specify the following clauses of the LOB_storage_clause for an added or modified
LOB column: TABLESPACE, storage_clause, LOGGING|NOLOGGING, or the LOB_
index_clause.

■ Specify the physical_attribute_clause, nested_table_storage_clause, parallel_clause, allocate_
extent_clause, deallocate_unused_clause, or any of the index-organized table clauses

■ Exchange partitions between a partition and a temporary table

■ Specify LOGGING or NOLOGGING

■ Specify MOVE

Note: If you alter a table that is a master table for one or more materialized views, the
materialized views are marked INVALID. Invalid materialized views cannot be used by
query rewrite and cannot be refreshed. To revalidate a materialized view, see "ALTER
MATERIALIZED VIEW / SNAPSHOT" on page 7-45. For more information on
materialized views in general, see Oracle8i Tuning.
SQL Statements 7-129

ALTER TABLE
ADD

add_column_
options

adds a column or integrity constraint. If you add a column, the initial value of each row
for the new column is null. For a description of the keywords and parameters of this
clause, see "CREATE TABLE" on page 7-359.

You can add an overflow data segment to each partition of a partitioned index-organized
table.

You can add LOB columns to nonpartitioned and partitioned tables. You can specify LOB
storage at the table and at the partition or subpartition level.

If you previously created a view with a query that used the "SELECT *" syntax to select all
columns from table, and you now add a column to table, Oracle does not automatically
add the new column to the view. To add the new column to the view, re-create the view
using the CREATE VIEW statement with the OR REPLACE clause. See "CREATE VIEW"
on page 7-430.

Restrictions:

■ You cannot add a LOB column to a partitioned index-organized table. (This
restriction does not apply to nonpartitioned index-organized tables.)

■ You cannot add a column with a NOT NULL constraint if table has any rows.

■ If you specify this clause for an index-organized table, you cannot specify any other
clauses in the same statement.

table_ref_
constraint

column_ref_
constraint

These clauses let you further describe a column of type REF. The only
difference between these clauses is that you specify table_ref from the
table level, so you must identify the REF column or attribute you are
defining. You specify column_ref after you have already identified the
REF column or attribute.

For syntax and description of these constraints, including restrictions,
see the "constraint_clause" on page 7-217.

column_constraint adds or removes a NOT NULL constraint to or from an existing
column. You cannot use this clause to modify any other type of
constraint using ALTER TABLE. See the "constraint_clause" on
page 7-217.

table_constraint adds or modifies an integrity constraint on the table. See the
"constraint_clause" on page 7-217.

LOB_storage_
clause

specifies the LOB storage characteristics for the newly added LOB column. You cannot
use this clause to modify an existing LOB column. Instead, you must use the modify_LOB_
storage_clause.

lob_item is the LOB column name or LOB object attribute for which you are
explicitly defining tablespace and storage characteristics that are
different from those of the table.

lob_segname specifies the name of the LOB data segment. You cannot use lob_
segname if more than one lob_item is specified.
7-130 SQL Reference

ALTER TABLE
ENABLE |
DISABLE
STORAGE IN
ROW

specifies whether the LOB value is stored in the row (inline) or
outside of the row. (The LOB locator is always stored in the row
regardless of where the LOB value is stored.)

■ ENABLE specifies that the LOB value is stored inline if its length
is less than approximately 4000 bytes minus system control
information. This is the default.

■ DISABLE specifies that the LOB value is stored outside of the
row regardless of the length of the LOB value.

Restriction: You cannot change STORAGE IN ROW once it is set.
Therefore, you can specify this clause only as part of the add_column_
options clause, not as part of the modify_column_options clause.

CHUNK integer specifies the number of bytes to be allocated for LOB manipulation. If
integer is not a multiple of the database block size, Oracle rounds up
(in bytes) to the next multiple. For example, if the database block size
is 2048 and integer is 2050, Oracle allocates 4096 bytes (2 blocks).The
maximum value is 32768 (32 K), which is the largest Oracle block size
allowed. The default CHUNK size is one Oracle database block.

You cannot change the value of CHUNK once it is set.

Note: The value of CHUNK must be less than or equal to the value of
NEXT (either the default value or that specified in the storage clause).
If CHUNK exceeds the value of NEXT, Oracle returns an error.

PCTVERSION
integer

is the maximum percentage of overall LOB storage space used for
creating new versions of the LOB. The default value is 10, meaning
that older versions of the LOB data are not overwritten until 10% of
the overall LOB storage space is used.

LOB_index_
clause

This clause is deprecated as of Oracle8i. Oracle generates an index for
each LOB column. The LOB indexes are system named and system
managed, and reside in the same tablespace as the LOB data segments.

Although it is still possible for you to specify this clause, Oracle
Corporation strongly recommends that you no longer do so.

For information on how Oracle manages LOB indexes in tables
migrated from earlier versions, see Oracle8i Migration.

partition_LOB_
storage_clause

lets you specify a separate LOB_storage_clause for each partition. You must specify the
partitions in the order of partition position.

If you do not specify a LOB_storage_clause for a particular partition, the storage
characteristics are those specified for the LOB item at the table level. If you also did not
specify any storage characteristics at the table level for the LOB item, Oracle stores the
LOB data partition in the same tablespace as the table partition to which it corresponds.

Restriction: You can specify only one list of partition_LOB_storage_clauses per ALTER
TABLE statement, and all LOB_storage_clauses must precede the list of partition_LOB_
storage_clauses.
SQL Statements 7-131

ALTER TABLE
MODIFY

modify_column_
options

modifies the definition of an existing column. If you omit any of the optional parts of the
column definition (datatype, default value, or column constraint), these parts remain
unchanged.

■ You can change a CHAR column to VARCHAR2 (or VARCHAR) and a VARCHAR2
(or VARCHAR) to CHAR only if the column contains nulls in all rows or if you do
not attempt to change the column size.

■ You can change any column’s datatype or decrease any column’s size if all rows for
the column contain nulls.

■ You can always increase the size of a character or raw column or the precision of a
numeric column, whether or not all the columns contain nulls.

Restrictions:

■ You cannot modify the datatype or length of a column that is part of a table or index
partitioning or subpartitioning key.

■ You cannot modify the definition of a column on which a domain index has been
built.

■ If you specify this clause for an index-organized table, you cannot specify any other
clauses in the same statement.

column is the name of the column to be added or modified.

The only type of integrity constraint that you can add to an existing
column using the MODIFY clause with the column constraint syntax
is a NOT NULL constraint, and only if the column contains no nulls.
To define other types of integrity constraints (UNIQUE, PRIMARY
KEY, referential integrity, and CHECK constraints) on existing
columns, using the ADD clause and the table constraint syntax.

datatype specifies a new datatype for an existing column.

You can omit the datatype only if the statement also designates the
column as part of the foreign key of a referential integrity constraint.
Oracle automatically assigns the column the same datatype as the
corresponding column of the referenced key of the referential
integrity constraint.

If you change the datatype of a column in a materialized view
container table, the corresponding materialized view is invalidated.
To revalidate a materialized view, see "ALTER MATERIALIZED
VIEW / SNAPSHOT" on page 7-45.

Restrictions:

■ You cannot specify a column of datatype ROWID for an
index-organized table, but you can specify a column of type
UROWID.

■ You cannot change a column’s datatype to LOB or REF.
7-132 SQL Reference

ALTER TABLE
DEFAULT specifies a new default for an existing column. Oracle assigns this
value to the column if a subsequent INSERT statement omits a value
for the column. If you are adding a new column to the table and
specify the default value, Oracle inserts the default column value into
all rows of the table.

The datatype of the default value must match the datatype specified
for the column. The column must also be long enough to hold the
default value. A DEFAULT expression cannot contain references to
other columns, the pseudocolumns CURRVAL, NEXTVAL, LEVEL,
and ROWNUM, or date constants that are not fully specified.

MODIFY
CONSTRAINT
constraint

modifies the state of an existing constraint named constraint. For a description of all the
keywords and parameters of constraint_state, see the "constraint_clause" on page 7-217.

move_table_clause For a heap-organized table, use the segment_attributes_clause of the syntax. The move_
table_clause lets you relocate data of a nonpartitioned table into a new segment, optionally
in a different tablespace, and optionally modify any of its storage attributes.

You can also move any LOB data segments associated with the table using the LOB_
storage_clause. (LOB items not specified in this clause are not moved.)

For an index-organized table, use the index_organized_table_clause of the syntax. The move_
table_clause rebuilds the index-organized table’s primary key index B*-tree. The overflow
data segment is not rebuilt unless the OVERFLOW keyword is explicitly stated, with two
exceptions:

■ If you alter the values of PCTTHRESHOLD or the INCLUDING column as part of
this ALTER TABLE statement, the overflow data segment is rebuilt.

■ If any of out-of-line columns (LOBs, varrays, nested table columns) in the
index-organized table are moved explicitly, then the overflow data segment is also
rebuilt.

The index and data segments of LOB columns are not rebuilt unless you specify the LOB
columns explicitly as part of this ALTER TABLE statement.

ONLINE specifies that DML operations on the index-organized table are
allowed during rebuilding of the table’s primary key index B*-tree.

Restrictions:

■ You can specify this clause only for a nonpartitioned
index-organized table.

■ Parallel DML is not supported during online MOVE. If you
specify ONLINE and then issue parallel DML statements, Oracle
returns an error.

compression_clause enables and disables key compression in an index-organized table.
SQL Statements 7-133

ALTER TABLE
■ COMPRESS enables key compression, which eliminates repeated
occurrence of primary key column values in index-organized
tables. Use integer to specify the prefix length (number of prefix
columns to compress).

The valid range of prefix length values is from 1 to the number of
primary key columns minus 1. The default prefix length is the
number of primary key columns minus 1.

Restrictions:

- You can specify this clause only for an index-organized table.

- You can specify compression for a partition of an
index-organized table only if compression has been specified at
the table level.

■ NOCOMPRESS disables key compression in index-organized
tables. This is the default.

TABLESPACE specifies the tablespace into which the rebuilt index-organized table is
stored.

Restrictions:

■ If you specify MOVE, it must be the first clause. For an index-organized table, the
only clauses outside this clause that are allowed are the physical_attribute_clause and
the parallel_clause. For heap-organized tables, you can specify those two clauses and
the LOB_storage_clauses.

■ You cannot MOVE an entire partitioned table (either heap or index organized). You
must move individual partitions or subpartitions. See "move_partition_clause" on
page 7-146 and "move_subpartition_clause" on page 7-147.

Notes regarding LOBs:

For any LOB columns you specify in this clause:

■ Oracle drops the old LOB data segment and corresponding index segment and
creates new segments, even if you do not specify a new tablespace.

■ If the LOB index in table resided in a different tablespace from the LOB data, Oracle
collocates the LOB index with the LOB data in the LOB data’s tablespace after the
move.

physical_
attributes_clause

changes the value of PCTFREE, PCTUSED, INITRANS, and MAXTRANS parameters and
storage characteristics. See the PCTFREE, PCTUSED, INITRANS, and MAXTRANS
parameters of "CREATE TABLE" on page 7-359 and the "storage_clause".

Restriction: You cannot specify the PCTUSED parameter for the index segment of an
index-organized table.
7-134 SQL Reference

ALTER TABLE
WARNING:

■ For a nonpartitioned table, the values you specify override any values specified for
the table at create time.

■ For a range- or hash-partitioned table, the values you specify are the default values
for the table and the actual values for every existing partition, overriding any
values already set for the partitions. To change default table attributes without
overriding existing partition values, use the modify_default_attributes_clause.

■ For a composite-partitioned table, the values you specify are the default values for
the table and all partitions of the table and the actual values for all subpartitions of
the table, overriding any values already set for the subpartitions. To change default
partition attributes without overriding existing subpartition values, use the modify_
default_attributes_clause with the FOR PARTITION clause.

modify_collection_
retrieval_clause

changes what is returned when a collection item is retrieved from the database.

collection_item is the name of a column-qualified attribute whose type is nested table

or varray.

RETURN AS specifies what Oracle returns as the result of a query.

■ LOCATOR specifies that a unique locator for the nested table is
returned.

■ VALUE specifies that a copy of the nested table itself is returned.

storage_clauses:

modify_LOB_
storage_clause

modifies the physical attributes of the LOB lob_item. You can specify only one lob_item for
each modify_LOB_storage_clause.

Restriction: You cannot modify the value of the INITIAL parameter in the storage_clause
when modifying the LOB storage attributes.

varray_storage_
clause

lets you specify separate storage characteristics for the LOB in which a varray will be
stored. In addition, if you specify this clause, Oracle will always store the varray in a
LOB, even if it is small enough to be stored inline.

Restriction: You cannot specify the TABLESPACE clause of LOB_parameters as part of this
clause. The LOB tablespace for a varray defaults to the containing table’s tablespace.

modify_varray_
storage_clause

lets you change the storage characteristics of an existing LOB in which a varray is stored.

Restriction: You cannot specify the TABLESPACE clause of LOB_parameters as part of this
clause. The LOB tablespace for a varray defaults to the containing table’s tablespace.

nested_table_
storage_clause

enables you to specify separate storage characteristics for a nested table, which in turn

enables you to define the nested table as an index-organized table. You must include this

clause when creating a table with columns or column attributes whose type is a nested

table. (Clauses within this clause that function the same way they function for parent

object tables are not repeated here.)
SQL Statements 7-135

ALTER TABLE
Restrictions:

■ You cannot specify the parallel_clause.

■ You cannot specify TABLESPACE (as part of the segment_attributes_clause) for a
nested table. The tablespace is always that of the parent table.

nested_item is the name of a column (or a top-level attribute of the table’s object
type) whose type is a nested table.

storage_table is the name of the table where the rows of nested_item reside. The
storage table is created in the same schema and the same tablespace as
the parent table.

drop_constraint_
clause

drops an integrity constraint from the database. Oracle stops enforcing the constraint and
removes it from the data dictionary. You can specify only one constraint for each drop_
constraint_clause, but you can specify multiple drop_constraint_clauses in one statement.

PRIMARY KEY drops the table’s PRIMARY KEY constraint.

UNIQUE drops the UNIQUE constraint on the specified columns.

CONSTRAINT drops the integrity constraint named constraint.

CASCADE drops all other integrity constraints that depend on the dropped
integrity constraint.

Restrictions:

■ You cannot drop a UNIQUE or PRIMARY KEY constraint that is part of a referential
integrity constraint without also dropping the foreign key. To drop the referenced
key and the foreign key together, use the CASCADE clause. If you omit CASCADE,
Oracle does not drop the PRIMARY KEY or UNIQUE constraint if any foreign key
references it.

■ You cannot drop a primary key constraint (even with the CASCADE clause) on a
table that uses the primary key as its object identifier (OID).

■ If you drop a referential integrity constraint on a REF column, the REF column
remains scoped to the referenced table.

■ You cannot drop the scope of the column.

drop_column_
clause

lets you free space in the database by dropping columns you no longer need, or by
marking them to be dropped at a future time when the demand on system resources is
less.

SET UNUSED marks one or more columns as unused. Specifying this clause does
not actually remove the target columns from each row in the table
(that is, it does not restore the disk space used by these columns).
Therefore, the response time is faster than it would be if you execute
the DROP clause.
7-136 SQL Reference

ALTER TABLE
You can view all tables with columns marked as unused in the data
dictionary views USER_UNUSED_COL_TABS, DBA_UNUSED_COL_
TABS, and ALL_UNUSED_COL_TABS. For information on these
views, see Oracle8i Reference.

Unused columns are treated as if they were dropped, even though
their column data remains in the table’s rows. After a column has
been marked as unused, you have no access to that column. A
"SELECT *" query will not retrieve data from unused columns. In
addition, the names and types of columns marked unused will not be
displayed during a DESCRIBE, and you can add to the table a new
column with the same name as an unused column.

Note: Until you actually drop these columns, they continue to count
toward the absolute limit of 1000 columns per table. (For more
information, see "CREATE TABLE" on page 7-359.) Also, if you mark
a column of datatype LONG as UNUSED, you cannot add another
LONG column to the table until you actually drop the unused LONG
column.

DROP removes the column descriptor and the data associated with the target
column from each row in the table. If you explicitly drop a particular
column, all columns currently marked as unused in the target table
are dropped at the same time.

When the column data is dropped:

■ All indexes defined on any of the target columns are also
dropped.

■ All constraints that reference a target column are removed.

■ If any statistics types are associated with the target columns,
Oracle disassociates the statistics from the column with the
FORCE option and drops any statistics collected using the
statistics type. For more information on disassociating statistics
types, see "DISASSOCIATE STATISTICS" on page 7-444.

Note: If a constraint also references a nontarget column, Oracle
returns an error and does not drop the column unless you have
specified the CASCADE CONSTRAINTS clause. If you have specified
that clause, Oracle removes all constraints that reference any of the
target columns.

DROP UNUSED
COLUMNS

removes from the table all columns currently marked as unused. Use
this statement when you want to reclaim the extra disk space from
unused columns in the table. If the table contains no unused columns,
the statement returns with no errors.

column specifies one or more columns to be set as unused or dropped. Use the
COLUMN keyword only if you are specifying only one column. If
you specify a column list, it cannot contain duplicates.
SQL Statements 7-137

ALTER TABLE
CASCADE
CONSTRAINTS

drops all referential integrity constraints that refer to the primary and
unique keys defined on the dropped columns, and drops all
multicolumn constraints defined on the dropped columns. If any
constraint is referenced by columns from other tables or remaining
columns in the target table, then you must specify CASCADE
CONSTRAINTS. Otherwise, the statement aborts and an error is
returned.

INVALIDATE Note: Currently, Oracle executes this clause regardless of whether you
specify the keyword INVALIDATE.

Oracle invalidates all dependent objects, such as views, triggers, and
stored program units. Object invalidation is a recursive process.
Therefore, all directly dependent and indirectly dependent objects are
invalidated. However, only local dependencies are invalidated,
because Oracle manages remote dependencies differently from local
dependencies. For more information on dependencies, refer to
Oracle8i Concepts.

An object invalidated by this statement is automatically revalidated
when next referenced. You must then correct any errors that exist in
that object before referencing it.

CHECKPOINT specifies that a checkpoint for the drop column operation will be
applied after processing integer rows; integer is optional and must be
greater than zero. If integer is greater than the number of rows in the
table, Oracle applies a checkpoint after all the rows have been
processed. If you do not specify integer, Oracle sets the default of 512.

Checkpointing cuts down the amount of undo logs accumulated
during the drop column operation to avoid running out of rollback
segment space. However, if this statement is interrupted after a
checkpoint has been applied, the table remains in an unusable state.
While the table is unusable, the only operations allowed on it are
DROP TABLE, TRUNCATE TABLE, and ALTER TABLE DROP
COLUMNS CONTINUE (described below).

You cannot use this clause with SET UNUSED, because that clause
does not remove column data.

DROP
COLUMNS
CONTINUE

continues the drop column operation from the point at which it was
interrupted. Submitting this statement while the table is in a valid
state results in an error.
7-138 SQL Reference

ALTER TABLE
Restrictions on the drop_column_clause:

■ Each of the parts of this clause can be specified only once in the statement and cannot
be mixed with any other ALTER TABLE clauses. For example, the following
statements are not allowed:

ALTER TABLE t1 DROP COLUMN f1 DROP (f2);

ALTER TABLE t1 DROP COLUMN f1 SET UNUSED (f2);

ALTER TABLE t1 DROP (f1) ADD (f2 NUMBER);

ALTER TABLE t1 SET UNUSED (f3)

 ADD (CONSTRAINT ck1 CHECK (f2 > 0));

■ You can drop an object type column only as an entity. Dropping an attribute from an
object type column is not allowed.

■ If you drop a nested table column, its storage table is removed.

■ If you drop a LOB column, the LOB data and its corresponding LOB index segment
are removed.

■ If you drop a BFILE column, only the locators stored in that column are removed, not
the files referenced by the locators.

■ You can drop a column from an index-organized table only if it is not a primary key
column. The primary key constraint of an index-organized table can never be
dropped, so you cannot drop a primary key column even if you have specified
CASCADE CONSTRAINTS.

■ You can export tables with dropped or unused columns. However, you can import a
table only if all the columns specified in the export files are present in the table (that
is, none of those columns has been dropped or marked unused). Otherwise, Oracle
returns an error.

■ You cannot drop a column on which a domain index has been built.

You cannot use this clause to drop:

■ A pseudocolumn, clustered column, or partitioning column. (You can drop
nonpartitioning columns from a partitioned table if all the tablespaces where the
partitions were created are online and in read-write mode.)

■ A column from a nested table, an object table, or a table owned by SYS

allocate_extent_
clause

explicitly allocates a new extent for the table, the partition or subpartition, the overflow
data segment, the LOB data segment, or the LOB index.

Restriction: You cannot allocate an extent for a composite-partitioned table.

SIZE specifies the size of the extent in bytes. Use K or M to specify the
extent size in kilobytes or megabytes. If you omit this parameter,
Oracle determines the size based on the values of the STORAGE
parameters of the table’s overflow data segment or of the LOB index.
SQL Statements 7-139

ALTER TABLE
DATAFILE specifies one of the datafiles in the tablespace of the table, overflow
data segment, LOB data tablespace, or LOB index to contain the new
extent. If you omit this parameter, Oracle chooses the datafile.

INSTANCE makes the new extent available to the freelist group associated with
the specified instance. If the instance number exceeds the maximum
number of freelist groups, the former is divided by the latter, and the
remainder is used to identify the freelist group to be used. An
instance is identified by the value of its initialization parameter
INSTANCE_NUMBER. If you omit this parameter, the space is
allocated to the table, but is not drawn from any particular freelist
group. Rather, the master freelist is used, and space is allocated as

needed. For more information, see Oracle8i Concepts. Use this
parameter only if you are using Oracle with the Parallel Server
option in parallel mode.

Explicitly allocating an extent with this clause does affect the size for the next extent to be
allocated as specified by the NEXT and PCTINCREASE storage parameters.

deallocate_
unused_clause

explicitly deallocates unused space at the end of the table, partition or subpartition,
overflow data segment, LOB data segment, or LOB index and makes the space available
for other segments in the tablespace. You can free only unused space above the high
water mark (that is, the point beyond which database blocks have not yet been formatted
to receive data).

Oracle credits the amount of the released space to the user quota for the tablespace in
which the deallocation occurs.

Oracle deallocates unused space from the end of the object toward the high water mark at
the beginning of the object. If an extent is completely contained in the deallocation, then
the whole extent is freed for reuse. If an extent is partially contained in the deallocation,
then the used part up to the high water mark becomes the extent, and the remaining
unused space is freed for reuse.

The exact amount of space freed depends on the values of the INITIAL, MINEXTENTS,
and NEXT parameters (as described in "storage_clause" on page 7-575).

KEEP specifies the number of bytes above the high water mark that the
table, overflow data segment, LOB data segment, or LOB index will
have after deallocation.
7-140 SQL Reference

ALTER TABLE
■ If you omit KEEP and the high water mark is above the size of
INITIAL and MINEXTENTS, then all unused space above the
high water mark is freed. When the high water mark is less than
the size of INITIAL or MINEXTENTS, then all unused space
above MINEXTENTS is freed.

■ If you specify KEEP, then the specified amount of space is kept
and the remaining space is freed. When the remaining number of
extents is less than MINEXTENTS, then MINEXTENTS is
adjusted to the new number of extents. If the initial extent
becomes smaller than INITIAL, then INITIAL is adjusted to the
new size.

■ In either case, NEXT is set to the size of the last extent that was
deallocated.

CACHE for data that is accessed frequently, specifies that the blocks retrieved for this table are
placed at the most recently used end of the LRU list in the buffer cache when a full table
scan is performed. This attribute is useful for small lookup tables.

Restriction: You cannot specify CACHE for index-organized tables.

NOCACHE for data that is not accessed frequently, specifies that the blocks retrieved for this table are
placed at the least recently used end of the LRU list in the buffer cache when a full table
scan is performed.

For LOBs, the LOB value is either not brought into the buffer cache or brought into the
buffer cache and placed at the least recently used end of the LRU list. (The latter is the
default behavior.)

Restriction: You cannot specify NOCACHE for index-organized tables.

MONITORING specifies that Oracle can collect modification statistics on table. These statistics are
estimates of the number of rows affected by DML statements over a particular period of
time. They are available for use by the optimizer or for analysis by the user.

For more information on using this clause, see Oracle8i Tuning.

NOMONITORING specifies that Oracle will not collect modification statistics on table.

Restriction: You cannot specify MONITORING or NOMONITORING for a temporary
table.

LOGGING|
NOLOGGING

specifies whether subsequent Direct Loader (SQL*Loader) and direct-load INSERT
operations against a nonpartitioned table, table partition, all partitions of a partitioned
table, or all subpartitions of a partition will be logged (LOGGING) or not logged
(NOLOGGING) in the redo log file.

When used with the modify_default_attributes_clause, this clause affects the logging
attribute of a partitioned table.

LOGGING|NOLOGGING also specifies whether ALTER TABLE...MOVE and ALTER
TABLE...SPLIT operations will be logged or not logged.
SQL Statements 7-141

ALTER TABLE
In NOLOGGING mode, data is modified with minimal logging (to mark new extents
invalid and to record dictionary changes). When applied during media recovery, the
extent invalidation records mark a range of blocks as logically corrupt, because the redo
data is not logged. Therefore, if you cannot afford to lose this table, it is important to take
a backup after the NOLOGGING operation.

If the database is run in ARCHIVELOG mode, media recovery from a backup taken
before the LOGGING operation will restore the table. However, media recovery from a
backup taken before the NOLOGGING operation will not restore the table.

The logging attribute of the base table is independent of that of its indexes.

For more information about the logging_clause and parallel DML, see Oracle8i Parallel
Server Concepts and Administration.

RENAME TO renames table to new_table_name.

Note: Using this clause will invalidate any dependent materialized views. For more
information on materialized views, see "CREATE MATERIALIZED VIEW / SNAPSHOT"
on page 7-300 and Oracle8i Tuning.

records_per_block_
clause

determines whether Oracle restricts the number of records that can be stored in a block.
This clause ensures that any bitmap indexes subsequently created on the table will be as
small (compressed) as possible.

Restrictions:

■ You cannot specify either MINIMIZE or NOMINIMIZE if a bitmap index has already
been defined on table. You must first drop the bitmap index.

■ You cannot specify this clause for an index-organized table or nested table.

MINIMIZE instructs Oracle to calculate the largest number of records in any block
in the table, and limit future inserts so that no block can contain more
than that number of records.

Restriction: You cannot specify MINIMIZE for an empty table.

NOMINIMIZE disables the MINIMIZE feature. This is the default.

alter_overflow_
clause

modifies the definition of an index-organized table. Index-organized tables keep data
sorted on the primary key and are therefore best suited for primary-key-based access and
manipulation.

Note: When you alter an index-organized table, Oracle evaluates the maximum size of
each column to estimate the largest possible row. If an overflow segment is needed but
you have not specified OVERFLOW, Oracle raises an error and does not execute the
ALTER TABLE statement. This checking function guarantees that subsequent DML
operations on the index-organized table will not fail because an overflow segment is
lacking.
7-142 SQL Reference

ALTER TABLE
PCTTHRESHOLD
integer

specifies the percentage of space reserved in the index block for an
index-organized table row. Any portion of the row that exceeds the
specified threshold is stored in the overflow area. PCTTHRESHOLD
must be a value from 1 to 50.

Restrictions:

■ You cannot reduce the value of PCTTHRESHOLD so much that
the primary key will not fit.

■ You cannot specify PCTTHRESHOLD for individual partitions of
an index-organized table.

INCLUDING
column_name

specifies the column at which to divide an index-organized table row
into index and overflow portions. All non-primary-key columns that
follow column_name are stored in the overflow data segment. The
column_name is either the name of the last primary key column or any
subsequent non-primary-key column.

If you use the drop_column_clause to drop (or mark unused) a column
defined as an INCLUDING column, the column stored immediately
before this column will become the new INCLUDING column.

overflow_clause specifies the overflow data segment physical storage and logging
attributes to be modified for the index-organized table. Parameters
specified in this clause are applicable only to the overflow data
segment. For more information, see "CREATE TABLE" on page 7-359.

Restriction: You cannot specify OVERFLOW for a partition of a
partitioned index-organized table unless the table already has an
overflow segment.

add_overflow_
clause

adds an overflow data segment to the specified index-organized table.

For a partitioned index-organized table:

■ If you do not specify PARTITION, Oracle automatically allocates
an overflow segment for each partition. The physical attributes of
these segments are inherited from the table level.

■ If you wish to specify separate physical attributes for one or more
partitions, you must specify such attributes for every partition in
the table. You do not specify the name of the partitions, but you
must specify their attributes in the order in which they were
created.

You can find the order of the partitions by querying the
PARTITION_NAME and PARTITION_POSITION columns of the
USER_IND_PARTITIONS view.

If you do not specify TABLESPACE for a particular partition, Oracle
uses the tablespace specified for the table. If you do not specify
TABLESPACE at the table level, Oracle uses the tablespace of the
partition’s primary key index segment.
SQL Statements 7-143

ALTER TABLE
partitioning_
clauses

The following clauses apply only to partitioned tables. You cannot combine partition
operations with other partition operations or with operations on the base table in one
ALTER TABLE statement.

Note: If you drop, exchange, truncate, move, modify, or split a partition on a table that is
a master table for one or more materialized views, existing bulk load information about
the table will be deleted. Therefore, be sure to refresh all dependent materialized views
before performing any of these operations.

modify_default_
attributes_clause

specifies new default values for the attributes of table. Partitions and LOB partitions you
create subsequently will inherit these values unless you override them explicitly when
creating the partition or LOB partition. Existing partitions and LOB partitions are not
affected by this clause.

Only attributes named in the statement are affected, and the default values specified are
overridden by any attributes specified at the individual partition level.

FOR PARTITION applies only to composite-partitioned tables. This clause specifies new
default values for the attributes of partition. Subpartitions and LOB
subpartitions of partition that you create subsequently will inherit
these values, unless you override them explicitly when creating the
subpartition or LOB subpartition. Existing subpartitions are not
affected by this clause.

Restrictions:

■ The PCTTHRESHOLD, COMPRESS, physical_attributes_clause, and overflow_clause are
valid only for partitioned index-organized tables.

■ You cannot specify the PCTUSED parameter for the index segment of an
index-organized table.

■ You can specify COMPRESS only if compression is already specified at the table level.

modify_partition_
clause

modifies the real physical attributes of the partition table partition. Optionally modifies
the storage attributes of one or more LOB items for the partition. You can specify new
values for any of the following physical attributes for the partition: the logging attribute;
PCTFREE, PCTUSED, INITRANS, or MAXTRANS parameter; or storage parameters.

If table is composite-partitioned:

■ If you specify the allocate_extent_clause, Oracle will allocate an extent for each
subpartition of partition.

■ If you specify deallocate_unused_clause, Oracle will deallocate unused storage from
each subpartition of partition.

■ Any other attributes changed in this clause will be changed in subpartitions of
partition as well, overriding existing values. To avoid changing the attributes of
existing subpartitions, use the FOR PARTITION clause of the modify_default_
attributes_clause.
7-144 SQL Reference

ALTER TABLE
Restriction: If table is hash partitioned, you can specify only the allocate_extent and
deallocate_unused clauses. All other attributes of the partition are inherited from the
table-level defaults except TABLESPACE, which stays the same as it was at create time.

add_subpartition_
clause

adds a hash subpartition to partition. Oracle populates the new
subpartition with rows rehashed from the other subpartition(s) of
partition as determined by the hash function.

Oracle marks UNUSABLE, and you must rebuild, the local index
subpartitions corresponding to the added and to the rehashed
subpartitions.

If you do not specify subpartition, Oracle assigns a name in the form
SYS_SUBPnnnn

If you do not specify TABLESPACE, the new subpartition will reside
in the default tablespace of partition.

COALESCE
SUBPARTITION

specifies that Oracle should select a hash subpartition, distribute its
contents into one or more remaining subpartitions (determined by the
hash function), and then drop the selected subpartition.

Local index subpartitions corresponding to the selected subpartition
are also dropped. Oracle marks UNUSABLE, and you must rebuild,
the index subpartitions corresponding to one or more absorbing
subpartitions.

UNUSABLE
LOCAL
INDEXES clause

The next two clauses modify the attributes of local index partitions
corresponding to partition.

UNUSABLE LOCAL INDEXES marks UNUSABLE all the local index
partitions associated with partition.

REBUILD UNUSABLE LOCAL INDEXES rebuilds the unusable local
index partitions associated with partition.

Restrictions:

■ You cannot specify this clause with any other clauses of the
modify_partition_clause.

■ You cannot specify this clause for partitions that are
subpartitioned.

modify_
subpartition_
clause

lets you allocate or deallocate storage for an individual subpartition of table.

Restriction: The only modify_LOB_storage_parameters you can specify for subpartition are
the allocate_extent_clause and deallocate_unused_clause.

UNUSABLE LOCAL INDEXES marks UNUSABLE all the local index subpartitions
associated with subpartition.
SQL Statements 7-145

ALTER TABLE
REBUILD UNUSABLE LOCAL INDEXES rebuilds the unusable local index subpartitions
associated with subpartition.

rename_partition/
subpartition_
clause

renames a table partition or subpartition current_name to new_name. For both partitions
and subpartitions, new_name must be different from all existing partitions and
subpartitions of the same table.

move_partition_
clause

moves table partition partition to another segment. You can move partition data to
another tablespace, recluster data to reduce fragmentation, or change create-time physical
attributes.

If the table contains LOB columns, you can use the LOB_storage_clause to move the LOB
data and LOB index segments associated with this partition. Only the LOBs named are
affected. If you do not specify the LOB_storage_clause for a particular LOB column, its
LOB data and LOB index segments are not moved.

If partition is not empty, MOVE PARTITION marks UNUSABLE all corresponding local
index partitions and all global nonpartitioned indexes, and all the partitions of global
partitioned indexes.

When you move a LOB data segment, Oracle drops the old data segment and
corresponding index segment and creates new segments even if you do not specify a new
tablespace.

The move operation obtains its parallel attribute from the parallel_clause, if specified. If not
specified, the default parallel attributes of the table, if any, are used. If neither is specified,
Oracle performs the move without using parallelism.

The parallel_clause on MOVE PARTITION does not change the default parallel attributes
of table.

Note: For index-organized tables, Oracle uses the address of the primary key, as well as
its value, to construct logical rowids. The logical rowids are stored in the secondary index
of the table. If you move a partition of an index-organized table, the address portion of
the rowids will change, which can hamper performance. To ensure optimal performance,
rebuild the secondary index(es) on the moved partition to update the rowids. For more

information on logical rowids, see Oracle8i Concepts.

Restrictions:

■ If partition is a hash partition, the only attribute you can specify in this clause is
TABLESPACE.

■ You cannot move a partition of a composite-partitioned table. You must move each
subpartition separately with the move_subpartition_clause.

■ You cannot specify this clause for a partition containing subpartitions. However, you
can move subpartitions using the move_subpartition_clause.
7-146 SQL Reference

ALTER TABLE
move_
subpartition_
clause

moves the table subpartition subpartition to another segment. If you do not specify
TABLESPACE, the subpartition will remain in the same tablespace.

Unless the subpartition is empty, Oracle marks UNUSABLE all local index subpartitions
corresponding to the subpartition being moved, as well as global nonpartitioned indexes
and partitions of global indexes.

If the table contains LOB columns, you can use the LOB_storage_clause to move the LOB
data and LOB index segments associated with this subpartition. Only the LOBs named
are affected. If you do not specify the LOB_storage_clause for a particular LOB column, its
LOB data and LOB index segments are not moved.

When you move a LOB data segment, Oracle drops the old data segment and
corresponding index segment and creates new segments even if you do not specify a new
tablespace.

add_range_
partition_clause

adds a new range partition partition to the "high" end of a partitioned table (after the last
existing partition). You can specify any create-time physical attributes for the new
partition. If the table contains LOB columns, you can also specify partition-level attributes
for one or more LOB items.

You can specify up to 64K-1 partitions. For a discussion of factors that might impose

practical limits less than this number, refer to Oracle8i Administrator’s Guide.

Restrictions:

■ If the first element of the partition bound of the high partition is MAXVALUE, you
cannot add a partition to the table. Instead, use the split_partition_clause to add a
partition at the beginning or the middle of the table.

■ The compression_clause, physical_attributes_clause, and OVERFLOW are valid only for
a partitioned index-organized table.

■ You cannot specify the PCTUSED parameter for the index segment of an
index-organized table.

■ You can specify OVERFLOW only if the partitioned table already has an overflow
segment.

■ You can specify compression only if compression is enabled at the table level.

VALUES LESS
THAN (value_list)

specifies the upper bound for the new partition. The value_list is a
comma-separated, ordered list of literal values corresponding to
column_list. The value_list must collate greater than the partition
bound for the highest existing partition in the table.

partition_level_
subpartitioning

is permitted only for a composite-partitioned table. This clause lets
you specify particular hash subpartitions for partition. You specify
composite partitioning in one of two ways:
SQL Statements 7-147

ALTER TABLE
■ You can specify individual subpartitions by name, and optionally
the tablespace where each should be stored, or

■ You can specify the number of subpartitions (and optionally one
or more tablespaces where they are to be stored). In this case,
Oracle assigns partition names of the form SYS_SUBPnnn. The
number of tablespaces does not have to equal the number of
subpartitions. If the number of subpartitions is greater than the
number of tablespaces, Oracle cycles through the names of the
tablespaces.

The subpartitions inherit all their attributes from any attributes
specified for new_partition, except for TABLESPACE, which you can
specify at the subpartition level. Any attributes not specified at the
subpartition or partition level are inherited from table-level defaults.

This clause overrides any subpartitioning specified at the table level.

If you do not specify this clause but you specified default
subpartitioning at the table level, new_partition_name will inherit the
table-level default subpartitioning (see "CREATE TABLE" on
page 7-359).

add_hash_
partition_clause

adds a new hash partition to the "high" end of a partitioned table. Oracle will populate
the new partition with rows rehashed from other partitions of table as determined by the
hash function.

You can specify a name for the partition, and optionally a tablespace where it should be
stored. If you do not specify new_partition_name, Oracle assigns a partition name of the
form SYS_Pnnn. If you do not specify TABLESPACE, the new partition is stored in the
table’s default tablespace. Other attributes are always inherited from table-level defaults.

For more information on hash partitioning, see "CREATE TABLE" on page 7-359 and
Oracle8i Concepts.

parallel_clause lets you specify whether to parallelize the creation of the new
partition.

coalesce_
partition_clause

applies only to hash-partitioned tables. This clause specifies that Oracle should select a
hash partition, distribute its contents into one or more remaining partitions (determined
by the hash function), and then drop the selected partition. Local index partitions
corresponding to the selected partition are also dropped. Oracle marks UNUSABLE, and
you must rebuild, the local index partitions corresponding to one or more absorbing
partitions.

drop_partition_
clause

applies only to tables partitioned using the range or composite method. This clause
removes partition partition, and the data in that partition, from a partitioned table. If you
want to drop a partition but keep its data in the table, you must merge the partition into
one of the adjacent partitions. See the merge_partitions_clause of this statement.
7-148 SQL Reference

ALTER TABLE
If the table has LOB columns, the LOB data and LOB index partitions (and their
subpartitions, if any) corresponding to partition are also dropped.

■ Oracle drops local index partitions and subpartitions corresponding to partition, even
if they are marked UNUSABLE.

■ Oracle marks UNUSABLE all global nonpartitioned indexes defined on the table and
all partitions of global partitioned indexes, unless the partition being dropped or all
of its subpartitions are empty.

■ If you drop a partition and later insert a row that would have belonged to the
dropped partition, Oracle stores the row in the next higher partition. However, if that
partition is the highest partition, the insert will fail because the range of values
represented by the dropped partition is no longer valid for the table.

Restriction: If table contains only one partition, you cannot drop the partition. You must
drop the table.

truncate_
partition_clause

truncate_
subpartition_
clause

PARTITION removes all rows from partition or, if the table is composite-partitioned, all
rows from partition’s subpartitions. SUBPARTITION removes all rows from subpartition.

If the table contains any LOB columns, the LOB data and LOB index segments for this
partition are also truncated. If the table is composite-partitioned, the LOB data and LOB
index segments for this partition’s subpartitions are truncated.

If the partition or subpartition to be truncated contains data, you must first disable any
referential integrity constraints on the table. Alternatively, you can delete the rows and
then truncate the partition.

For each partition or subpartition truncated, Oracle also truncates corresponding local
index partitions and subpartitions. If those index partitions or subpartitions are marked
UNUSABLE, Oracle truncates them and resets the UNUSABLE marker to VALID. In
addition, if the truncated partition or subpartition, or any of the subpartitions of the
truncated partition are not empty, Oracle marks as UNUSABLE all global nonpartitioned
indexes and partitions of global indexes defined on the table.

DROP STORAGE deallocates space from the deleted rows and makes it available for use
by other schema objects in the tablespace.

REUSE
STORAGE

keeps space from the deleted rows allocated to the partition or
subpartition. The space is subsequently available only for inserts and
updates to the same partition or subpartition.

split_partition_
clause

from an original partition partition_name_old, creates two new partitions, each with a new
segment and new physical attributes, and new initial extents. The segment associated
with partition_name_old is discarded.

Restriction: You cannot specify this clause for a hash-partitioned table.

AT (value_list) specifies the new noninclusive upper bound for split_partition_1. The
value_list must compare less than the original partition bound for
partition_name_old and greater than the partition bound for the next
lowest partition (if there is one).
SQL Statements 7-149

ALTER TABLE
INTO describes the two partitions resulting from the split.

partition_
description,
partition_
description

specifies optional names and physical attributes of the two partitions
resulting from the split. If you do not specify new partition names,
Oracle assigns names of the form SYS_Pn. Any attributes you do not
specify are inherited from partition_name_old.

Restriction:

■ You can specify the compression_clause, physical_attributes_clause,
and OVERFLOW only for a partitioned index-organized table.

■ You cannot specify the PCTUSED parameter for the index
segment of an index-organized table.

parallel_clause parallelizes the split operation, but does not change the default
parallel attributes of the table.

If you specify subpartitioning for the new partitions, you can specify only TABLESPACE
for the subpartitions. All other attributes will be inherited from the containing new
partition.

If partition_name_old is subpartitioned, and you do not specify any subpartitioning for the
new partitions, the new partitions will inherit the number and tablespaces of the
subpartitions in partition_name_old.

Oracle also splits corresponding local index partitions, even if they are marked
UNUSABLE. The resulting local index partitions inherit all their partition-level default
attributes from the local index partition being split.

If partition_name_old was not empty, Oracle marks UNUSABLE all global nonpartitioned
indexes and all partitions of global indexes on the table. (This action on global indexes
does not apply to index-organized tables.) In addition, if any partitions or subpartitions
resulting from the split are not empty, Oracle marks as UNUSABLE all corresponding
local index partitions and subpartitions.

If table contains LOB columns, you can use the LOB_storage_clause to specify separate LOB
storage attributes for the LOB data segments resulting from the split. Oracle drops the
LOB data and LOB index segments of partition_name_old and creates new segments for
each LOB column, for each partition, even if you do not specify a new tablespace.

merge_partitions_
clause

merges the contents of two adjacent partitions of table into one new partition, and then
drops the original two partitions.

The new partition inherits the partition-bound of the higher of the two original partitions.

Any attributes not specified in the segment_attributes_clause are inherited from table-level
defaults.
7-150 SQL Reference

ALTER TABLE
If you do not specify new_partition_name, Oracle assigns a name of the form SYS_Pnnn. If
the new partition has subpartitions, Oracle assigns subpartition names of the form SYS_
SUBPnnnn.

If either or both of the original partitions was not empty, Oracle marks UNUSABLE all
global nonpartitioned global indexes and all partitions of global indexes on the table. In
addition, if the partition or any of its subpartitions resulting from the merge is not empty,
Oracle marks UNUSABLE all corresponding local index partitions and subpartitions.

Restriction: You cannot specify this clause for an index-organized table or for a table
partitioned using the hash method.

partition_level_
partitioning

specifies hash subpartitioning attributes for the new partition. Any
attributes not specified in this clause are inherited from table-level
defaults.

If you do not specify this clause, the new merged partition inherits
subpartitioning attributes from table-level defaults.

parallel_clause specifies that the merging operation is to be parallelized.

exchange_
partition_clause

exchange_
subpartition_
clause

converts a partition (or subpartition) into a nonpartitioned table, and a nonpartitioned
table into a partition (or subpartition) of a partitioned table by exchanging their data (and
index) segments. The default behavior is EXCLUDING INDEXES WITH VALIDATION.
You must have ALTER TABLE privileges on both tables to perform this operation.

This clause facilitates high-speed data loading when used with transportable tablespaces.
For information on this topic, see Oracle8i Administrator’s Guide.

If table contains LOB columns, for each LOB column Oracle exchanges LOB data and LOB
index partition or subpartition segments with corresponding LOB data and LOB index
segments of table.

All statistics of the table and partition are exchanged, including table, column, index
statistics, and histograms. The aggregate statistics of the partitioned table are recalculated.

The logging attribute of the table and partition is also exchanged.

WITH TABLE
table

specifies the table with which the partition will be exchanged.

INCLUDING
INDEXES

specifies that the local index partitions or subpartitions should be
exchanged with the corresponding regular indexes.

EXCLUDING
INDEXES

specifies that all the local index partitions or subpartitions
corresponding to the partition and all the regular indexes on the
exchanged table are marked UNUSABLE.

WITH
VALIDATION

specifies that if any rows in the exchanged table do not map into
partitions or subpartitions being exchanged, Oracle should return an
error.

WITHOUT
VALIDATION

specifies that the proper mapping of rows in the exchanged table is
not checked.
SQL Statements 7-151

ALTER TABLE
EXCEPTIONS
INTO

This clause applies only to loading a nonpartitioned table into a
partitioned table. It lets you specify a table into which Oracle places
the rowids of all rows violating the partitioned table’s UNIQUE
constraint. The script used to create such a table is UTLEXCPT1.SQL.

Note: You can use the UTLEXCPT1.SQL script with index-organized
tables. You could not use earlier versions of the script for this purpose.

See Oracle8i Migration for compatibility information.

Restrictions:

■ This clause is not valid with subpartitions.

■ The partitioned table must have been defined with a UNIQUE
constraint, and that constraint must be in DISABLE VALIDATE
state.

If these conditions are not true, Oracle ignores this clause.

For more information on constraint checking, see the "constraint_
clause" on page 7-217.

Restrictions: For partitioned index-organized tables, the following restrictions apply:

■ The source and target table/partition must have their primary key set on the same
columns, in the same order.

■ If compression is enabled, it must be enabled for both the source and the target, and
with the same prefix length.

■ An index-organized table partition cannot be exchanged with a regular table or vice
versa.

■ Both the source and target must have overflow segments, or neither can have
overflow segments.

row_movement_
clause

determines whether a row can be moved to a different partition or subpartition because
of a change to one or more of its key values.

Restriction: You can specify this clause only for a partitioned table.

ENABLE allows Oracle to move a row to a different partition or subpartition as
the result of an update to the partitioning or subpartitioning key.

Restriction: You cannot specify this clause if a domain index has been
built on any column of the table.

WARNING: Moving a row in the course of an UPDATE operation
changes that row’s ROWID.

DISABLE returns an error if an update to a partitioning or subpartitioning key
would result in a row moving to a different partition or subpartition.
This is the default.
7-152 SQL Reference

ALTER TABLE
parallel_clause changes the default degree of parallelism for queries and DML on the table. For
additional information, see the Notes to the parallel_clause of "CREATE TABLE" on
page 7-359.

NOPARALLEL specifies serial execution. This is the default.

PARALLEL causes Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL
integer

specifies the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use
one or two parallel execution processes. Normally Oracle calculates
the optimum degree of parallelism, so it is not necessary for you to
specify integer.

Restriction: If table contains any columns of LOB or user-defined object type, subsequent
INSERT, UPDATE, and DELETE operations on table are executed serially without
notification. Subsequent queries, however, will be executed in parallel.

Note: If you specify the parallel_clause in conjunction with the move_table_clause, the
parallelism applies only to the move, not to subsequent DML and query operations on
the table.

enable_disable_
clause

lets you specify whether Oracle should apply an integrity constraint. For a complete
description of this clause, including notes and restrictions that relate to this statement, see
the enable_disable_clause of "CREATE TABLE" on page 7-359.

ENABLE TABLE
LOCK

enables DML and DDL locks on a table in a parallel server environment. For more
information, see Oracle8i Parallel Server Concepts and Administration.

Note: DML table locks are not acquired on temporary tables.

DISABLE TABLE
LOCK

disables DML and DDL locks on a table to improve performance in a parallel server
environment. For more information, see Oracle8i Parallel Server Concepts and
Administration.

ENABLE ALL
TRIGGERS

enables all triggers associated with the table. Oracle fires the triggers whenever their
triggering condition is satisfied. See "CREATE TRIGGER" on page 7-401.

To enable a single trigger, use the enable_clause of ALTER TRIGGER. See "ALTER
TRIGGER" on page 7-171.

DISABLE ALL
TRIGGERS

disables all triggers associated with the table. Oracle will not fire a disabled trigger even if
the triggering condition is satisfied.
SQL Statements 7-153

ALTER TABLE
Examples

Nested Table Example The following statement modifies the storage

characteristics of a nested table column PROJECTS in table EMP so that when

queried it returns actual values instead of locators:

ALTER TABLE emp MODIFY NESTED TABLE projects RETURN AS VALUE;

PARALLEL Example The following statement specifies parallel processing for

queries to the EMP table:

ALTER TABLE emp
 PARALLEL;

ENABLE VALIDATE Example The following statement places in ENABLE

VALIDATE state an integrity constraint named FK_DEPTNO in the EMP table:

ALTER TABLE emp
 ENABLE VALIDATE CONSTRAINT fk_deptno
 EXCEPTIONS INTO except_table;

Each row of the EMP table must satisfy the constraint for Oracle to enable the

constraint. If any row violates the constraint, the constraint remains disabled.

Oracle lists any exceptions in the table EXCEPT_TABLE. You can also identify the

exceptions in the EMP table with the following statement:

SELECT emp.*
 FROM emp e, except_table ex
 WHERE e.row_id = ex.row_id
 AND ex.table_name = ’EMP’
 AND ex.constraint = ’FK_DEPTNO’;

ENABLE NOVALIDATE Example The following statement tries to place in

ENABLE NOVALIDATE state two constraints on the EMP table:

ALTER TABLE emp
 ENABLE NOVALIDATE UNIQUE (ename)
 ENABLE NOVALIDATE CONSTRAINT nn_ename;

This statement has two ENABLE clauses:

■ The first places a unique constraint on the ENAME column in ENABLE

NOVALIDATE state.

■ The second places the constraint named NN_ENAME in ENABLE

NOVALIDATE state.
7-154 SQL Reference

ALTER TABLE
In this case, Oracle enables the constraints only if both are satisfied by each row in

the table. If any row violates either constraint, Oracle returns an error and both

constraints remain disabled.

DISABLE Example Consider a referential integrity constraint involving a foreign

key on the combination of the AREACO and PHONENO columns of the PHONE_

CALLS table. The foreign key references a unique key on the combination of the

AREACO and PHONENO columns of the CUSTOMERS table. The following

statement disables the unique key on the combination of the AREACO and

PHONENO columns of the CUSTOMERS table:

ALTER TABLE customers
 DISABLE UNIQUE (areaco, phoneno) CASCADE;

The unique key in the CUSTOMERS table is referenced by the foreign key in the

PHONE_CALLS table, so you must use the CASCADE clause to disable the unique

key. This clause disables the foreign key as well.

CHECK Example The following statement defines and disables a CHECK

constraint on the EMP table:

ALTER TABLE emp
 ADD (CONSTRAINT check_comp CHECK (sal + comm <= 5000))
 DISABLE CONSTRAINT check_comp;

The constraint CHECK_COMP ensures that no employee’s total compensation

exceeds $5000. The constraint is disabled, so you can increase an employee’s

compensation above this limit.

Triggers Example The following statement enables all triggers associated with the

EMP table:

ALTER TABLE emp
 ENABLE ALL TRIGGERS;

DEALLOCATE UNUSED Example The following statement frees all unused space

for reuse in table EMP, where the high water mark is above MINEXTENTS:

ALTER TABLE emp
 DEALLOCATE UNUSED;

DROP COLUMN Example This statement illustrates the drop_column_clause with

CASCADE CONSTRAINTS. Assume table T1 is created as follows:

CREATE TABLE t1 (
SQL Statements 7-155

ALTER TABLE
 pk NUMBER PRIMARY KEY,
 fk NUMBER,
 c1 NUMBER,
 c2 NUMBER,
 CONSTRAINT ri FOREIGN KEY (fk) REFERENCES t1,
 CONSTRAINT ck1 CHECK (pk > 0 and c1 > 0),
 CONSTRAINT ck2 CHECK (c2 > 0)
);

An error will be returned for the following statements:

ALTER TABLE t1 DROP (pk); -- pk is a parent key
ALTER TABLE t1 DROP (c1); -- c1 is referenced by multicolumn
 constraint ck1

Submitting the following statement drops column PK, the primary key constraint,

the foreign key constraint, RI, and the check constraint, CK1:

ALTER TABLE t1 DROP (pk) CASCADE CONSTRAINTS;

If all columns referenced by the constraints defined on the dropped columns are

also dropped, then CASCADE CONSTRAINTS is not required. For example,

assuming that no other referential constraints from other tables refer to column PK,

then it is valid to submit the following statement without the CASCADE

CONSTRAINTS clause:

ALTER TABLE t1 DROP (pk, fk, c1);

Index-Organized Table Examples This statement modifies the INITRANS

parameter for the index segment of index-organized table DOCINDEX:

ALTER TABLE docindex INITRANS 4;

The following statement adds an overflow data segment to index-organized table

DOCINDEX:

ALTER TABLE docindex ADD OVERFLOW;

This statement modifies the INITRANS parameter for the overflow data segment of

index-organized table DOCINDEX:

ALTER TABLE docindex OVERFLOW INITRANS 4;

ADD PARTITION Example The following statement adds a partition P3 and

specifies storage characteristics for three of the table’s LOB columns (B, C, and D):

ALTER TABLE pt ADD PARTITION p3 VALUES LESS THAN (30)
7-156 SQL Reference

ALTER TABLE
 LOB (b, d) STORE AS (TABLESPACE tsz)
 LOB (c) STORE AS mylobseg;

The LOB data and LOB index segments for columns B and D in partition P3 will

reside in tablespace TSZ. The remaining attributes for these LOB columns will be

inherited first from the table-level defaults, and then from the tablespace defaults.

The LOB data segments for column C will reside in the MYLOBSEG segment, and

will inherit all other attributes from the table-level defaults and then from the

tablespace defaults.

SPLIT PARTITION Example The following statement splits partition P3 into

partitions P3_1 and P3_2:

ALTER TABLE pt SPLIT PARTITION p3 AT VALUES LESS THAN (25)
 INTO (PARTITION p3_1 TABLESPACE ts4
 LOB (b,d) STORE AS (TABLESPACE tsz),
 PARTITION p3_2 (TABLESPACE ts5)
 LOB (c) STORE AS (TABLESPACE ts5);

In partition P3_1, Oracle creates the LOB segments for columns B and D in

tablespace TSZ. In partition P3_2, Oracle creates the LOB segments for column C in

tablespace TS5. The LOB segments for columns B and D in partition P3_2 and those

for column C in partition P3_1 remain in original tablespace for the original

partition P3. However, Oracle creates new segments for all the LOB data and LOB

index segments, even though they are not moved to a new tablespace.

User-Defined Object Identifier Example The following statements create an object

type, a corresponding object table with a primary-key-based object identifier, and a

table having a user-defined REF column:

CREATE TYPE emp_t AS OBJECT (empno NUMBER, address CHAR(30));

CREATE TABLE emp OF emp_t (
 empno PRIMARY KEY)
 OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE TABLE dept (dno NUMBER, mgr_ref REF emp_t SCOPE is emp);

The next statements add a constraint and a user-defined REF column, both of

which reference table EMP:

ALTER TABLE dept ADD CONSTRAINT mgr_cons FOREIGN_KEY (mgr_ref)
 REFERENCES emp;
ALTER TABLE dept ADD sr_mgr REF emp_t REFERENCES emp;
SQL Statements 7-157

ALTER TABLE
Add Column Example The following statement adds a column named

THRIFTPLAN of datatype NUMBER with a maximum of seven digits and two

decimal places and a column named LOANCODE of datatype CHAR with a size of

one and a NOT NULL integrity constraint:

ALTER TABLE emp
 ADD (thriftplan NUMBER(7,2),
 loancode CHAR(1) NOT NULL);

Modify Column Examples The following statement increases the size of the

THRIFTPLAN column to nine digits:

ALTER TABLE emp
 MODIFY (thriftplan NUMBER(9,2));

Because the MODIFY clause contains only one column definition, the parentheses

around the definition are optional.

The following statement changes the values of the PCTFREE and PCTUSED

parameters for the EMP table to 30 and 60, respectively:

ALTER TABLE emp
 PCTFREE 30
 PCTUSED 60;

ALLOCATE EXTENT Example The following statement allocates an extent of 5

kilobytes for the EMP table and makes it available to instance 4:

ALTER TABLE emp
 ALLOCATE EXTENT (SIZE 5K INSTANCE 4);

Because this statement omits the DATAFILE parameter, Oracle allocates the extent

in one of the datafiles belonging to the tablespace containing the table.

DEFAULT Examples This statement modifies the BAL column of the ACCOUNTS

table so that it has a default value of 0:

ALTER TABLE accounts
 MODIFY (bal DEFAULT 0);

If you subsequently add a new row to the ACCOUNTS table and do not specify a

value for the BAL column, the value of the BAL column is automatically 0:

INSERT INTO accounts(accno, accname)
 VALUES (accseq.nextval, ’LEWIS’);
7-158 SQL Reference

ALTER TABLE
SELECT *
 FROM accounts
 WHERE accname = ’LEWIS’;

ACCNO ACCNAME BAL
------ ------- ---
815234 LEWIS 0

To discontinue previously specified default values, so that they are no longer

automatically inserted into newly added rows, replace the values with nulls, as

shown in this statement:

ALTER TABLE accounts
 MODIFY (bal DEFAULT NULL);

The MODIFY clause need only specify the column name and the modified part of

the definition, rather than the entire column definition. This statement has no effect

on any existing values in existing rows.

Drop Constraint Examples The following statement drops the primary key of the

DEPT table:

ALTER TABLE dept
 DROP PRIMARY KEY CASCADE;

If you know that the name of the PRIMARY KEY constraint is PK_DEPT, you could

also drop it with the following statement:

ALTER TABLE dept
 DROP CONSTRAINT pk_dept CASCADE;

The CASCADE clause drops any foreign keys that reference the primary key.

The following statement drops the unique key on the DNAME column of the DEPT

table:

ALTER TABLE dept
 DROP UNIQUE (dname);

The DROP clause in this statement omits the CASCADE clause. Because of this

omission, Oracle does not drop the unique key if any foreign key references it.

LOB Examples The following statement adds CLOB column RESUME to the

EMPLOYEE table and specifies LOB storage characteristics for the new column:

ALTER TABLE employee ADD (resume CLOB)
SQL Statements 7-159

ALTER TABLE
 LOB (resume) STORE AS resume_seg (TABLESPACE resume_ts);

To modify the LOB column RESUME to use caching, enter the following statement:

ALTER TABLE employee MODIFY LOB (resume) (CACHE);

Nested Table Examples The following statement adds the nested table column

SKILLS to the EMPLOYEE table:

ALTER TABLE employee ADD (skills skill_table_type)
 NESTED TABLE skills STORE AS nested_skill_table;

You can also modify a nested table’s storage characteristics. Use the name of the

storage table specified in the nested_table_storage_clause to make the modification.

You cannot query or perform DML statements on the storage table. Use the storage

table only to modify the nested table column storage characteristics.

The following statement creates table VETSERVICE with nested table column

CLIENT and storage table CLIENT_TAB. Nested table VETSERVICE is modified to

specify constraints:

CREATE TYPE pet_table AS OBJECT
 (pet_name VARCHAR2(10), pet_dob DATE);

CREATE TABLE vetservice (vet_name VARCHAR2(30),
 client pet_table)
 NESTED TABLE client STORE AS client_tab;

ALTER TABLE client_tab ADD UNIQUE (ssn);

The following statement adds a UNIQUE constraint to nested table NESTED_

SKILL_TABLE:

ALTER TABLE nested_skill_table ADD UNIQUE (a);

The following statement alters the storage table for a nested table of REF values to

specify that the REF is scoped:

CREATE TYPE emp_t AS OBJECT (eno number, ename char(31));
CREATE TYPE emps_t AS TABLE OF REF emp_t;
CREATE TABLE emptab OF emp_t;
CREATE TABLE dept (dno NUMBER, employees emps_t)
 NESTED TABLE employees STORE AS deptemps;
ALTER TABLE deptemps ADD (SCOPE FOR (column_value) IS emptab);

Similarly, to specify storing the REF with rowid:
7-160 SQL Reference

ALTER TABLE
ALTER TABLE deptemps ADD (REF(column_value) WITH ROWID);

In order to execute these ALTER TABLE statements successfully, the storage table

DEPTEMPS must be empty. Also, because the nested table is defined as a table of

scalars (REFs), Oracle implicitly provides the column name COLUMN_VALUE for

the storage table.

For more information about nested table storage see "CREATE TABLE" on

page 7-359. For more information about nested tables, see Oracle8i Application
Developer’s Guide - Fundamentals.

REF Examples In the following statement an object type DEPT_T has been

previously defined. Now, create table EMP as follows:

CREATE TABLE emp
 (name VARCHAR(100),
 salary NUMBER,
 dept REF dept_t);

An object table DEPARTMENTS is created as:

CREATE TABLE departments OF dept_t;

The DEPT column can store references to objects of DEPT_T stored in any table. If

you would like to restrict the references to point only to objects stored in the

DEPARTMENTS table, you could do so by adding a scope constraint on the DEPT

column as follows:

ALTER TABLE emp
 ADD (SCOPE FOR (dept) IS departments);

The above ALTER TABLE statement will succeed only if the EMP table is empty.

If you want the REF values in the DEPT column of EMP to also store the rowids,

issue the following statement:

ALTER TABLE emp
 ADD (REF(dept) WITH ROWID);

Add Partition Example The following statement adds partition JAN99 to

tablespace TSX:

ALTER TABLE sales
 ADD PARTITION jan99 VALUES LESS THAN(’970201’)
 TABLESPACE tsx;
SQL Statements 7-161

ALTER TABLE
Drop Partition Example The following statement drops partition DEC98:

ALTER TABLE sales DROP PARTITION dec98;

Exchange Partition Example The following statement converts partition FEB97 to

table SALES_FEB97 without exchanging local index partitions with corresponding

indexes on SALES_FEB97 and without verifying that data in SALES_FEB97 falls

within the bounds of partition FEB97:

ALTER TABLE sales
 EXCHANGE PARTITION feb97 WITH TABLE sales_feb97
 WITHOUT VALIDATION;

Modify Partition Examples The following statement marks all the local index

partitions corresponding to the NOV96 partition of the SALES table UNUSABLE:

ALTER TABLE sales MODIFY PARTITION nov96
 UNUSABLE LOCAL INDEXES;

The following statement rebuilds all the local index partitions that were marked

UNUSABLE:

ALTER TABLE sales MODIFY PARTITION jan97
 REBUILD UNUSABLE LOCAL INDEXES;

The following statement changes MAXEXTENTS and logging attribute for partition

BRANCH_NY:

ALTER TABLE branch MODIFY PARTITION branch_ny
 STORAGE (MAXEXTENTS 75) LOGGING;

Move Partition Example The following statement moves partition DEPOT2 to

tablespace TS094:

ALTER TABLE parts
 MOVE PARTITION depot2 TABLESPACE ts094 NOLOGGING;

Rename Partition Examples The following statement renames a table:

ALTER TABLE emp RENAME TO employee;

In the following statement, partition EMP3 is renamed:

ALTER TABLE employee RENAME PARTITION emp3 TO employee3;
7-162 SQL Reference

ALTER TABLE
Split Partition Example The following statement splits the old partition DEPOT4,

creating two new partitions, naming one DEPOT9 and reusing the name of the old

partition for the other:

ALTER TABLE parts
 SPLIT PARTITION depot4 AT (’40-001’)
 INTO (PARTITION depot4 TABLESPACE ts009 STORAGE (MINEXTENTS 2),
 PARTITION depot9 TABLESPACE ts010)
 PARALLEL (10);

Truncate Partition Example The following statement deletes all the data in the

SYS_P017 partition and deallocates the freed space:

ALTER TABLE deliveries
 TRUNCATE PARTITION sys_p017 DROP STORAGE;

Additional Examples For examples of defining integrity constraints with the

ALTER TABLE statement, see the "constraint_clause" on page 7-217.

For examples of changing the value of a table’s storage parameters, see the

"storage_clause" on page 7-575.
SQL Statements 7-163

ALTER TABLESPACE
ALTER TABLESPACE

Syntax

ALTER TABLESPACE tablespace

LOGGING

NOLOGGING

datafile/tempfile_clauses

DEFAULT storage_clause

MINIMUM EXTENT integer

K

M

ONLINE

OFFLINE

NORMAL

TEMPORARY

IMMEDIATE

FOR RECOVER

BEGIN

END
BACKUP

READ
ONLY

WRITE

PERMANENT

TEMPORARY

COALESCE

;

7-164 SQL Reference

ALTER TABLESPACE
datafile/tempfile_clauses ::=

filespec : See "filespec" on page 7-490.

autoextend_clause ::=

maxsize_clause::=

storage_clause: See "storage_clause" on page 7-575.

Purpose
To alter an existing tablespace or one or more of its datafiles or tempfiles.

For information on creating a tablespace, see "CREATE TABLESPACE" on

page 7-394.

ADD
DATAFILE

TEMPFILE
’ filespec ’

autoextend_clause

,

RENAME DATAFILE ’ filename ’

,

TO ’ filename ’

,

AUTOEXTEND

OFF

ON
NEXT integer

K

M
maxsize_clause

MAXSIZE

UNLIMITED

integer

K

M

SQL Statements 7-165

ALTER TABLESPACE
Prerequisites
If you have ALTER TABLESPACE system privilege, you can perform any of this

statement’s operations. If you have MANAGE TABLESPACE system privilege, you

can only perform the following operations:

■ take the tablespace online or offline

■ begin or end a backup

■ make the tablespace read-only or read-write

Before you can make a tablespace read-only, the following conditions must be met:

■ The tablespace must be online.

■ The tablespace must not contain any active rollback segments. For this reason,

the SYSTEM tablespace can never be made read-only, because it contains the

SYSTEM rollback segment. Additionally, because the rollback segments of a

read-only tablespace are not accessible, Oracle recommends that you drop the

rollback segments before you make a tablespace read-only.

■ The tablespace must not be involved in an open backup, because the end of a

backup updates the header file of all datafiles in the tablespace.

Performing this function in restricted mode may help you meet these restrictions,

because only users with RESTRICTED SESSION system privilege can be logged on.

Keywords and Parameters

tablespace is the name of the tablespace to be altered.

LOGGING |
NOLOGGING

specifies the default logging attribute of all tables, indexes, and partitions within the
tablespace. The tablespace-level logging attribute can be overridden by logging
specifications at the table, index, and partition levels.

When an existing tablespace logging attribute is changed by an ALTER TABLESPACE
statement, all tables, indexes, and partitions created after the statement will have the new
default logging attribute (which you can still subsequently override). The logging
attributes of existing objects are not changed.

Only the following operations support NOLOGGING mode:

■ DML: direct-load INSERT (serial or parallel); Direct Loader (SQL*Loader)

■ DDL: CREATE TABLE... AS SELECT, CREATE INDEX, ALTER INDEX... REBUILD,
ALTER INDEX... REBUILD PARTITION, ALTER INDEX... SPLIT PARTITION,
ALTER TABLE... SPLIT PARTITION, ALTER TABLE... MOVE PARTITION.
7-166 SQL Reference

ALTER TABLESPACE
In NOLOGGING mode, data is modified with minimal logging (to mark new extents
invalid and to record dictionary changes). When applied during media recovery, the
extent invalidation records mark a range of blocks as logically corrupt, because the redo
data is not logged. Therefore, if you cannot afford to lose the object, it is important to take
a backup after the NOLOGGING operation.

datafile/tempfile_
clauses

adds or modifies a datafile or tempfile.

ADD DATAFILE

| TEMPFILE

Adds to the tablespace a datafile or tempfile specified by filespec (see

"filespec" on page 7-490).

You can add a datafile or tempfile to a locally managed tablespace

that is online or to a dictionary managed tablespace that is online or

offline. Be sure the file is not in use by another database.

Note: As the syntax shows, you cannot combine an ADD clause with any other clauses in
the same ALTER TABLESPACE statement. In addition, for a locally managed temporary
tablespace, you cannot specify any of the other clauses for this tablespace at any time.

RENAME
DATAFILE

renames one or more of the tablespace’s datafiles. Take the tablespace
offline before renaming the datafile. Each ’filename’ must fully specify
a datafile using the conventions for filenames on your operating
system.

This clause merely associates the tablespace with the new file rather
than the old one. This clause does not actually change the name of the
operating system file. You must change the name of the file through
your operating system.

autoextend_
clause

enables or disables the autoextending of the size of the datafile in the tablespace.

OFF disables autoextend if it is turned on. NEXT and MAXSIZE are set to
zero. Values for NEXT and MAXSIZE must be respecified in further
ALTER TABLESPACE AUTOEXTEND statements.

ON enables autoextend.

NEXT specifies the size in bytes of the next increment of disk space to be
allocated automatically to the datafile when more extents are
required. Use K or M to specify this size in kilobytes or megabytes.
The default is one data block.

maxsize_clause specifies maximum disk space allowed for automatic extension of the
datafile.

UNLIMITED sets no limit on allocating disk space to the datafile.
SQL Statements 7-167

ALTER TABLESPACE
DEFAULT
storage_clause

specifies the new default storage parameters for objects subsequently created in the
tablespace. For a dictionary-managed temporary table, Oracle considers only the NEXT
parameter of the storage_clause. See the "storage_clause" on page 7-575.

Restriction: You cannot specify this clause for a locally managed tablespace.

MINIMUM
EXTENT integer

controls free space fragmentation in the tablespace by ensuring that every used or free
extent size in a tablespace is at least as large as, and is a multiple of, integer. This clause is
not relevant for a dictionary-managed temporary tablespace. For more information about
using MINIMUM EXTENT to control space fragmentation, see Oracle8i Administrator’s
Guide.

Restriction: You cannot specify this clause for a locally managed tablespace.

ONLINE brings the tablespace online.

OFFLINE takes the tablespace offline and prevents further access to its segments.

NORMAL flushes all blocks in all datafiles in the tablespace out of the SGA. You
need not perform media recovery on this tablespace before bringing it
back online. This is the default.

TEMPORARY performs a checkpoint for all online datafiles in the tablespace but
does not ensure that all files can be written. Any offline files may
require media recovery before you bring the tablespace back online.

IMMEDIATE does not ensure that tablespace files are available and does not
perform a checkpoint. You must perform media recovery on the
tablespace before bringing it back online.

FOR RECOVER takes the production database tablespaces in the recovery set offline
for tablespace point-in-time recovery. For additional information see
Oracle8i Backup and Recovery Guide.

Suggestion: Before taking a tablespace offline for a long time, you may want to alter the tablespace allocation
of any users who have been assigned the tablespace as either a default or temporary tablespace. When the
tablespace is offline, these users cannot allocate space for objects or sort areas in the tablespace. For more
information, see "ALTER USER" on page 7-179.

BEGIN BACKUP signifies that an open backup is to be performed on the datafiles that make up this
tablespace. This clause does not prevent users from accessing the tablespace. You must
use this clause before beginning an open backup. You cannot use this clause on a
read-only tablespace.

Note: While the backup is in progress, you cannot take the tablespace offline normally,
shut down the instance, or begin another backup of the tablespace.

END BACKUP signifies that an open backup of the tablespace is complete. Use this clause as soon as
possible after completing an open backup. You cannot use this clause on a read-only
tablespace.
7-168 SQL Reference

ALTER TABLESPACE
Examples

Backup Examples The following statement signals to the database that a backup

is about to begin:

ALTER TABLESPACE accounting
 BEGIN BACKUP;

The following statement signals to the database that the backup is finished:

ALTER TABLESPACE accounting
 END BACKUP;

Moving and Renaming Example This example moves and renames a datafile

associated with the ACCOUNTING tablespace from ’DISKA:PAY1.DAT’ to

’DISKB:RECEIVE1.DAT’:

1. Take the tablespace offline using an ALTER TABLESPACE statement with the

OFFLINE clause:

If you forget to indicate the end of an online tablespace backup, and an instance failure or
SHUTDOWN ABORT occurs, Oracle assumes that media recovery (possibly requiring
archived redo log) is necessary at the next instance start up. To restart the database
without media recovery, see Oracle8i Administrator’s Guide.

READ ONLY signifies that no further write operations are allowed on the tablespace. (This clause waits
for all existing transactions either to commit or roll back before taking effect.) The
tablespace becomes read only.

Once a tablespace is read only, you can copy its files to read-only media. You must then
rename the datafiles in the control file to point to the new location by using the SQL
statement ALTER DATABASE ... RENAME. See "ALTER DATABASE" on page 7-6. For
more information on read-only tablespaces, see Oracle8i Concepts.

READ WRITE signifies that write operations are allowed on a previously read-only tablespace.

PERMANENT specifies that the tablespace is to be converted from a temporary to a permanent one. A
permanent tablespace is one in which permanent database objects can be stored. This is
the default when a tablespace is created.

TEMPORARY specifies that the tablespace is to be converted from a permanent to a temporary one. A
temporary tablespace is one in which no permanent database objects can be stored.
Objects in a temporary tablespace persist only for the duration of the session.

COALESCE for each datafile in the tablespace, coalesces all contiguous free extents into larger
contiguous extents.

Restriction: COALESCE cannot be specified with any other statement clause.
SQL Statements 7-169

ALTER TABLESPACE
ALTER TABLESPACE accounting OFFLINE NORMAL;

2. Copy the file from ’DISKA:PAY1.DAT’ to ’DISKB:RECEIVE1.DAT’ using your

operating system’s commands.

3. Rename the datafile using the ALTER TABLESPACE statement with the

RENAME DATAFILE clause:

ALTER TABLESPACE accounting
 RENAME DATAFILE ’diska:pay1.dbf’
 TO ’diskb:receive1.dbf’;

4. Bring the tablespace back online using an ALTER TABLESPACE statement with

the ONLINE clause:

ALTER TABLESPACE accounting ONLINE;

Adding a Datafile Example The following statement adds a datafile to the

tablespace and changes the default logging attribute to NOLOGGING. When more

space is needed, new extents of size 10 kilobytes will be added up to a maximum of

100 kilobytes:

ALTER TABLESPACE accounting NOLOGGING
 ADD DATAFILE ’disk3:pay3.dbf’
 SIZE 50K
 AUTOEXTEND ON
 NEXT 10K
 MAXSIZE 100K;

Altering a tablespace logging attribute has no affect on the logging attributes of the

existing schema objects within the tablespace. The tablespace-level logging

attribute can be overridden by logging specifications at the table, index, and

partition levels.

Changing Extent Allocation Example The following statement changes the

allocation of every extent of TABSPACE_ST to a multiple of 128K:

ALTER TABLESPACE tabspace_st MINIMUM EXTENT 128K;
7-170 SQL Reference

ALTER TRIGGER
ALTER TRIGGER

Syntax

Purpose
To enable, disable, or compile a database trigger. For information on creating a

trigger, see "CREATE TRIGGER" on page 7-401. For information on dropping a

trigger, see "DROP TRIGGER" on page 7-479.

Prerequisites
The trigger must be in your own schema or you must have ALTER ANY TRIGGER

system privilege.

In addition, to alter a trigger on DATABASE, you must have the ADMINISTER

DATABASE TRIGGER system privilege. For more information on triggers based on

DATABASE, see "CREATE TRIGGER" on page 7-401.

Keywords and Parameters

Note: This statement does not change the declaration or

definition of an existing trigger. To redeclare or redefine a trigger,

use the CREATE TRIGGER statement with OR REPLACE.

schema is the schema containing the trigger. If you omit schema, Oracle assumes the trigger is in
your own schema.

trigger is the name of the trigger to be altered.

ENABLE enables the trigger. You can also use the ENABLE ALL TRIGGERS clause of ALTER
TABLE to enable all triggers associated with a table. See "ALTER TABLE" on page 7-113.

ALTER TRIGGER
schema.

trigger

ENABLE

DISABLE

COMPILE
DEBUG

;

SQL Statements 7-171

ALTER TRIGGER
Examples
Consider a trigger named REORDER created on the INVENTORY table. The trigger

is fired whenever an UPDATE statement reduces the number of a particular part on

hand below the part’s reorder point. The trigger inserts into a table of pending

orders a row that contains the part number, a reorder quantity, and the current date.

When this trigger is created, Oracle enables it automatically. You can subsequently

disable the trigger with the following statement:

ALTER TRIGGER reorder DISABLE;

When the trigger is disabled, Oracle does not fire the trigger when an UPDATE

statement causes the part’s inventory to fall below its reorder point.

After disabling the trigger, you can subsequently enable it with the following

statement:

ALTER TRIGGER reorder ENABLE;

After you reenable the trigger, Oracle fires the trigger whenever a part’s inventory

falls below its reorder point as a result of an UPDATE statement. It is possible that

a part’s inventory falls below its reorder point while the trigger was disabled. In

that case, when you reenable the trigger, Oracle does not automatically fire the

trigger for this part until another transaction further reduces the inventory.

DISABLE disables the trigger. You can also use the DISABLE ALL TRIGGERS clause of ALTER
TABLE to disable all triggers associated with a table. See "ALTER TABLE" on page 7-113.

COMPILE explicitly compiles the trigger, whether it is valid or invalid. Explicit recompilation
eliminates the need for implicit run-time recompilation and prevents associated run-time
compilation errors and performance overhead.

Oracle first recompiles objects upon which the trigger depends, if any of these objects are
invalid. If Oracle recompiles the trigger successfully, the trigger becomes valid.

If recompiling the trigger results in compilation errors, then Oracle returns an error and
the trigger remains invalid. You can see the associated compiler error messages with the
SQL*Plus command SHOW ERRORS. For information on debugging procedures, see
Oracle8i Application Developer’s Guide - Fundamentals. For information on how Oracle
maintains dependencies among schema objects, including remote objects, see Oracle8i
Concepts.

DEBUG instructs the PL/SQL compiler to generate and store the code for use
by the PL/SQL debugger. This clause can be used for normal triggers
and for instead-of triggers.
7-172 SQL Reference

ALTER TYPE
ALTER TYPE

Syntax

element_list::=

pragma_clause ::=

Purpose
To recompile the specification and/or body, or to change the specification of an

object type by adding new object member subprogram specifications.

ALTER TYPE
schema .

type
COMPILE

DEBUG

SPECIFICATION

BODY

REPLACE AS OBJECT (element_list)
;

attribute datatype

,

,
MEMBER

STATIC

procedure_spec

function_spec

, pragma_clause

,
MAP

ORDER
MEMBER function_spec

PRAGMA RESTRICT_REFERENCES (
method_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

)

SQL Statements 7-173

ALTER TYPE
You cannot change the existing properties (attributes, member subprograms, map

or order functions) of an object type, but you can add new member subprogram

specifications.

Prerequisites
The object type must be in your own schema and you must have CREATE TYPE or

CREATE ANY TYPE system privilege, or you must have ALTER ANY TYPE

system privileges.

Keywords and Parameters

schema is the schema that contains the type. If you omit schema, Oracle assumes the type is in
your current schema.

type is the name of an object type, a nested table type, or a rowid type.

COMPILE compiles the object type specification and body. This is the default if neither
SPECIFICATION nor BODY is specified.

If recompiling the type results in compilation errors, then Oracle returns an error and the
type remains invalid. You can see the associated compiler error messages with the
SQL*Plus command SHOW ERRORS.

SPECIFICATION compiles only the object type specification.

BODY compiles only the object type body.

DEBUG instructs the PL/SQL compiler to generate and store the code for use by the PL/SQL
debugger.

REPLACE AS
OBJECT

adds new member subprogram specifications. This clause is valid only for object types,
not for nested table or varray types.

attribute is an object attribute name. Attributes are data items with a name and a type specifier that
form the structure of the object.

MEMBER |
STATIC

specifies a function or procedure subprogram associated with the object type which is
referenced as an attribute. For a description of the difference between member and static
methods, and for examples, see "CREATE TYPE" on page 7-411. For information about
overloading subprogram names within a package, see the PL/SQL User’s Guide and
Reference.

You must specify a corresponding method body in the object type body for each
procedure or function specification. See "CREATE TYPE BODY" on page 7-421.

procedure_spec is the specification of a procedure subprogram.

function_spec is the specification of a function subprogram.
7-174 SQL Reference

ALTER TYPE
pragma_clause is a complier directive that denies member functions read/write access to database tables,
packaged variables, or both, and thereby helps to avoid side effects. For more
information, see Oracle8i Application Developer’s Guide - Fundamentals.

method is the name of the MEMBER function or procedure to which the
pragma is being applied.

DEFAULT specifies that the pragma should be applied to all methods in the type
for which a pragma has not been explicitly specified.

WNDS specifies the constraint writes no database state (does not modify
database tables).

WNPS specifies the constraint writes no package state (does not modify
packaged variables).

RNDS specifies the constraint reads no database state (does not query database
tables).

RNPS specifies the constraint reads no package state (does not reference
package variables).

TRUST specifies that the restrictions listed in the pragma are not actually to
be enforced, but are simply trusted to be true.

MAP|ORDER MEMBER function_spec

MAP specifies a member function (MAP method) that returns the relative
position of a given instance in the ordering of all instances of the
object. A map method is called implicitly and induces an ordering of
object instances by mapping them to values of a predefined scalar
type. Oracle uses the ordering for comparison operators and ORDER
BY clauses.

If the argument to the map method is null, the map method returns
null and the method is not invoked.

An object specification can contain only one map method, which must
be a function. The result type must be a predefined SQL scalar type,
and the map function can have no arguments other than the implicit
SELF argument.

Note: If type_name will be referenced in queries involving sorts

(through ORDER BY, GROUP BY, DISTINCT, or UNION clauses) or

joins, and you want those queries to be parallelized, you must specify

a MAP member function.

ORDER specifies a member function (ORDER method) that takes an instance
of an object as an explicit argument and the implicit SELF argument
and returns either a negative, zero, or positive integer. The negative,
zero, or positive indicates that the implicit SELF argument is less than,
equal to, or greater than the explicit argument.
SQL Statements 7-175

ALTER TYPE
Examples

Adding a Member Function In the following example, member function QTR is

added to the type definition of DATA_T.

CREATE TYPE data_t AS OBJECT
 (year NUMBER,
 MEMBER FUNCTION prod(invent NUMBER) RETURN NUMBER
);

 CREATE TYPE BODY data_t IS
 MEMBER FUNCTION prod (invent NUMBER) RETURN NUMBER IS
 BEGIN
 RETURN (year + invent);
 END;
 END;

 ALTER TYPE data_t REPLACE AS OBJECT
 (year NUMBER,
 MEMBER FUNCTION prod(invent NUMBER) RETURN NUMBER,
 MEMBER FUNCTION qtr(der_qtr DATE) RETURN CHAR
);

 CREATE OR REPLACE TYPE BODY data_t IS
 MEMBER FUNCTION prod (invent NUMBER) RETURN NUMBER IS
 MEMBER FUNCTION qtr(der_qtr DATE) RETURN CHAR IS
 BEGIN
 RETURN (year + invent);

If either argument to the order method is null, the order method
returns null and the method is not invoked.

When instances of the same object type definition are compared in an
ORDER BY clause, the order method function is invoked.

An object specification can contain only one ORDER method, which
must be a function having the return type NUMBER.

You can declare either a MAP method or an ORDER method, but not both. If you declare
either method, you can compare object instances in SQL.

If you do not declare either method, you can compare object instances only for equality or
inequality. Instances of the same type definition are equal only if each pair of their
corresponding attributes is equal. No comparison method needs to be specified to
determine the equality of two object types. For more information about object value
comparisons, see "Object Values" on page 2-30.
7-176 SQL Reference

ALTER TYPE
 END;
 BEGIN
 RETURN ’FIRST’;
 END;
 END;

Recompiling a Type The following example creates and then recompiles type

LOAN_T:

CREATE TYPE loan_t AS OBJECT
 (loan_num NUMBER,
 interest_rate FLOAT,
 amount FLOAT,
 start_date DATE,
 end_date DATE);

ALTER TYPE loan_t COMPILE;

Recompiling a Type Body The following example compiles the type body of

LINK2.

CREATE TYPE link1 AS OBJECT
 (a NUMBER);

CREATE TYPE link2 AS OBJECT
 (a NUMBER,
 b link1,
 MEMBER FUNCTION p(c1 NUMBER) RETURN NUMBER);

CREATE TYPE BODY link2 AS
 MEMBER FUNCTION p(c1 NUMBER) RETURN NUMBER IS t13 link1;
 BEGIN t13 := link1(13);
 dbms_output.put_line(t13.a);
 RETURN 5;
 END;
 END;

CREATE TYPE link3 AS OBJECT (a link2);
CREATE TYPE link4 AS OBJECT (a link3);
CREATE TYPE link5 AS OBJECT (a link4);
ALTER TYPE link2 COMPILE BODY;

Recompiling a Type Specification The following example compiles the type

specification of LINK2.
SQL Statements 7-177

ALTER TYPE
CREATE TYPE link1 AS OBJECT
 (a NUMBER);

CREATE TYPE link2 AS OBJECT
 (a NUMBER,
 b link1,
 MEMBER FUNCTION p(c1 NUMBER) RETURN NUMBER);

CREATE TYPE BODY link2 AS
 MEMBER FUNCTION p(c1 NUMBER) RETURN NUMBER IS t14 link1;
 BEGIN t14 := link1(14);
 dbms_output.put_line(t14.a);
 RETURN 5;
 END;
 END;

CREATE TYPE link3 AS OBJECT (a link2);
CREATE TYPE link4 AS OBJECT (a link3);
CREATE TYPE link5 AS OBJECT (a link4);
ALTER TYPE link2 COMPILE SPECIFICATION;
7-178 SQL Reference

ALTER USER
ALTER USER

Syntax

ALTER USER

user

IDENTIFIED

BY password

EXTERNALLY

GLOBALLY AS ’ external_name ’

DEFAULT TABLESPACE tablespace

TEMPORARY TABLESPACE tablespace

QUOTA
integer

K

M

UNLIMITED
ON tablespace

PROFILE profile

DEFAULT ROLE

role

,

ALL
EXCEPT role

,

NONE

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK

user

,

proxy_clause

;

SQL Statements 7-179

ALTER USER
proxy_clause ::=

Purpose
To change the authentication or database resource characteristics of a database user.

To permit a proxy server to connect as a client without authentication.

Prerequisites
You must have the ALTER USER system privilege. However, you can change your

own password without this privilege.

Keywords and Parameters
The keywords and parameters shown below are unique to ALTER USER or have

different functionality than they have in CREATE USER. All the remaining

keywords and parameters in the ALTER USER statement have the same meaning

as in the CREATE USER statement. For information on these keywords and

parameters, see "CREATE USER" on page 7-425.

To assign limits on database resources to a user, see "CREATE PROFILE" on

page 7-338.

Note: ALTER USER syntax does not accept the old password.

Therefore it neither authenticates using the old password nor

checks the new password against the old before setting the new

password. If these checks against the old password are important,

use the OCIPasswordChange() call instead of ALTER USER. For

more information, see Oracle Call Interface Programmer’s Guide.

GRANT

REVOKE
CONNECT THROUGH proxy

WITH

ROLE

role_name

,

ALL EXCEPT role_name

,

NONE
7-180 SQL Reference

ALTER USER
Examples

General Examples The following statement changes the user SCOTT’s password

to LION and default tablespace to the tablespace TSTEST:

ALTER USER scott
 IDENTIFIED BY lion

IDENTIFIED
GLOBALLY AS

indicates that a user must be authenticated by way of an LDAP V3 compliant directory
service such as Oracle Internet Directory. (See also "CREATE USER" on page 7-425.)

You can change a user’s access verification method to IDENTIFIED GLOBALLY AS
’external_name’ only if all external roles granted directly to the user are revoked.

You can change a user created as IDENTIFIED GLOBALLY AS ’external_name’ to
IDENTIFIED BY password or IDENTIFIED EXTERNALLY.

DEFAULT ROLE can contain only roles that have been granted directly to the user with a GRANT
statement. You cannot use the DEFAULT ROLE clause to enable:

■ roles not granted to the user

■ roles granted through other roles

■ roles managed by an external service (such as the operating system), or by the
Oracle Internet Directory

Oracle enables default roles at logon without requiring the user to specify their
passwords. For more information on roles, see "CREATE ROLE" on page 7-344.

proxy_clause controls the ability of a proxy (an application or application server) to connect as the
specified user and to activate all, some, or none of the user’s roles. For more information
on proxies and their use of the database, see Oracle8i Concepts.

GRANT allows the connection.

REVOKE prohibits the connection.

proxy identifies the proxy connecting to Oracle.

WITH ROLE specifies the roles that the application is permitted to activate after it
connects as the user. If you do not include this clause, Oracle activates
all roles granted to the specified user automatically.

role_name permits the proxy to connect as the specified user and to activate only
the roles that are specified by role_name.

ALL EXCEPT
role_name

permits the proxy to connect as the specified user and to activate all
roles associated with that user except those specified by role_name.

NONE permits the proxy to connect as the specified user, but prohibits the
proxy from activating any of that user’s roles after connecting.
SQL Statements 7-181

ALTER USER
 DEFAULT TABLESPACE tstest;

The following statement assigns the CLERK profile to SCOTT:

ALTER USER scott
 PROFILE clerk;

In subsequent sessions, SCOTT is restricted by limits in the CLERK profile.

The following statement makes all roles granted directly to SCOTT default roles,

except the AGENT role:

ALTER USER scott
 DEFAULT ROLE ALL EXCEPT agent;

At the beginning of SCOTT’s next session, Oracle enables all roles granted directly

to SCOTT except the AGENT role.

Authentication Examples The following statement changes user TOM’s

authentication mechanism:

ALTER USER tom IDENTIFIED GLOBALLY AS ’CN=tom,O=oracle,C=US’;

The following statement causes user FRED’s password to expire:

ALTER USER fred PASSWORD EXPIRE;

If you cause a database user’s password to expire with PASSWORD EXPIRE, the

user (or the DBA) must change the password before attempting to log in to the

database following the expiration. However, tools such as SQL*Plus allow you to

change the password on the first attempted login following the expiration.

Proxy Examples The following statement permits the proxy user APPSERVER1 to

connect as the user JANE. It also allows APPSERVER1 to activate the role

INVENTORY:

ALTER USER jane GRANT CONNECT THROUGH appserver1 WITH ROLE inventory;

The following statement takes away the right of proxy user APPSERVER1 to

connect as the user JANE:

ALTER USER jane REVOKE CONNECT THROUGH appserver1;
7-182 SQL Reference

ALTER VIEW
ALTER VIEW

Syntax

Purpose
To explicitly recompile a view that is invalid. Explicit recompilation allows you to

locate recompilation errors before run time. You may want to recompile a view

explicitly after altering one of its base tables to ensure that the alteration does not

affect the view or other objects that depend on it.

When you issue an ALTER VIEW statement, Oracle recompiles the view regardless

of whether it is valid or invalid. Oracle also invalidates any local objects that

depend on the view. For more about dependencies among schema objects, see

Oracle8i Concepts.

Prerequisites
The view must be in your own schema or you must have ALTER ANY TABLE

system privilege.

Notes:

■ This statement does not change the definition of an existing

view. To redefine a view, you must use CREATE VIEW with

OR REPLACE. See "CREATE VIEW" on page 7-430.

■ If you alter a view that is referenced by one or more

materialized views, those materialized views are invalidated.

Invalid materialized views cannot be used by query rewrite

and cannot be refreshed. To revalidate an invalid materialized

view, see "ALTER MATERIALIZED VIEW / SNAPSHOT" on

page 7-45. For information on materialized views in general,

see Oracle8i Tuning.

ALTER VIEW
schema.

view COMPILE ;
SQL Statements 7-183

ALTER VIEW
Keywords and Parameters

Example
To recompile the view CUSTOMER_VIEW, issue the following statement:

ALTER VIEW customer_view
 COMPILE;

If Oracle encounters no compilation errors while recompiling CUSTOMER_VIEW,

CUSTOMER_VIEW becomes valid. If recompiling results in compilation errors,

Oracle returns an error and CUSTOMER_VIEW remains invalid.

Oracle also invalidates all dependent objects. These objects include any procedures,

functions, package bodies, and views that reference CUSTOMER_VIEW. If you

subsequently reference one of these objects without first explicitly recompiling it,

Oracle recompiles it implicitly at run time.

schema is the schema containing the view. If you omit schema, Oracle assumes the view is in your
own schema.

view is the name of the view to be recompiled.

COMPILE causes Oracle to recompile the view. The COMPILE keyword is required.
7-184 SQL Reference

ANALYZE
ANALYZE

Syntax

ANALYZE

TABLE

INDEX

CLUSTER

schema.

table

index

PARTITION (partition)

SUBPARTITION (subpartition)

cluster

COMPUTE STATISTICS
for_clause

ESTIMATE STATISTICS
for_clause

SAMPLE integer
ROWS

PERCENT

DELETE STATISTICS

VALIDATE REF UPDATE
SET DANGLING TO NULL

VALIDATE STRUCTURE
CASCADE INTO

schema.
table

LIST CHAINED ROWS
INTO

schema.
table

;

SQL Statements 7-185

ANALYZE
for_clause ::=

Purpose
To collect or delete statistics about an index or index partition, table or table

partition, index-organized table, cluster, or scalar object attribute.

To validate the structure of an index or index partition, table or table partition,

index-organized table, cluster, or object reference (REF).

To identify migrated and chained rows of a table or cluster.

Prerequisites
The schema object to be analyzed must be in your own schema or you must have

the ANALYZE ANY system privilege.

If you want to list chained rows of a table or cluster into a list table, the list table

must be in your own schema, or you must have INSERT privilege on the list table,

or you must have INSERT ANY TABLE system privilege.

If you want to validate a partitioned table, you must have INSERT privilege on the

table into which you list analyzed rowids, or you must have INSERT ANY TABLE

system privilege.

Keywords and Parameters

schema is the schema containing the index, table, or cluster. If you omit schema, Oracle assumes
the index, table, or cluster is in your own schema.

INDEX index identifies an index to be analyzed (if no for_clause is used).

FOR

TABLE

ALL
INDEXED

COLUMNS
SIZE integer

COLUMNS
SIZE integer column

attribute

SIZE integer

ALL
LOCAL

INDEXES
7-186 SQL Reference

ANALYZE
Oracle collects the following statistics for an index (statistics marked with an asterisk are
always computed exactly):

■ Depth of the index from its root block to its leaf blocks*

■ Number of leaf blocks

■ Number of distinct index values

■ Average number of leaf blocks per index value

■ Average number of data blocks per index value (for an index on a table)

■ Clustering factor (how well ordered the rows are about the indexed values)

Index statistics appear in the data dictionary views USER_INDEXES, ALL_INDEXES, and
DBA_INDEXES.

For a domain index, this statement invokes the user-defined statistics collection function
specified in the statistics type associated with the index (see "ASSOCIATE STATISTICS"
on page 7-194). If no statistics type is associated with the domain index, the statistics type
associated with its indextype is used. If no statistics type exists for either the index or its
indextype, no user-defined statistics are collected. User-defined index statistics appear in
the data dictionary views USER_USTATS, ALL_USTATS, and DBA_USTATS.

Restriction: You cannot analyze a domain index that is marked LOADING or FAILED.

For more information on domain indexes, see "CREATE INDEX" on page 7-273.

TABLE table identifies a table to be analyzed. When you collect statistics for a table, Oracle also
automatically collects the statistics for each of the table’s indexes and domain indexes,
provided that no for_clauses are used.

When you analyze a table, Oracle collects statistics about expressions occurring in any
function-based indexes as well. Therefore, be sure to create function-based indexes on the
table before analyzing the table. For more information about function-based indexes, see
"CREATE INDEX" on page 7-273.

When analyzing a table, Oracle skips all domain indexes marked LOADING or FAILED.

Table statistics, including the status of domain indexes, appear in the data dictionary
views USER_TABLES, ALL_TABLES, and DBA_TABLES.
SQL Statements 7-187

ANALYZE
Oracle collects the following statistics for a table (statistics marked with an asterisk are
always computed exactly):

■ Number of rows

■ Number of data blocks below the high water mark (that is, the number of data blocks
that have been formatted to receive data, regardless whether they currently contain
data or are empty) *

■ Number of data blocks allocated to the table that have never been used *

■ Average available free space in each data block in bytes

■ Number of chained rows

■ Average row length, including the row’s overhead, in bytes

Restrictions:

■ You cannot use ANALYZE to collect statistics on data dictionary tables.

■ You cannot use ANALYZE to collect default statistics on a temporary table. However,
if you have created an association between one or more columns of a temporary table
and a user-defined statistics type, you can use ANALYZE to collect the user-defined
statistics on the temporary table. (The association must already exist.) For more
information, see "ASSOCIATE STATISTICS" on page 7-194.

■ You cannot compute or estimate statistics for the following column types: REFs,
varrays, nested tables, LOBs (LOBs are not analyzed, they are skipped), LONGs, or
object types. However, if a statistics type is associated with such a column,
user-defined statistics are collected.

PARTITION |
SUBPARTITION

specifies that statistics will be gathered for partition or subpartition. You cannot use this
clause when analyzing clusters.

If you specify PARTITION and table is composite-partitioned, Oracle analyzes all the
subpartitions within the specified partition.

CLUSTER cluster identifies a cluster to be analyzed. When you collect statistics for a cluster, Oracle also
automatically collects the statistics for all the cluster’s tables and all their indexes,
including the cluster index.

■ For an indexed cluster, Oracle collects the average number of data blocks taken up by
a single cluster key value and all of its rows.

■ For a hash cluster, Oracle collects the average number of data blocks taken up by a
single hash key value and all of its rows.

These statistics appear in the data dictionary views USER_CLUSTERS and DBA_
CLUSTERS.

COMPUTE
STATISTICS

computes exact statistics about the analyzed object and stores them in the data dictionary.
When you analyze a table, both table and column statistics are collected.

ESTIMATE
STATISTICS

estimates statistics about the analyzed object and stores them in the data dictionary.
7-188 SQL Reference

ANALYZE
Both computed and estimated statistics are used by the Oracle optimizer to choose the execution plan for
SQL statements that access analyzed objects. These statistics may also be useful to application developers
who write such statements. For information on how these statistics are used, see Oracle8i Tuning.

SAMPLE integer specifies the amount of data from the analyzed object Oracle samples
to estimate statistics. If you omit this parameter, Oracle samples 1064
rows.

The default sample value is adequate for tables up to a few thousand
rows. If your tables are larger, specify a higher value for SAMPLE. If
you specify more than half of the data, Oracle reads all the data and
computes the statistics.

ROWS causes Oracle to sample integer rows of the table or cluster or integer
entries from the index. The integer must be at least 1.

PERCENT causes Oracle to sample integer percent of the rows from the table or
cluster or integer percent of the index entries. The integer can range
from 1 to 99.

for_clause specifies whether an entire table or index, or just particular columns, will be analyzed.
The following clauses apply only to the ANALYZE TABLE version of this statement:

■ FOR TABLE restricts the statistics collected to only table statistics rather than table
and column statistics.

■ FOR COLUMNS restricts the statistics collected to only column statistics for the
specified columns and scalar object attributes, rather than for all columns and
attributes.

■ FOR ALL COLUMNS collects column statistics for all columns and scalar object
attributes.

■ FOR ALL INDEXED COLUMNS collects column statistics for all indexed columns in
the table.

Column statistics can be based on the entire column or can use a histogram by
specifying SIZE (see below). For more information on histograms, see Oracle8i
Tuning. See also "Histogram Examples" on page 7-192.

Oracle collects the following column statistics:

- Number of distinct values in the column as a whole

- Maximum and minimum values in each band

Column statistics appear in the data dictionary views USER_TAB_COLUMNS, ALL_
TAB_COLUMNS, and DBA_TAB_COLUMNS. Histograms appear in the data
dictionary views USER_HISTOGRAMS, DBA_HISTOGRAMS, and ALL_
HISTOGRAMS.
SQL Statements 7-189

ANALYZE
Note: The MAXVALUE and MINVALUE columns of USER_, DBA_, and ALL_TAB_
COLUMNS have a length of 32 bytes. If you analyze columns with a length >32
bytes, and if the columns are padded with leading blanks, Oracle may take into
account only the leading blanks and return unexpected statistics.

If a user-defined statistics type has been associated with any columns, the for_clause
collects user-defined statistics using that statistics type. If no statistics type is
associated with a column, Oracle checks to see if any statistics type has been
associated with the type of the column, and uses that statistics type. If no statistics
type has been associated with either the column or its user-defined type, no
user-defined statistics are collected. User-defined column statistics appear in the data
dictionary views USER_USTATS, ALL_USTATS, and DBA_USTATS.

Note: If you want to collect statistics on both the table as a whole and on one or more
columns, be sure to generate the statistics for the table first, and then for the columns.
Otherwise, the table-only ANALYZE will overwrite the histograms generated by the
column ANALYZE. For example, issue the following statements:

ANALYZE TABLE emp ESTIMATE STATISTICS;

ANALYZE TABLE emp ESTIMATE STATISTICS FOR ALL COLUMNS;

■ attribute specifies the qualified column name of an item in an object.

■ FOR ALL INDEXES specifies that all indexes associated with the table will be
analyzed.

■ FOR ALL LOCAL INDEXES specifies that all local index partitions are analyzed.
You must specify the keyword LOCAL if the PARTITION clause and INDEX are
specified.

■ SIZE specifies the maximum number of partitions in the histogram. The default
value is 75, minimum value is 1, and maximum value is 254.

DELETE
STATISTICS

deletes any statistics about the analyzed object that are currently stored in the data
dictionary. Use this statement when you no longer want Oracle to use the statistics.

When you use this clause on a table, Oracle also automatically removes statistics for all
the table’s indexes. When you use this clause on a cluster, Oracle also automatically
removes statistics for all the cluster’s tables and all their indexes, including the cluster
index.

If user-defined column or index statistics were collected for an object, Oracle also removes
the user-defined statistics by invoking the statistics deletion function specified in the
statistics type that was used to collect the statistics.

VALIDATE REF
UPDATE

validates the REFs in the specified table, checks the rowid portion in each REF, compares
it with the true rowid, and corrects, if necessary. You can use this clause only when
analyzing a table.

SET DANGLING
TO NULL

sets to NULL any REFs (whether or not scoped) in the specified table
that are found to point to an invalid or nonexistent object.
7-190 SQL Reference

ANALYZE
Note: If the owner of the table does not have SELECT object privilege
on the referenced objects, Oracle will consider them invalid and set
them to NULL. Subsequently these REFs will not be available in a
query, even if it is issued by user with appropriate privileges on the
objects.

VALIDATE
STRUCTURE

validates the structure of the analyzed object. The statistics collected by this clause are not
used by the Oracle optimizer, as are statistics collected by the COMPUTE STATISTICS
and ESTIMATE STATISTICS clauses.

■ For a table, Oracle verifies the integrity of each of the table’s data blocks and rows.

■ For a cluster, Oracle automatically validates the structure of the cluster’s tables.

■ For a partitioned table, Oracle also verifies that the row belongs to the correct
partition. If the row does not collate correctly, the rowid is inserted into the
INVALID_ROWS table.

■ For a temporary table, Oracle validates the structure of the table and its indexes
during the current session.

■ For an index, Oracle verifies the integrity of each data block in the index and checks
for block corruption. This clause does not confirm that each row in the table has an
index entry or that each index entry points to a row in the table. You can perform
these operations by validating the structure of the table with the CASCADE clause.

Oracle stores statistics about the index in the data dictionary views INDEX_STATS
and INDEX_HISTOGRAM, which are described in Oracle8i Reference.

Validating the structure of an object prevents SELECT, INSERT, UPDATE, and DELETE
statements from concurrently accessing the object. Therefore, do not use this clause on the
tables, clusters, and indexes of your production applications during periods of high
database activity.

If Oracle encounters corruption in the structure of the object, an error message is returned
to you. In this case, drop and re-create the object.

INTO specifies a table into which Oracle lists the rowids of the partitions
whose rows do not collate correctly. If you omit schema, Oracle
assumes the list is in your own schema. If you omit this clause
altogether, Oracle assumes that the table is named INVALID_ROWS.
The SQL script used to create this table is UTLVALID.SQL.

CASCADE validates the structure of the indexes associated with the table or
cluster. If you use this clause when validating a table, Oracle also
validates the table’s indexes. If you use this clause when validating a
cluster, Oracle also validates all the clustered tables’ indexes,
including the cluster index.

If you use this clause to validate an enabled (but previously disabled)
function-based index, validation errors may result. In this case, you
must rebuild the index.
SQL Statements 7-191

ANALYZE
Examples

Analyzing a Cluster The following statement estimates statistics for the CUST_

HISTORY table and all of its indexes:

ANALYZE TABLE cust_history
 ESTIMATE STATISTICS;

Deleting Statistics The following statement deletes statistics about the CUST_

HISTORY table and all its indexes from the data dictionary:

ANALYZE TABLE cust_history
 DELETE STATISTICS;

Histogram Examples The following statement creates a 10-band histogram on the

SAL column of the EMP table:

ANALYZE TABLE emp
 COMPUTE STATISTICS FOR COLUMNS sal SIZE 10;

You can also collect histograms for a single partition of a table. The following

statement analyzes the EMP table partition P1:

ANALYZE TABLE emp PARTITION (p1) COMPUTE STATISTICS;

LIST CHAINED
ROWS

identifies migrated and chained rows of the analyzed table or cluster. You cannot use this
clause when analyzing an index.

INTO specifies a table into which Oracle lists the migrated and chained
rows. If you omit schema, Oracle assumes the list table is in your own
schema. If you omit this clause altogether, Oracle assumes that the
table is named CHAINED_ROWS. The script used to create this table
is UTLCHAIN1.SQL. The list table must be on your local database.

Note: You can use the UTLCHAIN1.SQL script with index-organized
tables. You could not use earlier versions of the script for this purpose.

See Oracle8i Migration for compatibility information.

To analyze index-organized tables, you must create a separate chained-rows table for each
index-organized table to accommodate the primary-key storage of index-organized
tables. Use the SQL scripts DBMSIOTC.SQL and PRVTIOTC.PLB to define the BUILD_
CHAIN_ROWS_TABLE procedure, and then execute this procedure to create an IOT_
CHAINED_ROWS table for an index-organized table.

For information on the SQL scripts, see the DBMS_IOT package in Oracle8i Supplied
Packages Reference. For information on eliminating migrated and chained rows, see
Oracle8i Tuning.
7-192 SQL Reference

ANALYZE
Index Example The following statement validates the structure of the index

PARTS_INDEX:

ANALYZE INDEX parts_index VALIDATE STRUCTURE;

Table Examples The following statement analyzes the EMP table and all of its

indexes:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE;

For a table, the VALIDATE REF UPDATE clause verifies the REFs in the specified

table, checks the rowid portion of each REF, and then compares it with the true

rowid. If the result is an incorrect rowid, the REF is updated so that the rowid

portion is correct.

The following statement validates the REFs in the EMP table:

ANALYZE TABLE emp
 VALIDATE REF UPDATE;

Cluster Example The following statement analyzes the ORDER_CUSTS cluster,

all of its tables, and all of their indexes, including the cluster index:

ANALYZE CLUSTER order_custs
 VALIDATE STRUCTURE CASCADE;

Chained Rows Example The following statement collects information about all

the chained rows of the table ORDER_HIST:

ANALYZE TABLE order_hist
 LIST CHAINED ROWS INTO cr;

The preceding statement places the information into the table CR. You can then

examine the rows with this query:

SELECT *
 FROM cr;

OWNER_NAME TABLE_NAME CLUSTER_NAME HEAD_ROWID TIMESTAMP
---------- ---------- ------------ ------------------ ---------
SCOTT ORDER_HIST AAAAZzAABAAABrXAAA 15-MAR-96

COMPUTE Example The following statement calculates statistics for a scalar

object attribute:

ANALYZE TABLE emp COMPUTE STATISTICS FOR COLUMNS addr.street;
SQL Statements 7-193

ASSOCIATE STATISTICS
ASSOCIATE STATISTICS

Syntax

column_association ::=

function_association ::=

ASSOCIATE STATISTICS WITH
column_association

function_association
;

COLUMNS
schema .

table . column

,

using_clause

FUNCTIONS
schema .

function

,

PACKAGES
schema .

package

,

TYPES
schema .

type

,

INDEXES
schema .

index

,

INDEXTYPES
schema .

indextype

,

using_clause

default_cost_clause
, default_selectivity_clause

default_selectivity_clause
, default_cost_clause
7-194 SQL Reference

ASSOCIATE STATISTICS
using_clause ::=

default_cost_clause ::=

default_selectivity_clause ::=

Purpose
To associate a statistics type (or default statistics) containing functions relevant to

statistics collection, selectivity, or cost with one or more columns, standalone

functions, packages, types, domain indexes, or indextypes.

For a listing of all current statistics type associations, refer to the USER_

ASSOCIATIONS table. If you analyze the object with which you are associating

statistics, you can also view the associations in the USER_USTATS table. For

information on the order of precedence with which ANALYZE uses associations,

see "ANALYZE" on page 7-185.

Prerequisites
To issue this statement, you must have the appropriate privileges to alter the base

object (table, function, package, type, domain index, or indextype). In addition,

unless you are associating only default statistics, you must have execute privilege

on the statistics type. The statistics type must already have been defined. For

information on defining types, see "CREATE TYPE" on page 7-411.

Keywords and Parameters

column_
association

specifies a list of one or more table columns. If you do not specify schema, Oracle assumes the
table is in your own schema.

USING
schema .

statistics_type

DEFAULT COST (cpu_cost , io_cost , network_cost)

DEFAULT SELECTIVITY default_selectivity
SQL Statements 7-195

ASSOCIATE STATISTICS
Examples

Standalone Function Example This statement creates an association for a

standalone function FN and causes the optimizer to call the appropriate cost

function (if present) in the statistics type STAT_FN.

ASSOCIATE STATISTICS WITH FUNCTIONS fn USING stat_fn;

Default Cost Example This statement specifies that using the domain index T_A

to implement a given predicate always has a CPU cost of 100, I/O of 5, and

network cost of 0.

ASSOCIATE STATISTICS WITH INDEXES t_a DEFAULT COST (100,5,0);

The optimizer will simply use these default costs instead of calling a cost function.

function_
association

specifies a list of one or more standalone functions, packages, user-defined datatypes,
domain indexes, or indextypes. If you do not specify schema, Oracle assumes the object is in
your own schema.

■ FUNCTIONS refers only to standalone functions, not to method types or to built-in
functions.

■ TYPES refers only to user-defined types, not to internal SQL datatypes.

Restriction: You cannot specify an object for which you have already defined an association.
You must first disassociate the statistics from this object. See "DISASSOCIATE STATISTICS"
on page 7-444.

using_clause specifies the statistics type being associated with columns, functions, packages, types,
domain indexes, or indextypes. The statistics_type must already have been created.

default_cost_
clause

specifies default costs for standalone functions, packages, types, domain indexes, or
indextypes. If you specify this clause, you must include one number each for CPU cost, I/O
cost, and network cost, in that order. Each cost is for a single execution of the function or
method or for a single domain index access. Accepted values are integers of zero or greater.

default_
selectivity_clause

specifies as a percent the default selectivity for predicates with standalone functions, types,
packages, or user-defined operators. The default_selectivity must be a whole number between
0 and 100. Values outside this range are ignored.

Restriction: You cannot specify DEFAULT SELECTIVITY for domain indexes or indextypes.
7-196 SQL Reference

AUDIT sql_statements
AUDIT sql_statements

Syntax

Purpose
To track the occurrence of specific SQL statements in subsequent user sessions.

Auditing options specified by the AUDIT sql_statements statement apply only to

subsequent sessions, not to current sessions.

To choose particular schema objects for auditing, see "AUDIT schema_objects" on

page 7-205. For information on disabling auditing of SQL statements, see

"NOAUDIT sql_statements" on page 7-523.

Prerequisites
You must have AUDIT SYSTEM system privilege.

You must enable auditing by setting the initialization parameter AUDIT_TRAIL to

DB. You can specify auditing options regardless of whether auditing is enabled.

However, Oracle does not generate audit records until you enable auditing.

AUDIT

statement_opt

,

system_priv

,

BY

proxy

ON BEHALF OF
user

,

ANY

user

,

BY
SESSION

ACCESS WHENEVER
NOT

SUCCESSFUL
;

SQL Statements 7-197

AUDIT sql_statements
Keywords and Parameters

statement_opt chooses specific SQL statements for auditing. For a list of these statement options and the
SQL statements they audit, see Table 7–1 and Table 7–2.

For each audited operation, Oracle produces an audit record containing this information:

■ user performing the operation

■ type of operation

■ object involved in the operation

■ date and time of the operation

Oracle writes audit records to the audit trail, which is a database table containing audit
records. You can review database activity by examining the audit trail through data
dictionary views. For information on these views, see the Oracle8i Reference.

system_priv chooses SQL statements that are authorized by the specified system privilege for
auditing. For a list of all system privileges and the SQL statements that they authorize,
see Table 7–5.

Oracle provides shortcuts for specifying groups of system privileges and statement
options at once. However, Oracle encourages you to choose individual system privileges
and statement options for auditing, because these shortcuts may not be supported in
future versions of Oracle. The shortcuts are:

CONNECT is equivalent to specifying the CREATE SESSION system privilege

RESOURCE is equivalent to specifying the following system privileges:

■ ALTER SESSION

■ CREATE CLUSTER

■ CREATE DATABASE LINK

■ CREATE PROCEDURE

■ CREATE ROLLBACK SEGMENT

■ CREATE SEQUENCE

■ CREATE SYNONYM

■ CREATE TABLE

■ CREATE TABLESPACE

■ CREATE VIEW

DBA is equivalent to the SYSTEM GRANT statement option and the
following system privileges:
7-198 SQL Reference

AUDIT sql_statements
■ AUDIT SYSTEM

■ CREATE PUBLIC DATABASE LINK

■ CREATE PUBLIC SYNONYMN

■ CREATE ROLE

■ CREATE USER

ALL is equivalent to specifying all statements options shown in Table 7–1
but not the additional statement options shown in Table 7–2.

ALL
PRIVILEGES

is equivalent to specifying all system privileges.

BY user chooses only SQL statements issued by specified users for auditing. If you omit this
clause, Oracle audits all users’ statements.

BY proxy chooses for auditing only SQL statements issued by the specified proxy. For more
information on proxies and their use of the database, see Oracle8i Concepts.

ON BEHALF OF specifies the user or users on whose behalf the proxy executes the
specified statement.

■ user specifies auditing of statements executed on behalf of a
particular user.

■ ANY specifies auditing of statements executed on behalf of any
user.

BY SESSION causes Oracle to write a single record for all SQL statements of the same type issued in
the same session.

BY ACCESS causes Oracle to write one record for each audited statement.

If you specify statement options or system privileges that audit data definition language
(DDL) statements, Oracle automatically audits by access regardless of whether you
specify the BY SESSION clause or BY ACCESS clause.

For statement options and system privileges that audit SQL statements other than DDL,
you can specify either BY SESSION or BY ACCESS. BY SESSION is the default.

WHENEVER
SUCCESSFUL

chooses auditing only for statements that succeed.

NOT chooses auditing only for statements that fail or result in errors.

If you omit the WHENEVER SUCCESSFUL clause, Oracle audits SQL statements
regardless of success or failure.
SQL Statements 7-199

AUDIT sql_statements
Table 7–1 Statement Auditing Options for Database Objects

Statement Option SQL Statements and Operations

CLUSTER CREATE CLUSTER

AUDIT CLUSTER

DROP CLUSTER

TRUNCATE CLUSTER

CONTEXT CREATE CONTEXT

DROP CONTEXT

DATABASE LINK CREATE DATABASE LINK

DROP DATABASE LINK

DIMENSION CREATE DIMENSION

ALTER DIMENSION

DROP DIMENSION

DIRECTORY CREATE DIRECTORY

DROP DIRECTORY

INDEX CREATE INDEX

ALTER INDEX

DROP INDEX

NOT EXISTS All SQL statements that fail because a specified object does not
exist.

PROCEDUREa CREATE FUNCTION

CREATE LIBRARY

CREATE PACKAGE

CREATE PACKAGE BODY

CREATE PROCEDURE

DROP FUNCTION

DROP LIBRARY

DROP PACKAGE

DROP PROCEDURE

PROFILE CREATE PROFILE

ALTER PROFILE

DROP PROFILE
7-200 SQL Reference

AUDIT sql_statements
PUBLIC DATABASE
LINK

CREATE PUBLIC DATABASE LINK

DROP PUBLIC DATABASE LINK

PUBLIC SYNONYM CREATE PUBLIC SYNONYM

DROP PUBLIC SYNONYM

ROLE CREATE ROLE

ALTER ROLE

DROP ROLE

SET ROLE

ROLLBACK
STATEMENT

CREATE ROLLBACK SEGMENT

ALTER ROLLBACK SEGMENT

DROP ROLLBACK SEGMENT

SEQUENCE CREATE SEQUENCE

DROP SEQUENCE

SESSION Logons

SYNONYM CREATE SYNONYM

DROP SYNONYM

SYSTEM AUDIT AUDIT sql_statements

NOAUDIT sql_statements

SYSTEM GRANT GRANTsystem_privileges_and_roles

REVOKEsystem_privileges_and_roles

TABLE CREATE TABLE

DROP TABLE

TRUNCATE TABLE

COMMENT ON TABLE

DELETE [FROM] table

TABLESPACE CREATE TABLESPACE

ALTER TABLESPACE

DROP TABLESPACE

Table 7–1 (Cont.) Statement Auditing Options for Database Objects

Statement Option SQL Statements and Operations
SQL Statements 7-201

AUDIT sql_statements
TRIGGER CREATE TRIGGER

ALTER TRIGGER

with ENABLE and DISABLE clauses

DROP TRIGGER

ALTER TABLE

with ENABLE ALL TRIGGERS clause

and DISABLE ALL TRIGGERS clause

TYPE CREATE TYPE

CREATE TYPE BODY

ALTER TYPE

DROP TYPE

DROP TYPE BODY

USER CREATE USER

ALTER USER

DROP USER

VIEW CREATE VIEW

DROP VIEW

aJava schema objects (sources, classes, and resources) are considered the same as
procedures for purposes of auditing SQL statements.

Table 7–2 Additional Statement Auditing Options for SQL Statements

Statement Option SQL Statements and Operations

ALTER SEQUENCE ALTER SEQUENCE

ALTER TABLE ALTER TABLE

COMMENT TABLE COMMENT ON TABLEtable, view, snapshot

COMMENT ON COLUMNtable.column,
view.column, snapshot.column

DELETE TABLE DELETE FROMtable, view

Table 7–1 (Cont.) Statement Auditing Options for Database Objects

Statement Option SQL Statements and Operations
7-202 SQL Reference

AUDIT sql_statements
Examples

Role Examples To choose auditing for every SQL statement that creates, alters,

drops, or sets a role, regardless of whether the statement completes successfully,

issue the following statement:

AUDIT ROLE;

To choose auditing for every statement that successfully creates, alters, drops, or

sets a role, issue the following statement:

EXECUTE PROCEDURE CALL

Execution of any procedure or function or access to any
variable, library, or cursor inside a package.

GRANT DIRECTORY GRANT privilege ON directory

REVOKE privilege ON directory

GRANT PROCEDURE GRANT privilege ON procedure, function,
package

REVOKE privilege ON procedure, function,
package

GRANT SEQUENCE GRANT privilege ON sequence

REVOKE privilege ON sequence

GRANT TABLE GRANT privilege ON table, view, snapshot.

REVOKE privilege ON table, view, snapshot

GRANT TYPE GRANT privilege ON TYPE

REVOKE privilege ON TYPE

INSERT TABLE INSERT INTO table, view

LOCK TABLE LOCK TABLE table, view

SELECT SEQUENCE Any statement containing sequence.CURRVAL
or sequence.NEXTVAL

SELECT TABLE SELECT FROM table, view, snapshot

UPDATE TABLE UPDATE table, view

Table 7–2 (Cont.) Additional Statement Auditing Options for SQL Statements

Statement Option SQL Statements and Operations
SQL Statements 7-203

AUDIT sql_statements
AUDIT ROLE
 WHENEVER SUCCESSFUL;

To choose auditing for every CREATE ROLE, ALTER ROLE, DROP ROLE, or SET

ROLE statement that results in an Oracle error, issue the following statement:

AUDIT ROLE
 WHENEVER NOT SUCCESSFUL;

Query/Update Examples To choose auditing for any statement that queries or

updates any table, issue the following statement:

AUDIT SELECT TABLE, UPDATE TABLE;

To choose auditing for statements issued by the users SCOTT and BLAKE that

query or update a table or view, issue the following statement:

AUDIT SELECT TABLE, UPDATE TABLE
 BY scott, blake;

Delete Example To choose auditing for statements issued using the DELETE ANY

TABLE system privilege, issue the following statement:

AUDIT DELETE ANY TABLE;

Directory Examples To choose auditing for statements issued using the CREATE

ANY DIRECTORY system privilege, issue the following statement:

AUDIT CREATE ANY DIRECTORY;

To choose auditing for CREATE DIRECTORY (and DROP DIRECTORY) statements

that do not use the CREATE ANY DIRECTORY system privilege, issue the

following statement:

AUDIT DIRECTORY;
7-204 SQL Reference

AUDIT schema_objects
AUDIT schema_objects

Syntax

Purpose
To track operations on a specific schema object. To choose particular SQL

statements for auditing, see "AUDIT sql_statements" on page 7-197.

Auditing keeps track of operations performed by database users. Auditing options

established by the AUDIT schema_objects statement apply to current sessions as

well as to subsequent sessions. For information on discontinuing auditing

operations, see "NOAUDIT schema_objects" on page 7-525.

Prerequisites
The object you choose for auditing must be in your own schema or you must have

AUDIT ANY system privilege. In addition, if the object you choose for auditing is a

directory object, even if you created it, you must have AUDIT ANY system

privilege.

Keywords and Parameters

object_opt specifies a particular operation for auditing. Table 7–3 shows each object option and the
types of objects to which it applies. The name of each object option specifies a SQL
statement to be audited. For example, if you choose to audit a table with the ALTER
option, Oracle audits all ALTER TABLE statements issued against the table. If you choose
to audit a sequence with the SELECT option, Oracle audits all statements that use any of
the sequence’s values.

AUDIT
object_opt

,

ALL
ON

schema .
object

DIRECTORY directory_name

DEFAULT

BY
SESSION

ACCESS WHENEVER
NOT

SUCCESSFUL
;

SQL Statements 7-205

AUDIT schema_objects
ALL is a shortcut equivalent to specifying all object options applicable for the type of object.
You can use this shortcut rather than explicitly specifying all options for an object.

schema is the schema containing the object chosen for auditing. If you omit schema, Oracle
assumes the object is in your own schema.

object identifies the object chosen for auditing. The object must be a table, view, sequence, stored
procedure, function, package, snapshot, or library.

You can also specify a synonym for a table, view, sequence, procedure, stored function,
package, or snapshot.

ON DEFAULT establishes the specified object options as default object options for subsequently created
objects. Once you have established these default auditing options, any subsequently
created object is automatically audited with those options. The default auditing options
for a view are always the union of the auditing options for the view’s base tables.

If you change the default auditing options, the auditing options for previously created
objects remain the same. You can change the auditing options for an existing object only
by specifying the object in the ON clause of the AUDIT statement.

ON DIRECTORY
directory_name

identifies the name of the directory chosen for auditing.

BY SESSION causes Oracle to write a single record for all operations of the same type on the same
object issued in the same session. This is the default.

BY ACCESS causes Oracle to write one record for each audited operation.

WHENEVER
SUCCESSFUL

chooses auditing only for SQL statements that complete successfully.

NOT chooses auditing only for statements that fail, or result in errors.

If you omit the WHENEVER SUCCESSFUL clause entirely, Oracle audits all SQL
statements, regardless of success or failure.
7-206 SQL Reference

AUDIT schema_objects
Examples

Query Examples To choose auditing for every SQL statement that queries the

EMP table in the schema SCOTT, issue the following statement:

AUDIT SELECT
 ON scott.emp;

To choose auditing for every statement that successfully queries the EMP table in

the schema SCOTT, issue the following statement:

AUDIT SELECT
 ON scott.emp
 WHENEVER SUCCESSFUL;

Table 7–3 Object Auditing Options

Object
Option Table View Sequence

Procedure

Function

Package a

Material-
ized

View /
Snapshot Directory Library

Object

Type Context

ALTER X X X X

AUDIT X X X X X X X X

COMMENT X X X

DELETE X X X

EXECUTE X X

GRANT X X X X X X X X X

INDEX X X

INSERT X X X

LOCK X X X

READ X

RENAME X X X X

SELECT X X X X

UPDATE X X X

a Java schema objects (sources, classes, and resources) are considered the same as procedures, functions, and
packages for purposes of auditing options.
SQL Statements 7-207

AUDIT schema_objects
To choose auditing for every statement that queries the EMP table in the schema

SCOTT and results in an Oracle error, issue the following statement:

AUDIT SELECT
 ON scott.emp
 WHENEVER NOT SUCCESSFUL;

Insert/Update Example To choose auditing for every statement that inserts or

updates a row in the DEPT table in the schema BLAKE, issue the following

statement:

AUDIT INSERT, UPDATE
 ON blake.dept;

ALL Example To choose auditing for every statement that performs any operation

on the ORDER sequence in the schema ADAMS, issue the following statement:

AUDIT ALL
 ON adams.order;

The above statement uses the ALL shortcut to choose auditing for the following

statements that operate on the sequence:

■ ALTER SEQUENCE

■ AUDIT

■ GRANT

■ any statement that accesses the sequence’s values using the pseudocolumns

CURRVAL or NEXTVAL

READ Example To choose auditing for every statement that reads files from the

BFILE_DIR1 directory, issue the following statement:

AUDIT READ ON DIRECTORY bfile_dir1;

DEFAULT Example The following statement specifies default auditing options for

objects created in the future:

AUDIT ALTER, GRANT, INSERT, UPDATE, DELETE
 ON DEFAULT;

Any objects created later are automatically audited with the specified options that

apply to them, provided that auditing has been enabled:
7-208 SQL Reference

AUDIT schema_objects
■ If you create a table, Oracle automatically audits any ALTER, GRANT, INSERT,

UPDATE, or DELETE statements issued against the table.

■ If you create a view, Oracle automatically audits any GRANT, INSERT,

UPDATE, or DELETE statements issued against the view.

■ If you create a sequence, Oracle automatically audits any ALTER or GRANT

statements issued against the sequence.

■ If you create a procedure, package, or function, Oracle automatically audits any

ALTER or GRANT statements issued against it.
SQL Statements 7-209

CALL
7SQL Statements

CALL

Syntax

Purpose
Enables you to execute a routine (a standalone procedure or function, or a proce-

dure or function defined within a type or package) from within SQL. For informa-

tion on creating such routine, refer to PL/SQL User’s Guide and Reference.

Prerequisites
You must have EXECUTE privilege on the standalone routine or on the type or

package in which the routine is defined.

Keywords and Parameters

schema specifies the schema in which the standalone routine (or the package or type containing
the routine) resides. If you do not specify schema, Oracle assumes the routine is in your
own schema.

type or package specifies the type or package in which the routine is defined.

function |
procedure |
method

specifies the name of the function or procedure being called, or a synonym that translates

to a function or procedure.

When you call a type’s member function or procedure, if the first argument (SELF) is a
null IN OUT argument, Oracle returns an error. If SELF is a null IN argument, Oracle
returns null. In both cases, the function or procedure is not invoked.

Restriction: If the routine is a function, the INTO clause is mandatory.

CALL
schema .

type .

package .
function

procedure

method

@ dblink_name

(expr

,

)
INTO : host_variable

INDICATOR
: indicator_variable

;

7-210 SQL Reference

CALL
Example
The following statement creates a procedure UPDATESALARY, and then calls the

procedure, which updates the specified employee ID with a new salary.

CREATE OR REPLACE PROCEDURE updateSalary
 (id NUMBER, newsalary NUMBER) IS
 BEGIN
 UPDATE emp SET sal=newsalary WHERE empno=id;
 END;

CALL updateSalary(1404, 50000);

@dblink in a distributed database system, specifies the name of the database containing the

standalone routine (or the package or functioning containing the routine). If you omit

dblink, Oracle looks in your local database.

expr specifies one or more arguments to the routine.

Restrictions:

■ An expr cannot be a pseudocolumn or either of the correlation variables VALUE or
REF.

■ Any expr that is an IN OUT or OUT argument of the routine must correspond to a
host variable expression.

INTO :host_
variable

applies only to calls to functions. This parameter specifies which host variable will store

the return value of the function.

:indicator_variable indicates the value or condition of the host variable.

For more information on host variables and indicator variables, refer to Pro*C/C++
Precompiler Programmer’s Guide.
SQL Statements 7-211

COMMENT
COMMENT

Syntax

Purpose
To add a comment about a table, view, materialized view, or column into the data

dictionary. See also "Comments" on page 2-56.

You can view the comments on a particular table or column by querying the data

dictionary views USER_TAB_COMMENTS, DBA_TAB_COMMENTS, or ALL_

TAB_COMMENTS or USER_COL_COMMENTS, DBA_COL_COMMENTS, or

ALL_COL_COMMENTS. For information on these views, see Oracle8i Reference.

To drop a comment from the database, set it to the empty string ’ ’.

Prerequisites
The table, view, or snapshot must be in your own schema or you must have

COMMENT ANY TABLE system privilege.

Keywords and Parameters

TABLE specifies the schema and name of the table, view, or snapshot to be commented. If you
omit schema, Oracle assumes the table, view, or snapshot is in your own schema.

COLUMN specifies the name of the column of a table, view, or snapshot to be commented. If you
omit schema, Oracle assumes the table, view, or snapshot is in your own schema.

IS ’text’ is the text of the comment. See the syntax description of ’text’ in "Text" on page 2-2.

COMMENT ON

TABLE
schema .

table

view

snapshot

COLUMN
schema .

table

view
.

snapshot .

column

IS ’ text ’ ;
7-212 SQL Reference

COMMENT
Example
To insert an explanatory remark on the NOTES column of the SHIPPING table, you

might issue the following statement:

COMMENT ON COLUMN shipping.notes
 IS ’Special packing or shipping instructions’;

To drop this comment from the database, issue the following statement:

COMMENT ON COLUMN shipping.notes IS ’ ’;
SQL Statements 7-213

COMMIT
COMMIT

Syntax

Purpose
To end your current transaction and make permanent all changes performed in the

transaction. A transaction is a sequence of SQL statements that Oracle treats as a

single unit. This statement also erases all savepoints in the transaction and releases

the transaction’s locks. For more information on transactions, see Oracle8i Concepts.

You can also use this statement to

■ Commit an in-doubt distributed transaction manually

■ Terminate a read-only transaction begun by a SET TRANSACTION statement.

For more information on specifying characteristics of a transaction, see "SET

TRANSACTION" on page 7-572

Oracle Corporation recommends that you explicitly end every transaction in your

application programs with a COMMIT or ROLLBACK statement, including the last

transaction, before disconnecting from Oracle. If you do not explicitly commit the

transaction and the program terminates abnormally, the last uncommitted

transaction is automatically rolled back.

A normal exit from most Oracle utilities and tools causes the current transaction to

be committed. A normal exit from an Oracle precompiler program does not commit

the transaction and relies on Oracle to roll back the current transaction.

Note: Oracle issues an implicit COMMIT before and after any

data definition language (DDL) statement.

COMMIT
WORK

COMMENT ’ text ’

FORCE ’ text ’
, integer

;

7-214 SQL Reference

COMMIT
Prerequisites
You need no privileges to commit your current transaction.

To manually commit a distributed in-doubt transaction that you originally

committed, you must have FORCE TRANSACTION system privilege. To manually

commit a distributed in-doubt transaction that was originally committed by

another user, you must have FORCE ANY TRANSACTION system privilege.

Keywords and Parameters

Examples

INSERT Example This statement inserts a row into the DEPT table and commits

this change:

INSERT INTO dept VALUES (50, ’MARKETING’, ’TAMPA’);
COMMIT WORK;

COMMENT Example The following statement commits the current transaction

and associates a comment with it:

COMMIT
 COMMENT ’In-doubt transaction Code 36, Call (415) 555-2637’;

WORK is supported for compliance with standard SQL. The statements COMMIT and COMMIT
WORK are equivalent.

COMMENT specifies a comment to be associated with the current transaction. The ’text’ is a quoted
literal of up to 50 characters that Oracle stores in the data dictionary view DBA_2PC_
PENDING along with the transaction ID if the transaction becomes in-doubt.

For more information on adding comments to SQL statements, see "COMMENT" on
page 7-212.

FORCE in a distributed database system, manually commits an in-doubt distributed transaction.
The transaction is identified by the ’text’ containing its local or global transaction ID. To
find the IDs of such transactions, query the data dictionary view DBA_2PC_PENDING.
You can use integer to specifically assign the transaction a system change number (SCN).
If you omit integer, the transaction is committed using the current SCN.

Note: A COMMIT statement with a FORCE clause commits only the specified
transaction. Such a statement does not affect your current transaction.

For more information on these topics, see Oracle8i Distributed Database Systems.

Restriction: COMMIT statements using the FORCE clause are not supported in PL/SQL.
SQL Statements 7-215

COMMIT
If a network or machine failure prevents this distributed transaction from

committing properly, Oracle stores the comment in the data dictionary along with

the transaction ID. The comment indicates the part of the application in which the

failure occurred and provides information for contacting the administrator of the

database where the transaction was committed.

In-Doubt Transaction Example The following statement manually commits an

in-doubt distributed transaction:

COMMIT FORCE ’22.57.53’;
7-216 SQL Reference

constraint_clause
constraint_clause

Syntax
table_constraint ::=

column_constraint ::=

CONSTRAINT constraint

UNIQUE

PRIMARY KEY
(column

,

)

foreign_key_clause

CHECK (condition)

constraint_state

CONSTRAINT constraint

NOT
NULL

UNIQUE

PRIMARY KEY

REFERENCES
schema.

table
(column)

ON DELETE
CASCADE

SET NULL

CHECK (condition)

constraint_state
SQL Statements 7-217

constraint_clause
table_ref_constraint ::=

table_ref_constraint ::=

references_clause ::=

SCOPE FOR (
ref_column

ref_attribute
) IS

schema .
scope_table_name

REF (
ref_column

ref_attribute
) WITH ROWID

CONSTRAINT constraint_name
FOREIGN KEY (

ref_column

ref_attribute
) references_clause

SCOPE IS
schema .

scope_table_name

WITH ROWID

CONSTRAINT constraint_name
references_clause

REFERENCES
schema .

object_table

ON DELETE
CASCADE

SET NULL constraint_state
7-218 SQL Reference

constraint_clause
constraint_state::=

foreign_key_clause ::=

NOT
DEFERRABLE

INITIALLY
IMMEDIATE

DEFERRED

INITIALLY
IMMEDIATE

DEFERRED
NOT

DEFERRABLE

RELY

NORELY

USING INDEX

physical_attributes

TABLESPACE tablespace

NOSORT

LOGGING

NOLOGGING

ENABLE

DISABLE

VALIDATE

NOVALIDATE EXCEPTIONS INTO
schema .

table

FOREIGN KEY (column

,

) REFERENCES
schema.

table
(column

,

)
ON DELETE

CASCADE

SET NULL
SQL Statements 7-219

constraint_clause
physical_attributes_clause::=

storage_clause : See the "storage_clause" on page 7-575.

Purpose
To define an integrity constraint. An integrity constraint is a rule that restricts the

values for one or more columns in a table or an index-organized table.

Prerequisites
Constraint clauses can appear in either CREATE TABLE or ALTER TABLE

statements. To define an integrity constraint, you must have the privileges

necessary to issue one of these statements. See "CREATE TABLE" on page 7-359

and "ALTER TABLE" on page 7-113.

To create a referential integrity constraint, the parent table must be in your own

schema, or you must have the REFERENCES privilege on the columns of the

referenced key in the parent table.

Keywords and Parameters

Note: Oracle does not support constraints on columns or

attributes whose type is an object, nested table, varray, REF, or

LOB. The only exception is that NOT NULL constraints are

supported for columns or attributes whose type is object, VARRAY,

REF, or LOB.

table_constraint The table_constraint syntax is part of the table definition. An integrity constraint defined
with this syntax can impose rules on any columns in the table.

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause
7-220 SQL Reference

constraint_clause
The table_constraint syntax can appear in a CREATE TABLE or ALTER TABLE statement.
This syntax can define any type of integrity constraint except a NOT NULL constraint.

column_
constraint

The column_constraint syntax is part of a column definition. Usually, an integrity
constraint defined with this syntax can impose rules only on the column in which it is
defined.

■ The column_constraint syntax that appears in a CREATE TABLE or ALTER TABLE
ADD statement can define any type of integrity constraint.

■ Column_constraint syntax that appears in an ALTER TABLE MODIFY column_options
statement can only define or remove a NOT NULL constraint.

CONSTRAINT identifies the integrity constraint by the name constraint. Oracle stores this name in the
data dictionary along with the definition of the integrity constraint. If you omit this
identifier, Oracle generates a name with the form SYS_Cn.

If you do not specify NULL or NOT NULL in a column definition, NULL is the default.

Restriction: You cannot create a constraint on columns or attributes whose type is
user-defined object, LOB, or REF, with the following exceptions:

■ You can specify a NOT NULL constraint on columns or attributes of user-defined
object type, varray, and LOB.

■ You can specify NOT NULL and referential integrity constraints on a column of type
REF.

UNIQUE designates a column or combination of columns as a unique key. To satisfy a UNIQUE
constraint, no two rows in the table can have the same value for the unique key. However,
the unique key made up of a single column can contain nulls.

A composite unique key is made up of a combination of columns. To define a composite
unique key, you must use table_constraint syntax rather than column_constraint syntax.
Any row that contains nulls in all key columns automatically satisfies the constraint.
However, two rows that contain nulls for one or more key columns and the same
combination of values for the other key columns violate the constraint.

Restrictions:

■ For a composite unique key, no two rows in the table can have the same combination
of values in the key columns.

■ A composite unique key cannot have more than 32 columns. The overall size of the
key (in bytes) should not exceed approximately the width of all indexed columns
plus the number of indexed columns.

■ A unique key column cannot be of datatype LONG or LONG RAW.

■ You cannot designate the same column or combination of columns as both a unique
key and a primary key.
SQL Statements 7-221

constraint_clause
PRIMARY KEY designates a column or combination of columns as the table’s primary key. A composite
primary key is made up of a combination of columns. To define a composite primary key,
you must use the table_constraint syntax rather than the column_constraint syntax.

Restrictions:

■ A table can have only one primary key.

■ None of the columns in the primary key can have datatype LONG or LONG RAW.

■ No primary key value can appear in more than one row in the table.

■ No column that is part of the primary key can contain a null.

■ The size of the PRIMARY KEY of an index-organized table cannot exceed one-half of
the database block size or 3800 bytes, whichever is less. (PRIMARY KEY is required
for an index-organized table.)

■ A composite primary key cannot have more than 32 columns. The overall size of the
key (in bytes) should not exceed approximately the width of all indexed columns
plus the number of indexed columns.

■ You cannot designate the same column or combination of columns as both a primary
key and a unique key.

NULL |
NOT NULL

determines whether a column can contain nulls. You must specify NULL and NOT NULL
with column_constraint syntax, not with table_constraint syntax.

NULL specifies that a column can contain null values. The NULL keyword
does not actually define an integrity constraint. If you do not specify
either NOT NULL or NULL, the column can contain nulls by default.

NOT NULL specifies that a column cannot contain null values. To satisfy this
constraint, every row in the table must contain a value for the column.

Referential integrity constraints

Referential integrity constraints designate a column or combination of columns as the
foreign key and establish a relationship between that foreign key and a specified primary
or unique key, called the referenced key. The table containing the foreign key is called the
child table, and the table containing the referenced key is called the parent table. The
foreign key and the referenced key can be in the same table. In this case, the parent and
child tables are the same.

From the table level, specify referential integrity using the foreign_key_clause with the table_
constraint syntax. This syntax allows you to specify a composite foreign key, which is
made up of a combination of columns.

From the column level, use the REFERENCES clause of the column_constraint syntax to
specify a referential integrity constraint in which the foreign key is made up of a single
column.
7-222 SQL Reference

constraint_clause
You can designate the same column or combination of columns as both a foreign key and
a primary or unique key. You can also designate the same column or combination of
columns as both a foreign key and a cluster key.

You can define multiple foreign keys in a table. Also, a single column can be part of more
than one foreign key.

Restrictions:

■ A foreign key cannot be of type LONG or LONG RAW.

■ The referenced UNIQUE or PRIMARY key constraint on the parent table must
already be defined.

■ The child and parent tables must be on the same database. To enable referential
integrity constraints across nodes of a distributed database, you must use database
triggers. For more information, see Oracle8i Application Developer’s Guide -
Fundamentals.

■ You cannot define a referential integrity constraint in a CREATE TABLE statement
that contains an AS subquery clause. Instead, you must create the table without the
constraint and then add it later with an ALTER TABLE statement.

foreign_key_
clause

designates a column or combination of columns as the foreign key
from the table level. You must use this syntax to define a composite
foreign key.

To satisfy a referential integrity constraint involving composite keys,
either the values of the foreign key columns must match the values of
the referenced key columns in a row in the parent table, or the value
of at least one of the columns of the foreign key must be null.

Restrictions:

■ A composite foreign key cannot have more than 32 columns. The
overall size of the key (in bytes) should not exceed approximately
the width of all indexed columns plus the number of indexed
columns.

■ A composite foreign key must refer to a composite unique key or
a composite primary key.

REFERENCES designates the current column or attribute as the foreign key and
identifies the parent table and the column or combination of columns
that make up the referenced key. If you identify only the parent table
and omit the column names, the foreign key automatically references
the primary key of the parent table. The corresponding columns of the
referenced key and the foreign key must match in number and
datatypes.
SQL Statements 7-223

constraint_clause
ON DELETE determines how Oracle automatically maintains referential integrity if
you remove a referenced primary or unique key value. If you omit
this clause, Oracle does not allow you to delete referenced key values
in the parent table that have dependent rows in the child table.

■ CASCADE specifies that Oracle removes dependent foreign key
values.

■ SET NULL specifies that Oracle converts dependent foreign key
values to NULL.

CHECK specifies a condition that each row in the table must satisfy. To satisfy the constraint, each
row in the table must make the condition either TRUE or unknown (due to a null). For
information and syntax, see "Conditions" on page 5-13. When Oracle evaluates a CHECK
constraint condition for a particular row, any column names in the condition refer to the
column values in that row.

If you create multiple CHECK constraints for a column, design them carefully so their
purposes do not conflict. Oracle does not verify that CHECK conditions are not mutually
exclusive.

Restrictions:

The condition of a CHECK constraint can refer to any column in the table, but it cannot
refer to columns of other tables.

CHECK constraint conditions cannot contain the following constructs:

■ Queries to refer to values in other rows

■ Calls to the functions SYSDATE, UID, USER, or USERENV

■ The pseudocolumns CURRVAL, NEXTVAL, LEVEL, or ROWNUM

■ Date constants that are not fully specified

table_ref_
constraint

and

column_ref_
constraint

further describe a column of type REF. The only difference between these clauses is that
you specify table_ref_constraint from the table level, so you must identify the REF column
or attribute you are defining. You specify column_ref_constraint after you have already
identified the REF column or attribute. Both types of constraint let you specify a SCOPE
constraint, a WITH ROWID constraint, or a referential integrity constraint.

As is the case for regular table and column constraints, you use FOREIGN KEY syntax for
a referential integrity constraint at the table level, and REFERENCES syntax for a
referential integrity constraint at the column level. See "Referential integrity constraints"
on page 7-222.

If the REF column’s scope table or reference table has a primary-key-based object
identifier, then it is a user-defined REF column. For more information on REFs, see
Oracle8i Concepts.

ref_column is the name of a REF column of an object or relational table.

ref_attribute is an embedded REF attribute within an object column of a relational
table.
7-224 SQL Reference

constraint_clause
SCOPE In a table with a REF column, each REF value in the column can
conceivably reference a row in a different object table. The SCOPE
clause restricts the scope of references to a single table, scope_table_
name. The values in the REF column or attribute point to objects in
scope_table_name, in which object instances (of the same type as the
REF column) are stored. You can only specify one scope table per REF
column.

Restrictions:

■ You can add a SCOPE constraint to an existing column only if the
table is empty.

■ You cannot specify SCOPE for the REF elements of a varray
column.

■ You must specify this clause if you specify AS subquery and the
subquery returns user-defined REFs.

■ The scope_table_name must be in your own schema or you must
have SELECT privileges on scope_table_name or SELECT ANY
TABLE system privileges.

■ You cannot drop a SCOPE table constraint from a REF column.

WITH ROWID stores the rowid along with the REF value in ref_column or ref_
attribute. Storing a REF value with a rowid can improve the
performance of dereferencing operations, but will also use more
space. Default storage of REF values is without rowids.

Restrictions:

■ You cannot specify a WITH ROWID constraint for the REF
elements of a varray column.

■ You cannot drop a WITH ROWID constraint from a REF column.

■ If the REF column or attribute is scoped, then this clause is
ignored and the rowid is not stored with the REF value.

references_clause specifies a referential integrity constraint on the REF column.This
clause also implicitly restricts the scope of the REF column or attribute
to the reference table.

If you do not specify CONSTRAINT, Oracle generates a system name
for the constraint.
SQL Statements 7-225

constraint_clause
Restrictions:

■ If you add a referential integrity constraint to an existing REF
column that is scoped, then the referenced table must be the same
as the scope table of the REF column.

■ The system adds a scope constraint when you add a referential
integrity constraint to an existing unscoped REF column.
Therefore, all the restrictions that apply for the SCOPE constraint
also apply in this case.

■ If you later drop the referential integrity constraint, the REF
column will remain scoped to the referenced table.

DEFERRABLE indicates that constraint checking can be deferred until the end of the transaction by
using the SET CONSTRAINT(S) statement. For information on checking constraints after
each DML statement, see "SET CONSTRAINT(S)" on page 7-568. See Oracle8i
Administrator’s Guide and Oracle8i Concepts for more information about deferred

constraints.

NOT
DEFERRABLE

indicates that this constraint is checked at the end of each DML statement. If you do not
specify either word, then NOT DEFERRABLE is the default.

INITIALLY
IMMEDIATE

indicates that at the start of every transaction, the default is to check this constraint at the
end of every DML statement. If you do not specify INITIALLY, INITIALLY IMMEDIATE
is the default.

INITIALLY
DEFERRED

implies that this constraint is DEFERRABLE and specifies that, by default, the constraint
is checked only at the end of each transaction.

Restrictions:

■ You cannot defer a NOT DEFERRABLE constraint with the SET CONSTRAINT(S) statement.

■ You cannot specify either DEFERRABLE or NOT DEFERRABLE if you are modifying an existing
constraint directly (that is, by specifying the ALTER TABLE ... MODIFY constraint statement).

■ You cannot alter a constraint’s deferrability status. You must drop the constraint and re-create it.

RELY | NORELY specifies whether an enabled constraint is to be enforced. Specify RELY to enable an
existing constraint without enforcement. Specify NORELY to enable and enforce an
existing constraint. The default is NORELY.

Unenforced constraints are generally useful only with materialized views and query
rewrite. Depending on the QUERY_REWRITE_INTEGRITY mode (see "ALTER SESSION"
on page 7-78), query rewrite can use constraints that are enabled with or without
enforcement to determine join information. For more information on materialized views
and query rewrite, see Oracle8i Tuning.

Restrictions:

■ RELY and NORELY are relevant only if you are modifying an existing constraint
(that is, you have issued the ALTER TABLE ... MODIFY constraint statement).

■ You cannot set a NOT NULL constraint to RELY.
7-226 SQL Reference

constraint_clause
USING INDEX specifies parameters for the index Oracle uses to enable a UNIQUE or PRIMARY KEY
constraint. The name of the index is the same as the name of the constraint. You can
choose the values of the INITRANS, MAXTRANS, TABLESPACE, STORAGE, PCTFREE,
LOGGING, and NOLOGGING parameters for the index. For information on these
parameters, see "CREATE TABLE" on page 7-359.

Restrictions:

■ Use this clause only when enabling UNIQUE and PRIMARY KEY constraints.

■ You cannot specify the PCTUSED parameter with this clause, because that parameter
is not valid with indexes.

NOSORT indicates that the rows are stored in the database in ascending order and therefore Oracle
does not have to sort the rows when creating the index.

ENABLE specifies that the constraint will be applied to all new data in the table. Before you can

enable a referential integrity constraint, its referenced constraint must be enabled.

■ ENABLE VALIDATE additionally specifies that all old data also complies with the
constraint. An enabled validated constraint guarantees that all data is and will con-
tinue to be valid.

If you place a primary key constraint in ENABLE VALIDATE mode, the validation
process will verify that the primary key columns contain no nulls. To avoid this
overhead, mark each column in the primary key NOT NULL before enabling the
table’s primary key constraint. (For optimal results, do this before inserting data into
the column.)

■ ENABLE NOVALIDATE ensures that all new DML operations on the constrained
data comply with the constraint, but does not ensure that existing data in the table
complies with the constraint.

Enabling a primary key or unique key constraint automatically creates a unique index to
enforce the constraint. This index is dropped if the constraint is subsequently disabled,
causing Oracle to rebuild the index every time the constraint is enabled. To avoid this
behavior, create new primary key and unique key constraints initially disabled. Then
create nonunique indexes or use existing nonunique indexes to enforce the constraints.

For additional notes and restrictions, see the enable_disable_clause of "CREATE TABLE" on
page 7-382.

DISABLE disables the integrity constraint. If you do not specify this clause when creating a

constraint, Oracle automatically enables the constraint.

■ DISABLE VALIDATE disables the constraint and drops the index on the constraint,
but keeps the constraint valid. This feature is most useful in data warehousing situa-
tions, where the need arises to load into a range-partitioned table a quantity of data
with a distinct range of values in the unique key. In such situations, the disable vali-
date state enables you to save space by not having an index. You can then load data
from a nonpartitioned table into a partitioned table using the exchange_partition_
clause of the ALTER TABLE statement. All other modifications to the table by other
SQL statements are disallowed.
SQL Statements 7-227

constraint_clause
Examples

NOT NULL Example The following statement alters the EMP table and defines

and enables a NOT NULL constraint on the SAL column:

ALTER TABLE emp
 MODIFY (sal NUMBER CONSTRAINT nn_sal NOT NULL);

NN_SAL ensures that no employee in the table has a null salary.

Unique Key Example The following statement creates the DEPT table and defines

and enables a unique key on the DNAME column:

CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(9) CONSTRAINT unq_dname UNIQUE,

If the unique key coincides with the partitioning key of the partitioned table,
disabling the constraint saves overhead and has no detrimental effects. If the unique
key does not coincide with the partitioning key, Oracle performs automatic table
scans during the exchange to validate the constraint, which might offset the benefit
of loading without an index.

■ DISABLE NOVALIDATE signifies that Oracle makes no effort to maintain the con-
straint (because it is disabled) and cannot guarantee that the constraint is true
(because it is not being validated). For information on when to use this setting, see
Oracle8i Tuning.

You cannot drop a table whose primary key is being referenced by a foreign key even
if the foreign key constraint is in DISABLE NOVALIDATE state. Further, the
optimizer can use constraints in DISABLE NOVALIDATE state.

■ If you specify neither VALIDATE nor NOVALIDATE, the default is NOVALIDATE.

■ If you disable a unique or primary key constraint that is using a unique index, Oracle
drops the unique index.

EXCEPTIONS
INTO

specifies a table into which Oracle places the ROWIDs of all rows violating the constraint.

Note: You must create an appropriate exceptions report table to accept information from
the EXCEPTIONS INTO clause before enabling the constraint. You can create an
exception table by submitting the script UTLEXCPT1.SQL, which creates a table named
EXCEPTIONS. You can create additional exceptions tables with different names by
modifying and resubmitting the script. (You can use the UTLEXCPT1.SQL script with
index-organized tables. You could not use earlier versions of the script for this purpose.

See Oracle8i Migration for compatibility information.)

This clause is valid only when validating a constraint.
7-228 SQL Reference

constraint_clause
 loc VARCHAR2(10));

The constraint UNQ_DNAME identifies the DNAME column as a unique key. This

constraint ensures that no two departments in the table have the same name.

However, the constraint does allow departments without names.

Alternatively, you can define and enable this constraint with the table_constraint
syntax:

CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(9),
 loc VARCHAR2(10),
 CONSTRAINT unq_dname
 UNIQUE (dname)
 USING INDEX PCTFREE 20
 TABLESPACE user_x
 STORAGE (INITIAL 8K NEXT 6K));

The above statement also uses the USING INDEX clause to specify storage

characteristics for the index that Oracle creates to enable the constraint.

Composite Unique Key Example The following statement defines and enables a

composite unique key on the combination of the CITY and STATE columns of the

CENSUS table:

ALTER TABLE census
 ADD CONSTRAINT unq_city_state
 UNIQUE (city, state)
 USING INDEX PCTFREE 5
 TABLESPACE user_y
 EXCEPTIONS INTO bad_keys_in_ship_cont;

The UNQ_CITY_STATE constraint ensures that the same combination of CITY and

STATE values does not appear in the table more than once.

The ADD CONSTRAINT clause also specifies other properties of the constraint:

■ The USING INDEX clause specifies storage characteristics for the index Oracle

creates to enable the constraint.

■ The EXCEPTIONS INTO clause causes Oracle to write information to the BAD_

KEYS_IN_SHIP_CONT table about any rows currently in the CENSUS table

that violate the constraint.
SQL Statements 7-229

constraint_clause
Primary Key Example The following statement creates the DEPT table and

defines and enables a primary key on the DEPTNO column:

CREATE TABLE dept
 (deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,
 dname VARCHAR2(9),
 loc VARCHAR2(10));

The PK_DEPT constraint identifies the DEPTNO column as the primary key of the

DEPT table. This constraint ensures that no two departments in the table have the

same department number and that no department number is NULL.

Alternatively, you can define and enable this constraint with table_constraint syntax:

CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(9),
 loc VARCHAR2(10),
 CONSTRAINT pk_dept PRIMARY KEY (deptno));

Composite Primary Key Example The following statement defines a composite

primary key on the combination of the SHIP_NO and CONTAINER_NO columns

of the SHIP_CONT table:

ALTER TABLE ship_cont
 ADD PRIMARY KEY (ship_no, container_no) DISABLE;

This constraint identifies the combination of the SHIP_NO and CONTAINER_NO

columns as the primary key of the SHIP_CONT table. The constraint ensures that

no two rows in the table have the same values for both the SHIP_NO column and

the CONTAINER_NO column.

The CONSTRAINT clause also specifies the following properties of the constraint:

■ The constraint definition does not include a constraint name, so Oracle

generates a name for the constraint.

■ The DISABLE clause causes Oracle to define the constraint but not enable it.

Referential Integrity Constraint Example The following statement creates the

EMP table and defines and enables a foreign key on the DEPTNO column that

references the primary key on the DEPTNO column of the DEPT table:

CREATE TABLE emp
 (empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
7-230 SQL Reference

constraint_clause
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno CONSTRAINT fk_deptno REFERENCES dept(deptno));

The constraint FK_DEPTNO ensures that all departments given for employees in

the EMP table are present in the DEPT table. However, employees can have null

department numbers, meaning they are not assigned to any department. To ensure

that all employees are assigned to a department, you could create a NOT NULL

constraint on the DEPTNO column in the EMP table, in addition to the

REFERENCES constraint.

Before you define and enable this constraint, you must define and enable a

constraint that designates the DEPTNO column of the DEPT table as a primary or

unique key.

The referential integrity constraint definition does not use the FOREIGN KEY

keyword to identify the columns that make up the foreign key. Because the

constraint is defined with a column constraint clause on the DEPTNO column, the

foreign key is automatically on the DEPTNO column.

The constraint definition identifies both the parent table and the columns of the

referenced key. Because the referenced key is the parent table’s primary key, the

referenced key column names are optional.

The above statement omits the DEPTNO column’s datatype. Because this column is

a foreign key, Oracle automatically assigns it the datatype of the DEPT.DEPTNO

column to which the foreign key refers.

Alternatively, you can define a referential integrity constraint with table_constraint
syntax:

CREATE TABLE emp
 (empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno,
 CONSTRAINT fk_deptno
 FOREIGN KEY (deptno)
 REFERENCES dept(deptno));
SQL Statements 7-231

constraint_clause
The foreign key definitions in both statements of this statement omit the ON

DELETE clause, causing Oracle to forbid the deletion of a department if any

employee works in that department.

ON DELETE Example This statement creates the EMP table, defines and enables

two referential integrity constraints, and uses the ON DELETE clause:

CREATE TABLE emp
 (empno NUMBER(4) PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4) CONSTRAINT fk_mgr
 REFERENCES emp ON DELETE SET NULL,
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT fk_deptno
 REFERENCES dept(deptno)
 ON DELETE CASCADE);

Because of the first ON DELETE clause, if manager number 2332 is deleted from

the EMP table, Oracle sets to null the value of MGR for all employees in the EMP

table who previously had manager 2332.

Because of the second ON DELETE clause, Oracle cascades any deletion of a

DEPTNO value in the DEPT table to the DEPTNO values of its dependent rows of

the EMP table. For example, if Department 20 is deleted from the DEPT table,

Oracle deletes the department’s employees from the EMP table.

Composite Referential Integrity Constraint Example The following statement

defines and enables a foreign key on the combination of the AREACO and

PHONENO columns of the PHONE_CALLS table:

ALTER TABLE phone_calls
 ADD CONSTRAINT fk_areaco_phoneno
 FOREIGN KEY (areaco, phoneno)
 REFERENCES customers(areaco, phoneno)
 EXCEPTIONS INTO wrong_numbers;

The constraint FK_AREACO_PHONENO ensures that all the calls in the PHONE_

CALLS table are made from phone numbers that are listed in the CUSTOMERS

table. Before you define and enable this constraint, you must define and enable a

constraint that designates the combination of the AREACO and PHONENO

columns of the CUSTOMERS table as a primary or unique key.
7-232 SQL Reference

constraint_clause
The EXCEPTIONS INTO clause causes Oracle to write information to the WRONG_

NUMBERS table about any rows in the PHONE_CALLS table that violate the

constraint.

CHECK Constraint Examples The following statement creates the DEPT table and

defines a CHECK constraint in each of the table’s columns:

CREATE TABLE dept
 (deptno NUMBER CONSTRAINT check_deptno
 CHECK (deptno BETWEEN 10 AND 99)
 DISABLE,
 dname VARCHAR2(9) CONSTRAINT check_dname
 CHECK (dname = UPPER(dname))
 DISABLE,
 loc VARCHAR2(10) CONSTRAINT check_loc
 CHECK (loc IN (’DALLAS’,’BOSTON’,
 ’NEW YORK’,’CHICAGO’))
 DISABLE);

Each constraint restricts the values of the column in which it is defined:

■ CHECK_DEPTNO ensures that no department numbers are less than 10 or

greater than 99.

■ CHECK_DNAME ensures that all department names are in uppercase.

■ CHECK_LOC restricts department locations to Dallas, Boston, New York, or

Chicago.

Because each CONSTRAINT clause contains the DISABLE clause, Oracle only

defines the constraints and does not enable them.

The following statement creates the EMP table and uses a table_constraint_clause to

define and enable a CHECK constraint:

CREATE TABLE emp
 (empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 CHECK (sal + comm <= 5000));
SQL Statements 7-233

constraint_clause
This constraint uses an inequality condition to limit an employee’s total

compensation, the sum of salary and commission, to $5000:

■ If an employee has non-null values for both salary and commission, the sum of

these values must not exceed $5000 to satisfy the constraint.

■ If an employee has a null salary or commission, the result of the condition is

unknown and the employee automatically satisfies the constraint.

Because the CONSTRAINT clause in this example does not supply a constraint

name, Oracle generates a name for the constraint.

The following statement defines and enables a PRIMARY KEY constraint, two

referential integrity constraints, a NOT NULL constraint, and two CHECK

constraints:

CREATE TABLE order_detail
 (CONSTRAINT pk_od PRIMARY KEY (order_id, part_no),
 order_id NUMBER
 CONSTRAINT fk_oid REFERENCES scott.order (order_id),
 part_no NUMBER
 CONSTRAINT fk_pno REFERENCES scott.part (part_no),
 quantity NUMBER
 CONSTRAINT nn_qty NOT NULL
 CONSTRAINT check_qty_low CHECK (quantity > 0),
 cost NUMBER
 CONSTRAINT check_cost CHECK (cost > 0));

The constraints enable the following rules on table data:

■ PK_OD identifies the combination of the ORDER_ID and PART_NO columns

as the primary key of the table. To satisfy this constraint, no two rows in the

table can contain the same combination of values in the ORDER_ID and the

PART_NO columns, and no row in the table can have a null in either the

ORDER_ID column or the PART_NO column.

■ FK_OID identifies the ORDER_ID column as a foreign key that references the

ORDER_ID column in the ORDER table in SCOTT’s schema. All new values

added to the column ORDER_DETAIL.ORDER_ID must already appear in the

column SCOTT.ORDER.ORDER_ID.

■ FK_PNO identifies the PART_NO column as a foreign key that references the

PART_NO column in the PART table owned by SCOTT. All new values added

to the column ORDER_DETAIL.PART_NO must already appear in the column

SCOTT.PART.PART_NO.

■ NN_QTY forbids nulls in the QUANTITY column.
7-234 SQL Reference

constraint_clause
■ CHECK_QTY ensures that values in the QUANTITY column are always

greater than zero.

■ CHECK_COST ensures the values in the COST column are always greater than

zero.

This example also illustrates the following points about constraint clauses and

column definitions:

■ Table_constraint syntax and column definitions can appear in any order. In this

example, the table_constraint syntax that defines the PK_OD constraint precedes

the column definitions.

■ A column definition can use column_constraint syntax multiple times. In this

example, the definition of the QUANTITY column contains the definitions of

both the NN_QTY and CHECK_QTY constraints.

■ A table can have multiple CHECK constraints. Multiple CHECK constraints,

each with a simple condition enforcing a single business rule, is better than a

single CHECK constraint with a complicated condition enforcing multiple

business rules. When a constraint is violated, Oracle returns an error

identifying the constraint. Such an error more precisely identifies the violated

business rule if the identified constraint enables a single business rule.

DEFERRABLE Constraint Examples The following statement creates table

GAMES with a NOT DEFERRABLE INITIALLY IMMEDIATE constraint check on

the SCORES column:

CREATE TABLE games (scores NUMBER CHECK (scores >= 0));

To define a unique constraint on a column as INITIALLY DEFERRED

DEFERRABLE, issue the following statement:

CREATE TABLE orders
 (ord_num NUMBER CONSTRAINT unq_num UNIQUE (ord_num)
 INITIALLY DEFERRED DEFERRABLE);
SQL Statements 7-235

CREATE CLUSTER
CREATE CLUSTER

Syntax

physical_attributes_clause ::=

storage_clause : See the "storage_clause" on page 7-575.

CREATE CLUSTER
schema .

cluster (column datatype

,

)

physical_attributes_clause

SIZE integer

K

M

TABLESPACE tablespace

INDEX

SINGLE TABLE
HASHKEYS integer

HASH IS expr

parallel_clause

CACHE

N0CACHE
;

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause
7-236 SQL Reference

CREATE CLUSTER
parallel_clause ::=

Purpose
To create a cluster. A cluster is a schema object that contains data from one or more

tables, all of which have one or more columns in common. Oracle stores together

all the rows (from all the tables) that share the same cluster key.

For general information on clusters, see Oracle8i Concepts. For information on

performance considerations of clusters, see Oracle8i Application Developer’s Guide -
Fundamentals. For suggestions on when to use clusters, see Oracle8i Tuning.

Prerequisites
To create a cluster in your own schema, you must have CREATE CLUSTER system

privilege. To create a cluster in another user’s schema, you must have CREATE

ANY CLUSTER system privilege. Also, the owner of the schema to contain the

cluster must have either space quota on the tablespace containing the cluster or

UNLIMITED TABLESPACE system privilege.

Oracle does not automatically create an index for a cluster when the cluster is

initially created. Data manipulation language (DML) statements cannot be issued

against clustered tables until a cluster index has been created.

Keywords and Parameters

schema is the schema to contain the cluster. If you omit schema, Oracle creates the cluster in your
current schema.

cluster is the name of the cluster to be created.

After you create a cluster, you add tables to it. A cluster can contain a maximum of 32 tables.
After you create a cluster and add tables to it, the cluster is transparent. You can access
clustered tables with SQL statements just as you can nonclustered tables. For information on
adding tables to a cluster, see "CREATE TABLE" on page 7-359.

NOPARALLEL

PARALLEL
integer
SQL Statements 7-237

CREATE CLUSTER
column is the name of a column in the cluster key. You can specify up to 16 cluster key columns.
These columns must correspond in both datatype and size to columns in each of the
clustered tables, although they need not correspond in name.

You cannot specify integrity constraints as part of the definition of a cluster key column.
Instead, you can associate integrity constraints with the tables that belong to the cluster.

datatype is the datatype of a cluster key column. For information on datatypes, see the section
"Datatypes" on page 2-5.

Restrictions:

■ You cannot specify a cluster key column of datatype LONG, LONG RAW, REF, nested
table, varray, BLOB, CLOB, BFILE, or user-defined object type.

■ You cannot use the HASH IS clause if any column datatype is not INTEGER or
NUMBER with scale 0.

■ You can specify a column of type ROWID, but Oracle does not guarantee that the values
in such columns are valid rowids.

physical_
attributes_clause

specifies the storage characteristics of the cluster. Each table in the cluster uses these storage
characteristics as well.

PCTUSED specifies the limit that Oracle uses to determine when additional rows can be added to a
cluster’s data block. The value of this parameter is expressed as a whole number and
interpreted as a percentage.

PCTFREE specifies the space reserved in each of the cluster’s data blocks for future expansion. The
value of the parameter is expressed as a whole number and interpreted as a percentage.

INITRANS specifies the initial number of concurrent update transactions allocated for data blocks of the
cluster. The value of this parameter for a cluster cannot be less than 2 or more than the value
of the MAXTRANS parameter. The default value is 2 or the INITRANS value for the
cluster’s tablespace, whichever is greater.

MAXTRANS specifies the maximum number of concurrent update transactions for any given data block
belonging to the cluster. The value of this parameter cannot be less than the value of the
INITRANS parameter. The maximum value of this parameter is 255. The default value is the
MAXTRANS value for the tablespace to contain the cluster.

For a complete description of the PCTUSED, PCTFREE, INITRANS, and MAXTRANS
parameters, see "CREATE TABLE" on page 7-359.

storage_clause specifies how data blocks are allocated to the cluster. See the "storage_clause" on page 7-575.

SIZE specifies the amount of space in bytes to store all rows with the same cluster key value or the
same hash value. Use K or M to specify this space in kilobytes or megabytes. This space
determines the maximum number of cluster or hash values stored in a data block. If SIZE is
not a divisor of the data block size, Oracle uses the next largest divisor. If SIZE is larger than
the data block size, Oracle uses the operating system block size, reserving at least one data
block per cluster or hash value.
7-238 SQL Reference

CREATE CLUSTER
Oracle also considers the length of the cluster key when determining how much space to
reserve for the rows having a cluster key value. Larger cluster keys require larger sizes. To
see the actual size, query the KEY_SIZE column of the USER_CLUSTERS data dictionary
view. (This does not apply to hash clusters, because hash values are not actually stored in the
cluster.)

If you omit this parameter, Oracle reserves one data block for each cluster key value or hash
value.

TABLESPACE specifies the tablespace in which the cluster is created.

INDEX creates an indexed cluster. In an indexed cluster, Oracle stores together rows having the
same cluster key value. Each distinct cluster key value is stored only once in each data block,
regardless of the number of tables and rows in which it occurs.

After you create an indexed cluster, you must create an index on the cluster key before you
can issue any data manipulation language (DML) statements against a table in the cluster.
This index is called the cluster index. For information on creating a cluster index, see
"CREATE INDEX" on page 7-273.

Note: You cannot create a cluster index for a hash cluster, and you need not create an index
on a hash cluster key. If you specify neither INDEX nor HASHKEYS, Oracle creates an
indexed cluster by default.

For more information in indexed clusters, see Oracle8i Concepts.

HASHKEYS creates a hash cluster and specifies the number of hash values for a hash cluster. In a hash
cluster, Oracle stores together rows that have the same hash key value. The hash value for a
row is the value returned by the cluster’s hash function.

Oracle rounds up the HASHKEYS value to the nearest prime number to obtain the actual
number of hash values. The minimum value for this parameter is 2. If you omit both the
INDEX clause and the HASHKEYS parameter, Oracle creates an indexed cluster by default.

When you create a hash cluster, Oracle immediately allocates space for the cluster based on
the values of the SIZE and HASHKEYS parameters. For more information on how Oracle
allocates space for clusters, see Oracle8i Concepts.

SINGLE TABLE specifies that the cluster is a type of hash cluster containing only one

table. This clause can provide faster access to rows than would result if

the table were not part of a cluster.

Restriction: Only one table can be present in the cluster at a time.

However, you can drop the table and create a different table in the same

cluster.

HASH IS specifies an expression to be used as the hash function for the hash
cluster. The expression:
SQL Statements 7-239

CREATE CLUSTER
■ Must evaluate to a positive value

■ Must contain at least one column with referenced columns of any
datatype as long as the entire expression evaluates to a number of
scale 0. For example: NUM_COLUMN * length(VARCHAR2_
COLUMN)

■ Cannot reference user-defined PL/SQL functions

■ Cannot reference SYSDATE, USERENV, TO_DATE, UID, USER,
LEVEL, or ROWNUM

■ Cannot evaluate to a constant

■ Cannot contain a subquery

■ Cannot contain columns qualified with a schema or object name
(other than the cluster name)

If you omit the HASH IS clause, Oracle uses an internal hash function for the hash cluster.

The cluster key of a hash column can have one or more columns of any datatype. Hash
clusters with composite cluster keys or cluster keys made up of noninteger columns must
use the internal hash function.

parallel_clause causes creation of the cluster to be parallelized. See also the Notes to the parallel_clause of
"CREATE TABLE" on page 7-359.

NOPARALLEL specifies serial execution. This is the default.

PARALLEL causes Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL
integer

specifies the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use one
or two parallel execution servers. Normally Oracle calculates the
optimum degree of parallelism, so it is not necessary for you to specify
integer.

Restriction: If the tables in cluster contain any columns of LOB or user-defined object type,
this statement as well as subsequent INSERT, UPDATE, or DELETE operations on cluster are
executed serially without notification.

CACHE specifies that the blocks retrieved for this table are placed at the most recently used end of
the LRU list in the buffer cache when a full table scan is performed. This clause is useful for
small lookup tables.

NOCACHE specifies that the blocks retrieved for this table are placed at the least recently used end of
the LRU list in the buffer cache when a full table scan is performed. This is the default
behavior.
7-240 SQL Reference

CREATE CLUSTER
Examples

Creating a Cluster The following statement creates an indexed cluster named

PERSONNEL with the cluster key column DEPARTMENT_NUMBER, a cluster size

of 512 bytes, and storage parameter values:

CREATE CLUSTER personnel
 (department_number NUMBER(2))
 SIZE 512
 STORAGE (INITIAL 100K NEXT 50K);

Adding Tables to a Cluster The following statements add the EMP and DEPT

tables to the cluster:

CREATE TABLE emp
 (empno NUMBER PRIMARY KEY,
 ename VARCHAR2(10) NOT NULL
 CHECK (ename = UPPER(ename)),
 job VARCHAR2(9),
 mgr NUMBER REFERENCES scott.emp(empno),
 hiredate DATE
 CHECK (hiredate < TO_DATE (’08-14-1998’, ’MM-DD-YYYY’)),
 sal NUMBER(10,2) CHECK (sal > 500),
 comm NUMBER(9,0) DEFAULT NULL,
 deptno NUMBER(2) NOT NULL)
 CLUSTER personnel (deptno);

CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(9),
 loc VARCHAR2(9))
 CLUSTER personnel (deptno);

Cluster Key Example The following statement creates the cluster index on the

cluster key of PERSONNEL:

CREATE INDEX idx_personnel ON CLUSTER personnel;

After creating the cluster index, you can insert rows into either the EMP or DEPT

tables.

Hash Cluster Examples The following statement creates a hash cluster named

PERSONNEL with the cluster key column DEPARTMENT_NUMBER, a maximum
SQL Statements 7-241

CREATE CLUSTER
of 503 hash key values, each of which is allocated 512 bytes, and storage parameter

values:

CREATE CLUSTER personnel
(department_number NUMBER)
 SIZE 512 HASHKEYS 500
 STORAGE (INITIAL 100K NEXT 50K);

Because the above statement omits the HASH IS clause, Oracle uses the internal

hash function for the cluster.

The following statement creates a hash cluster named PERSONNEL with the

cluster key made up of the columns HOME_AREA_CODE and HOME_PREFIX,

and uses a SQL expression containing these columns for the hash function:

CREATE CLUSTER personnel
 (home_area_code NUMBER,
 home_prefix NUMBER)
 HASHKEYS 20
 HASH IS MOD(home_area_code + home_prefix, 101);

Single-Table Hash Cluster Example The following statement creates a

single-table hash cluster named PERSONNEL with the cluster key DEPTNO and a

maximum of 503 hash key values, each of which is allocated 512 bytes:

CREATE CLUSTER personnel
 (deptno NUMBER)
 SIZE 512 SINGLE TABLE HASHKEYS 500;
7-242 SQL Reference

CREATE CONTEXT
7SQL Statements

CREATE CONTEXT

Syntax

Purpose
To create a namespace for a context (a set of application-defined attributes that

validates and secures an application) and to associate the namespace with the

externally created package that sets the context. For a definition and discussion of

contexts, refer to Oracle8i Concepts.

Prerequisites
To create a context namespace, you must have CREATE ANY CONTEXT system

privilege.

Keywords and Parameters

Examples
Suppose you have a human resources application (HR) and a PL/SQL package

(HR_SECURE_CONTEXT), which validates and secures the HR application. The

following statement creates the context namespace HR_CONTEXT and associates it

with the package HR_SECURE_CONTEXT:

OR REPLACE redefines an existing context namespace using a different package.

namespace is the name of the context namespace to create or modify. Context namespaces are always
stored in the schema SYS.

schema is the schema owning package. If you omit schema, Oracle uses the current schema.

package is the PL/SQL package that sets or resets the context attributes under the namespace for a
user session. For more information on setting the package, see Oracle8i Supplied Packages
Reference.

Note: To provide some design flexibility, Oracle does not verify the existence of the schema or the validity of
the package at the time you create the context.

CREATE
OR REPLACE

CONTEXT namespace USING
schema .

package ;
SQL Statements 7-243

CREATE CONTEXT
CREATE CONTEXT hr_context USING hr_secure_context;

You can control data access based on this context using the SYS_CONTEXT

function. For example, suppose your HR_SECURE_CONTEXT package has

defined an attribute ORG_ID as a particular organization identifier. You can secure

a base table HR_ORG_UNIT by creating a view that restricts access based on the

value of ORG_ID, as follows:

CREATE VIEW hr_org_secure_view AS
 SELECT * FROM hr_org_unit
 WHERE organization_id = SYS_CONTEXT (’hr_context’, ’org_id’);

For more information on the SYS_CONTEXT function, see "SYS_CONTEXT" on

page 4-40.
7-244 SQL Reference

CREATE CONTROLFILE
CREATE CONTROLFILE

Syntax

filespec : See "filespec" on page 7-490.

Purpose
To re-create a control file in one of the following cases:

WARNING: Oracle recommends that you perform a full backup
of all files in the database before using this statement. For more
information, see Oracle8i Backup and Recovery Guide.

CREATE CONTROLFILE
REUSE SET

DATABASE database

LOGFILE
GROUP integer

filespec

,

RESETLOGS

NORESETLOGS

DATAFILE filespec

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

MAXDATAFILES integer

MAXINSTANCES integer

ARCHIVELOG

NOARCHIVELOG

CHARACTER SET character_set
;

SQL Statements 7-245

CREATE CONTROLFILE
■ All copies of your existing control files have been lost through media failure.

■ You want to change the name of the database.

■ You want to change the maximum number of redo log file groups, redo log file

members, archived redo log files, datafiles, or instances that can concurrently

have the database mounted and open.

When you issue a CREATE CONTROLFILE statement, Oracle creates a new control

file based on the information you specify in the statement. If you omit any clauses,

Oracle uses the default values rather than the values for the previous control file.

After successfully creating the control file, Oracle mounts the database in the mode

specified by the initialization parameter PARALLEL_SERVER. You then must

perform media recovery before opening the database. It is recommended that you

then shut down the instance and take a full backup of all files in the database.

For more information about using this statement, see Oracle8i Backup and Recovery
Guide.

Prerequisites
You must have the OSDBA role enabled. The database must not be mounted by

any instance.

If the REMOTE_LOGIN_PASSWORDFILE initialization parameter is set to

EXCLUSIVE, Oracle returns an error when you attempt to re-create the control file.

To avoid this message, either set the parameter to SHARED, or re-create your

password file before re-creating the control file. For more information about the

REMOTE_LOGIN_PASSWORDFILE parameter, see Oracle8i Reference.

Keywords and Parameters

REUSE specifies that existing control files identified by the initialization parameter CONTROL_
FILES can be reused, thus ignoring and overwriting any information they may currently
contain. If you omit this clause and any of these control files already exists, Oracle
returns an error.

DATABASE database specifies the name of the database. The value of this parameter must be the existing
database name established by the previous CREATE DATABASE statement or CREATE
CONTROLFILE statement.

SET DATABASE
database

changes the name of the database. The name of a database can be as long as eight bytes.

LOGFILE specifies the redo log files for your database. You must list all members of all redo log
file groups. See the syntax description of filespec in "filespec" on page 7-490.
7-246 SQL Reference

CREATE CONTROLFILE
GROUP integer specifies logfile group. If you specify GROUP values, Oracle
verifies these values with the GROUP values when the database
was last open.

RESETLOGS ignores the contents of the files listed in the LOGFILE clause. These files do not have to
exist. Each filespec in the LOGFILE clause must specify the SIZE parameter. Oracle
assigns all online redo log file groups to thread 1 and enables this thread for public use
by any instance. After using this clause, you must open the database using the
RESETLOGS clause of the ALTER DATABASE statement.

NORESETLOGS specifies that all files in the LOGFILE clause should be used as they were when the
database was last open. These files must exist and must be the current online redo log
files rather than restored backups. Oracle reassigns the redo log file groups to the
threads to which they were previously assigned and reenables the threads as they were
previously enabled.

DATAFILE specifies the datafiles of the database. You must list all datafiles. These files must all
exist, although they may be restored backups that require media recovery. See the
syntax description of filespec in "filespec" on page 7-490.

MAXLOGFILES
integer

specifies the maximum number of online redo log file groups that can ever be created
for the database. Oracle uses this value to determine how much space in the control file
to allocate for the names of redo log files. The default and maximum values depend on
your operating system. The value that you specify should not be less than the greatest
GROUP value for any redo log file group.

MAXLOGMEMBERS
integer

specifies the maximum number of members, or identical copies, for a redo log file
group. Oracle uses this value to determine how much space in the control file to allocate
for the names of redo log files. The minimum value is 1. The maximum and default
values depend on your operating system.

MAXLOGHISTORY
integer

specifies the maximum number of archived redo log file groups for automatic media
recovery of the Oracle Parallel Server. Oracle uses this value to determine how much
space in the control file to allocate for the names of archived redo log files. The
minimum value is 0. The default value is a multiple of the MAXINSTANCES value and
depends on your operating system. The maximum value is limited only by the
maximum size of the control file. This parameter is useful only if you are using Oracle
with the Parallel Server option in both parallel mode and archivelog mode.

MAXDATAFILES
integer

specifies the initial sizing of the datafiles section of the control file at CREATE
DATABASE or CREATE CONTROLFILE time. An attempt to add a file whose number
is greater than MAXDATAFILES, but less than or equal to DB_FILES, causes the Oracle
control file to expand automatically so that the datafiles section can accommodate more
files.

The number of datafiles accessible to your instance is also limited by the initialization
parameter DB_FILES.
SQL Statements 7-247

CREATE CONTROLFILE
Example
This statement re-creates a control file. In this statement, database ORDERS_2 was

created with the F7DEC character set.

CREATE CONTROLFILE REUSE
 DATABASE orders_2
 LOGFILE GROUP 1 (’diskb:log1.log’, ’diskc:log1.log’) SIZE 50K,
 GROUP 2 (’diskb:log2.log’, ’diskc:log2.log’) SIZE 50K
 NORESETLOGS
 DATAFILE ’diska:dbone.dat’ SIZE 2M
 MAXLOGFILES 5
 MAXLOGHISTORY 100
 MAXDATAFILES 10
 MAXINSTANCES 2
 ARCHIVELOG
 CHARACTER SET F7DEC;

MAXINSTANCES
integer

specifies the maximum number of instances that can simultaneously have the database
mounted and open. This value takes precedence over the value of the initialization
parameter INSTANCES. The minimum value is 1. The maximum and default values
depend on your operating system.

ARCHIVELOG establishes the mode of archiving the contents of redo log files before reusing them. This
clause prepares for the possibility of media recovery as well as instance or crash
recovery.

NOARCHIVELOG If you omit both the ARCHIVELOG clause and NOARCHIVELOG clause, Oracle
chooses NOARCHIVELOG mode by default. After creating the control file, you can
change between ARCHIVELOG mode and NOARCHIVELOG mode with the ALTER
DATABASE statement.

CHARACTER SET
character_set

optionally reconstructs character set information in the control file. In case media
recovery of the database is required, this information will be available before the
database is open, so that tablespace names can be correctly interpreted during recovery.
This clause is useful only if you are using a character set other than the default
US7ASCII.

If you are re-creating your control file and you are using Recovery Manager for
tablespace recovery, and if you specify a different character set from the one stored in
the data dictionary, then tablespace recovery will not succeed. (However, at database
open, the control file character set will be updated with the correct character set from
the data dictionary.) For more information on tablespace recovery, see Oracle8i Backup
and Recovery Guide

Note: You cannot modify the character set of the database with this clause.
7-248 SQL Reference

CREATE DATABASE
CREATE DATABASE

Syntax

WARNING: This statement prepares a database for initial use
and erases any data currently in the specified files. Use this
statement only when you understand its ramifications.

CREATE DATABASE
database

CONTROLFILE REUSE

LOGFILE
GROUP integer

filespec

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

MAXDATAFILES integer

MAXINSTANCES integer

ARCHIVELOG

NOARCHIVELOG

CHARACTER SET charset

NATIONAL CHARACTER SET charset

DATAFILE filespec
autoextend_clause

,

;

SQL Statements 7-249

CREATE DATABASE
autoextend_clause ::=

maxsize_clause::=

filespec : See "filespec" on page 7-490.

Purpose
To create a database, making it available for general use.

This statement erases all data in any specified datafiles that already exist in order to

prepare them for initial database use. If you use the statement on an existing

database, all data in the datafiles is lost.

After creating the database, this statement mounts it in either exclusive or parallel

mode (depending on the value of the PARALLEL_SERVER initialization

parameter) and opens it, making it available for normal use. You can then create

tablespaces and rollback segments for the database. For information on these tasks,

see "CREATE ROLLBACK SEGMENT" on page 7-346 and "CREATE TABLESPACE"

on page 7-394.

For more information on modifying a database, see "ALTER DATABASE" on

page 7-6.

Prerequisites
You must have the OSDBA role enabled.

AUTOEXTEND

OFF

ON
NEXT integer

K

M
maxsize_clause

MAXSIZE

UNLIMITED

integer

K

M

7-250 SQL Reference

CREATE DATABASE
If the REMOTE_LOGIN_PASSWORDFILE initialization parameter is set to

EXCLUSIVE, Oracle returns an error when you attempt to re-create the database.

To avoid this message, either set the parameter to SHARED, or re-create your

password file before re-creating the database. For more information about the

REMOTE_LOGIN_PASSWORDFILE parameter, see Oracle8i Reference.

Keyword and Parameters

database is the name of the database to be created and can be up to 8 bytes long. The database
name can contain only ASCII characters. Oracle writes this name into the control file. If
you subsequently issue an ALTER DATABASE statement that explicitly specifies a
database name, Oracle verifies that name with the name in the control file. Database
names should also adhere to the rules described in "Schema Object Naming Rules" on
page 2-67.

Note: You cannot use special characters from European or Asian character sets in a
database name. For example, characters with umlauts are not allowed.

If you omit the database name from a CREATE DATABASE statement, Oracle uses the
name specified by the initialization parameter DB_NAME. If the DB_NAME
initialization parameter has been set, and you specify a different name from the value
of that parameter, Oracle returns an error.

CONTROLFILE
REUSE

reuses existing control files identified by the initialization parameter CONTROL_
FILES, thus ignoring and overwriting any information they currently contain.
Normally you use this clause only when you are re-creating a database, rather than
creating one for the first time. You cannot use this clause if you also specify a
parameter value that requires that the control file be larger than the existing files.
These parameters are MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY,
MAXDATAFILES, and MAXINSTANCES.

If you omit this clause and any of the files specified by CONTROL_FILES already
exist, Oracle returns an error.

LOGFILE specifies one or more files to be used as redo log files. Each filespec specifies a redo log
file group containing one or more redo log file members (copies). For the syntax of
filespec, see "filespec" on page 7-490. All redo log files specified in a CREATE
DATABASE statement are added to redo log thread number 1.

GROUP integer uniquely identifies a redo log file group and can range from 1 to
the value of the MAXLOGFILES parameter. A database must have
at least two redo log file groups. You cannot specify multiple redo
log file groups having the same GROUP value. If you omit this
parameter, Oracle generates its value automatically. You can
examine the GROUP value for a redo log file group through the
dynamic performance table V$LOG.

If you omit the LOGFILE clause, Oracle creates two redo log file groups by default.
The names and sizes of the default files depend on your operating system.
SQL Statements 7-251

CREATE DATABASE
MAXLOGFILES
integer

specifies the maximum number of redo log file groups that can ever be created for the
database. Oracle uses this value to determine how much space in the control file to
allocate for the names of redo log files. The default, minimum, and maximum values
depend on your operating system.

MAXLOGMEMBERS
integer

specifies the maximum number of members, or copies, for a redo log file group. Oracle
uses this value to determine how much space in the control file to allocate for the
names of redo log files. The minimum value is 1. The maximum and default values
depend on your operating system.

MAXLOGHISTORY
integer

specifies the maximum number of archived redo log files for automatic media
recovery with Oracle Parallel Server. Oracle uses this value to determine how much
space in the control file to allocate for the names of archived redo log files. The
minimum value is 0. The default value is a multiple of the MAXINSTANCES value
and depends on your operating system. The maximum value is limited only by the
maximum size of the control file.

Note: This parameter is useful only if you are using Oracle with the Parallel Server
option in parallel mode, and archivelog mode enabled.

MAXDATAFILES
integer

specifies the initial sizing of the datafiles section of the control file at CREATE
DATABASE or CREATE CONTROLFILE time. An attempt to add a file whose number
is greater than MAXDATAFILES, but less than or equal to DB_FILES, causes the Oracle
control file to expand automatically so that the datafiles section can accommodate
more files.

The number of datafiles accessible to your instance is also limited by the initialization
parameter DB_FILES.

MAXINSTANCES
integer

specifies the maximum number of instances that can simultaneously have this
database mounted and open. This value takes precedence over the value of
initialization parameter INSTANCES. The minimum value is 1. The maximum and
default values depend on your operating system.

ARCHIVELOG specifies that the contents of a redo log file group must be archived before the group
can be reused. This clause prepares for the possibility of media recovery.

NOARCHIVELOG specifies that the contents of a redo log file group need not be archived before the
group can be reused. This clause does not allow for the possibility of media recovery.

The default is NOARCHIVELOG mode. After creating the database, you can change
between ARCHIVELOG mode and NOARCHIVELOG mode with the ALTER
DATABASE statement.

CHARACTER SET specifies the character set the database uses to store data. You cannot change the
database character set after creating the database. The supported character sets and
default value of this parameter depend on your operating system.

Restriction: You cannot specify any fixed-width multibyte character sets as the
database character set. For more information about character sets, see Oracle8i National
Language Support Guide.
7-252 SQL Reference

CREATE DATABASE
Examples
The following statement creates a small database using defaults for all arguments:

CREATE DATABASE;

The following statement creates a database and fully specifies each argument:

CREATE DATABASE newtest
CONTROLFILE REUSE
LOGFILE
 GROUP 1 (’diskb:log1.log’, ’diskc:log1.log’) SIZE 50K,
 GROUP 2 (’diskb:log2.log’, ’diskc:log2.log’) SIZE 50K
MAXLOGFILES 5
MAXLOGHISTORY 100
DATAFILE ’diska:dbone.dat’ SIZE 2M
MAXDATAFILES 10

NATIONAL
CHARACTER SET

specifies the national character set used to store data in columns specifically defined as
NCHAR, NCLOB, or NVARCHAR2. If not specified, the national character set defaults
to the database character set. See Oracle8i National Language Support Guide for valid
character set names.

DATAFILE specifies one or more files to be used as datafiles. See the syntax description of filespec
in "filespec" on page 7-490. All these files become part of the SYSTEM tablespace. If
you omit this clause, Oracle creates one datafile by default. The name and size of this
default file depend on your operating system.

Note: Oracle recommends that the total initial space allocated for the SYSTEM
tablespace be a minimum of 5 megabytes.

autoextend_clause enables or disables the automatic extension of a datafile. If you do not specify this
clause, datafiles are not automatically extended.

OFF disables autoextend if it is turned on. NEXT and MAXSIZE are set
to zero. Values for NEXT and MAXSIZE must be respecified in
ALTER DATABASE AUTOEXTEND or ALTER TABLESPACE
AUTOEXTEND statements.

ON enables autoextend.

NEXT specifies the size in bytes of the next increment of disk space to be
allocated to the datafile automatically when more extents are
required. Use K or M to specify this size in kilobytes or megabytes.
The default is the size of one data block.

MAXSIZE specifies the maximum disk space allowed for automatic extension
of the datafile.

UNLIMITED sets no limit on the allocation of disk space to the datafile.
SQL Statements 7-253

CREATE DATABASE
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET US7ASCII
NATIONAL CHARACTER SET JA16SJISFIXED
DATAFILE
’disk1:df1.dbf’ AUTOEXTEND ON
’disk2:df2.dbf’ AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED;
7-254 SQL Reference

CREATE DATABASE LINK
CREATE DATABASE LINK

Syntax

authenticated_clause ::=

Purpose
To create a database link. A database link is a schema object in the local database

that allows you to access objects on a remote database. The remote database need

not be an Oracle system.

Once you have created a database link, you can use it to refer to tables and views

on the remote database. You can refer to a remote table or view in a SQL statement

by appending @dblink to the table or view name. You can query a remote table or

view with the SELECT statement. If you are using Oracle with the distributed

option, you can also access remote tables and views using any of the following

statements:

■ "DELETE" on page 7-438

■ "INSERT" on page 7-512

■ "LOCK TABLE" on page 7-520

■ "UPDATE" on page 7-584

CREATE
SHARED PUBLIC

DATABASE LINK dblink

CONNECT TO

CURRENT_USER

user IDENTIFIED BY password
authenticated_clause

authenticated_clause

USING ’ connect_string ’
;

AUTHENTICATED BY user IDENTIFIED BY password
SQL Statements 7-255

CREATE DATABASE LINK
For information about accessing remote tables or views with PL/SQL functions,

procedures, packages, and datatypes, see Oracle8i Application Developer’s Guide -
Fundamentals. For information on distributed database systems, see Oracle8i
Distributed Database Systems.

Prerequisites
To create a private database link, you must have CREATE DATABASE LINK

system privilege. To create a public database link, you must have CREATE PUBLIC

DATABASE LINK system privilege.

You must have CREATE SESSION privilege on the remote Oracle database.

Net8 must be installed on both the local and remote Oracle databases.

To access non-Oracle systems you must use the Oracle Heterogeneous Services.

Keyword and Parameters

SHARED uses a single network connection to create a public database link that can be shared
between multiple users. This clause is available only with the multi-threaded server
configuration. For more information about shared database links, see Oracle8i
Distributed Database Systems.

PUBLIC creates a public database link available to all users. If you omit this clause, the
database link is private and is available only to you.

dblink is the complete or partial name of the database link. For guidelines for naming
database links, see "Referring to Objects in Remote Databases" on page 2-74.

Restrictions:

■ You cannot create a database link in another user’s schema, and you cannot
qualify dblink with the name of a schema. (Periods are permitted in names of
database links, so Oracle interprets the entire name, such as
RALPH.LINKTOSALES, as the name of a database link in your schema rather
than as a database link named LINKTOSALES in the schema RALPH.)

■ The number of different database links that can appear in a single statement is
limited to the value of the initialization parameter OPEN_LINKS.

CONNECT TO enables a connection to the remote database.

CURRENT_USER creates a current user database link. The current user must be a global user with a
valid account on the remote database for the link to succeed.

If the database link is used directly, that is, not from within a stored object, then the
current user is the same as the connected user.
7-256 SQL Reference

CREATE DATABASE LINK
Examples

CURRENT_USER Example The following statement defines a current-user

database link:

CREATE DATABASE LINK sales.hq.acme.com
 CONNECT TO CURRENT_USER
 USING ’sales’;

Fixed User Example The following statement defines a fixed-user database link

named SALES.HQ.ACME.COM:

CREATE DATABASE LINK sales.hq.acme.com
 CONNECT TO scott IDENTIFIED BY tiger
 USING ’sales’;

Once this database link is created, you can query tables in the schema SCOTT on

the remote database in this manner:

When executing a stored object (such as a procedure, view, or trigger) that initiates a
database link, CURRENT_USER is the username that owns the stored object, and not
the username that called the object. For example, if the database link appears inside
procedure SCOTT.P (created by SCOTT), and user JANE calls procedure SCOTT.P, the
current user is SCOTT.

However, if the stored object is an invoker-rights function, procedure, or package, the
invoker’s authorization ID is used to connect as a remote user. For example, if the
privileged database link appears inside procedure SCOTT.P (an invoker-rights
procedure created by SCOTT), and user JANE calls procedure SCOTT.P, then
CURRENT_USER is JANE and the procedure executes with JANE’s privileges. For
more information on invoker-rights functions, see "CREATE FUNCTION" on
page 7-266.

user IDENTIFIED
BY password

is the username and password used to connect to the remote database (fixed user
database link). If you omit this clause, the database link uses the username and
password of each user who is connected to the database (connected user database link).

authenticated_
clause

specifies the username and password on the target instance. This clause authenticates
the user to the remote server and is required for security. The specified username and
password must be a valid username and password on the remote instance. The
username and password are used only for authentication. No other operations are
performed on behalf of this user.

You must specify this clause when using the SHARED clause.

USING ’connect
string’

specifies the service name of a remote database. For information on specifying remote

databases, see Net8 Administrator’s Guide.
SQL Statements 7-257

CREATE DATABASE LINK
SELECT *
 FROM emp@sales.hq.acme.com;

You can also use DML statements to modify data on the remote database:

INSERT INTO accounts@sales.hq.acme.com(acc_no, acc_name, balance)
 VALUES (5001, ’BOWER’, 2000);

UPDATE accounts@sales.hq.acme.com
 SET balance = balance + 500;

DELETE FROM accounts@sales.hq.acme.com
 WHERE acc_name = ’BOWER’;

You can also access tables owned by other users on the same database. This

statement assumes SCOTT has access to ADAM’s DEPT table:

SELECT *
 FROM adams.dept@sales.hq.acme.com;

The previous statement connects to the user SCOTT on the remote database and

then queries ADAM’s DEPT table.

A synonym may be created to hide the fact that SCOTT’s EMP table is on a remote

database. The following statement causes all future references to EMP to access a

remote EMP table owned by SCOTT:

CREATE SYNONYM emp
 FOR scott.emp@sales.hq.acme.com;

PUBLIC Example The following statement defines a shared public fixed user

database link named SALES.HQ.ACME.COM that refers to user SCOTT with

password TIGER on the database specified by the string service name ’SALES’:

CREATE SHARED PUBLIC DATABASE LINK sales.hq.acme.com
 CONNECT TO scott IDENTIFIED BY tiger
 AUTHENTICATED BY anupam IDENTIFIED BY bhide
 USING ’sales’;
7-258 SQL Reference

CREATE DIMENSION
CREATE DIMENSION

Syntax

level_clause ::=

hierarchy_clause ::=

join_clause ::=

CREATE

FORCE

NOFORCE
DIMENSION

schema .
dimension

level_clause
hierarchy_clause

attribute_clause
;

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

HIERARCHY hierarchy (child_level CHILD OF parent_level
join_clause

)

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level
SQL Statements 7-259

CREATE DIMENSION
attribute_clause ::=

Purpose
To create a dimension. A dimension defines a parent-child relationship between

pairs of column sets, where all the columns of a column set must come from the

same table. However, columns in one column set (or "level") can come from a

different table than columns in another set. The optimizer uses these relationships

with materialized views to perform query rewrite. The Summary Advisor uses

these relationships to recommend creation of specific materialized views. For more

information on materialized views, see "CREATE MATERIALIZED VIEW /

SNAPSHOT" on page 7-300. For more information on query rewrite, the optimizer

and the Summary Advisor, see Oracle8i Tuning.

Prerequisites
To create a dimension in your own schema, you must have the CREATE

DIMENSION system privilege. To create a dimension in another user’s schema,

you must have the CREATE ANY DIMENSION system privilege. In either case,

you must have the SELECT object privilege on any objects referenced in the

dimension.

Keywords and Parameters

FORCE creates the dimension even if tables referenced in this statement do not yet exist, or you do
not have SELECT object privilege on those tables.

Note: Even if you specify FORCE, the optimizer cannot use this dimension for query rewrite
until the tables exist and you have appropriate object privileges on them.

NOFORCE creates the dimension only if the referenced objects exist and you have appropriate
privileges on those objects. This is the default.

schema is the schema in which the dimension will be created. If you do not specify schema, Oracle
creates the dimension in your own schema.

dimension is the name of the dimension. The name must be unique within its schema.

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

7-260 SQL Reference

CREATE DIMENSION
level_clause defines a level in the dimension. A level defines dimension hierarchies and attributes.

level is the name of the level

level_table . level_
column

specifies from the columns in the level. You can specify up to 32 columns.

Restrictions:

■ All of the columns in a level must come from the same table.

■ The set of columns you specify must be unique to this level.

■ The columns you specify cannot be specified in any other dimension.

■ Each level_column must be non-null. (However, these columns need
not have NOT NULL constraints.)

hierarchy_clause defines a linear hierarchy of levels in the dimension. Each hierarchy forms a chain of
parent-child relationships among the levels in the dimension. Hierarchies in a dimension are
independent of each other. They may (but need not) have columns in common.

Each level in the dimension should be specified at most once in this clause, and each level
must already have been named in the level_clause.

hierarchy is the name of the hierarchy. This name must be unique in the dimension.

child_level is the name of a level that has an n:1 relationship with a parent level: the
level_columns of child_level cannot be null, and each child_level value
uniquely determines the value of the next named parent_level.

If the child level_table is different from the parent level_table, you must
specify a join relationship between them in the join_clause.

parent_level is the name of a level.

join_clause specifies an inner equijoin relationship for a dimension whose columns are contained in
multiple tables. This clause is required and permitted only when the columns specified in
the hierarchy are not all in the same table.

Restrictions:

■ The child_key_columns must be non-null and the parent key must be unique and
non-null. You need not define constraints to enforce these conditions, but queries may
return incorrect results if these conditions are not true.

■ Each child key must join with a key in the parent_level table.

■ Self-joins are not permitted (that is, the child_key_columns cannot be in the same table as
parent_level).
SQL Statements 7-261

CREATE DIMENSION
Examples
This statement creates a TIME dimension on table TIME_TAB, and creates a GEOG

dimension on tables CITY, STATE, and COUNTRY.

CREATE DIMENSION time
 LEVEL curDate IS time_tab.curDate
 LEVEL month IS time_tab.month
 LEVEL qtr IS time_tab.qtr
 LEVEL year IS time_tab.year
 LEVEL fiscal_week IS time_tab.fiscal_week
 LEVEL fiscal_qtr IS time_tab.fiscal_qtr
 LEVEL fiscal_year IS time_tab.fiscal_year
 HIERARCHY month_rollup (
 curDate CHILD OF
 month CHILD OF
 qtr CHILD OF
 year)
 HIERARCHY fiscal_year_rollup (
 curDate CHILD OF

child_key_column specifies one or more columns that are join-compatible with columns in
the parent level.

If you do not specify the schema and table of each child_column, the
schema and table are inferred from the CHILD OF relationship in the
hierarchy_clause. If you do specify the schema and column of a child_key_
column, the schema and table must match the schema and table of
columns that comprise the child of parent_level in the hierarchy_clause.

Restrictions:

■ All of the child-key columns must come from the same table.

■ The number of child-key columns must match the number of
columns in parent_level, and the columns must be joinable.

■ Do not specify multiple child key columns unless the parent level
consists of multiple columns.

You can specify only one join_clause for a given pair of levels in the same
hierarchy.

parent_level is the name of a level.

attribute_clause specifies the columns that are uniquely determined by a hierarchy level. The columns in level
must all come from the same table as the dependent_columns. The dependent_columns need not
have been specified in the level_clause.

For example, if the hierarchy levels are city, state, and country, then city might determine
mayor, state might determine governor, and country might determine president.
7-262 SQL Reference

CREATE DIMENSION
 fiscal_week CHILD OF
 fiscal_qtr CHILD OF
 fiscal_year)
 ATTRIBUTE curDate DETERMINES (holiday, dayOfWeek)
 ATTRIBUTE month DETERMINES (yr_ago_month, qtr_ago_month)
 ATTRIBUTE fiscal_qtr DETERMINES yr_ago_qtr
 ATTRIBUTE year DETERMINES yr_ago ;

CREATE DIMENSION geog
 LEVEL cityID IS (city.city, city.state)
 LEVEL stateID IS state.state
 LEVEL countryID IS country.country
 HIERARCHY political_rollup (
 cityID CHILD OF
 stateID CHILD OF
 countryID
 JOIN KEY city.state REFERENCES stateID
 JOIN KEY state.country REFERENCES countryID);
SQL Statements 7-263

CREATE DIRECTORY
CREATE DIRECTORY

Syntax

Purpose
To create a directory object. A directory object specifies an alias for a directory on

the server’s file system where external binary file LOBs (BFILEs) are located. You

can use directory names when referring to BFILEs in your PL/SQL code and OCI

calls, rather than hard-coding the operating system pathname, thereby allowing

greater file management flexibility. For more information on BFILE objects, see

"Large Object (LOB) Datatypes" on page 2-19.

All directories are created in a single namespace and are not owned by an

individual’s schema. You can secure access to the BFILEs stored within the

directory structure by granting object privileges on the directories to specific users.

for more information on granting object privileges, see "Large Object (LOB)

Datatypes" on page 2-19.

When you create a directory, you are automatically granted the READ object

privilege and can grant READ privileges to other users and roles. The DBA can also

grant this privilege to other users and roles.

Prerequisites
You must have CREATE ANY DIRECTORY system privileges to create directories.

You must also create a corresponding operating system directory for file storage.

Your system or database administrator must ensure that the operating system

directory has the correct read permissions for Oracle processes.

Privileges granted for the directory are created independently of the permissions

defined for the operating system directory. Therefore, the two may or may not

correspond exactly. For example, an error occurs if user SCOTT is granted READ

privilege on the directory schema object, but the corresponding operating system

directory does not have READ permission defined for Oracle processes.

CREATE
OR REPLACE

DIRECTORY directory AS ’ path_name ’ ;
7-264 SQL Reference

CREATE DIRECTORY
Keywords and Parameters

Example
The following statement redefines directory database object BFILE_DIR to enable

access to BFILEs stored in the operating system directory /PRIVATE1/LOB/FILES:

CREATE OR REPLACE DIRECTORY bfile_dir AS ’/private1/LOB/files’;

OR REPLACE re-creates the directory database object if it already exists. You can use this clause to
change the definition of an existing directory without dropping, re-creating, and
regranting database object privileges previously granted on the directory.

Users who had previously been granted privileges on a redefined directory can still
access the directory without being regranted the privileges

For information on removing a directory from the database, see "DROP DIRECTORY" on
page 7-451.

directory is the name of the directory object to be created. The maximum length of directory is 30
bytes. You cannot qualify a directory object with a schema name.

Note: Oracle does not verify that the directory you specify actually exists. Therefore, take
care that you specify a valid directory in your operating system. In addition, if your
operating system uses case-sensitive pathnames, be sure you specify the directory in the
correct format. (However, you need not include a trailing slash at the end of the
pathname.)

’path_name’ is the full pathname of the operating system directory on the server where the files are
located. The single quotes are required, with the result that the path name is case sensitive.
SQL Statements 7-265

CREATE FUNCTION
CREATE FUNCTION

Syntax

invoker_rights_clause ::=

call_spec ::=

Java_declaration::=

CREATE
OR REPLACE

FUNCTION
schema .

function

(argument

IN

OUT

IN OUT NOCOPY
datatype

,

)

RETURN datatype

invoker_rights_clause

DETERMINISTIC

PARALLEL_ENABLE IS

AS

pl/sql_function_body

call_spec
;

AUTHID
CURRENT_USER

DEFINER

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’
7-266 SQL Reference

CREATE FUNCTION
C_declaration::=

Purpose
To create a stored function or a call specification.

A stored function (also called a user function) is a set of PL/SQL statements you

can call by name. Stored functions are very similar to procedures, except that a

function returns a value to the environment in which it is called. User functions can

be used as part of a SQL expression. For a general discussion of procedures and

functions, see "CREATE PROCEDURE" on page 7-333. For examples of creating

functions, see "Examples" on page 7-271.

A call specification declares a Java method or a third-generation language (3GL)

routine so that it can be called from SQL and PL/SQL. The call specification tells

Oracle which Java method, or which named function in which shared library, to

invoke when a call is made. It also tells Oracle what type conversions to make for

the arguments and return value.

The CREATE FUNCTION statement creates a function as a standalone schema

object. You can also create a function as part of a package. For information on

creating packages, see "CREATE PACKAGE" on page 7-325.

For information on modifying a function, see "ALTER FUNCTION" on page 7-27.

For information on shared libraries, see "CREATE LIBRARY" on page 7-298. For

information on dropping a standalone function, see "DROP FUNCTION" on

page 7-452. For more information about registering external functions, see Oracle8i
Application Developer’s Guide - Fundamentals.

Prerequisites
Before a stored function can be created, the user SYS must run the SQL script

DBMSSTDX.SQL. The exact name and location of this script depend on your

operating system.

To create a function in your own schema, you must have the CREATE

PROCEDURE system privilege. To create a function in another user’s schema, you

must have the CREATE ANY PROCEDURE system privilege. To replace a function

C
NAME name

LIBRARY lib_name
WITH CONTEXT

PARAMETERS (parameters)
SQL Statements 7-267

CREATE FUNCTION
in another user’s schema, you must have the ALTER ANY PROCEDURE system

privilege.

To invoke a call specification, you may need additional privileges (for example,

EXECUTE privileges on C library for a C call specification). For more information

on such prerequisites, refer to PL/SQL User’s Guide and Reference or Oracle8i Java
Stored Procedures Developer’s Guide.

To embed a CREATE FUNCTION statement inside an Oracle precompiler program,

you must terminate the statement with the keyword END-EXEC followed by the

embedded SQL statement terminator for the specific language.

Keywords and Parameters

OR REPLACE re-creates the function if it already exists. Use this clause to change the definition of an
existing function without dropping, re-creating, and regranting object privileges previously
granted on the function. If you redefine a function, Oracle recompiles it. For information on
recompiling functions, see "ALTER FUNCTION" on page 7-27.

Users who had previously been granted privileges on a redefined function can still access
the function without being regranted the privileges.

If any function-based indexes depend on the function, Oracle marks the indexes DISABLED.

schema is the schema to contain the function. If you omit schema, Oracle creates the function in your
current schema.

function is the name of the function to be created. If creating the function results in compilation
errors, Oracle returns an error. You can see the associated compiler error messages with the
SHOW ERRORS command.

Restrictions on User-Defined Functions

User-defined functions cannot be used in situations that require an unchanging definition.
Thus, you cannot use user-defined functions:

■ In a CHECK constraint clause of a CREATE TABLE or ALTER TABLE statement

■ In a DEFAULT clause of a CREATE TABLE or ALTER TABLE statement
7-268 SQL Reference

CREATE FUNCTION
In addition, when a function is called from within a query or DML statement, the function
cannot:

■ Have OUT or IN OUT parameters

■ Commit or roll back the current transaction, create or roll back to a savepoint, or alter
the session or the system. DDL statements implicitly commit the current transaction, so
a user-defined function cannot execute any DDL statements.

■ Write to the database, if the function is being called from a SELECT statement. However,
a function called from a subquery in a DML statement can write to the database.

■ Write to the same table that is being modified by the statement from which the function
is called, if the function is called from a DML statement.

Except for the restriction on OUT and IN OUT parameters, Oracle enforces these restrictions
not only for the function called directly from the SQL statement, but also for any functions
that function calls, and on any functions called from the SQL statements executed by that
function or any function it calls.

argument is the name of an argument to the function. If the function does not accept arguments, you
can omit the parentheses following the function name.

IN specifies that you must supply a value for the argument when calling the function. This is
the default.

OUT specifies the function will set the value of the argument.

IN OUT specifies that a value for the argument can be supplied by you and may be set by the
function.

NOCOPY instructs Oracle to pass this argument as fast as possible. This clause can significantly
enhance performance when passing a large value like a record, a PL/SQL table, or a varray
to an OUT or IN OUT parameter. (IN parameter values are always passed NOCOPY.)

■ When you specify NOCOPY, assignments made to a package variable may show
immediately in this parameter (or assignments made to this parameter may show
immediately in a package variable) if the package variable is passed as the actual
assignment corresponding to this parameter.

■ Similarly, changes made either to this parameter or to another parameter may be visible
immediately through both names if the same variable is passed to both.

■ If the function is exited with an unhandled exception, any assignment made to this
parameter may be visible in the caller’s variable.

These effects may or may not occur on any particular call. You should use NOCOPY only
when these effects would not matter.

datatype is the datatype of an argument. An argument can have any datatype supported by PL/SQL.

The datatype cannot specify a length, precision, or scale. Oracle derives the length, precision,
or scale of an argument from the environment from which the function is called.
SQL Statements 7-269

CREATE FUNCTION
RETURN datatype specifies the datatype of the function’s return value. Because every function must return a
value, this clause is required. The return value can have any datatype supported by PL/SQL.

The datatype cannot specify a length, precision, or scale. Oracle derives the length, precision,
or scale of the return value from the environment from which the function is called. For

information on PL/SQL datatypes, see PL/SQL User’s Guide and Reference.

invoker_rights_
clause

lets you specify whether the function executes with the privileges and in the schema of the
user who owns it or with the privileges and in the schema of CURRENT_USER. For

information on how CURRENT_USER is determined, see Oracle8i Concepts and Oracle8i
Application Developer’s Guide - Fundamentals.

This clause also determines how Oracle resolves external names in queries, DML operations,
and dynamic SQL statements in the function. For more information refer to PL/SQL User’s
Guide and Reference.

AUTHID
CURRENT_USER

specifies that the function executes with the privileges of CURRENT_
USER. This clause creates an "invoker-rights function."

This clause also specifies that external names in queries, DML
operations, and dynamic SQL statements resolve in the schema of
CURRENT_USER. External names in all other statements resolve in the
schema in which the function resides.

AUTHID
DEFINER

specifies that the function executes with the privileges of the owner of
the schema in which the function resides, and that external names
resolve in the schema where the function resides. This is the default.

DETERMINISTIC is an optimization hint that allows the system to use a saved copy of the function’s return
result (if such a copy is available). The saved copy could come from a materialized view, a
function-based index, or a redundant call to the same function in the same SQL statement.
The query optimizer can choose whether to use the saved copy or re-call the function.

The function should reliably return the same result value whenever it is called with the same
values for its arguments. Therefore, do not define the function to use package variables or to
access the database in any way that might affect the function’s return result, because the
results of doing so will not be captured if the system chooses not to call the function.

A function must be declared DETERMINISTIC in order to be called in the expression of a
function-based index, or from the query of a materialized view if that view is marked
REFRESH FAST or ENABLE QUERY REWRITE.

For information on materialized views, see Oracle8i Tuning. For information on
function-based indexes, see "CREATE INDEX" on page 7-273.

PARALLEL_

ENABLE

is an optimization hint indicating that the function can be executed from a parallel execution
server of a parallel query operation. The function should not use session state, such as
package variables, as those variables may not be shared among the parallel execution
servers. For more information on these concepts, see Oracle8i Application Developer’s Guide -
Fundamentals.
7-270 SQL Reference

CREATE FUNCTION
Examples
The following statement creates the function GET_BAL.

CREATE FUNCTION get_bal(acc_no IN NUMBER)
 RETURN NUMBER
 IS acc_bal NUMBER(11,2);
 BEGIN
 SELECT balance
 INTO acc_bal
 FROM accounts
 WHERE account_id = acc_no;
 RETURN(acc_bal);
 END;

The GET_BAL function returns the balance of a specified account.

When you call the function, you must specify the argument ACC_NO, the number

of the account whose balance is sought. The datatype of ACC_NO is NUMBER.

The function returns the account balance. The RETURN clause of the CREATE

FUNCTION statement specifies the datatype of the return value to be NUMBER.

The function uses a SELECT statement to select the BALANCE column from the

row identified by the argument ACC_NO in the ACCOUNTS table. The function

uses a RETURN statement to return this value to the environment in which the

function is called.

The function created above can be used in a SQL statement. For example:

SELECT get_bal(100) FROM DUAL;

pl/sql_
subprogram_body

declares the function in a PL/SQL subprogram body. For more information on PL/SQL

subprograms, see Oracle8i Application Developer’s Guide - Fundamentals.

call_spec maps a Java or C method name, parameter types, and return type to their SQL counterparts.

■ In Java_declaration, ’string’ identifies the Java implementation of the method. For more
information, see Oracle8i Java Stored Procedures Developer’s Guide.

■ For an explanation of the parameters and semantics of the C_declaration, see Oracle8i
Application Developer’s Guide - Fundamentals.

AS EXTERNAL is an alternative way of declaring a C method. This clause has been
deprecated and is supported for backward compatibility only. Oracle
Corporation recommends that you use the AS LANGUAGE C syntax.
SQL Statements 7-271

CREATE FUNCTION
The following statement creates PL/SQL standalone function GET_VAL that

registers the C routine C_GET_VAL as an external function. (The parameters have

been omitted from this example.)

CREATE FUNCTION get_val
(x_val IN NUMBER,
y_val IN NUMBER,
image IN LONG RAW)
RETURN BINARY_INTEGER AS LANGUAGE C
 NAME "c_get_val"
 LIBRARY c_utils
 PARAMETERS (...);
7-272 SQL Reference

CREATE INDEX
CREATE INDEX

Syntax

cluster_index_clause ::=

table_index_clause ::=

index_expr_list ::=

CREATE

UNIQUE

BITMAP
INDEX

schema .
index ON

cluster_index_clause

table_index_clause
;

CLUSTER
schema .

cluster index_attributes

schema .
table

t_alias
(index_expr_list

ASC

DESC

,

)

global_index_clause

local_index_clause
index_attributes

domain_index_clause

column

column_expression
SQL Statements 7-273

CREATE INDEX
index_attributes ::=

physical_attributes_clause ::=

domain_index_clause ::=

physical_attributes_clause

LOGGING

NOLOGGING

ONLINE

COMPUTE STATISTICS

TABLESPACE
tablespace

DEFAULT

COMPRESS integer

NOCOMPRESS

NOSORT

REVERSE

parallel_clause

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

INDEXTYPE IS indextype
PARAMETERS (’ string ’)
7-274 SQL Reference

CREATE INDEX
global_index_clause ::=

local_index_clauses ::=

on_range_partitioned_table_clause ::=

segment_attributes_clause::=

GLOBAL PARTITION BY RANGE (column_list) (global_partition_clause

,

)

LOCAL

on_range_partitioned_table_clause

on_hash_partitioned_table_clause

on_composite_partitioned_table_clause

(PARTITION
partition

segment_attributes_clause

,

)

physical_attributes_clause

TABLESPACE tablespace

LOGGING

NOLOGGING
SQL Statements 7-275

CREATE INDEX
on_hash_partitioned_table_clause ::=

on_composite_partitioned_table_clause ::=

index_subpartition_clause ::=

STORE IN (
tablespace

,

DEFAULT
)

(PARTITION
partition

TABLESPACE tablespace

,

)

STORE IN (
tablespace

,

DEFAULT
)

(PARTITION
partition

segment_attribute_clause index_subpartition_clause

,

)

STORE IN (
tablespace

,

DEFAULT
)

(SUBPARTITION
subpartition

TABLESPACE tablespace

,

)

7-276 SQL Reference

CREATE INDEX
global_partition_clause::=

parallel_clause ::=

storage_clause : See "storage_clause" on page 7-575.

Purpose
To create an index on

■ One or more columns of a table, a partitioned table, an index-organized table,

or a cluster

■ One or more scalar typed object attributes of a table or a cluster

■ A nested table storage table for indexing a nested table column

To create a domain index, which is an instance of an application-specific index of

type indextype.

An index is a schema object that contains an entry for each value that appears in

the indexed column(s) of the table or cluster and provides direct, fast access to

rows. A partitioned index consists of partitions containing an entry for each value

that appears in the indexed column(s) of the table. A function-based index is an

index on expressions. It enables you to construct queries that evaluate the value

returned by an expression, which in turn may include functions (built-in or

user-defined).

PARTITION
partition

VALUES LESS THAN (value_list)

physical_attributes_clause

TABLESPACE tablespace

LOGGING

NOLOGGING

NOPARALLEL

PARALLEL
integer
SQL Statements 7-277

CREATE INDEX
For a discussion of indexes, see Oracle8i Concepts. For information on modifying an

index, see "ALTER INDEX" on page 7-29.

Prerequisites
To create an index in your own schema, one of the following conditions must be

true:

■ The table or cluster to be indexed must be in your own schema.

■ You must have INDEX privilege on the table to be indexed.

■ You must have CREATE ANY INDEX system privilege.

To create an index in another schema, you must have CREATE ANY INDEX system

privilege. Also, the owner of the schema to contain the index must have either

space quota on the tablespaces to contain the index or index partitions, or

UNLIMITED TABLESPACE system privilege.

To create a domain index in your own schema, you must also have EXECUTE

privilege on the indextype. If you are creating a domain index in another user’s

schema, the index owner also must have EXECUTE privilege on the indextype and

its underlying implementation type. Before creating a domain index, you should

first define the indextype. See "CREATE INDEXTYPE" on page 7-291.

To create a function-based index in your own schema on your own table, you must

have the QUERY REWRITE system privilege. To create the index in another

schema or on another schema's table, you must have the GLOBAL QUERY

REWRITE privilege. The table owner must also have the EXECUTE object

privilege on the function(s) used in the function-based index.

Keywords and Parameters

UNIQUE specifies that the value of the column (or columns) upon which the index is based must be
unique. If the index is local nonprefixed (see local_index_clause below), then the index key
must contain the partitioning key.

Oracle recommends that you do not explicitly define UNIQUE indexes on tables.
Uniqueness is strictly a logical concept and should be associated with the definition of a table.
Therefore, define UNIQUE integrity constraints on the desired columns. For more
information on constraints, see "constraint_clause" on page 7-217.

Restrictions:

■ You cannot specify both UNIQUE and BITMAP.

■ You cannot specify UNIQUE for a domain index.
7-278 SQL Reference

CREATE INDEX
BITMAP specifies that index is to be created as a bitmap, rather than as a B-tree. Bitmap indexes store
the rowids associated with a key value as a bitmap. Each bit in the bitmap corresponds to a
possible rowid, and if the bit is set, it means that the row with the corresponding rowid
contains the key value. The internal representation of bitmaps is best suited for applications
with low levels of concurrent transactions, such as data warehousing. See Oracle8i Concepts
and Oracle8i Tuning for more information about using bitmap indexes.

Restrictions:

■ You cannot specify BITMAP when creating a global partitioned index or an
index-organized table.

■ You cannot specify both UNIQUE and BITMAP.

■ You cannot specify BITMAP for a domain index.

schema is the schema to contain the index. If you omit schema, Oracle creates the index in your own
schema.

index is the name of the index to be created. An index can contain several partitions.

cluster_index_
clause

specifies the cluster for which a cluster index is to be created. If you do not qualify cluster
with schema, Oracle assumes the cluster is in your current schema. You cannot create a
cluster index for a hash cluster. For more information on clusters, see "CREATE CLUSTER"
on page 7-236.

table_index_
clause

specifies table (and its attributes) on which you are defining the index. If you do not qualify
table with schema, Oracle assumes the table is contained in your own schema.

You create an index on a nested table column by creating the index on the nested table
storage table. Include the NESTED_TABLE_ID pseudocolumn of the storage table to create a
UNIQUE index, which effectively ensures that the rows of a nested table value are distinct.

Restrictions:

■ If the index is local, then table must be partitioned.

■ If the table is index-organized, this statement creates a secondary index. You cannot
specify BITMAP or REVERSE for this secondary index, and the combined size of the
index key and the logical rowid should be less than half the block size.

■ If table is a temporary table, the index will also be temporary with the same scope
(session or transaction) as table. The following restrictions apply to indexes on
temporary table:

- The index cannot be a partitioned index or a domain index.

- You cannot specify the physical_attributes_clause or the parallel_clause.

- You cannot specify LOGGING, NOLOGGING, or TABLESPACE.

For more information on temporary tables, see "CREATE TABLE" on page 7-359 and

Oracle8i Concepts.

t_alias specifies a correlation name (alias) for the table upon which you are building the index.
SQL Statements 7-279

CREATE INDEX
Note: This alias is required if the index_expression_list references any object type attributes or
object type methods. See "Function-based Index on Type Method Example" on page 7-287.

index_expr_list lets you specify the column or column expression upon which the index is based.

column is the name of a column in the table. A bitmap index can have a maximum of 30 columns.
Other indexes can have as many as 32 columns.

Restriction: You cannot create an index on columns or attributes whose type is user-defined,
LONG, LONG RAW, LOB, or REF, except that Oracle supports an index on REF type
columns or attributes that have been defined with a SCOPE clause.

You can create an index on a scalar object attribute column or on the system-defined
NESTED_TABLE_ID column of the nested table storage table. If you specify an object
attribute column, the column name must be qualified with the table name. If you specify a
nested table column attribute, it must be qualified with the outermost table name, the
containing column name, and all intermediate attribute names leading to the nested table
column attribute.

column_expression is an expression built from columns of table, constants, SQL functions, and user-defined
functions. When you specify column_expression, you create a function-based index.

Name resolution of the function is based on the schema of the index creator. User-defined
functions used in column_expression are fully name resolved during the CREATE INDEX
operation.

After creating a function-based index, collect statistics on both the index and its base table
using the ANALYZE statement (see "ANALYZE" on page 7-185). Oracle cannot use the
function-based index until these statistics have been generated.

When you subsequently query a table that uses a function-based index, you must ensure in
the query that column_expression is not null. See the Function-Based Index Example on
page 7-287.

If the function on which the index is based becomes invalid or is dropped, Oracle marks the

index DISABLED. Queries on a DISABLED index fail if the optimizer chooses to use the

index. DML operations on a DISABLED index fail unless

■ The index is also marked UNUSABLE and

■ The parameter SKIP_UNUSABLE is set to true (see "ALTER SESSION" on page 7-78 and
"ALTER SYSTEM" on page 7-95 for more information on this parameter).

Oracle’s use of function-based indexes is also affected by the setting of the QUERY_REWRITE_
ENABLED session parameter. For more information, see "ALTER SESSION" on page 7-78.
7-280 SQL Reference

CREATE INDEX
Restrictions on function-based indexes:

■ Any user-defined function referenced in column_expression must be DETERMINISTIC.
For more information, see "CREATE FUNCTION" on page 7-266 and PL/SQL User’s
Guide and Reference.

■ For a function-based globally partitioned index, the column_expression cannot be the
partitioning key.

■ All functions must be specified with parentheses, even if they have no parameters.
Otherwise Oracle interprets them as column names.

■ Any function you specify in column_expression must return a repeatable value. For
example, you cannot specify the SYSDATE or USER function or the ROWNUM
pseudocolumn.

■ You cannot build a function-based index on LOB, REF, nested table, or varray columns.
In addition, the function in column_expression cannot take as arguments any objects with
attributes of type LOB, REF, nested table, or varray.

■ The column_expression cannot contain any aggregate functions.

Note: If a public synonym for a function, package, or type is used in column_expression, and
later an actual object with the same name is created in the table owner's schema, then Oracle
will disable the function-based index. When you subsequently enable the function-based
index using ALTER INDEX ... ENABLE or ALTER INDEX ... REBUILD, the function,
package, or type used in the column_expression will continue to resolve to the function,
package, or type to which the public synonym originally pointed. It will not resolve to the
new function, package, or type.

ASC | DESC specifies whether the index should be created in ascending or descending order. Indexes on
character data are created in ascending or descending order of the character values in the
database character set.

Oracle treats descending indexes as if they were function-based indexes. You do not need the
QUERY REWRITE or GLOBAL QUERY REWRITE privileges to create them, as you do with
other function-based indexes. However, as with other function-based indexes, Oracle does
not use descending indexes until you first analyze the index and the table on which the
index is defined. See the column_expression clause of this statement.

Restriction: You cannot specify either of these clauses for a domain index. You cannot
specify DESC for a bitmapped index or a reverse index.

index_attributes

physical_
attributes_clause

establishes values for physical and storage characteristics for the index. See "CREATE
TABLE" on page 7-359.

Restriction: You cannot specify the PCTUSED parameter for an index.

PCTFREE is the percentage of space to leave free for updates and insertions within
each of the index’s data blocks.

storage_clause establishes the storage characteristics for the index. See the "storage_
clause" on page 7-575.
SQL Statements 7-281

CREATE INDEX
TABLESPACE is the name of the tablespace to hold the index, index partition, or index subpartition. If you
omit this clause, Oracle creates the index in the default tablespace of the owner of the
schema containing the index.

For a local index, you can specify the keyword DEFAULT in place of tablespace. New
partitions or subpartitions added to the local index will be created in the same tablespace(s)
as the corresponding partitions or subpartitions of the underlying table.

COMPRESS enables key compression, which eliminates repeated occurrence of key column values and
may substantially reduce storage. Use integer to specify the prefix length (number of prefix
columns to compress).

■ For unique indexes, the valid range of prefix length values is from 1 to the number of
key columns minus 1. The default prefix length is the number of key columns minus 1.

■ For nonunique indexes, the valid range of prefix length values is from 1 to the number
of key columns. The default prefix length is number of key columns.

Oracle compresses only nonpartitioned indexes that are nonunique or unique indexes of at
least two columns.

Restriction: You cannot specify COMPRESS for a bitmapped index.

NOCOMPRESS disables key compression. This is the default.

NOSORT indicates to Oracle that the rows are stored in the database in ascending order, so that Oracle
does not have to sort the rows when creating the index. If the rows of the indexed column or
columns are not stored in ascending order, Oracle returns an error. For greatest savings of
sort time and space, use this clause immediately after the initial load of rows into a table.

Restrictions:

■ You cannot specify REVERSE with this clause.

■ You cannot use this clause to create a cluster, partitioned, or bitmap index.

■ You cannot specify this clause for a secondary index on an index-organized table.

REVERSE stores the bytes of the index block in reverse order, excluding the rowid. You cannot specify
NOSORT with this clause.

You cannot reverse a bitmap index or an index-organized table.

LOGGING |
NOLOGGING

 specifies that the creation of the index will be logged (LOGGING) or not logged
(NOLOGGING) in the redo log file. It also specifies that subsequent Direct Loader
(SQL*Loader) and direct-load INSERT operations against the index are logged or not logged.
LOGGING is the default.

If index is nonpartitioned, this is the logging attribute of the index.
7-282 SQL Reference

CREATE INDEX
If index is partitioned, the logging attribute specified is

■ The default value of all partitions specified in the CREATE statement (unless you
specify LOGGING|NOLOGGING in the PARTITION description clause)

■ The default value for the segments associated with the index partitions

■ The default value for local index partitions or subpartitions added implicitly during
subsequent ALTER TABLE ... ADD PARTITION operations

In NOLOGGING mode, data is modified with minimal logging (to mark new extents
INVALID and to record dictionary changes). When applied during media recovery, the
extent invalidation records mark a range of blocks as logically corrupt, since the redo data is
not logged. Thus if you cannot afford to lose this index, it is important to take a backup after
the NOLOGGING operation.

If the database is run in ARCHIVELOG mode, media recovery from a backup taken before
the LOGGING operation will re-create the index. However, media recovery from a backup
taken before the NOLOGGING operation will not re-create the index.

The logging attribute of the index is independent of that of its base table.

If you omit this clause, the logging attribute is that of the tablespace in which it resides.

For more information about logging and parallel DML, see Oracle8i Concepts and Oracle8i
Parallel Server Concepts and Administration.

ONLINE specifies that DML operations on the table will be allowed during creation of the index. For a
description of online index building and rebuilding, see Oracle8i Concepts.

Restriction: Parallel DML is not supported during online index building. If you specify
ONLINE and then issue parallel DML statements, Oracle returns an error.

COMPUTE
STATISTICS

enables you to collect statistics at relatively little cost during the creation of an index. These
statistics are stored in the data dictionary for ongoing use by the optimizer in choosing a
plan of execution for SQL statements.

The types of statistics collected depend on the type of index you are creating.

Note: If you create an index using another index (instead of a table), the original index might
not provide adequate statistical information. Therefore, Oracle generally uses the base table
to compute the statistics, which will improve the statistics but may negatively affect
performance.

Additional methods of collecting statistics are available in PL/SQL packages and

procedures. For more information, refer to Oracle8i Supplied Packages Reference.

global_index_
clause

specifies that the partitioning of the index is user defined and is not equipartitioned with the
underlying table. By default, nonpartitioned indexes are global indexes.

PARTITION BY
RANGE

specifies that the global index is partitioned on the ranges of values from
the columns specified in column_list. You cannot specify this clause for a
local index.
SQL Statements 7-283

CREATE INDEX
(column_list) is the name of the column(s) of a table on which the index is partitioned.
The column_list must specify a left prefix of the index column list.

You cannot specify more than 32 columns in column_list, and the columns
cannot contain the ROWID pseudocolumn or a column of type ROWID.

PARTITION
partition

describes the individual partitions. The number of clauses determines
the number of partitions. If you omit partition, Oracle generates a name
with the form SYS_Pn.

VALUES LESS
THAN (value_list)

specifies the (noninclusive) upper bound for the current partition in a
global index. The value_list is a comma-separated, ordered list of literal
values corresponding to column_list in the partition_by_range_clause.
Always specify MAXVALUE as the value_list of the last partition.

Note: If index is partitioned on a DATE column, and if the NLS date
format does not specify the century with the year, you must use the TO_
DATE function with a 4-character format mask for the year. The NLS
date format is determined implicitly by NLS_TERRITORY or explicitly
by NLS_DATE_FORMAT. For more information on these initialization
parameters, see Oracle8i National Language Support Guide. See also the
"Partitioned Table Example" on page 7-389.

Restriction: You cannot specify this clause for a local index.

local_index_
clauses

specify that the index is partitioned on the same columns, with the same number of
partitions and the same partition bounds as table. Oracle automatically maintains LOCAL
index partitioning as the underlying table is repartitioned.

on_range_
partitioned_table_
clause

describes an index on a range-partitioned table.

PARTITION
partition

describes the individual partitions. The number of clauses determines
the number of partitions. For a local index, the number of index
partitions must be equal to the number of the table partitions, and in the
same order.

If you omit partition, Oracle generates a name that is consistent with the
corresponding table partition. If the name conflicts with an existing index
partition name, the form SYS_Pn is used.

on_hash_
partitioned_table_
clause

describes an index on a hash-partitioned table. If you do not specify
partition, Oracle uses the name of the corresponding base table partition,
unless it conflicts with an explicitly specified name of another index
partition. In this case, Oracle generates a name of the form SYS_Pnnn.

You can optionally specify TABLESPACE for all index partitions or for
one or more individual partitions. If you do not specify TABLESPACE at
the index or partition level, Oracle stores each index partition in the same
tablespace as the corresponding table partition.
7-284 SQL Reference

CREATE INDEX
on_composite_
partitioned_table_
clause

describes an index on a composite-partitioned table. The first STORE IN
clause specifies the default tablespace for the index subpartitions. You
can override this storage by specifying a different tablespace in the index_
subpartitioning_clause.

If you do not specify TABLESPACE for subpartitions either in this clause
or in the index_subpartitioning_clause, Oracle uses the tablespace specified
for index. If you also do not specify TABLESPACE for index, Oracle stores
the subpartition in the same tablespace as the corresponding table
subpartition.

STORE IN lets you specify how index hash partitions (for a hash-partitioned index)
or index subpartitions (for a composite-partitioned index) are to be
distributed across various tablespaces. The number of tablespaces does
not have to equal the number of index partitions. If the number of index
partitions is greater than the number of tablespaces, Oracle cycles
through the names of the tablespaces.

DEFAULT is valid only for a local index on a hash or composite-partitioned table.
This clause overrides any tablespace specified at the index level for a
partition or subpartition, and stores the index partition or subpartition in
the same partition as the corresponding table partition or subpartition.

index_
subpartition_clause

specifies one or more tablespaces in which to store all subpartitions in
partition or one or more individual subpartitions in partition. The
subpartition inherits all other attributes from partition. Attributes not
specified for partition are inherited from index.

domain_index_
clause

specifies that index is a domain index.

Restrictions:

■ The index_expr_list can specify only a single column.

■ You can define only one domain index on a column.

■ You cannot specify a BITMAP, UNIQUE, or function-based domain index.

■ You cannot create a local domain index on a partitioned table.

■ You cannot create a domain index on a partitioned table with row movement enabled.

column specifies the table columns or object attributes on which the index is
defined. Each column can have only one domain index defined on it.

Restrictions:

■ You cannot create a domain index on a column of datatype REF,
varray, nested table, LONG, or LONG RAW.

■ You can create a domain index on a column of user-defined type, but
not on an attribute of a column of user-defined type if that attribute
itself is a user-defined type.
SQL Statements 7-285

CREATE INDEX
Examples

PARALLEL Example The following statement creates an index using 10 parallel

execution servers, 5 to scan SCOTT.EMP and another 5 to populate the EMP_IDX

index:

CREATE INDEX emp_idx
 ON scott.emp (ename)
 PARALLEL 5;

COMPRESS Example To create an index with the COMPRESS clause, you might

issue the following statement:

CREATE INDEX emp_idx2 ON emp(job, ename) COMPRESS 1;

The index will compress repeated occurrences of JOB column values.

indextype specifies the name of the indextype. This name should be a valid schema
object that you have already defined. See "CREATE INDEXTYPE" on
page 7-291.

PARAMETERS
’string’

specifies the parameter string that is passed uninterrupted to the
appropriate indextype routine. The maximum length of the parameter
string is 1000 characters.

Once the domain index is created, Oracle invokes this routine (see

Oracle8i Data Cartridge Developer’s Guide for information on these
routines.) If the routine does not return successfully, the domain index is
marked FAILED. The only operation supported on an failed domain
index is DROP INDEX.

parallel_clause causes creation of the index to be parallelized. For additional information, see the Notes to
the parallel_clause of "CREATE TABLE" on page 7-359.

NOPARALLEL specifies serial execution. This is the default.

PARALLEL causes Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL
integer

specifies the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use one
or two parallel execution servers. Normally Oracle calculates the
optimum degree of parallelism, so it is not necessary for you to specify
integer.
7-286 SQL Reference

CREATE INDEX
NOLOGGING Example To quickly create an index in parallel on a table that was

created using a fast parallel load (so all rows are already sorted), you might issue

the following statement. (Oracle will choose the appropriate degree of parallelism.)

CREATE INDEX i_loc
 ON big_table (akey)
 NOSORT
 NOLOGGING
 PARALLEL;

Cluster Index Example To create an index for the EMPLOYEE cluster, issue the

following statement:

CREATE INDEX ic_emp ON CLUSTER employee;

No index columns are specified, because the index is automatically built on all the

columns of the cluster key. For cluster indexes, all rows are indexed.

NULL Example Consider the following statement:

SELECT ename FROM emp WHERE comm IS NULL;

The above query does not use an index created on the COMM column unless it is a

bitmap index.

Function-Based Index Example The following statements creates a

function-based index on the EMP table based on an uppercase evaluation of the

ENAME column:

CREATE INDEX emp_i ON emp (UPPER(ename));

To ensure that Oracle will use the index rather than performing a full table scan, be

sure that the value of the function is not null in subsequent queries. For example,

the statement

SELECT * FROM emp WHERE UPPER(ename) IS NOT NULL
 ORDER BY UPPER(ename);

is guaranteed to use the index, but without the where_clause Oracle may perform a

full table scan.

Function-based Index on Type Method Example This example entails an object

type RECTANGLE containing two number attributes: length and width. The

AREA() method computes the area of the rectangle.
SQL Statements 7-287

CREATE INDEX
CREATE TYPE rectangle AS OBJECT
(length NUMBER,
 width NUMBER,
 MEMBER FUNCTION area RETURN NUMBER DETERMINISTIC
);

CREATE OR REPLACE TYPE BODY rectangle AS
 MEMBER FUNCTION area RETURN NUMBER IS

BEGIN
 RETURN (length*width);
 END;
END;

Now, if you create a table RECTAB of type RECTANGLE, you can create a

function-based index on the AREA() method as follows:

CREATE TABLE recttab OF rectangle;
CREATE INDEX area_idx ON recttab x (x.area());

You can use this index efficiently to evaluate a query of the form:

SELECT * FROM recttab x WHERE x.area() > 100;

Computing Statistics Example The following statement collects statistics on the

nonpartitioned EMP_INDX index:

CREATE INDEX emp_indx ON emp(empno) COMPUTE STATISTICS;

The type of statistics collected depends on the type of index you are creating. For

more information, refer to Oracle8i Concepts.

Partitioned Index Example The following statement creates a global prefixed

index STOCK_IX on table STOCK_XACTIONS with two partitions, one for each

half of the alphabet. The index partition names are system generated:

CREATE INDEX stock_ix ON stock_xactions
 (stock_symbol, stock_series)
 GLOBAL PARTITION BY RANGE (stock_symbol)
 (PARTITION VALUES LESS THAN (’N’) TABLESPACE ts3,
 PARTITION VALUES LESS THAN (MAXVALUE) TABLESPACE ts4);

Index on Hash-Partitioned Table Example. This statement creates a local index on

the ITEM column of the SALES table. The STORE IN clause immediately following

LOCAL indicates that SALES is hash partitioned. Oracle will distribute the hash

partitions between the TBS1 and TBS2 tablespaces:
7-288 SQL Reference

CREATE INDEX
CREATE INDEX sales_idx ON sales(item) LOCAL
 STORE IN (tbs1, tbs2);

Index on Composite-Partitioned Table Example. This statement creates a local

index on the SALES table, which is composite-partitioned. The STORAGE clause

specifies default storage attributes for the index. The STORE IN clause specifies one

or more default tablespaces for the index subpartitions. However, this default is

overridden for the four subpartitions of partition Q3_1997, because separate

TABLESPACE is specified.

CREATE INDEX sales_idx ON sales(sale_date, item)
 STORAGE (INITIAL 1M, MAXEXTENTS UNLIMITED)
 LOCAL
 STORE IN (tbs1, tbs2, tbs3, tbs4, tbs5)
 (PARTITION q1_1997, PARTITION q2_1997,
 PARTITION q3_1997
 (SUBPARTITION q3_1997_s1 TABLESPACE ts2,
 SUBPARTITION q3_1997_s2 TABLESPACE ts4,
 SUBPARTITION q3_1997_s3 TABLESPACE ts6,
 SUBPARTITION q3_1997_s4 TABLESPACE ts8),
 PARTITION q4_1997,
 PARTITION q1_1998);

Bitmap Index Example To create a bitmap partitioned index on a table with four

partitions, issue the following statement:

CREATE BITMAP INDEX partno_ix
ON lineitem(partno)
TABLESPACE ts1
LOCAL (PARTITION quarter1 TABLESPACE ts2,
 PARTITION quarter2 STORAGE (INITIAL 10K NEXT 2K),
 PARTITION quarter3 TABLESPACE ts2,
 PARTITION quarter4);

Nested Table Example In the following example, UNIQUE index UNIQ_PROJ_

INDX is created on storage table NESTED_PROJECT_TABLE. Including

pseudocolumn NESTED_TABLE_ID ensures distinct rows in nested table column

PROJS_MANAGED:

CREATE TYPE proj_type AS OBJECT
 (proj_num NUMBER, proj_name VARCHAR2(20));
CREATE TYPE proj_table_type AS TABLE OF proj_type;
CREATE TABLE employee (emp_num NUMBER, emp_name CHAR(31),
 projs_managed proj_table_type)
 NESTED TABLE projs_managed STORE AS nested_project_table;
SQL Statements 7-289

CREATE INDEX
CREATE UNIQUE INDEX uniq_proj_indx
 ON nested_project_table (NESTED_TABLE_ID, proj_num);
7-290 SQL Reference

CREATE INDEXTYPE
CREATE INDEXTYPE

Syntax

Purpose

To create an indextype, which is an object that specifies the routines that manage a

domain (application-specific) index. Indextypes reside in the same namespace as

tables, views, and other schema objects. This statement binds the indextype name

to an implementation type, which in turn specifies and refers to user-defined index

functions and procedures that implement the indextype. For more information on

implementing indextypes, see Oracle8i Data Cartridge Developer’s Guide and Oracle8i
Concepts.

Prerequisites
To create an indextype in your own schema, you must have the CREATE

INDEXTYPE system privilege. To create an indextype in another schema, you must

have CREATE ANY INDEXTYPE system privilege. In either case, you must have

the EXECUTE object privilege on the implementation type and the supported

operators.

An indextype supports one or more operators, so before creating an indextype, you

should first design the operator or operators to be supported and provide

functional implementation for those operators. For more information on operators,

see "CREATE OPERATOR" on page 7-320.

CREATE INDEXTYPE
schema .

indextype

FOR
schema .

operator (paramater_type

,

)

,

USING
schema .

implementation_type ;
SQL Statements 7-291

CREATE INDEXTYPE
Keywords and Parameters

Example
The following statement creates an indextype named TextIndexType and specifies

the CONTAINS operator that is supported by the indextype and the

TextIndexMethods type that implements the index interface:

CREATE INDEXTYPE TextIndexType
 FOR contains (VARCHAR2, VARCHAR2)
 USING TextIndexMethods;

schema is the name of the schema in which the indextype resides. If you omit schema, Oracle creates
the indextype in your own schema.

indextype is the name of the indextype to be created.

FOR specifies the list of operators supported by the indextype.

schema is the schema containing the operator. If you omit schema, Oracle
assumes the operator is in your own schema.

operator specifies the name of the operator supported by the indextype.

parameter_type lists the types of parameters to the operator.

All the operators listed in this clause should be valid operators.

USING specifies the type that provides the implementation for the new indextype.

implementation_
type

is the name of the type that implements the appropriate ODCI interface.

■ You must specify a valid type that implements the routines in the
OCDI interface.

■ The implementation type must reside in the same schema as the
indextype.

For additional information on this interface, see Oracle8i Data Cartridge
Developer’s Guide.
7-292 SQL Reference

CREATE JAVA
CREATE JAVA

Syntax

invoker_rights_clause ::=

CREATE
OR REPLACE

AND
RESOLVE

COMPILE NOFORCE

JAVA

SOURCE

RESOURCE
NAMED

schema .
primary_name

CLASS
SCHEMA schema

invoker_rights_clause
RESOLVER ((match_string

, schema_name

–
))

USING

BFILE (directory_object_name , server_file_name)

CLOB

BLOB

BFILE

subquery

’ key_for_BLOB ’

AS source_text

;

AUTHID
CURRENT_USER

DEFINER
SQL Statements 7-293

CREATE JAVA
Purpose
To create a schema object containing a Java source, class, or resource. For

information on the following topics, see these books:

■ For Java concepts, see Oracle8i Java Developer’s Guide .

■ For Java stored procedures, see Oracle8i Java Stored Procedures Developer’s Guide

■ For SQLJ, see Oracle8i SQLJ Developer’s Guide and Reference .

■ For JDBC, see Oracle8i JDBC Developer’s Guide and Reference .

■ For CORBA and EJB, see Oracle8i Enterprise JavaBeans and CORBA Developer’s
Guide.

Prerequisites
To create or replace a schema object containing a Java source, class, or resource in

your own schema, you must have CREATE PROCEDURE system privilege. To

create such a schema object in another user’s schema, you must have CREATE

ANY PROCEDURE system privilege. To replace such a schema object in another

user’s schema, you must also have ALTER ANY PROCEDURE system privilege.

Keywords and Parameters

OR REPLACE re-creates the schema object containing the Java class, source, or resource if it already
exists. Use this clause to change the definition of an existing object without dropping,
re-creating, and regranting object privileges previously granted.

If you redefine a Java schema object and specify RESOLVE or COMPILE, Oracle
recompiles or resolves the object. If the resolution or compilation is successful, Oracle
does not invalidate classes that reference the Java schema object. For additional
information, see "ALTER JAVA" on page 7-43.

Users who had previously been granted privileges on a redefined function can still access
the function without being regranted the privileges.

RESOLVE |
COMPILE

are synonymous keywords. They specify that Oracle should attempt to resolve the Java
schema object that is created if this statement succeeds.

■ When applied to a class, resolution of referenced names to other class schema objects
occurs.

■ When applied to a source, source compilation occurs.

Restriction: You cannot specify this clause for a Java resource.
7-294 SQL Reference

CREATE JAVA
NOFORCE rolls back the results of this CREATE command if you have specified either RESOLVE or
COMPILE, and the resolution or compilation fails. If you do not specify this option,
Oracle takes no action if the resolution or compilation fails (that is, the created schema
object remains).

JAVA SOURCE loads a Java source file.

JAVA CLASS loads a Java class file.

JAVA RESOURCE loads a Java resource file.

NAMED is required for a Java source or resource.

■ For a Java source, this clause specifies the name of the schema object in which the
source code is held. A successful CREATE JAVA SOURCE statement will also create
additional schema objects to hold each of the Java classes defined by the source.

■ For a Java resource, this clause specifies the name of the schema object to hold the
Java resource.

If you do not specify schema, Oracle creates the object in your own schema.

Restrictions:

■ You cannot specify NAMED for a Java class.

■ The primary_name cannot contain a database link.

SCHEMA schema applies only to a Java class. This optional clause specifies the schema in which the object
containing the Java file resides. If you do not specify SCHEMA and you do not specify
NAMED (above), Oracle creates the object in your own schema.

invoker_rights_
clause

specifies whether the methods of the class execute with the privileges and in the schema
of the user who owns the class or with the privileges and in the schema of CURRENT_
USER. For information on how CURRENT_USER is determined, see Oracle8i Concepts and

Oracle8i Application Developer’s Guide - Fundamentals.

This clause also determines how Oracle resolves external names in queries, DML
operations, and dynamic SQL statements in the member functions and procedures of the
type. For more information refer to Oracle8i Java Stored Procedures Developer’s Guide.

AUTHID
CURRENT_USER

specifies that the methods of the class execute with the privileges of
CURRENT_USER. This clause is the default and creates an
"invoker-rights class."

This clause also specifies that external names in queries, DML
operations, and dynamic SQL statements resolve in the schema of
CURRENT_USER. External names in all other statements resolve in
the schema in which the methods reside.

AUTHID
DEFINER

specifies that the methods of the class execute with the privileges of
the owner of the schema in which the class resides, and that external
names resolve in the schema where the class resides.
SQL Statements 7-295

CREATE JAVA
Examples

Java Class Example The following statement creates a schema object containing a

Java class using the name found in a Java binary file:

CREATE JAVA CLASS USING BFILE (bfile_dir, ’Agent.class’);

This example assumes the directory object bfile_dir , which points to the

operating system directory containing the Java class Agent.class , already exists.

In this example, the name of the class determines the name of the Java class schema

object.

RESOLVER specifies a mapping of the fully qualified Java name to a Java schema object, where

■ match_string is either a fully qualified Java name, a wildcard that can match such a
Java name, or a wildcard that can match any name.

■ schema_name designates a schema to be searched for the corresponding Java schema
object.

■ A dash (-) as an alternative to schema_name indicates that if match_string matches a
valid Java name, Oracle can leave the schema unresolved. The resolution succeeds,
but the name cannot be used at run time by the class.

This mapping is stored with the definition of the schema objects created in this command
for use in later resolutions (either implicit or in explicit ALTER ... RESOLVE statements).

USING determines a sequence of character (CLOB or BFILE) or binary (BLOB or BFILE) data for
the Java class or resource. Oracle uses the sequence of characters to define one file for a
Java class or resource, or one source file and one or more derived classes for a Java source.

BFILE identifies a previously created file on the operating system (directory_
object_name) and server file (server_file_name) containing the sequence.
BFILE is usually interpreted as a character sequence by CREATE
JAVA SOURCE and as a binary sequence by CREATE JAVA CLASS or
CREATE JAVA RESOURCE.

CLOB/BLOB/
BFILE subquery

supplies a query that selects a single row and column of the type
specified (CLOB, BLOB, or BFILE). The value of the column makes up
the sequence of characters.

key_for_BLOB supplies the following implicit query:

SELECT LOB FROM CREATE$JAVA$LOB$TABLE
 WHERE NAME = ’key_for_BLOB’;

Restriction: To use this case, the table CREATE$JAVA$LOB$TABLE
must exist in the current schema and must have a column LOB of type
BLOB and a column NAME of type VARCHAR2.

AS source_text determines a sequence of characters for a Java or SQLJ source.
7-296 SQL Reference

CREATE JAVA
Java Source Example The following statement creates a Java source schema

object:

CREATE JAVA SOURCE NAMED "Hello" AS
 public class Hello (
 public static String hello() (
 return "Hello World";));

Java Resource Example The following statement creates a Java resource schema

object named APPTEXT from a BFILE:

CREATE JAVA RESOURCE NAMED "appText"
 USING BFILE (bfile_dir, ’textBundle.dat’);
SQL Statements 7-297

CREATE LIBRARY
CREATE LIBRARY

Syntax

filespec : See "filespec" on page 7-490.

Purpose
To create a schema object associated with an operating-system shared library. The

name of this schema object can then be used in the call_spec of CREATE

FUNCTION or CREATE PROCEDURE statements, or when declaring a function or

procedure in a package or type, so that SQL and PL/SQL can call to

third-generation-language (3GL) functions and procedures. For more information

on functions and procedures, see "CREATE FUNCTION" on page 7-266, "CREATE

PROCEDURE" on page 7-333, and PL/SQL User’s Guide and Reference.

Prerequisites
To create a library in your own schema, you must have the CREATE LIBRARY

system privilege. To create a library in another user’s schema, you must have the

CREATE ANY LIBRARY system privilege. To use the procedures and functions

stored in the library, you must have EXECUTE object privileges on the library.

The CREATE LIBRARY statement is valid only on platforms that support shared

libraries and dynamic linking.

Keywords and Parameters

OR REPLACE re-creates the library if it already exists. Use this clause to change the definition of
an existing library without dropping, re-creating, and regranting schema object
privileges granted on it.

Users who had previously been granted privileges on a redefined library can still
access the library without being regranted the privileges.

libname is the name you with to create to represent this library when declaring a function or
procedure with a call_spec.

CREATE
OR REPLACE

LIBRARY
schema .

libname
IS

AS
’ filespec ’ ;
7-298 SQL Reference

CREATE LIBRARY
Examples
The following statement creates library EXT_LIB:

CREATE LIBRARY ext_lib AS ’/OR/lib/ext_lib.so’;

The following statement re-creates library EXT_LIB:

CREATE OR REPLACE LIBRARY ext_lib IS ’/OR/newlib/ext_lib.so’;

’filespec’ is a string literal, enclosed in single quotes. This string should be the path or
filename your operating system recognizes as naming the shared library.

The ’filespec’ is not interpreted during execution of the CREATE LIBRARY
statement. The existence of the library file is not checked until an attempt is made
to execute a routine from it.
SQL Statements 7-299

CREATE MATERIALIZED VIEW / SNAPSHOT
CREATE MATERIALIZED VIEW / SNAPSHOT

Syntax

CREATE
MATERIALIZED VIEW

SNAPSHOT

schema .
materialized_view / snapshot

physical_attributes_clause

TABLESPACE tablespace

LOB_storage_clause

LOGGING

NOLOGGING

CACHE

NOCACHE

CLUSTER cluster (column

,

)

partitioning_clauses parallel_clause

BUILD
IMMEDIATE

DEFERRED

ON PREBUILT TABLE

WITH

WITHOUT
REDUCED PRECISION

USING INDEX

physical_attributes_clause

TABLESPACE tablespace
refresh_clause

FOR UPDATE

DISABLE

ENABLE
QUERY REWRITE

AS subquery ;
7-300 SQL Reference

CREATE MATERIALIZED VIEW / SNAPSHOT
refresh_clause ::=

physical_attributes_clause : See "CREATE TABLE" on page 7-359.

parallel_clause ::=

subquery : See "SELECT and Subqueries" on page 7-541.

LOB_storage_clause : See "CREATE TABLE" on page 7-359.

partitioning_clauses : See "CREATE TABLE" on page 7-359.

REFRESH

FAST

COMPLETE

FORCE

ON
DEMAND

COMMIT

START WITH

NEXT
date

WITH
PRIMARY KEY

ROWID

USING

DEFAULT

MASTER

LOCAL
ROLLBACK SEGMENT

MASTER

LOCAL
ROLLBACK SEGMENT rollback_segment

NEVER REFRESH

NOPARALLEL

PARALLEL
integer
SQL Statements 7-301

CREATE MATERIALIZED VIEW / SNAPSHOT
Purpose
To create a materialized view or snapshot. The terms "snapshot" and "materialized

view" are synonymous. Both refer to a table that contains the results of a query of

one or more tables, each of which may be located on the same or on a remote

database. The tables in the query are called master tables or detail tables. The

databases containing the master tables are called the master databases.

For replication purposes, materialized views allow you to maintain copies of

remote data on your local node. The copies are updatable with the Advanced

Replication feature, read-only without this feature. You can select data from a

materialized view as you would from a table or view. For more information on

materialized views used to support replication, see Oracle8i Replication.

For data warehousing purposes, a materialized view definition can include an

aggregation (SUM, COUNT(x), COUNT(*), COUNT(DISTINCT x), AVG,

VARIANCE, STDDEV, MIN, and MAX) and any number of joins. Such

materialized views can be used in query rewrite, an optimization technique that

transforms a user request written in terms of master tables into a semantically

equivalent request that includes one or more materialized view. In a data

warehousing environment, all detail tables must be local.

Materialized views can take several forms. The various types of materialized views

are discussed in Oracle8i Tuning.

Prerequisites
To create a materialized view in your own schema, you must have the CREATE

SNAPSHOT or CREATE MATERIALIZED VIEW, CREATE TABLE, CREATE

INDEX, and CREATE VIEW system privileges.

To create a materialized view in another user’s schema, you must have the

CREATE ANY SNAPSHOT or CREATE ANY MATERIALIZED VIEW system

privilege.

To enable a materialized view for query rewrite:

■ If all the master tables in the materialized view are in your schema, you must

have the QUERY REWRITE privilege.

■ If any of the master tables are in another schema, you must have the GLOBAL

QUERY REWRITE privilege.

■ If the materialized view is in another user’s schema, both you and the owner
of that schema must have the appropriate QUERY REWRITE privilege

described in the preceding two items.
7-302 SQL Reference

CREATE MATERIALIZED VIEW / SNAPSHOT
The schema that contains the materialized view must have sufficient quota in the

target tablespace to store the materialized view’s base table and index or have the

UNLIMITED TABLESPACE system privilege.

To create and refresh a materialized view, both the creator and materialized view

owner must be able to issue the defining query of the materialized view. This

capability depends directly on the database link that the materialized view’s

defining query uses.

When you create a materialized view, Oracle creates one table, at least one index,

and may create one view, all in the schema of the materialized view. Oracle uses

these objects to maintain the materialized view’s data. You must have the

privileges necessary to create these objects. For information on these privileges, see

"CREATE TABLE" on page 7-359, "CREATE VIEW" on page 7-430, and "CREATE

INDEX" on page 7-273.

For complete information about the prerequisites that apply to creating

materialized views for replication, see Oracle8i Replication. For complete

information about the prerequisites that apply to creating materialized views for

data warehousing, see Oracle8i Tuning.

Keywords and Parameters

schema is the schema to contain the materialized view. If you omit schema, Oracle creates the
materialized view in your schema.

materialized_view
/ snapshot

is the name of the materialized view to be created. Oracle generates names for the table
and indexes used to maintain the materialized view by adding a prefix or suffix to the
materialized view name. Oracle recommends that you limit your materialized view
names to 19 bytes, so that the Oracle-generated names will be 30 bytes or less and will
contain the entire materialized view name.

physical_
attributes_clause

establishes values for the PCTFREE, PCTUSED, INITRANS, and MAXTRANS parameters
(or, when used in the USING INDEX clause, for the INITRANS and MAXTRANS
parameters only) and the storage parameters for the internal table Oracle uses to maintain
the materialized view’s data.

For information on the PCTFREE, PCTUSED, INITRANS, and MAXTRANS parameters,
see "CREATE TABLE" on page 7-359. For information, about the storage_clause, see the
"storage_clause" on page 7-575.

TABLESPACE specifies the tablespace in which the materialized view is to be created. If you omit this
clause, Oracle creates the materialized view in the default tablespace of the owner of the
materialized view’s schema.

LOB_storage_
clause

specifies the LOB storage characteristics. For detailed information about specifying the
parameters of the LOB_storage_clause, see "CREATE TABLE" on page 7-359.
SQL Statements 7-303

CREATE MATERIALIZED VIEW / SNAPSHOT
CLUSTER creates the materialized view as part of the specified cluster. Since a clustered
materialized view uses the cluster’s space allocation, do not use the physical_attributes_
clause or the TABLESPACE clause with the CLUSTER clause.

LOGGING |
NOLOGGING

establishes the logging characteristics for the materialized view. For a description of
logging characteristics, see "CREATE TABLE" on page 7-359.

CACHE |
NOCACHE

determines where in the buffer cache Oracle stores blocks retrieved for the materialized
view. For a description see "CREATE TABLE" on page 7-359.

partitioning_
clauses

specifies that the materialized view is partitioned on specified ranges of values or on a
hash function. Partitioning of materialized views is the same as partitioning tables, as
described in "CREATE TABLE" on page 7-359.

parallel_clause causes creation of the materialized view to be parallelized. For additional information, see
the Notes to the parallel_clause of "CREATE TABLE" on page 7-359.

NOPARALLEL specifies serial execution. This is the default.

PARALLEL causes Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL
integer

specifies the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use
one or two parallel execution servers. Normally Oracle calculates the
optimum degree of parallelism, so it is not necessary for you to
specify integer.

BUILD specifies when to populate the materialized view.

IMMEDIATE specifies that the materialized view is populated immediately. This is
the default.

DEFERRED For replication purposes, this clause specifies that the materialized
view will be populated at the next REFRESH operation. The first
(deferred) refresh is always a complete refresh. Until then, the status
of the materialized view is INVALID, so it cannot be used for query
rewrite.

For data warehousing purposes, this clause specifies that you will
refresh the materialized view later manually using the DBMS_
MVIEW.REFRESH procedure.

ON PREBUILT
TABLE

lets you register an existing table to a preinitialized materialized view. The table must
have the same name as the resulting materialized view. This is particularly useful for
registering large materialized views in a data warehousing environment.

The existing table object retains its identity as a table and is optionally maintained by the
materialized view refresh mechanism to reflect changes made to the detail tables of
subquery.
7-304 SQL Reference

CREATE MATERIALIZED VIEW / SNAPSHOT
Restriction:

■ At registration time, the table must reflect the materialization of a subquery.

■ Each column alias in subquery must correspond to a column in table_name, and
corresponding columns must have matching datatypes.

■ If you specify this clause, you cannot specify a NOT NULL constraint for any column
that is unmanaged (that is, not referenced in subquery) unless you also specify a
default value for that column.

WITH
REDUCED
PRECISION

lets you authorize the loss of precision that will result if the precision
of the table or materialized view columns do not exactly match the
precision returned by subquery.

WITHOUT
REDUCED
PRECISION

requires that the precision of the table or materialized view columns
match exactly the precision returned by subquery, or the create
operation will fail. This is the default.

USING INDEX specifies parameters for the indexes Oracle creates to maintain the materialized view. See
physical_attributes_clause, above.

Restriction: You cannot specify the PCTUSED or PCTFREE parameters in this clause.

refresh_clause specifies how and when Oracle automatically refreshes the materialized view. When a
materialized view’s master tables are modified, the data in a materialized view must be
updated to ensure that the materialized view accurately reflects the data currently in its
master table(s). This clause lets you schedule the times and specify the mode for Oracle to
refresh the materialized view automatically.

Notes:

■ This clause only sets the refresh options. For instructions on actually implementing
the refresh, refer to Oracle8i Replication and Oracle8i Tuning.

■ You can also refresh a materialized view immediately with the DBMS_
MVIEW.REFRESH() procedure.

FAST specifies a fast (incremental) refresh mode, which uses only the
updated data stored in the materialized view log associated with the
master or detail table. The appropriate log must exist for the fast
refresh to succeed unless you use direct-path load.
SQL Statements 7-305

CREATE MATERIALIZED VIEW / SNAPSHOT
Oracle can perform a fast refresh only if all of the following conditions
are true:

■ The materialized view conforms to the conditions defined in
Oracle8i Replication (for replication use) and in Oracle8i Tuning (for
data warehouse use).

■ The materialized view’s master table has a materialized view log
or you used direct-load INSERT. (Oracle creates the direct loader
log automatically. No user intervention is needed.)

■ The necessary log was created before the materialized view was
last refreshed or created.

Other restrictions may exist on the types of materialized views that
you can fast refresh. For a complete explanation of when you can fast
refresh a materialized view used for replication, see Oracle8i
Replication. For a complete explanation of when you can fast refresh a
materialized view used for data warehousing, see Oracle8i Tuning.

If you specify FAST for a materialized view with insufficient
information to be incrementally refreshed, Oracle raises an error.

COMPLETE specifies a complete refresh mode, or a refresh that reexecutes the
materialized view’s query. If you specify a complete refresh, Oracle
performs a complete refresh regardless of whether a fast refresh is
possible.

FORCE specifies a fast refresh if one is possible or complete refresh if a fast
refresh is not possible. Oracle decides whether a fast refresh is
possible at refresh time.

If you omit FAST, COMPLETE, and FORCE, Oracle uses FORCE by default.

ON COMMIT specifies that the refresh is to occur automatically when at the next
COMMIT operation.

Restriction: This clause is supported only for materialized join views
and materialized aggregate views. For further information, see
Oracle8i Replication and Oracle8i Tuning.

ON DEMAND specifies that materialized views will be refreshed on demand by
calling one of the three DBMS_MVIEW procedures. For information
on these procedures, see Oracle8i Supplied Packages Reference. The types
of materialized views you can create by specifying refresh on demand
are described in Oracle8i Tuning.

Alternatively, this clause specifies that a fast refresh will occur only if
you add data using a direct-path method.

START WITH specifies a date expression for the first automatic refresh time.
7-306 SQL Reference

CREATE MATERIALIZED VIEW / SNAPSHOT
NEXT specifies a date expression for calculating the interval between
automatic refreshes.

Both the START WITH and NEXT values must evaluate to a time in the future. If you
omit the START WITH value, Oracle determines the first automatic refresh time by
evaluating the NEXT expression when you create the materialized view. If you specify a
START WITH value but omit the NEXT value, Oracle refreshes the materialized view
only once. If you omit both the START WITH and NEXT values, or if you omit the refresh_
clause entirely, Oracle does not automatically refresh the materialized view.

WITH PRIMARY
KEY

specifies that a primary-key materialized view is to be created. This is
the default, and should be used in all cases except those described for
WITH ROWID.

WITH ROWID specifies that a rowid materialized view is to be created. Rowid
materialized views provide compatibility with master tables in
releases of Oracle prior to 8.0.

You can also use rowid materialized views to support selected
materialized views that do not include all primary key columns.
Rowid materialized views must be based on a single remote table and
cannot contain any of the following:

■ distinct or aggregate functions

■ GROUP BY or CONNECT BY clauses

■ subqueries

■ joins

■ set operations

Rowid materialized views cannot be fast refreshed after a master table
reorganization.

USING
ROLLBACK
SEGMENT

specifies the remote rollback segment to be used during materialized
view refresh, where rollback_segment is the name of the rollback
segment to be used. (To change the local materialized view rollback
segment, use the DBMS_REFRESH package, described in Oracle8i
Replication.)

■ DEFAULT specifies that Oracle will choose automatically which
rollback segment to use. If you specify DEFAULT, you cannot
specify rollback_segment. (Note: DEFAULT is most useful when
modifying a materialized view, as described in "ALTER
MATERIALIZED VIEW / SNAPSHOT" on page 7-45.)

■ MASTER specifies the remote rollback segment to be used at the
remote master for the individual materialized view.

■ LOCAL specifies the remote rollback segment to be used for the
local refresh group that contains the materialized view.
SQL Statements 7-307

CREATE MATERIALIZED VIEW / SNAPSHOT
If you do not specify MASTER or LOCAL, Oracle uses LOCAL by
default. If you do not specify rollback_segment, Oracle automatically
chooses the rollback segment to be used.

The master rollback segment is stored on a per-materialized-view
basis and is validated during materialized view creation and refresh.
If the materialized view is complex, the master rollback segment, if
specified, is ignored.

NEVER
REFRESH

suppresses refresh of the materialized view. If you issue a REFRESH
statement on the materialized view, Oracle returns an error.

FOR UPDATE allows a subquery, primary key, or rowid materialized view to be updated. When used in
conjunction with Advanced Replication, these updates will be propagated to the master.
For more information, see Oracle8i Replication.

QUERY
REWRITE

specifies whether the materialized view is eligible to be used for query rewrite.

ENABLE enables the materialized view for query rewrite. For more information
on query rewrite, see Oracle8i Tuning.

Note: Query rewrite is disabled by default, so you must specify this
clause to make materialized views eligible for query rewrite.

Restrictions:

■ You can enable query rewrite only if all user-defined functions in
the materialized view are DETERMINISTIC. For more
information, see "CREATE FUNCTION" on page 7-266.

■ If you use bind variables in a query, the query will not be
rewritten to use materialized views even if you enable query
rewrite.

■ You can enable query rewrite only if the statement contains only
repeatable expressions. For example, you cannot include
CURRENT_TIME or USER. For more information, see Oracle8i
Tuning.

DISABLE specifies that the materialized view is not eligible for use by query
rewrite. However, a disabled materialized view can be refreshed.

AS subquery specifies the materialized view query. When you create the materialized view, Oracle
executes this query and places the results in the materialized view. This query is any valid
SQL query. However, not all queries are fast refreshable, nor are all queries eligible for
query rewrite.
7-308 SQL Reference

CREATE MATERIALIZED VIEW / SNAPSHOT
Notes:

■ Oracle does not execute the query immediately if you specify BUILD DEFERRED.

■ Oracle recommends that you qualify each table and view in the FROM clause of the
materialized view query with the schema containing it. For some additional caveats,
see the AS subquery clause of "CREATE VIEW" on page 7-430. The restrictions
described there for views apply to materialized views as well.

Restrictions:

■ A materialized view query cannot select from tables or views owned by the user SYS.

■ You cannot specify the ORDER BY clause in the subquery of a materialized view.

■ Materialized views with a join or with multiple master tables and a GROUP BY
clause cannot select from an index-organized table.

■ Materialized views cannot contain columns of datatype LONG.

■ If the subquery refers to a temporary table, you cannot create a materialized view log
for this materialized view, nor can you specify the QUERY REWRITE clause of
CREATE MATERIALIZED VIEW or ALTER MATERIALIZED VIEW.

■ If the FROM list of the materialized view references another materialized view, you
must control the refresh order of the materialized views manually. That is, you must
refresh the materialized view depended upon and then the dependent materialized
view in order to maintain integrity.

In addition, you should restrict the contents of subquery depending on what you hope to
achieve with the materialized view, as follows:

If you want the materialized view to be eligible for fast refresh using a materialized view
log, some restrictions apply. For more information on restrictions relating to replication,
see Oracle8i Replication. For more information on restrictions relating to data warehousing,
see Oracle8i Tuning.

If you are creating a materialized view enabled for query rewrite:

■ The subquery cannot contain (either directly or through a view) references to
ROWNUM, USER, SYSDATE, remote tables, sequences, or PL/SQL functions that
write or read database or package state.

■ The materialized view and detail tables of the materialized view must be local.

If you want to optimize query rewrite, the following additional guidelines apply:
SQL Statements 7-309

CREATE MATERIALIZED VIEW / SNAPSHOT
Examples

Materialized Aggregate View Examples The following statement creates and

populates a materialized view and specifies refresh mode and time:

CREATE MATERIALIZED VIEW mv1 REFRESH FAST ON COMMIT
 AS SELECT t.month, p.prod_name, SUM(f.sales) AS sum_sales
 FROM time t, product p, fact f
 WHERE f.curDate = t.curDate AND f.item = p.item
 GROUP BY t.month, p.prod_name
 BUILD IMMEDIATE;

The following statement creates and populates a materialized view SALES_BY_

MONTH_BY_STATE. The materialized view will be populated with data as soon as

the statement executes successfully, and subsequent refreshes will be accomplished

by reexecuting the materialized view’s query:

CREATE MATERIALIZED VIEW sales_by_month_by_state
 TABLESPACE my_ts PARALLEL (10)
 ENABLE QUERY REWRITE
 BUILD IMMEDIATE
 REFRESH COMPLETE
 AS SELECT t.month, g.state, SUM(sales) AS sum_sales
 FROM fact f, time t, geog g
 WHERE f.cur_date = t.cur_date AND f.city_id = g.city_id
 GROUP BY month, state;

The following statement creates a materialized view for an existing summary table,

SALES_SUM_TABLE:

■ Do not specify a HAVING or CONNECT BY condition.

■ Do not define any nested subqueries or inline views in the materialized view.

■ If you specify a GROUP BY clause, it should not contain PL/SQL functions or
expressions, and you should specify all of the GROUP BY columns in the SELECT list.

■ All of the relations in the FROM list should be tables, and they should be distinct
after synonym resolution.

■ Specify outer joins for a complex materialized view, and list both sides of the outer
join in the GROUP BY list.

■ Ensure that each aggregated output expression uses one aggregate function (SUM,
MIN, MAX, COUNT(x), COUNT(*), COUNT(DISTINCT x), AVG, VARIANCE,
GROUPING, or STDDEV) with an expression that contains no explicit reference to
any other grouping function.
7-310 SQL Reference

CREATE MATERIALIZED VIEW / SNAPSHOT
CREATE MATERIALIZED VIEW sales_sum_table
 ON PREBUILT TABLE
 ENABLE QUERY REWRITE
 AS SELECT t.month, g.state, SUM(sales)
 FROM fact f, time g, geog g
 WHERE f.cur_date = t.cur_date AND f.city_id = g.city_id
 GROUP BY month, state;

Materialized Join View Example The following statement creates a materialized

join view MJV:

CREATE MATERIALIZED VIEW mjv
 REFRESH FAST
 START WITH 1-JUL-98
 NEXT SYSDATE +7 AS
 SELECT l.rowid as l_rid, l.pk, l.ofk, l.c1, l.c2,
 o.rowid as o_rid, o.pk, o.cfk, o.c1, o.c2,
 c.rowid as c_rid, c.pd, c.c1, c.c2
 FROM l, o, c
 WHERE l.ofk = o.pk(+) AND o.ofk = c.pk(+);

Subquery Materialized View Example The following statement creates a subquery

materialized view based on the ORDERS table in the SALES schema at a remote

database:

CREATE MATERIALIZED VIEW sales.orders FOR UPDATE
 AS SELECT * FROM sales.orders@dbs1.acme.com
 WHERE status = 'SHIPPABLE';

Primary Key Example The following statement creates primary-key materialized

view HUMAN_GENOME:

CREATE SNAPSHOT human_genome
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE + 1/4096
 WITH PRIMARY KEY
 AS SELECT * FROM genome_catalog;

Rowid Example The following statement creates a rowid materialized view:

CREATE SNAPSHOT emp_data REFRESH WITH ROWID
AS SELECT * FROM emp_table73;

Periodic Refresh Example The following statement creates the materialized view

EMP_SF that contains the data from SCOTT’s employee table in New York:

CREATE SNAPSHOT emp_sf
SQL Statements 7-311

CREATE MATERIALIZED VIEW / SNAPSHOT
 PCTFREE 5 PCTUSED 60
 TABLESPACE users
 STORAGE (INITIAL 50K NEXT 50K)
 REFRESH FAST NEXT sysdate + 7
 AS SELECT * FROM scott.emp@ny;

The statement does not include a START WITH parameter, so Oracle determines

the first automatic refresh time by evaluating the NEXT value using the current

SYSDATE. Provided a materialized view log currently exists for the employee table

in New York, Oracle performs a fast refresh of the materialized view every 7 days,

beginning 7 days after the materialized view is created.

Because the materialized view conforms to the conditions for fast refresh, Oracle

will perform a fast refresh. The above statement also establishes for the table

storage characteristics that Oracle uses to maintain the materialized view.

Complete Refresh Example The following statement creates the materialized

view ALL_EMPS that queries the employee tables in Dallas and Baltimore:

CREATE MATERIALIZED VIEW all_emps
 PCTFREE 5 PCTUSED 60
 TABLESPACE users
 STORAGE INITIAL 50K NEXT 50K
 USING INDEX STORAGE (INITIAL 25K NEXT 25K)
 REFRESH START WITH ROUND(SYSDATE + 1) + 11/24
 NEXT NEXT_DAY(TRUNC(SYSDATE, ’MONDAY’) + 15/24
 AS SELECT * FROM fran.emp@dallas
 UNION
 SELECT * FROM marco.emp@balt;

Oracle automatically refreshes this materialized view tomorrow at 11:00 am and

subsequently every Monday at 3:00 pm. ALL_EMPS contains a UNION, which is

not supported for fast refresh, so Oracle automatically performs a complete refresh.

The above statement also establishes storage characteristics for both the table and

the index that Oracle uses to maintain the materialized view:

■ The first storage_clause establishes the sizes of the first and second extents of the

table as 50 kilobytes each.

■ The second storage_clause (appearing with the USING INDEX clause)

establishes the sizes of the first and second extents of the index as 25 kilobytes

each.
7-312 SQL Reference

CREATE MATERIALIZED VIEW / SNAPSHOT
Rollback Segment Example The following statement creates materialized view

SALE_EMP with rollback segment MASTER_SEG at the remote master and

rollback segment SNAP_SEG for the local refresh group that contains the

materialized view:

CREATE SNAPSHOT sales_emp
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE + 7
 USING MASTER ROLLBACK SEGMENT master_seg
 LOCAL ROLLBACK SEGMENT snap_seg
 AS SELECT * FROM bar;

The following statement is incorrect and generates an error because it specifies a

segment name with a DEFAULT rollback segment:

CREATE SNAPSHOT bogus
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE + 7
 USING DEFAULT ROLLBACK SEGMENT snap_seg
 AS SELECT * FROM faux;
SQL Statements 7-313

CREATE MATERIALIZED VIEW LOG / SNAPSHOT LOG
CREATE MATERIALIZED VIEW LOG / SNAPSHOT LOG

Syntax

CREATE
MATERIALIZED VIEW

SNAPSHOT
LOG ON

schema .
table

physical_attributes_clause

TABLESPACE tablespace

LOGGING

NOLOGGING

CACHE

NOCACHE parallel_clause partitioning_clauses

WITH

PRIMARY KEY

ROWID

PRIMARY KEY , ROWID

ROWID , PRIMARY KEY

(filter_column

,

)

INCLUDING

EXCLUDING
NEW VALUES

;

7-314 SQL Reference

CREATE MATERIALIZED VIEW LOG / SNAPSHOT LOG
physical_attributes_clause ::=

storage_clause : See "storage_clause" on page 7-575.

parallel_clause ::=

partitioning_clauses : See "CREATE TABLE" on page 7-359.

Purpose
To create a materialized view log. A materialized view log is a table associated

with the master table of a materialized view. When changes are made to the master

table’s data, Oracle stores rows describing those changes in the materialized view

log and then uses the materialized view log to refresh materialized views based on

the master table. This process is called a fast refresh. Without a materialized view

log, Oracle must reexecute the materialized view query to refresh the materialized

view. This process is called a complete refresh. Usually, a fast refresh takes less time

than a complete refresh.

A materialized view log is located in the master database in the same schema as the

master table. You need only a single materialized view log for a master table.

Oracle can use this materialized view log to perform fast refreshes for all

fast-refreshable materialized views based on the master table. For more

information on materialized views, including how Oracle refreshes materialized

views, see "CREATE MATERIALIZED VIEW / SNAPSHOT" on page 7-300,

Oracle8i Tuning, and Oracle8i Replication.

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

NOPARALLEL

PARALLEL
integer
SQL Statements 7-315

CREATE MATERIALIZED VIEW LOG / SNAPSHOT LOG
To fast refresh a materialized join view (a materialized view containing a join), you

must create a materialized view log for each of its base tables. For more

information on materialized views, see "CREATE MATERIALIZED VIEW /

SNAPSHOT" on page 7-300 and Oracle8i Concepts.

For information on modifying a materialized view log, see "ALTER

MATERIALIZED VIEW LOG / SNAPSHOT LOG" on page 7-54. For information

on dropping a materialized view log, see "DROP MATERIALIZED VIEW LOG /

SNAPSHOT LOG" on page 7-461. Some types of materialized views are refreshed

using a direct loader log. For information on using direct loader logs, see Oracle8i
Concepts.

Prerequisites
The privileges required to create a materialized view log directly relate to the

privileges necessary to create the underlying objects associated with a materialized

view log.

■ If you own the master table, you can create an associated materialized view log

if you have the CREATE TABLE privilege.

■ If you are creating a materialized view log for a table in another user’s schema,

you must have the CREATE ANY TABLE and COMMENT ANY TABLE

privileges, as well as either the SELECT privilege for the master table or

SELECT ANY TABLE.

In either case, the owner of the materialized view log must have sufficient quota in

the tablespace intended to hold the materialized view log.

For detailed information about the prerequisites for creating a materialized view

log, see Oracle8i Replication.

Keywords and Parameters

schema is the schema containing the materialized view log’s master table. If you omit schema,
Oracle assumes the master table is contained in your own schema. Oracle creates the
materialized view log in the schema of its master table. You cannot create a materialized
view log for a table in the schema of the user SYS.

table is the name of the master table for which the materialized view log is to be created. You
cannot create a materialized view log for a view.

physical_
attributes_clause

establishes values for physical and storage characteristics for the materialized view log.
See the descriptions of these parameters in "CREATE TABLE" on page 7-359 and "storage_
clause" on page 7-575.
7-316 SQL Reference

CREATE MATERIALIZED VIEW LOG / SNAPSHOT LOG
TABLESPACE specifies the tablespace in which the materialized view log is to be created. If you omit
this clause, Oracle creates the materialized view log in the default tablespace the owner of
the materialized view log’s schema.

LOGGING |
NOLOGGING

establishes the logging characteristics for the materialized view log. For a description of
logging characteristics, see "CREATE TABLE" on page 7-359.

CACHE |
NOCACHE

determines where in the buffer cache Oracle stores blocks retrieved for the materialized
view log. For a description see "CREATE TABLE" on page 7-359.

parallel_clause causes creation of the materialized view log to be parallelized. For additional information,
see the Notes to the parallel_clause of "CREATE TABLE" on page 7-359.

NOPARALLEL specifies serial execution. This is the default.

PARALLEL causes Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL
integer

specifies the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use
one or two parallel execution servers. Normally Oracle calculates the
optimum degree of parallelism, so it is not necessary for you to
specify integer.

partitioning_
clauses

specifies that the materialized view log is partitioned on specified ranges of values or on a
hash function. Partitioning of materialized view logs is the same as partitioning tables, as
described in "CREATE TABLE" on page 7-359.

WITH specifies whether the materialized view log should record the primary key, rowid, or both
primary key and rowid when rows in the master are updated.

This clause also specifies whether the materialized view log records filter columns, which
are non-primary-key columns referenced by subquery materialized views.

PRIMARY KEY specifies that the primary key of all rows updated should be recorded
in the materialized view log. The primary key of updated rows in the
master table must be recorded in the materialized view log.

ROWID specifies that the rowid of all rows updated should be recorded in the
materialized view log. The rowid must be recorded in the
materialized view log.

filter_column is a comma-separated list that specifies the list of filter columns to be
recorded in the materialized view log. For fast-refreshable
primary-key materialized views defined with subqueries, all filter
columns referenced by the defining subquery must be recorded in the
materialized view log.

Oracle records the primary key of all rows updated in the master by default.

NEW VALUES specifies whether Oracle saves both old and new values in the materialized view log.
SQL Statements 7-317

CREATE MATERIALIZED VIEW LOG / SNAPSHOT LOG
Examples

Primary Key Examples The following statement creates a materialized view log

on an employee table that records only primary key values:

CREATE SNAPSHOT LOG ON emp WITH PRIMARY KEY;

Oracle can use this materialized view log to perform a fast refresh on any simple

primary key materialized view subsequently created on the EMP table.

The following statement also creates a materialized view log that record only the

primary keys of updated rows:

CREATE SNAPSHOT LOG ON emp
 PCTFREE 5
 TABLESPACE users
 STORAGE (INITIAL 10K NEXT 10K);

ROWID Example The following statement creates a materialized view log that

records both primary keys and rowids of updated rows:

CREATE SNAPSHOT LOG ON sales WITH ROWID, PRIMARY KEY;

Filter Column Example The following statement creates a materialized view log

that records primary keys and updates to the filter column ZIP:

CREATE SNAPSHOT LOG ON address WITH (zip);

NEW VALUES Example The following example creates a master table, then

creates a materialized view log that specifies INCLUDING NEW VALUES:

CREATE TABLE agg
 (u NUMBER, a NUMBER, b NUMBER, c NUMBER, d NUMBER);

CREATE MATERIALIZED VIEW LOG ON agg
 WITH ROWID (u,a,b,c,d)

INCLUDING saves old as well as new values in the log. If you are creating a log for
a materialized aggregate view with only one master table, and if you
want the materialized view to be eligible for fast refresh, you must
specify INCLUDING.

EXCLUDING saves only new values in the log. This is the default. To save
overhead, use this clause for materialized join views and for
materialized aggregate views with more than one master table. Such
views do not require the old values.
7-318 SQL Reference

CREATE MATERIALIZED VIEW LOG / SNAPSHOT LOG
 INCLUDING NEW VALUES;

You could create the following materialized aggregate view to use the AGG log:

CREATE MATERIALIZED VIEW sn0
 REFRESH FAST ON COMMIT
 AS SELECT SUM(b+c), COUNT(*), a, d, COUNT(b+c)
 FROM agg
 GROUP BY a,d;

This materialized view is eligible for fast refresh because the log it uses includes

both old and new values.
SQL Statements 7-319

CREATE OPERATOR
CREATE OPERATOR

Syntax

binding_clause ::=

implementation_clause ::=

context_clause ::=

using_clause ::=

CREATE
OR REPLACE

OPERAT0R
schema .

operator binding_clause ;

BINDING (parameter_type

,

) RETURN return_type implementation_clause

,

ANCILLARY TO primary_operator (parameter_type

,

)

,

context_clause
COMPUTE ANCILLARY DATA

using_clause

WITH INDEX CONTEXT , SCAN CONTEXT implementation_type

USING
schema .

package .

type .
function_name
7-320 SQL Reference

CREATE OPERATOR
Purpose
To create a new operator and define its bindings.

Operators can be referenced by indextypes and by DML and query SQL

statements. The operators, in turn, reference functions, packages, types, and other

user-defined objects. For a discussion of these dependencies, and of operators in

general, see Oracle8i Data Cartridge Developer’s Guide and Oracle8i Concepts.

Prerequisites
To create an operator in your own schema, you must have CREATE OPERATOR

system privilege. To create an operator in another schema, you must have the

CREATE ANY OPERATOR system privilege. In either case, you must also have

EXECUTE privilege on the functions and operators referenced.

Keywords and Parameters

OR REPLACE replaces the definition of the operator schema object.

Restriction: You can replace the definition only if the operator has no dependent objects (for
example, indextypes supporting the operator).

schema is the schema containing the operator. If you omit schema, Oracle assumes the operator is in
your own schema.

operator is the name of the operator to be created.

binding_clause specifies one or more parameter datatypes (parameter_type) for binding the operator to a
function. The signature of each binding (that is, the sequence of the datatypes of the
arguments to the corresponding function) must be unique according to the rules of

overloading. For more information about overloading, see PL/SQL User’s Guide and Reference.

The parameter_type can itself be an object type. If it is, you can optionally qualify it with its
schema.

Restriction: You cannot specify a parameter_type of REF, LONG, or LONG RAW.

RETURN specifies the return datatype (return_type) for the binding.

The return_type can itself be an object type. If so, you can optionally qualify it with its
schema.

Restriction: You cannot specify a return_type of REF, LONG, or LONG RAW.

implementation_clause

ANCILLARY TO
primary_operator

specifies that the operator binding is ancillary to the specified primary
operator binding (primary_operator). If you specify this clause, do not
specify a previous binding with just one number parameter.
SQL Statements 7-321

CREATE OPERATOR
Example
This example creates an operator called MERGE in the SCOTT schema with two

bindings. The first binding is for merging two VARCHAR2 values and returning a

VARCHAR2 result. The second binding is for merging two geometries into a single

geometry. The corresponding functional implementations for the bindings are also

specified.

CREATE OPERATOR scott.merge
BINDING (varchar2, varchar2) RETURN varchar2
 USING text.merge,
 (spatial.geo, spatial.geo) RETURN spatial.geo
 USING spatial.merge;

context_clause specifies the name of the implementation type used by the function as
scan context.

COMPUTE
ANCILLARY
DATA

specifies that the operator binding computes ancillary data.

using_clause specifies the function that provides the implementation for the binding.

function_name is the name of the function. The function can be a standalone function,
packaged function, type method, or a synonym for any of these.
7-322 SQL Reference

CREATE OUTLINE
CREATE OUTLINE

Syntax

Purpose
To create a stored outline, which is a set of attributes used by the optimizer to

generate an execution plan. You can then instruct the optimizer to use a set of

outlines to influence the generation of execution plans whenever a particular SQL

statement is issued, regardless of changes in factors that can affect optimization. (To

modify an outline so that it takes into account changes in these factors, see "ALTER

OUTLINE" on page 7-58.)

You enable or disable the use of stored outlines dynamically for an individual

session or for the system. See "ALTER SESSION" on page 7-78 and "ALTER

SYSTEM" on page 7-95.

For more information on outlines, see also Oracle8i Tuning.

Prerequisites
To create an outline, you must have the CREATE ANY OUTLINE system privilege.

Keywords and Parameters

OR REPLACE replaces an existing outline with a new outline of the same name.

outline is the unique name to be assigned to the stored outline. If you do not specify outline, the
system generates an outline name.

FOR CATEGORY
category

specifies an optional name used to group stored outlines. For example, you could specify
a category of outlines for end-of-week use and another for end-of-quarter use. If you do
not specify category, the outline is stored in the DEFAULT category.

ON statement is the SQL statement for which Oracle will create an outline when the statement is
compiled. You can specify any one of the following statements:

CREATE
OR REPLACE

OUTLINE
outline

FOR CATEGORY category
ON statement ;
SQL Statements 7-323

CREATE OUTLINE
Example
The following statement creates a stored outline by compiling the ON statement.

The outline is called SALARIES and is stored in the category SPECIAL.

CREATE OUTLINE salaries FOR CATEGORY special
 ON SELECT ename, sal FROM emp;

When this same SELECT statement is subsequently compiled, if the USE_STORED_

OUTLINES parameter is set to SPECIAL, Oracle generates the same execution plan

as was generated when the outline SALARIES was created.

■ SELECT

■ DELETE

■ UPDATE

■ INSERT ... SELECT

■ CREATE TABLE ... AS SELECT

Note: You can specify multiple outlines for a single statement, but each outline for the
same statement must be in a different category.
7-324 SQL Reference

CREATE PACKAGE
CREATE PACKAGE

Syntax

invoker_rights_clause ::=

Purpose
To create the specification for a stored package. A package is an encapsulated

collection of related procedures, functions, and other program objects stored

together in the database. The specification declares these objects.

For information on creating standalone functions and procedures, see "CREATE

FUNCTION" on page 7-266 and "CREATE PROCEDURE" on page 7-333. For

information on modifying a package, see "ALTER PACKAGE" on page 7-59. For

information on dropping a package, see "DROP PACKAGE" on page 7-465.

For detailed discussions of packages and how to use them, see Oracle8i Application
Developer’s Guide - Fundamentals and Oracle8i Supplied Packages Reference.

Prerequisites
Before a package can be created, the user SYS must run the SQL script

DBMSSTDX.SQL. The exact name and location of this script depend on your

operating system.

To create a package in your own schema, you must have CREATE PROCEDURE

system privilege. To create a package in another user’s schema, you must have

CREATE ANY PROCEDURE system privilege.

CREATE
OR REPLACE

PACKAGE
schema .

package

invoker_rights_clause IS

AS
pl/sql_package_spec ;

AUTHID
CURRENT_USER

DEFINER
SQL Statements 7-325

CREATE PACKAGE
To embed a CREATE PACKAGE statement inside an Oracle precompiler program,

you must terminate the statement with the keyword END-EXEC followed by the

embedded SQL statement terminator for the specific language.

For more information, see PL/SQL User’s Guide and Reference.

Keywords and Parameters

OR REPLACE re-creates the package specification if it already exists. Use this clause to change the
specification of an existing package without dropping, re-creating, and regranting object
privileges previously granted on the package. If you change a package specification, Oracle
recompiles it. For information on recompiling package specifications, see "ALTER
PACKAGE" on page 7-59.

Users who had previously been granted privileges on a redefined package can still access the
package without being regranted the privileges.

If any function-based indexes depend on the package, Oracle marks the indexes DISABLED.

schema is the schema to contain the package. If you omit schema, Oracle creates the package in your
own schema.

package is the name of the package to be created.

If creating the package results in compilation errors, Oracle returns an error. You can see the
associated compiler error messages with the SHOW ERRORS command.

invoker_rights_
clause

lets you specify whether the functions and procedures in the package execute with the
privileges and in the schema of the user who owns it or with the privileges and in the
schema of CURRENT_USER. This specification applies to the corresponding package body
as well. (For information on how CURRENT_USER is determined, see Oracle8i Concepts and

Oracle8i Application Developer’s Guide - Fundamentals.)

This clause also determines how Oracle resolves external names in queries, DML operations,
and dynamic SQL statements in the package. For more information refer to PL/SQL User’s
Guide and Reference.

AUTHID
CURRENT_USER

specifies that the package executes with the privileges of CURRENT_
USER. This clause creates an "invoker-rights package."

This clause also specifies that external names in queries, DML
operations, and dynamic SQL statements resolve in the schema of
CURRENT_USER. External names in all other statements resolve in the
schema in which the package resides.

AUTHID
DEFINER

specifies that the package executes with the privileges of the owner of the
schema in which the package resides and that external names resolve in
the schema where the package resides. This is the default
7-326 SQL Reference

CREATE PACKAGE
Example
The following SQL statement creates the specification of the EMP_MGMT package:

CREATE PACKAGE emp_mgmt AS
 FUNCTION hire(ename VARCHAR2, job VARCHAR2, mgr NUMBER,
 sal NUMBER, comm NUMBER, deptno NUMBER)
 RETURN NUMBER;
 FUNCTION create_dept(dname VARCHAR2, loc VARCHAR2)
 RETURN NUMBER;
 PROCEDURE remove_emp(empno NUMBER);
 PROCEDURE remove_dept(deptno NUMBER);
 PROCEDURE increase_sal(empno NUMBER, sal_incr NUMBER);
 PROCEDURE increase_comm(empno NUMBER, comm_incr NUMBER);
 no_comm EXCEPTION;
 no_sal EXCEPTION;
END emp_mgmt;

The specification for the EMP_MGMT package declares the following public

program objects:

■ the functions HIRE and CREATE_DEPT

■ the procedures REMOVE_EMP, REMOVE_DEPT, INCREASE_SAL, and

INCREASE_COMM

■ the exceptions NO_COMM and NO_SAL

All of these objects are available to users who have access to the package. After

creating the package, you can develop applications that call any of the package’s

public procedures or functions or raise any of the package’s public exceptions.

Before you can call this package’s procedures and functions, you must define these

procedures and functions in the package body. For an example of a CREATE

PACKAGE BODY statement that creates the body of the EMP_MGMT package, see

"CREATE PACKAGE BODY" on page 7-328.

pl/sql_package_
spec

is the package specification, which can contain type definitions, cursor declarations, variable
declarations, constant declarations, exception declarations, PL/SQL subprogram
specifications, and call specifications (declarations of a C or Java routine expressed in
PL/SQL).

For a list of restrictions on user-defined functions in a package, see "Restrictions on
User-Defined Functions" on page 7-268. For more information on PL/SQL package program
units, see PL/SQL User’s Guide and Reference. For information on Oracle supplied packages,
see Oracle8i Supplied Packages Reference.
SQL Statements 7-327

CREATE PACKAGE BODY
CREATE PACKAGE BODY

Syntax

Purpose
To create the body of a stored package. A package is an encapsulated collection of

related procedures, stored functions, and other program objects stored together in

the database. The body defines these objects. For information on creating

standalone functions and procedures, see "CREATE FUNCTION" on page 7-266

and "CREATE PROCEDURE" on page 7-333.

Packages are an alternative to creating procedures and functions as standalone

schema objects. For a discussion of packages, including how to create packages, see

"CREATE PACKAGE" on page 7-325. For some illustrations, see "Examples" on

page 7-329.

For information on modifying a package, see "ALTER PACKAGE" on page 7-59.

For information on removing a package from the database, see "DROP PACKAGE"

on page 7-465.

Prerequisites
Before a package can be created, the user SYS must run the SQL script

DBMSSTDX.SQL. The exact name and location of this script depend on your

operating system.

To create a package in your own schema, you must have CREATE PROCEDURE

system privilege. To create a package in another user’s schema, you must have

CREATE ANY PROCEDURE system privilege.

To embed a CREATE PACKAGE BODY statement inside an Oracle precompiler

program, you must terminate the statement with the keyword END-EXEC

followed by the embedded SQL statement terminator for the specific language.

CREATE
OR REPLACE

PACKAGE BODY
schema .

package

IS

AS
pl/sql_package_body ;
7-328 SQL Reference

CREATE PACKAGE BODY
For more information, see PL/SQL User’s Guide and Reference.

Keywords and Parameters

Examples
This SQL statement creates the body of the EMP_MGMT package:

CREATE PACKAGE BODY emp_mgmt AS
 tot_emps NUMBER;

 tot_depts NUMBER;

FUNCTION hire
 (ename VARCHAR2,
 job VARCHAR2,
 mgr NUMBER,
 sal NUMBER,
 comm NUMBER,
 deptno NUMBER)

RETURN NUMBER IS
 new_empno NUMBER(4);
BEGIN
 SELECT empseq.NEXTVAL
 INTO new_empno

OR REPLACE re-creates the package body if it already exists. Use this clause to change the body of an
existing package without dropping, re-creating, and regranting object privileges previously
granted on it. If you change a package body, Oracle recompiles it. For information on
recompiling package bodies, see "ALTER PACKAGE" on page 7-59.

Users who had previously been granted privileges on a redefined package can still access the
package without being regranted the privileges.

schema is the schema to contain the package. If you omit schema, Oracle creates the package in your
current schema.

package is the name of the package to be created.

pl/sql_package_
body

is the package body, which can contain PL/SQL subprogram bodies or call specifications
(declarations of a C or Java routine expressed in PL/SQL).

For a list of restrictions on user-defined functions in a package, see "Restrictions on
User-Defined Functions" on page 7-268. For more information on writing a PL/SQL or C

package program units, see Oracle8i Application Developer’s Guide - Fundamentals. For
information on JAVA package program units, see Oracle8i Java Stored Procedures Developer’s
Guide.
SQL Statements 7-329

CREATE PACKAGE BODY
 FROM DUAL;
 INSERT INTO emp
 VALUES (new_empno, ename, job, mgr, sal, comm, deptno,
 tot_emps := tot_emps + 1;
 RETURN(new_empno);
END;

FUNCTION create_dept(dname VARCHAR2, loc VARCHAR2)
 RETURN NUMBER IS
 new_deptno NUMBER(4);
 BEGIN
 SELECT deptseq.NEXTVAL
 INTO new_deptno
 FROM dual;
 INSERT INTO dept
 VALUES (new_deptno, dname, loc);
 tot_depts := tot_depts + 1;
 RETURN(new_deptno);
 END;

PROCEDURE remove_emp(empno NUMBER) IS
 BEGIN
 DELETE FROM emp
 WHERE emp.empno = remove_emp.empno;
 tot_emps := tot_emps - 1;
 END;

PROCEDURE remove_dept(deptno NUMBER) IS
 BEGIN
 DELETE FROM dept
 WHERE dept.deptno = remove_dept.deptno;
 tot_depts := tot_depts - 1;
 SELECT COUNT(*)
 INTO tot_emps
 FROM emp;
 /* In case Oracle deleted employees from the EMP table
 to enforce referential integrity constraints, reset
 the value of the variable TOT_EMPS to the total
 number of employees in the EMP table. */
 END;

PROCEDURE increase_sal(empno NUMBER, sal_incr NUMBER) IS
 curr_sal NUMBER(7,2);
 BEGIN
 SELECT sal
7-330 SQL Reference

CREATE PACKAGE BODY
 INTO curr_sal
 FROM emp
 WHERE emp.empno = increase_sal.empno;
 IF curr_sal IS NULL
 THEN RAISE no_sal;
 ELSE
 UPDATE emp
 SET sal = sal + sal_incr
 WHERE empno = empno;
 END IF;
 END;

PROCEDURE increase_comm(empno NUMBER, comm_incr NUMBER) IS
 curr_comm NUMBER(7,2);
 BEGIN
 SELECT comm
 INTO curr_comm
 FROM emp
 WHERE emp.empno = increase_comm.empno
 IF curr_comm IS NULL
 THEN RAISE no_comm;
 ELSE
 UPDATE emp
 SET comm = comm + comm_incr;
 END IF;
 END;

END emp_mgmt;

This package body corresponds to the package specification in the example of the

"CREATE PACKAGE" statement earlier in this chapter. The package body defines

the public program objects declared in the package specification:

■ the functions HIRE and CREATE_DEPT

■ the procedures REMOVE_EMP, REMOVE_DEPT, INCREASE_SAL, and

INCREASE_COMM

These objects are declared in the package specification, so they can be called by

application programs, procedures, and functions outside the package. For example,

if you have access to the package, you can create a procedure INCREASE_ALL_

COMMS separate from the EMP_MGMT package that calls the INCREASE_

COMM procedure.
SQL Statements 7-331

CREATE PACKAGE BODY
These objects are defined in the package body, so you can change their definitions

without causing Oracle to invalidate dependent schema objects. For example, if

you subsequently change the definition of HIRE, Oracle need not recompile

INCREASE_ALL_COMMS before executing it.

The package body in this example also declares private program objects, the

variables TOT_EMPS and TOT_DEPTS. These objects are declared in the package

body rather than the package specification, so they are accessible to other objects in

the package, but they are not accessible outside the package. For example, you

cannot develop an application that explicitly changes the value of the variable TOT_

DEPTS. However, the function CREATE_DEPT is part of the package, so CREATE_

DEPT can change the value of TOT_DEPTS.
7-332 SQL Reference

CREATE PROCEDURE
CREATE PROCEDURE

Syntax

invoker_rights_clause ::=

call_spec ::=

Java_declaration::=

CREATE
OR REPLACE

PROCEDURE
schema .

procedure

(argument

IN

OUT

IN OUT NOCOPY
datatype

,

)

invoker_rights_clause IS

AS

pl/sql_subprogram_body

call_spec
;

AUTHID
CURRENT_USER

DEFINER

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’
SQL Statements 7-333

CREATE PROCEDURE
C_declaration::=

Purpose
To create a standalone stored procedure or a call specification.

A procedure is a group of PL/SQL statements that you can call by name. A call
specification ("call spec") declares a Java method or a third-generation language

(3GL) routine so that it can be called from SQL and PL/SQL. The call spec tells

Oracle which Java method to invoke when a call is made. It also tells Oracle what

type conversions to make for the arguments and return value.

Stored procedures offer advantages in the areas of development, integrity, security,

performance, and memory allocation. For more information on stored procedures,

including how to call stored procedures, see Oracle8i Application Developer’s Guide -
Fundamentals.

Stored procedures and stored functions are similar in many ways. For information

specific to functions, see "CREATE FUNCTION" on page 7-266.

The CREATE PROCEDURE statement creates a procedure as a standalone schema

object. You can also create a procedure as part of a package. For information on

creating packages, see "CREATE PACKAGE" on page 7-325.

For information on modifying and dropping a standalone procedure, see "ALTER

PROCEDURE" on page 7-62 and "DROP PROCEDURE" on page 7-467.

For more information about shared libraries, see "CREATE LIBRARY" on

page 7-298. For more information about registering external procedures, see the

Oracle8i Application Developer’s Guide - Fundamentals.

Prerequisites
Before creating a procedure, the user SYS must run the SQL script

DBMSSTDX.SQL. The exact name and location of this script depends on your

operating system.

To create a procedure in your own schema, you must have the CREATE

PROCEDURE system privilege. To create a procedure in another user’s schema,

you must have CREATE ANY PROCEDURE system privilege. To replace a

C
NAME name

LIBRARY lib_name
WITH CONTEXT

PARAMETERS (parameters)
7-334 SQL Reference

CREATE PROCEDURE
procedure in another schema, you must have the ALTER ANY PROCEDURE

system privilege.

To invoke a call spec, you may need additional privileges (for example, EXECUTE

privileges on the C library for a C call spec). For more information on such

prerequisites, refer to PL/SQL User’s Guide and Reference or Oracle8i Java Stored
Procedures Developer’s Guide.

To embed a CREATE PROCEDURE statement inside an Oracle precompiler

program, you must terminate the statement with the keyword END-EXEC

followed by the embedded SQL statement terminator for the specific language.

Keywords and Parameters

OR REPLACE re-creates the procedure if it already exists. Use this clause to change the definition of an
existing procedure without dropping, re-creating, and regranting object privileges
previously granted on it. If you redefine a procedure, Oracle recompiles it. For information
on recompiling procedures, see "ALTER PROCEDURE" on page 7-62.

Users who had previously been granted privileges on a redefined procedure can still access
the procedure without being regranted the privileges.

If any function-based indexes depend on the package, Oracle marks the indexes DISABLED.

schema is the schema to contain the procedure. If you omit schema, Oracle creates the procedure in
your current schema.

procedure is the name of the procedure to be created.

If creating the procedure results in compilation errors, Oracle returns an error. You can see
the associated compiler error messages with the SQL*Plus command SHOW ERRORS.

argument is the name of an argument to the procedure. If the procedure does not accept arguments,
you can omit the parentheses following the procedure name.

IN specifies that you must specify a value for the argument when calling the procedure.

OUT specifies that the procedure passes a value for this argument back to its calling environment
after execution.

IN OUT specifies that you must specify a value for the argument when calling the procedure and that
the procedure passes a value back to its calling environment after execution.

If you omit IN, OUT, and IN OUT, the argument defaults to IN.

NOCOPY instructs Oracle to pass this argument as fast as possible. This clause can significantly
enhance performance when passing a large value like a record, a PL/SQL table, or a varray
to an OUT or IN OUT parameter. (IN parameter values are always passed NOCOPY.)
SQL Statements 7-335

CREATE PROCEDURE
■ When you specify NOCOPY, assignments made to a package variable may show
immediately in this parameter (or assignments made to this parameter may show
immediately in a package variable) if the package variable is passed as the actual
assignment corresponding to this parameter.

■ Similarly, changes made either to this parameter or to another parameter may be visible
immediately through both names if the same variable is passed to both.

■ If the procedure is exited with an unhandled exception, any assignment made to this
parameter may be visible in the caller’s variable.

These effects may or may not occur on any particular call. You should use NOCOPY only
when these effects would not matter.

datatype is the datatype of the argument. An argument can have any datatype supported by PL/SQL.

Datatypes cannot specify length, precision, or scale. For example, VARCHAR2(10) is not
valid, but VARCHAR2 is valid. Oracle derives the length, precision, and scale of an
argument from the environment from which the procedure is called.

invoker_rights_
clause

lets you specify whether the procedure executes with the privileges and in the schema of the
user who owns it or with the privileges and in the schema of CURRENT_USER. (For

information on how CURRENT_USER is determined, see Oracle8i Concepts and Oracle8i
Application Developer’s Guide - Fundamentals.)

This clause also determines how Oracle resolves external names in queries, DML operations,
and dynamic SQL statements in the procedure. For more information refer to PL/SQL User’s
Guide and Reference.

AUTHID
CURRENT_USER

specifies that the procedure executes with the privileges of CURRENT_
USER. This clause creates an "invoker-rights procedure."

This clause also specifies that external names in queries, DML
operations, and dynamic SQL statements resolve in the schema of
CURRENT_USER. External names in all other statements resolve in the
schema in which the procedure resides.

AUTHID
DEFINER

specifies that the procedure executes with the privileges of the owner of
the schema in which the procedure resides, and that external names
resolve in the schema where the procedure resides. This is the default.

pl/sql_
subprogram_body

declares the procedure in a PL/SQL subprogram body. For more information on PL/SQL

subprograms, see Oracle8i Application Developer’s Guide - Fundamentals.

call_spec maps a Java or C method name, parameter types, and return type to their SQL counterparts.

■ In Java_declaration, ’string’ identifies the Java implementation of the method. For more
information, see Oracle8i Java Stored Procedures Developer’s Guide.

■ For an explanation of the parameters and semantics of the C_declaration, see Oracle8i
Application Developer’s Guide - Fundamentals.
7-336 SQL Reference

CREATE PROCEDURE
Examples
The following statement creates the procedure CREDIT in the schema SAM:

CREATE PROCEDURE sam.credit (acc_no IN NUMBER, amount IN NUMBER) AS
 BEGIN
 UPDATE accounts
 SET balance = balance + amount
 WHERE account_id = acc_no;
 END;

The CREDIT procedure credits a specified bank account with a specified amount.

When you call the procedure, you must specify the following arguments:

The procedure uses an UPDATE statement to increase the value in the BALANCE

column of the ACCOUNTS table by the value of the argument AMOUNT for the

account identified by the argument ACC_NO.

In the following example, external procedure C_FIND_ROOT expects a pointer as a

parameter. Procedure FIND_ROOT passes the parameter by reference using the BY

REF phrase:

CREATE PROCEDURE find_root
 (x IN REAL)
 IS LANGUAGE C
 NAME "c_find_root"
 LIBRARY c_utils
 PARAMETERS (x BY REF);

AS EXTERNAL is an alternative way of declaring a C method. This clause has been
deprecated and is supported for backward compatibility only. Oracle
Corporation recommends that you use the AS LANGUAGE C syntax.

ACC_NO is the number of the bank account to be credited. The

argument’s datatype is NUMBER.

AMOUNT is the amount of the credit. The argument’s datatype is

NUMBER.
SQL Statements 7-337

CREATE PROFILE
CREATE PROFILE

Syntax

resource_parameters ::=

CREATE PROFILE profile LIMIT
resource_parameters

password_parameters
;

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

integer

K

M

UNLIMITED

DEFAULT
7-338 SQL Reference

CREATE PROFILE
password_parameters ::=

Purpose
To create a profile. A profile is a set of limits on database resources. If you assign

the profile to a user, that user cannot exceed these limits.

Prerequisites
You must have CREATE PROFILE system privilege.

To specify resource limits for a user, you must:

■ Enable resource limits dynamically with the ALTER SYSTEM statement (see

"ALTER SYSTEM" on page 7-95) or with the initialization parameter

RESOURCE_LIMIT. (This parameter does not apply to password resources.

Password resources are always enabled.)

■ Create a profile that defines the limits using the CREATE PROFILE statement.

■ Assign the profile to the user using the CREATE USER or ALTER USER

statement (see "CREATE USER" on page 7-425 and "ALTER USER" on

page 7-179).

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT
SQL Statements 7-339

CREATE PROFILE
Keywords and Parameters

profile is the name of the profile to be created. Use profiles to limit the database
resources available to a user for a single call or a single session.

Oracle enforces resource limits in the following ways:

■ If a user exceeds the CONNECT_TIME or IDLE_TIME session resource
limit, Oracle rolls back the current transaction and ends the session.
When the user process next issues a call, Oracle returns an error.

■ If a user attempts to perform an operation that exceeds the limit for other
session resources, Oracle aborts the operation, rolls back the current
statement, and immediately returns an error. The user can then commit
or roll back the current transaction, and must then end the session.

■ If a user attempts to perform an operation that exceeds the limit for a
single call, Oracle aborts the operation, rolls back the current statement,
and returns an error, leaving the current transaction intact.

Notes:

■ You can use fractions of days for all parameters that limit time, with days
as units. For example, 1 hour is 1/24 and 1 minute is 1/1440.

■ You can specify resource limits for users regardless of whether the
resource limits are enabled. However, Oracle does not enforce the limits
until you enable them.

UNLIMITED When specified with a resource parameter, indicates that a user assigned this
profile can use an unlimited amount of this resource. When specified with a
password parameter, indicates that no limit has been set for the parameter.

DEFAULT omits a limit for this resource in this profile. A user assigned this profile is
subject to the limit for this resource specified in the DEFAULT profile. The
DEFAULT profile initially defines unlimited resources. You can change those
limits with the ALTER PROFILE statement.

Any user who is not explicitly assigned a profile is subject to the limits
defined in the DEFAULT profile. Also, if the profile that is explicitly assigned
to a user omits limits for some resources or specifies DEFAULT for some
limits, the user is subject to the limits on those resources defined by the
DEFAULT profile.

resource_parameters

SESSIONS_PER_USER limits a user to integer concurrent sessions.

CPU_PER_SESSION limits the CPU time for a session, expressed in hundredth of seconds.

CPU_PER_CALL limits the CPU time for a call (a parse, execute, or fetch), expressed in
hundredths of seconds.
7-340 SQL Reference

CREATE PROFILE
CONNECT_TIME limits the total elapsed time of a session, expressed in minutes.

IDLE_TIME limits periods of continuous inactive time during a session, expressed in
minutes. Long-running queries and other operations are not subject to this
limit.

LOGICAL_READS_PER_
SESSION

specifies the number of data blocks read in a session, including blocks read
from memory and disk.

LOGICAL_READS_PER_
CALL

specifies the number of data blocks read for a call to process a SQL statement
(a parse, execute, or fetch).

PRIVATE_SGA specifies the amount of private space a session can allocate in the shared pool
of the system global area (SGA), expressed in bytes. Use K or M to specify
this limit in kilobytes or megabytes.

Note: This limit applies only if you are using multi-threaded server
architecture. The private space for a session in the SGA includes private SQL
and PL/SQL areas, but not shared SQL and PL/SQL areas.

COMPOSITE_LIMIT specifies the total resources cost for a session, expressed in service units.
Oracle calculates the total service units as a weighted sum of CPU_PER_
SESSION, CONNECT_TIME, LOGICAL_READS_PER_SESSION, and
PRIVATE_SGA.

For information on how to specify the weight for each session resource, see
"ALTER RESOURCE COST" on page 7-68.

password_parameters For a detailed description and explanation of how to use password

management and protection, see Oracle8i Administrator’s Guide.

FAILED_LOGIN_
ATTEMPTS

specifies the number of failed attempts to log in to the user account before the
account is locked.

PASSWORD_LIFE_TIME limits the number of days the same password can be used for authentication.
The password expires if it is not changed within this period, and further
connections are rejected.

PASSWORD_REUSE_TIME specifies the number of days before which a password cannot be reused. If
you set PASSWORD_REUSE_TIME to an integer value, then you must set
PASSWORD_REUSE_MAX to UNLIMITED.

PASSWORD_REUSE_MAX specifies the number of password changes required before the current
password can be reused. If you set PASSWORD_REUSE_MAX to an integer
value, then you must set PASSWORD_REUSE_TIME to UNLIMITED.

PASSWORD_LOCK_TIME specifies the number of days an account will be locked after the specified
number of consecutive failed login attempts.

PASSWORD_GRACE_TIME specifies the number of days after the grace period begins during which a
warning is issued and login is allowed. If the password is not changed during
the grace period, the password expires.
SQL Statements 7-341

CREATE PROFILE
Examples
The following statement creates the profile SYSTEM_MANAGER:

CREATE PROFILE system_manager
 LIMIT SESSIONS_PER_USER UNLIMITED
 CPU_PER_SESSION UNLIMITED
 CPU_PER_CALL 3000
 CONNECT_TIME 45
 LOGICAL_READS_PER_SESSION DEFAULT
 LOGICAL_READS_PER_CALL 1000
 PRIVATE SGA 15K
 COMPOSITE_LIMIT 5000000;

If you then assign the SYSTEM_MANAGER profile to a user, the user is subject to

the following limits in subsequent sessions:

■ The user can have any number of concurrent sessions.

■ In a single session, the user can consume an unlimited amount of CPU time.

■ A single call made by the user cannot consume more than 30 seconds of CPU

time.

PASSWORD_VERIFY_
FUNCTION

allows a PL/SQL password complexity verification script to be passed as an
argument to the CREATE PROFILE statement. Oracle provides a default
script, but you can create your own routine or use third-party software
instead.

function is the name of the password complexity verification
routine.

NULL indicates that no password verification is performed.

Restrictions on password parameters:

■ If PASSWORD_REUSE_TIME is set to an integer value, PASSWORD_REUSE_MAX must be set to
UNLIMITED. If PASSWORD_REUSE_MAX is set to an integer value, PASSWORD_REUSE_TIME must
be set to UNLIMITED.

■ If both PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX are set to UNLIMITED, then Oracle
uses neither of these password resources.

■ If PASSWORD_REUSE_MAX is set to DEFAULT and PASSWORD_REUSE_TIME is set to UNLIMITED,
then Oracle uses the PASSWORD_REUSE_MAX value defined in the DEFAULT profile.

■ If PASSWORD_REUSE_TIME is set to DEFAULT and PASSWORD_REUSE_MAX is set to UNLIMITED,
then Oracle uses the PASSWORD_REUSE_TIME value defined in the DEFAULT profile.

■ If both PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX are set to DEFAULT, then Oracle
uses whichever value is defined in the DEFAULT profile.
7-342 SQL Reference

CREATE PROFILE
■ A single session cannot last for more than 45 minutes.

■ In a single session, the number of data blocks read from memory and disk is

subject to the limit specified in the DEFAULT profile.

■ A single call made by the user cannot read more than 1000 data blocks from

memory and disk.

■ A single session cannot allocate more than 15 kilobytes of memory in the SGA.

■ In a single session, the total resource cost cannot exceed 5 million service units.

The formula for calculating the total resource cost is specified by the ALTER

RESOURCE COST statement.

■ Since the SYSTEM_MANAGER profile omits a limit for IDLE_TIME and for

password limits, the user is subject to the limits on these resources specified in

the DEFAULT profile.

The following statement creates the profile PROF:

CREATE PROFILE prof
 LIMIT PASSWORD_REUSE_MAX DEFAULT
 PASSWORD_REUSE_TIME UNLIMITED;

The following statement creates profile MYPROFILE with password profile limits

values set:

CREATE PROFILE myprofile LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LIFE_TIME 60
 PASSWORD_REUSE_TIME 60
 PASSWORD_REUSE_MAX UNLIMITED
 PASSWORD_VERIFY_FUNCTION verify_function
 PASSWORD_LOCK_TIME 1/24
 PASSWORD_GRACE_TIME 10;
SQL Statements 7-343

CREATE ROLE
7SQL Statements

CREATE ROLE

Syntax

Purpose
To create a role, which is a set of privileges that can be granted to users or to other

roles. You can use roles to administer database privileges. You can add privileges to

a role and then grant the role to a user. The user can then enable the role and

exercise the privileges granted by the role.

A role contains all privileges granted to the role and all privileges of other roles

granted to it. A new role is initially empty. You add privileges to a role with the

GRANT statement. For information on granting roles, see "GRANT system_

privileges_and_roles" on page 7-493. For information on enabling roles, see

"ALTER USER" on page 7-179.

When you create a role that is NOT IDENTIFIED or is IDENTIFIED EXTERNALLY

or BY password, Oracle grants you the role with ADMIN OPTION. However, when

you create a role IDENTIFIED GLOBALLY, Oracle does not grant you the role.

For information on modifying a role, see"ALTER ROLE" on page 7-71. For

information on removing a role from the database, see "DROP ROLE" on

page 7-469. For information on enabling and disabling roles for the current session,

see "SET ROLE" on page 7-570. For a detailed description and explanation of using

global roles, see Oracle8i Distributed Database Systems.

Prerequisites
You must have CREATE ROLE system privilege.

CREATE ROLE role

NOT IDENTIFIED

IDENTIFIED

BY password

EXTERNALLY

GLOBALLY
;

7-344 SQL Reference

CREATE ROLE
Keywords and Parameters

Examples
The following statement creates global role VENDOR:

CREATE ROLE vendor IDENTIFIED GLOBALLY;

The following statement creates the role TELLER:

CREATE ROLE teller
 IDENTIFIED BY cashflow;

Users who are subsequently granted the TELLER role must specify the password

CASHFLOW to enable the role with the SET ROLE statement.

role is the name of the role to be created. Oracle recommends that the role contain at least one
single-byte character regardless of whether the database character set also contains
multibyte characters.

Some roles are defined by SQL scripts provided on your distribution media. For a list of
these predefined roles, see "GRANT system_privileges_and_roles" on page 7-493.

NOT
IDENTIFIED

indicates that this role is authorized by the database and that no password is required to
enable the role.

IDENTIFIED indicates that a user must be authorized by the specified method before the role is
enabled with the SET ROLE statement:

BY password creates a local user and indicates that the user must specify the
password to Oracle when enabling the role. The password can contain
only single-byte characters from your database character set
regardless of whether this character set also contains multibyte
characters.

EXTERNALLY creates an external user and indicates that a user must be authorized
by an external service (such as an operating system or third-party
service) before enabling the role.

Depending on the operating system, the user may have to specify a
password to the operating system before the role is enabled.

GLOBALLY creates a global user and indicates that a user must be authorized to
use the role by the enterprise directory service before the role is
enabled with the SET ROLE statement, or at login.

If you omit both the NOT IDENTIFIED clause and the IDENTIFIED clause, the role defaults to NOT
IDENTIFIED.
SQL Statements 7-345

CREATE ROLLBACK SEGMENT
CREATE ROLLBACK SEGMENT

Syntax

storage_clause : See "storage_clause" on page 7-575.

Purpose
To create a rollback segment. A rollback segment is an object that Oracle uses to

store data necessary to reverse, or undo, changes made by transactions.

For information on altering a rollback segment, see "ALTER ROLLBACK

SEGMENT" on page 7-73. For information on removing a rollback segment, see

"DROP ROLLBACK SEGMENT" on page 7-470.

Prerequisites
You must have CREATE ROLLBACK SEGMENT system privilege.

Keyword and Parameters

PUBLIC specifies that the rollback segment is public and is available to any instance. If you omit
this clause, the rollback segment is private and is available only to the instance naming it
in its initialization parameter ROLLBACK_SEGMENTS.

rollback_segment is the name of the rollback segment to be created.

TABLESPACE identifies the tablespace in which the rollback segment is created. If you omit this clause,
Oracle creates the rollback segment in the SYSTEM tablespace.

Restriction: You cannot create a rollback segment in a tablespace that is system managed
(that is, during creation you specified EXTENT MANAGEMENT LOCAL
AUTOALLOCATE). See "CREATE TABLESPACE" on page 7-394.

CREATE
PUBLIC

ROLLBACK SEGMENT rollback_segment

TABLESPACE tablespace

storage_clause
;

7-346 SQL Reference

CREATE ROLLBACK SEGMENT
Examples
The following statement creates a rollback segment with default storage values in

the system tablespace:

CREATE ROLLBACK SEGMENT rbs_2
TABLESPACE system;

The above statement is equivalent to the following:

CREATE ROLLBACK SEGMENT rbs_2
 TABLESPACE system
 STORAGE
 (INITIAL 10K
 NEXT 10K
 MAXEXTENTS UNLMIITED);

Notes:

■ A tablespace can have multiple rollback segments. Generally, multiple rollback
segments improve performance.

■ The tablespace must be online for you to add a rollback segment to it.

■ When you create a rollback segment, it is initially offline. To make it available for
transactions by your Oracle instance, bring it online using the ALTER ROLLBACK
SEGMENT statement. To bring it online automatically whenever you start up the
database, add the segment’s name to the value of the ROLLBACK_SEGMENTS
initialization parameter.

For more information on creating rollback segments and making them available, see
Oracle8i Administrator’s Guide.

storage_clause specifies the characteristics for the rollback segment. See the "storage_clause" on
page 7-575.

Notes:

■ The OPTIMAL parameter of the storage_clause is of particular interest, because it
applies only to rollback segments.

■ You cannot specify the PCTINCREASE parameter of the storage_clause with CREATE
ROLLBACK SEGMENT.
SQL Statements 7-347

CREATE SCHEMA
CREATE SCHEMA

Syntax

Purpose
To create multiple tables and views and perform multiple grants in a single

transaction.

To execute a CREATE SCHEMA statement, Oracle executes each included

statement. If all statements execute successfully, Oracle commits the transaction. If

any statement results in an error, Oracle rolls back all the statements.

Prerequisites
The CREATE SCHEMA statement can include CREATE TABLE, CREATE VIEW,

and GRANT statements. To issue a CREATE SCHEMA statement, you must have

the privileges necessary to issue the included statements.

Keyword and Parameters

Note: This statement does not actually create a schema. Oracle

automatically creates a schema when you create a user (see

"CREATE USER" on page 7-425). This statement lets you populate

your schema with tables and views and grant privileges on those

objects without having to issue multiple SQL statements in

multiple transactions.

schema is the name of the schema. The schema name must be the same as your Oracle username.

create_table_
statement

is a CREATE TABLE statement to be issued as part of this CREATE SCHEMA statement.
See "CREATE TABLE" on page 7-359. Do not end this statement with a semicolon (or
other terminator character).

CREATE SCHEMA AUTHORIZATION schema

create_table_statement

create_view_statement

grant_statement

;

7-348 SQL Reference

CREATE SCHEMA
Example
The following statement creates a schema named BLAIR for the user BLAIR,

creates the table SOX, creates the view RED_SOX, and grants SELECT privilege on

the RED_SOX view to the user WAITES.

CREATE SCHEMA AUTHORIZATION blair
 CREATE TABLE sox
 (color VARCHAR2(10) PRIMARY KEY, quantity NUMBER)
 CREATE VIEW red_sox
 AS SELECT color, quantity FROM sox WHERE color = ’RED’
 GRANT select ON red_sox TO waites;

create_view_
statement

is a CREATE VIEW statement to be issued as part of this CREATE SCHEMA statement.
See "CREATE VIEW" on page 7-430. Do not end this statement with a semicolon (or other
terminator character).

grant_statement is a GRANT object_privileges statement to be issued as part of this CREATE SCHEMA
statement. See "GRANT object_privileges" on page 7-505. Do not end this statement with
a semicolon (or other terminator character).

The CREATE SCHEMA statement supports the syntax of these statements only as defined by standard SQL,
rather than the complete syntax supported by Oracle.

The order in which you list the CREATE TABLE, CREATE VIEW, and GRANT statements is unimportant.
The statements within a CREATE SCHEMA statement can reference existing objects or objects you create in
other statements within the same CREATE SCHEMA statement.

Restriction: The syntax of the parallel_clause is allowed for a CREATE TABLE statement in CREATE
SCHEMA, but parallelism is not used when creating the objects. For more information, see the parallel_clause
of "CREATE TABLE" on page 7-359.
SQL Statements 7-349

CREATE SEQUENCE
CREATE SEQUENCE

Syntax

Purpose
To create a sequence. A sequence is a database object from which multiple users

may generate unique integers. You can use sequences to automatically generate

primary key values.

When a sequence number is generated, the sequence is incremented, independent

of the transaction committing or rolling back. If two users concurrently increment

the same sequence, the sequence numbers each user acquires may have gaps

because sequence numbers are being generated by the other user. One user can

never acquire the sequence number generated by another user. Once a sequence

value is generated by one user, that user can continue to access that value

regardless of whether the sequence is incremented by another user.

CREATE SEQUENCE
schema.

sequence

INCREMENT BY

START WITH
integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER
;

7-350 SQL Reference

CREATE SEQUENCE
Sequence numbers are generated independently of tables, so the same sequence

can be used for one or for multiple tables. It is possible that individual sequence

numbers will appear to be skipped, because they were generated and used in a

transaction that ultimately rolled back. Additionally, a single user may not realize

that other users are drawing from the same sequence.

Once a sequence is created, you can access its values in SQL statements with the

CURRVAL pseudocolumn (which returns the current value of the sequence) or the

NEXTVAL pseudocolumn (which increments the sequence and returns the new

value). For more information on using the above pseudocolumns, see the section

"Pseudocolumns" on page 2-51.

For information on modifying or dropping a sequence, see "ALTER SEQUENCE"

on page 7-76 or "DROP SEQUENCE" on page 7-471.

Prerequisites
To create a sequence in your own schema, you must have CREATE SEQUENCE

privilege.

To create a sequence in another user’s schema, you must have CREATE ANY

SEQUENCE privilege.

Keywords and Parameters

schema is the schema to contain the sequence. If you omit schema, Oracle creates the sequence in
your own schema.

sequence is the name of the sequence to be created.

If you specify none of the following clauses, you create an ascending sequence that starts with 1 and increases
by 1 with no upper limit. Specifying only INCREMENT BY -1 creates a descending sequence that starts with
-1 and decreases with no lower limit.

■ To create a sequence that increments without bound, for ascending sequences, omit the MAXVALUE
parameter or specify NOMAXVALUE. For descending sequences, omit the MINVALUE parameter or
specify the NOMINVALUE.

■ To create a sequence that stops at a predefined limit, for an ascending sequence specify a value for the
MAXVALUE parameter. For a descending sequence specify a value for the MINVALUE parameter. Also
specify the NOCYCLE. Any attempt to generate a sequence number once the sequence has reached its
limit results in an error.

■ To create a sequence that restarts after reaching a predefined limit, specify values for both the
MAXVALUE and MINVALUE parameters. Also specify the CYCLE. If you do not specify MINVALUE,
then it defaults to NOMINVALUE (that is, the value 1).
SQL Statements 7-351

CREATE SEQUENCE
INCREMENT BY specifies the interval between sequence numbers. This integer value can be any positive
or negative integer, but it cannot be 0. This value can have 28 or fewer digits. The absolute
of this value must be less than the difference of MAXVALUE and MINVALUE. If this
value is negative, then the sequence descends. If the increment is positive, then the
sequence ascends. If you omit this clause, the interval defaults to 1.

START WITH specifies the first sequence number to be generated. Use this clause to start an ascending
sequence at a value greater than its minimum or to start a descending sequence at a value
less than its maximum. For ascending sequences, the default value is the sequence’s
minimum value. For descending sequences, the default value is the sequence’s maximum
value. This integer value can have 28 or fewer digits.

Note: This value is not necessarily the value to which an ascending cycling sequence
cycles after reaching its maximum or minimum value.

MAXVALUE specifies the maximum value the sequence can generate. This integer value can have 28 or
fewer digits. MAXVALUE must be equal to or greater than START WITH and must be
greater than MINVALUE.

NOMAXVALUE specifies a maximum value of 1027 for an ascending sequence or -1 for a descending
sequence. This is the default.

MINVALUE specifies the sequence’s minimum value. This integer value can have 28 or fewer digits.
MINVALUE must be less than or equal to START WITH and must be less than
MAXVALUE.

NOMINVALUE specifies a minimum value of 1 for an ascending sequence or -(1026) for a descending
sequence. This is the default.

CYCLE specifies that the sequence continues to generate values after reaching either its maximum
or minimum value. After an ascending sequence reaches its maximum value, it generates
its minimum value. After a descending sequence reaches its minimum, it generates its
maximum.

NOCYCLE specifies that the sequence cannot generate more values after reaching its maximum or
minimum value. This is the default.

CACHE specifies how many values of the sequence Oracle preallocates and keeps in memory for
faster access. This integer value can have 28 or fewer digits. The minimum value for this
parameter is 2. For sequences that cycle, this value must be less than the number of
values in the cycle. You cannot cache more values than will fit in a given cycle of
sequence numbers. Therefore, the maximum value allowed for CACHE must be less than
the value determined by the following formula:

(CEIL (MAXVALUE - MINVALUE)) / ABS (INCREMENT)

If a system failure occurs, all cached sequence values that have not been used in
committed DML statements are lost. The potential number of lost values is equal to the
value of the CACHE parameter.

NOCACHE specifies that values of the sequence are not preallocated.
7-352 SQL Reference

CREATE SEQUENCE
Example
The following statement creates the sequence ESEQ:

CREATE SEQUENCE eseq
 INCREMENT BY 10;

The first reference to ESEQ.NEXTVAL returns 1. The second returns 11. Each

subsequent reference will return a value 10 greater than the one previous.

If you omit both CACHE and NOCACHE, Oracle caches 20 sequence numbers by default.

ORDER guarantees that sequence numbers are generated in order of request. You may want to
use this clause if you are using the sequence numbers as timestamps. Guaranteeing order
is usually not important for sequences used to generate primary keys.

ORDER is necessary only to guarantee ordered generation if you are using Oracle with
the Parallel Server option in parallel mode. If you are using exclusive mode, sequence
numbers are always generated in order.

NOORDER does not guarantee sequence numbers are generated in order of request. This is the
default.
SQL Statements 7-353

CREATE SNAPSHOT
CREATE SNAPSHOT

In Oracle8i, "snapshots" are synonymous with "materialized views." Please see

"CREATE MATERIALIZED VIEW / SNAPSHOT" on page 7-300.
7-354 SQL Reference

CREATE SNAPSHOT LOG
CREATE SNAPSHOT LOG

In Oracle8i, "snapshots" are synonymous with "materialized views." Please see

"CREATE MATERIALIZED VIEW / SNAPSHOT" on page 7-300.
SQL Statements 7-355

CREATE SYNONYM
CREATE SYNONYM

Syntax

Purpose
To create a synonym. A synonym is an alternative name for a table, view, sequence,

procedure, stored function, package, materialized view, Java class schema object, or

another synonym. For general information on synonyms, see Oracle8i Concepts.

Synonyms provide both data independence and location transparency. Synonyms

permit applications to function without modification regardless of which user

owns the table or view and regardless of which database holds the table or view.

Table 7–4 lists the SQL statements in which you can refer to synonyms.

Prerequisites
To create a private synonym in your own schema, you must have CREATE

SYNONYM system privilege.

To create a private synonym in another user’s schema, you must have CREATE

ANY SYNONYM system privilege.

Table 7–4 Using Synonyms

DML Statements DDL Statements

SELECT AUDIT

INSERT NOAUDIT

UPDATE GRANT

DELETE REVOKE

EXPLAIN PLAN COMMENT

LOCK TABLE

CREATE
PUBLIC

SYNONYM
schema .

synonym

FOR
schema.

object
@ dblink

;

7-356 SQL Reference

CREATE SYNONYM
To create a PUBLIC synonym, you must have CREATE PUBLIC SYNONYM system

privilege.

Keywords and Parameters

PUBLIC creates a public synonym. Public synonyms are accessible to all users.

Oracle uses a public synonym only when resolving references to an object if the object is
not prefaced by a schema and the object is not followed by a database link.

If you omit this clause, the synonym is private and is accessible only within its schema. A
private synonym name must be unique in its schema.

schema is the schema to contain the synonym. If you omit schema, Oracle creates the synonym in
your own schema. You cannot specify schema if you have specified PUBLIC.

synonym is the name of the synonym to be created.

FOR identifies the object for which the synonym is created. If you do not qualify object with
schema, Oracle assumes that the schema object is in your own schema. The schema object
can be of the following types:

■ table or object table

■ view or object view

■ sequence

■ stored procedure, function, or package

■ materialized view

■ Java class schema object

■ synonym

The schema object need not currently exist and you need not have privileges to access the
object.

Restrictions:

■ The schema object cannot be contained in a package.

■ You cannot create a synonym for an object type.

dblink You can use a complete or partial dblink to create a synonym for a schema object on a
remote database where the object is located. For more information on referring to
database links, see "Referring to Objects in Remote Databases" on page 2-74. If you
specify dblink and omit schema, the synonym refers to an object in the schema specified by
the database link. Oracle Corporation recommends that you specify the schema
containing the object in the remote database.

For more information on database links, see "CREATE DATABASE LINK" on page 7-255.
SQL Statements 7-357

CREATE SYNONYM
Examples
Oracle attempts to resolve references to objects at the schema level before resolving

them at the PUBLIC synonym level. For example, assume the schemas SCOTT and

BLAKE each contain tables named DEPT and the user SYSTEM creates a PUBLIC

synonym named DEPT for BLAKE.DEPT. If the user SCOTT then issues the

following statement, Oracle returns rows from SCOTT.DEPT:

SELECT * FROM dept;

To retrieve rows from BLAKE.DEPT, the user SCOTT must preface DEPT with the

schema name:

SELECT * FROM blake.dept;

If the user ADAM’s schema does not contain an object named DEPT, then ADAM

can access the DEPT table in BLAKE’s schema by using the public synonym DEPT:

SELECT * FROM dept;

To define the synonym MARKET for the table MARKET_RESEARCH in the

schema SCOTT, issue the following statement:

CREATE SYNONYM market
 FOR scott.market_research;

To create a PUBLIC synonym for the EMP table in the schema SCOTT on the

remote SALES database, you could issue the following statement:

CREATE PUBLIC SYNONYM emp
 FOR scott.emp@sales;

A synonym may have the same name as the base table, provided the base table is

contained in another schema.

If you omit dblink, Oracle assumes the object is located on the local database.

Restriction: You cannot specify dblink for a Java class synonym.
7-358 SQL Reference

CREATE TABLE
CREATE TABLE

Syntax
relational_table:

object_table:

relational_properties::=

CREATE
GLOBAL TEMPORARY

TABLE
schema .

table

(relational_properties)

ON COMMIT
DELETE

PRESERVE
ROWS

physical_properties table_properties
;

CREATE
GLOBAL TEMPORARY

TABLE
schema .

table

ON COMMIT
DELETE

PRESERVE
ROWS

OF
schema .

object_type
(object_properties)

OID_clause OID_index_clause physical_properties table_properties
;

column datatype
DEFAULT expr column_ref_constraint column_constraint

table_constraint

table_ref_constraint

,

SQL Statements 7-359

CREATE TABLE
object properties::=

physical_properties::=

table_properties ::=

subquery::= See "SELECT and Subqueries" on page 7-541.

table_constraint, column_constraint, table_ref_constraint, column_ref_constraint, constraint_state : See the
"constraint_clause" on page 7-217

column

attribute

DEFAULT expr column_ref_constraint column_constraint

table_constraint

table_ref_constraint

segment_attributes_clause

ORGANIZATION
HEAP

segment_attributes_clause

INDEX index_organized_table_clause

CLUSTER cluster (column

,

)

LOB_storage_clause

varray_storage_clause

nested_table_storage_clause

range_partitioning_clause

hash_partitioning_clause

composite_partitioning_clause

row_movement_clause

CACHE

NOCACHE

MONITORING

NOMONITORING

parallel_clause enable_disable_clause AS subquery
7-360 SQL Reference

CREATE TABLE
OID_clause ::=

OID_index_clause ::=

segment_attributes_clause: :=

row_movement_clause ::=

OBJECT IDENTIFIER IS
SYSTEM GENERATED

PRIMARY KEY

OIDINDEX
index

(
physical_attributes_clause

TABLESPACE tablespace
)

physical_attributes_clause

TABLESPACE tablespace

LOGGING

NOLOGGING

ENABLE

DISABLE
ROW MOVEMENT
SQL Statements 7-361

CREATE TABLE
physical_attributes_clause ::=

storage_clause : See the "storage_clause" on page 7-575.

index_organized_table_clause ::=

compression_clause ::=

index_organized_overflow_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

segment_attributes_clause

PCTTHRESHOLD integer

compression_clause

index_organized_overflow_clause

COMPRESS
integer

NOCOMPRESS

INCLUDING column_name
OVERFLOW

segment_attributes_clause
7-362 SQL Reference

CREATE TABLE
LOB_storage_clause ::=

LOB_parameters::=

varray_storage_clause ::=

LOB

(LOB_item

,

) STORE AS (LOB_parameters)

(LOB_item) STORE AS

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

TABLESPACE tablespace

ENABLE

DISABLE
STORAGE IN ROW

storage_clause

CHUNK integer

PCTVERSION integer

CACHE

NOCACHE

LOGGING

NOLOGGING

VARRAY varray_item STORE AS LOB

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)
SQL Statements 7-363

CREATE TABLE
nested_table_storage_clause ::=

range_partitioning_clause ::=

composite_partitioning_clause ::=

partition_definition ::=

NESTED TABLE nested_item STORE AS storage_table

((object_properties)
physical_properties

)

RETURN AS
LOCATOR

VALUE

PARTITION BY RANGE (column_list) (partition_definition

,

)

PARTITION BY RANGE (column_list)
subpartition_clause

(partition_definition

,

)

PARTITION
partition

VALUES LESS THAN (value_list)

segment_attributes_clause

COMPRESS

NOCOMPRESS OVERFLOW
segment_attributes_clause

LOB_storage_clause

varray_storage_clause partition_level_subpartitioning
7-364 SQL Reference

CREATE TABLE
subpartition_clause ::=

partition_level_subpartitioning ::=

hash_partitioning_clause ::=

partitioning_storage_clause::=

SUBPARTITION BY HASH (column_list

,

)

SUBPARTITIONS quantity
STORE IN (tablespace

,

)

SUBPARTITIONS quantity
STORE IN (tablespace

,

)

(SUBPARTITION
subpartition partitioning_storage_clause

,

)

PARTITION BY HASH (column_list)

PARTITIONS quantity
STORE IN (tablespace

,

)

(PARTITION
partition partitioning_storage_clause

,

)

TABLESPACE tablespace

LOB_storage_clause

varray_storage_clause
SQL Statements 7-365

CREATE TABLE
parallel_clause ::=

enable_disable_clause ::=

using_index_clause ::=

Purpose
To create a relational table, the basic structure to hold user data.

NOPARALLEL

PARALLEL
integer

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint

using_index_clause EXCEPTIONS INTO
schema .

table CASCADE

USING INDEX

PCTFREE integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

storage_clause

NOSORT

LOGGING

NOLOGGING
7-366 SQL Reference

CREATE TABLE
To create an object table or a table that uses an object type for a column definition.

An object table is a table explicitly defined to hold object instances of a particular

type.

You can also create an object type and then use it in a column when creating a

relational table. For more information about creating objects, see Oracle8i
Application Developer’s Guide - Fundamentals and "CREATE TYPE" on page 7-411.

Tables are created with no data unless a query is specified. You can add rows to a

table with the INSERT statement. After creating a table, you can define additional

columns, partitions, and integrity constraints with the ADD clause of the ALTER

TABLE statement. You can change the definition of an existing column or partition

with the MODIFY clause of the ALTER TABLE statement.

Prerequisites
To create a relational table in your own schema, you must have CREATE TABLE

system privilege. To create a table in another user’s schema, you must have

CREATE ANY TABLE system privilege. Also, the owner of the schema to contain

the table must have either space quota on the tablespace to contain the table or

UNLIMITED TABLESPACE system privilege.

In addition to the table privileges above, to create a table that uses types, the owner

of the table must have the EXECUTE object privilege in order to access all types

referenced by the table, or you must have the EXECUTE ANY TYPE system

privilege. These privileges must be granted explicitly and not acquired through a

role.

Additionally, if the table owner intends to grant access to the table to other users,

the owner must have been granted the EXECUTE privileges to the referenced types

with the GRANT OPTION, or have the EXECUTE ANY TYPE system privilege

with the ADMIN OPTION. Without these privileges, the table owner has

insufficient privileges to grant access on the table to other users.

To enable a UNIQUE or PRIMARY KEY constraint, you must have the privileges

necessary to create an index on the table. You need these privileges because Oracle

creates an index on the columns of the unique or primary key in the schema

containing the table. See "CREATE INDEX" on page 7-273.

For more information about the privileges required to create tables using types, see

Oracle8i Application Developer’s Guide - Fundamentals.
SQL Statements 7-367

CREATE TABLE
Keywords and Parameters

GLOBAL
TEMPORARY

specifies that the table is temporary and that its definition is visible to all sessions. The data
in a temporary table is visible only to the session that inserts the data into the table.

A temporary table has a definition that persists the same as the definitions of regular tables,
but it contains either session-specific or transaction-specific data. You specify whether the
data is session- or transaction-specific with the ON COMMIT keywords (below).

For more information on temporary tables, please refer to Oracle8i Concepts.

Restrictions:

■ Temporary tables cannot be partitioned, index-organized, or clustered.

■ You cannot specify any referential integrity (foreign key) constraints on temporary
tables.

■ Temporary tables cannot contain columns of nested table or varray type.

■ You cannot specify the following clauses of the LOB_storage_clause: TABLESPACE,
storage_clause, LOGGING or NOLOGGING, MONITORING or NOMONITORING, or
LOB_index_clause.

■ Parallel DML and parallel queries are not supported for temporary tables. (Parallel
hints are ignored. Specification of the parallel_clause returns an error.)

■ You cannot specify the segment_attributes_clause, nested_table_storage_clause, or parallel_
clause.

■ Distributed transactions are not supported for temporary tables.

schema is the schema to contain the table. If you omit schema, Oracle creates the table in your own
schema.

table is the name of the table (or object table) to be created. A partitioned table cannot be a
clustered table or an object table.

OF object_type explicitly creates an object table of type object_type. The columns of an object table
correspond to the top-level attributes of type object_type. Each row will contain an object
instance, and each instance will be assigned a unique, system-generated object identifier
(OID) when a row is inserted. If you omit schema, Oracle creates the object table in your
own schema. For more information about creating objects, see "CREATE TYPE" on
page 7-411.

Objects residing in an object table are referenceable. For more information about using
REFs, see "User-Defined Type Categories" on page 2-25, "User-Defined Functions" on

page 4-56, "Expressions" on page 5-1, "CREATE TYPE" on page 7-411, and Oracle8i
Administrator’s Guide.
7-368 SQL Reference

CREATE TABLE
column specifies the name of a column of the table.

If you also specify AS subquery, you can omit column and datatype unless you are creating an
index-organized table (IOT). If you specify AS subquery when creating an IOT, you must
specify column, and you must omit datatype.

The absolute maximum number of columns in a table is 1000. However, when you create
an object table (or a relational table with columns of object, nested table, varray, or REF
type), Oracle maps the columns of the user-defined types to relational columns, creating in
effect "hidden columns" that count toward the 1000-column limit. For details on how

Oracle calculates the total number of columns in such a table, please refer to Oracle8i
Administrator’s Guide.

attribute specifies the qualified column name of an item in an object.

datatype is the datatype of a column. Oracle-supplied datatypes are defined in "Datatypes" on
page 2-5.

Restrictions:

■ You cannot specify a LOB column or a column of type VARRAY for a partitioned index-
organized table. The datatypes for nonpartitioned index-organized tables are not
restricted.

■ You can specify a column of type ROWID, but Oracle does not guarantee that the
values in such columns are valid rowids.

You can omit datatype:

■ If you also specify AS subquery. (If you are creating an index-organized table and you
specify AS subquery, you must omit the datatype.)

■ If the statement also designates the column as part of a foreign key in a referential
integrity constraint. (Oracle automatically assigns to the column the datatype of the
corresponding column of the referenced key of the referential integrity constraint.)

DEFAULT specifies a value to be assigned to the column if a subsequent INSERT statement omits a
value for the column. The datatype of the expression must match the datatype of the
column. The column must also be long enough to hold this expression. For the syntax of
expr, see "Expressions" on page 5-1. A DEFAULT expression cannot contain references to
other columns, the pseudocolumns CURRVAL, NEXTVAL, LEVEL, and ROWNUM, or
date constants that are not fully specified.

table_ref_
constraint

and

column_ref_
constraint

These clauses let you further describe a column of type REF. The only difference between
these clauses is that you specify table_ref from the table level, so you must identify the REF
column or attribute you are defining. You specify column_ref after you have already
identified the REF column or attribute.

For syntax and description of these constraints, see the "constraint_clause" on page 7-217.
SQL Statements 7-369

CREATE TABLE
column_constraint defines an integrity constraint as part of the column definition. See the syntax description
of column_constraint in the "constraint_clause" on page 7-217.

You can create UNIQUE, PRIMARY KEY, and REFERENCES constraints on scalar
attributes of object type columns. You can also create NOT NULL constraints on object type
columns, and CHECK constraints that reference object type columns or any attribute of an
object type column.

table_constraint defines an integrity constraint as part of the table definition. See the syntax description of
table_constraint in the "constraint_clause" on page 7-217.

Note: You must specify a PRIMARY KEY constraint for an index-organized table.

segment_attributes_clause:

physical_
attributes_clause

specifies the value of the PCTFREE, PCTUSED, INITRANS, and MAXTRANS parameters
and the storage characteristics of the table.

■ For a nonpartitioned table, each parameter and storage characteristic you specify
determines the actual physical attribute of the segment associated with the table.

■ For partitioned tables, the value you specify for the parameter or storage characteristic
is the default physical attribute of the segments associated with all partitions specified
in this CREATE statement (and in subsequent ALTER TABLE ... ADD PARTITION
statements), unless you explicitly override that value in the PARTITION clause of the
statement that creates the partition.

PCTFREE specifies the percentage of space in each data block of the table, object table OID index, or
partition reserved for future updates to the table’s rows. The value of PCTFREE must be a
value from 0 to 99. A value of 0 allows the entire block to be filled by inserts of new rows.
The default value is 10. This value reserves 10% of each block for updates to existing rows
and allows inserts of new rows to fill a maximum of 90% of each block.

PCTFREE has the same function in the PARTITION description and in the statements that
create and alter clusters, indexes, snapshots, and snapshot logs. The combination of
PCTFREE and PCTUSED determines whether new rows will be inserted into existing data
blocks or into new blocks.

PCTUSED specifies the minimum percentage of used space that Oracle maintains for each data block
of the table, object table OID index, or index-organized table overflow data segment. A
block becomes a candidate for row insertion when its used space falls below PCTUSED.
PCTUSED is specified as a positive integer from 1 to 99 and defaults to 40.

PCTUSED has the same function in the PARTITION description and in the statements that
create and alter clusters, snapshots, and snapshot logs.

PCTUSED is not a valid table storage characteristic for an index-organized table
(ORGANIZATION INDEX).

The sum of PCTFREE and PCTUSED must be less than 100. You can use PCTFREE and
PCTUSED together to utilize space within a table more efficiently. For information on the

performance effects of different values PCTUSED and PCTFREE, see Oracle8i Tuning.
7-370 SQL Reference

CREATE TABLE
INITRANS specifies the initial number of transaction entries allocated within each data block allocated
to the table, object table OID index, partition, LOB index segment, or overflow data
segment. This value can range from 1 to 255 and defaults to 1. In general, you should not
change the INITRANS value from its default.

Each transaction that updates a block requires a transaction entry in the block. The size of a
transaction entry depends on your operating system.

This parameter ensures that a minimum number of concurrent transactions can update the
block and helps avoid the overhead of dynamically allocating a transaction entry.

The INITRANS parameter serves the same purpose in the PARTITION description,
clusters, indexes, snapshots, and snapshot logs as in tables. The minimum and default
INITRANS value for a cluster or index is 2, rather than 1.

MAXTRANS specifies the maximum number of concurrent transactions that can update a data block
allocated to the table, object table OID index, partition, LOB index segment, or index-
organized overflow data segment. This limit does not apply to queries. This value can
range from 1 to 255 and the default is a function of the data block size. You should not
change the MAXTRANS value from its default.

If the number of concurrent transactions updating a block exceeds the INITRANS value,
Oracle dynamically allocates transaction entries in the block until either the MAXTRANS
value is exceeded or the block has no more free space.

The MAXTRANS parameter serves the same purpose in the PARTITION description,
clusters, snapshots, and snapshot logs as in tables.

storage_clause specifies the storage characteristics for the table, object table OID index, partition, LOB
storage, LOB index segment, or index-organized table overflow data segment. This clause
has performance ramifications for large tables. Storage should be allocated to minimize
dynamic allocation of additional space. See the "storage_clause" on page 7-575.

TABLESPACE specifies the tablespace in which Oracle creates the table, object table OID index, partition,
LOB storage, LOB index segment, or index-organized table overflow data segment. If you
omit TABLESPACE, then Oracle creates that item in the default tablespace of the owner of
the schema containing the table.

For heap-organized tables with one or more LOB columns, if you omit the TABLESPACE
clause for LOB storage, Oracle creates the LOB data and index segments in the tablespace
where the table is created.

However, for an index-organized table with one or more LOB columns, if you omit
TABLESPACE, the LOB data and index segments are created in the tablespace in which the
primary key index segment of the index-organized table is created.

For nonpartitioned tables, the value specified for TABLESPACE is the actual physical
attribute of the segment associated with the table. For partitioned tables, the value
specified for TABLESPACE is the default physical attribute of the segments associated with
all partitions specified in the CREATE statement (and on subsequent ALTER TABLE ...
ADD PARTITION statements), unless you specify TABLESPACE in the PARTITION
description.
SQL Statements 7-371

CREATE TABLE
For more information on tablespaces, see "CREATE TABLESPACE" on page 7-394.

LOGGING |
NOLOGGING

specifies whether the creation of the table (and any indexes required because of
constraints), partition, or LOB storage characteristics will be logged in the redo log file.The
logging attribute of the table is independent of that of its indexes.

This attribute also specifies that subsequent Direct Loader (SQL*Loader) and direct-load
INSERT operations against the table, partition, or LOB storage are logged (LOGGING) or
not logged (NOLOGGING).

If you omit LOGGING|NOLOGGING, the logging attribute of the table or table partition
defaults to the logging attribute of the tablespace in which it resides. For LOBs, if you omit
LOGGING|NOLOGGING,

■ If you specify CACHE, then LOGGING is used (because you cannot have CACHE
NOLOGGING).

■ Otherwise, the logging attribute defaults to the logging attribute of the tablespace in
which it resides.

For nonpartitioned tables, the value specified for LOGGING is the actual physical attribute
of the segment associated with the table. For partitioned tables, the logging attribute value
specified is the default physical attribute of the segments associated with all partitions
specified in the CREATE statement (and in subsequent ALTER TABLE ... ADD PARTITION
statements), unless you specify LOGGING|NOLOGGING in the PARTITION description.

In NOLOGGING mode, data is modified with minimal logging (to mark new extents
INVALID and to record dictionary changes). When applied during media recovery, the
extent invalidation records mark a range of blocks as logically corrupt, because the redo
data is not fully logged. Therefore, if you cannot afford to lose this table, you should take a
backup after the NOLOGGING operation.

The size of a redo log generated for an operation in NOLOGGING mode is significantly
smaller than the log generated with the LOGGING attribute set.

If the database is run in ARCHIVELOG mode, media recovery from a backup taken before
the LOGGING operation restores the table. However, media recovery from a backup taken
before the NOLOGGING operation does not restore the table.

For more information about logging and parallel DML, see Oracle8i Concepts and Oracle8i
Administrator’s Guide.

RECOVERABLE |
UNRECOVERABLE

These keywords are deprecated and have been replaced with LOGGING and
NOLOGGING, respectively. Although RECOVERABLE and UNRECOVERABLE are
supported for backward compatibility, Oracle Corporation strongly recommends that you
use the LOGGING and NOLOGGING keywords.

Restrictions:

■ You cannot specify RECOVERABLE for partitioned tables or LOB storage
characteristics.

■ You cannot specify UNRECOVERABLE for a partitioned or index-organized tables.

■ You can specify UNRECOVERABLE only with AS subquery.
7-372 SQL Reference

CREATE TABLE
ORGANIZATION
HEAP

specifies that the data rows of table are stored in no particular order. This is the default.

ORGANIZATION
INDEX

specifies that table is created as an index-organized table. In an index-organized table, the
data rows are held in an index defined on the primary key for the table.

index_organized_
table_clause

specifies that Oracle should maintain the table rows (both primary key column values and
non-key column values) in a B*-tree index built on the primary key. Index-organized tables
are therefore best suited for primary key-based access and manipulation. An index-
organized table is an alternative to

■ A nonclustered table indexed on the primary key by using the CREATE INDEX
statement

■ A clustered table stored in an indexed cluster that has been created using the CREATE
CLUSTER statement that maps the primary key for the table to the cluster key

Restrictions:

■ You cannot specify a column of type ROWID for an index-organized table.

■ A partitioned index-organized table cannot contain columns of LOB or varray type.
(This restriction does not apply to nonpartitioned index-organized tables.)

Note: You must specify a primary key for an index-organized table, because the primary
key uniquely identifies a row. Use the primary key instead of the rowid for directly
accessing index-organized rows.

PCTTHRESHOLD
integer

specifies the percentage of space reserved in the index block for an index-organized table
row. Any portion of the row that exceeds the specified threshold is stored in the overflow
segment. PCTTHRESHOLD must be a value from 1 to 50.

Restriction:

■ PCTTHRESHOLD must be large enough to hold the primary key.

■ You cannot specify PCTTHRESHOLD for individual partitions of an index-organized
table.

OVERFLOW specifies that index-organized table data rows exceeding the specified threshold are placed
in the data segment listed in this clause.
SQL Statements 7-373

CREATE TABLE
■ When you create an index-organized table, Oracle evaluates the maximum size of each
column to estimate the largest possible row. If an overflow segment is needed but you
have not specified OVERFLOW, Oracle raises an error and does not execute the
CREATE TABLE statement. This checking function guarantees that subsequent DML
operations on the index-organized table will not fail because an overflow segment is
lacking.

■ All physical attributes and storage characteristics you specify in this clause after the
OVERFLOW keyword apply only to the overflow segment of the table. Physical
attributes and storage characteristics for the index-organized table itself, default values
for all its partitions, and values for individual partitions must be specified before this
keyword.

■ If the index-organized table contains one or more LOB columns, the LOBs will be
stored out-of-line unless you specify OVERFLOW, even if they would otherwise be
small enough be to stored inline.

INCLUDING
column_name

specifies a column at which to divide an index-organized table row into index and
overflow portions. All non-primary-key columns that follow column_name are stored in the
overflow data segment. A column_name is either the name of the last primary-key column
or any subsequent nonprimary-key column.

Restriction: You cannot specify this clause for individual partitions of an index-organized
table.

compression_clause enables or disables key compression.

COMPRESS enables key compression, which eliminates repeated occurrence of
primary key column values in index-organized tables. Use integer to
specify the prefix length (number of prefix columns to compress).

The valid range of prefix length values is from 1 to the number of
primary key columns minus 1. The default prefix length is the number
of primary key columns minus 1.

Restriction: At the partition level, you can specify COMPRESS, but
you cannot specify the prefix length with integer.

NOCOMPRESS disables key compression in index-organized tables. This is the
default.

LOB_storage_
clause

specifies the storage attributes of LOB data segments. See also "LOB Column Example" on
page 7-389.

■ For a nonpartitioned table (that is, when specified in the physical_properties clause
without any of the partitioning clauses), this clause specifies the table’s storage
attributes of LOB data segments.
7-374 SQL Reference

CREATE TABLE
■ For a partitioned table specified at the table level (that is, when specified in the
physical_properties clause along with one of the partitioning clauses), this clause
specifies the default storage attributes for LOB data segments associated with each
partition or subpartition. These storage attributes apply to all partitions or
subpartitions unless overridden by a LOB_storage_clause at the partition or
subpartition level.

■ For an individual partition of a partitioned table (that is, when specified as part of a
partition_definition), this clause specifies the storage attributes of the data segments of
that partition or the default storage attributes of any subpartitions of this partition. A
partition-level LOB_storage_clause overrides a table-level LOB_storage_clause.

■ For an individual subpartition of a partitioned table (that is, when specified as part of
a subpartition_clause), this clause specifies the storage attributes of the data segments of
this subpartition. A subpartition-level LOB_storage_clause overrides both partition-
level and table-level LOB_storage_clauses.

Restrictions:

■ The only parameter of the LOB_storage_clause you can specify for a hash partition or
hash subpartition is TABLESPACE.

■ You cannot specify the LOB_index_clause if table is partitioned.

For detailed information about LOBs, see Oracle8i Application Developer’s Guide -
Fundamentals.

lob_item is the LOB column name or LOB object attribute for which you are
explicitly defining tablespace and storage characteristics that are
different from those of the table. Oracle automatically creates a
system-managed index for each lob_item you create.

Restriction: If table is partitioned, you cannot specify LOB storage for
a LOB object attribute.

STORE AS lob_segname specifies the name of the LOB data segment. You cannot use lob_
segname if you specify more than one lob_item.

lob_parameters ENABLE
STORAGE IN
ROW

specifies that the LOB value is stored in the row (inline) if its length is
less than approximately 4000 bytes minus system control information.
This is the default.

Restriction: For an index-organized table, you cannot specify this
parameter unless you have specified an OVERFLOW segment in the
index_organized_table_clause.

DISABLE
STORAGE IN
ROW

specifies that the LOB value is stored outside of the row regardless of
the length of the LOB value.

The LOB locator is always stored in the row regardless of where the LOB value is stored.
You cannot change the value of STORAGE IN ROW once it is set.
SQL Statements 7-375

CREATE TABLE
CHUNK integer specifies the number of bytes to be allocated for LOB manipulation. If
integer is not a multiple of the database block size, Oracle rounds up
(in bytes) to the next multiple. For example, if the database block size
is 2048 and integer is 2050, Oracle allocates 4096 bytes (2 blocks). The
maximum value is 32768 (32K), which is the largest Oracle block size
allowed. The default CHUNK size is one Oracle database block.

You cannot change the value of CHUNK once it is set.

Note: The value of CHUNK must be less than or equal to the value of
NEXT (either the default value or that specified in the storage_clause).
If CHUNK exceeds the value of NEXT, Oracle returns an error.

PCTVERSION
integer

is the maximum percentage of overall LOB storage space used for
creating new versions of the LOB. The default value is 10, meaning
that older versions of the LOB data are not overwritten until 10% of
the overall LOB storage space is used.

LOB_index_clause This clause is deprecated as of Oracle 8i. Oracle generates an index for
each LOB column. The LOB indexes are system named and system
managed.

Although it is still possible for you to specify this clause, Oracle
Corporation strongly recommends that you no longer do so.

For information on how Oracle manages LOB indexes in tables
migrated from earlier versions, see Oracle8i Migration.

varray_storage_
clause

lets you specify separate storage characteristics for the LOB in which a varray will be
stored. In addition, if you specify this clause, Oracle will always store the varray in a LOB,
even if it is small enough to be stored inline.

■ For a nonpartitioned table (that is, when specified in the physical_properties clause
without any of the partitioning clauses), this clause specifies the storage attributes of
the varray’s LOB data segments.

■ For a partitioned table specified at the table level (that is, when specified in the
physical_properties clause along with one of the partitioning clauses), this clause
specifies the default storage attributes for the varray’s LOB data segments associated
with each partition (or its subpartitions, if any).

■ For an individual partition of a partitioned table (that is, when specified as part of a
partition_definition), this clause specifies the storage attributes of the varray’s LOB data
segments of that partition or the default storage attributes of the varray’s LOB data
segments of any subpartitions of this partition. A partition-level varray_storage_clause
overrides a table-level varray_storage_clause.

■ For an individual subpartition of a partitioned table (that is, when specified as part of
a subpartition_clause), this clause specifies the storage attributes of the varray’s data
segments of this subpartition. A subpartition-level varray_storage_clause overrides both
partition-level and table-level varray_storage_clauses.
7-376 SQL Reference

CREATE TABLE
Restriction: You cannot specify the TABLESPACE parameter of lob_parameters as part of
this clause. The LOB tablespace for a varray defaults to the containing table’s tablespace.

nested_table_
storage_clause

enables you to specify separate storage characteristics for a nested table, which in turn
enables you to define the nested table as an index-organized table. The storage table is
created in the same tablespace as its parent table (using the default storage characteristics)
and stores the nested table values of the column for which it was created.

You must include this clause when creating a table with columns or column attributes
whose type is a nested table. (Clauses within this clause that function the same way they
function for parent object tables are not repeated here.)

Restrictions:

■ You cannot specify this clause for a temporary table.

■ You cannot specify the parallel_clause or the the OID_clause.

■ You cannot specify TABLESPACE (as part of the segment_attributes_clause) for a nested
table. The tablespace is always that of the parent table.

■ At create time, you cannot specify (as part of object_properties) a table_ref_constraint,
column_ref_constraint, or referential constraint for the attributes of a nested table.
However, you can modify a nested table to add such constraints using ALTER TABLE.

■ You cannot query or perform DML statements on the storage table directly, but you
can modify the nested table column storage characteristics by using the name of
storage table in an ALTER TABLE statement. For information about modifying nested
table column storage characteristics, see "ALTER TABLE" on page 7-113.

nested_item is the name of a column (or a top-level attribute of the table’s object
type) whose type is a nested table.

storage_table is the name of the table where the rows of nested_item reside. The
storage table is created in the same schema and the same tablespace as
the parent table.

You cannot query or perform DML statements on storage_table
directly, but you can modify its storage characteristics by specifying
its name in an ALTER TABLE statement. For information about
modifying nested table column storage characteristics, see "ALTER
TABLE" on page 7-113.

RETURN AS specifies what Oracle returns as the result of a query.

■ VALUE returns a copy of the nested table itself.

■ LOCATOR returns a collection locator to the copy of the nested
table.

Note: The locator is scoped to the session and cannot be used across

sessions. Unlike a LOB locator, the collection locator cannot be used to

modify the collection instance.
SQL Statements 7-377

CREATE TABLE
If you do not specify the segment_attributes_clause or the LOB_storage_clause, the nested

table is heap organized and is created with default storage characteristics.

CLUSTER specifies that the table is to be part of cluster. The columns listed in this clause are the table
columns that correspond to the cluster’s columns. Generally, the cluster columns of a table
are the column or columns that make up its primary key or a portion of its primary key. For
more information, see "CREATE CLUSTER" on page 7-236.

Specify one column from the table for each column in the cluster key. The columns are
matched by position, not by name.

A clustered table uses the cluster’s space allocation. Therefore, do not use the PCTFREE,
PCTUSED, INITRANS, or MAXTRANS parameters, the TABLESPACE clause, or the
storage_clause with the CLUSTER clause.

Restriction: Object tables cannot be part of a cluster.

ON COMMIT can be specified only if you are creating a temporary table. This clause specifies whether
the data in the temporary table persists for the duration of a transaction or a session.

DELETE ROWS specifies that the temporary table is transaction specific (this is the
default). Oracle will truncate the table (delete all its rows) after each
commit.

PRESERVE ROWS specifies that the temporary table is session specific. Oracle will
truncate the table (delete all its rows) when you terminate the session.

OID_clause lets you specify whether the object identifier (OID) of the object table should be system
generated or should be based on the primary key of the table. The default is SYSTEM
GENERATED.

Restrictions:

■ You cannot specify OBJECT IDENTIFIER IS PRIMARY KEY unless you have already
specified a PRIMARY KEY constraint for the table.

■ You cannot specify this clause for a nested table.

Note: A primary key OID is locally (but not necessarily globally) unique. If you require a
globally unique identifier, you must ensure that the primary key is globally unique.

OID_index_clause This clause is relevant only if you have specified the OID_clause as SYSTEM GENERATED.
It specifies an index, and optionally its storage characteristics, on the hidden object
identifier column.

index is the name of the index on the hidden system-generated object
identifier column. If not specified, Oracle generates a name.

hash_partitioning_
clause

specifies that the table is to be partitioned using the hash method. Oracle assigns rows to
partitions using a hash function on values found in columns designated as the partitioning
key. For more information on hash partitioning, see Oracle8i Concepts.

column_list is an ordered list of columns used to determine into which partition a
row belongs (the partitioning key).
7-378 SQL Reference

CREATE TABLE
Restrictions:

■ You cannot specify more than 16 columns in column_list.

■ The column_list cannot contain the ROWID or UROWID
pseudocolumns.

■ The columns in column_list can be of any built-in datatype except
ROWID, LONG, or LOB.

You can specify hash partitioning in one of two ways:

■ You can specify the number of partitions. In this case, Oracle assigns partition names
of the form SYS_Pnnn. The STORE IN clause specifies one or more tablespaces where
the hash partitions are to be stored. The number of tablespaces does not have to equal
the number of partitions. If the number of partitions is greater than the number of
tablespaces, Oracle cycles through the names of the tablespaces.

■ Alternatively, you can specify individual partitions by name. The TABLESPACE clause
specifies where the partition should be stored.

Note: The only attribute you can specify for hash partitions (or subpartitions) is
TABLESPACE. Hash partitions inherit all other attributes from table-level defaults. Hash
subpartitions inherit any attributes specified at the partition level, and inherit all other
attributes from the table-level defaults.

Tablespace storage specified at the table level is overridden by tablespace storage specified
at the partition level, which in turn is overridden by tablespace storage specified at the
subpartition level.

range_partitioning_
clause

PARTITION BY
RANGE

specifies that the table is partitioned on ranges of values from column_
list. For an index-organized table, column_list must be a subset of the
primary key columns of the table.

column_list is an ordered list of columns used to determine into which partition a
row belongs (the partitioning key).

composite_
partitioning_clause

specifies that table is to be first range partitioned, and then the partitions further
partitioned into hash subpartitions. This combination of range partitioning and hash
subpartitioning is called composite partitioning.

subpartition_
clause

specifies that Oracle should subpartition by hash each partition in
table. The subpartitioning column_list is unrelated to the partitioning
key.

SUBPARTITIONS
quantity

specifies the default number of subpartitions in each partition of table,
and optionally one or more tablespaces in which they are to be stored.

The default value is 1. If you do not specify the subpartition_clause
here, Oracle will create each partition with one hash subpartition
unless you subsequently specify the partition_level_hash_
subpartitioning clause.
SQL Statements 7-379

CREATE TABLE
partition_definition PARTITION
partition

specifies the physical partition attributes. If partition is omitted, Oracle
generates a name with the form SYS_Pn for the partition. The partition
must conform to the rules for naming schema objects and their part as
described in "Schema Object Naming Rules" on page 2-67.

Notes:

■ You can specify up to 64K-1 partitions and 64K-1 subpartitions. For a discussion of

factors that might impose practical limits less than this number, please refer to Oracle8i
Administrator’s Guide.

■ You can create a partitioned table with just one partition. Note, however, that a
partitioned table with one partition is different from a nonpartitioned table. For
instance, you cannot add a partition to a nonpartitioned table.

VALUES LESS
THAN

specifies the noninclusive upper bound for the current partition.

value_list is an ordered list of literal values corresponding to column_list in the
partition_by_range_clause. You can substitute the keyword
MAXVALUE for any literal in value_list. MAXVALUE specifies a
maximum value that will always sort higher than any other value,
including NULL.

Specifying a value other than MAXVALUE for the highest partition
bound imposes an implicit integrity constraint on the table. See

Oracle8i Concepts for more information about partition bounds.

Note: If table is partitioned on a DATE column, and if the NLS date
format does not specify the century with the year, you must use the
TO_DATE function with a 4-character format mask for the year. The
NLS date format is determined implicitly by NLS_TERRITORY or
explicitly by NLS_DATE_FORMAT. For more information on these
initialization parameters, see Oracle8i National Language Support Guide.
See also "Partitioned Table Example" on page 7-389.

LOB_storage_clause lets you specify LOB storage characteristics for one or more LOB
items in this partition. If you do not specify the LOB_storage_clause for
a LOB item, Oracle generates a name for each LOB data partition. The
system-generated names for LOB data and LOB index partitions take
the form SYS_LOB_Pn and SYS_IL_Pn, respectively, where P stands
for "partition" and n is a system-generated number.

partition_level_
subpartitioning

lets you specify hash subpartitions for partition. This clause overrides
the default settings established in the subpartition_clause.

Restriction: You can specify this clause only for a composite-
partitioned table.
7-380 SQL Reference

CREATE TABLE
■ You can specify individual subpartitions by name, and optionally
the tablespace where each should be stored, or

■ You can specify the number of subpartitions (and optionally one
or more tablespaces where they are to be stored). In this case,
Oracle assigns subpartition names of the form SYS_SUBPnnn.
The number of tablespaces does not have to equal the number of
subpartitions. If the number of partitions is greater than the
number of tablespaces, Oracle cycles through the names of the
tablespaces.

row_movement_
clause

determines whether a row can be moved to a different partition or subpartition because of
a change to one or more of its key values during an update operation.

Restriction: You can specify this clause only for a partitioned table.

ENABLE allows Oracle to move a row to a different partition or subpartition as
the result of an update to the partitioning or subpartitioning key.

WARNING: Moving a row in the course of an UPDATE operation
changes that row’s ROWID.

DISABLE returns an error if an update to a partitioning or subpartitioning key
would result in a row moving to a different partition or subpartition.
This is the default.

parallel_clause causes creation of the table to be parallelized, and sets the default degree of parallelism for
queries and DML on the table after creation.

NOPARALLEL specifies serial execution. This is the default.

PARALLEL causes Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer specifies the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use
one or two parallel execution servers. Normally Oracle calculates the
optimum degree of parallelism, so it is not necessary for you to
specify integer.

Restriction: If table contains any columns of LOB or user-defined object type, this statement
as well as subsequent INSERT, UPDATE, or DELETE operations on table are executed
serially without notification. Subsequent queries, however, will be executed in parallel.

Notes

■ This syntax supersedes syntax appearing in earlier releases of Oracle. Superseded
syntax is still supported for backward compatibility, but may result in slightly
different behavior. For more information, see Oracle8i Migration.
SQL Statements 7-381

CREATE TABLE
■ A parallel hint overrides the effect of the parallel_clause.

■ If the query portion of a parallel DML statement (INSERT, UPDATE, or DELETE) or a
parallel DDL statement (CREATE TABLE ... AS SELECT) statement references a remote
object, the operation is executed serially without notification.

For more information on parallelized operations, see Oracle8i Tuning, Oracle8i Concepts, and
Oracle8i Parallel Server Concepts and Administration.

enable_disable_
clause

lets you specify whether Oracle should apply a constraint. By default, constraints are
created in ENABLE VALIDATE state. For more information on constraints, see "constraint_
clause" on page 7-217.

Restrictions:

■ To enable or disable any integrity constraint, you must have defined the constraint in
this or a previous statement.

■ You cannot enable a referential integrity constraint unless the referenced unique or
primary key constraint is already enabled.

ENABLE specifies that the constraint will be applied to all new data in the table.

■ VALIDATE additionally specifies that all old data also complies with the constraint.
An enabled validated constraint guarantees that all data is and will continue to be
valid.

If any row in the table violates the integrity constraint, the constraint remains disabled
and Oracle returns an error. If all rows comply with the constraint, Oracle enables the
constraint. Subsequently, if new data violates the constraint, Oracle does not execute
the statement and returns an error indicating the integrity constraint violation.

If you place a primary key constraint in ENABLE VALIDATE mode, the validation
process will verify that the primary key columns contain no nulls. To avoid this
overhead, mark each column in the primary key NOT NULL before enabling the
table’s primary key constraint. (For optimal results, do this before entering data into
the column.)

■ NOVALIDATE ensures that all new DML operations on the constrained data comply
with the constraint. This clause does not ensure that existing data in the table complies
with the constraint and therefore does not require a table lock.

■ If you specify neither VALIDATE nor NOVALIDATE, the default is VALIDATE.

■ If you enable a unique or primary key constraint, and if no index exists on the key,
Oracle creates a unique index. This index is dropped if the constraint is subsequently
disabled, so Oracle rebuilds the index every time the constraint is enabled.

To avoid rebuilding the index and eliminate redundant indexes, create new primary
key and unique constraints initially disabled. Then create (or use existing) nonunique
indexes to enforce the constraint. Oracle does not drop a nonunique index when the
constraint is disabled, so subsequent ENABLE operations are facilitated.
7-382 SQL Reference

CREATE TABLE
■ If you change the state of any single constraint from ENABLE NOVALIDATE to
ENABLE VALIDATE, the operation can be performed in parallel, and does not block
reads, writes, or other DDL operations.

Restriction: You cannot enable a foreign key that references a unique or primary key that is
disabled.

DISABLE disables the integrity constraint. Disabled integrity constraints appear in the data
dictionary along with enabled constraints. If you do not specify this clause when creating a
constraint, Oracle automatically enables the constraint.

■ DISABLE VALIDATE disables the constraint and drops the index on the constraint,
but keeps the constraint valid. This feature is most useful in data warehousing situa-
tions, where the need arises to load into a range-partitioned table a quantity of data
with a distinct range of values in the unique key. In such situations, the disable vali-
date state enables you to save space by not having an index. You can then load data
from a nonpartitioned table into a partitioned table using the exchange_partition_clause
of the ALTER TABLE statement. All other modifications to the table by other SQL state-
ments are disallowed.

If the unique key coincides with the partitioning key of the partitioned table, disabling
the constraint saves overhead and has no detrimental effects. If the unique key does
not coincide with the partitioning key, Oracle performs automatic table scans during
the exchange to validate the constraint, which might offset the benefit of loading
without an index.

■ DISABLE NOVALIDATE signifies that Oracle makes no effort to maintain the con-
straint (because it is disabled) and cannot guarantee that the constraint is true (because
it is not being validated). For information on when to use this setting, see Oracle8i Tun-
ing.

You cannot drop a table whose primary key is being referenced by a foreign key even
if the foreign key constraint is in DIASABLE NOVALIDATE state. Further, the
optimizer can use constraints in DISABLE NOVALIDATE state.

■ If you specify neither VALIDATE nor NOVALIDATE, the default is NOVALIDATE.

■ If you disable a unique or primary key constraint that is using a unique index, Oracle
drops the unique index.

UNIQUE enables or disables the unique constraint defined on the specified column or combination

of columns.

PRIMARY KEY enables or disables the table’s primary key constraint.

CONSTRAINT enables or disables the integrity constraint named constraint.

using_index_clause specifies parameters for the index Oracle creates to enforce a unique or primary key
constraint. Oracle gives the index the same name as the constraint. You can choose the
values of the INITRANS, MAXTRANS, TABLESPACE, STORAGE, and PCTFREE
parameters for the index. These parameters are described earlier in this statement. For a
description of NOSORT and of LOGGING|NOLOGGING in relation to indexes, see
"CREATE INDEX" on page 7-273.
SQL Statements 7-383

CREATE TABLE
Restriction: Use these parameters only when enabling unique and primary key constraints.

EXCEPTIONS
INTO

specifies a table into which Oracle places information about rows that violate the integrity
constraint. The table must exist on your local database before you use this clause. If you
omit schema, Oracle assumes the exception table is in your own schema.

Note: You must create an appropriate exceptions report table to accept information from
the EXCEPTIONS INTO clause of the enable_disable_clause before enabling the constraint.
You can create an exception table by submitting the script UTLEXCPT1.SQL, which creates
a table named EXCEPTIONS. You can create additional exceptions tables with different
names by modifying and resubmitting the script. (You can use the UTLEXCPT1.SQL script
with index-organized tables. You could not use earlier versions of the script for this

purpose. See Oracle8i Migration for compatibility information.)

For more information on identifying exceptions, see Oracle8i Application Developer’s Guide -
Fundamentals.

CASCADE disables any integrity constraints that depend on the specified integrity constraint. To
disable a primary or unique key that is part of a referential integrity constraint, you must
specify this clause.

Restriction: You can specify CASCADE only if you have specified DISABLE.

CACHE for data that will be accessed frequently, specifies that the blocks retrieved for this table are
placed at the most recently used end of the LRU list in the buffer cache when a full table
scan is performed. This clause is useful for small lookup tables.

As a parameter in the LOB_storage_clause, CACHE specifies that Oracle preallocates and
retains LOB data values in memory for faster access.

Restriction: You cannot specify CACHE for an index-organized table.

NOCACHE for data that will not be accessed frequently, specifies that the blocks retrieved for this table
are placed at the least recently used end of the LRU list in the buffer cache when a full table
scan is performed. This is the default.

For LOBs, the LOB value either is not brought into the buffer cache or is brought into the
buffer cache and placed at the least recently used end of the LRU list.

As a parameter in the LOB_storage_clause, NOCACHE specifies that LOB values are not
preallocated in memory.

Restriction: You cannot specify NOCACHE for an index-organized table.

MONITORING specifies that modification statistics can be collected on this table. These statistics are
estimates of the number of rows affected by DML statements over a particular period of
time. They are available for use by the optimizer or for analysis by the user.

Restriction: You cannot specify MONITORING for a temporary table.

NOMONITORING specifies that the table will not have modification statistics collected. This is the default.

Restriction: You cannot specify NOMONITORING for a temporary table.
7-384 SQL Reference

CREATE TABLE
AS subquery inserts the rows returned by the subquery into the table upon its creation. See "SELECT
and Subqueries" on page 7-541.

Restrictions:

■ The number of columns in the table must equal the number of expressions in the
subquery.

■ The column definitions can specify only column names, default values, and integrity
constraints, not datatypes.

■ You cannot define a referential integrity constraint in a CREATE TABLE statement that
contains AS subquery. Instead, you must create the table without the constraint and
then add it later with an ALTER TABLE statement.

If you specify the parallel_clause in this statement, Oracle will ignore any value you specify
for the INITIAL storage parameter, and will instead use the value of the NEXT parameter.
For information on these parameters, see the "storage_clause" on page 7-575.

Oracle derives datatypes and lengths from the subquery. Oracle also follows the following
rules for integrity constraints:

■ Oracle automatically defines any NOT NULL constraints on columns in the new table
that existed on the corresponding columns of the selected table if the subquery selects
the column rather than an expression containing the column.

■ If a CREATE TABLE statement contains both AS subquery and a CONSTRAINT clause
or an ENABLE clause with the EXCEPTIONS INTO clause, Oracle ignores AS subquery.
If any rows violate the constraint, Oracle does not create the table and returns an error.

If all expressions in subquery are columns, rather than expressions, you can omit the
columns from the table definition entirely. In this case, the names of the columns of table
are the same as the columns in subquery.

You can use subquery in combination with the TO_LOB function to convert the values in a
LONG column in another table to LOB values in a column of the table you are creating. For
a discussion of why and when to copy LONGs to LOBs, see Oracle8i Migration. For a
description of how to use the TO_LOB function, see "Conversion Functions" on page 4-4.

Note: If subquery returns (in part or totally) the equivalent of an existing materialized view,
Oracle may use the materialized view (for query rewrite) in place of one or more tables
specified in subquery. For more information on materialized views and query rewrite, see
Oracle8i Tuning.

order_by_clause orders rows returned by the statements. For more information on the
order_by_clause, refer to "SELECT and Subqueries" on page 7-541.

Note: When specified with CREATE TABLE, this clause does not
necessarily order data cross the entire table. (For example, it does not
order across partitions.) Specify this clause if you intend to create an
index on the same key as the ORDER BY key column. Oracle will
cluster data on the ORDER BY key so that it corresponds to the index
key.
SQL Statements 7-385

CREATE TABLE
Examples

General Example To define the EMP table owned by SCOTT, you could issue the

following statement:

CREATE TABLE scott.emp
 (empno NUMBER CONSTRAINT pk_emp PRIMARY KEY,
 ename VARCHAR2(10) CONSTRAINT nn_ename NOT NULL
 CONSTRAINT upper_ename
 CHECK (ename = UPPER(ename)),
 job VARCHAR2(9),
 mgr NUMBER CONSTRAINT fk_mgr
 REFERENCES scott.emp(empno),
 hiredate DATE DEFAULT SYSDATE,
 sal NUMBER(10,2) CONSTRAINT ck_sal
 CHECK (sal > 500),
 comm NUMBER(9,0) DEFAULT NULL,
 deptno NUMBER(2) CONSTRAINT nn_deptno NOT NULL
 CONSTRAINT fk_deptno
 REFERENCES scott.dept(deptno))
 PCTFREE 5 PCTUSED 75;

This table contains eight columns. The EMPNO column is of datatype NUMBER

and has an associated integrity constraint named PK_EMP. The HIRDEDATE

column is of datatype DATE and has a default value of SYSDATE, and so on.

This table definition specifies a PCTFREE of 5 and a PCTUSED of 75, which is

appropriate for a relatively static table. The definition also defines integrity

constraints on some columns of the EMP table.

Temporary Table Example The following statement creates a temporary table

FLIGHT_SCHEDULE for use in an automated airline reservation scheduling

system. Each client has its own session and can store temporary schedules. The

temporary schedules are deleted at the end of the session.

CREATE GLOBAL TEMPORARY TABLE flight_schedule (
 startdate DATE,
 enddate DATE,
 cost NUMBER)
 ON COMMIT PRESERVE ROWS;

For object tables, subquery can contain either one expression corresponding to the table
type, or the number of top-level attributes of the table type.
7-386 SQL Reference

CREATE TABLE
Storage Example To define the sample table SALGRADE in the HUMAN_

RESOURCE tablespace with a small storage capacity and limited allocation

potential, issue the following statement:

CREATE TABLE salgrade
 (grade NUMBER CONSTRAINT pk_salgrade
 PRIMARY KEY
 USING INDEX TABLESPACE users_a,
 losal NUMBER,
 hisal NUMBER)
 TABLESPACE human_resource
 STORAGE (INITIAL 6144
 NEXT 6144
 MINEXTENTS 1
 MAXEXTENTS 5);

The above statement also defines a primary key constraint on the GRADE column

and specifies that the index Oracle creates to enforce this constraint is created in the

USERS_A tablespace.

For more examples of defining integrity constraints, see the "constraint_clause" on

page 7-217.

PARALLEL Example The following statement creates a table using an optimum

number of parallel execution servers to scan SCOTT.EMP and to populate EMP_

DEPT:

CREATE TABLE emp_dept
 PARALLEL
 AS SELECT * FROM scott.emp
 WHERE deptno = 10;

Using parallelism speeds up the creation of the table because Oracle uses parallel

execution servers to create the table. After the table is created, querying the table is

also faster, because the same degree of parallelism is used to access the table.

NOPARALLEL Example The following statement creates a table serially.

Subsequent DML and queries on the table will also be serially executed.

CREATE TABLE emp_dept
 AS SELECT * FROM scott.emp
 WHERE deptno = 10;

ENABLE VALIDATE Example The following statement creates the DEPT table,

defines a primary key constraint, and places it in ENABLE VALIDATE state:
SQL Statements 7-387

CREATE TABLE
CREATE TABLE dept
 (deptno NUMBER (2) PRIMARY KEY,
 dname VARCHAR2(10),
 loc VARCHAR2(9))
 TABLESPACE user_a;

DISABLE Example The following statement creates the DEPT table and defines a

disabled primary key constraint:

CREATE TABLE dept
 (deptno NUMBER (2) PRIMARY KEY DISABLE,
 dname VARCHAR2(10),
 loc VARCHAR2(9));

EXCEPTIONS INTO Example The following example creates the ORDER_

EXEPTIONS table to hold rows from an index-organized table ORDERS that

violate integrity constraint CHECK_ORDERS:

CREATE TABLE orders
 (ord_num NUMBER PRIMARY KEY,
 ord_quantity NUMBER)
 ORGANIZATION INDEX;

EXECUTE DBMS_IOT.BUILD_EXCEPTIONS_TABLE
 (’SCOTT’, ’ORDERS’, ’ORDER_EXCEPTIONS’);

ALTER TABLE orders
 ADD CONSTRAINT CHECK_ORDERS CHECK (ord_quantity > 0)
 EXCEPTIONS INTO ORDER_EXCEPTIONS;

To specify an exception table, you must have the privileges necessary to insert rows

into the table. For more information, see "INSERT" on page 7-512. To examine the

identified exceptions, you must have the privileges necessary to query the

exceptions table. For information on these privileges, see "SELECT and Subqueries"

on page 7-541.

Nested Table Example The following statement creates relational table

EMPLOYEE with a nested table column PROJECTS:

CREATE TABLE employee
 (empno NUMBER, name CHAR(31), projects PROJ_TABLE_TYPE)
 NESTED TABLE projects STORE AS nested_proj_table(
 (PRIMARY KEY (nested_table_id, pno)) ORGANIZATION INDEX)
 RETURN AS LOCATOR;
7-388 SQL Reference

CREATE TABLE
LOB Column Example The following statement creates table LOB_TAB with two

LOB columns and specifies the LOB storage characteristics:

CREATE TABLE lob_tab (col1 BLOB, col2 CLOB)
 STORAGE (INITIAL 256 NEXT 256)
 LOB (col1, col2) STORE AS
 (TABLESPACE lob_seg_ts
 STORAGE (INITIAL 6144 NEXT 6144)
 CHUNK 4000
 NOCACHE LOGGING);

In the example, Oracle rounds the CHUNK up to 4096 (the nearest multiple of the

block size of 2048).

Index-Organized Table Example The following statement creates an index-

organized table:

CREATE TABLE docindex
 (token CHAR(20),
 doc_oid INTEGER,
 token_frequency SMALLINT,
 token_occurrence_data VARCHAR2(512),
 CONSTRAINT pk_docindex PRIMARY KEY (token, doc_oid))
 ORGANIZATION INDEX TABLESPACE text_collection
 PCTTHRESHOLD 20 INCLUDING token_frequency
 OVERFLOW TABLESPACE text_collection_overflow;

Partitioned Table Example The following statement creates a table with three

partitions:

CREATE TABLE stock_xactions
 (stock_symbol CHAR(5),
 stock_series CHAR(1),
 num_shares NUMBER(10),
 price NUMBER(5,2),
 trade_date DATE)
 STORAGE (INITIAL 100K NEXT 50K) LOGGING
 PARTITION BY RANGE (trade_date)
 (PARTITION sx1992 VALUES LESS THAN (TO_DATE(’01-JAN-1993’,’DD-MON-YYYY’))
 TABLESPACE ts0 NOLOGGING,
 PARTITION sx1993 VALUES LESS THAN (TO_DATE(’01-JAN-1994’,’DD-MON-YYYY’))
 TABLESPACE ts1,
 PARTITION sx1994 VALUES LESS THAN (TO_DATE(’01-JAN-1995’,’DD-MON-YYYY’))
 TABLESPACE ts2);
SQL Statements 7-389

CREATE TABLE
For information about partitioned table maintenance operations, see the Oracle8i
Administrator’s Guide.

Partitioned Table with LOB Columns Example This statement creates a

partitioned table PT with two partitions P1 and P2, and three LOB columns, B, C,

and D:

CREATE TABLE PT (A NUMBER, B BLOB, C CLOB, D CLOB)
 LOB (B,C,D) STORE AS (STORAGE (NEXT 20M))
 PARTITION BY RANGE (A)
 (PARTITION P1 VALUES LESS THAN (10) TABLESPACE TS1
 LOB (B,D) STORE AS (TABLESPACE TSA STORAGE (INITIAL 20M)),
 PARTITION P2 VALUES LESS THAN (20)
 LOB (B,C) STORE AS (TABLESPACE TSB)
 TABLESPACE TSX;

Partition P1 will be in tablespace TS1. The LOB data partitions for B and D will be

in tablespace TSA. The LOB data partition for C will be in tablespace TS1. The

storage attribute INITIAL is specified for LOB columns B and D; other attributes

will be inherited from the default table-level specification. The default LOB storage

attributes not specified at the table level will be inherited from the tablespace TSA

for columns B and D and tablespace TS1 for column C. LOB index partitions will be

in the same tablespaces as the corresponding LOB data partitions. Other storage

attributes will be based on values of the corresponding attributes of the LOB data

partitions and default attributes of the tablespace where the index partitions reside.

Partition P2 will be in the default tablespace TSX. The LOB data for B and C will be

in tablespace TSB. The LOB data for D will be in tablespace TSX. The LOB index for

columns B and C will be in tablespace TSB. The LOB index for column D will be in

tablespace TSX.

Hash-Partitioned Table Example This statement creates a table partitioned by

hash on columns containing data about chemicals. The hash partitions are stored in

tablespaces TBS1, TBS2, TBS3, and TBS4:

CREATE TABLE exp_data (
 d DATE, temperature NUMBER, Fe2O3_concentration NUMBER,
 HCl_concentration NUMBER, Au_concentration NUMBER,
 amps NUMBER, observation VARCHAR(4000))
 PARTITION BY HASH (HCl_concentration, Au_concentration)
 PARTITIONS 32 STORE IN (tbs1, tbs2, tbs3, tbs4);

Composite-Partitioned Table Example This statement creates a composite-

partitioned table. The range partitioning facilitates data and partition pruning by
7-390 SQL Reference

CREATE TABLE
sale date. The hash subpartitioning enables subpartition elimination for queries by

a specific item number. Most of the partitions consist of 8 subpartitions. However,

the partition covering the slowest quarter will have 4 subpartitions, and the

partition covering the busiest quarter will have 16 subpartitions.

CREATE TABLE sales (item INTEGER, qty INTEGER,
 store VARCHAR(30),
 dept NUMBER, sale_date DATE)
 PARTITION BY RANGE (sale_date)
 SUBPARTITION BY HASH(item)
 SUBPARTITIONS 8
 STORE IN (tbs1, tbs2, tbs3, tbs4, tbs5, tbs6, tbs7, tbs8)
 (PARTITION q1_1997
 VALUES LESS THAN (TO_DATE(’01-apr-1997’, ’dd-mon-yyyy’)),
 PARTITION q2_1997
 VALUES LESS THAN (TO_DATE(’01-jul-1997’, ’dd-mon-yyyy’)),
 PARTITION q3_1997
 VALUES LESS THAN (TO_DATE(’01-oct-1997’, ’dd-mon-yyyy’))
 (SUBPARTITION q3_1997_s1 TABLESPACE ts1,
 SUBPARTITION q3_1997_s2 TABLESPACE ts3,
 SUBPARTITION q3_1997_s3 TABLESPACE ts5,
 SUBPARTITION q3_1997_s4 TABLESPACE ts7),
 PARTITION q4_1997
 VALUES LESS THAN (TO_DATE(’01-jan-1998’, ’dd-mon-yyyy’))
 SUBPARTITIONS 16
 STORE IN (tbs1, tbs3, tbs5, tbs7, tbs8, tbs9, tbs10,
 tbs11),
 PARTITION q1_1998
 VALUES LESS THAN (TO_DATE(’01-apr-1998’, ’dd-mon-yyyy’)));

Object Table Examples Consider object type DEPT_T:

CREATE TYPE dept_t AS OBJECT
 (dname VARCHAR2(100),
 address VARCHAR2(200));

Object table DEPT holds department objects of type DEPT_T:

CREATE TABLE dept OF dept_t;

The following statement creates object table SALESREPS with a user-defined object

type, SALESREP_T:

CREATE OR REPLACE TYPE salesrep_t AS OBJECT
 (repId NUMBER,
 repName VARCHAR2(64));
SQL Statements 7-391

CREATE TABLE
CREATE TABLE salesreps OF salesrep_t;

Nested Table Example The following statement creates relational table

EMPLOYEE with a nested table column PROJECTS:

CREATE TABLE employee (empno NUMBER, name CHAR(31),
 projects PROJ_TABLE_TYPE)
 NESTED TABLE projects STORE AS nested_proj_table;

REF Example The following example creates object type DEPT_T and object table

DEPT to store instances of all departments. A table with a scoped REF is then

created.

CREATE TYPE dept_t AS OBJECT
 (dname VARCHAR2(100),
 address VARCHAR2(200));

CREATE TABLE dept OF dept_t;

CREATE TABLE emp
 (ename VARCHAR2(100),
 enumber NUMBER,
 edept REF dept_t SCOPE IS dept);

The following statement creates a table with a REF column which has a referential

constraint defined on it:

CREATE TABLE emp
 (ename VARCHAR2(100),
 enumber NUMBER,
 edept REF dept_t REFERENCES dept);

User-Defined OID Example This example creates an object type and a

corresponding object table whose OID is primary key based:

CREATE TYPE emp_t AS OBJECT (empno NUMBER, address CHAR(30));
CREATE TABLE emp OF emp_t (empno PRIMARY KEY)
 OBJECT IDENTIFIER IS PRIMARY KEY;

You can subsequently reference the EMP object table in either of the following two

ways:

CREATE TABLE dept (dno NUMBER
 mgr_ref REF emp_t SCOPE IS emp);
CREATE TABLE dept (
 dno NUMBER,
7-392 SQL Reference

CREATE TABLE
 mgr_ref REF emp_t CONSTRAINT mgr_in_emp REFERENCES emp);

Constraints on Type Columns Example

CREATE TYPE address AS OBJECT
 (hno NUMBER,
 street VARCHAR2(40),
 city VARCHAR2(20),
 zip VARCHAR2(5),
 phone VARCHAR2(10));

CREATE TYPE person AS OBJECT
 (name VARCHAR2(40),
 dateofbirth DATE,
 homeaddress address,
 manager REF person);

CREATE TABLE persons OF person
 (homeaddress NOT NULL
 UNIQUE (homeaddress.phone),
 CHECK (homeaddress.zip IS NOT NULL),
 CHECK (homeaddress.city <> ’San Francisco’));

PARALLEL Example The following statement creates a table using 10 parallel

execution servers, 5 to scan SCOTT.EMP and another 5 to populate EMP_DEPT:

CREATE TABLE emp_dept
 PARALLEL (5)
 AS SELECT * FROM scott.emp
 WHERE deptno = 10;
SQL Statements 7-393

CREATE TABLESPACE
CREATE TABLESPACE

Syntax

filespec: See "filespec" on page 7-490.

autoextend_clause ::=

CREATE TABLESPACE tablespace DATAFILE filespec
autoextend_clause

,

MINIMUM EXTENT integer

K

M

LOGGING

NOLOGGING

DEFAULT storage_clause

ONLINE

OFFLINE

PERMANENT

TEMPORARY

extent_management_clause
;

AUTOEXTEND

OFF

ON
NEXT integer

K

M
maxsize_clause
7-394 SQL Reference

CREATE TABLESPACE
maxsize_clause ::=

storage_clause : See "storage_clause" on page 7-575.

extent_management_clause ::=

Purpose
To create a tablespace. A tablespace is an allocation of space in the database that

can contain schema objects. For information on tablespaces, see Oracle8i Concepts.

When you create a tablespace, it is initially a read-write tablespace. You can

subsequently use the ALTER TABLESPACE statement to take the tablespace offline

or online, add datafiles to it, or make it a read-only tablespace. See "ALTER

TABLESPACE" on page 7-164.

You can also drop a tablespace from the database with the DROP TABLESPACE

statement. See "DROP TABLESPACE" on page 7-477.

Prerequisites
You must have CREATE TABLESPACE system privilege. Also, the SYSTEM

tablespace must contain at least two rollback segments including the SYSTEM

rollback segment.

Before you can create a tablespace you must create a database to contain it. See

"CREATE DATABASE" on page 7-249.

MAXSIZE

UNLIMITED

integer

K

M

EXTENT MANAGEMENT

DICTIONARY

LOCAL

AUTOALLOCATE

UNIFORM
SIZE integer

K

M

SQL Statements 7-395

CREATE TABLESPACE
Keywords and Parameters

tablespace is the name of the tablespace to be created.

DATAFILE
filespec

specifies the datafile or files to make up the tablespace. See "filespec" on page 7-490.

Note: For operating systems that support raw devices, the filespec REUSE keyword has no
meaning when specifying a raw device as a datafile. Such a CREATE TABLESPACE
statement will succeed whether or not you specify REUSE.

autoextend_
clause

enables or disables the automatic extension of the datafile.

OFF disables autoextend if it is turned on. NEXT and MAXSIZE are set to
zero. Values for NEXT and MAXSIZE must be respecified in further
ALTER TABLESPACE AUTOEXTEND statements.

ON enables autoextend.

NEXT specifies the disk space to allocate to the datafile when more extents
are required.

maxsize_clause specifies the maximum disk space allowed for allocation to the
datafile.

UNLIMITED sets no limit on allocating disk space to the datafile.

MINIMUM
EXTENT integer

controls free space fragmentation in the tablespace by ensuring that every used or free
extent size in a tablespace is at least as large as, and is a multiple of, integer. For more
information about using MINIMUM EXTENT to control fragmentation, see Oracle8i
Concepts.

Note: This clause is not relevant for a dictionary-managed temporary tablespace.

LOGGING|
NOLOGGING

specifies the default logging attributes of all tables, indexes, and partitions within the
tablespace. LOGGING is the default.

The tablespace-level logging attribute can be overridden by logging specifications at the
table, index, and partition levels.

Only the following operations support the NOLOGGING mode:

DML: direct-load INSERT (serial or parallel), Direct Loader (SQL*Loader)

DDL: CREATE TABLE ... AS SELECT, CREATE INDEX, ALTER INDEX ... REBUILD,
ALTER INDEX ... REBUILD PARTITION, ALTER INDEX ... SPLIT PARTITION, ALTER
TABLE ... SPLIT PARTITION, and ALTER TABLE ... MOVE PARTITION
7-396 SQL Reference

CREATE TABLESPACE
In NOLOGGING mode, data is modified with minimal logging (to mark new extents
INVALID and to record dictionary changes). When applied during media recovery, the
extent invalidation records mark a range of blocks as logically corrupt, because the redo
data is not logged. Therefore, if you cannot afford to lose the object, you should take a
backup after the NOLOGGING operation.

DEFAULT
storage_clause

specifies the default storage parameters for all objects created in the tablespace. For a
dictionary-managed temporary tablespace, Oracle considers only the NEXT parameter of
the storage_clause. For information on storage parameters, see the "storage_clause" on
page 7-575.

ONLINE makes the tablespace available immediately after creation to users who have been
granted access to the tablespace. This is the default.

OFFLINE makes the tablespace unavailable immediately after creation.

The data dictionary view DBA_TABLESPACES indicates whether each tablespace is
online or offline.

PERMANENT specifies that the tablespace will be used to hold permanent objects. This is the default.

TEMPORARY specifies that the tablespace will be used only to hold temporary objects, for example,
segments used by implicit sorts to handle ORDER BY clauses.

extent_
management_
clause

specifies how the extents of the tablespace will be managed.

DICTIONARY specifies that the tablespace is managed using dictionary tables. This

is the default

LOCAL specifies that tablespace is locally managed. Locally managed

tablespaces have some part of the tablespace set aside for a bitmap.

For a discussion of locally managed tablespaces, see Oracle8i Concepts.

■ AUTOALLOCATE specifies that the tablespace is system man-
aged. Users cannot specify an extent size.

■ UNIFORM specifies that the tablespace is managed with uniform
extents of SIZE bytes. Use K or M to specify the extent size in kilo-
bytes or megabytes. The default SIZE is 1 megabyte.

If you do not specify either AUTOALLOCATE or UNIFORM, then

AUTOALLOCATE is the default.

Restriction: If you specify LOCAL, you cannot specify DEFAULT

storage_clause, MINIMUM EXTENT, or TEMPORARY.
SQL Statements 7-397

CREATE TABLESPACE
Examples

DEFAULT Storage Example This statement creates a tablespace named

TABSPACE_2 with one datafile:

CREATE TABLESPACE tabspace_2
 DATAFILE ’diska:tabspace_file2.dat’ SIZE 20M
 DEFAULT STORAGE (INITIAL 10K NEXT 50K
 MINEXTENTS 1 MAXEXTENTS 999)
 ONLINE;

AUTOEXTEND Example This statement creates a tablespace named TABSPACE_3

with one datafile. When more space is required, 50 kilobyte extents will be added

up to a maximum size of 10 megabytes:

CREATE TABLESPACE tabspace_5
 DATAFILE ’diskb:tabspace_file3.dat’ SIZE 500K REUSE
 AUTOEXTEND ON NEXT 500K MAXSIZE 10M;

MINIMUM EXTENT Example This statement creates tablespace TABSPACE_5 with

one datafile and allocates every extent as a multiple of 64K:

CREATE TABLESPACE tabspace_3
 DATAFILE ’tabspace_file5.dbf’ SIZE 2M
 MINIMUM EXTENT 64K
 DEFAULT STORAGE (INITIAL 128K NEXT 128K)
 LOGGING;

Locally Managed Example In the following statement, we assume that the

database block size is 2K.

CREATE TABLESPACE tbs_1 DATAFILE ’file_1.f’ SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K;

This statement creates a locally managed tablespace in which every extent is 128K

and each bit in the bit map describes 64 blocks.
7-398 SQL Reference

CREATE TEMPORARY TABLESPACE
CREATE TEMPORARY TABLESPACE

Syntax

filespec: See "filespec" on page 7-490.

autoextend_clause ::=

maxsize_clause ::=

Purpose
To create a temporary tablespace, which is an allocation of space in the database

that can contain schema objects for the duration of a session.

CREATE TEMPORARY TABLESPACE tablespace TEMPFILE filespec
autoextend_clause

EXTENT MANAGEMENT LOCAL UNIFORM
SIZE integer

K

M

;

AUTOEXTEND

OFF

ON
NEXT integer

K

M
maxsize_clause

MAXSIZE

UNLIMITED

integer

K

M

SQL Statements 7-399

CREATE TEMPORARY TABLESPACE
Prerequisites
You must have the CREATE TABLESPACE system privilege.

Keywords and Parameters

Example
This statement creates a temporary tablespace in which each extent is 16 M.

CREATE TEMPORARY TABLESPACE tbs_1 TEMPFILE ’file_1.f’
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 16M;

If we assume the default database block size of 2K, and that each bit in the map

represents one extent, then each bit maps 8,000 blocks.

tablespace is the name of the temporary tablespace.

TEMPFILE filespec specifies the tempfiles that make up the tablespace. See "filespec" on page 7-490.

Note: Media recovery does not recognize tempfiles.

autoextend_clause enables or disables the automatic extension of the tempfile.

OFF disables autoextend if it is turned on. NEXT and MAXSIZE are set to
zero. Values for NEXT and MAXSIZE must be respecified in further
ALTER TABLESPACE AUTOEXTEND statements.

ON enables autoextend.

NEXT specifies the disk space to allocate to the tempfile when more extents
are required.

maxsize_clause specifies the maximum disk space allowed for allocation to the tempfile.

integer specifies in bytes the maximum disk space allowed for allocation to the
tempfile. Use K or M to specify this space in kilobytes or megabytes.

UNLIMITED sets no limit on allocating disk space to the tempfile.

EXTENT
MANAGEMENT
LOCAL

specifies that the tablespace is locally managed, meaning that some part of the tablespace is
set aside for a bitmap. For a discussion of locally managed tablespaces, see Oracle8i
Concepts.

UNIFORM determines the size of the extents of the temporary tablespace in bytes.
All extents of temporary tablespaces are the same size (uniform). If you
do not specify this clause, Oracle uses uniform extents of 1M.

SIZE specifies in bytes the size of the tablespace extents. Use K or M to
specify the size in kilobytes or megabytes.

If you do not specify SIZE, Oracle uses the default extent size of 1 M.
7-400 SQL Reference

CREATE TRIGGER
7SQL Statements

CREATE TRIGGER

Syntax

dml_event_clause ::=

CREATE
OR REPLACE

TRIGGER
schema .

trigger

BEFORE

AFTER

INSTEAD OF

dml_event_clause

ddl_event

OR

database_event

OR ON

schema .
SCHEMA

DATABASE

referencing_clause
WHEN (condition) pl/sql_block

call_procedure_statement

DELETE

INSERT

UPDATE
OF column

,

OR

ON

schema .
table

NESTED TABLE nested_table_column OF schema .
view
SQL Statements 7-401

CREATE TRIGGER
referencing_clause ::=

Purpose
To create and enable a database trigger. A database trigger is

■ A stored PL/SQL block associated with a table, a schema, or the database

■ An anonymous PL/SQL block or a call to a procedure implemented in PL/SQL

or Java

Oracle automatically executes a trigger when specified conditions occur. For a

description of the various types of triggers, see also Oracle8i Concepts.

For more information on how to design triggers for the above purposes, see

Oracle8i Application Developer’s Guide - Fundamentals.

Prerequisites
Before a trigger can be created, the user SYS must run the SQL script

DBMSSTDX.SQL. The exact name and location of this script depend on your oper-

ating system.

■ To create a trigger in your own schema on a table in your own schema or on

your own schema (SCHEMA), you must have the CREATE TRIGGER privilege.

■ To create a trigger in any schema on a table in any schema, or on another user’s

schema (schema.SCHEMA), you must have the CREATE ANY TRIGGER

privilege.

■ In addition to the preceding privileges, to create a trigger on DATABASE, you

must have the ADMINISTER DATABASE TRIGGER system privilege.

If the trigger issues SQL statements or calls procedures or functions, then the

owner of the trigger must have the privileges necessary to perform these

REFERENCING

OLD
AS

old

NEW
AS

new

PARENT
AS

parent FOR EACH ROW
7-402 SQL Reference

CREATE TRIGGER
operations. These privileges must be granted directly to the owner, rather than

acquired through roles.

Keywords and Parameters

CREATE creates a new trigger. When you create a trigger, Oracle enables it automatically. You can
subsequently disable and enable a trigger with the DISABLE and ENABLE clause of the
ALTER TRIGGER or ALTER TABLE statement. For information on how to enable and
disable triggers, see "ALTER TRIGGER" on page 7-171 and "ALTER TABLE" on page 7-113.

If a trigger produces compilation errors, it is still created, but it fails on execution. You can
see the associated compiler error messages with the SQL*Plus command SHOW ERRORS.
This means it effectively blocks all triggering DML statements until it is disabled, replaced
by a version without compilation errors, or dropped.

OR REPLACE re-creates the trigger if it already exists. Use this clause to change the definition of an existing
trigger without first dropping it.

schema is the schema to contain the trigger. If you omit schema, Oracle creates the trigger in your
own schema.

trigger is the name of the trigger to be created.

BEFORE causes Oracle to fire the trigger before executing the triggering event. For row triggers, this is
a separate firing before each affected row is changed.

Restrictions:

■ You cannot specify a BEFORE trigger on a view or an object view.

■ When defining a BEFORE trigger for LOB columns, you can read the :OLD value but
not the :NEW value. You cannot write either the :OLD or the :NEW value.

AFTER causes Oracle to fire the trigger after executing the triggering event. For row triggers, this is a
separate firing after each affected row is changed.

Restrictions:

■ You cannot specify an AFTER trigger on a view or an object view.

■ When defining an AFTER trigger for LOB columns, you can read the :OLD value but
not the :NEW value. You cannot write either the :OLD or the :NEW value.

Note: When you create a snapshot log for a table, Oracle implicitly creates an AFTER ROW
trigger on the table. This trigger inserts a row into the snapshot log whenever an INSERT,
UPDATE, or DELETE statement modifies the table’s data. You cannot control the order in
which multiple row triggers fire. Therefore, you should not write triggers intended to affect
the content of the snapshot. For more information on snapshot logs, see CREATE
MATERIALIZED VIEW LOG / SNAPSHOT LOG on page 7-314.
SQL Statements 7-403

CREATE TRIGGER
INSTEAD OF causes Oracle to fire the trigger instead of executing the triggering event. By default,
INSTEAD OF triggers are activated for each row.

If a view is inherently updatable and has INSTEAD OF triggers, the triggers take preference.
In other words, Oracle fires the triggers instead of performing DML on the view.

Restrictions:

■ INSTEAD OF is a valid clause only for views. You cannot specify an INSTEAD OF trig-
ger on a table.

■ If a view has INSTEAD OF triggers, any views created on it must have INSTEAD OF
triggers, even if the views are inherently updatable.

■ When defining INSTEAD OF TRIGGERS for LOB columns, you can read both the :OLD
and the :NEW value, but you cannot write either the :OLD or the :NEW values.

Note: You can create multiple triggers of the same type (BEFORE, AFTER, or INSTEAD OF) that fire for the
same statement on the same table. The order in which Oracle fires these triggers is indeterminate. If your
application requires that one trigger be fired before another of the same type for the same statement, combine
these triggers into a single trigger whose trigger action performs the trigger actions of the original triggers in the
appropriate order.

dml_event_
clause

specifies one of three DML statements that can cause the trigger to fire. Oracle fires the
trigger in the existing user transaction.

DELETE causes Oracle to fire the trigger whenever a DELETE statement removes
a row from the table or an element from a nested table.

INSERT causes Oracle to fire the trigger whenever an INSERT statement adds a
row to table or an element to a nested table.

UPDATE causes Oracle to fire the trigger whenever an UPDATE statement
changes a value in one of the columns specified after OF. If you omit OF,
Oracle fires the trigger whenever an UPDATE statement changes a value
in any column of the table or nested table.

For an UPDATE trigger, you can specify object type, varray, and REF
columns after OF to indicate that the trigger should be fired whenever an
UPDATE statement changes a value in one of the columns. However,
you cannot change the values of these columns in the body of the trigger
itself.

Note: Using OCI functions or the DBMS_LOB package to update LOB
values or LOB attributes of object columns does not cause Oracle to fire
triggers defined on the table containing the columns or the attributes.
7-404 SQL Reference

CREATE TRIGGER
Restrictions:

■ You cannot specify OF with UPDATE for an INSTEAD OF trigger.
Oracle fires INSTEAD OF triggers whenever an UPDATE changes a
value in any column of the view.

■ You cannot specify nested table or LOB columns with OF.

■ See AS subquery of "CREATE VIEW" on page 7-430 for a list of con-
structs that prevent inserts, updates, or deletes on a view.

Performing DML operations directly on nested table columns does not cause Oracle to fire

triggers defined on the table containing the nested table column

ddl_event is one of three DDL statements that can cause the trigger to fire. You can create triggers for
these events on DATABASE or SCHEMA unless otherwise noted. You can create BEFORE
and AFTER triggers for these events. Oracle fires the trigger in the existing user transaction.

CREATE causes Oracle to fire the trigger whenever a CREATE statement adds a
new database object to the data dictionary.

ALTER causes Oracle to fire the trigger whenever an ALTER statement modifies
a database object in the data dictionary.

DROP causes Oracle to fire the trigger whenever a DROP statement removes a
database object from the data dictionary.

Restriction: DDL triggers are supported only for the following database objects: cluster,
function, index, package, procedure, role, sequence, synonym, table, tablespace, trigger,
type, view, and user.

database_event describes a particular state of the database that can cause the trigger to fire. You can create
triggers for these events on DATABASE or SCHEMA unless otherwise noted. For each of
these triggering events, Oracle opens an autonomous transaction scope, fires the trigger, and
commits any separate transaction (regardless of any existing user transaction). For more
information on autonomous transaction scope, see PL/SQL User’s Guide and Reference.

SERVERERROR causes Oracle to fire the trigger whenever a server error message is
logged.

LOGON causes Oracle to fire the trigger whenever a client application logs onto
the database.

LOGOFF causes Oracle to fire the trigger whenever a client applications logs off
the database.

STARTUP causes Oracle to fire the trigger whenever the database is opened.

SHUTDOWN causes Oracle to fire the trigger whenever an instance of the database is
shut down.
SQL Statements 7-405

CREATE TRIGGER
Notes:

■ Only AFTER triggers are relevant for LOGON, STARTUP, and SERVERERROR.

■ Only BEFORE triggers are relevant for LOGOFF and SHUTDOWN.

■ AFTER STARTUP and BEFORE SHUTDOWN triggers apply only to DATABASE.

ON determines the database object on which the trigger is to be created.

[schema.] table |
view

specifies the schema and table or view name of the of one of the following
on which the trigger is to be created:

■ table or view

■ object table or object view

■ a column of nested-table type

If you omit schema, Oracle assumes the table is in your own schema. You
can create triggers on index-organized tables.

Restriction: You cannot create a trigger on a table in the schema SYS.

NESTED TABLE specifies that the trigger is being defined on column nested_table_column
of a view. Such a trigger will fire only if the DML operates on the
elements of the nested table.

Restriction: You can specify NESTED TABLE only for INSTEAD OF

triggers.

DATABASE specifies that the trigger is being defined on the entire database.

SCHEMA specifies that the trigger is being defined on the current schema.

referencing_
clause

specifies correlation names. You can use correlation names in the PL/SQL block and WHEN
condition of a row trigger to refer specifically to old and new values of the current row. The
default correlation names are OLD and NEW. If your row trigger is associated with a table
named OLD or NEW, use this clause to specify different correlation names to avoid
confusion between the table name and the correlation name.

■ If the trigger is defined on a nested table, OLD and NEW refer to the row of the nested
table, and PARENT refers to the current row of the parent table.

■ If the trigger is defined on an object table or view, OLD and NEW refer to object
instances.

Restriction: This clause is valid only for DML event triggers (not DDL or database event
triggers).

FOR EACH ROW designates the trigger to be a row trigger. Oracle fires a row trigger once for each row that is
affected by the triggering statement and meets the optional trigger constraint defined in the
WHEN condition.

Note: This clause is applies only to DML events, not to DDL or database events.
7-406 SQL Reference

CREATE TRIGGER
Examples

DML Trigger Example This example creates a BEFORE statement trigger named

EMP_PERMIT_CHANGES in the schema SCOTT. You would write such a trigger

Except for INSTEAD OF triggers, if you omit this clause, the trigger is a statement trigger.
Oracle fires a statement trigger only once when the triggering statement is issued if the
optional trigger constraint is met.

INSTEAD OF trigger statements are implicitly activated for each row.

WHEN (condition) specifies the trigger restriction, which is a SQL condition that must be satisfied for Oracle to
fire the trigger. See the syntax description of condition in "Conditions" on page 5-13. This
condition must contain correlation names and cannot contain a query.

Restrictions:

■ You can specify a trigger restriction only for a row trigger. Oracle evaluates this condi-
tion for each row affected by the triggering statement.

■ You cannot specify trigger restrictions for INSTEAD OF trigger statements.

■ You can reference object columns or their attributes, or varray, nested table, or LOB
columns. You cannot invoke PL/SQL functions or methods in the trigger restriction.

pl/sql_block is the PL/SQL block that Oracle executes to fire the trigger. For information on PL/SQL,
including how to write PL/SQL blocks, see PL/SQL User’s Guide and Reference.

The PL/SQL block of a database trigger can contain one of a series of built-in functions in
the SYS schema designed solely to extract system event attributes. These functions can be
used only in the PL/SQL block of a database trigger. For information on these functions, see
Oracle8i Application Developer’s Guide - Fundamentals.

Restrictions:

■ The PL/SQL block of a trigger cannot contain transaction control SQL statements (COM-
MIT, ROLLBACK, SAVEPOINT, and SET CONSTRAINT) if the block is executed within
the same transaction. For more information, see Oracle8i Application Developer’s Guide -
Fundamentals.

■ You can reference and use LOB columns in the trigger action inside the PL/SQL block,
but you cannot modify their values within the trigger action.

call_procedure_
statement

enables you to call a stored procedure, rather than specifying inline the trigger code as a
PL/SQL block. The syntax of this statement is the same as that for "CALL" on page 7-210,
with the following exceptions:

■ You cannot specify the INTO clause of CALL, because it applies only to functions.

■ You cannot specify bind variables in expr.

■ To reference columns of tables on which the trigger is being defined, you must specify
:NEW and :OLD. See the "Calling a Procedure in a Trigger Body Example" on page 7-408.
SQL Statements 7-407

CREATE TRIGGER
to place restrictions on DML statements issued on this table (such as when such

statements could be issued).

CREATE TRIGGER scott.emp_permit_changes
 BEFORE
 DELETE OR INSERT OR UPDATE
 ON scott.emp

pl/sql block

Oracle fires this trigger whenever a DELETE, INSERT, or UPDATE statement

affects the EMP table in the schema SCOTT. The trigger EMP_PERMIT_CHANGES

is a BEFORE statement trigger, so Oracle fires it once before executing the trigger-

ing statement.

DML Trigger Example with Restriction This example creates a BEFORE row trig-

ger named SALARY_CHECK in the schema SCOTT. The PL/SQL block might spec-

ify, for example, that the employee’s salary must fall within the established salary

range for the employee’s job:

CREATE TRIGGER scott.salary_check
 BEFORE
 INSERT OR UPDATE OF sal, job ON scott.emp
 FOR EACH ROW
 WHEN (new.job <> ’PRESIDENT’)

pl/sql_block

Oracle fires this trigger whenever one of the following statements is issued:

■ an INSERT statement that adds rows to the EMP table

■ an UPDATE statement that changes values of the SAL or JOB columns of the

EMP table

SALARY_CHECK is a BEFORE row trigger, so Oracle fires it before changing each

row that is updated by the UPDATE statement or before adding each row that is

inserted by the INSERT statement.

SALARY_CHECK has a trigger restriction that prevents it from checking the salary

of the company president.

Calling a Procedure in a Trigger Body Example You could create the SALARY_

CHECK trigger described in the preceding example by calling a procedure instead

of providing the trigger body in a PL/SQL block. Assume you have defined a

procedure SCOTT.CHECK_SAL, which verifies that an employee’s salary in in an

appropriate range. Then you could create the trigger SALARY_CHECK as follows:
7-408 SQL Reference

CREATE TRIGGER
CREATE TRIGGER scott.salary_check
 BEFORE INSERT OR UPDATE OF sal, job ON scott.emp
 FOR EACH ROW
 WHEN (new.job<> ’PRESIDENT’)
 CALL check_sal(:new.job, :new.sal, :new.ename);

The procedure CHECK_SAL could be implemented in PL/SQL, C, or Java. Also,

you can specify :OLD values in the CALL clause instead of :NEW values.

Database Event Trigger Example This example creates a trigger to log all errors.

The PL/SQL block does some special processing for a particular error (invalid

logon, error number 1017. This trigger is an AFTER statement trigger, so it is fired

after an unsuccessful statement execution (such as unsuccessful logon).

CREATE TRIGGER log_errors AFTER SERVERERROR ON DATABASE
 BEGIN
 IF (IS_SERVERERROR (1017)) THEN
 <special processing of logon error>
 ELSE
 <log error number>
 END IF;
 END;

DML Trigger Example This example creates an AFTER statement trigger on any

DDL statement CREATE. Such a trigger can be used to audit the creation of new

data dictionary objects in your schema.

CREATE TRIOGGER audit_db_object AFTER CREATE
 ON SCHEMA

pl/sql_block

INSTEAD OF Trigger Example In this example, customer data is stored in two

tables. The object view ALL_CUSTOMERS is created as a UNION of the two tables,

CUSTOMERS_SJ and CUSTOMERS_PA. An INSTEAD OF trigger is used to insert

values.

CREATE TABLE customers_sj
 (cust NUMBER(6),
 address VARCHAR2(50),
 credit NUMBER(9,2));

CREATE TABLE customers_pa
 (cust NUMBER(6),
 address VARCHAR2(50),
 credit NUMBER(9,2));
SQL Statements 7-409

CREATE TRIGGER
CREATE TYPE customer_t AS OBJECT
 (cust NUMBER(6),
 address VARCHAR2(50),
 credit NUMBER(9,2),
 location VARCHAR2(20));

CREATE VIEW all_customers (cust)
 AS SELECT customer_t (cust, address, credit, ’SAN_JOSE’)
 FROM customers_sj
 UNION ALL
 SELECT customer_t (cust, address, credit, ’PALO_ALTO’)
 FROM customers_pa;

CREATE TRIGGER instrig INSTEAD OF INSERT ON all_customers
 FOR EACH ROW
 BEGIN
 IF (:new.cust.location = ’SAN_JOSE’) THEN
 INSERT INTO customers_sj
 VALUES (:new.cust.cust, :new.cust.address,:new.cust.credit);
 ELSE
 INSERT INTO customers_pa
 VALUES (:new.cust.cust, :new.cust.address, :new.cust.credit);
 END IF;
 END;
7-410 SQL Reference

CREATE TYPE
CREATE TYPE

Syntax
create_incomplete_type::=

create_object_type ::=

element_list::=

invoker_rights_clause ::=

CREATE
OR REPLACE

TYPE
schema .

type_name ;

CREATE
OR REPLACE

TYPE
schema.

type_name
invoker_rights_clause

IS

AS
OBJECT (element_list) ;

attribute datatype

,

,
MEMBER

STATIC

procedure_spec

function_spec

, pragma_clause

,
MAP

ORDER
MEMBER function_spec

AUTHID
CURRENT_USER

DEFINER
SQL Statements 7-411

CREATE TYPE
pragma_clause ::=

procedure_spec | function_spec ::=

call_spec ::=

Java_declaration::=

C_declaration::=

PRAGMA RESTRICT_REFERENCES (
method_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

)

PROCEDURE

FUNCTION
name (parameter datatype)

RETURN datatype

IS

AS
call_spec

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
WITH CONTEXT

PARAMETERS (parameters)
7-412 SQL Reference

CREATE TYPE
create_varray_type ::=

create_nested_table_type ::=

Purpose
To create an object type, named varying array (varray), nested table type, or an

incomplete object type.

Oracle implicitly defines a constructor method for each user-defined type that you

create. A constructor is a system-supplied procedure that is used in SQL statements

or in PL/SQL code to construct an instance of the type value. The name of the

constructor method is the same as the name of the user-defined type.

The parameters of the object type constructor method are the data attributes of the

object type. They occur in the same order as the attribute definition order for the

object type. The parameters of a nested table or varray constructor are the elements

of the nested table or the varray.

An incomplete type is a type created by a forward type definition. It is called

"incomplete" because it has a name but no attributes or methods. It can be

referenced by other types, and so can be used to define types that refer to each

other. However, you must fully specify the type before you can use it to create a

table or an object column or a column of a nested table type.

CREATE
OR REPLACE

TYPE
schema. .

type_name

IS

AS

VARRAY

VARYING ARRAY
(limit) OF datatype ;

CREATE
OR REPLACE

TYPE
schema. .

type_name

IS

AS
TABLE OF datatype ;
SQL Statements 7-413

CREATE TYPE
For more information about objects, incomplete types, varrays, and nested tables

see the PL/SQL User’s Guide and Reference, Oracle8i Application Developer’s Guide -
Fundamentals, and Oracle8i Concepts.

Prerequisites
To create a type in your own schema, you must have the CREATE TYPE system

privilege. To create a type in another user’s schema, you must have the CREATE

ANY TYPE system privilege. You can acquire these privileges explicitly or be

granted them through a role.

The owner of the type must either be explicitly granted the EXECUTE object

privilege in order to access all other types referenced within the definition of the

type, or the type owner must be granted the EXECUTE ANY TYPE system

privilege. The owner cannot obtain these privileges through roles.

If the type owner intends to grant other users access to the type, the owner must be

granted the EXECUTE object privilege to the referenced types with the GRANT

OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN OPTION.

Otherwise, the type owner has insufficient privileges to grant access on the type to

other users.

 Keywords and Parameters

OR REPLACE re-creates the type if it already exists. Use this clause to change the definition of an existing
type without first dropping it.

Users previously granted privileges on the re-created object type can use and reference the
object type without being granted privileges again.

If any function-based indexes depend on the type, Oracle marks the indexes DISABLED.

schema is the schema to contain the type. If you omit schema, Oracle creates the type in your current
schema.

type_name is the name of an object type, a nested table type, or a varray type.

If creating the type results in compilation errors, Oracle returns an error. You can see the
associated compiler error messages with the SQL*Plus command SHOW ERRORS.

create_object_
type

creates the type as a user-defined object type. The variables that form the data structure are
called attributes. The member subprograms that define the object’s behavior are called
methods. AS OBJECT is required when creating an object type.
7-414 SQL Reference

CREATE TYPE
invoker_rights_
clause

specifies whether the member functions and procedures of the object type execute with the
privileges and in the schema of the user who owns the object type or with the privileges and
in the schema of CURRENT_USER. This specification applies to the corresponding type
body as well. (For information on how CURRENT_USER is determined, see Oracle8i
Concepts and Oracle8i Application Developer’s Guide - Fundamentals.)

This clause also determines how Oracle resolves external names in queries, DML operations,
and dynamic SQL statements in the member functions and procedures of the type. For more
information refer to PL/SQL User’s Guide and Reference.

Restriction: You can specify this clause only for an object type, not for a nested table or
varray type.

AUTHID
CURRENT_USER

specifies that the member functions and procedures of the object type
execute with the privileges of CURRENT_USER. This clause creates an
"invoker-rights type."

This clause also specifies that external names in queries, DML
operations, and dynamic SQL statements resolve in the schema of
CURRENT_USER. External names in all other statements resolve in the
schema in which the type resides.

AUTHID
DEFINER

specifies that the member functions and procedures of the object type
execute with the privileges of the owner of the schema in which the
functions and procedures reside, and that external names resolve in the
schema where the member functions and procedures reside. This is the
default.

datatype is the name of the attribute’s Oracle built-in datatype or user-defined type. For a list of
possible datatypes, see "Datatypes" on page 2-5.

Restrictions:

■ You cannot specify attributes of type ROWID, LONG, or LONG ROW.

■ You cannot create an object with NCLOB, NCHAR, or NVARCHAR2 attributes, but you
can specify parameters of these datatypes in methods.

■ You cannot specify a datatype of UROWID for a user-defined object type.

■ If you specify an object of type REF, the target object must have an object identifier.

attribute specifies, for an object type, the name of an object attribute. Attributes are data items with a
name and a type specifier that form the structure of the object. You must specify at least one
attribute for each object type.

MEMBER specifies a function or procedure subprogram associated with the object type that is
referenced as an attribute. Typically you invoke member methods in a "selfish" style, such as
object_expression.method() . This class of method has an implicit first argument
referenced as SELF in the method’s body, which represents the object on which the method
has been invoked.
SQL Statements 7-415

CREATE TYPE
STATIC also specifies a function or procedure subprogram associated with the object type. However,
unlike member methods, static methods do not have any implicit parameters (that is, SELF is
not referenceable in their body). They are typically invoked as type_name.method() .

For both member and static methods, you must specify a corresponding method body in the object type body
for each procedure or function specification. See "CREATE TYPE BODY" on page 7-421. For information about
method invocation and methods, see PL/SQL User’s Guide and Reference.

procedure_spec |
function_spec

is the specification of a procedure or function subprogram. The RETURN clause is valid only
for a function. The syntax shown is an abbreviated form. For the full syntax with all possible
clauses, see "CREATE PROCEDURE" on page 7-333 and "CREATE FUNCTION" on
page 7-266.

If this subprogram does not include the declaration of the procedure or function, you must
issue a corresponding CREATE TYPE BODY statement. See "CREATE TYPE BODY" on
page 7-421.

For a list of restrictions on user-defined functions, see "Restrictions on User-Defined
Functions" on page 7-268.

call_spec is the call specification ("call spec") that maps a Java or C method name, parameter types,
and return type to their SQL counterparts. If all the member methods in the type have been
defined in this clause, you need not issue a corresponding CREATE TYPE BODY statement.

■ In Java_declaration, ’string’ identifies the Java implementation of the method. For more
information, see Oracle8i Java Stored Procedures Developer’s Guide.

■ For an explanation of the parameters and semantics of the C_declaration, see Oracle8i
Application Developer’s Guide - Fundamentals.

pragma_clause specifies a compiler directive.

PRAGMA
RESTRICT_
REFERENCES

is a compiler directive that denies member functions read/write access to database tables,
packaged variables, or both, and thereby helps to avoid side effects. For more information,
see Oracle8i Application Developer’s Guide - Fundamentals.

method_name is the name of the MEMBER function or procedure to which the pragma
is being applied.

DEFAULT specifies that the pragma should be applied to all methods in the type for
which a pragma has not been explicitly specified.

WNDS specifies the constraint writes no database state (does not modify database
tables).

WNPS specifies the constraint writes no package state (does not modify packaged
variables).

RNDS specifies the constraint reads no database state (does not query database
tables).

RNPS specifies the constraint reads no package state (does not reference packages
variables).
7-416 SQL Reference

CREATE TYPE
TRUST specifies that the restrictions listed in the pragma are not actually to be
enforced, but are simply trusted to be true.

MAP MEMBER
function_spec

specifies a member function (map method) that returns the relative position of a given
instance in the ordering of all instances of the object. A map method is called implicitly and
induces an ordering of object instances by mapping them to values of a predefined scalar
type. PL/SQL uses the ordering to evaluate Boolean expressions and to perform
comparisons.

If the argument to the map method is null, the map method returns null and the method is
not invoked.

An object specification can contain only one map method, which must be a function. The
result type must be a predefined SQL scalar type, and the map function can have no
arguments other than the implicit SELF argument.

Note: If type_name will be referenced in queries involving sorts (through an ORDER BY,
GROUP BY, DISTINCT, or UNION clause) or joins, and you want those queries to be
parallelized, you must specify a MAP member function.

ORDER
MEMBER
function_spec

specifies a member function (ORDER method) that takes an instance of an object as an
explicit argument and the implicit SELF argument and returns either a negative, zero, or
positive integer. The negative, positive, or zero indicates that the implicit SELF argument is
less than, equal to, or greater than the explicit argument.

If either argument to the order method is null, the order method returns null and the method
is not invoked.

When instances of the same object type definition are compared in an ORDER BY clause, the
order method function_specification is invoked.

An object specification can contain only one ORDER method, which must be a function
having the return type NUMBER.

You can define either a MAP method or an ORDER method in a type specification, but not both. If you declare
either method, you can compare object instances in SQL.

If neither a MAP nor an ORDER method is specified, only comparisons for equality or inequality can be
performed. Therefore object instances cannot be ordered. Instances of the same type definition are equal only if
each pair of their corresponding attributes is equal. No comparison method needs to be specified to determine
the equality of two object types.

Use MAP if you are performing extensive sorting or hash join operations on object instances. MAP is applied
once to map the objects to scalar values and then the scalars are used during sorting and merging. A MAP
method is more efficient than an ORDER method, which must invoke the method for each object comparison.
You must use a MAP method for hash joins. You cannot use an ORDER method because the hash mechanism
hashes on the object value. For more information about object value comparisons, see Oracle8i Application
Developer’s Guide - Fundamentals.

create_varray_
type

creates the type as an ordered set of elements, each of which has the same datatype. You
must specify a name and a maximum limit of zero or more. The array limit must be an
integer literal. Oracle does not support anonymous varrays.
SQL Statements 7-417

CREATE TYPE
Examples

Object Type Example The following example creates object type PERSON_T with

LOB attributes:

CREATE TYPE person_t AS OBJECT
 (name CHAR(20),
 resume CLOB,
 picture BLOB);

Varray Type Example The following statement creates MEMBERS_TYPE as a

varray type with 100 elements:

CREATE TYPE members_type AS VARRAY(100) OF CHAR(5);

The type name for the objects contained in the varray must be one of the following:

■ A built-in datatype,

■ A REF, or

■ An object type, including an object with varray attributes.

The type name for the objects contained in the varray cannot be

■ An object type with a nested table attribute,

■ A varray type, or

■ A TABLE type.

Restrictions:

■ A collection type cannot contain any other collection type, either directly or indirectly.
That is, a varray type cannot contain any elements that are varrays or nested tables.

■ You cannot create varray types of LOB datatypes.

create_nested_
table_type

creates a named nested table of type datatype.

When datatype is an object type, the nested table type describes a table whose columns match
the name and attributes of the object type.

When datatype is a scalar type, then the nested table type describes a table with a single,
scalar type column called "column_value".

Restrictions:

■ A collection type cannot contain any other collection type, either directly or indirectly.
That is, a nested table type cannot contain any elements that are varrays or nested tables.

■ You cannot specify NCLOB for datatype. However, you can specify CLOB or BLOB.
7-418 SQL Reference

CREATE TYPE
Nested Table Type Example The following example creates a named table type

PROJECT_TABLE of object type PROJECT_T:

CREATE TYPE project_t AS OBJECT
 (pno CHAR(5),
 pname CHAR(20),
 budgets DEC(7,2));

CREATE TYPE project_table AS TABLE OF project_t;

Constructor Example The following example invokes method constructor

COL.GETBAR():

CREATE TYPE foo AS OBJECT (a1 NUMBER,
 MEMBER FUNCTION getbar RETURN NUMBER,);
CREATE TABLE footab(col foo);

SELECT col.getbar() FROM footab;

Unlike function invocations, method invocations require parentheses, even when

the methods do not have additional arguments.

The next example invokes the system-defined constructor to construct the FOO_T

object and insert it into the FOO_TAB table:

CREATE TYPE foo_t AS OBJECT (a1 NUMBER, a2 NUMBER);
CREATE TABLE foo_tab (b1 NUMBER, b2 foo_t);
INSERT INTO foo_tab VALUES (1, foo_t(2,3));

For more information about constructors, see Oracle8i Application Developer’s Guide -
Fundamentals and PL/SQL User’s Guide and Reference.

Static Method Example The following example changes the definition of the

EMPLOYEE_T type to associate it with the CONSTRUCT_EMP function:

CREATE OR REPLACE TYPE employee_t AS OBJECT(
 empid RAW(16),
 ename CHAR(31),
 dept REF department_t,
 STATIC function construct_emp
 (name VARCHAR2, dept REF department_t)
 RETURN employee_t
);

This statement requires the following type body statement:
SQL Statements 7-419

CREATE TYPE
CREATE OR REPLACE TYPE BODY employee_t IS
 STATIC FUNCTION construct_emp
 (name varchar2, dept REF department_t)
 RETURN employee_t IS
 BEGIN
 return employee_t(SYS_GUID(),name,dept);
 END;
 END;

This type and type body definition allows the following operation:

INSERT INTO emptab
 VALUES (employee_t.construct_emp('John Smith', NULL));
7-420 SQL Reference

CREATE TYPE BODY
CREATE TYPE BODY

Syntax

procedure_declaration | function_declaration ::=

call_spec ::=

Java_declaration::=

C_declaration::=

IS

AS

MEMBER

STATIC

procedure_declaration

function_declaration

MAP

ORDER
MEMBER function_declaration

END

CREATE
OR REPLACE

TYPE BODY
schema .

type_name

PROCEDURE

FUNCTION
name (parameter datatype)

RETURN datatype IS

AS

pl/sql_block

call_spec

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
WITH CONTEXT

PARAMETERS (parameters)
SQL Statements 7-421

CREATE TYPE BODY
Purpose
To define or implement the member methods defined in the object type

specification. You create object types with the CREATE TYPE and the CREATE

TYPE BODY statements. The CREATE TYPE statement specifies the name of the

object type, its attributes, methods, and other properties. The CREATE TYPE BODY

statement contains the code for the methods in the type.

For each method specified in an object type specification for which you did not

specify the call_spec, you must specify a corresponding method body in the object

type body.

For information on creating and modifying a type specification, see "CREATE

TYPE" on page 7-411 and "ALTER TYPE" on page 7-173.

Prerequisites
Every member declaration in the CREATE TYPE specification for object types must

have a corresponding construct in the CREATE TYPE or CREATE TYPE BODY

statement.

To create or replace a type body in your own schema, you must have the CREATE

TYPE or the CREATE ANY TYPE system privilege. To create an object type in

another user’s schema, you must have the CREATE ANY TYPE system privileges.

To replace an object type in another user’s schema, you must have the DROP ANY

TYPE system privileges.

Keywords and Parameters

OR REPLACE re-creates the type body if it already exists. Use this clause to change the definition of an
existing type body without first dropping it.

Users previously granted privileges on the re-created object type body can use and
reference the object type body without being granted privileges again.

You can use this clause to add new member subprogram definitions to specifications
added with the ALTER TYPE ... REPLACE statement.

schema is the schema to contain the type body. If you omit schema, Oracle creates the type body in
your current schema.

type_name is the name of an object type.

MEMBER |
STATIC

declares or implements a method function or procedure subprogram associated with the
object type specification. For a description of the difference between member and static
methods, see "CREATE TYPE" on page 7-411. For information about overloading
subprogram names within a package, see PL/SQL User’s Guide and Reference.
7-422 SQL Reference

CREATE TYPE BODY
You must define a corresponding method name, optional parameter list, and (for
functions) a return type in the object type specification for each procedure or function
declaration.

procedure_
declaration

is the declaration of a procedure subprogram.

function_
declaration

is the declaration of a function subprogram.

For more information, see "CREATE PROCEDURE" on page 7-333, "CREATE

FUNCTION" on page 7-266, and Oracle8i Application Developer’s Guide - Fundamentals.

MAP MEMBER declares or implements a member function (MAP method) that returns the relative
position of a given instance in the ordering of all instances of the object. A map method is
called implicitly and specifies an ordering of object instances by mapping them to values
of a predefined scalar type. PL/SQL uses the ordering to evaluate Boolean expressions
and to perform comparisons.

If the argument to the map method is null, the map method returns null and the method
is not invoked.

An object type body can contain only one map method, which must be a function. The
map function can have no arguments other than the implicit SELF argument.

ORDER
MEMBER

specifies a member function (ORDER method) that takes an instance of an object as an
explicit argument and the implicit SELF argument and returns either a negative, zero, or
positive integer. The negative, positive, or zero indicates that the implicit SELF argument
is less than, equal to, or greater than the explicit argument.

If either argument to the order method is null, the order method returns null and the
method is not invoked.

When instances of the same object type definition are compared in an ORDER BY clause,
Oracle invokes the order method function_spec.

An object specification can contain only one ORDER method, which must be a function
having the return type NUMBER.

You can declare either a MAP method or an ORDER method, but not both. If you declare either method, you
can compare object instances in SQL.

If you do not declare either method, you can compare object instances only for equality or inequality.
Instances of the same type definition are equal only if each pair of their corresponding attributes is equal.

procedure_
declaration |
function_
declaration

is the declaration of a procedure or function subprogram. The RETURN clause is valid
only for a function. The syntax shown is an abbreviated form. For the full syntax with all
possible clauses, see "CREATE PROCEDURE" on page 7-333 and "CREATE FUNCTION"
on page 7-266.

pl/sql_block declares the procedure or function. For more information, see PL/SQL
User’s Guide and Reference.
SQL Statements 7-423

CREATE TYPE BODY
Examples
The following object type body implements member subprograms for RATIONAL.

CREATE TYPE BODY rational
 IS
 MAP MEMBER FUNCTION rat_to_real RETURN REAL IS
 BEGIN
 RETURN numerator/denominator;
 END;

 MEMBER PROCEDURE normalize IS
gcd NUMBER := integer_operations.greatest_common_divisor

 (numerator, denominator);
 BEGIN
 numerator := numerator/gcd;
 denominator := denominator/gcd;
 END;

 MEMBER FUNCTION plus(x rational) RETURN rational IS
r rational := rational_operations.make_rational

 (numerator*x.denominator +
 x.numerator*denominator,
 denominator*x.denominator);
 BEGIN
 RETURN r;
 END;

 END;

call_spec is the call specification ("call spec") that maps a Java or C method
name, parameter types, and return type to their SQL counterparts.

■ In Java_declaration, ’string’ identifies the Java implementation of
the method. For more information, see Oracle8i Java Stored
Procedures Developer’s Guide.

■ For an explanation of the parameters and semantics of the C_
declaration, see Oracle8i Application Developer’s Guide -
Fundamentals.

AS EXTERNAL is an alternative way of declaring a C method. This clause has been
deprecated and is supported for backward compatibility only. Oracle
Corporation recommends that you use the AS LANGUAGE C syntax.
7-424 SQL Reference

CREATE USER
CREATE USER

Syntax

CREATE USER user IDENTIFIED

BY password

EXTERNALLY

GLOBALLY AS ’ external_name ’

DEFAULT TABLESPACE tablespace

TEMPORARY TABLESPACE tablespace

QUOTA
integer

K

M

UNLIMITED
ON tablespace

PROFILE profile

DEFAULT ROLE

role

,

ALL
EXCEPT role

,

NONE

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK
;

SQL Statements 7-425

CREATE USER
Purpose
To create and configure a database user, or an account through which you can log

in to the database and establish the means by which Oracle permits access by the

user.

Prerequisites
You must have CREATE USER system privilege.

When you create a user with the CREATE USER statement, the user’s privilege

domain is empty. To log on to Oracle, a user must have CREATE SESSION system

privilege. Therefore, after creating a user, you should grant the user at least the

CREATE SESSION privilege. See "GRANT system_privileges_and_roles" on

page 7-493.

Keywords and Parameters

Note: You can enable a user to connect to Oracle through an

proxy (that is, an application or application server). For syntax and

discussion, refer to "ALTER USER" on page 7-179.

user is the name of the user to be created. This name can contain only characters from your
database character set and must follow the rules described in the section "Schema Object
Naming Rules" on page 2-67. Oracle recommends that the user name contain at least one
single-byte character regardless of whether the database character set also contains
multi-byte characters.

IDENTIFIED indicates how Oracle authenticates the user. See Oracle8i Application Developer’s Guide -
Fundamentals and your operating system specific documentation for more information.

BY password creates a local user and indicates that the user must specify password
to log on. Passwords can contain only single-byte characters from
your database character set regardless of whether this character set
also contains multibyte characters.

Passwords must follow the rules described in the section "Schema
Object Naming Rules" on page 2-67, unless you are using Oracle’s
password complexity verification routine. That routine requires a
more complex combination of characters than the normal naming
rules permit. You implement this routine with the UTLPWDMG.SQL
script, which is further described in Oracle8i Administrator’s Guide.

Also refer to Oracle8i Administrator’s Guide for a detailed description
and explanation of how to use password management and protection.
7-426 SQL Reference

CREATE USER
EXTERNALLY creates an external user and indicates that a user must be
authenticated by an external service (such as an operating system or a
third-party service). Doing so causes Oracle to rely on the login
authentication of the operating system to ensure that a specific
operating system user has access to a specific database user.

WARNING: Oracle strongly recommends that you do not use
IDENTIFIED EXTERNALLY with operating systems that have
inherently weak login security. For more information, see Oracle8i
Administrator’s Guide.

GLOBALLY AS
’external_name’

creates a global user and indicates that a user must be authenticated
by the enterprise directory service. The ’external_name’ string is the
X.509 name at the enterprise directory service that identifies this user.
It should be of the form ’CN=username,other_attributes’, where other_
attributes is the rest of the user’s distinguished name (DN) in the
directory.

Note: You can control the ability of an application server to connect as the specified user
and to activate that user’s roles using the ALTER USER statement. See "ALTER USER" on
page 7-179

DEFAULT
TABLESPACE

identifies the default tablespace for objects that the user creates. If you omit this clause,
objects default to the SYSTEM tablespace. For more information on tablespaces, see
"CREATE TABLESPACE" on page 7-394.

TEMPORARY
TABLESPACE

identifies the tablespace for the user’s temporary segments. If you omit this clause,
temporary segments default to the SYSTEM tablespace.

QUOTA allows the user to allocate space in the tablespace and optionally establishes a quota of
integer bytes. Use K or M to specify the quota in kilobytes or megabytes. This quota is the
maximum space in the tablespace the user can allocate.

A CREATE USER statement can have multiple QUOTA clauses for multiple tablespaces.

UNLIMITED allows the user to allocate space in the tablespace without bound.

PROFILE reassigns the profile named to the user. The profile limits the amount of database
resources the user can use. If you omit this clause, Oracle assigns the DEFAULT profile to
the user. See also "GRANT system_privileges_and_roles" on page 7-493 and "CREATE
PROFILE" on page 7-338.

DEFAULT ROLE lets you assign and enable a default role or roles to the user.

■ role assigns one or more predefined roles

■ ALL [EXCEPT] role assigns all predefined roles to the user, or all except those
specified.

■ NONE assigns no roles to the user.

PASSWORD
EXPIRE

causes the user’s password to expire. This setting forces the user (or the DBA) to change
the password before the user can log in to the database.
SQL Statements 7-427

CREATE USER
Examples
If you create a new user with PASSWORD EXPIRE, the user’s password must be

changed before attempting to log in to the database. You can create the user

SIDNEY by issuing the following statement:

CREATE USER sidney
 IDENTIFIED BY welcome
 DEFAULT TABLESPACE cases_ts
 QUOTA 10M ON cases_ts
 QUOTA 5M ON temp_ts
 QUOTA 5M ON system
 PROFILE engineer
 PASSWORD EXPIRE;

The user SIDNEY has the following characteristics:

■ The password WELCOME

■ Default tablespace CASES_TS, with a quota of 10 megabytes

■ Temporary tablespace TEMP_TS, with a quota of 5 megabytes

■ Access to the tablespace SYSTEM, with a quota of 5 megabytes

■ Limits on database resources defined by the profile ENGINEER

■ An expired password, which must be changed before SIDNEY can log in to the

database

To create a user accessible only by the operating system account GEORGE, prefix

GEORGE by the value of the initialization parameter OS_AUTHENT_PREFIX. For

example, if this value is "OPS$", you can create the user OPS$GEORGE with the

following statement:

CREATE USER ops$george
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE accs_ts
 TEMPORARY TABLESPACE temp_ts
 QUOTA UNLIMITED ON accs_ts
 QUOTA UNLIMITED ON temp_ts;

ACCOUNT
LOCK

locks the user’s account and disables access.

ACCOUNT
UNLOCK

unlocks the user’s account and enables access to the account.
7-428 SQL Reference

CREATE USER
The user OPS$GEORGE has the following additional characteristics:

■ Default tablespace ACCS_TS

■ Default temporary tablespace TEMP_TS

■ Unlimited space on the tablespaces ACCS_TS and TEMP_TS

■ Limits on database resources defined by the DEFAULT profile

The following example creates user CINDY as a global user:

CREATE USER cindy
 IDENTIFIED GLOBALLY AS ’CN=cindy,OU=division1,O=oracle,C=US’
 DEFAULT TABLESPACE legal_ts
 QUOTA 20M ON legal_ts
 PROFILE lawyer;
SQL Statements 7-429

CREATE VIEW
CREATE VIEW

Syntax

subquery : See "SELECT and Subqueries" on page 7-541.

with_clause ::=

Purpose
To define a view, a logical table based on one or more tables or views. A view

contains no data itself. The tables upon which a view is based are called base tables.

You can also create an object view or a relational view that supports LOB and

object datatypes (object types, REFs, nested table, or varray types) on top of the

existing view mechanism. An object view is a view of a user-defined type, where

each row contains objects, each object with a unique object identifier.

CREATE
OR REPLACE

NO
FORCE

VIEW
schema .

view

(alias

,

)

OF
schema .

type_name

WITH OBJECT IDENTIFIER

DEFAULT

(attribute

,

)

AS subquery
with_clause

;

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint
7-430 SQL Reference

CREATE VIEW
For information on various types of views and their uses, see Oracle8i Concepts,
Oracle8i Application Developer’s Guide - Fundamentals, and Oracle8i Administrator’s
Guide.

For information on modifying a view, see "ALTER VIEW" on page 7-183. For

information on removing a view from the database, see "DROP VIEW" on

page 7-485.

Prerequisites
To create a view in your own schema, you must have CREATE VIEW system

privilege. To create a view in another user’s schema, you must have CREATE ANY

VIEW system privilege.

The owner of the schema containing the view must have the privileges necessary to

either select, insert, update, or delete rows from all the tables or views on which the

view is based. For information on these privileges, see "SELECT and Subqueries"

on page 7-541, "INSERT" on page 7-512, "UPDATE" on page 7-584, and "DELETE"

on page 7-438. The owner must be granted these privileges directly, rather than

through a role.

To use the basic constructor method of an object type when creating an object view,

one of the following must be true:

■ The object type must belong to the same schema as the view to be created.

■ You must have EXECUTE ANY TYPE system privileges.

■ You must have the EXECUTE object privilege on that object type.

Partition Views
Partition views were introduced in Release 7.3 to provide partitioning capabilities

for applications requiring them. Partition views are supported in Oracle8i so that

you can upgrade applications from Release 7.3 without any modification. In most

cases, subsequent to migration to Oracle8i you will want to migrate partition views

into partitions (see Oracle8i Administrator’s Guide).

With Oracle8i, you can use the CREATE TABLE statement to create partitioned

tables easily. Partitioned tables offer the same advantages as partition views, while

also addressing their shortcomings. For more information on the shortcomings of

partition reviews, see Oracle8i Concepts.

Oracle recommends that you use partitioned tables rather than partition views in

most operational environments. For more information about partitioned tables, see

"CREATE TABLE" on page 7-359.
SQL Statements 7-431

CREATE VIEW
Keywords and Parameters

OR REPLACE re-creates the view if it already exists. You can use this clause to change the definition of an
existing view without dropping, re-creating, and regranting object privileges previously
granted on it.

INSTEAD OF triggers defined in the view are dropped when a view is re-created. See
"CREATE TRIGGER" on page 7-401 for more information about the INSTEAD OF clause.

Note: If any materialized views are dependent on view, those materialized views will be
marked INVALID and UNUSABLE and will require a full refresh to restore them to a usable
state. Invalid materialized views cannot be used by query rewrite and cannot be refreshed
until they are recompiled. For information on refreshing invalid materialized views, see
"ALTER MATERIALIZED VIEW / SNAPSHOT" on page 7-45. For information on
materialized views in general, see Oracle8i Concepts.

FORCE creates the view regardless of whether the view’s base tables or the referenced object types
exist or the owner of the schema containing the view has privileges on them. These
conditions must be true before any SELECT, INSERT, UPDATE, or DELETE statements can
be issued against the view.

NO FORCE creates the view only if the base tables exist and the owner of the schema containing the
view has privileges on them. This is the default.

schema is the schema to contain the view. If you omit schema, Oracle creates the view in your own
schema.

view is the name of the view or the object view.

Restriction: If a view has INSTEAD OF triggers, any views created on it must have
INSTEAD OF triggers, even if the views are inherently updatable.

alias specifies names for the expressions selected by the view’s query. The number of aliases must
match the number of expressions selected by the view. Aliases must follow the rules for
naming schema objects in the section, "Referring to Schema Objects and Parts" on page 2-71.
Aliases must be unique within the view.

If you omit the aliases, Oracle derives them from the columns or column aliases in the view’s
query. For this reason, you must use aliases if the view’s query contains expressions rather
than only column names.

Restriction: You cannot specify an alias when creating an object view.

OF type_name explicitly creates an object view of type type_name. The columns of an object view
correspond to the top-level attributes of type type_name. Each row will contain an object
instance and each instance will be associated with an object identifier (OID) as specified in
the WITH OBJECT IDENTIFIER clause. If you omit schema, Oracle creates the object view in
your own schema. For more information about creating objects, see "CREATE TYPE" on
page 7-411.
7-432 SQL Reference

CREATE VIEW
WITH OBJECT
IDENTIFIER

specifies the attributes of the object type that will be used as a key to identify each row in the
object view. In most cases these attributes correspond to the primary-key columns of the
base table. You must ensure that the attribute list is unique and identifies exactly one row in
the view.

If you try to dereference or pin a primary key REF that resolves to more than one instance in
the object view, Oracle raises an error.

Note: The 8.0 syntax WITH OBJECT OID is replaced with this syntax for clarity. The
keywords WITH OBJECT OID are supported for backward compatibility, but Oracle
Corporation recommends that you use the new syntax WITH OBJECT IDENTIFIER.

 If the object view is defined on an object table or an object view, you can omit this clause or
specify DEFAULT.

DEFAULT specifies that the intrinsic object identifier of the underlying object table or object view will
be used to uniquely identify each row.

attribute is an attribute of the object type from which the object identifier for the object view is to be
created.

AS subquery identifies columns and rows of the table(s) that the view is based on. The subquery’s select
list can contain up to 1000 expressions.

If you create views that refer to remote tables and views, the database links you specify must
have been created using the CONNECT TO clause of the CREATE DATABASE LINK
statement, and you must qualify them with schema name in the view query.

Restrictions:

■ The view query cannot select the CURRVAL or NEXTVAL pseudocolumns.

■ If the view query selects the ROWID, ROWNUM, or LEVEL pseudocolumns, those
columns must have aliases in the view query.

■ If the view query uses an asterisk (*) to select all columns of a table, and you later add
new columns to the table, the view will not contain those columns until you re-create
the view by issuing a CREATE OR REPLACE VIEW statement.

■ For object views, the number of elements in the view subquery select list must be the
same as the number of top-level attributes for the object type. The datatype of each of
the selecting elements must be the same as the corresponding top-level attribute.

The preceding restrictions apply to materialized views as well.
SQL Statements 7-433

CREATE VIEW
■ If you want the view to be inherently updatable, it must not contain any of the
following constructs:

- A set operator

- A DISTINCT operator

- An aggregate function

- A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

- A collection expression in a SELECT list

- A subquery in a SELECT list

- Joins (with some exceptions). See Oracle8i Administrator’s Guide for details.

■ If an inherently updatable view contains pseudocolumns or expressions, the UPDATE
statement must not refer to any of these pseudocolumns or expressions.

■ If you want a join view to be updatable, all of the following conditions must be true:

- The DML statement must affect only one table underlying the join.

- For an UPDATE statement, all columns updated must be extracted from a
key-preserved table. If the view has the CHECK OPTION, join columns and columns
taken from tables that are referenced more than once in the view must be shielded from
UPDATE.

- For a DELETE statement, the join can have one and only one key-preserved table. That
table can appear more than once in the join, unless the view has the CHECK OPTION.

- For an INSERT statement, all columns into which values are inserted must come from
a key-preserved table, and the view must not have the CHECK OPTION.

For more information on updatable views, see Oracle8i Administrator’s Guide. For more
information about updating object views or relational views that support object types, see
Oracle8i Application Developer’s Guide - Fundamentals.

with_clause restricts the subquery in one of the following ways:

WITH READ
ONLY

specifies that no delete, inserts, or updates can be performed through the
view.

WITH CHECK
OPTION

specifies that inserts and updates performed through the view must
result in rows that the view query can select. The CHECK OPTION
cannot make this guarantee if:

■ There is a subquery in the query of this view or any view on which
this view is based or

■ INSERT, UPDATE, or DELETE operations are performed using
INSTEAD OF triggers.
7-434 SQL Reference

CREATE VIEW
Examples

Basic View Example The following statement creates a view of the EMP table

named DEPT20. The view shows the employees in Department 20 and their annual

salary:

CREATE VIEW dept20
 AS SELECT ename, sal*12 annual_salary
 FROM emp
 WHERE deptno = 20;

The view declaration need not define a name for the column based on the

expression SAL*12, because the subquery uses a column alias (ANNUAL_

SALARY) for this expression.

Updatable View Example The following statement creates an updatable view

named CLERKS of all clerks in the EMP table. Only the employees’ IDs, names,

and department numbers are visible in this view and only these columns can be

updated in rows identified as clerks:

CREATE VIEW clerk (id_number, person, department, position)
 AS SELECT empno, ename, deptno, job
 FROM emp
 WHERE job = ’CLERK’
 WITH CHECK OPTION CONSTRAINT wco;

Because of the CHECK OPTION, you cannot subsequently insert a new row into

CLERK if the new employee is not a clerk.

Join View Example A join view is one whose view subquery contains a join. If at

least one column in the subquery join has a unique index, then it may be possible

to modify one base table in a join view. You can query USER_UPDATABLE_

COLUMNS to see whether the columns in a join view are updatable. For example:

CREATE VIEW ed AS
 SELECT e.empno, e.ename, d.deptno, d.loc
 FROM emp e, dept d
 WHERE e.deptno = d.deptno

CONSTRAINT
constraint

assigns the name of the CHECK OPTION constraint. If you omit this
identifier, Oracle automatically assigns the constraint a name of the form
SYS_Cn, where n is an integer that makes the constraint name unique
within the database.
SQL Statements 7-435

CREATE VIEW
View created.

SELECT column_name, updatable
 FROM user_updatable_columns
 WHERE table_name = ’ED’;

COLUMN_NAME UPD
--------------- ---
ENAME YES
DEPTNO NO
EMPNO YES
LOC NO

INSERT INTO ed (ENAME, EMPNO) values (’BROWN’, 1234);

In the above example, there is a unique index on the DEPTNO column of the DEPT

table. You can insert, update or delete a row from the EMP base table, because all

the columns in the view mapping to the EMP table are marked as updatable and

because the primary key of EMP is included in the view. For more information on

updating join views, see the Oracle8i Application Developer’s Guide - Fundamentals.

Read-Only View Example The following statement creates a read-only view

named CLERKS of all clerks in the EMP table. Only the employee’s IDs, names,

department numbers, and jobs are visible in this view:

CREATE VIEW clerk (id_number, person, department, position)
 AS SELECT empno, ename, deptno, job
 FROM emp
 WHERE job = ’CLERK’
 WITH READ ONLY;

Object View Example The following example creates object view EMP_OBJECT_

VIEW of EMPLOYEE_TYPE:

CREATE TYPE employee_type AS OBJECT
 (empno NUMBER(4),
 ename VARCHAR2(20),

Note: You cannot insert into the table using the view unless the

view contains all NOT NULL columns of all tables in the join,

unless you have specified DEFAULT values for the NOT NULL

columns.
7-436 SQL Reference

CREATE VIEW
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2));

CREATE OR REPLACE VIEW emp_object_view OF employee_type
 WITH OBJECT IDENTIFIER (empno)
 AS SELECT empno, ename, job, mgr, hiredate, sal, comm
 FROM emp;
SQL Statements 7-437

DELETE
DELETE

Syntax

table_expression_clause ::=

subquery : See "SELECT and Subqueries" on page 7-541.

with_clause ::=

DELETE
hint FROM

table_expression_clause
where_clause returning_clause

;

schema . table

sample_clause

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

snapshot

@ dblink

(subquery
with_clause

)

table_collection_expression

t_alias

,

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint
7-438 SQL Reference

DELETE
table_collection_expression ::=

where_clause ::=

returning_clause ::=

Purpose
To remove rows from a table, a partitioned table, a view’s base table, or a view’s

partitioned base table.

Prerequisites
For you to delete rows from a table, the table must be in your own schema or you

must have DELETE privilege on the table.

For you to delete rows from the base table of a view, the owner of the schema

containing the view must have DELETE privilege on the base table. Also, if the

view is in a schema other than your own, you must be granted DELETE privilege

on the view.

The DELETE ANY TABLE system privilege also allows you to delete rows from

any table or table partition, or any view’s base table.

If the SQL92_SECURITY initialization parameter is set to TRUE, then you must

have SELECT privilege on the table to perform a DELETE that references table

columns (such as the columns in a where_clause).

TABLE (collection_expression)
(+)

WHERE condition

RETURNING expr

,

INTO data_item

,

SQL Statements 7-439

DELETE
Keywords and Parameters

hint is a comment that passes instructions to the optimizer on choosing an execution plan for the
statement. For the syntax and description of hints, see "Hints" on page 2-58 and Oracle8i
Tuning.

table_expression_clause

schema is the schema containing the table or view. If you omit schema, Oracle assumes the table or
view is in your own schema.

table | view |
subquery

is the name of a table or view, or the column or columns resulting from a subquery, from
which the rows are to be deleted. If you specify view, Oracle deletes rows from the view’s
base table.

If table (or the base table of view) contains one or more domain index columns, this
statements executes the appropriate indextype delete routine. For more information on these
routines, see Oracle8i Data Cartridge Developer’s Guide.

Issuing a DELETE statement against a table fires any DELETE triggers defined on the table.

All table or index space released by the deleted rows is retained by the table and index.

Restrictions:

■ You cannot execute this statement if table (or the base table of view) contains any domain
indexes marked LOADING or FAILED.

■ You cannot specify the sample_clause in a DELETE statement.

■ You cannot specify the ORDER BY clause in the subquery of the table_expression_clause.

■ You cannot delete from a view except through INSTEAD OF triggers if the view’s
defining query contains one of the following constructs:

- A set operator

- A DISTINCT operator

- An aggregate function

- A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

- A collection expression in a SELECT list

- A subquery in a SELECT list

- Joins (with some exceptions). See Oracle8i Administrator’s Guide for details.

■ If you specify an index, index partition, or index subpartition that has been marked
UNUSABLE, the DELETE statement will fail unless the SKIP_UNUSABLE_INDEXES
parameter has been set to TRUE. For more information, see "ALTER SESSION" on
page 7-78.
7-440 SQL Reference

DELETE
PARTITION
(partition_name) |
SUBPARTITION
(subpartition_
name)

specifies that partition_name or subpartition_name is the name of the partition or subpartition
within table targeted for deletes.

You need not specify the partition name when deleting values from a partitioned table.
However, in some cases specifying the partition name is more efficient than a complicated
where_clause.

dblink is the complete or partial name of a database link to a remote database where the table or
view is located. For information on referring to database links, see "Referring to Objects in
Remote Databases" on page 2-74. You can delete rows from a remote table or view only if
you are using Oracle’s distributed functionality.

If you omit dblink, Oracle assumes that the table or view is located on the local database.

with_clause restricts the subquery in one of the following ways:

■ WITH READ ONLY specifies that the subquery cannot be updated.

■ WITH CHECK OPTION specifies that Oracle prohibits any changes to that table that
would produce rows that are not included in the subquery. See the WITH CHECK
OPTION Example on page 7-558.

table_collection_
expression

informs Oracle that the collection value expression should be treated as a table. You can use
a table_collection_expression to delete only those rows that also exist in another table.

collection_
expression

is a subquery that selects a nested table column from table or view.

Note: In earlier releases of Oracle, table_collection_expression was expressed as "THE
subquery". That usage is now deprecated.

where_clause deletes only rows that satisfy the condition. The condition can reference the table and can
contain a subquery. See the syntax description in "Conditions" on page 5-13. You can delete
rows from a remote table or view only if you are using Oracle’s distributed functionality.

If you omit dblink, Oracle assumes that the table or view is located on the local database.

If you omit the where_clause, Oracle deletes all rows of the table or view.

t_alias provides a correlation name for the table, view, subquery, or collection value to be
referenced elsewhere in the statement. Table aliases are generally used in DELETE
statements with correlated queries.

Note: This alias is required if the table_expression_clause references any object type attributes
or object type methods.

returning_clause retrieves the rows affected by the DELETE statement.
SQL Statements 7-441

DELETE
Examples

Basic Examples The following statement deletes all rows from a table named

TEMP_ASSIGN.

DELETE FROM temp_assign;

The following statement deletes from the EMP table all sales staff who made less

than $100 commission last month:

DELETE FROM emp
 WHERE JOB = ’SALESMAN’
 AND COMM < 100;

The following statement has the same effect as the preceding example, but uses a

subquery:

DELETE FROM (select * from emp)
 WHERE JOB = ’SALESMAN’
 AND COMM < 100;

You can use a returning_clause to return values from deleted columns, and thereby eliminate
the need to issue a SELECT statement following the DELETE statement.

■ When deleting a single row, a DELETE statement with a returning_clause can retrieve
column expressions using the deleted row, rowid, and REFs to the deleted row and store
them in PL/SQL variables or bind variables.

■ When deleting multiple rows, a DELETE statement with the returning_clause stores
values from expressions, rowids, and REFs involving the deleted rows in bind arrays.

You can also use DELETE with a returning_clause to delete from views with single base tables.

For host binds, the datatype and size of the expression must be compatible with the bind
variable.

expr is any of the syntax descriptions in "Expressions" on page 5-1. You must specify
a column expression in the returning_clause for each variable in the data_item list.

INTO indicates that the values of the changed rows are to be stored in the variable(s)
specified in data_item list.

data_item is a PL/SQL variable or bind variable that stores the retrieved expr value.

Restrictions:

■ You cannot use this clause with parallel DML or with remote objects.

■ You cannot retrieve LONG types with this clause.
7-442 SQL Reference

DELETE
Remote Database Example The following statement deletes all rows from the

bank account table owned by the user BLAKE on a database accessible by the

database link DALLAS:

DELETE FROM blake.accounts@dallas;

Nested Table Example The following example deletes rows of nested table PROJS

where the department number is either 123 or 456, or the department’s budget is

greater than 456.78:

DELETE THE(SELECT projs
 FROM dept d WHERE d.dno = 123) AS p
 WHERE p.pno IN (123, 456) OR p.budgets > 456.78;

Partition Example The following example removes rows from partition NOV98 of

the SALES table:

DELETE FROM sales PARTITION (nov98)
 WHERE amount_of_sale != 0;

Example The following example returns column SAL from the deleted rows and

stores the result in bind array :1:

DELETE FROM emp
 WHERE job = ’SALESMAN’ AND COMM < 100
 RETURNING sal INTO :1;
SQL Statements 7-443

DISASSOCIATE STATISTICS
DISASSOCIATE STATISTICS

Syntax

Purpose
To disassociate a statistics type (or default statistics) from columns, standalone

functions, packages, types, domain indexes, or indextypes.

For more information on statistics type associations, see "ASSOCIATE STATISTICS"

on page 7-194.

DISASSOCIATE STATISTICS FROM

COLUMNS
schema .

table . column

,

FUNCTIONS
schema .

function

,

PACKAGES
schema .

package

,

TYPES
schema .

type

,

INDEXES
schema .

index

,

INDEXTYPES
schema .

indextype

,

FORCE
;

7-444 SQL Reference

DISASSOCIATE STATISTICS
Prerequisites
To issue this statement, you must have the appropriate privileges to alter the base

object (table, function, package, type, domain index, or indextype).

Keywords and Parameters

Example
This statement disassociates statistics from the PACK package in the HR schema:

DISASSOCIATE STATISTICS FROM PACKAGES hr.pack;

FROM
COLUMNS |
FUNCTIONS |
PACKAGES |
TYPES |
INDEXES |
INDEXTYPES

specifies a list of columns, standalone functions, packages, types, domain indexes, or
indextypes from which you are disassociating statistics.

If you do not specify schema, Oracle assumes the object is in your own schema.

If you have collected user-defined statistics on the object, the statement fails unless you
specify FORCE.

FORCE deletes the association regardless of whether any statistics exist for the object using the
statistics type. If statistics do exist, the statistics are deleted before the association is deleted.

Note: When you drop an object with which a statistics type has been associated, Oracle
automatically disassociates the statistics type with the FORCE option and drops all statistics
that have been collected with the statistics type.
SQL Statements 7-445

DROP CLUSTER
DROP CLUSTER

Syntax

Purpose
To remove a cluster from the database.

You cannot uncluster an individual table. Instead you must

■ Create a new table with the same structure and contents as the old one, but

with no CLUSTER clause,

■ Drop the old table,

■ Use the RENAME statement to give the new table the name of the old one, and

■ Grant privileges on the new unclustered table, as grants on the old clustered

table do not apply.

See "CREATE TABLE" on page 7-359, "DROP TABLE" on page 7-475, "RENAME"

on page 7-527, "GRANT system_privileges_and_roles" on page 7-493.

Prerequisites
The cluster must be in your own schema or you must have the DROP ANY

CLUSTER system privilege.

Keywords and Parameters

schema is the schema containing the cluster. If you omit schema, Oracle assumes the cluster is in
your own schema.

cluster is the name of the cluster to be dropped. Dropping a cluster also drops the cluster index
and returns all cluster space, including data blocks for the index, to the appropriate
tablespace(s).

DROP CLUSTER
schema .

cluster
INCLUDING TABLES

CASCADE CONSTRAINTS

;

7-446 SQL Reference

DROP CLUSTER
Example
This statement drops a cluster named GEOGRAPHY, all its tables, and any

referential integrity constraints that refer to primary or unique keys in those tables:

DROP CLUSTER geography
 INCLUDING TABLES
 CASCADE CONSTRAINTS;

INCLUDING
TABLES

drops all tables that belong to the cluster.

CASCADE
CONSTRAINTS

drops all referential integrity constraints from tables outside the cluster that refer to
primary and unique keys in tables of the cluster. If you omit this clause and such
referential integrity constraints exist, Oracle returns an error and does not drop the cluster.
SQL Statements 7-447

DROP CONTEXT
DROP CONTEXT

Syntax

Purpose
To remove a context namespace from the database. For more information on

contexts, see "CREATE CONTEXT" on page 7-243 and Oracle8i Concepts.

Prerequisites
You must have the DROP ANY CONTEXT system privilege.

Keywords and Parameters

Note: Removing a context namespace does not invalidate any

context under that namespace that has been set for a user session.

However, the context will be invalid the next time the user

attempts to set that context.

namespace is the name of the context namespace to drop. You cannot drop the build-in namespace
USERENV.

DROP CONTEXT namespace ;
7-448 SQL Reference

DROP DATABASE LINK
7SQL Statements

DROP DATABASE LINK

Syntax

Purpose
To remove a database link from the database.

Prerequisites
To drop a private database link, the database link must be in your own schema. To

drop a PUBLIC database link, you must have the DROP PUBLIC DATABASE LINK

system privilege.

For information on creating database links, see "CREATE DATABASE LINK" on

page 7-255.

Keywords and Parameters

Example
The following statement drops a private database link named BOSTON:

DROP DATABASE LINK boston;

PUBLIC must be specified to drop a PUBLIC database link.

dblink specifies the database link to be dropped.

Restriction: You cannot drop a database link in another user’s schema and you cannot
qualify dblink with the name of a schema. (Periods are permitted in names of database
links. Therefore, Oracle interprets the entire name, such as RALPH.LINKTOSALES, as the
name of a database link in your schema rather than as a database link named
LINKTOSALES in the schema RALPH.)

DROP
PUBLIC

DATABASE LINK dblink ;
SQL Statements 7-449

DROP DIMENSION
DROP DIMENSION

Syntax

Purpose
To remove the named dimension.

For information on materialized views and their use of dimensions, see Oracle8i
Concepts. See also "CREATE DIMENSION" on page 7-259.

Prerequisites
The dimension must be in your own schema or you must have the DROP ANY

DIMENSION system privilege to use this statement.

Keywords and Parameters

Example
This example drops the TIME dimension:

DROP DIMENSION time;

schema is the name of the schema in which the dimension is located. If you omit schema, Oracle
assumes the dimension is in your own schema.

dimension is the name of the dimension you want to drop. The dimension must already exist.

This statement does not invalidate materialized views that use relationships specified in
dimension. However, requests that have been rewritten by query rewrite may be
invalidated, and subsequent operations on such views may execute more slowly.

DROP DIMENSION
schema .

dimension ;
7-450 SQL Reference

DROP DIRECTORY
DROP DIRECTORY

Syntax

Purpose
Use DROP DIRECTORY to remove a directory object from the database.

For information on creating a directory, see "CREATE DIRECTORY" on page 7-264.

Prerequisites
To drop a directory you must have the DROP ANY DIRECTORY system privilege.

Keywords and Parameters

Example
The following statement drops the directory object BFILE_DIR:

DROP DIRECTORY bfile_dir;

WARNING: Do not drop a directory when files in the associated
file system are being accessed by PL/SQL or OCI programs.

directory_name is the name of the directory database object to be dropped.

Oracle removes the directory object, but does not delete the associated operating
system directory on the server’s file system.

DROP DIRECTORY directory_name ;
SQL Statements 7-451

DROP FUNCTION
DROP FUNCTION

Syntax

Purpose
To remove a standalone stored function from the database. For information on

creating a function, see "CREATE FUNCTION" on page 7-266.

Prerequisites
The function must be in your own schema or you must have the DROP ANY

PROCEDURE system privilege.

Keywords and Parameters

Note: Do not use this statement to remove a function that is part

of a package. Instead, either drop the entire package using the

DROP PACKAGE statement or redefine the package without the

function using the CREATE PACKAGE statement with the OR

REPLACE clause.

schema is the schema containing the function. If you omit schema, Oracle assumes the function is
in your own schema.

function_name is the name of the function to be dropped.

Oracle invalidates any local objects that depend on, or call, the dropped function. If you
subsequently reference one of these objects, Oracle tries to recompile the object and
returns an error if you have not re-created the dropped function. For more information on
how Oracle maintains dependencies among schema objects, including remote objects, see
Oracle8i Concepts.

If any statistics types are associated with the function, Oracle disassociates the statistics
types with the FORCE option and drops any user-defined statistics collected with the
statistics type. For more information on statistics type associations, see "ASSOCIATE
STATISTICS" on page 7-194 and "DISASSOCIATE STATISTICS" on page 7-444.

DROP FUNCTION
schema .

function_name ;
7-452 SQL Reference

DROP FUNCTION
Example
The following statement drops the function NEW_ACCT in the schema RIDDLEY

and invalidates all objects that depend upon NEW_ACCT:

DROP FUNCTION riddley.new_acct;
SQL Statements 7-453

DROP INDEX
DROP INDEX

Syntax

Purpose
To remove an index or domain index from the database.

For more information on indexes, see "CREATE INDEX" on page 7-273 and "ALTER

INDEX" on page 7-29. For more information on domain indexes, see the domain_
index_clause of "CREATE INDEX" on page 7-273.

Prerequisites
The index must be in your own schema or you must have the DROP ANY INDEX

system privilege.

Keywords and Parameters

schema is the schema containing the index. If you omit schema, Oracle assumes the index is in your
own schema.

index is the name of the index to be dropped. When the index is dropped, all data blocks allocated
to the index are returned to the index’s tablespace.

If you drop a domain index:

■ Oracle invokes the appropriate indextype drop routine. For information on these
routines, see Oracle8i Data Cartridge Developer’s Guide.

■ In addition, if any statistics are associated with the domain index, Oracle disassociates
the statistics types with the FORCE clause and removes the user-defined statistics
collected with the statistics type. For more information on statistics type associations,
see "ASSOCIATE STATISTICS" on page 7-194 and "DISASSOCIATE STATISTICS" on
page 7-444.

If you drop a global partitioned index, a range-partitioned, or a hash-partitioned index, all
the index partitions are also dropped. If you drop a a composite-partitioned index, all the
index partitions and subpartitions are also dropped.

DROP INDEX
schema .

index
FORCE

;

7-454 SQL Reference

DROP INDEX
Example
This statement drops an index named MONOLITH:

DROP INDEX monolith;

FORCE applies only to domain indexes. This clause drops the domain index even if the indextype
routine invocation returns an error or the index is marked LOADING. Without FORCE, you
cannot drop a domain index if its indextype routine invocation returns an error or the index
is marked LOADING.
SQL Statements 7-455

DROP INDEXTYPE
DROP INDEXTYPE

Syntax

Purpose
To drop an indextype, as well as any association with a statistics type.

For more information on indextypes, see "CREATE INDEXTYPE" on page 7-291.

Prerequisites
The indextype must be in your own schema or you must have the DROP ANY

INDEXTYPE system privilege.

Keywords and Parameters

Example
The following statement drops the indextype TEXTINDEXTYPE and marks

INVALID any domain indexes defined on this indextype:

DROP INDEXTYPE textindextype FORCE;

schema is the schema containing the indextype. If you omit schema, Oracle assumes the indextype is
in your own schema.

indextype is the name of the indextype to be dropped.

If any statistics types have been associated with indextype, Oracle disassociates the statistics
type from the indextype and drops any statistics that have been collected using the statistics
type. For more information on statistics associations, see "ASSOCIATE STATISTICS" on
page 7-194 and "DISASSOCIATE STATISTICS" on page 7-444.

FORCE drops the indextype even if the indextype is currently being referenced by one or more
domain indexes, and marks those domain indexes INVALID. Without FORCE, you cannot
drop an indextype if any domain indexes reference the indextype.

DROP INDEXTYPE
schema .

indextype
FORCE

;

7-456 SQL Reference

DROP JAVA
DROP JAVA

Syntax

Purpose
To drop a Java source, class, or resource schema object.

For more information on resolving Java sources, classes, and resources, see Oracle8i
Java Stored Procedures Developer’s Guide.

Prerequisites
The Java source, class, or resource must be in your own schema or you must have

the DROP ANY PROCEDURE system privilege. You also must have the EXECUTE

object privilege on Java classes to use this command.

Keywords and Parameters

Example
The following statement drops the Java class MyClass :

DROP JAVA CLASS "MyClass";

JAVA SOURCE drops a Java source schema object and all Java class schema objects derived from it.

JAVA CLASS drops a Java class schema object.

JAVA RESOURCE drops a Java resource schema object.

object_name specifies the name of an existing Java class, source, or resource schema object.

DR0P JAVA

SOURCE

CLASS

RESOURCE

schema .
object_name ;
SQL Statements 7-457

DROP LIBRARY
DROP LIBRARY

Syntax

Purpose
To remove an external procedure library from the database.

For information on creating a library, see "CREATE LIBRARY" on page 7-298.

Prerequisites
You must have the DROP LIBRARY system privilege.

Keywords and Parameters

Example
The following statement drops the EXT_PROCS library:

DROP LIBRARY ext_procs;

library_name is the name of the external procedure library being dropped.

DROP LIBRARY library_name ;
7-458 SQL Reference

DROP MATERIALIZED VIEW / SNAPSHOT
DROP MATERIALIZED VIEW / SNAPSHOT

Syntax

Purpose
To remove an existing materialized view from the database.

The terms "snapshot" and "materialized view" are synonymous. For more

information on materialized views, including a description of the various types of

materialized views, see "CREATE MATERIALIZED VIEW / SNAPSHOT" on

page 7-300. For information on materialized views in a replication environment, see

Oracle8i Replication. For information on materialized views in a data warehousing

environment, see Oracle8i Tuning.

Prerequisites
The materialized view must be in your own schema or you must have the DROP

ANY MATERIALIZED VIEW (or DROP ANY SNAPSHOT) system privilege. You

must also have the privileges to drop the internal table, views, and index that

Oracle uses to maintain the materialized view’s data.

For information on these privileges, see "DROP TABLE" on page 7-475, "DROP

VIEW" on page 7-485, and "DROP INDEX" on page 7-454.

Keywords and Parameters

schema is the schema containing the materialized view. If you omit schema, Oracle assumes the
materialized view is in your own schema.

materialized view /
snapshot

is the name of the existing materialized view to be dropped.

■ If you drop a simple materialized view that is the least recently refreshed
materialized view of a master table, Oracle automatically purges from the detail
table’s materialized view log only the rows needed to refresh the dropped
materialized view.

DROP
MATERIALIZED VIEW

SNAPSHOT

schema .
materialized_view / snapshot ;
SQL Statements 7-459

DROP MATERIALIZED VIEW / SNAPSHOT
Examples
The following statement drops the materialized view PARTS owned by the user

HQ:

DROP SNAPSHOT hq.parts;

The following statement drops the SALES_BY_MONTH materialized view and the

underlying table of the materialized view (unless the underlying table was

registered in the CREATE MATERIALIZED VIEW statement with the ON

PREBUILT TABLE clause):

DROP MATERIALIZED VIEW sales_by_month;

■ If you drop a detail table, Oracle does not automatically drop materialized views
based on the table. However, Oracle returns an error when it tries to refresh a
materialized view based on a detail table that has been dropped.

■ If you drop a materialized view, any compiled requests that were rewritten to use the
materialized view will be invalidated and recompiled automatically. If the
materialized view was prebuilt on a table, the table is not dropped, but it can no
longer be maintained by the materialized view refresh mechanism.
7-460 SQL Reference

DROP MATERIALIZED VIEW LOG / SNAPSHOT LOG
DROP MATERIALIZED VIEW LOG / SNAPSHOT LOG

Syntax

Purpose
To remove a materialized view log from the database.

The terms "snapshot" and "materialized view" are synonymous. For more

information on materialized views, including a description of the various types of

materialized views and refreshing materialized views, see "CREATE

MATERIALIZED VIEW / SNAPSHOT" on page 7-300 and "ALTER

MATERIALIZED VIEW / SNAPSHOT" on page 7-45.

For information on materialized view logs, see "CREATE MATERIALIZED VIEW

LOG / SNAPSHOT LOG" on page 7-314.

For information on materialized views in a replication environment, see Oracle8i
Replication. For information on materialized views in a data warehousing

environment, see Oracle8i Tuning.

Prerequisites
A materialized view log consists of a table and a trigger. To drop a materialized

view log, you must have the privileges listed for "DROP TABLE" on page 7-475.

Keywords and Parameters

schema is the schema containing the materialized view log and its master table. If you omit
schema, Oracle assumes the materialized view log and master table are in your own
schema.

table is the name of the detail table associated with the materialized view log to be dropped.

DROP
MATERIALIZED VIEW

SNAPSHOT
LOG ON

schema .
table ;
SQL Statements 7-461

DROP MATERIALIZED VIEW LOG / SNAPSHOT LOG
Example
The following statement drops the materialized view log on the PARTS master

table:

DROP MATERIALIZED VIEW LOG ON parts;

After you drop a materialized view log, some materialized views based on the
materialized view log’s detail table can no longer be fast refreshed. These materialized
views include rowid materialized views, primary key materialized views, and subquery
materialized views. For a description of the types of materialized views, see Oracle8i
Tuning.
7-462 SQL Reference

DROP OPERATOR
DROP OPERATOR

Syntax

Purpose
To drop a user-defined operator.

For more information on operators, see "User-Defined Operators" on page 3-16,

Oracle8i Data Cartridge Developer’s Guide and "CREATE OPERATOR" on page 7-320.

Prerequisites
The operator must be in your schema or you must have the DROP ANY

OPERATOR system privilege.

Keywords and Parameters

Example
The following statement drops the operator MERGE:

DROP OPERATOR ordsys.merge;

Because the FORCE clause is not specified, this operation will fail if any of the

bindings of this operator are referenced by an indextype.

schema is the schema containing the operator. If you omit schema, Oracle assumes the operator is in
your own schema.

operator specifies the name of the operator to be dropped.

FORCE drops the operator even if it is currently being referenced by one or more schema objects
(indextypes, packages, functions, procedures, and so on), and marks those dependent objects
INVALID. Without FORCE, you cannot drop an operator if any schema objects reference it.

DROP OPERATOR
schema .

operator
FORCE

;

SQL Statements 7-463

DROP OUTLINE
DROP OUTLINE

Syntax

Purpose
To drop a stored outline.

For more information on outlines, see "CREATE OUTLINE" on page 7-323 and

Oracle8i Tuning.

Prerequisites
To drop an outline, you must have the DROP ANY OUTLINE system privilege.

Keywords and Parameters

Example
The following statement drops the stored outline called SALARIES.

DROP OUTLINE salaries;

outline is the name of the outline to be dropped.

After the outline is dropped, if the SQL statement for which the stored outline was
created is compiled, the optimizer generates a new execution plan without the influence
of the outline.

DROP OUTLINE outline ;
7-464 SQL Reference

DROP PACKAGE
DROP PACKAGE

Syntax

Purpose
To remove a stored package from the database. This statement drops the body and

specification of a package.

Prerequisites
The package must be in your own schema or you must have the DROP ANY

PROCEDURE system privilege.

Keywords and Parameters

Note: Do not use this statement to remove a single object from a

package. Instead, re-create the package without the object using

the CREATE PACKAGE and CREATE PACKAGE BODY

statements with the OR REPLACE clause. See "CREATE

PACKAGE" on page 7-325.

BODY drops only the body of the package. If you omit this clause, Oracle drops both the body
and specification of the package.

When you drop only the body of a package but not its specification, Oracle does not
invalidate dependent objects. However, you cannot call one of the procedures or stored
functions declared in the package specification until you re-create the package body.

schema is the schema containing the package. If you omit schema, Oracle assumes the package is
in your own schema.

DROP PACKAGE
BODY schema .

package ;
SQL Statements 7-465

DROP PACKAGE
Example
The following statement drops the specification and body of the BANKING

package, invalidating all objects that depend on the specification:

DROP PACKAGE banking;

package is the name of the package to be dropped.

Oracle invalidates any local objects that depend on the package specification. If you
subsequently reference one of these objects, Oracle tries to recompile the object and
returns an error if you have not re-created the dropped package. For information on how
Oracle maintains dependencies among schema objects, including remote objects, see
Oracle8i Concepts.

If any statistics types are associated with the package, Oracle disassociates the statistics
types with the FORCE clause and drops any user-defined statistics collected with the
statistics types. For more information, see "ASSOCIATE STATISTICS" on page 7-194 and
"DISASSOCIATE STATISTICS" on page 7-444.
7-466 SQL Reference

DROP PROCEDURE
DROP PROCEDURE

Syntax

Purpose
To remove a standalone stored procedure from the database. Do not use this

statement to remove a procedure that is part of a package. Instead, either drop the

entire package using the DROP PACKAGE statement, or redefine the package

without the procedure using the CREATE PACKAGE statement with the OR

REPLACE clause.

For information on creating a procedure, see "CREATE PROCEDURE" on

page 7-333.

Prerequisites
The procedure must be in your own schema or you must have the DROP ANY

PROCEDURE system privilege.

Keywords and Parameters

Example
The following statement drops the procedure TRANSFER owned by the user

KERNER and invalidates all objects that depend upon TRANSFER:

DROP PROCEDURE kerner.transfer

schema is the schema containing the procedure. If you omit schema, Oracle assumes the procedure
is in your own schema.

procedure is the name of the procedure to be dropped.

When you drop a procedure, Oracle invalidates any local objects that depend upon the
dropped procedure. If you subsequently reference one of these objects, Oracle tries to
recompile the object and returns an error message if you have not re-created the dropped
procedure. For information on how Oracle maintains dependencies among schema
objects, including remote objects, see Oracle8i Concepts.

DROP PR0CEDURE
schema .

procedure ;
SQL Statements 7-467

DROP PROFILE
DROP PROFILE

Syntax

Purpose
To remove a profile from the database.

For information on creating a profile, see "CREATE PROFILE" on page 7-338.

Prerequisites
You must have the DROP PROFILE system privilege.

Keywords and Parameters

Example
The following statement drops the profile ENGINEER:

DROP PROFILE engineer CASCADE;

Oracle drops the profile ENGINEER and assigns the DEFAULT profile to any users

currently assigned the ENGINEER profile.

profile is the name of the profile to be dropped.

Restriction: You cannot drop the DEFAULT profile.

CASCADE deassigns the profile from any users to whom it is assigned. Oracle automatically assigns
the DEFAULT profile to such users. You must specify this clause to drop a profile that is
currently assigned to users.

DROP PROFILE profile
CASCADE

;

7-468 SQL Reference

DROP ROLE
DROP ROLE

Syntax

Purpose
To remove a role from the database. When you drop a role, Oracle revokes it from

all users and roles to whom it has been granted and removes it from the database.

For information on creating roles, see "CREATE ROLE" on page 7-344. For

information on disabling roles for the current session, see "SET ROLE" on

page 7-570.

Prerequisites
You must have been granted the role with the ADMIN OPTION or you must have

the DROP ANY ROLE system privilege.

Keywords and Parameters

Example
To drop the role FLORIST, issue the following statement:

DROP ROLE florist;

role is the role to be dropped.

DROP ROLE role ;
SQL Statements 7-469

DROP ROLLBACK SEGMENT
DROP ROLLBACK SEGMENT

Syntax

Purpose
To remove a rollback segment from the database. When you drop a rollback

segment, all space allocated to the rollback segment returns to the tablespace.

For information on creating a rollback segment, see CREATE ROLLBACK

SEGMENT on page 7-346. See also "CREATE TABLESPACE" on page 7-394.

Prerequisites
You must have the DROP ROLLBACK SEGMENT system privilege.

Keywords and Parameters

Example
The following statement drops the rollback segment ACCOUNTING:

DROP ROLLBACK SEGMENT accounting;

rollback_segment is the name the rollback segment to be dropped.

Restrictions:

■ You can drop a rollback segment only if it is offline. To determine whether a rollback
segment is offline, query the data dictionary view DBA_ROLLBACK_SEGS. Offline
rollback segments have the value AVAILABLE in the STATUS column. You can take a
rollback segment offline with the OFFLINE clause of the ALTER ROLLBACK
SEGMENT statement.

■ You cannot drop the SYSTEM rollback segment.

DROP ROLLBACK SEGMENT rollback_segment ;
7-470 SQL Reference

DROP SEQUENCE
DROP SEQUENCE

Syntax

Purpose
To remove a sequence from the database.

You can also use this statement to restart a sequence by dropping and then

re-creating it. For example, if you have a sequence with a current value of 150 and

you would like to restart the sequence with a value of 27, you can drop the

sequence and then re-create it with the same name and a START WITH value of 27.

For more information on creating and modifying sequences, see "CREATE

SEQUENCE" on page 7-350 and "ALTER SEQUENCE" on page 7-76.

Prerequisites
The sequence must be in your own schema or you must have the DROP ANY

SEQUENCE system privilege.

Keywords and Parameters

Example
The following statement drops the sequence ESEQ owned by the user ELLY. To

issue this statement, you must either be connected as user ELLY or have DROP

ANY SEQUENCE system privilege:

DROP SEQUENCE elly.eseq;

schema is the schema containing the sequence. If you omit schema, Oracle assumes the sequence is
in your own schema.

sequence_name is the name of the sequence to be dropped.

DROP SEQUENCE
schema .

sequence_name ;
SQL Statements 7-471

DROP SNAPSHOT
DROP SNAPSHOT

In Oracle8i, "snapshots" are synonymous with "materialized views." Please see

"DROP MATERIALIZED VIEW / SNAPSHOT" on page 7-459.
7-472 SQL Reference

DROP SNAPSHOT LOG
DROP SNAPSHOT LOG

In Oracle8i, "snapshots" are synonymous with "materialized views." Please see

"DROP MATERIALIZED VIEW LOG / SNAPSHOT LOG" on page 7-461.
SQL Statements 7-473

DROP SYNONYM
DROP SYNONYM

Syntax

Purpose
To remove a synonym from the database, or to change the definition of a synonym

by dropping and re-creating it.

For more information on synonyms, see "CREATE SYNONYM" on page 7-356.

Prerequisites
To drop a private synonym, either the synonym must be in your own schema or

you must have the DROP ANY SYNONYM system privilege.

To drop a PUBLIC synonym, either the synonym must be in your own schema or

you must have the DROP ANY PUBLIC SYNONYM system privilege.

Keywords and Parameters

Example
To drop a synonym named MARKET, issue the following statement:

DROP SYNONYM market;

PUBLIC must be specified to drop a public synonym. You cannot specify schema if you have
specified PUBLIC.

schema is the schema containing the synonym. If you omit schema, Oracle assumes the synonym
is in your own schema.

synonym is the name of the synonym to be dropped.

If you drop a synonym for a materialized view, or its containing table or snapshot, or any
of its dependent tables, the materialized view will be invalidated.

DROP
PUBLIC

SYNONYM
schema .

synonym ;
7-474 SQL Reference

DROP TABLE
DROP TABLE

Syntax

Purpose
To remove a table or an object table and all its data from the database.

For information on creating tables, see "CREATE TABLE" on page 7-359. For

information on modifying tables, see "ALTER TABLE" on page 7-113.

Prerequisites
The table must be in your own schema or you must have the DROP ANY TABLE

system privilege.

Keywords and Parameters

schema is the schema containing the table. If you omit schema, Oracle assumes the table is in your
own schema.

table is the name of the table, object table, or index-organized table to be dropped. Oracle
automatically performs the following operations:

■ Removes all rows from the table (as if the rows were deleted).

■ Drops all the table’s indexes and domain indexes, regardless of who created them or
whose schema contains them.

■ If you drop a range-partitioned or hash-partitioned table, all the table partitions are
also dropped. If you drop a composite-partitioned table, all the partitions and
subpartitions are also dropped.

■ For a domain index, this statement invokes the appropriate drop routines. For more

information on these routines, see Oracle8i Data Cartridge Developer’s Guide.

■ If any statistic types are associated with the table, Oracle disassociates the statistics
types with the FORCE clause and removes any user-defined statistics collected with
the statistics type. For more information on statistics type associations, see
"ASSOCIATE STATISTICS" on page 7-194 and "DISASSOCIATE STATISTICS" on
page 7-444.

DROP TABLE
schema .

table
CASCADE CONSTRAINTS

;

SQL Statements 7-475

DROP TABLE
Example
The following statement drops the TEST_DATA table:

DROP TABLE test_data;

■ If the table is not part of a cluster, Oracle returns all data blocks allocated to the table
and its indexes to the tablespaces containing the table and its indexes.

■ If the table is a base table for a view, a container or master table of a materialized
view, or if it is referenced in a stored procedure, function, or package, Oracle
invalidates these dependent objects but does not drop them. You cannot use these
objects unless you re-create the table or drop and re-create the objects so that they no
longer depend on the table.

■ If you choose to re-create the table, it must contain all the columns selected by the
queries originally used to define the materialized views/snapshots and all the
columns referenced in the stored procedures, functions, or packages. Any users
previously granted object privileges on the views, stored procedures, functions, or
packages need not be regranted these privileges.

■ If the table is a detail table for a materialized view, the materialized view can still be
queried, but it cannot be refreshed unless the table is re-created so that it contains all
the columns selected by the materialized view’s query.

■ If the table has a materialized view log/snapshot log, Oracle drops this log and any
other direct-load INSERT refresh information associated with the table.

Note: To drop a cluster and all its the tables, use the DROP CLUSTER statement with the
INCLUDING TABLES clause to avoid dropping each table individually. See "DROP
CLUSTER" on page 7-446.

CASCADE
CONSTRAINTS

drops all referential integrity constraints that refer to primary and unique keys in the
dropped table. If you omit this clause, and such referential integrity constraints exist,
Oracle returns an error and does not drop the table.
7-476 SQL Reference

DROP TABLESPACE
DROP TABLESPACE

Syntax

Purpose
To remove a tablespace from the database.

For information on creating and modifying tablespaces, see "CREATE

TABLESPACE" on page 7-394 and "ALTER TABLESPACE" on page 7-164.

Prerequisites
You must have the DROP TABLESPACE system privilege. You cannot drop a

tablespace if it contains any rollback segments holding active transactions.

Keywords and parameters

tablespace is the name of the tablespace to be dropped.

You can drop a tablespace regardless of whether it is online or offline. Oracle
recommends that you take the tablespace offline before dropping it to ensure that no SQL
statements in currently running transactions access any of the objects in the tablespace.

You may want to alert any users who have been assigned the tablespace as either a
default or temporary tablespace. After the tablespace has been dropped, these users
cannot allocate space for objects or sort areas in the tablespace. You can reassign users
new default and temporary tablespaces with the ALTER USER statement.

Restrictions:

■ You cannot drop the SYSTEM tablespace.

■ You cannot drop a tablespace that contains a domain index or any objects created by
a domain index. For more information on domain indexes, see Oracle8i Data Cartridge
Developer’s Guide and Oracle8i Concepts.

INCLUDING
CONTENTS

drops all the contents of the tablespace. You must specify this clause to drop a tablespace
that contains any database objects. If you omit this clause, and the tablespace is not
empty, Oracle returns an error and does not drop the tablespace.

DROP TABLESPACE tablespace
INCLUDING CONTENTS

CASCADE CONSTRAINTS

;

SQL Statements 7-477

DROP TABLESPACE
Example
The following statement drops the MFRG tablespace and all its contents:

DROP TABLESPACE mfrg
 INCLUDING CONTENTS
 CASCADE CONSTRAINTS;

For partitioned tables, DROP TABLESPACE will fail even if you specify INCLUDING
CONTENTS, if the tablespace contains some, but not all,

■ partitions of a range- or hash-partitioned table, or

■ subpartitions of a composite-partitioned table.

Note: If all the partitions of a partitioned table reside in tablespace, DROP
TABLESPACE ... INCLUDING CONTENTS will drop tablespace, as well as any
associated index segments, LOB data segments, and LOB index segments in the other
tablespace(s).

For a partitioned index-organized table, if all the primary key index segments are in this
tablespace, this clause will also drop any overflow segments that exist in other
tablespaces. If some of the primary key index segments are not in this tablespace, the
statement will fail. In that case, before you can drop the tablespace, you must use ALTER
TABLE ... MOVE PARTITION to move those primary key index segments into this
tablespace, drop the partitions whose overflow data segments are not in this tablespace,
and drop the partitioned index-organized table.

If the tablespace contains a container table or detail table of a materialized view, Oracle
invalidates the materialized view.

If the tablespace contains a materialized view/snapshot log, Oracle drops this log and
any other direct-load INSERT refresh information associated with the table.

CASCADE
CONSTRAINTS

drops all referential integrity constraints from tables outside tablespace that refer to
primary and unique keys of tables inside tablespace. If you omit this clause and such
referential integrity constraints exist, Oracle returns an error and does not drop the
tablespace.
7-478 SQL Reference

DROP TRIGGER
DROP TRIGGER

Syntax

Purpose
To remove a database trigger from the database.

For information on creating triggers, see "CREATE TRIGGER" on page 7-401.

Prerequisites
The trigger must be in your own schema or you must have the DROP ANY

TRIGGER system privilege.

In addition, to drop a trigger on DATABASE in another user’s schema, you must

have the ADMINISTER DATABASE TRIGGER system privilege. For more

information on database triggers, see "CREATE TRIGGER" on page 7-401.

Keywords and Parameters

Example
The following statement drops the REORDER trigger in the schema RUTH:

DROP TRIGGER ruth.reorder;

schema is the schema containing the trigger. If you omit schema, Oracle assumes the trigger is in
your own schema.

trigger is the name of the trigger to be dropped. Oracle removes it from the database and does
not fire it again.

DROP TRIGGER
schema .

 trigger ;
SQL Statements 7-479

DROP TYPE
DROP TYPE

Syntax

Purpose
To drop the specification and body of an object, a varray, or nested table type. To

drop just the body of an object type, see "DROP TYPE BODY" on page 7-482.

For more information on types, see "CREATE TYPE" on page 7-411.

Prerequisites
The object, varray, or nested table type must be in your own schema or you must

have the DROP ANY TYPE system privilege.

Keywords and Parameters

schema is the schema containing the type. If you omit schema, Oracle assumes the type is in your
own schema.

type_name is the name of the object, varray, or nested table type to be dropped. You can drop only
types with no type or table dependencies.

If type_name is a statistics type, this statement will fail unless you also specify FORCE. If
you specify FORCE, Oracle first disassociates all objects that are associated with type_
name, and then drops type_name. For more information on statistics types, see
"ASSOCIATE STATISTICS" on page 7-194 and "DISASSOCIATE STATISTICS" on
page 7-444.

If type_name is an object type that has been associated with a statistics type, Oracle first
attempts to disassociate type_name from the statistics type and then drop type_name.
However, if statistics have been collected using the statistics type, Oracle will be unable
to disassociate type_name from the statistics type, and this statement will fail.

If type_name is an implementation type for an indextype, the indextype will be marked
INVALID. For more information, see "CREATE INDEXTYPE" on page 7-291.

Unless you specify FORCE, you can drop only object, nested table, or varray types that
are standalone schema objects with no dependencies. This is the default behavior.

DROP TYPE
schema .

type_name
FORCE

;

7-480 SQL Reference

DROP TYPE
Example
The following statement removes object type PERSON_T:

DROP TYPE person_t;

FORCE forces the type to be dropped even if it has dependent database objects. Oracle marks

UNUSED all columns dependent on the type to be dropped, and those columns become

inaccessible.

WARNING: Oracle does not recommend that you specify FORCE to drop types with
dependencies. This operation is not recoverable and could cause the data in the
dependent tables or columns to become inaccessible. For information about type
dependencies, see Oracle8i Application Developer’s Guide - Fundamentals.
SQL Statements 7-481

DROP TYPE BODY
DROP TYPE BODY

Syntax

Purpose
To drop the body of an object, varray, or nested table type. When you drop a type

body, the object type specification still exists, and you can re-create the type body.

Prior to re-creating the body, you can still use the object type, although you cannot

call the member functions.

To drop the specification of an object, see "DROP TYPE" on page 7-480. For more

information on type bodies, see "CREATE TYPE BODY" on page 7-421.

Prerequisites
The object type body must be in your own schema, and you must have

■ the CREATE TYPE or CREATE ANY TYPE system privilege, or

■ the DROP ANY TYPE system privilege

Keywords and Parameters

Example
The following statement removes object type body RATIONAL:

DROP TYPE BODY rational;

schema is the schema containing the object type. If you omit schema, Oracle assumes the object
type is in your own schema.

type_name is the name of the object type body to be dropped.

Restriction: You can drop a type body only if it has no type or table dependencies.

DROP TYPE BODY
schema .

type_name ;
7-482 SQL Reference

DROP USER
DROP USER

Syntax

Purpose
To remove a database user and optionally remove the user’s objects. For

information on creating a user, see "CREATE USER" on page 7-425. For information

on modifying the definition of a user, see "ALTER USER" on page 7-179.

Prerequisites
You must have the DROP USER system privilege.

Keywords and Parameters

user is the user to be dropped. Oracle does not drop users whose schemas contain objects
unless you specify CASCADE, or unless you first explicitly drop the user’s objects.

CASCADE drops all objects in the user’s schema before dropping the user. You must specify this
clause to drop a user whose schema contains any objects.

■ If the user’s schema contains tables, Oracle drops the tables and automatically drops
any referential integrity constraints on tables in other schemas that refer to primary
and unique keys on these tables.

■ If this clause results in tables being dropped, Oracle also drops all domain indexes
created on columns of those tables, and invokes appropriate drop routines. For more

information on these routines, see Oracle8i Data Cartridge Developer’s Guide.

■ Oracle invalidates, but does not drop, the following objects in other schemas: views
or synonyms for objects in the dropped user’s schema; and stored procedures,
functions, or packages that query objects in the dropped user’s schema.

■ Oracle does not drop materialized views on tables or views in the dropped user’s
schema, but if you specify CASCADE, the materialized views can no longer be
refreshed.

■ Oracle drops all triggers in the user’s schema.

■ Oracle does not drop roles created by the user.

DROP USER user
CASCADE

;

SQL Statements 7-483

DROP USER
Examples
If user BRADLEY’s schema contains no objects, you can drop BRADLEY by issuing

the statement:

DROP USER bradley;

If BRADLEY’s schema contains objects, you must use the CASCADE clause to drop

BRADLEY and the objects:

DROP USER bradley CASCADE;

WARNING: Oracle also drops with FORCE all types owned by the user. See the
FORCE keyword of "DROP TYPE" on page 7-481.
7-484 SQL Reference

DROP VIEW
DROP VIEW

Syntax

Purpose
To remove a view or an object view from the database. You can change the

definition of a view by dropping and re-creating it. For more information, see

"CREATE VIEW" on page 7-430.

Prerequisites
The view must be in your own schema or you must have the DROP ANY VIEW

system privilege.

Keywords and Parameters

Example
The following statement drops the VIEW_DATA view:

DROP VIEW view_data;

schema is the schema containing the view. If you omit schema, Oracle assumes the view is in your
own schema.

view is the name of the view to be dropped.

Views, materialized views, and synonyms that refer to the view are not dropped, but
become invalid. You can drop them or redefine views and synonyms, or you can define
other views in such a way that the invalid views and synonyms become valid again. See
"CREATE TABLE" on page 7-359 and "CREATE SYNONYM" on page 7-356. To revalidate
invalid materialized views, see "ALTER MATERIALIZED VIEW / SNAPSHOT" on
page 7-45.

DROP VIEW
schema .

view ;
SQL Statements 7-485

EXPLAIN PLAN
EXPLAIN PLAN

Syntax

Purpose
To determine the execution plan Oracle follows to execute a specified SQL

statement. This statement inserts a row describing each step of the execution plan

into a specified table. If you are using cost-based optimization, this statement also

determines the cost of executing the statement. If any domain indexes are defined

on the table, user-defined CPU and I/O costs will also be inserted. See Oracle8i
Tuning for information on the output of EXPLAIN PLAN.

The definition of a sample output table PLAN_TABLE is available in a SQL script

on your distribution media. Your output table must have the same column names

and datatypes as this table. The common name of this script is UTLXPLAN.SQL.

The exact name and location depend on your operating system.

You can also issue the EXPLAIN PLAN statement as part of the SQL trace facility.

For information on how to use the SQL trace facility, as well as a detailed

discussion of how to generate and interpret execution plans, see Oracle8i Tuning.

Prerequisites
To issue an EXPLAIN PLAN statement, you must have the privileges necessary to

insert rows into an existing output table that you specify to hold the execution

plan. For information on these privileges, see "INSERT" on page 7-512.

Note: Do not use the EXPLAIN PLAN statement to determine the

execution plans of SQL statements that access data dictionary

views or dynamic performance tables.

EXPLAIN PLAN
SET STATEMENT_ID = ’ text ’

INTO
schema .

table
 @ dblink

FOR statement ;
7-486 SQL Reference

EXPLAIN PLAN
You must also have the privileges necessary to execute the SQL statement for

which you are determining the execution plan. If the SQL statement accesses a

view, you must have privileges to access any tables and views on which the view is

based. If the view is based on another view that is based on a table, you must have

privileges to access both the other view and its underlying table.

To examine the execution plan produced by an EXPLAIN PLAN statement, you

must have the privileges necessary to query the output table. For more information

on these privileges, see "SELECT and Subqueries" on page 7-541.

The EXPLAIN PLAN statement is a data manipulation language (DML) statement,

rather than a data definition language (DDL) statement. Therefore, Oracle does not

implicitly commit the changes made by an EXPLAIN PLAN statement. If you want

to keep the rows generated by an EXPLAIN PLAN statement in the output table,

you must commit the transaction containing the statement.

Keywords and Parameters

SET
STATEMENT_ID

specifies the value of the STATEMENT_ID column for the rows of the execution plan in
the output table. You can then use this value to identify these rows among others in the
output table. Be sure to specify a STATEMENT_ID value if your output table contains
rows from many execution plans. If you omit this clause, the STATEMENT_ID value
defaults to null.

INTO specifies name of the output table, and optionally its schema and database. This table
must exist before you use the EXPLAIN PLAN statement.

If you omit schema, Oracle assumes the table is in your own schema.

The dblink can be a complete or partial name of a database link to a remote Oracle
database where the output table is located. For information on referring to database links,
see the section, "Referring to Objects in Remote Databases" on page 2-74. You can specify
a remote output table only if you are using Oracle’s distributed functionality. If you omit
dblink, Oracle assumes the table is on your local database.

If you omit INTO altogether, Oracle assumes an output table named PLAN_TABLE in
your own schema on your local database.

FOR statement specifies a SELECT, INSERT, UPDATE, DELETE, CREATE TABLE, or CREATE INDEX
statement for which the execution plan is generated.

Note: If statement includes the parallel_clause, the resulting execution plan will indicate
parallel execution. However, EXPLAIN PLAN actually inserts the statement into the plan
table, so that the parallel DML statement you submit is no longer the first DML statement
in the transaction. This violates the Oracle restriction of one parallel DML statement per
transaction, and the statement will be executed serially. To maintain parallel execution of
the statements, you must commit or roll back the EXPLAIN PLAN statement, and then
submit the parallel DML statement.
SQL Statements 7-487

EXPLAIN PLAN
Examples
The following statement determines the execution plan and cost for an UPDATE

statement and inserts rows describing the execution plan into the specified

OUTPUT table with the STATEMENT_ID value of ’Raise in Chicago’:

EXPLAIN PLAN
 SET STATEMENT_ID = ’Raise in Chicago’
 INTO output
 FOR UPDATE emp
 SET sal = sal * 1.10
 WHERE deptno = (SELECT deptno
 FROM dept
 WHERE loc = ’CHICAGO’);

The following SELECT statement queries the OUTPUT table and returns the

execution plan and the cost:

SELECT LPAD(’ ’,2*(LEVEL-1))||operation operation, options,
object_name, position
 FROM output
 START WITH id = 0 AND statement_id = ’Raise in Chicago’
 CONNECT BY PRIOR id = parent_id AND
 statement_id = ’Raise in Chicago’;

The query returns this execution plan:

OPERATION OPTIONS OBJECT_NAME POSITION
--
UPDATE STATEMENT 1
 FILTER 0
 TABLE ACCESS FULL EMP 1
 TABLE ACCESS FULL DEPT 2

The value in the POSITION column of the first row shows that the statement has a

cost of 1.

Partitioned Example Assume that STOCKS is a table with eight partitions on a

STOCK_NUM column, and that a local prefixed index STOCK_IX on column

STOCK_NUM exists. The partition HIGHVALUES are 1000, 2000, 3000, 4000, 5000,

6000, 7000, and 8000.

Consider the query:

SELECT * FROM stocks WHERE stock_num BETWEEN 3800 AND :h;
7-488 SQL Reference

EXPLAIN PLAN
(where :h represents a bind variable). EXPLAIN PLAN executes this query with

PLAN_TABLE as the output table. The basic execution plan, including partitioning

information, is obtained with the query:

SELECT id, operation, options, object_name,
 partition_start, partition_stop, partition_id FROM plan_table;
SQL Statements 7-489

filespec
7SQL Statements

filespec

Syntax
filespec_datafiles & filespec_tempfiles::=

filespec_redo_log_file_groups::=

Purpose
To specify a file as a datafile or tempfile

To specify a group of one or more files as a redo log file group.

Prerequisites
A filespec can appear in the following statements: "CREATE DATABASE" on

page 7-249, "ALTER DATABASE" on page 7-6, "CREATE TABLESPACE" on

page 7-394, and "ALTER TABLESPACE" on page 7-164, "CREATE CONTROLFILE"

on page 7-245, "CREATE LIBRARY" on page 7-298, and "CREATE TEMPORARY

TABLESPACE" on page 7-399.

You must have the privileges necessary to issue one of these statements.

’ filename ’
SIZE integer

K

M
REUSE

’ filename ’

(’ filename ’

,

)

SIZE integer

K

M
REUSE
7-490 SQL Reference

filespec
Keywords and Parameters

Examples
The following statement creates a database named PAYABLE that has two redo log

file groups, each with two members, and one datafile:

CREATE DATABASE payable
 LOGFILE GROUP 1 (’diska:log1.log’, ’diskb:log1.log’) SIZE 50K,
 GROUP 2 (’diska:log2.log’, ’diskb:log2.log’) SIZE 50K
 DATAFILE ’diskc:dbone.dat’ SIZE 30M;

The first filespec in the LOGFILE clause specifies a redo log file group with the

GROUP value 1. This group has members named ’DISKA:LOG1.LOG’ and

’DISKB:LOG1.LOG’, each 50 kilobytes in size.

The second filespec in the LOGFILE clause specifies a redo log file group with the

GROUP value 2. This group has members named ’DISKA:LOG2.LOG’ and

’DISKB:LOG2.LOG’, also 50 kilobytes in size.

The filespec in the DATAFILE clause specifies a datafile named

’DISKC:DBONE.DAT’, 30 megabytes in size.

’filename’ is the name of either a datafile, tempfile, or a redo log file member. A ’filename’ can
contain only single-byte characters from 7-bit ASCII or EBCDIC character sets. Multibyte
characters are not valid.

A redo log file group can have one or more members (copies). Each ’filename’ must be
fully specified according to the conventions for your operating system.

SIZE integer specifies the size of the file. Use K or M to specify the size in kilobytes or megabytes.

■ You can omit this parameter only if the file already exists.

■ The size of a tablespace must be one block greater than the sum of the sizes of the
objects contained in it.

REUSE allows Oracle to reuse an existing file.

■ If the file already exists, Oracle verifies that its size matches the value of the SIZE
parameter (if you specify SIZE).

■ If the file does not exist, Oracle ignores this clause and creates the file.

■ You can omit this clause only if the file does not already exist. If you omit this clause,
Oracle creates the file.

Note: Whenever Oracle uses an existing file, the file’s previous contents are lost.
SQL Statements 7-491

filespec
All of these filespecs specify a value for the SIZE parameter and omit the REUSE

clause, so none of these files can already exist. Oracle must create them.

The following statement adds another redo log file group with two members to the

PAYABLE database:

ALTER DATABASE payable
 ADD LOGFILE GROUP 3 (’diska:log3.log’, ’diskb:log3.log’)
 SIZE 50K REUSE;

The filespec in the ADD LOGFILE clause specifies a new redo log file group with the

GROUP value 3. This new group has members named ’DISKA:LOG3.LOG’ and

’DISKB:LOG3.LOG’, each 50 kilobytes in size. Because the filespec specifies the

REUSE clause, each member can already exist. If a member exists, it must have a

size of 50 kilobytes. If it does not exist, Oracle creates it with that size.

The following statement creates a tablespace named STOCKS that has three

datafiles:

CREATE TABLESPACE stocks
 DATAFILE ’diskc:stock1.dat’,
 ’diskc:stock2.dat’,
 ’diskc:stock3.dat’;

The filespecs for the datafiles specifies files named ’DISKC:STOCK1.DAT’,

’DISKC:STOCK2.DAT’, and ’DISKC:STOCK3.DAT’. Since each filespec omits the

SIZE parameter, each file must already exist.

The following statement alters the STOCKS tablespace and adds a new datafile:

ALTER TABLESPACE stocks
 ADD DATAFILE ’diskc:stock4.dat’ REUSE;

The filespec specifies a datafile named ’DISKC:STOCK4.DAT’. Since the filespec
omits the SIZE parameter, the file must already exist and the REUSE clause is not

significant.
7-492 SQL Reference

GRANT system_privileges_and_roles
GRANT system_privileges_and_roles

Syntax

Purpose
To grant system privileges and roles to users and roles. Both privileges and roles

are either local, global, or external (see "CREATE USER" on page 7-425 and

"CREATE ROLE" on page 7-344 for definitions).

You can authorize database users to use roles through means other than the

database and the GRANT statement. For example, some operating systems have

facilities that grant operating system privileges to operating system users. You can

use such facilities to grant roles to Oracle users with the initialization parameter

OS_ROLES. If you choose to grant roles to users through operating system

facilities, you cannot also grant roles to users with the GRANT statement, although

you can use the GRANT statement to grant system privileges to users and system

privileges and roles to other roles. For information about other authorization

methods, see Oracle8i Administrator’s Guide.

For information on granting object privileges, see "GRANT object_privileges" on

page 7-505.

Prerequisites
To grant a system privilege, you must either have been granted the system

privilege with the ADMIN OPTION or have been granted the GRANT ANY

PRIVILEGE system privilege.

To grant a role, you must either have been granted the role with the ADMIN

OPTION or have been granted the GRANT ANY ROLE system privilege, or you

must have created the role.

GRANT
system_priv

role

,

TO

user

role

PUBLIC

,

WITH ADMIN OPTION
;

SQL Statements 7-493

GRANT system_privileges_and_roles
Keywords and Parameters

system_priv is a system privilege to be granted. Table 7–5 lists the system privileges (organized by the
database object operated upon).

■ If you grant a privilege to a user, Oracle adds the privilege to the user’s privilege
domain. The user can immediately exercise the privilege.

■ If you grant a privilege to a role, Oracle adds the privilege to the role’s privilege
domain. Users who have been granted and have enabled the role can immediately
exercise the privilege. Other users who have been granted the role can enable the role
and exercise the privilege.

■ If you grant a privilege to PUBLIC, Oracle adds the privilege to the privilege
domains of each user. All users can immediately perform operations authorized by
the privilege.

Restrictions:

■ A privilege or role cannot appear more than once in the list of privileges and roles to
be granted.

■ You cannot grant a role to itself.

■ You cannot grant a role IDENTIFIED GLOBALLY to anything.

■ You cannot grant a role IDENTIFIED EXTERNALLY to a global user or global role.

■ You cannot grant roles circularly. For example, if you grant the role BANKER to the
role TELLER, you cannot subsequently grant TELLER to BANKER.

role is a role to be granted. You can grant an Oracle predefined role or a user-defined role.
Table 7–6 lists the predefined roles. For information on creating a user-defined role, see
"CREATE ROLE" on page 7-344.

■ If you grant a role to a user, Oracle makes the role available to the user. The user can
immediately enable the role and exercise the privileges in the role’s privilege domain.

■ If you grant a role to another role, Oracle adds the granted role’s privilege domain to
the grantee role’s privilege domain. Users who have been granted the grantee role
can enable it and exercise the privileges in the granted role’s privilege domain.

■ If you grant a role to PUBLIC, Oracle makes the role available to all users. All users
can immediately enable the role and exercise the privileges in the roles privilege
domain.

TO identifies users or roles to which system privileges and roles are granted.

Restriction: A user, role, or PUBLIC cannot appear more than once in the TO clause.

PUBLIC grants system privileges or roles to all users.
7-494 SQL Reference

GRANT system_privileges_and_roles
WITH ADMIN
OPTION

enables the grantee to

■ Grant the role to another user or role, unless the role is a GLOBAL role

■ Revoke the role from another user or role

■ Alter the role to change the authorization needed to access it

■ Drop the role

If you grant a system privilege or role to a user without specifying WITH ADMIN
OPTION, and then subsequently grant the privilege or role to the user WITH ADMIN
OPTION, the user has the ADMIN OPTION on the privilege or role.

To revoke the admin option on a system privilege or role from a user, you must revoke
the privilege or role from the user altogether and then grant the privilege or role to the
user without the admin option.

Table 7–5 System Privileges

System Privilege Allows grantee to . . .

CLUSTERS

CREATE CLUSTER Create clusters in grantee’s schema

CREATE ANY CLUSTER Create a cluster in any schema except SYS. Behaves
similarly to CREATE ANY TABLE.

ALTER ANY CLUSTER Alter clusters in any schema except SYS

DROP ANY CLUSTER Drop clusters in any schema except SYS

CONTEXTS

CREATE ANY CONTEXT Create any context namespace

DROP ANY CONTEXT Drop any context namespace

DATABASE

ALTER DATABASE Alter the database

ALTER SYSTEM Issue ALTER SYSTEM statements

AUDIT SYSTEM Issue AUDIT sql_statements statements

DATABASE LINKS

CREATE DATABASE LINK Create private database links in grantee’s schema

CREATE PUBLIC
DATABASE LINK

Create public database links
SQL Statements 7-495

GRANT system_privileges_and_roles
DROP PUBLIC DATABASE
LINK

Drop public database links

DIMENSIONS

CREATE DIMENSION Create dimensions in the grantee’s schema

CREATE ANY DIMENSION Create dimensions in any schema except SYS

ALTER ANY DIMENSION Alter dimensions in any schema except SYS

DROP ANY DIMENSION Drop dimensions in any schema except SYS

DIRECTORIES

CREATE ANY DIRECTORY Create directory database objects

DROP ANY DIRECTORY Drop directory database objects

INDEXTYPES

CREATE INDEXTYPE Create an indextype in the grantee’s schema

CREATE ANY INDEXTYPE Create an indextype in any schema except SYS

DROP ANY INDEXTYPE Drop an indextype in any schema except SYS

EXECUTE ANY INDEXTYPE Reference an indextype in any schema except SYS

INDEXES

CREATE INDEX Create in the grantee’s schema an index on any table in
the grantee’s schema or a domain index

CREATE ANY INDEX Create in any schema except SYS a domain index or an
index on any table in any schema except SYS

ALTER ANY INDEX Alter indexes in any schema except SYS

DROP ANY INDEX Drop indexes in any schema except SYS

QUERY REWRITE Enable rewrite using a materialized view, or create a
function-based index, when that materialized view or
index references tables and views that are in the
grantee’s own schema.

GLOBAL QUERY REWRITE Enable rewrite using a materialized view, or create a
function-based index, when that materialized view or
index references tables or views in any schema except
SYS.

Table 7–5 (Cont.) System Privileges

System Privilege Allows grantee to . . .
7-496 SQL Reference

GRANT system_privileges_and_roles
LIBRARIES

CREATE LIBRARY Create external procedure/function libraries in
grantee’s schema

CREATE ANY LIBRARY Create external procedure/function libraries in any
schema except SYS

DROP LIBRARY Drop external procedure/function libraries in the
grantee’s schema

DROP ANY LIBRARY Drop external procedure/function libraries in any
schema except SYS

MATERIALIZED VIEWS (which are identical to SNAPSHOTS)

CREATE MATERIALIZED
VIEW

Create a materialized view in the grantee’s schema

CREATE ANY
MATERIALIZED VIEW

Create materialized views in any schema except SYS

ALTER ANY
MATERIALIZED VIEW

Alter materialized views in any schema except SYS

DROP ANY MATERIALIZED
VIEW

Drop materialized views in any schema except SYS

QUERY REWRITE Enable rewrite using a materialized view, or create a
function-based index, when that materialized view or
index references tables and views that are in the
grantee’s own schema.

GLOBAL QUERY REWRITE Enable rewrite using a materialized view, or create a
function-based index, when that materialized view or
index references tables or views in any schema except
SYS.

OPERATORS

CREATE OPERATOR Create an operator and its bindings in the grantee’s
schema

CREATE ANY OPERATOR Create an operator and its bindings in any schema
except SYS

DROP ANY OPERATOR Drop an operator in any schema except SYS

EXECUTE ANY OPERATOR Reference an operator in any schema except SYS

OUTLINES

Table 7–5 (Cont.) System Privileges

System Privilege Allows grantee to . . .
SQL Statements 7-497

GRANT system_privileges_and_roles
CREATE ANY OUTLINE Create outlines that can be used in any schema that
uses outlines

ALTER ANY OUTLINE Modify outlines.

DROP ANY OUTLINE Drop outlines

PROCEDURES

CREATE PROCEDURE Create stored procedures, functions, and packages in
grantee’s schema

CREATE ANY PROCEDURE Create stored procedures, functions, and packages in
any schema except SYS

ALTER ANY PROCEDURE Alter stored procedures, functions, or packages in any
schema except SYS

DROP ANY PROCEDURE Drop stored procedures, functions, or packages in any
schema except SYS

EXECUTE ANY PROCEDURE Execute procedures or functions (standalone or
packaged)

Reference public package variables in any schema
except SYS

PROFILES

CREATE PROFILE Create profiles

ALTER PROFILE Alter profiles

DROP PROFILE Drop profiles

ROLES

CREATE ROLE Create roles

ALTER ANY ROLE Alter any role in the database

DROP ANY ROLE Drop roles

GRANT ANY ROLE Grant any role in the database

ROLLBACK SEGMENTS

CREATE ROLLBACK
SEGMENT

Create rollback segments

ALTER ROLLBACK SEGMENTAlter rollback segments

DROP ROLLBACK SEGMENT Drop rollback segments

Table 7–5 (Cont.) System Privileges

System Privilege Allows grantee to . . .
7-498 SQL Reference

GRANT system_privileges_and_roles
SEQUENCES

CREATE SEQUENCE Create sequences in grantee’s schema

CREATE ANY SEQUENCE Create sequences in any schema except SYS

ALTER ANY SEQUENCE Alter any sequence in the database

DROP ANY SEQUENCE Drop sequences in any schema except SYS

SELECT ANY SEQUENCE Reference sequences in any schema except SYS

SESSIONS

CREATE SESSION Connect to the database

ALTER RESOURCE COST Set costs for session resources

ALTER SESSION Issue ALTER SESSION statements

RESTRICTED SESSION Logon after the instance is started using the SQL*Plus
STARTUP RESTRICT statement

SNAPSHOTS (which are identical to MATERIALIZED VIEWS)

CREATE SNAPSHOT Create snapshots in grantee’s schema

CREATE ANY SNAPSHOT Create snapshots in any schema except SYS

ALTER ANY SNAPSHOT Alter any snapshot in the database

DROP ANY SNAPSHOT Drop snapshots in any schema except SYS

GLOBAL QUERY REWRITE Enable rewrite using a snapshot, or create a
function-based index, when that snapshot or index
references tables or views in any schema except SYS.

QUERY REWRITE Enable rewrite using a snapshot, or create a
function-based index, when that snapshot or index
references tables and views that are in the grantee’s
own schema.

SYNONYMS

CREATE SYNONYM Create synonyms in grantee’s schema

CREATE ANY SYNONYM Create private synonyms in any schema except SYS

CREATE PUBLIC SYNONYM Create public synonyms

DROP ANY SYNONYM Drop private synonyms in any schema except SYS

Table 7–5 (Cont.) System Privileges

System Privilege Allows grantee to . . .
SQL Statements 7-499

GRANT system_privileges_and_roles
DROP PUBLIC SYNONYM Drop public synonyms

TABLES

CREATE ANY TABLE Create tables in any schema except SYS. The owner of
the schema containing the table must have space quota
on the tablespace to contain the table.

ALTER ANY TABLE Alter any table or view in the schema

BACKUP ANY TABLE Use the Export utility to incrementally export objects
from the schema of other users

DELETE ANY TABLE Delete rows from tables, table partitions, or views in
any schema except SYS

DROP ANY TABLE Drop or truncate tables or table partitions in any
schema except SYS

INSERT ANY TABLE Insert rows into tables and views in any schema except
SYS

LOCK ANY TABLE Lock tables and views in any schema except SYS

UPDATE ANY TABLE Update rows in tables and views in any schema except
SYS

SELECT ANY TABLE Query tables, views, or snapshots in any schema
except SYS

TABLESPACES

CREATE TABLESPACE Create tablespaces

ALTER TABLESPACE Alter tablespaces

DROP TABLESPACE Drop tablespaces

MANAGE TABLESPACE Take tablespaces offline and online and begin and end
tablespace backups

UNLIMITED TABLESPACE Use an unlimited amount of any tablespace. This
privilege overrides any specific quotas assigned. If you
revoke this privilege from a user, the user’s schema
objects remain but further tablespace allocation is
denied unless authorized by specific tablespace quotas.
You cannot grant this system privilege to roles.

TRIGGERS

CREATE TRIGGER Create a database trigger in grantee’s schema

Table 7–5 (Cont.) System Privileges

System Privilege Allows grantee to . . .
7-500 SQL Reference

GRANT system_privileges_and_roles
CREATE ANY TRIGGER Create database triggers in any schema except SYS

ALTER ANY TRIGGER Enable, disable, or compile database triggers in any
schema except SYS

DROP ANY TRIGGER Drop database triggers in any schema except SYS

ADMINISTER DATABASE
TRIGGER

Create a trigger on DATABASE. (You must also have
the CREATE TRIGGER or CREATE ANY TRIGGER
privilege.)

TYPES

CREATE TYPE Create object types and object type bodies in grantee’s
schema

CREATE ANY TYPE Create object types and object type bodies in any
schema except SYS

ALTER ANY TYPE Alter object types in any schema except SYS

DROP ANY TYPE Drop object types and object type bodies in any
schema except SYS

EXECUTE ANY TYPE Use and reference object types and collection types in
any schema except SYS, and invoke methods of an
object type in any schema if you make the grant to a
specific user. If you grant EXECUTE ANY TYPE to a
role, users holding the enabled role will not be able to
invoke methods of an object type in any schema.

USERS

CREATE USER Create users. This privilege also allows the creator to

■ assign quotas on any tablespace

■ set default and temporary tablespaces

■ assign a profile as part of a CREATE USER
statement

ALTER USER Alter any user. This privilege authorizes the grantee to

■ Change another user’s password or authentication
method,

■ Assign quotas on any tablespace,

■ Set default and temporary tablespaces, and

■ Assign a profile and default roles

Table 7–5 (Cont.) System Privileges

System Privilege Allows grantee to . . .
SQL Statements 7-501

GRANT system_privileges_and_roles
BECOME USER Become another user. (Required by any user
performing a full database import.)

DROP USER Drop users

VIEWS

CREATE VIEW Create views in grantee’s schema

CREATE ANY VIEW Create views in any schema except SYS

DROP ANY VIEW Drop views in any schema except SYS

MISCELLANEOUS

ANALYZE ANY Analyze any table, cluster, or index in any schema
except SYS

AUDIT ANY Audit any object in any schema except SYS using
AUDIT schema_objects statements

COMMENT ANY TABLE Comment on any table, view, or column in any schema
except SYS

FORCE ANY TRANSACTION Force the commit or rollback of any in-doubt
distributed transaction in the local database

Induce the failure of a distributed transaction

FORCE TRANSACTION Force the commit or rollback of grantee’s in-doubt
distributed transactions in the local database

GRANT ANY PRIVILEGE Grant any system privilege.

SYSDBA Perform STARTUP and SHUTDOWN operations

ALTER DATABASE: open, mount, back up, or change
character set

CREATE DATABASE

ARCHIVELOG and RECOVERY

Includes the RESTRICTED SESSION privilege

SYSOPER Perform STARTUP and SHUTDOWN operations

ALTER DATABASE OPEN/MOUNT/BACKUP

ARCHIVELOG and RECOVERY

Includes the RESTRICTED SESSION privilege

Table 7–5 (Cont.) System Privileges

System Privilege Allows grantee to . . .
7-502 SQL Reference

GRANT system_privileges_and_roles
Examples
To grant the CREATE SESSION system privilege to RICHARD, allowing

RICHARD to log on to Oracle, issue the following statement:

GRANT CREATE SESSION
TO richard;

To grant the CREATE TABLE system privilege to the role TRAVEL_AGENT, issue

the following statement:

Table 7–6 Oracle Predefined Roles

Predefined Role Purpose

CONNECT, RESOURCE,
and DBA

These roles are provided for compatibility with previous
versions of Oracle. You should not rely on these roles, because
they may not be created automatically by future versions of
Oracle. Rather, Oracle recommends that you to design your
own roles for database security.

DELETE_CATALOG_ROLE
EXECUTE_CATALOG_ROLE
SELECT_CATALOG_ROLE

These roles are provided for accessing exported data
dictionary views and packages. For more information on these
roles, see Oracle8i Application Developer’s Guide - Fundamentals.

EXP_FULL_DATABASE
IMP_FULL_DATABASE

These roles are provided for convenience in using the Import
and Export utilities. For more information on these roles, see
Oracle8i Utilities.

AQ_USER_ROLE
AQ_ADMINISTRATOR_ROLE

You need these roles to use Oracle’s Advanced Queuing
functionality. For more information on these roles, see Oracle8i
Application Developer’s Guide - Advanced Queuing.

SNMPAGENT This role is used by Enterprise Manager/Intelligent Agent. For
more information, see Oracle Enterprise Manager Administrator’s
Guide.

RECOVERY_CATALOG_
OWNER

You need this role to create a user who owns a recovery
catalog. For more information on recovery catalogs, see
Oracle8i Backup and Recovery Guide.

HS_ADMIN_ROLE A DBA using Oracle’s heterogeneous services feature needs
this role to access appropriate tables in the data dictionary and
to manipulate them with the DBMS_HS package. For more
information, refer to Oracle8i Distributed Database Systems and
Oracle8i Supplied Packages Reference.

Oracle also creates other roles that authorize you to administer the database. On many
operating systems, these roles are called OSOPER and OSDBA. Their names may be different
on your operating system.
SQL Statements 7-503

GRANT system_privileges_and_roles
GRANT CREATE TABLE
TO travel_agent;

TRAVEL_AGENT’s privilege domain now contains the CREATE TABLE system

privilege.

The following statement grants the TRAVEL_AGENT role to the EXECUTIVE role:

GRANT travel_agent
TO executive;

TRAVEL_AGENT is now granted to EXECUTIVE. EXECUTIVE’s privilege domain

contains the CREATE TABLE system privilege.

To grant the EXECUTIVE role with the ADMIN OPTION to THOMAS, issue the

following statement:

GRANT executive
TO thomas
WITH ADMIN OPTION;

THOMAS can now perform the following operations with the EXECUTIVE role:

■ Enable the role and exercise any privileges in the role’s privilege domain,

including the CREATE TABLE system privilege

■ Grant and revoke the role to and from other users

■ Drop the role
7-504 SQL Reference

GRANT object_privileges
GRANT object_privileges

Syntax

Purpose
To grant privileges for a particular object to users, roles, and PUBLIC. To grant

system privileges and roles, use the GRANT system_privileges_and_roles statement

described in the previous section of this chapter. Table 7–7 summarizes the object

privileges that you can grant on each type of object.

If you grant a privilege to a user, Oracle adds the privilege to the user’s privilege

domain. The user can immediately exercise the privilege.

If you grant a privilege to a role, Oracle adds the privilege to the role’s privilege

domain. Users who have been granted and have enabled the role can immediately

exercise the privilege. Other users who have been granted the role can enable the

role and exercise the privilege.

GRANT

object_priv

ALL
PRIVILEGES

(column

,

)

,

ON

schema . object

DIRECTORY directory_name

JAVA
SOURCE

RESOURCE

schema .
object

TO

user

role

PUBLIC

WITH GRANT OPTION
;

SQL Statements 7-505

GRANT object_privileges
If you grant a privilege to PUBLIC, Oracle adds the privilege to the privilege

domain of each user. All users can immediately exercise the privilege.

Table 7–8 lists object privileges and the operations that they authorize. You can

grant any of these system privileges with the GRANT statement.

For information on granting system privileges and roles, see "GRANT system_

privileges_and_roles" on page 7-493. For information on revoking object grants, see

"REVOKE schema_object_privileges" on page 7-532.

Prerequisites
You must own the object or the owner of the object must have granted you the

object privileges with the GRANT OPTION. This rule applies to users with the

DBA role.

Keywords and Parameters

object_priv is an object privilege to be granted. You can substitute any of the values shown in
Table 7–7. See also Table 7–8.

Restriction: A privilege cannot appear more than once in the list of privileges to be
granted.

ALL
[PRIVILEGES]

grants all the privileges for the object that you have been granted with the GRANT
OPTION. The user who owns the schema containing an object automatically has all
privileges on the object with the GRANT OPTION. (The keyword PRIVILEGES is
optional.)

column specifies a table or view column on which privileges are granted. You can specify
columns only when granting the INSERT, REFERENCES, or UPDATE privilege. If you do
not list columns, the grantee has the specified privilege on all columns in the table or view.

ON identifies the object on which the privileges are granted. Directory schema objects and
Java source and resource schema objects are identified separately because they reside in
separate namespaces.
7-506 SQL Reference

GRANT object_privileges
object identifies the schema object on which the privileges are granted. If
you do not qualify object with schema, Oracle assumes the object is in
your own schema. The object can be one of the following types (see
Table 7–7):

■ table, view, or materialized view / snapshot

■ sequence

■ procedure, function, or package

■ user-defined type

■ synonym for any of the above items

■ directory, library, operator, or indextype

■ a Java source, class, or resource

Note: You cannot grant privileges directly to a single partition of a
partitioned table. For information on how to grant privileges to a
single partition indirectly, refer to Oracle8i Concepts.

DIRECTORY identifies a directory schema object on which privileges are granted
by the DBA. You cannot qualify directory_name with a schema name.

See "CREATE DIRECTORY" on page 7-264.

JAVA SOURCE |
RESOURCE

identifies a Java source or resource schema object on which privileges
are granted.

See "CREATE JAVA" on page 7-293.

TO identifies users or roles to which the object privilege is granted.

Restriction: A user or role cannot appear more than once in the TO clause.

PUBLIC grants object privileges to all users.

WITH GRANT
OPTION

allows the grantee to grant the object privileges to other users and roles. The grantee must
be a user or PUBLIC, rather than a role.
SQL Statements 7-507

GRANT object_privileges
Table 7–7 Object Privileges

Object
Privilege Table View Sequence

Proce-
dures,
Func-
tions,
Pack-
agesa

Materi-
alized
View /
Snap-
shot

Direc-
tory Library

User-
defined
 Type

Opera-
tor

Index-
type

ALTER X X

DELETE X X Xb

EXECUTE X X X X X

INDEX X

INSERT X X Xb

READ X

REFERENCES X

SELECT X X X X

UPDATE X X Xb

aOracle treats a Java class, source, or resource as if it were a procedure for purposes of granting object privileges.
bThe DELETE, INSERT, and UPDATE privileges can be granted only to updatable materialized views.

Table 7–8 Object Privileges and the Operations They Authorize

Object Privilege Allows Grantee to . . .

The following table privileges authorize operations on a table. Any one of following object
privileges allows the grantee to lock the table in any lock mode with the LOCK TABLE
statement.

ALTER Change the table definition with the ALTER TABLE statement.

DELETE Remove rows from the table with the DELETE statement.

Note: You must grant the SELECT privilege on the table along
with the DELETE privilege.

INDEX Create an index on the table with the CREATE INDEX
statement.

INSERT Add new rows to the table with the INSERT statement.

REFERENCES Create a constraint that refers to the table. You cannot grant this
privilege to a role.
7-508 SQL Reference

GRANT object_privileges
SELECT Query the table with the SELECT statement.

UPDATE Change data in the table with the UPDATE statement.

Note: You must grant the SELECT privilege on the table along
with the UPDATE privilege.

The following view privileges authorize operations on a view. Any one of the following
object privileges allows the grantee to lock the view in any lock mode with the LOCK TABLE
statement.

To grant a privilege on a view, you must have that privilege with the GRANT OPTION on all
of the view’s base tables.

DELETE Remove rows from the view with the DELETE statement.

INSERT Add new rows to the view with the INSERT statement.

SELECT Query the view with the SELECT statement.

UPDATE Change data in the view with the UPDATE statement.

The following sequence privileges authorize operations on a sequence.

ALTER Change the sequence definition with the ALTER SEQUENCE
statement.

SELECT Examine and increment values of the sequence with the
CURRVAL and NEXTVAL pseudocolumns.

The following procedure, function, and package privilege authorizes operations on
procedures, functions, or packages. This privilege also applies to Java sources, classes, and
resources, which Oracle treats as though they were procedures for purposes of granting
object privileges.

EXECUTE Compile the procedure or function or execute it directly, or
access any program object declared in the specification of a
package.

Note: Users do not need this privilege to execute a procedure,
function, or package indirectly. For more information, refer to

Oracle8i Concepts and Oracle8i Application Developer’s Guide -
Fundamentals.

The following snapshot privilege authorizes operations on a snapshot.

SELECT Query the snapshot with the SELECT statement.

Table 7–8 (Cont.) Object Privileges and the Operations They Authorize

Object Privilege Allows Grantee to . . .
SQL Statements 7-509

GRANT object_privileges
Examples
To grant READ on directory BFILE_DIR1 to user SCOTT, with the GRANT

OPTION, issue the following statement:

GRANT READ ON DIRECTORY bfile_dir1 TO scott
WITH GRANT OPTION;

To grant all privileges on the table BONUS to the user JONES with the GRANT

OPTION, issue the following statement:

GRANT ALL ON bonus TO jones
WITH GRANT OPTION;

JONES can subsequently perform the following operations:

■ Exercise any privilege on the BONUS table

■ Grant any privilege on the BONUS table to another user or role

Synonym privileges are the same as the privileges for the base object. Granting a privilege
on a synonym is equivalent to granting the privilege on the base object. Similarly, granting a
privilege on a base object is equivalent to granting the privilege on all synonyms for the
object. If you grant a user a privilege on a synonym, the user can use either the synonym
name or the base object name in the SQL statement that exercises the privilege.

The following directory privilege provides secured access to the files stored in the operating
system directory to which the directory object serves as a pointer. The directory object
contains the full pathname of the operating system directory where the files reside. Because
the files are actually stored outside the database, Oracle server processes also need to have
appropriate file permissions on the file system server. Granting object privileges on the
directory database object to individual database users, rather than on the operating system,

allows Oracle to enforce security during file operations.

READ Read files in the directory.

The following object type privilege authorizes operations on an object type

EXECUTE Use and reference the specified object and to invoke its methods.

The following indextype privilege authorizes operations on indextypes.

EXECUTE Reference an indextype.

The following operator privilege authorizes operations on user-defined operators.

EXECUTE Reference an operator.

Table 7–8 (Cont.) Object Privileges and the Operations They Authorize

Object Privilege Allows Grantee to . . .
7-510 SQL Reference

GRANT object_privileges
To grant SELECT and UPDATE privileges on the view GOLF_HANDICAP to all

users, issue the following statement:

GRANT SELECT, UPDATE
ON golf_handicap TO PUBLIC;

All users can subsequently query and update the view of golf handicaps.

To grant SELECT privilege on the ESEQ sequence in the schema ELLY to the user

BLAKE, issue the following statement:

GRANT SELECT
ON elly.eseq TO blake;

BLAKE can subsequently generate the next value of the sequence with the

following statement:

SELECT elly.eseq.NEXTVAL
FROM DUAL;

To grant BLAKE the REFERENCES privilege on the EMPNO column and the

UPDATE privilege on the EMPNO, SAL, and COMM columns of the EMP table in

the schema SCOTT, issue the following statement:

GRANT REFERENCES (empno), UPDATE (empno, sal, comm)
ON scott.emp
TO blake;

BLAKE can subsequently update values of the EMPNO, SAL, and COMM

columns. BLAKE can also define referential integrity constraints that refer to the

EMPNO column. However, because the GRANT statement lists only these

columns, BLAKE cannot perform operations on any of the other columns of the

EMP table.

For example, BLAKE can create a table with a constraint:

CREATE TABLE dependent
(dependno NUMBER,
 dependname VARCHAR2(10),
 employee NUMBER
CONSTRAINT in_emp REFERENCES scott.emp(empno));

The constraint IN_EMP ensures that all dependents in the DEPENDENT table

correspond to an employee in the EMP table in the schema SCOTT.
SQL Statements 7-511

INSERT
INSERT

Syntax

table_expression_clause ::=

subquery: see "SELECT and Subqueries" on page 7-541.

with_clause ::=

INSERT
hint

INTO table_expression_clause
(column

,

) values_clause

subquery

,

;

schema . table

sample_clause

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

snapshot

@ dblink

(subquery
with_clause

)

table_collection_expression

t_alias

,

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint
7-512 SQL Reference

INSERT
table_collection_expression ::=

values_clause ::=

returning_clause ::=

Purpose
To add rows to a table, a view’s base table, a partition of a partitioned table or a

subpartition of a composite-partitioned table, or an object table or an object view’s

base table.

Prerequisites
For you to insert rows into a table, the table must be in your own schema or you

must have INSERT privilege on the table.

For you to insert rows into the base table of a view, the owner of the schema

containing the view must have INSERT privilege on the base table. Also, if the

view is in a schema other than your own, you must have INSERT privilege on the

view.

If you have the INSERT ANY TABLE system privilege, you can also insert rows

into any table or any view’s base table.

TABLE (collection_expression)
(+)

VALUES (
expr

subquery
)

returning_clause

RETURNING expr

,

INTO data_item

,

SQL Statements 7-513

INSERT
Keywords and Parameters

hint is a comment that passes instructions to the optimizer on choosing an execution plan for the
statement. For the syntax and description of hints, see "Hints" on page 2-58 and Oracle8i
Tuning.

table_expression_clause

schema is the schema containing the table or view. If you omit schema, Oracle assumes the table or
view is in your own schema.

table | view |
subquery

is the name of the table or object table, or view or object view, or the column or columns
returned by a subquery, into which rows are to be inserted. If you specify a view or object
view, Oracle inserts rows into the view’s base table.

If any value to be inserted is a REF to an object table, and if the object table has a primary
key object identifier, then the column into which you insert the REF must be a REF column
with a referential integrity or SCOPE constraint to the object table.

If table (or the base table of view) contains one or more domain index columns, this statement
executes the appropriate indextype insert routine. For more information on these routines,
see Oracle8i Data Cartridge Developer’s Guide.

Issuing an INSERT statement against a table fires any INSERT triggers defined on the table.

Restrictions:

■ You cannot execute this statement if table (or the base table of view) contains any domain
indexes marked LOADING or FAILED.

■ You cannot specify the sample_clause in an INSERT statement.

■ You cannot specify the ORDER BY clause in the subquery of the table_expression_clause.

■ If a view was created using the WITH CHECK OPTION, then you can insert into the
view only rows that satisfy the view’s defining query.

■ If a view was created using a single base table, then you can insert rows into the view
and then retrieve those values using the returning_clause.
7-514 SQL Reference

INSERT
■ You cannot insert rows into a view except with INSTEAD OF triggers if the view’s
defining query contains one of the following constructs:

- A set operator

- A DISTINCT operator

- An aggregate function

- A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

- A collection expression in a SELECT list

- A subquery in a SELECT list

- Joins (with some exceptions). See Oracle8i Administrator’s Guide for details.

■ If you specify an index, index partition, or index subpartition that has been marked
UNUSABLE, the INSERT statement will fail unless the SKIP_UNUSABLE_INDEXES
parameter has been set to TRUE. For more information, see "ALTER SESSION" on
page 7-78.

PARTITION
(partition_name) |
SUBPARTITION
(subpartition_
name)

specifies the name of the partition or subpartition within table (or the base table of view)
targeted for inserts.

If a row to be inserted does not map into a specified partition or subpartition, Oracle returns
an error.

Restriction: This clause is not valid for object tables or object views.

dblink is a complete or partial name of a database link to a remote database where the table or view
is located. For information on referring to database links, see "Referring to Schema Objects
and Parts" on page 2-71. You can insert rows into a remote table or view only if you are using
Oracle’s distributed functionality.

If you omit dblink, Oracle assumes that the table or view is on the local database.

with_clause restricts the subquery in one of the following ways:

■ WITH READ ONLY specifies that the subquery cannot be updated.

■ WITH CHECK OPTION specifies that Oracle prohibits any changes to that table that
would produce rows that are not included in the subquery. See the "WITH CHECK
OPTION Example" on page 7-558.

table_collection_
expression

informs Oracle that the collection value expression should be treated as a table. See "Table
Collection Examples" on page 7-556.

collection_
expression

is a subquery that selects a nested table column from table or view.

Note: In earlier releases of Oracle, table_collection_expression was expressed as "THE
subquery". That usage is now deprecated.

column is a column of the table or view. In the inserted row, each column in this list is assigned a
value from the values_clause or the subquery.
SQL Statements 7-515

INSERT
If you omit one of the table’s columns from this list, the column’s value for the inserted row
is the column’s default value as specified when the table was created. For more information
on default column values, see "CREATE TABLE" on page 7-359. If any of these columns has a
NOT NULL constraint, then Oracle returns an error indicating that the constraint has been
violated and rolls back the INSERT statement.

If you omit the column list altogether, the values_clause or query must specify values for all
columns in the table.

values_clause specifies a row of values to be inserted into the table or view. See the syntax description in
"Expressions" on page 5-1 and "SELECT and Subqueries" on page 7-541. You must specify a
value in the values_clause for each column in the column list. If you omit the column list, then

the values_clause must provide values for every column in the table.

Restrictions:

■ You cannot initialize an internal LOB attribute in an object with a value other than
empty or null. That is, you cannot use a literal.

■ You cannot insert a BFILE value until you have initialized the BFILE locator to null or to
a directory alias and filename. See the "BFILE Example" on page 7-519. For information
on initializing BFILEs, see Oracle Call Interface Programmer’s Guide and Oracle8i
Application Developer’s Guide - Fundamentals.

Note: If you insert string literals into a RAW column, during subsequent queries, Oracle will
perform a full table scan rather than using any index that might exist on the RAW column.

subquery is a subquery that returns rows that are inserted into the table. If the subquery selects no
rows, Oracle inserts no rows into the table.

■ When specified with VALUES, the subquery returns values to be inserted into one row.

■ When specified without VALUES, the subquery can return values to be inserted into
more than one row.

The subquery can refer to any table, view, or snapshot, including the target table of the
INSERT statement. The select list of this subquery must have the same number of columns
as the column list of the INSERT statement. If you omit the column list, then the subquery
must provide values for every column in the table. See "SELECT and Subqueries" on
page 7-541.

You can use subquery in combination with the TO_LOB function to convert the values in a
LONG column to LOB values in another column in the same or another table. For a
discussion of why and when to copy LONGs to LOBs, see Oracle8i Migration. For a
description of how to use the TO_LOB function, see "Conversion Functions" on page 4-4. See
also the TO_LOB Example on page 7-519. To migrate LONGs to LOBs in a view, you must
perform the migration on the base table, and then add the LOB to the view.

Note: If subquery returns (in part or totally) the equivalent of an existing materialized view,
Oracle may use the materialized view (for query rewrite) in place of one or more tables
specified in subquery. For more information on materialized views and query rewrite, see
Oracle8i Tuning.
7-516 SQL Reference

INSERT
Examples

VALUES Examples The following statement inserts a row into the DEPT table:

INSERT INTO dept
 VALUES (50, ’PRODUCTION’, ’SAN FRANCISCO’);

The following statement inserts a row with six columns into the EMP table. One of

these columns is assigned NULL and another is assigned a number in scientific

notation:

INSERT INTO emp (empno, ename, job, sal, comm, deptno)
 VALUES (7890, ’JINKS’, ’CLERK’, 1.2E3, NULL, 40);

The following statement has the same effect as the preceding example, but uses a

subquery in the table_expression_clause:

INSERT INTO (SELECT empno, ename, job, sal, comm, deptno FROM emp)
 VALUES (7890, ’JINKS’, ’CLERK’, 1.2E3, NULL, 40);

Subquery Example The following statement copies managers and presidents or

employees whose commission exceeds 25% of their salary into the BONUS table:

t_alias provides a correlation name for the table, view, or subquery to be referenced elsewhere in
the statement.

returning_clause retrieves the rows affected by the INSERT.

An INSERT statement with a returning_clause retrieves the rows inserted and stores them in
PL/SQL variables or bind variables. Using a returning_clause in INSERT statements with a
values_clause enables you to return column expressions, ROWIDs, and REFs and store them
in output bind variables. You can also use INSERT with a returning_clause for views with
single base tables.

expr is some form of the syntax descriptions in "Expressions" on page 5-1. You
must specify a column expression in the returning_clause for each
variable in the data_item_list.

INTO indicates that the values of the changed rows are to be stored in the
variable(s) specified in data_item_list.

data_item is a PL/SQL variable or bind variable that stores a retrieved expr value.

Restrictions:

■ You cannot use this clause with Parallel DML or with remote objects.

■ You cannot retrieve LONG types with this clause.
SQL Statements 7-517

INSERT
INSERT INTO bonus
 SELECT ename, job, sal, comm
 FROM emp
 WHERE comm > 0.25 * sal
 OR job IN (’PRESIDENT’, ’MANAGER’);

Database Link Example The following statement inserts a row into the

ACCOUNTS table owned by the user SCOTT on the database accessible by the

database link SALES:

INSERT INTO scott.accounts@sales (acc_no, acc_name)
 VALUES (5001, ’BOWER’);

Assuming that the ACCOUNTS table has a BALANCE column, the newly inserted

row is assigned the default value for this column (if one has been defined), because

this INSERT statement does not specify a BALANCE value.

Sequence Example The following statement inserts a new row containing the

next value of the employee sequence into the EMP table:

INSERT INTO emp
 VALUES (empseq.nextval, ’LEWIS’, ’CLERK’,
 7902, SYSDATE, 1200, NULL, 20);

Partition Example The following example adds rows from LATEST_DATA into

partition OCT98 of the SALES table:

INSERT INTO sales PARTITION (oct98)
 SELECT * FROM latest_data;

Bind Variable Example The following example returns the values of the inserted

rows into output bind variables :BND1 and :BND2:

INSERT INTO emp VALUES (empseq.nextval, ’LEWIS’, ’CLARK’,
 7902, SYSDATE, 1200, NULL, 20)
 RETURNING sal*12, job INTO :bnd1, :bnd2;

Bind Array Example The following example returns the reference value for the

inserted row into bind array :1:

INSERT INTO employee
 VALUES (’Kitty Mine’, ’Peaches Fuzz’, ’Meena Katz’)
 RETURNING REF(employee) INTO :1;
7-518 SQL Reference

INSERT
TO_LOB Example The following example copies LONG data to a LOB column in

the following existing table:

CREATE TABLE long_tab (long_pics LONG RAW);

First you must create a table with a LOB.

CREATE TABLE lob_tab (lob_pics BLOB);

Next, use an INSERT ... SELECT statement to copy the data in all rows for the

LONG column into the newly created LOB column:

INSERT INTO lob_tab (lob_pics)
 SELECT TO_LOB(long_pics) FROM long_tab;

Once you are confident that the migration has been successful, you can drop the

LONG_PICS table. Alternatively, if the table contains other columns, you can

simply drop the LONG column from the table as follows:

ALTER TABLE long_tab DROP COLUMN long_pics;

BFILE Example When you INSERT or UPDATE a BFILE, you must initialize it to

null or to a directory alias and filename, as shown in the next example. Assume

that the EMP table has a NUMBER column followed by a BFILE column:

INSERT INTO emp
 VALUES (1, BFILENAME (’a_dir_alias’, ’a_filename’));
SQL Statements 7-519

LOCK TABLE
LOCK TABLE

Syntax

Purpose
To lock one or more tables (or table partitions or subpartitions) in a specified mode.

This lock manually overrides automatic locking and permits or denies access to a

table or view by other users for the duration of your operation.

Some forms of locks can be placed on the same table at the same time. Other locks

allow only one lock per table. For a complete description of the interaction of lock

modes, see Oracle8i Concepts.

A locked table remains locked until you either commit your transaction or roll it

back, either entirely or to a savepoint before you locked the table. For more

information, see "COMMIT" on page 7-214, "ROLLBACK" on page 7-537, and

"SAVEPOINT" on page 7-539.

A lock never prevents other users from querying the table. A query never places a

lock on a table. Readers never block writers and writers never block readers.

Prerequisites
The table or view must be in your own schema or you must have the LOCK ANY

TABLE system privilege, or you must have any object privilege on the table or view.

LOCK TABLE

schema . table

view

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

IN lockmode MODE
NOWAIT

;

7-520 SQL Reference

LOCK TABLE
Keywords and Parameters

schema is the schema containing the table or view. If you omit schema, Oracle assumes the table or
view is in your own schema.

table / view is the name of the table to be locked. If you specify view, Oracle locks the view’s base
tables.

If you specify PARTITION (partition) or SUBPARTITION (subpartition), Oracle first
acquires an implicit lock on the table. The table lock is the same as the lock you specify for
partition or subpartition, with two exceptions:

■ If you specify a SHARE lock for the subpartition, Oracle acquires an implicit ROW
SHARE lock on the table.

■ If you specify an EXCLUSIVE lock for the subpartition, Oracle acquires an implicit
ROW EXCLUSIVE lock on the table.

If you specify PARTITION and table is composite-partitioned, then Oracle acquires locks
on all the subpartitions of partition.

dblink is a database link to a remote Oracle database where the table or view is located. For
information on specifying database links, see "Referring to Objects in Remote Databases"
on page 2-74. You can lock tables and views on a remote database only if you are using
Oracle’s distributed functionality. All tables locked by a LOCK TABLE statement must be
on the same database.

If you omit dblink, Oracle assumes the table or view is on the local database.

lockmode is one of the following:

ROW SHARE allows concurrent access to the locked table, but prohibits users from
locking the entire table for exclusive access. ROW SHARE is synonymous with SHARE
UPDATE, which is included for compatibility with earlier versions of Oracle.

ROW EXCLUSIVE is the same as ROW SHARE, but also prohibits locking in SHARE
mode. Row Exclusive locks are automatically obtained when updating, inserting, or
deleting.

SHARE UPDATE—see ROW SHARE.

SHARE allows concurrent queries but prohibits updates to the locked table.

SHARE ROW EXCLUSIVE is used to look at a whole table and to allow others to look at
rows in the table but to prohibit others from locking the table in SHARE mode or
updating rows.

EXCLUSIVE allows queries on the locked table but prohibits any other activity on it.

NOWAIT specifies that Oracle returns control to you immediately if the specified table (or specified
partition or subpartition) is already locked by another user. In this case, Oracle returns a
message indicating that the table, partition, or subpartition is already locked by another
user.
SQL Statements 7-521

LOCK TABLE
Examples
The following statement locks the EMP table in exclusive mode, but does not wait

if another user already has locked the table:

LOCK TABLE emp
IN EXCLUSIVE MODE
NOWAIT;

The following statement locks the remote ACCOUNTS table that is accessible

through the database link BOSTON:

LOCK TABLE accounts@boston
IN SHARE MODE;

If you omit this clause, Oracle waits until the table is available, locks it, and returns
control to you.
7-522 SQL Reference

NOAUDIT sql_statements
NOAUDIT sql_statements

Syntax

Purpose
To stop auditing previously enabled by the AUDIT sql_statements statement. To

stop auditing enabled by the AUDIT schema_objects statement, refer to "NOAUDIT

schema_objects" on page 7-525.

The NOAUDIT statement must have the same syntax as the previous AUDIT

statement. Further, it reverses the effects only of that particular statement.

Therefore, if one AUDIT statement (statement A) enables auditing for a specific

user, and a second (statement B) enables auditing for all users, then a NOAUDIT

statement to disable auditing for all users (statement C) reverses statement B, but

leaves statement A in effect and continues to audit the user that statement A

specified. For information on auditing specific SQL statements, see the "AUDIT sql_

statements" on page 7-197.

Prerequisites
You must have the AUDIT SYSTEM system privilege.

NOAUDIT

statement_opt

,

system_priv

,

BY

proxy

ON BEHALF OF
user

,

ANY

user

,

WHENEVER
NOT

SUCCESSFUL
;

SQL Statements 7-523

NOAUDIT sql_statements
Keywords and Parameters

Examples
The following examples correspond to three examples listed in "AUDIT sql_

statements".

If you have chosen auditing for every SQL statement that creates or drops a role,

you can stop auditing of such statements by issuing the following statement:

NOAUDIT ROLE;

If you have chosen auditing for any statement that queries or updates any table

issued by the users SCOTT and BLAKE, you can stop auditing for SCOTT’s queries

by issuing the following statement:

NOAUDIT SELECT TABLE
 BY scott;

The above statement stops auditing only SCOTT’s queries, so Oracle continues to

audit BLAKE’s queries and updates as well as SCOTT’s updates.

To stop auditing on all statements that are authorized by DELETE ANY TABLE

system privilege, issue the following statement:

NOAUDIT DELETE ANY TABLE;

statement_opt is a statement option for which auditing is stopped. For a list of the statement options and
the SQL statements they audit, see Table 7–1 on page 7-200 and Table 7–2 on page 7-202.

system_priv is a system privilege for which auditing is stopped. For a list of the system privileges and
the statements they authorize, see Table 7–5 on page 7-495.

BY user stops auditing only for SQL statements issued by specified users in their subsequent
sessions. If you omit this clause, Oracle stops auditing for all users’ statements, except for
the situation described for WHENEVER SUCCESSFUL.

BY proxy stops auditing only for the SQL statements issued by the specified proxy, on behalf of a
specific user or any user.

WHENEVER
SUCCESSFUL

stops auditing only for SQL statements that complete successfully.

NOT stops auditing only for statements that result in Oracle errors.

If you omit the WHENEVER SUCCESSFUL clause entirely, Oracle stops auditing for all
statements, regardless of success or failure.
7-524 SQL Reference

NOAUDIT schema_objects
NOAUDIT schema_objects

Syntax

Purpose
To stop auditing previously enabled by the AUDIT schema_objects statement. For

more information on auditing, see "AUDIT schema_objects" on page 7-205.

To stop auditing enabled by the AUDIT sql_statements statement, refer to

"NOAUDIT sql_statements" on page 7-523.

Prerequisites
The object on which you stop auditing must be in your own schema or you must

have the AUDIT ANY system privilege. In addition, if the object you chose for

auditing is a directory, even if you created it, you must have the AUDIT ANY

system privilege.

Keywords and Parameters

object_opt stops auditing for particular operations on the object. For a list of these options, see
Table 7–3 on page 7-207.

ON identifies the object on which auditing is stopped. If you do not qualify object with
schema, Oracle assumes the object is in your own schema.

object must a table, view, sequence, stored procedure, function, or package, snapshot, or library.

For information on auditing specific schema objects, refer to "AUDIT schema_objects" on
page 7-205.

NOAUDIT object_opt

,

ON

schema .
object

DIRECTORY directory_name

DEFAULT

WHENEVER
N0T

SUCCESSFUL
;

SQL Statements 7-525

NOAUDIT schema_objects
Examples
If you have chosen auditing for every SQL statement that queries the EMP table in

the schema SCOTT, you can stop auditing for such queries by issuing the following

statement:

NOAUDIT SELECT
 ON scott.emp;

You can stop auditing for queries that complete successfully by issuing the

following statement:

NOAUDIT SELECT
 ON scott.emp
 WHENEVER SUCCESSFUL;

This statement stops auditing only for successful queries. Oracle continues to audit

queries resulting in Oracle errors.

DIRECTORY
directory_name

identifies the name of the directory on which auditing is being stopped.

DEFAULT removes the specified object options as default object options for subsequently created
objects.

WHENEVER
SUCCESSFUL

stops auditing only for SQL statements that complete successfully.

NOT stops auditing only for statements that result in Oracle errors.

If you omit the WHENEVER SUCCESSFUL clause entirely, Oracle stops auditing for all
statements, regardless of success or failure.
7-526 SQL Reference

RENAME
7SQL Statements

RENAME

Syntax

Purpose
To rename a table, view, sequence, or private synonym for a table, view, or

sequence.

■ Oracle automatically transfers integrity constraints, indexes, and grants on the

old object to the new object.

■ Oracle invalidates all objects that depend on the renamed object, such as views,

synonyms, and stored procedures and functions that refer to a renamed table.

Do not use this statement to rename public synonyms. Instead, drop the public

synonym and then create another public synonym with the new name. See "DROP

SYNONYM" on page 7-474 and "CREATE SYNONYM" on page 7-356.

Prerequisites
The object must be in your own schema.

Keywords and Parameters

Example
To change the name of table DEPT to EMP_DEPT, issue the following statement:

RENAME dept TO emp_dept;

old is the name of an existing table, view, sequence, or private synonym.

new is the new name to be given to the existing object. The new name must not already be
used by another schema object in the same namespace and must follow the rules for
naming schema objects defined in the section "Schema Object Naming Rules" on
page 2-67.

RENAME old TO new ;
SQL Statements 7-527

RENAME
You cannot use this statement directly to rename columns. However, you can

rename a column using this statement together with the CREATE TABLE statement

with AS subquery. The following statements re-create the table STATIC, renaming a

column from OLDNAME to NEWNAME:

CREATE TABLE temporary (newname, col2, col3)
 AS SELECT oldname, col2, col3 FROM static;

DROP TABLE static;

RENAME temporary TO static;
7-528 SQL Reference

REVOKE system_privileges_and_roles
REVOKE system_privileges_and_roles

Syntax

Purpose
To revoke system privileges and roles from users and roles. To revoke object

privileges from users and roles, refer to "REVOKE schema_object_privileges" on

page 7-532. For information on granting system privileges and roles, see "GRANT

system_privileges_and_roles" on page 7-493.

Prerequisites
You must have been granted the system privilege or role with the ADMIN

OPTION. Also, you can revoke any role if you have the GRANT ANY ROLE

system privilege.

The REVOKE statement can revoke only privileges and roles that were previously

granted directly with a GRANT statement. You cannot use this statement to revoke:

■ Privileges or roles not granted to the revokee

■ Roles granted through the operating system

■ Privileges or roles granted to the revokee through roles

Keywords and Parameters

system_priv is a system privilege to be revoked. For a list of the system privileges, see Table 7–5 on
page 7-495.

■ If you revoke a privilege from a user, Oracle removes the privilege from the user’s
privilege domain. Effective immediately, the user cannot exercise the privilege.

REVOKE
system_priv

role

,

FROM

user

role

PUBLIC

,

;

SQL Statements 7-529

REVOKE system_privileges_and_roles
Examples
The following statement revokes the DROP ANY TABLE system privilege from the

users BILL and MARY:

REVOKE DROP ANY TABLE
 FROM bill, mary;

BILL and MARY can no longer drop tables in schemas other than their own.

■ If you revoke a privilege from a role, Oracle removes the privilege from the role’s
privilege domain. Effective immediately, users with the role enabled cannot exercise
the privilege. Also, other users who have been granted the role and subsequently
enable the role cannot exercise the privilege.

■ If you revoke a privilege from PUBLIC, Oracle removes the privilege from the
privilege domain of each user who has been granted the privilege through PUBLIC.
Effective immediately, such users can no longer exercise the privilege. However, the
privilege is not revoked from users who have been granted the privilege directly or
through roles.

Restriction: A system privilege cannot appear more than once in the list of privileges to
be revoked.

role is a role to be revoked. For a list of the roles predefined by Oracle, see "GRANT system_
privileges_and_roles" on page 7-493.

■ If you revoke a role from a user, Oracle makes the role unavailable to the user. If the
role is currently enabled for the user, the user can continue to exercise the privileges
in the role’s privilege domain as long as it remains enabled. However, the user
cannot subsequently enable the role.

■ If you revoke a role from another role, Oracle removes the revoked role’s privilege
domain from the revokee role’s privilege domain. Users who have been granted and
have enabled the revokee role can continue to exercise the privileges in the revoked
role’s privilege domain as long as the revokee role remains enabled. However, other
users who have been granted the revokee role and subsequently enable it cannot
exercise the privileges in the privilege domain of the revoked role.

■ If you revoke a role from PUBLIC, Oracle makes the role unavailable to all users
who have been granted the role through PUBLIC. Any user who has enabled the role
can continue to exercise the privileges in its privilege domain as long as it remains
enabled. However, users cannot subsequently enable the role. The role is not revoked
from users who have been granted the role directly or through other roles.

Restriction: A system role cannot appear more than once in the list of roles to be revoked.

FROM identifies users and roles from which the system privileges or roles are to be revoked.

Restriction: A user, a role, or PUBLIC cannot appear more than once in the FROM clause.

PUBLIC revokes the system privilege or role from all users.
7-530 SQL Reference

REVOKE system_privileges_and_roles
The following statement revokes the role CONTROLLER from the user HANSON:

REVOKE controller
 FROM hanson;

HANSON can no longer enable the CONTROLLER role.

The following statement revokes the CREATE TABLESPACE system privilege from

the CONTROLLER role:

REVOKE CREATE TABLESPACE
 FROM controller;

Enabling the CONTROLLER role no longer allows users to create tablespaces.

To revoke the role VP from the role CEO, issue the following statement:

REVOKE vp
 FROM ceo;

VP is no longer granted to CEO.

To revoke the CREATE ANY DIRECTORY system privilege from user SCOTT, issue

the following statement:

REVOKE CREATE ANY DIRECTORY FROM scott;
SQL Statements 7-531

REVOKE schema_object_privileges
REVOKE schema_object_privileges

Syntax

Purpose
To revoke object privileges for a particular object from users and roles.

For information on granting schema object privileges, see "GRANT object_

privileges" on page 7-505. To revoke system privileges or roles, refer to "REVOKE

system_privileges_and_roles" on page 7-529.

Each object privilege authorizes some operation on an object. By revoking an object

privilege, you prevent the revokee from performing that operation. However,

multiple users may grant the same object privilege to the same user, role, or

PUBLIC. To remove the privilege from the grantee’s privilege domain, all grantors

must revoke the privilege. If even one grantor does not revoke the privilege, the

grantee can still exercise the privilege by virtue of that grant.

For a summary of the object privileges for each type of object, see Table 7–7 on

page 7-508.

Prerequisites
You must have previously granted the object privileges to each user and role.

You can use the REVOKE statement only to revoke object privileges that you

previously granted directly to the revokee. You cannot use this statement to revoke:

REVOKE

object_priv

ALL
PRIVILEGES

,

ON

schema .
object

DIRECTORY directory_object

FROM

user

role

PUBLIC

,

CASCADE CONSTRAINTS FORCE
;

7-532 SQL Reference

REVOKE schema_object_privileges
■ Object privileges that you did not grant to the revokee

■ Privileges granted through the operating system

■ Privileges granted to roles granted to the revokee

Keywords and Parameters

object_priv is an object privilege to be revoked. You can substitute any of the following values:
ALTER, DELETE, EXECUTE, INDEX, INSERT, READ, REFERENCES, SELECT, UPDATE.

■ If you revoke a privilege from a user, Oracle removes the privilege from the user’s
privilege domain. Effective immediately, the user cannot exercise the privilege.

- If that user has granted that privilege to other users or roles, Oracle also revokes the
privilege from those other users or roles.

- If that user’s schema contains a procedure, function, or package that contains SQL
statements that exercise the privilege, the procedure, function, or package can no
longer be executed.

- If that user’s schema contains a view on that object, Oracle invalidates the view.

- If you revoke the REFERENCES privilege from a user who has exercised the
privilege to define referential integrity constraints, you must specify the CASCADE
CONSTRAINTS clause.

■ If you revoke a privilege from a role, Oracle removes the privilege from the role’s
privilege domain. Effective immediately, users with the role enabled cannot exercise
the privilege. Other users who have been granted the role cannot exercise the
privilege after enabling the role.

■ If you revoke a privilege from PUBLIC, Oracle removes the privilege from the
privilege domain of each user who has been granted the privilege through PUBLIC.
Effective immediately, all such users are restricted from exercising the privilege.
However, the privilege is not revoked from users who have been granted the
privilege directly or through roles.

Restriction: A privilege cannot appear more than once in the list of privileges to be
revoked. A user, a role, or PUBLIC cannot appear more than once in the FROM clause.

ALL
PRIVILEGES

revokes all object privileges that you have granted to the revokee.

Note: If no privileges have been granted on the object, Oracle takes no action and does not
return an error.

ON DIRECTORY
directory_object

identifies a directory object on which privileges are revoked. You cannot qualify directory_
object with schema when using the ON DIRECTORY clause. The object must be a directory.
See "CREATE DIRECTORY" on page 7-264.
SQL Statements 7-533

REVOKE schema_object_privileges
Examples

Basic Example You can grant DELETE, INSERT, SELECT, and UPDATE

privileges on the table BONUS to the user PEDRO with the following statement:

GRANT ALL
 ON bonus TO pedro;

To revoke the DELETE privilege on BONUS from PEDRO, issue the following

statement:

REVOKE DELETE

ON object identifies the object on which the object privileges are revoked. This object can be

■ A table, view, sequence, procedure, stored function, or package, materialized
view/snapshot,

■ A synonym for a table, view, sequence, procedure, stored function, package, or
materialized view/snapshot

■ A library, indextype, or user-defined operator.

If you do not qualify object with schema, Oracle assumes the object is in your own schema.

■ If you revoke the SELECT object privilege (with or without the GRANT OPTION) on
the containing table or snapshot of a materialized view, the materialized view will be
invalidated.

■ If you revoke the SELECT object privilege (with or without the GRANT OPTION) on
any of the master tables of a materialized view, both the view and its containing table
or materialized view will be invalidated.

FROM identifies users and roles from which the object privileges are revoked.

PUBLIC revokes object privileges from all users.

CASCADE
CONSTRAINTS

This clause is relevant only if you revoke the REFERENCES privilege or ALL
[PRIVILEGES]. It drops any referential integrity constraints that the revokee has defined
using the REFERENCES privilege (which might have been granted either explicitly or
implicitly through a grant of ALL [PRIVILEGES]).

FORCE revokes EXECUTE object privilege on user-defined type objects with table or type
dependencies. You must use the FORCE clause to revoke the EXECUTE object privilege
on user-defined type objects with table dependencies.

If you specify FORCE, all privileges will be revoked, but all dependent objects are marked
INVALID, data in dependent tables becomes inaccessible, and all dependent
function-based indexes are marked UNUSABLE. (Regranting the necessary type privilege
will revalidate the table.) For detailed information about type dependencies and
user-defined object privileges, see Oracle8i Concepts.
7-534 SQL Reference

REVOKE schema_object_privileges
 ON bonus FROM pedro;

To revoke the remaining privileges on BONUS that you granted to PEDRO, issue

the following statement:

REVOKE ALL
 ON bonus FROM pedro;

PUBLIC Example You can grant SELECT and UPDATE privileges on the view

REPORTS to all users by granting the privileges to the role PUBLIC:

GRANT SELECT, UPDATE
 ON reports TO public;

The following statement revokes UPDATE privilege on REPORTS from all users:

REVOKE UPDATE
 ON reports FROM public;

Users can no longer update the REPORTS view, although users can still query it.

However, if you have also granted UPDATE privilege on REPORTS to any users,

either directly or through roles, these users retain the privilege.

Schema Example You can grant the user BLAKE the SELECT privilege on the

ESEQ sequence in the schema ELLY with the following statement:

GRANT SELECT
 ON elly.eseq TO blake;

To revoke the SELECT privilege on ESEQ from BLAKE, issue the following

statement:

REVOKE SELECT
 ON elly.eseq FROM blake;

However, if the user ELLY has also granted SELECT privilege on ESEQ to BLAKE,

BLAKE can still use ESEQ by virtue of ELLY’s grant.

CASCADE CONSTRAINTS Example You can grant BLAKE the privileges

REFERENCES and UPDATE on the EMP table in the schema SCOTT with the

following statement:

GRANT REFERENCES, UPDATE
 ON scott.emp TO blake;
SQL Statements 7-535

REVOKE schema_object_privileges
BLAKE can exercise the REFERENCES privilege to define a constraint in his own

DEPENDENT table that refers to the EMP table in the schema SCOTT:

CREATE TABLE dependent
(dependno NUMBER,
 dependname VARCHAR2(10),
 employee NUMBER
 CONSTRAINT in_emp REFERENCES scott.emp(ename));

You can revoke the REFERENCES privilege on SCOTT.EMP from BLAKE, by

issuing the following statement that contains the CASCADE CONSTRAINTS

clause:

REVOKE REFERENCES
 ON scott.emp
 FROM blake
 CASCADE CONSTRAINTS;

Revoking BLAKE’s REFERENCES privilege on SCOTT.EMP causes Oracle to drop

the IN_EMP constraint, because BLAKE required the privilege to define the

constraint.

However, if BLAKE has also been granted the REFERENCES privilege on

SCOTT.EMP by a user other than you, Oracle does not drop the constraint. BLAKE

still has the privilege necessary for the constraint by virtue of the other user’s grant.

Directory Example You can revoke READ privilege on directory BFILE_DIR1

from SUE, by issuing the following statement:

REVOKE READ ON DIRECTORY bfile_dir1 FROM sue;
7-536 SQL Reference

ROLLBACK
ROLLBACK

Syntax

Purpose
To undo work done in the current transaction, or to manually undo the work done

by an in-doubt distributed transaction. For information on transactions, see Oracle8i
Concepts. For information on setting characteristics of the current transaction, see

"SET TRANSACTION" on page 7-572. See also "SAVEPOINT" on page 7-539.

Prerequisites
To roll back your current transaction, no privileges are necessary.

To manually roll back an in-doubt distributed transaction that you originally

committed, you must have the FORCE TRANSACTION system privilege. To

manually roll back an in-doubt distributed transaction originally committed by

another user, you must have the FORCE ANY TRANSACTION system privilege.

Keywords and Parameters

Note: Oracle recommends that you explicitly end transactions in

application programs using either a COMMIT or ROLLBACK

statement. If you do not explicitly commit the transaction and the

program terminates abnormally, Oracle rolls back the last

uncommitted transaction. See also "COMMIT" on page 7-214.

WORK is optional and is provided for ANSI compatibility.

TO SAVEPOINT
savepoint

rolls back the current transaction to the specified savepoint. If you omit this clause, the
ROLLBACK statement rolls back the entire transaction. See also "SAVEPOINT" on
page 7-539.

ROLLBACK
WORK

TO
SAVEPOINT

savepoint

FORCE ’ text ’
;

SQL Statements 7-537

ROLLBACK
Examples
The following statement rolls back your entire current transaction:

ROLLBACK;

The following statement rolls back your current transaction to savepoint SP5:

ROLLBACK TO SAVEPOINT sp5;

The following statement manually rolls back an in-doubt distributed transaction:

ROLLBACK WORK
 FORCE ’25.32.87’;

Using ROLLBACK without the TO SAVEPOINT clause performs the following
operations:

■ Ends the transaction

■ Undoes all changes in the current transaction

■ Erases all savepoints in the transaction

■ Releases the transaction’s locks

Using ROLLBACK with the TO SAVEPOINT clause performs the following operations:

■ Rolls back just the portion of the transaction after the savepoint.

■ Erases all savepoints created after that savepoint. The named savepoint is retained,
so you can roll back to the same savepoint multiple times. Prior savepoints are also
retained.

■ Releases all table and row locks acquired since the savepoint. Other transactions that
have requested access to rows locked after the savepoint must continue to wait until
the transaction is committed or rolled back. Other transactions that have not already
requested the rows can request and access the rows immediately.

Restriction: You cannot manually roll back an in-doubt transaction to a savepoint.

FORCE manually rolls back an in-doubt distributed transaction. The transaction is identified by
the ’text’ containing its local or global transaction ID. To find the IDs of such transactions,
query the data dictionary view DBA_2PC_PENDING. For more information on
distributed transactions and rolling back in-doubt transactions, see Oracle8i Distributed
Database Systems.

A ROLLBACK statement with a FORCE clause rolls back only the specified transaction.
Such a statement does not affect your current transaction.

Restriction: ROLLBACK statements with the FORCE clause are not supported in PL/SQL.
7-538 SQL Reference

SAVEPOINT
SAVEPOINT

Syntax

Purpose
To identify a point in a transaction to which you can later roll back.

For information on savepoints, see Oracle8i Concepts. For information on rolling

back transactions, see "ROLLBACK" on page 7-537. For information on setting

characteristics of the current transaction, see "SET TRANSACTION" on page 7-572.

Prerequisites
None.

Keywords and Parameters

Example
To update BLAKE’s and CLARK’s salary, check that the total company salary does

not exceed 27,000, then reenter CLARK’s salary, enter:

UPDATE emp
 SET sal = 2000
 WHERE ename = ’BLAKE’;
SAVEPOINT blake_sal;

UPDATE emp
 SET sal = 1500
 WHERE ename = ’CLARK’;
SAVEPOINT clark_sal;

savepoint is the name of the savepoint to be created.

Savepoint names must be distinct within a given transaction. If you create a second
savepoint with the same identifier as an earlier savepoint, the earlier savepoint is erased.
After a savepoint has been created, you can either continue processing, commit your
work, roll back the entire transaction, or roll back to the savepoint.

SAVEPOINT savepoint ;
SQL Statements 7-539

SAVEPOINT
SELECT SUM(sal) FROM emp;

ROLLBACK TO SAVEPOINT blake_sal;

UPDATE emp
 SET sal = 1200
 WHERE ename = ’CLARK’;

COMMIT;
7-540 SQL Reference

SELECT and Subqueries
7SQL Statements

SELECT and Subqueries

Syntax

subquery::=

subquery
for_update_clause

SELECT
hint

DISTINCT

UNIQUE

ALL

*

schema .
table

view

snapshot

.*

expr

AS
c_alias

,

FROM table_expression_clause
where_clause

hierarchical_query

group_by_clause

UNION
ALL

INTERSECT

MINUS

(subquery)

order_by_clause
SQL Statements 7-541

SELECT and Subqueries
table_expression_clause ::=

sample_clause ::=

with_clause ::=

table_collection_expression ::=

schema . table

sample_clause

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

snapshot

@ dblink

(subquery
with_clause

)

table_collection_expression

t_alias

,

SAMPLE
BLOCK

(sample_percent)

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

TABLE (collection_expression)
(+)
7-542 SQL Reference

SELECT and Subqueries
where_clause ::=

outer_join::=

hierarchical_query_clause ::=

group_by_clause ::=

order_by_clause ::=

WHERE
condition

outer_join

table1 . column
= table2 . column (+)

(+) = table2 . column

START WITH condition
CONNECT BY condition

GROUP BY

CUBE (expr

,

)

expr

,

ROLLUP (expr

,

)

HAVING condition

ORDER BY

expr

position

c_alias

ASC

DESC

,

SQL Statements 7-543

SELECT and Subqueries
for_update_clause ::=

Purpose
To retrieve data from one or more tables, object tables, views, object views, or

materialized views. For general information on queries and subqueries, see

"Queries and Subqueries" on page 5-18.

Prerequisites
For you to select data from a table or materialized view, the table or materialized

view must be in your own schema or you must have the SELECT privilege on the

table or materialized view.

For you to select rows from the base tables of a view,

■ You must have the SELECT privilege on the view, and

■ Whoever owns the schema containing the view must have the SELECT

privilege on the base tables.

The SELECT ANY TABLE system privilege also allows you to select data from any

table or any materialized view or any view’s base table.

Note: If the result (or part of the result) of a SELECT statement is

equivalent to an existing materialized view, Oracle may use the

materialized view in place of one or more tables specified in the

SELECT statement. This substitution is called query rewrite, and

takes place only if cost optimization is enabled and the QUERY_

REWRITE_ENABLED parameter is set to TRUE. To determine

whether query write has occurred, use the EXPLAIN PLAN

statement (see "EXPLAIN PLAN" on page 7-486). For more

information on materialized views and query rewrite, see Oracle8i
Tuning.

FOR UPDATE

OF
schema . table

view
. column

,

NOWAIT
7-544 SQL Reference

SELECT and Subqueries
Keywords and Parameters

hint is a comment that passes instructions to the optimizer on choosing an execution plan for
the statement. For the syntax and description of hints, see "Hints" on page 2-58 and Oracle8i
Tuning.

DISTINCT |
UNIQUE

returns only one copy of each set of duplicate rows selected (these two keywords are
synonymous). Duplicate rows are those with matching values for each expression in the
select list.

Restrictions:

■ When you specify DISTINCT or UNIQUE, the total number of bytes in all select list
expressions is limited to the size of a data block minus some overhead. This size is
specified by the initialization parameter DB_BLOCK_SIZE.

■ You cannot specify DISTINCT if the FROM clause contains LOB columns.

ALL returns all rows selected, including all copies of duplicates. The default is ALL.

* selects all columns from all tables, views, or snapshots listed in the FROM clause.

Note: If you are selecting from a table (that is, you specify table in the FROM clause rather
than an view or a snapshot), columns that have been marked as UNUSED by the ALTER
TABLE SET UNUSED statement are not selected. See "ALTER TABLE" on page 7-113.

schema is the schema containing the selected table, view, or snapshot. If you omit schema, Oracle
assumes the table, view, or snapshot is in your own schema.

table.* |view.* |
snapshot.*

selects all columns from the specified table, view, or snapshot. You can use the schema
qualifier to select from a table, view, or snapshot in a schema other than your own. A query
that selects rows from two or more tables, views, or snapshots is a join. For more
information, see "Joins" on page 5-21.

expr selects an expression. See the syntax description of expr in "Expressions" on page 5-1. A
column name in this list can be qualified with schema only if the table, view, or snapshot
containing the column is qualified with schema in the FROM clause.

Restrictions:

■ If you also specify a group_by_clause in this statement, this select list can contain only
the following types of expressions:

- constants

- aggregate functions and the functions USER, UID, and SYSDATE

- expressions identical to those in the group_by_clause

- expressions involving the above expressions that evaluate to the same value for all
rows in a group
SQL Statements 7-545

SELECT and Subqueries
■ You can select a rowid from a join view only if the join has one and only one
key-preserved table. The rowid of that table becomes the rowid of the view. For
information on key-preserved tables, see Oracle8i Administrator’s Guide.

■ If two or more tables have some column names in common, you must qualify column
names with names of tables.

c_alias provides a different name for the column expression and causes the alias to be used in the
column heading. The AS keyword is optional. The alias effectively renames the select list
item for the duration of the query. The alias can be used in the order_by_clause, but not other
clauses in the query.

FROM

table_expression_
clause

specifies the table, view, snapshot, or partition from which data is selected, or a subquery
that specifies the objects from which data is selected.

sample_clause causes Oracle to select from a random sample of rows from the table,
rather than from the entire table.

■ BLOCK instructs Oracle to perform random block sampling
instead of random row sampling. For a discussion of the
difference, refer to Oracle8i Concepts.

■ sample_percent is a number specifying the percentage of the total
row or block count to be included in the sample. The value must be
in the range .000001 to 99.

Restrictions:

■ You can specify SAMPLE only in a query that selects from a single
table. Joins are not supported.

■ When you specify SAMPLE, Oracle automatically uses the
cost-based optimizer. The rule-based optimizer is not supported
with this clause.

WARNING: The use of statistically incorrect assumptions when
using this feature can lead to incorrect or undesirable results. Refer to
Oracle8i Concepts for more information on using the sample_clause.

PARTITION
(partition)

SUBPARTITION
(subpartition)

specifies partition-level data retrieval. The partition parameter may be
the name of the partition within table from which to retrieve data or a
more complicated predicate restricting retrieval to just one partition of
the table.

dblink is the complete or partial name for a database link to a remote database
where the table, view, or snapshot is located. This database need not be
an Oracle database.

For more information on referring to database links, see "Referring to
Objects in Remote Databases" on page 2-74. For more information
about distributed queries, see "Distributed Queries" on page 5-25.
7-546 SQL Reference

SELECT and Subqueries
If you omit dblink, Oracle assumes that the table, view, or snapshot is on
the local database.

table, view,
snapshot

is the name of a table, view, or snapshot from which data is selected.

with_clause restricts the subquery in one of the following ways:

■ WITH READ ONLY specifies that the subquery cannot be updated.

■ WITH CHECK OPTION specifies that, if the subquery is used in
place of a table in an INSERT, UPDATE, or DELETE statement,
Oracle prohibits any changes to that table that would produce
rows that are not included in the subquery. See the WITH CHECK
OPTION Example on page 7-558.

table_collection_
expression

informs Oracle that the collection value expression should be treated as
a table for purposes of query and DML operations. The collection_
expression can be a subquery, a column, a CAST or DECODE expression,
a function, or a collection constructor. Regardless of its form, it must
return a collection value (that is, a value whose type is nested table or
varray). This process of extracting the elements of a collection is called
collection unnesting. See "Collection Unnesting Examples" on
page 7-564.

The collection_expression can reference columns of tables defined to its
left in the FROM clause. This is called left correlation. Left correlation
can occur only in table_collection_expression. Other subqueries cannot
contains references to columns defined outside the subquery.

The optional "(+)" lets you specify that table_collection_expression should
return a row with all fields set to NULL if the collection is null or
empty. The "(+)" is valid only if collection_expression uses left correlation.
The result is similar to that of an outer join. For more information see
"Outer Joins" on page 5-22.

Restriction: Queries and subqueries referencing nested tables cannot be
parallelized.

Note: In earlier releases of Oracle, when collection_expression was a subquery, table_
collection_expr was expressed as "THE subquery". That usage is now deprecated.

t_alias provides a correlation name for the table, view, snapshot, or subquery
for evaluating the query and is most often used in a correlated query.
Other references to the table, view, or snapshot throughout the query
must refer to the alias.

Note: This alias is required if the table_expression_clause references any
object type attributes or object type methods.
SQL Statements 7-547

SELECT and Subqueries
where_clause restricts the rows selected to those that satisfy one or more conditions.

■ condition can be any valid SQL condition. See the syntax description of condition in
"Conditions" on page 5-13.

■ outer_join applies only if the table_expression_clause specifies more than one table. This
special form of condition requires Oracle to return all the rows that satisfy the
condition, as well as all the rows from one of the tables for which no rows of the other
table satisfy the condition. For more information, including rules and restrictions that
apply to outer joins, see "Outer Joins" on page 5-22.

If one of the elements in the table_expression_clause is actually a nested table or some
other form of collection, you specify the outer-join syntax in the table_collection_
expression rather than in the where_clause.

If you omit this clause, Oracle returns all rows from the tables, views, or snapshots in the
FROM clause.

Note: If this clause refers to a DATE column of a partitioned table or index, you must
specify the year completely using the TO_DATE function with a 4-character format mask.
Otherwise Oracle will not perform partition pruning. "PARTITION Example" on page 7-552.

hierarchical_
query_clause

lets you select rows in a hierarchical order. For a discussion of hierarchical queries, see
"Hierarchical Queries" on page 5-19.

The preceding where_clause, if specified, restricts the rows returned by the query without
affecting other rows of the hierarchy.

SELECT statements that contain hierarchical queries can contain the LEVEL
pseudocolumn. LEVEL returns the value 1 for a root node, 2 for a child node of a root
node, 3 for a grandchild, etc. The number of levels returned by a hierarchical query may be
limited by available user memory.

For more information on LEVEL, see the section "Pseudocolumns" on page 2-51.

Restrictions: If you specify a hierarchical query:

■ The same statement cannot also perform a join.

■ The same statement cannot also select data from a view whose query performs a join.

■ If you also specify the order_by_clause, it takes precedence over any ordering specified
by the hierarchical query.

START WITH identifies the row(s) to be used as the root(s) of a hierarchical query.
This clause specifies a condition that the roots must satisfy. If you omit
this clause, Oracle uses all rows in the table as root rows. The START
WITH condition can contain a subquery.
7-548 SQL Reference

SELECT and Subqueries
CONNECT BY specifies the relationship between parent rows and child rows of the
hierarchy. condition can be any condition as described in "Conditions"
on page 5-13. However, some part of the condition must use the PRIOR
operator to refer to the parent row. The part of the condition containing
the PRIOR operator must have one of the following forms:

PRIOR expr comparison_operator expr
expr comparison_operator PRIOR expr

Restriction: The CONNECT BY condition cannot contain a subquery.

group_by_clause groups the selected rows based on the value of expr(s) for each row, and returns a single
row of summary information for each group. If this clause contains CUBE or ROLLUP
extensions, then superaggregate groupings are produced in addition to the regular
groupings.

Expressions in the group_by_clause can contain any columns in the tables, views, and
snapshots in the FROM clause, regardless of whether the columns appear in the select list.

Restrictions:

■ The group_by_clause can contain no more than 255 expressions.

■ You cannot specify LOB columns, nested tables, or varrays as part of expr.

■ The total number of bytes in all expressions in the group_by_clause is limited to the size
of a data block (specified by the initialization parameter DB_BLOCK_SIZE) minus
some overhead.

■ If the group_by_clause references any object columns, the query will not be parallelized.

ROLLUP is an extension to the group_by_clause that groups the selected rows
based on the values of the first n, n-1, n-2, ... 0 expressions for each row,
and returns a single row of summary for each group. You can use the
ROLLUP operation to produce subtotal values.

For example, given three expressions in the ROLLUP clause of the
group_by_clause, the operation results in n+1 = 3+1 = 4 groupings.

Rows based on the values of the first ’n’ expressions are called regular
rows, and the others are called superaggregate rows.

An example appears with the description of the GROUPING function.
See "GROUPING" on page 4-16. See also Oracle8i Application Developer’s
Guide - Fundamentals.

CUBE is an extension to the group_by_clause that groups the selected rows
based on the values of all possible combinations of expressions for each
row, and returns a single row of summary information for each group.
You can use the CUBE operation to produce cross-tabulation values.
SQL Statements 7-549

SELECT and Subqueries
For example, given three expressions in the CUBE clause of the group_
by_clause, the operation results in 2n = 23 = 8 groupings. Rows based on
the values of ’n’ expressions are called regular rows, and the rest are
called superaggregate rows.

See the "CUBE Example" on page 7-553 and "GROUPING" on
page 4-16. See also Oracle8i Application Developer’s Guide - Fundamentals.

HAVING restricts the groups of rows returned to those groups for which the
specified condition is TRUE. If you omit this clause, Oracle returns
summary rows for all groups.

Specify GROUP BY and HAVING after the where_clause and CONNECT
BY clause. If you specify both GROUP BY and HAVING, they can
appear in either order.

See also the syntax description of expr in "Expressions" on page 5-1 and the syntax
description of condition in "Conditions" on page 5-13.

UNION |
UNION ALL |
INTERSECT |
MINUS

are set operators that combine the rows returned by two SELECT statements into a single
result. The number and datatypes of the columns selected by each component query must
be the same, but the column lengths can be different.

If you combine more than two queries with set operators, Oracle evaluates adjacent queries
from left to right. You can use parentheses to specify a different order of evaluation.

For information on these operators, see "Set Operators" on page 3-12.

Restrictions:

■ These set operators are not valid on columns of type BLOB, CLOB, BFILE, varray, or
nested table.

■ To reference a column, you must use an alias to name the column.

■ You cannot also specify the for_update_clause with these set operators.

■ You cannot specify the order_by_clause in the subquery of these operators.

■ You cannot use these operators in SELECT statements containing TABLE collection
expressions.

■ The total number of bytes in all select list expressions of a component query is limited
to the size of a data block (specified by the initialization parameter DB_BLOCK_SIZE)
minus some overhead.

Note: To comply with emerging SQL standards, a future release of Oracle will give the
INTERSECT operator greater precedence than the other set operators. Therefore, you
should use parentheses to specify order of evaluation in queries that use the INTERSECT
operator with other set operators.
7-550 SQL Reference

SELECT and Subqueries
order_by_clause orders rows returned by the statement. Without an order_by_clause, no guarantee exists that
the same query executed more than once will retrieve rows in the same order. For a
discussion of ordering query results, see "Sorting Query Results" on page 5-20.

■ expr orders rows based on their value for expr. The expression is based on columns in
the select list or columns in the tables, views, or snapshots in the FROM clause.

■ position orders rows based on their value for the expression in this position of the select
list; position must be an integer.

■ ASC and DESC specify either ascending or descending order. ASC is the default.

You can specify multiple expressions in the order_by_clause. Oracle first sorts rows based on
their values for the first expression. Rows with the same value for the first expression are
then sorted based on their values for the second expression, and so on. Oracle sorts nulls
following all others in ascending order and preceding all others in descending order.

Restrictions:

■ If you have specified the DISTINCT operator in this statement, this clause cannot refer
to columns unless they appear in the select list.

■ An order_by_clause can contain no more than 255 expressions.

■ You cannot order by a LOB column, nested table, or varray.

If you specify a group_by_clause in the same statement, this order_by_clause is restricted to
the following expressions:

■ Constants

■ Aggregate functions

■ The functions USER, UID, and SYSDATE

■ Expressions identical to those in the group_by_clause

■ Expressions involving the above expressions that evaluate to the same value for all
rows in a group.

for_update_
clause

locks the selected rows so that other users cannot lock or update the rows until you end
your transaction. You can specify this clause only in a top-level SELECT statement (not in
subqueries).

■ Prior to updating a LOB value, you must lock the row containing the LOB. One way to
lock the row is with a SELECT... FOR UPDATE statement. See "LOB Locking Example"
on page 7-556.

■ Nested table rows are not locked as a result of locking the parent table rows. If you
want the nested table rows to be locked, you must lock them explicitly.

OF Locks the select rows only for a particular table in a join. The columns
in the OF clause only specify which tables’ rows are locked. The specific
columns of the table that you specify are not significant. If you omit this
clause, Oracle locks the selected rows from all the tables in the query.
SQL Statements 7-551

SELECT and Subqueries
Examples

Simple Query Examples The following statement selects rows from the EMP table

with the department number of 30:

SELECT *
 FROM emp
 WHERE deptno = 30;

The following statement selects the name, job, salary and department number of all

employees except sales people from department number 30:

SELECT ename, job, sal, deptno
 FROM emp
 WHERE NOT (job = ’SALESMAN’ AND deptno = 30);

The following statement selects from subqueries in the FROM clause and gives

departments’ total employees and salaries as a decimal value of all the departments:

SELECT a.deptno "Department",
 a.num_emp/b.total_count "%Employees",
 a.sal_sum/b.total_sal "%Salary"
 FROM
 (SELECT deptno, COUNT(*) num_emp, SUM(SAL) sal_sum
 FROM scott.emp
 GROUP BY deptno) a,
 (SELECT COUNT(*) total_count, SUM(sal) total_sal
 FROM scott.emp) b ;

PARTITION Example You can select rows from a single partition of a partitioned

table by specifying the keyword PARTITION in the FROM clause. This SQL

statement assigns an alias for and retrieves rows from the NOV98 partition of the

SALES table:

NOWAIT returns control to you if the SELECT statement attempts to lock a row
that is locked by another user. If you omit this clause, Oracle waits until
the row is available and then returns the results of the SELECT
statement.

Restrictions:

■ You cannot specify this clause with the following other constructs: DISTINCT
operator, group_by_clause, set operators, aggregate functions, or the CURSOR operator.

■ The tables locked by this clause must all be located on the same database, and on the
same database as any LONG columns and sequences referenced in the same statement.
7-552 SQL Reference

SELECT and Subqueries
SELECT * FROM sales PARTITION (nov98) s
 WHERE s.amount_of_sale > 1000;

The following example selects rows from the SALES table for sales earlier than a

specified date:

SELECT * FROM sales
 WHERE sale_date < TO_DATE(’1998-06-15’, ’YYYY-MM-DD’);

SAMPLE example: The following query estimates the number of employees in

the EMP table:

SELECT COUNT(*) * 100 FROM emp SAMPLE BLOCK (1);

GROUP BY Examples To return the minimum and maximum salaries for each

department in the employee table, issue the following statement:

SELECT deptno, MIN(sal), MAX (sal)
 FROM emp
 GROUP BY deptno;

DEPTNO MIN(SAL) MAX(SAL)
---------- ---------- ----------
 10 1300 5000
 20 800 3000
 30 950 2850

To return the minimum and maximum salaries for the clerks in each department,

issue the following statement:

SELECT deptno, MIN(sal), MAX (sal)
 FROM emp
 WHERE job = 'CLERK'
 GROUP BY deptno;

DEPTNO MIN(SAL) MAX(SAL)
---------- ---------- ----------
 10 1300 1300
 20 800 1100
 30 950 950

CUBE Example To return the number of employees and their average yearly

salary across all possible combinations of department and job category, issue the

following query:
SQL Statements 7-553

SELECT and Subqueries
SELECT DECODE(GROUPING(dname), 1, 'All Departments',
 dname) AS dname,
 DECODE(GROUPING(job), 1, 'All Jobs', job) AS job,
 COUNT(*) "Total Empl", AVG(sal) * 12 "Average Sal"
 FROM emp, dept
 WHERE dept.deptno = emp.deptno
 GROUP BY CUBE (dname, job);

DNAME JOB Total Empl Average Sa
--------------- --------- ---------- ----------
ACCOUNTING CLERK 1 15600
ACCOUNTING MANAGER 1 29400
ACCOUNTING PRESIDENT 1 60000
ACCOUNTING All Jobs 3 35000
RESEARCH ANALYST 2 36000
RESEARCH CLERK 2 11400
RESEARCH MANAGER 1 35700
RESEARCH All Jobs 5 26100
SALES CLERK 1 11400
SALES MANAGER 1 34200
SALES SALESMAN 4 16800
SALES All Jobs 6 18800
All Departments ANALYST 2 36000
All Departments CLERK 4 12450
All Departments MANAGER 3 33100
All Departments PRESIDENT 1 60000
All Departments SALESMAN 4 16800
All Departments All Jobs 14 24878.5714

Hierarchical Query Examples The following CONNECT BY clause defines a

hierarchical relationship in which the EMPNO value of the parent row is equal to

the MGR value of the child row:

CONNECT BY PRIOR empno = mgr;

In the following CONNECT BY clause, the PRIOR operator applies only to the

EMPNO value. To evaluate this condition, Oracle evaluates EMPNO values for the

parent row and MGR, SAL, and COMM values for the child row:

CONNECT BY PRIOR empno = mgr AND sal > comm;

To qualify as a child row, a row must have a MGR value equal to the EMPNO value

of the parent row and it must have a SAL value greater than its COMM value.
7-554 SQL Reference

SELECT and Subqueries
HAVING Example To return the minimum and maximum salaries for the clerks in

each department whose lowest salary is below $1,000, issue the next statement:

SELECT deptno, MIN(sal), MAX (sal)
 FROM emp
 WHERE job = 'CLERK'
 GROUP BY deptno
 HAVING MIN(sal) < 1000;

DEPTNO MIN(SAL) MAX(SAL)
---------- ---------- ----------
 20 800 1100
 30 950 950

ORDER BY Examples To select all salesmen’s records from EMP, and order the

results by commission in descending order, issue the following statement:

SELECT *
 FROM emp
 WHERE job = ’SALESMAN’
 ORDER BY comm DESC;

To select the employees from EMP ordered first by ascending department number

and then by descending salary, issue the following statement:

SELECT ename, deptno, sal
 FROM emp
 ORDER BY deptno ASC, sal DESC;

To select the same information as the previous SELECT and use the positional

ORDER BY notation, issue the following statement:

SELECT ename, deptno, sal
 FROM emp
 ORDER BY 2 ASC, 3 DESC;

FOR UPDATE Examples The following statement locks rows in the EMP table

with clerks located in New York and locks rows in the DEPT table with

departments in New York that have clerks:

SELECT empno, sal, comm
 FROM emp, dept
 WHERE job = ’CLERK’
 AND emp.deptno = dept.deptno
 AND loc = ’NEW YORK’
 FOR UPDATE;
SQL Statements 7-555

SELECT and Subqueries
The following statement locks only those rows in the EMP table with clerks located

in New York. No rows are locked in the DEPT table:

SELECT empno, sal, comm
 FROM emp, dept
 WHERE job = ’CLERK’
 AND emp.deptno = dept.deptno
 AND loc = ’NEW YORK’
 FOR UPDATE OF emp.sal;

LOB Locking Example The following example uses a SELECT ... FOR UPDATE

statement to lock a row containing a LOB prior to updating the LOB value.

INSERT INTO t_table VALUES (1, 'abcd');

COMMIT;
 DECLARE
 num_var NUMBER;
 clob_var CLOB;
 clob_locked CLOB;
 write_amount NUMBER;
 write_offset NUMBER;
 buffer VARCHAR2(20) := 'efg';

 BEGIN
 SELECT clob_col INTO clob_locked FROM t_table
 WHERE num_col = 1 FOR UPDATE;

 write_amount := 3;
 dbms_lob.write(clob_locked, write_amount, write_offset, buffer);
END;

Table Collection Examples You can perform DML operations on nested tables

only if they are defined as columns of a table. Therefore, when the table_expression_
clause of an INSERT, DELETE, or UPDATE statement is a table_collection_expression,

the collection expression must be a subquery that selects the table's nested table

column. The examples that follow are based on this scenario:

CREATE TYPE ProjectType AS OBJECT(
 pno NUMBER,
 pname CHAR(31),
 budget NUMBER);
CREATE TYPE ProjectSet AS TABLE OF ProjectType;
7-556 SQL Reference

SELECT and Subqueries
CREATE TABLE Dept (dno NUMBER, dname CHAR(31), projs ProjectSet)
 NESTED TABLE projs STORE AS
 ProjectSetTable ((Primary Key(Nested_Table_Id, pno))
ORGANIZATION
INDEX COMPRESS 1);

INSERT INTO Dept VALUES (1, 'Engineering', ProjectSet());

This example inserts into the 'Engineering' department's 'projs' nested table:

INSERT INTO TABLE(SELECT d.projs
 FROM Dept d
 WHERE d.dno = 1)
 VALUES (1, 'Collection Enhancements', 10000);

This example updates the 'Engineering' department's 'projs' nested table:

UPDATE TABLE(SELECT d.projs
 FROM Dept d
 WHERE d.dno = 1) p
 SET p.budget = p.budget + 1000;

 This example deletes from the 'Engineering' department's 'projs' nested table

DELETE TABLE(SELECT d.projs
 FROM Dept d
 WHERE d.dno = 1) p
 WHERE p.budget > 100000;

Subquery Examples To determine who works in Taylor’s department, issue the

following statement:

SELECT ename, deptno
 FROM emp
 WHERE deptno =
 (SELECT deptno
 FROM emp
 WHERE ename = ’TAYLOR’);

To give all employees in the EMP table a 10% raise if they have not already been

issued a bonus (if they do not appear in the BONUS table), issue the following

statement:

UPDATE emp
 SET sal = sal * 1.1
 WHERE empno NOT IN (SELECT empno FROM bonus);
SQL Statements 7-557

SELECT and Subqueries
To create a duplicate of the DEPT table named NEWDEPT, issue the following

statement:

CREATE TABLE newdept (deptno, dname, loc)
 AS SELECT deptno, dname, loc FROM dept;

WITH CHECK OPTION Example The following statement is legal even though the

second value violates the condition of the subquery where_clause:

INSERT INTO
 (SELECT ename, deptno FROM emp WHERE deptno < 10)
 VALUES (’Taylor’, 20);

However, the following statement is illegal because of the WITH CHECK OPTION

clause:

INSERT INTO
 (SELECT ename, deptno FROM emp
 WHERE deptno < 10
 WITH CHECK OPTION)
 VALUES (’Taylor’, 20);

Equijoin Examples This equijoin returns the name and job of each employee and

the number and name of the department in which the employee works:

SELECT ename, job, dept.deptno, dname
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

ENAME JOB DEPTNO DNAME
---------- --------- ---------- --------------
CLARK MANAGER 10 ACCOUNTING
KING PRESIDENT 10 ACCOUNTING
MILLER CLERK 10 ACCOUNTING
SMITH CLERK 20 RESEARCH
ADAMS CLERK 20 RESEARCH
FORD ANALYST 20 RESEARCH
SCOTT ANALYST 20 RESEARCH
JONES MANAGER 20 RESEARCH
ALLEN SALESMAN 30 SALES
BLAKE MANAGER 30 SALES
MARTIN SALESMAN 30 SALES
JAMES CLERK 30 SALES
TURNER SALESMAN 30 SALES
WARD SALESMAN 30 SALES
7-558 SQL Reference

SELECT and Subqueries
You must use a join to return this data because employee names and jobs are stored

in a different table than department names. Oracle combines rows of the two tables

according to this join condition:

emp.deptno = dept.deptno

The following equijoin returns the name, job, department number, and department

name of all clerks:

SELECT ename, job, dept.deptno, dname
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND job = 'CLERK';

ENAME JOB DEPTNO DNAME
---------- --------- ---------- --------------
MILLER CLERK 10 ACCOUNTING
SMITH CLERK 20 RESEARCH
ADAMS CLERK 20 RESEARCH
JAMES CLERK 30 SALES

This query is identical to the preceding example, except that it uses an additional

where_clause condition to return only rows with a JOB value of ’CLERK’.

Self Join Example The following query uses a self join to return the name of each

employee along with the name of the employee’s manager:

SELECT e1.ename||’ works for ’||e2.ename
"Employees and their Managers"
 FROM emp e1, emp e2 WHERE e1.mgr = e2.empno;

Employees and their Managers

BLAKE works for KING
CLARK works for KING
JONES works for KING
FORD works for JONES
SMITH works for FORD
ALLEN works for BLAKE
WARD works for BLAKE
MARTIN works for BLAKE
SCOTT works for JONES
TURNER works for BLAKE
ADAMS works for SCOTT
SQL Statements 7-559

SELECT and Subqueries
JAMES works for BLAKE
MILLER works for CLARK

The join condition for this query uses the aliases E1 and E2 for the EMP table:

e1.mgr = e2.empno

Outer Join Examples This query uses an outer join to extend the results of the

Equijoin example above:

SELECT ename, job, dept.deptno, dname
 FROM emp, dept
 WHERE emp.deptno (+) = dept.deptno;

ENAME JOB DEPTNO DNAME
---------- --------- ---------- --------------
CLARK MANAGER 10 ACCOUNTING
KING PRESIDENT 10 ACCOUNTING
MILLER CLERK 10 ACCOUNTING
SMITH CLERK 20 RESEARCH
ADAMS CLERK 20 RESEARCH
FORD ANALYST 20 RESEARCH
SCOTT ANALYST 20 RESEARCH
JONES MANAGER 20 RESEARCH
ALLEN SALESMAN 30 SALES
BLAKE MANAGER 30 SALES
MARTIN SALESMAN 30 SALES
JAMES CLERK 30 SALES
TURNER SALESMAN 30 SALES
WARD SALESMAN 30 SALES
 40 OPERATIONS

In this outer join, Oracle returns a row containing the OPERATIONS department

even though no employees work in this department. Oracle returns NULL in the

ENAME and JOB columns for this row. The join query in this example selects only

departments that have employees.

The following query uses an outer join to extend the results of the preceding

example:

SELECT ename, job, dept.deptno, dname
 FROM emp, dept
 WHERE emp.deptno (+) = dept.deptno
 AND job (+) = ’CLERK’;
7-560 SQL Reference

SELECT and Subqueries
ENAME JOB DEPTNO DNAME
---------- --------- ---------- --------------
MILLER CLERK 10 ACCOUNTING
SMITH CLERK 20 RESEARCH
ADAMS CLERK 20 RESEARCH
JAMES CLERK 30 SALES
 40 OPERATIONS

In this outer join, Oracle returns a row containing the OPERATIONS department

even though no clerks work in this department. The (+) operator on the JOB

column ensures that rows for which the JOB column is NULL are also returned. If

this (+) were omitted, the row containing the OPERATIONS department would not

be returned because its JOB value is not ’CLERK’.

This example shows four outer join queries on the CUSTOMERS, ORDERS,

LINEITEMS, and PARTS tables. These tables are shown here:

SELECT custno, custname
 FROM customers;

CUSTNO CUSTNAME
---------- --------------------
1 Angelic Co.
2 Believable Co.
3 Cabels R Us

SELECT orderno, custno,
 TO_CHAR(orderdate, ’MON-DD-YYYY’) "ORDERDATE"
 FROM orders;

ORDERNO CUSTNO ORDERDATE
---------- ---------- -----------
 9001 1 OCT-13-1998
 9002 2 OCT-13-1998
 9003 1 OCT-20-1998
 9004 1 OCT-27-1998
 9005 2 OCT-31-1998

SELECT orderno, lineno, partno, quantity
 FROM lineitems;

ORDERNO LINENO PARTNO QUANTITY
---------- ---------- ---------- ----------
 9001 1 101 15
 9001 2 102 10
SQL Statements 7-561

SELECT and Subqueries
 9002 1 101 25
 9002 2 103 50
 9003 1 101 15
 9004 1 102 10
 9004 2 103 20

SELECT partno, partname
 FROM parts;

PARTNO PARTNAME
------ --------
 101 X-Ray Screen
 102 Yellow Bag
 103 Zoot Suit

The customer Cables R Us has placed no orders, and order number 9005 has no line

items.

The following outer join returns all customers and the dates they placed orders.

The (+) operator ensures that customers who placed no orders are also returned:

SELECT custname, TO_CHAR(orderdate, ’MON-DD-YYYY’) "ORDERDATE"
 FROM customers, orders
 WHERE customers.custno = orders.custno (+);

CUSTNAME ORDERDATE
-------------------- --------------
Angelic Co. OCT-13-1993
Angelic Co. OCT-20-1993
Angelic Co. OCT-27-1993
Believable Co. OCT-13-1993
Believable Co. OCT-31-1993
Cables R Us

The following outer join builds on the result of the previous one by adding the

LINEITEMS table to the FROM clause, columns from this table to the select list, and

a join condition joining this table to the ORDERS table to the where_clause. This

query joins the results of the previous query to the LINEITEMS table and returns

all customers, the dates they placed orders, and the part number and quantity of

each part they ordered. The first (+) operator serves the same purpose as in the

previous query. The second (+) operator ensures that orders with no line items are

also returned:

SELECT custname,
 TO_CHAR(orderdate, ’MON-DD-YYYY’) "ORDERDATE",
7-562 SQL Reference

SELECT and Subqueries
 partno,
 quantity
 FROM customers, orders, lineitems
 WHERE customers.custno = orders.custno (+)
 AND orders.orderno = lineitems.orderno (+);

CUSTNAME ORDERDATE PARTNO QUANTITY
-------------------- -------------- ---------- ----------
Angelic Co. OCT-13-1993 101 15
Angelic Co. OCT-13-1993 102 10
Angelic Co. OCT-20-1993 101 15
Angelic Co. OCT-27-1993 102 10
Angelic Co. OCT-27-1993 103 20
Believable Co. OCT-13-1993 101 25
Believable Co. OCT-13-1993 103 50
Believable Co. OCT-31-1993
Cables R Us

The following outer join builds on the result of the previous one by adding the

PARTS table to the FROM clause, the PARTNAME column from this table to the

select list, and a join condition joining this table to the LINEITEMS table to the

where_clause. This query joins the results of the previous query to the PARTS table

to return all customers, the dates they placed orders, and the quantity and name of

each part they ordered. The first two (+) operators serve the same purposes as in

the previous query. The third (+) operator ensures that rows with NULL part

numbers are also returned:

SELECT custname, TO_CHAR(orderdate, ’MON-DD-YYYY’) "ORDERDATE",
 quantity, partname
 FROM customers, orders, lineitems, parts
 WHERE customers.custno = orders.custno (+)
 AND orders.orderno = lineitems.orderno (+)
 AND lineitems.partno = parts.partno (+);

CUSTNAME ORDERDATE QUANTITY PARTNAME
-------------------- -------------- ---------- ------------
Angelic Co. OCT-13-1993 15 X-Ray Screen
Angelic Co. OCT-13-1993 10 Yellow Bag
Angelic Co. OCT-20-1993 15 X-Ray Screen
Angelic Co. OCT-27-1993 10 Yellow Bag
Angelic Co. OCT-27-1993 20 Zoot Suit
Believable Co. OCT-13-1993 25 X-Ray Screen
Believable Co. OCT-13-1993 50 Zoot Suit
Believable Co. OCT-31-1993
Cables R Us
SQL Statements 7-563

SELECT and Subqueries
Collection Unnesting Examples Suppose the database contains a table HR_INFO

with columns DEPT, LOCATION, and MGR, and a column of nested table type

PEOPLE which has NAME, DEPT, and SAL columns. You could get all the rows

from HR_INFO and all the rows from PEOPLE using the following statement:

SELECT t1.dept, t2.* FROM hr_info t1, TABLE(t1.people) t2
 WHERE t2.dept = t1.dept;

Now suppose that PEOPLE is not a nested table column of HR_INFO, but is

instead a separate table with columns NAME, DEPT, ADDRESS, HIREDATE, and

SAL. You can extract the same rows as in the preceding example with this

statement:

SELECT t1.department, t2.*
 FROM hr_info t1, TABLE(CAST(MULTISET(
 SELECT t3.name, t3.dept, t3.sal FROM people t3
 WHERE t3.dept = t1.dept)
 AS NESTED_PEOPLE)) t2;

Finally suppose that PEOPLE is neither a nested table column of table HR_INFO

nor a table itself. Instead, you have created a function PEOPLE_FUNC that extracts

from various sources the name, department, and salary of all employees. You can

get the same information as in the preceding examples with the following query:

SELECT t1.dept, t2.* FROM HY_INFO t1, TABLE(CAST
 (people_func(...) AS NESTED_PEOPLE)) t2;

For more examples of collection unnesting, see Oracle8i Application Developer’s
Guide - Fundamentals.

LEVEL Examples The following statement returns all employees in hierarchical

order. The root row is defined to be the employee whose job is ’PRESIDENT’. The

child rows of a parent row are defined to be those who have the employee number

of the parent row as their manager number.

SELECT LPAD(’ ’,2*(LEVEL-1)) || ename org_chart,
 empno, mgr, job
 FROM emp
 START WITH job = ’PRESIDENT’
 CONNECT BY PRIOR empno = mgr;

ORG_CHART EMPNO MGR JOB
------------ ---------- ---------- ---------
KING 7839 PRESIDENT
 JONES 7566 7839 MANAGER
7-564 SQL Reference

SELECT and Subqueries
 SCOTT 7788 7566 ANALYST
 ADAMS 7876 7788 CLERK
 FORD 7902 7566 ANALYST
 SMITH 7369 7902 CLERK
 BLAKE 7698 7839 MANAGER
 ALLEN 7499 7698 SALESMAN
 WARD 7521 7698 SALESMAN
 MARTIN 7654 7698 SALESMAN
 TURNER 7844 7698 SALESMAN
 JAMES 7900 7698 CLERK
 CLARK 7782 7839 MANAGER
 MILLER 7934 7782 CLERK

The following statement is similar to the previous one, except that it does not select

employees with the job ’ANALYST’.

SELECT LPAD(' ', 2*(LEVEL-1)) || ename org_chart,
 empno, mgr, job
 FROM emp
 WHERE job != 'ANALYST'
 START WITH job = 'PRESIDENT'
 CONNECT BY PRIOR empno = mgr;

ORG_CHART EMPNO MGR JOB
-------------------- ---------- ---------- ---------
KING 7839 PRESIDENT
 JONES 7566 7839 MANAGER
 ADAMS 7876 7788 CLERK
 SMITH 7369 7902 CLERK
 BLAKE 7698 7839 MANAGER
 ALLEN 7499 7698 SALESMAN
 WARD 7521 7698 SALESMAN
 MARTIN 7654 7698 SALESMAN
 TURNER 7844 7698 SALESMAN
 JAMES 7900 7698 CLERK
 CLARK 7782 7839 MANAGER
 MILLER 7934 7782 CLERK

Oracle does not return the analysts SCOTT and FORD, although it does return

employees who are managed by SCOTT and FORD.

The following statement is similar to the first one, except that it uses the LEVEL

pseudocolumn to select only the first two levels of the management hierarchy:

SELECT LPAD(’ ’,2*(LEVEL-1)) || ename org_chart,
empno, mgr, job
SQL Statements 7-565

SELECT and Subqueries
 FROM emp
 START WITH job = ’PRESIDENT’
 CONNECT BY PRIOR empno = mgr AND LEVEL <= 2;

ORG_CHART EMPNO MGR JOB
------------ ---------- ---------- ---------
KING 7839 PRESIDENT
 JONES 7566 7839 MANAGER
 BLAKE 7698 7839 MANAGER
 CLARK 7782 7839 MANAGER

Distributed Query Example This example shows a query that joins the DEPT

table on the local database with the EMP table on the HOUSTON database:

SELECT ename, dname
 FROM emp@houston, dept
 WHERE emp.deptno = dept.deptno;

Correlated Subquery Examples The following examples show the general syntax

of a correlated subquery:

SELECT select_list
 FROM table1 t_alias1
 WHERE expr operator
 (SELECT column_list
 FROM table2 t_alias2
 WHERE t_alias1.column
 operator t_alias2.column);
UPDATE table1 t_alias1
 SET column =
 (SELECT expr
 FROM table2 t_alias2
 WHERE t_alias1.column = t_alias2.column);
DELETE FROM table1 t_alias1
 WHERE column operator
 (SELECT expr
 FROM table2 t_alias2
 WHERE t_alias1.column = t_alias2.column);

The following statement returns data about employees whose salaries exceed their

department average. The following statement assigns an alias to EMP, the table

containing the salary information, and then uses the alias in a correlated subquery:

SELECT deptno, ename, sal
 FROM emp x
 WHERE sal > (SELECT AVG(sal)
7-566 SQL Reference

SELECT and Subqueries
 FROM emp
 WHERE x.deptno = deptno)
 ORDER BY deptno;

For each row of the EMP table, the parent query uses the correlated subquery to

compute the average salary for members of the same department. The correlated

subquery performs the following steps for each row of the EMP table:

1. The DEPTNO of the row is determined.

2. The DEPTNO is then used to evaluate the parent query.

3. If that row’s salary is greater than the average salary for that row’s department,

then the row is returned.

The subquery is evaluated once for each row of the EMP table.

DUAL Table Example The following statement returns the current date:

SELECT SYSDATE FROM DUAL;

You could select SYSDATE from the EMP table, but Oracle would return 14 rows of

the same SYSDATE, one for every row of the EMP table. Selecting from DUAL is

more convenient.

Sequence Examples The following statement increments the ZSEQ sequence

and returns the new value:

SELECT zseq.nextval
 FROM dual;

The following statement selects the current value of ZSEQ:

SELECT zseq.currval
 FROM dual;
SQL Statements 7-567

SET CONSTRAINT(S)
SET CONSTRAINT(S)

Syntax

Purpose
To specify, for a particular transaction, whether a deferrable constraint is checked

following each DML statement or when the transaction is committed.

Prerequisites
To specify when a deferrable constraint is checked, you must have SELECT

privilege on the table to which the constraint is applied unless the table is in your

schema.

Keywords and Parameters

Examples
The following statement sets all deferrable constraints in this transaction to be

checked immediately following each DML statement:

SET CONSTRAINTS ALL IMMEDIATE;

constraint is the name of one or more integrity constraints.

ALL sets all deferrable constraints for this transaction.

IMMEDIATE indicates that the conditions specified by the deferrable constraint are checked
immediately after each DML statement.

DEFERRED indicates that the conditions specified by the deferrable constraint are checked when the
transaction is committed.

You can verify the success of deferrable constraints prior to committing them by issuing a SET
CONSTRAINTS ALL IMMEDIATE statement.

SET
CONSTRAINT

CONSTRAINTS

constraint

,

ALL

IMMEDIATE

DEFERRED
;

7-568 SQL Reference

SET CONSTRAINT(S)
The following statement checks three deferred constraints when the transaction is

committed:

SET CONSTRAINTS unq_name, scott.nn_sal,
 adams.pk_dept@dblink DEFERRED;
SQL Statements 7-569

SET ROLE
SET ROLE

Syntax

Purpose
To enable and disable roles for your current session. For information on creating

roles, see "CREATE ROLE" on page 7-344.

When a user logs on, Oracle enables all privileges granted explicitly to the user and

all privileges in the user’s default roles. During the session, the user or an

application can use the SET ROLE statement any number of times to change the

roles currently enabled for the session. The number of roles that can be

concurrently enabled is limited by the initialization parameter MAX_ENABLED_

ROLES. For information on changing a user’s default roles, see "ALTER USER" on

page 7-179

You can see which roles are currently enabled by examining the SESSION_ROLES

data dictionary view.

Prerequisites
You must already have been granted the roles that you name in the SET ROLE

statement.

SET ROLE

role
IDENTIFIED BY password

,

ALL
EXCEPT role

,

NONE

;

7-570 SQL Reference

SET ROLE
Keywords and Parameters

Examples
To enable the role GARDENER identified by the password MARIGOLDS for your

current session, issue the following statement:

SET ROLE gardener IDENTIFIED BY marigolds;

To enable all roles granted to you for the current session, issue the following

statement:

SET ROLE ALL;

To enable all roles granted to you except BANKER, issue the following statement:

SET ROLE ALL EXCEPT banker;

To disable all roles granted to you for the current session, issue the following

statement:

SET ROLE NONE;

role is a role to be enabled for the current session. Any roles not listed are disabled for the
current session.

Restriction: You cannot specify a role unless it was granted to you either directly or
through other roles.

IDENTIFIED BY
password

is the password for a role. If the role has a password, you must specify
the password to enable the role.

ALL enables all roles granted to you for the current session except those optionally listed in the
EXCEPT clause.

Restriction: You cannot use this clause to enable roles with passwords that have been
granted directly to you.

EXCEPT Roles listed in the EXCEPT clause must be roles granted directly to
you. They cannot be roles granted to you through other roles.

If you list a role in the EXCEPT clause that has been granted to you both directly and
through another role, the role remains enabled by virtue of the role to which it has been
granted.

NONE disables all roles for the current session, including the DEFAULT role.
SQL Statements 7-571

SET TRANSACTION
7SQL Statements

SET TRANSACTION

Syntax

Purpose
To establish the current transaction as a read-only or read-write, establish its

isolation level, or assign it to a specified rollback segment.

The operations performed by a SET TRANSACTION statement affect only your

current transaction, not other users or other transactions. Your transaction ends

whenever you issue a COMMIT or ROLLBACK statement. Oracle implicitly

commits the current transaction before and after executing a data definition

language (DDL) statement. For more information, see "COMMIT" on page 7-214

and "ROLLBACK" on page 7-537.

Prerequisites
If you use a SET TRANSACTION statement, it must be the first statement in your

transaction. However, a transaction need not have a SET TRANSACTION

statement.

Keywords and Parameters

READ ONLY establishes the current transaction as a read-only transaction. This clause established
transaction-level read consistency. For more information on this topic, see Oracle8i
Concepts.

All subsequent queries in that transaction only see changes committed before the
transaction began. Read-only transactions are useful for reports that run multiple queries
against one or more tables while other users update these same tables.

SET TRANSACTION

READ ONLY

READ WRITE

ISOLATION LEVEL
SERIALIZABLE

READ COMMITTED

USE ROLLBACK SEGMENT rollback_segment

;

7-572 SQL Reference

SET TRANSACTION
Restriction: Only the following statements are permitted in a read-only transaction:

■ subqueries (that is, SELECT statements without the for_update_clause)

■ LOCK TABLE

■ SET ROLE

■ ALTER SESSION

■ ALTER SYSTEM

READ WRITE establishes the current transaction as a read-write transaction. This clause established
statement-level read consistency, which is the default.

Restriction: You cannot toggle between transaction-level and statement-level read
consistency in the same transaction.

ISOLATION
LEVEL

specifies how transactions containing database modifications are handled.

SERIALIZABLE specifies serializable transaction isolation mode as defined in SQL92.
If a serializable transaction contains data manipulation language
(DML) that attempts to update any resource that may have been
updated in a transaction uncommitted at the start of the serializable
transaction, then the DML statement fails.

Note: The COMPATIBLE initialization parameter must be set to 7.3.0
or higher for SERIALIZABLE mode to work.

READ
COMMITTED

is the default Oracle transaction behavior. If the transaction contains
DML that requires row locks held by another transaction, then the
DML statement waits until the row locks are released.

USE ROLLBACK
SEGMENT

assigns the current transaction to the specified rollback segment. This clause also
implicitly establishes the transaction as a read-write transaction.

This clause lets you to assign transactions of different types to rollback segments of
different sizes. For example:

■ If no long-running queries are concurrently reading the same tables, you can assign
small transactions to small rollback segments, which are more likely to remain in
memory.

■ You can assign transactions that modify tables that are concurrently being read by
long-running queries to large rollback segments, so that the rollback information
needed for the read-consistent queries is not overwritten.

■ You can assign transactions that insert, update, or delete large amounts of data to
rollback segments large enough to hold the rollback information for the transaction.

You cannot use the READ ONLY clause and the USE ROLLBACK SEGMENT clause in a
single SET TRANSACTION statement or in different statements in the same transaction.
Read-only transactions do not generate rollback information and therefore are not
assigned rollback segments.
SQL Statements 7-573

SET TRANSACTION
Examples
The following statements could be run at midnight of the last day of every month

to count how many ships and containers the company owns. This report would not

be affected by any other user who might be adding or removing ships and/or

containers.

COMMIT;
SET TRANSACTION READ ONLY;
SELECT COUNT(*) FROM ship;
SELECT COUNT(*) FROM container;
COMMIT;

The last COMMIT statement does not actually make permanent any changes to the

database. It simply ends the read-only transaction.

The following statement assigns your current transaction to the rollback segment

OLTP_5:

SET TRANSACTION USE ROLLBACK SEGMENT oltp_5;
7-574 SQL Reference

storage_clause
storage_clause

Syntax

Purpose
To specify storage characteristics for any of the following schema objects:

■ clusters

STORAGE (

INITIAL integer

K

M

NEXT integer

K

M

MINEXTENTS integer

MAXEXTENTS
integer

UNLIMITED

PCTINCREASE integer

FREELISTS integer

FREELIST GROUPS integer

OPTIMAL

integer

K

M

NULL

BUFFER_POOL

KEEP

RECYCLE

DEFAULT

)

SQL Statements 7-575

storage_clause
■ indexes

■ rollback segments

■ materialized views / snapshots

■ materialized view logs / snapshot logs

■ tables

■ tablespaces

■ partitions

Storage parameters affect both how long it takes to access data stored in the

database and how efficiently space in the database is used. For a discussion of the

effects of these parameters, see Oracle8i Tuning.

When you create a tablespace, you can specify values for the storage parameters.

These values serve as default values for segments allocated in the tablespace.

When you alter a tablespace, you can change the values of storage parameters. The

new values serve as default values only for subsequently allocated segments (or

subsequently created objects).

When you create a cluster, index, rollback segment, snapshot, snapshot log, table,

or partition, you can specify values for the storage parameters for the segments

allocated to these objects. If you omit any storage parameter, Oracle uses the value

of that parameter specified for the tablespace.

When you alter a cluster, index, rollback segment, snapshot, snapshot log, table, or

partition, you can change the values of storage parameters. The new values affect

only future extent allocations.

Prerequisites
To change the value of a STORAGE parameter, you must have the privileges

necessary to use the appropriate CREATE or ALTER statement.

Note: The storage_clause is interpreted differently for locally

managed tablespaces. At creation, Oracle ignores MAXEXTENTS

and uses the remaining parameter values to calculate the initial

size of the segment. For more information, see "CREATE

TABLESPACE" on page 7-394.
7-576 SQL Reference

storage_clause
Keywords and Parameters

INITIAL specifies in bytes the size of the object’s first extent. Oracle allocates space for this extent
when you create the schema object. Use K or M to specify this size in kilobytes or
megabytes.

The default value is the size of 5 data blocks. The minimum value is the size of 2 data
blocks for nonbitmapped segments or 3 data blocks for bitmapped segments, plus one
data block for each free list group you specify (see "FREELIST GROUPS" on page 7-578).
The maximum value depends on your operating system. Oracle rounds values up to the
next multiple of the data block size for values less than 5 data blocks, and rounds up to
the next multiple of 5 data blocks for values greater than 5 data blocks.

Restriction: You cannot specify INITIAL in an ALTER statement.

NEXT specifies in bytes the size of the next extent to be allocated to the object. Use K or M to
specify the size in kilobytes or megabytes. The default value is the size of 5 data blocks.
The minimum value is the size of 1 data block. The maximum value depends on your
operating system. Oracle rounds values up to the next multiple of the data block size for
values less than 5 data blocks. For values greater than 5 data blocks, Oracle rounds up to
a value that minimizes fragmentation, as described in Oracle8i Concepts.

If you change the value of the NEXT parameter (that is, if you specify it in an ALTER
statement), the next allocated extent will have the specified size, regardless of the size of
the most recently allocated extent and the value of the PCTINCREASE parameter.

PCTINCREASE specifies the percent by which the third and subsequent extents grow over the preceding
extent. The default value is 50, meaning that each subsequent extent is 50% larger than
the preceding extent. The minimum value is 0, meaning all extents after the first are the
same size. The maximum value depends on your operating system.

Oracle rounds the calculated size of each new extent to the nearest multiple of the data
block size.

If you change the value of the PCTINCREASE parameter (that is, if you specify it in an
ALTER statement), Oracle calculates the size of the next extent using this new value and
the size of the most recently allocated extent.

Suggestion: If you wish to keep all extents the same size, you can prevent SMON from
coalescing extents by setting the value of PCTINCREASE to 0. In general, Oracle
Corporation recommends a setting of 0 as a way to minimize fragmentation and avoid
the possibility of very large temporary segments during processing.

Restriction: You cannot specify PCTINCREASE for rollback segments. Rollback segments
always have a PCTINCREASE value of 0.

MINEXTENTS specifies the total number of extents to allocate when the object is created. This parameter
enables you to allocate a large amount of space when you create an object, even if the
space available is not contiguous. The default and minimum value is 1, meaning that
Oracle allocates only the initial extent, except for rollback segments, for which the default
and minimum value is 2. The maximum value depends on your operating system.
SQL Statements 7-577

storage_clause
If the MINEXTENTS value is greater than 1, then Oracle calculates the size of subsequent
extents based on the values of the INITIAL, NEXT, and PCTINCREASE parameters.

Restriction: You cannot specify MINEXTENTS in an ALTER statement.

MAXEXTENTS specifies the total number of extents, including the first, that Oracle can allocate for the
object. The minimum value is 1 (except for rollback segments, which always have a
minimum value of 2). The default value depends on your data block size.

UNLIMITED specifies that extents should be allocated automatically as needed.
Oracle Corporation recommends this setting as a way to minimize
fragmentation.

However, do not use this clause for rollback segments. Rogue
transactions containing inserts, updates, or deletes, that continue for a
long time will continue to create new extents until a disk is full.

Caution: A rollback segment that you create without specifying the
storage_clause has the same storage parameters as the tablespace that
the rollback segment is created in. Thus, if you create the tablespace
with MAXEXTENTS UNLIMITED, then the rollback segment will
also have the same default.

FREELIST
GROUPS

for schema objects other than tablespace, specifies the number of groups of free lists for a
table, partition, cluster, or index. The default and minimum value for this parameter is 1.
Use this parameter only if you are using Oracle with the Parallel Server option in
parallel mode.

Oracle uses one data block for each free list group. If you do not specify a large enough
value for INITIAL to cover the minimum value plus one data block for each free list
group, Oracle increases the value of INITIAL the necessary amount.

FREELISTS for objects other than tablespace, specifies the number of free lists for each of the free list
groups for the table, partition, cluster, or index. The default and minimum value for this
parameter is 1, meaning that each free list group contains one free list. The maximum
value of this parameter depends on the data block size. If you specify a FREELISTS value
that is too large, Oracle returns an error indicating the maximum value.

Restriction: You can specify the FREELISTS and the FREELIST GROUPS parameters only
in CREATE TABLE, CREATE CLUSTER, and CREATE INDEX statements.

OPTIMAL is relevant only to rollback segments. It specifies an optimal size in bytes for a rollback
segment. Use K or M to specify this size in kilobytes or megabytes. Oracle tries to
maintain this size for the rollback segment by dynamically deallocating extents when
their data is no longer needed for active transactions. Oracle deallocates as many extents
as possible without reducing the total size of the rollback segment below the OPTIMAL
value.

NULL specifies no optimal size for the rollback segment, meaning that
Oracle never deallocates the rollback segment’s extents. This is the
default behavior.
7-578 SQL Reference

storage_clause
Examples
The following statement creates a table and provides storage parameter values:

CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13))
 STORAGE (INITIAL 100K NEXT 50K
 MINEXTENTS 1 MAXEXTENTS 50);

Oracle allocates space for the table based on the STORAGE parameter values as

follows:

■ The MINEXTENTS value is 1, so Oracle allocates 1 extent for the table upon

creation.

■ The INITIAL value is 100K, so the first extent’s size is 100 kilobytes.

■ If the table data grows to exceed the first extent, Oracle allocates a second

extent. The NEXT value is 50K, so the second extent’s size would be 50

kilobytes.

■ If the table data subsequently grows to exceed the first two extents, Oracle

allocates a third extent. The PCTINCREASE value is 5, so the calculated size of

the third extent is 5% larger than the second extent, or 52.5 kilobytes. If the data

block size is 2 kilobytes, Oracle rounds this value to 52 kilobytes.

The value of OPTIMAL cannot be less than the space initially allocated for the rollback
segment specified by the MINEXTENTS, INITIAL, NEXT, and PCTINCREASE
parameters. The maximum value depends on your operating system. Oracle rounds
values up to the next multiple of the data block size.

BUFFER_POOL defines a default buffer pool (cache) for a schema object. All blocks for the object are
stored in the specified cache. If a buffer pool is defined for a partitioned table or index,
then the partitions inherit the buffer pool from the table or index definition, unless
overridden by a partition-level definition.

Note: BUFFER_POOL is not a valid clause for creating or altering tablespaces or rollback
segments. For more information about using multiple buffer pools, see Oracle8i Tuning.

KEEP retains the schema object in memory to avoid I/O operations.

RECYCLE eliminates blocks from memory as soon as they are no longer needed,
thus preventing an object from taking up unnecessary cache space.

DEFAULT always exists for objects not assigned to KEEP or RECYCLE.
SQL Statements 7-579

storage_clause
If the table data continues to grow, Oracle allocates more extents, each 5%

larger than the previous one.

■ The MAXEXTENTS value is 50, so Oracle can allocate as many as 50 extents for

the table.

The following statement creates a rollback segment and provides storage

parameter values:

CREATE ROLLBACK SEGMENT rsone
 STORAGE (INITIAL 10K NEXT 10K
 MINEXTENTS 2 MAXEXTENTS 25
 OPTIMAL 50K);

Oracle allocates space for the rollback segment based on the STORAGE parameter

values as follows:

■ The MINEXTENTS value is 2, so Oracle allocates 2 extents for the rollback

segment upon creation.

■ The INITIAL value is 10K, so the first extent’s size is 10 kilobytes.

■ The NEXT value is 10K, so the second extent’s size is 10 kilobytes.

■ If the rollback data exceeds the first two extents, Oracle allocates a third extent.

The PCTINCREASE value for rollback segments is always 0, so the third and

subsequent extents are the same size as the second extent, 10 kilobytes.

■ The MAXEXTENTS value is 25, so Oracle can allocate as many as 25 extents for

the rollback segment.

■ The OPTIMAL value is 50K, so Oracle deallocates extents if the rollback

segment exceeds 50 kilobytes. Oracle deallocates only extents that contain data

for transactions that are no longer active.
7-580 SQL Reference

TRUNCATE
TRUNCATE

Syntax

Purpose
To remove all rows from a table or cluster and reset the STORAGE parameters to

the values when the table or cluster was created.

Deleting rows with the TRUNCATE statement can be more efficient than dropping

and re-creating a table. Dropping and re-creating a table invalidates the table’s

dependent objects, requires you to regrant object privileges on the table, and

requires you to re-create the table’s indexes, integrity constraint, and triggers and

respecify its storage parameters. Truncating has none of these effects.

See also "DELETE" on page 7-438, "DROP CLUSTER" on page 7-446, and "DROP

TABLE" on page 7-475.

Prerequisites
The table or cluster must be in your schema or you must have DROP ANY TABLE

system privilege.

WARNING: You cannot roll back a TRUNCATE statement.

TRUNCATE

TABLE
schema .

table

PRESERVE

PURGE
SNAPSHOT LOG

CLUSTER
schema .

cluster

DROP

REUSE
STORAGE

;

SQL Statements 7-581

TRUNCATE
Keywords and Parameters

TABLE specifies the schema and name of the table to be truncated. This table cannot be part of a
cluster. If you omit schema, Oracle assumes the table is in your own cluster.

You can truncate index-organized tables and temporary tables. When you truncate a
temporary table, only the rows created during the current session are truncated.

The table’s storage parameter NEXT is changed to be the size of the last extent deleted from
the segment in the process of truncation.

Oracle also automatically truncates and resets any existing UNUSABLE indicators for the
following indexes on table: range and hash partitions of local indexes and subpartitions of
local indexes.

If table is not empty, Oracle marks UNUSABLE all nonpartitioned indexes and all partitions
of global partitioned indexes on the table.

For a domain index, this statement invokes the appropriate truncate routine to truncate the

domain index data. For more information, see Oracle8i Data Cartridge Developer’s Guide.

If table (whether it is a regular or index-organized table) contains LOB columns, all LOB
data and LOB index segments will be truncated.

If table is partitioned, all partitions or subpartitions, as well as the LOB data and LOB index
segments for each partition or subpartition, will be truncated.

Note: When you truncate a table, Oracle automatically deletes all data in the table’s
indexes and any materialized view direct-load INSERT information held in association
with the table. (This information is independent of any materialized view/snapshot log.) If
this direct-load INSERT information is deleted, an incremental refresh of the materialized
view may lose data.

Restrictions:

■ You cannot individually truncate a table that is part of a cluster. You must either
truncate the cluster, delete all rows from the table, or drop and re-create the table.

■ You cannot truncate the parent table of an enabled referential integrity constraint. You
must disable the constraint before truncating the table. (An exception is that you may
truncate the table if the integrity constraint is self-referential.)

■ You cannot truncate a table if any domain indexes defined on any of its columns are
marked LOADING or FAILED.

SNAPSHOT LOG specifies whether a snapshot log defined on the table is to be preserved or purged when the
table is truncated. This clause allows snapshot master tables to be reorganized through
export/import without affecting the ability of primary-key snapshots defined on the
master to be fast refreshed. To support continued fast refresh of primary-key snapshots, the
snapshot log must record primary-key information. For more information about snapshot
logs and the TRUNCATE statement, see Oracle8i Replication.
7-582 SQL Reference

TRUNCATE
Examples
The following statement deletes all rows from the EMP table and returns the freed

space to the tablespace containing EMP:

TRUNCATE TABLE emp;

The above statement also deletes all data from all indexes on EMP and returns the

freed space to the tablespaces containing them.

The following statement deletes all rows from all tables in the CUST cluster, but

leaves the freed space allocated to the tables:

TRUNCATE CLUSTER cust REUSE STORAGE

The above statement also deletes all data from all indexes on the tables in CUST.

The following statements are examples of truncate statements that preserve

snapshot logs:

TRUNCATE TABLE emp PRESERVE SNAPSHOT LOG;
TRUNCATE TABLE stock;

PRESERVE specifies that any snapshot log should be preserved when the master
table is truncated. This is the default.

PURGE specifies that any snapshot log should be purged when the master table
is truncated.

CLUSTER specifies the schema and name of the cluster to be truncated. You can truncate only an
indexed cluster, not a hash cluster. If you omit schema, Oracle assumes the table is in your
own cluster.

When you truncate a cluster, Oracle also automatically deletes all data in the cluster’s
tables’ indexes.

DROP STORAGE deallocates all space from the deleted rows from the table or cluster except the space
allocated by the table’s or cluster’s MINEXTENTS parameter. This space can subsequently
be used by other objects in the tablespace. This is the default.

REUSE
STORAGE

retains the space from the deleted rows allocated to the table or cluster. Storage values are
not reset to the values when the table or cluster was created. This space can subsequently
be used only by new data in the table or cluster resulting from inserts or updates.

The DROP STORAGE clause and REUSE STORAGE clause also apply to the space freed by
the data deleted from associated indexes.

Note: If you have specified more than one free list for the object you are truncating, the
REUSE STORAGE clause also removes any mapping of free lists to instances, and resets the
high-water mark to the beginning of the first extent.
SQL Statements 7-583

UPDATE
UPDATE

Syntax

table_expression_clause ::=

subquery: see "SELECT and Subqueries" on page 7-541.

with_clause ::=

UPDATE
hint

table_expression_clause set_clause
where_clause returning_clause

;

schema . table

sample_clause

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

snapshot

@ dblink

(subquery
with_clause

)

table_collection_expression

t_alias

,

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint
7-584 SQL Reference

UPDATE
table_collection_expression ::=

set_clause ::=

where_clause ::=

returning_clause ::=

Purpose
To change existing values in a table or in a view’s base table.

Prerequisites
For you to update values in a table, the table must be in your own schema or you

must have UPDATE privilege on the table.

For you to update values in the base table of a view,

■ You must have UPDATE privilege on the view, and

■ Whoever owns the schema containing the view must have UPDATE privilege

on the base table.

TABLE (collection_expression)
(+)

SET

(column

,

) = (subquery)

column =
expr

(subquery)

,

WHERE condition

RETURNING expr

,

INTO data_item

,

SQL Statements 7-585

UPDATE
If the SQL92_SECURITY initialization parameter is set to TRUE, then you must

have SELECT privilege on the table whose column values you are referencing (such

as the columns in a where_clause) to perform an UPDATE.

The UPDATE ANY TABLE system privilege also allows you to update values in

any table or any view’s base table.

Keywords and Parameters

hint is a comment that passes instructions to the optimizer on choosing an execution plan for the
statement. For the syntax and description of hints, see "Hints" on page 2-58 and Oracle8i
Tuning.

You can place a parallel hint immediately after the UPDATE keyword to parallelize both the
underlying scan and UPDATE operations. For detailed information about parallel DML, see
Oracle8i Tuning, Oracle8i Parallel Server Concepts and Administration, and Oracle8i Concepts.

table_expression_clause

schema is the schema containing the table or view. If you omit schema, Oracle assumes the table or
view is in your own schema.

table | view |
subquery

is the name of the table or view, or the columns returned by a subquery, to be updated. Issuing
an UPDATE statement against a table fires any UPDATE triggers associated with the table. If
you specify view, Oracle updates the view’s base table.

If table (or the base table of view) contains one or more domain index columns, this statement
executes the appropriate indextype update routine. For more information on these routines,
see Oracle8i Data Cartridge Developer’s Guide.

Restrictions:

■ You cannot execute this statement if table (or the base table of view) contains any domain
indexes marked LOADING or FAILED.

■ You cannot specify the sample_clause in an UPDATE statement.

■ You cannot specify the order_by_clause in the subquery of the table_expression_clause.
7-586 SQL Reference

UPDATE
■ You cannot update a view except with INSTEAD OF triggers if the view’s defining query
contains one of the following constructs:

- A set operator

- A DISTINCT operator

- An aggregate function

- A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

- A collection expression in a SELECT list

- A subquery in a SELECT list

- Joins (with some exceptions). See Oracle8i Administrator’s Guide for details.

■ If a view was created with the WITH CHECK OPTION, you can update the view only if

the resulting data satisfies the view’s defining query.

■ If you specify an index, index partition, or index subpartition that has been marked
UNUSABLE, the UPDATE statement will fail unless the SKIP_UNUSABLE_INDEXES
parameter has been set to TRUE. For more information, see "ALTER SESSION" on
page 7-78

PARTITION (partition) | SUBPARTITION (subpartition)

specifies the name of the partition or subpartition within table targeted for updates. You need
not specify the partition name when updating values in a partitioned table. However in some
cases specifying the partition name can be more efficient than a complicated where_clause.

dblink is a complete or partial name of a database link to a remote database where the table or view
is located. For information on referring to database links, see "Referring to Objects in Remote
Databases" on page 2-74. You can use a database link to update a remote table or view only if
you are using Oracle’s distributed functionality.

If you omit dblink, Oracle assumes the table or view is on the local database.

with_clause restricts the subquery in one of the following ways:

■ WITH READ ONLY specifies that the subquery cannot be updated.

■ WITH CHECK OPTION specifies that Oracle prohibits any changes to that table that
would produce rows that are not included in the subquery. See the WITH CHECK
OPTION Example on page 7-558.

table_collection_
expression

informs Oracle that the collection value expression should be treated as a table. You can use a
table_collection_expression to update rows in one table based on rows from another table. For
example, you could roll up four quarterly sales tables into a yearly sales table.

collection_expression is a subquery that selects a nested table column from table or view.

Note: In earlier releases of Oracle, table_collection_expr was expressed as "THE subquery". That
usage is now deprecated.
SQL Statements 7-587

UPDATE
t_alias provides a correlation name for the table, view, or subquery to be referenced elsewhere in the
statement.

Note: This alias is required if the table_expression_clause references any object type attributes or
object type methods.

set_clause column is the name of a column of the table or view that is to be updated. If you
omit a column of the table from the set_clause, that column’s value
remains unchanged.

Restrictions:

■ If column refers to a LOB object attribute, you cannot update it with a
literal. Also, before you can update a LOB value, you must lock the
row containing the LOB. See the LOB Locking Example on
page 7-556.

■ If column is part of the partitioning key of a partitioned table,
UPDATE will fail if you change a value in the column that would
move the row to a different partition or subpartition, unless you
enable row movement. See the row_movement_clause of "CREATE
TABLE" on page 7-359 or "ALTER TABLE" on page 7-113.

subquery is a subquery that returns exactly one row for each row updated.

■ If you specify only one column in the set_clause, the subquery can
return only one value.

■ If you specify multiple columns in the set_clause, the subquery must
return as many values as you have specified columns.

If the subquery returns no rows, then the column is assigned a null. See
also "SELECT and Subqueries" on page 7-541 and "Using Subqueries" on
page 5-23.

expr is the new value assigned to the corresponding column. This expression
can contain host variables and optional indicator variables. See the
syntax description in "Expressions" on page 5-1.

Note: If you insert string literals into a RAW column, during subsequent queries, Oracle will
perform a full table scan rather than using any index that might exist on the RAW column.

where_clause restricts the rows updated to those for which the specified condition is TRUE. If you omit this
clause, Oracle updates all rows in the table or view. See the syntax description of "Conditions"
on page 5-13.

The where_clause determines the rows in which values are updated. If you do not specify the
where_clause, all rows are updated. For each row that satisfies the where_clause, the columns to
the left of the equals (=) operator in the set_clause are set to the values of the corresponding
expressions on the right. The expressions are evaluated as the row is updated.

returning_clause retrieves the rows affected by the UPDATE statement.
7-588 SQL Reference

UPDATE
Examples

Simple Examples The following statement gives null commissions to all

employees with the job TRAINEE:

UPDATE emp
 SET comm = NULL
 WHERE job = ’TRAINEE’;

The following statement promotes JONES to manager of Department 20 with a

$1,000 raise (assuming there is only one JONES):

UPDATE emp
 SET job = ’MANAGER’, sal = sal + 1000, deptno = 20
 WHERE ename = ’JONES’;

The following statement increases the balance of bank account number 5001 in the

ACCOUNTS table on a remote database accessible through the database link

BOSTON:

UPDATE accounts@boston
 SET balance = balance + 500
 WHERE acc_no = 5001;

■ When you are updating a single row, this clause can retrieve column expressions that use
the updated columns of the row, rowid, and REFs to the updated row and store them in
PL/SQL variables or bind variables.

■ When you are updating multiple rows, this clause can stored the values from expressions,
rowid, and REFs involving the updated rows in bind arrays.

■ You can also use UPDATE with a returning_clause to update from views with single base
tables.

expr list is some of the syntax descriptions in "Expressions" on page 5-1. You must
specify a column expression in the expr list for each variable in the data_
item list.

INTO indicates that the values of the changed rows are to be stored in the data_
item variable(s) specified in data_item list.

data_item is a PL/SQL variable or bind variable which stores the retrieved expr
value in the expr list.

Restrictions:

■ You cannot use this clause with parallel DML or with remote objects.

■ You cannot retrieve LONG types with this clause.
SQL Statements 7-589

UPDATE
PARTITION Example The following example updates values in a single partition

of the SALES table:

UPDATE sales PARTITION (feb96) s
 SET s.account_name = UPPER(s.account_name);

Complex Example This example shows the following syntactic constructs of the

UPDATE statement:

■ Both forms of the set_clause together in a single statement

■ A correlated subquery

■ A where_clause to limit the updated rows

UPDATE emp a
 SET deptno =
 (SELECT deptno
 FROM dept
 WHERE loc = ’BOSTON’),
 (sal, comm) =
 (SELECT 1.1*AVG(sal), 1.5*AVG(comm)
 FROM emp b
 WHERE a.deptno = b.deptno)
 WHERE deptno IN
 (SELECT deptno
 FROM dept
 WHERE loc = ’DALLAS’
 OR loc = ’DETROIT’);

The above UPDATE statement performs the following operations:

■ Updates only those employees who work in Dallas or Detroit

■ Sets DEPTNO for these employees to the DEPTNO of Boston

■ Sets each employee’s salary to 1.1 times the average salary of their department

■ Sets each employee’s commission to 1.5 times the average commission of their

department

Correlated Update Example The following example updates particular rows of

the PROJS nested table corresponding to the department whose department equals

123:

UPDATE TABLE(SELECT projs
 FROM dept d WHERE d.dno = 123) p
 SET p.budgets = p.budgets + 1
7-590 SQL Reference

UPDATE
 WHERE p.pno IN (123, 456);

RETURNING Example The following example returns values from the updated

row and stores the result in PL/SQL variables BND1, BND2, BND3:

UPDATE emp
 SET job =’MANAGER’, sal = sal + 1000, deptno = 20
 WHERE ename = ’JONES’
 RETURNING sal*0.25, ename, deptno INTO bnd1, bnd2, bnd3;
SQL Statements 7-591

UPDATE
7-592 SQL Reference

Syntax Diag
A

Syntax Diagrams

One picture is worth a thousand words.

Anonymous

Syntax diagrams are drawings that illustrate valid SQL syntax. To read a diagram,

trace it from left to right, in the direction shown by the arrows.

Commands and other keywords appear in UPPERCASE inside rectangles. Type

them exactly as shown in the rectangles. Parameters appear in lowercase inside

ovals. Variables are used for the parameters. Punctuation, operators, delimiters,

and terminators appear inside circles.

If the syntax diagram has more than one path, you can choose any path to travel.

If you have the choice of more than one keyword, operator, or parameter, your

options appear in a vertical list.

Required Keywords and Parameters
Required keywords and parameters can appear singly or in a vertical list of

alternatives. Single required keywords and parameters appear on the main path,

that is, on the horizontal line you are currently traveling. In the following example,

library_name is a required parameter:

If there is a library named HQ_LIB, then, according to the diagram, the following

statement is valid:

DROP LIBRARY hq_lib;

DROP LIBRARY library_name ;
rams A-1

If multiple keywords or parameters appear in a vertical list that intersects the main

path, one of them is required. That is, you must choose one of the keywords or

parameters, but not necessarily the one that appears on the main path. In the

following example, you must choose one of the four settings:

Optional Keywords and Parameters
If keywords and parameters appear in a vertical list above the main path, they are

optional. In the following example, instead of traveling down a vertical line, you

can continue along the main path:

According to the diagram, all of the following statements are valid:

DEALLOCATE UNUSED;
DEALLOCATE UNUSED KEEP 1000;
DEALLOCATE UNUSED KEEP 10M;

Syntax Loops
Loops let you repeat the syntax within them as many times as you like. In the

following example, after choosing one expression, you can go back repeatedly to

choose another, separated by commas.

PCTFREE

PCTUSED

INITRANS

MAXTRANS

DEALLOCATE UNUSED
KEEP integer

K

M

(expr

,

)

A-2 SQL Reference

Multipart Diagrams
Read a multipart diagram as if all the main paths were joined end to end. The

following example is a two-part diagram:

According to the diagram, the following statement is valid:

CREATE OUTLINE ON UPDATE;

Database Objects
The names of Oracle identifiers, such as tables and columns, must not exceed 30

characters in length. The first character must be a letter, but the rest can be any

combination of letters, numerals, dollar signs ($), pound signs (#), and underscores

(_).

However, if an Oracle identifier is enclosed by double quotation marks ("), it can

contain any combination of legal characters, including spaces but excluding

quotation marks.

Oracle identifiers are not case-sensitive except when enclosed by double quotation

marks.

For more information, see "Schema Object Naming Rules" on page 2-67.

CREATE
OR REPLACE

OUTLINE
outline

FOR CATEGORY category
ON statement ;
Syntax Diagrams A-3

A-4 SQL Reference

Oracle and Standard
B

Oracle and Standard SQL

High thoughts must have high language.

Aristophanes, Frogs

This appendix discusses Oracle’s conformance to the SQL standards established by

industry standards governing bodies. It also described how to locate extensions to

standard SQL with the FIPS Flagger.

Conformance with Standard SQL
This section declares Oracle’s conformance to the SQL standards established by

these organizations:

■ American National Standards Institute (ANSI)

■ International Standards Organization (ISO)

■ United States Federal Government

ANSI and ISO Compliance
Oracle8i complies at the Entry level as defined in the ANSI document, X3.135-1992,

“Database Language SQL.” You can obtain a copy of the ANSI standard from this

address:

American National Standards Institute

1430 Broadway

New York, NY 10018 USA

The ANSI and ISO SQL standards require conformance claims to state the type of

conformance and the implemented facilities. The Oracle server, Oracle

Precompilers for C/C++ Release 8.1, Oracle Precompiler for Cobol Release 8.1, and
 SQL B-1

Conformance with Standard SQL
SQL*Module for ADA Release 8.0.4 provide conformance with the ANSI

X3.135-1992/ISO 9075-1992 standard:

■ Compliance at Entry Level (including both SQL-DDL and SQL-DML)

■ Module Language for ADA

■ Embedded SQL C

■ Embedded SQL COBOL

In addition to full compliance at the Entry level, Oracle complies partially at the

Transitional, Intermediate, and Full levels as described in Table B–1 (including both

SQL-DDL and SQL-DML).

Table B–1 Oracle Compliance at Transitional, Intermediate, and Full Levels

Level SQL92 Feature (number and name)

Transitional 7. TRIM function

8. UNION in views

9. Implicit numeric casting

10. Implicit character casting

13. Grouped operations

14. Qualified * in SELECT list

15. Lowercase identifiers

16. PRIMARY KEY enhancement

18. Multiple module support

21. INSERT expressions

Intermediate 31. Schema definition statement

42. National character

48. Expanded null predicate

Full 60. Trailing underscore

62. Referential name order
B-2 SQL Reference

Conformance with Standard SQL
FIPS Compliance
Oracle complies completely with FIPS PUB 127-2 for Entry SQL. In addition, the

following information is provided for Section 16, “Special Procurement

Considerations.”

Section 16.2 Programming Language Interfaces
The Oracle precompilers support the use of embedded SQL in C and COBOL.

SQL*Module supports the use of Module Language in ADA.

Section 16.3 Style of Language Interface
Oracle with SQL*Module supports Module Language for Ada. Oracle with the

Oracle precompilers supports C and COBOL. The specific languages supported

depend on your operating system.

Section 16.5 Interactive Direct SQL
Oracle8i with SQL*Plus Version 3.1 (as well as other Oracle tools) supports "direct

invocation" of the following SQL statements, meeting the requirements of FIPS

PUB 127-2:

■ CREATE TABLE statement

■ CREATE VIEW statement

■ GRANT statement

■ INSERT statement

■ SELECT statement, with ORDER BY clause but not INTO clause

■ UPDATE statement: searched

■ DELETE statement: searched

■ COMMIT WORK statement

■ ROLLBACK WORK statement

Most other SQL statements described in this reference are also supported

interactively.
Oracle and Standard SQL B-3

Conformance with Standard SQL
Section 16.6 Sizing for Database Constructs
Table B–2 lists requirements identified in FIPS PUB 127-1 and how they are met by

Oracle8i.

Table B–2 Sizing for Database Constructs

Database Constructs FIPS Oracle8 i

Length of an identifier (in bytes) 18 30

Length of CHARACTER datatype (in bytes) 240 2000

Decimal precision of NUMERIC datatype 15 38

Decimal precision of DECIMAL datatype 15 38

Decimal precision of INTEGER datatype 9 38

Decimal precision of SMALLINT datatype 4 38

Binary precision of FLOAT datatype 20 126

Binary precision of REAL datatype 20 63

Binary precision of DOUBLE PRECISION datatype 30 126

Columns in a table 100 1000

Values in an INSERT statement 100 1000

SET clauses in an UPDATE statement(a) 20 1000

Length of a row(b,c) 2,000 2,000,000

Columns in a UNIQUE constraint 6 32

Length of a UNIQUE constraint(b) 120 (d)

Length of foreign key column list(b) 120 (d)

Columns in a GROUP BY clause 6 255(e)

Length of GROUP BY column list 120 (e)

Sort specifications in ORDER BY clause 6 255(e)

Length of ORDER BY column list 120 (e)

Columns in a referential integrity constraint 6 32

Tables referenced in a SQL statement 15 No limit

Cursors simultaneously open 10 (f)

Items in a SELECT list 100 1000
B-4 SQL Reference

Oracle Extensions to Standard SQL
Section 16.7 Character Set Support
Oracle supports the ASCII character set (FIPS PUB 1-2) on most computers and the

EBCDIC character set on IBM mainframe computers. Oracle supports both

single-byte and multibyte character sets.

Oracle Extensions to Standard SQL
Oracle supports numerous features that extend beyond standard SQL. In your

Oracle applications, you can use these extensions just as you can use Entry SQL92.

If you are concerned with the portability of your applications to other

implementations of SQL, use Oracle’s FIPS Flagger to locate Oracle extensions to

Entry SQL92 in your embedded SQL programs. The FIPS Flagger is part of the

Oracle precompilers and the SQL*Module compiler. For information on how to use

the FIPS Flagger, see Pro*COBOL Precompiler Programmer’s Guide and Pro*C/C++
Precompiler Programmer’s Guide.

(a) The number of SET clauses in an UPDATE statement refers to the number items separated
by commas following the SET keyword.

(b) The FIPS PUB defines the length of a collection of columns to be the sum of: twice the
number of columns, the length of each character column in bytes, decimal precision plus 1
of each exact numeric column, binary precision divided by 4 plus 1 of each approximate
numeric column.

(c) The Oracle limit for the maximum row length is based on the maximum length of a row
containing a LONG value of length 2 gigabytes and 999 VARCHAR2 values, each of length
4000 bytes: 2(254) + 231 + (999(4000)).

(d) The Oracle limit for a UNIQUE key is half the size of an Oracle data block (specified by the
initialization parameter DB_BLOCK_SIZE) minus some overhead.

(e) Oracle places no limit on the number of columns in a GROUP BY clause or the number of
sort specifications in an ORDER BY clause. However, the sum of the sizes of all the
expressions in either a GROUP BY clause or an ORDER BY clause is limited to the size of an
Oracle data block (specified by the initialization parameter DB_BLOCK_SIZE) minus some
overhead.

(f) The Oracle limit for the number of cursors simultaneously opened is specified by the
initialization parameter OPEN_CURSORS. The maximum value of this parameter depends
on the memory available on your operating system and exceeds 100 in all cases.

Table B–2 (Cont.) Sizing for Database Constructs
Oracle and Standard SQL B-5

Oracle Extensions to Standard SQL
B-6 SQL Reference

Oracle Reserved W
C

Oracle Reserved Words

The words I use are everyday words and yet are not the same!

Paul Claudel, La Muse Qui Est la Grace

This appendix lists Oracle reserved words. Words followed by an asterisk (*) are

also ANSI reserved words.

Note: In addition to the following reserved words, Oracle uses system-

generated names beginning with "SYS_" for implicitly generated schema

objects and subobjects. Oracle discourages you from using this prefix in the

names you explicitly provide to your schema objects and subobjects to

avoid possible conflict in name resolution.

Table C–1 Oracle Reserved Words

ACCESS CHAR DEFAULT

ADD CHECK DELETE

ALL CLUSTER DESC

ALTER COLUMN DISTINCT

AND COMMENT DROP

ANY COMPRESS ELSE

AS CONNECT EXCLUSIVE

ASC CREATE EXISTS

AUDIT CURRENT FILE

BETWEEN DATE FLOAT

BY DECIMAL FOR
ords C-1

FROM NOT SHARE

GRANT NOWAIT SIZE

GROUP NULL SMALLINT

HAVING NUMBER START

IDENTIFIED OF SUCCESSFUL

IMMEDIATE OFFLINE SYNONYM

IN ON SYSDATE

INCREMENT ONLINE TABLE

INDEX OPTION THEN

INITIAL OR TO

INSERT ORDER TRIGGER

INTEGER PCTFREE UID

INTERSECT PRIOR UNION

INTO PRIVILEGES UNIQUE

IS PUBLIC UPDATE

LEVEL RAW USER

LIKE RENAME VALIDATE

LOCK RESOURCE VALUES

LONG REVOKE VARCHAR

MAXEXTENTS ROW VARCHAR2

MINUS ROWID VIEW

MLSLABEL ROWNUM WHENEVER

MODE ROWS WHERE

MODIFY SELECT WITH

NOAUDIT SESSION

NOCOMPRESS SET

Table C–1 Oracle Reserved Words
C-2 SQL Reference

Index

Symbols
$ number format element, 2-36

(+) operator, 3-16

, (comma)

date format element, 2-41

number format element, 2-36

: (colon) date format element, 2-41

- (dash) date format element, 2-41

; (semicolon) date format element, 2-41

⁄ (slash) date format element, 2-41

˙ (period)

date format element, 2-41

number format element, 2-36

Numerics
0 number format element, 2-36

20th century, 2-42, 2-44

specifying, 2-44

21st century, 2-42, 2-44

specifying, 2-44

8 number format element, 2-36

9 number format element, 2-36

A
ABS function, 4-5

ABSI

standards, B - 1

ACCOUNT LOCK clause

of ALTER USER. See CREATE USER

of CREATE USER, 7-428

ACCOUNT UNLOCK clause

of ALTER USER. See CREATE USER.

of CREATE USER, 7-428

ACOS function, 4-6

ACTIVATE STANDBY DATABASE clause

of ALTER DATABASE, 7-11

AD (A.D.) date format element, 2-41, 2-43

ADD clause

of ALTER DIMENSION, 7-26

of ALTER TABLE, 7-130

ADD DATAFILE clause

of ALTER TABLESPACE, 7-167

ADD LOGFILE clause

of ALTER DATABASE, 7-9

ADD LOGFILE GROUP clause

of ALTER DATABASE, 7-18

ADD LOGFILE MEMBER clause

of ALTER DATABASE, 7-9, 7-18

ADD LOGFILE THREAD clause

of ALTER DATABASE, 7-18

ADD OVERFLOW clause

of ALTER TABLE, 7-143

ADD PARTITION, 7-148

ADD PARTITION clause

of ALTER TABLE, 7-147, 7-148

ADD PRIMARY KEY clause

of ALTER MATERIALIZED VIEW LOG, 7-56

ADD ROWID clause

of ALTER MATERIALIZED VIEW, 7-56

of ALTER MATERIALIZED VIEW LOG, 7-56

ADD TEMPFILE clause

of ALTER TABLESPACE, 7-167

ADD_MONTHS function, 4-6

ADMINISTER ANY TRIGGER system

privilege, 7-501
Index-1

ADVISE clause

of ALTER SESSION, 7-79

AFTER clause

of CREATE TRIGGER, 7-403

AFTER triggers, 7-403

aggregate functions, 4-5

aliases

for columns, 5-18

for expressions in view query, 7-432

specifying in queries and subqueries, 7-547

ALL clause

of SELECT, 7-545

of SET CONSTRAINTS, 7-568

of SET ROLE, 7-571

ALL EXCEPT clause

of SET ROLE, 7-571

ALL operator, 3-6

ALL PRIVILEGES clause

of GRANT object_privileges, 7-506

of REVOKE schema_object_privileges, 7-533

of REVOKE schema_objects_privileges, 7-533

ALL PRIVILEGES shortcut

of AUDIT sql_statements, 7-199

ALL shortcut

of AUDIT sql_statements, 7-199

ALL_COL_COMMENTS view, 7-212

ALL_ROWS hint, 2-59

ALL_TAB_COMMENTS view, 7-212

ALLOCATE EXTENT clause

of ALTER CLUSTER, 7-3, 7-4

of ALTER INDEX, 7-30, 7-34

of ALTER TABLE, 7-139

ALTER ANY CLUSTER system privilege, 7-495

ALTER ANY DIMENSION system privilege, 7-496

ALTER ANY INDEX system privilege, 7-496

ALTER ANY MATERIALIZED VIEW system

privilege, 7-497

ALTER ANY OUTLINE system privilege, 7-498

ALTER ANY PROCEDURE system

privilege, 7-498

ALTER ANY ROLE system privilege, 7-498

ALTER ANY SEQUENCE system privilege, 7-499

ALTER ANY SNAPSHOT system privilege, 7-499

ALTER ANY TABLE system privilege, 7-500

ALTER ANY TRIGGER system privilege, 7-501

ALTER ANY TYPE system privilege, 7-501

ALTER CLUSTER statement, 7-2

ALTER DATABASE

statement, 7-6

system privilege, 7-495

ALTER DIMENSION statement, 7-24

ALTER FUNCTION statement, 7-27

ALTER INDEX statement, 7-29

ALTER JAVA CLASS statement, 7-43

ALTER JAVA SOURCE statement, 7-43

ALTER MATERIALIZED VIEW LOG

statement, 7-54

ALTER MATERIALIZED VIEW statement, 7-45

ALTER object privilege, 7-508

ALTER OUTLINE statement, 7-58

ALTER PACKAGE statement, 7-59

ALTER PROCEDURE statement, 7-62

ALTER PROFILE

statement, 7-64

system privilege, 7-498

ALTER RESOURCE COST

statement, 7-68

system privilege, 7-499

ALTER ROLE statement, 7-71

ALTER ROLLBACK SEGMENT

statement, 7-73

system privilege, 7-498

ALTER SEQUENCE statement, 7-76

ALTER SESSION

statement, 7-78

system privilege, 7-499

ALTER SNAPSHOT LOG. See ALTER

MATERIALIZED VIEW LOG.

ALTER SNAPSHOT. See ALTER MATERIALIZED

VIEW.

ALTER statement

triggers on, 7-405

ALTER SYSTEM

statement, 7-95

system privilege, 7-495

ALTER TABLE statement, 7-113

ALTER TABLESPACE

statement, 7-164

system privilege, 7-500

ALTER TRIGGER statement, 7-171
Index-2

ALTER TYPE statement, 7-173

ALTER USER

statement, 7-179

system privilege, 7-501

ALTER VIEW statement, 7-183

AM (A.M.) date format element, 2-41, 2-43

American National Standards Institute. See ANSI.

ANALYZE ANY system privilege, 7-502

ANALYZE CLUSTER statement, 7-185

ANALYZE INDEX statement, 7-185

ANALYZE TABLE statement, 7-185

ANCILLARY TO clause

of CREATE OPERATOR, 7-321

AND operator, 3-11

AND_EQUAL hint, 2-59

ANSI, B - 1

datatypes, 2-23

conversion to Oracle datatypes, 2-23

standards, xi, 1-2

supported datatypes, 2-8

ANY operator, 3-6

APPEND hint, 2-61

application servers

allowing to connect as a user, 7-181

applications

allowing to connect as a user, 7-181

securing, 7-243

validating, 7-243

AQ_ADMINISTRATOR_ROLE role, 7-503

AQ_TM_PROCESSES parameter

of ALTER SYSTEM, 7-100

AQ_USER_ROLE role, 7-503

ARCHIVE LOG clause

of ALTER SYSTEM, 7-96

archived redo log files

location of, 7-13

storage locations, 7-83

ARCHIVELOG clause

of ALTER DATABASE, 7-9, 7-17

of CREATE CONTROLFILE, 7-248

ARCHVIELOG clause

OF CREATE DATABASE, 7-252

arguments of operators, 3-1

arithmetic operators, 3-3

AS ’filespec’ clause

of CREATE LIBRARY, 7-299

AS clause

of CREATE JAVA, 7-296

AS EXTERNAL clause

of CREATE FUNCTION, 7-271, 7-337

of CREATE TYPE BODY, 7-424

AS OBJECT clause

of CREATE TYPE, 7-414

AS subquery

of CREATE MATERIALIZED VIEW /

SNAPSHOT, 7-301, 7-308

of CREATE TABLE, 7-385

of CREATE VIEW, 7-433

AS TABLE clause

of CREATE TYPE, 7-418

AS VARRAY clause

of CREATE TYPE, 7-417

ASC clause

of CREATE INDEX, 7-281

ascending indexes, 7-281

ASCII

character set, 2-29

function, 4-6

ASIN function, 4-7

ASSOCIATE STATISTICS statement, 7-194

ATAN function, 4-7

ATAN2 function, 4-8

ATTRIBUTE clause

of ALTER DIMENSION, 7-25

of CREATE DIMENSION, 7-262

attributes

adding to a dimension, 7-26

dropping from a dimension, 7-26

maximum number of in object type, 7-369

of dimensions, defining, 7-262

AUDIT (Schema Objects) statement, 7-205

AUDIT ANY system privilege, 7-502

AUDIT sql_statements statement, 7-197

AUDIT SYSTEM system privilege, 7-495

auditing

schema objects

stopping, 7-525

SQL statements, 7-200

SQL statements, stopping, 7-523

auditing options
Index-3

for database objects, 7-200

for SQL statements, 7-202

AUTHENTICATED BY clause

of CREATE DATABASE LINK, 7-257

AUTHID CURRENT_USER clause

of ALTER JAVA, 7-44

of CREATE FUNCTION, 7-270

of CREATE JAVA, 7-295

of CREATE PACKAGE, 7-326

of CREATE PROCEDURE, 7-336

of CREATE TYPE, 7-415

AUTHID DEFINER clause

of ALTER JAVA, 7-44

of CREATE FUNCTION, 7-270

of CREATE JAVA, 7-295

of CREATE PACKAGE, 7-326

of CREATE PROCEDURE, 7-336

of CREATE TYPE, 7-415

AUTOEXTEND clause

for datafiles, 7-17

of ALTER DATABASE, 7-10

of ALTER TABLESPACE, 7-165, 7-167

of CREATE DATABASE, 7-250

of CREATE TABLESPACE, 7-394, 7-396

of CREATE TEMPORARY

TABLESPACE, 7-399, 7-400

AVG function, 4-8

AY date format element, 2-41

B
BACKGROUND_DUMP_DEST parameter

of ALTER SYSTEM, 7-101

BACKUP ANY TABLE system privilege, 7-500

BACKUP CONTROLFILE clause

of ALTER DATABASE, 7-9, 7-19

BACKUP_TAPE_IO_SLAVES parameter

of ALTER SYSTEM, 7-101

BC (B.C.) date format element, 2-41, 2-43

BECOME USER system privilege, 7-502

BEFORE clause

of CREATE TRIGGER, 7-403

BEFORE triggers, 7-403

BEGIN BACKUP clause

of ALTER TABLESPACE, 7-168

BFILE

datatype, 2-20

locators, 2-20

BFILENAME function, 4-8

binary large objects. See BLOBs.

binary operators, 3-1

BINDING clause

of CREATE OPERATOR, 7-320, 7-321

BITMAP clause

of CREATE INDEX, 7-279

bitmapped indexes, 7-279

blank padding

specifying in format models, 2-46

suppressing, 2-46

BLOB

transactional support of, 2-21

BLOB datatype, 2-21

BODY clause

of ALTER PACKAGE, 7-60

BUFFER_POOL parameter

of STORAGE clause, 7-579

BUILD DEFERRED clause

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-304

BUILD IMMEDIATE clause

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-304

BY ACCESS clause

of AUDIT schema_objects, 7-206

of AUDIT sql_statements, 7-199

BY proxy clause

of AUDIT (SQL statements), 7-199

of NOAUDIT sql_statements, 7-524

BY SESSION clause

of AUDIT schema_objects, 7-206

of AUDIT sql_statements, 7-199

BY user clause

of AUDIT sql_statements, 7-199

of NOAUDIT sql_statements, 7-524

C
C clause

of CREATE TYPE, 7-416

of CREATE TYPE BODY, 7-424
Index-4

C method

mapping to an object type, 7-416

C number format element, 2-36

CACHE clause

of ALTER MATERIALIZED VIEW, 7-48

of ALTER MATERIALIZED VIEW LOG, 7-56

of ALTER SEQUENCE. See CREATE

SEQUENCE., 7-76

of ALTER TABLE, 7-141

of CREATE CLUSTER, 7-240

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG, 7-317

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-304

of CREATE SEQUENCE, 7-352

of CREATE TABLE, 7-384

CACHE hint, 2-62

CALL clause

of CREATE TRIGGER, 7-407

CALL procedure statement

of CREATE TRIGGER, 7-407

call spec

in procedures, 7-334

of CREATE FUNCTION, 7-271

of CREATE PROCEDURE, 7-336

of CREATE TYPE, 7-416

of CREATE TYPE BODY, 7-424

call specifications. See call spec.

CALL statement, 7-210

Cartesian products, 5-22

CASCADE clause

of CREATE TABLE, 7-384

of DROP PROFILE, 7-468

of DROP USER, 7-483

CASCADE CONSTRAINTS clause

of DROP CLUSTER, 7-447

of DROP TABLE, 7-476

of DROP TABLESPACE, 7-478

of REVOKE schema_object_privileges, 7-534

CAST expressions, 5-7

CC date format element, 2-41

CEIL function, 4-9

century

specifying, 2-42

CHANGE CATEGORY clause

of ALTER OUTLINE, 7-58

changes

making permanent, 7-214

changing default storage parameters, 7-168

CHAR datatype, 2-11

ANSI, 2-24

converting to VARCHAR2, 2-35

CHAR VARYING datatype, ANSI, 2-24

CHARACTER datatype

ANSI, 2-24

DB2, 2-25

SQL/DS, 2-25

character functions, 4-3

character large objects. See CLOB datatype.

character literal. See text.

CHARACTER SET clause

of CREATE CONTROLFILE, 7-248

OF CREATE DATABASE, 7-252

CHARACTER SET parameter

of ALTER DATABASE, 7-16

character sets

common, 2-29

multibyte characters, 2-67

specifying for database, 7-252

character strings

comparison rules, 2-28

exact matching of, 2-46

fixed-length, 2-11

national character set, 2-11

variable length, 2-12

variable-length, 2-15

zero-length, 2-11

CHARACTER VARYING datatype

ANSI, 2-24

characters

single, comparison rules, 2-29

CHARTOROWID function, 2-32, 4-9

CHECK clause

of constraint_clause, 7-224

of CREATE TABLE, 7-370

check constraints, 7-224

CHECK DATAFILES clause

of ALTER SYSTEM, 7-98

checkpoint

forcing, 7-98
Index-5

CHECKPOINT clause

of ALTER SYSTEM, 7-98

CHOOSE hint, 2-59

CHR function, 4-10

CHUNK clause

of ALTER TABLE, 7-131

of CREATE TABLE, 7-376

clause

of CREATE TABLE, 7-383

CLEAR LOGFILE clause

of ALTER DATABASE, 7-9, 7-19

CLOB datatype, 2-21

transactional support of, 2-21

clone database

mounting, 7-11

CLOSE DATABASE LINK clause

of ALTER SESSION, 7-79

CLUSTER clause

of CREATE INDEX, 7-279

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-304

of CREATE TABLE, 7-378

of TRUNCATE, 7-583

CLUSTER hint, 2-59

cluster indexes, 7-279

cluster key

changing column names, 7-3

changing the number of columns, 7-3

clusters

allocating extents for, 7-3

assigning tables to, 7-378

caching retrieved blocks, 7-240

collecting statistics on, 7-188

creating, 7-236, 7-237

data blocks allocated to, 7-238

deallocating unused extents, 7-3

degree of parallelism

changing, 7-3

when creating, 7-240

dropping tables of, 7-447

granting

system privileges on, 7-495

hash, 7-239

single-table, 7-239

indexed, 7-239

migrated and chained rows in, 7-192

modifying, 7-2

physical attributes

changing, 7-2

specifying, 7-238

removing from the database, 7-446

space allocated for cluster key values, 7-238

SQL examples, 7-447

storage attributes

changing, 7-2

storage characteristics, 7-575

specifying, 7-238

tablespace

changing, 7-3

tablespace in which created, 7-239

validating structure of, 7-191

COALESCE clause

for partitions, 7-148

for subpartitions, 7-145

of ALTER INDEX, 7-39

of ALTER TABLESPACE, 7-169

COALESCE SUBPARTITION clause

of ALTER TABLE, 7-145

code examples

description of, xviii

collections

inserting rows into, 7-515

modifying, 7-135

nested tables, 2-27

treating as a table, 7-441, 7-515, 7-586

unnesting, 7-547

examples, 7-564

varrays, 2-26

column constraint, 7-217

of ALTER TABLE, 7-130

of CREATE TABLE, 7-370

column constraints, 7-221

column REF constraint, 7-218

of ALTER TABLE, 7-130

of CREATE TABLE, 7-369

column ref constraint

of ALTER TABLE, 7-130

column REF constraints, 7-224

columns

adding, 7-130
Index-6

aliases for, 5-18

associating statistics with, 7-195

basing an index on, 7-280

collecting statistics on, 7-189

creating comments about, 7-212

defining, 7-366

LOB, storage characteristics of, 7-130

maximum number of, 7-369

modifying existing, 7-132

parent-child relationships between, 7-260

prohibiting nulls in, 7-222

qualifying names of, 5-18

REF

describing, 7-224

restricting values for, 7-220

specifying as foreign key, 7-223

specifying as primary key, 7-222

specifying constraints on, 7-370

specifying default values for, 7-369

unique values in, 7-221

COLUMNS clause

of ASSOCIATE STATISTICS, 7-194, 7-195

COMMENT ANY TABLE system privilege, 7-502

COMMENT clause

of COMMIT, 7-215

COMMENT statement, 7-212

comments, 2-56

adding to objects, 7-212

associating with a transaction, 7-215

dropping from objects, 7-212

how to specify, 2-57

in SQL statements, 2-56

on schema objects, 2-58

removing from the data dictionary, 7-212

viewing, 7-212

commit

automatic, 7-214

COMMIT IN PROCEDURE clause

of ALTER SESSION, 7-79

COMMIT statement, 7-214

comparison functions

MAP, 7-417, 7-423

ORDER, 7-417, 7-423

comparison operators, 3-5

comparison semantics

blank-padded, 2-28

nonpadded, 2-28

of character strings, 2-28

COMPILE clause

of ALTER DIMENSION, 7-26

of ALTER FUNCTION, 7-27

of ALTER JAVA SOURCE, 7-44

of ALTER MATERIALIZED VIEW, 7-51

of ALTER PACKAGE, 7-60

of ALTER PROCEDURE, 7-63

of ALTER TRIGGER, 7-172

of ALTER TYPE, 7-174

of ALTER VIEW, 7-184

of CREATE JAVA, 7-294

compiler directives, 7-416

composite foreign keys, 7-222

composite partitioning clause

of CREATE TABLE, 7-364, 7-379

composite primary keys, 7-222

composite unique constraints, 7-221

COMPOSITE_LIMIT parameter

of ALTER PROFILE, 7-64

of CREATE PROFILE, 7-341

compound conditions, 5-17

compound expressions, 5-4

COMPRESS clause

of ALTER TABLE, 7-133

of CREATE INDEX, 7-282

of CREATE TABLE, 7-374

COMPRESS parameter

of ALTER INDEX, 7-31

COMPUTE STATISTICS clause

of ANALYZE, 7-188

of CREATE INDEX, 7-283

CONCAT function, 4-10

concatenation operator, 3-3

conditions

compound, 5-17

EXISTS, 5-17

group comparison, 5-15

in SQL syntax, 5-13

LIKE, 5-17

membership, 5-16

NULL, 5-17

range, 5-16
Index-7

simple comparison, 5-15

CONNECT BY clause

of SELECT, 5-20, 7-548

CONNECT clause

of SELECT and subqueries, 7-543

CONNECT role, 7-503

CONNECT shortcut

of AUDIT sql_statements, 7-198

CONNECT TO clause

of CREATE DATABASE LINK, 7-256

CONNECT_TIME parameter

of ALTER PROFILE, 7-64

of ALTER RESOURCE COST, 7-69

of CREATE PROFILE, 7-341

constant values. See literals.

DISABLE, 7-383

CONSTRAINT clause

of constraint_clause, 7-221

constraint clause, 7-217

CONSTRAINT(S) parameter

of ALTER SESSION, 7-81

constraints

adding, 7-130

check, 7-224

checking at end of transaction, 7-226

checking at start of transaction, 7-226

checking at the end of each DML

statement, 7-226

column REF, 7-224

composite unique, 7-221

deferrable, 7-226, 7-568

enforcing, 7-81

defining, 7-220, 7-366

on a column, 7-370

on a table, 7-370

disabling, 7-153, 7-227, 7-382

cascading, 7-384

dropping, 7-136, 7-478

enabling, 7-153, 7-227, 7-382, 7-383

foreign key, 7-223

modifying existing, 7-133

not null, 7-222

on columns, 7-221

primary key, 7-222

attributes of index, 7-227

enabling, 7-383

recording violations, 7-384

referential integrity, 7-222, 7-223

restrictions, 7-221

scope, 7-225

setting state for a transaction, 7-568

storing rows in violation, 7-228

table REF, 7-224

unique, 7-221

attributes of index, 7-227

composite, 7-221

enabling, 7-383

validating, 7-227

constructor methods

and object types, 7-413

context namespaces

removing from the database, 7-448

contexts

creating namespaces for, 7-243

granting

system privileges on, 7-495

namespace

associating with package, 7-243

control file

backing up, 7-19

control files

allow reuse of, 7-246

allowing reuse of, 7-251

re-creating, 7-245

CONTROL_FILE_RECORD_KEEP_TIME parameter

of ALTER SYSTEM, 7-101

controlfile clauses

of ALTER DATABASE, 7-9

CONTROLFILE REUSE clause

OF CREATE DATABASE, 7-251

conversion

functions

table of, 2-32

rules, string to date, 2-48

conversion functions

SQL functions

conversion, 4-4

CONVERT clause

of ALTER DATABASE, 7-11

CONVERT function, 4-11
Index-8

correlated subqueries, 5-24

correlation names

for base tables of indexes, 7-279

in DELETE, 7-441

in SELECT, 7-547

COS function, 4-12

COSH function, 4-12

COUNT function, 4-12

CPU_PER_CALL parameter

of ALTER PROFILE, 7-64

of CREATE PROFILE, 7-340

CPU_PER_SESSION parameter

of ALTER PROFILE, 7-64

of ALTER RESOURCE COST, 7-69

of CREATE PROFILE, 7-340

CREATE ANY CLUSTER system privilege, 7-495

CREATE ANY CONTEXT system privilege, 7-495

CREATE ANY DIMENSION system

privilege, 7-496

CREATE ANY DIRECTORY system

privilege, 7-496

CREATE ANY INDEX system privilege, 7-496

CREATE ANY INDEXTYPE system

privilege, 7-496

CREATE ANY LIBRARY system privilege, 7-497

CREATE ANY MATERIALIZED VIEW system

privilege, 7-497

CREATE ANY OPERATOR system

privilege, 7-497

CREATE ANY OUTLINE system privilege, 7-498

CREATE ANY PROCEDURE system

privilege, 7-498

CREATE ANY SEQUENCE system

privilege, 7-499

CREATE ANY SNAPSHOT system

privilege, 7-499

CREATE ANY SYNONYM system privilege, 7-499

CREATE ANY TABLE system privilege, 7-500

CREATE ANY TRIGGER system privilege, 7-501

CREATE ANY TYPE system privilege, 7-501

CREATE ANY VIEW system privilege, 7-502

CREATE CLUSTER

statement, 7-236

system privilege, 7-495

CREATE CONTEXT statement, 7-243

CREATE CONTROLFILE statement, 7-245

CREATE DATABASE LINK

statement, 7-255

system privilege, 7-495

CREATE DATABASE statement, 7-249

CREATE DATAFILE clause

of ALTER DATABASE, 7-8, 7-16

CREATE DIMENSION

statement, 7-259

system privilege, 7-496

CREATE DIRECTORY statement, 7-264

CREATE FUNCTION statement, 7-266

CREATE INDEX

statement, 7-273

system privilege, 7-496

CREATE INDEXTYPE

statement, 7-291

system privilege, 7-496

CREATE JAVA statement, 7-293

CREATE LIBRARY

statement, 7-298

system privilege, 7-497

CREATE MATERIALIZED VIEW / SNAPSHOT

statement, 7-300

CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG statement, 7-314

CREATE MATERIALIZED VIEW/SNAPSHOT

system privilege, 7-497

CREATE OPERATOR

statement, 7-320

system privilege, 7-497

CREATE OUTLINE statement, 7-323

CREATE PACKAGE BODY statement, 7-328

CREATE PACKAGE statement, 7-325

CREATE PROCEDURE

statement, 7-333

system privilege, 7-498

CREATE PROFILE

statement, 7-338

system privilege, 7-498

CREATE PUBLIC DATABASE LINK system

privilege, 7-495

CREATE PUBLIC SYNONYM system

privilege, 7-499

CREATE ROLE
Index-9

statement, 7-344

system privilege, 7-498

CREATE ROLLBACK SEGMENT

statement, 7-346

system privilege, 7-498

CREATE SCHEMA statement, 7-348

CREATE SEQUENCE

statement, 7-350

system privilege, 7-499

CREATE SESSION system privilege, 7-499

CREATE SNAPSHOT system privilege, 7-499

CREATE STANDBY CONTROLFILE clause

of ALTER DATABASE, 7-9, 7-19

CREATE statement

triggers on, 7-405

CREATE SYNONYM

statement, 7-356

system privilege, 7-499

CREATE TABLE statement, 7-359

CREATE TABLESPACE

statement, 7-394

system privilege, 7-500

CREATE TEMPORARY TABLESPACE

statement, 7-399

CREATE TRIGGER

statement, 7-401

system privilege, 7-500

CREATE TYPE

statement, 7-411

system privilege, 7-501

CREATE TYPE BODY statement, 7-421

CREATE USER

statement, 7-425

system privilege, 7-501

CREATE VIEW

statement, 7-430

system privilege, 7-502

CREATE_STORED_OUTLINES parameter

of ALTER SESSION, 7-81

of ALTER SYSTEM, 7-101

cross-tabulation values

deriving, 7-549

CUBE operations

of queries and subqueries, 7-549

currency symbol

ISO, 2-36

local, 2-37

union, 2-38

CURRENT_SCHEMA parameter

of ALTER SESSION, 7-81

CURRENT_USER

and database links, 7-256

CURRVAL pseudocolumn, 2-51, 7-351

CURSOR expressions, 5-9

cursors

number cached per session, 7-88

CYCLE clause

of ALTER SEQUENCE. See CREATE

SEQUENCE., 7-76

of CREATE SEQUENCE, 7-352

D
D date format element, 2-41

D number format element, 2-36

data

integrity checking on input, 2-13

retrieving, 5-18

undo

storing, 7-346

data conversion, 2-31

implicit versus explicit, 2-33

when performed implicitly, 2-31

when specified explicitly, 2-32

data definition language. See DDL.

data dictionary

adding comments to, 7-212

data manipulation language (DML) statements, 6-4

data manipulation language. See DML.

data object number

in extended rowids, 2-22

database

allowing generation of redo logs, 7-12

allowing reuse of control files, 7-251

allowing unlimited resources to users, 7-340

cancel-based recovery, 7-13

terminating, 7-14

change-based recovery, 7-13

changing characteristics of, 7-245

changing global name, 7-15
Index-10

changing the name of, 7-245, 7-246

character set

specifying, 7-252

converting from Oracle7 data dictionary, 7-11

creating, 7-250

designing media recovery, 7-12

enabling automatic extension of, 7-253

erasing all data from, 7-250

limiting resources for users, 7-339

managed recovery of, 7-8

modifying, 7-10

mounting, 7-11, 7-250

naming, 7-11

opening, 7-11, 7-250

after media recovery, 7-12

recovering, 7-13

with backup control file, 7-13

re-creating control file for, 7-245

redo log files

specifying, 7-246

remote

accessing, 5-25

authenticating users to, 7-257

connecting to, 7-256

service name of, 7-257

table locks on, 7-521

resetting

current log sequence, 7-12

to an earlier version, 7-15

restricting users to read-only transactions, 7-11

resuming activity, 7-100

specifying datafiles for, 7-247

suspending activity, 7-100

time-based recovery, 7-13

database accounts

creating, 7-426

database connect strings, 2-75

database events

and triggers, 7-405

database link

granting

system privileges on, 7-495

database links, 5-25

closing, 7-79

creating, 2-74, 7-255

creating synonyms with, 7-357

current user, 7-256

naming, 2-74

public, 7-256

dropping, 7-449

referring to, 2-76

removing from the database, 7-449

shared, 7-256

syntax of, 2-75

username and password, 2-75

database objects

dropping, 7-483

nonschema, 2-64

schema, 2-63

database triggers. See triggers.

databases

granting

system privileges on, 7-495

remote

inserting into, 7-515

DATAFILE clause

of ALTER DATABASE, 7-8, 7-16

of CREATE CONTROLFILE, 7-247

of CREATE DATABASE, 7-253

DATAFILE clauses

of ALTER DATABASE, 7-8

DATAFILE END BACKUP clause

of ALTER DATABASE, 7-17

DATAFILE OFFLINE clause

of ALTER DATABASE, 7-16

DATAFILE ONLINE clause

of ALTER DATABASE, 7-16

DATAFILE RESIZE clause

of ALTER DATABASE, 7-17

datafiles

bringing online, 7-16

creating new, 7-16

designing media recovery, 7-12

disabling automatic extension, 7-17

enabling automatic extension, 7-17, 7-396

modifying, 7-16

recovering, 7-13

re-creating lost, 7-16

renaming, 7-15

resizing, 7-17
Index-11

reusing, 7-491

size of, 7-491

specifying, 7-490

specifying for a tablespace, 7-396

taking offline, 7-16

datatype conversion

table of, 2-32

datatypes, 2-5

ANSI-supported, 2-8

associating statistics with, 7-196

BFILE, 2-10, 2-20

BLOB, 2-10, 2-21

built-in, 2-9

syntax, 2-7

CHAR, 2-9, 2-11

character, 2-10

CLOB, 2-10, 2-21

comparison rules, 2-27

DATE, 2-9, 2-17

external, 2-6

LONG, 2-9, 2-15

LONG RAW, 2-9, 2-18

NCHAR, 2-10, 2-11

NCLOB, 2-10, 2-21

NUMBER, 2-13

NUMER, 2-9

NVARCHAR2, 2-9, 2-12

RAW, 2-9, 2-18

ROWID, 2-9, 2-21

UROWID, 2-9, 2-23

VARCHAR, 2-13

VARCHAR2, 2-9, 2-12

DATE datatype, 2-17

converting from character or numeric

value, 2-17

date format elements, 2-40

and NLS, 2-43

capitalization, 2-40

ISO standard, 2-44

RR, 2-44

suffixes, 2-45

date format models, 2-40

punctuation in, 2-40

date functions, 4-4

dates

arithmetic using, 2-17

comparison rules, 2-27

Julian, 2-18

DAY date format element, 2-43

DB_BLOCK_CHECKING parameter

of ALTER SESSION, 7-82

of ALTER SYSTEM, 7-101

DB_BLOCK_CHECKSUM parameter

of ALTER SYSTEM, 7-101

DB_BLOCK_MAX_DIRTY_TARGET parameter

of ALTER SYSTEM, 7-101

DB_FILE_MULTIBLOCK_READ_COUNT

parameter

of ALTER SESSION, 7-82

of ALTER SYSTEM, 7-101

DB2 datatypes, 2-23

conversion to Oracle datatypes, 2-25

restrictions on, 2-25

DBA role, 7-503

DBA shortcut

of AUDIT sql_statements, 7-198

DBA_2PC_PENDING view, 7-79

DBA_COL_COMMENTS view, 7-212

DBA_ROLLBACK_SEGS view, 7-470

DBA_TAB_COMMENTS view, 7-212

DBMS_OUTPUT package, 7-172

DBMS_ROWID package

and extended rowids, 2-22

DBMSSTDX.SQL script, 7-267, 7-325, 7-328, 7-334

and triggers, 7-402

DD date format element, 2-41

DDD date format element, 2-41

DDL events

and triggers, 7-405

DDL statements, 6-1

and implicit commit, 6-2

causing recompilation, 6-2

PL/SQL support of, 6-2

requiring exclusive access, 6-2

DEALLOCATE UNUSED clause

of ALTER CLUSTER, 7-3, 7-5

of ALTER INDEX, 7-29

of ALTER TABLE, 7-140

DEBUG clause

of ALTER FUNCTION, 7-27
Index-12

of ALTER PACKAGE, 7-60

of ALTER PROCEDURE, 7-63

of ALTER TRIGGER, 7-172

of ALTER TYPE, 7-174

decimal character, 2-4

specifying, 2-37

DECIMAL datatype

ANSI, 2-24

DB2, 2-25

SQL/DS, 2-25

DECODE expressions, 5-12

DEFAULT clause

of CREATE TABLE, 7-369

DEFAULT COST clause

of ASSOCIATE STATISTICS, 7-195, 7-196

DEFAULT profile

assigning to users, 7-468

DEFAULT ROLE clause

of ALTER USER, 7-181

of CREATE USER, 7-427

DEFAULT SELECTIVITY clause

of ASSOCIATE STATISTICS, 7-195, 7-196

DEFAULT storage clause

of ALTER TABLESPACE, 7-168

of CREATE TABLESPACE, 7-397

DEFAULT TABLESPACE clause

of ALTER USER. See CREATE USER.

of CREATE USER, 7-427

DEFERRABLE clause

of constraint_clause, 7-226

deferrable constraints, 7-568

DEFERRED clause

of SET CONSTRAINTS, 7-568

DELETE

object privilege, 7-508

statement, 7-438

DELETE ANY TABLE system privilege, 7-500

DELETE statement

triggers on, 7-404

DELETE STATISTICS clause

of ANALYZE, 7-190

DELETE_CATALOG_ROLE role, 7-503

DEREF function, 4-13

DESC clause

of CREATE INDEX, 7-281

descending indexes, 7-281

DETERMINISTIC clause

of CREATE FUNCTION, 7-270

dimensions

attributes

adding, 7-26

changing, 7-25

defining, 7-262

dropping, 7-26

changing hierarchical relationships, 7-25

compiling invalidated, 7-26

creating, 7-260

creating on unspecified tables, 7-260

examples, 7-262

granting

system privileges on, 7-496

hierarchies

adding, 7-26

defining, 7-261

dropping, 7-26

levels

adding, 7-26

defining, 7-261

dropping, 7-26

removing from the database, 7-450

directories

granting

system privileges on, 7-496

directories. See directory objects.

directory objects

as aliases for OS directories, 7-264

auditing, 7-206

creating, 7-264

redefining, 7-265

removing from the database, 7-451

DISABLE ALL TRIGGERS clause

of ALTER TABLE, 7-153

DISABLE clause

of ALTER INDEX, 7-39

of ALTER TRIGGER, 7-172

of constraint_clause, 7-227

of CREATE TABLE, 7-382

DISABLE DISTRIBUTED RECOVERY clause

of ALTER SYSTEM, 7-99

DISABLE NOVALIDATE constraint state, 7-383
Index-13

DISABLE PARALLEL DML clause

of ALTER SESSION, 7-79

DISABLE QUERY REWRITE clause

of ALTER MATERIALIZED VIEW, 7-50

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-308

DISABLE RESTRICTED SESSION clause

of ALTER SYSTEM, 7-99

DISABLE ROW MOVEMENT clause

of ALTER TABLE, 7-152

of CREATE TABLE, 7-361, 7-381

DISABLE STORAGE IN ROW clause

of ALTER TABLE, 7-131

of CREATE TABLE, 7-375

DISABLE TABLE LOCK clause

of ALTER TABLE, 7-153

DISABLE THREAD clause

of ALTER DATABASE, 7-15

DISABLE VALIDATE constraint state, 7-383

DISASSOCIATE STATISTICS statement, 7-444

DISCONNECT SESSION clause

of ALTER SYSTEM, 7-99

dispatcher processes

creating additional, 7-105

terminating, 7-105

DISTINCT clause

of SELECT, 7-545

distinct queries, 7-545

distributed queries, 5-25

DML operations

and triggers, 7-404

during index creation, 7-283

during index rebuild, 7-133

DML statements, 6-4

PL/SQL support of, 6-4

domain indexes, 7-277, 7-285, 7-291

associating statistics with, 7-196

determining user-defined CPU and I/O

costs, 7-486

invoking drop routines for, 7-475

removing from the database, 7-454

specifying alter string for, 7-38

DOUBLE PRECISION datatype

ANSI, 2-24

DRIVING_SITE hint, 2-61

DROP ANY CLUSTER system privilege, 7-495

DROP ANY CONTEXT system privilege, 7-495

DROP ANY DIMENSION system privilege, 7-496

DROP ANY DIRECTORY system privilege, 7-496

DROP ANY INDEX system privilege, 7-496

DROP ANY INDEXTYPE system privilege, 7-496

DROP ANY LIBRARY system privilege, 7-497

DROP ANY MATERIALIZED VIEW system

privilege, 7-497

DROP ANY OPERATOR system privilege, 7-497

DROP ANY OUTLINE system privilege, 7-498

DROP ANY PROCEDURE system privilege, 7-498

DROP ANY ROLE system privilege, 7-498

DROP ANY SEQUENCE system privilege, 7-499

DROP ANY SNAPSHOT system privilege, 7-499

DROP ANY SYNONYM system privilege, 7-499

DROP ANY TABLE system privilege, 7-500

DROP ANY TRIGGER system privilege, 7-501

DROP ANY TYPE system privilege, 7-501

DROP ANY VIEW system privilege, 7-502

DROP clause

of ALTER DIMENSION, 7-26

DROP CLUSTER statement, 7-446

DROP COLUMN clause

of ALTER TABLE, 7-136

DROP CONSTRAINT clause

of ALTER TABLE, 7-136

DROP CONTEXT statement, 7-448

DROP DATABASE LINK statement, 7-449

DROP DIMENSION statement, 7-450

DROP DIRECTORY statement, 7-451

DROP FUNCTION statement, 7-452

DROP INDEX statement, 7-454

DROP INDEXTYPE statement, 7-456

DROP JAVA statement, 7-457

DROP LIBRARY

statement, 7-458

system privilege, 7-497

DROP LOGFILE clause

of ALTER DATABASE, 7-9, 7-18

DROP LOGFILE MEMBER clause

of ALTER DATABASE, 7-9, 7-18

DROP MATERIALIZED VIEW / SNAPSHOT

statement, 7-459

DROP MATERIALIZED VIEW LOG / SNAPSHOT
Index-14

LOG statement, 7-461

DROP OPERATOR statement, 7-463

DROP OUTLINE statement, 7-464

DROP PACKAGE BODY statement, 7-465

DROP PACKAGE statement, 7-465

DROP PARTITION clause

of ALTER INDEX, 7-40

of ALTER TABLE, 7-148

DROP PRIMARY constraint clause

of ALTER TABLE, 7-136

DROP PROCEDURE statement, 7-467

DROP PROFILE

statement, 7-468

system privilege, 7-498

DROP PUBLIC DATABASE LINK system

privilege, 7-496

DROP PUBLIC SYNONYM system

privilege, 7-500

DROP ROLE statement, 7-469

DROP ROLLBACK SEGMENT

statement, 7-470

system privilege, 7-498

DROP SEQUENCE statement, 7-471

DROP statement

triggers on, 7-405

DROP STORAGE clause

of TRUNCATE, 7-583

DROP SYNONYM statement, 7-474

DROP TABLE statement, 7-475

DROP TABLESPACE

statement, 7-477

system privilege, 7-500

DROP TRIGGER statement, 7-479

DROP TYPE BODY statement, 7-482

DROP TYPE statement, 7-480

DROP UNIQUE constraint clause

of ALTER TABLE, 7-136

DROP USER

statement, 7-483

system privilege, 7-502

DROP VIEW statement, 7-485

DUAL dummy table, 2-68, 5-24

DUMP function, 4-14

DY date format element, 2-41, 2-43

E
E date format element, 2-41

E number format element, 2-36

EBCDIC character set, 2-29

EE date format element, 2-41

embedded SQL statements, xi, 1-3, 6-5

precompiler support of, 6-5

EMPTY_BLOB function, 4-15

EMPTY_CLOB function, 4-15

ENABLE ALL TRIGGERS clause

of ALTER TABLE, 7-153

ENABLE clause

of ALTER INDEX, 7-38

of ALTER TRIGGER, 7-171

of constraint_clause, 7-227

of CREATE TABLE, 7-382

ENABLE DISTRIBUTED RECOVERY clause

of ALTER SYSTEM, 7-99

ENABLE NOVALIDATE constraint state, 7-382

ENABLE PARALLEL DML clause

of ALTER SESSION, 7-79

ENABLE QUERY REWRITE clause

of ALTER MATERIALIZED VIEW, 7-50

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-308

ENABLE RESTRICTED SESSION clause

of ALTER SYSTEM, 7-99

ENABLE ROW MOVEMENT clause

of ALTER TABLE, 7-152

of CREATE TABLE, 7-361, 7-381

ENABLE STORAGE IN ROW clause

of ALTER TABLE, 7-131

of CREATE TABLE, 7-375

ENABLE TABLE LOCK clause

of ALTER TABLE, 7-153

ENABLE THREAD clause

of ALTER DATABASE, 7-15

ENABLE VALIDATE constraint state, 7-382

ENABLE/DISABLE clause

of ALTER TABLE, 7-127, 7-153

of CREATE TABLE, 7-366

END BACKUP clause

of ALTER TABLESPACE, 7-168

equality test, 3-5
Index-15

equijoins, 5-21

defining for a dimension, 7-261

equivalency tests, 3-5

ESTIMATE STATISTICS clause

of ANALYZE, 7-188

EXCEPTIONS INTO clause

of constraint_clause, 7-228

of CREATE TABLE, 7-384

EXCHANGE PARTITION clause

of ALTER TABLE, 7-151

EXCHANGE SUBPARTITION clause

of ALTER TABLE, 7-151

EXCLUDING NEW VALUES clause

of ALTER MATERIALIZED VIEW LOG, 7-57

of CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG, 7-317

EXCLUSIVE lock mode, 7-521

EXECUTE ANY INDEXTYPE system

privilege, 7-496

EXECUTE ANY OPERATOR system

privilege, 7-497

EXECUTE ANY PROCEDURE system

privilege, 7-498

EXECUTE ANY TYPE system privilege, 7-501

EXECUTE object privilege, 7-508

EXECUTE_CATALOG_ROLE role, 7-503

execution plans

determining, 7-486

dropping outlines for, 7-464

saving, 7-323

EXISTS

conditions, 5-17

operator, 3-6

EXP function, 4-15

EXP_FULL_DATABASE role, 7-503

EXPLAIN PLAN statement, 7-486

explicit data conversion, 2-32, 2-33

expressions

CAST, 5-7

compound, 5-4

computing with the DUAL table, 5-24

CURSOR, 5-9

DECODE, 5-12

function, built-in, 5-5

in SQL syntax, 5-1

list of, 5-13

object access, 5-10

simple, 5-3

type constructor, 5-6

user-defined function, 5-5

variable, 5-4

extended rowids, 2-22

not directly available, 2-22

EXTENT MANAGEMENT clause

for temporary tablespaces, 7-400

of CREATE TABLESPACE, 7-395, 7-397

extents

allocating for partitions, 7-139

allocating for subpartitions, 7-139

allocating for tables, 7-139

restricting access by instances, 7-34

specifying maximum number for an

object, 7-578

specifying number allocated upon object

creation, 7-577

specifying the first for an object, 7-577

specifying the percentage of size increase, 7-577

specifying the second for an object, 7-577

external datatypes

associated with host variables, 2-6

recognized by precompilers, 2-6

external functions, 7-267, 7-334

external LOBs, 2-19

external procedures, 7-334

external users, 7-345, 7-427

F
FAILED_LOGIN_ATTEMPTS parameter

of ALTER PROFILE, 7-65

of CREATE PROFILE, 7-341

FAST_START_IO_TARGET parameter

of ALTER SESSION, 7-82, 7-102

FAST_START_PARALLEL_ROLLBACK parameter

of ALTER SYSTEM, 7-102

files

specifying as a redo log file group, 7-490

specifying as datafiles, 7-490

specifying as tempfiles, 7-490

filespec clause, 7-490
Index-16

of CREATE CONTROLFILE, 7-245

of CREATE DATABASE, 7-250

of CREATE LIBRARY, 7-298

of CREATE TABLESPACE, 7-394

of CREATE TEMPORARY TABLESPACE, 7-399

FIPS compliance, B - 3

FIPS flagging, 7-82

FIRST_ROWS hint, 2-59

FIXED_DATE parameter

of ALTER SYSTEM, 7-102

FLAGGER parameter

of ALTER SESSION, 7-82

FLOAT datatype

ANSI, 2-24

DB2, 2-25

SQL/DS, 2-25

floating-point numbers, 2-15

FLOOR function, 4-15

FLUSH SHARED POOL clause

of ALTER SYSTEM, 7-99

FM format model modifier, 2-46

FM number format element, 2-36

FOR CATEGORY clause

of CREATE OUTLINE, 7-323

FOR clause

of ANALYZE ... COMPUTE STATISTICS, 7-189

of ANALYZE ... ESTIMATE STATISTICS, 7-189

of CREATE INDEXTYPE, 7-292

of CREATE SYNONYM, 7-357

of EXPLAIN PLAN, 7-487

FOR EACH ROW clause

of CREATE TRIGGER, 7-406

FOR UPDATE clause

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-308

of SELECT, 7-544, 7-551

FORCE ANY TRANSACTION system

privilege, 7-502

FORCE CLAUSE

of DROP OPERATOR, 7-463

FORCE clause

of COMMIT, 7-215

of CREATE DIMENSION, 7-260

of CREATE VIEW, 7-432

of DISASSOCIATE STATISTICS, 7-445

of DROP INDEX, 7-455

of DROP INDEXTYPE, 7-456

of DROP TYPE, 7-481

of REVOKE schema_object_privileges, 7-534

of ROLLBACK, 7-538

FORCE PARALLEL DML clause

of ALTER SESSION, 7-79

FORCE TRANSACTION system privilege, 7-502

FOREIGN KEY clause

of constraint_clause, 7-219, 7-223

foreign key constraints, 7-223

foreign tables

rowids of, 2-23

format models, 2-33

changing the return format, 2-34

date, 2-40

date, changing, 2-40

date, default, 2-40

date, format elements, 2-40

date, maximum length, 2-40

modifiers, 2-46

number, 2-35

number, elements of, 2-36

specifying, 2-35

formats

for dates and numbers. See format models.

of return values from the database, 2-33

of values stored in the database, 2-33

FREELIST GROUPS parameter

of STORAGE clause, 7-578

freelists

specifying for a table, partition, cluster, or

index, 7-578

FREELISTS parameter

of STORAGE clause, 7-578

FROM clause

of queries, 5-22

of REVOKE system_privileges_and_roles, 7-530

of SELECT, 7-546

FROM COLUMNS clause

of DISASSOCIATE STATISTICS, 7-445

FROM FUNCTIONS clause

of DISASSOCIATE STATISTICS, 7-445

FROM INDEXES clause

of DISASSOCIATE STATISTICS, 7-445
Index-17

FROM INDEXTYPES clause

of DISASSOCIATE STATISTICS, 7-445

FROM PACKAGES clause

of DISASSOCIATE STATISTICS, 7-445

FROM PUBLIC clause

of REVOKE schema_object_privileges, 7-534

FROM role clause

of REVOKE schema_object_privileges, 7-534

FROM TYPES clause

of DISASSOCIATE STATISTICS, 7-445

FROM user clause

of REVOKE schema_object_privileges, 7-534

FULL hint, 2-59

function expressions

built-in, 5-5

function specification

of CREATE TYPE, 7-416

function-based indexes, 7-277

and query rewrite, 7-87

creating, 7-280

disabling, 7-39, 7-106

enabling, 7-36, 7-38, 7-106

functions

3GL, calling, 7-298

access to tables and packages, 7-416

associating statistics with, 7-196

avoiding run-time compilation, 7-27

calling, 7-210

changing the declaration of, 7-27

datatype of return value, 7-270

declaring

as a Java method, 7-271

as C functions, 7-271

defining an index on, 7-280

disassociating statistics types from, 7-452

examples, 7-271

executing, 7-210

from parallel query process, 7-270

external, 7-267, 7-334

invalidating local objects dependent on, 7-452

issuing COMMIT or ROLLBACK

statements, 7-79

naming rules, 2-69

privileges executed with, 7-415

recompiling invalid, 7-27

re-creating, 7-268, 7-294

removing from the database, 7-452

schema executed in, 7-415

specifying schema and user privileges for, 7-270

stored, 7-267

storing return value of, 7-211

synonyms for, 7-356

user-defined, 4-56

using a saved copy of, 7-270

FUNCTIONS clause

of ASSOCIATE STATISTICS, 7-194, 7-196

FX format model modifier, 2-46

G
G number format element, 2-36

GC_DEFER_TIME parameter

of ALTER SYSTEM, 7-102

general recovery clause

of ALTER DATABASE, 7-7, 7-12

GLOBAL PARTITION BY RANGE clause

of CREATE INDEX, 7-283

GLOBAL QUERY REWRITE system

privilege, 7-496, 7-497, 7-499

GLOBAL TEMPORARY clause

of CREATE TABLE, 7-368

global users, 7-345, 7-427

GLOBAL_NAMES parameter

of ALTER SESSION, 7-82

of ALTER SYSTEM, 7-102

globally partitioned indexes, 7-283, 7-284

GRANT ANY PRIVILEGE system privilege, 7-502

GRANT ANY ROLE system privilege, 7-498

GRANT CONNECT THROUGH clause

of ALTER USER, 7-180, 7-181

GRANT object_privileges, 7-505

GRANT system_privileges_and_roles

statement, 7-493

GRAPHIC datatype (SQL/DS or DB2), 2-25

greater than or equal to tests, 3-5

greater than tests, 3-5

GREATEST function, 4-16

GROUP BY clause

of SELECT, 7-549

of SELECT and subqueries, 7-543
Index-18

group comparison conditions, 5-15

GROUPING function, 4-16

H
hash clusters

creating, 7-239

single-table, creating, 7-239

specifying hash function for, 7-239

HASH hint, 2-59

HASH IS clause

of CREATE CLUSTER, 7-239

hash partition

adding, 7-148

hash partitioning clause

of CREATE TABLE, 7-365, 7-378

HASH_AJ hint, 2-59

HASH_AREA_SIZE parameter

of ALTER SESSION, 7-82

HASH_JOIN_ENABLED parameter

of ALTER SESSION, 7-83

HASH_MULTIBLOCK_IO_COUNT parameter

of ALTER SESSION, 7-83

of ALTER SYSTEM, 7-102

HASH_SJ hint, 2-59

HASHKEYS clause

of CREATE CLUSTER, 7-239

HAVING condition

of GROUP BY clause, 7-550

heap-organized tables

creating, 7-366

hexadecimal value

returning, 2-38

HEXTORAW function, 2-32, 4-17

HH date format element, 2-41

HH12 date format element, 2-41

HH24 date format element, 2-41

hierarchical queries, 2-53, 5-19, 7-548

child nodes of, 2-53

child rows of, 5-19

illustrated, 2-54

leaf nodes of, 2-53

parent nodes of, 2-53

parent rows of, 5-19

hierarchical query clause

of SELECT and subqueries, 7-543

hierarchies

adding to a dimension, 7-26

dropping from a dimension, 7-26

of dimensions, defining, 7-261

HIERARCHY clause

of ALTER DIMENSION, 7-24

of CREATE DIMENSION, 7-261

high water mark

of clusters, 7-5

of indexes, 7-34

of tables, 7-140, 7-188

hints, 5-18

in SQL statements, 2-58

passing to the optimizer, 7-585

syntax, 2-59

HS_ADMIN_ROLE role, 7-503

HS_AUTOREGISTER parameter

of ALTER SYSTEM, 7-103

I
I date format element, 2-41

IDENTIFIED BY clause

of ALTER ROLE. See CREATE ROLE.

of CREATE ROLE, 7-345

IDENTIFIED BY password clause

of CREATE DATABASE LINK, 7-257

of CREATE USER, 7-426

of SET ROLE, 7-571

IDENTIFIED EXTERNALLY clause

of ALTER ROLE. See CREATE ROLE.

of ALTER USER. See CREATE USER.

of CREATE ROLE, 7-345

of CREATE USER, 7-426, 7-427

IDENTIFIED GLOBALLY clause

of ALTER ROLE. See CREATE ROLE.

of ALTER USER, 7-181

of CREATE ROLE, 7-345

of CREATE USER, 7-427

of CREATE USERIDENTIFIED BY clause

of ALTER USER. See CREATE USER.

IDLE_TIME parameter

of ALTER PROFILE, 7-64

of CREATE PROFILE, 7-341
Index-19

IMMEDIATE clause

of SET CONSTRAINTS, 7-568

IMP_FULL_DATABASE role, 7-503

implicit data conversion, 2-31, 2-33

IN OUT parameter

of CREATE FUNCTION, 7-269

of CREATE PROCEDURE, 7-335

IN parameter

of CREATE function, 7-269

of CREATE PROCEDURE, 7-335

INCLUDING clause

of ALTER TABLE, 7-143

INCLUDING CONTENTS clause

of DROP TABLESPACE, 7-477

INCLUDING NEW VALUES clause

of ALTER MATERIALIZED VIEW LOG, 7-57

of CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG, 7-317

INCLUDING TABLES clause

of DROP CLUSTER, 7-447

incomplete object types

creating, 7-413

incomplete types, 7-413

creating, 7-411

INCREMENT BY clause

of ALTER SEQUENCE. See CREATE

SEQUENCE.

of CREATE SEQUENCE, 7-352

INDEX clause

of CREATE CLUSTER, 7-239

INDEX hint, 2-59

INDEX object privilege, 7-508

index partitions

changing physical attributes of, 7-35

deallocating unused space from, 7-34

dropping, 7-40

marking UNUSABLE, 7-145

modifying the real characteristics of, 7-39

rebuilding, 7-36

unusable, 7-145

renaming, 7-40

specifying tablespace for, 7-37

splitting, 7-40

index subpartitions

allocating extents for, 7-40

changing physical attributes of, 7-35

deallocating unused space from, 7-34, 7-40

marking UNUSABLE, 7-40

rebuilding, 7-36

renaming, 7-40

specifying tablespace for, 7-37

INDEX_ASC hint, 2-59

INDEX_COMBINE hint, 2-59

INDEX_DESC hint, 2-59

INDEX_FFS hint, 2-59

indexed clusters

creating, 7-239

indexes

allocating new extents for, 7-34

application-specific, 7-291

ascending, 7-281

based on indextypes, 7-285

bitmapped, 7-279

changing attributes of, 7-35

cluster, 7-279

collecting statistics on, 7-38, 7-186

on composite-partitioned tables, 7-285

creating, 7-277

deallocating unused space from, 7-34

descending, 7-281

and query rewrite, 7-281

as function-based indexes, 7-281

disassociating statistics types from, 7-454

domain, 7-277, 7-285, 7-291

dropping index partitions of, 7-454

examples, 7-286

function-based, 7-277

creating, 7-280

globally partitioned, 7-283, 7-284

granting

system privileges on, 7-496

on hash-partitioned tables, 7-284

key compression of, 7-37, 7-282

locally partitioned, 7-284

logging attributes of, 7-282

logging rebuild operations on, 7-38

marking as UNUSABLE, 7-39

merging contents of index blocks, 7-39

online, 7-283

parallel queries and DML on, 7-35
Index-20

parallelizing creation of, 7-286

partitioned, 2-65, 7-277

user-defined, 7-283

partitions

adding new, 7-40

physical attributes of, 7-281

on range-partitioned tables, 7-284

rebuilding, 7-36

rebuilding while online, 7-38

removing from the database, 7-454

renaming, 7-39

reverse, 7-37, 7-282

specifying tablespace for, 7-37

statistics on, 7-283

storage characteristics of, 7-281, 7-575

tablespace containing, 7-282

unique, 7-278

unsorted, 7-282

validating structure of, 7-191

INDEXES clause

of ASSOCIATE STATISTICS, 7-194, 7-196

indexes partitions

marking UNUSABLE, 7-40

index-organized table clause

of CREATE TABLE, 7-362, 7-373

index-organized tables

creating, 7-366, 7-373

modifying, 7-142

rebuilding, 7-133

reserving space in the index block, 7-143

rowids of, 2-23

INDEXTYPE clause

of CREATE INDEX, 7-285

indextypes

associating statistics with, 7-196

creating, 7-291

disassociating from statistics types, 7-456

drop routines, invoking, 7-454

granting

system privileges on, 7-496

indexes based on, 7-285

instances of, 7-277

removing from the database, 7-456

INDEXTYPES clause

of ASSOCIATE STATISTICS, 7-194, 7-196

in-doubt transactions

forcing, 7-215

forcing commit of, 7-215

forcing rollback, 7-538

forcing rollback of, 7-538

rolling back, 7-537

inequality test, 3-5

INITCAP function, 4-18

INITIAL parameter

of STORAGE clause, 7-577

INITIALLY DEFERRED clause

of constraint_clause, 7-226

INITIALLY IMMEDIATE clause

of constraint_clause, 7-226

INITRANS parameter

of ALTER CLUSTER, 7-4

of ALTER INDEX, 7-30, 7-35

of ALTER MATERIALIZED VIEW, 7-46

of ALTER MATERIALIZED VIEW LOG, 7-54

of CREATE CLUSTER, 7-238

of CREATE INDEX. See CREATE TABLE.

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG. See CREATE

TABLE.

of CREATE MATERIALIZED

VIEW/SNAPSHOT. See CREATE TABLE.

of CREATE TABLE, 7-371

INSERT

object privilege, 7-508

statement, 7-512

INSERT ANY TABLE system privilege, 7-500

INSERT statement

triggers on, 7-404

instance

global name resolution for, 7-102

setting parameters for, 7-100

INSTANCE parameter

of ALTER SESSION, 7-83

INSTEAD OF clause

of CREATE TRIGGER, 7-404

INSTEAD OF triggers, 7-404

INSTR function, 4-18

INSTRB function, 4-19

INT datatype (ANSI), 2-24

INTEGER datatype
Index-21

ANSI, 2-24

DB2, 2-25

SQL/DS, 2-25

integers

generating unique, 7-350

in SQL syntax, 2-3

precision of, 2-3

specifying, 2-13

syntax of, 2-3

integrity constraints. See constraints.

internal LOBs, 2-19

International Standards Organization. See ISO.

INTERSECT operator, 3-12, 7-550

INTO clause

of EXPLAIN PLAN, 7-487

of INSERT, 7-514

INTO host_variable clause

of CALL, 7-211

invoker rights clause

of ALTER JAVA, 7-44

of CREATE FUNCTION, 7-270

of CREATE JAVA, 7-295

of CREATE PACKAGE, 7-325

of CREATE PROCEDURE, 7-333

of CREATE TYPE, 7-415

IS NOT NULL operator, 3-7

IS NULL operator, 3-7

ISO, B - 1

standards, xi, 1-2, B - 1

ISOLATION LEVEL READ COMMITTED clause

of SET TRANSACTION, 7-573

ISOLATION LEVEL SERIALIZABLE clause

of SET TRANSACTION, 7-573

ISOLATION_LEVEL parameter

of ALTER SESSION, 7-83

IW date format element, 2-41

IY date format element, 2-41

IYY date format element, 2-41

IYYY date format element, 2-41

J
J date format element, 2-41

Java class schema object

creating, 7-294, 7-295

dropping, 7-457

resolving, 7-43, 7-294

JAVA clause

of CREATE TYPE, 7-416

of CREATE TYPE BODY, 7-424

Java method

mapping to an object type, 7-416

Java resource schema object

creating, 7-294, 7-295

dropping, 7-457

Java schema object

name resolution of, 7-296

Java source schema object

compiling, 7-43, 7-294

creating, 7-294

dropping, 7-457

java source schema object

creating, 7-295

JOB_QUEUE_PROCESSES parameter

of ALTER SYSTEM, 7-103

JOIN KEY clause

of ALTER DIMENSION, 7-25

of CREATE DIMENSION, 7-261

join views

modifying, 7-440, 7-515, 7-587

joins, 5-21

conditions

defining, 5-21

equijoins, 5-21

outer, 5-22

restrictions, 5-22

self, 5-22

without join conditions, 5-22

Julian day, specifying, 2-42

K
key compression, 7-37, 7-282, 7-374

disabling, 7-38, 7-282

of index rebuild, 7-133

of indexes, 7-37, 7-282

disabling, 7-38

of index-organized tables, 7-374

keywords, 2-68

in syntax diagrams, xvi
Index-22

optional, A-2

required, A-1

KILL SESSION clause

of ALTER SYSTEM, 7-100

L
L number format element, 2-36

LANGUAGE clause

of CREATE FUNCTION, 7-271

of CREATE PROCEDURE, 7-336

of CREATE TYPE, 7-416

of CREATE TYPE BODY, 7-424

large objects. See LOBs.

LAST_DAY function, 4-19

LEAST function, 4-20

LENGTH function, 4-20

LENGTHB function, 4-21

less than tests, 3-5

LEVEL clause

of ALTER DIMENSION, 7-24

of CREATE DIMENSION, 7-261

LEVEL pseudocolumn, 2-53, 7-548

and hierarchical queries, 2-53

levels

adding to a dimension, 7-26

dropping from a dimension, 7-26

of dimensions, defining, 7-261

libraries

creating, 7-298

granting

system privileges on, 7-497

re-creating, 7-298

removing from the database, 7-458

library units. See Java schema objects

LICENSE_MAX_SESSIONS parameter

of ALTER SYSTEM, 7-103

LICENSE_MAX_USERS parameter

of ALTER SYSTEM, 7-103

LICENSE_SESSIONS_WARNING parameter

of ALTER SYSTEM, 7-103

LIKE conditions, 5-17

LIKE operator, 3-7

LIST CHAINED ROWS clause

of ANALYZE, 7-192

literals

in SQL statements and functions, 2-2

in SQL syntax, 2-2

LN function, 4-21

LOB

storage characteristics, 7-371

LOB columns

difference from LONG and LONG RAW, 2-19

initializing, 2-20

LOB datatypes, 2-19

LOB index clause

of ALTER TABLE, 7-131

of CREATE TABLE, 7-376

LOB locators, 2-19

LOB storage clause

of ALTER MATERIALIZED VIEW, 7-48

for partitions, 7-131

of ALTER MATERIALIZED VIEW, 7-45

of ALTER TABLE, 7-130

of CREATE MATERIALIZED VIEW /

SNAPSHOT, 7-301

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-303

of CREATE TABLE, 7-363, 7-374

LOBS

logging attribute of, 7-372

tablespace for

defining, 7-371

LOBs

external, 2-19

indexes for, 7-376

internal, 2-19

locators for, 7-375

modifying physical attributes of, 7-135

number of bytes manipulated in, 7-376

specifying directories for, 7-264

storage

in-line, 7-375

outside of row, 7-375

storage characteristics of, 7-374

LOCAL clause

of CREATE INDEX, 7-284

local users, 7-345, 7-426

locally managed tablespaces
Index-23

storage characteristics, 7-576

locally partitioned indexes, 7-284

LOCK ANY TABLE system privilege, 7-500

LOCK TABLE statement, 7-520

locking

automatic

overriding, 7-520

locks. See table locks.

LOG function, 4-21

LOG_ARCHIVE_DEST parameter

of ALTER SYSTEM, 7-104

LOG_ARCHIVE_DEST_n parameter

of ALTER SESSION, 7-83

of ALTER SYSTEM, 7-104

LOG_ARCHIVE_DEST_STATE_n parameter

of ALTER SESSION, 7-84

of ALTER SYSTEM, 7-104

LOG_ARCHIVE_DUPLEX_DEST parameter

of ALTER SYSTEM, 7-104

LOG_ARCHIVE_MAX_PROCESSES parameter

of ALTER SYSTEM, 7-105

LOG_ARCHIVE_MIN_SUCCEED_DEST parameter

of ALTER SESSION, 7-84

of ALTER SYSTEM, 7-105

LOG_CHECKPOINT_INTERVAL parameter

of ALTER SYSTEM, 7-105

LOG_CHECKPOINT_TIMEOUT parameter

of ALTER SYSTEM, 7-105

LOGFILE clause

of CREATE CONTROLFILE, 7-246

OF CREATE DATABASE, 7-251

logfile clauses

of ALTER DATABASE, 7-9

LOGFILE GROUP clause

of CREATE CONTROLFILE, 7-247

logging

and redo log size, 7-372

specifying minimal, 7-372

LOGGING clause

of ALTER INDEX, 7-36

of ALTER MATERIALIZED VIEW, 7-48

of ALTER MATERIALIZED VIEW LOG, 7-56

of ALTER TABLE, 7-141

of ALTER TABLESPACE, 7-166

of CREATE INDEX, 7-282

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG, 7-317

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-304

of CREATE TABLE, 7-372

of CREATE TABLESPACE, 7-396

logical operators, 3-10

LOGICAL_READS_PER_CALL parameter

of ALTER PROFILE, 7-64

of CREATE PROFILE, 7-341

LOGICAL_READS_PER_SESSION parameter

of ALTER PROFILE, 7-64

of ALTER RESOURCE COST, 7-69

of CREATE PROFILE, 7-341

LOGOFF

triggers on, 7-405

LOGOFF event

triggers on, 7-405

LOGON

triggers on, 7-405

LOGON event

triggers on, 7-405

LONG columns

converting to LOB columns, 2-15, 2-18

restrictions on, 2-15

to store text strings, 2-15

to store view definitions, 2-15

where referenced from, 2-15

LONG datatype, 2-15

in triggers, 2-16

LONG RAW

data

converting from CHAR data, 2-19

datatype, 2-18

LONG VARCHAR datatype

DB2, 2-25

SQL/DS, 2-25

LONG VARGRAPHIC datatype (SQL/DS or

DB2), 2-25

LOWER function, 4-22

LPAD function, 4-22

LTRIM function, 4-22
Index-24

M
MAKE_REF function, 4-23

MANAGE TABLESPACE system privilege, 7-500

managed recovery

of database, 7-8

MANAGED STANDBY RECOVERY clause

of ALTER DATABASE, 7-14

MAP MEMBER clause

of ALTER TYPE, 7-175

of CREATE TYPE, 7-417, 7-423

MAP methods

specifying, 7-175

master databases, 7-302

master tables, 7-302

materialized join views, 7-316

materialized view logs, 7-315

creating, 7-315

logging changes to, 7-56

parallelizing creation of, 7-317

partition attributes

changing, 7-56

partitioned, 7-317

physical attributes

changing, 7-55

specifying, 7-316

removing from the database, 7-461

required for fast refresh, 7-315

saving old values in, 7-57, 7-317

storage characteristics

specifying, 7-316

materialized views

allowing update of, 7-308

complete refresh, 7-49, 7-306

constraints on, 7-226

creating, 7-302

creating comments about, 7-212

for data warehousing, 7-302

degree of parallelism, 7-48, 7-56

during creation, 7-304

detail table of, dropping, 7-460

enabling and disabling query rewrite, 7-308

examples, 7-310, 7-318

fast refresh, 7-49, 7-305, 7-306

forced refresh, 7-49

from existing tables, 7-304

granting

system privileges on, 7-497

index characteristics

changing, 7-49

indexes that maintain, 7-305

join, 7-316

LOB storage characteristics of, 7-48

logging changes to, 7-48

partitions of, 7-48

physical and storage attributes

changing, 7-48

physical attributes of, 7-303

primary key, 7-307

recording values in master table, 7-56

query rewrite

eligibility for, 7-226

enabling and disabling, 7-50

re-creating during refresh, 7-49

refresh mode

changing, 7-49

refresh time

changing, 7-49

refreshing after DML on master table, 7-50,

7-306

refreshing on next COMMIT, 7-49, 7-306

removing from the database, 7-459

for replication, 7-302

retrieving data from, 7-544

revalidating, 7-51

rowid, 7-307

rowid values

recording in master table, 7-56

saving blocks in a cache, 7-48

storage characteristics of, 7-303

subquery, 7-308

synonyms for, 7-356

when to populate, 7-304

MAX function, 4-24

MAX_DUMP_FILE_SIZE parameter

of ALTER SESSION, 7-84

of ALTER SYSTEM, 7-105

MAXDATAFILES parameter

of CREATE CONTROLFILE, 7-247

OF CREATE DATABASE, 7-252
Index-25

MAXEXTENTS parameter

of STORAGE clause, 7-578

MAXINSTANCES parameter

of CREATE CONTROLFILE, 7-248

OF CREATE DATABASE, 7-252

MAXLOGFILES parameter

of CREATE CONTROLFILE, 7-247

OF CREATE DATABASE, 7-252

MAXLOGHISTORY parameter

of CREATE CONTROLFILE, 7-247

OF CREATE DATABASE, 7-252

MAXLOGMEMBERS parameter

of CREATE CONTROLFILE, 7-247

OF CREATE DATABASE, 7-252

MAXSIZE clause

of ALTER DATABASE, 7-10

of CREATE DATABASE, 7-250

of CREATE TABLESPACE, 7-395

of CREATE TEMPORARY TABLESPACE, 7-399

MAXTRANS parameter

of ALTER CLUSTER, 7-4

of ALTER INDEX, 7-30, 7-35

of ALTER MATERIALIZED VIEW, 7-46

of ALTER MATERIALIZED VIEW LOG, 7-54

of CREATE CLUSTER, 7-238

of CREATE INDEX. See CREATE TABLE.

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG. See CREATE

TABLE.

of CREATE MATERIALIZED

VIEW/SNAPSHOT. See CREATE TABLE.

of CREATE TABLE, 7-371

MAXVALUE clause

of CREATE SEQUENCE, 7-352

MAXVALUE parameter

of ALTER SEQUENCE. See CREATE

SEQUENCE.

media recovery

disabling, 7-17

of database, 7-12

of datafiles, 7-12

of standby database, 7-12

of tablespaces, 7-12

parallelizing, 7-14

restrictions, 7-12

sustained standby recovery, 7-14

MEMBER clause

of ALTER TYPE, 7-174

of CREATE TYPE, 7-415

of CREATE TYPE BODY, 7-422

membership conditions, 5-16

MERGE hint, 2-62

MERGE PARTITIONS clause

of ALTER TABLE, 7-150

MERGE_AJ hint, 2-59

MERGE_SJ hint, 2-59

MI date format element, 2-41

MI number format element, 2-36

MIN function, 4-24

MINEXTENTS parameter

of STORAGE clause, 7-577

MINIMIZE RECORDS PER BLOCK clause

of ALTER TABLE, 7-142

MINIMUM EXTENT clause

of ALTER TABLESPACE, 7-168

of CREATE TABLESPACE, 7-396

MINUS operator, 3-12, 7-550

MINVALUE

of ALTER SEQUENCE. See CREATE

SEQUENCE.

MINVALUE clause

of CREATE SEQUENCE, 7-352

MM date format element, 2-41

MOD function, 4-24

MODE clause

of LOCK TABLE, 7-521

MODIFY clause

of ALTER TABLE, 7-132

MODIFY CONSTRAINT clause

of ALTER TABLE, 7-133

MODIFY DEFAULT ATTRIBUTES clause

of ALTER INDEX, 7-32, 7-39

of ALTER TABLE, 7-144

MODIFY LOB clause

of ALTER TABLE, 7-135

MODIFY LOB storage clause

of ALTER MATERIALIZED VIEW, 7-45, 7-48

of ALTER TABLE, 7-135

MODIFY NESTED TABLE clause

of ALTER TABLE, 7-135
Index-26

MODIFY PARTITION clause

of ALTER INDEX, 7-32, 7-39

of ALTER MATERIALIZED VIEW, 7-49

of ALTER TABLE, 7-144

MODIFY SUBPARTITION clause

of ALTER INDEX, 7-33, 7-40

of ALTER TABLE, 7-145

MODIFY VARRAY clause

of ALTER TABLE, 7-135

modifying space for each cluster key, 7-4

MON date format element, 2-41, 2-43

MONITORING clause

of ALTER TABLE, 7-141

of CREATE TABLE, 7-384

MONTH date format element, 2-41, 2-43

MONTHS_BETWEEN function, 4-25

MOUNT clause

of ALTER DATABASE, 7-11

MOVE clause

of ALTER TABLE, 7-133

MOVE ONLINE clause

of ALTER TABLE, 7-133

MOVE PARTITION clause

of ALTER TABLE, 7-146

MOVE SUBPARTITION clause

of ALTER TABLE, 7-147

MTS_DISPATCHERS parameter

of ALTER SYSTEM, 7-106

MTS_SERVERS parameter

of ALTER SYSTEM, 7-106

multi-threaded server

system parameters, 7-105

N
NAMED clause

of CREATE JAVA, 7-295

namespaces

and object naming rules, 2-68

for nonschema objects, 2-69

for schema objects, 2-68, 2-69

NATIONAL CHAR datatype (ANSI), 2-24

NATIONAL CHAR VARYING datatype

(ANSI), 2-24

NATIONAL CHARACTER datatype (ANSI), 2-24

national character set

fixed vs. variable width, 2-11, 2-12

multibyte character data, 2-21

multibyte character sets, 2-11, 2-12

variable-length strings, 2-12

NATIONAL CHARACTER SET clause

of CREATE DATABASE, 7-253

NATIONAL CHARACTER SET parameter

of ALTER DATABASE, 7-16

NATIONAL CHARACTER VARYING datatype

ANSI, 2-24

national language support. See NLS.

NCHAR datatype, 2-11

ANSI, 2-24

NCHAR VARYING datatype (ANSI), 2-24

NCLOB datatype, 2-21

transactional support of, 2-21

negative scale, 2-14

NESTED TABLE clause

of ALTER TABLE, 7-135

of CREATE TABLE, 7-364, 7-377

nested table types, 2-27

compared with varrays, 2-31

comparison rules, 2-31

creating, 7-413

dropping the body of, 7-482

dropping the specification of, 7-480

modifying, 7-135

nested tables

changing returned value, 7-135

creating, 7-418

defining as index-organized tables, 7-135

storage characteristics of, 7-135, 7-377

NEW_TIME function, 4-25

NEXT clause

of ALTER MATERIALIZED

VIEW...REFRESH, 7-50

NEXT parameter

of STORAGE clause, 7-577

NEXT_DAY function, 4-26

NEXTVAL pseudocolumn, 2-51, 7-351

NLS parameters

NLS_CALENDAR parameter

of ALTER SESSION, 7-84

NLS_CHARSET_DECL_LEN function, 4-27
Index-27

NLS_CHARSET_ID function, 4-27

NLS_CHARSET_NAME function, 4-28

NLS_COMP parameter

of ALTER SESSION, 7-84

NLS_CURRENCY parameter

of ALTER SESSION, 7-84

NLS_DATE_FORMAT parameter

of ALTER SESSION, 7-84

NLS_DATE_LANGUAGE parameter, 2-43

of ALTER SESSION, 7-84

NLS_INITCAP function, 4-29

NLS_ISO_CURRENCY parameter

of ALTER SESSION, 7-84

NLS_LANGUAGE parameter, 2-43, 5-20

of ALTER SESSION, 7-85

NLS_LOWER function, 4-29

NLS_NUMERIC_CHARACTERS parameter

of ALTER SESSION, 7-85

NLS_SORT parameter, 5-20

of ALTER SESSION, 7-85

NLS_TERRITORY parameter, 2-43

of ALTER SESSION, 7-85

NLS_UNION_CURRENCY parameter

of ALTER SESSION, 7-85

NLS_UPPER function, 4-30

NLSSORT function, 4-30

NO_EXPAND hint, 2-59

NO_INDEX hint, 2-59

NO_MERGE hint, 2-62

NO_PUSH_JOIN_PRED hint, 2-62

NOAPPEND hint, 2-61

NOARCHIVELOG clause

of ALTER DATABASE, 7-9, 7-17

of CREATE CONTROLFILE, 7-248

OF CREATE DATABASE, 7-252

NOAUDIT schema_objects statement, 7-525

NOAUDIT sql_statements statement, 7-523

NOCACHE clause

of ALTER MATERIALIZED VIEW, 7-48

of ALTER MATERIALIZED VIEW LOG, 7-56

of ALTER SEQUENCE. See CREATE

SEQUENCE.

of ALTER TABLE, 7-141

of CREATE CLUSTER, 7-240

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG, 7-317

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-304

of CREATE SEQUENCE, 7-352

of CREATE TABLE, 7-384

NOCACHE hint, 2-62

NOCOMPRESS clause

of ALTER TABLE, 7-133

of CREATE INDEX, 7-282

of CREATE TABLE, 7-374

NOCOPY clause

of CREATE FUNCTION, 7-269

of CREATE PROCEDURE, 7-335

NOCYCLE clause

of ALTER SEQUENCE. See CREATE

SEQUENCE., 7-76

of CREATE SEQUENCE, 7-352

NOFORCE clause

of CREATE DIMENSION, 7-260

of CREATE JAVA, 7-295

of CREATE VIEW, 7-432

NOLOGGING clause

of ALTER INDEX, 7-36

of ALTER MATERIALIZED VIEW, 7-48

of ALTER MATERIALIZED VIEW LOG, 7-56

of ALTER TABLE, 7-141

of ALTER TABLESPACE, 7-166

of CREATE INDEX, 7-282

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG, 7-317

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-304

of CREATE TABLE, 7-372

of CREATE TABLESPACE, 7-396

NOMAXVALUE clause

of CREATE SEQUENCE, 7-352

NOMAXVALUE parameter

of ALTER SEQUENCE. See CREATE

SEQUENCE.

NOMINIMIZE RECORDS PER BLOCK clause

of ALTER TABLE, 7-142

NOMINVALUE

of ALTER SEQUENCE. See CREATE

SEQUENCE.

NOMINVALUE clause
Index-28

of CREATE SEQUENCE, 7-352

NOMONITORING clause

of ALTER TABLE, 7-141

of CREATE TABLE, 7-384

NONE clause

of SET ROLE, 7-571

nonequivilancy tests, 3-6

nonschema objects

list of, 2-64

namespaces, 2-69

NOORDER clause

of ALTER SEQUENCE. See CREATE

SEQUENCE.

of CREATE SEQUENCE, 7-353

NOPARALLEL clause

of CREATE CLUSTER, 7-240

of CREATE INDEX, 7-286

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG, 7-317

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-304

of CREATE TABLE, 7-381

NOPARALLEL hint, 2-61

NOPARALLEL_INDEX hint, 2-61

NORELY clause

of constraint_clause, 7-226

NORESETLOGS clause

of CREATE CONTROLFILE, 7-247

NOREWRITE hint, 2-59

NOSORT clause

of ALTER INDEX, 7-282

of constraint_clause, 7-227

NOT DEFERRABLE clause

of constraint_clause, 7-226

NOT IDENTIFIED clause

of ALTER ROLE. See CREATE ROLE.

of CREATE ROLE, 7-345

NOT IN operator, 3-7

NOT NULL clause

of constraint_clause, 7-222

of CREATE TABLE, 7-370

NOT NULL constraints, 7-222

not null constraints, 7-222

NOT operator, 3-11

NOWAIT clause

of LOCK TABLE, 7-521

null, 2-49

difference from zero, 2-49

in conditions, 2-50

table of, 2-50

in functions, 2-49

with comparison operators, 2-49

NULL clause

of constraint_clause, 7-222

NULL conditions, 5-17

NUMBER datatype, 2-13

converting to VARCHAR2, 2-35

precision, 2-13

scale, 2-13

number format models, 2-35

number functions, 4-3

numbers

comparison rules, 2-27

floating-point, 2-13, 2-15

in SQL syntax, 2-4

precision of, 2-4

rounding, 2-14

spelling out, 2-45

syntax of, 2-4

NUMERIC datatype (ANSI), 2-24

NVARCHAR2 datatype, 2-12

NVL function, 4-31

O
object access expressions, 5-10

object cache, 7-86, 7-107

OBJECT IDENTIFIER clause

of CREATE TABLE, 7-378

object identifiers

contained in REFs, 2-26

of object views, 7-433

primary key, 7-378

specifying, 7-378

specifying an index on, 7-378

system-generated, 7-378

object privileges

granting, 7-344

multiple, 7-348

on specific columns, 7-506
Index-29

to a role, 7-505

to a user, 7-505

to PUCLIC, 7-506

on a database object

revoking, 7-534

on a directory

revoking, 7-533

revoking

all, from a user, 7-533

from a role, 7-532, 7-533

from a user, 7-532, 7-533

from all users, 7-534

from PUBLIC, 7-533

object reference functions, 4-4

object tables

adding rows to, 7-513

creating, 7-359

object type bodies

creating, 7-422

re-creating, 7-422

SQL examples, 7-424

object type tables

creating, 7-368

object type values

comparing, 7-417, 7-423

object types, 2-26

adding new member subprograms, 7-174

associating functions or procedures, 7-174

attributes, 2-77

comparison rules, 2-30

MAP function, 2-30

ORDER function, 2-30

compiling the specification and body, 7-174

components of, 2-26

creating, 7-411, 7-413

defining member methods of, 7-422

disassociating statistics types from, 7-480

dropping the body of, 7-482

dropping the specification of, 7-480

function subprogram

declaring, 7-423

function subprogram of

specifying, 7-416

function subprograms of, 7-415, 7-422

incomplete, 7-413

methods, 2-77

procedure subprogram

declaring, 7-423

procedure subprogram of

specifying, 7-416

procedure subprograms of, 7-415, 7-422

SQL examples, 7-418

statistics types, 7-195

user-defined

creating, 7-414

object views

adding rows to the base table of, 7-513

defining, 7-430

OBJECT_CACHE_MAX_SIZE_PERCENT parameter

of ALTER SESSION, 7-86

of ALTER SYSTEM, 7-107

OBJECT_CACHE_OPTIMAL_SIZE parameter

of ALTER SESSION, 7-86

of ALTER SYSTEM, 7-107

objects. See object types or database objects.

OF clause

of CREATE VIEW, 7-432

OF object_type clause

of CREATE TABLE, 7-368

OFFLINE clause

of ALTER ROLLBACK SEGMENT, 7-74

of ALTER TABLESPACE, 7-168

of CREATE TABLESPACE, 7-397

OIDINDEX clause

of CREATE TABLE, 7-378

OIDs. See object identifiers.

ON clause

of CREATE OUTLINE, 7-323

ON COMMIT clause

of CREATE TABLE, 7-378

ON DATABASE clause

of CREATE TRIGGER, 7-406

ON DEFAULT clause

of AUDIT schema_objects, 7-206

of NOAUDIT schema_objects, 7-525

ON DELETE CASCADE clause

of constraint_clause, 7-224

ON DELETE SET NULL clause

of constraint_clause, 7-224

ON DIRECTORY clause
Index-30

of AUDIT schema_objects, 7-206

of GRANT object_privileges, 7-506

of NOAUDIT schema_objects, 7-525

of REVOKE schema_object_privileges, 7-533

ON JAVA RESOURCE clause

of GRANT object_privileges, 7-506

ON JAVA SOURCE clause

of GRANT object_privileges, 7-506

ON NESTED TABLE clause

of CREATE TRIGGER, 7-406

ON object clause

of GRANT object_privileges, 7-506

of NOAUDIT schema_objects, 7-525

of REVOKE schema_object_privileges, 7-534

ON PREBUILT TABLE clause

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-304

ON SCHEMA clause

of CREATE TRIGGER, 7-406

ONLINE clause

of ALTER ROLLBACK SEGMENT, 7-73

of ALTER TABLESPACE, 7-168

of CREATE INDEX, 7-283

of CREATE TABLESPACE, 7-397

online indexes, 7-283

rebuilding, 7-133

online redo logs

reinitializing, 7-19

OPEN NORESETLOGS clause

of ALTER DATABASE, 7-12

OPEN READ ONLY clause

of ALTER DATABASE, 7-11

OPEN READ WRITE clause

of ALTER DATABASE, 7-12

OPEN RESETLOGS clause

of ALTER DATABASE, 7-12

operands, 3-1

operator precedence, 3-2

operators, 3-1

arithmetic, 3-3

binary, 3-1

comparison, 3-5

concatenation, 3-3

granting

system privileges on, 7-497

logical, 3-10

set, 3-12, 7-550

unary, 3-1

user-defined, 3-16

binding to a function, 7-321

creating, 7-321

dropping, 7-463

function providing implementation, 7-322

how bindings are implemented, 7-321

implementation type, 7-322

return type of binding, 7-321

OPTIMAL parameter

of STORAGE clause, 7-347, 7-578

optimizer

setting session parameters, 7-86

OPTIMIZER_INDEX_CACHING parameter

of ALTER SESSION, 7-86

OPTIMIZER_INDEX_COST_ADJ parameter

of ALTER SESSION, 7-86

OPTIMIZER_MAX_PERMUTATIONS parameter

of ALTER SESSION, 7-86

OPTIMIZER_MODE parameter

of ALTER SESSION, 7-86

OPTIMIZER_PERCENT_PARALLEL parameter

of ALTER SESSION, 7-86

OPTIMIZER_SEARCH_LIMIT parameter

of ALTER SESSION, 7-86

OR operator, 3-11, 3-12

OR REPLACE clause

of CREATE CONTEXT, 7-243

of CREATE DIRECTORY, 7-265

of CREATE FUNCTION, 7-268, 7-294

of CREATE LIBRARY, 7-298

of CREATE OUTLINE, 7-323

of CREATE PACKAGE, 7-326

of CREATE PACKAGE BODY, 7-329

of CREATE PROCEDURE, 7-335

of CREATE TRIGGER, 7-403

of CREATE TYPE, 7-414

of CREATE TYPE BODY, 7-422

of CREATE VIEW, 7-432

Oracle precompilers, 1-3

Oracle reserved words, C -1

Oracle Tools

support of SQL, 1-5
Index-31

Oracle8i
Enterprise Edition

features and functionality, xi

features and functionality, xi

new features, xiii

ORDER BY clause

of CREATE TABLE, 7-385

of queries, 5-20

of SELECT, 5-20, 7-543, 7-551

with ROWNUM, 2-56

of subqueries in CREATE TABLE, 7-385

ORDER clause

of ALTER SEQUENCE. See CREATE

SEQUENCE.

of CREATE SEQUENCE, 7-353

ORDER MEMBER clause

of ALTER TYPE, 7-175

of CREATE TYPE, 7-417

of CREATE TYPE BODY, 7-423

ORDER methods

specifying, 7-175

ORDERED hint, 2-61

ORDERED_PREDICATES hint, 2-59

ordinal numbers

specifying, 2-45

spelling out, 2-45

ORGANIZATION HEAP clause

of CREATE TABLE, 7-373

ORGANIZATION INDEX clause

of CREATE TABLE, 7-373

OUT parameter

of CREATE FUNCTION, 7-269

of CREATE PROCEDURE, 7-335

outer joins, 5-22, 7-548

restrictions, 5-22

outlines

assigning to a different category, 7-58

automatically creating and storing, 7-101

creating, 7-323

dropping from the database, 7-464

enabling and disabling dynamically, 7-323

granting

system privileges on, 7-497

rebuilding, 7-58

renaming, 7-58

replacing, 7-323

storing during the session, 7-81

storing for the instance, 7-108

use by the optimizer, 7-89, 7-108

used to generate execution plans, 7-323

OVERFLOW clause

of ALTER INDEX, 7-33

of ALTER TABLE, 7-143

of CREATE TABLE, 7-373

P
package bodies

creating, 7-328

recompiling, 7-59

re-creating, 7-329

removing from the database, 7-465

PACKAGE clause

of ALTER PACKAGE, 7-60

packaged procedures

dropping, 7-467

packages

associating statistics with, 7-196

avoiding run-time compilation, 7-59

changing the declaration of, 7-59

creating, 7-325

disassociating statistics types from, 7-466

invoker rights, 7-326

recompiling, 7-59

redefining, 7-59, 7-326

removing from the database, 7-465

specifying schema and privileges of, 7-326

synonyms for, 7-356

PACKAGES clause

of ASSOCIATE STATISTICS, 7-194, 7-196

PARALLEL clause

of ALTER CLUSTER, 7-3, 7-5

of ALTER DATABASE, 7-14

of ALTER INDEX, 7-30, 7-35

of ALTER MATERIALIZED VIEW, 7-46, 7-48

of ALTER MATERIALIZED VIEW LOG, 7-55,

7-56

of ALTER TABLE, 7-153

of CREATE CLUSTER, 7-240

of CREATE INDEX, 7-286
Index-32

of CREATE MATERIALIZED VIEW /

SNAPSHOT, 7-301

of CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG, 7-315

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG, 7-317

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-304

of CREATE TABLE, 7-366, 7-381

parallel execution

of DDL statements, 7-79

of DML statements, 7-79

PARALLEL hint, 2-61

PARALLEL_ADAPTIVE_MULTI_USER parameter

of ALTER SYSTEM, 7-107

PARALLEL_BROADCAST_ENABLED parameter

of ALTER SESSION, 7-87

PARALLEL_ENABLE clause

of CREATE FUNCTION, 7-270

PARALLEL_INDEX hint, 2-61

PARALLEL_INSTANCE_GROUP parameter

of ALTER SESSION, 7-87

of ALTER SYSTEM, 7-107

PARALLEL_MIN_PERCENT parameter

of ALTER SESSION parameter, 7-87

PARALLEL_THREADS_PER_CPU parameter

of ALTER SYSTEM, 7-107

parameters

in syntax diagrams, xvi

optional, A-2

required, A-1

PARAMETERS clause

of CREATE INDEX, 7-286

partition

storage characteristics, 7-371

PARTITION ... LOB storage clause

of ALTER TABLE, 7-131

PARTITION BY HASH clause

of CREATE TABLE, 7-378

PARTITION BY RANGE clause

of CREATE TABLE, 7-364, 7-379

PARTITION clause

of ANALYZE, 7-188

of CREATE INDEX, 7-284

of CREATE TABLE, 7-380

of DELETE, 7-441

of INSERT, 7-515

of LOCK TABLE, 7-521

of SELECT, 7-546

of UPDATE, 7-587

PARTITION_VIEW_ENABLED parameter

of ALTER SESSION, 7-87

partitioned indexes, 2-65, 7-277, 7-284

user-defined, 7-283

partitioned tables, 2-65

partition-extended table names, 2-65

in DML statements, 2-66

restrictions on, 2-66

syntax, 2-66

partitioning

by range, 7-364

partitioning clauses

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG, 7-317

of ALTER INDEX, 7-31

of ALTER MATERIALIZED VIEW, 7-45, 7-48

of ALTER MATERIALIZED VIEW LOG, 7-54,

7-56

of ALTER TABLE, 7-144

of CREATE MATERIALIZED VIEW /

SNAPSHOT, 7-301

of CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG, 7-315

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-304

partitions

adding rows to, 7-513

allocating extents for, 7-139

composite, 2-65

specifying, 7-379

converting into nonpartitioned tables, 7-151

deallocating unused space from, 7-140

dropping, 7-148

extents

allocating new, 7-34

hash, 2-65

adding, 7-148

coalescing, 7-148

specifying, 7-378
Index-33

inserting rows into, 7-515

LOB storage characteristics of, 7-131

locking, 7-520

logging attribute of, 7-372

logging insert operations, 7-141

merging, 7-150

modifying, 7-144

moving to a different segment, 7-146

physical attributes

changing, 7-134

range, 2-65

adding, 7-147

specifying, 7-379

removing rows from, 7-149, 7-441

renaming, 7-146

revising values in, 7-587

splitting, 7-149

tablespace for

defining, 7-371

PASSWORD EXPIRE clause

of ALTER USER. See CREATE USER.

of CREATE USER, 7-427

password parameters

of ALTER PROFILE, 7-342

of CREATE PROFILE, 7-339

PASSWORD_GRACE_TIME parameter

of ALTER PROFILE, 7-65

of CREATE PROFILE, 7-341

PASSWORD_LIFE_TIME parameter

of ALTER PROFILE, 7-65

of CREATE PROFILE, 7-341

PASSWORD_LOCK_TIME parameter

of ALTER PROFILE, 7-65

of CREATE PROFILE, 7-341

PASSWORD_REUSE_MAX parameter

of ALTER PROFILE, 7-65

of CREATE PROFILE, 7-341

PASSWORD_REUSE_TIME parameter

of ALTER PROFILE, 7-65

of CREATE PROFILE, 7-341

PASSWORD_VERIFY_FUNCTION parameter

of ALTER PROFILE, 7-65

of CREATE PROFILE, 7-342

passwords, expiration of, 7-427

PCTFREE parameter

of ALTER CLUSTER, 7-4

of ALTER INDEX, 7-30, 7-35

of ALTER MATERIALIZED VIEW, 7-46

of ALTER MATERIALIZED VIEW LOG, 7-54

of CREATE CLUSTER, 7-238

of CREATE INDEX, 7-281

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG. See CREATE

TABLE.

of CREATE MATERIALIZED

VIEW/SNAPSHOT. See CREATE TABLE.

of CREATE TABLE, 7-370

PCTINCREASE parameter

of STORAGE clause, 7-577

PCTTHRESHOLD parameter

of ALTER TABLE, 7-143

of CREATE TABLE, 7-373

PCTUSED parameter

of ALTER CLUSTER, 7-4

of ALTER INDEX, 7-30, 7-35

of ALTER MATERIALIZED VIEW, 7-46

of ALTER MATERIALIZED VIEW LOG, 7-54

of CREATE CLUSTER, 7-238

of CREATE INDEX. See CREATE TABLE.

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG. See CREATE

TABLE.

of CREATE MATERIALIZED

VIEW/SNAPSHOT. See CREATE TABLE.

of CREATE TABLE, 7-370

PCTVERSION parameter

of CREATE TABLE, 7-376

of LOB storage clause, 7-131

PERMANENT clause

of ALTER TABLESPACE, 7-169

of CREATE TABLESPACE, 7-397

physical attributes clause

of a constraint, 7-220

of ALTER CLUSTER, 7-2

of ALTER INDEX, 7-30, 7-35

of ALTER MATERIALIZED VIEW, 7-46

of ALTER MATERIALIZED VIEW LOG, 7-54

of ALTER TABLE, 7-134

of CREATE CLUSTER, 7-236

of CREATE MATERIALIZED VIEW /
Index-34

SNAPSHOT, 7-301

of CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG, 7-315

of CREATE TABLE, 7-362, 7-370

PLAN_TABLE sample table, 7-486

PL/SQL, xi

compatibility with earlier releases, 7-87, 7-107

PL/SQL blocks

syntax of, xviii

PL/SQL program body

of CREATE FUNCTION, 7-271

PLSQL_V2_COMPATIBILITY parameter

of ALTER SESSION, 7-87

of ALTER SYSTEM, 7-107

PM (P.M.) date format element, 2-41, 2-43

POWER function, 4-31

PQ_DISTRIBUTE hint, 2-61

PR number format element, 2-36

PRAGMA clause

of ALTER TYPE, 7-175

of CREATE TYPE, 7-412, 7-416

PRAGMA RESTRICT_REFERENCES, 7-175, 7-416

precedence

of operators, 3-2

precision

number of digits of, 2-4

of NUMBER datatype, 2-13

PRESERVE SNAPSHOT LOG clause

of TRUNCATE, 7-582

PRIMARY KEY clause

of constraint_clause, 7-222

of CREATE TABLE, 7-370

primary key constraints, 7-222

enabling, 7-383

index on, 7-383

primary keys

generating values for, 7-350

PRIOR operator, 3-16

PRIVATE_SGA parameter

of ALTER PROFILE, 7-64

of ALTER RESOURCE COST, 7-69

of CREATE PROFILE, 7-341

privileges. See system privileges or object privileges.

procedure specification

of CREATE TYPE, 7-416

procedures

3GL, calling, 7-298

calling, 7-210

changing the declaration of, 7-62

changing the definition of, 7-62

creating, 7-334

declaring as a Java method, 7-336

declaring as C functions, 7-336

executing, 7-210

external, 7-334

granting

system privileges on, 7-498

invalidating local objects dependent on, 7-467

issuing COMMIT or ROLLBACK

statements, 7-79

naming rules, 2-69

privileges executed with, 7-415

recompiling, 7-62

re-creating, 7-335

removing from the database, 7-467

schema executed in, 7-415

specifying schema and privileges for, 7-336

synonyms for, 7-356

PROFILE clause

of ALTER USER. See CREATE USER.

of CREATE USER, 7-427

profiles

assigning to a user, 7-427

creating, 7-339

examples, 7-342

deassigning from users, 7-468

granting

system privileges on, 7-498

modifying, examples, 7-66

removing from the database, 7-468

proxy clause

of ALTER USER, 7-180, 7-181

pseudocolumns, 2-51

CURRVAL, 2-51

LEVEL, 2-53

NEXTVAL, 2-51

ROWID, 2-54

ROWNUM, 2-55

uses for, 2-56

PUBLIC clause
Index-35

of CREATE ROLLBACK SEGMENT, 7-346

of CREATE SYNONYM, 7-357

of DROP DATABASE LINK, 7-449

public database links

dropping, 7-449

public rollback segments, 7-346

public synonyms, 7-357

dropping, 7-474

PURGE SNAPSHOT LOG clause

of TRUNCATE, 7-582

PUSH_JOIN_PRED hint, 2-62

PUSH_SUBQ hint, 2-62

Q
Q date format element, 2-41

queries, 5-18, 7-544

comments in, 5-18

compound, 5-20

correlated

left correlation, 7-547

defined, 5-18

distributed, 5-25

grouping returned rows on a value, 7-549

hierarchical. See hierarchical queries

hints in, 5-18

join, 5-21

locking rows during, 7-551

ordering returned rows, 7-551

outer joins in, 7-547, 7-548

referencing multiple tables, 5-21

restricting results of, 7-548

select lists of, 5-18

selecting from a random sample of rows, 7-546

selecting from specified partitions, 7-546

sorting results, 5-20

syntax, 5-18

top-level, 5-18

top-N, 2-56

query rewrite

and dimensions, 7-260

and function-based indexes, 7-87

and the rule-based optimizer, 7-87

consistency level, 7-88

defined, 7-544

disabling, 7-87, 7-106

enabling, 7-87, 7-106

QUERY REWRITE system privilege, 7-496, 7-497,

7-499

QUERY_REWRITE_ENABLED parameter

of ALTER SESSION, 7-87

of ALTER SYSTEM, 7-106

QUERY_REWRITE_INTEGRITY parameter

of ALTER SESSION, 7-88

QUOTA clause

of ALTER USER. See CREATE USER.

of CREATE USER, 7-427

R
range conditions, 5-16

range partition

adding, 7-147

creating, 7-379

RAW data

converting from CHAR data, 2-19

RAW datatype, 2-18

RAWTOHEX function, 2-32, 4-31

READ object privilege, 7-508

READ ONLY clause

of ALTER TABLESPACE, 7-169

of SET TRANSACTION, 7-572

READ WRITE clause

of ALTER TABLESPACE, 7-169

of SET TRANSACTION, 7-573

REAL datatype

ANSI, 2-24

REBUILD clause

of ALTER INDEX, 7-31, 7-36

of ALTER OUTLINE, 7-58

REBUILD COMPRESS clause

of ALTER INDEX, 7-37

REBUILD COMPUTE STATISTICS clause

of ALTER INDEX, 7-38

REBUILD LOGGING clause

of ALTER INDEX, 7-38

REBUILD NOCOMPRESS clause

of ALTER INDEX, 7-38

REBUILD NOLOGGING clause

of ALTER INDEX, 7-38
Index-36

REBUILD NOREVERSE clause

of ALTER INDEX, 7-37

REBUILD ONLINE clause

of ALTER INDEX, 7-38

REBUILD PARAMETERS clause

of ALTER INDEX, 7-38

REBUILD PARTITION clause

of ALTER INDEX, 7-37

REBUILD REVERSE clause

of ALTER INDEX, 7-37

REBUILD SUBPARTITION clause

of ALTER INDEX, 7-37

REBUILD TABLESPACE clause

of ALTER INDEX, 7-37

REBUILD UNUSABLE LOCAL INDEXES clause

of ALTER TABLE, 7-145

RECOVER AUTOMATIC clause

of ALTER DATABASE, 7-13

RECOVER CANCEL clause

of ALTER DATABASE, 7-7, 7-14

RECOVER clause

of ALTER DATABASE, 7-7, 7-12

RECOVER CONTINUE clause

of ALTER DATABASE, 7-7, 7-14

RECOVER DATABASE clause

of ALTER DATABASE, 7-7, 7-13

RECOVER DATAFILE clause

of ALTER DATABASE, 7-7, 7-13

RECOVER LOGFILE clause

of ALTER DATABASE, 7-7, 7-14

RECOVER MANAGED STANDBY DATABASE

clause

of ALTER DATABASE, 7-8

RECOVER STANDBY DATABASE clause

of ALTER DATABASE, 7-13

RECOVER STANDBY DATAFILE clause

of ALTER DATABASE, 7-14

RECOVER STANDBY TABLESPACE clause

of ALTER DATABASE, 7-14

RECOVER TABLESPACE clause

of ALTER DATABASE, 7-7, 7-13

RECOVERABLE, 7-36, 7-372

See also LOGGING clause.

recovery

distributed, enabling, 7-99

of database, 7-7

RECOVERY_CATALOG_OWNER role, 7-503

redo log file groups

switching, 7-100

redo log file members

adding to existing groups, 7-18

dropping, 7-18

renaming, 7-15

redo log files

adding, 7-18

automatic archiving of, 7-96

automatic name generation, 7-13

disabling specified threads in a parallel

server, 7-15

dropping, 7-18

enabling specified threads in a parallel

server, 7-15

reusing, 7-491

size of, 7-491

specifying, 7-490

for media recovery, 7-14

REF columns

specifying, 7-369

specifying from table or column level, 7-369

REF function, 4-32

REFERENCES clause

of constraint_clause, 7-223

of CREATE TABLE, 7-370

REFERENCES object privilege, 7-508

references to objects. See REFs.

REFERENCING clause

of CREATE TRIGGER, 7-402, 7-406

referential integrity constraints, 7-222, 7-223

REFRESH clause

of ALTER MATERIALIZED VIEW, 7-46, 7-49

of CREATE MATERIALIZED VIEW /

SNAPSHOT, 7-301

REFRESH COMPLETE clause

of ALTER MATERIALIZED VIEW, 7-49

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-305

REFRESH FAST clause

of ALTER MATERIALIZED VIEW, 7-49

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-305
Index-37

REFRESH FORCE clause

of ALTER MATERIALIZED VIEW, 7-49

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-305

REFRESH ON COMMIT clause

of ALTER MATERIALIZED VIEW, 7-49

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-305

REFRESH ON DEMAND clause

of ALTER MATERIALIZED VIEW, 7-50

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-305

REFs, 2-26, 7-224

as containers for OIDs, 2-26

dangling, 7-190

validating, 7-190

REFTOHEX function, 4-32

relational tables

creating, 7-359

RELY clause

of constraint_clause, 7-226

REMOTE_DEPENDENCIES_MODE parameter

of ALTER SESSION, 7-87

of ALTER SYSTEM, 7-107

REMOTE_LOGIN_PASSWORDFILE parameter

and control files, 7-246

and databases, 7-251

RENAME clause

of ALTER INDEX, 7-39

of ALTER OUTLINE, 7-58

of ALTER TABLE, 7-142

RENAME DATAFILE clause

of ALTER TABLESPACE, 7-167

RENAME FILE clause

of ALTER DATABASE, 7-15

RENAME GLOBAL_NAME clause

of ALTER DATABASE, 7-15

RENAME PARTITION clause

of ALTER INDEX, 7-32, 7-40

of ALTER TABLE, 7-146

RENAME statement, 7-527

RENAME SUBPARTITION clause

of ALTER INDEX, 7-32, 7-40

of ALTER TABLE, 7-146

REPLACE AS OBJECT clause

of ALTER TYPE, 7-174

REPLACE function, 4-33

reserved words, 2-68, C -1

RESET COMPATIBILITY clause

of ALTER DATABASE, 7-15

RESETLOGS parameter

of CREATE CONTROLFILE, 7-247

RESOLVE clause

of ALTER JAVA CLASS, 7-44

of CREATE JAVA, 7-294

RESOLVER clause

of ALTER JAVA CLASS, 7-44

of ALTER JAVA SOURCE, 7-44

of CREATE JAVA, 7-296

resource parameters

of CREATE PROFILE, 7-338

RESOURCE role, 7-503

RESOURCE shortcut

of AUDIT sql_statements, 7-198

RESOURCE_LIMIT parameter

of ALTER SYSTEM, 7-107

RESOURCE_MANAGER_PLAN parameter

of ALTER SYSTEM, 7-108

RESTRICT_REFERENCES pragma

of ALTER TYPE, 7-175

restricted rowids, 2-22

compatibility and migration of, 2-23

RESTRICTED SESSION system privilege, 7-499

RESUME clause

of ALTER SYSTEM, 7-100

RETURN clause

of CREATE FUNCTION, 7-270

of CREATE OPERATOR, 7-321

of CREATE TYPE BODY, 7-423

RETURNING clause

of DELETE, 7-441

of INSERT, 7-513, 7-517

of UPDATE, 7-585, 7-588

REUSE clause

of CREATE CONTROLFILE, 7-246

of filespec clause, 7-491

REUSE STORAGE clause

of TRUNCATE, 7-583

REVERSE clause

of CREATE INDEX, 7-282
Index-38

reverse indexes, 7-282

REVOKE CONNECT THROUGH clause

of ALTER USER, 7-180, 7-181

REVOKE schema_object_privileges

statement, 7-532

REVOKE system_privileges_and_roles

statement, 7-529

REWRITE hint, 2-59

RM date format element, 2-41

RN number format element, 2-36

RNDS parameter

of PRAGMA RESTRICT_REFERENCES, 7-175

RNPS parameter

of PRAGMA RESTRICT_REFERENCES, 7-175

roles

assigning to a user, 7-427

authorized by a password, 7-345

authorized by an external service, 7-345

authorized by the database, 7-345

authorizes by the enterprise directory

service, 7-345

changing authorization for, 7-71

creating, 7-344

disabling for the current session, 7-571

disabling for the session, 7-570

enabling for the current session, 7-571

enabling for the session, 7-570

granting, 7-493

system privileges on, 7-498

to a user, 7-494

to all users, 7-494

to another role, 7-494

to PUBLIC, 7-494

removing from the database, 7-469

revoking, 7-529

from a user, 7-530

from all users, 7-530

from another role, 7-469, 7-530

from PUBLIC, 7-530

from users, 7-469

rollback segments

bringing online, 7-73, 7-347

changing storage characteristics, 7-73

creating, 7-346

granting

system privileges on, 7-498

multiple, 7-347

public, 7-346

reducing size, 7-73

removing from the database, 7-470

specifying optimal size of, 7-578

specifying tablespaces for, 7-346

SQL examples, 7-347

storage characteristics, 7-575

storage characteristics of, 7-347

taking offline, 7-73

ROLLBACK statement, 7-537

ROLLUP operation

example, 4-17

of queries and subqueries, 7-549

ROUND

date function, 4-34

number function, 4-33

ROUND function

format models, 4-55

routines

calling, 7-210

executing, 7-210

ROW EXCLUSIVE lock mode, 7-521

ROW SHARE lock mode, 7-521

ROWID

datatype, 2-21

hint, 2-59

pseudocolumn, 2-21, 2-23, 2-54

rowids

block portion of, 2-22

description of, 2-21

extended, 2-22

not directly available, 2-22

file portion of, 2-22

nonphysical, 2-23

of foreign tables, 2-23

of index-organized tables, 2-23

restricted, 2-22

compatibility and migration of, 2-23

row portion of, 2-22

uses for, 2-54

ROWIDTOCHAR function, 2-32, 4-34

ROWNUM pseudocolumn, 2-55

uses for, 2-56
Index-39

rows

adding to a table, 7-513

allowing movement of between

partitions, 7-361

insert

into remote databases, 7-515

inserting

into partitions, 7-515

into subpartitions, 7-515

movement between partitions, 7-381

order of storage, 7-373

removing

from a cluster, 7-581

from a table, 7-581

removing from partitions and

subpartitions, 7-441

removing from tables and views, 7-439

selecting in hierarchical order, 5-19

specifying constraints on, 7-224

stored in ascending order, 7-227

storing if in violation of constraints, 7-228

RPAD function, 4-35

RR date format element, 2-41, 2-44

interpreting, 2-44

RRRR date format element, 2-41

RTRIM function, 4-35

RULE hint, 2-59

run-time compilation

avoiding, 7-62, 7-183

S
S number format element, 2-36

SAMPLE clause

of SELECT, 7-546

of SELECT and subqueries, 7-542

SAVEPOINT statement, 7-539

savepoints

erasing, 7-214

rolling back to, 7-537

specifying, 7-539

scale

greater than precision, 2-14

negative, 2-14

of NUMBER datatype, 2-13

SCC date format element, 2-41

schema

definition of, 2-63

SCHEMA clause

of CREATE JAVA, 7-295

schema objects, 2-63

auditing

by access, 7-206

by session, 7-206

options, 7-207

successful

SQL statements on, 7-206

defining default buffer pool for, 7-579

dropping, 7-483

in other schemas, 2-74

list of, 2-63

name resolution, 2-73

namespaces, 2-68

naming examples, 2-70

naming guidelines, 2-71

naming rules, 2-67

object types, 2-26

on remote databases, 2-74

partitioned indexes, 2-65

partitioned tables, 2-65

parts of, 2-64

reauthorizing, 6-2

recompiling, 6-2

referring to, 2-71, 7-81

remote, accessing, 7-255

stopping auditing of, 7-525

schemas

changing for a session, 7-81

creating, 7-348

scientific notation, 2-37

SCOPE clause

of column ref constraints, 7-225

scope constraints, 7-225

segment attributes clause

of CREATE TABLE, 7-361, 7-370

SELECT

object privilege, 7-508

statement, 7-541

SELECT ANY SEQUENCE system privilege, 7-499

SELECT ANY TABLE system privilege, 7-500
Index-40

select lists, 5-18

ordering, 5-20

SELECT statement, 5-18

SELECT_CATALOG_ROLE role, 7-503

self joins, 5-22

sequences, 2-51, 7-351

accessing values of, 7-351

changing the increment value, 7-76

changing the number of cached values, 7-76

creating, 7-350

creating without limit, 7-351

granting

system privileges on, 7-499

how to use, 2-52

incrementing, 7-350, 7-352

maximum value

setting or changing, 7-76

minimum value

setting or changing, 7-76

ordering values, 7-76

recycling values, 7-76

removing from the database, 7-471

renaming, 7-527

restarting, 7-471

at a different number, 7-77

restarting at a predefined limit, 7-351

reusing, 7-351

stopping at a predefined limit, 7-351

synonyms for, 7-356

where to use, 2-52

SERVERERROR

triggers on, 7-405

SERVERERROR event

triggers on, 7-405

service name

of remote database, 7-257

session

global name resolution for, 7-82

session control statements, 6-5

PL/SQL support of, 6-5

session locks

releasing, 7-100

SESSION_CACHED_CURSORS parameter

of ALTER SESSION, 7-88

SESSION_ROLES view, 7-570

sessions

calculating resource cost limits, 7-68

changing resource cost limits, 7-68

disconnecting, 7-99

granting

system privileges on, 7-499

limiting resource costs, 7-68

modifying characteristics of, 7-81

number of concurrent, 7-103

object cache, 7-86

restricted, 7-99

terminating, 7-100

SESSIONS_PER_USER parameter

of ALTER PROFILE, 7-64

of CREATE PROFILE, 7-340

SET clause

of ALTER SESSION, 7-81

of ALTER SYSTEM, 7-100

of UPDATE, 7-588

SET CONSTRAINT(S) statement, 7-568

SET DATABASE clause

of CREATE CONTROLFILE, 7-246

set operators, 3-12, 7-550

SET ROLE statement, 7-570

SET STATEMENT_ID clause

of EXPLAIN PLAN, 7-487

SET TRANSACTION statement, 7-572

SET UNUSED clause

of ALTER TABLE, 7-136

SGA

flushing, 7-99

updating, 7-98

SHARE ROW EXCLUSIVE lock mode, 7-521

SHARE UPDATE lock mode, 7-521

SHARED clause

of CREATE DATABASE LINK, 7-256

shared server processes

creating additional, 7-105

terminating, 7-105

SHRINK clause

of ALTER ROLLBACK SEGMENT, 7-74

SHUTDOWN

triggers on, 7-405

SHUTDOWN event

triggers on, 7-405
Index-41

SIGN function, 4-36

simple comparison conditions, 5-15

simple expressions, 5-3

SIN function, 4-36

SINGLE TABLE clause

of CREATE CLUSTER, 7-239

single-row functions, 4-3

miscellaneous, 4-4

SINH function, 4-36

SIZE clause

of CREATE CLUSTER, 7-238

of filespec clause, 7-491

SIZE parameter

of ALTER CLUSTER, 7-4

SKIP_UNUSABLE_INDEXES parameter

of ALTER SESSION, 7-88

SMALLINT datatype

ANSI, 2-24

DB2, 2-25

SQL/DS, 2-25

snapshot logs. See materialized view logs.

snapshots. See materialized views.

SNMPAGENT role, 7-503

SOME operator, 3-6

SORT_AREA_RETAINED_SIZE parameter

of ALTER SESSION, 7-88

of ALTER SYSTEM, 7-108

SORT_AREA_SIZE parameter

of ALTER SESSION, 7-89

of ALTER SYSTEM, 7-108

SORT_MULTIBLOCK_READ_COUNT parameter

of ALTER SESSION, 7-89

of ALTER SYSTEM, 7-108

SOUNDEX function, 4-37

SP date format element suffix, 2-45

SPECIFICATION clause

of ALTER PACKAGE, 7-60

spelled numbers

specifying, 2-45

SPLIT PARTITION clause

of ALTER INDEX, 7-33, 7-40

of ALTER TABLE, 7-149

SPTH date format element suffix, 2-45

SQL

description of, 1-2

embedded, 1-3

functions, 4-1

keywords, A-1

Oracle Tools support of, 1-5

parameters, A-1

standards, 1-2, B - 1

statements

auditing, 7-200

determining the cost of, 7-486

syntax, 7-1, A-1

SQL functions

aggregate, 4-5

character

returning character values, 4-3

returning number values, 4-3

date, 4-4

number, 4-3

object reference, 4-4

single-row, 4-3

miscellaneous, 4-4

SQL statements

auditing by access, 7-199

auditing by proxy, 7-199

auditing by session, 7-199

auditing by user, 7-199

auditing successful, 7-199

determining the execution plan for, 7-486

rolling back, 7-537

stopping auditing of, 7-523

tracking the occurrence in a session, 7-197

undoing, 7-537

SQL_TRACE parameter

of ALTER SESSION, 7-89

SQL92, 1-2

Oracle compliance with, B - 2

SQL/DS datatypes, 2-23

conversion to Oracle datatypes, 2-25

restrictions on, 2-25

SQRT function, 4-38

SS date format element, 2-41

SSSSS date format element, 2-41

standalone procedures

dropping, 7-467

standard SQL, B - 1

Oracle extensions to, B - 5
Index-42

standby control file

creating, 7-19

standby database

activating, 7-11

designing media recovery, 7-12

mounting, 7-11

recovering, 7-13, 7-14

STANDBY_ARCHIVE_DEST parameter

of ALTER SYSTEM, 7-108

STAR hint, 2-61

STAR_TRANSFORMATION hint, 2-62

STAR_TRANSFORMATION_ENABLED parameter

of ALTER SESSION, 7-89

START WITH clause

of ALTER MATERIALIZED

VIEW...REFRESH, 7-50

of CREATE SEQUENCE, 7-352

of SELECT, 7-548

of SELECT and subqueries, 7-543

STARTUP

triggers on, 7-405

STARTUP event

triggers on, 7-405

STATIC clause

of ALTER TYPE, 7-174

of CREATE TYPE, 7-416

of CREATE TYPE BODY, 7-422

statistics

associating

with columns, 7-195

with datatypes, 7-196

with domain indexes, 7-196

with functions, 7-196

with indextypes, 7-196

with packages, 7-196

computing exactly, 7-188

deleting from the data dictionary, 7-190

estimating, 7-188

forcing disassociation, 7-445

on indexes, 7-283

user-defined

dropping, 7-452, 7-454, 7-456, 7-466, 7-475,

7-480

statistics types

disassociating

from columns, 7-444

from functions, 7-444

from packages, 7-444

from types, 7-444

disassociating from domain indexes, 7-444

disassociating from indextypes, 7-444

STDDEV function, 4-38

storage characteristics

resetting, 7-581

STORAGE clause, 7-575

of ALTER CLUSTER, 7-4

of ALTER INDEX, 7-30

of ALTER MATERIALIZED VIEW, 7-46

of ALTER MATERIALIZED VIEW LOG, 7-54

of ALTER ROLLBACK SEGMENT, 7-73, 7-74

of CREATE INDEX, 7-281

of CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG, 7-315

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG. See CREATE

TABLE.

of CREATE MATERIALIZED

VIEW/SNAPSHOT. See CREATE TABLE.

of CREATE ROLLBACK SEGMENTS, 7-347

of CREATE TABLE, 7-362, 7-371

of CREATE TABLESPACE, 7-395

STORAGE IN ROW clause

of ALTER TABLE, 7-131

STORAGE parameter

of ALTER INDEX, 7-30, 7-35

storage_clause

of CREATE CLUSTER, 7-238

STORE IN DEFAULT clause

of CREATE INDEX, 7-285

STORE IN tablespace clause

of CREATE INDEX, 7-285

stored functions, 7-267

Structured Query Language. See SQL.

SUBPARTITION BY HASH clause

of CREATE TABLE, 7-365, 7-379

SUBPARTITION clause

of ANALYZE, 7-188

of CREATE INDEX, 7-285

of CREATE TABLE, 7-380

of DELETE, 7-441
Index-43

of INSERT, 7-515

of LOCK TABLE, 7-521

of SELECT, 7-546

of UPDATE, 7-587

subpartition-extended table names, 2-65

in DML statements, 2-66

restrictions on, 2-66

syntax, 2-66

subpartitions

adding, 7-145

adding rows to, 7-513

allocating extents for, 7-139, 7-145

coalescing, 7-145

converting into nonpartitioned tables, 7-151

creating, 7-365, 7-380

deallocating unused space from, 7-140, 7-145

inserting rows into, 7-515

locking, 7-520

logging insert operations, 7-141

moving to a different segment, 7-147

physical attributes

changing, 7-134

removing rows from, 7-149, 7-441

renaming, 7-146

revising values in, 7-587

specifying, 7-379

SUBPARTITIONS clause

of CREATE TABLE, 7-379

subqueries, 5-18, 7-541, 7-544

containing subqueries, 5-24

correlated, 5-24

defined, 5-18

to insert table data, 7-385

SUBSTR function, 4-38

SUBSTRB function, 4-39

subtotal values

deriving, 7-549

SUM function, 4-40

SUSPEND clause

of ALTER SYSTEM, 7-100

sustained standby recovery mode, 7-14

terminating, 7-14

timeout period, 7-14

SWITCH LOGFILE clause

of ALTER SYSTEM, 7-100

SYEAR date format element, 2-41

synonyms

changing the definition of, 7-474

creating, 7-356

granting

system privileges on, 7-499

local, 7-357

private, dropping, 7-474

public, 7-357

dropping, 7-474

remote, 7-357

removing from the database, 7-474

renaming, 7-527

synonyms for, 7-356

syntax

loops, A-2

multipart diagrams, A-3

syntax diagrams, A-1

explanation of, xv

keywords, xvi

parameters, xvi

SYS schema

database triggers stored in, 7-407

functions stored in, 7-407

SYS_CONTEXT function, 4-40

SYS_GUID function, 4-41

SYSDATE function, 4-42

SYSDBA system privilege, 7-502

SYSOPER system privilege, 7-502

system control statements, 6-5

PL/SQL support of, 6-5

system date

altering, 7-102

system events

attributes of, 7-407

triggers on, 7-405

system global area. See SGA.

system privileges

granting, 7-344, 7-493

to a role, 7-494

to a user, 7-494

to all users, 7-494

to PUBLIC, 7-494

list of, 7-495

revoking, 7-529
Index-44

from a role, 7-530

from a user, 7-529

from all users, 7-530

from PUBLIC, 7-530

SYYYY date format element, 2-41

T
table alias

in CREATE INDEX, 7-279

table aliases, 2-77

in DELETE, 7-441

TABLE clause

of DELETE, 7-441

of INSERT, 7-515

of SELECT, 7-547

of TRUNCATE, 7-582

of UPDATE, 7-586, 7-587

table constraint

defined, 7-217

of ALTER TABLE, 7-130

of CREATE TABLE, 7-370

table locks

disabling, 7-153

duration of, 7-520

enabling, 7-153

EXCLUSIVE, 7-521

modes of, 7-521

on partitions, 7-521

on remote database, 7-521

on subpartitions, 7-521

and queries, 7-520

ROW EXCLUSIVE, 7-521

ROW SHARE, 7-521

SHARE, 7-521

SHARE ROW EXCLUSIVE, 7-521

SHARE UPDATE, 7-521

table REF constraint

of ALTER TABLE, 7-130

table ref constraint, 7-218

of ALTER TABLE, 7-130

of CREATE TABLE, 7-369

table REF constraints, 7-224

tables

adding rows to, 7-513

allocating extents for, 7-139

assigning to a cluster, 7-378

changing degree of parallelism on, 7-153

changing existing values in, 7-585

collecting modification statistics on, 7-141

collecting statistics on, 7-187

creating, 7-366

multiple, 7-348

creating comments about, 7-212

deallocating unused space from, 7-140

default physical attributes

changing, 7-134

degree of parallelism

specifying, 7-366

disassociating statistics types from, 7-475

dropping

along with owner, 7-483

dropping along with cluster, 7-447

dropping indexes of, 7-475

dropping partitions of, 7-475

granting

system privileges on, 7-500

index-organized

creating, 7-373

overflow segment for, 7-373

space in index block, 7-373

inserting rows with a subquery, 7-385

LOB storage of, 7-371

locking, 7-520

logging

table creation, 7-372

logging insert operations, 7-141

migrated and chained rows in, 7-192

moving to a new segment, 7-133

nested

creating, 7-418

storage characteristics, 7-377

object

creating, 7-359

order of row storage, 7-373

ordering rows from, 7-385

parallel creation of, 7-381

parallelism

setting default degree, 7-381

partition attributes of, 7-144
Index-45

partitioned

allowing rows to move between

partitions, 7-152

default attributes of, 7-144

partitioning of, 2-65, 7-366

physical attributes

changing, 7-134

specifying, 7-370

relational

creating, 7-359

remote, accessing, 7-255

removing from the database, 7-475

removing rows from, 7-439

renaming, 7-142, 7-527

restricting records per block, 7-142

restricting references to, 7-225

retrieving data from, 7-544

rows

ordering by primary key, 7-373

saving blocks in a cache, 7-141, 7-384

SQL examples, 7-386

storage characteristics, 7-575

defining, 7-366, 7-371

subpartition attributes of, 7-144

synonyms for, 7-356

tablespace for

defining, 7-366, 7-371

temporary

duration of data, 7-378

session-specific, 7-368

transaction specific, 7-368

unclustering, 7-446

validating structure of, 7-191

with unusable indexes, 7-88

TABLESPACE clause

of CREATE CLUSTER, 7-239

of CREATE INDEX, 7-282

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG, 7-317

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-303

of CREATE ROLLBACK SEGMENTS, 7-346

of CREATE TABLE, 7-371

tablespaces, 7-168

allocating space for users, 7-427

allowing write operations on, 7-169

backing up datafiles of, 7-168

bringing online, 7-168, 7-397

coalescing free extents, 7-169

converting

from permanent to temporary, 7-169

from temporary to permanent, 7-169

creating, 7-395

datafile

adding, 7-167

renaming, 7-167

default storage characteristics, 7-575

defining as read only, 7-169

designing media recovery, 7-12

dropping the contents of, 7-477

enable autoextension of, 7-167

extent management of, 7-400

extent size of, 7-396

granting

system privileges on, 7-500

locally managed, 7-397, 7-576

temporary, 7-400

logging attribute of, 7-166, 7-396

managed using dictionary tables, 7-397

managing extents of, 7-397

of session duration, 7-399

permanent objects in, 7-397

recovering, 7-13

removing from the database, 7-477

size of free extents in, 7-168

specifying datafiles for, 7-396

specifying for a user, 7-427

specifying for index rebuild, 7-134

taking offline, 7-168, 7-397

tempfile

adding, 7-167

temporary

specifying for a user, 7-427

temporary objects in, 7-397

temporary, creating, 7-399

TAN function, 4-42

TANH function, 4-42

TEMPFILE clause

of ALTER DATABASE, 7-8, 7-17

of CREATE TEMPORARY TABLESPACE, 7-400
Index-46

TEMPFILE clauses

of ALTER DATABASERENAME FILE clause

OF ALTER DATABASE, 7-8

tempfiles

automatic extension of, 7-400

bringing online, 7-17

disabling automatic extension, 7-17

dropping, 7-17

enabling automatic extension, 7-17

modifying, 7-16

resizing, 7-17

reusing, 7-491

size of, 7-491

specifying, 7-400, 7-490

taking offline, 7-17

TEMPORARAY clause

of ALTER TABLESPACE, 7-169

TEMPORARY clause

of CREATE TABLESPACE, 7-397

temporary tables

creating, 7-366, 7-368

session-specific, 7-368

transaction-specific, 7-368

TEMPORARY TABLESPACE clause

of ALTER USER. See CREATE USER.

of CREATE USER, 7-427

temporary tablespaces

creating, 7-399

specifying for a user, 7-427

SQL examples, 7-400

text

conventions, xv

date and number formats, 2-33

in SQL syntax, 2-2

properties of CHAR and VARCHAR2

datatypes, 2-2

syntax of, 2-2

text date format element, 2-41

text in, 2-40

TH date format element suffix, 2-45

THSP date format element suffix, 2-45

TIME datatype (SQL/DS or DB2), 2-25

TIMED_OS_STATISTICS parameter

of ALTER SYSTEM, 7-108

TIMED_STATISTICS parameter

of ALTER SESSION, 7-89

of ALTER SYSTEM, 7-108

TIMESTAMP datatype (SQL/DS or DB2), 2-25

TM number format element, 2-36

TO PUBLIC clause

of GRANT object_privileges, 7-507

of GRANT system_privileges_and_roles, 7-494

TO role clause

of GRANT object_privileges, 7-507

of GRANT system_privileges_and_roles, 7-494

TO SAVEPOINT clause

of ROLLBACK, 7-537

TO user clause

of GRANT object_privileges, 7-507

of GRANT system_privileges_and_roles, 7-494

TO_CHAR

date conversion function, 4-43

number conversion function, 4-43

TO_CHAR function, 2-32, 2-35, 2-40, 2-46

TO_DATE function, 2-32, 2-40, 2-44, 2-46, 4-45

TO_LOB function, 2-32, 4-45

TO_MULTI_BYTE function, 4-46

TO_NUMBER function, 2-32, 2-35, 4-46

TO_SINGLE_BYTE function, 4-47

top-N queries, 2-56

transaction control statements, 6-4

PL/SQL support of, 6-4

TRANSACTION_AUDITING parameter

of ALTER SYSTEM, 7-108

transactions

allowing to complete, 7-99

assigning rollback segment to, 7-572

assigning to a specific rollback segment, 7-573

automatically committing, 7-214

commenting on, 7-215

distributed, forcing, 7-79

ending, 7-214

establish as read-only, 7-572

establish as read-write, 7-572

implicit commit of, 6-2, 6-4, 6-5

in-doubt, committing, 7-214

in-doubt, forcing, 7-215

isolation level, 7-572

locks, releasing, 7-214

rolling back, 7-100, 7-346, 7-537
Index-47

to a savepoint, 7-537

savepoints for, 7-539

setting read-committed isolation mode, 7-573

setting serializable isolation mode, 7-573

TRANSLATE ... USING function, 4-48

TRANSLATE function, 4-47

triggers

AFTER, 7-403

BEFORE, 7-403

compiling, 7-171

creating, 7-402

creating multiple, 7-404

database

altering, 7-171

dropping, 7-479, 7-483

disabling, 7-153, 7-171

enabling, 7-153, 7-171, 7-402

executing with a PL/SQL block, 7-407

executing with an external procedure, 7-407

granting

system privileges on, 7-500

INSTEAD OF, 7-404

dropping, 7-432

on database events, 7-405

on DDL events, 7-405

on DML operations, 7-404

on views, 7-404

order of firing, 7-404

re-creating, 7-403

removing from the database, 7-479

restrictions on, 7-407

row values

old and new, 7-406

row, specifying, 7-406

SQL examples, 7-407

statement, 7-406

TRIM function, 4-49

TRUNC

date function, 4-51

number function, 4-50

TRUNC function

format models, 4-55

TRUNCATE PARTITION clause

of ALTER TABLE, 7-149

TRUNCATE statement, 7-581

TRUNCATE SUBPARTITION clause

of ALTER TABLE, 7-149

TRUST parameter

of PRAGMA RESTRICT_REFERENCES, 7-175

Trusted Oracle, 1-5

type constructor expressions, 5-6

types

granting

system privileges on, 7-501

incomplete

creating, 7-411

nested table

creating, 7-413

object

creating, 7-411

varray

creating, 7-413

TYPES clause

of ASSOCIATE STATISTICS, 7-194, 7-196

types. See object types or datatypes.

U
U number format element, 2-36

UID function, 4-51

unary operators, 3-1

UNION ALL operator, 3-12

UNION ALL set operator, 7-550

UNION operator, 3-12

UNION set operator, 7-550

UNIQUE clause

of constraint_clause, 7-221

of CREATE INDEX, 7-278

of CREATE TABLE, 7-370

of SELECT, 7-545

unique constraints

enabling, 7-383

index on, 7-383

unique indexes, 7-278

unique queries, 7-545

universal rowids. See urowids

universal rowids. See urowids.

UNLIMITED TABLESPACE system

privilege, 7-500

unnesting collections, 7-547
Index-48

examples, 7-564

UNRECOVERABLE, 7-36, 7-372

See also NOLOGGING clause.

unsorted indexes, 7-282

UNUSABLE clause

of ALTER INDEX, 7-39

UNUSABLE LOCAL INDEXES clause

of ALTER MATERIALIZED VIEW, 7-49

of ALTER TABLE, 7-145

UPDATE

object privilege, 7-508

statement, 7-584

UPDATE ANY TABLE system privilege, 7-500

UPDATE statement

triggers on, 7-404

UPPER function, 4-51

UROWID datatype, 2-23

urowids

and foreign tables, 2-23

and heap-organized tables, 2-23

and index-organized tables, 2-23

description of, 2-23

USE ROLLBACK SEGMENT clause

of SET TRANSACTION, 7-573

USE_CONCAT hint, 2-59

USE_HASH hint, 2-61

USE_MERGE hint, 2-61

USE_NL hint, 2-61

USE_STORED_OUTLINES parameter

of ALTER SESSION, 7-89

of ALTER SYSTEM, 7-108

USER function, 4-52

USER_COL_COMMENTS view, 7-212

USER_DUMP_DEST parameter

of ALTER SYSTEM, 7-109

USER_TAB_COMMENTS view, 7-212

user-defined functions, 4-56

expressions, 5-5

name precedence of, 4-57

naming conventions, 4-58

restrictions on, 7-268

user-defined object types

defining, 7-414

user-defined operators, 3-16

user-defined statistics

dropping, 7-452, 7-454, 7-456, 7-466, 7-475, 7-480

user-defined types

categories of, 2-25

USERENV function, 4-52

users

allocating space for, 7-427

assigning default roles, 7-181

assigning profiles to, 7-427

assigning roles to, 7-427

authenticating to a remote server, 7-257

changing global authentication, 7-181

creating, 7-426

default tablespaces of, 7-427

denying access to tables and views, 7-520

external, 7-345, 7-427

global, 7-345, 7-427

granting

system privileges on, 7-501

local, 7-345, 7-426

locking accounts of, 7-428

maximum concurrent, 7-103

password expiration of, 7-427

removing from the database, 7-483

SQL examples, 7-428

temporary tablespaces for, 7-427

USING BFILE clause

of CREATE JAVA, 7-296

USING BLOB clause

of CREATE JAVA, 7-296

USING clause

of ASSOCIATE STATISTICS, 7-195, 7-196

of CREATE DATABASE LINK, 7-257

of CREATE INDEXTYPE, 7-292

of CREATE OPERATOR, 7-320, 7-322

USING CLOB clause

of CREATE JAVA, 7-296

USING INDEX clause

of ALTER MATERIALIZED VIEW, 7-49

of constraint_clause, 7-227

of CREATE MATERIALIZED

VIEW/SNAPSHOT, 7-305

of CREATE TABLE, 7-366, 7-383

USING ROLLBACK SEGMENT clause

of ALTER MATERIALIZED

VIEW...REFRESH, 7-50
Index-49

of CREATE MATERIALIZED

VIEW/SNAPSHOT...REFRESH, 7-307

UTLXPLAN.SQL script, 7-486

V
V number format element, 2-36

V$NLS_PARAMETERS view

VALIDATE REF UPDATE clause

of ANALYZE, 7-190

VALIDATE STRUCTURE clause

of ANALYZE, 7-191

VALUE function, 4-53

VALUES clause

of CREATE INDEX, 7-284

of INSERT, 7-516

VALUES LESS THAN clause

of CREATE TABLE, 7-380

VARCHAR datatype, 2-13

DB2, 2-25

SQL/DS, 2-25

VARCHAR2 datatype, 2-12

converting to NUMBER, 2-35

VARGRAPHIC datatype (SQL/DS or DB2), 2-25

variable expressions, 5-4

VARIANCE function, 4-54

varray

changing returned value, 7-135

VARRAY storage clause

of ALTER TABLE, 7-135

of CREATE TABLE, 7-363, 7-376

varray types

creating, 7-413

varrays, 2-26

compared with nested tables, 2-31

comparison rules, 2-31

creating, 7-413, 7-417

dropping the body of, 7-482

dropping the specification of, 7-480

storage characteristics of, 7-135, 7-376

storing out of line, 2-27

varying arrays. See varrays.

views

adding rows to the base table of, 7-513

changing the definition of, 7-485

changing values in base tables of, 7-585

creating

multiple, 7-348

creating before base tables, 7-432

creating comments about, 7-212

defining, 7-430

granting

system privileges on, 7-502

recompiling, 7-183

re-creating, 7-432

remote, accessing, 7-255

removing from the database, 7-485

removing rows from the base table of, 7-439

renaming, 7-527

retrieving data from, 7-544

subquery of, 7-433

restricting, 7-434

synonyms for, 7-356

VSIZE function, 4-55

W
W date format element, 2-41

WHEN clause

of CREATE TRIGGER, 7-407

WHENEVER NOT SUCCESSFUL clause

of NOAUDIT schema_objects, 7-526

WHENEVER SUCCESSFUL clause

of AUDIT schema_objects, 7-206

of AUDIT sql_statements, 7-199

of NOAUDIT schema_objects, 7-526

of NOAUDIT sql_statements, 7-524

WHERE clause

of DELETE, 7-441

of SELECT, 5-19, 7-548

of UPDATE, 7-588

WITH ADMIN OPTION clause

of GRANT system_privileges_and_roles, 7-495

WITH CHECK OPTION clause

of CREATE VIEW, 7-430, 7-434

of DELETE, 7-441

of INSERT, 7-515

of SELECT, 7-542, 7-547

of UPDATE, 7-587

WITH GRANT OPTION clause
Index-50

of GRANT object_privileges, 7-507

WITH INDEX CONTEXT clause

of CREATE OPERATOR, 7-320, 7-322

WITH OBJECT IDENTIFIER clause

of CREATE VIEW, 7-433

WITH OBJECT OID. See WITH OBJECT

IDENTIFIER.

WITH PRIMARY KEY clause

of ALTER MATERIALIZED VIEW, 7-50

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG, 7-317

of CREATE MATERIALIZED

VIEW/SNAPSHOT...REFRESH, 7-305

WITH READ ONLY clause

of CREATE VIEW, 7-430, 7-434

of DELETE, 7-441

of INSERT, 7-515

of SELECT, 7-542, 7-547

of UPDATE, 7-587

WITH ROWID clause

of column ref constraints, 7-225

of CREATE MATERIALIZED VIEW

LOG/SNAPSHOT LOG, 7-317

of CREATE MATERIALIZED

VIEW/SNAPSHOT...REFRESH, 7-305

WNDS parameter

of PRAGMA RESTRICT_REFERENCES, 7-175

WNPS parameter

of PRAGMA RESTRICT_REFERENCES, 7-175

WW date format element, 2-41

X
X number format element, 2-36

Y
Y date format element, 2-41

YEAR date format element, 2-41

YY date format element, 2-41

YYY date format element, 2-41

YYYY date format element, 2-41
Index-51

Index-52

	PDF Directory
	Send Us Your Comments
	Features and Functionality
	Audience
	How this Reference Is Organized
	What’s New in This Release?
	Conventions Used in this Reference
	Your Comments Are Welcome

	1 Introduction
	History of SQL
	SQL Standards
	How SQL Works
	Common Language for All Relational Databases

	Embedded SQL
	Lexical Conventions
	Tools Support

	2 Basic Elements of Oracle SQL
	Literals
	Text
	Integer
	Number

	Datatypes
	Character Datatypes
	NUMBER Datatype
	LONG Datatype
	DATE Datatype
	RAW and LONG RAW Datatypes
	Large Object (LOB) Datatypes
	ROWID Datatype
	UROWID Datatype
	ANSI, DB2, and SQL/DS Datatypes
	User-Defined Type Categories
	Datatype Comparison Rules
	Data Conversion

	Format Models
	Changing the Return Format
	Supplying the Correct Format
	Number Format Models
	Date Format Models
	Format Model Modifiers
	String-to-Date Conversion Rules

	Nulls
	Nulls in SQL Functions
	Nulls with Comparison Operators
	Nulls in Conditions

	Pseudocolumns
	CURRVAL and NEXTVAL
	LEVEL
	ROWID
	ROWNUM

	Comments
	Comments Within SQL Statements
	Comments on Schema Objects
	Hints

	Database Objects
	Schema Objects
	Nonschema Objects
	Parts of Schema Objects

	Schema Object Names and Qualifiers
	Schema Object Naming Rules
	Schema Object Naming Examples
	Schema Object Naming Guidelines

	Referring to Schema Objects and Parts
	How Oracle Resolves Schema Object References
	Referring to Objects in Other Schemas
	Referring to Objects in Remote Databases
	Referencing Object Type Attributes and Methods

	3 Operators
	Unary and Binary Operators
	Precedence
	Arithmetic Operators
	Concatenation Operator
	Comparison Operators
	NOT IN Operator
	LIKE Operator

	Logical Operators
	NOT Operator
	AND Operator
	OR Operator

	Set Operators
	Other Built-In Operators
	User-Defined Operators

	4 Functions
	SQL Functions
	User-Defined Functions
	Prerequisites
	Name Precedence

	5 Expressions, Conditions, and Queries
	Expressions
	Simple Expressions
	Compound Expressions
	Variable Expressions
	Built-In Function Expressions
	User-Defined Function Expressions
	Type Constructor Expressions
	CAST Expressions
	CURSOR Expressions
	Object Access Expressions
	DECODE Expressions
	Expression List

	Conditions
	Simple Comparison Conditions
	Group Comparison Conditions
	Membership Conditions
	Range Conditions
	NULL Conditions
	EXISTS Conditions
	LIKE Conditions
	Compound Conditions

	Queries and Subqueries
	Creating Simple Queries
	Hierarchical Queries
	Sorting Query Results
	Joins
	Using Subqueries
	Selecting from the DUAL Table
	Distributed Queries

	6 About SQL Statements
	Summary of SQL Statements
	Finding the Right SQL Statement

	7 SQL Statements
	ALTER CLUSTER
	ALTER DATABASE
	ALTER DIMENSION
	ALTER FUNCTION
	ALTER INDEX
	ALTER JAVA
	ALTER MATERIALIZED VIEW / SNAPSHOT
	ALTER MATERIALIZED VIEW LOG / SNAPSHOT LOG
	ALTER OUTLINE
	ALTER PACKAGE
	ALTER PROCEDURE
	ALTER PROFILE
	ALTER RESOURCE COST
	ALTER ROLE
	ALTER ROLLBACK SEGMENT
	ALTER SEQUENCE
	ALTER SESSION
	ALTER SNAPSHOT
	ALTER SNAPSHOT LOG
	ALTER SYSTEM
	ALTER TABLE
	ALTER TABLESPACE
	ALTER TRIGGER
	ALTER TYPE
	ALTER USER
	ALTER VIEW
	ANALYZE
	ASSOCIATE STATISTICS
	AUDIT sql_statements
	AUDIT schema_objects
	CALL
	COMMENT
	COMMIT
	constraint_clause
	CREATE CLUSTER
	CREATE CONTEXT
	CREATE CONTROLFILE
	CREATE DATABASE
	CREATE DATABASE LINK
	CREATE DIMENSION
	CREATE DIRECTORY
	CREATE FUNCTION
	CREATE INDEX
	CREATE INDEXTYPE
	CREATE JAVA
	CREATE LIBRARY
	CREATE MATERIALIZED VIEW / SNAPSHOT
	CREATE MATERIALIZED VIEW LOG / SNAPSHOT LOG
	CREATE OPERATOR
	CREATE OUTLINE
	CREATE PACKAGE
	CREATE PACKAGE BODY
	CREATE PROCEDURE
	CREATE PROFILE
	CREATE ROLE
	CREATE ROLLBACK SEGMENT
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE SNAPSHOT
	CREATE SNAPSHOT LOG
	CREATE SYNONYM
	CREATE TABLE
	CREATE TABLESPACE
	CREATE TEMPORARY TABLESPACE
	CREATE TRIGGER
	CREATE TYPE
	CREATE TYPE BODY
	CREATE USER
	CREATE VIEW
	DELETE
	DISASSOCIATE STATISTICS
	DROP CLUSTER
	DROP CONTEXT
	DROP DATABASE LINK
	DROP DIMENSION
	DROP DIRECTORY
	DROP FUNCTION
	DROP INDEX
	DROP INDEXTYPE
	DROP JAVA
	DROP LIBRARY
	DROP MATERIALIZED VIEW / SNAPSHOT
	DROP MATERIALIZED VIEW LOG / SNAPSHOT LOG
	DROP OPERATOR
	DROP OUTLINE
	DROP PACKAGE
	DROP PROCEDURE
	DROP PROFILE
	DROP ROLE
	DROP ROLLBACK SEGMENT
	DROP SEQUENCE
	DROP SNAPSHOT
	DROP SNAPSHOT LOG
	DROP SYNONYM
	DROP TABLE
	DROP TABLESPACE
	DROP TRIGGER
	DROP TYPE
	DROP TYPE BODY
	DROP USER
	DROP VIEW
	EXPLAIN PLAN
	filespec
	GRANT system_privileges_and_roles
	GRANT object_privileges
	INSERT
	LOCK TABLE
	NOAUDIT sql_statements
	NOAUDIT schema_objects
	RENAME
	REVOKE system_privileges_and_roles
	REVOKE schema_object_privileges
	ROLLBACK
	SAVEPOINT
	SELECT and Subqueries
	SET CONSTRAINT(S)
	SET ROLE
	SET TRANSACTION
	storage_clause
	TRUNCATE
	UPDATE

	A Syntax Diagrams
	Required Keywords and Parameters
	Optional Keywords and Parameters
	Syntax Loops
	Multipart Diagrams
	Database Objects

	B Oracle and Standard SQL
	Conformance with Standard SQL
	ANSI and ISO Compliance
	FIPS Compliance

	Oracle Extensions to Standard SQL

	C Oracle Reserved Words
	Index

