
Oracle8 i

Tuning

Release 8.1.5

February 1999

Part No. A67775-01

Oracle8i Tuning

Part No. A67775-01

Release 8.1.5

Copyright © 1999 Oracle Corporation. All Rights Reserved.

Primary Author: Mark Bauer.

Primary Contributors: Benoit Dageville, Lilian Hobbs, Paul Lane, Lefty Leverenz, Rita Moran, Juan
Tellez, Graham Wood, and Mohamed Zait.

Contributors: Tomohiro Akiba, Lance Ashdown, David Austin, Andre Bakker, Allen Brumm, Dave
Colello, Carol Colrain, Dean Daniels, Dinesh Das, Sohan Demel, Michael Depledge, Joyce Fee, Jyotin
Gautam, Jackie Gosselin, Scott Gossett, John Graham, Todd Guay, Gary Hallmark, Mike Hartstein, Scott
Heisey, Alex Ho, Andrew Holdsworth, Hakan Jakobssen, Sue Jang, Robert Jenkins, Ashok Joshi, Paul Jus-
tus, Jan Klokkers, Anjo Kolk, Dan Leary, Tirthankar Lahiri, Juan Loaiza, Diana Lorentz, George Lumpkin,
Roderick Manalac, Sheryl Maring, Ravi Mirchandaney, Ken Morse, Ari Mozes, Jeff Needham, Kotaro
Ono, Cetin Ozbutun, Orla Parkinson, Doug Rady, Mary Rhodes, Ray Roccaforte, Hari Sankar, Ekrem
Soylemez, Leng Leng Tan, Bob Thome, Lawrence To, Dan Tow, Randy Urbano, Steve Vivian, Sandy Ven-
ning, Bill Waddington, and Steve Wertheimer.

Graphic Designer: Valarie Moore.

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited. The information con-
tained in this document is subject to change without notice. If you find any problems in the documenta-
tion, please report them to us in writing. Oracle Corporation does not warrant that this document is error
free. If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are 'commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Loader, Secure Network Services, and SQL*Plus are registered trademarks of Oracle
Corporation, Redwood Shores, California. Oracle Call Interface, Oracle8i, Oracle8, Oracle Forms, Oracle
TRACE, Oracle Expert, Oracle Enterprise Manager, Oracle Enterprise Manager Performance Pack, Oracle
Parallel Server, Oracle Server Manager, Net8, PL/SQL, and Pro*C are trademarks of Oracle Corporation,
Redwood Shores, California. All other products or company names are used for identification purposes
only, and may be trademarks of their respective owners.

iii

Send Us Your Comments

Oracle8 i Tuning, Release 8.1.5

Part No. A67775-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find errors or have suggestions, please indicate the chapter, section, and page number (if avail-

able). Send comments and suggestions to the Information Development department using any of the

following:

■ Email: infodev@us.oracle.com

■ FAX: 650-506-7228. Attn: Oracle8i Tuning

■ Postal Service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, 4OP12

Redwood Shores, CA 94065

U.S.A.

If you would like a reply, please give your name, address, and telephone number below.

iv

v

Preface

You can enhance Oracle performance by adjusting database applications, the

database, and the operating system. Making such adjustments is known as "tuning".

Proper tuning of Oracle provides the best possible database performance for your

specific application and hardware configuration.

Note: Oracle8i Tuning contains information describing the features and functionality

of the Oracle8i and the Oracle8i Enterprise Edition products. Oracle8i and Oracle8i
Enterprise Edition have the same basic features. However, several advanced

features are available only with the Enterprise Edition, and some of these are

optional. For example, to use application failover, you must have the Enterprise

Edition and the Parallel Server option.

For information about the differences between Oracle8i and the Oracle8i Enterprise

Edition and the available features and options, please refer to Getting to Know
Oracle8i.

Intended Audience
This manual is an aid for people responsible for the operation, maintenance, and

performance of Oracle. To use this book, you could be a database administrator,

application designer, or programmer. You should be familiar with Oracle8i, the

operating system, and application design before reading this manual.

How This Book is Organized
This book has six parts. The book begins by describing tuning and explaining

tuning methods. Part Two describes how system designers and programmers plan

for performance. Part Three describes design tools for designers and DBAs. Part

Four explains how to optimize performance during production. Part Five describes

vi

parallel execution tuning and processing. Part Six describes how to use and

optimize Materialized Views. The contents of the six parts of this manual are:

Part One: Introduction to Tuning

Part Two: Application Design Tuning for Designers and Programmers

Chapter 1,
"Introduction to Oracle
Performance Tuning"

This chapter provides an overview of tuning issues. It defines
performance tuning and the roles of people involved in the process.

Chapter 2,
"Performance Tuning
Methods"

This chapter presents the recommended tuning method, and outlines
its steps in order of priority.

Chapter 3, "Application
and System
Performance
Characteristics"

This chapter describes the various types of application that use
Oracle databases and the suggested approaches and features
available when designing each.

Chapter 4, "Tuning
Database Operations"

This chapter explains the fundamentals of tuning database
operations.

Chapter 5, "Registering
Applications"

This chapter describes how to register an application with the
database and retrieve statistics on each registered module or code
segment.

Chapter 6, "Data Access
Methods"

This chapter provides an overview of data access methods that can
enhance performance, and warns of situations to avoid.

Chapter 7, "Optimizer
Modes, Plan Stability,
and Hints"

This chapter explains when to use the available optimization modes
and how to use hints to enhance Oracle performance.

Chapter 8, "Tuning
Distributed Queries"

This chapter provides guidelines for tuning distributed queries.

Chapter 9, "Transaction
Modes"

This chapter describes the different methods in which read
consistency is performed.

vii

Part Three: Application Design Tools for Designers and DBAs

Part Four: Optimizing Oracle Instance Performance

Chapter 10, "Managing
SQL and Shared
PL/SQL Areas"

This chapter explains the use of shared SQL to improve performance.

Chapter 11,
"Optimizing Data
Warehouse
Applications"

This chapter introduces integrated Oracle8i features for tuning
enterprise-scale data warehouses.

Chapter 12, "Overview
of Diagnostic Tools"

This chapter introduces the full range of diagnostic tools available for
monitoring production systems and determining performance
problems.

Chapter 13, "Using
EXPLAIN PLAN"

This chapter shows how to use the SQL command EXPLAIN PLAN,
and format its output.

Chapter 14, "The SQL
Trace Facility and
TKPROF"

This chapter describes the use of the SQL trace facility and TKPROF,
two basic performance diagnostic tools that can help you monitor
and tune applications that run against the Oracle Server.

Chapter 15, "Using
Oracle Trace"

This chapter provides an overview of Oracle Trace usage and
describes the Oracle Trace initialization parameters.

Chapter 16, "Dynamic
Performance Views"

This chapter describes views that are of the greatest use for both
performance tuning and ad hoc investigation

Chapter 17,
"Diagnosing System
Performance Problems"

This chapter provides an overview of performance factors in
existing systems that have been properly designed.

Chapter 18, "Tuning
CPU Resources"

This chapter describes how to identify and solve problems with
CPU resources.

Chapter 19, "Tuning
Memory Allocation"

This chapter explains how to allocate memory to database
structures. Proper sizing of these structures can greatly improve
database performance.

Chapter 20, "Tuning
I/O"

This chapter explains how to avoid I/O bottlenecks that could
prevent Oracle from performing at its maximum potential.

Chapter 21, "Tuning
Resource Contention"

This chapter explains how to detect and reduce contention that
affects performance.

Chapter 22, "Tuning
Networks"

This chapter introduces networking issues that affect tuning, and
points to the use of array interfaces, out-of-band breaks, and
other tuning techniques.

viii

Part Five: Parallel Execution

Part Six: Materialized Views

Related Documents
Before reading this manual, you should have already read Oracle8i Concepts, the

Oracle8i Application Developer’s Guide - Fundamentals, and the Oracle8i Administrator’s
Guide.

Chapter 23, "Tuning the
Multi-Threaded Server
Architecture"

This chapter explains how to tune the components of the
Multi-threaded Server architecture.

Chapter 24, "Tuning the
Operating System"

This chapter explains how to tune the operating system for
optimal performance of Oracle.

Chapter 25, "Tuning
Instance Recovery
Performance"

This chapter explains how to tune recovery performance.

Chapter 26, "Tuning
Parallel Execution"

This chapter explains how to use and tune parallel execution
features for improved performance. It also describes how to
optimize partitioning.

Chapter 27,
"Understanding
Parallel Execution
Performance Issues"

This chapter provides a conceptual explanation of parallel
execution performance issues and explains how to diagnose and
solve parallel execution performance problems.

Chapter 28, "Data
Warehousing with
Materialized Views"

This chapter discusses data warehousing and how to use
materialized views to optimize data warehouse operations.

Chapter 29,
"Materialized Views"

This chapter provides a general overview of materialized views.

Chapter 30,
"Dimensions"

This chapter describes optimizing dimensions within
materialized views.

Chapter 31, "Query
Rewrite"

This chapter describes how to use query rewrites to optimize
your use of materialized views.

Chapter 32, "Managing
Materialized Views"

This chapter explains how to manage materialized views.

ix

For more information about Oracle Enterprise Manager and its optional

applications, please see the following publications:

Oracle Enterprise Manager Concepts Guide

Oracle Enterprise Manager Administrator’s Guide

Oracle Enterprise Manager Application Developer’s Guide

Oracle Enterprise Manager: Introducing Oracle Expert

Oracle Enterprise Manager: Oracle Expert User’s Guide

Oracle Enterprise Manager Performance Monitoring User’s Guide. This manual

describes how to use Oracle TopSessions, Oracle Monitor, and Oracle Tablespace

Manager.

Conventions
This section explains the conventions used in this manual including the following:

■ Text

■ Syntax diagrams and notation

■ Code examples

Text
This section explains the conventions used within the text:

UPPERCASE Characters
Uppercase text is used to call attention to command keywords, object names,

parameters, filenames, and so on.

For example, "If you create a private rollback segment, the name must be included

in the ROLLBACK_SEGMENTS parameter of the parameter file".

Italicized Characters
Italicized words within text are book titles or emphasized words.

Syntax Diagrams and Notation
The syntax diagrams and notation in this manual show the syntax for SQL

statements, functions, hints, and other elements. This section tells you how to read

syntax diagrams and examples and write SQL statements based on them.

x

Keywords
Keywords are words that have special meanings in the SQL language. In the syntax

diagrams in this manual, keywords appear in uppercase. You must use keywords in

your SQL statements exactly as they appear in the syntax diagram, except that they

can be either uppercase or lowercase. For example, you must use the CREATE

keyword to begin your CREATE TABLE statements just as it appears in the

CREATE TABLE syntax diagram.

Parameters
Parameters act as place holders in syntax diagrams. They appear in lowercase.

Parameters are usually names of database objects, Oracle datatype names, or

expressions. When you see a parameter in a syntax diagram, substitute an object or

expression of the appropriate type in your SQL statement. For example, to write a

CREATE TABLE statement, use the name of the table you want to create, such as

EMP, in place of the table parameter in the syntax diagram. (Note that parameter

names appear in italics in the text.)

This list shows parameters that appear in the syntax diagrams in this manual and

examples of the values you might substitute for them in your statements:

xi

Code Examples
SQL and SQL*Plus commands and statements appear separated from the text of

paragraphs in a monospaced font. For example:

 INSERT INTO emp (empno, ename) VALUES (1000, ’SMITH’);
 ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

Example statements may include punctuation, such as commas or quotation marks.

All punctuation in example statements is required. All example statements

terminate with a semicolon (;). Depending on the application, a semicolon or other

terminator may or may not be required to end a statement.

Uppercase words in example statements indicate the keywords within Oracle SQL.

When you issue statements, however, keywords are not case sensitive.

Parameter Description Examples

table The substitution value must be the
name of an object of the type
specified by the parameter.

emp

’text’ The substitution value must be a
character literal in single quotes.

’Employee Records’

condition The substitution value must be a
condition that evaluates to TRUE or
FALSE.

ename > ’A’

date The substitution value must be a
date constant or an expression of
DATE datatype.

TO_DATE (

’01-Jan-1996’,

DD-MON-YYYY’)

expr The substitution value can be an
expression of any datatype.

sal + 1000

integer The substitution value must be an
integer.

72

rowid The substitution value must be an
expression of datatype ROWID.

00000462.0001.0001

subquery The substitution value must be a
SELECT statement contained in
another SQL statement.

SELECT ename

 FROM emp

statement_name

block_name

The substitution value must be an
identifier for a SQL statement or
PL/SQL block.

s1

b1

xii

Lowercase words in example statements indicate words supplied only for the

context of the example. For example, lowercase words may indicate the name of a

table, column, or file.

xiii

Contents

Send Us Your Comments ... iii

Preface ... v

Part I Introduction to Tuning

1 Introduction to Oracle Performance Tuning

What Is Performance Tuning? .. 1-2
Trade-offs Between Response Time and Throughput .. 1-2
Critical Resources ... 1-4
Effects of Excessive Demand... 1-5
Adjustments to Relieve Problems .. 1-6

Who Tunes? .. 1-7
Setting Performance Targets ... 1-9
Setting User Expectations.. 1-9
Evaluating Performance .. 1-10

2 Performance Tuning Methods

When Is Tuning Most Effective?.. 2-1
Proactive Tuning While Designing and Developing Systems ... 2-1
Reactive Tuning to Improve Production Systems ... 2-3

Prioritized Tuning Steps.. 2-4
Step 1: Tune the Business Rules.. 2-7
Step 2: Tune the Data Design.. 2-7

xiv

Step 3: Tune the Application Design ... 2-9
Step 4: Tune the Logical Structure of the Database ... 2-9
Step 5: Tune Database Operations.. 2-9
Step 6: Tune the Access Paths ... 2-10
Step 7: Tune Memory Allocation.. 2-10
Step 8: Tune I/O and Physical Structure... 2-11
Step 9: Tune Resource Contention ... 2-11
Step 10: Tune the Underlying Platform(s)... 2-12

Applying the Tuning Method... 2-12
Set Clear Goals for Tuning .. 2-12
Create Minimum Repeatable Tests .. 2-13
Test Hypotheses .. 2-13
Keep Records and Automate Testing .. 2-13
Avoid Common Errors .. 2-14
Stop Tuning When Objectives Are Met... 2-15
Demonstrate Meeting the Objectives ... 2-15

Part II Application Design Tuning for Designers and Programmers

3 Application and System Performance Characteristics

Types of Applications .. 3-1
Online Transaction Processing (OLTP) ... 3-1
Data Warehousing .. 3-3
Multipurpose Applications ... 3-5

Oracle Configurations .. 3-6
Distributed Systems.. 3-7
The Oracle Parallel Server ... 3-8
Client/Server Configurations ... 3-9

4 Tuning Database Operations

Tuning Goals.. 4-2
Tuning a Serial SQL Statement ... 4-2
Tuning Parallel Execution ... 4-3
Tuning OLTP Applications ... 4-3

xv

Methodology for Tuning Database Operations .. 4-5
Step 1: Find the Statements that Consume the Most Resources .. 4-5
Step 2: Tune These Statements To Use Fewer Resources ... 4-5

Approaches to SQL Statement Tuning ... 4-6
Restructure the Indexes ... 4-7
Restructure the Statement ... 4-7
Modify or Disable Triggers ... 4-16
Restructure the Data... 4-16
Keeping Statistics Current and Using Plan Stability to Preserve Execution Plans 4-17

5 Registering Applications

DBMS_APPLICATION_INFO Package .. 5-2
Privileges.. 5-2

Setting the Module Name ... 5-2
Example.. 5-2
Syntax ... 5-3

Setting the Action Name ... 5-3
Example.. 5-3
Syntax ... 5-4

Setting the Client Information ... 5-4
Syntax ... 5-4

Retrieving Application Information ... 5-5
Querying V$SQLAREA ... 5-5
READ_MODULE Syntax... 5-5
READ_CLIENT_INFO Syntax.. 5-6

6 Data Access Methods

Using Indexes .. 6-2
When to Create Indexes... 6-2
Tuning the Logical Structure .. 6-3
Choosing Columns and Expressions to Index ... 6-4
Choosing Composite Indexes ... 6-5
Writing Statements that Use Indexes... 6-6
Writing Statements that Avoid Using Indexes... 6-7
Assessing the Value of Indexes .. 6-8

xvi

Using Fast Full Index Scans... 6-8
Re-creating Indexes .. 6-9
Compacting Indexes... 6-10
Using Nonunique Indexes to Enforce Uniqueness.. 6-10
Using Enabled Novalidated Constraints... 6-10

Using Function-based Indexes ... 6-12
Function-based Indexes and Index Organized Tables .. 6-13

Using Bitmap Indexes .. 6-13
When to Use Bitmap Indexes .. 6-13
Creating Bitmap Indexes ... 6-16
Initialization Parameters for Bitmap Indexing ... 6-18
Using Bitmap Access Plans on Regular B*-tree Indexes ... 6-19
Estimating Bitmap Index Size ... 6-20
Bitmap Index Restrictions.. 6-23

Using Domain Indexes... 6-23
Using Clusters.. 6-24
Using Hash Clusters ... 6-25

When to Use a Hash Cluster ... 6-25
Creating Hash Clusters .. 6-26

7 Optimizer Modes, Plan Stability, and Hints

Using Cost-based Optimization... 7-2
When to Use the Cost-based Approach... 7-2
Using the Cost-based Approach... 7-3
Choosing a Goal for the Cost-based Approach.. 7-3
Using Histograms for Nonuniformly Distributed Data.. 7-5

Generating Statistics .. 7-7
Gathering Statistics with the DBMS_STATS Package ... 7-9
Gathering New Optimizer Statistics .. 7-18

Automated Statistics Gathering ... 7-19
Parameters Affecting Cost-based Optimization Plans .. 7-21
Parameters Affecting How the Optimizer Uses Indexes .. 7-22
Tips for Using the Cost-based Approach .. 7-23

Using Rule-Based Optimization .. 7-24
Using Plan Stability to Preserve Execution Plans... 7-25

xvii

Plan Stability Uses Hints and Exact Text Matching .. 7-25
Matching SQL Statements with Outlines.. 7-27
How Oracle Stores Outlines.. 7-27
Parameter Settings to Enable Plan Stability.. 7-27

Creating Outlines.. 7-28
Creating and Assigning Categories to Stored Outlines .. 7-28
Using Stored Outlines .. 7-28
Viewing Outline Data .. 7-29

Managing Stored Outlines with the OUTLN_PKG Package... 7-30
Moving Outline Tables .. 7-31

Plan Stability Procedures for the Cost-based Optimizer .. 7-32
Using Outlines to Move to the Cost-based Optimizer .. 7-32
RDBMS Upgrades and the Cost-based Optimizer .. 7-34

Using Hints .. 7-36
Specifying Hints.. 7-36
Hints for Optimization Approaches and Goals ... 7-38
Hints for Access Methods.. 7-41
Hints for Join Orders.. 7-51
Hints for Join Operations .. 7-52
Hints for Parallel Execution .. 7-57
Additional Hints ... 7-63
Using Hints with Views... 7-68

8 Tuning Distributed Queries

Remote and Distributed Queries... 8-1
Remote Data Dictionary Information .. 8-2
Remote SQL Statements .. 8-2
Distributed SQL Statements.. 8-3
EXPLAIN PLAN and SQL Decomposition... 8-6
Partition Views.. 8-6

Distributed Query Restrictions.. 8-10
Transparent Gateways.. 8-11
Summary: Optimizing Performance of Distributed Queries... 8-12

xviii

9 Transaction Modes

Using Discrete Transactions.. 9-1
Deciding When to Use Discrete Transactions .. 9-1
How Discrete Transactions Work... 9-2
Errors During Discrete Transactions ... 9-3
Usage Notes ... 9-3
Example.. 9-4

Using Serializable Transactions ... 9-5

10 Managing SQL and Shared PL/SQL Areas

Comparing SQL Statements and PL/SQL Blocks ... 10-2
Testing for Identical SQL Statements... 10-2
Aspects of Standardized SQL Formatting... 10-3

Keeping Shared SQL and PL/SQL in the Shared Pool .. 10-3
Reserving Space for Large Allocations .. 10-3
Preventing Objects from Aging Out .. 10-3

11 Optimizing Data Warehouse Applications

Characteristics of Data Warehouse Applications ... 11-1
Building a Data Warehouse .. 11-2

Materialized Views and Dimensions ... 11-2
Parallel CREATE TABLE . . . AS SELECT ... 11-3
Parallel Index Creation .. 11-3
Fast Full Index Scan.. 11-3
Partitioned Tables ... 11-4
ANALYZE Statement... 11-4
Parallel Load.. 11-4
Constraints... 11-5

Querying a Data Warehouse ... 11-5
Oracle Parallel Server Option ... 11-6
Parallel-Aware Optimizer ... 11-6
Parallel Execution ... 11-7
Bitmap Indexes.. 11-7
Domain Indexes .. 11-8

xix

Star Queries ... 11-8
Query Rewrites ... 11-9

Tuning Data Warehouse Applications .. 11-9
Backup and Recovery of the Data Warehouse .. 11-9

Tuning Fast-start Parallel Recovery... 11-10

Part III Application Design Tools for Designers and DBAs

12 Overview of Diagnostic Tools

Sources of Data for Tuning ... 12-1
Data Volumes.. 12-2
Online Data Dictionary.. 12-2
Operating System Tools... 12-3
Dynamic Performance Tables ... 12-3
Oracle Trace and Oracle Trace Data Viewer... 12-3
SQL Trace Facility... 12-3
Alert Log .. 12-3
Application Program Output.. 12-4
Users ... 12-4
Initialization Parameter Files .. 12-4
Program Text... 12-4
Design (Analysis) Dictionary.. 12-4
Comparative Data... 12-5

Dynamic Performance Views ... 12-5
Oracle and SNMP Support ... 12-5
EXPLAIN PLAN .. 12-6
Oracle Trace and Oracle Trace Data Viewer... 12-6
The SQL Trace Facility and TKPROF ... 12-6
Supported Scripts ... 12-7
Application Registration ... 12-7
Oracle Enterprise Manager, Packs, and Applications.. 12-7

Introduction to Oracle Enterprise Manager.. 12-8
Oracle Diagnostics Pack .. 12-9
Oracle Tuning Pack .. 12-11

Oracle Parallel Server Management.. 12-12

xx

Tools You May Have Developed .. 12-13

13 Using EXPLAIN PLAN

Introduction to EXPLAIN PLAN.. 13-1
Creating the Output Table... 13-2
Displaying PLAN_TABLE Output .. 13-3
Output Table Columns... 13-3

Bitmap Indexes and EXPLAIN PLAN... 13-13
EXPLAIN PLAN and Partitioned Objects .. 13-13

Examples of How EXPLAIN PLAN Displays Range and Hash Partitioning.................. 13-15
Pruning Information with Composite Partitioned Objects .. 13-17
Partial Partition-wise Joins .. 13-19
Full Partition-wise Joins... 13-21
INLIST ITERATOR and EXPLAIN PLAN .. 13-22
DOMAIN INDEX and EXPLAIN PLAN... 13-24

Formatting EXPLAIN PLAN Output... 13-24
Using the EXPLAIN PLAN Statement .. 13-25
Selecting PLAN_TABLE Output in Table Format ... 13-25
Selecting PLAN_TABLE Output in Nested Format .. 13-27
EXPLAIN PLAN Restrictions ... 13-28

14 The SQL Trace Facility and TKPROF

Introduction to SQL Trace and TKPROF.. 14-1
About the SQL Trace Facility .. 14-2
About TKPROF ... 14-2
Using the SQL Trace Facility and TKPROF .. 14-3

Step 1: Set Initialization Parameters for Trace File Management.. 14-3
Step 2: Enable the SQL Trace Facility.. 14-4

Enabling the SQL Trace Facility for Your Current Session .. 14-5
Enabling the SQL Trace Facility for an Instance .. 14-5

Step 3: Format Trace Files with TKPROF ... 14-5
Sample TKPROF Output ... 14-6
Syntax of TKPROF.. 14-7
TKPROF Statement Examples... 14-10

Step 4: Interpret TKPROF Output ... 14-12

xxi

Tabular Statistics... 14-12
Library Cache Misses ... 14-14
Statement Truncation... 14-14
User Issuing the SQL Statement ... 14-15
Execution Plan... 14-15
Deciding Which Statements to Tune ... 14-15

Step 5: Store SQL Trace Facility Statistics.. 14-17
Generating the TKPROF Output SQL Script .. 14-17
Editing the TKPROF Output SQL Script... 14-17
Querying the Output Table... 14-17

Avoiding Pitfalls in TKPROF Interpretation .. 14-20
Finding Which Statements Constitute the Bulk of the Load.. 14-20
The Argument Trap.. 14-20
The Read Consistency Trap .. 14-21
The Schema Trap .. 14-21
The Time Trap... 14-22
The Trigger Trap... 14-23
The "Correct" Version... 14-23

TKPROF Output Example... 14-24
Header.. 14-24
Body.. 14-24
Summary.. 14-31

15 Using Oracle Trace

Introduction to Oracle Trace ... 15-1
Using Oracle Trace Data.. 15-1

Using Oracle Trace Manager... 15-4
Managing Collections .. 15-4
Collecting Event Data .. 15-5
Accessing Collected Data .. 15-5

Using Oracle Trace Data Viewer .. 15-6
Oracle Trace Predefined Data Views... 15-6
Viewing Oracle Trace Data ... 15-12
SQL Statement Property Page... 15-14
Details Property Page... 15-14

xxii

Example of Details Property Page.. 15-14
Getting More Information on a Selected Query... 15-16

Manually Collecting Oracle Trace Data.. 15-19
Using the Oracle Trace Command-Line Interface ... 15-19
Using Initialization Parameters to Control Oracle Trace ... 15-21
Using Stored Procedures to Control Oracle Trace ... 15-24
Oracle Trace Collection Results .. 15-25
Formatting Oracle Trace Data to Oracle Tables ... 15-25
Oracle Trace Statistics Reporting Utility ... 15-26

Part IV Optimizing Instance Performance

16 Dynamic Performance Views

Instance-Level Views for Tuning ... 16-2
Session-Level or Transient Views for Tuning.. 16-3
Current Statistic Values and Rates of Change... 16-4

Finding the Current Value of a Statistic .. 16-4
Finding the Rate of Change of a Statistic... 16-5

17 Diagnosing System Performance Problems

Tuning Factors for Well Designed Existing Systems ... 17-1
Insufficient CPU .. 17-3
Insufficient Memory ... 17-4
Insufficient I/O .. 17-4
Network Constraints .. 17-5
Software Constraints .. 17-6

18 Tuning CPU Resources

Understanding CPU Problems ... 18-1
Detecting and Solving CPU Problems .. 18-3

System CPU Utilization ... 18-3
Oracle CPU Utilization .. 18-5

Solving CPU Problems by Changing System Architectures .. 18-10
Single Tier to Two-Tier .. 18-11

xxiii

Multi-Tier: Using Smaller Client Machines .. 18-12
Two-Tier to Three-Tier: Using a Transaction Processing Monitor.................................... 18-12
Three-Tier: Using Multiple TP Monitors... 18-13
Oracle Parallel Server... 18-13

19 Tuning Memory Allocation

Understanding Memory Allocation Issues.. 19-1
Detecting Memory Allocation Problems.. 19-3
Solving Memory Allocation Problems ... 19-3
Tuning Operating System Memory Requirements .. 19-4

Reducing Paging and Swapping .. 19-4
Fitting the System Global Area into Main Memory .. 19-5
Allocating Adequate Memory to Individual Users... 19-6

Tuning the Redo Log Buffer ... 19-6
Tuning Private SQL and PL/SQL Areas.. 19-7

Identifying Unnecessary Parse Calls ... 19-8
Reducing Unnecessary Parse Calls .. 19-9

Tuning the Shared Pool ... 19-10
Tuning the Library Cache.. 19-13
Tuning the Data Dictionary Cache... 19-19

Tuning the Large Pool and Shared Pool for the Multi-threaded Server Architecture 19-21
Reducing Memory Use With Three-Tier Connections.. 19-21

The V$SESSTAT View ... 19-22
Querying the V$SESSTAT View... 19-22

Tuning Reserved Space from the Shared Pool .. 19-23
Reserved List Tuning Parameters .. 19-23
Controlling Space Reclamation of the Shared Pool ... 19-24
Initial Parameter Values .. 19-24
SHARED_POOL_ RESERVED_SIZE Too Small .. 19-25
SHARED_POOL_ RESERVED_SIZE Too Large.. 19-25
SHARED_POOL_SIZE Too Small.. 19-25

Tuning the Buffer Cache.. 19-25
Evaluating Buffer Cache Activity by Means of the Cache Hit Ratio 19-26
Increasing the Cache Hit Ratio by Reducing Buffer Cache Misses 19-29
Removing Unnecessary Buffers when Cache Hit Ratio Is High.. 19-29

xxiv

Accommodating LOBs in the Buffer Cache ... 19-30
Temporary LOBs... 19-30

Tuning Multiple Buffer Pools... 19-30
Overview of the Multiple Buffer Pool Feature ... 19-31
When to Use Multiple Buffer Pools.. 19-32
Tuning the Buffer Cache Using Multiple Buffer Pools ... 19-33
Enabling Multiple Buffer Pools .. 19-33
Using Multiple Buffer Pools.. 19-35
Dictionary Views Showing Default Buffer Pools ... 19-37
Sizing Each Buffer Pool.. 19-37
Identifying and Eliminating LRU Latch Contention ... 19-40

Tuning Sort Areas ... 19-41
Reallocating Memory ... 19-41
Reducing Total Memory Usage .. 19-42

20 Tuning I/O

Understanding I/O Problems.. 20-1
Tuning I/O: Top Down and Bottom Up ... 20-2
Analyzing I/O Requirements ... 20-2
Planning File Storage.. 20-5
Choosing Data Block Size .. 20-15
Evaluating Device Bandwidth .. 20-16

Detecting I/O Problems ... 20-17
Checking System I/O Utilization... 20-17
Checking Oracle I/O Utilization .. 20-17

Solving I/O Problems ... 20-20
Reducing Disk Contention by Distributing I/O... 20-20

What Is Disk Contention?.. 20-20
Separating Datafiles and Redo Log Files... 20-21
Striping Table Data... 20-21
Separating Tables and Indexes ... 20-22
Reducing Disk I/O Unrelated to Oracle ... 20-22

Striping Disks.. 20-22
The Purpose of Striping ... 20-22
I/O Balancing and Striping... 20-22

xxv

Striping Disks Manually.. 20-23
Striping Disks with Operating System Software ... 20-25
Striping Hardware with RAID ... 20-25

Avoiding Dynamic Space Management ... 20-26
Detecting Dynamic Extension... 20-26
Allocating Extents... 20-27
Evaluating Unlimited Extents... 20-28
Evaluating Multiple Extents ... 20-29
Avoiding Dynamic Space Management in Rollback Segments... 20-29
Reducing Migrated and Chained Rows .. 20-30
Modifying the SQL.BSQ File... 20-33

Tuning Sorts ... 20-34
Sorting to Memory.. 20-34
Sorting to Disk... 20-36
Optimizing Sort Performance with Temporary Tablespaces... 20-36
Improving Sort Performance by Striping Temporary Tablespaces................................... 20-37
Improving Sort Performance Using SORT_MULTIBLOCK_READ_COUNT 20-37
Using NOSORT to Create Indexes Without Sorting ... 20-37
GROUP BY NOSORT... 20-38

Tuning Checkpoints ... 20-38
How Checkpoints Affect Performance.. 20-39
Choosing Checkpoint Frequency ... 20-39
Fast-Start Checkpointing ... 20-40

Tuning LGWR and DBWn I/O ... 20-40
Tuning LGWR I/O ... 20-40
Tuning DBWn I/O ... 20-42

Tuning Backup and Restore Operations .. 20-45
Locating the Source of a Bottleneck ... 20-46
Using Fixed Views to Monitor Backup Operations... 20-47
Improving Backup Throughput ... 20-50

Configuring the Large Pool ... 20-54

xxvi

21 Tuning Resource Contention

Understanding Contention Issues ... 21-1
Detecting Contention Problems... 21-2
Solving Contention Problems .. 21-3
Reducing Contention for Rollback Segments... 21-3

Identifying Rollback Segment Contention.. 21-3
Creating Rollback Segments.. 21-4

Reducing Contention for Multi-threaded Server Processes ... 21-5
Identifying Contention Using the Dispatcher-specific Views.. 21-5
Reducing Contention for Dispatcher Processes ... 21-6
Reducing Contention for Shared Server Processes.. 21-10

Reducing Contention for Parallel Execution Servers .. 21-14
Identifying Contention for Parallel Execution Servers.. 21-14
Reducing Contention for Parallel Execution Servers .. 21-15

Reducing Contention for Redo Log Buffer Latches ... 21-15
Detecting Contention for Space in the Redo Log Buffer ... 21-15
Detecting Contention for Redo Log Buffer Latches... 21-16
Examining Redo Log Activity... 21-17
Reducing Latch Contention... 21-19

Reducing Contention for the LRU Latch.. 21-20
Reducing Free List Contention... 21-21

Identifying Free List Contention .. 21-21
Adding More Free Lists ... 21-22

22 Tuning Networks

Detecting Network Problems ... 22-1
Solving Network Problems... 22-2

Using Array Interfaces ... 22-2
Using Prestarted Processes.. 22-2
Adjusting Session Data Unit Buffer Size ... 22-3
Increasing the Listener Queue Size .. 22-3
Using TCP.NODELAY... 22-3
Using Shared Server Processes Rather than Dedicated Server Processes 22-3
Using Connection Manager... 22-4

xxvii

23 Tuning the Multi-Threaded Server Architecture

Setting Up MTS... 23-1
Application Types that Benefit from MTS .. 23-1

Improving User Scalability with MTS ... 23-2
Configuring Dispatchers ... 23-3
Connection Pooling and Connection Multiplexing... 23-3

Maximizing Throughput and Response Time with MTS... 23-4
Configuring and Managing the Number of Shared Servers .. 23-4
Tuning the SDU Size .. 23-5

Balancing Load Connections .. 23-5
Tuning Memory Use with MTS ... 23-5

Configuring the Large Pool and Shared Pool for MTS ... 23-6
Limiting Memory Use Per User Session by Setting PRIVATE_SGA 23-6

MTS-related Views with Connection, Load and Statistics Data ... 23-7
MTS Feature Performance Issues .. 23-8

24 Tuning the Operating System

Understanding Operating System Performance Issues .. 24-1
Operating System and Hardware Caches... 24-2
Raw Devices .. 24-2
Process Schedulers.. 24-2

Detecting Operating System Problems .. 24-3
Solving Operating System Problems.. 24-3

Performance on UNIX-Based Systems .. 24-4
Performance on NT Systems... 24-4
Performance on Mainframe Computers.. 24-4

25 Tuning Instance Recovery Performance

Understanding Instance Recovery... 25-1
How Oracle Applies Redo Log Information .. 25-1
Trade-offs of Minimizing Recovery Duration.. 25-2

Tuning the Duration of Instance and Crash Recovery .. 25-2
Using Initialization Parameters to Influence Instance and Crash Recovery Time............ 25-3
Using Redo Log Size to Influence Checkpointing Frequency.. 25-5

xxviii

Using SQL Statements to Initiate Checkpoints... 25-6
Monitoring Instance Recovery ... 25-6
Tuning the Phases of Instance Recovery .. 25-14

Tuning the Rolling Forward Phase .. 25-14
Tuning the Rolling Back Phase ... 25-15

Transparent Application Failover .. 25-17
What Is Transparent Application Failover?.. 25-17
How does Transparent Application Failover Work? .. 25-17
Transparent Application Failover Implementation Scenarios ... 25-19
Transparent Application Failover Topics for the DBA ... 25-20
Transparent Application Failover Topics for Application Developers 25-23
Transparent Application Failover Restrictions .. 25-24

Part V Parallel Execution

26 Tuning Parallel Execution

Introduction to Parallel Execution Tuning ... 26-2
When to Implement Parallel Execution... 26-3

Phase One - Initializing and Tuning Parameters for Parallel Execution................................ 26-4
Step One: Selecting Automated or Manual Tuning of Parallel Execution 26-5

Automatically Derived Parameter Settings under Fully Automated Parallel Execution 26-5
Step Two: Setting the Degree of Parallelism and Enabling Adaptive Multi-User 26-7

Degree of Parallelism and Adaptive Multi-User and How They Interact 26-7
Enabling Parallelism for Tables and Queries.. 26-8
Controlling Performance with PARALLEL_THREADS_PER_CPU................................... 26-8

Step Three: Tuning General Parameters... 26-9
Parameters Establishing Resource Limits for Parallel Operations 26-9
Parameters Affecting Resource Consumption ... 26-19
Parameters Related to I/O... 26-28

Example Parameter Setting Scenarios for Parallel Execution .. 26-30
Example One: Small Datamart.. 26-31
Example Two: Medium-sized Data Warehouse... 26-32
Example Three: Large Data Warehouse .. 26-33
EXAMPLE Four: Very Large Data Warehouse .. 26-34

Phase Two - Tuning Physical Database Layouts for Parallel Execution............................... 26-36

xxix

Types of Parallelism ... 26-36
Partitioning Data... 26-45
Partition Pruning .. 26-51
Partition-wise Joins... 26-52

Phase Three - Creating, Populating, and Refreshing the Database 26-63
Populating Databases Using Parallel Load... 26-63
Creating Temporary Tablespaces for Parallel Sort and Hash Join.................................... 26-70
Creating Indexes in Parallel .. 26-71
Executing Parallel SQL Statements .. 26-72
Using EXPLAIN PLAN to Show Parallel Operations Plans .. 26-73
Additional Considerations for Parallel DML ... 26-73

Phase Four - Monitoring Parallel Execution Performance.. 26-78
Monitoring Parallel Execution Performance with Dynamic Performance Views 26-78
Monitoring Session Statistics .. 26-81
Monitoring Operating System Statistics.. 26-83

27 Understanding Parallel Execution Performance Issues

Understanding Parallel Execution Performance Issues .. 27-1
Formula for Memory, Users, and Parallel Execution Server Processes.............................. 27-2
Setting Buffer Pool Size for Parallel Operations .. 27-4
Balancing the Formula ... 27-5
Examples: Balancing Memory, Users, and Parallel Execution Servers 27-8
Parallel Execution Space Management Issues.. 27-12
Tuning Parallel Execution on Oracle Parallel Server .. 27-13

Parallel Execution Tuning Tips .. 27-17
Overriding the Default Degree of Parallelism.. 27-17
Rewriting SQL Statements .. 27-18
Creating and Populating Tables in Parallel .. 27-18
Creating Indexes in Parallel .. 27-20
Parallel DML Tips... 27-22
Refreshing Tables in Parallel... 27-25
Using Hints with Cost Based Optimization ... 27-27

Diagnosing Problems... 27-27
Is There Regression?... 27-29
Is There a Plan Change?... 27-30

xxx

Is There a Parallel Plan? ... 27-30
Is There a Serial Plan? .. 27-30
Is There Parallel Execution? .. 27-31
Is The Workload Evenly Distributed? ... 27-32

Part VI Materialized Views

28 Data Warehousing with Materialized Views

Overview of Data Warehousing with Materialized Views ... 28-1
Materialized Views for Data Warehouses... 28-2
Materialized Views for Distributed Computing .. 28-2
Materialized Views for Mobile Computing.. 28-3
Components of Summary Management ... 28-3
Terminology .. 28-5

Materialized Views ... 28-6
Schema Design Guidelines for Materialized Views .. 28-7

Oracle Tools for Data Warehousing... 28-9
Getting Started .. 28-9

29 Materialized Views

The Need for Materialized Views.. 29-2
Creating a Materialized View ... 29-3

Naming... 29-4
Storage Characteristics... 29-5
Build Methods ... 29-5
Used for Query Rewrite... 29-6
Query Rewrite Restrictions ... 29-6
Refresh Options... 29-7
Defining the Data for the Materialized View ... 29-10

Registration of an Existing Materialized View ... 29-16
Partitioning a Materialized View... 29-18

Partitioning the Materialized View.. 29-19
Partitioning a Prebuilt Table ... 29-20

Indexing Selection for Materialized Views ... 29-21

xxxi

Invalidating a Materialized View.. 29-21
Security Issues... 29-22

Guidelines for using Materialized Views in a Data Warehouse ... 29-22
Altering a Materialized View ... 29-23
Dropping a Materialized View .. 29-23

30 Dimensions

Dimensions in a Data Warehouse ... 30-1
Creating a Dimension .. 30-3

Multiple Hierarchies .. 30-6
Using Normalized Dimension Tables ... 30-7
Viewing Dimensions .. 30-8
Dimensions and Constraints... 30-10

Validating a Dimension... 30-10
Altering a Dimension... 30-11
Deleting a Dimension... 30-12

31 Query Rewrite

Overview of Query Rewrite.. 31-1
Cost-Based Rewrite .. 31-2
Enabling Query Rewrite.. 31-3

Initialization Parameters for Query Rewrite .. 31-4
Privileges for Enabling Query Rewrite ... 31-4

When Does Oracle Rewrite a Query? ... 31-5
Query Rewrite Methods .. 31-6

SQL Text Match Rewrite Methods... 31-7
General Query Rewrite Methods ... 31-8

When are Constraints and Dimensions Needed?... 31-18
Accuracy of Query Rewrite ... 31-18
Did Query Rewrite Occur?.. 31-20

Explain Plan... 31-20
Controlling Query Rewrite ... 31-21

Guidelines for Using Query Rewrite.. 31-22
Constraints... 31-22
Dimensions .. 31-22

xxxii

Outer Joins ... 31-22
SQL Text Match... 31-22
Aggregates ... 31-23
Grouping Conditions ... 31-23
Statistics.. 31-23

32 Managing Materialized Views

Overview of Materialized View Management .. 32-1
Warehouse Refresh ... 32-3

Complete Refresh.. 32-4
Fast Refresh.. 32-5
Tips for Refreshing Using Warehouse Refresh .. 32-9
Recommended Initialization Parameters for Parallelism ... 32-13
Monitoring a Refresh.. 32-14
Tips after Refreshing Materialized Views... 32-14

Summary Advisor ... 32-14
Collecting Structural Statistics .. 32-15
Collection of Dynamic Workload Statistics .. 32-16
Recommending Materialized Views.. 32-17
Estimating Materialized View Size .. 32-20

Is a Materialized View Being Used?.. 32-21

Part I
 Introduction to Tuning

Part I provides an overview of Oracle Server tuning concepts. The chapters in this

part are:

■ Chapter 1, "Introduction to Oracle Performance Tuning"

■ Chapter 2, "Performance Tuning Methods"

Introduction to Oracle Performance Tuning 1-1

1
Introduction to Oracle Performance Tuning

The Oracle server is a sophisticated and highly tunable software product. Its

flexibility allows you to make small adjustments that affect database performance.

By tuning your system, you can tailor its performance to best meet your needs.

Tuning begins in the system planning and design phases and continues throughout

the life of your system. If you carefully consider performance issues during the

planning phase, the easier it will be to tune your system during production.

This book begins by describing tuning and explaining tuning methods. Then Part

Two describes how system designers and programmers can plan for optimal

performance. Part Three explains the design tools for designers and DBAs. Part

Four explains how to optimize performance during production. Parts Five and Six

describe parallel execution and Materialized Views respectively.

Topics in this chapter include:

■ What Is Performance Tuning?

■ Who Tunes?

■ Setting Performance Targets

■ Setting User Expectations

■ Evaluating Performance

What Is Performance Tuning?

1-2 Oracle8i Tuning

What Is Performance Tuning?
When considering performance, you should understand several fundamental

concepts as described in this section:

■ Trade-offs Between Response Time and Throughput

■ Critical Resources

■ Effects of Excessive Demand

■ Adjustments to Relieve Problems

Trade-offs Between Response Time and Throughput
Goals for tuning vary, depending on the needs of the application. Online transaction

processing (OLTP) applications define performance in terms of throughput. These

applications must process thousands or even millions of very small transactions per

day. By contrast, decision support systems (DSS applications) define performance in

terms of response time. Demands on the database that are made by users of DSS

applications vary dramatically. One moment they may enter a query that fetches

only a few records, and the next moment they may enter a massive parallel query

that fetches and sorts hundreds of thousands of records from different tables.

Throughput becomes more of an issue when an application must support a large

number of users running DSS queries.

Response Time
Because response time equals service time plus wait time, you can increase

performance two ways: by reducing service time or by reducing wait time.

What Is Performance Tuning?

Introduction to Oracle Performance Tuning 1-3

Figure 1–1 illustrates ten independent tasks competing for a single resource.

Figure 1–1 Sequential Processing of Multiple Independent Tasks

In this example only task 1 runs without having to wait. Task 2 must wait until task

1 has completed; task 3 must wait until tasks 1 and 2 have completed, and so on.

(Although the figure shows the independent tasks as the same size, the size of the

tasks vary.)

System Throughput
System throughput equals the amount of work accomplished in a given amount of

time. Two techniques of increasing throughput exist:

■ Get more work done with the same resources (reduce service time).

■ Get the work done quicker by reducing overall response time. To do this, look

at the wait time. You may be able to duplicate the resource for which all the

Note: In parallel processing, if you have multiple resources, then

more resources can be assigned to the tasks. Each independent task

executes immediately using its own resource: no wait time is

involved.

service time

wait time

TOTAL ELAPSED TIME

SEQUENTIAL
TASKS

1

2

3

4

5

6

7

8

9

10

What Is Performance Tuning?

1-4 Oracle8i Tuning

users are waiting. For example, if the system is CPU bound you can add more

CPUs.

Wait Time
The service time for a task may stay the same, but wait time increases as contention

increases. If many users are waiting for a service that takes 1 second, the tenth user

must wait 9 seconds for a service that takes 1 second.

Figure 1–2 Wait Time Rising with Increased Contention for a Resource

Critical Resources
Resources such as CPUs, memory, I/O capacity, and network bandwidth are key to

reducing service time. Added resources make higher throughput possible and

facilitate swifter response time. Performance depends on the following:

■ How many resources are available?

■ How many clients need the resource?

■ How long must they wait for the resource?

■ How long do they hold the resource?

Figure 1–3 shows that as the number of units requested rises, the time to service

completion rises.

Contention for a Resource

W
ai

t
T

im
e

What Is Performance Tuning?

Introduction to Oracle Performance Tuning 1-5

Figure 1–3 Time to Service Completion vs. Demand Rate

To manage this situation, you have two options:

■ You can limit demand rate to maintain acceptable response times.

■ Alternatively, you can add multiple resources: another CPU or disk.

Effects of Excessive Demand
Excessive demand gives rise to:

■ Greatly increased response time

■ Reduced throughput

If there is any possibility of demand rate exceeding achievable throughput, a

demand limiter is essential.

Demand Rate

T
im

e
to

 s
er

vi
ce

 c
o

m
p

le
ti

o
n

What Is Performance Tuning?

1-6 Oracle8i Tuning

Figure 1–4 Increased Response Time/Reduced Throughput

Adjustments to Relieve Problems
You can relieve performance problems by making the following adjustments:

For example, if your system’s busiest times are from 9:00AM until 10:30AM, and

from 1:00PM until 2:30PM, you can run batch jobs in the background after 2:30PM

when there is more capacity. Thus, you can spread the demand more evenly.

Alternatively, you can allow for delays at peak times.

Adjusting unit consumption You can relieve some problems by using fewer

resources per transaction or by reducing service

time. Or you can take other approaches, such as

reducing the number of I/Os per transaction.

Adjusting functional demand Other problems can be solved by rescheduling

or redistributing the work.

Adjusting capacity You can also relieve problems by increasing or

reallocating resource. If you start using multiple

CPUs, going from a single CPU to a symmetric

multiprocessor, multiple resources are available.

Demand Rate

T
h

ro
u

g
h

p
u

t

Who Tunes?

Introduction to Oracle Performance Tuning 1-7

Figure 1–5 Adjusting Capacity and Functional Demand

Who Tunes?
Everyone involved with the system has a role in tuning. When people communicate

and document the system’s characteristics, tuning becomes significantly easier and

faster.

Time

F
u

n
ct

io
n

al
 D

em
an

d

9:00 10:30 1:00 2:30

Who Tunes?

1-8 Oracle8i Tuning

Figure 1–6 Who Tunes the System?

■ Business executives must define and then reexamine business rules and

procedures to provide a clear and adequate model for application design. They

must identify the specific types of rules and procedures that influence the

performance of the entire system.

■ Application designers must design around potential performance bottlenecks.

They must communicate the system design so everyone can understand an

application’s data flow.

■ Application developers must communicate the implementation strategies they

select so modules and SQL statements can be quickly and easily identified

during statement tuning.

■ Database administrators (DBAs) must carefully monitor and document system

activity so they can identify and correct unusual system performance.

■ Hardware and software administrators must document and communicate the

configuration of the system so everyone can design and administer the system

effectively.

Decisions made in application development and design have the greatest effect on

performance. Once the application is deployed, the database administrator usually

has the primary responsibility for tuning.

Database
Administrator

Application
Developer

Business
Executive

Business Rules
Business

Procedures

Application
Designer

Design Implementation Management

Setting User Expectations

Introduction to Oracle Performance Tuning 1-9

Setting Performance Targets
Whether you are designing or maintaining a system, you should set specific

performance goals so you know when to tune. You may waste time tuning your

system if you alter initialization parameters or SQL statements without a specific

goal.

When designing your system, set a goal such as "achieving an order entry response

time of fewer than three seconds". If the application does not meet that goal,

identify the bottleneck that prevents this (for example, I/O contention), determine

the cause, and take corrective action. During development, test the application to

determine whether it meets the designed performance goals before deploying the

application.

Tuning is usually a series of trade-offs. Once you have identified bottlenecks, you

may have to sacrifice other system resources to achieve the desired results. For

example, if I/O is a problem, you may need to purchase more memory or more

disks. If a purchase is not possible, you may have to limit the concurrency of the

system to achieve the desired performance. However, with clearly defined

performance goals, the decision on what resource to relinquish in exchange for

improved performance is simpler because you have identified the most important

areas.

Setting User Expectations
Application developers and database administrators must be careful to set

appropriate performance expectations for users. When the system performs a

particularly complicated operation, response time may be slower than when it is

performing a simple operation. In this case, slower response time is not

unreasonable.

If a DBA promises 1-second response time, consider how this might be interpreted.

The DBA might mean that the operation would take 1 second in the database—and

See Also: Chapter 17, "Diagnosing System Performance

Problems" for problem-solving methods that can help identify and

solve performance problems.

Note: At no time should achieving performance goals override

your ability to recover data. Performance is important, but ability to

recover data is critical.

Evaluating Performance

1-10 Oracle8i Tuning

might well be able to achieve this goal. However, users querying over a network

might experience a delay of a couple of seconds due to network traffic: they may

not receive the response they expect in 1 second.

Evaluating Performance
With clearly defined performance goals, you can readily determine when

performance tuning has been successful. Success depends on the functional

objectives you have established with the user community, your ability to measure

objectively whether the criteria are being met, and your ability to take corrective

action to overcome exceptions. The rest of this tuning manual describes the tuning

methodology in detail with information about diagnostic tools and the types of

corrective actions you can take.

DBAs responsible for solving performance problems must remember all factors that

together affect response time. Sometimes what initially seems like the most obvious

source of a problem is actually not the problem at all. Users in the preceding

example might conclude that there is a problem with the database, whereas the

actual problem is with the network. A DBA must monitor the network, disk, CPU,

and so on, to identify the actual source of the problem—rather than simply assume

that all performance problems stem from the database.

Ongoing performance monitoring enables you to maintain a well-tuned system.

You can make useful comparisons by keeping a history of the application’s

performance over time. Data showing resource consumption for a broad range of

load levels helps you conduct objective scalability studies. From such detailed

performance history you can begin to predict the resource requirements for future

load levels.

See Also: Chapter 12, "Overview of Diagnostic Tools".

Performance Tuning Methods 2-1

2
Performance Tuning Methods

A well planned methodology is the key to success in performance tuning. Different

tuning strategies vary in their effectiveness. Furthermore, systems with different

purposes, such as online transaction processing systems and decision support

systems, likely require different tuning methods.

Topics in this chapter include:

■ When Is Tuning Most Effective?

■ Prioritized Tuning Steps

■ Applying the Tuning Method

When Is Tuning Most Effective?
For best results, tune during the design phase rather than waiting to tune after

implementing your system.

■ Proactive Tuning While Designing and Developing Systems

■ Reactive Tuning to Improve Production Systems

Proactive Tuning While Designing and Developing Systems
By far the most effective approach to tuning is the pro-active approach. Begin by

following the steps described in this chapter under "Prioritized Tuning Steps" on

page 2-4.

See Also: "Oracle Expert". Oracle Expert automates the process of

collecting and analyzing data. It also provides database tuning

recommendations, implementation scripts, and performance

reports.

When Is Tuning Most Effective?

2-2 Oracle8i Tuning

Business executives should work with application designers to establish

performance goals and set realistic performance expectations. During design and

development, the application designers can then determine which combination of

system resources and available Oracle features best meet these needs.

By designing a system to perform well, you can minimize its implementation and

on-going administration cost. Figure 2–1 illustrates the relative cost of tuning during

the life of an application.

Figure 2–1 Cost of Tuning During the Life of an Application

To complement this view, Figure 2–2 shows that the relative benefit of tuning an

application over the course of its life is inversely proportional to the cost expended.

Time

C
o

st

Design Development Production

When Is Tuning Most Effective?

Performance Tuning Methods 2-3

Figure 2–2 Benefit of Tuning During the Life of an Application

The most effective time to tune is during the design phase: you get the maximum

benefit for the lowest cost.

Reactive Tuning to Improve Production Systems
The tuning process does not begin when users complain about poor response time.

When response time is this poor, it is usually too late to use some of the most

effective tuning strategies. At that point, if you are unwilling to completely redesign

the application, you may only improve performance marginally by reallocating

memory and tuning I/O.

For example, a bank that employs one teller and one manager. It has a business rule

that the manager must approve withdrawals over $20. Upon investigation, you may

find that there is a long queue of customers, and decide you need more tellers. You

may add 10 more tellers, but then find that the bottleneck moves to the manager’s

function. However, the bank may determine that it is too expensive to hire

additional managers. In this example, regardless of how carefully you may tune the

system using the existing business rule, getting better performance will be very

expensive.

Alternatively, a change to the business rule may be necessary to make the system

more scalable. If you change the rule so the manager only needs to approve

withdrawals exceeding $150, you have created a scalable solution. In this situation,

Time

B
en

ef
it

Design Development Production

Prioritized Tuning Steps

2-4 Oracle8i Tuning

effective tuning could only be done at the highest design level rather than at the end

of the process.

It is possible to reactively tune an existing production system. To take this approach,

start at the bottom of the method and work your way up, finding and fixing any

bottlenecks. A common goal is to make Oracle run faster on the given platform. You

may find, however, that both the Oracle server and the operating system are

working well: to get additional performance gains you may have to tune the

application or add resources. Only then can you take full advantage of the many

features Oracle provides that can greatly improve performance when properly used

in a well-designed system.

Even the performance of well-designed systems can degrade with use. Ongoing

tuning is therefore an important part of proper system maintenance.

Prioritized Tuning Steps
The following steps provide a recommended method for tuning an Oracle database.

These steps are prioritized in order of diminishing returns: steps with the greatest

effect on performance appear first. For optimal results, therefore, resolve tuning

issues in the order listed: from the design and development phases through instance

tuning.

Step 1: Tune the Business Rules

Step 2: Tune the Data Design

Step 3: Tune the Application Design

Step 4: Tune the Logical Structure of the Database

Step 5: Tune Database Operations

Step 6: Tune the Access Paths

Step 7: Tune Memory Allocation

Step 8: Tune I/O and Physical Structure

Step 9: Tune Resource Contention

See Also: Part 4: Optimizing Oracle Instance Performance. This

describes how to tune CPU, memory, I/O, networks, contention,

and the operating system. Also refer to Oracle8i Concepts This text

provides background on the Oracle server architecture and features

so you can locate performance bottlenecks quickly and easily and

determine the corrective action.

Prioritized Tuning Steps

Performance Tuning Methods 2-5

Step 10: Tune the Underlying Platform(s)

After completing these steps, reassess your database performance and decide

whether further tuning is necessary.

Tuning is an iterative process. Performance gains made in later steps may pave the

way for further improvements in earlier steps, so additional passes through the

tuning process may be useful.

Figure 2–3 illustrates the tuning method:

Prioritized Tuning Steps

2-6 Oracle8i Tuning

Figure 2–3 The Tuning Method

Decisions you make in one step may influence subsequent steps. For example, in

step 5 you may rewrite some of your SQL statements. These SQL statements may

have significant bearing on parsing and caching issues addressed in step 7. Also,

Tune the data design

Tune the business rules

Tune the application design

Tune the access paths

Tune database operations

Tune the I/O and physical structure

Tune memory allocation

Tune the underlying platform(s)

Tune the resource contention

Tune the logical structure of
the database

2

1

3

4

6

5

8

7

10

9

Prioritized Tuning Steps

Performance Tuning Methods 2-7

disk I/O, which is tuned in step 8, depends on the size of the buffer cache, which is

tuned in step 7. Although the figure shows a loop back to step 1, you may need to

return from any step to any previous step.

Step 1: Tune the Business Rules
For optimal performance, you may have to adapt business rules. These concern the

high-level analysis and design of an entire system. Configuration issues are

considered at this level, such as whether to use a multi-threaded server

system-wide. In this way, the planners ensure that the performance requirements of

the system correspond directly to concrete business needs.

Performance problems encountered by the DBA may actually be caused by

problems in design and implementation, or by inappropriate business rules.

Designers sometimes provide far greater detail than is needed when they write

business functions for an application. They document an implementation, rather

than simply the function that must be performed. If business executives effectively

distill business functions or requirements from the implementation, then designers

have more freedom when selecting an appropriate implementation.

Consider, for example, the business function of check printing. The actual

requirement is to pay money to people; the requirement is not necessarily to print

pieces of paper. Whereas it would be very difficult to print a million checks per day,

it would be relatively easy to record that many direct deposit payments on a tape

that could be sent to the bank for processing.

Business rules should be consistent with realistic expectations for the number of

concurrent users, the transaction response time, and the number of records stored

online that the system can support. For example, it would not make sense to run a

highly interactive application over slow, wide area network lines.

Similarly, a company soliciting users for an Internet service might advertise 10 free

hours per month for all new subscribers. If 50,000 users per day signed up for this

service, the demand would far exceed the capacity for a client/server configuration.

The company should instead consider using a multitier configuration. In addition,

the signup process must be simple: it should require only one connection from the

user to the database, or connection to multiple databases without dedicated

connections, using a multi-threaded server or transaction monitor approach.

Step 2: Tune the Data Design
In the data design phase, you must determine what data is needed by your

applications. You need to consider what relations are important, and what their

Prioritized Tuning Steps

2-8 Oracle8i Tuning

attributes are. Finally you need to structure the information to best meet

performance goals.

The database design process generally undergoes a normalization stage when data

is analyzed to eliminate data redundancy. With the exception of primary keys, any

one data element should be stored only once in your database. After the data is

normalized, however, you may need to denormalize it for performance reasons. You

might, for example, decide that the database should retain frequently used

summary values. For example, rather than forcing an application to recalculate the

total price of all the lines in a given order each time it is accessed, you might decide

to always maintain a number representing the total value for each order in the

database. You could set up primary key and foreign key indexes to access this

information quickly.

Another data design consideration is avoiding data contention. Consider a database

1 terabyte in size on which one thousand users access only 0.5% of the data. This

"hot spot" in the data could cause performance problems.

Try also to localize access to the data down to the partition level, process and

instance levels. That is, localize access to data such that any process requiring data

within a particular set of values be confined to a particular instance. Contention

begins when several remote processes simultaneously attempt to access one

particular set of data.

In Oracle Parallel Server, look for synchronization points—any point in time, or part

of an application that must run sequentially, one process at a time. The requirement

of having sequential order numbers, for example, is a synchronization point that

results from poor design.

Also consider implementing two Oracle8i enhancements that can help avoid

contention:

■ Consider whether to partition your data

■ Consider whether to use local or global indexes

See Also: Chapter 2, "Performance Tuning Methods", "Phase

Three - Creating, Populating, and Refreshing the Database" on

page 26-63, and Oracle8i Concepts for discussions of partitioning

and indexes.

Prioritized Tuning Steps

Performance Tuning Methods 2-9

Step 3: Tune the Application Design
Business executives and application designers should translate business goals into

an effective system design. Business processes concern a particular application

within a system, or a particular part of an application.

An example of intelligent process design is strategically caching data. For example,

in a retail application you can select the tax rate once at the beginning of each day,

and cache it within the application. In this way you avoid retrieving the same

information over and over during the day.

At this level, you can also consider the configuration of individual processes. For

example, some PC users may access the central system using mobile agents, where

other users may be directly connected. Although they are running on the same

system, the architecture for each type of user is different. They may also require

different mail servers and different versions of the application.

Step 4: Tune the Logical Structure of the Database
After the application and the system have been designed, you can plan the logical

structure of the database. This primarily concerns fine-tuning the index design, to

ensure that the data is neither over- nor under-indexed. In the data design stage

(Step 2) you determine the primary and foreign key indexes. In the logical structure

design stage you may create additional indexes to support the application.

Performance problems due to contention often involve inserts into the same block

or incorrect use of sequence numbers. Use particular care in the design, use, and

location of indexes, as well as in using the sequence generator and clusters.

Step 5: Tune Database Operations
Before tuning the Oracle server, be certain your application is taking full advantage

of the SQL language and the Oracle features designed to enhance application

processing. Use features and techniques such as the following based on the needs of

your application:

■ Array processing

■ The Oracle optimizer

■ The row-level lock manager

■ PL/SQL

See Also: "Using Indexes" on page 6-2.

Prioritized Tuning Steps

2-10 Oracle8i Tuning

Understanding Oracle’s query processing mechanisms is also important for writing

effective SQL statements. Chapter 7, "Optimizer Modes, Plan Stability, and Hints",

discusses Oracle’s query optimizer and how to write statements to achieve optimal

performance. This chapter also discusses optimizer statistics management and

describes preserving execution plans with the plan stability feature.

Step 6: Tune the Access Paths
Ensure that there is efficient data access. Consider the use of clusters, hash clusters,

B*-tree indexes, and bitmap indexes.

Ensuring efficient access may mean adding indexes or adding indexes for a

particular application and then dropping them again. It may also mean re-analyzing

your design after you have built the database. You may want to further normalize

your data or create alternative indexes. Upon testing the application, you may find

you’re still not obtaining the required response time. If this happens, look for more

ways to improve the design.

Step 7: Tune Memory Allocation
Appropriate allocation of memory resources to Oracle memory structures can have

a positive effect on performance.

Oracle8i shared memory is allocated dynamically to the following structures, which

are all part of the shared pool. Although you explicitly set the total amount of

memory available in the shared pool, the system dynamically sets the size of each

structure contained within it:

■ The data dictionary cache

■ The library cache

■ Context areas (if running a multi-threaded server)

You can explicitly set memory allocation for the following structures:

■ Buffer cache

■ Log buffer

■ Sequence caches

See Also: Part IV, Optimizing Instance Performance.

See Also: Chapter 6, "Data Access Methods".

Prioritized Tuning Steps

Performance Tuning Methods 2-11

Proper allocation of memory resources improves cache performance, reduces

parsing of SQL statements, and reduces paging and swapping.

Process local areas include:

■ Context areas (for systems not running a multi-threaded server)

■ Sort areas

■ Hash areas

Be careful not to allocate to the system global area (SGA) such a large percentage of

the machine’s physical memory that it causes paging or swapping.

Step 8: Tune I/O and Physical Structure
Disk I/O tends to reduce the performance of many software applications. The

Oracle server, however, is designed so its performance need not be unduly limited

by I/O. Tuning I/O and physical structure involves these procedures:

■ Distributing data so I/O is distributed to avoiding disk contention

■ Storing data in data blocks for best access: setting an adequate number of free

lists and using proper values for PCTFREE and PCTUSED

■ Creating extents large enough for your data so as to avoid dynamic extension of

tables; this would adversely effect the performance of high-volume OLTP

applications

■ Evaluating the use of raw devices

Step 9: Tune Resource Contention
Concurrent processing by multiple Oracle users may create contention for Oracle

resources. Contention may cause processes to wait until resources are available.

Take care to reduce the following types of contention:

■ Block contention

■ Shared pool contention

■ Lock contention

See Also: Chapter 19, "Tuning Memory Allocation" and Oracle8i
Concepts for information about memory structures and processes.

See Also: Chapter 20, "Tuning I/O".

Applying the Tuning Method

2-12 Oracle8i Tuning

■ Pinging (in a parallel server environment)

■ Latch contention

Step 10: Tune the Underlying Platform(s)
See your platform-specific Oracle documentation for ways of tuning the underlying

system. For example, on UNIX-based systems you might want to tune the

following:

■ Size of the UNIX buffer cache

■ Logical volume managers

■ Memory and size for each process

Applying the Tuning Method
This section explains how to apply the tuning method:

■ Set Clear Goals for Tuning

■ Create Minimum Repeatable Tests

■ Test Hypotheses

■ Keep Records and Automate Testing

■ Avoid Common Errors

■ Stop Tuning When Objectives Are Met

■ Demonstrate Meeting the Objectives

Set Clear Goals for Tuning
Never begin tuning without having first established clear objectives: you cannot

succeed without a definition of "success."

"Just make it go as fast as you can" may sound like an objective, but it is very

difficult to determine whether this has been achieved. It is even more difficult to tell

whether your results have met the underlying business requirements. A more

useful statement of objectives is: "We need to have as many as 20 operators, each

See Also: Chapter 21, "Tuning Resource Contention".

See Also: Chapter 24, "Tuning the Operating System".

Applying the Tuning Method

Performance Tuning Methods 2-13

entering 20 orders per hour, and the packing lists must be produced within 30

minutes of the end of the shift."

Keep your goals in mind as you consider each tuning measure; consider its

performance benefits in light of your goals.

Also remember that your goals may conflict. For example, to achieve best

performance for a specific SQL statement, you may have to sacrifice the

performance of other SQL statements running concurrently on your database.

Create Minimum Repeatable Tests
Create a series of minimum repeatable tests. For example, if you identify a single

SQL statement that is causing performance problems, then run both the original

and the revised version of that statement in SQL*Plus (with the SQL Trace Facility

or Oracle Trace enabled) so you can see statistically the difference in performance.

In many cases, a tuning effort can succeed simply by identifying one SQL statement

that was causing the performance problem.

For example, assume you need to reduce a 4-hour run to 2 hours. To do this,

perform your trial runs using a test environment similar to the production

environment. For example, you could impose additional restrictive conditions such

as processing one department instead of all 500 of them. The ideal test case should

run for more than 1 minute but probably not longer than 5, so you can intuitively

detect improvements. You should also measure the test run using timing features.

Test Hypotheses
With a minimum repeatable test established, and with a script both to conduct the

test and to summarize and report the results, you can test various hypotheses to see

the effect.

Remember that with Oracle’s caching algorithms, the first time data is cached there

is more overhead than when the same date is later accessed from memory. Thus, if

you perform two tests, one after the other, the second test should run faster then the

first. This is because data that the test run would otherwise have had to read from

disk may instead be more quickly retrieved from the cache.

Keep Records and Automate Testing
Keep records of the effect of each change by incorporating record keeping into the

test script. You also should automate testing. Automation provides a number of

advantages:

Applying the Tuning Method

2-14 Oracle8i Tuning

■ It permits cost effectiveness in terms of the tuner’s ability to conduct tests

quickly.

■ It helps ensure that tests are conducted in the same systematic way, using the

same instrumentation for each hypothesis you are testing.

You should also carefully check test results derived from observations of system

performance against the objective data before accepting them.

Avoid Common Errors
A common error made by inexperienced tuners is to adhere to preconceived notions

about what may be causing the problem. The next most common error is to attempt

various solutions at random.

A good way to scrutinize your resolution process is to develop a written description

of your theory of what you think the problem is. This often helps you detect

mistakes, simply from articulating your ideas. For best results, consult a team of

people to help resolve performance problems. While a performance tuner can tune

SQL statements without knowing the application in detail, the team should include

someone who understands the application and who can validate the solutions the

SQL tuner may devise.

Avoid Poorly Thought Out Solutions
Beware of changing something in the system by guessing. Or, once you have a

hypothesis that you have not completely thought through, you may be tempted to

implement it globally. Doing this in haste can seriously degrade system

performance to the point where you may have to rebuild part of your environment

from backups.

Avoid Preconceptions
Try to avoid preconceptions when you address a tuning problem. Ask users to

describe performance problems. However, do not expect users to know why the

problem exists.

One user, for example, had serious system memory problems over a long period of

time. During the morning the system ran well, but performance rapidly degraded

in the afternoon. A consultant tuning the system was told that a PL/SQL memory

leak was the cause. As it turned out, this was not at all the problem.

Instead, the user had set SORT_AREA_SIZE to 10MB on a machine with 64 MB of

memory serving 20 users. When users logged on to the system, the first time they

executed a sort their sessions were assigned to a sort area. Each session held the sort

Applying the Tuning Method

Performance Tuning Methods 2-15

area for the duration of the session. So the system was burdened with 200MB of

virtual memory, hopelessly swapping and paging.

Stop Tuning When Objectives Are Met
One of the great advantages of having targets for tuning is that it becomes possible

to define success. Past a certain point, it is no longer cost effective to continue

tuning a system.

Demonstrate Meeting the Objectives
As the tuner you may be confident that performance targets have been met. You

nonetheless must demonstrate this to two communities:

■ The users affected by the problem

■ Those responsible for the application’s success

The next section describes application design tuning for designers and

programmers.

Applying the Tuning Method

2-16 Oracle8i Tuning

Part II
 Application Design Tuning for Designers

and Programmers

Part II provides background information on designing and tuning applications for

optimal performance. The chapters in Part II are:

■ Chapter 3, "Application and System Performance Characteristics"

■ Chapter 4, "Tuning Database Operations"

■ Chapter 5, "Registering Applications"

■ Chapter 6, "Data Access Methods"

■ Chapter 7, "Optimizer Modes, Plan Stability, and Hints"

■ Chapter 8, "Tuning Distributed Queries"

■ Chapter 9, "Transaction Modes"

■ Chapter 10, "Managing SQL and Shared PL/SQL Areas"

■ Chapter 11, "Optimizing Data Warehouse Applications"

Application and System Performance Characteristics 3-1

3
Application and System Performance

Characteristics

This chapter describes various applications and systems that use Oracle databases

and the suggested approaches and features available when designing each type.

Topics in this chapter include:

■ Types of Applications

■ Oracle Configurations

Types of Applications
You can build thousands of types of applications on top of an Oracle Server. This

section categorizes the most popular types and describes the design considerations

for each. Each category lists performance issues that are crucial for that type of

system.

■ Online Transaction Processing (OLTP)

■ Data Warehousing

■ Multipurpose Applications

Online Transaction Processing (OLTP)
Online transaction processing (OLTP) applications are high throughput,

insert/update-intensive systems. These systems are characterized by growing

volumes of data that several hundred users access concurrently. Typical OLTP

See Also: Oracle8i Concepts, Oracle8i Application Developer’s Guide -
Fundamentals, and Oracle8i Administrator’s Guide for more

information on these topics and how to implement their features.

Types of Applications

3-2 Oracle8i Tuning

applications are airline reservation systems, large order-entry applications, and

banking applications. The key goals of OLTP systems are availability (sometimes 7

day/24 hour availability); speed (throughput); concurrency; and recoverability.

Figure 3–1 illustrates the interaction between an OLTP application and an Oracle

Server.

Figure 3–1 Online Transaction Processing Systems

When you design an OLTP system, you must ensure that the large number of

concurrent users does not interfere with the system’s performance. You must also

avoid excessive use of indexes and clusters because these structures slow down

insert and update activity.

The following elements are crucial for tuning OLTP systems:

■ Rollback segments

■ Indexes, clusters, and hashing

■ Discrete transactions

■ Data block size

■ Dynamic allocation of space to tables and rollback segments

■ Transaction processing monitors and the multi-threaded server

■ The shared pool

■ Well-tuned SQL statements

■ Integrity constraints

Database

Data

Data

Types of Applications

Application and System Performance Characteristics 3-3

■ Client/server architecture

■ Dynamically changeable initialization parameters

■ Procedures, packages, and functions

Data Warehousing
Data warehousing applications typically convert large amounts of information into

user-defined reports. Decision support applications perform queries on the large

amounts of data gathered from OLTP applications. Decision makers use these

applications to determine what strategies the organization should take. Figure 3–2

illustrates the interaction between a decision support application and an Oracle

Server.

Figure 3–2 Data Warehousing Systems

An example of a decision support system is a marketing tool that determines the

buying patterns of consumers based on information gathered from demographic

studies. The demographic data is assembled and entered into the system, and the

marketing staff queries this data to determine which items sell best in which

locations. This report helps users decide which items to purchase and market in the

various locations.

The key goals of a data warehousing system are response time, accuracy, and

availability. When designing decision support systems, ensure that queries on large

amounts of data are performed within a reasonable timeframe. Decision makers

often need reports on a daily basis, so you may need to guarantee that the report

completes overnight.

See Also: Oracle8i Concepts and Oracle8i Administrator’s Guide for

a description of each of these topics. Read about these topics before

designing your system and decide which features can benefit your

particular situation.

DatabaseData

Types of Applications

3-4 Oracle8i Tuning

The key to performance in a decision support system is properly tuned queries and

proper use of indexes, clusters, and hashing. The following issues are crucial in

implementing and tuning a decision support system:

■ Materialized Views

■ Indexes (B*-tree and bitmap)

■ Clusters, hashing

■ Data block size

■ Parallel execution

■ Star query

■ The optimizer

■ Using hints in queries

■ PL/SQL functions in SQL statements

One way to improve the response time in data warehousing systems is to use

parallel execution. This feature enables multiple processes to simultaneously

process a single SQL statement. By spreading processing over many processes,

Oracle can execute complex statements more quickly than if only a single server

processed them.

Figure 3–3 illustrates parallel execution.

Figure 3–3 Parallel Execution Processing

Parallel execution can dramatically improve performance for data-intensive

operations associated with decision support applications or very large database

environments. In some cases, it can also benefit OLTP processing.

DatabaseData

Process 1

Process 2

Process 3

Types of Applications

Application and System Performance Characteristics 3-5

Symmetric multiprocessing (SMP), clustered, or massively parallel systems gain the

largest performance benefits from parallel execution. This is because operations can

be effectively spread among many CPUs on a single system.

Parallel execution helps system performance scale when adding hardware

resources. If your system’s CPUs and disk controllers are already heavily loaded,

reduce the system’s load before attempting to use parallel execution to improve

performance.

Multipurpose Applications
Many applications rely on several configurations and Oracle options. You must

decide what type of activity your application performs and determine which

features are best suited for it. One typical multipurpose configuration is a

combination of OLTP and data warehousing systems. Often data gathered by an

OLTP application "feeds" a data warehousing system.

Figure 3–4 illustrates multiple configurations and applications accessing an Oracle

Server.

See Also: Section VI, "Materialized Views", Chapter 11,

"Optimizing Data Warehouse Applications" for an introduction to

Oracle data warehousing functionality, Chapter 26, "Tuning Parallel

Execution", for information on the performance aspects of parallel

execution, and Oracle8i Concepts for general information about

parallel execution.

Oracle Configurations

3-6 Oracle8i Tuning

Figure 3–4 A Hybrid OLTP/Data Warehousing System

One example of a combination OLTP/data warehousing system is a marketing tool

that determines the buying patterns of consumers based on information gathered

from retail stores. The retail stores gather data from daily purchase records and the

marketing staff queries this data to determine which items sell best in which

locations. This report is then used to determine inventory levels for particular items

in each store.

In this example, both systems could use the same database, but the conflicting goals

of OLTP and data warehousing might cause performance problems. To solve this,

an OLTP database stores the data gathered by the retail stores, then an image of that

data is copied into a second database which is queried by the data warehousing

application. This configuration may slightly compromise the goal of accuracy for

the data warehousing application (the data is copied only once per day), but the

benefit is significantly better performance from both systems.

For hybrid systems, determine which goals are most important. You may need to

compromise on meeting lower-priority goals to achieve acceptable performance

across the whole system.

Oracle Configurations
You can configure your system depending on the hardware and software available.

The basic configurations are:

■ Distributed Systems

■ The Oracle Parallel Server

■ Client/Server Configurations

Database DataData
DataDatabase

Oracle Configurations

Application and System Performance Characteristics 3-7

Depending on your application and your operating system, each of these or a

combination of these configurations will best suit your needs.

Distributed Systems
Distributed applications spread data over multiple databases on multiple machines.

Several smaller server machines can be less expensive and more flexible than one

large, centrally located server. Distributed configurations take advantage of small,

powerful server machines and less expensive connectivity options. Distributed

systems also allow you to store data at several sites and each site can transparently

access all the data.

Figure 3–5 illustrates the distributed database configuration of the Oracle Server.

Figure 3–5 Distributed Database System

An example of a distributed database system is a mail order application with order

entry clerks in several locations across the country. Each clerk has access to a copy

of the central inventory database, but clerks also perform local operations on a local

order-entry system. The local orders are forwarded daily to the central shipping

department. The local order-entry system is convenient for clerks serving customers

in the same geographic region. The centralized nature of the company-wide

inventory database provides processing convenience for the mail order function.

Database

Database

Data

Database

Oracle Configurations

3-8 Oracle8i Tuning

The key goals of a distributed database system are availability, accuracy,

concurrency, and recoverability. When you design a distributed system, the location

of the data is the most important factor. You must ensure that local clients have

quick access to the data they use most frequently. You must also ensure that remote

operations do not occur often. Replication is one means of dealing with the issue of

data location. The following issues are crucial to the design of distributed database

systems:

■ Network configuration

■ Distributed database design

■ Symmetric replication

■ Table snapshots and snapshot logs

■ Procedures, packages, and functions

The Oracle Parallel Server
The Oracle Parallel Server (OPS) is available on clustered or massively parallel

systems. A parallel server allows multiple machines to have separate instances

access the same database. This configuration greatly enhances data throughput.

Figure 3–6 illustrates the Oracle Parallel Server option.

See Also: Oracle8i Distributed Database Systems and Oracle8i
Replication, and Chapter 8, "Tuning Distributed Queries".

Oracle Configurations

Application and System Performance Characteristics 3-9

Figure 3–6 An Oracle Parallel Server

When configuring OPS, a key concern is preventing data contention among the

various nodes. Although the Cache Fusion feature of OPS minimizes block pinging

among nodes contending for data, you should still strive to properly partition data.

This is especially true for write/write conflicts where each node must first obtain a

lock on that data to ensure data consistency.

If multiple nodes require access to the same data for DML operations, that data

must first be written to disk before the next node can obtain a lock. This type of

contention significantly degrades performance. On such systems, data must be

effectively partitioned among the various nodes for optimal performance.

Read-only data can be efficiently shared across all instances in an OPS configuration

without the problem of lock contention because Oracle uses a non-locking query

logic.

Client/Server Configurations
Client/server architectures distribute the work of a system between the client

(application) machine and the server (in this case an Oracle Server). Typically, client

machines are workstations that execute a graphical user interface (GUI) application

connected to a larger server machine that houses the Oracle Server.

See Also: Oracle8i Parallel Server Concepts and Administration.

See Also: "Solving CPU Problems by Changing System

Architectures" on page 18-10 for information about multi-tier

systems.

Data Database

Data

Data

Node 1

Node 2

Node 3

Oracle Configurations

3-10 Oracle8i Tuning

Tuning Database Operations 4-1

4
Tuning Database Operations

Structured Query Language (SQL) is used to perform all database operations,

although some Oracle tools and applications simplify or mask its use. This chapter

provides an overview of the issues involved in tuning database operations from the

SQL point-of-view:

■ Tuning Goals

■ Methodology for Tuning Database Operations

■ Approaches to SQL Statement Tuning

See Also: For more information about tuning PL/SQL

statements, please refer to the PL/SQL User’s Guide and Reference.

Tuning Goals

4-2 Oracle8i Tuning

Tuning Goals
This section introduces:

■ Tuning a Serial SQL Statement

■ Tuning Parallel Execution

■ Tuning OLTP Applications

Always approach the tuning of database operations from the standpoint of the

particular goals of your application. Are you tuning serial SQL statements or

parallel operations? Do you have an online transaction processing (OLTP)

application, or a data warehousing application?

■ Data warehousing operations process high volumes of data and they have a

high correlation with the goals of parallel operations

■ OLTP applications have a high transaction volume and they correlate more with

serial operations

As a result, these two divergent types of applications have contrasting goals for

tuning as described in Table 4–1.

Tuning a Serial SQL Statement
The goal of tuning one SQL statement in isolation can be stated as:

Minimize resource use by the operation being performed.

You can experiment with alternative SQL syntax without actually modifying your

application. To do this, use the EXPLAIN PLAN command with the alternative

statement that you are considering and compare the alternative statement’s

execution plan and cost with that of the existing one. The cost of a SQL statement

appears in the POSITION column of the first row generated by EXPLAIN PLAN.

However, you must run the application to see which statement can actually be

executed more quickly.

Table 4–1 Contrasting Goals for Tuning

Tuning Situation Goal

Serial SQL Statement Minimize resource use by the operation.

Parallel Operations Maximize throughput for the hardware.

See Also: "Approaches to SQL Statement Tuning" on page 4-6.

Tuning Goals

Tuning Database Operations 4-3

Tuning Parallel Execution
The goal of tuning parallel execution can be stated as:

Maximize throughput for the given hardware.

If you have a powerful system and a massive, high-priority SQL statement to run,

parallelize the statement so it use all available resources.

Oracle can perform the following operations in parallel:

■ Parallel query

■ Parallel DML (includes INSERT, UPDATE, DELETE; APPEND hint; parallel

index scans)

■ Parallel DDL

■ Parallel recovery

■ Parallel loading

■ Parallel propagation (for replication)

Look for opportunities to parallelize operations in the following situations:

■ Long elapsed time

Whenever an operation you are performing in the database takes a long elapsed

time, whether it is a query or a batch job, you may be able to reduce the elapsed

time by using parallel operations.

■ High number of rows processed

You can split rows so they are not all accessed by a single process.

Tuning OLTP Applications
Tuning OLTP applications mostly involves tuning serial SQL statements. You

should consider two design issues: use of SQL and shared PL/SQL, and use of

different transaction modes.

See Also: Chapter 26, "Tuning Parallel Execution" and Oracle8i
Concepts, for basic principles of parallel execution.

See Also: Information on tuning data warehouse applications

appears in Chapter 11, "Optimizing Data Warehouse Applications".

Tuning Goals

4-4 Oracle8i Tuning

SQL and Shared PL/SQL
To minimize parsing, use bind variables in SQL statements within OLTP

applications. In this way all users can share the same SQL statements while using

fewer resources for parsing.

Transaction Modes
Sophisticated users can use discrete transactions if performance is of the utmost

importance, and if the users are willing to design the application accordingly.

Serializable transactions can be used if the application must be ANSI compatible.

Because of the overhead inherent in serializable transactions, Oracle strongly

recommends the use of read-committed transactions instead.

Triggers
If excessive use of triggers degrades system performance, modify the conditions

under which triggers fire by executing the CREATE TRIGGER or REPLACE

TRIGGER commands. You can also turn off triggers with the ALTER TRIGGER

command.

See Also: Chapter 9, "Transaction Modes".

Note: Excessive use of triggers for frequent events such as logons,

logoffs, and error events can degrade performance since these

events affect all users.

Methodology for Tuning Database Operations

Tuning Database Operations 4-5

Methodology for Tuning Database Operations
Whether you are writing new SQL statements or tuning problematic statements in

an existing application, your methodology for tuning database operations

essentially concerns CPU and disk I/O resources.

■ Step 1: Find the Statements that Consume the Most Resources

■ Step 2: Tune These Statements To Use Fewer Resources

Step 1: Find the Statements that Consume the Most Resources
Focus your tuning efforts on statements where the benefit of tuning demonstrably

exceeds the cost of tuning. Use tools such as TKPROF, the SQL Trace Facility, and

Oracle Trace to find the problem statements and stored procedures. Alternatively,

you can query the V$SORT_USAGE view to see the session and SQL statement

associated with a temporary segment.

The statements with the most potential to improve performance, if tuned, include:

■ Those consuming greatest resource overall

■ Those consuming greatest resource per row

■ Those executed most frequently

In the V$SQLAREA view you can find those statements still in the cache that have

done a great deal of disk I/O and buffer gets. (Buffer gets show approximately the

amount of CPU resource used.)

Step 2: Tune These Statements To Use Fewer Resources
Remember that application design is fundamental to performance. No amount of

SQL statement tuning can make up for inefficient application design. If you

encounter SQL statement tuning problems, perhaps you need to change the

application design.

You can use two strategies to reduce the resources consumed by a particular

statement:

■ Get the statement to use fewer resources

■ Use the statement less frequently

See Also: Chapter 14, "The SQL Trace Facility and TKPROF",

Chapter 15, "Using Oracle Trace", and Oracle8i Reference for more

information about dynamic performance views.

Approaches to SQL Statement Tuning

4-6 Oracle8i Tuning

Statements may use more resources because they do the most work, or because they

perform their work inefficiently—or they may do both. However, the lower the

resource used per unit of work (per row processed), the more likely it is that you

can significantly reduce resources used only by changing the application itself. That

is, rather than changing the SQL, it may be more effective to have the application

process fewer rows, or process the same rows less frequently.

These two approaches are not mutually exclusive. The former is clearly less

expensive, because you should be able to accomplish it either without program

change (by changing index structures) or by changing only the SQL statement itself

rather than the surrounding logic.

Approaches to SQL Statement Tuning
This section describes five ways you can improve SQL statement efficiency:

■ Restructure the Indexes

■ Restructure the Statement

■ Modify or Disable Triggers

■ Restructure the Data

■ Keeping Statistics Current and Using Plan Stability to Preserve Execution Plans

See Also: Chapter 18, "Tuning CPU Resources" and Chapter 20,

"Tuning I/O".

Note: The guidelines described in this section are oriented to

production SQL that will be executed frequently. Most of the

techniques that are discouraged here can legitimately be employed

in ad hoc statements or in applications run infrequently where

performance is not critical.

Approaches to SQL Statement Tuning

Tuning Database Operations 4-7

Restructure the Indexes
Restructuring the indexes is a good starting point, because it has more impact on

the application than does restructuring the statement or the data.

■ Remove nonselective indexes to speed the DML

■ Index performance-critical access paths

■ Consider hash clusters, but watch uniqueness

■ Consider index clusters only if the cluster keys are similarly sized

Do not use indexes as a panacea. Application developers sometimes think that

performance will improve if they just write enough indexes. If a single programmer

creates an appropriate index, this might indeed improve the application’s

performance. However, if 50 programmers each create an index, application

performance will probably be hampered!

Restructure the Statement
After restructuring the indexes, you can try restructuring the statement. Rewriting

an inefficient SQL statement is often easier than repairing it. If you understand the

purpose of a given statement, you may be able to quickly and easily write a new

statement that meets the requirement.

Consider Alternative SQL Syntax
Because SQL is a flexible language, more than one SQL statement may meet the

needs of your application. Although two SQL statements may produce the same

result, Oracle may process one faster than the other. You can use the results of the

EXPLAIN PLAN statement to compare the execution plans and costs of the two

statements and determine which is more efficient.

This example shows the execution plans for two SQL statements that perform the

same function. Both statements return all the departments in the DEPT table that

have no employees in the EMP table. Each statement searches the EMP table with a

subquery. Assume there is an index, DEPTNO_INDEX, on the DEPTNO column of

the EMP table.

This is the first statement and its execution plan:

SELECT dname, deptno
 FROM dept
 WHERE deptno NOT IN
 (SELECT deptno FROM emp);

Approaches to SQL Statement Tuning

4-8 Oracle8i Tuning

Figure 4–1 Execution Plan with Two Full Table Scans

Step 3 of the output indicates that Oracle executes this statement by performing a

full table scan of the EMP table despite the index on the DEPTNO column. This full

table scan can be a time-consuming operation. Oracle does not use the index

because the subquery that searches the EMP table does not have a WHERE clause

that makes the index available.

However, this SQL statement selects the same rows by accessing the index:

SELECT dname, deptno
 FROM dept
 WHERE NOT EXISTS
 (SELECT deptno
 FROM emp
WHERE dept.deptno = emp.deptno);

TABLE ACCESS
(FULL)

dept

2 3

TABLE ACCESS
(FULL)

emp

1

FILTER

Approaches to SQL Statement Tuning

Tuning Database Operations 4-9

Figure 4–2 Execution Plan with a Full Table Scan and an Index Scan

The WHERE clause of the subquery refers to the DEPTNO column of the EMP

table, so the index DEPTNO_INDEX is used. The use of the index is reflected in

Step 3 of the execution plan. The index range scan of DEPTNO_INDEX takes less

time than the full scan of the EMP table in the first statement. Furthermore, the first

query performs one full scan of the EMP table for every DEPTNO in the DEPT

table. For these reasons, the second SQL statement is faster than the first.

If you have statements in your applications that use the NOT IN operator, as the

first query in this example does, you should consider rewriting them so that they

use the NOT EXISTS operator. This would allow such statements to use an index, if

one exists.

Compose Predicates Using AND and =
Use equijoins. Without exception, statements that perform equijoins on

untransformed column values are the easiest to tune.

See Also: The optimizer chapter in Oracle8i Concepts for more

information on interpreting execution plans.

TABLE ACCESS
(FULL)

dept

2 3

TABLE ACCESS
(RANGE SCAN)
deptno_index

1

FILTER

Approaches to SQL Statement Tuning

4-10 Oracle8i Tuning

Choose an Advantageous Join Order
Join order can have a significant effect on performance. The main objective of SQL

tuning is to avoid performing unnecessary work to access rows that do not affect

the result. This leads to three general rules:

■ Avoid a full-table scan if it is more efficient to get the required rows through an

index.

■ Avoid using an index that fetches 10,000 rows from the driving table if you

could instead use another index that fetches 100 rows.

■ Choose the join order so as to join fewer rows to tables later in the join order.

The following example shows how to tune join order effectively:

 SELECT info
 FROM taba a, tabb b, tabc c
 WHERE a.acol between :alow and :ahigh
 AND b.bcol between :blow and :bhigh
 AND c.ccol between :clow and :chigh
 AND a.key1 = b.key1
 AMD a.key2 = c.key2;

1. Choose the driving table and the driving index (if any).

The first three conditions in the example above are filter conditions applying to

only a single table each. The last two conditions are join conditions.

Filter conditions dominate the choice of driving table and index. In general, the

driving table should be the one containing the filter condition that eliminates

the highest percentage of the table. Thus, if the range of :alow to :ahigh is

narrow compared with the range of acol, but the ranges of :b* and :c* are

relatively large, then taba should be the driving table, all else being equal.

2. Choose the right indexes.

Once you know your driving table, choose the most selective index available to

drive into that table. Alternatively, choose a full table scan if that would be

more efficient. From there, the joins should all happen through the join indexes,

the indexes on the primary or foreign keys used to connect that table to an

earlier table in the join tree. Rarely should you use the indexes on the non-join

conditions, except for the driving table. Thus, once taba is chosen as the driving

table, you should use the indexes on b.key1 and c.key2 to drive into tabb and

tabc, respectively.

Approaches to SQL Statement Tuning

Tuning Database Operations 4-11

3. Choose the best join order, driving to the best unused filters earliest.

The work of the following join can be reduced by first joining to the table with

the best still-unused filter. Thus, if "bcol between ..." is more restrictive (rejects a

higher percentage of the rows seen) than "ccol between ...", the last join can be

made easier (with fewer rows) if tabb is joined before tabc.

Use Untransformed Column Values
Use untransformed column values. For example, use:

 WHERE a.order_no = b.order_no

Rather than:

 WHERE TO_NUMBER (substr(a.order_no, instr(b.order_no, ’.’) - 1)
 = TO_NUMBER (substr(a.order_no, instr(b.order_no, ’.’) - 1)

Do not use SQL functions in predicate clauses or WHERE clauses. The use of an

aggregate function, especially in a subquery, often indicates that you could have

held a derived value on a master record.

Avoid Mixed-type Expressions
Avoid mixed-mode expressions, and beware of implicit type conversions. When

you want to use an index on the VARCHAR2 column charcol, but the WHERE

clause looks like this:

 AND charcol = <numexpr>

Where numexpr is an expression of number type (for example, 1,

USERENV('SESSIONID'), numcol, numcol+0,...), Oracle will translate that

expression into:

 AND to_number(charcol) = numexpr

This has the following consequences:

■ Any expression using a column, such as a function having the column as its

argument, will cause the optimizer to ignore the possibility of using an index on

that column, even a unique index.

■ If the system processes even a single row having charcol as a string of

characters that does not translate to a number, an error will be returned.

Approaches to SQL Statement Tuning

4-12 Oracle8i Tuning

You can avoid this problem by replacing the top expression with the explicit

conversion:

 AND charcol = to_char(<numexpr>)

Alternatively, make all type conversions explicit. The statement:

 numcol = charexpr

allows use of an index on numcol because the default conversion is always

character-to-number. This behavior, however, is subject to change. Making type

conversions explicit also makes it clear that charexpr should always translate to a

number.

Write Separate SQL Statements for Specific Values
SQL is not a procedural language. Using one piece of SQL to do many different

things is not a good idea: it usually results in a less-than-optimal result for each

task. If you want SQL to accomplish different things, then write two different

statements rather than writing one statement that will do different things

depending on the parameters you give it.

Optimization (determining the execution plan) takes place before the database

knows what values will be substituted into the query. An execution plan should

not, therefore, depend on what those values are. For example:

 SELECT info from tables
 WHERE ...
 AND somecolumn BETWEEN decode(:loval, 'ALL', somecolumn, :loval)
 AND decode(:hival, 'ALL', somecolumn, :hival);

Written as shown, the database cannot use an index on the somecolumn column

because the expression involving that column uses the same column on both sides

of the BETWEEN.

This is not a problem if there is some other highly selective, indexable condition you

can use to access the driving table. Often, however, this is not the case. Frequently

you may want to use an index on a condition like that shown, but need to know the

values of :loval, and so on, in advance. With this information you can rule out the

ALL case, which should not use the index.

Approaches to SQL Statement Tuning

Tuning Database Operations 4-13

If you want to use the index whenever real values are given for :loval and :hival

(that is, if you expect narrow ranges, even ranges where :loval often equals :hival),

you can rewrite the example in the following logically equivalent form:

 SELECT /* change this half of union all if other half changes */ info
 FROM tables
 WHERE ...
 AND somecolumn between :loval and :hival
 AND (:hival != 'ALL' and :loval != 'ALL')
 UNION ALL
 SELECT /* Change this half of union all if other half changes. */ info
 FROM tables
 WHERE ...
 AND (:hival = 'ALL' OR :loval = 'ALL');

If you run EXPLAIN PLAN on the new query, you seem to obtain both a desirable

and an undesirable execution plan. However, the first condition the database

evaluates for either half of the UNION ALL will be the combined condition on

whether :hival and :loval are ALL. The database evaluates this condition before

actually getting any rows from the execution plan for that part of the query. When

the condition comes back false for one part of the UNION ALL query, that part is

not evaluated further. Only the part of the execution plan that is optimum for the

values provided is actually carried out. Since the final conditions on :hival and

:loval are guaranteed to be mutually exclusive, then only one half of the UNION

ALL will actually return rows. (The ALL in UNION ALL is logically valid because

of this exclusivity. It allows the plan to be carried out without an expensive sort to

rule out duplicate rows for the two halves of the query.)

Use Hints to Control Access Paths
Use optimizer hints, such as /*+ORDERED */ to control access paths. This is a

better approach than using traditional techniques or "tricks of the trade" such as

CUST_NO + 0. For example, use

 SELECT /*+ FULL(EMP) */ E.ENAME
 FROM EMP E
 WHERE E.JOB = ’CLERK';

rather than

 SELECT E.ENAME
 FROM EMP E
 WHERE E.JOB || '' = ’CLERK';

Approaches to SQL Statement Tuning

4-14 Oracle8i Tuning

Use Care When Using IN and NOT IN with a Subquery
Remember that WHERE (NOT) EXISTS is a useful alternative.

Use Care When Embedding Data Value Lists in Applications
Data value lists are normally a sign that an entity is missing. For example:

 WHERE TRANSPORT IN (’BMW’, ’CITROEN’, ’FORD’, HONDA’)

The real objective in the WHERE clause above is to determine whether the mode of

transport is an automobile, and not to identify a particular make. A reference table

should be available in which transport type=’AUTOMOBILE’.

Minimize the use of DISTINCT. DISTINCT always creates a SORT; all the data must

be instantiated before your results can be returned.

Reduce the Number of Calls to the Database
When appropriate, use INSERT, UPDATE, or DELETE . . . RETURNING to select

and modify data with a single call. This technique improves performance by

reducing the number of calls to the database.

Use Care When Managing Views
Be careful when joining views, when performing outer joins to views, and when

you consider recycling views.

Use Care When Joining Views The shared SQL area in Oracle reduces the cost of

parsing queries that reference views. In addition, optimizer improvements make the

processing of predicates against views very efficient. Together these factors make

possible the use of views for ad hoc queries. Despite this, joins to views are not

recommended, particularly joins from one complex view to another.

See Also: For more information on hints, please refer to

Chapter 7, "Optimizer Modes, Plan Stability, and Hints".

See Also: Oracle8i SQL Reference for syntax information on the

INSERT, UPDATE, and DELETE commands.

Approaches to SQL Statement Tuning

Tuning Database Operations 4-15

The following example shows a query upon a column which is the result of a

GROUP BY. The entire view is first instantiated, and then the query is run against

the view data.

 CREATE VIEW DX(deptno, dname, totsal)
 AS SELECT D.deptno, D.dname, E.sum(sal)
 FROM emp E, dept D
 WHERE E.deptno = D.deptno
 GROUP BY deptno, dname
 SELECT * FROM DX WHERE deptno=10;

Use Care When Performing Outer Joins To Views An outer join to a multitable view can

be problematic. For example, you may start with the usual emp and dept tables

with indexes on e.empno, e.deptno, and d.deptno, and create the following view:

 CREATE VIEW EMPDEPT (EMPNO, DEPTNO, ename, dname)
 AS SELECT E.EMPNO, E.DEPTNO, e.ename, d.dname
 FROM DEPT D, EMP E
 WHERE E.DEPTNO = D.DEPTNO(+);

You may then construct the simplest possible query to do an outer join into this

view on an indexed column (e.deptno) of a table underlying the view:

 SELECT e.ename, d.loc
 FROM dept d, empdept e
 WHERE d.deptno = e.deptno(+)
 AND d.deptno = 20;

The following execution plan results:

 QUERY_PLAN
 --
 MERGE JOIN OUTER
 TABLE ACCESS BY ROWID DEPT
 INDEX UNIQUE SCAN DEPT_U1: DEPTNO
 FILTER
 VIEW EMPDEPT
 NESTED LOOPS OUTER
 TABLE ACCESS FULL EMP
 TABLE ACCESS BY ROWID DEPT
 INDEX UNIQUE SCAN DEPT_U1: DEPTNO

Until both tables of the view are joined, the optimizer does not know whether the

view will generate a matching row. The optimizer must therefore generate all the

rows of the view and perform a MERGE JOIN OUTER with all the rows returned

Approaches to SQL Statement Tuning

4-16 Oracle8i Tuning

from the rest of the query. This approach would be extremely inefficient if all you

want is a few rows from a multitable view with at least one very large table.

To solve this problem is relatively easy, in the preceding example. The second

reference to dept is not needed, so you can do an outer join straight to emp. In other

cases, the join need not be an outer join. You can still use the view simply by getting

rid of the (+) on the join into the view.

Do Not Recycle Views Beware of writing a view for one purpose and then using it for

other purposes, to which it may be ill-suited. Consider this example:

 SELECT dname from DX
 7 WHERE deptno=10;

You can obtain dname and deptno directly from the DEPT table. It would be

inefficient to obtain this information by querying the DX view (which was declared

earlier in the present example). To answer the query, the view would perform a join

of the DEPT and EMP tables, even though you do not need any data from the EMP

table.

Modify or Disable Triggers
Using triggers consumes system resources. If you use too many triggers, you may

find that performance is adversely affected and you may need to modify or disable

them.

Restructure the Data
After restructuring the indexes and the statement, you can consider restructuring

the data.

■ Introduce derived values. Avoid GROUP BY in response-critical code

■ Implement missing entities and intersection tables

■ Reduce the network load. Migrate, replicate, partition data

The overall purpose of any strategy for data distribution is to locate each data

attribute such that its value makes the minimum number of network journeys. If the

current number of journeys is excessive, then moving (migrating) the data is a

natural solution.

Often, however, no single location of the data reduces the network load (or message

transmission delays) to an acceptable level. In this case, consider either holding

Approaches to SQL Statement Tuning

Tuning Database Operations 4-17

multiple copies (replicating the data) or holding different parts of the data in

different places (partitioning the data).

Where distributed queries are necessary, it may be effective to code the required

joins with procedures either in PL/SQL within a stored procedure, or within the

user interface code.

When considering a cross-network join, you can either bring the data in from a

remote node and perform the join locally, or you can perform the join remotely. The

option you choose should be determined by the relative volume of data on the

different nodes.

Keeping Statistics Current and Using Plan Stability to Preserve Execution Plans
Once you have tuned your application’s SQL statements, consider maintaining

statistics with the useful procedures of the DBMS_STATS package. Also consider

implementing Plan Stability features to maintain application performance

characteristics despite system changes. Both of these topics are discussed in

Chapter 7, "Optimizer Modes, Plan Stability, and Hints".

Approaches to SQL Statement Tuning

4-18 Oracle8i Tuning

Registering Applications 5-1

5
Registering Applications

Application developers can use the DBMS_APPLICATION_INFO package with

Oracle Trace and the SQL trace facility to record names of executing modules or

transactions in the database for later use when tracking the performance of various

modules. This chapter describes how to register an application with the database

and retrieve statistics on each registered module or code segment.

Oracle provides a method for applications to register the name of the application

and actions performed by that application with the database. Registering the

application allows system administrators and performance tuning specialists to

track performance by module. System administrators can also use this information

to track resource use by module. When an application registers with the database,

its name and actions are recorded in the V$SESSION and V$SQLAREA views.

Your applications should set the name of the module and name of the action

automatically each time a user enters that module. The module name could be the

name of a form in an Oracle Forms application, or the name of the code segment in

an Oracle precompilers application. The action name should usually be the name or

description of the current transaction within a module.

 Topics in this chapter include:

■ Setting the Module Name

■ Setting the Action Name

■ Setting the Client Information

■ Retrieving Application Information

Setting the Module Name

5-2 Oracle8i Tuning

DBMS_APPLICATION_INFO Package
To register applications with the database, use the procedures in the

DBMS_APPLICATION_INFO package. DBMS_APPLICATION_INFO provides the

following procedures:

Privileges
Before using this package, you must run the DBMSUTL.SQL script to create the

DBMS_APPLICATION_INFO package.

Setting the Module Name
To set the name of the current application or module, use the SET_MODULE

procedure in the DBMS_APPLICATION_INFO package. The module name should

be the name of the procedure (if using stored procedures), or the name of the

application. The action name should describe the action performed.

Example
The sample PL/SQL block in the following SQL statement, starting at the BEGIN

keyword, sets the module name and action name:

 CREATE PROCEDURE add_employee(
 name VARCHAR2(20),
 salary NUMBER(7,2),
 manager NUMBER,
 title VARCHAR2(9),

Table 5–1 Procedures in the DBMS_APPLICATION_INFO Package

Procedure Description

SET_MODULE Sets the name of the module that is currently running.

SET_ACTION Sets the name of the current action within the current module.

SET_CLIENT_INFO Sets the client information field for the session.

READ_MODULE Reads values of module and action fields for the current session.

READ_CLIENT_INFO Reads the client information field for the current session.

See Also: For more information about Oracle supplied packages

and executing stored procedures, see the Oracle8i Supplied Packages
Reference.

Setting the Action Name

Registering Applications 5-3

 commission NUMBER(7,2),
 department NUMBER(2)) AS
 BEGIN
 DBMS_APPLICATION_INFO.SET_MODULE(
 module_name => ’add_employee’,
 action_name => ’insert into emp’);
 INSERT INTO emp
 (ename, empno, sal, mgr, job, hiredate, comm, deptno)
 VALUES (name, next.emp_seq, manager, title, SYSDATE,
 commission, department);
 DBMS_APPLICATION_INFO.SET_MODULE(’’,’’);
 END;

Syntax
Syntax and parameters for the SET_MODULE procedure are described here:

 DBMS_APPLICATION_INFO.SET_MODULE(
 module_name IN VARCHAR2,
 action_name IN VARCHAR2)

Setting the Action Name
To set the name of the current action within the current module, use the

SET_ACTION command in the DBMS_APPLICATION_INFO package. The action

name should be descriptive text about the current action being performed. You

should probably set the action name before the start of every transaction.

Example
The following is an example of a transaction that uses the registration procedure:

 CREATE OR REPLACE PROCEDURE bal_tran (amt IN NUMBER(7,2)) AS
 BEGIN
-- balance transfer transaction

module_name Name of module that is currently running. When the current

module terminates, call this procedure with the name of the

new module if there is one, or null if there is not. Names

longer than 48 bytes are truncated.

action_name Name of current action within the current module. If you do

not want to specify an action, this value should be null.

Names longer than 32 bytes are truncated.

Setting the Client Information

5-4 Oracle8i Tuning

 DBMS_APPLICATION_INFO.SET_ACTION(
 action_name => ’transfer from chk to sav’);
 UPDATE chk SET bal = bal + :amt
 WHERE acct# = :acct;
 UPDATE sav SET bal = bal - :amt
 WHERE acct# = :acct;
 COMMIT;
 DBMS_APPLICATION_INFO.SET_ACTION(’’);
 END;

Set the transaction name to null after the transaction completes so that subsequent

transactions are logged correctly. If you do not set the transaction name to null,

subsequent transactions may be logged with the previous transaction’s name.

Syntax
The parameter for the SET_ACTION procedure is described in this section. The

syntax for this procedure is shown below:

 DBMS_APPLICATION_INFO.SET_ACTION(action_name IN VARCHAR2)

Setting the Client Information
To supply additional information about the client application, use the

SET_CLIENT_INFO procedure in the DBMS_APPLICATION_INFO package.

Syntax
The parameter for the SET_CLIENT_INFO procedure is described in this section.

The syntax for this procedure is shown below:

 DBMS_APPLICATION_INFO.SET_CLIENT_INFO(client_info IN VARCHAR2)

action_name The name of the current action within the current module.

When the current action terminates, call this procedure with

the name of the next action if there is one, or null if there is

not. Names longer than 32 bytes are truncated.

client_info Use this parameter to supply any additional information

about the client application. This information is stored in

the V$SESSIONS view. Information exceeding 64 bytes is

truncated.

Retrieving Application Information

Registering Applications 5-5

Retrieving Application Information
Module and action names for a registered application can be retrieved by querying

V$SQLAREA or by calling the READ_MODULE procedure in the

DBMS_APPLICATION_INFO package. Client information can be retrieved by

querying the V$SESSION view, or by calling the READ_CLIENT_INFO procedure

in the DBMS_APPLICATION_INFO package.

Querying V$SQLAREA
The following sample query illustrates the use of the MODULE and ACTION

column of the V$SQLAREA.

 SELECT sql_text, disk_reads, module, action
 FROM v$sqlarea
 WHERE module = ’add_employee’;

SQL_TEXT DISK_READS MODULE ACTION
------------------- ---------- ------------------ ----------------
INSERT INTO emp 1 add_employee insert into emp
(ename, empno, sal,
mgr, job, hiredate,
comm, deptno)
VALUES
(name,
next.emp_seq,
manager, title,
SYSDATE, commission,
department)

1 row selected.

READ_MODULE Syntax
The parameters for the READ_MODULE procedure are described in this section.

The syntax for this procedure is shown below:

 DBMS_APPLICATION_INFO.READ_MODULE(
 module_name OUT VARCHAR2,
 action_name OUT VARCHAR2)

Retrieving Application Information

5-6 Oracle8i Tuning

READ_CLIENT_INFO Syntax
The parameter for the READ_CLIENT_INFO procedure is described in this section.

The syntax for this procedure is shown below:

 DBMS_APPLICATION_INFO.READ_CLIENT_INFO(client_info OUT VARCHAR2)

module_name The last value that the module name was set to by calling

SET_MODULE.

action_name The last value that the action name was set to by calling

SET_ACTION or SET_MODULE.

client_info The last client information value supplied to the

SET_CLIENT_INFO procedure.

Data Access Methods 6-1

6
Data Access Methods

This chapter provides an overview of data access methods that can enhance

performance. It also warns of situations to avoid. This chapter also explains how to

used hints to force various approaches. Topics in this chapter include:

■ Using Indexes

■ Using Function-based Indexes

■ Using Bitmap Indexes

■ Using Domain Indexes

■ Using Clusters

■ Using Hash Clusters

Using Indexes

6-2 Oracle8i Tuning

Using Indexes
This section describes:

■ When to Create Indexes

■ Tuning the Logical Structure

■ Choosing Columns and Expressions to Index

■ Choosing Composite Indexes

■ Writing Statements that Use Indexes

■ Writing Statements that Avoid Using Indexes

■ Assessing the Value of Indexes

■ Re-creating Indexes

■ Using Nonunique Indexes to Enforce Uniqueness

■ Using Enabled Novalidated Constraints

When to Create Indexes
Indexes improve the performance of queries that select a small percentage of rows

from a table. As a general guideline, create indexes on tables that are queried for

less than 2% or 4% of the table’s rows. This value may be higher in situations where

all data can be retrieved from an index, or where the indexed columns and

expressions can be used for joining to other tables.

This guideline is based on these assumptions:

■ Rows with the same value for the key on which the query is based are

uniformly distributed throughout the data blocks allocated to the table

■ Rows in the table are randomly ordered with respect to the key on which the

query is based

■ The table contains a relatively small number of columns

■ Most queries on the table have relatively simple WHERE clauses

■ The cache hit ratio is low and there is no operating system cache

If these assumptions do not describe the data in your table and the queries that

access it, then an index may not be helpful unless your queries typically access at

least 25% of the table’s rows.

Using Indexes

Data Access Methods 6-3

Tuning the Logical Structure
Although cost-based optimization helps avoid the use of nonselective indexes

within query execution, the SQL engine must continue to maintain all indexes

defined against a table regardless of whether they are used. Index maintenance can

present a significant CPU and I/O resource demand in any I/O intensive

application. Put another way, building indexes "just in case" is not a good practice;

indexes should not be built until required.

To maintain optimal performance as far as indexes are concerned, drop indexes that

your application is not using. You can find indexes that are not referenced in

execution plans by processing all of your application SQL through EXPLAIN PLAN

and capturing the resulting plans. Unused indexes are typically, though not

necessarily, nonselective.

Indexes within an application sometimes have uses that are not immediately

apparent from a survey of statement execution plans. In particular, Oracle uses

"pins" (nontransactional locks) on foreign key indexes to avoid using shared locks

on the child table when enforcing foreign key constraints.

In many applications a foreign key index never, or rarely, supports a query. In the

example shown in Figure 6–1, the need to locate all of the order lines for a given

product may never arise. However, when no index exists with LINES(PCODE) as its

leading portion (as described in "Choosing Composite Indexes"), then Oracle places

a share lock on the LINES table each time PRODUCTS(PCODE) is updated or

deleted. Such a share lock is a problem only if the PRODUCTS table is subject to

frequent DML.

If this contention arises, then to remove it the application must either:

■ Accept the additional load of maintaining the index

■ Accept the risk of running with the constraint disabled

Using Indexes

6-4 Oracle8i Tuning

Figure 6–1 Foreign Key Constraint

Choosing Columns and Expressions to Index
A key is a column or expression on which you can build an index. Follow these

guidelines for choosing index keys to index:

■ Consider indexing keys that are frequently used in WHERE clauses.

■ Consider indexing keys that are frequently used to join tables in SQL

statements. For more information on optimizing joins, see the section "Using

Hash Clusters" on page 6-25.

■ Only index keys that have accurate selectivity. The selectivity of an index is the

percentage of rows in a table having the same value for the indexed key. An

index’s selectivity is optimal if few rows have the same value.

You can determine the selectivity of an index by dividing the number of rows in

the table by the number of distinct indexed values. You can obtain these values

using the ANALYZE statement. Selectivity calculated in this manner should be

interpreted as a percentage.

■ Do not use standard B*-tree indexes on keys or expressions with few distinct

values. Such keys or expressions usually have poor selectivity and therefore do

Note: Oracle automatically creates indexes on the keys and

expressions of unique and primary keys that you define with

integrity constraints. These indexes are the most selective and the

most effective in optimizing performance.

subject to share lock

BuildLines
PK ORDER_NO
PK LINE_NO
FK PCODE

Products
PK PCODE
 QTY_ON_HAND

Design

Orders
PK ORDR_NO

Using Indexes

Data Access Methods 6-5

not optimize performance unless the frequently selected key values appear less

frequently than the other key values. You can use bitmap indexes effectively in

such cases, unless a high concurrency OLTP application is involved.

■ Do not index columns that are frequently modified. UPDATE statements that

modify indexed columns and INSERT and DELETE statements that modify

indexed tables take longer than if there were no index. Such SQL statements

must modify data in indexes as well as data in tables. They also generate

additional undo and redo information.

■ Do not index keys that appear only in WHERE clauses with functions or

operators. A WHERE clause that uses a function (other than MIN or MAX) or

an operator with an indexed key does not make available the access path that

uses the index.

■ Consider indexing foreign keys of referential integrity constraints in cases in

which a large number of concurrent INSERT, UPDATE, and DELETE

statements access the parent and child tables. Such an index allows UPDATEs

and DELETEs on the parent table without share locking the child table.

■ When choosing to index a key, consider whether the performance gain for

queries is worth the performance loss for INSERTs, UPDATEs, and DELETEs

and the use of the space required to store the index. You may want to

experiment by comparing the processing times of your SQL statements with

and without indexes. You can measure processing time with the SQL trace

facility.

Choosing Composite Indexes
A composite index contains more than one key column. Composite indexes can

provide additional advantages over single-column indexes:

See Also: Oracle8i Concepts regarding the effects of foreign keys

on locking.

Improved selectivity Sometimes two or more columns or expressions, each

with poor selectivity, can be combined to form a

composite index with more accurate selectivity.

Additional data storage If all columns selected by a query are in a composite

index, Oracle can return these values from the index

without accessing the table.

Using Indexes

6-6 Oracle8i Tuning

A SQL statement can use an access path involving a composite index if the

statement contains constructs that use a leading portion of the index. A leading

portion of an index is a set of one or more columns that were specified first and

consecutively in the list of columns in the CREATE INDEX statement that created

the index. Consider this CREATE INDEX statement:

 CREATE INDEX comp_ind
 ON tab1(x, y, z);

These combinations of columns are leading portions of the index: X, XY, and XYZ.

These combinations of columns are not leading portions of the index: YZ, Z, and Y.

Follow these guidelines for choosing keys for composite indexes:

■ Consider creating a composite index on keys that are frequently used together

in WHERE clause conditions combined with AND operators, especially if their

combined selectivity is better than the selectivity of either key individually.

■ If several queries select the same set of keys based on one or more key values,

consider creating a composite index containing all of these keys.

Of course, consider the guidelines associated with the general performance

advantages and trade-offs of indexes described in the previous sections. Follow

these guidelines for ordering keys in composite indexes:

■ Create the index so the keys used in WHERE clauses make up a leading

portion.

■ If some keys are used in WHERE clauses more frequently, be sure to create the

index so that the more frequently selected keys make up a leading portion to

allow the statements that use only these keys to use the index.

■ If all keys are used in WHERE clauses equally often, ordering these keys from

most selective to least selective in the CREATE INDEX statement best improves

query performance.

■ If all keys are used in the WHERE clauses equally often but the data is

physically ordered on one of the keys, place that key first in the composite

index.

Writing Statements that Use Indexes
Even after you create an index, the optimizer cannot use an access path that uses the

index simply because the index exists. The optimizer can choose such an access

path for a SQL statement only if it contains a construct that makes the access path

available.

Using Indexes

Data Access Methods 6-7

To be sure that a SQL statement can use an access path that uses an index, be sure

the statement contains a construct that makes such an access path available. If you

are using the cost-based approach, also generate statistics for the index. Once you

have made the access path available for the statement, the optimizer may or may

not choose to use the access path, based on the availability of other access paths.

If you create new indexes to tune statements, you can also use the EXPLAIN PLAN

statement to determine whether the optimizer will choose to use these indexes

when the application is run. If you create new indexes to tune a statement that is

currently parsed, Oracle invalidates the statement. When the statement is next

executed, the optimizer automatically chooses a new execution plan that could

potentially use the new index. If you create new indexes on a remote database to

tune a distributed statement, the optimizer considers these indexes when the

statement is next parsed.

Also keep in mind that the way you tune one statement may affect the optimizer’s

choice of execution plans for others. For example, if you create an index to be used

by one statement, the optimizer may choose to use that index for other statements

in your application as well. For this reason, you should re-examine your

application’s performance and rerun the SQL trace facility after you have tuned

those statements that you initially identified for tuning.

Writing Statements that Avoid Using Indexes
In some cases, you may want to prevent a SQL statement from using an access path

that uses an existing index. You may want to do this if you know that the index is

not very selective and that a full table scan would be more efficient. If the statement

contains a construct that makes such an index access path available, you can force

the optimizer to use a full table scan through one of these methods:

■ You can make the index access path unavailable by modifying the statement in

a way that does not change its meaning.

■ You can use the FULL hint to force the optimizer to choose a full table scan

instead of an index scan.

■ You can use the INDEX, INDEX_COMBINE, or AND_EQUAL hints to force the

optimizer to use one index or a set of listed indexes instead of another.

The behavior of the optimizer may change in future versions of Oracle, so relying

on methods such as the first to choose access paths may not be a good long-range

plan. Instead, use hints to suggest specific access paths to the optimizer.

Using Indexes

6-8 Oracle8i Tuning

Assessing the Value of Indexes
A crude way to determine whether an index is good is to create it, analyze it, and

use EXPLAIN PLAN on your query to see if the optimizer uses it. If it does, keep

the index unless it is expensive to maintain. This method, however, is very time-

and resource-consuming. A preferable method is to compare the optimizer cost (in

the first row of EXPLAIN PLAN output) of the plans with and without the index.

Parallel execution uses indexes effectively. It does not perform parallel index range

scans, but it does perform parallel index lookups for parallel nested loop join

execution. If an index is very selective (there are few rows per index entry), then it

may be better to use sequential index lookup than parallel table scan.

Using Fast Full Index Scans
The fast full index scan is an alternative to a full table scan when there is an index

that contains all the keys that are needed for the query. A fast full scan is faster than

a normal full index scan in that it can use multiblock I/O and can be parallelized

just like a table scan. Unlike regular index scans, however, you cannot use keys and

the rows will not necessarily come back in sorted order. The following query and

plan illustrate this feature.

 SELECT COUNT(*) FROM t1, t2
 WHERE t1.c1 > 50 and t1.c2 = t2.c1;

The plan is as follows:

 SELECT STATEMENT
 SORT AGGREGATE

 HASH JOIN
 TABLE ACCESS1FULL
 INDEXT2_C1_IDX FAST FULL SCAN

Since index T2_C1_IDX contains all columns needed from table T2(C2), the

optimizer uses a fast full index scan on that index.

Fast full scan has the following restrictions:

■ At least one indexed column of the table must have the NOT NULL constraint.

■ There must be a parallel clause on the index, if you want to perform fast full

index scan in parallel. The parallel degree of the index is set independently: the

index does not inherit the degree of parallelism of the table.

■ Make sure you have analyzed the index, otherwise the optimizer may decide

not to use it.

Using Indexes

Data Access Methods 6-9

Fast full scan has a special index hint, INDEX_FFS, which has the same format and

arguments as the regular INDEX hint.

Re-creating Indexes
You may wish to re-create an index to compact it and minimize fragmented space,

or to change the index’s storage characteristics. When creating a new index that is a

subset of an existing index, or when rebuilding an existing index with new storage

characteristics, Oracle may use the existing index instead of the base table to

improve performance.

However, there are cases where it may be beneficial to use the base table instead of

the existing index. Consider an index on a table on which a lot of DML has been

performed. Because of the DML, the size of the index may increase to the point

where each block is only 50% full, or even maybe less. If the index refers to most of

the columns in the table, the index could actually be larger than the table. In this

case, it is faster to use the base table rather than the index to re-create the index.

Another option is to create a new index on a subset of the columns of the original

index.

Consider, for example, a table named CUST with columns NAME, CUSTID,

PHONE, ADDR, BALANCE, and an index named I_CUST_CUSTINFO on table

columns NAME, CUSTID and BALANCE. To create a new index named

I_CUST_CUSTNO on columns CUSTID and NAME, you would enter:

 CREATE INDEX I_CUST_CUSTNO ON CUST(CUSTID,NAME);

Oracle automatically uses the existing index (I_CUST_CUSTINFO) to create the

new index rather than accessing the entire table. The syntax used is the same as if

the index I_CUST_CUSTINFO did not exist.

Similarly, if you have an index on the EMPNO and MGR columns of the EMP table,

and you want to change the storage characteristics of that composite index, Oracle

can use the existing index to create the new index.

Use the ALTER INDEX ... REBUILD statement to reorganize or compact an existing

index or to change its storage characteristics. The REBUILD statement uses the

existing index as the basis for the new one. All index storage statements are

supported, such as STORAGE (for extent allocation), TABLESPACE (to move the

index to a new tablespace), and INITRANS (to change the initial number of entries).

ALTER INDEX ... REBUILD is usually faster than dropping and re-creating an

index, because this statement uses the fast full scan feature. It reads all the index

See Also: "INDEX_FFS" on page 7-48.

Using Indexes

6-10 Oracle8i Tuning

blocks using multiblock I/O then discards the branch blocks. A further advantage

of this approach is that the old index is still available for queries (but not for DML)

while the rebuild is in progress.

Compacting Indexes
You can coalesce leaf blocks of an index using the ALTER INDEX statement with

the COALESCE option. This allows you to combine leaf levels of an index to free

blocks for re-use. You can also rebuild the index online.

For more information about the syntax for this statement, please refer to the Oracle8i
SQL Reference and the Oracle8i Administrator’s Guide.

Using Nonunique Indexes to Enforce Uniqueness
You can use an existing nonunique index on a table to enforce uniqueness, either for

UNIQUE constraints or the unique aspect of a PRIMARY KEY constraint. The

advantage of this approach is that the index remains available and valid when the

constraint is disabled. Therefore, enabling a disabled UNIQUE or PRIMARY KEY

constraint does not require rebuilding the unique index associated with the

constraint. This can yield significant time savings on enable operations for large

tables.

Using a nonunique index to enforce uniqueness also allows you to eliminate

redundant indexes. You do not need a unique index on a primary key column if that

column already is included as the prefix of a composite index. You may use the

existing index to enable and enforce the constraint. You also save significant space

by not duplicating the index.

Using Enabled Novalidated Constraints
An enabled novalidated constraint behaves similarly to an enabled validated

constraint. Placing a constraint in the enabled novalidated state signifies that any

new data entered into the table must conform to the constraint. Existing data is not

checked. Placing a constraint in the enabled novalidated state allows you to enable

the constraint without locking the table.

If you change a constraint from disabled to enabled, the table must be locked. No

new DML, queries, or DDL can occur because there is no mechanism to ensure that

See Also: Oracle8i SQL Reference for more information about the

CREATE INDEX and ALTER INDEX statements and for restrictions

on re-building indexes.

Using Indexes

Data Access Methods 6-11

operations on the table conform to the constraint during the enable operation. The

enabled novalidated state prevents operations violating the constraint from being

performed on the table.

An enabled novalidated constraint can be validated with a parallel, consistent-read

query of the table to determine whether any data violates the constraint. No locking

is performed and the enable operation does not block readers or writers to the table.

In addition, enabled novalidated constraints can be validated in parallel: multiple

constraints can be validated at the same time and each constraint's validity check

can be determined using parallel query.

Use the following approach to create tables with constraints and indexes:

1. Create the tables with the constraints. NOT NULL constraints may be unnamed

and should be created enabled and validated. All other constraints (CHECK,

UNIQUE, PRIMARY KEY, and FOREIGN KEY) should be named and should

be "created disabled".

2. Load old data into the tables.

3. Create all indexes including indexes needed for constraints.

4. Enable novalidate all constraints. Do this to primary keys before foreign keys.

5. Allow users to query and modify data.

6. With a separate ALTER TABLE statement for each constraint, validate all

constraints. Do this to primary keys before foreign keys.

For example,

 CREATE TABLE t (a NUMBER CONSTRAINT apk PRIMARY KEY DISABLE,
 b NUMBER NOT NULL);
 CREATE TABLE x (c NUMBER CONSTRAINT afk REFERENCES t DISABLE);

 At this point, use import or fast loader to load data into t.

 CREATE UNIQUE INDEX tai ON t (a);
 CREATE INDEX tci ON x (c);
 ALTER TABLE t MODIFY CONSTRAINT apk ENABLE NOVALIDATE;
 ALTER TABLE x MODIFY CONSTRAINT afk ENABLE NOVALIDATE;

Now users can start performing inserts, updates, deletes, and selects on t.

Note: By default, constraints are created in the ENABLED state.

Using Function-based Indexes

6-12 Oracle8i Tuning

 ALTER TABLE t ENABLE CONSTRAINT apk;
 ALTER TABLE x ENABLE CONSTRAINT afk;

Now the constraints are enabled and validated.

Using Function-based Indexes
A function-based index is an index on an expression. Oracle strongly recommends

using function-based indexes whenever possible. Define function-based indexes

anywhere where you use an index on a column, except for columns with LOBs, or

REFs. Nested table columns and object types cannot contain these columns.

You can create function-based indexes for any repeatable SQL function. Oracle

recommends using function-based indexes for range scans and for functions in

ORDER BY clauses.

Function-based indexes are an efficient mechanism for evaluating statements that

contain functions in WHERE clauses. You can create a function-based index to

materialize computational-intensive expressions in the index. This permits Oracle to

bypass computing the value of the expression when processing SELECT and

DELETE statements. When processing INSERT and UPDATE statements, however,

Oracle evaluates the function to process the statement.

For example, if you create the following index:

 CREATE INDEX idx ON table_1 (a + b * (c - 1), a, b);

Oracle can use it when processing queries such as:

 SELECT a FROM table_1 WHERE a + b * (c - 1) < 100;

Function-based indexes defined with the UPPER(column_name) or

LOWER(column_name) keywords allow case-insensitive searches. For example, the

following index:

 CREATE INDEX uppercase_idx ON emp (UPPER(empname));

Facilitates processing queries such as:

 SELECT * FROM emp WHERE UPPER(empname) = ’MARK’;

See Also: Oracle8i Concepts for a complete discussion of integrity

constraints.

Using Bitmap Indexes

Data Access Methods 6-13

You can also use function-based indexes for NLS sort indexes that provide efficient

linguistic collation in SQL statements.

Oracle treats indexes with columns marked DESC as function-based indexes. The

columns marked DESC are sorted in descending order.

Function-based Indexes and Index Organized Tables
The secondary index on an IOT can be a function-based index.

Using Bitmap Indexes
This section describes:

■ When to Use Bitmap Indexes

■ Creating Bitmap Indexes

■ Initialization Parameters for Bitmap Indexing

■ Using Bitmap Access Plans on Regular B*-tree Indexes

■ Estimating Bitmap Index Size

■ Bitmap Index Restrictions

When to Use Bitmap Indexes
This section describes three aspects of indexing that you must evaluate when

considering whether to use bitmap indexing on a given table: performance, storage,

and maintenance.

Note: You must set the session parameter

QUERY_REWRITE_ENABLED to TRUE to enable function-based

indexes for queries. If QUERY_REWRITE_ENABLED is FALSE,

function-based indexes will not be used for obtaining the values of

an expression in the function-based index. However,

function-based indexes can still be used for obtaining values in real

columns.

See Also: Oracle8i Concepts, for a general introduction to bitmap

indexing.

Using Bitmap Indexes

6-14 Oracle8i Tuning

Performance Considerations
Bitmap indexes can substantially improve performance of queries with the

following characteristics:

■ The WHERE clause contains multiple predicates on low- or medium-cardinality

columns

■ The individual predicates on these low- or medium-cardinality columns select a

large number of rows

■ Bitmap indexes have been created on some or all of these low- or

medium-cardinality columns

■ The tables being queried contain many rows

You can use multiple bitmap indexes to evaluate the conditions on a single table.

Bitmap indexes are thus highly advantageous for complex ad hoc queries that

contain lengthy WHERE clauses. Bitmap indexes can also provide optimal

performance for aggregate queries and for optimizing joins in star schemas.

Storage Considerations
Bitmap indexes can provide considerable storage savings over the use of

multicolumn (or concatenated) B*-tree indexes. In databases containing only B*-tree

indexes, you must anticipate the columns that would commonly be accessed

together in a single query, and create a composite B*-tree index on these columns.

Not only would this B*-tree index require a large amount of space, but it would also

be ordered. That is, a B*-tree index on (MARITAL_STATUS, REGION, GENDER) is

useless for queries that only access REGION and GENDER. To completely index the

database, you must create indexes on the other permutations of these columns. For

the simple case of three low-cardinality columns, there are six possible composite

B*-tree indexes. You must consider the trade-offs between disk space and

performance needs when determining which composite B*-tree indexes to create.

Bitmap indexes solve this dilemma. Bitmap indexes can be efficiently combined

during query execution, so three small single-column bitmap indexes can do the job

of six three-column B*-tree indexes.

Bitmap indexes are much more efficient than B*-tree indexes, especially in data

warehousing environments. Bitmap indexes are created not only for efficient space

usage, but also for efficient execution, and the latter is somewhat more important.

See Also: For more information, please refer to the optimizing

anti-joins and semi-joins discussion in Oracle8i Concepts.

Using Bitmap Indexes

Data Access Methods 6-15

If a bitmap index is created on a unique key column, it requires more space than a

regular B*-tree index. However, for columns where each value is repeated hundreds

or thousands of times, a bitmap index typically is less than 25% of the size of a

regular B*-tree index. The bitmaps themselves are stored in compressed format.

Simply comparing the relative sizes of B*-tree and bitmap indexes is not an accurate

measure of effectiveness, however. Because of their different performance

characteristics, you should keep B*-tree indexes on high-cardinality data, while

creating bitmap indexes on low-cardinality data.

Maintenance Considerations
Bitmap indexes benefit data warehousing applications but they are not appropriate

for OLTP applications with a heavy load of concurrent INSERTs, UPDATEs, and

DELETEs. In a data warehousing environment, data is usually maintained by way

of bulk inserts and updates. Index maintenance is deferred until the end of each

DML operation. For example, if you insert 1000 rows, the inserted rows are placed

into a sort buffer and then the updates of all 1000 index entries are batched. (This is

why SORT_AREA_SIZE must be set properly for good performance with inserts

and updates on bitmap indexes.) Thus each bitmap segment is updated only once

per DML operation, even if more than one row in that segment changes.

DML and DDL statements such as UPDATE, DELETE, DROP TABLE, affect bitmap

indexes the same way they do traditional indexes: the consistency model is the

same. A compressed bitmap for a key value is made up of one or more bitmap

segments, each of which is at most half a block in size (but may be smaller). The

locking granularity is one such bitmap segment. This may affect performance in

environments where many transactions make simultaneous updates. If numerous

DML operations have caused increased index size and decreasing performance for

queries, you can use the ALTER INDEX ... REBUILD statement to compact the

index and restore efficient performance.

A B*-tree index entry contains a single rowid. Therefore, when the index entry is

locked, a single row is locked. With bitmap indexes, an entry can potentially contain

Note: The sorts described above are regular sorts and use the

regular sort area, determined by SORT_AREA_SIZE. The

BITMAP_MERGE_AREA_SIZE and

CREATE_BITMAP_AREA_SIZE parameters described in

"Initialization Parameters for Bitmap Indexing" on page 6-18 only

affect the specific operations indicated by the parameter names.

Using Bitmap Indexes

6-16 Oracle8i Tuning

a range of rowids. When a bitmap index entry is locked, the entire range of rowids

is locked. The number of rowids in this range affects concurrency. For example, a

bitmap index on a column with unique values would lock one rowid per value:

concurrency would be the same as for B*-tree indexes. As the number of rowids

increases in a bitmap segment, concurrency decreases.

Locking issues affect DML operations, and thus may affect heavy OLTP

environments. Locking issues do not, however, affect query performance. As with

other types of indexes, updating bitmap indexes is a costly operation. Nonetheless,

for bulk inserts and updates where many rows are inserted or many updates are

made in a single statement, performance with bitmap indexes can be better than

with regular B*-tree indexes.

Creating Bitmap Indexes
To create a bitmap index, use the BITMAP keyword in the CREATE INDEX

statement:

 CREATE BITMAP INDEX ...

Multi-column (concatenated) bitmap indexes are supported; they can be defined

over no more than 32 columns. Other SQL statements concerning indexes, such as

DROP, ANALYZE, ALTER, and so on, can refer to bitmap indexes without any extra

keyword. For information on bitmap index restrictions, please refer to Oracle8i SQL
Reference

Index Type
System index views USER_INDEXES, ALL_INDEXES, and DBA_INDEXES indicate

bitmap indexes by the word BITMAP appearing in the TYPE column. A bitmap

index cannot be declared as UNIQUE.

Using Hints
The INDEX hint works with bitmap indexes in the same way as with traditional

indexes.

The INDEX_COMBINE hint identifies the most cost effective hints for the

optimizer. The optimizer recognizes all indexes that can potentially be combined,

given the predicates in the WHERE clause. However, it may not be cost effective to

Note: The COMPATIBLE initialization parameter must be set to

7.3.2 or higher to use bitmap indexes.

Using Bitmap Indexes

Data Access Methods 6-17

use all of them. Oracle recommends using INDEX_COMBINE rather than INDEX

for bitmap indexes because it is a more versatile hint.

In deciding which of these hints to use, the optimizer includes non-hinted indexes

that appear cost effective as well as indexes named in the hint. If certain indexes are

given as arguments for the hint, the optimizer tries to use some combination of

those particular bitmap indexes.

If the hint does not name indexes, all indexes are considered hinted. Hence, the

optimizer tries to combine as many as is possible given the WHERE clause, without

regard to cost effectiveness. The optimizer always tries to use hinted indexes in the

plan regardless of whether it considers them cost effective.

Performance and Storage Tips
To obtain optimal performance and disk space usage with bitmap indexes, note the

following considerations:

■ Large block sizes improve the efficiency of storing, and hence retrieving, bitmap

indexes

■ To make compressed bitmaps as small as possible, declare NOT NULL

constraints on all columns that cannot contain null values

■ Fixed-length datatypes are more amenable to a compact bitmap representation

than variable length datatypes

Efficient Mapping of Bitmaps to Rowids
Use SQL statements with the ALTER TABLE syntax to optimize the mapping of

bitmaps to rowids. The MINIMIZE RECORDS_PER_BLOCK clause enables this

optimization and the NOMINIMIZE RECORDS_PER_BLOCK clause disables it.

When enabled, Oracle scans the table and determines the maximum number of

records in any block and restricts this table to this maximum number. This enables

bitmap indexes to allocate fewer bits per block and results in smaller bitmap

indexes. The block and record allocation restrictions this statement places on the

table are only beneficial to bitmap indexes. Therefore, Oracle does not recommend

using this mapping on tables that are not heavily indexed with bitmap indexes.

See Also: "INDEX_COMBINE" on page 7-46.

See Also: Chapter 13, "Using EXPLAIN PLAN" for information

about bitmap EXPLAIN PLAN output.

Using Bitmap Indexes

6-18 Oracle8i Tuning

Indexing Null Values
Bitmap indexes index nulls, whereas all other index types do not. Consider, for

example, a table with STATE and PARTY columns, on which you want to perform

the following query:

 SELECT COUNT(*) FROM people WHERE state=’CA’ and party !=’D’;

Indexing nulls enables a bitmap minus plan where bitmaps for party equal to ’D’

and NULL are subtracted from state bitmaps equal to ’CA’. The EXPLAIN PLAN

output would look like this:

 SELECT STATEMENT
 SORT AGGREGATE
 BITMAP CONVERSION COUNT
 BITMAP MINUS
 BITMAP MINUS
 BITMAP INDEX SINGLE VALUE STATE_BM
 BITMAP INDEX SINGLE VALUE PARTY_BM
 BITMAP INDEX SINGLE VALUE PARTY_BM

If a NOT NULL constraint existed on party, the second minus operation (where

party is null) would be left out because it is not needed.

Initialization Parameters for Bitmap Indexing
The following two initialization parameters have an effect on performance.

CREATE_BITMAP_AREA_SIZE
This parameter determines the amount of memory allocated for bitmap creation.

The default value is 8MB. A larger value may lead to faster index creation. If

cardinality is very small, you can set a small value for this parameter. For example,

if cardinality is only 2, then the value can be on the order of kilobytes rather than

megabytes. As a general rule, the higher the cardinality, the more memory is needed

for optimal performance. You cannot dynamically alter this parameter at the system

or session level.

See Also: "Using Bitmap Indexes" on page 6-13. Also refer to the

Oracle8i SQL Reference for details on the use of the MINIMIZE and

NOMINIMIZE syntax.

Using Bitmap Indexes

Data Access Methods 6-19

BITMAP_MERGE_AREA_SIZE
This parameter determines the amount of memory used to merge bitmaps retrieved

from a range scan of the index. The default value is 1 MB. A larger value should

improve performance because the bitmap segments must be sorted before being

merged into a single bitmap. You cannot dynamically alter this parameter at the

system or session level.

Using Bitmap Access Plans on Regular B*-tree Indexes
If there is at least one bitmap index on the table, the optimizer considers using a

bitmap access path using regular B*-tree indexes for that table. This access path may

involve combinations of B*-tree and bitmap indexes, but might not involve any

bitmap indexes at all. However, the optimizer will not generate a bitmap access

path using a single B*-tree index unless instructed to do so by a hint.

To use bitmap access paths for B*-tree indexes, the rowids stored in the indexes

must be converted to bitmaps. After such a conversion, the various Boolean

operations available for bitmaps can be used. As an example, consider the following

query, where there is a bitmap index on column C1, and regular B*-tree indexes on

columns C2 and C3.

 EXPLAIN PLAN FOR
 SELECT COUNT(*) FROM T
 WHERE
 C1 = 2 AND C2 = 6
 OR
 C3 BETWEEN 10 AND 20;
 SELECT STATEMENT
 SORT AGGREGATE
 BITMAP CONVERSION COUNT
 BITMAP OR
 BITMAP AND
 BITMAP INDEX C1_IND SINGLE VALUE
 BITMAP CONVERSION FROM ROWIDS
 INDEX C2_IND RANGE SCAN
 BITMAP CONVERSION FROM ROWIDS
 SORT ORDER BY
 INDEX C3_IND RANGE SCAN

See Also: For more information on improving bitmap index

efficiency, please see "Efficient Mapping of Bitmaps to Rowids" on

page 6-17.

Using Bitmap Indexes

6-20 Oracle8i Tuning

Here, a COUNT option for the BITMAP CONVERSION row source counts the

number of rows matching the query. There are also conversions FROM rowids in

the plan to generate bitmaps from the rowids retrieved from the B*-tree indexes.

The occurrence of the ORDER BY sort in the plan is due to the fact that the

conditions on column C3 result in more than one list of rowids being returned from

the B*-tree index. These lists are sorted before they can be converted into a bitmap.

Estimating Bitmap Index Size
Although it is not possible to precisely size a bitmap index, you can estimate its

size. This section describes how to determine the size of a bitmap index for a table

using the computed size of a B*-tree index. It also illustrates how cardinality, NOT

NULL constraints, and number of distinct values affect bitmap size.

To estimate the size of a bitmap index for a given table, you may extrapolate from

the size of a B*-tree index for the table. Use the following approach:

1. Use the standard formula described in Oracle8i Concepts to compute the size of

a B*-tree index for the table.

2. Determine the cardinality of the table data.

3. From the cardinality value, extrapolate the size of a bitmap index according to

the graph in Figure 6–2 or Figure 6–3.

For a 1 million row table, Figure 6–2 shows index size on columns with different

numbers of distinct values, for B*-tree indexes and bitmap indexes. Using

Figure 6–2 you can estimate the size of a bitmap index relative to that of a B*-tree

index for the table. Sizing is not exact: results vary somewhat from table to table.

Randomly distributed data was used to generate the graph. If, in your data,

particular values tend to cluster close together, you may generate considerably

smaller bitmap indexes than indicated by the graph. Bitmap indexes may be slightly

smaller than those in the graph if columns contain NOT NULL constraints.

Figure 6–3 shows similar data for a table with 5 million rows. When cardinality

exceeds 100,000, bitmap index size does not increase as fast as it does in Figure 6–2.

For a table with more rows, there are more repeating values for a given cardinality.

Using Bitmap Indexes

Data Access Methods 6-21

Figure 6–2 Extrapolating Bitmap Index Size: 1 Million Row Table

0

5

10

15

20

25

30

B*-tree Index Size

Bitmap Index Size

1,
00

0,
00

0

50
0,

00
0

25
0,

00
0

10
0,

00
0

40
,0

00

10
,0

00

1,
00

0

10
02510542

M
eg

ab
yt

es

Cardinality

Using Bitmap Indexes

6-22 Oracle8i Tuning

Figure 6–3 Extrapolating Bitmap Index Size: 5 Million Row Table

5,
00

0,
00

0

2,
50

0,
00

0

1,
00

0,
00

0

40
0,

00
0

10
0,

00
0

10
,0

00

10
0025

0

10
0504020

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

B*-tree Index Size

Bitmap Index Size

M
eg

ab
yt

es

Cardinality

Using Domain Indexes

Data Access Methods 6-23

Bitmap Index Restrictions
Bitmap indexes have the following restrictions:

■ For bitmap indexes with direct load, the SORTED_INDEX flag does not apply

■ Bitmap indexes are not considered by the rule-based optimizer

■ Bitmap indexes cannot be used for referential integrity checking

Using Domain Indexes
Domain indexes are built using the indexing logic supplied by a user-defined

indextype. Typically, the user-defined indextype is part of a data cartridge. For

example, the Spatial cartridge provides a SpatialIndextype to index spatial data.

An indextype provides an efficient mechanism to access data that satisfy certain

operator predicates. For example, the SpatialIndextype allows efficient search and

retrieval of spatial data that overlap a given bounding box.

The cartridge determines the parameters you can specify in creating and

maintaining the domain index. Similarly, the performance and storage

characteristics of the domain index are presented in the specific cartridge

documentation.

Refer to the appropriate cartridge documentation for information such as:

■ What datatypes can be indexed?

■ What indextypes are provided?

■ What operators does the indextype support?

■ How can the domain index be created and maintained?

■ How do we efficiently use the operator in queries?

■ What are the performance characteristics?

Note: You can also create index types with the CREATE

INDEXTYPE SQL statement.

See Also: For information about the SpatialIndextype, please

refer to the Oracle8i Spatial User’s Guide and Reference.

Using Clusters

6-24 Oracle8i Tuning

Using Clusters
Follow these guidelines when deciding whether to cluster tables:

■ Consider clustering tables that are often accessed by your application in join

statements.

■ Do not cluster tables if your application joins them only occasionally or

modifies their common column values frequently. Modifying a row’s cluster

key value takes longer than modifying the value in an unclustered table,

because Oracle may have to migrate the modified row to another block to

maintain the cluster.

■ Do not cluster tables if your application often performs full table scans of only

one of the tables. A full table scan of a clustered table can take longer than a full

table scan of an unclustered table. Oracle is likely to read more blocks because

the tables are stored together.

■ Consider clustering master-detail tables if you often select a master record and

then the corresponding detail records. Detail records are stored in the same data

block(s) as the master record, so they are likely still to be in memory when you

select them, requiring Oracle to perform less I/O.

■ Consider storing a detail table alone in a cluster if you often select many detail

records of the same master. This measure improves the performance of queries

that select detail records of the same master but does not decrease the

performance of a full table scan on the master table.

■ Do not cluster tables if the data from all tables with the same cluster key value

exceeds more than one or two Oracle blocks. To access a row in a clustered

table, Oracle reads all blocks containing rows with that value. If these rows take

up multiple blocks, accessing a single row could require more reads than

accessing the same row in an unclustered table.

Consider the benefits and drawbacks of clusters with respect to the needs of your

application. For example, you may decide that the performance gain for join

statements outweighs the performance loss for statements that modify cluster key

values. You may want to experiment and compare processing times with your

tables both clustered and stored separately. To create a cluster, use the CREATE

CLUSTER statement.

See Also: For more information on creating clusters, see Oracle8i
Application Developer’s Guide - Fundamentals.

Using Hash Clusters

Data Access Methods 6-25

Using Hash Clusters
Hash clusters group table data by applying a hash function to each row’s cluster

key value. All rows with the same cluster key value are stored on disk. Consider the

benefits and drawbacks of hash clusters with respect to the needs of your

application. You may want to experiment and compare processing times with a

particular table as it is stored in a hash cluster, and as it is stored alone with an

index. This section describes:

■ When to Use a Hash Cluster

■ Using Hash Clusters

When to Use a Hash Cluster
Follow these guidelines for choosing when to use hash clusters:

■ Consider using hash clusters to store tables often accessed by SQL statements

with WHERE clauses if the WHERE clauses contain equality conditions that use

the same column or combination of columns. Designate this column or

combination of columns as the cluster key.

■ Store a table in a hash cluster if you can determine how much space is required

to hold all rows with a given cluster key value, including rows to be inserted

immediately as well as rows to be inserted in the future.

■ Do not use hash clusters if space in your database is scarce and you cannot

afford to allocate additional space for rows to be inserted in the future.

■ Do not use a hash cluster to store a constantly growing table if the process of

occasionally creating a new, larger hash cluster to hold that table is impractical.

■ Do not store a table in a hash cluster if your application often performs full

table scans and you must allocate a great deal of space to the hash cluster in

anticipation of the table growing. Such full table scans must read all blocks

allocated to the hash cluster, even though some blocks may contain few rows.

Storing the table alone would reduce the number of blocks read by full table

scans.

■ Do not store a table in a hash cluster if your application frequently modifies the

cluster key values. Modifying a row’s cluster key value can take longer than

modifying the value in an unclustered table, because Oracle may have to

migrate the modified row to another block to maintain the cluster.

Using Hash Clusters

6-26 Oracle8i Tuning

■ Storing a single table in a hash cluster can be useful, regardless of whether the

table is often joined with other tables, provided that hashing is appropriate for

the table based on the previous points in this list.

Creating Hash Clusters
To create a hash cluster, use the CREATE CLUSTER statement with the HASHKEYS

parameter.

When you create a hash cluster, you must use the HASHKEYS parameter of the

CREATE CLUSTER statement to specify the number of hash values for the hash

cluster. For best performance of hash scans, choose a HASHKEYS value that is at

least as large as the number of cluster key values. Such a value reduces the chance

of collisions, or multiple cluster key values resulting in the same hash value.

Collisions force Oracle to test the rows in each block for the correct cluster key value

after performing a hash scan. Collisions reduce the performance of hash scans.

Oracle always rounds up the HASHKEYS value that you specify to the nearest

prime number to obtain the actual number of hash values. This rounding is

designed to reduce collisions.

See Also: For more information on creating hash clusters, see

Oracle8i Application Developer’s Guide - Fundamentals.

Optimizer Modes, Plan Stability, and Hints 7-1

7
Optimizer Modes, Plan Stability, and Hints

This chapter explains cost-based and rule-based optimization. It also describes how

to use Plan Stability to preserve performance characteristics and to migrate to the

cost-based optimizer. It also describes using hints to enhance Oracle performance.

Topics in this chapter include:

■ Using Cost-based Optimization

■ Generating Statistics

■ Automated Statistics Gathering

■ Using Rule-Based Optimization

■ Using Plan Stability to Preserve Execution Plans

■ Creating Outlines

■ Managing Stored Outlines with the OUTLN_PKG Package

■ Plan Stability Procedures for the Cost-based Optimizer

■ Using Hints

See Also: Oracle8i Concepts for an introduction to the optimizer,

access methods, join operations, and parallel execution.

Using Cost-based Optimization

7-2 Oracle8i Tuning

Using Cost-based Optimization
This section discusses:

■ When to Use the Cost-based Approach

■ Using the Cost-based Approach

■ Choosing a Goal for the Cost-based Approach

■ Using Histograms for Nonuniformly Distributed Data

■ Generating Statistics

■ Automated Statistics Gathering

■ Parameters Affecting Cost-based Optimization Plans

■ Parameters Affecting How the Optimizer Uses Indexes

■ Tips for Using the Cost-based Approach

This section also includes a brief discussion on:

■ Using Rule-Based Optimization

When to Use the Cost-based Approach
In general, always use the cost-based optimization approach. The rule-based

approach is available for the benefit of existing applications, but new optimizer

functionality uses the cost-based approach.

The following features are available only with cost-based optimization.

■ Partitioned tables

■ Index-organized tables

■ Reverse indexes

■ Parallel execution

■ Star transformations

■ Star joins

Note: You must gather statistics for your tables to obtain accurate

execution plans.

Using Cost-based Optimization

Optimizer Modes, Plan Stability, and Hints 7-3

The cost-based approach generally chooses an execution plan that is as good as or

better than the plan chosen by the rule-based approach. This is specially true for

large queries with multiple joins or multiple indexes. The cost-based approach also

eliminates having to tune your SQL statements; this greatly improves productivity.

Use cost-based optimization for efficient star query performance. Similarly, use it

with hash joins and histograms. Cost-based optimization is always used with

parallel execution and with partitioned tables. To maintain the effectiveness of the

cost-based optimizer, you must keep statistics current.

Using the Cost-based Approach
To use cost-based optimization for a statement, collect statistics for the tables

accessed by the statement and enable cost-based optimization using one of these

methods:

■ Make sure the OPTIMIZER_MODE initialization parameter is set to its default

value of CHOOSE.

■ To enable cost-based optimization for your session only, issue an ALTER

SESSION SET OPTIMIZER_MODE statement with the ALL_ROWS or

FIRST_ROWS option.

■ To enable cost-based optimization for an individual SQL statement, use any

hint other than RULE.

The plans generated by the cost-based optimizer depend on the sizes of the tables.

When using the cost-based optimizer with a small amount of data to test an

application prototype, do not assume the plan chosen for the full-size database will

be the same as that chosen for the prototype.

Choosing a Goal for the Cost-based Approach
The execution plan produced by the optimizer can vary depending upon the

optimizer’s goal. Optimizing for best throughput is more likely to result in a full

table scan rather than an index scan, or a sort-merge join rather than a nested loops

See Also: For information on moving from the rule-based

optimizer to the cost-based optimizer, refer to "Using Outlines to

Move to the Cost-based Optimizer" on page 7-32.

See Also: For information on upgrading to more recent

cost-based optimizer versions, please refer to "RDBMS Upgrades

and the Cost-based Optimizer" on page 7-34.

Using Cost-based Optimization

7-4 Oracle8i Tuning

join. Optimizing for best response time, however, more likely results in an index

scan or a nested loops join.

For example, consider a join statement that is executable with either a nested loops

operation or a sort-merge operation. The sort-merge operation may return the entire

query result faster, while the nested loops operation may return the first row faster.

If your goal is to improve throughput, the optimizer is more likely to choose a

sort-merge join. If your goal is to improve response time, the optimizer is more

likely to choose a nested loops join.

Choose a goal for the optimizer based on the needs of your application:

■ For applications performed in batch, such as Oracle Reports applications,

optimize for best throughput. Throughput is usually more important in batch

applications, because the user initiating the application is only concerned with

the time necessary for the application to complete. Response time is less

important because the user does not examine the results of individual

statements while the application is running.

■ For interactive applications, such as Oracle Forms applications or SQL*Plus

queries, optimize for best response time. Response time is usually important in

interactive applications because the interactive user is waiting to see the first

row accessed by the statement.

■ For queries that use ROWNUM to limit the number of rows, optimize for best

response time. Because of the semantics of ROWNUM queries, optimizing for

response time provides the best results.

By default, the cost-based approach optimizes for best throughput. You can change

the goal of the cost-based approach in these ways:

■ To change the goal of the cost-based approach for all SQL statements in your

session, issue an ALTER SESSION SET OPTIMIZER_MODE statement with the

ALL_ROWS or FIRST_ROWS option.

■ To specify the goal of the cost-based approach for an individual SQL statement,

use the ALL_ROWS or FIRST_ROWS hint.

Example: This statement changes the goal of the cost-based approach for your

session to best response time:

 ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS;

Using Cost-based Optimization

Optimizer Modes, Plan Stability, and Hints 7-5

Using Histograms for Nonuniformly Distributed Data
For uniformly distributed data, the cost-based approach fairly accurately

determines the cost of executing a particular statement. In such cases, the optimizer

does not need histograms to estimate the cost of a query.

However, for nonuniformly distributed data, Oracle allows you to create

histograms that describe data distribution patterns of a particular column. Oracle

stores these histograms in the data dictionary for use by the cost-based optimizer.

Histograms are persistent objects, so you incur maintenance and space costs for

using them. Compute histograms only for columns with highly skewed data

distributions. The statistics that Oracle uses to build histograms, as well as all

optimizer statistics, are static. If the data distribution of a column changes

frequently, gather new histogram statistics for that column. Do this either explicitly,

or by using the Automated Statistics Gathering feature as described on page 7-19.

Histograms are not useful for columns with these characteristics:

■ All predicates on the column use bind variables

■ The column data is uniformly distributed

■ The column is not used in WHERE clauses of queries

■ The column is unique and is used only with equality predicates

Creating Histograms
Create histograms on columns that are frequently used in WHERE clauses of

queries and that have highly skewed data distributions. To do this, use the

GATHER_TABLE_STATS procedure of the DBMS_STATS package. For example, to

create a 10-bucket histogram on the SAL column of the EMP table, issue this

statement:

 EXECUTE DBMS_STATS.GATHER_TABLE_STATS
 (’scott’,’emp’, METHOD_OPT => ’FOR COLUMNS SIZE 10 sal’);

The SIZE keyword declares the maximum number of buckets for the histogram.

You would create a histogram on the SAL column if there was an unusually high

number of employees with the same salary and few employees with other salaries.

You can also collect histograms for a single partition of a table.

Column statistics appear in the data dictionary views: USER_TAB_COLUMNS,

ALL_TAB_COLUMNS, and DBA_TAB_COLUMNS.

Using Cost-based Optimization

7-6 Oracle8i Tuning

Histograms appear in the data dictionary views USER_HISTOGRAMS,

DBA_HISTOGRAMS, and ALL_HISTOGRAMS.

Choosing the Number of Buckets for a Histogram
The default number of buckets for a histogram is 75. This value provides an

appropriate level of detail for most data distributions. However, since the number

of buckets in the histogram, also referred to as ’the sampling rate’, and the data

distribution all affect a histogram’s usefulness, you may need to experiment with

different numbers of buckets to obtain optimal results.

If the number of frequently occurring distinct values in a column is relatively small,

set the number of buckets to be greater than the number of frequently occurring

distinct values.

Viewing Histograms
You can find information about existing histograms in the database using these data

dictionary views:

■ USER_HISTOGRAMS

■ ALL_HISTOGRAMS

■ DBA_HISTOGRAMS

Find the number of buckets in each column’s histogram in:

■ USER_TAB_COLUMNS

■ ALL_TAB_COLUMNS

■ DBA_TAB_COLUMNS

See Also: For more information on the DBMS_STATS package,

refer to "Gathering Statistics with the DBMS_STATS Package" on

page 7-9. For more information about the ANALYZE statement and

its options, refer to the Oracle8i SQL Reference.

See Also: Oracle8i Reference for column descriptions of data

dictionary views as well as histogram use and restrictions.

Generating Statistics

Optimizer Modes, Plan Stability, and Hints 7-7

Generating Statistics
Because the cost-based approach relies on statistics, generate statistics for all tables,

clusters, and all types of indexes accessed by your SQL statements before using the

cost-based approach. If the size and data distribution of these tables change

frequently, generate these statistics regularly to ensure the statistics accurately

represent the data in the tables.

Oracle can generate statistics using these techniques:

■ Estimation based on random data sampling

■ Exact computation

■ Using user-defined statistics collection methods

Because of the time and space required for computing table statistics, use estimation

for tables and clusters rather than computation unless you need exact values. The

reasons for this are:

■ Exact computation always provides exact values but can take longer than

estimation. The time necessary to compute statistics for a table is approximately

the time required to perform a full table scan and a sort of the rows in the table.

■ Estimation is often much faster than computation, especially for large tables,

because estimation never scans the entire table.

To perform an exact computation, Oracle requires enough space to perform a scan

and sort of the table. If there is not enough space in memory, temporary space may

be required. For estimations, Oracle requires enough space to perform a scan and

sort of all rows in the requested sample of the table. For indexes, computation does

not take up as much time or space, so it is best to perform a full computation.

When you generate statistics for a table, column, or index, if the data dictionary

already contains statistics for the analyzed object, Oracle updates the existing

statistics. Oracle also invalidates any currently parsed SQL statements that access

any of the analyzed objects.

The next time such a statement executes, the optimizer automatically chooses a new

execution plan based on the new statistics. Distributed statements issued on remote

databases that access the analyzed objects use the new statistics the next time Oracle

parses them.

Some statistics are always computed, regardless of whether you specify

computation or estimation. If you specify estimation and the time saved by

estimating statistics is negligible, Oracle computes the statistics.

Generating Statistics

7-8 Oracle8i Tuning

When you associate a statistics type with a column or domain index, Oracle calls

the statistics collection method in the statistics type if you analyze the column or

domain index.

Gather statistics with the DBMS_STATS package as explained under the following

heading.

See Also: For more information about user-defined statistics,
please refer to the Oracle8i Data Cartridge Developer’s Guide. For
more information about the ANALYZE statement, please refer to
the Oracle8i SQL Reference.

Generating Statistics

Optimizer Modes, Plan Stability, and Hints 7-9

Gathering Statistics with the DBMS_STATS Package
DBMS_STATS provides the following procedures for gathering statistics:

Gathering Index Statistics
Use the COMPUTE STATISTICS clause of the ANALYZE SQL statement to gather

index statistics when creating or rebuilding an index. If you do not use the

COMPUTE STATISTICS clause, or you have made major DML changes, use the

GATHER_INDEX_STATS procedure to collect index statistics. The

GATHER_INDEX_STATS procedure does not run in parallel. Using this procedure

is equivalent to running:

 ANALYZE INDEX [ownname.]indname [PARTITION partname] COMPUTE STATISTICS |
 ESTIMATE STATISTICS SAMPLE estimate_percent PERCENT

Example
This PL/SQL example gathers index statistics:

 EXECUTE DBMS_STATS.GATHER_INDEX_STATS(
 ’scott’,’emp_idx’);

Table 7–1 Statistics Gathering Procedures in the DBMS_STATS Package

Procedure Description

GATHER_ INDEX_STATS Collects index statistics.

GATHER_TABLE_STATS Collects table, column, and index statistics.

GATHER_SCHEMA_STATS Collects statistics for all objects in a schema.

GATHER_DATABASE_STATS Collects statistics for all objects in a database.

See Also: For more information about the COMPUTE

STATISTICS clause, please refer to the Oracle8i SQL Reference.

Generating Statistics

7-10 Oracle8i Tuning

Syntax
The syntax and parameters for the GATHER_INDEX_STATS procedure are:

 PROCEDURE GATHER_INDEX_STATS(
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 estimate_percent NUMBER DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

ownname Schema of the index to analyze.

indname Name of index.

partname Name of partition.

estimate_percent Percentage of rows to estimate (NULL means "compute"). The

valid range is [0.000001,100).

stattab Name of a user statistics table into which Oracle should back

up original statistics before collecting new statistics. For more

information, please see the Oracle8i Supplied Packages Reference.

statid Secondary identifier in stattab for backing up statistics.

statown Schema where Oracle stores stattab if different from the

location identified by the ownname parameter.

Generating Statistics

Optimizer Modes, Plan Stability, and Hints 7-11

Gathering Table Statistics
After creating a table, use the GATHER_TABLE_STATS procedure to collect table,

column, and index statistics as shown in the following example. The

GATHER_TABLE_STATS procedure uses parallel processing for as much of the

process as possible.

Example
This PL/SQL example gathers table statistics:

 EXECUTE DBMS_STATS.GATHER_TABLE_STATS (
 ’scott’,’emp’);

Syntax
The syntax and parameters for the GATHER_TABLE_STATS procedure are:

 PROCEDURE GATHER_TABLE_STATS
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 estimate_percent NUMBER DEFAULT NULL,
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT ̀ FOR ALL COLUMNS SIZE 1',
 degree NUMBER DEFAULT NULL,
 granularity VARCHAR2 DEFAULT ̀ DEFAULT',
 cascade BOOLEAN DEFAULT FALSE,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

ownname Name of the schema of table to analyze.

tabname Name of table.

partname Name of partition.

estimate_percent Percentage of rows to estimate (NULL means "compute"). The

valid range is [0.000001,100).

Generating Statistics

7-12 Oracle8i Tuning

block_sample This value indicates whether to use random block sampling

instead of the default random row sampling. Random block

sampling is more efficient, but if the data is not randomly

distributed on disk then the sample values may be somewhat

correlated which may lead to less-than-accurate statistics.

Only pertinent when estimating statistics. For more

information about BLOCK_SAMPLE, please refer to Oracle8i
Concepts.

method_opt This value holds the options of the following format:

(The phrase ’SIZE 1’ (in other words, no histograms) is

required to ensure gathering statistics in parallel):

FOR ALL [INDEXED] COLUMNS [SIZE integer]

FOR COLUMNS [SIZE integer] column|attribute

[column|attribute...]

Optimizer-related table statistics are always gathered.

degree This value specifies the degree of parallelism (NULL means

“use default table value”).

granularity This value determines the granularity of statistics to collect

(this only affects partitioned tables).

PARTITION - Gather partition-level statistics.

GLOBAL - Gather global statistics.

ALL - Gather all statistics.

SUBPARTITION - Gather subpartition level statistics.

DEFAULT - Gather partition and global statistics.

cascade Setting this parameter to TRUE gathers statistics on the

indexes for this table. Index statistics are not gathered in

parallel. Using this option is equivalent to running the

GATHER_INDEX_STATS procedure on each of the table's

indexes. The default value is FALSE due to the assumption

that index statistics were recently gathered using the

statement syntax ’CREATE INDEX... COMPUTE

STATISTICS’.

Generating Statistics

Optimizer Modes, Plan Stability, and Hints 7-13

stattab Name of a user statistics table into which Oracle should back

up original statistics before collecting new statistics. For more

information on stattab and the following parameters, statid

and statown, please refer to the Oracle8i Supplied Packages
Reference.

statid Secondary identifier in stattab for backing up statistics.

statown Schema where Oracle stores stattab if different from the

location identified by the ownname parameter.

Generating Statistics

7-14 Oracle8i Tuning

Gathering Schema Statistics
Run the GATHER_SCHEMA_STATS procedure to collect statistics for all objects in

a schema as shown in the following example.

Example
This PL/SQL example gathers schema statistics:

 EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS(’scott’);

Syntax
The syntax and parameters for the GATHER_SCHEMA_STATS procedure are

explained here. Oracle passes the values to all tables for all parameters shown.

 PROCEDURE GATHER_SCHEMA_STATS(
 ownname VARCHAR2,
 estimate_percent NUMBER DEFAULT NULL,
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT ’FOR ALL COLUMNS SIZE 1’,
 degree NUMBER DEFAULT NULL, INSTANCES NUMBER DEFAULT NULL,
 granularity VARCHAR2 DEFAULT ’ALL',
 cascade BOOLEAN DEFAULT FALSE,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT ’GATHER’,
 objlist OUT OBJECTTAB,
 statown VARCHAR2 DEFAULT NULL);

ownname The name of the schema to analyze (NULL means "current

user’s schema").

estimate_percent The percentage of rows to estimate (NULL means "compute")

The valid range is [0.000001,100).

block_sample Indicates whether to use random block sampling instead of

the default random row sampling. Random block sampling is

more efficient, but if the data is not randomly distributed on

disk then the sample values may be somewhat correlated

which may lead to less-than-accurate statistics. Only pertinent

when doing an estimate of statistics.

Generating Statistics

Optimizer Modes, Plan Stability, and Hints 7-15

method_opt Indicates the method options of the following format (the

phrase ’SIZE 1’ (in other words, no histograms) is required to

enable gathering of statistics in parallel):

FOR ALL [INDEXED] COLUMNS [SIZE integer].

degree Shows the degree of parallelism (NULL means "use table

default value").

granularity Shows the granularity of statistics to collect. This only applies

to partitioned tables.

PARTITION - Gather partition-level statistics.

GLOBAL - Gather global statistics.

ALL - Gather all statistics.

SUBPARTITION - Gather subpartition level statistics.

DEFAULT - Gather partition and global statistics.

cascade Shows to gather statistics on the indexes as well. Index

statistics gathering will not be parallelized. Using this option

is equivalent to running the GATHER_INDEX_STATS

procedure on each of the indexes in the schema in addition to

gathering table and column statistics.

stattab Name of a user statistics table into which Oracle should back

up original statistics before collecting new statistics. For more

information, please see the Oracle8i Supplied Packages Reference.

statid Secondary identifier in stattab for backing up statistics. For

more information, please see the Oracle8i Supplied Packages
Reference.

options Please refer to the following section Automated Statistics

Gathering on page 7-19.

objlist Please refer to the following section Automated Statistics

Gathering on page 7-19.

statown Schema where Oracle stores stattab if different from the

location identified by the ownname parameter. For more

information, please see the Oracle8i Supplied Packages Reference.

Generating Statistics

7-16 Oracle8i Tuning

Gathering Database Statistics
After creating your database, run the GATHER_DATABASE_STATS procedure to

collect database statistics.

Example
This PL/SQL example gathers database statistics:

 EXECUTE DBMS_STATS.GATHER_DATABASE_STATS;

Syntax
The syntax and parameters for the GATHER_DATABASE_STATS procedure are:

 PROCEDURE GATHER_DATABASE_STATS(
 estimate_percent NUMBER DEFAULT NULL,
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT ̀ FOR ALL COLUMNS SIZE 1',
 degree NUMBER DEFAULT NULL,
 granularity VARCHAR2 DEFAULT,
 cascade BOOLEAN DEFAULT FALSE,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT ’GATHER’,
 objlist OUT OBJECTTAB,
 statown VARCHAR2 DEFAULT NULL);

estimate_percent Shows the percentage of rows to estimate (NULL means

"compute"). The valid range is [0.000001,100).

block_sample Shows whether to use random block sampling instead of the

default random row sampling. Random block sampling is

more efficient, but if the data is not randomly distributed on

disk then the sample values may be somewhat correlated

which may lead to less-than-accurate statistics. Only applies

when doing an estimate of statistics.

method_opt Indicates the method options of the following format (the

phrase ’SIZE 1’ (in other words, no histograms) is required to

enable gathering of statistics in parallel):

FOR ALL [INDEXED] COLUMNS [SIZE integer].

degree Shows the degree of parallelism (NULL means "use table

default value").

Generating Statistics

Optimizer Modes, Plan Stability, and Hints 7-17

granularity Indicates the granularity of statistics to collect (applies only to

partitioned tables).

PARTITION - Gather partition-level statistics.

GLOBAL - Gather global statistics.

ALL - Gather all statistics.

SUBPARTITION - Gather subpartition level statistics.

DEFAULT - Gather partition and global statistics.

cascade Setting this value to TRUE gathers statistics on the indexes as

well. Index statistics gathering is not parallelized. Using this

option is equivalent to running the GATHER_INDEX_STATS

procedure on all indexes in the database in addition to

gathering table and column statistics.

stattab Name of a user statistics table into which Oracle should back

up original statistics before collecting new statistics. For more

information, please see the Oracle8i Supplied Packages Reference.

statid Secondary identifier in stattab for backing up statistics. For

more information, please see the Oracle8i Supplied Packages
Reference.

options Please refer to the following section "Automated Statistics

Gathering" on page 7-19.

objlist Please refer to the following section "Automated Statistics

Gathering" on page 7-19.

statown Schema where Oracle stores stattab if different from the

location identified by the ownname parameter. For more

information, please see the Oracle8i Supplied Packages Reference.

Generating Statistics

7-18 Oracle8i Tuning

Gathering New Optimizer Statistics
Oracle recommends the following procedure for gathering new optimizer statistics

for a particular schema.

Before gathering new statistics, use DBMS_STATS.EXPORT_SCHEMA_STATS to

extract and save existing statistics. Then use

DBMS_STATS.GATHER_SCHEMA_STATS to gather new statistics. You can

implement both of these with a single call to the GATHER_SCHEMA_STATS

procedure.

If key SQL statements experience significant performance degradation, either

gather statistics again using a larger sample size, or perform these steps:

1. Use the DBMS_STATS.EXPORT_SCHEMA_STATS procedure to save the new

statistics.

2. Use DBMS_STATS.IMPORT_SCHEMA_STATS to restore the old statistics. The

application is now ready to run again.

You may want to use the new statistics if they result in improved performance for

the majority of SQL statements, and if the number of problem SQL statements is

small. In this case, do the following:

1. Create a stored outline for each problematic SQL statement using the old

statistics.

2. Use DBMS_STATS.IMPORT_SCHEMA_STATS to restore the new statistics.

3. Your application is now ready to run with the new statistics. However, you will

continue to achieve the previous performance levels for the problem SQL

statements.

Note: Stored outlines are pre-compiled execution plans that

Oracle can use to mimic proven application performance

characteristics.

See Also: For more information on stored outlines, please refer to

"Creating Outlines" on page 7-28.

Automated Statistics Gathering

Optimizer Modes, Plan Stability, and Hints 7-19

Automated Statistics Gathering
This feature allows you to automatically gather statistics. You can also use it to

create lists of tables that have stale statistics or to create lists of tables that have no

statistics.

Use this feature by running the GATHER_SCHEMA_STATS and

GATHER_DATABASE_STATS procedures with the options and objlist parameters.

Use the following values for the options parameter:

■ GATHER STALE - to gather statistics on tables with stale statistics

■ GATHER - (default) to gather statistics on all tables

■ GATHER EMPTY - to gather statistics only on tables without statistics

■ LIST STALE - to create a list of tables with stale statistics

■ LIST EMPTY - to create a list of tables that do not have statistics

The objlist parameter identifies an output parameter for the LIST STALE and LIST

EMPTY options. The objlist parameter is of type DBMS_STATS.OBJECTTAB.

Enabling Automated Statistics Gathering
The GATHER STALE option only gathers statistics for tables that have stale

statistics and for which you have enabled the MONITORING attribute. To enable

monitoring for tables, use the MONITORING keyword of the CREATE TABLE and

ALTER TABLE statements as described later in this chapter under the heading

"Designating Tables for Monitoring and Automated Statistics Gathering" on

page 7-20.

The GATHER STALE option maintains up-to-date statistics for the cost-based

optimizer. Using this option at regular intervals also avoids the overhead associated

with using the ANALYZE statement on all tables at one time. Using the GATHER

option can incur significantly greater overhead since this option will likely gather

statistics for a greater number of tables than GATHER STALE.

Use a script or job scheduling tool for the GATHER_SCHEMA_STATS and

GATHER_DATABASE_STATS procedures to establish a frequency of statistics

collection that is appropriate for your application. The frequency of collection

intervals should balance the task of providing accurate statistics for the optimizer

against the processing overhead incurred by the statistics collection process.

Automated Statistics Gathering

7-20 Oracle8i Tuning

Creating Lists of Tables with Stale or No Statistics
You can use the GATHER_SCHEMA_STATS and GATHER_DATABASE_STATS

procedures to create a list of tables with stale statistics. Use this list to identify tables

for which you want to manually gather statistics.

You can also use these procedures to create a list of tables with no statistics. Use this

list to identify tables for which you want to gather statistics, either automatically or

manually.

Designating Tables for Monitoring and Automated Statistics Gathering
To automatically gather statistics for a particular table, enable the monitoring

attribute using the MONITORING keyword. This keyword is part of the CREATE

TABLE and ALTER TABLE statement syntax.

Once enabled, Oracle monitors the table for DML activity. This includes the

approximate number of inserts, updates, and deletes for that table since the last

time statistics were gathered. Oracle uses this data to identify tables with stale

statistics.

View the data Oracle obtains from monitoring these tables by querying the

USER_TAB_MODIFICATIONS view.

To disable monitoring of a table, use the NOMONITORING keyword.

Preserving Versions of Statistics
You can preserve versions of statistics for tables by specifying the stattab, statid, and

statown parameters. Use stattab to identify a destination table for archiving previous

versions of statistics. Further identify these versions using statid, for example, to

denote the date and time the version was made. Use statown to identify a

destination schema if it is different from the schema(s) of the actual tables.

Note: There may be a few hours’ delay while Oracle propagates

information to this view.

See Also: For more information about the CREATE TABLE and

ALTER TABLE syntax and the MONITORING and

NOMONITORING keywords, please refer to the Oracle8i SQL
Reference.

Automated Statistics Gathering

Optimizer Modes, Plan Stability, and Hints 7-21

Parameters Affecting Cost-based Optimization Plans
The following parameters affect cost-based optimization plans:

See Also: The parameters stattab, statid, and statown are described

in the parameter description lists appearing earlier in this chapter

for the GATHER_SCHEMA_STATS and

GATHER_DATABASE_STATS procedures.

OPTIMIZER_FEATURES_ENABLED Turns on a number of optimizer features, including

B_TREE_BITMAP_PLANS, and

FAST_FULL_SCAN_ENABLED.

OPTIMIZER_MODE As an initialization parameter, sets the mode of the

optimizer at instance startup: rule-based, cost based

optimized for throughput or response time, or a

choice based on presence of statistics. Set the

OPTIMIZER_MODE parameter of the ALTER

SESSION statement to change the value dynamically

during a session.

OPTIMIZER_PERCENT_PARALLEL Defines the amount of parallelism that the optimizer

uses in its cost functions.

HASH_AREA_SIZE Larger values can lower hash join costs, thus

permitting Oracle to perform more hash joins.

SORT_AREA_SIZE Larger values can lower sort costs, thus permitting

Oracle to perform more sort merge joins.

DB_FILE_MULTIBLOCK_READ_COUNT Larger values can lower table scan costs and make

Oracle favor table scans over indexes.

Automated Statistics Gathering

7-22 Oracle8i Tuning

You often need to set the following parameters in data warehousing applications:

You rarely need to change the following parameters:

Parameters Affecting How the Optimizer Uses Indexes
Two parameters address the optimizer’s use of indexes for a wide range of

statements, particularly nested-loop join statements in both OLTP and DSS

applications.

■ OPTIMIZER_INDEX_COST_ADJ

■ OPTIMIZER_INDEX_CACHING

Using OPTIMIZER_INDEX_COST_ADJ
Use the OPTIMIZER_INDEX_COST_ADJ parameter to encourage the use of

indexes. This parameter encourages the use of all indexes regardless of their

ALWAYS_ANTI_JOIN Sets the type of antijoin that Oracle uses:

NESTED_LOOPS/MERGE/HASH.

HASH_JOIN_ENABLED Enables or disables the hash join feature; should

always be set to TRUE for data warehousing

applications.

HASH_MULTIBLOCK_IO_COUNT Larger value can lower hash join costs thus

permitting Oracle to perform more hash joins.

OPTIMIZER_SEARCH_LIMIT The maximum number of tables in the FROM clause

for which all possible join permutations will be

considered.

BITMAP_MERGE_AREA_SIZE The size of the area used to merge the different

bitmaps that match a range predicate. Larger size

will favor use of bitmap indexes for range

predicates.

See Also: Oracle8i Reference for complete information about each

parameter.

Automated Statistics Gathering

Optimizer Modes, Plan Stability, and Hints 7-23

selectivity. It also applies to index use in general rather than to just modeling index

caching for nested loop join probes.

Using OPTIMIZER_INDEX_CACHING
Use OPTIMIZER_INDEX_CACHING if these two conditions exists:

■ If indexes Oracle could use for nested loop join probes are frequently cached in

your environment

■ If the optimizer is not using nested loop joins aggressively enough

In such an environment, this parameter has two advantages over

OPTIMIZER_INDEX_COST_ADJ. First, OPTIMIZER_INDEX_CACHING favors

using selective indexes. That is, if you use a relatively low value for this parameter,

the optimizer effectively models the caches of all non-leaf index blocks. In this case,

the optimizer bases the cost of using this index primarily on the basis of its

selectivity. Thus, by setting OPTIMIZER_INDEX_CACHING to a low value, you

achieve the desired modeling of the index caching without over using possibly

undesirable indexes that have poor selectivity.

Second, the effects of using OPTIMIZER_INDEX_CACHING are restricted to

modeling the use of cached indexes for nested loop join probes. Thus, its use has

fewer side effects.

Tips for Using the Cost-based Approach
This section describes additional information for using the cost-based approach.

Query Plans for Systems with Large Caches
Cost-based optimization assumes that queries are executed on a multi-user system

with fairly low buffer cache hit rates. Thus, a plan selected by the cost-based

optimizer may not be the best plan for a single-user system with a large buffer

cache. Furthermore, timing a query plan on a single-user system with a large cache

may not be a good predictor of performance for the same query on a busy

multi-user system.

Analyze Indexes Before Tables
Analyzing a table uses more system resources than analyzing an index. It may be

helpful to analyze the indexes for a table separately, or collect statistics during index

creation with a higher sampling rate.

Using Rule-Based Optimization

7-24 Oracle8i Tuning

Generate Statistics Whenever Possible
Use of access path and join method hints invokes cost-based optimization. Since

cost-based optimization is dependent on statistics, it is important to gather statistics

for all tables referenced in a query that has hints, even though rule-based

optimization may have been selected as the system default.

Provide Statistics Collection, Selectivity, and Cost Functions for User-defined
Structures
User-defined structures such as columns, standalone functions, types, packages,

indexes, and indextypes, are generally "opaque" to the optimizer. That is, the

optimizer does not have statistics about these structures, nor can it compute

accurate selectivities or costs for queries that use them.

For this reason, Oracle strongly encourages you to provide statistics collection,

selectivity, and cost functions for user-defined structures. This is because the

optimizer defaults can be inaccurate and lead to expensive execution plans.

Using Rule-Based Optimization
Oracle supports rule-based optimization, but you should design new applications

to use cost-based optimization. You should also use cost-based optimization for

data warehousing applications because the cost-based optimizer supports new and

enhanced features for DSS.Much of the more recent performance enhancements,

such as hash joins, improved star query processing, and histograms, are only

available through cost-based optimization.

If you have developed OLTP applications using version 6 of Oracle and have tuned

your SQL statements carefully based on the rules of the optimizer, you may want to

continue using rule-based optimization when you upgrade these applications to a

new version of Oracle.

If you neither collect statistics nor add hints to your SQL statements, your

statements will use rule-based optimization. However, you should eventually

migrate your existing applications to use the cost-based approach, because

eventually, the rule-based approach will not be available in the Oracle server.

If you are using applications provided by third-party vendors, check with the

vendors to determine which type of optimization is best suited to that application.

You can enable cost-based optimization on a trial basis simply by collecting

statistics. You can then return to rule-based optimization by deleting the statistics or

by setting either the value of the OPTIMIZER_MODE initialization parameter or the

Using Plan Stability to Preserve Execution Plans

Optimizer Modes, Plan Stability, and Hints 7-25

OPTIMIZER_MODE option of the ALTER SESSION statement to RULE. You can

also use this value if you want to collect and examine statistics for your data

without using the cost-based approach.

Using Plan Stability to Preserve Execution Plans
Plan Stability prevents certain database environment changes from affecting the

performance characteristics of your applications. Such changes include changes to

the optimizer mode settings and changes to parameters affecting the sizes of

memory structures such as SORT_AREA_SIZE, and

BITMAP_MERGE_AREA_SIZE. Plan Stability is most useful when you cannot risk

any performance changes in your applications.

Plan Stability preserves execution plans in "stored outlines". Oracle can create a

stored outline for one or all SQL statements. The optimizer then generates

equivalent execution plans from the outlines when you enable the use of stored

outlines.

The plans Oracle maintains in stored outlines remain consistent despite changes to

your system’s configuration or statistics. Using stored outlines also stabilizes the

generated execution plan if the optimizer changes in subsequent Oracle releases.

You can also group outlines into categories and control which category of outlines

Oracle uses to simplify outline administration and deployment.

Plan Stability also facilitates migration from the rule-based optimizer to the

cost-based optimizer when you upgrade to a new version of Oracle.

Plan Stability Uses Hints and Exact Text Matching
The degree to which Plan Stability controls execution plans is dictated by the extent

to which Oracle’s hint mechanism controls access paths because Oracle uses hints to

See Also: For procedures to migrate from the rule-based

optimizer to the cost-based optimizer, refer to "Plan Stability

Procedures for the Cost-based Optimizer" on page 7-32. For an

explanation of how to gather statistics, please refer to "Gathering

Statistics with the DBMS_STATS Package" on page 7-9.

Note: If you develop applications for mass distribution, you can

use stored outlines to ensure all your customers access the same

execution plans. For more information about this, please refer to

"Automated Statistics Gathering" on page 7-19.

Using Plan Stability to Preserve Execution Plans

7-26 Oracle8i Tuning

record stored plans. Plan Stability also relies on "exact text matching" of queries

when determining whether a query has a stored outline.

Similar SQL statements could potentially share stored outlines, however, there is a

one-to-one correspondence between SQL text and its stored outline. If you specify a

different literal in a predicate, then a different outline applies. To avoid this, replace

literals in your applications with bind variables. This gives your SQL statements the

exact textual match for outline sharing.

Plan Stability relies on preserving execution plans at a point in time when

performance is satisfactory. In many environments, however, attributes for

datatypes such as "dates" or "order numbers" can change rapidly. In these cases,

permanent use of an execution plan may result in performance degradation over

time as the data characteristics change.

This implies that techniques that rely on preserving plans in dynamic environments

are somewhat contrary to the purpose of using cost-based optimization. Cost-based

optimization attempts to produce execution plans based on statistics that accurately

reflect the state of the data. Thus, you must balance the need to control plan stability

with the benefit obtained from the optimizer’s ability to adjust to changes in data

characteristics.

How Outlines Use Hints
An outline consists primarily of a set of hints that is equivalent to the optimizer’s

results for the execution plan generation of a particular SQL statement. When

Oracle creates an outline, Plan Stability examines the optimization results using the

same data used to generate the execution plan. That is, Oracle uses the input to the

execution plan to generate an outline and not the execution plan itself.

See Also: For more information on how Oracle matches SQL

statements to outlines, please refer to the following heading,

"Matching SQL Statements with Outlines" on page 7-27.

Note: You cannot modify an outline. You can embed hints in SQL

statements, but this has no effect on how Oracle uses outlines

because Oracle considers a SQL statement that you revised with

hints to be different from the original SQL statement stored in the

outline.

Using Plan Stability to Preserve Execution Plans

Optimizer Modes, Plan Stability, and Hints 7-27

Matching SQL Statements with Outlines
Oracle uses one of two scenarios when compiling SQL statements and matching

them with outlines. The first scenario is that if you disable outline use by setting the

system/session parameter USE_STORED_OUTLINES to FALSE, Oracle does not

attempt to match SQL text to outlines. The second scenario involves the following

two "matching" steps.

First, if you specify that Oracle must use a particular outline category, only outlines

in that category are candidates for matching. Second, if the SQL text of the incoming

statement exactly matches the SQL text in an outline in that category, Oracle

considers both texts identical and Oracle uses the outline. Oracle considers any

differences a mismatch.

Differences include spacing changes, carriage return variations, embedded hints, or

even differences in comment text. These rules are identical to the rules for cursor

matching.

How Oracle Stores Outlines
Oracle stores outline data in the OL$ table and hint data in the OL$HINTS table.

Unless you remove them, Oracle retains outlines indefinitely. Oracle retains

execution plans in cache and only recreates them if they become invalid or if the

cache is not large enough to hold all of them.

The only effect outlines have on caching execution plans is that the outline’s

category name is used in addition to the SQL text to identify whether the plan is in

cache. This ensures Oracle does not use an execution plan compiled under one

category to execute a SQL statement that Oracle should compile under a different

category.

Parameter Settings to Enable Plan Stability
Settings for several parameters, especially those ending with the suffix

"_ENABLED", must be consistent across execution environments for outlines to

function properly. These parameters are:

■ QUERY_REWRITE_ENABLED

■ STAR_TRANSFORMATION_ENABLED

■ OPTIMIZER_FEATURES_ENABLE

Creating Outlines

7-28 Oracle8i Tuning

Creating Outlines
Oracle can automatically create outlines for all SQL statements, or you can create

them for specific SQL statements. In either case, the outlines derive their input from

the rule-based or cost-based optimizers.

Oracle creates stored outlines automatically when you set the parameter

CREATE_STORED_OUTLINES to TRUE. When activated, Oracle creates outlines

for all executed SQL statements. You can also create stored outlines for specific

statements using the CREATE OUTLINE statement.

Creating and Assigning Categories to Stored Outlines
You can create outline category names and assign outlines to them. As mentioned,

this simplifies outline management because you can manipulate all outlines within

a category at one time.

Both the CREATE_STORED_OUTLINES parameter and the CREATE OUTLINE

statement accept category names. For either of these, if you specify a category

name, Oracle assigns all subsequently created outlines to that category until you

reset the category name or suspend outline generation by setting the

CREATE_STORED_OUTLINES parameter to FALSE.

If you set CREATE_STORED_OUTLINES to TRUE or use the CREATE OUTLINE

statement without a category name, Oracle assigns outlines to the category name of

DEFAULT.

Using Stored Outlines
To use stored outlines when Oracle compiles a SQL statement, set the system

parameter USE_STORED_OUTLINES to TRUE or to a category name. If you set

USE_STORED_OUTLINES to TRUE, Oracle uses outlines in the DEFAULT category.

If you specify a category with the USE_STORED_OUTLINES parameter, Oracle

uses outlines in that category until you re-set the USE_STORED_OUTLINES

See Also: For more information on the CREATE OUTLINE

statement, please refer to the Oracle8i SQL Reference. For

information on moving from the rule-based optimizer to the

cost-based optimizer, refer to "Using Outlines to Move to the

Cost-based Optimizer" on page 7-32.

See Also: For more information on the CREATE_- and

USE_STORED_OUTLINES parameters, please refer to the Oracle8i
Reference.

Creating Outlines

Optimizer Modes, Plan Stability, and Hints 7-29

parameter to another category name or until you suspend outline use by setting

USE_STORED_OUTLINES to FALSE. If you specify a category name and Oracle

does not find an outline in that category that matches the SQL statement, Oracle

searches for an outline in the DEFAULT category.

The designated outlines only control the compilation of SQL statements that have

outlines. If you set USE_STORED_OUTLINES to FALSE, Oracle does not use

outlines. When you set USE_STORED_OUTLINES to FALSE and you set

CREATE_STORED_OUTLINES to TRUE, Oracle creates outlines but does not use

them.

When you activate the use of stored outlines, Oracle always uses the cost-based

optimizer. This is because outlines rely on hints, and to be effective, most hints

require the cost-based optimizer.

Viewing Outline Data
You can access information about outlines and related hint data that Oracle stores in

the data dictionary from these views:

■ USER_OUTLINES

■ USER_OUTLINE_HINTS

For example, use this syntax to obtain outline information from the

USER_OUTLINES view where the outline category is ’MYCAT’:

 SELECT NAME,SQL_TEXT FROM USER_OUTLINES WHERE CATEGORY=’mycat’;

Oracle responds by displaying the names and text of all outlines in category

"MYCAT". To see all generated hints for the outline "NAME1", for example, use this

syntax:

 SELECT HINT FROM USER_OUTLINE_HINTS WHERE NAME=’name1’;

See Also: If necessary, you can use the procedure to move outline

tables from one tablespace to another as described under the

heading "Procedure for Moving Outline Tables from One

Tablespace to Another" on page 7-31.

Managing Stored Outlines with the OUTLN_PKG Package

7-30 Oracle8i Tuning

Managing Stored Outlines with the OUTLN_PKG Package
Use procedures in the OUTLN_PKG package to manage stored outlines and their

outline categories. OUTLN_PKG provides these procedures:

Dropping Unused Outlines
You can remove unneeded outlines using the DROP_UNUSED procedure of

OUTLN_PKG. This procedure improves performance if your tablespace becomes

saturated with an excessive number of outlines that Oracle will never use.

Syntax
The syntax for the DROP_UNUSED procedure is:

 OUTLN_PKG.DROP_UNUSED;

Dropping Outlines within a Category
Execute the DROP_BY_CAT procedure to drop outlines within a specific category.

Syntax
The syntax and parameter for the DROP_BY_CAT procedure are:

 OUTLN_PKG.DROP_BY_CAT(
 category_name);

Table 7–2 Outline Management Procedures in the OUTLN_PKG

Procedure Description

DROP_UNUSED Drops outlines that Oracle has not used since they were created.

DROP_BY_CAT Drops outlines assigned to the specified category name.

UPDATE_BY_CAT Reassigns outlines from one category to another.

category_name Name of the category you want to drop.

Managing Stored Outlines with the OUTLN_PKG Package

Optimizer Modes, Plan Stability, and Hints 7-31

Reassign Outlines to a Different Category
Reassign outlines from one category to another by executing the UPDATE_BY_CAT

procedure.

Syntax
The syntax and parameters for the UPDATE_BY_CAT procedure are:

 OUTLN_PKG.UPDATE_BY_CAT(
 old_category_name,
 new_category_name);

Moving Outline Tables
Oracle creates the USER_OUTLINES and USER_OUTLINE_HINTS views based on

data in the OL$ and OL$HINTS tables respectively. Oracle creates these tables in the

SYS tablespace using a schema called "OUTLN". If the outlines use too much space

in the SYS tablespace, you can move them. To do this, create a separate tablespace

and move the outline tables into it using the following procedure.

Procedure for Moving Outline Tables from One Tablespace to Another
Use this procedure to move outline tables:

1. Export the OL$ and OL$HINTS tables with this syntax:

 EXP OUTLN/OUTLN FILE = exp_file TABLES = 'OL$' 'OL$HINTS' SILENT=y

2. Remove the previous OL$ and OL$HINTS tables with this syntax:

 CONNECT OUTLN/outln_password;

old_category_name Specifies the name of the outline category that you want

to reassign to a new category.

new_category_name Specifies the name of the category to which you want to

assign the outline.

Note: Use the DDL statements CREATE, DROP, and ALTER to

manipulate a specific outline. For example, use the ALTER

OUTLINE statement to rename an outline or change its category.

See Also: For more information about the CREATE, DROP and
ALTER statements, please refer to the Oracle8i SQL Reference.

Plan Stability Procedures for the Cost-based Optimizer

7-32 Oracle8i Tuning

 DROP TABLE OL$;
 CONNECT OUTLN/outln_password;
 DROP TABLE OL$HINTS;

3. Create a new tablespace for the tables using this syntax:

 CREATE TABLESPACE outln_ts
 DATAFILE 'tspace.dat' SIZE 2MB
 DEFAULT STORAGE (INITIAL 10KB NEXT 20KB
 MINEXTENTS 1 MAXEXTENTS 999 PCTINCREASE 10) ONLINE;

4. Import the OL$ and OL$HINTS tables using this syntax:

 IMPORT OUTLN/outln_password
 FILE=exp_file TABLES = 'OL$' 'OL$HINTS' IGNORE=y SILENT=y

The IMPORT statement re-creates the OL$ and OL$HINTS tables in the schema

named OUTLN, but the schema now resides in a new tablespace called

"OUTLN_TS".

Plan Stability Procedures for the Cost-based Optimizer
This section describes procedures you can use to significantly improve performance

by taking advantage of cost-based optimizer functionality. Plan Stability provides a

way to preserve your system’s targeted execution plans for which performance is

satisfactory while also taking advantage of new cost-based optimizer features for

the rest of your SQL statements.

Topics covered in this section are:

■ Using Outlines to Move to the Cost-based Optimizer

■ RDBMS Upgrades and the Cost-based Optimizer

Using Outlines to Move to the Cost-based Optimizer
If your application was developed using the rule-based optimizer, a considerable

amount of effort may have gone into manually tuning the SQL statements to

optimize performance. You can use Plan Stability to leverage the effort that has

already gone into performance tuning by preserving the behavior of the application

when upgrading from rule-based to cost-based optimization. By creating outlines

for an application before switching to cost-based optimization, the plans generated

by the rule-based optimizer can be used while statements generated by newly

Plan Stability Procedures for the Cost-based Optimizer

Optimizer Modes, Plan Stability, and Hints 7-33

written applications developed after the switch will use normal, cost-based plans.

To create and use outlines for an application, use the following procedure.

1. Execute syntax similar to the following to designate, for example, the RBOCAT

outline category

ALTER SESSION SET CREATE_STORED_OUTLINES = rbocat;

2. Run your application long enough to capture stored outlines for all important

SQL statements.

3. Suspend outline generation with the syntax:

ALTER SESSION SET CREATE_STORED_OUTLINES = FALSE;

4. Gather statistics with the DBMS_STATS package.

5. Alter the parameter OPTIMIZER_MODE to CHOOSE.

6. Enter this syntax to make Oracle use the outlines in category RBOCAT:

ALTER SESSION SET USE_STORED_OUTLINES = rbocat;

7. Run the application.

Subject to the limitations of Plan Stability, access paths for this application's SQL

statements should be unchanged.

Note: Carefully read this procedure and consider its implications before
executing it!

Note: If a query was not executed in step 2, you can capture the

old behavior of the query even after switching to cost-based

optimization. To do this, change the optimizer mode to RULE,

create an outline for the query, and then change the optimizer mode

back to CHOOSE.

Plan Stability Procedures for the Cost-based Optimizer

7-34 Oracle8i Tuning

RDBMS Upgrades and the Cost-based Optimizer
When upgrading to a new version of Oracle under cost-based optimization, there is

always a possibility that some SQL statements will have their execution plans

changed due to changes in the optimizer. While such changes benefit performance

in the vast majority of cases, you might have some applications that perform well

and where you would consider any changes in their behavior to be an unnecessary

risk. For such applications, you can create outlines before the upgrade using the

following procedure.

1. Enter this syntax to enable outline creation:

ALTER SESSION SET CREATE_STORED_OUTLINES = ALL_QUERIES;

2. Run the application long enough to capture stored outlines for all critical SQL

statements.

3. Enter this syntax to suspend outline generation:

ALTER SESSION SET CREATE_STORED_OUTLINES = FALSE;

4. Upgrade the production system to the new version of the RDBMS.

5. Run the application.

After the upgrade, you can enable the use of stored outlines, or alternatively, you

can use the outlines that were stored as a backup if you find that some statements

exhibit performance degradation after the upgrade.

With the latter approach, you can selectively use the stored outlines for such

problematic statements as follows:

1. For each problematic SQL statement, change the CATEGORY of the associated

stored outline to a category name similar to this:

ALTER OUTLINE outline_name CHANGE CATEGORY TO problemcat;

2. Enter this syntax to make Oracle use outlines from the category

"PROBLEMCAT".

ALTER SESSION SET USE_STORED_OUTLINES = problemcat;

Note: Carefully read this procedure and consider its implications before
executing it!

Plan Stability Procedures for the Cost-based Optimizer

Optimizer Modes, Plan Stability, and Hints 7-35

Upgrading with a Test System
A test system, separate from the production system, can be useful for conducting

experiments with optimizer behavior in conjunction with an upgrade. You can

migrate statistics from the production system to the test system using

import/export. This may alleviate the need to fill the tables in the test system with

data.

You can move outlines between the systems by category. For example, once you

create outlines in the PROBLEMCAT category, export them by category using the

query-based export option. This is a convenient and efficient way to export only

selected outlines from one database to another without exporting all outlines in the

source database. To do this, issue these statements:

 EXP OUTLN/outln_password FILE=<exp-file> TABLES= ’OL$’ ’OL$HINTS’
 QUERY=’WHERE CATEGORY="problemcat"'

Using Hints

7-36 Oracle8i Tuning

Using Hints
As an application designer, you may know information about your data that the

optimizer does not know. For example, you may know that a certain index is more

selective for certain queries. Based on this information, you may be able to choose a

more efficient execution plan than the optimizer. In such a case, use hints to force

the optimizer to use the optimal execution plan.

Hints allow you to make decisions usually made by the optimizer. You can use hints

to specify:

■ The optimization approach for a SQL statement

■ The goal of the cost-based approach for a SQL statement

■ The access path for a table accessed by the statement

■ The join order for a join statement

■ A join operation in a join statement

Specifying Hints
Hints apply only to the optimization of the statement block in which they appear. A

statement block is any one of the following statements or parts of statements:

■ A simple SELECT, UPDATE, or DELETE statement

■ A parent statement or subquery of a complex statement

■ A part of a compound query

For example, a compound query consisting of two component queries combined by

the UNION operator has two statement blocks, one for each component query. For

this reason, hints in the first component query apply only to its optimization, not to

the optimization of the second component query.

You can send hints for a SQL statement to the optimizer by enclosing them in a

comment within the statement.

Note: The use of hints involves extra code that must also be

managed, checked, and controlled.

See Also: For more information on comments, see Oracle8i SQL
Reference.

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-37

A statement block can have only one comment containing hints. This comment can

only follow the SELECT, UPDATE, or DELETE keyword. The syntax diagrams

show the syntax for hints contained in both styles of comments that Oracle supports

within a statement block.

or:

where:

If you specify hints incorrectly, Oracle ignores them but does not return an error:

■ Oracle ignores hints if the comment containing them does not follow a

DELETE, SELECT, or UPDATE keyword.

■ Oracle ignores hints containing syntax errors, but considers other correctly

specified hints within the same comment.

DELETE

SELECT

UPDATE

Is a DELETE, SELECT, or UPDATE keyword that begins a statement

block. Comments containing hints can appear only after these

keywords.

+ Is a plus sign that causes Oracle to interpret the comment as a list of

hints. The plus sign must immediately follow the comment

delimiter (no space is permitted).

hint Is one of the hints discussed in this section. If the comment contains

multiple hints, each pair of hints must be separated by at least one

space.

text Is other commenting text that can be interspersed with the hints.

DELETE

SELECT

UPDATE

/*+
hint

text
*/

DELETE

SELECT

UPDATE

– – +
hint

text

Using Hints

7-38 Oracle8i Tuning

■ Oracle ignores combinations of conflicting hints, but considers other hints

within the same comment.

■ Oracle ignores hints in all SQL statements in those environments that use

PL/SQL Version 1, such as SQL*Forms Version 3 triggers, Oracle Forms 4.5, and

Oracle Reports 2.5.

Other conditions specific to index type appear later in this chapter.

The optimizer recognizes hints only when using the cost-based approach. If you

include a hint (except the RULE hint) in a statement block, the optimizer

automatically uses the cost-based approach.

The following sections show the syntax of each hint.

Hints for Optimization Approaches and Goals
The hints described in this section allow you to choose between the cost-based and

the rule-based optimization approaches and, with the cost-based approach, either a

goal of best throughput or best response time.

■ ALL_ROWS

■ FIRST_ROWS

■ CHOOSE

■ RULE

If a SQL statement has a hint specifying an optimization approach and goal, the

optimizer uses the specified approach regardless of the presence or absence of

statistics, the value of the OPTIMIZER_MODE initialization parameter, and the

OPTIMIZER_MODE parameter of the ALTER SESSION statement.

ALL_ROWS
The ALL_ROWS hint explicitly chooses the cost-based approach to optimize a

statement block with a goal of best throughput (that is, minimum total resource

consumption).

Note: The optimizer goal applies only to queries submitted

directly. Use hints to determine the access path for any SQL

statements submitted from within PL/SQL. The ALTER SESSION...

SET OPTIMIZER_MODE statement does not affect SQL that is run

from within PL/SQL.

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-39

The syntax of this hint is as follows:

For example, the optimizer uses the cost-based approach to optimize this statement

for best throughput:

 SELECT /*+ ALL_ROWS */ empno, ename, sal, job
 FROM emp
 WHERE empno = 7566;

FIRST_ROWS
The FIRST_ROWS hint explicitly chooses the cost-based approach to optimize a

statement block with a goal of best response time (minimum resource usage to

return first row).

This hint causes the optimizer to make these choices:

■ If an index scan is available, the optimizer may choose it over a full table scan.

■ If an index scan is available, the optimizer may choose a nested loops join over

a sort-merge join whenever the associated table is the potential inner table of

the nested loops.

■ If an index scan is made available by an ORDER BY clause, the optimizer may

choose it to avoid a sort operation.

The syntax of this hint is as follows:

For example, the optimizer uses the cost-based approach to optimize this statement

for best response time:

 SELECT /*+ FIRST_ROWS */ empno, ename, sal, job
 FROM emp
 WHERE empno = 7566;

The optimizer ignores this hint in DELETE and UPDATE statement blocks and in

SELECT statement blocks that contain any of the following syntax:

■ Set operators (UNION, INTERSECT, MINUS, UNION ALL)

/*+ ALL_ROWS */

/*+ FIRST_ROWS */

Using Hints

7-40 Oracle8i Tuning

■ GROUP BY clause

■ FOR UPDATE clause

■ Aggregate functions

■ DISTINCT operator

These statements cannot be optimized for best response time because Oracle must

retrieve all rows accessed by the statement before returning the first row. If you

specify this hint in any of these statements, the optimizer uses the cost-based

approach and optimizes for best throughput.

If you specify either the ALL_ROWS or FIRST_ROWS hint in a SQL statement and

the data dictionary does not have statistics about tables accessed by the statement,

the optimizer uses default statistical values (such as allocated storage for such

tables) to estimate the missing statistics and subsequently to choose an execution

plan.

These estimates may not be as accurate as those generated by the ANALYZE

statement. Therefore, use the ANALYZE statement to generate statistics for all

tables accessed by statements that use cost-based optimization. If you specify hints

for access paths or join operations along with either the ALL_ROWS or

FIRST_ROWS hint, the optimizer gives precedence to the access paths and join

operations specified by the hints.

CHOOSE
The CHOOSE hint causes the optimizer to choose between the rule-based and

cost-based approaches for a SQL statement. The optimizer bases its selection on the

presence of statistics for the tables accessed by the statement. If the data dictionary

has statistics for at least one of these tables, the optimizer uses the cost-based

approach and optimizes with the goal of best throughput. If the data dictionary

does not have statistics for these tables, it uses the rule-based approach.

The syntax of this hint is as follows:

For example:

 SELECT /*+ CHOOSE */ empno, ename, sal, job
 FROM emp
 WHERE empno = 7566;

/*+ CHOOSE */

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-41

RULE
The RULE hint explicitly chooses rule-based optimization for a statement block. It

also makes the optimizer ignore other hints specified for the statement block.

The syntax of this hint is as follows:

For example, the optimizer uses the rule-based approach for this statement:

 SELECT --+ RULE
 empno, ename, sal, job
 FROM emp
 WHERE empno = 7566;

The RULE hint, along with the rule-based approach, may not be supported in future

versions of Oracle.

Hints for Access Methods
Each hint described in this section suggests an access method for a table.

■ FULL

■ ROWID

■ CLUSTER

■ HASH

■ HASH_AJ

■ HASH_SJ

■ INDEX

■ INDEX_ASC

■ INDEX_COMBINE

■ INDEX_JOIN

■ INDEX_DESC

■ INDEX_FFS

■ NO_INDEX

/*+ RULE */

Using Hints

7-42 Oracle8i Tuning

■ MERGE_AJ

■ MERGE_SJ

■ AND_EQUAL

■ USE_CONCAT

■ NO_EXPAND

■ REWRITE

■ NOREWRITE

Specifying one of these hints causes the optimizer to choose the specified access

path only if the access path is available based on the existence of an index or cluster

and on the syntactic constructs of the SQL statement. If a hint specifies an

unavailable access path, the optimizer ignores it.

You must specify the table to be accessed exactly as it appears in the statement. If

the statement uses an alias for the table, use the alias rather than the table name in

the hint. The table name within the hint should not include the schema name if the

schema name is present in the statement.

FULL
The FULL hint explicitly chooses a full table scan for the specified table.

The syntax of this hint is as follows:

where table specifies the name or alias of the table on which the full table scan is to

be performed.

For example, Oracle performs a full table scan on the ACCOUNTS table to execute

this statement, even if there is an index on the ACCNO column that is made

available by the condition in the WHERE clause:

 SELECT /*+ FULL(A) DON’T USE THE INDEX ON ACCNO */ ACCNO, BAL

Note: For access path hints, Oracle ignores the hint if you specify

the SAMPLE option in the FROM clause of a SELECT statement.

For more information on the SAMPLE option, please refer to

Oracle8i Concepts and Oracle8i Reference.

/* FULL (table) */

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-43

 FROM ACCOUNTS A
 WHERE ACCNO = 7086854;

ROWID
The ROWID hint explicitly chooses a table scan by rowid for the specified table. The

syntax of the ROWID hint is:

where table specifies the name or alias of the table on which the table access by

rowid is to be performed.

CLUSTER
The CLUSTER hint explicitly chooses a cluster scan to access the specified table. It

applies only to clustered objects. The syntax of the CLUSTER hint is:

where table specifies the name or alias of the table to be accessed by a cluster scan.

The following example illustrates the use of the CLUSTER hint.

 SELECT --+ CLUSTER
 EMP ENAME, DEPTNO
 FROM EMP, DEPT
 WHERE DEPTNO = 10 AND
 EMP.DEPTNO = DEPT.DEPTNO;

Note: Because the ACCOUNTS table has alias "A", the hint must

refer to the table by its alias rather than by its name. Also, do not

specify schema names in the hint even if they are specified in the

FROM clause.

/* ROWID (table) */

/* CLUSTER (table) */

Using Hints

7-44 Oracle8i Tuning

HASH
The HASH hint explicitly chooses a hash scan to access the specified table. It applies

only to tables stored in a cluster. The syntax of the HASH hint is:

where table specifies the name or alias of the table to be accessed by a hash scan.

HASH_AJ
The HASH_AJ hint transforms a NOT IN subquery into a hash anti-join to access

the specified table. The syntax of the HASH_AJ hint is:

HASH_SJ
The HASH_SJ hint transforms a correlated EXISTS subquery into a hash semi-join

to access the specified table. The syntax of the HASH_SJ hint is:

INDEX
The INDEX hint explicitly chooses an index scan for the specified table. You can use

the INDEX hint for domain, B*-tree, and bitmap indexes. However, Oracle

recommends using INDEX_COMBINE rather than INDEX for bitmap indexes

because it is a more versatile hint.

The syntax of the INDEX hint is:

where:

table Specifies the name or alias of the table associated with the index to

be scanned.

/* HASH (table) */

/*+ HASH_AJ */

/*+ HASH_SJ */

/*+ INDEX (table
index

) */

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-45

This hint may optionally specify one or more indexes:

■ If this hint specifies a single available index, the optimizer performs a scan on

this index. The optimizer does not consider a full table scan or a scan on

another index on the table.

■ If this hint specifies a list of available indexes, the optimizer considers the cost

of a scan on each index in the list and then performs the index scan with the

lowest cost. The optimizer may also choose to scan multiple indexes from this

list and merge the results, if such an access path has the lowest cost. The

optimizer does not consider a full table scan or a scan on an index not listed in

the hint.

■ If this hint specifies no indexes, the optimizer considers the cost of a scan on

each available index on the table and then performs the index scan with the

lowest cost. The optimizer may also choose to scan multiple indexes and merge

the results, if such an access path has the lowest cost. The optimizer does not

consider a full table scan.

For example, consider this query that selects the name, height, and weight of all

male patients in a hospital:

 SELECT name, height, weight
 FROM patients
 WHERE sex = ’m’;

Assume there is an index on the SEX column and that this column contains the

values M and F. If there are equal numbers of male and female patients in the

hospital, the query returns a relatively large percentage of the table’s rows and a full

table scan is likely to be faster than an index scan. However, if a very small

percentage of the hospital’s patients are male, the query returns a relatively small

percentage of the table’s rows and an index scan is likely to be faster than a full

table scan.

The number of occurrences of each distinct column value is not available to the

optimizer. The cost-based approach assumes that each value has an equal

probability of appearing in each row. For a column having only two distinct values,

the optimizer assumes each value appears in 50% of the rows, so the cost-based

approach is likely to choose a full table scan rather than an index scan.

If you know that the value in the WHERE clause of your query appears in a very

small percentage of the rows, you can use the INDEX hint to force the optimizer to

index Specifies an index on which an index scan is to be performed.

Using Hints

7-46 Oracle8i Tuning

choose an index scan. In this statement, the INDEX hint explicitly chooses an index

scan on the SEX_INDEX, the index on the SEX column:

 SELECT /*+ INDEX(PATIENTS SEX_INDEX) USE SEX_INDEX, SINCE THERE ARE FEW
 MALE PATIENTS */
 NAME, HEIGHT, WEIGHT
 FROM PATIENTS
 WHERE SEX = ’M’;

The INDEX hint applies to inlist predicates; it forces the optimizer to use the hinted

index, if possible, for an inlist predicate. Multi-column inlists will not use an index.

This hint is useful if you are using distributed query optimization. For more

information about this, please refer to Oracle8i Distributed Database Systems.

INDEX_ASC
The INDEX_ASC hint explicitly chooses an index scan for the specified table. If the

statement uses an index range scan, Oracle scans the index entries in ascending

order of their indexed values. The syntax of the INDEX_ASC hint is:

Each parameter serves the same purpose as in the INDEX hint.

Because Oracle’s default behavior for a range scan is to scan index entries in

ascending order of their indexed values, this hint does not specify anything more

than the INDEX hint. However, you may want to use the INDEX_ASC hint to

specify ascending range scans explicitly, should the default behavior change.

This hint is useful if you are using distributed query optimization.

INDEX_COMBINE
The INDEX_COMBINE hint explicitly chooses a bitmap access path for the table. If

no indexes are given as arguments for the INDEX_COMBINE hint, the optimizer

uses whatever Boolean combination of bitmap indexes has the best cost estimate for

the table. If certain indexes are given as arguments, the optimizer tries to use some

See Also: For more information about the INDEX_ASC hint,

please refer to Oracle8i Distributed Database Systems.

/*+ INDEX_ASC (table
index

) */

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-47

Boolean combination of those particular bitmap indexes. The syntax of

INDEX_COMBINE is:

This hint is useful for bitmap indexes and if you are using distributed query

optimization. For more information about this, please refer to Oracle8i Distributed
Database Systems.

INDEX_JOIN
The INDEX_JOIN hint explicitly instructs the optimizer to use an index join as an

access path. For the hint to have a positive effect, a sufficiently small number of

indexes must exist that contain all the columns required to resolve the query.

where:

INDEX_DESC
The INDEX_DESC hint explicitly chooses an index scan for the specified table. If the

statement uses an index range scan, Oracle scans the index entries in descending

order of their indexed values. The syntax of the INDEX_DESC hint is:

Each parameter serves the same purpose as in the INDEX hint. This hint has no

effect on SQL statements that access more than one table. Such statements always

perform range scans in ascending order of the indexed values.

table Specifies the name or alias of the table associated with the index to

be scanned.

index Specifies an index on which an index scan is to be performed.

/*+ INDEX_COMBINE (table
index

) */

/*+ INDEX_JOIN (table
index

) */

/*+ INDEX_DESC (table
index

) */

Using Hints

7-48 Oracle8i Tuning

This hint is useful if you are using distributed query optimization. For more

information about this, please refer to Oracle8i Distributed Database Systems.

INDEX_FFS
This hint causes a fast full index scan to be performed rather than a full table scan.

The syntax of INDEX_FFS is:

This hint is useful if you are using distributed query optimization. For more

information about this, please refer to Oracle8i Distributed Database Systems.

NO_INDEX
The NO_INDEX hint explicitly disallows a set of indexes for the specified table. The

syntax of the NO_INDEX hint is:

Use this hint to optionally specify one or more indexes:

■ If this hint specifies a single available index, the optimizer does not consider a

scan on this index. Other indexes not specified are still considered.

■ If this hint specifies a list of available indexes, the optimizer does not consider a

scan on any of the specified indexes. Other indexes not specified in the list are

still considered.

■ If this hint specifies no indexes, the optimizer does not consider a scan on any

index on the table. This behavior is the same as a NO_INDEX hint that specifies

a list of all available indexes for the table.

The NO_INDEX hint applies to function-based, B*-tree, bitmap, cluster, or domain

indexes.

See Also: "Using Fast Full Index Scans" on page 6-8.

/*+ INDEX_FFS (table
index

) */

/*+ NO_INDEX (table
index

) */

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-49

If a NO_INDEX hint and an index hint (INDEX, INDEX_ASC, INDEX_DESC,

INDEX_COMBINE, or INDEX_FFS) both specify the same indexes, then both the

NO_INDEX hint and the index hint are ignored for the specified indexes and the

optimizer will consider the specified indexes.

This hint is useful if you are using distributed query optimization. For more

information about this, please refer to Oracle8i Distributed Database Systems.

MERGE_AJ
The MERGE_AJ hint transforms a NOT IN subquery into a merge anti-join to access

the specified table. The syntax of the MERGE_AJ hint is:

MERGE_SJ
The MERGE_SJ hint transforms a correlated EXISTS subquery into a merge

semi-join to access the specified table. The syntax of the MERGE_SJ hint is:

AND_EQUAL
The AND_EQUAL hint explicitly chooses an execution plan that uses an access

path that merges the scans on several single-column indexes. The syntax of the

AND_EQUAL hint is:

where:

table Specifies the name or alias of the table associated with the indexes

to be merged.

index Specifies an index on which an index scan is to be performed. You

must specify at least two indexes. You cannot specify more than

five.

/*+ MERGE_AJ */

/*+ MERGE_SJ */

/*+ AND_EQUAL (table index index
index index index

) */

Using Hints

7-50 Oracle8i Tuning

USE_CONCAT
The USE_CONCAT hint forces combined OR conditions in the WHERE clause of a

query to be transformed into a compound query using the UNION ALL set

operator. Normally, this transformation occurs only if the cost of the query using the

concatenations is cheaper than the cost without them.

The USE_CONCAT hint turns off inlist processing and OR-expands all disjunctions,

including inlists.

The syntax of this hint is:

NO_EXPAND
The NO_EXPAND hint prevents the cost-based optimizer from considering

OR-expansion for queries having OR conditions or INLISTS in the WHERE clause.

Normally, the optimizer would consider using OR expansion and use this method if

it decides the cost is lower than not using it.

The syntax of this hint is:

REWRITE
Use the REWRITE hint with or without a view list. If you use REWRITE with a view

list and the list contains an eligible materialized view, Oracle uses that view

regardless of its cost. Oracle does not consider views outside of the list. If you do

not specify a view list, Oracle searches for an eligible materialized view and always

uses it regardless of its cost.

The syntax of this hint is:

/*+ USE_CONCAT */

/*+ NO_EXPAND */

/*+ REWRITE
(view

,

)
*/

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-51

NOREWRITE
Use the NOREWRITE hint on any query block of a request. This hint disables query

rewrite for the query block, overriding the setting of the parameter

QUERY_REWRITE_ENABLED.

The syntax of this hint is:

Hints for Join Orders
The hints in this section suggest join orders:

■ ORDERED

■ STAR

ORDERED
The ORDERED hint causes Oracle to join tables in the order in which they appear in

the FROM clause.

The syntax of this hint is:

For example, this statement joins table TAB1 to table TAB2 and then joins the result

to table TAB3:

 SELECT /*+ ORDERED */ TAB1.COL1, TAB2.COL2, TAB3.COL3
 FROM TAB1, TAB2, TAB3
 WHERE TAB1.COL1 = TAB2.COL1
 AND TAB2.COL1 = TAB3.COL1;

If you omit the ORDERED hint from a SQL statement performing a join, the

optimizer chooses the order in which to join the tables. You may want to use the

ORDERED hint to specify a join order if you know something about the number of

See Also: For more information on materialized views, please

refer to Oracle8i Concepts and to Oracle8i Application Developer’s
Guide - Fundamentals.

/*+ NOREWRITE */

/*+ ORDERED */

Using Hints

7-52 Oracle8i Tuning

rows selected from each table that the optimizer does not. Such information would

allow you to choose an inner and outer table better than the optimizer could.

STAR
The STAR hint forces a star query plan to be used if possible. A star plan has the

largest table in the query last in the join order and joins it with a nested loops join

on a concatenated index. The STAR hint applies when there are at least 3 tables, the

large table’s concatenated index has at least 3 columns, and there are no conflicting

access or join method hints. The optimizer also considers different permutations of

the small tables.

The syntax of this hint is:

Usually, if you analyze the tables, the optimizer selects an efficient star plan. You

can also use hints to improve the plan. The most precise method is to order the

tables in the FROM clause in the order of the keys in the index, with the large table

last. Then use the following hints:

 /*+ ORDERED USE_NL(FACTS) INDEX(FACTS FACT_CONCAT) */

Where "facts" is the table and "fact_concat" is the index. A more general method is

to use the STAR hint.

Hints for Join Operations
Each hint described in this section suggests a join operation for a table.

■ USE_NL

■ USE_MERGE

■ USE_HASH

■ DRIVING_SITE

■ HASH_AJ and MERGE_AJ

■ HASH_SJ and MERGE_SJ

See Also: Oracle8i Concepts for more information about star plans.

/*+ STAR */

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-53

You must specify a table to be joined exactly as it appears in the statement. If the

statement uses an alias for the table, you must use the alias rather than the table

name in the hint. The table name within the hint should not include the schema

name, if the schema name is present in the statement.

Use of the USE_NL and USE_MERGE hints is recommended with the ORDERED

hint. Oracle uses these hints when the referenced table is forced to be the inner table

of a join, and they are ignored if the referenced table is the outer table.

USE_NL
The USE_NL hint causes Oracle to join each specified table to another row source

with a nested loops join using the specified table as the inner table. The syntax of

the USE_NL hint is:

where table is the name or alias of a table to be used as the inner table of a nested

loops join.

For example, consider this statement, which joins the ACCOUNTS and

CUSTOMERS tables. Assume that these tables are not stored together in a cluster:

 SELECT ACCOUNTS.BALANCE, CUSTOMERS.LAST_NAME, CUSTOMERS.FIRST_NAME
 FROM ACCOUNTS, CUSTOMERS
 WHERE ACCOUNTS.CUSTNO = CUSTOMERS.CUSTNO;

Since the default goal of the cost-based approach is best throughput, the optimizer

will choose either a nested loops operation or a sort-merge operation to join these

tables, depending on which is likely to return all the rows selected by the query

more quickly.

However, you may want to optimize the statement for best response time, or the

minimal elapsed time necessary to return the first row selected by the query, rather

than best throughput. If so, you can force the optimizer to choose a nested loops

join by using the USE_NL hint. In this statement, the USE_NL hint explicitly

chooses a nested loops join with the CUSTOMERS table as the inner table:

 SELECT /*+ ORDERED USE_NL(CUSTOMERS) USE N-L TO GET FIRST ROW FASTER */
 ACCOUNTS.BALANCE, CUSTOMERS.LAST_NAME, CUSTOMERS.FIRST_NAME
 FROM ACCOUNTS, CUSTOMERS
 WHERE ACCOUNTS.CUSTNO = CUSTOMERS.CUSTNO;

/*+ USE_NL (table) */

Using Hints

7-54 Oracle8i Tuning

In many cases, a nested loops join returns the first row faster than a sort-merge join.

A nested loops join can return the first row after reading the first selected row from

one table and the first matching row from the other and combining them, while a

sort-merge join cannot return the first row until after reading and sorting all

selected rows of both tables and then combining the first rows of each sorted row

source.

USE_MERGE
The USE_MERGE hint causes Oracle to join each specified table with another row

source with a sort-merge join. The syntax of the USE_MERGE hint is:

where table is a table to be joined to the row source resulting from joining the

previous tables in the join order using a sort-merge join.

USE_HASH
The USE_HASH hint causes Oracle to join each specified table with another row

source with a hash join. The syntax of the USE_HASH hint is:

where table is a table to be joined to the row source resulting from joining the

previous tables in the join order using a hash join.

DRIVING_SITE
The DRIVING_SITE hint forces query execution to be done at a different site than

that selected by Oracle. This hint can be used with either rule-based or cost-based

optimization. The syntax of this hint is:

where table is the name or alias for the table at which site the execution should take

place.

/*+ USE_MERGE (table) */

/*+ USE_HASH (table) */

/*+ DRIVING_SITE (table) */

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-55

Example:

 SELECT /*+DRIVING_SITE(DEPT)*/ * FROM EMP, DEPT@RSITE
 WHERE EMP.DEPTNO = DEPT.DEPTNO;

If this query is executed without the hint, rows from DEPT will be sent to the local

site and the join will be executed there. With the hint, the rows from EMP will be

sent to the remote site and the query will be executed there, returning the result to

the local site.

This hint is useful if you are using distributed query optimization. For more

information about this, please refer to Oracle8i Distributed Database Systems.

HASH_AJ and MERGE_AJ

Figure 7–1 Parallel Hash Anti-join

As illustrated in Figure 7–1, the SQL IN predicate can be evaluated using a join to

intersect two sets. Thus emp.deptno can be joined to dept.deptno to yield a list of

employees in a set of departments.

Alternatively, the SQL NOT IN predicate can be evaluated using an anti-join to

subtract two sets. Thus emp.deptno can be anti-joined to dept.deptno to select all

employees who are not in a set of departments. Thus you can get a list of all

employees who are not in the Shipping or Receiving departments.

For a specific query, place the MERGE_AJ or HASH_AJ hints into the NOT IN

subquery. MERGE_AJ uses a sort-merge anti-join and HASH_AJ uses a hash

anti-join.

EMP DEPT EMP DEPT

IN, JOIN NOT IN, ANTI-JOIN�
�
�
�
�� ��
��
�
�
���Employees in

(Shipping, Receiving)
Employees not in
(Shipping, Receiving)

Using Hints

7-56 Oracle8i Tuning

For example:

 SELECT * FROM EMP
 WHERE ENAME LIKE ’J%’ AND
 DEPTNO IS NOT NULL AND
 DEPTNO NOT IN (SELECT /*+ HASH_AJ */ DEPTNO FROM DEPT
 WHERE DEPTNO IS NOT NULL AND
 LOC = ’DALLAS’);

If you wish the anti-join transformation always to occur if the conditions in the

previous section are met, set the ALWAYS_ANTI_JOIN initialization parameter to

MERGE or HASH. The transformation to the corresponding anti-join type then

takes place whenever possible.

HASH_SJ and MERGE_SJ
For a specific query, place the HASH_SJ or MERGE_SJ hint into the EXISTS

subquery. HASH_SJ uses a hash semi-join and MERGE_SJ uses a sort merge

semi-join. For example:

 SELECT * FROM T1
 WHERE EXISTS (SELECT /*+ HASH_SJ */ * FROM T
 WHERE T1.C1 = T2.C1
 AND T2.C3 > 5);

This converts the subquery into a special type of join between t1 and t2 that

preserves the semantics of the subquery; that is, even if there is more than one

matching row in t2 for a row in t1, the row in t1 will be returned only once.

A subquery will be evaluated as a semi-join only with these limitations:

■ There can only be one table in the subquery.

■ The outer query block must not itself be a subquery.

■ The subquery must be correlated with an equality predicate.

■ The subquery must have no GROUP BY, CONNECT BY, or ROWNUM

references.

If you wish the semi-join transformation always to occur if the conditions in the

previous section are met, set the ALWAYS_SEMI_JOIN initialization parameter to

HASH or MERGE. The transformation to the corresponding semi-join type then

takes place whenever possible.

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-57

Hints for Parallel Execution
The hints described in this section determine how statements are parallelized or not

parallelized when using parallel execution.

■ PARALLEL

■ NOPARALLEL

■ PQ_DISTRIBUTE

■ APPEND

■ NOAPPEND

■ PARALLEL_INDEX

■ NOPARALLEL_INDEX

PARALLEL
The PARALLEL hint lets you specify the desired number of concurrent servers that

can be used for a parallel operation. The hint applies to the INSERT, UPDATE, and

DELETE portions of a statement as well as to the table scan portion. If any parallel

restrictions are violated, the hint is ignored. The syntax is:

The PARALLEL hint must use the table alias if an alias is specified in the query. The

hint can then take two values separated by commas after the table name. The first

value specifies the degree of parallelism for the given table, the second value

specifies how the table is to be split among the instances of a parallel server.

Specifying DEFAULT or no value signifies that the query coordinator should

examine the settings of the initialization parameters (described in a later section) to

determine the default degree of parallelism.

See Also: Chapter 26, "Tuning Parallel Execution".

/*+ PARALLEL (table

, integer

, DEFAULT

,

, integer

, DEFAULT

) */

Using Hints

7-58 Oracle8i Tuning

In the following example, the PARALLEL hint overrides the degree of parallelism

specified in the EMP table definition:

 SELECT /*+ FULL(SCOTT_EMP) PARALLEL(SCOTT_EMP, 5) */ ENAME
 FROM SCOTT.EMP SCOTT_EMP;

In the next example, the PARALLEL hint overrides the degree of parallelism

specified in the EMP table definition and tells the optimizer to use the default

degree of parallelism determined by the initialization parameters. This hint also

specifies that the table should be split among all of the available instances, with the

default degree of parallelism on each instance.

 SELECT /*+ FULL(SCOTT_EMP) PARALLEL(SCOTT_EMP, DEFAULT,DEFAULT) */ ENAME
 FROM SCOTT.EMP SCOTT_EMP;

NOPARALLEL
You can use the NOPARALLEL hint to override a PARALLEL specification in the

table clause. In general, hints take precedence over table clauses. The syntax of this

hint is:

The following example illustrates the NOPARALLEL hint:

 SELECT /*+ NOPARALLEL(scott_emp) */ ename
 FROM scott.emp scott_emp;

The NOPARALLEL hint is equivalent to specifying the hint.

PQ_DISTRIBUTE
Use the PQ_DISTRIBUTE hint to improve parallel join operation performance. Do

this by specifying how rows of joined tables should be distributed among producer

and consumer query servers. Using this hint overrides decisions the optimizer

would normally make.

Use the EXPLAIN PLAN statement to identify the distribution chosen by the

optimizer. The optimizer ignores the distribution hint if both tables are serial. For

more information on how Oracle parallelizes join operations, please refer to Oracle8i
Concepts.

/*+ NOPARALLEL (table) */

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-59

The syntax of the distribution hint is:

where:

There are six combinations for table distribution:

■ Hash/Hash

■ Broadcast/None

■ None/Broadcast

■ Partition/None

■ None/Partition

■ None/None

table_name Is the name or alias of a table to be used as the inner table of a

join.

outer_distribution Is the distribution for the outer table.

inner_distribution Is the distribution for the inner table.

PQ_DISTRIBUTE (table_name
,

outer_distribution , inner_distribution)

Using Hints

7-60 Oracle8i Tuning

Only a subset of distribution method combinations for the joined tables is valid as

explained in Table 7–3. For example:

Table 7–3 Distribution Hint Combinations

Distribution Interpretation

Hash, Hash Maps the rows of each table to consumer query servers using
a hash function on the join keys. When mapping is complete,
each query server performs the join between a pair of
resulting partitions. This hint is recommended when the
tables are comparable in size and the join operation is
implemented by hash-join or sort-merge join.

Broadcast, None All rows of the outer table are broadcast to each query server.
The inner table rows are randomly partitioned. This hint is
recommended when the outer table is very small compared
to the inner table. A rule-of-thumb is: Use the Broadcast/None
hint if the size of the inner table * number of query servers < size of
the outer table.

None, Broadcast All rows of the inner table are broadcast to each consumer
query server. The outer table rows are randomly partitioned.
This hint is recommended when the inner table is very small
compared to the outer table. A rule-of-thumb is: Use the
None/Broadcast hint if the size of the inner table * number of query
servers < size of the outer table.

Partition, None Maps the rows of the outer table using the partitioning of the
inner table. The inner table must be partitioned on the join
keys. This hint is recommended when the number of
partitions of the outer table is equal to or nearly equal to a
multiple of the number of query servers, for example, 14
partitions and 15 query servers.

Note: The optimizer ignores this hint if the inner table is not
partitioned or not equijoined on the partitioning key.

None, Partition Maps the rows of the inner table using the partitioning of the
outer table. The outer table must be partitioned on the join
keys. This hint is recommended when the number of
partitions of the outer table is equal to or nearly equal to a
multiple of the number of query servers, for example, 14
partitions and 15 query servers.

Note: The optimizer ignores this hint if the outer table is not
partitioned or not equijoined on the partitioning key.

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-61

Examples: Given two tables R and S that are joined using a hash-join, the following

query contains a hint to use hash distribution:

 SELECT <column_list>
 /*+ORDERED PQ_DISTRIBUTE(S HASH HASH) USE_HASH (S)*/
 FROM R,S
 WHERE R.C=S.C;
To broadcast the outer table R, the query should be:

 SELECT <column list>
 /*+ORDERED PQ_DISTRIBUTE(S BROADCAST NONE) USE_HASH (S) */
 FROM R,S
 WHERE R.C=S.C;

APPEND
When you use the APPEND hint for INSERT, data is simply appended to a table.

Existing free space in the block is not used. The syntax of this hint is:

If INSERT is parallelized using the PARALLEL hint or clause, append mode will be

used by default. You can use NOAPPEND to override append mode. The APPEND

hint applies to both serial and parallel insert.

The append operation is performed in LOGGING or NOLOGGING mode,

depending on whether the [NO]LOGGING option is set for the table in question.

Use the ALTER TABLE... [NO]LOGGING statement to set the appropriate value.

Certain restrictions apply to the APPEND hint; these are detailed in Oracle8i
Concepts. If any of these restrictions are violated, the hint will be ignored.

None, None Each query server performs the join operation between a pair
of matching partitions, one from each table. Both tables must
be equi-partitioned on the join keys.

Table 7–3 Distribution Hint Combinations

Distribution Interpretation

INSERT /*+

APPEND

NOAPPEND PARALLEL....

,
*/

Using Hints

7-62 Oracle8i Tuning

NOAPPEND
Use NOAPPEND to override append mode.

PARALLEL_INDEX
Use the PARALLEL_INDEX hint to specify the desired number of concurrent

servers that can be used to parallelize index range scans for partitioned indexes.

The syntax of the PARALLEL_INDEX hint is:

where:

The hint can take two values separated by commas after the table name. The first

value specifies the degree of parallelism for the given table. The second value

specifies how the table is to be split among the instances of a parallel server.

Specifying DEFAULT or no value signifies the query coordinator should examine

the settings of the initialization parameters (described in a later section) to

determine the default degree of parallelism.

For example:

 SELECT /*+ PARALLEL_INDEX(TABLE1,INDEX1, 3, 2) +/;

In this example there are 3 parallel execution processes to be used on each of 2

instances.

table Specifies the name or alias of the table associated with the index to

be scanned.

index Specifies an index on which an index scan is to be performed

(optional).

/*+ PARALLEL_INDEX (table
index

,

, integer

, DEFAULT

,

, integer

, DEFAULT

) */

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-63

NOPARALLEL_INDEX
Use the NOPARALLEL_INDEX hint to override a PARALLEL attribute setting on

an index. In this way you can avoid a parallel index scan operation. The syntax of

this hint is:

Additional Hints
Several additional hints are included in this section:

■ CACHE

■ NOCACHE

■ MERGE

■ NO_MERGE

■ PUSH_JOIN_PRED

■ NO_PUSH_JOIN_PRED

■ PUSH_SUBQ

■ STAR_TRANSFORMATION

■ ORDERED_PREDICATES

CACHE
The CACHE hint specifies that the blocks retrieved for this table are placed at the

most recently used end of the LRU list in the buffer cache when a full table scan is

performed. This option is useful for small lookup tables. The syntax of this hint is:

/*+ NOPARALLEL_INDEX (table
index

,

) */

/*+ CACHE (table) */

Using Hints

7-64 Oracle8i Tuning

In the following example, the CACHE hint overrides the table’s default caching

specification:

 SELECT /*+ FULL (SCOTT_EMP) CACHE(SCOTT_EMP) */ ENAME
 FROM SCOTT.EMP SCOTT_EMP;

NOCACHE
The NOCACHE hint specifies that the blocks retrieved for this table are placed at

the least recently used end of the LRU list in the buffer cache when a full table scan

is performed. This is the normal behavior of blocks in the buffer cache. The syntax

of this hint is:

The following example illustrates the NOCACHE hint:

 SELECT /*+ FULL(SCOTT_EMP) NOCACHE(SCOTT_EMP) */ ENAME
 FROM SCOTT.EMP SCOTT_EMP;

MERGE
Merge a view on a per-query basis by using the MERGE hint. The syntax of this hint

is:

For example:

 SELECT /*+ MERGE(V) */ T1.X, V.AVG_Y
 FROM T1

 (SELECT X, AVG(Y) AS AVG_Y
 FROM T2
 GROUP BY X) V

 WHERE T1.X = V.X AND T1.Y = 1;

/*+ NOCACHE (table) */

/*+ MERGE (table) */

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-65

NO_MERGE
The NO_MERGE hint causes Oracle not to merge mergeable views. The syntax of

the NO_MERGE hint is:

This hint allows the user to have more influence over the way in which the view

will be accessed. For example,

 SELECT /*+ NO_MERGE(V) */ T1.X, V.AVG_Y
 FROM T1

 (SELECT X, AVG(Y) AS AVG_Y
 FROM T2
 GROUP BY X) V

 WHERE T1.X = V.X AND T1.Y = 1;

causes view v not to be merged.

When the NO_MERGE hint is used without an argument, it should be placed in the

view query block. When NO_MERGE is used with the view name as an argument,

it should be placed in the surrounding query.

This hint is useful if you are using distributed query optimization. For more

information about this, please refer to Oracle8i Distributed Database Systems.

PUSH_JOIN_PRED
Use the PUSH_JOIN_PRED hint to force pushing of a join predicate into the view.

The syntax of this hint is:

For example:

 SELECT /*+ PUSH_JOIN_PRED(V) */ T1.X, V.Y
 FROM T1

 (SELECT T2.X, T3.Y
 FROM T2, T3
 SHERE T2.X = T3.X) V

 where t1.x = v.x and t1.y = 1;

/*+ NO_MERGE (table) */

/*+ PUSH_JOIN_PRED (table) */

Using Hints

7-66 Oracle8i Tuning

NO_PUSH_JOIN_PRED
Use the NO_PUSH_JOIN_PRED hint to prevent pushing of a join predicate into the

view. The syntax of this hint is:

PUSH_SUBQ
The PUSH_SUBQ hint causes nonmerged subqueries to be evaluated at the earliest

possible place in the execution plan. Normally, subqueries that are not merged are

executed as the last step in the execution plan. If the subquery is relatively

inexpensive and reduces the number of rows significantly, it will improve

performance to evaluate the subquery earlier.

The hint has no effect if the subquery is applied to a remote table or one that is

joined using a merge join. The syntax of this hint is:

STAR_TRANSFORMATION
The STAR_TRANSFORMATION hint makes the optimizer use the best plan in

which the transformation has been used. Without the hint, the optimizer could

make a cost-based decision to use the best plan generated without the

transformation, instead of the best plan for the transformed query.

Even if the hint is given, there is no guarantee that the transformation will take

place. The optimizer will only generate the subqueries if it seems reasonable to do

so. If no subqueries are generated, there is no transformed query, and the best plan

for the untransformed query will be used regardless of the hint.

/*+ NO_PUSH_JOIN_PRED (table) */

/*+ PUSH_SUBQ */

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-67

The syntax of this hint is:

ORDERED_PREDICATES
The ORDERED_PREDICATES hint forces the optimizer to preserve the order of

predicate evaluation, except for predicates used as index keys. Use this hint in the

WHERE clause of SELECT statements.

If you do not use the ORDERED_PREDICATES hint, Oracle evaluates all predicates

in the order specified by the following rules. Predicates:

■ Without user-defined functions, type methods, or subqueries are evaluated first,

in the order specified in the WHERE clause.

■ With user-defined functions and type methods that have user-computed costs

are evaluated next, in increasing order of their cost.

■ With user-defined functions and type methods without user-computed costs are

evaluated next, in the order specified in the WHERE clause.

■ Not specified in the WHERE clause (for example, predicates transitively

generated by the optimizer) are evaluated next.

■ With subqueries are evaluated last in the order specified in the WHERE clause.

See Also: Oracle8i Concepts for a full discussion of star

transformation. Also, the Oracle8i Reference describes

STAR_TRANSFORMATION_ENABLED; this parameter causes the

optimizer to consider performing a star transformation.

Note: As mentioned, you cannot use the

ORDERED_PREDICATES hint to preserve the order of predicate

evaluation on index keys.

/*+ STAR_TRANSFORMATION */

Using Hints

7-68 Oracle8i Tuning

The syntax of this hint is:

Using Hints with Views
Oracle does not encourage you to use hints inside or on views (or subqueries). This

is because you can define views in one context and use them in another. However,

such hints can result in unexpected plans. In particular, hints inside views or on

views are handled differently depending on whether the view is mergeable into the

top-level query.

Should you decide, nonetheless, to use hints with views, the following sections

describe the behavior in each case.

■ Hints and Mergeable Views

■ Hints and Nonmergeable Views

Hints and Mergeable Views
This section describes hint behavior with mergeable views.

Optimization Approaches and Goal Hints Optimization approach and goal hints can

occur in a top-level query or inside views.

■ If there is such a hint in the top-level query, that hint is used regardless of any

such hints inside the views.

■ If there is no top-level optimizer mode hint, then mode hints in referenced

views are used as long as all mode hints in the views are consistent.

■ If two or more mode hints in the referenced views conflict, then all mode hints

in the views are discarded and the session mode is used, whether default or

user-specified.

Access Method and Join Hints on Views Access method and join hints on referenced

views are ignored unless the view contains a single table (or references another

view with a single table). For such single-table views, an access method hint or a

join hint on the view applies to the table inside the view.

See Also: Oracle8i Concepts for a full discussion of ordered

predicates.

/*+ ORDERED_PREDICATES */

Using Hints

Optimizer Modes, Plan Stability, and Hints 7-69

Access Method and Join Hints Inside Views Access method and join hints can appear in

a view definition.

■ If the view is a subquery (that is, if it appears in the FROM clause of a SELECT

statement), then all access method and join hints inside the view are preserved

when the view is merged with the top-level query.

■ For views that are not subqueries, access method and join hints in the view are

preserved only if the top-level query references no other tables or views (that is,

if the FROM clause of the SELECT statement contains only the view).

Parallel Execution Hints on Views PARALLEL, NOPARALLEL, PARALLEL_INDEX

and NOPARALLEL_INDEX hints on views are always recursively applied to all the

tables in the referenced view. Parallel execution hints in a top-level query override

such hints inside a referenced view.

Hints and Nonmergeable Views
With non-mergeable views, optimization approach and goal hints inside the view

are ignored: the top-level query decides the optimization mode.

Since non-mergeable views are optimized separately from the top-level query,

access method and join hints inside the view are always preserved. For the same

reason, access method hints on the view in the top-level query are ignored.

However, join hints on the view in the top-level query are preserved since, in this

case, a non-mergeable view is similar to a table.

Using Hints

7-70 Oracle8i Tuning

Tuning Distributed Queries 8-1

8
Tuning Distributed Queries

Oracle supports transparent distributed queries to access data from multiple

databases. It also provides many other distributed features, such as transparent

distributed transactions and a transparent, fully automatic two-phase commit. This

chapter explains how the Oracle8 optimizer decomposes SQL statements, and how

this affects performance of distributed queries. The chapter provides guidelines on

how to influence the optimizer and avoid performance bottlenecks.

Topics include:

■ Remote and Distributed Queries

■ Distributed Query Restrictions

■ Transparent Gateways

■ Summary: Optimizing Performance of Distributed Queries

Remote and Distributed Queries
If a SQL statement references one or more remote tables, the optimizer first

determines whether all remote tables are located at the same site. If all tables are

located at the same remote site, Oracle sends the entire query to the remote site for

execution. The remote site sends the resulting rows back to the local site. This is

called a remote SQL statement. If the tables are located at more than one site, the

optimizer decomposes the query into separate SQL statements to access each of the

remote tables. This is called a distributed SQL statement. The site where the query

is executed, called the "driving site," is normally the local site.

This section describes:

■ Remote Data Dictionary Information

■ Remote SQL Statements

Remote and Distributed Queries

8-2 Oracle8i Tuning

■ Distributed SQL Statements

■ EXPLAIN PLAN and SQL Decomposition

■ Partition Views

Remote Data Dictionary Information
If a SQL statement references multiple tables, then the optimizer must determine

which columns belong to which tables before it can decompose the SQL statement.

For example, for this query:

 SELECT DNAME, ENAME
 FROM DEPT, EMP@REMOTE
 WHERE DEPT.DEPTNO = EMP.DEPTNO

The optimizer must first determine that the DNAME column belongs to the DEPT

table and the ENAME column to the EMP table. Once the optimizer has the data

dictionary information of all remote tables, it can build the decomposed SQL

statements.

Column and table names in decomposed SQL statements appear between double

quotes. You must enclose in double quotes any column and table names that

contain special characters, reserved words, or spaces.

This mechanism also replaces an asterisk (*) in the select list with the actual column

names. For example:

 SELECT * FROM DEPT@REMOTE;

Results in the decomposed SQL statement

 SELECT A1."DEPTNO", A1."DNAME", A1."LOC" FROM "DEPT" A1;

Remote SQL Statements
If the entire SQL statement is sent to the remote database, the optimizer uses table

aliases A1, A2, and so on, for all tables and columns in the query, in order to avoid

possible naming conflicts. For example:

 SELECT DNAME, ENAME
 FROM DEPT@REMOTE, EMP@REMOTE

Note: For simplicity, double quotes are not used in the remainder

of this chapter.

Remote and Distributed Queries

Tuning Distributed Queries 8-3

 WHERE DEPT.DEPTNO = EMP.DEPTNO;

is sent to the remote database as:

 SELECT A2.DNAME, A1.ENAME
 FROM DEPT A2, EMP A1
 WHERE A1.DEPTNO = A2.DEPTNO;

Distributed SQL Statements
When a query accesses data on one or more databases, one site "drives" the

execution of the query. This is known as the "driving site"; it is here that the data is

joined, grouped and ordered. By default, the local Oracle server is the driving site.

A hint called DRIVING_SITE enables you to manually specify the driving site.

The decomposition of SQL statements is important because it determines the

number of records or even tables that must be sent through the network. A

knowledge of how the optimizer decomposes SQL statements can help you achieve

optimum performance for distributed queries.

If a SQL statement references one or more remote tables, the optimizer must

decompose the SQL statement into separate queries to be executed on the different

databases. For example:

 SELECT DNAME, ENAME
 FROM DEPT, EMP@REMOTE
 WHERE DEPT.DEPTNO = EMP.DEPTNO;

Might be decomposed into

 SELECT DEPTNO, DNAME FROM DEPT;

Which is executed locally, and

 SELECT DEPTNO, ENAME FROM EMP;

which is sent to the remote database. The data from both tables is joined locally. All

this is done automatically and transparently for the user or application.

In some cases, however, it might be better to send the local table to the remote

database and join the two tables on the remote database. This can be achieved either

by creating a view, or by using the DRIVING_SITE hint. If you decide to create a

view on the remote database, a database link from the remote database to the local

database is also needed.

Remote and Distributed Queries

8-4 Oracle8i Tuning

For example (on the remote database):

 CREATE VIEW DEPT_EMP AS
 SELECT DNAME, ENAME
 FROM DEPT@LOCAL, EMP
 WHERE DEPT.DEPTNO = EMP.DEPTNO;

Then select from the remote view instead of the local and remote tables

 SELECT * FROM DEPT_EMP@REMOTE;

Now the local DEPT table is sent through the network to the remote database,

joined on the remote database with the EMP table, and the result is sent back to the

local database.

Rule-Based Optimization
Rule-based optimization does not have information about indexes for remote tables.

It never, therefore, generates a nested loops join between a local table and a remote

table with the local table as the outer table in the join. It uses either a nested loops

join with the remote table as the outer table or a sort merge join, depending on the

indexes available for the local table.

Cost-Based Optimization
Cost-based optimization can consider more execution plans than rule-based

optimization. Cost-based optimization knows whether indexes on remote tables are

available, and in which cases it would make sense to use them. Cost-based

optimization considers index access of the remote tables as well as full table scans,

whereas rule-based optimization considers only full table scans.

The particular execution plan and table access that cost-based optimization chooses

depends on the table and index statistics. For example, with:

 SELECT DNAME, ENAME
 FROM DEPT, EMP@REMOTE
 WHERE DEPT.DEPTNO = EMP.DEPTNO

The optimizer might choose the local DEPT table as the driving table and access the

remote EMP table using an index, so the decomposed SQL statement becomes:

 SELECT ENAME FROM EMP WHERE DEPTNO = :1

See Also: "DRIVING_SITE" on page 7-54 for details about this

hint.

Remote and Distributed Queries

Tuning Distributed Queries 8-5

This decomposed SQL statement is used for a nested loops operation.

Using Views
If tables are on more than one remote site, it can be more effective to create a view

than to use the DRIVING_SITE hint. If not all tables are on the same remote

database, the optimizer accesses each remote table separately. For example:

 SELECT D.DNAME, E1.ENAME, E2.JOB
 FROM DEPT D, EMP@REMOTE E1, EMP@REMOTE E2
 WHERE D.DEPTNO = E1.DEPTNO
 AND E1.MGR = E2.EMPNO;

Results in the decomposed SQL statements

 SELECT EMPNO, ENAME FROM EMP;

And

 SELECT ENAME, MGR, DEPTNO FROM EMP;

If you want to join the two EMP tables remotely, you can create a view to

accomplish this. Create a view with the join of the remote tables on the remote

database. For example (on the remote database):

 CREATE VIEW EMPS AS
 SELECT E1.DEPTNO, E1.ENAME, E2.JOB
 FROM EMP E1, EMP E2
 WHERE E1.MGR = E2.EMPNO;

And now select from the remote view instead of the remote tables:

 SELECT D.DNAME, E.ENAME, E.JOB
 FROM DEPT D, EMPS@REMOTE E
 WHERE D.DEPTNO = E.DEPTNO;

This results in the decomposed SQL statement

 SELECT DEPTNO, ENAME, JOB FROM EMPS;

Using Hints
In a distributed query, all hints are supported for local tables. For remote tables,

however, you can use only join order and join operation hints. (Hints for access

methods, parallel hints, and so on, have no effect.) For remote mapped queries, all

hints are supported.

Remote and Distributed Queries

8-6 Oracle8i Tuning

EXPLAIN PLAN and SQL Decomposition
EXPLAIN PLAN gives information not only about the overall execution plan of

SQL statements, but also about the way in which the optimizer decomposes SQL

statements. EXPLAIN PLAN stores information in the PLAN_TABLE table. If

remote tables are used in a SQL statement, the OPERATION column will contain

the value REMOTE to indicate that a remote table is referenced, and the OTHER

column will contain the decomposed SQL statement that will be sent to the remote

database. For example:

 EXPLAIN PLAN FOR SELECT DNAME FROM DEPT@REMOTE
 SELECT OPERATION, OTHER FROM PLAN_TABLE

 OPERATION OTHER
 --------- -------------------------------------
 REMOTE SELECT A1."DNAME" FROM "DEPT" A1

Note the table alias and the double quotes around the column and table names.

Partition Views
You can use partition views to coalesce tables that have the same structure, but that

also contain different partitions of data. This is useful for a distributed database

where each partition resides on a database and the data in each partition has

common geographical properties.

When a query is executed on such a partition view, and the query contains a

predicate that contains the result set to a subset of the view’s partitions, the

optimizer chooses a plan which skips partitions that are not needed for the query.

This partition elimination takes place at run time, when the execution plan

references all partitions.

See Also: "Hints for Join Orders" on page 7-51 and "Hints for Join

Operations" on page 7-52.

See Also: Chapter 13, "Using EXPLAIN PLAN".

Remote and Distributed Queries

Tuning Distributed Queries 8-7

Rules for Use
This section describes the circumstances under which a UNION ALL view enables

the optimizer to skip partitions. The Oracle server that contains the partition view

must conform to the following rules:

■ The PARTITION_VIEW_ENABLED initialization parameter is set to TRUE

■ The cost-based optimizer is used

Within a UNION ALL view there are multiple select statements, and each of these is

called a "branch". A UNION ALL view is a partition view if each select statement it

defines conforms to the following rules:

■ The branch has exactly one table in the FROM clause.

■ The branch contains a WHERE clause that defines the subset of data from the

partition that is contained in the view.

■ None of the following are used within the branch: WHERE clause with

subquery, group by, aggregate functions, distinct, rownum, connect by/start

with.

■ The SELECT list of each branch is *, or explicit expansion of "*".

■ The column names and column datatypes for all branches in the UNION ALL

view are exactly the same.

■ All tables used in the branch must have indexes (if any) on the same columns

and number of columns.

Partition elimination is based on column transitivity with constant predicates. The

WHERE clause used in the query that accesses the partition view is pushed down to

the WHERE clause of each of the branches in the UNION ALL view definition.

Consider the following example:

 SELECT * FROM EMP_VIEW WHERE deptno=30;

Note: To use the cost-based optimizer you must analyze all tables

used in the UNION ALL views. Alternatively, you can use a hint or

set the parameter OPTIMIZER_MODE to ALL_ROWS or

FIRST_ROW. To set OPTIMIZER_MODE or

PARTITION_VIEW_ENABLED you can also use the ALTER

SESSION statement.

Remote and Distributed Queries

8-8 Oracle8i Tuning

When the view EMP_VIEW is defined as:

 SELECT * FROM EMP@d10 WHERE deptno=10
 UNION ALL
 SELECT * FROM EMP@d20 WHERE deptno=20
 UNION ALL
 SELECT * FROM EMP@d30 WHERE deptno=30
 UNION ALL
 SELECT * FROM EMP@d40 WHERE deptno=40

The "WHERE deptno=30" predicate used in the query is pushed down to the

queries in the UNION ALL view. For a WHERE clause such as "WHERE deptno=10

and deptno=30", the optimizer applies transitivity rules to generate an extra

predicate of "10=30". This extra predicate is always false, thus the table (EMP@d10)

need not be accessed.

 Transitivity applies to predicates which conform to the following rules:

■ The predicates in the WHERE clause for each branch are of the form:

RELATION AND RELATION ...

where relation is of the form

COLUMN_NAME RELOP CONSTANT_EXPRESSION

and relop is one of =, !=, >, >=, <, <=

■ At least one predicate in the query referencing the view exists in the same form.

EXPLAIN PLAN Output
To confirm that the system recognizes a partition view, check the EXPLAIN PLAN

output. The following operations will appear in the OPERATIONS column of the

EXPLAIN PLAN output, if a query was executed on a partition view:

Note: BETWEEN ... AND is allowed by these rules, but IN is not.

VIEW This entry should include the optimizer cost in the COST

column.

UNION-ALL This entry should specify PARTITION in the OPTION

column.

Remote and Distributed Queries

Tuning Distributed Queries 8-9

If PARTITION does not appear in the option column of the UNION-ALL operation,

the partition view was not recognized, and no partitions were eliminated. Make

sure that the UNION ALL view adheres to the rules as defined in "Rules for Use"

on page 8-7.

Partition View Example
The following example shows a partition view CUSTOMER that is partitioned into

two partitions. The EAST database contains the East Coast customers, and the

WEST database contains the customers from the West Coast.

The WEST database contains the following table CUSTOMER_WEST:

 CREATE TABLE CUSTOMER_WEST
 (cust_no NUMBER CONSTRAINT CUSTOMER_WEST_PK PRIMARY KEY,
 cname VARCHAR2(10),
 location VARCHAR2(10)
);

The EAST database contains the database CUSTOMER_EAST:

 CREATE TABLE CUSTOMER_EAST
 (cust_no NUMBER CONSTRAINT CUSTOMER_EAST_PK PRIMARY KEY,
 cname VARCHAR2(10),
 location VARCHAR2(10)
);

The following partition view is created at the EAST database (you could create a

similar view at the WEST database):

 CREATE VIEW customer AS
 SELECT * FROM CUSTOMER_EAST
 WHERE location='EAST'
 UNION ALL
 SELECT * FROM CUSTOMER_WEST@WEST
 WHERE location='WEST';

If you execute the following statement, notice that the CUSTOMER_WEST table in

the WEST database is not accessed:

EXPLAIN PLAN FOR SELECT * FROM CUSTOMER WHERE location='EAST';

FILTER When an operation is a child of the UNION-ALL

operation, FILTER indicates that a constant predicate was

generated that will always be FALSE. The partition will be

eliminated.

Distributed Query Restrictions

8-10 Oracle8i Tuning

As shown in the EXPLAIN PLAN output, the optimizer recognizes that the

CUSTOMER_WEST partition need not be accessed:

SELECT LPAD(' ',LEVEL*3-3)||OPERATION OPERATION,COST,OPTIONS,
OBJECT_NODE, OTHER
FROM PLAN_TABLE
CONNECT BY PARENT_ID = PRIOR ID
START WITH PARENT_ID IS NULL

OPERATION COST OPTIONS OBJECT_NOD OTHER
------------------------- ---- ---------- ---------- -------------------------
SELECT STATEMENT 1
 VIEW 1
 UNION-ALL PARTITION
 TABLE ACCESS 1 FULL
 FILTER
 REMOTE 1 WEST.WORLD SELECT "CUST_NO","CNAME",
 "LOCATION" FROM "CUSTOMER
 _WEST" "CUSTOMER_WEST" WH
 ERE "LOCATION"='EAST' AND
 "LOCATION"='WEST'

Distributed Query Restrictions
Distributed queries within the same version of Oracle have these restrictions:

■ Cost-based optimization should be used for distributed queries. Rule-based

optimization does not generate nested loop joins between remote and local

tables when the tables are joined with equijoins.

■ In cost-based optimization, no more than 20 indexes per remote table are

considered when generating query plans. The order of the indexes varies; if the

20-index limitation is exceeded, random variation in query plans may result.

Note: The EAST database still needs column name and column

datatype information for the CUSTOMER_WEST table, therefore it

still needs a connection to the WEST database. In addition that the

cost-based optimizer must be used. You could do this, for example,

by issuing the statement ALTER SESSION SET

OPTIMIZER_MODE=ALL_ROWS.

Transparent Gateways

Tuning Distributed Queries 8-11

■ Reverse indexes on remote tables are not visible to the optimizer. This can

prevent nested-loop joins from being used for remote tables if there is an

equijoin using a column with only a reverse index.

■ Cost-based optimization cannot recognize that a remote object is partitioned.

Thus the optimizer may generate less than optimal plans for remote partitioned

objects, particularly when partition pruning would have been possible, had the

object been local.

■ Remote views are not merged and the optimizer has no statistics for them. It is

best to replicate all mergeable views at all sites to obtain good query plans. (See

the following exception.)

■ Neither cost-based nor rule-based optimization can execute joins remotely. All

joins are executed at the driving site. This can affect performance for CREATE

TABLE ... AS SELECT if all the tables in the select list are remote. In this case

you should create a view for the SELECT statement at the remote site.

Transparent Gateways
The Transparent Gateways are used to access data from other data sources

(relational databases, hierarchical databases, file systems, and so on). Transparent

Gateways provide a means to transparently access data from a non-Oracle system,

just as if it were another Oracle database.

Optimizing Heterogeneous Distributed SQL Statements
When a SQL statement accesses data from non-Oracle systems, it is said to be a

heterogeneous distributed SQL statement. To optimize heterogeneous distributed

SQL statements, follow the same guidelines as for optimizing distributed SQL

statements that access Oracle databases only. However, you must take into

consideration that the non-Oracle system usually does not support all the functions

and operators that Oracle8 supports. The Transparent Gateways therefore tell

Oracle (at connect time) which functions and operators they do support. If the other

data source does not support a function or operator, Oracle will perform that

function or operator. In this case Oracle obtains the data from the other data source

and applies the function or operator locally. This affects the way in which the SQL

statements are decomposed and can affect performance, especially if Oracle is not

on the same machine as the other data source.

Summary: Optimizing Performance of Distributed Queries

8-12 Oracle8i Tuning

Gateways and Partition Views
You can use partition views with Oracle Transparent Gateways version 8 or higher.

Make sure you adhere to the rules that are defined in "Rules for Use" on page 8-7. In

particular:

■ The cost-based optimizer must be used, by using hints or setting the parameter

OPTIMIZER_MODE to ALL_ROWS or FIRST_ROWS.

■ Indexes used for each partition must be the same. Please consult your gateway

specific installation and users guide to find out whether the gateway will send

index information of the non-Oracle system to the Oracle Server. If the gateway

will send index information to the optimizer, make sure that each partition uses

the same number of indexes, and that you have indexed the same columns. If

the gateway does not send index information, the Oracle optimizer will not be

aware of the indexes on partitions. Indexes are therefore considered to be the

same for each partition in the non-Oracle system. If one partition resides on an

Oracle server, you cannot have an index defined on that partition.

■ The column names and column datatypes for all branches in the UNION ALL

view must be the same. Non-Oracle system datatypes are mapped onto Oracle

datatypes. Make sure that the datatypes of each partition that resides in the

different non-Oracle systems all map to the same Oracle datatype. To see how

datatypes are mapped onto Oracle datatypes, you can execute a DESCRIBE

command in SQL*Plus or Server Manager.

Summary: Optimizing Performance of Distributed Queries
You can improve performance of distributed queries in several ways:

■ Choose the best SQL statement

In many cases there are several SQL statements which can achieve the same

result. If all tables are on the same database, the difference in performance

between these SQL statements might be minimal; but if the tables are located on

different databases, the difference in performance might be more significant.

■ Use cost-based optimization

Cost-based optimization can use indexes on remote tables, considers more

execution plans than rule-based optimization, and generally gives better results.

With cost-based optimization performance of distributed queries is generally

satisfactory. Only in rare occasions is it necessary to change SQL statements,

create views, or use procedural code.

■ Use views

Summary: Optimizing Performance of Distributed Queries

Tuning Distributed Queries 8-13

In some situations, views can be used to improve performance of distributed

queries; for example:

■ To join several remote tables on the remote database

■ To send a different table through the network

■ Use procedural code

In some rare occasions it can be more efficient to replace a distributed query by

procedural code, such as a PL/SQL procedure or a precompiler program. This

option is mentioned here only for completeness, not because it is often needed.

Summary: Optimizing Performance of Distributed Queries

8-14 Oracle8i Tuning

Transaction Modes 9-1

9
Transaction Modes

This chapter describes the different modes in which read consistency is performed.

Topics in this chapter include:

■ Using Discrete Transactions

■ Using Serializable Transactions

Using Discrete Transactions
You can improve the performance of short, nondistributed transactions by using the

BEGIN_DISCRETE_TRANSACTION procedure. This procedure streamlines

transaction processing so short transactions can execute more rapidly. This section

describes:

■ Deciding When to Use Discrete Transactions

■ How Discrete Transactions Work

■ Errors During Discrete Transactions

■ Usage Notes

■ Example

Deciding When to Use Discrete Transactions
Discrete transaction processing is useful for transactions that:

■ Modify only a few database blocks

■ Never change an individual database block more than once per transaction

■ Do not modify data likely to be requested by long-running queries

Using Discrete Transactions

9-2 Oracle8i Tuning

■ Do not need to see the new value of data after modifying the data

■ Do not modify tables containing any LONG values

In deciding to use discrete transactions, you should consider the following factors:

■ Can the transaction be designed to work within the constraints placed on

discrete transactions, as described in "Usage Notes" on page 9-3?

■ Does using discrete transactions result in a significant performance

improvement under normal usage conditions?

Discrete transactions can be used concurrently with standard transactions.

Choosing whether to use discrete transactions should be a part of your normal

tuning procedure. Discrete transactions can be used only for a subset of all

transactions, for sophisticated users with advanced application requirements.

However, where speed is the most critical factor, the performance improvements

can justify the design constraints.

How Discrete Transactions Work
During a discrete transaction, all changes made to any data are deferred until the

transaction commits. Redo information is generated, but is stored in a separate

location in memory.

When the transaction issues a commit request, the redo information is written to the

redo log file (along with other group commits) and the changes to the database

block are applied directly to the block. The block is written to the database file in the

usual manner. Control is returned to the application once the commit completes.

Oracle does not need to generate undo information because the block is not actually

modified until the transaction is committed and the redo information is stored in

the redo log buffers.

As with other transactions, the uncommitted changes of a discrete transaction are

not visible to concurrent transactions. For regular transactions, undo information is

used to re-create old versions of data for queries that require a consistent view of

the data. Because no undo information is generated for discrete transactions, a

discrete transaction that starts and completes during a long query can cause the

query to receive the "snapshot too old" error if the query requests data changed by

the discrete transaction. For this reason, you might want to avoid performing

queries that access a large subset of a table that is modified by frequent discrete

transactions.

Using Discrete Transactions

Transaction Modes 9-3

Errors During Discrete Transactions
Any errors encountered during processing of a discrete transaction cause the

predefined exception DISCRETE_TRANSACTION_FAILED to be raised. These

errors include the failure of a discrete transaction to comply with the usage notes

outlined below. (For example, calling BEGIN_DISCRETE_TRANSACTION after a

transaction has begun, or attempting to modify the same database block more than

once during a transaction, raises the exception.)

Usage Notes
The BEGIN_DISCRETE_TRANSACTION procedure must be called before the first

statement in a transaction. This call to the procedure is effective only for the

duration of the transaction (that is, once the transaction is committed or rolled back,

the next transaction is processed as a standard transaction).

Transactions that use this procedure cannot participate in distributed transactions.

Although discrete transactions cannot see their own changes, you can obtain the old

value and lock the row, using the FOR UPDATE clause of the SELECT statement,

before updating the value.

Because discrete transactions cannot see their own changes, a discrete transaction

cannot perform inserts or updates on both tables involved in a referential integrity

constraint.

For example, assume the EMP table has a FOREIGN KEY constraint on the

DEPTNO column that refers to the DEPT table. A discrete transaction cannot

attempt to add a department into the DEPT table and then add an employee

belonging to that department, because the department is not added to the table

until the transaction commits and the integrity constraint requires that the

department exist before an insert into the EMP table can occur. These two

operations must be performed in separate discrete transactions.

Because discrete transactions can change each database block only once, some

combinations of data manipulation statements on the same table are better suited

for discrete transactions than others. One INSERT statement and one UPDATE

statement used together are the least likely to affect the same block. Multiple

UPDATE statements are also unlikely to affect the same block, depending on the

size of the affected tables. Multiple INSERT statements (or INSERT statements that

use queries to specify values), however, are likely to affect the same database block.

Multiple DML operations performed on separate tables do not affect the same

database blocks, unless the tables are clustered.

Using Discrete Transactions

9-4 Oracle8i Tuning

Example
An application for checking out library books is an example of a transaction type

that uses the BEGIN_DISCRETE_TRANSACTION procedure. The following

procedure is called by the library application with the book number as the

argument. This procedure checks to see if the book is reserved before allowing it to

be checked out. If more copies of the book have been reserved than are available,

the status RES is returned to the library application, which calls another procedure

to reserve the book, if desired. Otherwise, the book is checked out and the inventory

of books available is updated.

CREATE PROCEDURE checkout (bookno IN NUMBER (10)
 status OUT VARCHAR(5))
AS
DECLARE
 tot_books NUMBER(3);
 checked_out NUMBER(3);
 res NUMBER(3);
BEGIN
 dbms_transaction.begin_discrete_transaction;
 FOR i IN 1 .. 2 LOOP
 BEGIN
 SELECT total, num_out, num_res
 INTO tot_books, checked_out, res
 FROM books
 WHERE book_num = bookno
 FOR UPDATE;
 IF res >= (tot_books - checked_out)
 THEN
 status := ’RES’;
 ELSE
 UPDATE books SET num_out = checked_out + 1
 WHERE book_num = bookno;
 status := ’AVAIL’
 ENDIF;
 COMMIT;
 EXIT;
 EXCEPTION
 WHEN dbms_transaction.discrete_transaction_failed THEN
 ROLLBACK;
 END;
 END LOOP;
END;

Using Serializable Transactions

Transaction Modes 9-5

For the above loop construct, if the DISCRETE_TRANSACTION_FAILED exception

occurs during the transaction, the transaction is rolled back, and the loop executes

the transaction again. The second iteration of the loop is not a discrete transaction,

because the ROLLBACK statement ended the transaction; the next transaction

processes as a standard transaction. This loop construct ensures that the same

transaction is attempted again in the event of a discrete transaction failure.

Using Serializable Transactions
Oracle allows application developers to set the isolation level of transactions. The

isolation level determines what changes the transaction and other transactions can

see. The ISO/ANSI SQL3 specification details the following levels of transaction

isolation.

If you wish to set the transaction isolation level, you must do so before the

transaction begins. Use the SET TRANSACTION ISOLATION LEVEL statement for

a particular transaction, or the ALTER SESSION SET ISOLATION_LEVEL

statement for all subsequent transactions in the session.

SERIALIZABLE Transactions lose no updates, provide repeatable reads,

and do not experience phantoms. Changes made to a

serializable transaction are visible only to the transaction

itself.

READ COMMITTED Transactions do not have repeatable reads, and changes

made in this transaction or other transactions are visible

to all transactions. This is the default transaction

isolation.

See Also: Oracle8i SQL Reference for more information on the

syntax of SET TRANSACTION and ALTER SESSION.

Using Serializable Transactions

9-6 Oracle8i Tuning

Managing SQL and Shared PL/SQL Areas 10-1

10
Managing SQL and Shared PL/SQL Areas

Oracle compares SQL statements and PL/SQL blocks issued directly by users and

applications as well as recursive SQL statements issued internally by a DDL

statement. If two identical statements are issued, the SQL or PL/SQL area used to

process the first instance of the statement is shared, or used for the processing of the

subsequent executions of that same statement.

Shared SQL and PL/SQL areas are shared memory areas; any Oracle process can

use a shared SQL area. The use of shared SQL areas reduces memory usage on the

database server, thereby increasing system throughput.

Shared SQL and PL/SQL areas age out of the shared pool according to a "least

recently used" (LRU) algorithm (similar to database buffers). To improve

performance and prevent reparsing, you may want to prevent large SQL or PL/SQL

areas from aging out of the shared pool.

This chapter explains the use of shared SQL to improve performance. Topics in this

chapter include:

■ Comparing SQL Statements and PL/SQL Blocks

■ Keeping Shared SQL and PL/SQL in the Shared Pool

Comparing SQL Statements and PL/SQL Blocks

10-2 Oracle8i Tuning

Comparing SQL Statements and PL/SQL Blocks
This section describes

■ Testing for Identical SQL Statements

■ Aspects of Standardized SQL Formatting

Testing for Identical SQL Statements
Oracle automatically notices when two or more applications send identical SQL

statements or PL/SQL blocks to the database. It does not have to parse a statement

to determine whether it is identical to another statement currently in the shared

pool. Oracle distinguishes identical statements using the following steps:

1. The text string of an issued statement is hashed. If the hash value is the same as

a hash value for an existing SQL statement in the shared pool, Oracle proceeds

to Step 2.

2. The text string of the issued statement, including case, blanks, and comments, is

compared to all existing SQL statements that were identified in Step 1.

3. The objects referenced in the issued statement are compared to the referenced

objects of all existing statements identified in Step 2. For example, if two users

have EMP tables, the statement

SELECT * FROM emp;

is not considered identical because the statement references different tables for

each user.

4. The bind types of bind variables used in a SQL statement must match.

Note: Most Oracle products convert the SQL before passing

statements to the database. Characters are uniformly changed to

upper case, white space is compressed, and bind variables are

renamed so that a consistent set of SQL statements is produced.

Keeping Shared SQL and PL/SQL in the Shared Pool

Managing SQL and Shared PL/SQL Areas 10-3

Aspects of Standardized SQL Formatting
It is neither necessary nor useful to have every user of an application attempt to

write SQL statements in a standardized way. It is unlikely that 300 people writing

ad hoc dynamic statements in standardized SQL will generate the same SQL

statements. The chances that they will all want to look at exactly the same columns

in exactly the same tables in exactly the same order is remote. By contrast, 300

people running the same application—executing command files—will generate the

same SQL statements.

Within an application there is a very minimal advantage to having 2 statements

almost the same, and 300 users using them; there is a major advantage to having

one statement used by 600 users.

Keeping Shared SQL and PL/SQL in the Shared Pool
This section describes two techniques of keeping shared SQL and PL/SQL in the

shared pool:

■ Reserving Space for Large Allocations

■ Preventing Objects from Aging Out

Reserving Space for Large Allocations
A problem can occur if users fill the shared pool, and then a large package ages out.

If someone should then call the large package back in, a significant amount of

maintenance is required to create space for it in the shared pool. You can avoid this

problem by reserving space for large allocations with the

SHARED_POOL_RESERVED_SIZE initialization parameter. This parameter sets

aside room in the shared pool for allocations larger than the value specified by the

SHARED_POOL_RESERVED_SIZE_MIN_ALLOC parameter.

Preventing Objects from Aging Out
The DBMS_SHARED_POOL package lets you keep objects in shared memory, so

they do not age out with the normal LRU mechanism. The DBMSPOOL.SQL and

Note: Although Oracle uses segmented codes to reduce the need

for large areas of contiguous memory, performance may improve if

you pin large objects in memory.

Keeping Shared SQL and PL/SQL in the Shared Pool

10-4 Oracle8i Tuning

PRVTPOOL.PLB procedure scripts create the package specification and package

body for DBMS_SHARED_POOL.

By using the DBMS_SHARED_POOL package and by loading the SQL and PL/SQL

areas before memory fragmentation occurs, the objects can be kept in memory; they

do not age out with the normal LRU mechanism. This procedure ensures that

memory is available and prevents sudden, inexplicable slowdowns in user response

time that occur when SQL and PL/SQL areas are accessed after aging out.

When to Use DBMS_SHARED_POOL
The procedures provided with the DBMS_SHARED_POOL package may be useful

when loading large PL/SQL objects, such as the STANDARD and DIUTIL

packages.

When large PL/SQL objects are loaded, user response time is affected because of

the large number of smaller objects that need to age out of the shared pool to make

room. This is due to memory fragmentation. In some cases, there may be

insufficient memory to load the large objects.

DBMS_SHARED_POOL is also useful for frequently executed triggers. You may

want to keep compiled triggers on frequently used tables in the shared pool.

DBMS_SHARED_POOL also supports sequences. Sequence numbers are lost when

a sequence ages out of the shared pool. DBMS_SHARED_POOL is useful for

keeping sequences in the shared pool and thus preventing the loss of sequence

numbers.

How to Use DBMS_SHARED_POOL
To use the DBMS_SHARED_POOL package to pin a SQL or PL/SQL area, complete

the following steps.

1. Decide which packages or cursors to pin in memory.

2. Start up the database.

3. Make the call to DBMS_SHARED_POOL.KEEP to pin it.

This procedure ensures that your system does not run out of the shared memory

before the object is loaded. Finally, by pinning the object early in the life of the

instance, you prevent memory fragmentation that could result from pinning a large

portion of memory in the middle of the shared pool.

The procedures provided with the DBMS_SHARED_POOL package are described

below.

Keeping Shared SQL and PL/SQL in the Shared Pool

Managing SQL and Shared PL/SQL Areas 10-5

DBMS_SHARED_POOL.SIZES
This procedure shows the objects in the shared pool that are larger than the

specified size.

 DBMS_SHARED_POOL.SIZES(MINSIZE IN NUMBER)

Input Parameter:

To display the results of this procedure, before calling this procedure issue the

following command using SQL*Plus:

 SET SERVEROUTPUT ON SIZE minsize

You can use the results of this command as arguments to the KEEP or UNKEEP

procedures.

For example, to show the objects in the shared pool that are larger than 2000

kilobytes, issue the following SQL*Plus commands:

 SET SERVEROUTPUT ON SIZE 2000
 EXECUTE DBMS_SHARED_POOL.SIZES(2000);

DBMS_SHARED_POOL.KEEP
This procedure lets you keep an object in the shared pool.

 DBMS_SHARED_POOL.KEEP(OBJECT IN VARCHAR2,
 [TYPE IN CHAR DEFAULT P])

Input Parameters:

minsize Display objects in shared pool larger than this size, where size

is measured in kilobytes.

object Either the parameter name or the cursor address of the object to be

kept in the shared pool. This is the value displayed when you call

the SIZES procedure.

type The type of the object to be kept in the shared pool. Types include:

P package

C cursor

R trigger

Q sequence

Keeping Shared SQL and PL/SQL in the Shared Pool

10-6 Oracle8i Tuning

When you pin ADT types, the type body as well as the specification is pinned in

shared memory so the LRU mechanism does not age them out. You must have

execute privilege on a type to be able to pin it in shared memory.

For example, an attempt to keep a type ’TY’ whose body does not exist results in

only keeping the type spec TY. Once you create the type body for TY, you must keep

the type again to also pin the type body for ’TY’ in shared memory.

The following example demonstrates how user ’user2’ keeps type ’TY’ in user1’s

schema pinned in shared memory. This example assumes user2 has execute

privilege on user1.TY:

 BEGIN
 SYS.DBMS_SHARED_POOL.KEEP(’user1.TY’, ’T’);
 END;

DBMS_SHARED_POOL.UNKEEP
This procedure allows an object that you have pinned in the shared pool to age out

of the shared pool.

 DBMS_SHARED_POOL.UNKEEP(OBJECT IN VARCHAR2,
 [TYPE IN CHAR DEFAULT P])

Input Parameters:

Note: The flag can be either ’T’ or ’t’.

object Either the parameter name or the cursor address of the object that

you no longer want kept in the shared pool. This is the value

displayed when you call the SIZES procedure.

type Type of the object to be aged out of the shared pool. Types include:

P package

C cursor

R trigger

Q sequence

Optimizing Data Warehouse Applications 11-1

11
Optimizing Data Warehouse Applications

This chapter introduces integrated Oracle features for tuning enterprise-scale data

warehouses. By intelligently tuning the system, the data layout, and the application,

you can build a high performance, scalable data warehouse.

Topics in this chapter include:

■ Characteristics of Data Warehouse Applications

■ Building a Data Warehouse

■ Querying a Data Warehouse

■ Tuning Data Warehouse Applications

■ Backup and Recovery of the Data Warehouse

Characteristics of Data Warehouse Applications
Data warehousing applications process a substantial amount of data by means of

many CPU- and I/O-bound, data-intensive tasks such as:

■ Loading, indexing, and summarizing tables

■ Scanning, joining, sorting, aggregating, and fetching data

The resources required to complete the tasks on many gigabytes of data

distinguishes data warehousing applications from other types of data processing.

The bulk and complexity of your data may clearly indicate that you need to deploy

multiple CPUs, investigate parallel processing, or consider specific data processing

features that are directly relevant to the tasks at hand.

For example, in a typical data warehousing application, data-intensive tasks might

involve 100 or more gigabytes of data. At a processing speed of 2GB to 30GB of data

Building a Data Warehouse

11-2 Oracle8i Tuning

per hour per CPU, a single CPU might need several hours to perform this size of a

task.

With more than a single gigabyte of data, and certainly with upwards of 10G, you

need to consider increasing the number of CPUs.

Similarly, if you need to copy 10 gigabytes of data, consider that using

Export/Import might take a single CPU several hours. By contrast, using parallel

CREATE TABLE . . . AS SELECT on 10 CPUs or more might take less than an hour.

Actual processing time depends on many factors, such as the complexity of the

queries, the processing speed to which a particular hardware configuration can be

tuned, and so on. Always run simple tests on your own system to find out its

performance characteristics with regard to particular operations.

Building a Data Warehouse
This section briefly describes features useful for building a data warehouse. It

includes:

■ Materialized Views and Dimensions

■ Parallel CREATE TABLE . . . AS SELECT

■ Parallel Index Creation

■ Fast Full Index Scan

■ Partitioned Tables

■ ANALYZE Statement

■ Parallel Load

■ Constraints

Materialized Views and Dimensions
Materialized views are stored summaries of queries containing precomputed

results. Materialized views greatly improve data warehouse query processing.

Dimensions describe the relationships among data and are required for performing

more complex types of query rewrites.

See Also: Oracle8i Concepts and Oracle8i SQL Reference.

Building a Data Warehouse

Optimizing Data Warehouse Applications 11-3

Parallel CREATE TABLE . . . AS SELECT
The ability to perform CREATE TABLE . . . AS SELECT operations in parallel

enables you to reorganize extremely large tables efficiently. You might find it

prohibitive to take a serial approach to reorganizing or reclaiming space in a table

containing tens or thousands of gigabytes of data. Using Export/Import to perform

such a task might result in an unacceptable amount of downtime. If you have a lot

of temporary space available, you can use CREATE TABLE . . . AS SELECT to

perform such tasks in parallel. With this approach, redefining integrity constraints

is optional. This feature is often used for creating summary tables, which are

precomputed results stored in the data warehouse.

Parallel Index Creation
The ability to create indexes in parallel benefits both data warehousing and OLTP

applications. On extremely large tables, rebuilding an index may take a long time.

Periodically DBAs may load a large amount of data and rebuild the index. With the

ability to create indexes in parallel, you may be able to drop an index before loading

new data, and re-create it afterwards.

Fast Full Index Scan
FAST FULL SCAN on the index is a faster alternative to a full table scan when an

existing index already contains all the columns that are needed for the query. It can

use multiblock I/O and can be parallelized just like a table scan. The hint

INDEX_FFS enforces fast full index scan.

See Also: For more information about materialized views, please

see Section VI, "Materialized Views", Oracle8i Concepts, the Oracle8i
Administrator’s Guide, and the Oracle8i Supplied Packages Reference.

See Also: "Creating and Populating Tables in Parallel" on

page 27-18 and Oracle8i Concepts.

See Also: "Creating Indexes in Parallel" on page 26-71.

See Also: "Using Fast Full Index Scans" on page 6-8 and

"INDEX_FFS" on page 7-48.

Building a Data Warehouse

11-4 Oracle8i Tuning

Partitioned Tables
You can avoid downtime with very large or mission-critical tables by using

partitions. You can divide a large table into multiple physical tables using

partitioning criteria. In a data warehouse you can manage historical data by

partitioning by date. You can then perform on a partition level all of the operations

you might normally perform on the table level, such as backup and restore. You can

add space for new data by adding a new partition, and delete old data by dropping

an existing partition. Queries that use a key range to select from a partitioned table

retrieve only the partitions that fall within that range. In this way partitions offer

significant improvements in availability, administration and table scan

performance.

ANALYZE Statement
You can use the ANALYZE statement to analyze the storage characteristics of tables,

indexes, and clusters to gather statistics which are then stored in the data dictionary.

The optimizer uses these statistics in a cost-based approach to determine the most

efficient execution plan for the SQL statements you issue. Statistics can be either

computed or estimated, depending on the amount of overhead you are willing to

allow for this purpose.

Parallel Load
When very large amounts of data must be loaded, the destination table may be

unavailable for an unacceptable amount of time. The ability to load data in parallel

can dramatically slash the amount of downtime necessary.

Note: For performance reasons, in Oracle partitioned tables

should be used rather than partition views. Please see Oracle8i
Migration for instructions on migrating from partition views to

partitioned tables.

See Also: "Partitioning Data" on page 26-45 and Oracle8i Concepts
for information about partitioned tables.

See Also: The Oracle8i Administrator’s Guide.

Querying a Data Warehouse

Optimizing Data Warehouse Applications 11-5

Constraints
Validated constraints degrade performance for DML statements, loads, and index

maintenance. However, some query optimizations depend on the presence of

validated constraints.

The fastest way to move a set of constraints from the DISABLE NOVALIDATED

state to ENABLE VALIDATED is to first ENABLE NOVALIDATE them all. Then

validate them individually. Validation still requires a long time, but you can query

and modify all tables as soon as the ENABLE NOVALIDATE is finished. A direct

load automatically re-enables constraints this way.

Data warehouses sometimes benefit from the DISABLE VALIDATE state. This state

allows the optimizer to recognize the validity of a unique or primary key, yet it does

not require an index. Inserts, updates, and deletes are disallowed on keys in the

DISABLE VALIDATE state.

Querying a Data Warehouse
This section summarizes Oracle features useful for querying a data warehouse. It

includes:

■ Oracle Parallel Server Option

■ Parallel-Aware Optimizer

■ Parallel Execution

■ Bitmap Indexes

■ Star Queries

■ Star Transformation

■ Query Rewrites

See Also: Chapter 26, "Tuning Parallel Execution", especially

"Phase Three - Creating, Populating, and Refreshing the Database"

on page 26-63 and Oracle8i Utilities for a description of SQL*Loader

conventional and direct path loads.

See Also: For more information, please refer to the chapter on

"Managing Integrity" in the Oracle8i Administrator’s Guide. The

Oracle8i SQL Reference. also contains information about the

DISABLE VALIDATE/NOVALIDATE keywords.

Querying a Data Warehouse

11-6 Oracle8i Tuning

Oracle Parallel Server Option
The Oracle Parallel Server option provides the following benefits important to both

OLTP and data warehousing applications:

■ Application failover

■ Scalable performance

■ Load balancing

■ Multi-user scalability

Oracle Parallel Server failover capability (the ability of the application to reconnect

automatically if the connection to the database is broken) results in improved

availability, a primary benefit for OLTP applications. Likewise, scalability in the

number of users that can connect to the database is a major benefit in OLTP

environments. OLTP performance on Oracle Parallel Server can scale as well, if an

application’s data is isolated onto a single server.

For data warehousing applications, scalability of performance is a primary benefit

of Oracle Parallel Server. The architecture of Oracle Parallel Server allows parallel

execution to perform excellent load balancing of work at runtime. If a node in an

Oracle Parallel Server cluster or MPP is temporarily slowed down, work that was

originally assigned to parallel execution servers on that node (but not yet

commenced by those servers) may be performed by servers on other nodes, hence

preventing that node from becoming a serious bottleneck. Even though Oracle

Parallel Server is a cornerstone of parallel execution on clusters and MPPs, in a

mostly query environment the overhead on the distributed lock manager is

minimal.

Parallel-Aware Optimizer
Knowledge about parallelism is incorporated into the Oracle cost-based optimizer.

Parallel execution considerations are thus a fundamental component in arriving at

query execution plans. In addition, you can control the trade-off of throughput for

response time in plan selection.

The optimizer chooses intelligent defaults for the degree of parallelism based on

available processors and the number of disk drives storing data the query will

access. Access path choices (such as table scans vs. index access) take into account

the degree of parallelism, resulting in plans that are optimized for parallel

See Also: Please refer to the Oracle8i Parallel Server Concepts and
Administration text.

Querying a Data Warehouse

Optimizing Data Warehouse Applications 11-7

execution. Execution plans are more scalable, and there is improved correlation

between optimizer cost and execution time for parallel execution.

The initialization parameter OPTIMIZER_PERCENT_PARALLEL defines the

weighting that the optimizer uses to minimize response time in its cost functions.

Parallel Execution
Parallel execution enables multiple processes to simultaneously process a single

query or DML statement. By dividing the task among multiple server processes,

Oracle executes the operation more quickly than if only one server process were

used.

Parallel execution dramatically improves performance for data-intensive data

warehousing operations. It helps systems scale in performance when adding

hardware resources. The greatest performance benefits are on SMP (Symmetric

Multiprocessing), clustered, or MPP (Massively Parallel Platforms) where query

processing can be effectively spread out among many CPUs on a single system.

Bitmap Indexes
Regular B*-tree indexes work best when each key or key range references only a few

records, such as employee names. Bitmap indexes, by contrast, work best when

each key references many records, such as employee gender.

Bitmap indexing provides the same functionality as regular indexes but uses a

different internal representation that makes it very fast and space efficient. Bitmap

indexing benefits data warehousing applications with large amounts of data

queried on an ad hoc basis but with a low level of concurrent transactions.

Bitmap indexes reduce the response time for many types of ad hoc queries. They

also offer considerably reduced space usage compared to other indexing techniques

and dramatic performance gains even on very low-end hardware. You can create

bitmap indexes in parallel; they are completely integrated with cost-based

optimization.

See Also: "OPTIMIZER_PERCENT_PARALLEL" on page 26-23.

See Also: Chapter 26, "Tuning Parallel Execution", Chapter 27,

"Understanding Parallel Execution Performance Issues", and

Oracle8i Concepts for more details on parallel execution.

Querying a Data Warehouse

11-8 Oracle8i Tuning

Domain Indexes
You can create an application-specific index, known as a "domain index," by using

the indextype schema object. Domain indexes are used for indexing data in

application-specific domains. A domain index is an instance of an index that is

created, managed, and accessed by routines supplied by an indextype. This is in

contrast to B*-tree indexes which are maintained by the database and are referred to

as "indexes".

Star Queries
One type of data warehouse design is known as a "star" schema. This typically

consists of one or more very large "fact" tables and a number of much smaller

"dimension" or reference tables. A star query is one that joins several of the

dimension tables, usually by predicates in the query, to one of the fact tables.

Oracle cost-based optimization recognizes star queries and generates efficient

execution plans for them; indeed, you must use cost-based optimization to get

efficient star query execution. To enable cost-based optimization, ANALYZE your

tables and make sure not to set the OPTIMIZER_MODE parameter to RULE.

Star Transformation
Star transformation is a cost-based transformation designed to execute star queries

efficiently. Whereas star optimization works well for schemas with a small number

of dimensions and dense fact tables, star transformation works well for schemas

with a large number of dimensions and sparse fact tables.

Star transformation is enabled by setting the initialization parameter

STAR_TRANSFORMATION_ENABLED to TRUE. You can use the

STAR_TRANSFORMATION hint to make the optimizer use the best plan in which

the transformation has been used.

See Also: "Using Domain Indexes" on page 6-23.

See Also: Oracle8i Concepts regarding optimization of star queries

and "STAR" for information about the STAR hint.

See Also: For more information, the discussion under the

heading "STAR_TRANSFORMATION" on page 7-66 explains how

to use this hint. Also refer to Oracle8i Concepts for a full discussion

of star transformation. Oracle8i Reference describes the

STAR_TRANSFORMATION_ENABLED initialization parameter.

Backup and Recovery of the Data Warehouse

Optimizing Data Warehouse Applications 11-9

Query Rewrites
If you have defined materialized views, Oracle can transparently rewrite queries to

use summary tables rather than detail tables.

Tuning Data Warehouse Applications
Tuning data warehouse applications involves both serial and parallel SQL

statement tuning.

Shared SQL is not recommended with data warehousing applications. Use literal

values in these SQL statements, rather than bind variables. If you use bind

variables, the optimizer will make a blanket assumption about the selectivity of the

column. If you specify a literal value, by contrast, the optimizer can use value

histograms and so provide a better access plan.

Backup and Recovery of the Data Warehouse
Recoverability has various levels: recovery from disk failure, human error, software

failure, fire, and so on, requires different procedures. Oracle provides only part of

the solution. Organizations must decide how much to spend on backup and

recovery by considering the business cost of a long outage.

The NOLOGGING option enables you to perform certain operations without the

overhead of generating a log. Even without logging, you can avoid disk failure if

you use disk mirroring or RAID technology. If you load your warehouse from tapes

every day or week, you might satisfactorily recover from all failures simply by

saving copies of the tape in several remote locations and reloading from tape when

something goes wrong.

At the other end of the spectrum, you could both mirror disks and take backups

and archive logs, and maintain a remote standby system. The mirrored disks

prevent loss of availability for disk failure, and also protect against total loss in the

event of human error (such as dropping the wrong table) or software error (such as

disk block corruption). In the event of fire, power failure, or other problems at the

primary site, the backup site prevents long outages.

See Also: Chapter 10, "Managing SQL and Shared PL/SQL

Areas".

See Also: For more information on recovery and the

NOLOGGING option, see "[NO]LOGGING Option" on page 26-76,

the Oracle8i Administrator’s Guide and Oracle8i SQL Reference.

Backup and Recovery of the Data Warehouse

11-10 Oracle8i Tuning

Tuning Fast-start Parallel Recovery
Fast-start Parallel Recovery improves recovery throughput and decreases the time

required to apply rollback segments by using multiple, concurrent processes. The

initialization parameter FAST_START_PARALLEL_ROLLBACK determines the

upper limit for the degree of parallel recovery used.

Fast-start Parallel Recovery automatically starts enough recovery processes to have

at least one process for each unrecovered rollback segment. When possible, this

feature assigns multiple processes to roll back a single transaction. However, the

number of active recovery processes never exceeds the upper limit set by the value

for FAST_START_PARALLEL_ROLLBACK.

When to Use Fast-start Parallel Recovery
Typically, DSS environments are more likely to have large transactions than OLTP

environments. Therefore, Fast-start Parallel Recovery is more often applicable to

DSS systems.

For any instance, determine how aggressively to deploy Fast-start Parallel Recovery

by monitoring your transaction recovery progress. Do this by examining the

contents of two recovery-related V$ views as explained later in this section.

Determining Adequate Parallelism for Fast-start Parallel Recovery
The default setting of 20 for FAST_START_PARALLEL_ROLLBACK is adequate for

most systems. However, you can more accurately tune this parameter using

information in the V$FAST_START_SERVERS and

V$FAST_START_TRANSACTIONS views as described under the following

headings. Also consider your overall recovery processing goals.

V$FAST_START_SERVERS View
This view provides data about the progress of server processes performing

Fast-start Parallel Recovery. Enable Fast-start Parallel Recovery by setting

FAST_START_PARALLEL_ROLLBACK to a value of 1 or greater. When enabled,

SMON recovers transactions serially and V$FAST_START_SERVERS has only one

row.

When you enable Fast-start Parallel Recovery, the total number of rows in this view

is one more than the number of active recovery processes. The additional process is

SMON. The value for PARALLEL_TRANSACTION_RECOVERY_DEGREE limits

the number of rows in this view. Each row in the view corresponds to a recovery

process. The V$FAST_START_SERVERS columns and their definitions are:

Backup and Recovery of the Data Warehouse

Optimizing Data Warehouse Applications 11-11

V$FAST_START_TRANSACTIONS View
This view provides information about recovery progress for each rollback

transaction. This view has one row for each rollback transaction. The

V$FAST_START_TRANSACTIONS columns and their definitions are:

Oracle updates both tables continuously during Fast-start Parallel Recovery.

Determining a Degree of Parallelism for Fast-start Parallel Recovery
Tune the parameter FAST_START_PARALLEL_ROLLBACK to balance the

performance of recovery and system resource use. Heavy Fast-start Parallel

Recovery processing can degrade response times of unrelated database operations

due to CPU and disk use. If you need to adjust the processing of Fast-start Parallel

Recovery, change the value for FAST_START_PARALLEL_ROLLBACK at any time,

even while the server is running. When you change this value during recovery,

SMON restarts recovery with the new degree of parallelism.

Change the value of FAST_START_PARALLEL_ROLLBACK to HIGH when you

have more recovery work to do. Set it to FALSE when you do not want parallel

State The value of state is either "IDLE" or "RECOVERING".

Undoblocksdone The percentage of the assigned work completed by the server.

PID The oracle PID.

Rollback segment

number

The undo segment number of the transaction.

Slot The slot the transaction occupies within the rollback segment.

Wrap The incarnation number of the slot.

State The state of the transaction may be one of "TO BE

RECOVERED", "RECOVERING", or "RECOVERED".

Work_done The percentage of recovery completed on this transaction.

Oracle PID The ID of the current server process that recovery of this

transaction has been assigned to.

Time elapsed The amount of time in seconds that has elapsed since recovery

on the transaction began.

Parent xid The transaction ID of the parent transaction. Valid only for

PDML transactions.

Backup and Recovery of the Data Warehouse

11-12 Oracle8i Tuning

recovery to occupy the CPU. The CPU_COUNT parameter is correctly set because

Oracle spawns 2 or 4 times the number of recovery servers.

Part III
 Application Design Tools for Designers

and DBAs

Part III discusses how to tune your database and the various methods you use to

access data for optimal database performance. The chapters in Part 3 are:

■ Chapter 12, "Overview of Diagnostic Tools"

■ Chapter 13, "Using EXPLAIN PLAN"

■ Chapter 14, "The SQL Trace Facility and TKPROF"

■ Chapter 15, "Using Oracle Trace"

■ Chapter 16, "Dynamic Performance Views"

Overview of Diagnostic Tools 12-1

12
Overview of Diagnostic Tools

This chapter introduces the full range of diagnostic tools for monitoring production

systems and determining performance problems.

Topics in this chapter include:

■ Sources of Data for Tuning

■ Dynamic Performance Views

■ Oracle and SNMP Support

■ EXPLAIN PLAN

■ Oracle Trace and Oracle Trace Data Viewer

■ The SQL Trace Facility and TKPROF

■ Supported Scripts

■ Application Registration

■ Oracle Enterprise Manager, Packs, and Applications

■ Oracle Parallel Server Management

■ Tools You May Have Developed

Sources of Data for Tuning
This section describes the various sources of data for tuning. Many of these sources

may be transient. They include:

■ Data Volumes

■ Online Data Dictionary

Sources of Data for Tuning

12-2 Oracle8i Tuning

■ Operating System Tools

■ Dynamic Performance Tables

■ Oracle Trace and Oracle Trace Data Viewer

■ SQL Trace Facility

■ Alert Log

■ Application Program Output

■ Users

■ Initialization Parameter Files

■ Program Text

■ Design (Analysis) Dictionary

■ Comparative Data

Data Volumes
The tuning data source most often overlooked is the data itself. The data may

contain information about how many transactions were performed and at what

time. The number of rows added to an audit table, for example, can be the best

measure of the amount of useful work done; this is known as "the throughput".

Where such rows contain a timestamp, you can query the table and use a graphics

package to plot throughput against dates and times. D ate- and time-stamps need

not be apparent to the rest of the application.

If your application does not contain an audit table, be cautious about adding one as

it could hinder performance. Consider the trade-off between the value of obtaining

the information and the performance cost of doing so.

Online Data Dictionary
The Oracle online data dictionary is a rich source of tuning data when used with the

SQL statement ANALYZE. This statement stores cluster, table, column, and index

statistics within the dictionary, primarily for use by the cost-based optimizer. The

dictionary also defines the indexes available to help (or possibly hinder)

performance.

Sources of Data for Tuning

Overview of Diagnostic Tools 12-3

Operating System Tools
Tools that gather data at the operating system level are primarily useful for

determining scalability, but you should also consult them at an early stage in any

tuning activity. In this way you can ensure that no part of the hardware platform is

saturated. Network monitors are also required in distributed systems, primarily to

check that no network resource is overcommitted. In addition, you can use a simple

mechanism such as the UNIX ping command to establish message turnaround time.

Dynamic Performance Tables
A number of V$ dynamic performance views are available to help you tune your

system and investigate performance problems. They allow you access to memory

structures within the SGA.

Oracle Trace and Oracle Trace Data Viewer
Oracle Trace collects Oracle server event activity that includes all SQL and Wait

events for specific database users. You can use this information to tune your

databases and applications.

SQL Trace Facility
SQL trace files record SQL statements issued by a connected process and the

resources used by these statements. In general, use V$ views to tune the instance

and use SQL trace file output to tune the applications.

Alert Log
Whenever something unexpected happens in an Oracle environment, check the

alert log to see if there is an entry at or around the time of the event.

See Also: Your operating system documentation for more

information on platform-specific tools.

See Also: Chapter 16, "Dynamic Performance Views" and Oracle8i
Concepts provides detailed information about each view.

See Also: Oracle Trace and Wait events are described in more

detail in Chapter 15, "Using Oracle Trace".

See Also: Chapter 14, "The SQL Trace Facility and TKPROF".

Sources of Data for Tuning

12-4 Oracle8i Tuning

Application Program Output
In some projects, all application processes (client-side) are instructed to record their

own resource consumption to an audit trail. Where database calls are being made

through a library, the response time of the client/server mechanism can be

inexpensively recorded at the per-call level using an audit trail mechanism. Even

without these levels of sophistication, which are not expensive to build or to run,

simply preserving resource usages reported by a batch queue manager provides an

excellent source of tuning data.

Users
Users normally provide a stream of information as they encounter performance

problems.

Initialization Parameter Files
It is vital to have accurate data on exactly what the system was instructed to do and

how it was to go about doing it. Some of this data is available from the Oracle

parameter files.

Program Text
Data on what the application was to do is also available from the code of the

programs or procedures where both the program logic and the SQL statements

reside. Server-side code, such as stored procedures, constraints, and triggers, is in

this context part of the same data population as client-side code. Tuners must

frequently work in situations where the program source code is not available, either

as a result of a temporary problem or because the application is a package for which

the source code is not released. In such cases it is still important for the tuner to

acquire program-to-object cross-reference information. For this reason executable

code is a legitimate data source. Fortunately, SQL is held in text even in executable

programs.

Design (Analysis) Dictionary
You can also use the design or analysis dictionary to track intended actions and

resource use of the application. Only where the application has been entirely

produced by code generators, however, can the design dictionary provide data that

would otherwise have to be extracted from programs and procedures.

Oracle and SNMP Support

Overview of Diagnostic Tools 12-5

Comparative Data
Comparative data is invaluable in most tuning situations. Tuning is often conducted

from a cold start at each site; the tuners arrive with whatever expertise and

experience they may have, plus a few tools for extracting the data. Experienced

tuners may recognize similarities in particular situations and attempt to apply a

solution that worked elsewhere. Normally, such diagnoses are purely subjective.

Tuning is easier if baselines exist, such as capacity studies performed for this

application or data from this or another site running the same application with

acceptable performance. The task is then to modify the problematic environment to

more closely resemble the optimized environments.

If no directly relevant data can be found, you can check data from similar platforms

and similar applications to see if they have the same performance profile. There is

no point in trying to tune out a particular effect if it turns out to be ubiquitous!

Dynamic Performance Views
A primary Oracle performance monitoring tool is the dynamic performance views

Oracle provides to monitor your system. These views’ names begin with "V$". This

text demonstrates their use in performance tuning. The database user SYS owns

these views, and administrators can grant any database user access to them.

However, only some of these views are relevant to tuning your system.

Oracle and SNMP Support
Simple Network Management Protocol (SNMP) enables users to write tools and

applications. SNMP is acknowledged as the standard, open protocol for

heterogeneous management applications. Oracle SNMP support enables Oracle

databases to be discovered on the network and to be identified and monitored by

SNMP-based management applications. Oracle supports several database

management information bases (MIBs): the standard MIB for any database

management system (independent of vendor), and Oracle-specific MIBs that

contain Oracle-specific information. Some statistics mentioned in this manual are

supported by these MIBs, and others are not. If you can obtain a statistic mentioned

through SNMP, this fact is noted.

See Also: Chapter 16, "Dynamic Performance Views" and Oracle8i
Concepts provides detailed information about each view.

See Also: The Oracle SNMP Support Reference Guide.

EXPLAIN PLAN

12-6 Oracle8i Tuning

EXPLAIN PLAN
EXPLAIN PLAN is a SQL statement listing the access path used by the query

optimizer. Each plan output from the EXPLAIN PLAN command has a row that

provides the statement type.

You should interpret EXPLAIN PLAN results with some discretion. Just because a

plan does not seem efficient does not necessarily mean the statement runs slowly.

Choose statements for tuning based on their actual resource consumption, not on a

subjective view of their execution plans.

Oracle Trace and Oracle Trace Data Viewer
Oracle Trace collects significant Oracle server event data such as all SQL events and

Wait events. SQL events include a complete breakdown of SQL statement activity,

such as the parse, execute, and fetch operations. Data collected for server events

includes resource usage metrics such as I/O and CPU consumed by a specific event.

Identifying resource-intensive SQL statements is easy with Oracle Trace. The Oracle

Trace Data Viewer summarizes Oracle Trace data, including SQL statement metrics

such as: average elapsed time, CPU consumption, and disk reads per rows

processed.

Oracle Trace collections can be administered through Oracle Trace Manager. Oracle

Trace Data Viewer and Oracle Trace Manager are available with the Oracle

Diagnostics Pack.

The SQL Trace Facility and TKPROF
The SQL trace facility can be enabled for any session. It records in an operating

system text file the resource consumption of every parse, execute, fetch, commit, or

rollback request made to the server by the session.

TKPROF summarizes the trace files produced by the SQL trace facility, optionally

including the EXPLAIN PLAN output. TKPROF reports each statement executed

with the resources it has consumed, the number of times it was called, and the

number of rows it processed. It is thus quite easy to locate individual statements

that are using the greatest amount of resources. With experience or with baselines

available, you can gauge whether the resources used are reasonable.

See Also: Chapter 13, "Using EXPLAIN PLAN" and the Oracle8i
SQL Reference.

See Also: Chapter 15, "Using Oracle Trace".

Oracle Enterprise Manager, Packs, and Applications

Overview of Diagnostic Tools 12-7

Supported Scripts
Oracle provides many PL/SQL packages, thus a good number of SQL*Plus scripts

supporting instance tuning are available. Examples include UTLBSTAT.SQL and

UTLESTAT; SQLUTLCHAIN.SQL, UTLDTREE.SQL, and UTLLOCKT.SQL.

These statistical scripts support instance management, allowing you to develop

performance history. You can use them to:

■ Remove the need to issue DDL each time statistics are gathered.

■ Separate data gathering from reporting and allow a range of observations to be

taken at intervals during a period of representative system operation, and then

to allow the statistics to be reported from any start point to any end point.

■ Report a number of indicative ratios that you can use to determine whether the

instance is adequately tuned.

■ Present LRU statistics from the buffer cache in a usable form.

Application Registration
You can register the name of an application with the database and actions

performed by that application. Registering the application allows system

administrators and tuners to track performance by module. System administrators

can also use this information to track resource usage by module. When an

application registers with the database, its name and actions are recorded in the

V$SESSION and V$SQLAREA views.

In addition, Oracle Trace can collect application registration data.

Oracle Enterprise Manager, Packs, and Applications
This section describes Oracle Enterprise Manager, its packs, and several of its most

useful diagnostic and tuning applications. It covers:

■ Introduction to Oracle Enterprise Manager

■ Oracle Diagnostics Pack

■ Oracle Capacity Planner

See Also: The Oracle Trace User’s Guide, the Oracle Trace Developer’s
Guide for additional information, and Chapter 5, "Registering

Applications".

Oracle Enterprise Manager, Packs, and Applications

12-8 Oracle8i Tuning

■ Oracle Performance Manager

■ Oracle Advanced Event Tests

■ Oracle Trace

■ Oracle Tuning Pack

■ Oracle Expert

■ Oracle Index Tuning Wizard

■ Oracle SQL Analyze

■ Oracle Auto-Analyze

■ Oracle Tablespace Manager

Introduction to Oracle Enterprise Manager
Oracle is addressing the need for a sophisticated, database, systems-management

environment with the Oracle Enterprise Manager platform. This tool provides

comprehensive management for Oracle environments.

You can use Oracle Enterprise Manager to manage the wide range of Oracle

implementations: departmental to enterprise, replication configurations, web

servers, media servers, and so forth. Oracle Enterprise Manager includes:

■ A centralized console from which you can run administrative tasks and

applications.

■ Support to run the Oracle Enterprise Manager console and database

administration applications from within a web browser.

■ A lightweight, 3-tier architecture offering unparalleled scalability and failover

capability, assuring constant availability of critical management services.

■ A centralized repository storing management data for any given environment.

Oracle Enterprise Manager supports teams of administrators responsible for

cooperatively managing distributed systems.

■ Common services for event management, service discovery, and job creation

and control.

■ Server-side, intelligent agent for remote monitoring of events, running jobs, and

communicating with the management console.

■ Low overhead framework for collecting and managing real-time and historical

performance data.

Oracle Enterprise Manager, Packs, and Applications

Overview of Diagnostic Tools 12-9

■ Applications for administering Oracle databases for security, storage, backup,

recovery, import, and software distribution.

■ Layered applications for managing replication, Oracle Parallel Server, and other

Oracle server configurations.

■ Optional products for monitoring, diagnosing, and planning, known as Oracle

Diagnostics Pack.

■ Optional products for tuning applications, databases, and systems, known as

Oracle Tuning Pack.

■ Optional products for managing Oracle metadata changes, known as Oracle

Change Management Pack.

The Oracle Enterprise Manager packs provide a set of windows-based and

java-based applications built on the Oracle Enterprise Manager systems

management technology. Due to the nature of this manual, the Oracle Change

Management Pack will not be presented.

Oracle Diagnostics Pack
The Oracle Diagnostics Pack monitors, diagnoses, and maintains the health of

databases, operating systems, and applications. Both historical and real-time

analysis are used to automatically avoid problems before they occur. The pack

provides powerful capacity planning features enabling users to easily plan and

track future system resource requirements.

Oracle Diagnostics Pack components include: Oracle Capacity Planner, Oracle

Performance Manager, Oracle Advanced Event Tests, and Oracle Trace. The

following sections describe each component.

Oracle Capacity Planner
Use the Oracle Capacity Planner to collect and analyze historical performance data

for your Oracle database and operating system. Oracle Capacity Planner allows you

to specify the performance data you want to collect, collection intervals, load

schedules, and data management policies. You can also use Oracle Capacity

Planner's in-depth analyses and reports to explore the collected data, to format it

into easy-to-use graphs and reports, and to analyze it to predict future resource

needs.

Oracle Enterprise Manager, Packs, and Applications

12-10 Oracle8i Tuning

Oracle Performance Manager
Oracle Performance Manager captures, computes, and presents performance data

for your database and operating system, allowing you to monitor key metrics

required to effectively use memory, minimize disk I/O, and to avoid resource

contention. It provides a graphical, real-time view of the performance metrics and

lets you drill down into a monitoring view for quick access to detailed data for

performance problem solving. The performance data is captured and displayed in

real-time mode. You can also record the data for replay.

Oracle Performance Manager includes a large set of predefined charts. You can also

create your own charts. The graphical monitor is customizable and extensible. You

can display monitored information in a variety of two- or three-dimensional

graphical views, such as tables, line, bar, cube, and pie charts. You can also

customize the monitoring rate.

In addition, Oracle Performance Manager provides a focused view of database

activity by database session. The Top Sessions chart extracts and analyzes sample

dynamic Oracle performance data by session, automatically determining the top

Oracle users based on a specific selection criteria, such as memory consumption,

CPU usage, or file I/O activity.

Also, the Database Locks chart within Oracle Performance Manager displays

database locks, including details such as the locking user, lock type, object locked,

and mode held and requested.

Oracle Advanced Event Tests
Oracle Diagnostics Pack includes Oracle Advanced Event Tests. This is a set of

agent-monitored host and database events running on the Oracle Event

Management System. You can launch advanced event tests from the console to

automatically detect problems on managed servers. Oracle Advanced Event Tests

includes predefined events for monitoring database services and system events

affecting database performance.

For example, performance-monitoring events include I/O monitoring,

memory-structure performance, and user program-response time. I/O monitoring

covers disk I/O rates and SQL*Net I/O rates. The tool even allows you to specify

an I/O rate threshold; you will receive a warning when this threshold is exceeded.

Memory-structure performance monitoring covers hit rates for the library cache,

data dictionary, and database buffers. In addition, you also have the flexibility of

monitoring any statistic captured by the dynamic performance table, V$SYSSTAT.

Oracle Enterprise Manager, Packs, and Applications

Overview of Diagnostic Tools 12-11

You can use Oracle Advanced Event Tests to monitor the status and performance of

Oracle storage structures and to detect problems with excessive CPU utilization,

excessive CPU load or paging, and disk capacity problems.

In addition to alerting an administrator, Oracle Advanced Event Tests also can be

configured to automatically correct the problem event. Using a "Fixit Job", a

predetermined action will automatically occur when an event-alert level is reached.

Oracle Tuning Pack
Oracle Tuning Pack optimizes system performance by identifying and tuning major

database and application bottlenecks such as inefficient SQL, poor data structures,

and improper use of system resources. The pack proactively discovers tuning

opportunities and automatically generates the analysis and required changes to

tune the system. Inherent in the product are powerful teaching tools that train

DBAs how to tune as they work.

Oracle Expert
Oracle Expert provides automated database performance tuning. Performance

problems detected by Oracle Diagnostics Pack and other Oracle monitoring

applications can be analyzed and solved with Oracle Expert. Oracle Expert

automates the process of collecting and analyzing data and contains a rules-based

inference engine that provides "expert" database tuning recommendations,

implementation scripts, and reports.

Oracle SQL Analyze
Oracle SQL Analyze identifies and helps you tune problematic SQL statements. Use

SQL Analyze to detect resource-intensive SQL statements, examine a SQL

statement’s execution plan, benchmark and compare various optimizer modes and

versions of the statement, and to generate alternative SQL to improve application

performance.

Oracle Tablespace Manager
You can use Oracle Tablespace Manager to identify and correct Oracle space

management problems. Oracle Tablespace Manager has three major features: a

Tablespace Allocation graphic, a Tablespace Reorganization tool, and a Tablespace

Analyzer tool.

The Tablespace Allocation graphic on the Segments and Extents Information page

provides a complete picture of the characteristics of all tablespaces associated with a

Oracle Parallel Server Management

12-12 Oracle8i Tuning

particular Oracle instance, including: tablespace datafiles and segments, total data

blocks, free data blocks, and percentage of free blocks available in the tablespace’s

current storage allocation.

Use the Reorganization tool to rebuild specific objects or an entire tablespace for

improved space usage and increased performance. Use the Analyzer tool to

automatically keep database statistics up-to-date.

Oracle Index Tuning Wizard
The Oracle Index Tuning Wizard automatically identifies tables that would benefit

from index changes, determines the best index strategy for each table, presents its

findings for verification, and allows you to implement its recommendations.

Oracle Auto-Analyze
Use Oracle Auto-Analyze to maintain your Oracle database statistics. Auto-Analyze

runs during a user-specified database maintenance period, thereby reducing

adverse performance effects of updating stale statistics. During this maintenance

period, Auto-Analyze checks specific schemas for objects that require updating. It

also prioritizes the order of objects that require updating and updates the statistics.

If the statistics update does not complete during the maintenance period,

Auto-Analyze maintains the state of the update operation and resumes updating

during the next maintenance period.

Oracle Parallel Server Management
Oracle Parallel Server Management (OPSM) is a comprehensive and integrated

system management solution for the Oracle Parallel Server. Use OPSM to manage

multi-instance databases running in heterogeneous environments through an open

client-server architecture.

In addition to managing parallel databases, you can use OPSM to schedule jobs,

perform event management, monitor performance, and obtain statistics to tune

parallel databases.

For more information about OPSM, please refer to the Oracle Parallel Server
Management Configuration Guide for UNIX and the Oracle Parallel Server Management
User's Guide. For installation instructions, refer to your platform-specific installation

guide.

Tools You May Have Developed

Overview of Diagnostic Tools 12-13

Tools You May Have Developed
At some sites, DBAs have designed in-house performance tools. Such tools might

include:

■ Free space monitors to determine whether tables have enough space to extend

■ Lock monitoring tools

■ Schema description scripts to show tables and their associated indexes

■ Tools to show default and temporary tablespaces per user

You can integrate such programs with Oracle by setting them to run automatically.

Tools You May Have Developed

12-14 Oracle8i Tuning

Using EXPLAIN PLAN 13-1

13
Using EXPLAIN PLAN

This chapter introduces execution plans, the SQL statement EXPLAIN PLAN, and

describes how to interpret its output. This chapter also explains plan stability

features and the use of stored outlines to preserve your tuning investment for

particular SQL statements. This chapter also provides procedures for managing

outlines to control application performance characteristics. This chapter covers the

following topics:

■ Introduction to EXPLAIN PLAN

■ Creating the Output Table

■ Displaying PLAN_TABLE Output

■ Output Table Columns

■ Formatting EXPLAIN PLAN Output

■ EXPLAIN PLAN Restrictions

Introduction to EXPLAIN PLAN
The EXPLAIN PLAN statement displays execution plans chosen by the Oracle

optimizer for SELECT, UPDATE, INSERT, and DELETE statements. A statement’s

execution plan is the sequence of operations Oracle performs to execute the

statement. The components of execution plans include:

■ An ordering of the tables referenced by the statement

■ An access method for each table mentioned in the statement

■ A join method for tables affected by join operations in the statement

See Also: For the syntax of EXPLAIN PLAN, see the Oracle8i SQL
Reference.

Creating the Output Table

13-2 Oracle8i Tuning

EXPLAIN PLAN output shows how Oracle executes SQL statements. EXPLAIN

PLAN results alone, however, cannot differentiate between well-tuned statements

and those that perform poorly. For example, if EXPLAIN PLAN output shows that a

statement uses an index, this does not mean the statement runs efficiently.

Sometimes using indexes can be extremely inefficient. It is thus best to use

EXPLAIN PLAN to determine an access plan and later prove it is the optimal plan

through testing.

When evaluating a plan, always examine the statement’s actual resource

consumption. For best results, use the Oracle Trace or SQL trace facility and

TKPROF to examine individual SQL statement performance.

Creating the Output Table
Before issuing an EXPLAIN PLAN statement, create a table to hold its output. Use

one of the following approaches:

■ Run the SQL script UTLXPLAN.SQL to create a sample output table called

PLAN_TABLE in your schema. The exact name and location of this script

depends on your operating system. PLAN_TABLE is the default table into

which the EXPLAIN PLAN statement inserts rows describing execution plans.

■ Issue a CREATE TABLE statement to create an output table with any name you

choose. When you issue an EXPLAIN PLAN statement you can direct its output

to this table.

Any table used to store the output of the EXPLAIN PLAN statement must have the

same column names and datatypes as the PLAN_TABLE:

 CREATE TABLE plan_table
 (statement_id VARCHAR2(30),
 timestamp DATE,
 remarks VARCHAR2(80),
 operation VARCHAR2(30),
 options VARCHAR2(30),
 object_node VARCHAR2(128),
 object_owner VARCHAR2(30),
 object_name VARCHAR2(30),
 object_instance NUMERIC,
 object_type VARCHAR2(30),
 optimizer VARCHAR2(255),
 search_columns NUMERIC,

See Also: Chapter 14, "The SQL Trace Facility and TKPROF" and

Chapter 15, "Using Oracle Trace".

Output Table Columns

Using EXPLAIN PLAN 13-3

 id NUMERIC,
 parent_id NUMERIC,
 position NUMERIC,
 cost NUMERIC,
 cardinality NUMERIC,
 bytes NUMERIC,
 other_tag VARCHAR2(255)
 other LONG);

Displaying PLAN_TABLE Output
Display the most recent plan table output using the scripts:

■ UTLPLS.SQL - To show plan table output for serial processing.

■ UTLXPLP.SQL - To show plan table output with parallel execution columns.

The row source count values in EXPLAIN PLAN output identify the number of

rows processed by each step in the plan. This helps you identify inefficiencies in the

query, for example, the row source with an access plan that is performing inefficient

operations.

Output Table Columns
The PLAN_TABLE used by the EXPLAIN PLAN statement contains the following

columns:

See Also: "Selecting PLAN_TABLE Output in Nested Format" on

page 13-27.

Table 13–1 PLAN_TABLE Columns

Column Description

STATEMENT_ID The value of the optional STATEMENT_ID parameter
specified in the EXPLAIN PLAN statement.

TIMESTAMP The date and time when the EXPLAIN PLAN statement
was issued.

REMARKS Any comment (of up to 80 bytes) you wish to associate
with each step of the explained plan. If you need to add
or change a remark on any row of the PLAN_TABLE,
use the UPDATE statement to modify the rows of the
PLAN_TABLE.

Output Table Columns

13-4 Oracle8i Tuning

OPERATION The name of the internal operation performed in this
step. In the first row generated for a statement, the
column contains one of the following values:

DELETE STATEMENT

INSERT STATEMENT

SELECT STATEMENT

UPDATE STATEMENT

See Table 13–4 for more information on values for this
column.

OPTIONS A variation on the operation described in the
OPERATION column.

See Table 13–4 for more information on values for this
column.

OBJECT_NODE The name of the database link used to reference the
object (a table name or view name). For local queries
using parallel execution, this column describes the order
in which output from operations is consumed.

OBJECT_OWNER The name of the user who owns the schema containing
the table or index.

OBJECT_NAME The name of the table or index.

OBJECT_INSTANCE A number corresponding to the ordinal position of the
object as it appears in the original statement. The
numbering proceeds from left to right, outer to inner
with respect to the original statement text. View
expansion will result in unpredictable numbers.

OBJECT_TYPE A modifier that provides descriptive information about
the object; for example, NON-UNIQUE for indexes.

OPTIMIZER The current mode of the optimizer.

SEARCH_COLUMNS Not currently used.

ID A number assigned to each step in the execution plan.

PARENT_ID The ID of the next execution step that operates on the
output of the ID step.

Table 13–1 PLAN_TABLE Columns

Output Table Columns

Using EXPLAIN PLAN 13-5

POSITION The order of processing for steps that all have the same
PARENT_ID.

OTHER Other information that is specific to the execution step
that a user may find useful.

OTHER_TAG Describes the contents of the OTHER column. See
Table 13–2 for more information on the possible values
for this column.

DISTRIBUTION Stores the method used to distribute rows from
"producer" query servers to "consumer" query servers.
For more information about consumer and producer
query servers, please see Oracle8i Concepts.

Pstart The start partition of a range of accessed partitions. It
can take one of the following values:

n indicates that the start partition has been identified by
the SQL compiler and its partition number is given by n.

KEY indicates that the start partition will be identified at
execution time from partitioning key values.

ROW LOCATION indicates that the start partition
(same as the stop partition) will be computed at
execution time from the location of each record being
retrieved. The record location is obtained by a user or
from a global index.

INVALID indicates that the range of accessed partitions
is empty.

Table 13–1 PLAN_TABLE Columns

Output Table Columns

13-6 Oracle8i Tuning

Pstop The stop partition of a range of accessed partitions. It
can take one of the following values:

n indicates that the stop partition has been identified by
the SQL compiler and its partition number is given by n.

KEY indicates that the stop partition will be identified at
execution time from partitioning key values.

ROW LOCATION indicates that the stop partition (same
as the start partition) will be computed at execution time
from the location of each record being retrieved. The
record location is obtained by a user or from a global
index.

INVALID indicates that the range of accessed partitions
is empty.

PID The step that has computed the pair of values of the
Pstart and Pstop columns.

COST The cost of the operation as estimated by the optimizer’s
cost-based approach. For statements that use the
rule-based approach, this column is null. Cost is not
determined for table access operations. The value of this
column does not have any particular unit of
measurement, it is merely a weighted value used to
compare costs of execution plans.

CARDINALITY The estimate by the cost-based approach of the number
of rows accessed by the operation.

BYTES The estimate by the cost-based approach of the number
of bytes accessed by the operation.

Table 13–1 PLAN_TABLE Columns

Output Table Columns

Using EXPLAIN PLAN 13-7

Table 13–2 describes the values that may appear in the OTHER_TAG column.

Table 13–2 Values of OTHER_TAG Column of the PLAN_TABLE

OTHER_TAG Text (examples) Meaning Interpretation

blank Serial execution.

serial_from_remote

 (S -> R)

Serial from remote Serial execution at a remote site.

serial_to_parallel

 (S -> P)

Serial to parallel Serial execution; output of step is
partitioned or broadcast to parallel
execution servers.

parallel_to_parallel

 (P - > P)

Parallel to parallel Parallel execution; output of step is
repartitioned to second set of parallel
execution servers.

parallel_to_serial

 (P -> S)

Parallel to serial Parallel execution; output of step is returned
to serial "query coordinator" process.

 parallel_combined_with_parent

(PwP)

Parallel combined
with parent

Parallel execution; output of step goes to
next step in same parallel process. No
interprocess communication to parent.

parallel_combined_with_child

(PwC)

Parallel combined
with child

Parallel execution; input of step comes from
prior step in same parallel process. No
interprocess communication from child.

Output Table Columns

13-8 Oracle8i Tuning

Table 13–3 describes the values that can appear in the DISTRIBUTION column:

Table 13–3 Values of DISTRIBUTION Column of the PLAN_TABLE

DISTRIBUTION Text Interpretation

PARTITION

(ROWID)

Maps rows to query servers based on the partitioning of a

table/index using the rowid of the row to

UPDATE/DELETE.

PARTITION (KEY) Maps rows to query servers based on the partitioning of a

table/index using a set of columns. Used for partial

partition-wise join, PARALLEL INSERT, CREATE TABLE

AS SELECT of a partitioned table, and CREATE

PARTITIONED GLOBAL INDEX.

HASH Maps rows to query servers using a hash function on the

join key. Used for PARALLEL JOIN or PARALLEL GROUP

BY.

RANGE Maps rows to query servers using ranges of the sort key.

Used when the statement contains an ORDER BY clause.

ROUND-ROBIN Randomly maps rows to query servers.

BROADCAST Broadcasts the rows of the entire table to each query server.

Used for a parallel join when one table is very small

compared to the other.

QC (ORDER) The query coordinator consumes the input in order, from

the first to the last query server. Used when the statement

contains an ORDER BY clause.

QC (RANDOM) The query coordinator consumes the input randomly. Used

when the statement does not have an ORDER BY clause.

Output Table Columns

Using EXPLAIN PLAN 13-9

Table 13–4 lists each combination of OPERATION and OPTION produced by the

EXPLAIN PLAN statement and its meaning within an execution plan.

Table 13–4 OPERATION and OPTION Values Produced by EXPLAIN PLAN

OPERATION OPTION Description

AND-EQUAL Operation accepting multiple sets of rowids, returning the
intersection of the sets, eliminating duplicates. Used for
the single-column indexes access path.

CONVERSION TO ROWIDS converts bitmap representations to actual
rowids that can be used to access the table.

FROM ROWIDS converts the rowids to a bitmap
representation.

COUNT returns the number of rowids if the actual values
are not needed.

INDEX SINGLE VALUE looks up the bitmap for a single key
value in the index.

RANGE SCAN retrieves bitmaps for a key value range.

FULL SCAN: Performs a full scan of a bitmap index if
there is no start or stop key.

MERGE Merges several bitmaps resulting from a range scan into
one bitmap.

MINUS Subtracts bits of one bitmap from another. Row source is
used for negated predicates. Can be used only if there are
nonnegated predicates yielding a bitmap from which the
subtraction can take place. An example appears in
"Bitmap Indexes and EXPLAIN PLAN".

OR Computes the bitwise OR of two bitmaps.

CONNECT BY Retrieves rows in hierarchical order for a query
containing a CONNECT BY clause.

CONCATENATION Operation accepting multiple sets of rows returning the
union-all of the sets.

COUNT Operation counting the number of rows selected from a
table.

STOPKEY Count operation where the number of rows returned is
limited by the ROWNUM expression in the WHERE
clause.

Output Table Columns

13-10 Oracle8i Tuning

DOMAIN INDEX Retrieval of one or more rowids from a domain index.

FILTER Operation accepting a set of rows, eliminates some of
them, and returns the rest.

FIRST ROW Retrieval on only the first row selected by a query.

FOR UPDATE Operation retrieving and locking the rows selected by a
query containing a FOR UPDATE clause.

HASH JOIN

(These are join
operations.)

Operation joining two sets of rows and returning the
result.

ANTI Hash anti-join.

SEMI Hash semi-join.

INDEX

(These operations are
access methods.)

UNIQUE SCAN Retrieval of a single rowid from an index.

RANGE SCAN Retrieval of one or more rowids from an index. Indexed
values are scanned in ascending order.

RANGE SCAN
DESCENDING

Retrieval of one or more rowids from an index. Indexed
values are scanned in descending order.

INLIST ITERATOR Iterates over the operation below it, for each value in the
IN list predicate.

INTERSECTION Operation accepting two sets of rows and returning the
intersection of the sets, eliminating duplicates.

MERGE JOIN

(These are join
operations.)

Operation accepting two sets of rows, each sorted by a
specific value, combining each row from one set with the
matching rows from the other, and returning the result.

OUTER Merge join operation to perform an outer join statement.

ANTI Merge anti-join.

SEMI Merge semi-join.

CONNECT BY Retrieval of rows in hierarchical order for a query
containing a CONNECT BY clause.

MINUS Operation accepting two sets of rows and returning rows
appearing in the first set but not in the second,
eliminating duplicates.

Table 13–4 OPERATION and OPTION Values Produced by EXPLAIN PLAN

OPERATION OPTION Description

Output Table Columns

Using EXPLAIN PLAN 13-11

NESTED LOOPS

(These are join
operations.)

Operation accepting two sets of rows, an outer set and an
inner set. Oracle compares each row of the outer set with
each row of the inner set, returning rows that satisfy a
condition.

OUTER Nested loops operation to perform an outer join
statement.

PARTITION SINGLE Access one partition.

ITERATOR Access many partitions (a subset).

ALL Access all partitions.

INLIST Similar to iterator but based on an inlist predicate.

INVALID Indicates that the partition set to be accessed is empty.

Iterates over the operation below it, for each partition in
the range given by the PARTITION_START and
PARTITION_STOP columns.

PARTITION describes partition boundaries applicable to
a single partitioned object (table or index) or to a set of
equi-partitioned objects (a partitioned table and its local
indexes). The partition boundaries are provided by the
values of pstart and pstop of the PARTITION. Refer to
Table 13–1 for valid values of partition start/stop.

PROJECTION Internal operation.

REMOTE Retrieval of data from a remote database.

SEQUENCE Operation involving accessing values of a sequence.

SORT AGGREGATE Retrieval of a single row that is the result of applying a
group function to a group of selected rows.

UNIQUE Operation sorting a set of rows to eliminate duplicates.

GROUP BY Operation sorting a set of rows into groups for a query
with a GROUP BY clause.

JOIN Operation sorting a set of rows before a merge-join.

ORDER BY Operation sorting a set of rows for a query with an
ORDER BY clause.

Table 13–4 OPERATION and OPTION Values Produced by EXPLAIN PLAN

OPERATION OPTION Description

Output Table Columns

13-12 Oracle8i Tuning

TABLE ACCESS

(These operations are
access methods.)

FULL Retrieval of all rows from a table.

CLUSTER Retrieval of rows from a table based on a value of an
indexed cluster key.

HASH Retrieval of rows from table based on hash cluster key
value.

BY ROWID Retrieval of a row from a table based on its rowid.

BY USER ROWID If the table rows are located using user-supplied rowids.

BY INDEX
ROWID

If the table is nonpartitioned and rows are located using
index(es).

BY GLOBAL
INDEX ROWID

If the table is partitioned and rows are located using only
global indexes.

BY LOCAL
INDEX ROWID

If the table is partitioned and rows are located using one
or more local indexes and possibly some global indexes.

Partition Boundaries:

The partition boundaries may have been computed by:

a previous PARTITION step, in which case the
partition_start and partition_stop column values replicate
the values present in the PARTITION step, and the
partition_id contains the ID of the PARTITION step.
Possible values for partition_start and partition_stop are
NUMBER(n), KEY, INVALID.

the TABLE ACCESS or INDEX step itself, in which case
the partition_id contains the ID of the step. Possible
values for partition_start and partition_stop are
NUMBER(n), KEY, ROW LOCATION (TABLE ACCESS
only), and INVALID.

UNION Operation accepting two sets of rows and returns the
union of the sets, eliminating duplicates.

VIEW Operation performing a view’s query and then returning
the resulting rows to another operation.

Table 13–4 OPERATION and OPTION Values Produced by EXPLAIN PLAN

OPERATION OPTION Description

EXPLAIN PLAN and Partitioned Objects

Using EXPLAIN PLAN 13-13

Bitmap Indexes and EXPLAIN PLAN
Index row sources appear in the EXPLAIN PLAN output with the word BITMAP

indicating the type. Consider the following sample query and plan, in which the TO

ROWIDS option is used to generate the ROWIDs that are necessary for table access.

 EXPLAIN PLAN FOR
 SELECT * FROM T
 WHERE
 C1 = 2 AND C2 <> 6
 OR
 C3 BETWEEN 10 AND 20;

 SELECT STATEMENT
 TABLE ACCESS T BY ROWID
 BITMAP CONVERSION TO ROWIDS
 BITMAP OR
 BITMAP MINUS
 BITMAP MINUS
 BITMAP INDEX C1_IND SINGLE VALUE
 BITMAP INDEX C2_IND SINGLE VALUE
 BITMAP INDEX C2_IND SINGLE VALUE
 BITMAP MERGE
 BITMAP INDEX C3_IND RANGE SCAN

In this example, the predicate C1=2 yields a bitmap from which a subtraction can

take place. From this bitmap, the bits in the bitmap for C2 = 6 are subtracted. Also,

the bits in the bitmap for C2 IS NULL are subtracted, explaining why there are two

MINUS row sources in the plan. The NULL subtraction is necessary for semantic

correctness unless the column has a NOT NULL constraint.

EXPLAIN PLAN and Partitioned Objects
Use EXPLAIN PLAN to see how Oracle will access partitioned objects for specific

queries.

Partitions accessed after pruning are shown in the PARTITION START and

PARTITION STOP columns. The row source name for the range partition is

Note: Access methods and join operations are discussed in

Oracle8i Concepts.

EXPLAIN PLAN and Partitioned Objects

13-14 Oracle8i Tuning

"PARTITION RANGE". For hash partitions, the row source name is "PARTITION

HASH".

A join is implemented using partial partition-wise join if the DISTRIBUTION

column of the plan table of one of the joined tables contains "PARTITION(KEY)".

Partial partition-wise join is possible if one of the joined tables is partitioned on its

join column and the table is parallelized.

A join is implemented using full partition-wise join if the partition row source

appears before the join row source in the EXPLAIN PLAN output. Full

partition-wise joins are possible only if both joined tables are equi-partitioned on

their respective join columns. Examples of execution plans for several types of

partitioning follow.

EXPLAIN PLAN and Partitioned Objects

Using EXPLAIN PLAN 13-15

Examples of How EXPLAIN PLAN Displays Range and Hash Partitioning
Consider the following table, EMP_RANGE, partitioned by range on HIREDATE to

illustrate how pruning is displayed. Assume that the tables EMP and DEPT from a

standard Oracle schema exist.

 CREATE TABLE EMP_RANGE
 PARTITION BY RANGE(HIREDATE)
 (
 PARTITION EMP_P1 VALUES LESS THAN (TO_DATE(’1-JAN-1981’,’DD-MON-YYYY’)),
 PARTITION EMP_P2 VALUES LESS THAN (TO_DATE(’1-JAN-1983’,’DD-MON-YYYY’)),
 PARTITION EMP_P3 VALUES LESS THAN (TO_DATE(’1-JAN-1985’,’DD-MON-YYYY’)),
 PARTITION EMP_P4 VALUES LESS THAN (TO_DATE(’1-JAN-1987’,’DD-MON-YYYY’)),
 PARTITION EMP_P5 VALUES LESS THAN (TO_DATE(’1-JAN-1989’,’DD-MON-YYYY’))
)
 AS SELECT * FROM EMP;

Example 1:

 EXPLAIN PLAN FOR SELECT * FROM EMP_RANGE;

Then enter the following to display the EXPLAIN PLAN output:

 @?/RDBMS/ADMIN/UTLXPLS

Oracle displays something similar to:

Plan Table

| Operation | Name | Rows | Bytes| Cost | Pstart | Pstop|

SELECT STATEMENT		105	8K	1		
PARTITION RANGE ALL					1	5
TABLE ACCESS FULL	EMP_RANGE	105	8K	1	1	5

6 rows selected.

A partition row source is created on top of the table access row source. It iterates

over the set of partitions to be accessed.

In example 1, the partition iterator covers all partitions (option ALL) because a

predicate was not used for pruning. The PARTITION_START and PARTITION

STOP columns of the plan table show access to all partitions from 1 to 5.

EXPLAIN PLAN and Partitioned Objects

13-16 Oracle8i Tuning

Example 2:

 EXPLAIN PLAN FOR SELECT * FROM EMP_RANGE
 WHERE HIREDATE >= TO_DATE(’1-JAN-1985’,’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT		3	54	1		
PARTITION RANGE ITERATOR					4	5
TABLE ACCESS FULL	EMP_RANGE	3	54	1	4	5
--
6 rows selected.

In example 2, the partition row source iterates from partition 4 to 5 because we

prune the other partitions using a predicate on HIREDATE.

Example 3:

 EXPLAIN PLAN FOR SELECT * FROM EMP_RANGE
 WHERE HIREDATE < TO_DATE(’1-JAN-1981’,’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
| SELECT STATEMENT | | 2 | 36 | 1 | | |
| TABLE ACCESS FULL |EMP_RANGE | 2 | 36 | 1 | 1 | 1 |
--
5 rows selected.

In example 3, only partition 1 is accessed and known at compile time, thus there is

no need for a partition row source.

Plans for Hash Partitioning
Oracle displays the same information for hash partitioned objects except that the

partition row source name is "PARTITION HASH" instead of "PARTITION

RANGE". Also, with hash partitioning, pruning is only possible using equality or

in-list predicates.

EXPLAIN PLAN and Partitioned Objects

Using EXPLAIN PLAN 13-17

Pruning Information with Composite Partitioned Objects
To illustrate how Oracle displays pruning information for composite partitioned

objects, consider the table EMP_COMP that is range partitioned on HIREDATE and

subpartitioned by hash on DEPTNO.

CREATE TABLE EMP_COMP PARTITION BY RANGE(HIREDATE) SUBPARTITION BY HASH(DEPTNO)
 SUBPARTITIONS 3
 (
 PARTITION EMP_P1 VALUES LESS THAN (TO_DATE(’1-JAN-1981’,’DD-MON-YYYY’)),
 PARTITION EMP_P2 VALUES LESS THAN (TO_DATE(’1-JAN-1983’,’DD-MON-YYYY’)),
 PARTITION EMP_P3 VALUES LESS THAN (TO_DATE(’1-JAN-1985’,’DD-MON-YYYY’)),
 PARTITION EMP_P4 VALUES LESS THAN (TO_DATE(’1-JAN-1987’,’DD-MON-YYYY’)),
 PARTITION EMP_P5 VALUES LESS THAN (TO_DATE(’1-JAN-1989’,’DD-MON-YYYY’))
)
 AS SELECT * FROM EMP;

Example 1:

 EXPLAIN PLAN FOR SELECT * FROM EMP_COMP;

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart | Pstop |
--
SELECT STATEMENT		105	8K	1		
PARTITION RANGE ALL					1	5
PARTITION HASH ALL					1	3
TABLE ACCESS FULL	EMP_COMP	105	8K	1	1	15
--
7 rows selected.

Example 1 shows the explain plan when Oracle accesses all subpartitions of all

partitions of a composite object. Two partition row sources are used for that

purpose: a range partition row source to iterate over the partitions and a hash

partition row source to iterate over the subpartitions of each accessed partition.

In this example, since no pruning is performed, the range partition row source

iterates from partition 1 to 5. Within each partition, the hash partition row source

iterates over subpartitions 1 to 3 of the current partition. As a result, the table access

row source accesses subpartitions 1 to 15. In other words, it accesses all

subpartitions of the composite object.

EXPLAIN PLAN and Partitioned Objects

13-18 Oracle8i Tuning

Example 2:

 EXPLAIN PLAN FOR SELECT * FROM EMP_COMP WHERE HIREDATE =
 TO_DATE(’15-FEB-1987’, ’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT		1	96	1		
PARTITION HASH ALL					1	3
TABLE ACCESS FULL	EMP_COMP	1	96	1	13	15
--
6 rows selected.

In example 2, only the last partition, partition 5, is accessed. This partition is known

at compile time so we do not need to show it in the plan. The hash partition row

source shows accessing of all subpartitions within that partition, that is,

subpartitions 1 to 3, which translates into subpartitions 13 to 15 of the EMP_COMP

table.

Example 3:

 EXPLAIN PLAN FOR SELECT * FROM EMP_COMP WHERE DEPTNO = 20;

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT		2	200	1		
PARTITION RANGE ALL					1	5
TABLE ACCESS FULL	EMP_COMP	2	200	1		
--
6 rows selected.

In this example, the predicate "DEPTNO = 20" enables pruning on the hash

dimension within each partition, so Oracle only needs to access a single

subpartition. The number of that subpartition is known at compile time so the hash

partition row source is not needed.

EXPLAIN PLAN and Partitioned Objects

Using EXPLAIN PLAN 13-19

Example 4:

 VARIABLE DNO NUMBER;
 EXPLAIN PLAN FOR SELECT * FROM EMP_COMP WHERE DEPTNO = :DNO;

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT		2	200	1		
PARTITION RANGE ALL					1	5
PARTITION HASH SINGLE					KEY	KEY
TABLE ACCESS FULL	EMP_COMP	2	200	1		
--
 7 rows selected.

Example 4 is the same as example 3 except that "DEPTNO = 20" has been replaced

by "DEPTNO = :DNO". In this case, the subpartition number is unknown at compile

time and a hash partition row source is allocated. The option is SINGLE for that row

source because Oracle accesses only one subpartition within each partition. The

PARTITION START and PARTITION STOP is set to "KEY". This means Oracle will

determine the number of the subpartition at run time.

Partial Partition-wise Joins
Example 1:

In the following example, EMP_RANGE is joined on the partitioning column and is

parallelized. This enables use of partial partition-wise join because the DEPT table is

not partitioned. Oracle dynamically partitions the DEPT table before the join.

 ALTER TABLE EMP PARALLEL 2;
 STATEMENT PROCESSED.
 ALTER TABLE DEPT PARALLEL 2;
 STATEMENT PROCESSED.

To show the plan for the query, enter:

 EXPLAIN PLAN FOR SELECT /*+ ORDERED USE_HASH(D) */ ENAME, DNAME
 FROM EMP_RANGE E, DEPT D
 WHERE E.DEPTNO = D.DEPTNO
 AND E.HIREDATE > TO_DATE(’29-JUN-1986’,’DD-MON-YYYY’);

EXPLAIN PLAN and Partitioned Objects

13-20 Oracle8i Tuning

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | TQ |IN-OUT| PQ Distrib | Pstart| Pstop |
--
SELECT STATEMENT		1	51	3					
HASH JOIN		1	51	3	2,02	P->S	QC (RANDOM)		
PARTITION RANGE ITERATOR					2,02	PCWP		4	5
TABLE ACCESS FULL	EMP_RANGE	3	87	1	2,00	PCWP		4	5
TABLE ACCESS FULL	DEPT	21	462	1	2,01	P->P	PART (KEY)		
--
8 rows selected.

The plan shows that the optimizer select partition-wise join because the DIST

column contains the text "PART (KEY)", or, partition key.

Example 2:

In example 2, EMP_COMP is joined on its hash partitioning column, DEPTNO, and

is parallelized. This enables use of partial partition-wise join because the DEPT table

is not partitioned. Again, Oracle dynamically partitions the DEPT table.

 ALTER TABLE EMP_COMP PARALLEL 2;
 STATEMENT PROCESSED.
 EXPLAIN PLAN FOR SELECT /*+ ORDERED USE_HASH(D) */ ENAME, DNAME
 FROM EMP_COMP E, DEPT D
 WHERE E.DEPTNO = D.DEPTNO
 AND E.HIREDATE > TO_DATE(’13-MAR-1985’,’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | TQ |IN-OUT| PQ Distrib | Pstart| Pstop |
--
SELECT STATEMENT		1	51	3					
HASH JOIN		1	51	3	0,01	P->S	QC (RANDOM)		
PARTITION RANGE ITERATOR					0,01	PCWP		4	5
PARTITION HASH ALL					0,01	PCWP		1	3
TABLE ACCESS FULL	EMP_COMP	3	87	1	0,01	PCWP		10	15
TABLE ACCESS FULL	DEPT	21	462	1	0,00	P->P	PART (KEY)		
--
9 rows selected.

EXPLAIN PLAN and Partitioned Objects

Using EXPLAIN PLAN 13-21

Full Partition-wise Joins
In the following example, EMP_COMP and DEPT_HASH are joined on their hash

partitioning columns. This enables use of full partition-wise join. The "PARTITION

HASH" row source appears on top of the join row source in the plan table output.

To create the table DEPT_HASH, enter:

 CREATE TABLE DEPT_HASH
 PARTITION BY HASH(deptno)
 PARTITIONS 3
 PARALLEL
 AS SELECT * FROM DEPT;

To show the plan for the query, enter:

 EXPLAIN PLAN FOR SELECT /*+ ORDERED USE_HASH(D) */ ENAME, DNAME
 FROM EMP_COMP E, DEPT_HASH D
 WHERE E.DEPTNO = D.DEPTNO
 AND E.HIREDATE > TO_DATE(’29-JUN-1986’,’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | TQ |IN-OUT| PQ Distrib | Pstart| Pstop |
--
SELECT STATEMENT		2	102	2					
PARTITION HASH ALL					4,00	PCWP		1	3
HASH JOIN		2	102	2	4,00	P->S	QC (RANDOM)		
PARTITION RANGE ITERATOR					4,00	PCWP		4	5
TABLE ACCESS FULL	EMP_COMP	3	87	1	4,00	PCWP		10	15
TABLE ACCESS FULL	DEPT_HASH	63	1K	1	4,00	PCWP		1	3
--
9 rows selected.

EXPLAIN PLAN and Partitioned Objects

13-22 Oracle8i Tuning

INLIST ITERATOR and EXPLAIN PLAN
An INLIST ITERATOR operation appears in the EXPLAIN PLAN output if an index

implements an IN list predicate. For example, for the query:

 SELECT * FROM EMP WHERE EMPNO IN (7876, 7900, 7902);

The EXPLAIN PLAN output appears as follows:

 OPERATION OPTIONS OBJECT_NAME
 ---------------- --------------- --------------
 SELECT STATEMENT
 INLIST ITERATOR
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN EMP_EMPNO

The INLIST ITERATOR operation iterates over the operation below it for each value

in the IN list predicate. For partitioned tables and indexes, the three possible types

of IN list columns are described in the following sections.

Index Column
If the IN list column EMPNO is an index column but not a partition column, then

the plan is as follows (the IN list operator appears above the table operation but

below the partition operation):

 OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
 ---------------- ------------ ----------- --------------- --------------
 SELECT STATEMENT
 PARTITION INLIST KEY(INLIST) KEY(INLIST)
 INLIST ITERATOR
 TABLE ACCESS BY ROWID EMP KEY(INLIST) KEY(INLIST)
 INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

The KEY(INLIST) designation for the partition start and stop keys specifies that an

IN list predicate appears on the index start/stop keys.

EXPLAIN PLAN and Partitioned Objects

Using EXPLAIN PLAN 13-23

Index and Partition Column
If EMPNO is an indexed and a partition column, then the plan contains an INLIST

ITERATOR operation above the partition operation:

 OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
 ---------------- ------------ ----------- --------------- --------------
 SELECT STATEMENT
 INLIST ITERATOR
 PARTITION ITERATOR KEY(INLIST) KEY(INLIST)
 TABLE ACCESS BY ROWID EMP KEY(INLIST) KEY(INLIST)
 INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

Partition Column
If EMPNO is a partition column and there are no indexes, then no INLIST

ITERATOR operation is allocated:

 OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
 ---------------- ------------ ----------- --------------- --------------
 SELECT STATEMENT
 PARTITION KEY(INLIST) KEY(INLIST)
 TABLE ACCESS BY ROWID EMP KEY(INLIST) KEY(INLIST)
 INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

If EMP_EMPNO is a bitmap index, then the plan is as follows:

 OPERATION OPTIONS OBJECT_NAME
 ---------------- --------------- --------------
 SELECT STATEMENT
 INLIST ITERATOR
 TABLE ACCESS BY INDEX ROWID EMP
 BITMAP CONVERSION TO ROWIDS
 BITMAP INDEX SINGLE VALUE EMP_EMPNO

Formatting EXPLAIN PLAN Output

13-24 Oracle8i Tuning

DOMAIN INDEX and EXPLAIN PLAN
You can also use EXPLAIN PLAN to derive user-defined CPU and I/O costs for

domain indexes. EXPLAIN PLAN displays these statistics in the "OTHER" column

of PLAN_TABLE.

For example, assume table EMP has user-defined operator CONTAINS with a

domain index EMP_RESUME on the RESUME column and the index type of

EMP_RESUME supports the operator CONTAINS. Then the query:

 SELECT * from EMP where Contains(resume, ’Oracle’) = 1

might display the following plan:

OPERATION OPTIONS OBJECT_NAME OTHER
 ----------------- ----------- ------------ ----------------
 SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 DOMAIN INDEX EMP_RESUME CPU: 300, I/O: 4

Formatting EXPLAIN PLAN Output
This section shows options for formatting EXPLAIN PLAN output

■ Using the EXPLAIN PLAN Statement

■ Selecting PLAN_TABLE Output in Table Format

■ Selecting PLAN_TABLE Output in Nested Format

Note: The output of the EXPLAIN PLAN statement reflects the

behavior of the Oracle optimizer. As the optimizer evolves between

releases of the Oracle server, output from the EXPLAIN PLAN

statement is also likely to evolve.

Formatting EXPLAIN PLAN Output

Using EXPLAIN PLAN 13-25

Using the EXPLAIN PLAN Statement
The following example shows a SQL statement and its corresponding execution

plan generated by EXPLAIN PLAN. The sample query retrieves names and related

information for employees whose salary is not within any range of the SALGRADE

table:

 SELECT ename, job, sal, dname
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND NOT EXISTS
 (SELECT *
 FROM salgrade
 WHERE emp.sal BETWEEN losal AND hisal);

This EXPLAIN PLAN statement generates an execution plan and places the output

in PLAN_TABLE:

 EXPLAIN PLAN
 SET STATEMENT_ID = ’Emp_Sal’
 FOR SELECT ename, job, sal, dname
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND NOT EXISTS
 (SELECT *
 FROM salgrade
 WHERE emp.sal BETWEEN losal AND hisal);

Selecting PLAN_TABLE Output in Table Format
This SELECT statement:

 SELECT operation, options, object_name, id, parent_id, position, cost, cardinality,
 other_tag, optimizer
 FROM plan_table
 WHERE statement_id = ’Emp_Sal’
 ORDER BY id;

Formatting EXPLAIN PLAN Output

13-26 Oracle8i Tuning

Generates this output:

 OPERATION OPTIONS OBJECT_NAME ID PARENT_ID POSITION COST CARDINALITY BYTES OTHER_TAG
OPTIMIZER

 SELECT STATEMENT 0 2 2 1 62
CHOOSE
 FILTER 1 0 1
 NESTED LOOPS 2 1 1 2 1 62
 TABLE ACCESS FULL EMP 3 2 1 1 1 40
ANALYZED
 TABLE ACCESS FULL DEPT 4 2 2 4 88
ANALYZED
 TABLE ACCESS FULL SALGRADE 5 1 2 1 1 13
ANALYZED

The ORDER BY clause returns the steps of the execution plan sequentially by ID

value. However, Oracle does not perform the steps in this order. PARENT_ID

receives information from ID, yet more than one ID step fed into PARENT_ID.

For example, step 2, a merge join, and step 6, a table access, both fed into step 1. A

nested, visual representation of the processing sequence is shown in the next

section.

The value of the POSITION column for the first row of output indicates the

optimizer’s estimated cost of executing the statement with this plan to be 5. For the

other rows, it indicates the position relative to the other children of the same parent.

CREATE VIEW test AS
SELECT id, parent_id,
lpad(’ ’, 2*(level-1))||operation||’ ’||options||’ ’||object_name||’ ’||
 decode(id, 0, ’Cost = ’||position) "Query Plan"
FROM plan_table
START WITH id = 0 and statement_id = 'TST'
CONNECT BY prior id = parent_id and statement_id = ’TST’;
SELECT * FROM foo ORDER BY id, parent_id;

Note: A CONNECT BY does not preserve ordering. To have rows

come out in the correct order in this example, you must either

truncate the table first, or else create a view and select from the

view. For example:

Formatting EXPLAIN PLAN Output

Using EXPLAIN PLAN 13-27

This yields results as follows:

 ID PAR Query Plan
 --- --- --
 0 Select Statement Cost = 69602
 1 0 Nested Loops
 2 1 Nested Loops
 3 2 Merge Join
 4 3 Sort Join
 5 4 Table Access Full T3
 6 3 Sort Join
 7 6 Table Access Full T4
 8 2 Index Unique Scan T2
 9 1 Table Access Full T1
10 rows selected.

Selecting PLAN_TABLE Output in Nested Format
This type of SELECT statement generates a nested representation of the output that

more closely depicts the processing order used for the SQL statement.

 SELECT LPAD(’ ’,2*(LEVEL-1))||operation||’ ’||options
 ||’ ’||object_name
 ||’ ’||DECODE(id, 0, ’Cost = ’||position) "Query Plan"
 FROM plan_table
 START WITH id = 0 AND statement_id = ’Emp_Sal’
 CONNECT BY PRIOR id = parent_id AND statement_id =’Emp_Sal’;

 Query Plan

 SELECT STATEMENT Cost = 5
 FILTER
 NESTED LOOPS
 TABLE ACCESS FULL EMP
 TABLE ACCESS FULL DEPT
 TABLE ACCESS FULL SALGRADE

Formatting EXPLAIN PLAN Output

13-28 Oracle8i Tuning

The order resembles a tree structure, as illustrated in Figure 13–1.

Figure 13–1 Tree Structure of an Execution Plan

Tree structures illustrate how SQL statement execution operations feed one another.

Oracle assigns each step in the execution plan a number representing the ID column

of the PLAN_TABLE. Each step is depicted by a "node". The result of each node’s

operation passes to its parent node, which uses it as input.

EXPLAIN PLAN Restrictions
Oracle does not support EXPLAIN PLAN for statements performing implicit type

conversion of date bind variables. With bind variables in general, the EXPLAIN

PLAN output may not represent the real execution plan.

From the text of a SQL statement, TKPROF cannot determine the types of the bind

variables. It assumes that the type is CHARACTER, and gives an error message if

TABLE ACCESS
(FULL)

emp

3 4

TABLE ACCESS
(FULL)

dept

NESTED LOOPS

2 5

TABLE ACCESS
(FULL)

salgrade

1

FILTER

Formatting EXPLAIN PLAN Output

Using EXPLAIN PLAN 13-29

this is not the case. You can avoid this limitation by putting appropriate type

conversions in the SQL statement.

See Also: Chapter 14, "The SQL Trace Facility and TKPROF".

Formatting EXPLAIN PLAN Output

13-30 Oracle8i Tuning

The SQL Trace Facility and TKPROF 14-1

14
The SQL Trace Facility and TKPROF

The SQL trace facility and TKPROF are two basic performance diagnostic tools that

can help you monitor and tune applications running against the Oracle Server. This

chapter covers:

■ Introduction to SQL Trace and TKPROF

■ Step 1: Set Initialization Parameters for Trace File Management

■ Step 2: Enable the SQL Trace Facility

■ Step 3: Format Trace Files with TKPROF

■ Step 4: Interpret TKPROF Output

■ Step 5: Store SQL Trace Facility Statistics

■ Avoiding Pitfalls in TKPROF Interpretation

■ TKPROF Output Example

Introduction to SQL Trace and TKPROF
The SQL trace facility and TKPROF enable you to accurately assess the efficiency of

the SQL statements your application runs. For best results, use these tools with

EXPLAIN PLAN, rather than using EXPLAIN PLAN alone. This section covers:

■ About the SQL Trace Facility

■ About TKPROF

■ Using the SQL Trace Facility and TKPROF

Introduction to SQL Trace and TKPROF

14-2 Oracle8i Tuning

About the SQL Trace Facility
The SQL trace facility provides performance information on individual SQL

statements. It generates the following statistics for each statement:

■ Parse, execute, and fetch counts

■ CPU and elapsed times

■ Physical reads and logical reads

■ Number of rows processed

■ Misses on the library cache

■ Username under which each parse occurred

■ Each commit and rollback

You can enable the SQL trace facility for a session or for an instance. When the SQL

trace facility is enabled, performance statistics for all SQL statements executed in a

user session or in an instance are placed into a trace file.

The additional overhead of running the SQL trace facility against an application

with performance problems is normally insignificant, compared with the inherent

overhead caused by the application’s inefficiency.

About TKPROF
You can run the TKPROF program to format the contents of the trace file and place

the output into a readable output file. Optionally, TKPROF can also:

■ Determine the execution plans of SQL statements

■ Create a SQL script that stores the statistics in the database

TKPROF reports each statement executed with the resources it has consumed, the

number of times it was called, and the number of rows which it processed. This

information lets you easily locate those statements that are using the greatest

resource. With experience or with baselines available, you can assess whether the

resources used are reasonable given the work done.

Step 1: Set Initialization Parameters for Trace File Management

The SQL Trace Facility and TKPROF 14-3

Using the SQL Trace Facility and TKPROF
Follow these steps to use the SQL trace facility and TKPROF:

1. Set initialization parameters for trace file management.

2. Enable the SQL trace facility for the desired session and run your application.

This step produces a trace file containing statistics for the SQL statements

issued by the application.

3. Run TKPROF to translate the trace file created in Step 2 into a readable output

file. This step can optionally create a SQL script that stores the statistics in the

database.

4. Interpret the output file created in Step 3.

5. Optionally, run the SQL script produced in Step 3 to store the statistics in the

database.

In the following sections each of these steps is discussed in depth.

Step 1: Set Initialization Parameters for Trace File Management
When the SQL trace facility is enabled for a session, Oracle generates a trace file

containing statistics for traced SQL statements for that session. When the SQL trace

facility is enabled for an instance, Oracle creates a separate trace file for each process.

Before enabling the SQL trace facility, you should:

1. Check settings of the TIMED_STATISTICS, USER_DUMP_DEST, and

MAX_DUMP_FILE_SIZE parameters.

Step 2: Enable the SQL Trace Facility

14-4 Oracle8i Tuning

2. Devise a way of recognizing the resulting trace file.

Be sure you know how to distinguish the trace files by name. Oracle writes

them to the user dump destination specified by USER_DUMP_DEST. However,

this directory may soon contain many hundreds of files, usually with generated

names. It may be difficult to match trace files back to the session or process that

created them. You can tag trace files by including in your programs a statement

like SELECT ’program name’ FROM DUAL. You can then trace each file back to

the process that created it.

3. If your operating system retains multiple versions of files, be sure your version

limit is high enough to accommodate the number of trace files you expect the

SQL trace facility to generate.

4. The generated trace files may be owned by an operating system user other than

yourself. This user must make the trace files available to you before you can use

TKPROF to format them.

Step 2: Enable the SQL Trace Facility
You can enable the SQL trace facility for a session or for the instance. This section

covers:

■ Enabling the SQL Trace Facility for Your Current Session

Table 14–1 SQL Trace Facility Dynamic Initialization Parameters

Parameter Notes

TIMED_STATISTICS This parameter enables and disables the collection of timed statistics, such as CPU
and elapsed times, by the SQL trace facility, as well as the collection of various
statistics in the dynamic performance tables. The default value of FALSE disables
timing. A value of TRUE enables timing. Enabling timing causes extra timing calls
for low-level operations. This is a session parameter.

MAX_DUMP_FILE_SIZE When the SQL trace facility is enabled at the instance level, every call to the server
produces a text line in a file in your operating system’s file format. The maximum
size of these files (in operating system blocks) is limited by the initialization
parameter MAX_DUMP_FILE_SIZE. The default is 500. If you find that your trace
output is truncated, increase the value of this parameter before generating another
trace file. This is a session parameter.

USER_DUMP_DEST This parameter must specify fully the destination for the trace file according to the
conventions of your operating system. The default value for this parameter is the
default destination for system dumps on your operating system.This value can be
modified with ALTER SYSTEM SET USER_DUMP_DEST=newdir. This is a system
parameter.

Step 3: Format Trace Files with TKPROF

The SQL Trace Facility and TKPROF 14-5

■ Enabling the SQL Trace Facility for an Instance

Enabling the SQL Trace Facility for Your Current Session
To enable the SQL trace facility for your current session, enter:

 ALTER SESSION SET SQL_TRACE = TRUE;

Alternatively, you can enable the SQL trace facility for your session by using the

DBMS_SESSION.SET_SQL_TRACE procedure.

To disable the SQL trace facility for your session, enter:

 ALTER SESSION SET SQL_TRACE = FALSE;

The SQL trace facility is automatically disabled for your session when your

application disconnects from Oracle.

Enabling the SQL Trace Facility for an Instance
To enable the SQL trace facility for your instance, set the value of the SQL_TRACE

initialization parameter to TRUE. Statistics will be collected for all sessions.

Once the SQL trace facility has been enabled for the instance, you can disable it for

an individual session by entering:

 ALTER SESSION SET SQL_TRACE = FALSE;

Step 3: Format Trace Files with TKPROF
This section covers:

Note: Because running the SQL trace facility increases system

overhead, you should enable it only when tuning your SQL

statements, and disable it when you are finished.

Note: You may need to modify your application to contain the

ALTER SESSION statement. For example, to issue the ALTER

SESSION statement in Oracle Forms, invoke Oracle Forms using

the -s option, or invoke Oracle Forms (Design) using the statistics

option. For more information on Oracle Forms, see the Oracle Forms
Reference.

Step 3: Format Trace Files with TKPROF

14-6 Oracle8i Tuning

■ Sample TKPROF Output

■ Syntax of TKPROF

■ TKPROF Statement Examples

TKPROF accepts as input a trace file produced by the SQL trace facility and

produces a formatted output file. TKPROF can also be used to generate execution

plans.

Once the SQL trace facility has generated a number of trace files, you can:

■ Run TKPROF on each individual trace file, producing a number of formatted

output files, one for each session.

■ Concatenate the trace files and then run TKPROF on the result to produce a

formatted output file for the entire instance.

TKPROF does not report COMMITs and ROLLBACKs that are recorded in the trace

file.

Sample TKPROF Output
Sample output from TKPROF is as follows:

 SELECT * FROM emp, dept WHERE emp.deptno = dept.deptno;

 call count cpu elapsed disk query current rows
 ---- ------- ------- --------- -------- -------- ------- ------
 Parse 1 0.16 0.29 3 13 0 0
 Execute 1 0.00 0.00 0 0 0 0
 Fetch 1 0.03 0.26 2 2 4 14

 Misses in library cache during parse: 1
 Parsing user id: (8) SCOTT

 Rows Execution Plan
 ------- ---
 14 MERGE JOIN
 4 SORT JOIN
 4 TABLE ACCESS (FULL) OF ’DEPT’
 14 SORT JOIN
 14 TABLE ACCESS (FULL) OF ’EMP’

For this statement, TKPROF output includes the following information:

■ The text of the SQL statement

Step 3: Format Trace Files with TKPROF

The SQL Trace Facility and TKPROF 14-7

■ The SQL trace statistics in tabular form

■ The number of library cache misses for the parsing and execution of the

statement

■ The user initially parsing the statement

■ The execution plan generated by EXPLAIN PLAN

TKPROF also provides a summary of user level statements and recursive SQL calls

for the trace file.

Syntax of TKPROF
Invoke TKPROF using this syntax:

If you invoke TKPROF without arguments, online help is displayed.

Use the following arguments with TKPROF:

TKPROF filename1 filename2
SORT =

option

(option

,

)

tkprof_command

PRINT = integer AGGREGATE =

YES

NO
INSERT = filename3

TABLE = schema.table
EXPLAIN = user/password

RECORD = filename

SYS =

YES

NO

Step 3: Format Trace Files with TKPROF

14-8 Oracle8i Tuning

Table 14–2 TKPROF Arguments

Argument Meaning

filename1 Specifies the input file, a trace file containing statistics produced by the SQL trace
facility. This file can be either a trace file produced for a single session or a file
produced by concatenating individual trace files from multiple sessions.

filename2 Specifies the file to which TKPROF writes its formatted output.

Step 3: Format Trace Files with TKPROF

The SQL Trace Facility and TKPROF 14-9

SORT Sorts traced SQL statements in descending order of specified sort option before listing
them into the output file. If more than one option is specified, the output is sorted in
descending order by the sum of the values specified in the sort options. If you omit
this parameter, TKPROF lists statements into the output file in order of first use. Sort
options are as follows:

PRSCNT Number of times parsed

PRSCPU CPU time spent parsing

PRSELA Elapsed time spent parsing

PRSDSK Number of physical reads from disk during parse

PRSMIS Number of consistent mode block reads during parse

PRSCU Number of current mode block reads during parse

PRSMIS Number of library cache misses during parse

EXECNT Number of executes

EXECPU CPU time spent executing

EXEELA Elapsed time spent executing

EXEDSK Number of physical reads from disk during execute

EXEQRY Number of consistent mode block reads during execute

EXECU Number of current mode block reads during execute

EXEROW Number of rows processed during execute

EXEMIS Number of library cache misses during execute

FCHCNT Number of fetches

FCHCPU CPU time spent fetching

FCHELA Elapsed time spent fetching

FCHDSK Number of physical reads from disk during fetch

FCHQRY Number of consistent mode block reads during fetch

FCHCU Number of current mode block reads during fetch

FCHROW Number of rows fetched

PRINT Lists only the first integer sorted SQL statements into the output file. If you omit this
parameter, TKPROF lists all traced SQL statements. This parameter does not affect the
optional SQL script. The SQL script always inserts statistics for all traced SQL
statements.

Table 14–2 TKPROF Arguments

Step 3: Format Trace Files with TKPROF

14-10 Oracle8i Tuning

TKPROF Statement Examples
This section provides two brief examples of TKPROF usage. For an complete

example of TKPROF output, see "TKPROF Output Example" on page 14-24.

AGGREGATE If you specify AGGREGATE = NO, then TKPROF does not aggregate multiple users of
the same SQL text.

INSERT Creates a SQL script that stores the trace file statistics in the database. TKPROF creates
this script with the name filename3. This script creates a table and inserts a row of
statistics for each traced SQL statement into the table.

SYS Enables and disables the listing of SQL statements issued by the user SYS, or recursive
SQL statements, into the output file. The default value of YES causes TKPROF to list
these statements. The value of NO causes TKPROF to omit them. This parameter does
not affect the optional SQL script. The SQL script always inserts statistics for all traced
SQL statements, including recursive SQL statements.

TABLE Specifies the schema and name of the table into which TKPROF temporarily places
execution plans before writing them to the output file. If the specified table already
exists, TKPROF deletes all rows in the table, uses it for the EXPLAIN PLAN statement
(which writes more rows into the table), and then deletes those rows. If this table does
not exist, TKPROF creates it, uses it, and then drops it.
The specified user must be able to issue INSERT, SELECT, and DELETE statements
against the table. If the table does not already exist, the user must also be able to issue
CREATE TABLE and DROP TABLE statements. For the privileges to issue these
statements, see the Oracle8i SQL Reference.
This option allows multiple individuals to run TKPROF concurrently with the same
user in the EXPLAIN value. These individuals can specify different TABLE values and
avoid destructively interfering with each other’s processing on the temporary plan
table.
If you use the EXPLAIN parameter without the TABLE parameter, TKPROF uses the
table PROF$PLAN_TABLE in the schema of the user specified by the EXPLAIN
parameter. If you use the TABLE parameter without the EXPLAIN parameter,
TKPROF ignores the TABLE parameter.

RECORD Creates a SQL script with the specified filename with all of the nonrecursive SQL in
the trace file. This can be used to replay the user events from the trace file.

EXPLAIN Determines the execution plan for each SQL statement in the trace file and writes these
execution plans to the output file. TKPROF determines execution plans by issuing the
EXPLAIN PLAN statement after connecting to Oracle with the user and password
specified in this parameter. The specified user must have CREATE SESSION system
privileges. TKPROF will take longer to process a large trace file if the EXPLAIN option
is used.

Table 14–2 TKPROF Arguments

Step 3: Format Trace Files with TKPROF

The SQL Trace Facility and TKPROF 14-11

Example 1
If you are processing a large trace file using a combination of SORT parameters and

the PRINT parameter, you can produce a TKPROF output file containing only the

highest resource-intensive statements. For example, the following statement prints

the ten statements in the trace file that have generated the most physical I/O:

 TKPROF ora53269.trc ora 53269.prf
 SORT = (PRSDSK, EXEDSK, FCHDSK)
 PRINT = 10

Example 2
This example runs TKPROF, accepts a trace file named

"dlsun12_jane_fg_svrmgr_007.trc", and writes a formatted output file named

"outputa.prf":

 TKPROF DLSUN12_JANE_FG_SVRMGR_007.TRC OUTPUTA.PRF
 EXPLAIN=SCOTT/TIGER TABLE=SCOTT.TEMP_PLAN_TABLE_A INSERT=STOREA.SQL SYS=NO
 SORT=(EXECPU,FCHCPU)

This example is likely to be longer than a single line on your screen and you may

have to use continuation characters, depending on your operating system.

Note the other parameters in this example:

■ The EXPLAIN value causes TKPROF to connect as the user SCOTT and use the

EXPLAIN PLAN statement to generate the execution plan for each traced SQL

statement. You can use this to get access paths and row source counts.

■ The TABLE value causes TKPROF to use the table TEMP_PLAN_TABLE_A in

the schema SCOTT as a temporary plan table.

■ The INSERT value causes TKPROF to generate a SQL script named

STOREA.SQL that stores statistics for all traced SQL statements in the database.

■ The SYS parameter with the value of NO causes TKPROF to omit recursive SQL

statements from the output file. In this way you can ignore internal Oracle

statements such as temporary table operations.

■ The SORT value causes TKPROF to sort the SQL statements in order of the sum

of the CPU time spent executing and the CPU time spent fetching rows before

writing them to the output file. For greatest efficiency, always use SORT

parameters.

Step 4: Interpret TKPROF Output

14-12 Oracle8i Tuning

Step 4: Interpret TKPROF Output
This section provides pointers for interpreting TKPROF output.

■ Tabular Statistics

■ Library Cache Misses

■ Statement Truncation

■ User Issuing the SQL Statement

■ Execution Plan

■ Deciding Which Statements to Tune

While TKPROF provides a very useful analysis, the most accurate measure of

efficiency is the actual performance of the application in question. At the end of the

TKPROF output is a summary of the work done in the database engine by the

process during the period that the trace was running.

Tabular Statistics
TKPROF lists the statistics for a SQL statement returned by the SQL trace facility in

rows and columns. Each row corresponds to one of three steps of SQL statement

processing. The step for which each row contains statistics is identified by the value

of the CALL column:

The other columns of the SQL trace facility output are combined statistics for all

parses, all executes, and all fetches of a statement. These values are zero (0) if

See Also: Oracle8i Reference for a description of statistics in
V$SYSSTAT and V$SESSTAT.

PARSE This step translates the SQL statement into an execution plan.

This step includes checks for proper security authorization

and checks for the existence of tables, columns, and other

referenced objects.

EXECUTE This step is the actual execution of the statement by Oracle.

For INSERT, UPDATE, and DELETE statements, this step

modifies the data. For SELECT statements, the step identifies

the selected rows.

FETCH This step retrieves rows returned by a query. Fetches are only

performed for SELECT statements.

Step 4: Interpret TKPROF Output

The SQL Trace Facility and TKPROF 14-13

TIMED_STATISTICS is not turned on. The sum of query and current is the total

number of buffers accessed.

Rows
Statistics about the processed rows appear in the ROWS column.

For SELECT statements, the number of rows returned appears for the fetch step. For

UPDATE, DELETE, and INSERT statements, the number of rows processed appears

for the execute step.

COUNT Number of times a statement was parsed, executed, or

fetched.

CPU Total CPU time in seconds for all parse, execute, or fetch calls

for the statement.

ELAPSED Total elapsed time in seconds for all parse, execute, or fetch

calls for the statement.

DISK Total number of data blocks physically read from the

datafiles on disk for all parse, execute, or fetch calls.

QUERY Total number of buffers retrieved in consistent mode for all

parse, execute, or fetch calls. Buffers are usually retrieved in

consistent mode for queries.

CURRENT Total number of buffers retrieved in current mode. Buffers

are retrieved in current mode for statements such as INSERT,

UPDATE, and DELETE.

ROWS Total number of rows processed by the SQL statement. This

total does not include rows processed by subqueries of the

SQL statement.

Note: The row source counts are displayed when a cursor is

closed. In SQL*Plus there is only one user cursor, so each statement

executed causes the previous cursor to be closed; for this reason the

row source counts are displayed. PL/SQL has its own cursor

handling and does not close child cursors when the parent cursor is

closed. Exiting (or reconnecting) would cause the counts to be

displayed.

Step 4: Interpret TKPROF Output

14-14 Oracle8i Tuning

Resolution of Statistics
Timing statistics have a resolution of one hundredth of a second; therefore, any

operation on a cursor that takes a hundredth of a second or less may not be timed

accurately. Keep this in mind when interpreting statistics. In particular, be careful

when interpreting the results from simple queries that execute very quickly.

Recursive Calls
Sometimes in order to execute a SQL statement issued by a user, Oracle must issue

additional statements. Such statements are called recursive calls or recursive SQL
statements. For example, if you insert a row into a table that does not have enough

space to hold that row, Oracle makes recursive calls to allocate the space

dynamically. Recursive calls are also generated when data dictionary information is

not available in the data dictionary cache and must be retrieved from disk.

If recursive calls occur while the SQL trace facility is enabled, TKPROF produces

statistics for the recursive SQL statements and marks them clearly as recursive SQL

statements in the output file. You can suppress the listing of recursive calls in the

output file by setting the SYS statement-line parameter to NO. The statistics for a

recursive SQL statement are included in the listing for that statement, not in the

listing for the SQL statement that caused the recursive call. So when you are

calculating the total resources required to process a SQL statement, you should

consider the statistics for that statement as well as those for recursive calls caused

by that statement.

Library Cache Misses
TKPROF also lists the number of library cache misses resulting from parse and

execute steps for each SQL statement. These statistics appear on separate lines

following the tabular statistics. If the statement resulted in no library cache misses,

TKPROF does not list the statistic. In "Sample TKPROF Output" on page 14-6, the

example, the statement resulted in one library cache miss for the parse step and no

misses for the execute step.

Statement Truncation
The following SQL statements are truncated to 25 characters in the SQL trace file:

SET ROLE

GRANT

ALTER USER

ALTER ROLE

Step 4: Interpret TKPROF Output

The SQL Trace Facility and TKPROF 14-15

CREATE USER

CREATE ROLE

User Issuing the SQL Statement
TKPROF also lists the user ID of the user issuing each SQL statement. If the SQL

trace input file contained statistics from multiple users and the statement was

issued by more than one user, TKPROF lists the ID of the last user to parse the

statement. The user ID of all database users appears in the data dictionary in the

column ALL_USERS.USER_ID.

Execution Plan
If you specify the EXPLAIN parameter on the TKPROF statement line, TKPROF

uses the EXPLAIN PLAN statement to generate the execution plan of each SQL

statement traced. TKPROF also displays the number of rows processed by each step

of the execution plan.

Deciding Which Statements to Tune
The following listing shows TKPROF output for one SQL statement as it appears in

the output file:

 SELECT * FROM emp, dept WHERE emp.deptno = dept.deptno;

 call count cpu elapsed disk query current rows
 ---- ------- ------- --------- -------- -------- ------- ------
 Parse 11 0.08 0.18 0 0 0 0
 Execute 11 0.23 0.66 0 3 6 2
 Fetch 35 6.70 6.83 100 12326 2 824
 --
 total 57 7.01 7.67 100 12329 8 826

Note: Trace files generated immediately after instance startup

contain data that reflects the activity of the startup process. In

particular, they reflect a disproportionate amount of I/O activity as

caches in the system global area (SGA) are filled. For the purposes

of tuning, ignore such trace files.

See Also: Chapter 13, "Using EXPLAIN PLAN"for more

information on interpreting execution plans.

Step 4: Interpret TKPROF Output

14-16 Oracle8i Tuning

 Misses in library cache during parse: 0

 10 user SQL statements in session.
 0 internal SQL statements in session.
 10 SQL statements in session.

If it is acceptable to expend 7.01 CPU seconds to insert, update or delete 2 rows and

to retrieve 824 rows, then you need not look any further at this trace output. In fact,

a major use of TKPROF reports in a tuning exercise is to eliminate processes from

the detailed tuning phase.

You can also see from this summary that 1 unnecessary parse call was made

(because there were 11 parse calls, but only 10 user SQL statements) and that array

fetch operations were performed. (You know this because more rows were fetched

than there were fetches performed.)

Finally, very little physical I/O was performed; this is suspicious and probably

means that the same database blocks were being continually revisited.

Having established that the process has used excessive resource, the next step is to

discover which SQL statements are the culprits. Normally only a small percentage

of the SQL statements in any process need to be tuned—those that use the greatest

resource.

The examples that follow were all produced with TIMED_STATISTICS=TRUE.

However, with the exception of locking problems and inefficient PL/SQL loops,

neither the CPU time nor the elapsed time are necessary to find the problem

statements. The key is the number of block visits both query (that is, subject to read

consistency) and current (not subject to read consistency). Segment headers and

blocks that are going to be updated are always acquired in current mode, but all

query and subquery processing requests the data in query mode. These are

precisely the same measures as the instance statistics CONSISTENT GETS and DB

BLOCK GETS.

The SQL parsed as SYS is recursive SQL used to maintain the dictionary cache, and

is not normally of great benefit. If the number of internal SQL statements looks

high, you might want to check to see what has been going on. (There may be

excessive space management overhead.)

Step 5: Store SQL Trace Facility Statistics

The SQL Trace Facility and TKPROF 14-17

Step 5: Store SQL Trace Facility Statistics
This section covers:

■ Generating the TKPROF Output SQL Script

■ Editing the TKPROF Output SQL Script

■ Querying the Output Table

You may want to keep a history of the statistics generated by the SQL trace facility

for your application and compare them over time. TKPROF can generate a SQL

script that creates a table and inserts rows of statistics into it. This script contains

■ A CREATE TABLE statement that creates an output table named

TKPROF_TABLE

■ INSERT statements that add rows of statistics, one for each traced SQL

statement, to the TKPROF_TABLE

After running TKPROF, you can run this script to store the statistics in the database.

Generating the TKPROF Output SQL Script
When you run TKPROF, use the INSERT parameter to specify the name of the

generated SQL script. If you omit this parameter, TKPROF does not generate a

script.

Editing the TKPROF Output SQL Script
After TKPROF has created the SQL script, you may want to edit the script before

running it.

If you have already created an output table for previously collected statistics and

you want to add new statistics to this table, remove the CREATE TABLE statement

from the script. The script will then insert the new rows into the existing table.

If you have created multiple output tables, perhaps to store statistics from different

databases in different tables, edit the CREATE TABLE and INSERT statements to

change the name of the output table.

Querying the Output Table
The following CREATE TABLE statement creates the TKPROF_TABLE:

 CREATE TABLE tkprof_table
 (date_of_insert DATE,

Step 5: Store SQL Trace Facility Statistics

14-18 Oracle8i Tuning

 cursor_num NUMBER,
 depth NUMBER,
 user_id NUMBER,
 parse_cnt NUMBER,
 parse_cpu NUMBER,
 parse_elap NUMBER,
 parse_disk NUMBER,
 parse_query NUMBER,
 parse_current NUMBER,
 parse_miss NUMBER,
 exe_count NUMBER,
 exe_cpu NUMBER,
 exe_elap NUMBER,
 exe_disk NUMBER,
 exe_query NUMBER,
 exe_current NUMBER,
 exe_miss NUMBER,
 exe_rows NUMBER,
 fetch_count NUMBER,
 fetch_cpu NUMBER,
 fetch_elap NUMBER,
 fetch_disk NUMBER,
 fetch_query NUMBER,
 fetch_current NUMBER,
 fetch_rows NUMBER,
 clock_ticks NUMBER,
 sql_statement LONG);

Most output table columns correspond directly to the statistics that appear in the

formatted output file. For example, the PARSE_CNT column value corresponds to

the count statistic for the parse step in the output file.

These columns help you identify a row of statistics:

SQL_STATEMENT The column value is the SQL statement for which the SQL

trace facility collected the row of statistics. Because this

column has datatype LONG, you cannot use it in

expressions or WHERE clause conditions.

DATE_OF_INSERT The column value is the date and time when the row was

inserted into the table. This value is not exactly the same as the

time the statistics were collected by the SQL trace facility.

Step 5: Store SQL Trace Facility Statistics

The SQL Trace Facility and TKPROF 14-19

The following query returns the statistics from the output table. These statistics

correspond to the formatted output shown in the section "Sample TKPROF Output"

on page 14-6.

 SELECT * FROM tkprof_table;

Oracle responds with something similar to:

 DATE_OF_INSERT CURSOR_NUM DEPTH USER_ID PARSE_CNT PARSE_CPU PARSE_ELAP
 -------------- ---------- ----- ------- --------- --------- ----------
 21-DEC-1998 1 0 8 1 16 22

 PARSE_DISK PARSE_QUERY PARSE_CURRENT PARSE_MISS EXE_COUNT EXE_CPU
 ---------- ----------- ------------- ---------- --------- -------
 3 11 0 1 1 0

 EXE_ELAP EXE_DISK EXE_QUERY EXE_CURRENT EXE_MISS EXE_ROWS FETCH_COUNT
 -------- -------- --------- ----------- -------- -------- -----------
 0 0 0 0 0 0 1

 FETCH_CPU FETCH_ELAP FETCH_DISK FETCH_QUERY FETCH_CURRENT FETCH_ROWS
 --------- ---------- ---------- ----------- ------------- ----------
 2 20 2 2 4 10

 SQL_STATEMENT

 SELECT * FROM EMP, DEPT WHERE EMP.DEPTNO = DEPT.DEPTNO

DEPTH This column value indicates the level of recursion at

which the SQL statement was issued. For example, a

value of 1 indicates that a user issued the statement. A

value of 2 indicates Oracle generated the statement as a

recursive call to process a statement with a value of 1 (a

statement issued by a user). A value of n indicates Oracle

generated the statement as a recursive call to process a

statement with a value of n-1.

USER_ID This column value identifies the user issuing the

statement. This value also appears in the formatted

output file.

CURSOR_NUM Oracle uses this column value to keep track of the cursor

to which each SQL statement was assigned. The output

table does not store the statement’s execution plan.

Avoiding Pitfalls in TKPROF Interpretation

14-20 Oracle8i Tuning

Avoiding Pitfalls in TKPROF Interpretation
This section describes some fine points of TKPROF interpretation:

■ Finding Which Statements Constitute the Bulk of the Load

■ The Argument Trap

■ The Read Consistency Trap

■ The Schema Trap

■ The Time Trap

■ The Trigger Trap

■ The "Correct" Version

Finding Which Statements Constitute the Bulk of the Load
Look at the totals and try to identify the statements that constitute the bulk of the

load.

Do not attempt to perform many different jobs within a single query. It is more

effective to separate out the different queries that should be used when particular

optional parameters are present, and when the parameters provided contain wild

cards.

If particular parameters are not specified by the report user, the query uses bind

variables that have been set to "%". This action has the effect of ignoring any LIKE

clauses in the query. It would be more efficient to run a query in which these clauses

are not present.

The Argument Trap
If you are not aware of the values being bound at run time, it is possible to fall into

the "argument trap". Especially where the LIKE operator is used, the query may be

markedly less efficient for particular values, or types of value, in a bind variable.

See Also: "EXPLAIN PLAN Restrictions" on page 13-28 for

information about TKPROF and bind variables.

Note: TKPROF cannot determine the TYPE of the bind variables

from the text of the SQL statement. It assumes that TYPE is

CHARACTER. If this is not the case, you should put appropriate

type conversions in the SQL statement.

Avoiding Pitfalls in TKPROF Interpretation

The SQL Trace Facility and TKPROF 14-21

This is because the optimizer must make an assumption about the probable

selectivity without knowing the value.

The Read Consistency Trap
The next example illustrates the read consistency trap. Without knowing that an

uncommitted transaction had made a series of updates to the NAME column it is

very difficult to see why so many block visits would be incurred.

Cases like this are not normally repeatable: if the process were run again, it is

unlikely that another transaction would interact with it in the same way.

select NAME_ID
from CQ_NAMES where NAME = ’FLOOR’;

call count cpu elapsed disk query current rows
---- ----- --- ------- ---- ----- ------- ----
Parse 1 0.10 0.18 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.11 0.21 2 101 0 1

Misses in library cache during parse: 1
Parsing user id: 01 (USER1)

Rows Execution Plan
---- --------- ----
 0 SELECT STATEMENT
 1 TABLE ACCESS (BY ROWID) OF ’CQ_NAMES’
 2 INDEX (RANGE SCAN) OF ’CQ_NAMES_NAME’ (NON_UNIQUE)

The Schema Trap
This example shows an extreme (and thus easily detected) example of the schema

trap. At first it is difficult to see why such an apparently straightforward indexed

query needs to look at so many database blocks, or why it should access any blocks

at all in current mode.

select NAME_ID
from CQ_NAMES where NAME = ’FLOOR’;

call count cpu elapsed disk query current rows
-------- ------- -------- --------- ------- ------ ------- ----
Parse 1 0.06 0.10 0 0 0 0
Execute 1 0.02 0.02 0 0 0 0
Fetch 1 0.23 0.30 31 51 3 1

Avoiding Pitfalls in TKPROF Interpretation

14-22 Oracle8i Tuning

Misses in library cache during parse: 0
Parsing user id: 02 (USER2)

Rows Execution Plan
------- ---
 0 SELECTSTATEMENT
 2340 TABLE ACCESS (BY ROWID) OF ’CQ_NAMES’
 0 INDEX (RANGE SCAN) OF ’CQ_NAMES_NAME’ (NON-UNIQUE)

Two statistics suggest that the query may have been executed via a full table scan.

These statistics are the current mode block visits, plus the number of rows

originating from the Table Access row source in the execution plan. The explanation

is that the required index was built after the trace file had been produced, but before

TKPROF had been run.

The Time Trap
Sometimes, as in the following example, you may wonder why a particular query

has taken so long.

update CQ_NAMES set ATTRIBUTES = lower(ATTRIBUTES)
where ATTRIBUTES = :att

call count cpu elapsed disk query current rows
-------- ------- -------- --------- -------- -------- ------- ----------
Parse 1 0.06 0.24 0 0 0 0
Execute 1 0.62 19.62 22 526 12 7
Fetch 0 0.00 0.00 0 0 0 0

Misses in library cache during parse: 1
Parsing user id: 02 (USER2)

Rows Execution Plan
------- ---
 0 UPDATE STATEMENT
 2519 TABLE ACCESS (FULL) OF ’CQ_NAMES’

Again, the answer is interference from another transaction. In this case another

transaction held a shared lock on the table CQ_NAMES for several seconds before

and after the update was issued. It takes a fair amount of experience to diagnose

that interference effects are occurring. On the one hand, comparative data is

essential when the interference is contributing only a short delay (or a small

increase in block visits in the previous example). On the other hand, if the

Avoiding Pitfalls in TKPROF Interpretation

The SQL Trace Facility and TKPROF 14-23

interference is contributing only a modest overhead, and the statement is essentially

efficient, its statistics may never have to be subjected to analysis.

The Trigger Trap
The resources reported for a statement include those for all of the SQL issued while

the statement was being processed. Therefore, they include any resources used

within a trigger, along with the resources used by any other recursive SQL (such as

that used in space allocation). With the SQL trace facility enabled, TKPROF reports

these resources twice. Avoid trying to tune the DML statement if the resource is

actually being consumed at a lower level of recursion.

You may need to inspect the raw trace file to see exactly where the resource is being

expended. The entries for recursive SQL follow the PARSING IN CURSOR entry for

the user’s statement. Within the trace file, the order is less easily defined.

The "Correct" Version
For comparison with the output that results from one of the foregoing traps, here is

the TKPROF output for the indexed query with the index in place and without any

contention effects.

select NAME_ID
from CQ_NAMES where NAME = ’FLOOR’;

call count cpu elapsed disk query current rows
----- ------ ------ -------- ----- ------ ------- -----
Parse 1 0.01 0.02 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 2 0 1

Misses in library cache during parse: 0
Parsing user id: 02 (USER2)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT
 1 TABLE ACCESS (BY ROWID) OF ’CQ_NAMES’
 2 INDEX (RANGE SCAN) OF ’CQ_NAMES_NAME’ (NON-UNIQUE)

One of the marked features of this correct version is that the parse call took 10

milliseconds of both elapsed and CPU time, but the query apparently took no time

at all to execute and no time at all to perform the fetch. In fact, no parse took place

because the query was already available in parsed form within the shared SQL area.

TKPROF Output Example

14-24 Oracle8i Tuning

These anomalies arise because the clock tick of 10 msec is too long to reliably record

simple and efficient queries.

TKPROF Output Example
This section provides an extensive example of TKPROF output. Portions have been

edited out for the sake of brevity.

Header
Copyright (c) Oracle Corporation 1979, 1998. All rights reserved.
Trace file: v80_ora_2758.trc
Sort options: default
**
count = number of times OCI procedure was executed
cpu = cpu time in seconds executing
elapsed = elapsed time in seconds executing
disk = number of physical reads of buffers from disk
query = number of buffers gotten for consistent read
current = number of buffers gotten in current mode (usually for update)
rows = number of rows processed by the fetch or execute call
**
The following statement encountered a error during parse:
select deptno, avg(sal) from emp e group by deptno
 having exists (select deptno from dept
 where dept.deptno = e.deptno
 and dept.budget > avg(e.sal)) order by 1
Error encountered: ORA-00904
**

Body
alter session set sql_trace = true
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 0 0.00 0.00 0 0 0 0
Execute 1 0.00 0.10 0 0 0 0
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 1 0.00 0.10 0 0 0 0
Misses in library cache during parse: 0
Misses in library cache during execute: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)

TKPROF Output Example

The SQL Trace Facility and TKPROF 14-25

**
select emp.ename, dept.dname from emp, dept
 where emp.deptno = dept.deptno

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.11 0.13 2 0 1 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 2 2 4 14
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.11 0.13 4 2 5 14
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 14 MERGE JOIN
 4 SORT (JOIN)
 4 TABLE ACCESS (FULL) OF ’DEPT’
 14 SORT (JOIN)
 14 TABLE ACCESS (FULL) OF ’EMP’

**
select a.ename name, b.ename manager from emp a, emp b
 where a.mgr = b.empno(+)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.01 0.01 1 50 2 14
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.02 0.02 1 50 2 14
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 01 (USER01)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 13 NESTED LOOPS (OUTER)
 14 TABLE ACCESS (FULL) OF ’EMP’
 13 TABLE ACCESS (BY ROWID) OF ’EMP’

 26 INDEX (RANGE SCAN) OF ’EMP_IND’ (NON-UNIQUE)

TKPROF Output Example

14-26 Oracle8i Tuning

**
select ename,job,sal
from emp
where sal =
 (select max(sal)
 from emp)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 12 4 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.00 0.00 0 12 4 1
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 01 (USER01)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 14 FILTER
 14 TABLE ACCESS (FULL) OF ’EMP’
 14 SORT (AGGREGATE)
 14 TABLE ACCESS (FULL) OF ’EMP’
**
select deptno
from emp
where job = ’clerk’
group by deptno
having count(*) >= 2

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 1 1 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.00 0.00 0 1 1 0
Misses in library cache during parse: 13
Optimizer goal: CHOOSE
Parsing user id: 01 (USER01)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 0 FILTER

TKPROF Output Example

The SQL Trace Facility and TKPROF 14-27

 0 SORT (GROUP BY)
 14 TABLE ACCESS (FULL) OF ’EMP’
**
select dept.deptno,dname,job,ename
from dept,emp
where dept.deptno = emp.deptno(+)
order by dept.deptno

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 3 3 10
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.00 0.00 0 3 3 10
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 01 (USER01)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 14 MERGE JOIN (OUTER)
 4 SORT (JOIN)
 4 TABLE ACCESS (FULL) OF ’DEPT’
 14 SORT (JOIN)
 14 TABLE ACCESS (FULL) OF ’EMP’
**
select grade,job,ename,sal
from emp,salgrade
where sal between losal and hisal
order by grade,job

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.04 0.06 2 16 1 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.01 0.01 1 10 12 10
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.05 0.07 3 26 13 10
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE

TKPROF Output Example

14-28 Oracle8i Tuning

 14 SORT (ORDER BY)
 14 NESTED LOOPS
 5 TABLE ACCESS (FULL) OF ’SALGRADE’
 70 TABLE ACCESS (FULL) OF ’EMP’
**
select lpad(’ ’,level*2)||ename org_chart,level,empno,mgr,job,deptno
from emp
connect by prior empno = mgr
start with ename = ’clark’
 or ename = ’blake’
order by deptno

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.01 0.01 0 1 2 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.02 0.02 0 1 2 0
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 0 SORT (ORDER BY)
 0 CONNECT BY
 14 TABLE ACCESS (FULL) OF ’EMP’
 0 TABLE ACCESS (BY ROWID) OF ’EMP’
 0 TABLE ACCESS (FULL) OF ’EMP’
**
create table tkoptkp (a number, b number)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.01 0.01 1 0 1 0
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 0.01 0.01 1 0 1 0
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---

TKPROF Output Example

The SQL Trace Facility and TKPROF 14-29

 0 CREATE TABLE STATEMENT GOAL: CHOOSE

**
insert into tkoptkp
values
 (1,1)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.07 0.09 0 0 0 0
Execute 1 0.01 0.20 2 2 3 1
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 0.08 0.29 2 2 3 1
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 INSERT STATEMENT GOAL: CHOOSE
.
**
insert into tkoptkp select * from tkoptkp

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.02 0.02 0 2 3 11
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 0.02 0.02 0 2 3 11
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 INSERT STATEMENT GOAL: CHOOSE
 12 TABLE ACCESS (FULL) OF ’TKOPTKP’
**
select *
from
 tkoptkp where a > 2

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------

TKPROF Output Example

14-30 Oracle8i Tuning

Parse 1 0.01 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 1 2 10
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.01 0.01 0 1 2 10
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 24 TABLE ACCESS (FULL) OF ’TKOPTKP’
**

TKPROF Output Example

The SQL Trace Facility and TKPROF 14-31

Summary

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 18 0.40 0.53 30 182 3 0
Execute 19 0.05 0.41 3 7 10 16
Fetch 12 0.05 0.06 4 105 66 78
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 49 0.50 1.00 37 294 79 94
Misses in library cache during parse: 18
Misses in library cache during execute: 1
OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 69 0.49 0.60 9 12 8 0
Execute 103 0.13 0.54 0 0 0 0
Fetch 213 0.12 0.27 40 435 0 162
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 385 0.74 1.41 49 447 8 162
Misses in library cache during parse: 13
 19 user SQL statements in session.
 69 internal SQL statements in session.
 88 SQL statements in session.
 17 statements EXPLAINed in this session.
**
Trace file: v80_ora_2758.trc
Trace file compatibility: 7.03.02
Sort options: default
 1 session in tracefile.
 19 user SQL statements in trace file.
 69 internal SQL statements in trace file.
 88 SQL statements in trace file.
 41 unique SQL statements in trace file.
 17 SQL statements EXPLAINed using schema:
 SCOTT.prof$plan_table
 Default table was used.
 Table was created.
 Table was dropped.
 1017 lines in trace file.

TKPROF Output Example

14-32 Oracle8i Tuning

Using Oracle Trace 15-1

15
Using Oracle Trace

This chapter describes how to use Oracle Trace to collect Oracle server event data. It

covers:

■ Introduction to Oracle Trace

■ Using Oracle Trace Manager

■ Using Oracle Trace Data Viewer

■ Manually Collecting Oracle Trace Data

Introduction to Oracle Trace
Oracle Trace is a general-purpose data collection product and is part of the Oracle

Enterprise Manager systems management product family. The Oracle server uses

Oracle Trace to collect performance and resource utilization data such as SQL Parse,

Execute, Fetch statistics, and Wait statistics.

Using Oracle Trace Data
Among the many advantages of using Oracle Trace is the integration of Oracle

Trace with many other applications. You can use Oracle Trace data collected for the

Oracle server in the following applications as shown in Figure 15–1:

See Also: Oracle Trace User’s Guide and Oracle Trace Developer’s
Guide in the Oracle Diagnostics Pack documentation set. These

books contain a complete list of events and data that you can collect

for the Oracle server as well as information on how to implement

tracing in your own products and applications.

Introduction to Oracle Trace

15-2 Oracle8i Tuning

■ Oracle Expert

You can use information collected with Oracle Trace as an optional source of

SQL workload data in Oracle Expert. This SQL data is used when

recommending the addition or removal of indexes. Refer to the Oracle Tuning
Pack documentation for additional information.

■ Oracle Trace Data Viewer

Oracle Trace Data Viewer is a simple viewer for inspecting Oracle Trace

collections containing SQL and Wait statistics. You can export Oracle Trace Data

to the following products for further analysis:

– SQL Analyze

You can select one or more rows in Data Viewer and save the SQL

statement text to a file that you can import into SQL Analyze. You can then

use SQL Analyze to tune these individual statements.

– Microsoft Excel

SQL in Data Viewer can be saved to a CSV (Comma Separated Value) file

for viewing in Microsoft Excel.

Introduction to Oracle Trace

Using Oracle Trace 15-3

Figure 15–1 Integration of Oracle Trace with Other Applications

Importing Oracle Trace Data into Oracle Expert
You can use Oracle Trace to collect workload data for use in the Oracle Expert

application. Oracle Trace collects resource utilization statistics for SQL statements

executing against a database in real time. Oracle Trace allows you to collect data

about all the SQL statements executing against a database during periods of poor

performance.

You control the duration of an Oracle Trace collection period. To obtain SQL

workload data for a 15-minute period of poor performance, stop collection

immediately after the poor performance interval ends.

Importing Data Viewer SQL Into Oracle SQL Analyze
While using Data Viewer, you can select one or more rows in the top portion of the

Data View window to save to a file. When you choose SQL (SQL Analyze Format)

from File/Save, a file containing query text will be saved. You can then import this

*.sql file into Oracle SQL Analyze for tuning of the selected statements.

Oracle SQL Analyze can show you the execution plan for individual queries and let

you experiment with various optimizer modes and hints.

Oracle Trace
Collected Data

Oracle ExpertOracle Trace
Data Viewer

Microsoft
Excel

Oracle SQL
Analyze

Using Oracle Trace Manager

15-4 Oracle8i Tuning

Importing Data Viewer Information into Microsoft Excel
While using Data Viewer, you can select one or more rows in the top portion of the

Data View window to save to a file. When you choose the CSV file format, Oracle

Trace creates a *.csv file that you can load into a Microsoft Excel spreadsheet.

Using Oracle Trace Manager
Oracle Trace provides a graphical Oracle Trace Manager application to create,

schedule, and administer Oracle Trace collections for products containing Oracle

Trace calls.

The Oracle server has been coded with Oracle Trace API calls to collect both SQL

and Wait statistics with a minimum of overhead. Using the Oracle Trace Manager

graphical user interface you can:

■ Schedule collections

■ Filter collections by user

■ Filter collections by type of Wait event.

■ Format collected data to database tables to preserve historical data

■ View SQL and Wait statistics using Oracle Trace Data Viewer

Managing Collections
Use and control of Oracle Trace revolves around the concept of a "collection." A

collection is data collected for events that occurred while an instrumented product

was running.

With the Oracle Trace Manager, you can schedule and manage collections. When

creating a collection, you define the attributes of the collection, such as the

collection name, the products and event sets to be included in the collection, and the

start and end times. The Oracle Trace Manager includes a Collection Wizard that

facilitates the creation and execution of collections.

Once you create a collection you can execute it immediately or schedule it to

execute at a specific time or at specified intervals. When a collection executes, it

produces a file containing the event data for the products participating in the

collection. You can also use a collection as a template for creating other similar

collections.

Using Oracle Trace Manager

Using Oracle Trace 15-5

Collecting Event Data
An event is the occurrence of some activity within a product. Oracle Trace collects

data for predefined events occurring within a software product created with the

Oracle Trace API. That is, the product is embedded with Oracle Trace API calls. An

example of an event is a parse or fetch.

There are two types of events:

■ Point events

Point events represent an instantaneous occurrence of something in the

instrumented product. An example of a point event is an error occurrence.

■ Duration events

Duration events have a beginning and ending. An example of a duration event

is a transaction. Duration events can have other events occur within them; for

example, an error can occur within a transaction.

The Oracle server is instrumented for 13 events. Three of these events are:

■ Database Connection: A point event that records data such as the server login

user name.

■ SQL Parse: One of the series of SQL processing duration events. This event

records a large set of data such as sorts, resource use, and cursor numbers.

■ RowSource: Data about the execution plan, such as SQL operation, position,

object identification, and number of rows processed by a single row source

within an execution plan.

Accessing Collected Data
During a collection, Oracle Trace buffers event data in memory and periodically

writes it to a collection binary file. This method ensures low overhead associated

with the collection process. You can access event data collected in the binary file by

formatting the data to predefined tables which makes the data available for fast,

flexible access. These predefined tables are called "Oracle Trace formatter tables."

Oracle Trace Manager provides a mechanism for formatting collection data

immediately after a collection or at a later time.

When formatting a collection, you identify the database where Oracle Trace

Manager creates the formatted collection as follows:

1. Using Oracle Trace Manager, select a collection to format.

Using Oracle Trace Data Viewer

15-6 Oracle8i Tuning

2. Choose the Format command.

3. Specify a target database where the data is to reside.

The collection you select determines which collection definition file and data

collection file will be used. The formatted target database determines where the

formatted collection data will be stored.

Once the data is formatted, you can access the data using the Data Viewer or by

using SQL reporting tools and scripts.

Also, you can access event data by running the Detail report from the Oracle Trace

reporting utility. This report provides a basic mechanism for viewing a collection’s

results. You have limited control over what data is reported and how it is presented.

Using Oracle Trace Data Viewer
After using Oracle Trace to collect data, run the Oracle Trace Data Viewer by

selecting "View Formatted Data..." from the Oracle Trace Collection menu. Or you

can select it directly from the Oracle Diagnostics Pack toolbar. Data Viewer can

compute SQL and Wait statistics and resource utilization metrics from the raw data

that is collected. Once Data Viewer computes statistics, targeting resource intensive

SQL becomes a much simpler task.

Data Viewer computes SQL statistics from data collected by Oracle Trace Manager

for all executions of a query during the collection period. Resource utilization

during a single execution of a SQL statement may be misleading due to other

concurrent activities on the database or node. Combining statistics for all executions

may lend a clearer picture about the typical resource utilization occurring when a

given query is executed.

Oracle Trace Predefined Data Views
SQL and Wait statistics are presented in a comprehensive set of Oracle Trace

predefined data views. Within Wait statistics, a data view is the definition of a query

See Also: The Oracle Trace Developer’s Guide in the Oracle

Diagnostics Pack documentation set for additional information

about predefined SQL scripts and the Detail report.

Note: You can omit recursive SQL from all data views.

Using Oracle Trace Data Viewer

Using Oracle Trace 15-7

into the data collected by Oracle Trace. A data view consists of items or statistics to

be returned and optionally a sort order and limit of rows to be returned.

With the data views provided by Data Viewer, you can:

■ Examine important statistical data, for example, elapsed times or

disk-to-logical-read hit rates.

■ Drill down as needed to get additional details about the statement’s execution.

In addition to the predefined data views, you can define your own data views using

the Oracle Trace Data View Wizard.

Once Data Viewer has computed SQL and Wait statistics, a dialog box showing the

available data views appears. SQL Statistic data views are grouped by I/O, Parse,

Elapsed Time, CPU, Row, Sort, and Wait statistics as shown in Figure 15–2. A

description of the selected data view is shown on the right-hand side of the screen.

Using Oracle Trace Data Viewer

15-8 Oracle8i Tuning

Figure 15–2 Oracle Trace Data Viewer - Collection Screen

Table 15–1 explains the predefined data views shown in the previous figure as

provided by Oracle Trace.

Using Oracle Trace Data Viewer

Using Oracle Trace 15-9

Table 15–1 Predefined Data Views Provided By Oracle Trace

View Name Sort By Data Displayed Description

Logical Reads Total number of
logical reads
performed for each
distinct query.

Total number of blocks
read during parses,
executions and fetches.

Logical reads for parses,
executions and fetches of
the query.

Logical data block reads include data block reads
from both memory and disk.

Input/output is one of the most expensive operations
in a database system. I/O intensive statements can
monopolize memory and disk usage causing other
database applications to compete for these resources.

Disk Reads Queries that incur the
greatest number of
disk reads.

Disk reads for parses,
executions, and fetches.

Disk reads also known as physical I/O are database
blocks read from disk. The disk read statistic is
incremented once per block read regardless of
whether the read request was for a multiblock read or
a single block read. Most physical reads load data,
index, and rollback blocks from the disk into the
buffer cache.

A physical read count can indicate a high miss rate
within the data buffer cache.

Logical
Reads/Rows
Fetched Ratio

Number of logical
reads divided by the
number of rows
fetched for all
executions of the
current query.

Total logical I/O.

Total number of rows
fetched.

The more blocks accessed relative to the number of
rows actually returned the more expensive each row
is to return.

Can be a rough indication of relative expense of a
query.

Disk Reads/Rows
Fetched Ratio

Number of disk reads
divided by the
number of rows
fetched for all
executions of the
current query.

Total disk I/O.

Total number of rows
fetched.

The greater the number of blocks read from disk for
each row returned the more expensive each row is to
return.

Can be a rough indication of relative expense of a
query.

Disk
Reads/Execution
Ratio

Total number of disk
reads per distinct
query divided by the
number of executions
of that query.

Total disk I/O.

Logical I/O for the query
as well as the number of
executions of the query.

Indicates which statements incur the greatest number
of disk reads per execution.

Disk
Reads/Logical
Reads Ratio

Greatest miss rate
ratio of disk to logical
reads.

Individual logical reads.

Disk reads for the query as
well as the miss rate.

The miss rate indicates the percentage of times the
Oracle server needed to retrieve a database block on
disk as opposed to locating it in the data buffer cache
in memory.

The miss rate for the data block buffer cache is
derived by dividing the physical reads by the number
of accesses made to the block buffer to retrieve data in
consistent mode plus the number of blocks accessed
through single block gets.

Memory access is much faster than disk access, the
greater the hit ratio, the better the performance.

Using Oracle Trace Data Viewer

15-10 Oracle8i Tuning

Re-Parse
Frequency

Queries with the
greatest reparse
frequency.

Number of cache misses.

Total number of parses.

Total elapsed time parsing.

Total CPU clock ticks
spent parsing.

The Oracle server determines whether there is an
existing shared SQL area containing the parsed
representation of the statement in the library cache. If
so, the user process uses this parsed representation
and executes the statement immediately.

If missed in the library cache, re-check the statement
for syntax, valid objects, and security. Also, the
optimizer must determine a new execution plan.

The parse count statistic is incremented for every
parse request, regardless of whether the SQL
statement is already in the shared SQL area.

Parse/Execution
Ratio

Number of parses
divided by the
number executions
per statement.

Individual number of
parses.

Number of executions.

The count of parses to executions should be as close
to one as possible. If there are a high number of parses
per execution then the statement has been needlessly
reparsed. This could indicate the lack of use of bind
variables in SQL statements or poor cursor reuse.

Reparsing a query means that the SQL statement has
to be re-checked for syntax, valid objects and security.
Also a new execution plan will need to be determined
by the optimizer.

Average Elapsed
Time

Greatest average time
spent parsing,
executing and
fetching on behalf of
the query.

Individual averages for
parse, execution and fetch.

The average elapsed time for all parses, executions
and fetches-per-execution are computed, then
summed for each distinct SQL statement in the
collection.

Total Elapsed
Time

Greatest total elapsed
time spent parsing,
executing and
fetching on behalf of
the query.

Individual elapsed times
for parses, executions and
fetches.

The total elapsed time for all parses, executions and
fetches are computed, then summed for each distinct
SQL statement in the collection.

Parse Elapsed
Time

Total elapsed time for
all parses associated
with a distinct SQL
statement.

SQL cache misses.

Elapsed times for
execution and fetching.

Total elapsed time.

During parsing the Oracle server determines whether
there is an existing shared SQL area containing the
parsed representation of the statement in the library
cache. If so, the user process uses this parsed
representation and executes the statement
immediately.

If missed in the library cache, the statement needs to
be rechecked for syntax, valid objects and security.
Also a new execution plan will need to be determined
by the optimizer.

Execute Elapsed
Time

Greatest total elapsed
time for all
executions associated
with a distinct SQL
statement.

Total elapsed time.

Individual elapsed times
for parsing and fetching.

The total elapsed time of all execute events for all
occurrences of the query within an Oracle Trace
collection.

Table 15–1 Predefined Data Views Provided By Oracle Trace

View Name Sort By Data Displayed Description

Using Oracle Trace Data Viewer

Using Oracle Trace 15-11

Fetch Elapsed
Time

Greatest total elapsed
time for all fetches
associated with a
distinct SQL
statement.

Number of rows fetched.

Number of fetches.

Number of executions.

Total elapsed time.

Individual elapsed times
for parsing and executing.

The total elapsed time spent fetching data on behalf of
all occurrences of the current query within the Oracle
Trace collection.

CPU Statistics Total CPU clock ticks
spent parsing,
executing and
fetching on behalf of
the SQL statement.

CPU clock ticks for parses,
executions and fetches.

Number of SQL cache
misses and sorts in
memory.

When SQL statements and other types of calls are
made to an Oracle server, a certain amount of CPU
time is necessary to process the call. Average calls
require a small amount of CPU time. However, a SQL
statement involving a large amount of data, a
runaway query, in memory sorts or excessive
reparsing can potentially consume a large amount of
CPU time.

CPU time displayed is in terms of the number of CPU
clock ticks on the operating system housing the
database.

Number of Rows
Returned

Greatest total number
of rows returned
during execution and
fetch for the SQL
statement.

Number of rows returned
during the fetch operation
as well as the execution
rows.

Targets queries that manipulate the greatest number
of rows during fetching and execution. May mean
that high gains can be made by tuning row intensive
queries.

Rows
Fetched/Fetch
Count Ratio

Number of rows
fetched divided by
the number of
fetches.

Individual number of rows
fetched.

Number of fetches.

This ratio shows how many rows were fetched at a
time. It may indicate the level to which array fetch
capabilities have been utilized. A ratio close to one
may indicate an opportunity to optimize code by
using array fetches.

Sorts on Disk Queries that did the
greatest number of
sorts on disk.

Sort statistics for SQL
statements.

Number of in memory
sorts.

Total number of rows
sorted.

Sorts on disk are sorts that could not be performed in
memory, therefore they are more expensive because
memory access is faster than disk access.

Sorts in Memory Queries that did the
greatest number of
sorts in memory.

Sort statistics for SQL
statements.

Number of disk sorts.

Total number of rows
sorted.

Sorts in memory are sorts that could be performed
completely within the sort buffer in memory without
using the temporary tablespace segments.

Rows Sorted Queries that sorted
the greatest number
of rows.

Number of in memory
sorts.

Number of sorts on disk.

Returns sort statistics for SQL statements ordered by
queries that sorted the greatest number of rows.

Table 15–1 Predefined Data Views Provided By Oracle Trace

View Name Sort By Data Displayed Description

Using Oracle Trace Data Viewer

15-12 Oracle8i Tuning

Viewing Oracle Trace Data
Double clicking on SQL or Wait event data views provided by Data Viewer causes

Oracle trace to query the collection data and display data sorted by criteria

described in the data view's description.

For example, double clicking the "Disk Reads/Log Reads Ratio" view returns data

sorted by queries with the highest data buffer cache miss rate. This also displays the

individual disk and logical read values.

Double clicking the "Average Elapsed Time" data view returns data sorted by

queries that took the greatest average elapsed time to parse, execute, and fetch. It

also displays the average elapsed times for parsing, execution, and fetching.

Figure 15–3 shows data in the "Average Elapsed Time" data view. Query text and

statistics appear in the top portion of the window. Clicking any column headers

causes the Data Viewer to sort rows by the statistic in that column.

Waits by Total
Wait Time

Highest total wait
time per distinct type
of wait.

Average wait time, total
wait time and number of
waits per wait type.

Waits are sorted by wait description or type that had
the greatest cumulative wait time for all occurrences
of the wait type within the collection.

Waits by Average
Wait Time

Highest average wait
time per wait type.

Average wait time, total
wait time and number of
waits per wait type.

Waits are sorted by wait description or type that had
the greatest average wait time for all occurrences of
the wait type within the collection.

Waits by Event
Frequency

Frequency of waits
per wait type.

Number of waits per wait
type, average wait time,
and total wait time.

Waits are sorted by wait events or wait descriptions
that appear most frequently within the collection.

Table 15–1 Predefined Data Views Provided By Oracle Trace

View Name Sort By Data Displayed Description

Using Oracle Trace Data Viewer

Using Oracle Trace 15-13

Figure 15–3 Oracle Trace Data Viewer - Data View Screen

The currently selected data view’s SQL text is shown in the lower portion of the

window in the SQL Statement property sheet. Full statistical details about the

currently selected data view also appear in the Details property sheet.

When examining a data view like that shown in Figure 15–3, you can print the

following:

■ Data view statistics, located in the top portion of the screen, or

■ Current SQL statement text in formatted output plus details on all statistical

data collected for the currently selected query, located in the Details property

page.

Window focus at the time of printing determines which portion of the screen is

printed. For example, if focus is on the top portion of the screen, the tabular form of

all statistics and SQL for this data view is printed.

Using Oracle Trace Data Viewer

15-14 Oracle8i Tuning

SQL Statement Property Page
The SQL Statement property page displays the currently selected query in a

formatted output.

Details Property Page
The Details property page displays a detailed report on statistics for all executions

of a given query within an Oracle Trace collection. Text for the currently selected

SQL statement is posted at the end of the property page.

Example of Details Property Page
Statistics for all parses, executions, and fetches of the SQL statement.

The number of misses in library cache during Parse: 1.000000

Elapsed time statistics for the SQL statement:

 Average Elapsed Time: 0.843000
 Total Elapsed Time: 0.843000

 Total Elapsed Parse: 0.000000
 Total Elapsed Execute: 0.843000
 Total Elapsed Fetch: 0.000000

 Average Elapsed Parse: 0.000000
 Average Elapsed Execute: 0.843000
 Average Elapsed Fetch: 0.000000

Number of times parse, execute and fetch were called:

 Number of Parses: 1
 Number of Executions: 1
 Number of Fetches: 0

Logical I/O statistics for parse, execute and fetch calls:

 Logical I/O for Parses: 1
 Logical I/O for Executions: 247
 Logical I/O for Fetches: 0
 Logical I/O Total: 0

Disk I/O statistics for parse, execute and fetch calls:

 Disk I/O for Parses: 0
 Disk I/O for Executions: 28

Using Oracle Trace Data Viewer

Using Oracle Trace 15-15

 Disk I/O for Fetches: 0
 Disk I/O Total: 0

CPU statistics for parse, execute and fetch calls:

 CPU for Parses: 0
 CPU for Executions: 62500
 CPU for Fetches: 0
 CPU Total: 62500

Row statistics for execute and fetch calls:

 Rows processed during Executions: 104
 Rows processed during Fetches: 0
 Rows Total: 104

Sort statistics for execute and fetch calls:

 Sorts on disk: 0
 Sorts in memory: 2
 Sort rows: 667

Hit Rate - Logical I/O divided by Disk I/O: 0.112903

Logical I/O performed divided by rows actually processed: 2.384615

Disk I/O performed divided by number of executions: 28.000000

The number of parses divided by number of executions: 1.000000

The number of rows fetched divided by the number of fetches: 0.000000

 INSERT INTO tdv_sql_detail
 (collection_number, sql_text_hash,
 "LIB_CACHE_ADDR")
 SELECT DISTINCT collection_number,
 sql_text_hash,
 "LIB_CACHE_ADDR"
 FROM v_192216243_f_5_e_7_8_0
 WHERE collection_number = :b1;

Using Oracle Trace Data Viewer

15-16 Oracle8i Tuning

Getting More Information on a Selected Query
There are two convenient ways to obtain additional data for the currently selected

SQL statement:

■ To modify a data view to add or remove statistics or items, select Modify from

the Data View menu. You may add or remove statistics in the Items property

sheet. These statistics appear as new columns in the data view. The selected

query in Figure 15–3 is:

 SELECT COUNT(DISTINCT WAIT_TIME)
 FROM v_192216243_f_5_e_13_8_0
 WHERE collection_number = :1;

This query counts distinct values in the WAIT_TIME column of the

v_192216243_f_5_e_13_8_0 table. By modifying the existing data view, you can

add other statistics that may be of interest such as "Sort Rows", which is the

number of rows sorted, or "Execute CPU", which is the number of CPU clock

ticks during execution.

This query counts distinct values in the WAIT_TIME column of the WAITS

table. By modifying the existing data view you can add other statistics that may

be of interest such as "Execute Rows", which is the number of rows processed

during execution, or "Execute CPU", which is the number of CPU clock ticks

during execution.

You can also remove existing columns, change the sort order, or change the

default number of rows to view. You can save a modified view to a new,

user-defined data view. Oracle stores user-defined data views in the Custom

data view container following the Data Viewer supplied list of SQL and Wait

data views.

■ Drill to statistics on all parses, executions and fetches of the selected query by

clicking the Drill icon in the toolbar. The Drill down Data View dialog is

displayed as shown in Figure 15–4.

Using Oracle Trace Data Viewer

Using Oracle Trace 15-17

Figure 15–4 Oracle Trace Data Viewer - Drill Down Data View Screen

Drill-down data views show individual statistics for all parses, executions, and

fetches.

In Figure 15–4 the "Basic Statistics for Parse/Execute/Fetch" drill-down data

view is selected. It displays statistics similar to those from TKPROF.

Note: For more information on TKPROF, please refer to

Chapter 12, "Overview of Diagnostic Tools".

Using Oracle Trace Data Viewer

15-18 Oracle8i Tuning

Table 15–2 Drill-down Data Views

Drill-down Name Sort By Data Displayed Description

Basic Statistics for
Parse/Execute/Fetch

Greatest
elapsed time.

For each distinct call:.

CPUs.

Elapsed time.

Disk I/O.

Logical I/O.

Number of rows processed.

Parse, Execution, and Fetch statistics which
are similar to statistics from TKPROF.

CPU Statistics for
Parse/Execute/Fetch

Greatest
number of
CPUs.

CPU total.

Pagefaults.

CPU and pagefault statistics for Parses,
Executions, and Fetches of the current
query.

CPU total is the number of clock ticks in
both user and system mode. The clock tick
granularity is specific to the operating
system on which the database resides.

I/O Statistics for
Parse/Execute/Fetch

Greatest
number of
disk I/Os.

Logical and Disk I/O statistics.

Pagefault I/O (number of hard
pagefaults).

Input I/O (number of times the file
system performed input).

Output I/O (number of times the file
system performed output).

I/O statistics for parses, executions, and
fetches.

Parse Statistics Greatest
elapsed time.

Current user identifier.

Schema identifiers.

Parse statistics, for example, whether the
current statement was missed in library
cache, Oracle optimizer mode, current user
identifier, and schema identifier.

Manually Collecting Oracle Trace Data

Using Oracle Trace 15-19

Manually Collecting Oracle Trace Data
Though the Oracle Trace Manager is the primary interface to Oracle Trace, you can

optionally force a manual collection of Oracle Trace data. You can do this by using a

command-line interface, editing initialization parameters, or by executing stored

procedures.

Using the Oracle Trace Command-Line Interface
Another option for controlling Oracle Trace server collections is the Oracle Trace

CLI (Command-line Interface). The CLI collects event data for all server sessions

attached to the database at collection start time. Sessions that attach after the

collection is started are excluded from the collection. The CLI is invoked by the

OTRCCOL command for the following functions:

■ OTRCCOL START job_id input_parameter_file

■ OTRCCOL STOP job_id input_parameter_file

■ OTRCCOL FORMAT input_parameter_file

Row Statistics for
Execute/Fetch

Greatest
number of
rows
returned.

Number of rows returned.

Number of rows sorted.

Number of rows returned during a full
table scan.

Execution and fetch row statistics.

Sort Statistics for
Parse/Execute/Fetch

Greatest
elapsed time.

Sorts on disk.

Sorts in memory.

Number of rows sorted.

Number of rows returned from a full
table scan.

Parse, execution, and fetch sort statistics.

Wait Parameters Wait_time. Description.

Wait_time.

P1.

P2.

P3.

Investigating waits may help identify
sources of contention.

P1, P2, and P3 parameters are values that
provide more information about specific
wait events. The parameters are foreign
keys to views that are wait event
dependent. For example, for latch waits, P2
is the latch number that is a foreign key to
V$LATCH.

The meaning of each parameter is specific
to each wait type.

Table 15–2 Drill-down Data Views

Drill-down Name Sort By Data Displayed Description

Manually Collecting Oracle Trace Data

15-20 Oracle8i Tuning

■ OTRCCOL DCF col_name cdf_file

■ OTRCCOL DFD col_name username password service

The parameter JOB_ID can be any numeric value but must be unique and you must

remember this value to stop the collection. The input parameter file contains

specific parameter values required for each function as shown in the following

examples. COL_NAME (collection name) and CDF_FILE (collection definition file)

are initially defined in the START function input parameter file.

The OTRCCOL START command invokes a collection based upon parameter values

contained in the input parameter file. For example:

 OTRCCOL START 1234 my_start_input_file

Where file MY_START_INPUT_FILE contains the following input parameters:

The server event sets that can be used as values for the fdf_file are ORACLE,

ORACLEC, ORACLED, ORACLEE, and ORACLESM.

The OTRCCOL STOP command halts a running collection as follows:

 OTRCCOL STOP 1234 my_stop_input_file

Where my_stop_input_file contains the collection name and cdf_file name.

The OTRCCOL FORMAT command formats the binary collection file to Oracle

tables. An example of the FORMAT command is:

 otrccol format my_format_input_file

Where my_format_input_file contains the following input parameters:

col_name my_collection

dat_file <usually same as collection name>.dat

cdf_file <usually same as collection name>.cdf

fdf_file <server event set>.fdf

regid 1 192216243 0 0 5 <database SID>

See Also: "Using Initialization Parameters to Control Oracle

Trace" on page 15-21 for more information on the server event sets.

username <database username>

password <database password>

Manually Collecting Oracle Trace Data

Using Oracle Trace 15-21

A full_format value of 1 produces a full format; a value of 0 produces a partial

format.

The OTRCCOL DCF command deletes collection files for a specific collection. The

OTRCCOL DFD command deletes formatted data from the Oracle Trace formatter

tables for a specific collection.

Using Initialization Parameters to Control Oracle Trace
Six parameters are set up by default to control Oracle Trace. By logging into the

administrator account in your database and executing the SHOW PARAMETERS

TRACE command, you will see the following parameters as shown in Table 15–3:

You can modify the Oracle Trace initialization parameters and use them by adding

them to your initialization file.

service <database service name>

cdf_file <usually same as collection name>.cdf

full_format <0/1>

See Also: "Formatting Oracle Trace Data to Oracle Tables" on

page 15-25 for information on formatting part or all of an Oracle

Trace collection and for other important information on creating the

Oracle Trace formatting tables prior to running the format

command.

Table 15–3 Oracle Trace Initialization Parameters

Name Type Value

ORACLE_TRACE_COLLECTION_NAME string [null]

ORACLE_TRACE_COLLECTION_PATH string $ORACLE_HOME/otrace/admin/cdf

ORACLE_TRACE_COLLECTION_SIZE integer 5242880

ORACLE_TRACE_ENABLE boolean FALSE

ORACLE_TRACE_FACILITY_NAME string oracled

ORACLE_TRACE_FACILITY_PATH string $ORACLE_HOME/otrace/admin/cdf

Manually Collecting Oracle Trace Data

15-22 Oracle8i Tuning

Enabling Oracle Trace Collections
The ORACLE_TRACE_ENABLE parameter is set to FALSE by default. A value of

FALSE disables any use of Oracle Trace for that Oracle server.

To enable Oracle Trace collections for the server, set the parameter to TRUE. Having

the parameter set to TRUE does not start an Oracle Trace collection, but instead

allows Oracle Trace to be used for that server. You can then start Oracle Trace in one

of the following ways:

■ Using the Oracle Trace Manager application supplied with the Oracle

Diagnostics Pack.

■ Setting the ORACLE_TRACE_COLLECTION_NAME parameter.

When ORACLE_TRACE_ENABLE is set to TRUE, you can start and stop an Oracle

Trace server collection by either using the Oracle Trace Manager application that is

supplied with the Oracle Diagnostics Pack, or you can enter a collection name in the

ORACLE_TRACE_COLLECTION_NAME parameter. The default value for this

parameter is NULL. A collection name can be up to 16 characters in length. You

must then shut down your database and start it up again to activate the parameters.

If a collection name is specified, when you start the server, you automatically start

an Oracle Trace collection for all database sessions, which is similar in functionality

to SQL Trace.

To stop the collection that was started using the

ORACLE_TRACE_COLLECTION_NAME parameter, shut down the server

instance and reset the ORACLE_TRACE_COLLECTION_NAME to NULL. The

collection name specified in this value is also used in two collection output file

names: the collection definition file (collection_name.cdf) and the binary data file

(collection_name.dat).

Determining the Event Set that Oracle Trace Collects
The ORACLE_TRACE_FACILITY_NAME initialization parameter specifies the

event set that Oracle Trace collects. The name of the DEFAULT event set is

Note: This chapter references file path names on UNIX-based

systems. For the exact path on other operating systems, please see

your Oracle platform-specific documentation.

See Also: A complete discussion of these parameters is provided

in Oracle8i Reference.

Manually Collecting Oracle Trace Data

Using Oracle Trace 15-23

ORACLED. The ALL event set is ORACLE, the EXPERT event set is ORACLEE, the

SUMMARY event set is ORACLESM, and the CACHEIO event set is ORACLEC.

If once restarted, the database does not begin collecting data, check the following:

■ The event set file, identified by ORACLE_TRACE_FACILITY_NAME, with .fdf

appended to it, should be in the directory specified by the

ORACLE_TRACE_FACILITY_PATH initialization parameter. The exact

directory that this parameter specifies is platform-specific.

■ The following files should exist in your Oracle Trace administrative directory:

REGID.DAT, PROCESS.DAT, and COLLECT.DAT. If they do not, you must run

the OTRCCREF executable to create them.

■ The Oracle Trace parameters should be set to the values that you changed in the

initialization file. Use Instance Manager to identify Oracle Trace parameter

settings.

■ Look for an EPC_ERROR.LOG file to see more information about why a

collection failed. Oracle Trace creates the EPC_ERROR.LOG file in the current

default directory of the Oracle Intelligent Agent when it runs the Oracle Trace

Collection Services OTRCCOL image. Depending on whether you are running

Oracle Trace from the Oracle Trace Manager or from the command-line

interface, you can find the EPC_ERROR.LOG file in one of the following

locations:

■ $ORACLE_HOME or $ORACLE_HOME/network/agent (on UNIX)

■ %ORACLE_HOME%\network\agent or

%ORACLE_HOME%\net80\agent (on NT)

■ $ORACLE_HOME\rdbmsnn on NT ($ORACLE_HOME\rdbms on UNIX)

■ in current working directory, if you are using the command-line interface

■ To find the EPC_ERROR.LOG file on UNIX, change directories to the

$ORACLE_HOME directory and execute the command:

 find . -name EPC_ERROR.LOG -print .

■ Look for *.trc files in the directory specified by the USER_DUMP_DEST

initialization parameter. Searching for "epc" in the *.trc files may give errors.

Note: On UNIX, the EPC_ERROR.LOG file name is case sensitive

and is in uppercase.

Manually Collecting Oracle Trace Data

15-24 Oracle8i Tuning

These errors and their descriptions are located in the

$ORACLE_HOME/otrace/include/epc.h file.

Using Stored Procedures to Control Oracle Trace
Using the Oracle Trace stored procedures you can invoke an Oracle Trace collection

for your own session or for another session. To collect Oracle Trace data for your

own database session, execute the following stored procedure package syntax:

 DBMS_ORACLE_TRACE_USER.SET_ORACLE_TRACE(TRUE/FALSE,
 collection_name, serverevent_set)

where:

Example:

 EXECUTE DBMS_ORACLE_TRACE_USER.SET_ORACLE_TRACE (TRUE,'MYCOLL','oracle');

To collect Oracle Trace data for a database session other than your own, execute the

following stored procedure package syntax:

 DBMS_ORACLE_TRACE_AGENT.SET_ORACLE_TRACE_IN_SESSION
 (sid, serial#, true/false, collection_name, server_event_set)

where:

Example:

 EXECUTE DBMS_ORACLE_TRACE_AGENT.SET_ORACLE_TRACE_IN_SESSION
 (8,12,TRUE,'NEWCOLL','oracled');

If the collection does not occur, check the following:

■ Be sure the server event set file identified by SERVER_EVENT_SET exists. If

there is no full file specification on this field, then the file should be located in

True/false Boolean: TRUE to activate, FALSE to deactivate.

Collection_name VARCHAR2: collection name (no file extension, eight

character maximum).

Server_event_set VARCHAR2: server event set (oracled, oracle, or oraclee).

sid Number: session instance from V$SESSION.SID.

serial# Number: session serial number from V$SESSION.SERIAL#.

Manually Collecting Oracle Trace Data

Using Oracle Trace 15-25

the directory identified by ORACLE_TRACE_FACILITY_PATH in the

initialization file.

■ The following files should exist in your Oracle Trace admin directory:

REGID.DAT, PROCESS.DAT, and COLLECT.DAT. If they do not, you must run

the OTRCCREF executable to create them.

■ The stored procedure packages should exist in the database. If the packages do

not exist, run the OTRCSVR.SQL file (in your Oracle Trace admin directory) to

create the packages.

■ The user has the EXECUTE privilege on the stored procedure.

Oracle Trace Collection Results
Running an Oracle Trace collection produces the following collection files:

■ collection_name.CDF is the Oracle Trace collection definition file for your

collection

■ collection_name.DAT files are the Oracle Trace output files containing the trace

data in binary format

You can access the Oracle Trace data in the collection files in the following ways:

■ You can create Oracle Trace reports from the binary file.

■ The data can be formatted to Oracle tables for Data Viewer, SQL access, and

reporting.

Formatting Oracle Trace Data to Oracle Tables
You can format Oracle Trace server collection Oracle tables for more flexible access

SQL reporting tools. Oracle Trace produces a separate table for each event collected.

For example, a parse event table is created to store data for all parse events

occurring during a server collection. Before you can format data, you must first set

up the Oracle Trace formatter tables by executing the OTRCFMTC.SQL script on the

server host machine.

Use the following syntax to format an Oracle Trace collection:

Note: Oracle server releases 7.3.4, 8.0.4, and later, automatically

create the formatter tables.

Manually Collecting Oracle Trace Data

15-26 Oracle8i Tuning

 OTRCFMT [optional parameters] collection_name.cdf [user/password@database]

If you omit user/password@database, Oracle prompts you for this information.

Oracle Trace allows data to be formatted while a collection is occurring. By default,

Oracle Trace formats only the portion of the collection that has not been formatted

previously. If you want to reformat the entire collection file, use the optional

parameter -f.

Oracle Trace provides several SQL scripts that you can use to access the server

event tables. For more information on server event tables and scripts for accessing

event data and improving event table performance, refer to the Oracle Trace User’s
Guide.

Oracle Trace Statistics Reporting Utility
The Oracle Trace statistics reporting utility displays statistics for all items associated

with each occurrence of a server event. These reports can be quite large. You can

control the report output by using command parameters. Use the following

command and optional parameters to produce a report:

 OTRCREP [optional parameters] collection_name.CDF

First, you may want to run a report called "PROCESS.txt". You can produce this

report to provide a listing of specific process identifiers for which you want to run

another report.

You can manipulate the output of the Oracle Trace reporting utility by using the

following optional report parameters:

output_path Specifies a full output path for the report files. If not specified, the
files will be placed in the current directory.

-p Organizes event data by process. If you specify a process ID (pid),
you will have one file with all the events generated by that process
in chronological order. If you omit the process ID, you will have
one file for each process that participated in the collection. The
output files are namedcollection_Ppid.txt.

-P Produces a report calledcollection_PROCESS.txt that lists all
processes that participated in the collection. It does not include
event data. You could produce this report first to determine the
specific processes for which you might want to produce more
detailed reports.

Manually Collecting Oracle Trace Data

Using Oracle Trace 15-27

-w# Sets report width, such as -w132. The default is 80 characters.

-l# Sets the number of report lines per page. The default is 63 lines
per page.

-h Suppresses all event and item report headers, producing a shorter
report.

-s Used with Net8 data only. This option creates a file similar to the
SQLNet Tracing file.

-a Creates a report containing all the events for all products, in the
order they occur in the data collection (.dat) file.

Manually Collecting Oracle Trace Data

15-28 Oracle8i Tuning

PartIV
 Optimizing Instance Performance

Part IV describes how to tune various elements of your database system to optimize

performance of an Oracle instance. The chapters are:

■ Chapter 16, "Dynamic Performance Views"

■ Chapter 17, "Diagnosing System Performance Problems"

■ Chapter 18, "Tuning CPU Resources"

■ Chapter 19, "Tuning Memory Allocation"

■ Chapter 20, "Tuning I/O"

■ Chapter 21, "Tuning Resource Contention"

■ Chapter 22, "Tuning Networks"

■ Chapter 23, "Tuning the Multi-Threaded Server Architecture"

■ Chapter 24, "Tuning the Operating System"

■ Chapter 25, "Tuning Instance Recovery Performance"

Dynamic Performance Views 16-1

16
Dynamic Performance Views

This chapter explains how you can use V$ views for:

■ Instance-Level Views for Tuning

■ Session-Level or Transient Views for Tuning

■ Current Statistic Values and Rates of Change

Dynamic performance views, or "V$" views, are useful for identifying instance-level

performance problems. All V$ views are listed in the V$FIXED_TABLE view.

V$ view content is provided by underlying X$ tables. The X$ tables are internal data

structures that can be modified by SQL statements. These tables are therefore only

available when an instance is in a NOMOUNT or MOUNT state.

This chapter describes the most useful V$ views for performance tuning. V$ views

are also useful for ad hoc investigation, for example, when users report sudden

response time deterioration.

Although the V$ views belong to user SYS, users other than SYS have read-only

access to V$ views. Oracle populates the V$ views and X$ tables at instance startup.

Their contents are flushed when you shut down the instance.

The X$ tables and their associated V$ views are dynamic, so their contents are con-

stantly changing. X$ tables retain timing information providing you have set the

init.ora parameter TIME_STATISTICS to TRUE, or if you execute the SQL com-

mand:

 ALTER SYSTEM SET TIME_STATISTICS=true;

See Also: For complete information on all dynamic performance

tables, please see the Oracle8i Reference.

Instance-Level Views for Tuning

16-2 Oracle8i Tuning

Instance-Level Views for Tuning
These views concern the instance as a whole and record statistics either since star-

tup of the instance or (in the case of the SGA statistics) the current values, which

will remain constant until altered by some need to reallocate SGA space. Cumula-

tive statistics are from startup.

Table 16–1 Instance Level Views Important for Tuning

View Notes

V$FIXED_TABLE Lists the fixed objects present in the release.

V$INSTANCE Shows the state of the current instance.

V$LATCH Lists statistics for nonparent latches and summary statistics

for parent latches.

V$LIBRARYCACHE Contains statistics about library cache performance and activ-

ity.

V$ROLLSTAT Lists the names of all online rollback segments.

V$ROWCACHE Shows statistics for data dictionary activity.

V$SGA Contains summary information on the system global area.

V$SGASTAT Contains detailed information on the system global area.

V$SORT_USAGE Shows the size of the temporary segments and the session

creating them. This information can help you identify which

processes are doing disk sorts.

V$SQLAREA Lists statistics on shared SQL area; contains one row per SQL

string. Provides statistics on SQL statements that are in mem-

ory, parsed, and ready for execution. Text limited to 1000

characters; full text is available in 64 byte chunks from

V$SQLTEXT.

V$SQLTEXT Contains the text of SQL statements belonging to shared SQL

cursors in the SGA.

V$SYSSTAT Contains basic instance statistics.

V$SYSTEM_EVENT Contains information on total waits for an event.

V$WAITSTAT Lists block contention statistics. Updated only when timed

statistics are enabled.

Session-Level or Transient Views for Tuning

 Dynamic Performance Views 16-3

The single most important fixed view is V$SYSSTAT, which contains the statistic

name in addition to the value. The values from this table form the basic input to the

instance tuning process.

Session-Level or Transient Views for Tuning
These views either operate at the session level or primarily concern transient val-

ues. Session data is cumulative from connect time.

The structure of V$SESSION_WAIT makes it easy to check in real time whether any

sessions are waiting, and if so, why. For example:

 SELECT sid,
 EVENT
 FROM V$SESSION_EVENT
 WHERE WAIT_TIME = 0;

You can then investigate to see whether such waits occur frequently and whether

they can be correlated with other events, such as the use of particular modules.

Table 16–2 Session Level Views Important for Tuning

View Notes

V$LOCK Lists the locks currently held by the Oracle8 Server and

outstanding requests for a lock or latch.

V$MYSTAT Shows statistics from your current session.

V$PROCESS Contains information about the currently active pro-

cesses.

V$SESSION Lists session information for each current session. Links

SID to other session attributes. Contains row lock infor-

mation.

V$SESSION_EVENT Lists information on waits for an event by a session.

V$SESSION_WAIT Lists the resources or events for which active sessions

are waiting, where WAIT_TIME = 0 for current events.

V$SESSTAT Lists user session statistics. Requires join to V$STAT-

NAME, V$SESSION.

Current Statistic Values and Rates of Change

16-4 Oracle8i Tuning

Current Statistic Values and Rates of Change
This section describes procedures for:

■ Finding the Current Value of a Statistic

■ Finding the Rate of Change of a Statistic

Finding the Current Value of a Statistic
Key ratios are expressed in terms of instance statistics. For example, the consistent

change ratio is consistent changes divided by consistent gets. The simplest effective

SQL*Plus script for finding the current value of a statistic is of the form:

 COL NAME format a35
 COL VALUE format 999,999,990
 SELECT NAME, VALUE from V$SYSSTAT S
 WHERE lower(NAME) LIKE lower(’%&stat_name%’)
 /

You can use the following query, for example, to report all statistics containing the

word "get" in their name:

 @STAT GET

It is preferable, however, to use mechanisms that record the change in the statis-

tic(s) over a known period of time as described in the next section of this chapter.

Note: Two LOWER functions in the preceding query make it case

insensitive and allow it to report data from the 11 statistics whose

names start with "CPU" or "DBWR". No other upper-case charac-

ters appear in statistic names.

Current Statistic Values and Rates of Change

 Dynamic Performance Views 16-5

Finding the Rate of Change of a Statistic
You can adapt the following script to show the rate of change for any statistic, latch,

or event. For a given statistic, this script tells you the number of seconds between

two checks of its value, and its rate of change.

 set veri off
 define secs=0
 define value=0
 col value format 99,999,999,990 new_value value
 col secs format a10 new_value secs noprint
 col delta format 9,999,990
 col delta_time format 9,990
 col rate format 999,990.0
 col name format a30
 select name,value, to_char(sysdate,’sssss’) secs,
 (value - &value) delta,
 (to_char(sysdate,’sssss’) - &secs) delta_time,
 (value - &value)/ (to_char(sysdate,’sssss’) - &secs) rate
 from v$sysstat
 where name = ’&&stat_name’
 /

Note: Run this script at least twice, because the first time you run

it, it initializes the SQL*Plus variables.

Current Statistic Values and Rates of Change

16-6 Oracle8i Tuning

Diagnosing System Performance Problems 17-1

17
Diagnosing System Performance Problems

This chapter provides an overview of factors affecting performance in properly

designed systems. Following the guidelines in this chapter cannot, however,

compensate for poor design!

■ Tuning Factors for Well Designed Existing Systems

■ Insufficient CPU

■ Insufficient Memory

■ Insufficient I/O

■ Network Constraints

■ Software Constraints

Later chapters discuss each of these factors in depth.

Tuning Factors for Well Designed Existing Systems
Figure 17–1 illustrates the factors involved in Oracle system performance for well

designed applications.

Note: Tuning these factors is effective only after you have tuned

the business process and the application, as described in Chapter 2,

"Performance Tuning Methods".

Tuning Factors for Well Designed Existing Systems

17-2 Oracle8i Tuning

Figure 17–1 Major Performance Factors in Well Designed Systems

Performance problems tend to be interconnected rather than isolated and unrelated.

Table 17–1 identifies the key performance factors in existing systems as well as the

areas in which symptoms may appear. For example, buffer cache problems may

show up as CPU, memory, or I/O problems. Therefore, tuning the buffer cache CPU

may improve I/O.

DiskDisk Disk

I/O Channels

Tune the instance

Reduce memory
usage by
sharing SQL

Reduce CPU
service time

Software Issues

Memory Issues

CPU Issues

Network Issues

Reduce number
of packets

Reduce size
of packets

Major Performance Factor Sample Tuning Approach

Evenly distribute
I/O

I/O Issues

Memory Memory Memory Memory

CPU CPU CPU CPU

Network

Oracle8
Database

Insufficient CPU

Diagnosing System Performance Problems 17-3

Insufficient CPU
In a CPU-bound system, CPU resources might be completely allocated and service

time could be excessive too. In this situation, you must improve your system’s

processing ability. Alternatively, you could have too much idle time and the CPU

might not be completely used up. In either case, you need to determine why so

much time is spent waiting.

Table 17–1 Key to Tuning Areas for Existing Systems

ORACLE TUNING AREAS LIMITING RESOURCES

CPU Memory I/O Network Software

Application

 Design/Architecture X X X X X

 DML SQL X X X X X

 Query SQL X X X X X

 Client/server Roundtrips X X

Instance

 Buffer Cache X X X

 Shared Pool X X

 Sort Area X X X

 Physical Structure of
Data/DB File I/O

X X

 Log File I/O X X

 Archiver I/O X X

 Rollback Segments X X

 Locking X X X X

 Backups X X X X

Operating System

 Memory Management X X X

 I/O Management X X X

 Process Management X X

 Network Management X X

Insufficient Memory

17-4 Oracle8i Tuning

To determine why there is insufficient CPU, identify how your entire system is

using CPU. Do not just rely on identifying how CPU is used by Oracle server

processes. At the beginning of a workday, for example, the mail system may

consume a large amount of available CPU while employees check their messages.

Later in the day, the mail system may be much less of a bottleneck and its CPU use

drops accordingly.

Workload is a very important factor when evaluating your system’s level of CPU

use. During peak workload hours, 90% CPU use with 10% idle and waiting time

may be understandable and acceptable; 30% utilization at a time of low workload

may also be understandable. However, if your system shows high utilization at

normal workloads, there is no more room for a "peak workload". You have a CPU

problem if idle time and time waiting for I/O are both close to zero, or less than 5%,

at a normal or low workload.

Insufficient Memory
Sometimes a memory problem may be detected as an I/O problem. There are two

types of memory requirements: Oracle and system. Oracle memory requirements

affect the system requirements. Memory problems may be the cause of paging and

swapping that occurs in the machine. So make sure your system does not start

paging and swapping. The system should be able to run within the limitations set

by internal memory.

System memory requirements for non-Oracle processes plus Oracle memory

requirements should be equal to or less than the total available internal memory. To

achieve this, reduce the size of some of the Oracle memory structures, such as the

buffer cache, shared pool, or the redo log buffer. On the system level, you can

reduce the number of processes and/or the amount of memory each process uses.

You can also identify which processes are using the most memory. One way to

reduce memory use is by sharing SQL.

Insufficient I/O
Be sure to distribute I/O evenly across disks and channels. I/O resources include:

■ Channel bandwidth: the number of I/O channels

■ Device bandwidth: the number of disks

See Also: Chapter 18, "Tuning CPU Resources".

See Also: Chapter 19, "Tuning Memory Allocation".

Network Constraints

Diagnosing System Performance Problems 17-5

■ Device latency: the time elapsed from the initiation of a request to the receipt of

the request; latency is part of the "wait time"

I/O problems may result from hardware limitations. Your system needs enough

disks and SCSI busses to support the transaction throughput you need. You can

evaluate the configuration by calculating the quantity of messages all your disks

and busses can potentially support, and comparing that to the number of messages

required by your peak workload.

If the response time of an I/O becomes excessive, the most common problem is that

wait time has increased (response time = service time + wait time). If wait time

increases, it means there are too many I/O requests for this device. If service time

increases, this normally means that the I/O requests are larger, so you write more

bytes to disk.

The different background processes, such as DBWR, ARCH, and so on, perform

different types of I/O, and each process has different I/O characteristics. Some

processes read and write in the block size of the database, some read and write in

larger chunks. If service time is too high, stripe the file across different devices.

Mirroring can also be a cause of I/O bottlenecks unless the data is mirrored to a

destination database that has the same number of disks as the source database.

Network Constraints
Network constraints are similar to I/O constraints. You need to consider:

■ Network bandwidth: Each transaction requires that a certain number of packets

be sent over the network. If you know the number of packets required for one

transaction, you can compare that to the bandwidth to determine whether your

system is capable of supporting the desired workload.

■ Message rates: You can reduce the number of packets on the network by

batching them rather than sending many small packets.

■ Transmission time

As the number of users increases and demand rises, the network can quietly

become the bottleneck in an application. You may spend a lot of time waiting for

network availability. Use available operating system tools to see how busy your

network is.

See Also: Chapter 20, "Tuning I/O".

See Also: Chapter 22, "Tuning Networks".

Software Constraints

17-6 Oracle8i Tuning

Software Constraints
Operating system software determines:

■ The maximum number of processes you can support

■ The maximum number of processes you can connect

Before you can tune Oracle effectively, ensure the operating system is performing

optimally. Work closely with the hardware/software system administrators to

ensure that Oracle is allocated the proper operating system resources.

Note: On NT systems there are no pre-set or configurable

maximum numbers of processes that can be supported or

connected.

See Also: Operating system tuning is different for every platform.

Refer to your operating system hardware/software documentation

as well as your Oracle operating system-specific documentation for

more information. In addition, see Chapter 24, "Tuning the

Operating System".

Tuning CPU Resources 18-1

18
Tuning CPU Resources

This chapter describes how to solve CPU resource problems. Topics in this chapter

include:

■ Understanding CPU Problems

■ Detecting and Solving CPU Problems

■ Solving CPU Problems by Changing System Architectures

Understanding CPU Problems
To address CPU problems, first establish appropriate expectations for the amount of

CPU resources your system should be using. Then distinguish whether sufficient

CPU resources are available and recognize when your system is consuming too

many resources. Begin by determining the amount of CPU resources the Oracle

instance utilizes in three cases, when your system is:

■ Idle

■ At average workloads

■ At peak workloads

Workload is an important factor when evaluating your system’s level of CPU

utilization. During peak workload hours, 90% CPU utilization with 10% idle and

waiting time may be acceptable; 30% utilization at a time of low workload may also

be understandable. However, if your system shows high utilization at normal

workload, there is no room for a peak workload. For example, Figure 18–1

illustrates workload over time for an application having peak periods at 10:00 AM

and 2:00 PM.

Understanding CPU Problems

18-2 Oracle8i Tuning

Figure 18–1 Average Workload and Peak Workload

This example application has 100 users working 8 hours a day, for a total of 800

hours per day. Each user entering one transaction every 5 minutes translates into

9,600 transactions daily. Over an 8-hour period, the system must support 1,200

transactions per hour, which is an average of 20 transactions per minute. If the

demand rate were constant, you could build a system to meet this average

workload.

However, usage patterns are not constant—and in this context, 20 transactions per

minute can be understood as merely a minimum requirement. If the peak rate you

need to achieve is 120 transactions per minute, you must configure a system that

can support this peak workload.

For this example, assume that at peak workload Oracle can use 90% of the CPU

resource. For a period of average workload, then, Oracle use no more than about

15% of the available CPU resource as illustrated in the following equation:

20 tpm/120 tpm * 90% = 15%

Where tpm is "transactions per minute".

Time

F
u

n
ct

io
n

al
 D

em
an

d

8:00 10:00 12:00 14:00 16:00

Peak Workload

Average Workload

Detecting and Solving CPU Problems

Tuning CPU Resources 18-3

If the system requires 50% of the CPU resource to achieve 20 tpm, then a problem

exists: the system cannot achieve 120 transactions per minute using 90% of the CPU.

However, if you tuned this system so it achieves 20 tpm using only 15% of the CPU,

then, assuming linear scalability, the system might achieve 120 transactions per

minute using 90% of the CPU resources.

As users are added to an application, the workload can rise to what had previously

been peak levels. No further CPU capacity is then available for the new peak rate,

which is actually higher than the previous.

Detecting and Solving CPU Problems
If you suspect a problem with CPU usage, check two areas:

■ System CPU Utilization

■ Oracle CPU Utilization

System CPU Utilization
Oracle statistics report CPU use by only Oracle sessions, whereas every process

running on your system affects the available CPU resources. Effort spent tuning

non-Oracle factors can thus result in improved Oracle performance.

Use operating system monitoring tools to determine what processes are running on

the system as a whole. If the system is too heavily loaded, check the memory, I/O,

and process management areas described later in this section.

Tools such as sar -u on many UNIX-based systems enable you to examine the level

of CPU utilization on your entire system. CPU utilization in UNIX is described in

statistics that show user time, system time, idle time, and time waiting for I/O. A

CPU problem exists if idle time and time waiting for I/O are both close to zero (less

than 5%) at a normal or low workload.

On NT, use Performance Monitor to examine CPU utilization. Performance

Manager provides statistics on processor time, user time, privileged time, interrupt

time, and DPC time. (NT Performance Monitor is not the same as Performance

Manager, which is an Oracle Enterprise Manager tool.)

Note: This section describes how to check system CPU utilization

on most UNIX-based and NT systems. For other platforms, please

refer to your operating system documentation.

Detecting and Solving CPU Problems

18-4 Oracle8i Tuning

Memory Management
Check the following memory management areas:

Paging and Swapping Use tools such as sar or vmstat on UNIX or Performance

Monitor on NT to investigate the cause of paging and swapping.

Oversize Page Tables On UNIX, if the processing space becomes too large, it may

result in the page tables becoming too large. This is not an issue on NT.

I/O Management
Check the following I/O management issues:

Thrashing Ensure your workload fits into memory so the machine is not thrashing

(swapping and paging processes in and out of memory). The operating system

allocates fixed portions of time during which CPU resources are available to your

process. If the process wastes a large portion of each time period in checking to be

sure that it can run and to ensure all needed components are in the machine, the

process may be using only 50% of the time allotted to actually perform work.

Client/Server Round Trips The latency of sending a message may result in CPU

overload. An application often generates messages that need to be sent through the

network over and over again, resulting in significant overhead before the message

is actually sent. To alleviate this problem, batch the messages and perform the

overhead only once or reduce the amount of work. For example, you can use array

inserts, array fetches, and so on.

Process Management
Check the following process management issues:

Scheduling and Switching The operating system may spend excessive time

scheduling and switching processes. Examine the way in which you are using the

operating system because you could be using too many processes. On NT systems,

do not overload your server with too many non-Oracle processes.

Context Switching Due to operating system specific characteristics, your system

could be spending a lot of time in context switches. Context switching could be

expensive, especially with a large SGA. Context switching is not an issue on NT

which has only one process per instance; all threads share the same page table.

See Also: For more details on tuning I/O, please see Chapter 20,

"Tuning I/O".

Detecting and Solving CPU Problems

Tuning CPU Resources 18-5

Programmers often create single-purpose processes, exit the process, and create a

new one. Doing this re-creates and destroys the process each time. Such logic uses

excessive amounts of CPU, especially with applications that have large SGAs. This

is because you have to build the page tables each time. The problem is aggravated

when you pin or lock shared memory, because you have to access every page.

For example, if you have a 1-gigabyte SGA, you may have page table entries for

every 4K, and a page table entry may be 8 bytes. You could end up with

(1G /4K) * 8B entries. This becomes expensive, because you have to continually

make sure that the page table is loaded.

Parallel execution and multi-threaded server are areas of concern if MINSERVICE

has been set too low (set to 10, for example, when you need 20). For an application

that is performing small lookups, this may not be wise. In this situation, it becomes

inefficient for the application and for the system as well.

Oracle CPU Utilization
This section explains how to examine the processes running in Oracle. Two

dynamic performance views provide information on Oracle processes:

■ V$SYSSTAT shows Oracle CPU usage for all sessions. The statistic "CPU Used"

shows the aggregate CPU used by all sessions.

■ V$SESSTAT shows Oracle CPU usage per session. You can use this view to

determine which particular session is using the most CPU.

For example, if you have 8 CPUs, then for any given minute in real time, you have 8

minutes of CPU time available. On NT and UNIX, this can be either user time or

time in system mode ("privileged" mode, in NT). If your process is not running, it is

waiting. CPU time utilized by all systems may thus be greater than one minute per

interval.

At any given moment you know how much time Oracle has used on the system. So

if 8 minutes are available and Oracle uses 4 minutes of that time, then you know

that 50% of all CPU time is used by Oracle. If your process is not consuming that

time, then some other process is. You then need to identify the processes that are

using CPU time. If you can, determine why the processes are using so much CPU

time attempt to tune them.

The major areas to check for Oracle CPU utilization are:

■ Reparsing SQL Statements

■ Inefficient SQL Statements

Detecting and Solving CPU Problems

18-6 Oracle8i Tuning

■ Read Consistency

■ Scalability Limitations within the Application

■ Latch Contention

This section describes each area and indicates the corresponding Oracle statistics to

check.

Reparsing SQL Statements
When Oracle executes a SQL statement, it parses it to determine whether the syntax

and its contents are correct. This process can consume significant overhead. Once

parsed, Oracle does not parse the statement again unless the parsing information is

aged from the memory cache and no longer available.

Ineffective memory sharing among SQL statements can result in reparsing. Use the

following procedure to determine whether reparsing is occurring:

1. Begin by checking V$SYSSTAT to see if parsing in general is a problem:

SELECT * FROM V$SYSSTAT
WHERE NAME IN
(’parse time cpu’, ’parse time elapsed’, ’parse count (hard)’);

Where:

In this way, you can detect the general response time on parsing. The more your

application is parsing, the more contention exists and the more time your system

spends waiting. Note the following:

Response time Service time + wait time, therefore response time = elapsed

time.

Service time CPU time, therefore elapsed time - CPU time = wait time.

Wait time/parse

count

Average wait time per parse.

Detecting and Solving CPU Problems

Tuning CPU Resources 18-7

2. Query V$SQLAREA to find frequently reparsed statements:

SELECT SQL_TEXT, PARSE_CALLS, EXECUTIONS FROM V$SQLAREA
ORDER BY PARSE_CALLS;

Tune the statements with the higher numbers of parse calls.

3. You have the following three options for tuning them:

■ Rewrite the application so statements do not continually reparse.

■ Reduce parsing by using the initialization parameter

SESSION_CACHED_CURSORS.

■ If the parse count is small, the execute count is small, and the SQL statements

are very similar except for the WHERE clause, you may find that hard coded

values are being used instead of bind variables. Use bind variables to reduce

parsing.

Inefficient SQL Statements
Inefficient SQL statements can consume large amounts of CPU resources. To detect

such statements, enter the following query. You may be able to reduce CPU usage

by tuning SQL statements that have a high number of buffer gets.

 SELECT BUFFER_GETS, EXECUTIONS, SQL_TEXT FROM V$SQLAREA;

Read Consistency
Your system may spend excessive time rolling back changes to blocks in order to

maintain a consistent view. Consider the following scenarios:

■ If there are many small transactions and an active long-running query is

running in the background on the same table where the inserts are happening,

the query may have to roll back many changes.

■ If the number of rollback segments is too small, your system could also be

spending a lot of time rolling back the transaction table. Your query may have

Note: The average wait time should be extremely low,

approaching zero. (V$SYSSTAT also shows the average wait time

per parse.)

See Also: "Approaches to SQL Statement Tuning" on page 4-6.

Detecting and Solving CPU Problems

18-8 Oracle8i Tuning

started long ago; because the number of rollback segments and transaction

tables is very small, your system frequently needs to reuse transaction slots.

A solution is to make more rollback segments, or to increase the commit rate.

For example, if you batch ten transactions and commit them once, you reduce

the number of transactions by a factor of ten.

■ If your system must scan too many buffers in the foreground to find a free

buffer, it wastes CPU resources. To alleviate this problem, tune the DBWn
process(es) to write more frequently.

You can also increase the size of the buffer cache to enable the database writer

process(es) to keep up. To find the average number of buffers the system scans

at the end of the least recently used list (LRU) to find a free buffer, use the

following formula:

On average, you would expect to see 1 or 2 buffers scanned. If more than this

number are being scanned, increase the size of the buffer cache or tune the

DBWn process(es).

Use the following formula to find the number of buffers that were dirty at the end

of the LRU:

If many dirty buffers exist, it could mean that the DBWn process(es) cannot keep

up. Again, increase the buffer cache size or tune the DBWn process.

Scalability Limitations Within the Application
In most of this CPU tuning discussion, we assume you can achieve linear scalability,

but this is never actually the case. How flat or nonlinear the scalability is indicates

how far away from optimal performance your system is. Problems in your

application might be adversely affecting scalability. Examples of this include too

many indexes, right-hand index problems, too much data in the blocks, or not

 inspected"
= avg. buffers scanned

1 + value of "free buffers inspected"

"free buffers inspected"

= dirty buffers
"dirty buffers inspected"

"free buffers inspected"

Detecting and Solving CPU Problems

Tuning CPU Resources 18-9

properly partitioning the data. These types of contention problems waste CPU

cycles and prevent the application from attaining linear scalability.

Latch Contention
Latch contention is a symptom of CPU problems; it is not normally a cause. To

resolve it, you must locate the latch contention within your application, identify its

cause, and determine which part of your application is poorly written.

In some cases, the spin count may be set too high. It’s also possible that one process

may be holding a latch that another process is attempting to secure. The process

attempting to secure the latch may be endlessly spinning. After a while, this process

may go to sleep and later resume processing and repeat its ineffectual spinning. To

resolve this:

■ Check the Oracle latch statistics. The "latch free" event in V$SYSTEM_EVENT

shows how long processes have been waiting for latches. If there is no latch

contention, this statistic will not appear.

If there is a lot of contention, it may be better for a process to go to sleep at once

when it cannot obtain a latch, rather than use CPU time by spinning.

■ Look for the ratio of CPUs to processes. If there are large numbers of both, then

many processes can run. But if a single process is holding a latch on a system

with ten CPUs, reschedule that process so it is not running. But ten other

processes may run ineffectively trying to secure the same latch. This situation

wastes, in parallel, some CPU resource.

■ Check V$LATCH_MISSES, which indicates where in the Oracle code most

contention occurs.

Solving CPU Problems by Changing System Architectures

18-10 Oracle8i Tuning

Solving CPU Problems by Changing System Architectures
If you have maximized the CPU power on your system and have exhausted all

means of tuning your system’s CPU use, consider redesigning your system on

another architecture. Moving to a different architecture might improve CPU use.

This section describes architectures you might consider using, such as:

■ Single Tier to Two-Tier

■ Multi-Tier: Using Smaller Client Machines

■ Two-Tier to Three-Tier: Using a Transaction Processing Monitor

■ Three-Tier: Using Multiple TP Monitors

■ Oracle Parallel Server

Note: If you are running a multi-tier system, check all levels for

CPU utilization. For example, on a three-tier system, your server

might be mostly idle while your second tier is completely busy. To

resolve this, tune the second tier rather than the server or the third

tier. In a multi-tier system, it is usually not the server that has a

performance problem: it is usually the clients and the middle tier.

Solving CPU Problems by Changing System Architectures

Tuning CPU Resources 18-11

Single Tier to Two-Tier
Consider whether changing from several clients with one server, all running on a

single machine (single tier), to a two-tier client/server configuration would relieve

CPU problems.

Figure 18–2 Single Tier to Two-Tier

Server

Client Client Client

Server

Client Client Client

Solving CPU Problems by Changing System Architectures

18-12 Oracle8i Tuning

Multi-Tier: Using Smaller Client Machines
Consider whether using smaller clients improves CPU usage rather than using

multiple clients on larger machines. This strategy may be helpful with either

two-tier or three-tier configurations.

Figure 18–3 Multi-Tier Using Smaller Clients

Two-Tier to Three-Tier: Using a Transaction Processing Monitor
If your system runs with multiple layers, consider whether moving from a two-tier

to three-tier configuration and introducing a transaction processing monitor might

be a good solution.

Figure 18–4 Two-Tier to Three-Tier

ServerServer

Client Client Client Client

Clients

TP
Monitor

Client Client

Server

Client

Server

Client Client Client

Solving CPU Problems by Changing System Architectures

Tuning CPU Resources 18-13

Three-Tier: Using Multiple TP Monitors
Consider using multiple transaction processing monitors.

Figure 18–5 Three-Tier with Multiple TP Monitors

Oracle Parallel Server
Consider whether incorporating Oracle Parallel Server would solve your CPU

problems.

Figure 18–6 Oracle Parallel Server

ClientClientClient Client

Server

Client

Server

TP
Monitor

TP
Monitor

Client ClientClient

TP
Monitor

ClientClientClient ClientClient

ServerServer

Client ClientClient

Server

Database Database

Solving CPU Problems by Changing System Architectures

18-14 Oracle8i Tuning

Tuning Memory Allocation 19-1

19
Tuning Memory Allocation

This chapter explains how to allocate memory to database structures. Proper sizing

of these structures greatly improves database performance. The following topics are

covered:

■ Understanding Memory Allocation Issues

■ Detecting Memory Allocation Problems

■ Solving Memory Allocation Problems

■ Tuning Operating System Memory Requirements

■ Tuning the Redo Log Buffer

■ Tuning Private SQL and PL/SQL Areas

■ Tuning the Shared Pool

■ Tuning the Buffer Cache

■ Tuning Multiple Buffer Pools

■ Tuning Sort Areas

■ Reallocating Memory

■ Reducing Total Memory Usage

Understanding Memory Allocation Issues
Oracle stores information in memory and on disk. Memory access is much faster

than disk access, so it is better for data requests to be satisfied by access to memory

rather than access to disk. For best performance, store as much data as possible in

memory rather than on disk. However, memory resources on your operating

Understanding Memory Allocation Issues

19-2 Oracle8i Tuning

system are likely to be limited. Tuning memory allocation involves distributing

available memory to Oracle memory structures.

Oracle’s memory requirements depend on your application. Therefore, tune

memory allocation after tuning your application and SQL statements. If you

allocate memory before tuning your application and SQL statements, you may need

to resize some Oracle memory structures to meet the needs of your modified

statements and application.

Also tune memory allocation before you tune I/O. Allocating memory establishes

the amount of I/O necessary for Oracle to operate. This chapter shows you how to

allocate memory to perform as little I/O as possible.

The following terms are used in this discussion:

block A unit of data transfer between main memory and disk.

Many blocks from one section of memory address space form

a segment.

buffer A main memory address in which the buffer manager caches

currently and recently used data read from disk. Over time a

buffer may hold different blocks. When a new block is

needed, the buffer manager may discard an old block and

replace it with a new one.

buffer pool A collection of buffers.

cache or buffer

cache

All buffers and buffer pools.

segment A segment is a set of extents allocated for a specific type of

database object such as a table, index, or cluster.

See Also: Chapter 20, "Tuning I/O" shows you how to perform

I/O as efficiently as possible.

Solving Memory Allocation Problems

Tuning Memory Allocation 19-3

Detecting Memory Allocation Problems
When you use operating system tools such as ps -efl or ps - aux on UNIX to

examine the size of Oracle processes, you may notice that the processes seem large.

To interpret the statistics shown, determine how much of the process size is

attributable to shared memory, heap, and executable stack, and how much is the

actual amount of memory the given process consumes.

The SZ statistic is given in units of page size (normally 4KB), and normally includes

the shared overhead. To calculate the private, or per-process memory usage,

subtract shared memory and executable stack figures from the value of SZ. For

example:

In this example, the individual process consumes only 4,000 pages; the other 16,000

pages are shared by all processes.

Solving Memory Allocation Problems
The rest of this chapter explains how to tune memory allocation. For best results,

resolve memory issues in the order presented here:

1. Tuning Operating System Memory Requirements

2. Tuning the Redo Log Buffer

3. Tuning Private SQL and PL/SQL Areas

4. Tuning the Shared Pool

5. Tuning the Buffer Cache

6. Tuning Multiple Buffer Pools

7. Tuning Sort Areas

8. Reallocating Memory

9. Reducing Total Memory Usage

SZ +20,000

minus SHM - 15,000

minus EXECUTABLE - 1,000

actual per-process memory 4,000

See Also: Oracle for UNIX Performance Tuning Tips, or your

operating system documentation.

Tuning Operating System Memory Requirements

19-4 Oracle8i Tuning

Tuning Operating System Memory Requirements
Begin tuning memory allocation by tuning your operating system with these goals:

■ Reducing Paging and Swapping

■ Fitting the System Global Area into Main Memory

■ Allocating Adequate Memory to Individual Users

These goals apply in general to most operating systems, but the details of operating

system tuning vary.

Reducing Paging and Swapping
Your operating system may store information in these places:

■ Real memory

■ Virtual memory

■ Expanded storage

■ Disk

The operating system may also move information from one storage location to

another. This process is known as "paging" or "swapping". Many operating systems

page and swap to accommodate large amounts of information that do not fit into

real memory. However, excessive paging or swapping can reduce the performance

of many operating systems.

Monitor your operating system behavior with operating system utilities. Excessive

paging or swapping indicates that new information is often being moved into

memory. In this case, your system’s total memory may not be large enough to hold

everything for which you have allocated memory. Either increase the total memory

on your system or decrease the amount of memory allocated.

See Also: Refer to your operating system hardware and software

documentation as well as your Oracle operating system-specific

documentation for more information on tuning operating system

memory usage.

See Also: "Oversubscribing with Attention to Paging" on

page 27-5.

Tuning Operating System Memory Requirements

Tuning Memory Allocation 19-5

Fitting the System Global Area into Main Memory
Because the purpose of the System Global Area (SGA) is to store data in memory for

fast access, the SGA should always be within main memory. If pages of the SGA are

swapped to disk, its data is no longer quickly accessible. On most operating

systems, the disadvantage of excessive paging significantly outweighs the

advantage of a large SGA.

Although it is best to keep the entire SGA in memory, the contents of the SGA will

be split logically between "hot" and "cold" parts. The hot parts are always in

memory because they are always being referenced. Some cold parts may be paged

out and a performance penalty may result from bringing them back in. A

performance problem likely occurs, however, when the hot part of the SGA cannot

remain in memory.

Data is swapped to disk because it is not being referenced. You can cause Oracle to

read the entire SGA into memory when you start your instance by setting the value

of the initialization parameter PRE_PAGE_SGA to YES. Operating system page

table entries are then pre-built for each page of the SGA. This setting may increase

the amount of time necessary for instance startup, but it is likely to decrease the

amount of time necessary for Oracle to reach its full performance capacity after

startup.

PRE_PAGE_SGA may increase the process startup duration, because every process

that starts must attach itself to the SGA. The cost of this strategy is fixed, however;

you may simply determine that 20,000 pages must be touched every time a process

starts. This approach may be useful with some applications, but not with all

applications. Overhead may be significant if your system frequently creates and

destroys processes by, for example, continually logging on and logging off.

The advantage that PRE_PAGE_SGA can afford depends on page size. For example,

if the SGA is 80MB in size, and the page size is 4KB, then 20,000 pages must be

touched to refresh the SGA (80,000/4 = 20,000).

If the system permits you to set a 4MB page size, then only 20 pages must be

touched to refresh the SGA (80,000/4,000 = 20). The page size is operating-system

specific and generally cannot be changed. Some operating systems, however, have a

special implementation for shared memory whereby you can change the page size.

Note: This setting does not prevent your operating system from

paging or swapping the SGA after it is initially read into memory.)

Tuning the Redo Log Buffer

19-6 Oracle8i Tuning

You can see how much memory is allocated to the SGA and each of its internal

structures by issuing this SQL statement:

 SHOW SGA

The output of this statement might look like this:

 Total System Global Area 18847360 bytes
 Fixed Size 63104 bytes
 Variable Size 14155776 bytes
 Database Buffers 4096000 bytes
 Redo Buffers 532480 bytes

Some IBM mainframe computer operating systems have expanded storage or

special memory in addition to main memory to which paging can be performed

very quickly. These operating systems may be able to page data between main

memory and expanded storage faster than Oracle can read and write data between

the SGA and disk. For this reason, allowing a larger SGA to be swapped may lead

to better performance than ensuring that a smaller SGA remains in main memory. If

your operating system has expanded storage, take advantage of it by allocating a

larger SGA despite the resulting paging.

Allocating Adequate Memory to Individual Users
On some operating systems, you may have control over the amount of physical

memory allocated to each user. Be sure all users are allocated enough memory to

accommodate the resources they need to use their application with Oracle.

Depending on your operating system, these resources may include:

■ The Oracle executable image

■ The SGA

■ Oracle application tools

■ Application-specific data

On some operating systems, Oracle software can be installed so that a single

executable image can be shared by many users. By sharing executable images

among users, you can reduce the amount of memory required by each user.

Tuning the Redo Log Buffer
The LOG_BUFFER parameter reserves space for the redo log buffer that is fixed in

size. On machines with fast processors and relatively slow disks, the processors

Tuning Private SQL and PL/SQL Areas

Tuning Memory Allocation 19-7

may be filling the rest of the buffer in the time it takes the redo log writer to move a

portion of the buffer to disk. The log writer process (LGWR) always starts when the

buffer begins to fill. For this reason, a larger buffer makes it less likely that new

entries collide with the part of the buffer still being written.

Figure 19–1 Redo Log Buffer

The log buffer is normally small compared with the total SGA size, and a modest

increase can significantly enhance throughput. A key ratio is the space request ratio:

redo log space requests / redo entries. If this ratio is greater than 1:5000, increase

the size of the redo log buffer until the space request ratio stops falling.

Tuning Private SQL and PL/SQL Areas
This section explains how to tune private SQL and PL/SQL areas.

■ Identifying Unnecessary Parse Calls

■ Reducing Unnecessary Parse Calls

A trade-off exists between memory and reparsing. With significant amounts of

reparsing, less memory is needed. If you reduce reparsing by creating more SQL

statements, then client memory requirements increase. This is due to an increase in

the number of open cursors.

Tuning private SQL areas entails identifying unnecessary parse calls made by your

application and then reducing them. To reduce parse calls, you may have to

increase the number of private SQL areas that your application can have allocated

Being written to
disk by LGWR

Being filled by
DML users

Tuning Private SQL and PL/SQL Areas

19-8 Oracle8i Tuning

at once. Throughout this section, information about private SQL areas and SQL

statements also applies to private PL/SQL areas and PL/SQL blocks.

Identifying Unnecessary Parse Calls
This section describes three techniques for identifying unnecessary parse calls.

Technique 1
One way to identify unnecessary parse calls is to run your application with the SQL

trace facility enabled. For each SQL statement in the trace output, the "count"

statistic for the Parse step tells you how many times your application makes a parse

call for the statement. This statistic includes parse calls satisfied by access to the

library cache as well as parse calls resulting in actually parsing the statement.

If the "count" value for the Parse step is near the "count" value for the Execute step

for a statement, your application may be deliberately making a parse call each time

it executes the statement. Try to reduce these parse calls through your application

tool.

Technique 2
Another way to identify unnecessary parse calls is to check the V$SQLAREA view.

Enter the following query:

 SELECT SQL_TEXT, PARSE_CALLS, EXECUTIONS
 FROM V$SQLAREA

When the PARSE_CALLS value is close to the EXECUTION value for a given

statement, you may be continually reparsing that statement.

Technique 3
You can also identify unnecessary parse calls by identifying the session in which

they occur. It may be that particular batch programs or certain types of applications

do most of the reparsing. To do this, execute the following query:

 SELECT * FROM V$STATNAME

Note: This statistic does not include implicit parsing that occurs

when an application executes a statement whose shared SQL area is

no longer in the library cache. For information on detecting implicit

parsing, see "Examining Library Cache Activity" on page 19-13.

Tuning Private SQL and PL/SQL Areas

Tuning Memory Allocation 19-9

 WHERE NAME IN (’PARSE_COUNT (HARD)’,’EXECUTE_COUNT’)

Oracle responds with something similar to:

 STATISTIC#, NAME
 ------------ ---------
 100 PARSE_COUNT
 90 EXECUTE_COUNT

Then run a query similar to the following:

 SELECT * FROM V$SESSTAT
 WHERE STATISTICS# IN (90,100)
 ORDER BY VALUE, SID;

The result is a list of all sessions and the amount of reparsing they do. For each

system identifier (sid), go to V$SESSION to find the name of the program that

causes the reparsing.

Reducing Unnecessary Parse Calls
Depending on the Oracle application tool you are using, you may be able to control

how frequently your application performs parse calls and allocates and deallocates

private SQL areas. Whether your application reuses private SQL areas for multiple

SQL statements determines how many parse calls your application performs and

how many private SQL areas the application requires.

In general, an application that reuses private SQL areas for multiple SQL statements

does not need as many private SQL areas as an application that does not reuse

private SQL areas. However, an application that reuses private SQL areas must

perform more parse calls, because the application must make a new parse call

whenever an existing private SQL area is reused for a new SQL statement.

Be sure your application can open enough private SQL areas to accommodate all

your SQL statements. If you allocate more private SQL areas, you may need to

increase the limit on the number of cursors permitted for a session. You can increase

this limit by increasing the value of the initialization parameter OPEN_CURSORS.

The maximum value for this parameter depends on your operating system. The

minimum value is 5.

The ways in which you control parse calls and allocation and deallocation of private

SQL areas depends on your Oracle application tool. The following sections

introduce the methods used for some tools. These methods apply only to private

SQL areas and not to shared SQL areas.

Tuning the Shared Pool

19-10 Oracle8i Tuning

Reducing Parse Calls with the Oracle Precompilers
When using the Oracle precompilers, you can control private SQL areas and parse

calls by setting three options. In Oracle mode, the options and their defaults are as

follows:

■ HOLD_CURSOR = yes

■ RELEASE_CURSOR = no

■ MAXOPENCURSORS = desired value

Oracle recommends that you not use ANSI mode, in which the values of

HOLD_CURSOR and RELEASE_CURSOR are switched.

The precompiler options can be specified in two ways:

■ On the precompiler command line

■ Within the precompiler program

With these options, you can employ different strategies for managing private SQL

areas during the course of the program.

Reducing Parse Calls with Oracle Forms
With Oracle Forms, you also have some control over whether your application

reuses private SQL areas. You can exercise this control in three places:

■ At the trigger level

■ At the form level

■ At run time

Tuning the Shared Pool
This section explains how to allocate memory for key memory structures of the

shared pool. Structures are listed in order of importance for tuning.

■ Tuning the Library Cache

■ Tuning the Data Dictionary Cache

See Also: Pro*C/C++ Precompiler Programmer’s Guide for more

information on these calls.

See Also: For more information on the reuse of private SQL areas

by Oracle Forms, see the Oracle Forms Reference manual.

Tuning the Shared Pool

Tuning Memory Allocation 19-11

■ Tuning the Large Pool and Shared Pool for the Multi-threaded Server

Architecture

■ Tuning Reserved Space from the Shared Pool

The algorithm Oracle uses to manage data in the shared pool tends to hold

dictionary cache data in memory longer than library cache data. Therefore, tuning

the library cache to an acceptable cache hit ratio often ensures that the data

dictionary cache hit ratio is also acceptable. Allocating space in the shared pool for

session information is necessary only if you are using MTS (Multi-threaded Server)

architecture.

In the shared pool, some of the caches are dynamic—their sizes automatically

increase or decrease as needed. These dynamic caches include the library cache and

the data dictionary cache. Objects are aged out of these caches if the shared pool

runs out of room. For this reason you may need to increase the shared pool size if

the frequently used set of data does not fit within it. A cache miss on the data

dictionary cache or library cache is more expensive than a miss on the buffer cache.

For this reason, allocate sufficient memory to the shared pool before allocating to

the buffer cache.

For most applications, shared pool size is critical to Oracle performance. (Shared

pool size is less important only for applications that issue a very limited number of

discrete SQL statements.) The shared pool holds both the data dictionary cache and

the fully parsed or compiled representations of PL/SQL blocks and SQL statements.

PL/SQL blocks include procedures, functions, packages, triggers and any

anonymous PL/SQL blocks submitted by client programs.

If the shared pool is too small, the server must dedicate resources to managing the

limited amount of available space. This consumes CPU resources and causes

contention because Oracle imposes restrictions on the parallel management of the

various caches. The more you use triggers and stored procedures, the larger the

shared pool must be. It may even reach a size measured in hundreds of megabytes.

Because it is better to measure statistics during a confined period rather than from

startup, you can determine the library cache and row cache (data dictionary cache)

hit ratios from the following queries. The results show the miss rates for the library

cache and row cache. In general, the number of reparses reflects the library cache. If

the ratios are close to 1, you do not need to increase the pool size.

Note: If you are using a reserved size for the shared pool, refer to

"SHARED_POOL_SIZE Too Small" on page 19-25.

Tuning the Shared Pool

19-12 Oracle8i Tuning

 SELECT (SUM(PINS - RELOADS)) / SUM(PINS) "LIB CACHE"
FROM V$LIBRARYCACHE;

 SELECT (SUM(GETS - GETMISSES - USAGE - FIXED)) / SUM(GETS) "ROW CACHE"
FROM V$ROWCACHE;

The amount of free memory in the shared pool is reported in V$SGASTAT. Report

the current value from this view using the query:

 SELECT * FROM V$SGASTAT WHERE NAME = ’FREE MEMORY’;

If there is always free memory available within the shared pool, then increasing the

size of the pool offers little or no benefit. However, just because the shared pool is

full does not necessarily mean there is a problem.

Once an entry has been loaded into the shared pool it cannot be moved. As more

entries are loaded, the free memory becomes discontiguous, and the shared pool

may become fragmented.

You can use the PL/SQL package DBMS_SHARED_POOL, located in

dbmspool.sql, to manage the shared pool. The comments in the code describe how

to use the procedures within the package.

Loading PL/SQL Objects into the Shared Pool
Oracle loads objects into the shared pool using "pages" that are 4KB in size. These

pages load chunks of segmented PL/SQL code. The pages do not need to be

contiguous. Therefore, Oracle does not need to allocate large sections of contiguous

memory for loading objects into the shared pool. This reduces the need for

contiguous memory and improves performance. However, Oracle loads all of a

package if any part of the package is called.

Depending on user needs, it may or may not be prudent to pin packages in the

shared pool. Nonetheless, Oracle recommends pinning, especially for frequently

used application objects.

Library Cache and Row Cache Hit Ratios
Library cache and row cache hit ratios are important. If free memory is near zero

and either the library cache hit ratio or the row cache hit ratio is less than 0.95,

increase the size of the shared pool until the ratios stop improving.

See Also: For more information about DBMS_SHARED_POOL,

see the Oracle8i Supplied Packages Reference.

Tuning the Shared Pool

Tuning Memory Allocation 19-13

Tuning the Library Cache
This section describes how to tune the library cache hit ratio.

The library cache holds executable forms of SQL cursors, PL/SQL programs, and

JAVA classes. It also caches descriptive information, or metadata, about schema

objects. Oracle uses this metadata when parsing SQL cursors or during the

compilation of PL/SQL programs. The latter type of memory is seldom a concern

for performance, so this section focuses on tuning as it relates to cursors, PL/SQL

programs, and JAVA classes. These are collectively referred to as "application logic".

Examining Library Cache Activity
Library cache misses can occur on either the parse or the execute step in the

processing of a SQL statement.

Parse If an application makes a parse call for a SQL statement and the parsed

representation of the statement does not already exist in a shared SQL area in the

library cache, Oracle parses the statement and allocates a shared SQL area. You may

be able to reduce library cache misses on parse calls by ensuring that SQL

statements can share a shared SQL area whenever possible.

Execute If an application makes an execute call for a SQL statement and the shared

SQL area containing the parsed representation of the statement has been

deallocated from the library cache to make room for another statement, Oracle

implicitly reparses the statement, allocates a new shared SQL area for it, and

executes it. You may be able to reduce library cache misses on execution calls by

allocating more memory to the library cache.

To determine whether misses on the library cache are affecting the performance of

Oracle, query the dynamic performance table V$LIBRARYCACHE.

The V$LIBRARYCACHE View You can monitor statistics reflecting library cache activity

by examining the dynamic performance view V$LIBRARYCACHE. These statistics

reflect all library cache activity since the most recent instance startup. By default,

this view is available only to the user SYS and to users granted SELECT ANY

TABLE system privilege, such as SYSTEM.

Each row in this view contains statistics for one type of item kept in the library

cache. The item described by each row is identified by the value of the

NAMESPACE column. Rows of the table with the following NAMESPACE values

reflect library cache activity for SQL statements and PL/SQL blocks:

■ SQL AREA

Tuning the Shared Pool

19-14 Oracle8i Tuning

■ TABLE/PROCEDURE

■ BODY

■ TRIGGER

Rows with other NAMESPACE values reflect library cache activity for object

definitions that Oracle uses for dependency maintenance.

These columns of the V$LIBRARYCACHE table reflect library cache misses on

execution calls:

Querying the V$LIBRARYCACHE Table Monitor the statistics in the

V$LIBRARYCACHE table over a period of time with this query:

 SELECT SUM(PINS) "EXECUTIONS",
 SUM(RELOADS) "CACHE MISSES WHILE EXECUTING"
 FROM V$LIBRARYCACHE;

The output of this query might look like this:

 EXECUTIONS CACHE MISSES WHILE EXECUTING
 ---------- ----------------------------
 320871 549

Interpreting the V$LIBRARYCACHE Table Examining the data returned by the sample

query leads to these observations:

■ The sum of the EXECUTIONS column indicates that SQL statements, PL/SQL

blocks, and object definitions were accessed for execution a total of 320,871

times.

■ The sum of the CACHE MISSES WHILE EXECUTING column indicates that

549 of those executions resulted in library cache misses causing Oracle to

implicitly reparse a statement or block or reload an object definition because it

aged out of the library cache.

■ The ratio of the total misses to total executions is about 0.17%. This value means

that only 0.17% of executions resulted in reparsing.

PINS This column shows the number of times an item in the

library cache was executed.

RELOADS This column shows the number of library cache misses on

execution steps.

Tuning the Shared Pool

Tuning Memory Allocation 19-15

Total misses should be near 0. If the ratio of misses to executions is more than 1%,

try to reduce the library cache misses through the means discussed in the next

section.

Reducing Library Cache Misses
You can reduce library cache misses by:

■ Allocating additional memory to the library cache

■ Writing identical SQL statements whenever possible

Allocating Additional Memory for the Library Cache You may be able to reduce library

cache misses on execution calls by allocating additional memory for the library

cache. To ensure that shared SQL areas remain in the cache once their SQL

statements are parsed, increase the amount of memory available to the library cache

until the V$LIBRARYCACHE.RELOADS value is near 0. To increase the amount of

memory available to the library cache, increase the value of the initialization

parameter SHARED_POOL_SIZE. The maximum value for this parameter depends

on your operating system. This measure will reduce implicit reparsing of SQL

statements and PL/SQL blocks on execution.

To take advantage of additional memory available for shared SQL areas, you may

also need to increase the number of cursors permitted for a session. You can do this

by increasing the value of the initialization parameter OPEN_CURSORS.

Be careful not to induce paging and swapping by allocating too much memory for

the library cache. The benefits of a library cache large enough to avoid cache misses

can be partially offset by reading shared SQL areas into memory from disk

whenever you need to access them.

Writing Identical SQL Statements: Criteria You may be able to reduce library cache

misses on parse calls by ensuring that SQL statements and PL/SQL blocks use a

shared SQL area whenever possible. Two separate occurrences of a SQL statement

or PL/SQL block can use a shared SQL area if they are identical according to these

criteria:

■ The text of the SQL statements or PL/SQL blocks must be identical, character

for character, including spaces and case. For example, these statements cannot

use the same shared SQL area:

SELECT * FROM EMP;
SELECT * FROM EMP;

See Also: "SHARED_POOL_SIZE Too Small" on page 19-25.

Tuning the Shared Pool

19-16 Oracle8i Tuning

These statements cannot use the same shared SQL area:

SELECT * FROM EMP;
SELECT * FROM EMP;

■ References to schema objects in the SQL statements or PL/SQL blocks must

resolve to the same object in the same schema.

For example, if the schemas of the users BOB and ED both contain an EMP table

and both users issue the following statement, their statements cannot use the

same shared SQL area:

 SELECT * FROM EMP;
 SELECT * FROM EMP;

If both statements query the same table and qualify the table with the schema,

as in the following statement, then they can use the same shared SQL area:

 SELECT * FROM BOB.EMP;

■ Bind variables in the SQL statements must match in name and datatype. For

example, these statements cannot use the same shared SQL area:

 SELECT * FROM EMP WHERE DEPTNO = :DEPARTMENT_NO;
 SELECT * FROM EMP WHERE DEPTNO = :D_NO;

■ The SQL statements must be optimized using the same optimization approach

and, in the case of the cost-based approach, the same optimization goal. For

information on optimization approach and goal, see "Choosing a Goal for the

Cost-based Approach" on page 7-3.

Writing Identical SQL Statements: Strategies Shared SQL areas are most useful for

reducing library cache misses for multiple users running the same application.

Discuss these criteria with the developers of such applications and agree on

strategies to ensure that the SQL statements and PL/SQL blocks of an application

can use the same shared SQL areas:

■ Use bind variables rather than explicitly specified constants in your statements

whenever possible.

For example, the following two statements cannot use the same shared area

because they do not match character for character:

 SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = 10;
 SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = 20;

Tuning the Shared Pool

Tuning Memory Allocation 19-17

You can accomplish the goals of these statements by using the following

statement that contains a bind variable, binding 10 for one occurrence of the

statement and 20 for the other:

 SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :DEPARTMENT_NO;

The two occurrences of the statement can then use the same shared SQL area.

■ Be sure that users of the application do not change the optimization approach

and goal for their individual sessions.

■ You can also increase the likelihood that SQL statements issued by different

applications can share SQL areas by establishing these policies among the

developers of the applications:

■ Standardize naming conventions for bind variables and spacing

conventions for SQL statements and PL/SQL blocks.

■ Use stored procedures whenever possible. Multiple users issuing the same

stored procedure automatically use the same shared PL/SQL area. Since

stored procedures are stored in a parsed form, they eliminate run-time

parsing altogether.

Using CURSOR_SPACE_FOR_TIME to Speed Access to Shared SQL Areas
If you have no library cache misses, you may still be able to accelerate execution

calls by setting the value of the initialization parameter

CURSOR_SPACE_FOR_TIME. This parameter specifies whether a shared SQL area

can be deallocated from the library cache to make room for a new SQL statement.

CURSOR_SPACE_FOR_TIME has the following values meanings:

■ If this parameter is set to FALSE (the default), a shared SQL area can be

deallocated from the library cache regardless of whether application cursors

associated with its SQL statement are open. In this case, Oracle must verify that

a shared SQL area containing the SQL statement is in the library cache.

■ If this parameter is set to TRUE, a shared SQL area can be deallocated only

when all application cursors associated with its statement are closed. In this

case, Oracle need not verify that a shared SQL area is in the cache, because the

shared SQL area can never be deallocated while an application cursor

associated with it is open.

Setting the value of the parameter to TRUE saves Oracle a small amount of time and

may slightly improve the performance of execution calls. This value also prevents

the deallocation of private SQL areas until associated application cursors are closed.

Tuning the Shared Pool

19-18 Oracle8i Tuning

Do not set the value of CURSOR_SPACE_FOR_TIME to TRUE if you have found

library cache misses on execution calls. Such library cache misses indicate that the

shared pool is not large enough to hold the shared SQL areas of all concurrently

open cursors. If the value is TRUE and the shared pool has no space for a new SQL

statement, the statement cannot be parsed and Oracle returns an error saying that

there is no more shared memory. If the value is FALSE and there is no space for a

new statement, Oracle deallocates an existing shared SQL area. Although

deallocating a shared SQL area results in a library cache miss later, it is preferable to

an error halting your application because a SQL statement cannot be parsed.

Do not set the value of CURSOR_SPACE_FOR_TIME to TRUE if the amount of

memory available to each user for private SQL areas is scarce. This value also

prevents the deallocation of private SQL areas associated with open cursors. If the

private SQL areas for all concurrently open cursors fills the user’s available memory

so that there is no space to allocate a private SQL area for a new SQL statement, the

statement cannot be parsed and Oracle returns an error indicating that there is not

enough memory.

Caching Session Cursors
If an application repeatedly issues parse calls on the same set of SQL statements, the

reopening of the session cursors can affect system performance. Session cursors can

be stored in a session cursor cache. This feature can be particularly useful for

applications designed using Oracle Forms, because switching from one form to

another closes all session cursors associated with the first form.

Oracle uses the shared SQL area to determine whether more than three parse

requests have been issued on a given statement. If so, Oracle assumes the session

cursor associated with the statement should be cached and moves the cursor into

the session cursor cache. Subsequent requests to parse that SQL statement by the

same session will then find the cursor in the session cursor cache.

To enable caching of session cursors, you must set the initialization parameter

SESSION_CACHED_CURSORS. The value of this parameter is a positive integer

specifying the maximum number of session cursors kept in the cache. An LRU

(Least Recently Used) algorithm removes entries in the session cursor cache to make

room for new entries when needed.

You can also enable the session cursor cache dynamically with the statement ALTER

SESSION SET SESSION_CACHED_CURSORS.

To determine whether the session cursor cache is sufficiently large for your instance,

you can examine the session statistic "session cursor cache hits" in the V$SESSTAT

view. This statistic counts the number of times a parse call found a cursor in the

Tuning the Shared Pool

Tuning Memory Allocation 19-19

session cursor cache. If this statistic is a relatively low percentage of the total parse

call count for the session, you should consider setting

SESSION_CACHED_CURSORS to a larger value.

Tuning the Data Dictionary Cache
This section describes how to monitor data dictionary cache activity and reduce

misses.

Monitoring Data Dictionary Cache Activity
Determine whether misses on the data dictionary cache are affecting the

performance of Oracle. You can examine cache activity by querying the

V$ROWCACHE table as described in the following sections.

Misses on the data dictionary cache are to be expected in some cases. Upon instance

startup, the data dictionary cache contains no data, so any SQL statement issued is

likely to result in cache misses. As more data is read into the cache, the likelihood of

cache misses should decrease. Eventually the database should reach a "steady state"

in which the most frequently used dictionary data is in the cache. At this point, very

few cache misses should occur. To tune the cache, examine its activity only after

your application has been running.

The V$ROWCACHE View Statistics reflecting data dictionary activity are kept in the

dynamic performance table V$ROWCACHE. By default, this table is available only

to the user SYS and to users granted SELECT ANY TABLE system privilege, such as

SYSTEM.

Each row in this table contains statistics for a single type of the data dictionary item.

These statistics reflect all data dictionary activity since the most recent instance

startup. These columns in the V$ROWCACHE table reflect the use and effectiveness

of the data dictionary cache:

PARAMETER Identifies a particular data dictionary item. For each row, the

value in this column is the item prefixed by dc_. For example,

in the row that contains statistics for file descriptions, this

column has the value dc_files.

GETS Shows the total number of requests for information on the

corresponding item. For example, in the row that contains

statistics for file descriptions, this column has the total

number of requests for file descriptions data.

Tuning the Shared Pool

19-20 Oracle8i Tuning

Querying the V$ROWCACHE Table Use the following query to monitor the statistics in

the V$ROWCACHE table over a period of time while your application is running:

 SELECT SUM(GETS) "DATA DICTIONARY GETS",
 SUM(GETMISSES) "DATA DICTIONARY CACHE GET MISSES"
 FROM V$ROWCACHE;

The output of this query might look like this:

 DATA DICTIONARY GETS DATA DICTIONARY CACHE GET MISSES
 -------------------- --------------------------------
 1439044 3120

Interpreting the V$ROWCACHE Table Examining the data returned by the sample query

leads to these observations:

■ The sum of the GETS column indicates that there were a total of 1,439,044

requests for dictionary data.

■ The sum of the GETMISSES column indicates that 3120 of the requests for

dictionary data resulted in cache misses.

■ The ratio of the sums of GETMISSES to GETS is about 0.2%.

Reducing Data Dictionary Cache Misses
Examine cache activity by monitoring the sums of the GETS and GETMISSES

columns. For frequently accessed dictionary caches, the ratio of total GETMISSES to

total GETS should be less than 10% or 15%. If the ratio continues to increase above

this threshold while your application is running, you should consider increasing the

amount of memory available to the data dictionary cache. To increase the memory

available to the cache, increase the value of the initialization parameter

SHARED_POOL_SIZE. The maximum value for this parameter depends on your

operating system.

GETMISSES Shows the number of data requests resulting in cache misses.

Tuning the Large Pool and Shared Pool for the Multi-threaded Server Architecture

Tuning Memory Allocation 19-21

Tuning the Large Pool and Shared Pool for the Multi-threaded Server
Architecture

Oracle recommends allocating memory for MTS session information from the large

pool. To do this, specify a value for the parameter LARGE_POOL_SIZE. Otherwise,

Oracle allocates memory for MTS from the shared pool. In either case, when using

MTS you may need to increase the large pool or shared pool size to accommodate

session information.

When users connect through MTS, Oracle allocates space in the SGA to store

information about connections among user processes, dispatchers, and servers. It

also stores session information about each user’s private SQL area.

The amount of space required in the large or shared pools for each MTS user

connection depends on the application.

Reducing Memory Use With Three-Tier Connections
If you have a high number of connected users, you can reduce memory use to an

acceptable level by implementing "three-tier connections". This by-product of using

a TP monitor is feasible only with pure transactional models, because locks and

uncommitted DMLs cannot be held between calls. MTS is much less restrictive of

the application design than a TP monitor. It dramatically reduces operating system

process count and context switches by enabling users to share a pool of servers.

MTS also substantially reduces overall memory usage even though more SGA is

used in MTS mode.

Note: The Oracle default is dedicated server processing.

See Also: Please refer to Chapter 23, "Tuning the Multi-Threaded

Server Architecture", Oracle8i Concepts, the Oracle8i Administrator’s
Guide, the Oracle8i SQL Reference, and the Net8 Administrator’s
Guide.

Note: On NT, shared servers are implemented as "threads" instead

of processes.

The V$SESSTAT View

19-22 Oracle8i Tuning

The V$SESSTAT View
Oracle collects statistics on total memory used by a session and stores them in the

dynamic performance view V$SESSTAT. By default, this view is available only to

the user SYS and to users granted SELECT ANY TABLE system privilege, such as

SYSTEM. These statistics are useful for measuring session memory use:

To find the value, query V$STATNAME as described in "Technique 3" on page 19-8.

Querying the V$SESSTAT View
You can use this query to decide how much larger to make the shared pool if you

are using a Multi-threaded Server. Issue these queries while your application is

running:

 SELECT SUM(VALUE) || ’ BYTES’ "TOTAL MEMORY FOR ALL SESSIONS"
 FROM V$SESSTAT, V$STATNAME
 WHERE NAME = ’SESSION UGA MEMORY’
 AND V$SESSTAT.STATISTIC# = V$STATNAME.STATISTIC#;
 SELECT SUM(VALUE) || ’ BYTES’ "TOTAL MAX MEM FOR ALL SESSIONS"
 FROM V$SESSTAT, V$STATNAME
 WHERE NAME = ’SESSION UGA MEMORY MAX’
 AND V$SESSTAT.STATISTIC# = V$STATNAME.STATISTIC#;

These queries also select from the dynamic performance table V$STATNAME to

obtain internal identifiers for session memory and max session memory. The results of

these queries might look like this:

 TOTAL MEMORY FOR ALL SESSIONS

 157125 BYTES

 TOTAL MAX MEM FOR ALL SESSIONS

 417381 BYTES

session UGA memory The value of this statistic is the amount of memory in

bytes allocated to the session.

session UGA memory

max

The value of this statistic is the maximum amount of

memory in bytes ever allocated to the session.

Tuning Reserved Space from the Shared Pool

Tuning Memory Allocation 19-23

Interpreting the V$SESSTAT View
The result of the first query indicates that the memory currently allocated to all

sessions is 157,125 bytes. This value is the total memory whose location depends on

how the sessions are connected to Oracle. If the sessions are connected to dedicated

server processes, this memory is part of the memories of the user processes. If the

sessions are connected to shared server processes, this memory is part of the shared

pool.

The result of the second query indicates the sum of the maximum sizes of the

memories for all sessions is 417,381 bytes. The second result is greater than the first,

because some sessions have deallocated memory since allocating their maximum

amounts.

You can use the result of either of these queries to determine how much larger to

make the shared pool if you use a Multi-threaded Server. The first value is likely to

be a better estimate than the second unless nearly all sessions are likely to reach

their maximum allocations at the same time.

Tuning Reserved Space from the Shared Pool
On busy systems the database may have difficulty finding a contiguous piece of

memory to satisfy a large request for memory. This search may disrupt the behavior

of the shared pool, leading to fragmentation and thus affecting performance.

The DBA can reserve memory within the shared pool to satisfy large allocations

during operations such as PL/SQL compilation and trigger compilation. Smaller

objects will not fragment the reserved list, helping to ensure that the reserved list

will have large contiguous chunks of memory. Once the memory allocated from the

reserved list is freed, it returns to the reserved list.

Reserved List Tuning Parameters
The size of the reserved list, as well as the minimum size of the objects that can be

allocated from the reserved list are controlled by the following initialization

parameter:

SHARED_POOL_RESERVED_

SIZE

Controls the amount of SHARED_POOL_SIZE

reserved for large allocations. The fixed view

V$SHARED_POOL_RESERVED helps you

tune these parameters. Begin this tuning only

after performing all other shared pool tuning.

Tuning Reserved Space from the Shared Pool

19-24 Oracle8i Tuning

Controlling Space Reclamation of the Shared Pool
The ABORTED_REQUEST_THRESHOLD procedure, in the package

DBMS_SHARED_POOL, lets you limit the size of allocations allowed to flush the

shared pool if the free lists cannot satisfy the request size. The database

incrementally flushes unused objects from the shared pool until there is sufficient

memory to satisfy the allocation request. In most cases, this frees enough memory

for the allocation to complete successfully. If the database flushes all objects

currently not in use on the system without finding a large enough piece of

contiguous memory, an error occurs. Flushing all objects, however, affects other

users on the system as well as system performance. The

ABORTED_REQUEST_THRESHOLD procedure allows you to localize the error to

the process that could not allocate memory.

Initial Parameter Values
Set the initial value of SHARED_POOL_RESERVED_SIZE to 10% of the

SHARED_POOL_SIZE. For most systems, this value is sufficient if you have already

done some tuning of the shared pool. If you increase this value, then the database

allows fewer allocations from the reserved list and requests more memory from the

shared pool list.

Ideally, set SHARED_POOL_RESERVED_SIZE large enough to satisfy any request

for memory on the reserved list without flushing objects from the shared pool. The

amount of operating system memory, however, may constrain the size of the SGA.

Making the SHARED_POOL_RESERVED_SIZE large enough to satisfy any request

for memory is, therefore, not a feasible goal.

Statistics from the V$SHARED_POOL_RESERVED view can help you tune these

parameters. On a system with ample free memory to increase the size of the SGA,

the goal is to have REQUEST_MISSES = 0. If the system is constrained for operating

system memory, the goal is to not have REQUEST_FAILURES or at least prevent

this value from increasing.

If you cannot achieve this, increase the value for

SHARED_POOL_RESERVED_SIZE. Also increase the value for

SHARED_POOL_SIZE by the same amount, because the reserved list is taken from

the shared pool.

See Also: Oracle8i Reference for details on setting the

LARGE_POOL_SIZE parameter.

Tuning the Buffer Cache

Tuning Memory Allocation 19-25

SHARED_POOL_ RESERVED_SIZE Too Small
The reserved pool is too small when the value for REQUEST_FAILURES is more

than zero and increasing. To resolve this, you can increase the value for the

SHARED_POOL_RESERVED_SIZE and SHARED_POOL_SIZE accordingly. The

settings you select for these depend on your system’s SGA size constraints.

This option increases the amount of memory available on the reserved list without

having an effect on users who do not allocate memory from the reserved list. As a

second option, reduce the number of allocations allowed to use memory from the

reserved list; doing so, however, increases the normal shared pool, which may have

an effect on other users on the system.

SHARED_POOL_ RESERVED_SIZE Too Large
Too much memory may have been allocated to the reserved list if:

■ REQUEST_MISS = 0 or not increasing

■ FREE_MEMORY = > 50% of SHARED_POOL_RESERVED_SIZE minimum

If either of these is true, decrease the value for SHARED_POOL_RESERVED_SIZE.

SHARED_POOL_SIZE Too Small
The V$SHARED_POOL_RESERVED fixed table can also indicate when the value

for SHARED_POOL_SIZE is too small. This may be the case if:

■ REQUEST_FAILURES > 0 and increasing

Then, if you have enabled the reserved list, decrease the value for

SHARED_POOL_RESERVED_SIZE. If you have not enabled the reserved list, you

could increase SHARED_POOL_SIZE.

Tuning the Buffer Cache
You can use or bypass the Oracle buffer cache for particular operations. Oracle

bypasses the buffer cache for sorting and parallel reads. For operations that use the

buffer cache, this section explains:

■ Evaluating Buffer Cache Activity by Means of the Cache Hit Ratio

■ Increasing the Cache Hit Ratio by Reducing Buffer Cache Misses

■ Removing Unnecessary Buffers when Cache Hit Ratio Is High

Tuning the Buffer Cache

19-26 Oracle8i Tuning

After tuning private SQL and PL/SQL areas and the shared pool, you can devote

the remaining available memory to the buffer cache. It may be necessary to repeat

the steps of memory allocation after the initial pass through the process. Subsequent

passes allow you to make adjustments in earlier steps based on changes in later

steps. For example, if you increase the size of the buffer cache, you may need to

allocate more memory to Oracle to avoid paging and swapping.

Evaluating Buffer Cache Activity by Means of the Cache Hit Ratio
Physical I/O takes a significant amount of time, typically in excess of 15

milliseconds. Physical I/O also increases the CPU resources required, owing to the

path length in device drivers and operating system event schedulers. Your goal is to

reduce this overhead as far as possible by making it more likely that the required

block will be in memory. The extent to which you achieve this is measured using

the cache hit ratio. Within Oracle this term applies specifically to the database buffer

cache.

Calculating the Cache Hit Ratio
Oracle collects statistics that reflect data access and stores them in the dynamic

performance view V$SYSSTAT. By default, this table is available only to the user

SYS and to users, such as SYSTEM, who have the SELECT ANY TABLE system

privilege. Information in the V$SYSSTAT view can also be obtained through the

Simple Network Management Protocol (SNMP).

These statistics are useful for tuning the buffer cache:

Monitor these statistics as follows over a period of time while your application is

running:

 SELECT NAME, VALUE
 FROM V$SYSSTAT
 WHERE NAME IN (’DB BLOCK GETS’, ’CONSISTENT GETS’,
 ’PHYSICAL READS’);

DB block gets,

consistent gets

The sum of the values of these statistics is the total number of

requests for data. This value includes requests satisfied by

access to buffers in memory.

physical reads This statistic is the total number of requests for data resulting in

access to datafiles on disk.

Tuning the Buffer Cache

Tuning Memory Allocation 19-27

The output of this query might look like this:

 NAME VALUE
 -- ----------
 DB BLOCK GETS 85792
 CONSISTENT GETS 278888
 PHYSICAL READS 23182

Calculate the hit ratio for the buffer cache with this formula:

Hit Ratio = 1 - (physical reads / (db block gets + consistent gets))

Based on the statistics obtained by the example query, the buffer cache hit ratio is

94%.

Buffer Pinning Statistics
These statistics are useful in evaluating buffer pinning:

These statistics are not incremented when a client performs such a check before

releasing it since the client does not intend to use the buffer in this case.

These statistics provide a measure of how often a long consistent read pin on a

buffer is beneficial. If the client is able to reuse the pinned buffer many times, it

indicates that it is useful to have the buffer pinned.

Evaluating the Cache Hit Ratio
When looking at the cache hit ratio, remember that blocks encountered during a

"long" full table scan are not put at the head of the LRU list; therefore repeated

scanning does not cause the blocks to be cached.

Repeated scanning of the same large table is rarely the most efficient approach. It

may be better to perform all of the processing in a single pass, even if this means

that the overnight batch suite can no longer be implemented as a SQL*Plus script

Buffer pinned This statistic measures the number of times a buffer was

already pinned by a client when a client checks to determine if

the buffer it wants is already pinned.

Buffer not pinned This statistic measures the number of times the buffer was not

pinned by the client when a client checks to determine if the

buffer it wants is already pinned.

Tuning the Buffer Cache

19-28 Oracle8i Tuning

that contains no PL/SQL. The solution therefore lies at the design or

implementation level.

Production sites running with thousands or tens of thousands of buffers rarely use

memory effectively. In any large database running OLTP applications, in any given

unit of time, most rows are accessed either one or zero times. On this basis there is

little point in keeping the row, or the block that contains it, in memory for very long

following its use.

Finally, the relationship between the cache hit ratio and the number of buffers is far

from a smooth distribution. When tuning the buffer pool, avoid the use of

additional buffers that contribute little or nothing to the cache hit ratio. As

illustrated in Figure 19–2, only narrow bands of values of DB_BLOCK_BUFFERS

are worth considering.

Figure 19–2 Buffer Pool Cache Hit Ratio

Note: A common mistake is to continue increasing the value of

DB_BLOCK_BUFFERS. Such increases have no effect if you are

doing full table scans or other operations that do not use the buffer

pool.

Buffers

P
h

ys
 I/

O
 R

at
io

~0.5

~0.1

Actual

Intuitive

Tuning the Buffer Cache

Tuning Memory Allocation 19-29

As a rule of thumb, increase DB_BLOCK_BUFFERS when:

■ The cache hit ratio is less than 0.9

■ There is no evidence of undue page faulting

■ The previous increase of DB_BLOCK_BUFFERS was effective

Determining Which Buffers Are in the Pool
The CATPARR.SQL script creates the view V$BH, which shows the file number and

block number of blocks that currently reside within the SGA. Although

CATPARR.SQL is primarily intended for use in parallel server environments, you

can run it as SYS even if you’re operating a single instance environment.

Perform a query similar to the following:

 SELECT file#, COUNT(block#), COUNT (DISTINCT file# || block#)
 FROM V$BH
 GROUP BY file#;

Increasing the Cache Hit Ratio by Reducing Buffer Cache Misses
If your hit ratio is low, or less than 60% or 70%, then you may want to increase the

number of buffers in the cache to improve performance. To make the buffer cache

larger, increase the value of the initialization parameter DB_BLOCK_BUFFERS.

Oracle can collect statistics that estimate the performance gain that would result

from increasing the size of your buffer cache. With these statistics, you can estimate

how many buffers to add to your cache.

Removing Unnecessary Buffers when Cache Hit Ratio Is High
If your hit ratio is high, your cache is probably large enough to hold your most

frequently accessed data. In this case, you may be able to reduce the cache size and

still maintain good performance. To make the buffer cache smaller, reduce the value

of the initialization parameter DB_BLOCK_BUFFERS. The minimum value for this

parameter is 4. You can use any leftover memory for other Oracle memory

structures.

Oracle can collect statistics to predict buffer cache performance based on a smaller

cache size. Examining these statistics can help you determine how small you can

afford to make your buffer cache without adversely affecting performance.

Accommodating LOBs in the Buffer Cache

19-30 Oracle8i Tuning

Accommodating LOBs in the Buffer Cache
Both temporary and permanent LOBs can use the buffer cache.

Temporary LOBs
Temporary LOBS created when you have set the CACHE parameter to TRUE move

through the buffer cache. Temporary LOBS created with the CACHE parameter set

to FALSE are read directly from and written directly to disk.

You can use durations for automatic cleanup to save time and effort. Also, it is more

efficient for the database to end a duration and free all temporary LOBs associated

with a duration than it is to free each one explicitly.

Temporary LOBs create deep copies of themselves on assignments. For example:

 LOCATOR1 BLOB;
 LOCATOR2 BLOB;
 DBMS_LOB.CREATETEMPORARY (LOCATOR1,TRUE,DBMS_LOB.SESSION);
 LOCATOR2 := LOCATOR;

The above code causes a copy of the temporary LOB pointed to by LOCATOR1 to

be created. You may also want to consider using pass by reference semantics in

PL/SQL.

Or, in OCI, you may declare pointers to locators as in the following example:

 OCILOBDESCRIPTOR *LOC1;
 OCILOBDESCRIPTOR *LOC2;
 OCILOBCREATETEMPORARY (LOC1,TRUE,OCIDURATIONSESSION);
 LOC2 = LOC1;

Avoid using OCILobAssign() commands as these also cause deep copies of

temporary LOBs. In other words, a new copy of the temporary LOB is created.

Pointer assignment does not cause deep copies, it just causes pointers to point to the

same thing.

Tuning Multiple Buffer Pools
This section covers:

■ Overview of the Multiple Buffer Pool Feature

■ When to Use Multiple Buffer Pools

Tuning Multiple Buffer Pools

Tuning Memory Allocation 19-31

■ Tuning the Buffer Cache Using Multiple Buffer Pools

■ Enabling Multiple Buffer Pools

■ Using Multiple Buffer Pools

■ Dictionary Views Showing Default Buffer Pools

■ Sizing Each Buffer Pool

■ Identifying and Eliminating LRU Latch Contention

Overview of the Multiple Buffer Pool Feature
Schema objects are referenced with varying usage patterns; therefore, their cache

behavior may be quite different. Multiple buffer pools enable you to address these

differences. You can use a KEEP buffer pool to maintain objects in the buffer cache

and a RECYCLE buffer pool to prevent objects from consuming unnecessary space

in the cache. When an object is allocated to a cache, all blocks from that object are

placed in that cache. Oracle maintains a DEFAULT buffer pool for objects that have

not been assigned to one of the buffer pools.

Each buffer pool in Oracle comprises a number of working sets. A different number

of sets can be allocated for each buffer pool. All sets use the same LRU (Least

Recently Used) replacement policy. A strict LRU aging policy provides good hit

rates in most cases, but you can sometimes improve hit rates by providing some

hints.

The main problem with the LRU list occurs when a very large segment is accessed

frequently in a random fashion. Here, "very large" means large compared to the size

of the cache. Any single segment that accounts for a substantial portion (more than

10%) of nonsequential physical reads is probably one of these segments. Random

reads to such a large segment can cause buffers that contain data for other segments

to be aged out of the cache. The large segment ends up consuming a large

percentage of the cache, but does not benefit from the cache.

Very frequently accessed segments are not affected by large segment reads, because

their buffers are warmed frequently enough that they do not age out of the cache.

The main trouble occurs with "warm" segments that are not accessed frequently

enough to survive the buffer flushing caused by the large segment reads.

You have two options for solving this problem. One is to move the large segment

into a separate RECYCLE cache so that it does not disturb the other segments. The

RECYCLE cache should be smaller than the DEFAULT buffer pool and should reuse

buffers more quickly than the DEFAULT buffer pool.

Tuning Multiple Buffer Pools

19-32 Oracle8i Tuning

The other approach is to move the small warm segments into a separate KEEP

cache that is not used at all for large segments. The KEEP cache can be sized to

minimize misses in the cache. You can make the response times for specific queries

more predictable by putting the segments accessed by the queries in the KEEP

cache to ensure that they are never aged out.

When to Use Multiple Buffer Pools
When you examine system I/O performance, you should analyze the schema and

determine whether multiple buffer pools would be advantageous. Consider a KEEP

cache if there are small, frequently accessed tables that require quick response time.

Very large tables with random I/O are good candidates for a RECYCLE cache.

Use the following steps to determine the percentage of the cache used by an

individual object at a given point in time:

1. Find the Oracle internal object number of the segment by entering:

SELECT DATA_OBJECT_ID, OBJECT_TYPE FROM USER_OBJECTS
WHERE OBJECT_NAME = '<SEGMENT_NAME>';

Because two objects can have the same name (if they are different types of

objects), you can use the OBJECT_TYPE column to identify the object of

interest. If the object is owned by another user, then use the view

DBA_OBJECTS or ALL_OBJECTS instead of USER_OBJECTS.

2. Find the number of buffers in the buffer cache for SEGMENT_NAME:

SELECT COUNT(*) BUFFERS FROM V$BH WHERE OBJD = <DATA_OBJECT_ID>;

where DATA_OBJECT_ID is from Step 1.

3. Find the total number of buffers in the instance:

SELECT VALUE "TOTAL BUFFERS" FROM V$PARAMETER
WHERE NAME = 'DB_BLOCK_BUFFERS';

Tuning Multiple Buffer Pools

Tuning Memory Allocation 19-33

4. Calculate the ratio of buffers to total buffers, to obtain the percentage of the

cache currently used by SEGMENT_NAME.

If the number of local block gets equals the number of physical reads for statements

involving such objects, consider using a RECYCLE cache because of the limited

usefulness of the buffer cache for the objects.

Tuning the Buffer Cache Using Multiple Buffer Pools
When you partition your buffer cache into multiple buffer pools, each buffer pool

can be used for blocks from objects that are accessed in different ways. If the blocks

of a particular object are likely to be reused, then you should pin that object in the

buffer cache so the next use of the block does not require disk I/O. Conversely, if a

block probably will not be reused within a reasonable period of time, discard it to

make room for more frequently used blocks.

By properly allocating objects to appropriate buffer pools, you can:

■ Reduce or eliminate I/Os.

■ Isolate an object in the cache.

■ Restrict or limit an object to a part of the cache.

Enabling Multiple Buffer Pools
You can create multiple buffer pools for each database instance. The same set of

buffer pools need not be defined for each instance of the database. Among

instances, the buffer pools may be different sizes or not defined at all. Tune each

instance separately.

Note: This technique works only for a single segment. You must

run the query for each partition for a partitioned object.

% cache used by segment_name =
buffers (Step 2)

total buffers (Step 3)

Tuning Multiple Buffer Pools

19-34 Oracle8i Tuning

Defining New Buffer Pools
You can define each buffer pool using the BUFFER_POOL_name initialization

parameter. You can specify two attributes for each buffer pool: the number of

buffers in the buffer pool and the number of LRU latches allocated to the buffer

pool.

The initialization parameters used to define buffer pools are:

For example:

 BUFFER_POOL_KEEP=(buffers:400, lru_latches:3")
 BUFFER_POOL_RECYCLE=(buffers:50, lru_latches:1")

The size of each buffer pool is subtracted from the total number of buffers defined

for the entire buffer cache (that is, the value of the DB_BLOCK_BUFFERS
parameter). The aggregate number of buffers in all buffer pools cannot, therefore,

exceed this value. Likewise, the number of LRU latches allocated to each buffer pool

is taken from the total number allocated to the instance by the

DB_BLOCK_LRU_LATCHES parameter. If either constraint is violated, Oracle

displays an error and the database is not mounted.

The minimum number of buffers you must allocate to each buffer pool is 50 times

the number of LRU latches. For example, a buffer pool with 3 LRU latches must

have at least 150 buffers.

Oracle automatically defines three buffer pools: KEEP, RECYCLE, and DEFAULT.

The DEFAULT buffer pool always exists. You do not explicitly define the size of the

DEFAULT buffer pool or the number of working sets assigned to the DEFAULT

buffer pool. Rather, each value is inferred from the total number allocated minus the

number allocated to every other buffer pool. There is no requirement that any one

buffer pool be defined for another buffer pool to be used.

BUFFER_POOL_KEEP Defines the KEEP buffer pool.

BUFFER_POOL_RECYCLE Defines the RECYCLE buffer pool.

DB_BLOCK_BUFFERS Defines the number of buffers for the database

instance. Each individual buffer pool is created

from this total amount with the remainder

allocated to the DEFAULT buffer pool.

DB_BLOCK_LRU_LATCHES Defines the number of LRU latches for the

entire database instance. Each buffer pool

defined takes from this total in a fashion

similar to DB_BLOCK_BUFFERS.

Tuning Multiple Buffer Pools

Tuning Memory Allocation 19-35

Using Multiple Buffer Pools
This section describes how to establish a DEFAULT buffer pool for an object. All

blocks for the object go in the specified buffer pool.

The BUFFER_POOL clause is used to define the DEFAULT buffer pool for an object.

This clause is valid for CREATE and ALTER table, cluster, and index DDL

statements. The buffer pool name is case insensitive. The blocks from an object

without an explicitly set buffer pool go into the DEFAULT buffer pool.

If a buffer pool is defined for a partitioned table or index, each partition of the object

inherits the buffer pool from the table or index definition unless you override it

with a specific buffer pool.

When the DEFAULT buffer pool of an object is changed using the ALTER statement,

all buffers currently containing blocks of the altered segment remain in the buffer

pool they were in before the ALTER statement. Newly loaded blocks and any blocks

that have aged out and are reloaded go into the new buffer pool.

The syntax of the BUFFER_POOL clause is: BUFFER_POOL {KEEP | RECYCLE |
DEFAULT}

For example:

 BUFFER_POOL KEEP

Or:

 BUFFER_POOL RECYCLE

The following DDL statements accept the buffer pool clause:

■ CREATE TABLE table name... STORAGE (buffer_pool_clause)

A buffer pool is not permitted for a clustered table. The buffer pool for a

clustered table is specified at the cluster level.

For an index-organized table, a buffer pool can be defined on both the index

and the overflow segment.

For a partitioned table, a buffer pool can be defined on each partition. The

buffer pool is specified as a part of the storage clause for each partition.

Tuning Multiple Buffer Pools

19-36 Oracle8i Tuning

For example:

CREATE TABLE TABLE_NAME (COL_1 NUMBER, COL_2 NUMBER)
PARTITION BY RANGE (COL_1)
(PARTITION ONE VALUES LESS THAN (10)
STORAGE (INITIAL 10K BUFFER_POOL RECYCLE),
PARTITION TWO VALUES LESS THAN (20) STORAGE (BUFFER_POOL KEEP));

■ CREATE INDEXindex name... STORAGE (buffer_pool_clause)

For a global or local partitioned index, a buffer pool can be defined on each

partition.

■ CREATE CLUSTERcluster_name...STORAGE (buffer_pool_clause)

■ ALTER TABLEtable_name... STORAGE (buffer_pool_clause)

A buffer pool can be defined during simple ALTER TABLE, MODIFY

PARTITION, MOVE PARTITION, ADD PARTITION, and SPLIT PARTITION

commands for both new partitions.

■ ALTER INDEXindex_name... STORAGE (buffer_pool_clause)

A buffer pool can be defined during simple ALTER INDEX, REBUILD,

MODIFY PARTITION, SPLIT PARTITION commands for both new partitions,

and rebuild partitions.

■ ALTER CLUSTERcluster_name... STORAGE (buffer_pool_clause)

Tuning Multiple Buffer Pools

Tuning Memory Allocation 19-37

Dictionary Views Showing Default Buffer Pools
The following dictionary views have a BUFFER POOL column indicating the

DEFAULT buffer pool for the given object.

The views V$BUFFER_POOL_STATISTICS and GV$BUFFER_POOL_STATISTICS

describe the buffer pools allocated on the local instance and entire database,

respectively. To create these views you must run the CATPERF.SQL file.

Sizing Each Buffer Pool
This section explains how to size the KEEP and RECYCLE buffer pools.

KEEP Buffer Pool
The goal of the KEEP buffer pool is to retain objects in memory, thus avoiding I/O

operations. The size of the KEEP buffer pool therefore depends on the objects that

you wish to keep in the buffer cache. You can compute an approximate size for the

KEEP buffer pool by adding together the sizes of all objects dedicated to this pool.

Use the ANALYZE command to obtain the size of each object. Although the

ESTIMATE option provides a rough measurement of sizes, the COMPUTE

STATISTICS option is preferable because it provides the most accurate value

possible.

USER_CLUSTERS ALL_CLUSTERS DBA_CLUSTERS

USER_INDEXES ALL_INDEXES DBA_INDEXES

USER_SEGMENTS DBA_SEGMENTS

USER_TABLES USER_OBJECT_TABLES USER_ALL_TABLES

ALL_TABLES ALL_OBJECT_TABLES ALL_ALL_TABLES

DBA_TABLES DBA_OBJECT_TABLES DBA_ALL_TABLES

USER_PART_TABLES ALL_PART_TABLES DBA_PART_TABLES

USER_PART_INDEXES ALL_PART_INDEXES DBA_PART_INDEXES

USER_TAB_PARTITIONS ALL_TAB_PARTITIONS DBA_TAB_PARTITIONS

USER_IND_PARTITIONS ALL_IND_PARTITIONS DBA_IND_PARTITIONS

Tuning Multiple Buffer Pools

19-38 Oracle8i Tuning

The buffer pool hit ratio can be determined using the formula:

Where the values of physical reads, block gets, and consistent gets can be obtained

for the KEEP buffer pool from the following query:

 SELECT PHYSICAL_READS, BLOCK_GETS, CONSISTENT_GETS
 FROM V$BUFFER_POOL_STATISTICS WHERE NAME = ’KEEP’;

The KEEP buffer pool will have a 100% hit ratio only after the buffers have been

loaded into the buffer pool. Therefore, do not compute the hit ratio until after the

system runs for a while and achieves steady-state performance. Calculate the hit

ratio by taking two snapshots of system performance at different times using the

above query. Subtract the newest values from the older values for physical reads,

block gets, and consistent gets and use these values to compute the hit ratio.

A 100% buffer pool hit ratio may not be optimal. Often you can decrease the size of

your KEEP buffer pool and still maintain a sufficiently high hit ratio. Allocate

blocks removed from use for the KEEP buffer pool to other buffer pools.

Each object kept in memory results in a trade-off: it is beneficial to keep frequently

accessed blocks in the cache, but retaining infrequently used blocks results in less

space for other, more active blocks.

RECYCLE Buffer Pool
The goal of the RECYCLE buffer pool is to eliminate blocks from memory as soon as

they are no longer needed. If an application accesses the blocks of a very large

object in a random fashion, there is little chance of reusing a block stored in the

buffer pool before it is aged out. This is true regardless of the size of the buffer pool

(given the constraint of the amount of available physical memory). Because of this,

the object’s blocks should not be cached; those cache buffers can be allocated to

other objects.

Be careful, however, not to discard blocks from memory too quickly. If the buffer

pool is too small, blocks may age out of the cache before the transaction or SQL

Note: If an object grows in size, then it may no longer fit in the

KEEP buffer pool. You will begin to lose blocks out of the cache.

hit ratio = 1 -
physical reads

(block gets + consistent gets)

Tuning Multiple Buffer Pools

Tuning Memory Allocation 19-39

statement has completed execution. For example, an application may select a value

from a table, use the value to process some data, and then update the record. If the

block is removed from the cache after the select statement, it must be read from disk

again to perform the update. The block should be retained for the duration of the

user transaction.

By executing statements with a SQL statement tuning tool such as Oracle Trace or

with the SQL trace facility enabled and running TKPROF on the trace files, you can

get a listing of the total number of data blocks physically read from disk. (This

number appears in the "disk" column in the TKPROF output.) The number of disk

reads for a particular SQL statement should not exceed the number of disk reads of

the same SQL statement with all objects allocated from the DEFAULT buffer pool.

Two other statistics can tell you whether the RECYCLE buffer pool is too small. If

the "free buffer waits" statistic ever becomes excessive, the pool is probably too

small. Likewise, the number of "log file sync" wait events will increase. One way to

size the RECYCLE buffer pool is to run the system with the RECYCLE buffer pool

disabled. At steady state, the number of buffers in the DEFAULT buffer pool being

consumed by segments that would normally go in the RECYCLE buffer pool can be

divided by four. Use the result as a value for sizing the RECYCLE cache.

Identifying Segments to Put into the KEEP and RECYCLE Buffer Pools
A good candidate for a segment to put into the RECYCLE buffer pool is a segment

that is at least twice the size of the DEFAULT buffer pool and has incurred at least a

few percent of the total I/Os in the system.

A good candidate for a segment to put into the KEEP pool is a segment that is

smaller than 10% of the size of the DEFAULT buffer pool and has incurred at least

1% of the total I/Os in the system.

The trouble with these rules is that it can sometimes be difficult to determine the

number of I/Os per segment if a tablespace has more than one segment. One way to

solve this problem is to sample the I/Os that occur over a period of time by

selecting from V$SESSION_WAIT to determine a statistical distribution of I/Os per

segment.

Another option is to examine the positions of the blocks of a segment in the buffer

cache. In particular, the ratio of the count of blocks for a segment in the hot half of

the cache to the count in the cold half for the same segment can give a good

indication of which segments are hot and which are cold. If the ratio for a segment

is close to 1, then buffers for that segment are not frequently used and the segment

may be a good candidate for the RECYCLE cache. If the ratio is high, perhaps 3.0,

Tuning Multiple Buffer Pools

19-40 Oracle8i Tuning

then the buffers are frequently used and the segment might be a good candidate for

the KEEP cache.

Identifying and Eliminating LRU Latch Contention
LRU latches regulate the least recently used (LRU) buffer lists used by the buffer

cache. If there is latch contention then processes are waiting and spinning before

obtaining the latch.

You can set the overall number of latches in the database instance using the

DB_BLOCK_LRU_LATCHES parameter. When each buffer pool is defined, a

number of these LRU latches can be reserved for the buffer pool. The buffers of a

buffer pool are divided evenly between the LRU latches of the buffer pool.

To determine whether your system is experiencing latch contention, begin by

determining whether there is LRU latch contention for any individual latch.

 SELECT child#, sleeps / gets ratio
 FROM V$LATCH_CHILDREN
 WHERE name = ’cache buffers lru chain’;

The miss ratio for each LRU latch should be less than 1%. A ratio above 1% for any

particular latch is indicative of LRU latch contention and should be addressed. You

can determine the buffer pool to which the latch is associated as follows:

 SELECT name FROM V$BUFFER_POOL_STATISTICS
 WHERE lo_setid <= child_latch_number
 AND hi_setid >= child_latch_number ;

where child_latch_number is the child# from the previous query.

You can alleviate LRU latch contention by increasing the overall number of latches

in the system and the number of latches allocated to the buffer pool indicated in the

second query.

The maximum number of latches allowed is the lower of:

number_of_cpus * 2 * 3 or number_of_buffers / 50

This limitation exists because no set can have fewer than 50 buffers. If you specify a

value larger than the maximum, Oracle automatically resets the number of latches

to the largest value allowed by the formula.

Reallocating Memory

Tuning Memory Allocation 19-41

For example, if the number of CPUs is 4 and the number of buffers is 200, then a

maximum of 4 latches would be allowed (minimum of 4*2*3, 200/50). If the number

of CPUs is 4 and the number of buffers is 10000, then the maximum number of

latches allowed is 24 (minimum of 4*2*3, 10000/50).

Tuning Sort Areas
If large sorts occur frequently, consider increasing the value of the parameter

SORT_AREA_SIZE with either or both of two goals in mind:

■ To increase the number of sorts that can be conducted entirely within memory.

■ To speed up those sorts that cannot be conducted entirely within memory.

Large sort areas can be used effectively if you combine a large SORT_AREA_SIZE

with a minimal SORT_AREA_RETAINED_SIZE. If memory is not released until the

user disconnects from the database, large sort work areas could cause problems.

The SORT_AREA_RETAINED_SIZE parameter lets you specify the level down to

which memory should be released as soon as possible following the sort. Set this

parameter to zero if large sort areas are being used in a system with many

simultaneous users.

SORT_AREA_RETAINED_SIZE is maintained for each sort operation in a query.

Thus if 4 tables are being sorted for a sort merge, Oracle maintains 4 areas of

SORT_AREA_RETAINED_SIZE.

Reallocating Memory
After resizing your Oracle memory structures, re-evaluate the performance of the

library cache, the data dictionary cache, and the buffer cache. If you have reduced

the memory consumption of any of these structures, you may want to allocate more

memory to another. For example, if you have reduced the size of your buffer cache,

you may want to use the additional memory by for the library cache.

Tune your operating system again. Resizing Oracle memory structures may have

changed Oracle memory requirements. In particular, be sure paging and swapping

are not excessive. For example, if the size of the data dictionary cache or the buffer

cache has increased, the SGA may be too large to fit into main memory. In this case,

the SGA could be paged or swapped.

While reallocating memory, you may determine that the optimum size of Oracle

memory structures requires more memory than your operating system can provide.

See Also: Chapter 26, "Tuning Parallel Execution".

Reducing Total Memory Usage

19-42 Oracle8i Tuning

In this case, you may improve performance even further by adding more memory

to your computer.

Reducing Total Memory Usage
If the overriding performance problem is that the server simply does not have

enough memory to run the application as currently configured, and the application

is logically a single application (that is, it cannot readily be segmented or

distributed across multiple servers), then only two possible solutions exist:

■ Increase the amount of memory available.

■ Decrease the amount of memory used.

The most dramatic reductions in server memory usage always come from reducing

the number of database connections, which in turn can resolve issues relating to the

number of open network sockets and the number of operating system processes.

However, to reduce the number of connections without reducing the number of

users, the connections that remain must be shared. This forces the user processes to

adhere to a paradigm in which every message request sent to the database describes

a complete or "atomic" transaction.

Writing applications to conform to this model is not necessarily either restrictive or

difficult, but it is certainly different. Conversion of an existing application, such as

an Oracle Forms suite, to conform is not normally possible without a complete

rewrite.

The Oracle Multi-threaded Server architecture is an effective solution for reducing

the number of server operating system processes. MTS is also quite effective at

reducing overall memory requirements. You can also use MTS to reduce the

number of network connections when you use MTS with connection pooling and

connection multiplexing.

Shared connections are possible in Oracle Forms environments when you use an

intermediate server that is also a client. In this configuration, use the DBMS_PIPE

mechanism to transmit atomic requests from the user’s individual connection on

the intermediate server to a shared daemon in the intermediate server. The daemon,

in turn, owns a connection to the central server.

Tuning I/O 20-1

20
Tuning I/O

This chapter explains how to avoid I/O bottlenecks that could prevent Oracle from

performing at its maximum potential. This chapter covers the following topics:

■ Understanding I/O Problems

■ Detecting I/O Problems

■ Solving I/O Problems

■ Reducing Disk Contention by Distributing I/O

■ Striping Disks

■ Avoiding Dynamic Space Management

■ Tuning Sorts

■ Tuning Checkpoints

■ Tuning LGWR and DBWn I/O

■ Configuring the Large Pool

Understanding I/O Problems
This section introduces I/O performance issues. It covers:

■ Tuning I/O: Top Down and Bottom Up

■ Analyzing I/O Requirements

■ Planning File Storage

■ Choosing Data Block Size

■ Evaluating Device Bandwidth

Understanding I/O Problems

20-2 Oracle8i Tuning

The performance of many software applications is inherently limited by disk

input/output (I/O). Often, CPU activity must be suspended while I/O activity

completes. Such an application is said to be "I/O bound". Oracle is designed so that

performance need not be limited by I/O.

Tuning I/O can enhance performance if a disk containing database files is operating

at its capacity. However, tuning I/O cannot help performance in "CPU bound"

cases—or cases in which your computer’s CPUs are operating at their capacity.

It is important to tune I/O after following the recommendations presented in

Chapter 19, "Tuning Memory Allocation". That chapter explains how to allocate

memory so as to reduce I/O to a minimum. After reaching this minimum, follow

the instructions in this chapter to achieve more efficient I/O performance.

Tuning I/O: Top Down and Bottom Up
When designing a new system, you should analyze I/O needs from the top down,

determining what resources you will require in order to achieve the desired

performance.

For an existing system, you should approach I/O tuning from the bottom up:

1. Determine the number of disks on the system.

2. Determine the number of disks that are being used by Oracle.

3. Determine the type of I/Os that your system performs.

4. Ascertain whether the I/Os are going to the file system or to raw devices.

5. Determine how to spread objects over multiple disks, using either manual

striping or striping software.

6. Calculate the level of performance you can expect.

Analyzing I/O Requirements
This section explains how to determine your system’s I/O requirements.

1. Calculate the total throughput your application will require.

Begin by figuring out the number of reads and writes involved in each

transaction, and distinguishing the objects against which each operation is

performed.

Understanding I/O Problems

Tuning I/O 20-3

In an OLTP application, for example, each transaction might involve:

■ 1 read from object A

■ 1 read from object B

■ 1 write to object C

One transaction in this example thus requires 2 reads and 1 write, all to

different objects.

2. Define the I/O performance target for this application by specifying the

number of tps (transactions per second) the system must support.

In this example, the designer might specify that 100 tps would constitute an

acceptable level of performance. To achieve this, the system must be able to

perform 300 I/Os per second:

■ 100 reads from object A

■ 100 reads from object B

■ 100 writes to object C

3. Determine the number of disks needed to achieve this level of performance.

To do this, ascertain the number of I/Os that each disk can perform per second.

This numbers depends on three factors:

■ Speed of your particular disk hardware

■ Whether the I/Os needed are reads or writes

■ Whether you are using the file system or raw devices

In general, disk speed tends to have the following characteristics:

Table 20–1 Relative Disk Speed

Disk Speed: File System Raw Devices

Reads per second fast slow

Writes per second slow fast

Understanding I/O Problems

20-4 Oracle8i Tuning

4. Write the relative speed per operation of your disks in a chart like the one

shown in Table 20–2:

5. The disks in the current example have characteristics as shown in Table 20–3:

6. Calculate the number of disks you need to achieve your I/O performance target

using a chart like the one shown in Table 20–4:

Table 20–2 Disk I/O Analysis Worksheet

Disk Speed: File System Raw Devices

Reads per second

Writes per second

Table 20–3 Sample Disk I/O Analysis

Disk Speed: File System Raw Devices

Reads per second 50 45

Writes per second 20 50

Table 20–4 Disk I/O Requirements Worksheet

Object

If Stored on File System If Stored on Raw Devices

R/W
Needed
per Sec.

Disk R/W
Capabil.
per Sec.

Disks
Needed

R/W
Needed
per Sec.

Disk R/W
Capabil.
per Sec.

Disks
Needed

A

B

C

Disks Req’d

Understanding I/O Problems

Tuning I/O 20-5

Table 20–5 shows the values from this example:

Planning File Storage
This section explains how to determine whether your application will run best by:

■ Running the application on the disks available

■ Storing the data on raw devices

■ Storing the data on block devices

■ Storing the data directly on the file system

Design Approach
Use the following approach to design file storage:

1. Identify the operations required by your application.

2. Test the performance of your system’s disks for the different operations

required by your application.

3. Finally, evaluate what kind of disk layout will give you the best performance

for the operations that predominate in your application.

These steps are described in detail under the following headings.

Identifying the Required Read/Write Operations
Evaluate your application to determine how often it requires each type of I/O

operation. Table 20–6 shows the types of read and write operations performed by

each of the background processes, by foreground processes, and by parallel

execution servers.

Table 20–5 Sample Disk I/O Requirements

Object

If Stored on File System If Stored on Raw Devices

R/W
Needed
per Sec.

Disk R/W
Capabil.
per Sec.

Disks
Needed

R/W
Needed
per Sec.

Disk R/W
Capabil.
per Sec.

Disks
Needed

A 100 reads 50 reads 2 disks 100 reads 45 reads 2 disks

B 100 reads 50 reads 2 disks 100 reads 45 reads 2 disks

C 100 writes 20 writes 5 disks 100 writes 50 writes 2 disks

Disks Req’d 9 disks 6 disks

Understanding I/O Problems

20-6 Oracle8i Tuning

In this discussion, a sample application might involve 50% random reads, 25%

sequential reads, and 25% random writes.

Testing the Performance of Your Disks
This section illustrates relative performance of read/write operations by a

particular test system. On raw devices, reads and writes are done on the character

level; on block devices, these operations are done on the block level. (Many

concurrent processes may generate overhead due to head and arm movement of the

disk drives.)

Table 20–6 Read/Write Operations Performed by Oracle Processes

Operation

Process

LGWR DBWn ARCH SMON PMON CKPT Fore-ground
PQ
Processes

Sequential Read X X X X X

Sequential Write X X X

Random Read X X

Random Write X

Note: Values provided in this example do not constitute a rule of

thumb. They were generated by an actual UNIX test system using

particular disks. These figures will differ significantly for different
platforms and different disks! To make accurate judgments, test your
own system using an approach similar to the one demonstrated in

this section. Alternatively, contact your system vendor for

information on disk performance for the different operations.

Understanding I/O Problems

Tuning I/O 20-7

Table 20–7 and Figure 20–1 show speed of sequential read in milliseconds per I/O,

for each of the three disk layout options on a test system.

Doing research like this helps determine the correct stripe size. In this example, it

takes at most 5.3 milliseconds to read 16KB. If your data were in chunks of 256KB,

you could stripe the data over 16 disks (as described on page 20-22) and maintain

this low read time.

By contrast, if all your data were on one disk, read time would be 80 milliseconds.

Thus the test results show that on this particular set of disks, things look quite

different from what might be expected: it is sometimes beneficial to have a smaller

stripe size, depending on the size of the I/O.

Table 20–7 Block Size and Speed of Sequential Read (Sample Data)

Block Size

Speed of Sequential Read on:

Raw Device Block Device UNIX File System

512 bytes 1.4 0.6 0.4

1KB 1.4 0.6 0.3

2KB 1.5 1.1 0.6

4KB 1.6 1.8 1.0

8KB 2.7 3.0 1.5

16KB 5.1 5.3 3.7

32KB 10.1 10.3 8.1

64KB 20.0 20.3 18.0

128KB 40.4 41.3 36.1

256KB 80.7 80.3 61.3

Understanding I/O Problems

20-8 Oracle8i Tuning

Figure 20–1 Block Size and Speed of Sequential Read (Sample Data)

0

10

20

30

40

50

60

70

80

256K128K64K32K16K8K4K2K1 K512

Raw Devices

Block Devices

UFS

Block Size (bytes)

M
ili

se
co

n
d

s

Understanding I/O Problems

Tuning I/O 20-9

Table 20–8 and Figure 20–2 show speed of sequential write in milliseconds per I/O,

for each of the three disk layout options on the test system.

Table 20–8 Block Size and Speed of Sequential Write (Sample Data)

Block Size

Speed of Sequential Write on

Raw Device Block Device UNIX File System

512 bytes 11.2 11.8 17.9

1KB 11.7 11.9 18.3

2KB 11.6 13.0 19.0

4KB 12.3 13.8 19.8

8KB 13.5 13.8 21.8

16KB 16.0 27.8 35.3

32KB 19.3 55.6 62.2

64KB 31.5 111.1 115.1

128KB 62.5 224.5 221.8

256KB 115.6 446.1 429.0

Understanding I/O Problems

20-10 Oracle8i Tuning

Figure 20–2 Block Size and Speed of Sequential Write (Sample Data)

Raw Devices
Block Devices
UFS

0

20

40

60

80

100

120

140

160

180

256 K128 K64 K32 K16 K8 K4 K2 K1 K512

Block Size (bytes)

M
ili

se
co

n
d

s

Understanding I/O Problems

Tuning I/O 20-11

Table 20–9 and Figure 20–3 show speed of random read in milliseconds per I/O, for

each of the three disk layout options on the test system.

Table 20–9 Block Size and Speed of Random Read (Sample Data)

Block Size

Speed of Random Read on

Raw Device Block Device UNIX File System

512 bytes 12.3 13.8 15.5

1KB 12.0 14.3 14.1

2KB 13.4 13.7 15.0

4KB 13.9 14.1 15.3

8KB 15.4 86.9 14.4

16KB 19.1 86.1 39.7

32KB 25.7 88.8 39.9

64KB 38.1 106.4 40.2

128KB 64.3 128.2 62.2

256KB 115.7 176.1 91.2

Understanding I/O Problems

20-12 Oracle8i Tuning

Figure 20–3 Block Size and Speed of Random Read (Sample Data)

Raw Devices
Block Devices
UFS

0

50

100

150

200

250

300

350

400

450

256 K128 K64 K32 K16 K8 K4 K2 K1 K512

Block Size (bytes)

M
ili

se
co

n
d

s

Understanding I/O Problems

Tuning I/O 20-13

Table 20–10 and Figure 20–4 show speed of random write in milliseconds per I/O,

for each of the three disk layout options on the test system.

Table 20–10 Block Size and Speed of Random Write (Sample Data)

Block Size

Speed of Random Write on

Raw Device Block Device UNIX File System

512 bytes 12.3 25.2 40.7

1KB 12.0 24.5 41.4

2KB 12.6 25.6 41.6

4KB 13.8 25.0 41.4

8KB 14.8 15.5 32.8

16KB 17.7 30.7 45.6

32KB 24.8 59.8 71.6

64KB 38.0 118.7 123.8

128KB 74.4 235.9 230.3

256KB 137.4 471.0 441.5

Understanding I/O Problems

20-14 Oracle8i Tuning

Figure 20–4 Block Size and Speed of Random Write (Sample Data)

Raw Devices
Block Devices
UFS

0

50

100

150

200

250

300

350

400

450

256 K128 K64 K32 K16 K8 K4 K2 K1 K512

Block Size (bytes)

M
ili

se
co

n
d

s

Understanding I/O Problems

Tuning I/O 20-15

Evaluate Disk Layout Options
Knowing the types of operation that predominate in your application and the speed

with which your system can process the corresponding I/Os, you can choose the

disk layout that will maximize performance.

For example, with the sample application and test system described previously, the

UNIX file system would be a good choice. With random reads predominating (50%

of all I/O operations), 8KB would be a good block size. Raw devices with UNIX file

systems provide comparable performance of random reads at this block size.

Furthermore, the UNIX file system in this example processes sequential reads (25%

of all I/O operations) almost twice as fast as raw devices, given an 8KB block size.

Choosing Data Block Size
Table data in the database is stored in data blocks. This section describes how to

allocate space within data blocks for best performance. With single block I/O

(random read), retrieve all desired data from a single block in one read for best

performance. How you store the data determines whether this performance

objective will be achieved. It depends on two factors: storage of the rows, and block

size.

The operating system I/O size should be equal to or greater than the database block

size. Sequential read performance will improve if operating system I/O size is twice

or three times the database block size (as in the example in "Testing the Performance

of Your Disks"). This assumes that the operating system can buffer the I/O so that

the next block will be read from that particular buffer.

Figure 20–5 illustrates the suitability of various block sizes to online transaction

processing (OLTP) or decision support (DSS) applications.

Note: Figures shown in the preceding example will differ significantly
on different platforms, and with different disks! To plan effectively, test

I/O performance on your own system.

Understanding I/O Problems

20-16 Oracle8i Tuning

Figure 20–5 Block Size and Application Type

Block Size Advantages and Disadvantages
This section describes advantages and disadvantages of different block sizes.

Evaluating Device Bandwidth
The number of I/Os a disk can perform depends on whether the operations involve

reading or writing to objects stored on raw devices or on the file system. This affects

the number of disks you must use to achieve the desired level of performance.

See Also: Your Oracle platform-specific documentation for

information on the minimum and maximum block size on your

platform.

Table 20–11 Block Size Advantages and Disadvantages

Block Size Advantages Disadvantages

Small (2KB-4KB) Reduces block contention.

Good for small rows, or lots of random
access.

Has relatively large overhead.

You may end up storing only a small
number of rows, depending on the size of
the row.

Medium (8KB)
If rows are of medium size, you can bring
a number of rows into the buffer cache
with a single I/O. With 2KB or 4KB block
size, you may only bring in a single row.

Space in the buffer cache will be wasted if
you are doing random access to small
rows and have a large block size. For
example, with an 8KB block size and 50
byte row size, you are wasting 7,950 bytes
in the buffer cache when doing random
access.

Large (16KB-32KB) There is relatively less overhead, thus
more room to store useful data.

Good for sequential access, or very large
rows.

Large block size is not good for index
blocks used in an OLTP type environment,
because they increase block contention on
the index leaf blocks.

0 2 4 8 16 32 64

OLTP DSS

Detecting I/O Problems

Tuning I/O 20-17

Detecting I/O Problems
This section describes two tasks to perform if you suspect a problem with I/O

usage:

■ Checking System I/O Utilization

■ Checking Oracle I/O Utilization

Oracle compiles file I/O statistics that reflect disk access to database files. These

statistics report only the I/O utilization of Oracle sessions—yet every process

affects the available I/O resources. Tuning non-Oracle factors can thus improve

performance.

Checking System I/O Utilization
Use operating system monitoring tools to determine what processes are running on

the system as a whole, and to monitor disk access to all files. Remember that disks

holding datafiles and redo log files may also hold files that are not related to Oracle.

Try to reduce any heavy access to disks that contain database files. Access to

non-Oracle files can be monitored only through operating system facilities rather

than through the V$FILESTAT view.

Tools such as sar -d on many UNIX systems enable you to examine the iostat I/O

statistics for your entire system. (Some UNIX-based platforms have an iostat
command.) On NT systems, use Performance Monitor.

Checking Oracle I/O Utilization
This section identifies the views and processes that provide Oracle I/O statistics,

and shows how to check statistics using V$FILESTAT.

Which Dynamic Performance Views Contain I/O Statistics
Table 20–12 shows dynamic performance views to check for I/O statistics relating to

Oracle database files, log files, archive files, and control files.

Note: For information on other platforms, please check your

operating system documentation.

Detecting I/O Problems

20-18 Oracle8i Tuning

Which Processes Reflect Oracle File I/O
Table 20–13 lists processes whose statistics reflect I/O throughput for the different

Oracle file types.

V$SYSTEM_EVENT, for example, shows the total number of I/Os and average

duration, by type of I/O. You can thus determine which types of I/O are too slow. If

there are Oracle-related I/O problems, tune them. But if your process is not

consuming the available I/O resources, then some other process is. Go back to the

system to identify the process that is using up so much I/O, and determine why.

Then tune this process.

Table 20–12 Where to Find Statistics about Oracle Files

File Type Where to Find Statistics

Database Files V$FILESTAT

Log Files V$SYSSTAT, V$SYSTEM_EVENT, V$SESSION_EVENT

Archive Files V$SYSTEM_EVENT, V$SESSION_EVENT

Control Files V$SYSTEM_EVENT, V$SESSION_EVENT

Table 20–13 File Throughput Statistics for Oracle Processes

File

Process

LGWR DBWn ARCH SMON PMON CKPT Fore-ground PQ Process

Database Files X X X X X X

Log Files X

Archive Files X

Control Files X X X X X X X X

Note: Different types of I/O in Oracle require different tuning

approaches. Tuning I/O for data warehousing applications that

perform large sequential reads is different from tuning I/O for

OLTP applications that perform random reads and writes.

See Also: "Planning File Storage" on page 20-5.

Detecting I/O Problems

Tuning I/O 20-19

Checking Oracle Datafile I/O with V$FILESTAT
Examine disk access to database files through the dynamic performance view

V$FILESTAT. This view shows the following information for database I/O (but not

for log file I/O):

■ Number of physical reads and writes

■ Number of blocks read and written

■ Total I/O time for reads and writes

By default, this view is available only to the user SYS and to users granted SELECT

ANY TABLE system privilege, such as SYSTEM. The following column values

reflect the number of disk accesses for each datafile:

Use the following query to monitor these values over some period of time while

your application is running:

SELECT name, phyrds, phywrts
 FROM v$datafile df, v$filestat fs
 WHERE df.file# = fs.file#;

This query also retrieves the name of each datafile from the dynamic performance

view V$DATAFILE. Sample output might look like this:

NAME PHYRDS PHYWRTS
-- ---------- ----------
/oracle/ora70/dbs/ora_system.dbf 7679 2735
/oracle/ora70/dbs/ora_temp.dbf 32 546

The PHYRDS and PHYWRTS columns of V$FILESTAT can also be obtained

through SNMP.

The total I/O for a single disk is the sum of PHYRDS and PHYWRTS for all the

database files managed by the Oracle instance on that disk. Determine this value for

each of your disks. Also determine the rate at which I/O occurs for each disk by

dividing the total I/O by the interval of time over which the statistics were

collected.

PHYRDS The number of reads from each database file.

PHYWRTS The number of writes to each database file.

Solving I/O Problems

20-20 Oracle8i Tuning

Solving I/O Problems
The rest of this chapter describes various techniques of solving I/O problems:

■ Reducing Disk Contention by Distributing I/O

■ Striping Disks

■ Avoiding Dynamic Space Management

■ Tuning Sorts

■ Tuning Checkpoints

■ Tuning LGWR and DBWn I/O

■ Configuring the Large Pool

Reducing Disk Contention by Distributing I/O
This section describes how to reduce disk contention.

■ What Is Disk Contention?

■ Separating Datafiles and Redo Log Files

■ Striping Table Data

■ Separating Tables and Indexes

■ Reducing Disk I/O Unrelated to Oracle

What Is Disk Contention?
Disk contention occurs when multiple processes try to access the same disk

simultaneously. Most disks have limits on both the number of accesses and the

amount of data they can transfer per second. When these limits are reached,

processes may have to wait to access the disk.

In general, consider the statistics in the V$FILESTAT view and your operating

system facilities. Consult your hardware documentation to determine the limits on

the capacity of your disks. Any disks operating at or near full capacity are potential

sites for disk contention. For example, 40 or more I/Os per second is excessive for

most disks on VMS or UNIX operating systems.

To reduce the activity on an overloaded disk, move one or more of its heavily

accessed files to a less active disk. Apply this principle to each of your disks until

they all have roughly the same amount of I/O. This is referred to as distributing I/O.

Reducing Disk Contention by Distributing I/O

Tuning I/O 20-21

Separating Datafiles and Redo Log Files
Oracle processes constantly access datafiles and redo log files. If these files are on

common disks, there is potential for disk contention. Place each datafile on a

separate disk. Multiple processes can then access different files concurrently

without disk contention.

Place each set of redo log files on a separate disk with no other activity. Redo log

files are written by the Log Writer process (LGWR) when a transaction is

committed. Information in a redo log file is written sequentially. This sequential

writing can take place much faster if there is no concurrent activity on the same

disk. Dedicating a separate disk to redo log files usually ensures that LGWR runs

smoothly with no further tuning attention. Performance bottlenecks related to

LGWR are rare. For information on tuning LGWR, see the section "Detecting

Contention for Redo Log Buffer Latches" on page 21-16.

Dedicating separate disks and mirroring redo log files are important safety

precautions. Dedicating separate disks to datafiles and redo log files ensures that

the datafiles and the redo log files cannot both be lost in a single disk failure.

Mirroring redo log files ensures that a redo log file cannot be lost in a single disk

failure.

Striping Table Data
Striping, or spreading a large table’s data across separate datafiles on separate

disks, can also help to reduce contention. This strategy is fully discussed in the

section "Striping Disks" on page 20-22.

Note: Mirroring redo log files, or maintaining multiple copies of

each redo log file on separate disks, does not slow LGWR

considerably. LGWR writes to each disk in parallel and waits until

each part of the parallel write is complete. Because the time

required for your operating system to perform a single-disk write

may vary, increasing the number of copies increases the likelihood

that one of the single-disk writes in the parallel write will take

longer than average. A parallel write will not take longer than the

longest possible single-disk write. There may also be some

overhead associated with parallel writes on your operating system.

Striping Disks

20-22 Oracle8i Tuning

Separating Tables and Indexes
It is not necessary to separate a frequently used table from its index. During the

course of a transaction, the index is read first, and then the table is read. Because

these I/Os occur sequentially, the table and index can be stored on the same disk

without contention.

Reducing Disk I/O Unrelated to Oracle
If possible, eliminate I/O unrelated to Oracle on disks that contain database files.

This measure is especially helpful in optimizing access to redo log files. Not only

does this reduce disk contention, it also allows you to monitor all activity on such

disks through the dynamic performance table V$FILESTAT.

Striping Disks
This section describes:

■ The Purpose of Striping

■ I/O Balancing and Striping

■ Striping Disks Manually

■ Striping Disks with Operating System Software

■ Striping Hardware with RAID

The Purpose of Striping
"Striping" divides a large table’s data into small portions and stores these portions

in separate datafiles on separate disks. This permits multiple processes to access

different portions of the table concurrently without disk contention. Striping is

particularly helpful in optimizing random access to tables with many rows. Striping

can either be done manually (described below), or through operating system

striping utilities.

I/O Balancing and Striping
Benchmark tuners in the past tried hard to ensure that the I/O load was evenly

balanced across the available devices. Currently, operating systems are providing

the ability to stripe a heavily used container file across many physical devices.

However, such techniques are productive only where the load redistribution

eliminates or reduces some form of queue.

Striping Disks

Tuning I/O 20-23

If I/O queues exist or are suspected, then load distribution across the available

devices is a natural tuning step. Where larger numbers of physical drives are

available, consider dedicating two drives to carrying redo logs (two because redo

logs should always be mirrored either by the operating system or using Oracle redo

log group features). Because redo logs are written serially, drives dedicated to redo

log activity normally require limited head movement. This significantly accelerates

log writing.

When archiving, it is beneficial to use extra disks so that LGWR and ARCH do not

compete for the same read/write head. This is achieved by placing logs on

alternating drives.

Mirroring can also be a cause of I/O bottlenecks. The process of writing to each

mirror is normally done in parallel, and does not cause a bottleneck. However, if

each mirror is striped differently, then the I/O is not completed until the slowest

mirror member is finished. To avoid I/O problems, stripe using the same number of

disks for the destination database, or the copy, as you used for the source database.

For example, if you have 160KB of data striped over 8 disks, but the data is

mirrored onto only one disk, then regardless of how quickly the data is processed

on the 8 disks, the I/O is not completed until 160KB has been written onto the

mirror disk. It might thus take 20.48 milliseconds to write the database, but 137

milliseconds to write the mirror.

Striping Disks Manually
To stripe disks manually, you need to relate an object’s storage requirements to its

I/O requirements.

1. Begin by evaluating an object’s disk storage requirements by checking:

■ The size of the object

■ The size of the disk

For example, if an object requires 5GB in Oracle storage space, you need one

5GB disk or two 4GB disks to accommodate it. On the other hand, if the system

is configured with 1GB or 2GB disks, the object may require 5 or 3 disks,

respectively.

2. Compare to this the application’s I/O requirements, as described in "Analyzing

I/O Requirements" on page 20-2. You must take the larger of the storage

requirement and the I/O requirement.

For example, if the storage requirement is 5 disks (1GB each), and the I/O

requirement is 2 disks, then your application requires the higher value: 5 disks.

Striping Disks

20-24 Oracle8i Tuning

3. Create a tablespace with the CREATE TABLESPACE statement. Specify the

datafiles in the DATAFILE clause. Each of the files should be on a different disk.

CREATE TABLESPACE stripedtabspace
 DATAFILE ’file_on_disk_1’ SIZE 1GB,
 ’file_on_disk_2’ SIZE 1GB,
 ’file_on_disk_3’ SIZE 1GB,
 ’file_on_disk_4’ SIZE 1GB,
 ’file_on_disk_5’ SIZE 1GB;

4. Then create the table with the CREATE TABLE statement. Specify the newly

created tablespace in the TABLESPACE clause.

Also specify the size of the table extents in the STORAGE clause. Store each

extent in a separate datafile. The table extents should be slightly smaller than

the datafiles in the tablespace to allow for overhead. For example, when

preparing for datafiles of 1GB (1024MB), you can set the table extents to be

1023MB:

CREATE TABLE stripedtab (
 col_1 NUMBER(2),
 col_2 VARCHAR2(10))
 TABLESPACE stripedtabspace
 STORAGE (INITIAL 1023MB NEXT 1023MB
 MINEXTENTS 5 PCTINCREASE 0);

(Alternatively, you can stripe a table by entering an ALTER TABLE ALLOCATE

EXTENT statement, with a DATAFILE ’size’ SIZE clause.)

These steps result in the creation of table STRIPEDTAB. STRIPEDTAB has 5 initial

extents, each of size 1023MB. Each extent takes up one of the datafiles named in the

DATAFILE clause of the CREATE TABLESPACE statement. Each of these files is on

a separate disk. The 5 extents are all allocated immediately, because MINEXTENTS

is 5.

See Also: Oracle8i SQL Reference for more information on

MINEXTENTS and the other storage parameters.

Striping Disks

Tuning I/O 20-25

Striping Disks with Operating System Software
As an alternative to striping disks manually, use operating system striping software,

such as an LVM (logical volume manager), to stripe disks. With striping software,

the concern is choosing the right stripe size. This depends on the Oracle block size

and disk access method.

In striping, uniform access to the data is assumed. If the stripe size is too large, can a

hot spot may appear on one disk or on a small number of disks. Avoid this by

reducing the stripe size, thus spreading the data over more disks.

Consider an example in which 100 rows of fixed size are evenly distributed over 5

disks, with each disk containing 20 sequential rows. If you application only requires

access to rows 35 through 55, then only 2 disks must perform the I/O. At this rate,

the system cannot achieve the desired level of performance.

Correct this problem by spreading rows 35 through 55 across more disks. In the

current example, if there were two rows per block, then we could place rows 35 and

36 on the same disk, and rows 37 and 38 on a different disk. Taking this approach,

we could spread the data over all the disks and I/O throughput would improve.

Striping Hardware with RAID
Redundant arrays of inexpensive disks (RAID) can offer significant advantages in

their failure resilience features. They also permit striping to be achieved quite easily,

but do not appear to provide any significant performance advantage. In fact, they

may impose a higher cost in I/O overhead.

In some instances, performance can be improved by not using the full features of

RAID technology. In other cases, RAID technology’s resilience to single component

failure may justify its cost in terms of performance.

Table 20–14 Minimum Stripe Size

Disk Access Minimum Stripe Size

Random reads and
writes

The minimum stripe size is twice the Oracle block size.

Sequential reads The minimum stripe size is twice the value of
DB_FILE_MULTIBLOCK_READ_COUNT.

Avoiding Dynamic Space Management

20-26 Oracle8i Tuning

Avoiding Dynamic Space Management
When you create an object such as a table or rollback segment, Oracle allocates

space in the database for the data. This space is called a segment. If subsequent

database operations cause the data volume to increase and exceed the space

allocated, Oracle extends the segment. Dynamic extension then reduces

performance.

This section discusses:

■ Detecting Dynamic Extension

■ Allocating Extents

■ Evaluating Unlimited Extents

■ Evaluating Multiple Extents

■ Avoiding Dynamic Space Management in Rollback Segments

■ Reducing Migrated and Chained Rows

■ Modifying the SQL.BSQ File

Detecting Dynamic Extension
Dynamic extension causes Oracle to execute SQL statements in addition to those

SQL statements issued by user processes. These SQL statements are called recursive
calls because Oracle issues these statements itself. Recursive calls are also generated

by these activities:

■ Misses on the data dictionary cache

■ Firing of database triggers

■ Execution of Data Definition Language statements

■ Execution of SQL statements within stored procedures, functions, packages,

and anonymous PL/SQL blocks

■ Enforcement of referential integrity constraints

Avoiding Dynamic Space Management

Tuning I/O 20-27

Examine the RECURSIVE CALLS statistic through the dynamic performance view

V$SYSSTAT. By default, this view is available only to user SYS and to users granted

the SELECT ANY TABLE system privilege, such as SYSTEM. Use the following

query to monitor this statistic over a period of time:

SELECT name, value
FROM v$sysstat
WHERE NAME = ’recursive calls’;

Oracle responds with something similar to:

NAME VALUE
--- ----------
recursive calls 626681

If Oracle continues to make excessive recursive calls while your application is

running, determine whether these recursive calls are due to an activity, other than

dynamic extension, that generates recursive calls. If you determine that the

recursive calls are caused by dynamic extension, reduce this extension by allocating

larger extents.

Allocating Extents
Follow these steps to avoid dynamic extension:

1. Determine the maximum size of your object. For formulas to estimate space

requirements for an object, please refer to the Oracle8i Administrator’s Guide.

2. Choose storage parameter values so Oracle allocates extents large enough to

accommodate all your data when you create the object.

Larger extents tend to benefit performance for these reasons:

■ Blocks in a single extent are contiguous, so one large extent is more contiguous

than multiple small extents. Oracle can read one large extent from disk with

fewer multiblock reads than would be required to read many small extents.

■ Segments with larger extents are less likely to be extended.

However, since large extents require more contiguous blocks, Oracle may have

difficulty finding enough contiguous space to store them. To determine whether to

allocate only a few large extents or many small extents, evaluate the benefits and

drawbacks of each in consideration of plans for the growth and use of your objects.

Avoiding Dynamic Space Management

20-28 Oracle8i Tuning

Automatically re-sizable datafiles can also cause problems with dynamic extension.

Avoid using the automatic extension. Instead, manually allocate more space to a

datafile during times when the system is relatively inactive.

Evaluating Unlimited Extents
Even though an object may have unlimited extents, this does not mean that having

a large number of small extents is acceptable. For optimal performance you may

decide to reduce the number of extents.

Extent maps list all extents for a particular segment. The number of extents per

Oracle block depends on operating system block size and platform. Although an

extent is a data structure inside Oracle, the size of this data structure depends on the

platform. Accordingly, this affects the number of extents Oracle can store in a single

operating system block. Typically, this value is as follows:

For optimal performance, you should be able to read the extent map with a single

I/O. Performance degrades if multiple I/Os are necessary for a full table scan to get

the extent map.

Avoid dynamic extension in dictionary-mapped tablespaces. For

dictionary-mapped tablespaces, do not let the number of extents exceed 1,000. If

extent allocation is local, do not have more than 2,000 extents. Having too many

extents reduces performance when dropping or truncating tables.

The optimal choice in most situations is to enable AUTOEXTEND. You can also use

a proven value for allocating extents if you are sure the value provides optimal

performance.

Table 20–15 Block Size and Maximum Number of Extents (Typical Values)

Block Size (KB) Max. Number of Extents

2 121

4 255

8 504

16 1032

32 2070

Avoiding Dynamic Space Management

Tuning I/O 20-29

Evaluating Multiple Extents
This section explains various ramifications of using multiple extents.

■ You cannot put large segments into single extents because of file size and file

system size limitations. When you enable segments to allocate new extents over

time, you can take advantage of faster, less expensive disks.

■ For a table that is never full-table scanned, it makes no difference in terms of

query performance whether the table has one extent or multiple extents.

■ The performance of searches using an index is not affected by the index having

one extent or multiple extents.

■ Using more than one extent in a table, cluster, or temporary segment does not

affect the performance of full scans on a multi-user system.

■ Using more than one extent in a table, cluster, or temporary segment does not

materially affect the performance of full scans on a dedicated single-user batch

processing system if the extents are properly sized, and if the application is

designed to avoid expensive DDL operations.

■ If extent sizes are appropriately matched to the I/O size, the performance cost

of having many extents in a segment will be minimized.

■ For rollback segments, many extents are preferable to few extents. Having

many extents reduces the number of recursive SQL calls to perform dynamic

extent allocations on the segments.

Avoiding Dynamic Space Management in Rollback Segments
The size of rollback segments can affect performance. Rollback segment size is

determined by the rollback segment’s storage parameter values. Your rollback

segments must be large enough to hold the rollback entries for your transactions.

As with other objects, you should avoid dynamic space management in rollback

segments.

Use the SET TRANSACTION statement to assign transactions to rollback segments

of the appropriate size based on the recommendations in the following sections. If

you do not explicitly assign a transaction to a rollback segment, Oracle

automatically assigns it to a rollback segment.

For example, the following statement assigns the current transaction to the rollback

segment OLTP_13:

SET TRANSACTION USE ROLLBACK SEGMENT oltp_13

Avoiding Dynamic Space Management

20-30 Oracle8i Tuning

Also monitor the shrinking, or dynamic deallocation, of rollback segments based on

the OPTIMAL storage parameter. For information on choosing values for this

parameter, monitoring rollback segment shrinking, and adjusting the OPTIMAL

parameter, please see the Oracle8i Administrator’s Guide.

For Long Queries
Assign large rollback segments to transactions that modify data that is concurrently

selected by long queries. Such queries may require access to rollback segments to

reconstruct a read-consistent version of the modified data. The rollback segments

must be large enough to hold all the rollback entries for the data while the query is

running.

For Long Transactions
Assign large rollback segments to transactions that modify large amounts of data. A

large rollback segment can improve the performance of such a transaction, because

the transaction generates large rollback entries. If a rollback entry does not fit into a

rollback segment, Oracle extends the segment. Dynamic extension reduces

performance and should be avoided whenever possible.

For OLTP Transactions
OLTP applications are characterized by frequent concurrent transactions, each of

which modifies a small amount of data. Assign OLTP transactions to small rollback

segments, provided that their data is not concurrently queried. Small rollback

segments are more likely to remain stored in the buffer cache where they can be

accessed quickly. A typical OLTP rollback segment might have 2 extents, each

approximately 10 kilobytes in size. To best avoid contention, create many rollback

segments and assign each transaction to its own rollback segment.

Reducing Migrated and Chained Rows
If an UPDATE statement increases the amount of data in a row so that the row no

longer fits in its data block, Oracle tries to find another block with enough free

space to hold the entire row. If such a block is available, Oracle moves the entire

Note: If you are running multiple concurrent copies of the same

application, be careful not to assign the transactions for all copies to

the same rollback segment. This leads to contention for that

rollback segment.

Avoiding Dynamic Space Management

Tuning I/O 20-31

row to the new block. This is called migrating a row. If the row is too large to fit into

any available block, Oracle splits the row into multiple pieces and stores each piece

in a separate block. This is called chaining a row. Rows can also be chained when

they are inserted.

Dynamic space management, especially migration and chaining, is detrimental to

performance:

■ UPDATE statements that cause migration and chaining perform poorly

■ Queries that select migrated or chained rows must perform more I/O

Identify migrated and chained rows in a table or cluster using the ANALYZE

statement with the LIST CHAINED ROWS option. This statement collects

information about each migrated or chained row and places this information into a

specified output table.

The definition of a sample output table named CHAINED_ROWS appears in a SQL

script available on your distribution medium. The common name of this script is

UTLCHAIN.SQL, although its exact name and location varies depending on your

platform. Your output table must have the same column names, datatypes, and

sizes as the CHAINED_ROWS table.

You can also detect migrated or chained rows by checking the TABLE FETCH

CONTINUED ROW column in V$SYSSTAT. Increase PCTFREE to avoid migrated

rows. If you leave more free space available in the block, the row will have room to

grow. You can also reorganize or re-create tables and indexes with high deletion

rates.

To reduce migrated and chained rows in an existing table, follow these steps:

1. Use the ANALYZE statement to collect information about migrated and

chained rows. For example:

ANALYZE TABLE order_hist LIST CHAINED ROWS;

2. Query the output table:

Note: PCTUSED is not the opposite of PCTFREE; PCTUSED

controls space management.

See Also: Oracle8i Concepts for more information.

Avoiding Dynamic Space Management

20-32 Oracle8i Tuning

SELECT *
 FROM chained_rows
 WHERE table_name = ’ORDER_HIST’;

OWNER_NAME TABLE_NAME CLUST... HEAD_ROWID TIMESTAMP
---------- ---------- -----... ------------------ ---------
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAA 04-MAR-96
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAB 04-MAR-96
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAC 04-MAR-96

The output lists all rows that are either migrated or chained.

3. If the output table shows that you have many migrated or chained rows, you

can eliminate migrated rows with the following steps:

a. Create an intermediate table with the same columns as the existing table to

hold the migrated and chained rows:

CREATE TABLE int_order_hist
 AS SELECT *
 FROM order_hist
 WHERE ROWID IN
 (SELECT head_rowid
 FROM chained_rows
 WHERE table_name = ’ORDER_HIST’);

b. Delete the migrated and chained rows from the existing table:

DELETE FROM order_hist
 WHERE ROWID IN
 (SELECT head_rowid
 FROM chained_rows
 WHERE table_name = ’ORDER_HIST’);

c. Insert the rows of the intermediate table into the existing table:

INSERT INTO order_hist
 SELECT *
 FROM int_order_hist;

d. Drop the intermediate table:

DROP TABLE int_order_history;

Avoiding Dynamic Space Management

Tuning I/O 20-33

4. Delete the information collected in step 1 from the output table:

DELETE FROM chained_rows
 WHERE table_name = ’ORDER_HIST’;

5. Use the ANALYZE statement again and query the output table.

6. Any rows that appear in the output table are chained. You can eliminate

chained rows only by increasing your data block size. It may not be possible to

avoid chaining in all situations. Chaining is often unavoidable with tables that

have a LONG column or long CHAR or VARCHAR2 columns.

Retrieval of migrated rows is resource intensive; therefore, all tables subject to

UPDATE should have their distributed free space set to allow enough space within

the block for the likely update.

Modifying the SQL.BSQ File
The SQL.BSQ file runs when you issue the CREATE DATABASE statement. This file

contains the table definitions that make up the Oracle server. The views you use as a

DBA are based on these tables. Oracle recommends that you strictly limit

modifications to SQL.BSQ.

■ If necessary, you can increase the value of the following storage parameters:

INITIAL, NEXT, MINEXTENTS, MAXEXTENTS, PCTINCREASE, FREELISTS,

FREELIST GROUPS, and OPTIMAL.

■ With the exception of PCTINCREASE, do not decrease the setting of a storage

parameter to a value below the default. (If the value of MAXEXTENTS is large,

you can lower the value for PCTINCREASE or even set it to zero.)

■ No other changes to SQL.BSQ are supported. In particular, you should not add,

drop, or rename a column.

Note: Oracle may add, delete, or change internal data dictionary

tables from release to release. For this reason, modifications you

make are not carried forward when the dictionary is migrated to

later releases.

See Also: Oracle8i SQL Reference for complete information about

these parameters.

Tuning Sorts

20-34 Oracle8i Tuning

Tuning Sorts
There is a trade-off between performance and memory usage. For best performance,

most sorts should occur in memory; sorts written to disk adversely affect

performance. If the sort area size is too large, too much memory may be used. If the

sort area size is too small, sorts may have to be written to disk which, as,

mentioned, can severely degrade performance.

This section describes:

■ Sorting to Memory

■ Sorting to Disk

■ Optimizing Sort Performance with Temporary Tablespaces

■ Using NOSORT to Create Indexes Without Sorting

■ GROUP BY NOSORT

Sorting to Memory
The default sort area size is adequate to hold all the data for most sorts. However, if

your application often performs large sorts on data that does not fit into the sort

area, you may want to increase the sort area size. Large sorts can be caused by any

SQL statement that performs a sort on many rows.

Recognizing Large Sorts
Oracle collects statistics that reflect sort activity and stores them in the dynamic

performance view V$SYSSTAT. By default, this view is available only to the user

SYS and to users granted the SELECT ANY TABLE system privilege. These statistics

reflect sort behavior:

See Also: Oracle8i Concepts lists SQL statements that perform

sorts.

SORTS(MEMORY) The number of sorts small enough to be performed

entirely in sort areas without I/O to temporary

segments on disk.

SORTS(DISK) The number of sorts too large to be performed entirely

in the sort area, requiring I/O to temporary segments

on disk.

Tuning Sorts

Tuning I/O 20-35

Use the following query to monitor these statistics over time:

SELECT name, value
 FROM v$sysstat
 WHERE name IN (’sorts (memory)’, ’sorts (disk)’);

The output of this query might look like this:

NAME VALUE
--- ----------
sorts(memory) 965
sorts(disk) 8

The information in V$SYSSTAT can also be obtained through the SNMP (Simple

Network Management Protocol).

Increasing SORT_AREA_SIZE to Avoid Sorting to Disk
SORT_AREA_SIZE is a dynamically modifiable initialization parameter that

specifies the maximum amount of memory to use for each sort. If a significant

number of sorts require disk I/O to temporary segments, your application’s

performance may benefit from increasing the size of the sort area. In this case,

increase the value of SORT_AREA_SIZE.

The maximum value of this parameter depends on your operating system. You

need to determine how large a SORT_AREA_SIZE makes sense. If you set

SORT_AREA_SIZE to an adequately large value, most sorts should not have to go

to disk (unless, for example, you are sorting a 10-gigabyte table).

Performance Benefits of Large Sort Areas
As mentioned, increasing sort area size decreases the chances that sorts go to disk.

Therefore, with a larger sort area, most sorts will process quickly without I/O.

When Oracle writes sort operations to disk, it writes out partially sorted data in

sorted runs. Once all the data has been received by the sort, Oracle merges the runs

to produce the final sorted output. If the sort area is not large enough to merge all

the runs at once, subsets of the runs are merged in several merge passes. If the sort

area is larger, there will be fewer, longer runs produced. A larger sort area also

means the sort can merge more runs in one merge pass.

See Also: "Tuning Checkpoints" on "Tuning Checkpoints" and

"SORT_AREA_SIZE" on page 26-22.

Tuning Sorts

20-36 Oracle8i Tuning

Performance Trade-offs for Large Sort Areas
Increasing sort area size causes each Oracle sort process to allocate more memory.

This increase reduces the amount of memory for private SQL and PL/SQL areas. It

can also affect operating system memory allocation and may induce paging and

swapping. Before increasing the size of the sort area, be sure enough free memory is

available on your operating system to accommodate a larger sort area.

If you increase sort area size, consider decreasing the value for the

SORT_AREA_RETAINED_SIZE parameter. This parameter controls the lower limit

to which Oracle reduces the size of the sort area when Oracle completes some or all

of a sort process. That is, Oracle reduces the size of the sort area once the sort has

started sending the sorted data to the user or to the next part of the query. A smaller

retained sort area reduces memory usage but causes additional I/O to write and

read data to and from temporary segments on disk.

Sorting to Disk
If you sort to disk, make sure that PCTINCREASE is set to zero for the tablespace

used for sorting. Also, INITIAL and NEXT should be the same size. This reduces

fragmentation of the tablespaces used for sorting. You set these parameters using

the STORAGE option of ALTER TABLE.

Optimizing Sort Performance with Temporary Tablespaces
Optimize sort performance by performing sorts in temporary tablespaces. To create

temporary tablespaces, use the CREATE TABLESPACE or ALTER TABLESPACE

statements with the TEMPORARY keyword.

Normally, a sort may require many space allocation calls to allocate and deallocate

temporary segments. If you specify a tablespace as TEMPORARY, Oracle caches one

sort segment in that tablespace for each instance requesting a sort operation. This

scheme bypasses the normal space allocation mechanism and greatly improves

performance of medium-sized sorts that cannot be done completely in memory.

You cannot use the TEMPORARY keyword with tablespaces containing permanent

objects such as tables or rollback segments.

See Also: Oracle8i Concepts for more information on

PCTINCREASE.

See Also: Oracle8i SQL Reference for more information about the

syntax of the CREATE TABLESPACE and ALTER TABLESPACE

statements.

Tuning Sorts

Tuning I/O 20-37

Improving Sort Performance by Striping Temporary Tablespaces
Stripe the temporary tablespace over many disks, preferably using an operating

system striping tool. For example, if you only stripe the temporary tablespace over

2 disks with a maximum of 50 I/Os per second on each disk, then Oracle can only

perform 100 I/Os per second. This restriction could lengthen the duration of sort

operations.

For the previous example, you could accelerate sort processing fivefold if you

striped the temporary tablespace over 10 disks. This would enable 500 I/Os per

second.

Improving Sort Performance Using SORT_MULTIBLOCK_READ_COUNT
Another way to improve sort performance using temporary tablespaces is to tune

the parameter SORT_MULTIBLOCK_READ_COUNT. For temporary segments,

SORT_MULTIBLOCK_READ_COUNT has nearly the same effect as the parameter

DB_FILE_MULTIBLOCK_READ_COUNT.

Increasing the value of SORT_MULTIBLOCK_READ_COUNT forces the sort

process to read a larger section of each sort run from disk to memory during each

merge pass. This also forces the sort process to reduce the merge width, or number

of runs, that can be merged in one merge pass. This may increase in the number of

merge passes.

Because each merge pass produces a new sort run to disk, an increase in the number

of merge passes causes an increase in the total amount of I/O performed during the

sort. Carefully balance increases in I/O throughput obtained by increasing the

SORT_MULTIBLOCK_READ_COUNT parameter with possible increases in the

total amount of I/O performed.

Using NOSORT to Create Indexes Without Sorting
One cause of sorting is the creation of indexes. Creating an index for a table

involves sorting all rows in the table based on the values of the indexed columns.

Oracle also allows you to create indexes without sorting. If the rows in the table are

loaded in ascending order, you can create the index faster without sorting.

The NOSORT Option
To create an index without sorting, load the rows into the table in ascending order

of the indexed column values. Your operating system may provide a sorting utility

to sort the rows before you load them. When you create the index, use the NOSORT

option on the CREATE INDEX statement. For example, this CREATE INDEX

Tuning Checkpoints

20-38 Oracle8i Tuning

statement creates the index EMP_INDEX on the ENAME column of the EMP table

without sorting the rows in the EMP table:

CREATE INDEX emp_index
 ON emp(ename)
 NOSORT;

When to Use the NOSORT Option
Presorting your data and loading it in order may not always be the fastest way to

load a table.

■ If you have a multiple-CPU computer, you may be able to load data faster using

multiple processors in parallel, each processor loading a different portion of the

data. To take advantage of parallel processing, load the data without sorting it

first. Then create the index without the NOSORT option.

■ If you have a single-CPU computer, you should sort your data before loading, if

possible. Then create the index with the NOSORT option.

GROUP BY NOSORT
Sorting can be avoided when performing a GROUP BY operation when you know

that the input data is already ordered so that all rows in each group are clumped

together. This may be the case, for example, if the rows are being retrieved from an

index that matches the grouped columns, or if a sort-merge join produces the rows

in the right order. ORDER BY sorts can be avoided in the same circumstances.

When no sort takes place, the EXPLAIN PLAN output indicates GROUP BY

NOSORT.

Tuning Checkpoints
A checkpoint is an operation that Oracle performs automatically. This section

explains:

■ How Checkpoints Affect Performance

■ Choosing Checkpoint Frequency

■ Fast-Start Checkpointing

Note: Specifying NOSORT in a CREATE INDEX statement

negates the use of PARALLEL INDEX CREATE, even if PARALLEL

(DEGREE n) is specified.

Tuning Checkpoints

Tuning I/O 20-39

How Checkpoints Affect Performance
Checkpoints affect:

■ Instance recovery time performance

■ Run-time performance

Frequent checkpoints can reduce instance recovery time in the event of an instance

failure. If checkpoints are relatively frequent, then relatively few changes to the

database are made between checkpoints. In this case, relatively few changes must

be rolled forward for instance recovery.

Checkpoints can momentarily reduce run-time performance because checkpoints

cause DBWn processes to perform I/O. However, the overhead associated with

checkpoints is usually small and affects performance only while Oracle performs

the checkpoint.

Choosing Checkpoint Frequency
Choose a checkpoint frequency based on your performance concerns. If you are

more concerned with efficient run-time performance than recovery time, choose a

lower checkpoint frequency. If you are more concerned with having fast instance

recovery than with achieving optimal run-time performance, choose a higher

checkpoint frequency.

Because checkpoints are necessary for redo log maintenance, you cannot eliminate

checkpoints entirely. However, you can reduce checkpoint frequency to a minimum

by setting these parameters:

■ Set the value of the LOG_CHECKPOINT_INTERVAL initialization parameter

(in multiples of physical block size) to be larger than the size of your largest

redo log file.

■ Set the value of the LOG_CHECKPOINT_TIMEOUT initialization parameter to

zero. This value eliminates time-based checkpoints.

You can also control performance by setting a limit on the number of I/O

operations as described under the following heading, "Fast-Start Checkpointing".

In addition to setting these parameters, also consider the size of your log files.

Maintaining small log files can increase checkpoint activity and reduce

performance.

Tuning LGWR and DBWn I/O

20-40 Oracle8i Tuning

Fast-Start Checkpointing
The Fast-Start Checkpointing feature limits the number of dirty buffers and thereby

limits the amount of time required for instance recovery. If Oracle must process an

excessive number of I/O operations to perform instance recovery, performance can

be adversely affected. You can control this overhead by setting an appropriate value

for the parameter FAST_START_IO_TARGET.

FAST_START_IO_TARGET limits the number of I/O operations that Oracle should

allow for instance recovery. If the number of operations required for recovery at any

point in time exceeds this limit, Oracle writes dirty buffers to disk until the number

of I/O operations needed for instance recovery is reduced to the limit set by

FAST_START_IO_TARGET.

You can control the duration of instance recovery because the number of operations

required to recover indicates how much time this process takes. Disable this aspect

of checkpointing by setting FAST_START_IO_TARGET to zero (0).

Tuning LGWR and DBWn I/O
This section describes how to tune I/O for the log writer and database writer

background processes:

■ Tuning LGWR I/O

■ Tuning DBWn I/O

Tuning LGWR I/O
Applications with many INSERTs or with LONG/RAW activity may benefit from

tuning LGWR I/O. The size of each I/O write depends on the size of the log buffer

which is set by the initialization parameter LOG_BUFFER. It is thus important to

Note: Oracle checkpoints current read blocks. By contrast, sort

blocks and consistent read blocks are not checkpointed.

See Also: Oracle8i Concepts for a complete discussion of

checkpoints.

Note: Fast-Start Checkpointing is only available with the Oracle8i
Enterprise Edition.

Tuning LGWR and DBWn I/O

Tuning I/O 20-41

choose the right log buffer size. LGWR starts writing if the buffer is one third full, or

when it is posted by a foreground process such as a COMMIT. Too large a log buffer

size might delay the writes. Too small a log buffer might also be inefficient,

resulting in frequent, small I/Os.

If the average size of the I/O becomes quite large, the log file could become a

bottleneck. To avoid this problem, you can stripe the redo log files, going in parallel

to several disks. You must use an operating system striping tool, because manual

striping is not possible in this situation.

Stripe size is likewise important. You can figure an appropriate value by dividing

the average redo I/O size by the number of disks over which you want to stripe the

buffer.

If you have a large number of datafiles or are in a high OLTP environment, you

should always have the CHECKPOINT_PROCESS initialization parameter set to

TRUE. This setting enables the CKPT process, ensuring that during a checkpoint

LGWR keeps on writing redo information, while the CKPT process updates the

datafile headers.

Incremental Checkpointing
Incremental checkpointing improves the performance of crash and instance

recovery, but not media recovery. An incremental checkpoint records the position in

the redo thread (log) from which crash/instance recovery needs to begin. This log

position is determined by the oldest dirty buffer in the buffer cache. The

incremental checkpoint information is maintained periodically with minimal or no

overhead during normal processing.

The duration of instance recovery is most influenced by the number of data blocks

the recovery process must read from disk. You can control the duration of recovery

processing using the parameter DB_BLOCK_MAX_DIRTY_TARGET. This

parameter allows you to restrict the number of blocks the instance recovery process

must read from disk during recovery.

To set an appropriate value for DB_BLOCK_MAX_DIRTY_TARGET, first determine

how long your system takes to read one block from disk. Then divide your desired

instance recovery period duration by this value. For example, if it takes 10

milliseconds to read one block and you do not want your recovery process to last

longer than 30 seconds, set the value for DB_BLOCK_MAX_DIRTY_TARGET to

3000. The reduced instance recovery time achieved by setting

DB_BLOCK_MAX_DIRTY_TARGET to a lower value is obtained at the cost of more

writes during normal processing.

Tuning LGWR and DBWn I/O

20-42 Oracle8i Tuning

Setting this parameter to a smaller value imposes higher overhead during normal

processing because Oracle must write more buffers to disk. On the other hand, the

smaller the value of this parameter, the better the recovery performance, because

fewer blocks need to be recovered. You can also use

DB_BLOCK_MAX_DIRTY_TARGET to limit the number of blocks read during

instance recovery and thus influence the duration of recovery processing.

Incremental checkpoint information is maintained automatically by Oracle without

affecting other checkpoints, such as user-specified checkpoints. In other words,

incremental checkpointing occurs independently of other checkpoints occurring in

the instance.

Incremental checkpointing is beneficial for recovery in a single instance as well as a

multi-instance environment.

Tuning DBWn I/O
This section describes the following issues of tuning DBW I/O:

■ Multiple Database Writer (DBWn) Processes

■ Internal Write Batch Size

■ LRU Latches with a Single Buffer Pool

■ LRU Latches with Multiple Buffer Pools

Multiple Database Writer (DBWn) Processes
Using the DB_WRITER_PROCESSES initialization parameter, you can create

multiple database writer processes (from DBW0 to DBW9). These may be useful for

high-end systems such as NUMA machines and SMP systems that have a large

number of CPUs. These background processes are not the same as the I/O server

processes (set with DBWR_IO_SLAVES); the latter can die without the instance

failing. You cannot concurrently run I/O server processes and multiple DBWn
processes on the same system.

Internal Write Batch Size
Database writer (DBWn) process(es) use the internal write batch size, which is set to

the lowest of the following three values (A, B, or C):

See Also: Oracle8i Concepts, Oracle8i Reference and the Oracle8i
Backup and Recovery Guide.

Tuning LGWR and DBWn I/O

Tuning I/O 20-43

■ Value A is calculated as follows:

■ Value B is the port-specific limit. (See your Oracle platform-specific

documentation.)

■ Value C is one-fourth the value of DB_BLOCK_BUFFERS.

Setting the internal write batch size too large may result in uneven response times.

For best results, you can influence the internal write batch size by changing the

parameter values by which Value A in the formula above is calculated. Take the

following approach:

1. Determine the files to which you must write, and the number of disks on which

those files reside.

2. Determine the number of I/Os you can perform against these disks.

3. Determine the number of writes that your transactions require.

4. Make sure you have enough disks to sustain this rate.

LRU Latches with a Single Buffer Pool
When you have multiple database writer (DBWn) processes and only one buffer

pool, the buffer cache is divided up among the processes by LRU (least recently

used) latches; each LRU latch is for one LRU list.

The default value of the DB_BLOCK_LRU_LATCHES parameter is the number of

CPUs in the system. You can adjust this value to be equal to, or a multiple of, the

number of CPUs. The objective is to cause each DBWn process to have the same

number of LRU lists, so that they have equivalent loads.

For example, if you have 2 database writer processes and 4 LRU lists (and thus 4

latches), the DBWn processes obtain latches in a round-robin fashion. DBW0 obtains

latch 1, DBW1 obtains latch 2, then DBW2 obtains latch 3 and DBW3 obtains latch 4.

Similarly, if your system has 8 CPUs and 3 DBWn processes, you should have 9

latches.

LRU Latches with Multiple Buffer Pools
However, if you are using multiple buffer pools and multiple database writer

(DBWn) processes, the number of latches in each pool (DEFAULT, KEEP, and

= Value A
DB_FILES * DB_FILE_SIMULTANEOUS_WRITES

2

Tuning LGWR and DBWn I/O

20-44 Oracle8i Tuning

RECYCLE) should be equal to, or a multiple of, the number of processes. This is

recommended so that each DBWn process will be equally loaded.

Consider the example in Figure 20–6 where there are 3 DBWn processes and 2

latches for each of the 3 buffer pools, for a total of 6 latches. Each buffer pool would

obtain a latch in round robin fashion.

Figure 20–6 LRU Latches with Multiple Buffer Pools: Example 1

The DEFAULT buffer pool has 500 buffers for each LRU list. The RECYCLE buffer

pool has 250 buffers for each LRU list. The KEEP buffer pool has 100 buffers for

each LRU.

DBW0 gets latch 1 (500) and latch 4 (250) for 750.

DBW1 gets latch 2 (500) and latch 6 (100) for 600.

DBW2 gets latch 3 (250) and latch 5 (100) for 350.

Thus the load carried by each of the DBWn processes differs, and performance

suffers. If, however, there are 3 latches in each pool, the DBWn processes have equal

loads and performance is optimized.

The different buffer pools have different rates of block replacement. Ordinarily,

blocks are rarely modified in the KEEP pool and frequently modified in the

RECYCLE pool; which means you need to write out blocks more frequently from

Note: When there are multiple buffer pools, each buffer pool has a

contiguous range of LRU latches.

LRU
Lists

Latches

DEFAULT
Buffer Pool

RECYCLE
Buffer Pool

KEEP
Buffer Pool

1 2

3 4

5 6500
Buffers

500
Buffers

250
Buffers

250
Buffers

100
Buffers

100
Buffers

Tuning Backup and Restore Operations

Tuning I/O 20-45

the RECYCLE pool than from the KEEP pool. As a result, owning 100 buffers from

one pool is not the same as owning 100 buffers from the other pool. To be perfectly

load balanced, each DBWn process should have the same number of LRU lists from

each type of buffer pool.

A well configured system might have 3 DBWn processes and 9 latches, with 3

latches in each buffer pool

Figure 20–7 LRU Latches with Multiple Buffer Pools: Example 2

The DEFAULT buffer pool has 500 buffers for each LRU list. The RECYCLE buffer

pool has 250 buffers for each LRU list. The KEEP buffer pool has 100 buffers for

each LRU list.

DBW0 gets latch 1 (500) and latch 4 (250) and latch 7 (100) for 850.

DBW1 gets latch 2 (500) and latch 5 (250) and latch 8 (100) for 850.

DBW2 gets latch 3 (500) and latch 6 (250) and latch 9 (100) for 850.

Tuning Backup and Restore Operations
The primary goal of backup and restore tuning is create an adequate flow of data

between disk and storage device. Tuning backup and restore operations requires

that you complete the following tasks:

■ Locating the Source of a Bottleneck

■ Using Fixed Views to Monitor Backup Operations

■ Improving Backup Throughput

LRU
Lists

Latches

DEFAULT
Buffer Pool

RECYCLE
Buffer Pool

KEEP
Buffer Pool

1 2

4 5

7 8500
Buffers

500
Buffers

3

500
Buffers

250
Buffers

250
Buffers

6

250
Buffers

100
Buffers

100
Buffers

9

100
Buffers

Tuning Backup and Restore Operations

20-46 Oracle8i Tuning

Locating the Source of a Bottleneck
Typically, you perform backups and restore operations in three phases:

■ Reading the input (disk or tape)

■ Processing data by validating blocks and copying them from the input to the

output buffer

■ Writing the output to tape or disk

It is unlikely that all phases take the same amount of time. Therefore, the slowest of

the three phases is the bottleneck.

Understanding the Types of I/O
Oracle backup and restore uses two types of I/O: disk and tape. When performing a

backup, the input files are read using disk I/O, and the output backup file is written

using either disk or tape I/O. When performing restores, these roles reverse. Both

disk and tape I/O can be synchronous or asynchronous; each is independent of the

other.

Measuring Synchronous and Asynchronous I/O Rates
When using synchronous I/O, you can easily determine how much time backup

jobs require because devices only perform one I/O task at a time. When using

asynchronous I/O, it is more difficult to measure the bytes-per-second rate, for the

following reasons:

■ Asynchronous processing implies that more than one task occurs at a time.

■ Oracle I/O uses a polling rather than an interrupt mechanism to determine

when each I/O request completes. Because the backup or restore process is not

immediately notified of I/O completion by the operating system, you cannot

determine the duration of each I/O.

The following sections explain how to use the V$BACKUP_SYNC_IO and

V$BACKUP_ASYNC_IO views to determine the bottleneck in a backup.

Determining Bottlenecks with Synchronous I/O
With synchronous I/O, it is difficult to identify specific bottlenecks because all

synchronous I/O is a bottleneck to the process. The only way to tune synchronous

I/O is to compare the bytes-per-second rate with the device’s maximum throughput

See Also: For more information about these views, please refer to

the Oracle8i Reference.

Tuning Backup and Restore Operations

Tuning I/O 20-47

rate. If the bytes-per-second rate is lower than that device specifies, consider tuning

that part of the backup/restore process. Use the

V$BACKUP_SYNC_IO.DISCRETE_BYTES_PER_SECOND column to see the I/O

rate.

Determining Bottlenecks with Asynchronous I/O
If the combination of LONG_WAITS and SHORT_WAITS is a significant fraction of

IO_COUNT, then the file indicated in V$BACKUP_SYNCH_IO and

V$BACKUP_ASYNCH_IO is probably a bottleneck. Some platforms'

implementation of asynchronous I/O can cause the caller to wait for I/O

completion when performing a non-blocking poll for I/O. Because this behavior

can vary among platforms, the V$BACKUP_ASYNC_IO view shows the total time

for both "short" and " long" waits.

"Long" waits are the number of times the backup/restore process told the operating

system to wait until an I/O was complete. "Short" waits are the number of times the

backup/restore process made an operating system call to poll for I/O completion in

a non-blocking mode. Both types of waits the operating system should respond

immediately.

If the SHORT_WAIT_TIME_TOTAL column is equal to or greater than the

LONG_WAIT_TIME_TOTAL column, then your platform probably blocks for I/O

completion when performing "non-blocking" I/O polling. In this case, the

SHORT_WAIT_TIME_TOTAL represents real I/O time for this file. If the

SHORT_WAIT_TIME_TOTAL is low compared to the total time for this file, then

the delay is most likely caused by other factors, such as process swapping. If

possible, tune your operating system so the I/O wait time appears up in the

LONG_WAIT_TIME_TOTAL column.

Using Fixed Views to Monitor Backup Operations
Use V$BACKUP_SYNC_IO and V$BACKUP_ASYNC_IO to determine the source

of backup or restore bottlenecks and to determine the progress of backup jobs.

V$BACKUP_SYNC_IO contains rows when the I/O is synchronous to the process

(or "thread," on some platforms) performing the backup. V$BACKUP_ASYNC_IO

contains rows when the I/O is asynchronous. Asynchronous I/O is obtained either

with I/O processes or because it is supported by the underlying operating system.

Tuning Backup and Restore Operations

20-48 Oracle8i Tuning

Columns Common to V$BACKUP_SYNC_IO and V$BACKUP_ASYNC_IO
Table 20–16 lists columns and their descriptions that are common to the

V$BACKUP_SYNC_IO and V$BACKUP_ASYNC_IO views.

Table 20–16 Common Columns of V$BACKUP_SYNC_IO and V$BACKUP_ASYNC_IO

Column Description

SID Oracle SID of the session doing the backup or restore.

SERIAL Usage counter for the SID doing the backup or restore.

USE_COUNT A counter you can use to identify rows from different backup
sets. Each time a new set of rows is created in
V$BACKUP_SYNC_IO OR V$BACKUP_ASYNC_IO, they
have a USE_COUNT that is greater than the previous rows.
The USE_COUNT is the same for all rows used by each backup
or restore operation.

DEVICE_TYPE Device type where the file is located (typically DISK or
SBT_TAPE).

TYPE INPUT: The file(s) are being read.

OUTPUT: The file(s) are being written.

AGGREGATE: This row represents the total I/O counts for all
DISK files involved in the backup or restore.

STATUS NOT STARTED: This file has not been opened yet.

IN PROGRESS: This file is currently being read or written.

FINISHED: Processing for this file is complete.

FILENAME The name of the backup file being read or written.

SET_COUNT The SET_COUNT of the backup set being read or written.

SET_STAMP The SET_STAMP of the backup set being read or written.

BUFFER_SIZE Size of the buffers being used to read/write this file in bytes.

BUFFER_COUNT The number of buffers being used to read/write this file.

TOTAL_BYTES The total number of bytes to be read or written for this file if
known. If not known, this column is null.

OPEN_TIME Time this file was opened. If TYPE = 'AGGREGATE', then this
is the time that the first file in the aggregate was opened.

CLOSE_TIME Time this file was closed. If TYPE = 'AGGREGATE', then this is
the time that the last file in the aggregate was closed.

Tuning Backup and Restore Operations

Tuning I/O 20-49

Columns Specific to V$BACKUP_SYNC_IO
Table 20–17 lists columns specific to the V$BACKUP_SYNC_IO view.

ELAPSED_TIME The length of time expressed in 100ths of seconds that the file
was open.

MAXOPENFILES The number of concurrently open DISK files. This value is only
present in rows where TYPE = 'AGGREGATE'.

BYTES The number of bytes read or written so far.

EFFECTIVE_BYTES_PER_
SECOND

The I/O rate achieved with this device during the backup. It is
the number of bytes read or written divided by the elapsed
time. This value is only meaningful for the component of the
backup system causing a bottleneck. If this component is not
causing a bottleneck, then the speed measured by this column
actually reflects the speed of some other, slower, component of
the system.

IO_COUNT The number of I/Os performed to this file. Each request is to
read or write one buffer, of size BUFFER_SIZE.

Table 20–17 Columns Specific to V$BACKUP_SYNC_IO

Column Description

IO_TIME_TOTAL The total time required to perform I/O for this file expressed in
100ths of seconds.

IO_TIME_MAX The maximum time taken for a single I/O request.

DISCRETE_BYTES_PER_
SECOND

The average transfer rate for this file. This is based on
measurements taken at the start and end of each individual
I/O request. This value should reflect the real speed of this
device.

Table 20–16 Common Columns of V$BACKUP_SYNC_IO and V$BACKUP_ASYNC_IO

Column Description

Tuning Backup and Restore Operations

20-50 Oracle8i Tuning

Columns Specific to V$BACKUP_ASYNC_IO
Table 20–18 lists columns specific to the V$BACKUP_ASYNC_IO view.

Improving Backup Throughput
In optimally tuned backups, tape components should create the only bottleneck.

You should keep the tape and its device "streaming", or constantly rotating. If the

tape is not streaming, the data flow to the tape may be inadequate.

This section contains the following topics to maintain streaming by improving

backup throughput:

■ Understanding Factors Affecting Data Transfer Rates

■ Determining Whether the Tape is Streaming for Synchronous I/O

■ Determining Whether the Tape is Streaming for Asynchronous I/O

■ Increasing Throughput to Enable Tape Streaming

Table 20–18 Columns Specific to V$BACKUP_ASYNC_IO

Column Description

READY The number of asynchronous requests for which a buffer was
immediately ready for use.

SHORT_WAITS The number of times a buffer was not immediately available,
but then a buffer became available after doing a non-blocking
poll for I/O completion. The reason non-blocking waits are
timed is because some implementations of "asynchronous I/O"
may wait for an I/O to complete even when the request is
supposed to be non-blocking.

SHORT_WAIT_TIME_TOTAL The total time expressed in 100ths of seconds, taken by
non-blocking polls for I/O completion.

SHORT_WAIT_TIME_MAX The maximum time taken for a non-blocking poll for I/O
completion, in 100ths of seconds.

LONG_WAITS The number of times a buffer was not immediately available,
and only became available after issuing a blocking wait for an
I/O to complete.

LONG_WAIT_TIME_TOTAL The total time expressed in 100ths of seconds taken by blocking
waits for I/O completion.

LONG_WAIT_TIME_MAX The maximum time taken for a blocking wait for I/O
completion expressed in 100ths of seconds.

Tuning Backup and Restore Operations

Tuning I/O 20-51

Understanding Factors Affecting Data Transfer Rates
The rate at which the host sends data to keep the tape streaming depends on these

factors:

■ The raw capacity of the tape device

■ Compression

Tape device raw capacity is the smallest amount of data required to keep the tape

streaming.

Compression is implemented either in the tape hardware or by the media

management software. If you do not use compression, then the raw capacity of the

tape device keeps it streaming. If you use compression, then the amount of data that

must be sent to stream the tape is the raw device capacity multiplied by the

compression factor. The compression factor varies for different types of data.

Determining Whether the Tape is Streaming for Synchronous I/O
To determine whether your tape is streaming when the I/O is synchronous, query

the EFFECTIVE_BYTES_PER_SECOND column in the V$BACKUP_SYNC_IO view:

Determining Whether the Tape is Streaming for Asynchronous I/O
If the I/O is asynchronous, the tape is streaming if the combination of

LONG_WAITS and SHORT_WAITS is a significant fraction of I/O count. Place

more importance on SHORT_WAITS if the time indicated in the

SHORT_WAIT_TIME_TOTAL column is equal or greater than the

LONG_WAIT_TIME_TOTAL column.

Increasing Throughput to Enable Tape Streaming
If the tape is not streaming, the basic strategy is to supply more bytes-per-second to

the tape. Modify this strategy depending on the how many blocks Oracle must read

from disk and how many disks Oracle must access.

If EFFECTIVE_BYTES_PER_SECOND is Then

Less than the raw capacity of the hardware The tape is not streaming.

More than the raw capacity of the
hardware

The tape may be streaming, depending on the
compression ratio of the data.

Tuning Backup and Restore Operations

20-52 Oracle8i Tuning

Spreading I/O Across Multiple Disks Using the DISKRATIO parameter of the BACKUP

statement to distribute backup I/O across multiple volumes, specify how many

disk drives RMAN uses to distribute file reads when backing up multiple

concurrent datafiles. For example, assume that your system uses 10 disks, the disks

supply data at 10 byes/second, and the tape drive requires 50 bytes/second to keep

streaming. In this case, set DISKRATIO equal to 5 to spread the backup load onto 5

disks.

When setting DISKRATIO, spread the I/O over only as many disks as needed to

keep the tape streaming: any more can increase the time it would take to restore a

single file and provides no performance benefit. Note that if you do not specify

DISKRATIO but specify FILESPERSET, DISKRATIO defaults to FILESPERSET. If

neither is specified, DISKRATIO defaults to 4.

Backing Up Empty Files or Files with Few Changes When performing a full backup of

files that are largely empty or performing an incremental backup when few blocks

have changed, you may not be able to supply data to the tape fast enough to keep it

streaming.

In this case, achieve optimal performance by using:

■ The highest possible value for the MAXOPENFILES parameter of the Recovery

Manager SET LIMIT CHANNEL statement

■ Asynchronous disk I/O

The latter takes advantage of asynchronous read-ahead that fills input buffers from

one file while processing data from others.

See Also: For more information about the RMAN SET statement,

see the Oracle8i Backup and Recovery Guide.

Tuning Backup and Restore Operations

Tuning I/O 20-53

Backing Up Full Files When you perform a full backup of files that are mostly full and

the tape is not streaming, you can improve performance in several ways as shown

in Table 20–19:

Table 20–19 Throughput performance improvement methods

Method Consequence

Set BACKUP_TAPE_IO_SLAVES Simulates asynchronous tape I/O by spawning multiple processes to
divide the work for the backup or restore operation. If you do not set this
parameter, then all I/O to the tape layer is synchronous. If you set this
parameter, set LARGE_POOL_SIZE as well.

Set LARGE_POOL_SIZE If you set BACKUP_TAPE_IO_SLAVES, then the buffers for tape I/O must
be allocated from shared memory so they can be shared between two
processes. Oracle does the following when attempting to get shared
buffers for I/O slaves:

■ If LARGE_POOL_SIZE is set, Oracle attempts to get memory from the
large pool. If this value is not large enough, then Oracle does not try
to get buffers from the shared pool.

■ If LARGE_POOL_SIZE is not set, Oracle attempts to get memory from
the shared pool.

■ If Oracle cannot get enough memory, then it obtains I/O buffer
memory from local process memory and writes a message to the
alert.log file indicating that synchronous I/O will be used for this
backup.

Increase
DB_FILE_DIRECT_IO_COUNT

Causes RMAN to use larger buffers for disk I/O. The default buffer size
used for backup and restore disk I/O is DB_FILE_DIRECT_IO_COUNT *
DB_BLOCK_SIZE. The default value for DB_FILE_DIRECT_IO_COUNT is
64, so if DB_BLOCK_SIZE is 2048, then the buffer size is 128KB. On some
platforms, the most efficient I/O buffer size may be more than 128KB.

Make sure the RMAN parameters
MAXOPENFILES or
FILESPERSET are not too low

Increases the number of files that RMAN can process at one time. Using
default buffer sizes, each concurrently open file uses 512KB of process
memory (or SGA large pool memory, if I/O processes are used) for
buffers. The number of concurrent files should be just enough to keep the
tape streaming.

You must derive the correct number by trial and error because unused
block compression greatly affects the amount of disk data that is sent to
the tape drive. If your tape drives are slower than your disk drives, then a
value of 1 for MAXOPENFILES should be sufficient.

Configuring the Large Pool

20-54 Oracle8i Tuning

Configuring the Large Pool
You can optionally configure the large pool so Oracle has a separate pool from

which it can request large memory allocations. This prevents competition with

other subsystems for the same memory.

As Oracle allocates more shared pool memory for the multi-threaded server session

memory, the amount of shared pool memory available for the shared SQL cache

decreases. If you allocate session memory from another area of shared memory,

Oracle can use the shared pool primarily for caching shared SQL and not incur the

performance overhead from shrinking the shared SQL cache.

For I/O server processes and backup and restore operations, Oracle allocates

buffers that are a few hundred kilobytes in size. Although the shared pool may be

unable to satisfy this request, the large pool will be able to do so. The large pool

does not have an LRU list; Oracle will not attempt to age memory out of the large

pool.

Use the LARGE_POOL_SIZE parameter to configure the large pool. To see in which

pool (shared pool or large pool) the memory for an object resides, see the column

POOL in V$SGASTAT.

See Also: Oracle8i Concepts for further information about the large

pool and the Oracle8i Reference for complete information about

initialization parameters.

Tuning Resource Contention 21-1

21
Tuning Resource Contention

Contention occurs when multiple processes try to access the same resource

simultaneously. Some processes must then wait for access to various database

structures. Topics discussed in this chapter include:

■ Understanding Contention Issues

■ Detecting Contention Problems

■ Solving Contention Problems

■ Reducing Contention for Rollback Segments

■ Reducing Contention for Multi-threaded Server Processes

■ Reducing Contention for Parallel Execution Servers

■ Reducing Contention for Redo Log Buffer Latches

■ Reducing Contention for the LRU Latch

■ Reducing Free List Contention

Understanding Contention Issues
Symptoms of resource contention problems can be found in V$SYSTEM_EVENT.

This view reveals various system problems that may be impacting performance,

problems such as latch contention, buffer contention, and I/O contention. It is

important to remember that these are only symptoms of problems—not the actual

causes.

For example, by looking at V$SYSTEM_EVENT you might notice lots of buffer-busy

waits. It may be that many processes are inserting into the same block and must

wait for each other before they can insert. The solution might be to introduce free

lists for the object in question.

Detecting Contention Problems

21-2 Oracle8i Tuning

Buffer busy waits may also have caused some latch free waits. Because most of

these waits were caused by misses on the cache buffer hash chain latch, this was

also a side effect of trying to insert into the same block. Rather than increasing

SPINCOUNT to reduce the latch free waits (a symptom), you should change the

object to allow for multiple processes to insert into free blocks. This approach will

effectively reduce contention.

Detecting Contention Problems
The V$RESOURCE_LIMIT view provides information about current and maximum

global resource utilization for some system resources. This information enables you

to make better decisions when choosing values for resource limit-controlling

parameters.

If the system has idle time, start your investigation by checking

V$SYSTEM_EVENT. Examine the events with the highest average wait time, then

take appropriate action on each. For example, if you find a high number of latch

free waits, look in V$LATCH to see which latch is the problem.

For excessive buffer busy waits, look in V$WAITSTAT to see which block type has

the highest wait count and the highest wait time. Look in V$SESSION_WAIT for

cache buffer waits so you can decode the file and block number of an object.

The rest of this chapter describes common contention problems. Remember that the

different forms of contention are symptoms which can be fixed by making changes

in one of two places:

■ Changes in the application

■ CHANGES in Oracle

Sometimes you have no alternative but to change the application in order to

overcome performance constraints.

See Also: Oracle8i Administrator’s Guide to understand which

resources are used by various Oracle features.

Reducing Contention for Rollback Segments

Tuning Resource Contention 21-3

Solving Contention Problems
The rest of this chapter examines various kinds of contention and explains how to

resolve problems. Contention may be for rollback segments, multi-threaded server

processes, parallel execution servers, redo log buffer latches, LRU latch, or for free

lists.

Reducing Contention for Rollback Segments
In this section, you will learn how to reduce contention for rollback segments. The

following issues are discussed:

■ Identifying Rollback Segment Contention

■ Creating Rollback Segments

Identifying Rollback Segment Contention
Contention for rollback segments is reflected by contention for buffers that contain

rollback segment blocks. You can determine whether contention for rollback

segments is adversely affecting performance by checking the dynamic performance

table V$WAITSTAT.

V$WAITSTAT contains statistics that reflect block contention. By default, this table

is available only to the user SYS and to other users who have SELECT ANY TABLE

system privilege, such as SYSTEM. These statistics reflect contention for different

classes of block:

SYSTEM UNDO HEADER the number of waits for buffers containing header blocks of the

SYSTEM rollback segment

SYSTEM UNDO BLOCK the number of waits for buffers containing blocks of the SYSTEM

rollback segment other than header blocks

UNDO HEADER the number of waits for buffers containing header blocks of

rollback segments other than the SYSTEM rollback segment

UNDO BLOCK the number of waits for buffers containing blocks other than

header blocks of rollback segments other than the SYSTEM

rollback segment

Reducing Contention for Rollback Segments

21-4 Oracle8i Tuning

Use the following query to monitor these statistics over a period of time while your

application is running:

 SELECT CLASS, COUNT
 FROM V$WAITSTAT
 WHERE CLASS IN (’SYSTEM UNDO HEADER’, ’SYSTEM UNDO BLOCK’,
 ’UNDO HEADER’, ’UNDO BLOCK’);

The result of this query might look like this:

CLASS COUNT
------------------ ----------
SYSTEM UNDO HEADER 2089
SYSTEM UNDO BLOCK 633
UNDO HEADER 1235
UNDO BLOCK 942

Compare the number of waits for each class of block with the total number of

requests for data over the same period of time. You can monitor the total number of

requests for data over a period of time with this query:

 SELECT SUM(VALUE)
 FROM V$SYSSTAT
 WHERE NAME IN (’DB BLOCK GETS’, ’CONSISTENT GETS’);

The output of this query might look like this:

 SUM(VALUE)

 929530
The information in V$SYSSTAT can also be obtained through SNMP.

If the number of waits for any class of block exceeds 1% of the total number of

requests, consider creating more rollback segments to reduce contention.

Creating Rollback Segments
To reduce contention for buffers containing rollback segment blocks, create more

rollback segments. Table 21–1 shows some general guidelines for choosing how

many rollback segments to allocate based on the number of concurrent transactions

on your database. These guidelines are appropriate for most application mixes.

Reducing Contention for Multi-threaded Server Processes

Tuning Resource Contention 21-5

Table 21–1 Choosing the Number of Rollback Segments

Reducing Contention for Multi-threaded Server Processes
In this section, you will learn how to reduce contention for processes used by

Oracle’s multi-threaded server architecture:

■ Reducing Contention for Dispatcher Processes

■ Reducing Contention for Shared Server Processes

Identifying Contention Using the Dispatcher-specific Views
The following views provide dispatcher performance statistics:

■ V$DISPATCHER

■ V$DISPATCHER_RATE

V$DISPATCHER provides general information about dispatcher processes.

V$DISPATCHER_RATE view provides dispatcher processing statistics.

Analyzing V$DISPATCHER_RATE Statistics
The V$DISPATCHER_RATE view contains current, average, and maximum

dispatcher statistics for several categories. Statistics with the prefix "CUR_" are

statistics for the current session. Statistics with the prefix "AVG_" are the average

values for the statistics since the collection period began. Statistics with "MAX_"

prefixes are the maximum values for these categories since statistics collection

began.

To assess dispatcher performance, query the V$DISPATCHER_RATE view and

compare the current values with the maximums. If your present system throughput

provides adequate response time and current values from this view are near the

Number of Current Transactions (n)
Number of Rollback Segments
Recommended

n < 16 4

16 <= n < 32 8

32 <= n n/4

See Also: For detailed information about these views, please refer

to the Oracle8i Reference.

Reducing Contention for Multi-threaded Server Processes

21-6 Oracle8i Tuning

average and below the maximum, you likely have an optimally tuned MTS

environment.

If the current and average rates are significantly below the maximums, consider

reducing the number of dispatchers. Conversely, if current and average rates are

close to the maximums, you may need to add more dispatchers. A good

rule-of-thumb is to examine V$DISPATCHER_RATE statistics during both light and

heavy system use periods. After identifying your MTS load patterns, adjust your

parameters accordingly.

If needed, you can also mimic processing loads by running system stress-tests and

periodically polling the V$DISPATCHER_RATE statistics. Proper interpretation of

these statistics varies from platform to platform. Different types of applications also

can cause significant variations on the statistical values recorded in

V$DISPATCHER_RATE.

Reducing Contention for Dispatcher Processes
This section discusses how to identify contention for dispatcher processes, how to

add dispatcher processes, and how to enable connection pooling.

Identifying Contention for Dispatcher Processes
Contention for dispatcher processes is indicated by either of these symptoms:

■ Excessive busy rates for existing dispatcher processes

■ Steady increases in waiting times for responses in the response queues of

dispatcher processes

Examining Busy Rates for Dispatcher Processes V$DISPATCHER contains statistics

reflecting the activity of dispatcher processes. By default, this view is available only

to the user SYS and to other users who have SELECT ANY TABLE system privilege,

such as SYSTEM. These columns reflect busy rates for dispatcher processes:

IDLE Displays the idle time for the dispatcher process in

hundredths of a second

BUSY Displays the busy time for the dispatcher process in

hundredths of a second

Reducing Contention for Multi-threaded Server Processes

Tuning Resource Contention 21-7

Use the following query to monitor these statistics over a period of time while your

application is running:

 SELECT NETWORK "PROTOCOL",
 SUM(BUSY) / (SUM(BUSY) + SUM(IDLE)) "TOTAL BUSY RATE"
 FROM V$DISPATCHER
 GROUP BY NETWORK;

This query returns the total busy rate for the dispatcher processes of each protocol;

that is, the percentage of time the dispatcher processes of each protocol are busy.

The result of this query might look like this:

 PROTOCOL TOTAL BUSY RATE
 -------- ---------------
 DECNET .004589828
 TCP .029111042

From this result, you can make these observations:

■ DECnet dispatcher processes are busy nearly 0.5% of the time

■ TCP dispatcher processes are busy nearly 3% of the time

If the database is only in use 8 hours per day, statistics need to be normalized by the

effective work times. You cannot simply look at statistics from the time the instance

started. Instead, record statistics during peak workloads. If the dispatcher processes

for a specific protocol are busy for more than 50% of the peak workload period, then

by adding dispatcher processes you may improve performance for users connected

to Oracle using that protocol.

Examining Wait Times for Dispatcher Process Response Queues V$QUEUE contains

statistics reflecting the response queue activity for dispatcher processes. By default,

this table is available only to the user SYS and to other users who have SELECT

ANY TABLE system privilege, such as SYSTEM. These columns show wait times for

responses in the queue:

WAIT the total waiting time, in hundredths of a second, for all

responses that have ever been in the queue

TOTALQ the total number of responses that have ever been in the

queue

Reducing Contention for Multi-threaded Server Processes

21-8 Oracle8i Tuning

Use the following query to monitor these statistics occasionally while your

application is running:

 SELECT NETWORK "PROTOCOL",
 DECODE(SUM(TOTALQ), 0, ’NO RESPONSES’,
 SUM(WAIT)/SUM(TOTALQ) || ’ HUNDREDTHS OF SECONDS’)
 "AVERAGE WAIT TIME PER RESPONSE"
 FROM V$QUEUE Q, V$DISPATCHER D
 WHERE Q.TYPE = ’DISPATCHER’
 AND Q.PADDR = D.PADDR
 GROUP BY NETWORK;

This query returns the average time, in hundredths of a second, that a response

waits in each response queue for a dispatcher process to route it to a user process.

This query uses the V$DISPATCHER table to group the rows of the V$QUEUE table

by network protocol. The query also uses the DECODE syntax to recognize those

protocols for which there have been no responses in the queue. The result of this

query might look like this:

 PROTOCOL AVERAGE WAIT TIME PER RESPONSE
 -------- ------------------------------
 DECNET .1739130 HUNDREDTHS OF SECONDS
 TCP NO RESPONSES

From this result, you can tell that a response in the queue for DECNET dispatcher

processes waits an average of 0.17 hundredths of a second and that there have been

no responses in the queue for TCP dispatcher processes.

If the average wait time for a specific network protocol continues to increase

steadily as your application runs, then by adding dispatcher processes you may be

able to improve performance of those user processes connected to Oracle using that

protocol.

Adding Dispatcher Processes
Add dispatcher processes while Oracle is running by using the SET option of the

ALTER SYSTEM command to increase the value for the MTS_DISPATCHERS

parameter.

The total number of dispatcher processes across all protocols is limited by the value

of the initialization parameter MTS_MAX_DISPATCHERS. You may need to

increase this value before adding dispatcher processes. The default value of this

parameter is 5 and the maximum value varies depending on your operating system.

Reducing Contention for Multi-threaded Server Processes

Tuning Resource Contention 21-9

Enabling Connection Pooling
When system load increases and dispatcher throughput is maximized, it is not

necessarily a good idea to immediately add more dispatchers. Instead, consider

configuring the dispatcher to support more users with multiplexing. To do this, you

must install connection manager software.

MTS_DISPATCHERS lets you enable various attributes for each dispatcher. Oracle

supports a name-value syntax to let you specify attributes in a

position-independent, case-insensitive manner. For example:

 MTS_DISPATCHERS = "(PROTOCOL=TCP)(DISPATCHERS=3)(POOL=ON)(TICK=1)"

The optional attribute POOL (or POO) is used to enable the Net8 connection

pooling feature. TICK is the size of a network TICK in seconds. The TICK - default

is 15 seconds.

Enabling Connection Multiplexing
Multiplexing uses a Connection Manager (CM) process to establish and maintain

connections from multiple users to individual dispatcher processes. For example,

several user processes may connect to one dispatcher process by way of a single CM

process.

The CM manages communication from users to the dispatcher by way of the single

connection. At any one time, zero, one, or a few users may need the connection

while other user processes linked to the dispatcher by way of the CM process are

idle. In this way, multiplexing is beneficial as it maximizes use of user-to-dispatcher

process connections.

The CM process may be on the same machine as the user and dispatcher processes

or the CM process may be on a different one. Regardless, your platform’s network

protocol serves as the communication link between the user processes, the CM, and

the dispatcher processes.

The limit on the number of connections for each dispatcher is platform dependent.

Oracle recommends allocating no more than 250 connections per dispatcher. For

See Also: Oracle8i Administrator’s Guide for more information on

adding dispatcher processes.

See Also: For more information about the MTS_DISPATCHER

parameter and its options, please refer to the Oracle8i SQL Reference
and the Net8 Administrator’s Guide.

Reducing Contention for Multi-threaded Server Processes

21-10 Oracle8i Tuning

most 32-bit machines, performance tends to degrade if the number of connections

exceeds 250.

Reducing Contention for Shared Server Processes
This section discusses how to identify contention for shared server processes and

increase the maximum number of shared server processes.

Identifying Contention for Shared Server Processes
Steadily increasing wait times in the requests queue indicate contention for shared

server processes. To examine wait time data, use the dynamic performance view

V$QUEUE. This view contains statistics showing request queue activity for shared

server processes. By default, this view is available only to the user SYS and to other

users with SELECT ANY TABLE system privilege, such as SYSTEM. These columns

show wait times for requests in the queue:

Monitor these statistics occasionally while your application is running by issuing

the following SQL statement:

 SELECT DECODE(totalq, 0, ’No Requests’,
 WAIT/TOTALQ || ’ HUNDREDTHS OF SECONDS’)
 "AVERAGE WAIT TIME PER REQUESTS"
 FROM V$QUEUE
 WHERE TYPE = ’COMMON’;

This query returns the results of a calculation that shows the following:

 AVERAGE WAIT TIME PER REQUEST

 .090909 HUNDREDTHS OF SECONDS

From the result, you can tell that a request waits an average of 0.09 hundredths of a

second in the queue before processing.

WAIT Displays the total waiting time, in hundredths of a second,

for all requests that have ever been in the queue.

TOTALQ Displays he total number of requests that have ever been in

the queue.

Reducing Contention for Multi-threaded Server Processes

Tuning Resource Contention 21-11

You can also determine how many shared server processes are currently running by

issuing this query:

 SELECT COUNT(*) "Shared Server Processes"
 FROM v$shared_servers
 WHERE status != ’QUIT’;

The result of this query might look like this:

 SHARED SERVER PROCESSES

 10

If you detect resource contention with MTS, first make sure your

LARGE_POOL_SIZE parameter allocates 5KB for each user connecting through

MTS. If performance remains poor, you may want to create more resources to

reduce shared server process contention. Do this by modifying the optional server

process parameters as explained under the following headings.

Setting and Modifying MTS Processes
This section explains how to set optional parameters affecting processes for the

multi-threaded server architecture. This section also explains how and when to

modify these parameters to tune performance.

The static initialization parameters discussed in this section are:

■ MTS_MAX_DISPATCHERS

■ MTS_MAX_SERVERS

This section also describes the initialization/session parameters:

■ MTS_DISPATCHERS

■ MTS_SERVERS

Static Dispatcher and Server Parameters Values for the init.ora parameters

MTS_MAX_DISPATCHERS and MTS_MAX_SERVERS define upper limits for the

number of dispatchers and servers running on an instance. These parameters are

static and cannot be changed once your database is running. You can create as many

dispatcher and server processes as you need, but the total number of processes

See Also: For more information about LARGE_POOL_SIZE, refer

to the Oracle8i Reference.

Reducing Contention for Multi-threaded Server Processes

21-12 Oracle8i Tuning

cannot exceed the host operating system’s limit for the number of running

processes.

Dynamic Dispatcher and Server Parameters You can also define starting values for the

number of dispatchers and servers by setting the MTS_DISPATCHERS and

MTS_SERVERS parameters. After system startup, you can dynamically re-set values

for these parameters to change the number of dispatchers and servers using the SET

option of the ALTER SYSTEM command. If you enter values for these parameters in

excess of limits set by the static parameters, Oracle uses the static parameter values.

Static and Dynamic MTS Parameter Dependencies The default value of

MTS_MAX_SERVERS is dependent on the value of MTS_SERVERS. If

MTS_SERVERS is less than or equal to 10, MTS_MAX_SERVERS defaults to 20. If

MTS_SERVERS is greater than 10, MTS_MAX_SERVERS defaults to 2 times the

value of MTS_SERVERS.

Self-adjusting MTS Architecture Features When the database starts, the number of

MTS_SERVERS is equal to the number of shared servers. This number also serves as

the minimal limit; the number of shared servers never falls below this minimum.

During processing, Oracle automatically adds shared server processes up to the

limit defined by MTS_MAX_SERVERS if loads on existing processes increase

drastically. Therefore, you are unlikely to improve performance by explicitly adding

shared server processes. However, you may need to adjust your system to

accommodate certain resource issues.

If the number of shared server processes has reached the limit set by the

initialization parameter MTS_MAX_SERVERS and the average wait time in the

request queue is still unacceptable, you might improve performance by increasing

the MTS_MAX_SERVERS value.

If resource demands exceed expectations, you can either allow Oracle to

automatically add shared server processes or you can add shared processes by

altering the value for MTS_SERVERS. You can change the value of this parameter in

the INIT.ORA file, or alter it using the MTS_SERVERS parameter of the ALTER

SYSTEM command. Experiment with this limit and monitor shared servers to

determine an ideal setting for this parameter.

Note: Setting MTS_MAX_DISPATCHERS sets the limit on

dispatchers for all network protocols combined.

Reducing Contention for Multi-threaded Server Processes

Tuning Resource Contention 21-13

Determining the Optimal Number of Dispatchers and Shared Server Processes
As mentioned, MTS_SERVERS determines the number of shared server processes

activated at instance startup. The default setting for MTS_SERVERS is 1 which is the

default setting when MTS_DISPATCHERS is also activated.

To determine the optimal number of dispatchers and shared servers, consider the

number of users typically accessing the database and how much processing each

requires. Also consider that user and processing loads vary over time. For example,

a customer service system’s load might vary drastically from peak OLTP-oriented

daytime use to DSS-oriented nighttime use. System use can also predictably change

over longer time periods such as the loads experienced by an accounting system

that vary greatly from mid-month to month-end.

If each user makes relatively few requests over a given period of time, then each

associated user process is idle for a large percentage of time. In this case, one shared

server process can serve 10 to 20 users. If each user requires a significant amount of

processing, establish a higher ratio of server processes to user processes.

In the beginning, it is best to allocate fewer shared server processes. Additional

shared servers start automatically as needed and are deallocated automatically if

they remain idle too long. However, the initial servers always remain allocated,

even if they are idle.

If you set the initial number of servers too high, your system might incur

unnecessary overhead. Experiment with the number of initial shared server

processes and monitor shared servers until you achieve ideal system performance

for your typical database activity.

Estimating the Maximum Number of Dispatcher Processes Use values for

MTS_MAX_DISPATCHERS and MTS_DISPATCHERS that are at least equal to the

maximum number of concurrent sessions divided by the number of connections per

dispatcher. For most systems, a value of 250 connections per dispatcher provides

good performance.

Disallowing Further MTS Use with Concurrent MTS Use As mentioned, you can use the

SET option of the ALTER SYSTEM command to alter the number of active, shared

server processes. To prevent additional users from accessing shared server

processes, set MTS_SERVERS to 0. This temporarily disables additional use of MTS.

Re- setting MTS_SERVERS to a positive value enables MTS for all current users.

Reducing Contention for Parallel Execution Servers

21-14 Oracle8i Tuning

Reducing Contention for Parallel Execution Servers
This section describes how to detect and alleviate contention for parallel execution

servers when using parallel execution:

■ Identifying Contention for Parallel Execution Servers

■ Reducing Contention for Parallel Execution Servers

Identifying Contention for Parallel Execution Servers
Statistics in the V$PQ_SYSSTAT view are useful for determining the appropriate

number of parallel execution servers for an instance. The statistics that are

particularly useful are SERVERS BUSY, SERVERS IDLE, SERVERS STARTED, and

SERVERS SHUTDOWN.

Frequently, you will not be able to increase the maximum number of parallel

execution servers for an instance because the maximum number is heavily

dependent upon the capacity of your CPUs and your I/O bandwidth. However, if

servers are continuously starting and shutting down, you should consider

increasing the value of the initialization parameter PARALLEL_MIN_SERVERS.

For example, if you have determined that the maximum number of concurrent

parallel execution servers that your machine can manage is 100, you should set

PARALLEL_MAX_SERVERS to 100. Next, determine how many parallel execution

servers the average parallel operation needs, and how many parallel operations are

likely to be executed concurrently. For this example, assume you will have two

concurrent operations with 20 as the average degree of parallelism. Thus at any

given time there could be 80 parallel execution servers busy on an instance. Thus

you should set the PARALLEL_MIN_SERVERS parameter to 80.

Periodically examine V$PQ_SYSSTAT to determine whether the 80 parallel

execution servers for the instance are actually busy. To do so, issue the following

query:

 SELECT * FROM V$PQ_SYSSTAT
WHERE STATISTIC = "SERVERS BUSY";

See Also: For information about dispatchers, see the description

of the V$DISPATCHER and V$DISPATCHER_RATE views in the

Oracle8i Reference. For more information about the ALTER SYSTEM

command, see the Oracle8i SQL Reference. For more information on

changing the number of shared servers, see the Oracle8i
Administrator’s Guide.

Reducing Contention for Redo Log Buffer Latches

Tuning Resource Contention 21-15

The result of this query might look like this:

 STATISTIC VALUE
 --------------------- -----------
 SERVERS BUSY 70

Reducing Contention for Parallel Execution Servers
If you find that typically there are fewer than PARALLEL_MIN_SERVERS busy at

any given time, your idle parallel execution servers constitute system overhead that

is not being used. Consider decreasing the value of the parameter

PARALLEL_MIN_SERVERS. If you find that there are typically more parallel

execution servers active than the value of PARALLEL_MIN_SERVERS and the

SERVERS STARTED statistic is continuously growing, consider increasing the value

of the parameter PARALLEL_MIN_SERVERS.

Reducing Contention for Redo Log Buffer Latches
Contention for redo log buffer access rarely inhibits database performance.

However, Oracle provides methods to monitor and reduce any latch contention that

does occur. This section covers:

■ Detecting Contention for Space in the Redo Log Buffer

■ Detecting Contention for Redo Log Buffer Latches

■ Examining Redo Log Activity

■ Reducing Latch Contention

Detecting Contention for Space in the Redo Log Buffer
When LGWR writes redo entries from the redo log buffer to a redo log file or disk,

user processes can then copy new entries over the entries in memory that have been

written to disk. LGWR normally writes fast enough to ensure that space is always

available in the buffer for new entries, even when access to the redo log is heavy.

The statistic REDO BUFFER ALLOCATION RETRIES reflects the number of times a

user process waits for space in the redo log buffer. This statistic is available through

the dynamic performance view V$SYSSTAT. By default, this view is available only

to the user SYS and to users granted SELECT ANY TABLE system privilege, such as

SYSTEM.

Reducing Contention for Redo Log Buffer Latches

21-16 Oracle8i Tuning

Use the following query to monitor these statistics over a period of time while your

application is running:

 SELECT NAME, VALUE
 FROM V$SYSSTAT
 WHERE NAME = ’REDO BUFFER ALLOCATION RETRIES’;

The information in V$SYSSTAT can also be obtained through the Simple Network

Management Protocol (SNMP).

The value of REDO BUFFER ALLOCATION RETRIES should be near zero. If this

value increments consistently, processes have had to wait for space in the buffer.

The wait may be caused by the log buffer being too small or by checkpointing.

Increase the size of the redo log buffer, if necessary, by changing the value of the

initialization parameter LOG_BUFFER. The value of this parameter, expressed in

bytes, must be a multiple of DB_BLOCK_SIZE. Alternatively, improve the

checkpointing or archiving process.

Detecting Contention for Redo Log Buffer Latches
Access to the redo log buffer is regulated by two types of latches: the redo allocation

latch and redo copy latches.

The Redo Allocation Latch
The redo allocation latch controls the allocation of space for redo entries in the redo

log buffer. To allocate space in the buffer, an Oracle user process must obtain the

redo allocation latch. Because there is only one redo allocation latch, only one user

process can allocate space in the buffer at a time. The single redo allocation latch

enforces the sequential nature of the entries in the buffer.

After allocating space for a redo entry, the user process may copy the entry into the

buffer. This is called "copying on the redo allocation latch". A process may only

copy on the redo allocation latch if the redo entry is smaller than a threshold size.

Redo Copy Latches
The user process first obtains the copy latch which allows the process to copy. Then

it obtains the allocation latch, performs allocation, and releases the allocation latch.

Note: Multiple archiver processes are not recommended. A single

automatic ARCH process can archive redo logs, keeping pace with

the LGWR process.

Reducing Contention for Redo Log Buffer Latches

Tuning Resource Contention 21-17

Next the process performs the copy under the copy latch, and releases the copy

latch. The allocation latch is thus held for only a very short period of time, as the

user process does not try to obtain the copy latch while holding the allocation latch.

If the redo entry is too large to copy on the redo allocation latch, the user process

must obtain a redo copy latch before copying the entry into the buffer. While

holding a redo copy latch, the user process copies the redo entry into its allocated

space in the buffer and then releases the redo copy latch.

If your computer has multiple CPUs, your redo log buffer can have multiple redo

copy latches. These allow multiple processes to concurrently copy entries to the

redo log buffer concurrently.

On single-CPU computers, there should be no redo copy latches, because only one

process can be active at once. In this case, all redo entries are copied on the redo

allocation latch, regardless of size.

Examining Redo Log Activity
Heavy access to the redo log buffer can result in contention for redo log buffer

latches. Latch contention can reduce performance. Oracle collects statistics for the

activity of all latches and stores them in the dynamic performance view V$LATCH.

By default, this table is available only to the user SYS and to other users who have

SELECT ANY TABLE system privilege, such as SYSTEM.

Each row in the V$LATCH table contains statistics for a different type of latch. The

columns of the table reflect activity for different types of latch requests. The

distinction between these types of requests is whether the requesting process

continues to request a latch if it is unavailable:

WILLING-TO-WAIT If the latch requested with a willing-to-wait request is not

available, the requesting process waits a short time and

requests the latch again. The process continues waiting and

requesting until the latch is available.

IMMEDIATE If the latch requested with an immediate request is not

available, the requesting process does not wait, but

continues processing.

Reducing Contention for Redo Log Buffer Latches

21-18 Oracle8i Tuning

These columns of the V$LATCH view reflect willing-to-wait requests:

For example, consider the case in which a process makes a willing-to-wait request

for a latch that is unavailable. The process waits and requests the latch again and

the latch is still unavailable. The process waits and requests the latch a third time

and acquires the latch. This activity increments the statistics as follows:

■ The GETS value increases by one because one request for the latch (the third

request) was successful.

■ The MISSES value increases by one each time because the initial request for the

latch resulted in waiting.

■ The SLEEPS value increases by two because the process waited for the latch

twice, once after the initial request and again after the second request.

These columns of the V$LATCH table reflect immediate requests:

Use the following query to monitor the statistics for the redo allocation latch and

the redo copy latches over a period of time:

 SELECT ln.name, gets, misses, immediate_gets, immediate_misses
 FROM v$latch l, v$latchname ln
 WHERE ln.name IN (’redo allocation’, ’redo copy’)
 AND ln.latch# = l.latch#;

The output of this query might look like this:

NAME GETS MISSES IMMEDIATE_GETS IMMEDIATE_MISSES
------------------------ ---------- ---------- --------------- ----------------
redo allocation 252867 83 0 0
redo copy 0 0 22830 0

GETS Shows the number of successful willing-to-wait requests for

a latch

MISSES Shows the number of times an initial willing-to-wait request

was unsuccessful

SLEEPS Shows the number of times a process waited and requested a

latch after an initial willing-to-wait request

IMMEDIATE GETS This column shows the number of successful

immediate requests for each latch.

IMMEDIATE MISSES This column shows the number of unsuccessful

immediate requests for each latch.

Reducing Contention for Redo Log Buffer Latches

Tuning Resource Contention 21-19

From the output of the query, calculate the wait ratio for each type of request.

Contention for a latch may affect performance if either of these conditions is true:

■ If the ratio of MISSES to GETS exceeds 1%

■ If the ratio of IMMEDIATE_MISSES to the sum of IMMEDIATE_GETS and

IMMEDIATE_MISSES exceeds 1%

If either of these conditions is true for a latch, try to reduce contention for that latch.

These contention thresholds are appropriate for most operating systems, though

some computers with many CPUs may be able to tolerate more contention without

performance reduction.

Reducing Latch Contention
Most cases of latch contention occur when two or more Oracle processes

concurrently attempt to obtain the same latch. Latch contention rarely occurs on

single-CPU computers, where only a single process can be active at once.

Reducing Contention for the Redo Allocation Latch
To reduce contention for the redo allocation latch, you should minimize the time

that any single process holds the latch. To reduce this time, reduce copying on the

redo allocation latch. Decreasing the value of the

LOG_SMALL_ENTRY_MAX_SIZE initialization parameter reduces the number and

size of redo entries copied on the redo allocation latch.

Reducing Contention for Redo Copy Latches
On multiple-CPU computers, multiple redo copy latches allow multiple processes

to copy entries to the redo log buffer concurrently. The default value of

LOG_SIMULTANEOUS_COPIES is the number of CPUs available to your Oracle

instance.

If you observe contention for redo copy latches, add more latches by increasing the

value of LOG_SIMULTANEOUS_COPIES. It can help to have up to twice as many

redo copy latches as CPUs available to your Oracle instance.

Reducing Contention for the LRU Latch

21-20 Oracle8i Tuning

Reducing Contention for the LRU Latch
The LRU (least recently used) latch controls the replacement of buffers in the buffer

cache. For symmetric multiprocessor (SMP) systems, Oracle automatically sets the

number of LRU latches to a value equal to one half the number of CPUs on the

system. For non-SMP systems, one LRU latch is sufficient.

Contention for the LRU latch can impede performance on SMP machines with a

large number of CPUs. You can detect LRU latch contention by querying

V$LATCH, V$SESSION_EVENT, and V$SYSTEM_EVENT. To avoid contention,

consider bypassing the buffer cache or redesigning the application.

You can specify the number of LRU latches on your system with the initialization

parameter DB_BLOCK_LRU_LATCHES. This parameter sets the maximum value

for the desired number of LRU latches. Each LRU latch controls a set of buffers;

Oracle balances allocation of replacement buffers among the sets.

To select the appropriate value for DB_BLOCK_LRU_LATCHES, consider the

following:

■ The maximum number of latches is twice the number of CPUs in the system.

That is, the value of DB_BLOCK_LRU_LATCHES can range from 1 to twice the

number of CPUs.

■ A latch should have no less than 50 buffers in its set; for small buffer caches

there is no added value if you select a larger number of sets. The size of the

buffer cache determines a maximum boundary condition on the number of sets.

■ Do not create multiple latches when Oracle runs in single process mode. Oracle

automatically uses only one LRU latch in single process mode.

■ If the workload on the instance is large, then you should have a higher number

of latches. For example, if you have 32 CPUs in your system, choose a number

between half the number of CPUs (16) and actual number of CPUs (32) in your

system.

Note: You cannot dynamically change the number of sets during

the lifetime of the instance.

Reducing Free List Contention

Tuning Resource Contention 21-21

Reducing Free List Contention
Free list contention can reduce the performance of some applications. This section

covers:

■ Identifying Free List Contention

■ Adding More Free Lists

Identifying Free List Contention
Contention for free lists is reflected by contention for free data blocks in the buffer

cache. You can determine whether contention for free lists is reducing performance

by querying the dynamic performance view V$WAITSTAT.

The V$WAITSTAT table contains block contention statistics. By default, this view is

available only to the user SYS and to other users who have SELECT ANY TABLE

system privilege, such as SYSTEM.

Use the following procedure to find the segment names and free lists that have

contention:

1. Check V$WAITSTAT for contention on DATA BLOCKS.

2. Check V$SYSTEM_EVENT for BUFFER BUSY WAITS.

High numbers indicate that some contention exists.

3. In this case, check V$SESSION_WAIT to see, for each buffer busy wait, the

values for FILE, BLOCK, and ID.

4. Construct a query as follows to obtain the name of the objects and free lists that

have the buffer busy waits:

SELECT SEGMENT_NAME, SEGMENT_TYPE
FROM DBA_EXTENTS
WHERE FILE_ID = file
AND BLOCK BETWEENblock_id AND block_id + blocks ;

This will return the segment name (segment) and type (type).

5. To find the free lists, query as follows:

SELECT SEGMENT_NAME, FREELISTS

See Also: For information on free lists, please refer to Oracle8i
Concepts,

Reducing Free List Contention

21-22 Oracle8i Tuning

FROM DBA_SEGMENTS
WHERE SEGMENT_NAME =SEGMENT
AND SEGMENT_TYPE =TYPE;

Adding More Free Lists
To reduce contention for the free lists of a table, re-create the table with a larger

value for the FREELISTS storage parameter. Increasing the value of this parameter

to the number of Oracle processes that concurrently insert data into the table may

improve performance of the INSERT statements.

Re-creating the table may simply involve dropping and creating it again. However,

you may instead want to use one of these methods:

■ Re-create the table by selecting data from the old table into a new table,

dropping the old table, and renaming the new one.

■ Use Export and Import to export the table, drop the table, and import the table.

This measure avoids consuming space by creating a temporary table.

Tuning Networks 22-1

22
Tuning Networks

This chapter introduces networking issues that affect tuning. Topics in this chapter

include

■ Detecting Network Problems

■ Solving Network Problems

Detecting Network Problems
Networks entail overhead that adds a certain amount of delay to processing. To

optimize performance, you must ensure that your network throughput is fast, and

that you reduce the number of messages that must be sent over the network.

It can be difficult to measure the delay the network adds. Three dynamic

performance views are useful for this task: V$SESSION_EVENT,

V$SESSION_WAIT, and V$SESSTAT.

In V$SESSION_EVENT, the AVERAGE_WAIT column indicates the amount of time

that Oracle waits between messages. You can use this statistic as a yardstick to

evaluate the effectiveness of the network.

In V$SESSION_WAIT, the EVENT column lists the events for which active sessions

are waiting. The "sqlnet message from client" wait event indicates that the shared or

foreground process is waiting for a message from a client. If this wait event has

occurred, you can check to see whether the message has been sent by the user or

received by Oracle.

You can investigate hangups by looking at V$SESSION_WAIT to see what the

sessions are waiting for. If a client has sent a message, you can determine whether

Oracle is responding to it or is still waiting for it.

Solving Network Problems

22-2 Oracle8i Tuning

In V$SESSTAT you can see the number of bytes that have been received from the

client, the number of bytes sent to the client, and the number of calls the client has

made.

Solving Network Problems
This section describes several techniques for enhancing performance and solving

network problems.

■ Using Array Interfaces

■ Using Prestarted Processes

■ Adjusting Session Data Unit Buffer Size

■ Increasing the Listener Queue Size

■ Using TCP.NODELAY

■ Using Shared Server Processes Rather than Dedicated Server Processes

■ Using Connection Manager

Using Array Interfaces
Reduce network calls by using array interfaces. Instead of fetching one row at a

time, it is more efficient to fetch ten rows with a single network round trip.

Using Prestarted Processes
Prestarting processes can improve connect time with a dedicated server. This is

particularly true of heavily loaded systems not using multi-threaded servers, where

connect time is slow. If prestarted processes are enabled, the listener can hand off

the connection to an existing process with no wait time whenever a connection

request arrives. Connection requests do not have to wait for new processes to be

started.

See Also: The Net8 Administrator’s Guide.

See Also: Pro*C/C++ Precompiler Programmer’s Guide and

Pro*COBOL Precompiler Programmer’s Guide for more information on

array interfaces.

Solving Network Problems

Tuning Networks 22-3

Adjusting Session Data Unit Buffer Size
Before sending data across the network, Net8 buffers data into the Session Data

Unit (SDU). It sends the data stored in this buffer when the buffer is full or when an

application tries to read the data. When large amounts of data are being retrieved

and when packet size is consistently the same, it may speed retrieval to adjust the

default SDU size.

Optimal SDU size depends on the normal packet size. Use a sniffer to find out the

frame size, or set tracing on to its highest level to check the number of packets sent

and received and to determine whether they are fragmented. Tune your system to

limit the amount of fragmentation.

Use Oracle Network Manager to configure a change to the default SDU size on both

the client and the server; SDU size should generally be the same on both.

Increasing the Listener Queue Size
The network listener active on the database server monitors and responds to

connection requests. You can increase the listening queue for a listening process in

order to handle larger numbers of concurrent requests dynamically.

Using TCP.NODELAY
When a session is established, Net8 packages and sends data between server and

client using packets. Use the TCP.NODELAY option, which causes packets to be

flushed on to the network more frequently. If you are streaming large amounts of

data, there is no buffering and hence no delay.

Although Net8 supports many networking protocols, TCP tends to have the best

scalability.

Using Shared Server Processes Rather than Dedicated Server Processes
Shared server processes, such as multi-threaded server dispatchers, tend to provide

better performance than dedicated server processes. Dedicated server processes are

committed to one session only and exist for the duration of that session. In contrast,

a shared server process enables many clients to connect to the same server without

the need for a dedicated server process for each client. A dispatcher handles

multiple incoming session requests to the shared server.

See Also: The Net8 Administrator’s Guide.

See Also: Your platform-specific Oracle documentation.

Solving Network Problems

22-4 Oracle8i Tuning

Using Connection Manager
In Net8 you can use the Connection Manager to conserve system resources by

multiplexing: funneling many client sessions through a single transport connection

to a server destination. In this way you can increase the number of sessions that a

process can handle.

Use Connection Manager to control client access to dedicated servers. In addition,

Connection Manager provides multiple protocol support allowing a client and

server with different networking protocols to communicate.

Note: The Oracle default is dedicated server processing. For more

information on the multi-threaded server, please refer to Oracle8i
Concepts and to the Oracle8i Administrator’s Guide.

See Also: The Net8 Administrator’s Guide.

Tuning the Multi-Threaded Server Architecture 23-1

23
Tuning the Multi-Threaded Server

Architecture

The Multi-threaded Server (MTS) is a strategic component of Oracle server

technology that provides greater user scalability for applications supporting

numerous clients with concurrent database connections. Applications benefit from

MTS features such as connection pooling and multiplexing.

MTS offers strategic functionality for Oracle because its architecture allows

increased user scalability, improved throughput, and better response time. MTS

does this while using fewer resources, even as the number of users increases. MTS

can scale most applications to accommodate a large number of users without

changing the applications.

Setting Up MTS
To set up MTS, set the MTS-related parameters to suit your application.

Application Types that Benefit from MTS
Applications requiring a large number of concurrent database user connections

while minimizing database server memory use are the types of applications that

benefit most from MTS. Examples of these are OLTP applications with high

Note: You can also configure Oracle to use both MTS and

dedicated server configurations. For more information on this,

please refer to the Net8 Administrator’s Guide.

See Also: For details on how to do this, please refer to the Oracle8i
Administrator’s Guide

Improving User Scalability with MTS

23-2 Oracle8i Tuning

transaction volumes and web-based, thin-client applications using IIOP with

Java-based architectures.

MTS provides user scalability and performance enhancements to enable using a

three-tier application model with the Oracle Server. In many cases, MTS is an

excellent replacement for transaction processing (TP) monitors. This is because MTS

does not have some of the performance overhead associated with TP monitors.

You can also have an excellent scalability, high-availability system by using MTS

along with OPS (Oracle Parallel Server). It is possible to achieve 24-hours per day,

seven days-per-week uptime when using MTS with OPS.

The following are among the key performance enhancements and new MTS-related

functionality for Oracle8i:

■ Asynchronous network IO

■ Major memory management enhancements

■ Support for dynamic multiple presentations

■ Improved manageability and significantly easier configuration

■ Connection pooling and connection multiplexing

■ Improved load balancing algorithm; this feature is also known as "node load

balancing"

Improving User Scalability with MTS
Using MTS allows you to tune your system and minimize resource usage. The

values for MTS-related parameters for typical applications are determined by a

number of factors such as:

■ Ratios of connections to dispatchers

■ Connections to shared servers

■ The application itself

The following section describes how to tune dispatchers and the use of MTS’

connection pooling and connection multiplexing features.

See Also: For more information on OPS please refer to Oracle8i
Parallel Server Concepts and Administration.

Improving User Scalability with MTS

Tuning the Multi-Threaded Server Architecture 23-3

Configuring Dispatchers
The number of active dispatchers on a running system does not increase

dynamically. To increase the number of dispatchers to accommodate more users

after system startup, alter the value for the DISPATCHERS attribute of the

MTS_DISPATCHERS parameter. You can use a value for this parameter such that

the total number of dispatchers requested does not exceed the value set for the

parameter MTS_MAX_DISPATCHERS. The default value of

MTS_MAX_DISPATCHERS is 5.

If the number of dispatchers you configure is greater than the value of

MTS_MAX_DISPATCHERS, Oracle increases the value of

MTS_MAX_DISPATCHERS to this value. Unless you expect the number of

concurrent connections to increase over time, you do not need to set this parameter.

A ratio of 1 dispatcher for every 250 connections works well for typical systems. For

example, if you anticipate 1,000 connections at peak time, you may want to

configure 4 dispatchers. Being too aggressive in your estimates is not beneficial;

configuring too many dispatchers can degrade performance.

Connection Pooling and Connection Multiplexing
If you do not have the resources to configure a large number of dispatchers and

your system requires more simultaneous connections, use connection pooling and

connection multiplexing with MTS.

MTS enables connection pooling where clients share connection slots in a pool on

the server side by temporarily releasing client connections when connections are

idle. MTS enables connection multiplexing with the connection manager. This

allows multiple client connections to share a single connection from the connection

manager to the database.

Note: On NT, dispatchers are threads and not separate processes.

Note: The connection pooling and multiplexing features only

work with MTS.

See Also: For an example of implementing multiplexing, please
refer to the Net8 Administrator’s Guide.

Maximizing Throughput and Response Time with MTS

23-4 Oracle8i Tuning

Maximizing Throughput and Response Time with MTS
This section explains how to maximize throughput and response time using MTS by

covering the following topics:

■ Configuring and Managing the Number of Shared Servers

■ Tuning the SDU Size

Configuring and Managing the Number of Shared Servers
The number of shared server processes spawned changes dynamically based on

need. The system begins by spawning the number of shared servers as initially

designated by the value set for MTS_SERVERS. If needed, the system spawns more

shared servers up to the value set for the MTS_MAX_SERVERS parameter.

If system load decreases, it maintains a minimum number of servers as specified by

MTS_SERVERS. Because of this, do not set MTS_SERVERS to too high a value at

system startup. Typical systems seem to stabilize at a ratio of 1 shared server for

every 10 connections.

For OLTP applications, the connections-to-servers ratio could be higher since the

rate of requests could be low and the ratio of server usage-to-requests is low. In

applications where the rate of requests is high or the server usage-to-request ratio is

high, the connections-to-servers ratio could be lower.

In this case, set MTS_MAX_SERVERS to a reasonable value based on your

application. The default value of MTS_MAX_SERVERS is 20 and the default for

MTS_SERVERS is 1.

On NT, exercise care when setting MTS_MAX_SERVERS to too a high value

because as mentioned, each server is a thread in a common process. The optimal

values for these settings can change based on your configuration; these are just

estimates of what seems to work for typical configurations.

MTS_MAX_SERVERS is a static INIT.ORA parameter, so you cannot change it

without shutting down your database. However, MTS_SERVERS is a dynamic

parameter, so you can change it within an active sessions using the ALTER SYSTEM

command.

Example OLTP Application: If you expect to require 2,000 concurrent connections,

begin with 200 shared servers or 1 shared server for every 10 connections. Set

MTS_MAX_SERVERS to 400. Since this is an OLTP application, you would expect

the load imposed by each connection on the shared servers to be lower than a

typical application. Instead, start off with 100 shared servers, not 200. If you need

Tuning Memory Use with MTS

Tuning the Multi-Threaded Server Architecture 23-5

more shared servers, the system adjusts the number up to the MTS_MAX_SERVERS

value.

Tuning the SDU Size
Net8 stores buffer data in the Session Data Unit (SDU) and sends data stored in this

buffer when it is full or when applications try to read the data. Tune the default

SDU size when large amounts of data are being retrieved and when packet size is

consistently the same. This may speed retrieval and also reduce fragmentation.

Balancing Load Connections
Connection load balancing distributes the load based on:

■ The number of connections per dispatcher, also known as "dispatcher level load

balancing"

■ The load on the node, also known as "node level load balancing"

Connection load balancing only works when MTS is enabled.

When using OPS or replicated databases, the connection load balancing feature of

MTS provides better load balancing than if you use DESCRIPTION_LISTS. This is

because this feature distributes client connections based on actual CPU load. MTS

also enables simplified application-dependent routing configurations that ensure

that a request from the same application may be routed to the same node each time.

This improves the efficiency of application data transfer.

Tuning Memory Use with MTS
This section explains how to tune memory use with MTS.

See Also: For more information on this, please refer to "Adjusting
Session Data Unit Buffer Size" on page 22-3.

Note: Connection load balancing only works with MTS enabled.

See Also: For more information, also refer to the chapter

"Administering Multiple Instances" in Oracle8i Parallel Server
Concepts and Administration.

Tuning Memory Use with MTS

23-6 Oracle8i Tuning

Configuring the Large Pool and Shared Pool for MTS
Oracle recommends using the large pool to allocate MTS-related UGA (User Global

Area), not the shared pool. This is because Oracle also uses the shared pool to

allocate SGA memory for other purposes such as shared SQL and PL/SQL

procedures. Using the large pool instead of the shared pool also decreases SGA

fragmentation.

To store MTS-related UGA in the large pool, specify a value for the parameter

LARGE_POOL_SIZE. If you do not set a value for LARGE_POOL_SIZE, Oracle

uses the shared pool for MTS user session memory.

When using MTS, configure a larger-than-normal large or shared pool. This is

necessary because MTS stores all user state information from the UGA in the SGA

(Shared Global Area).

If you use the shared pool, Oracle has a default value for SHARED_POOL_SIZE of

8MB on 32-bit systems and 64MB on 64 bit systems. The LARGE_POOL_SIZE does

not have a default value, but its minimal value is 300K.

Determining an Effective Setting for MTS UGA Storage
The exact amount of UGA Oracle uses depends on each application. To determine

an effective setting for the large or shared pools, observe UGA use for a typical user

and multiply this amount by the estimated number of user sessions.

Even though use of shared memory increases with MTS, the total amount of

memory use decreases. This is because there are fewer processes, therefore, Oracle

uses less PGA memory with MTS. This is the opposite of how this functions in

dedicated server environments.

Limiting Memory Use Per User Session by Setting PRIVATE_SGA
With MTS, you can set the PRIVATE_SGA parameter to limit the memory used by

each client session from the SGA. PRIVATE_SGA defines the number of bytes of

memory used from the SGA by a session. However, this parameter is rarely used

because most DBAs do not limit SGA consumption an a user-by-user basis.

Note: Oracle still allocates some fixed amount of memory per

session from the shared pool even if you set a value for
LARGE_POOL_SIZE.

MTS-related Views with Connection, Load and Statistics Data

Tuning the Multi-Threaded Server Architecture 23-7

MTS-related Views with Connection, Load and Statistics Data
Oracle provides several views with information about dispatchers, shared servers,

the rate at which connections are established, the messages queued, shared memory

used, and so on.

See Also: For more information, please refer to the Oracle8i
Reference.

V$DISPATCHER_RATE This view gives information and statistics about the rate

at which each dispatcher is receiving and handling

messages, events, and so on.

V$MTS This view gives statistics about things like the

maximum number of shared servers ever started by the

system, maximum number of connections handled by a

dispatcher, and so on, since the instance was started.

V$DISPATCHER This view gives information about dispatcher processes.

V$SHARED_SERVERS This view gives information about shared server

processes.

V$CIRCUITS This view gives information about the virtual circuits.

Virtual circuits are state objects that act as repositories

of all the user related state information that needs to be

accessed during a database session. There is one virtual

circuit per client connection.

V$QUEUE This view gives information about messages in the

common message queue and the dispatcher message

queues.

V$SGA This view gives information about the system global

area.

V$SGASTAT This view gives detailed statistical information about

the system global area.

V$SHARED_POOL_RES

ERVED

This view gives statistics.

MTS Feature Performance Issues

23-8 Oracle8i Tuning

MTS Feature Performance Issues
Performance of certain database features may degrade slightly when MTS is used.

These features include Bfiles, parallel execution, inter-node parallel execution, and

hash joins. This is because these features may prevent a session from migrating to

another shared server while they are active.

A session may remain non-migratable after a request from the client has been

processed. Use of these features may make sessions non migratable because these

features have not stored all the user state information in the UGA, but have left

some of the state in the PGA. As a result, if different shared servers process requests

from the client, the part of the user state stored in the PGA is inaccessible. To avoid

this, individual shared servers often need to remain bound to a user session. This

makes the session non-migratable among shared servers.

When using these features, you may need to configure more shared servers. This is

because some servers may be bound to sessions for an excessive amount of time.

Tuning the Operating System 24-1

24
Tuning the Operating System

This chapter explains how to tune the operating system for optimal performance of

the Oracle server. Topics include:

■ Understanding Operating System Performance Issues

■ Detecting Operating System Problems

■ Solving Operating System Problems

Understanding Operating System Performance Issues
Operating system performance issues commonly involve process management,

memory management, and scheduling. If you have tuned the Oracle instance and

still need better performance, verify your work or try to reduce system time. Make

sure there is enough I/O bandwidth, CPU power, and swap space. Do not expect,

however, that further tuning of the operating system will have a significant effect on

application performance. Changes in the Oracle configuration or in the application

are likely to make a more significant difference in operating system efficiency than

simply tuning the operating system.

For example, if your application experiences excessive buffer busy waits, the

number of system calls will increase. If you reduce the buffer busy waits by tuning

the application, then the number of system calls will decrease. Similarly, if you turn

on the Oracle initialization parameter TIMED_STATISTICS, then the number of

system calls will increase. If you turn it off, then system calls will decrease.

See Also: In addition to information in this chapter, please refer

to your operating system specific documentation.

Understanding Operating System Performance Issues

24-2 Oracle8i Tuning

Operating System and Hardware Caches
Operating systems and device controllers provide data caches that do not directly

conflict with Oracle’s own cache management. Nonetheless, these structures can

consume resources while offering little or no benefit to performance. This is most

noticeable on a UNIX system that has the database container files in the UNIX file

store: by default all database I/O goes through the file system cache. On some

UNIX systems, direct I/O is available to the filestore. This arrangement allows the

database container files to be accessed within the UNIX file system, bypassing the

file system cache. It saves CPU resources and allows the file system cache to be

dedicated to non-database activity, such as program texts and spool files.

On NT this problem does not arise. All file requests by the database bypass the

caches in the file system.

Raw Devices
Evaluate the use of raw devices on your system. Using raw devices may involve a

significant amount of work, but may also provide significant performance benefits.

Raw devices impose a penalty on full table scans, but may be essential on UNIX

systems if the implementation does not support "write through" cache. The UNIX

file system accelerates full table scans by reading ahead when the server starts

requesting contiguous data blocks. It also caches full table scans. If your UNIX

system does not support the write through option on writes to the file system, it is

essential that you use raw devices to ensure that at commit and checkpoint, the data

that the server assumes is safely established on disk is actually there. If this is not

the case, recovery from a UNIX operating system crash may not be possible.

Raw devices on NT are similar to UNIX raw devices; however, all NT devices

support write through cache.

Process Schedulers
Many processes, or "threads" on NT systems, are involved in the operation of

Oracle. They all access the shared memory resources in the SGA.

Be sure all Oracle processes, both background and user processes, have the same

process priority. When you install Oracle, all background processes are given the

See Also: For detailed information, see your Oracle

platform-specific documentation and your operating system

vendor’s documentation.

Solving Operating System Problems

Tuning the Operating System 24-3

default priority for your operating system. Do not change the priorities of

background processes. Verify that all user processes have the default operating

system priority.

Assigning different priorities to Oracle processes may exacerbate the effects of

contention. Your operating system may not grant processing time to a low-priority

process if a high-priority process also requests processing time. If a high-priority

process needs access to a memory resource held by a low-priority process, the

high-priority process may wait indefinitely for the low-priority process to obtain the

CPU, process the request, and release the resource.

Detecting Operating System Problems
The key statistics to extract from any operating system monitor are:

■ CPU load

■ Device queues

■ Network activity (queues)

■ Memory management (paging/swapping)

Examine CPU use to determine the ratio between the time spent running in

application mode and the time spent running in operating system mode. Look at

run queues to see how many processes are runable and how many system calls are

being executed. See if paging or swapping is occurring, and check the number of

I/Os being performed.

Solving Operating System Problems
This section provides hints for tuning various systems by explaining the following

topics:

■ Performance on UNIX-Based Systems

■ Performance on NT Systems

■ Performance on Mainframe Computers

Familiarize yourself with platform-specific issues so you know what performance

options your operating system provides. For example, some platforms have post

See Also: Your Oracle platform-specific documentation and your

operating system vendor’s documentation.

Solving Operating System Problems

24-4 Oracle8i Tuning

wait drivers that allow you to map system time and thus reduce system calls,

enabling faster I/O.

Performance on UNIX-Based Systems
On UNIX systems, try to establish a good ratio between the amount of time the

operating system spends fulfilling system calls and doing process scheduling, and

the amount of time the application runs. Your goal should be running 60% to 75% of

the time in application mode, and 25% to 40% of the time in operating system

mode. If you find that the system is spending 50% of its time in each mode, then

determine what is wrong.

The ratio of time spent in each mode is only a symptom of the underlying problem,

which might involve:

■ Swapping

■ Executing too many O/S system calls

■ Running too many processes

If such conditions exist, there is less time available for the application to run. The

more time you can release from the operating system side, the more transactions

your application can perform.

Performance on NT Systems
On NT systems, as with UNIX-based systems, you should establish an appropriate

ratio between time in application mode and time in system mode. On NT you can

easily monitor many factors with Performance Monitor: CPU, network, I/O, and

memory are all displayed on the same graph, to assist you in avoiding bottlenecks

in any of these areas.

Performance on Mainframe Computers
Consider the paging parameters on a mainframe, and remember that Oracle can

exploit a very large working set of parameters.

Free memory in VAX/VMS environments is actually memory that is not mapped to

any operating system process. On a busy system, free memory likely contains a

page belonging to one or more currently active process. When that access occurs, a

"soft page fault" takes place, and the page is included in the working set for the

See Also: Your Oracle platform-specific documentation and your

operating system vendor’s documentation.

Solving Operating System Problems

Tuning the Operating System 24-5

process. If the process cannot expand its working set, then one of the pages

currently mapped by the process must be moved to the free set.

Any number of processes may have pages of shared memory within their working

sets. The sum of the sizes of the working sets can thus markedly exceed the

available memory. When the Oracle server is running, the SGA, the Oracle kernel

code, and the Oracle Forms runtime executable are normally all sharable and

account for perhaps 80% or 90% of the pages accessed.

Adding more buffers is not necessarily better. Each application has a threshold

number of buffers at which the cache hit ratio stops rising. This is typically quite

low (approximately 1500 buffers). Setting higher values simply increases the

management load for both Oracle and the operating system.

Solving Operating System Problems

24-6 Oracle8i Tuning

Tuning Instance Recovery Performance 25-1

25
Tuning Instance Recovery Performance

This chapter offers guidelines for tuning instance recovery. It includes the following

topics:

■ Understanding Instance Recovery

■ Tuning the Duration of Instance and Crash Recovery

■ Monitoring Instance Recovery

■ Tuning the Phases of Instance Recovery

■ Transparent Application Failover

Understanding Instance Recovery
Instance and crash recovery are the automatic application of redo log records to

Oracle data blocks after a crash or system failure. If either a single instance database

crashes or all instances of an OPS (Oracle Parallel Server) configuration crash,

Oracle performs instance recovery at the next startup. If one or more instances of an

OPS configuration crash, a surviving instance performs recovery.

Instance and crash recovery occur in two phases. In phase one, Oracle applies all

committed and uncommitted changes in the redo log files to the affected

datablocks. In phase two, Oracle applies information in the rollback segments to

undo changes made by uncommitted transactions to the data blocks.

How Oracle Applies Redo Log Information
During normal operations, Oracle’s DBWn processes periodically write dirty

buffers, or buffers that have in-memory changes, to disk. Periodically, Oracle

records the highest SCN of all changes to blocks such that all data blocks with

Tuning the Duration of Instance and Crash Recovery

25-2 Oracle8i Tuning

changes below that SCN have been written to disk by DBWn. This SCN is the

"checkpoint".

Records that Oracle appends to the redo log file after the change record that the

checkpoint refers to are changes that Oracle has not yet written to disk. If a failure

occurs, only redo log records containing changes at SCNs higher than the

checkpoint need to be replayed during recovery.

The duration of recovery processing is directly influenced by the number of data

blocks that have changes at SCNs higher than the SCN of the checkpoint. For

example, Oracle will recover a redo log with 100 entries affecting one data block

more quickly than it recovers a redo log with 10 entries for 10 different data blocks.

This is because for each log record processed during recovery, the corresponding

data block must be read from disk by Oracle so that the change represented by the

redo log entry can be applied to that block.

Trade-offs of Minimizing Recovery Duration
The principal means of balancing the duration of instance recovery and daily

performance is by influencing how aggressively Oracle advances the checkpoint. If

you force Oracle to keep the checkpoint only a few blocks behind the most recent

redo log record, you minimize the number of blocks Oracle processes during

recovery.

The trade-off for having minimal recovery time, however, is increased performance

overhead for normal database operations. If daily operational efficiency is more

important than minimizing recovery time, decreasing the frequency of writes to the

datafiles increases instance recovery time.

Tuning the Duration of Instance and Crash Recovery
There are several methods for tuning instance and crash recovery to keep the

duration of recovery within user-specified bounds. These methods are:

■ Using initialization parameters to influence the number of redo log records and

data blocks involved in recovery

■ Sizing the redo log file to influence checkpointing frequency

■ Using SQL statements to initiate checkpoints

■ Parallelizing instance recovery operations to further shorten the recovery

duration

Tuning the Duration of Instance and Crash Recovery

Tuning Instance Recovery Performance 25-3

The Oracle8i Enterprise Edition also offers Fast-start fault recovery functionality to

control instance recovery.

Using Initialization Parameters to Influence Instance and Crash Recovery Time
During recovery, Oracle performs two main tasks:

■ Read the redo logs to determine what has been changed

■ Read data blocks to determine whether to apply changes

You can use three initialization parameters to influence how aggressively Oracle

advances the checkpoint as shown in Table 25–1:

Using LOG_CHECKPOINT_TIMEOUT to Influence Recovery
Set the initialization parameter LOG_CHECKPOINT_TIMEOUT to a value n (where

n is an integer) to require that the latest checkpoint position follow the most recent

redo block by no more than n seconds. In other words, at most, n seconds’ worth of

logging activity can occur between the most recent checkpoint position and the end

of the redo log. This forces the checkpoint position to keep pace with the most

recent redo block

You can also interpret LOG_CHECKPOINT_TIMEOUT as specifying an upper

bound on the time a buffer can be dirty in the cache before DBWn must write it to

disk. For example, if you set LOG_CHECKPOINT_TIMEOUT to 60, then no buffers

Table 25–1 Initialization Parameters Influencing Checkpoints

Parameter Purpose

LOG_CHECKPOINT_TIMEOUT Limit the number of seconds between the most recent
redo record and the checkpoint.

LOG_CHECKPOINT_INTERVAL Limit the number of redo records between the most
recent redo record and the checkpoint.

FAST_START_IO_TARGET Limit instance recovery time by controlling the
number of data blocks Oracle processes during
instance recovery.

Note: You can only use the FAST_START_IO_TARGET parameter

with the Oracle8i Enterprise Edition.

Tuning the Duration of Instance and Crash Recovery

25-4 Oracle8i Tuning

remain dirty in the cache for more than 60 seconds. The default value for

LOG_CHECKPOINT_TIMEOUT is 1800.

Using LOG_CHECKPOINT_INTERVAL to Influence Recovery
Set the initialization parameter LOG_CHECKPOINT_INTERVAL to a value n
(where n is an integer) to require that the checkpoint position never follow the most

recent redo block by more than n blocks. In other words, at most n redo blocks can

exist between the checkpoint position and the last block written to the redo log. In

effect, you are limiting the amount of redo blocks that can exist between the

checkpoint and the end of the log.

Oracle limits the maximum value of LOG_CHECKPOINT_INTERVAL to 90% of the

smallest log to ensure that the checkpoint advances far enough to eliminate "log

wrap". Log wrap occurs when Oracle fills the last available redo log file and cannot

write to any other log file because the checkpoint has not advanced far enough. By

ensuring that the checkpoint never gets too far from the end of the log, Oracle never

has to wait for the checkpoint to advance before it can switch logs.

LOG_CHECKPOINT_INTERVAL is specified in redo blocks. Redo blocks are the

same size as operating system blocks. Use the LOG_FILE_SIZE_REDO_BLKS

column in V$INSTANCE_RECOVERY to see the number of redo blocks

corresponding to 90% of the size of the smallest log file.

Using FAST_START_IO_TARGET to Influence Instance Recovery Time
You can only use the initialization parameter FAST_START_IO_TARGET if you

have the Oracle8i Enterprise Edition. You can set this parameter to n, where n is an

integer limiting to n the number of buffers that Oracle processes during crash or

instance recovery. Because the number of I/Os to be processed during recovery

correlates closely to the duration of recovery, the FAST_START_IO_TARGET

parameter gives you the most precise control over the duration of recovery.

FAST_START_IO_TARGET advances the checkpoint because DBWn uses the value

of FAST_START_IO_TARGET to determine how much writing to do. Assuming that

users are making many updates to the database, a low value for this parameter

forces DBWn to write changed buffers to disk. The CKPT process reflects this

progress as the checkpoint advances. Of course, if user activity is low or

Note: The minimum value for LOG_CHECKPOINT_TIMEOUT in

the Standard Edition is 900. If you set the value below 900 in the

Standard Edition, Oracle rounds it to 900.

Tuning the Duration of Instance and Crash Recovery

Tuning Instance Recovery Performance 25-5

non-existent, DBWn does not have any buffers to write, so the checkpoint does not

advance.

The smaller the value of FAST_START_IO_TARGET, the better the recovery

performance, since fewer blocks require recovery. If you use smaller values for this

parameter, however, you impose higher overhead during normal processing, since

DBWn must write more buffers to disk more frequently.

Using Redo Log Size to Influence Checkpointing Frequency
The size of a redo log file directly influences checkpoint performance. The smaller

the size of the smallest log, the more aggressively Oracle writes dirty buffers to disk

to ensure the position of the checkpoint has advanced to the current log before that

log completely fills. Oracle enforces this behavior by ensuring the number of redo

blocks between the checkpoint and the most recent redo record is less than 90% of

the size of the smallest log.

If your redo logs are small compared to the number of changes made against the

database, Oracle must switch logs frequently. If the value of

LOG_CHECKPOINT_INTERVAL is less than 90% of the size of the smallest log, this

parameter will have the most influence over checkpointing behavior.

Although you specify the number and sizes of online redo log files at database

creation, you can alter the characteristics of your redo log files after startup. Use the

ADD LOGFILE clause of the ALTER DATABASE command to add a redo log file

and specify its size, or the DROP LOGFILE clause to drop a redo log.

The size of the redo log appears in the LOG_FILE_SIZE_REDO_BLKS column of the

V$INSTANCE_RECOVERY dynamic performance. This value shows how the size

of the smallest online redo log is affecting checkpointing. By increasing or

decreasing the size of your online redo logs, you indirectly influence the frequency

of checkpoint writes.

See Also: For more information, see "Estimating Recovery Time"

on page 25-3 and "Calculating Performance Overhead" on

page 25-11. For more information about initialization parameters,

see the Oracle8i Reference.

See Also: For information on using the

V$INSTANCE_RECOVERY view to tune instance recovery, see

"Estimating Recovery Time" on page 25-9.

Monitoring Instance Recovery

25-6 Oracle8i Tuning

Using SQL Statements to Initiate Checkpoints
Besides setting initialization parameters and sizing your redo log files, you can also

influence checkpoints with SQL statements. ALTER SYSTEM CHECKPOINT directs

Oracle to record a checkpoint for the node, and ALTER SYSTEM CHECKPOINT

GLOBAL directs Oracle to record a checkpoint for every node in a cluster.

SQL-induced checkpoints are "heavyweight". This means Oracle records the

checkpoint in a control file shared by all the redo threads. Oracle also updates the

datafile headers. SQL-induced checkpoints move the checkpoint position to the

point that corresponded to the end of the log when the command was initiated.

These checkpoints can adversely affect performance because the additional writes

to the datafiles increase system overhead.

Monitoring Instance Recovery
Use the V$INSTANCE_RECOVERY view to see your current recovery parameter

settings. You can also use statistics from this view to calculate which parameter has

the greatest influence on checkpointing. V$INSTANCE_RECOVERY contains

columns as shown in Table 25–2:

See Also: For more information about these statements, see the

Oracle8i SQL Reference.

Table 25–2 V$INSTANCE_RECOVERY

Column Description

RECOVERY_ESTIMATED_IOS The estimated number of data blocks to be
processed during recovery based on the
in-memory value of the fast-start checkpoint
parameter.

ACTUAL_REDO_BLKS The current number of redo blocks required for
recovery.

TARGET_REDO_BLKS The goal for the maximum number of redo blocks
to be processed during recovery. This value is the
minimum of the following 4 columns.

LOG_FILE_SIZE_REDO_BLKS The number of redo blocks to be processed during
recovery to guarantee that a log switch never has
to wait for a checkpoint.

LOG_CHKPT_TIMEOUT_REDO_BLKS The number of redo blocks that need to be
processed during recovery to satisfy
LOG_CHECKPOINT_TIMEOUT.

Monitoring Instance Recovery

Tuning Instance Recovery Performance 25-7

The value appearing in the TARGET_REDO_BLKS column equals a value

appearing in another column in the view. This other column corresponds to the

parameter or log file that is determining the maximum number of redo blocks that

Oracle processes during recovery. The setting for the parameter in this column is

imposing the heaviest requirement on redo block processing.

Determining the Strongest Checkpoint Influence: Scenario
As an example, assume your initialization parameter settings are as follows:

 FAST_START_IO_TARGET = 1000
 LOG_CHECKPOINT_TIMEOUT = 1800 # default
 LOG_CHECKPOINT_INTERVAL = 0# default: disabled interval checkpointing

You execute the query:

 SELECT * FROM V$INSTANCE_RECOVERY;

Oracle responds with:

1 row selected.

As you can see by the values in the last three columns, the

FAST_START_IO_TARGET parameter places heavier recovery demands on Oracle

than the other two parameters: it requires that Oracle process no more than 4,215

redo blocks during recovery. The LOG_FILE_SIZE_REDO_BLKS column indicates

that Oracle can process up to 55,296 blocks during recovery, so the log file size is not

the heaviest influence on checkpointing.

LOG_CHKPT_INTERVAL_REDO_BLKS The number of redo blocks that need to be
processed during recovery to satisfy
LOG_CHECKPOINT_INTERVAL.

FAST_START_IO_TARGET_REDO_BLKS The number of redo blocks that need to be
processed during recovery to satisfy
FAST_START_IO_TARGET.

RECOVERY_EST
IMATED_IOS

ACTUAL_REDO_
BLKS

TARGET_REDO_
BLKS

LOG_FILE_SIZ
E_REDO_ BLKS

LOG_CHKPT_TI
MEOUT_REDO_B
LKS

LOG_CHKPT_IN
TERVAL_REDO_
BLKS

FAST_START_I
O_TARGET_BLK
S

1025 6169 4215 55296 35485 4294967295 4215

Table 25–2 V$INSTANCE_RECOVERY

Column Description

Monitoring Instance Recovery

25-8 Oracle8i Tuning

The TARGET_REDO_BLKS column shows the smallest value of the last five

columns. This shows the parameter or condition that exerts the heaviest

requirement for Oracle checkpointing. In this example, the

FAST_START_IO_TARGET parameter is the strongest influence with a value of

4,215.

Assume you make several updates to the database and query

V$INSTANCE_RECOVERY three hours later. Oracle responds with the following:

1 row selected.

FAST_START_IO_TARGET is still exerting the strongest influence over

checkpointing behavior, although the number of redo blocks corresponding to this

target has changed dramatically. This change is not due to a change in

FAST_START_IO_TARGET or the corresponding RECOVERY_ESTIMATED_IOS.

Instead, this indicates that operations requiring I/O in the event of recovery are

more frequent in the redo log, so fewer redo blocks now correspond to the same

FAST_START_IO_TARGET.

Assume you decide that FAST_START_IO_TARGET is placing an excessive limit on

the maximum number of redo blocks that Oracle processes during recovery. You

adjust FAST_START_IO_TARGET to 8000, set LOG_CHECKPOINT_TIMEOUT to

60, and perform several updates. You reissue the query to

V$INSTANCE_RECOVERY and Oracle responds with:

1 row selected.

Note: The value for LOG_CHKPT_INTERVAL_REDO_BLKS,

4294967295, corresponds to the maximum possible value indicating

that this column does not have the greatest influence over

checkpointing.

RECOVERY_
ESTIMATED_
IOS

ACTUAL_
REDO_BLKS

TARGET_
REDO_BLKS

LOG_FILE_
SIZE_REDO_
BLKS

LOG_CHKPT_
TIMEOUT_
REDO_BLKS

LOG_CHKPT_
INTERVAL_
REDO_BLKS

FAST_START_
IO_TARGET_
BLKS

1022 916 742 55296 44845 4294967295 742

RECOVERY_
ESTIMATED_
IOS

ACTUAL_
REDO_BLKS

TARGET_
REDO_BLKS

LOG_FILE_
SIZE_REDO_
BLKS

LOG_CHKPT_
TIMEOUT_
REDO_BLKS

LOG_CHKPT_
INTERVAL_
REDO_BLKS

FAST_START_
IO_TARGET_
BLKS

1640 6972 6707 55296 6707 4294967295 10338

Monitoring Instance Recovery

Tuning Instance Recovery Performance 25-9

Because the TARGET_REDO_BLKS column value of 6707 corresponds to the value

in the LOG_CHKPT_TIMEOUT_REDO_BLKS column,

LOG_CHECKPOINT_TIMEOUT is now exerting the most influence over

checkpointing behavior.

Estimating Recovery Time
Use statistics from the V$INSTANCE_RECOVERY view to estimate recovery time

using the following formula:

For example, if RECOVERY_ESTIMATED_IOS is 2,500, and the maximum number

of writes your system performs is 500 per second, then recovery time is 5 seconds.

Note the following restrictions:

■ The value for the maximum I/Os per second the system can perform is difficult

to measure accurately

■ There is no guarantee the system will sustain the I/O rate during recovery

■ This estimate for recovery time is only valid when FAST_START_IO_TARGET

is both enabled and when this parameter is the determining influence on

checkpointing behavior

To adjust recovery time, change the initialization parameter that has the most

influence over checkpointing. Use the V$INSTANCE_RECOVERY view as

described in "Monitoring Instance Recovery" on page 25-6 to determine which

parameter to adjust. Then either adjust the parameter to decrease or increase

recovery time as required.

Adjusting Recovery Time: Example Scenario
As an example, assume as in "Determining the Strongest Checkpoint Influence:

Scenario" on page 25-7 that your initialization parameter settings are as follows:

 FAST_START_IO_TARGET = 1000
 LOG_CHECKPOINT_TIMEOUT = 1800 # default
 LOG_CHECKPOINT_INTERVAL = 0 # default: disabled interval checkpointing

RECOVERY_ESTIMATED_JOBS

Maximum I/Os per second that your system can perform

Monitoring Instance Recovery

25-10 Oracle8i Tuning

You execute the query:

 SELECT * FROM V$INSTANCE_RECOVERY;

Oracle responds with:

1 row selected.

You calculate recovery time using the formula on page 25-9, where

RECOVERY_ESTIMATED_JOBS is 1025 and the maximum I/Os per second the

system can perform is 500:

You decide you can afford slightly more than 2.05 seconds of recovery time:

constant access to the data is not critical. You increase the value for the parameter

FAST_START_IO_TARGET to 2000 and perform several updates. You then reissue

the query and Oracle displays:

1 row selected.

Recalculate recovery time using the same formula:

You have increased your recovery time by 1.96 seconds. If you can afford more time,

repeat the procedure until you arrive at an acceptable recovery time.

RECOVERY_
ESTIMATED_
IOS

ACTUAL_
REDO_BLKS

TARGET_
REDO_BLKS

LOG_FILE_
SIZE_REDO_
BLKS

LOG_CHKPT_
TIMEOUT_
REDO_BLKS

LOG_CHKPT_
INTERVAL_
REDO_BLKS

FAST_START_
IO_TARGET_
BLKS

1025 6169 4215 55296 35485 4294967295 4215

RECOVERY_
ESTIMATED_
IOS

ACTUAL_
REDO_BLKS

TARGET_
REDO_BLKS

LOG_FILE_
SIZE_REDO_
BLKS

LOG_CHKPT_
TIMEOUT_
REDO_BLKS

LOG_CHKPT_
INTERVAL_
REDO_BLKS

FAST_START_
IO_TARGET_
BLKS

2007 8301 8012 55296 40117 4294967295 8012

1025

500
= 2.05

2007

500
= 4.01

Monitoring Instance Recovery

Tuning Instance Recovery Performance 25-11

Calculating Performance Overhead
To calculate performance overhead, use the V$SYSSTAT view. For example, assume

you execute the query:

 SELECT NAME, VALUE FROM V$SYSSTAT
 WHERE NAME IN ('PHYSICAL READS', ’PHYSICAL WRITES',);

Oracle responds with:

NAME VALUE
physical reads 2376
physical writes 14932
physical writes non checkpoint 11165
3 rows selected.

The first row shows the number of data blocks retrieved from disk. The second row

shows the number of data blocks written to disk. The last row shows the value of

the number of writes to disk that would occur if you turned off checkpointing.

Use this data to calculate the overhead imposed by setting the

FAST_START_IO_TARGET initialization parameter. To effectively measure the

percentage of extra writes, mark the values for these statistics at different times, T_1

and T_2. Use the following formula where the variables stand for the following:

Calculate the percentage of extra I/Os generated by fast-start checkpointing using

this formula:

Variable Definition

*_1 Value of prefixed variable at time T_1, which is any time after the database has
been running for a while

*_2 Value of prefixed variable at time T_2, which is later than T_1 and not
immediately after changing any of the checkpoint parameters

PWNC Physical writes non checkpoint

PW Physical writes

PR Physical reads

EIO Percentage of estimated extra I/Os generated by enabling checkpointing

[((PW_2 - PW_1) - (PWNC_2 - PWNC_1)) / ((PR_2 - PR_1) + (PW_2 - PW_1))] x 100% = EIO

Monitoring Instance Recovery

25-12 Oracle8i Tuning

It can take some time for database statistics to stabilize after instance startup or

dynamic initialization parameter modification. After such events, wait until all

blocks age out of the buffer cache at least once before taking measurements.

If the percentage of extra I/Os is too high, increase the value for

FAST_START_IO_TARGET. Adjust this parameter until you get an acceptable value

for the RECOVERY_ESTIMATED_IOS in V$INSTANCE_RECOVERY as described

in "Determining the Strongest Checkpoint Influence: Scenario" on page 25-7.

The number of extra writes caused by setting FAST_START_IO_TARGET to a

non-zero value is application-dependent. An application that repeatedly modifies

the same buffers incurs a higher write penalty because of Fast-start checkpointing

than an application that does not. The extra write penalty is not dependent on cache

size.

Calculating Performance Overhead: Example Scenario
As an example, assume your initialization parameter settings are:

 FAST_START_IO_TARGET = 2000
 LOG_CHECKPOINT_TIMEOUT = 1800 # default
 LOG_CHECKPOINT_INTERVAL = 0 # default: disabled interval checkpointing

After the statistics stabilize, you issue this query on V$SYSSTAT:

 SELECT NAME, VALUE FROM V$SYSSTAT
 WHERE NAME IN ('PHYSICAL READS', 'PHYSICAL WRITES',
 'PHYSICAL WRITES NON CHECKPOINT');

Oracle responds with:

Name Value
physical reads 2376
physical writes 14932
physical writes non checkpoint 11165
3 rows selected.

After making updates for a few hours, you re-issue the query and Oracle responds

with:

Name Value
physical reads 3011
physical writes 17467
physical writes non checkpoint 13231
3 rows selected.

Monitoring Instance Recovery

Tuning Instance Recovery Performance 25-13

Substitute the values from your select statements in the formula as described on

page 25-11 to determine how much performance overhead you are incurring:

[((17467 - 14932) - (13231 - 11165)) / ((3011 - 2376) + (17467 - 14932))] x 100% = 14.8%

As the result indicates, enabling fast-start checkpointing generates about 15% more

I/O than would be required had you not enabled fast-start checkpointing. After

calculating the extra I/O, you decide you can afford more system overhead if you

decrease recovery time.

To decrease recovery time, reduce the value for the parameter

FAST_START_IO_TARGET to 1000. After items in the buffer cache age out, calculate

V$SYSSTAT statistics across a second interval to determine the new performance

overhead. Query V$SYSSTAT:

 SELECT NAME, VALUE FROM V$SYSSTAT
 WHERE NAME IN ('PHYSICAL READS', 'PHYSICAL WRITES',
 'PHYSICAL WRITES NON CHECKPOINT');

Oracle responds with:

Name Value
physical reads 4652
physical writes 28864
physical writes non checkpoint 21784
3 rows selected.

After making updates, re-issue the query and Oracle responds with:

Name Value
physical reads 6000
physical writes 35394
physical writes non checkpoint 26438
3 rows selected.

Calculate how much performance overhead you are incurring using the values from

your two SELECT statements:

[(35394 - 28864) - (26438 - 21784)) / ((6000 - 4652) + (35394 - 28864))] x 100% = 23.8%

Tuning the Phases of Instance Recovery

25-14 Oracle8i Tuning

After changing the parameter, the percentage of I/Os performed by Oracle is now

about 24% more than it would be if you disabled Fast-start checkpointing.

Tuning the Phases of Instance Recovery
Besides using checkpoints to tune instance recovery, you can also use a variety of

parameters to control Oracle’s behavior during the rolling forward and rolling back

phases of instance recovery. In some cases, you can parallelize operations and

thereby increase recovery efficiency.

This section contains the following topics:

■ Tuning the Rolling Forward Phase

■ Tuning the Rolling Back Phase

Tuning the Rolling Forward Phase
Use parallel block recovery to tune the roll forward phase of recovery. Parallel block

recovery uses a "division of labor" approach to allocate different processes to

different data blocks during the roll forward phase of recovery. For example, if the

redo log contains a substantial number of entries, process 1 takes responsibility for

one part of the log file, process 2 takes responsibility for another part, process 3

takes responsibility for a third part, and so on. Crash, instance, and media recovery

of many datafiles on different disk drives are good candidates for parallel block

recovery.

Use the RECOVERY_PARALLELISM initialization parameter to specify the number

of concurrent recovery processes for instance or media recovery operations. Because

crash recovery occurs at instance startup, this parameter is useful for specifying the

number of processes to use for crash recovery. The value of this parameter is also

the default number of processes used for media recovery if you do not specify the

PARALLEL clause of the RECOVER command. The value of this parameter must be

greater than 1 and cannot exceed the value of the PARALLEL_MAX_SERVERS

parameter. Parallel block recovery requires a minimum of eight recovery processes

for it to be more effective than serial recovery.

Recovery is usually I/O bound on reads to data blocks. Consequently, parallelism at

the block level may only help recovery performance if it increases total I/Os. In

other words, parallelism at the block level by-passes operating system restrictions

on asynchronous I/Os. Performance on systems with efficient asynchronous I/O

typically does not improve significantly with parallel block recovery.

Tuning the Phases of Instance Recovery

Tuning Instance Recovery Performance 25-15

Tuning the Rolling Back Phase
During the second phase of instance recovery, Oracle rolls back uncommitted

transactions. Oracle uses two features, Fast-start on-demand rollback and Fast-start

parallel rollback, to increase the efficiency of this recovery phase.

This section contains the following topics:

■ Using Fast-start On-demand Rollback

■ Using Fast-start Parallel Rollback

Using Fast-start On-demand Rollback
Using the Fast-start on-demand rollback feature, Oracle automatically allows new

transactions to begin immediately after the roll forward phase of recovery

completes. Should a user attempt to access a row that is locked by a dead

transaction, Oracle rolls back only those changes necessary to complete the

transaction, in other words, it rolls them back "on demand." Consequently, new

transactions do not have to wait until all parts of a long transaction are rolled back.

Using Fast-start Parallel Rollback
In Fast-start parallel rollback, the background process SMON acts as a coordinator

and rolls back a set of transactions in parallel using multiple server processes.

Essentially, Fast-start parallel rollback is to rolling back what parallel block recovery

is to rolling forward.

Fast-start parallel rollback is mainly useful when a system has transactions that run

a long time before committing, especially parallel INSERT, UPDATE, and DELETE

operations. When SMON discovers that the amount of recovery work is above a

certain threshold, it automatically begins parallel rollback by dispersing the work

among several parallel processes: process 1 rolls back one transaction, process 2

rolls back a second transaction, and so on. The threshold is the point at which

parallel recovery becomes cost-effective, in other words, when parallel recovery

takes less time than serial recovery.

Note: These features are part of Fast-start fault recovery and are

only available in the Oracle8i Enterprise Edition.

Note: Oracle does this automatically. You do not need to set any

parameters or issue commands to use this feature.

Tuning the Phases of Instance Recovery

25-16 Oracle8i Tuning

One special form of Fast-start parallel rollback is intra-transaction recovery. In

intra-transaction recovery, a single transaction is divided among several processes.

For example, assume 8 transactions require recovery with one parallel process

assigned to each transaction. The transactions are all similar in size except for

transaction 5, which is quite large. This means it takes longer for one process to roll

this transaction back than for the other processes to roll back their transactions.

In this situation, Oracle automatically begins intra-transaction recovery by

dispersing transaction 5 among the processes: process 1 takes one part, process 2

takes another part, and so on.

You control the number of processes involved in transaction recovery by setting the

parameter FAST_START_PARALLEL_ROLLBACK to one of three values:

Parallel Rollback in an OPS Configuration In OPS, you can perform Fast-start parallel

rollback on each instance. Within each instance, you can perform parallel rollback

on transactions that are:

■ Online on a given instance

■ Offline and not being recovered on instances other than the given instance

Once a rollback segment is online for a given instance, only this instance can

perform parallel rollback on transactions on that segment.

Monitoring Progress of Fast-start Parallel Rollback Monitor the progress of Fast-start

parallel rollback by examining the V$FAST_START_SERVERS and

V$FAST_START_TRANSACTIONS tables. V$FAST_START_SERVERS provides

information about all recovery processes performing fast-start parallel rollback.

V$FAST_START_TRANSACTIONS contains data about the progress of the

transactions.

FALSE Turns off Fast-start parallel rollback.

LOW Specifies that the number of recovery servers may not exceed

twice the value of the CPU_COUNT parameter.

HIGH Specifies that the number of recovery servers may not exceed

four times the value of the CPU_COUNT parameter.

See Also: For more information on Fast-start parallel rollback in

an OPS environment, see Oracle8i Parallel Server Concepts and
Administration. For more information about initialization

parameters, see the Oracle8i Reference.

Transparent Application Failover

Tuning Instance Recovery Performance 25-17

Transparent Application Failover
This section covers the following topics:

■ What Is Transparent Application Failover?

■ How does Transparent Application Failover Work?

■ Transparent Application Failover Topics for the DBA

■ Transparent Application Failover Topics for Application Developers

■ Transparent Application Failover Restrictions

What Is Transparent Application Failover?
Transparent application failover (TAF) is the ability of applications to automatically

reconnect to the database if the connection fails. If the client is not involved in a

database transaction, then users may not notice the failure of the server. Because

this reconnect happens automatically from within the OCI library, the client

application code may not need changes to use TAF.

How does Transparent Application Failover Work?
During normal client-server database operations, the client maintains a connection

to the database so the client and server can communicate. If the server fails, the

connection also fails. The next time the client tries to use the connection to execute a

new SQL statement, for example, the operating system displays an error to the

client. Oracle most commonly then issues the error “ORA-3113: end-of-file on

communication channel". At this point, the user must log in to the database again.

With TAF, however, Oracle automatically obtains a new connection to the database.

This allows the user to continue to work using the new connection as if the original

connection had never failed.

Note: To use transparent application failover, you must have the

Oracle8i Enterprise Edition which is described in the text, Getting to
Know Oracle8i.

Transparent Application Failover

25-18 Oracle8i Tuning

There several elements associated with active database connections. These can

include:

■ Client-Server Database Connections

■ Users’ Database Sessions

■ Executing Commands

■ Open Cursors Used for Fetching

■ Active Transactions

■ Server-Side Program Variables

TAF automatically restores some of these elements. Other elements, however, may

need to be embedded in the application code to enable TAF to recover the

connection.

Client-Server Database Connections
TAF automatically reestablishes the database connection. By default, TAF uses the

same connect string to attempt to obtain a new database connection. Alternately,

you can configure failover to use a different connect string; you can even

pre-establish an alternate failover connection. For more information about these

configurations, see "Configuring Application Failover" on page 25-21.

Users’ Database Sessions
TAF automatically logs a user in with the same user ID as was used prior to failure.

If multiple users were using the connection, then TAF automatically logs them in as

they attempt to process database commands. Unfortunately, TAF cannot

automatically restore other session properties. If the application issued ALTER

SESSION commands, then the application must re-issue them after TAF processing

is complete. This can be done in failover callback processing, which is described in

more detail in the Oracle Call Interface Programmer’s Guide.

Executing Commands
The client usually discovers a connection failure after a command is issued to the

server that results in an error. The client cannot determine whether the command

was completely executed prior to the server’s failure. If the command was

completely executed and it changed the state of the database, the command is not

resent. If TAF reconnects in response to a command that may have changed the

database, TAF issues an "ORA-25408: can not safely replay call" message to the

application.

Transparent Application Failover

Tuning Instance Recovery Performance 25-19

TAF automatically resends SELECT and fetch commands to the database after

failover because these types of commands do not change the database’s state.

Open Cursors Used for Fetching
TAF allows applications that began fetching rows from a cursor before failover to

continue fetching rows after failover. This is called "select" failover. It is

accomplished by re-executing a SELECT statement using the same snapshot and

retrieving the same number of rows.

TAF also provides a safeguard to guarantee that the results of the select are

consistent. If this safeguard fails, the application may receive the error message

"ORA-25401 can not continue fetches".

Active Transactions
Any active transactions are rolled back at the time of failure because TAF cannot

preserve active transactions after failover. The application instead receives the error

message “ORA-25402 transaction must roll back” until a ROLLBACK is submitted.

Server-Side Program Variables
Server-side program variables, such as PL/SQL package states, are lost during

failures; TAF cannot recover them. They can be initialized by making a call from the

failover callback, which is described in more detail in the Oracle Call Interface
Programmer’s Guide.

Transparent Application Failover Implementation Scenarios
For TAF to effectively mask a database failure, there must be a location to which the

client can reconnect. This section discusses the following database configurations,

and how they work with TAF.

■ OPS

■ Fail Safe Systems

■ Replicated Systems

■ Standby Databases

■ Single Instance Oracle Database

Transparent Application Failover

25-20 Oracle8i Tuning

OPS
TAF was initially conceived for Oracle Parallel Server environments. All TAF

functionality works with OPS, and no special setup is required. For more

information about OPS, see the Oracle8i Parallel Server Setup and Configuration Guide.

Fail Safe Systems
You can use TAF with Oracle Fail Safe. However, since the backup instance is not

available to take connections, when the primary database fails, some clients may

attempt to reconnect during the time when the database server is unavailable. The

failover callback may be used to get around this. For more information about

failover callback, see the Oracle Call Interface Programmer’s Guide.

Replicated Systems
TAF works with replicated systems provided that all database objects are the same

on both sides of the replication. This includes the same passwords, and so on. If the

data in the tables are slightly out of sync with each other, then there is a higher

probability of encountering an "ORA-25401: can not continue fetches". For more

information about replication, see Oracle8i Replication.

Standby Databases
TAF works with standby databases in a manner similar to TAF with Fail Safe. Since

there may be a timeframe when a database is not available for the client to log into,

the failover callback should be provided. Also, since changes made later than the

most recent archive logs will not be present, there may be some data skew and

hence a higher chance of encountering an "ORA-25401: can not continue fetches".

Single Instance Oracle Database
You can also use TAF in single instance Oracle database environments. After a

failure in single instance environments, there can be a time period when the

database is unavailable and TAF cannot re-establish a connection. For this reason, a

failover callback can be used to periodically re-attempt failover. TAF successfully

re-establishes the connection after the database is available again.

Transparent Application Failover Topics for the DBA
This section explains the following topics:

■ Configuring TAF

■ How to tell whether a client is using application failover

Transparent Application Failover

Tuning Instance Recovery Performance 25-21

■ Load balancing

■ Planned shutdown

■ Tuning TAF

Configuring Application Failover
You can configure the connect string for the application at the names server, or put

it in the TNSNAMES.ORA file. Alternatively, the connect string can be hard-coded

in the application.

For each application, the names server provides information about the listener, the

instance group, and the failover mode. The connect string failover_mode field

specifies the type and method of failover. For more information on syntax, please

refer to the Net8 Administrator’s Guide.

TYPE: Failover Mode Functionality Options The client’s failover functionality is

determined by the TYPE keyword in the connect string. The choices for the TYPE

keyword are:

METHOD: Failover Mode Performance Options Improving the speed of application

failover often requires putting more work on the backup instance. The DBA can use

the METHOD keyword in the connect string to configure the BASIC or

PRECONNECT performance options.

SELECT This allows users with open cursors to continue fetching on

them after failure. However, this mode incurs overhead on the

client side in normal select operations, so the user is allowed

to disable select failover.

SESSION This fails over the session, that is, if a user’s connection is lost,

a second session is automatically created for the user on the

backup. This type of failover does not attempt to recover

selects.

NONE This is the default, in which no failover functionality is used.

This can also be explicitly specified to prevent failover from

happening.

BASIC Establish connections at failover time. This option requires

almost no work on the backup server until failover time.

Transparent Application Failover

25-22 Oracle8i Tuning

BACKUP: Alternate Backup Connect String In many cases it is not convenient to use the

same connect string for both the initial and backup connections. In these instances,

you can use the BACKUP keyword in the connect string that specifies a different

TNS alias or explicit connect string for backup connections.

Failover Fields in V$SESSION
The view V$SESSION has the following fields related to failover:

Shutting Down an Instance after Current Transactions
The TRANSACTIONAL option to the SHUTDOWN command enables you to do a

planned shutdown of one instance while minimally interrupting clients. This option

waits for ongoing transactions to complete. The TRANSACTIONAL option is useful

for installing patch releases. Also use this option when you must bring down the

instance without interrupting service.

While waiting, clients cannot start new transactions on the instance. Clients are

disconnected if they attempt to start a transaction and this triggers failover if

failover is enabled. When the last transaction completes, the primary instance

performs a SHUTDOWN IMMEDIATE.

Disconnecting a Session after the Current Transaction
The ALTER SYSTEM DISCONNECT SESSION POST_TRANSACTION statement

disconnects a session on the first call after its current transaction has been finished.

The application fails over automatically.

This statement works well with TAF as a way for you to control load. If one instance

is overloaded, you can manually disconnect a group of sessions using this option.

Since the option guarantees there is no transaction at the time the session is

disconnected, the user should never notice the change, except for a slight delay in

executing the next command following the disconnect. For complete syntax of this,

see the Oracle8i SQL Reference.

PRECONNECT Pre-establish connections. This provides faster failover but

requires that the backup instance be able to support all

connections from every supported instance.

FAILED_OVER TRUE if using the backup, otherwise FALSE.

TYPE One of SELECT, SESSION, or NONE.

METHOD Either BASIC or PRECONNECT.

Transparent Application Failover

Tuning Instance Recovery Performance 25-23

Tuning Failover Performance
The elapsed time of failover includes instance recovery as well as time needed to

reconnect to the database. For best failover performance, tune instance recovery by

having frequent checkpoints.

Performance can also be improved by using multiple listeners or by using the

Multi-threaded Server (MTS). MTS connections tend to be much faster than

connections by way of dedicated servers.

Transparent Application Failover Topics for Application Developers
This section describes multiple user handles and failover callbacks.

Multiple User Handles
Failover is supported for multiple user handles. In OCI, server context handles and

user handles are decoupled. You can have multiple user handles related to the

server context handle, and multiple users can thus share the same connection to the

database.

If the connection is destroyed, then every user associated with that connection is

failed over. But if a single user session is destroyed, then failover does not occur

because the connection is still there. Failover does not reauthenticate migrateable

user handles.

Failover Callback
Frequently failure of one instance and failover to another takes time. Because of this

delay, you may want to inform users that failover is in progress. Additionally, the

session on the initial instance may have received some ALTER SESSION

commands. These will not be automatically replayed on the second instance. You

may want to ensure that these commands are replayed on the second instance. To

address such problems, you can register a callback function.

Failover calls the callback function several times when re-establishing user sessions.

The first call occurs when instance’s connection failure is first detected, so the

application can inform users of upcoming delays. If failover is successful, the

second call occurs when the connection is re-established and usable.

At this time, the client may wish to replay ALTER SESSION statements and inform

users that failover has occurred. If failover is unsuccessful, then the callback can be

called to inform the application that failover will not occur. If this happens, you can

See Also: The Oracle Call Interface Programmer’s Guide.

Transparent Application Failover

25-24 Oracle8i Tuning

specify that the failover should be re-attempted. Additionally, the callback will be

called for each user handle when it attempts to use the connection after failover.

Transparent Application Failover Restrictions
When a connection is lost, you will see the following effects:

■ All PL/SQL package states on the server are lost at failover.

■ ALTER SESSION statements are lost.

■ If failover occurs when a transaction is in process, then each subsequent call

causes an error message until the user issues an OCITransRollback call. Then an

OCI success message is issued. Be sure to check this informational message to

see if you must perform any additional operations.

■ Continuing work on failed over cursors may cause an error message.

■ If the first command after failover is not a SQL SELECT or OCIStmtFetch

statement, an error message results.

■ Failover only takes effect if the application is programmed using OCI Release

8.0 or greater.

■ At failover time, any queries in progress are reissued and processed again from

the beginning. This may result in the next query taking a long time if the

original query took a long time.

See Also: The Oracle Call Interface Programmer’s Guide.

Part V
 Parallel Execution

Part Five discusses optimizing parallel execution. The chapters in Part Five are:

■ Chapter 26, "Tuning Parallel Execution"

■ Chapter 27, "Understanding Parallel Execution Performance Issues"

Tuning Parallel Execution 26-1

26
Tuning Parallel Execution

Parallel execution dramatically reduces response time for data-intensive operations

on large databases typically associated with Decision Support Systems (DSS). You

can also implement parallel execution on certain types of OLTP (Online Transaction

Processing) and hybrid systems.

This chapter explains how to implement parallel execution and tune your system to

optimize parallel execution performance.

This chapter discusses parallel execution in 4 phases. In Phase One, you determine

whether to use automated or manual tuning. For many applications, automated

tuning provides acceptable performance by automatically setting default values for

parameters based on your system configuration.

Phase Two describes how to take advantage of parallelism and partitioning. In

Phase Two, you determine the best type parallelism to use based on your needs.

This phase also discusses how to take the best advantage of Oracle’s partitioning

features.

Phase Three describes how to create, populate, and refresh your database. Phase

Four explains how to monitor and fine-tune parallel execution for optimal

performance.

See Also: Oracle8i Concepts, for basic parallel execution concepts

and your platform-specific Oracle documentation for more

information about tuning parallel execution.

Note: Parallel execution is only available with the Oracle8i
Enterprise Edition.

Introduction to Parallel Execution Tuning

26-2 Oracle8i Tuning

The phases and their contents are:

Phase One - Initializing and Tuning Parameters for Parallel Execution

■ Step One: Selecting Automated or Manual Tuning of Parallel Execution

■ Step Two: Setting the Degree of Parallelism and Enabling Adaptive Multi-User

■ Step Three: Tuning General Parameters

Phase Two - Tuning Physical Database Layouts for Parallel Execution

■ Types of Parallelism

■ Phase Three - Creating, Populating, and Refreshing the Database

Phase Three - Creating, Populating, and Refreshing the Database

■ Populating Databases Using Parallel Load

■ Creating Temporary Tablespaces for Parallel Sort and Hash Join

■ Creating Indexes in Parallel

■ Additional Considerations for Parallel DML

Phase Four - Monitoring Parallel Execution Performance

■ Monitoring Parallel Execution Performance with Dynamic Performance Views

■ Monitoring Session Statistics

Introduction to Parallel Execution Tuning
Parallel execution is useful for many types of operations accessing significant

amounts of data. Parallel execution improves processing for:

■ Large table scans and joins

■ Creation of large indexes

■ Partitioned index scans

■ Bulk inserts, updates, and deletes

■ Aggregations and copying

You can also use parallel execution to access object types within an Oracle database.

For example, you can use parallel execution to access LOBs (Large Binary Objects).

Introduction to Parallel Execution Tuning

Tuning Parallel Execution 26-3

Parallel execution benefits systems if they have all of the following characteristics:

■ Symmetric Multi-processors (SMP), clusters, or massively parallel systems

■ Sufficient I/O bandwidth

■ Under utilized or intermittently used CPUs (for example, systems where CPU

usage is typically less than 30%)

■ Sufficient memory to support additional memory-intensive processes such as

sorts, hashing, and I/O buffers

If your system lacks any of these characteristics, parallel execution may not
significantly improve performance. In fact, parallel execution can reduce system

performance on over-utilized systems or systems with small I/O bandwidth.

When to Implement Parallel Execution
Parallel execution provides the greatest performance improvements in Decision

Support Systems (DSS). However, Online Transaction Processing (OLTP) systems

also benefit from parallel execution, but usually only during batch processing.

During the day, most OLTP systems should probably not use parallel execution.

During off-hours, however, parallel execution can effectively process high-volume

batch operations. For example, a bank might use parallelized batch programs to

perform millions of updates to apply interest to accounts.

The more common example of using parallel execution is for DSS. Complex queries,

such as those involving joins of several tables or searches for very large tables, are

often best executed in parallel. It is for this reason that the remainder of this chapter

discusses parallel execution with an emphasis on DSS environments.

Note: The term "parallel execution server" designates server

processes, or "threads" on NT systems, that perform parallel

operations. This is not the same as the Oracle Parallel Server option

that refers to multiple Oracle instances accessing the same

database.

See Also: For more information about the Oracle Parallel Server,

please refer to Oracle8i Parallel Server Concepts and Administration.

Phase One - Initializing and Tuning Parameters for Parallel Execution

26-4 Oracle8i Tuning

Phase One - Initializing and Tuning Parameters for Parallel Execution
You can initialize and automatically tune parallel execution by setting the

parameter PARALLEL_AUTOMATIC_TUNING to TRUE. Once enabled,

automated parallel execution controls values for all parameters related to parallel

execution. These parameters affect several aspects of server processing, namely, the

DOP (degree of parallelism), the adaptive multi-user feature, and memory sizing.

With parallel automatic tuning enabled, Oracle determines parameter settings for

each environment based on the number of CPUs on your system and the value set

for PARALLEL_THREADS_PER_CPU. The default values Oracle sets for parallel

execution processing when PARALLEL_AUTOMATIC_TUNING is TRUE are

usually optimal for most environments. In most cases, Oracle’s automatically

derived settings are at least as effective as manually derived settings.

You can also manually tune parallel execution parameters, however, Oracle

recommends using automated parallel execution. Manual tuning of parallel

execution is more complex than using automated tuning for two reasons: Manual

parallel execution tuning requires more attentive administration than automated

tuning, and manual tuning is prone to user load and system resource

miscalculations.

Initializing and tuning parallel execution involves the three steps described under

the following headings. These steps are:

■ Step One: Selecting Automated or Manual Tuning of Parallel Execution

■ Step Two: Setting the Degree of Parallelism and Enabling Adaptive Multi-User

■ Step Three: Tuning General Parameters

Step Three is a discussion of tuning general parameters. You may find the general

parameters information useful if your parallel execution performance requires

further tuning after you complete the first two steps.

Several examples describing parallel execution tuning appear at the end of this

section. The example scenarios describe configurations that range from completely

automated to completely manual systems.

Step One: Selecting Automated or Manual Tuning of Parallel Execution

Tuning Parallel Execution 26-5

Step One: Selecting Automated or Manual Tuning of Parallel Execution
There are several ways to initialize and tune parallel execution. You can make your

environment fully automated for parallel execution, as mentioned, by setting

PARALLEL_AUTOMATIC_TUNING to TRUE. You can further customize this type

of environment by overriding some of the automatically derived values.

You can also leave PARALLEL_AUTOMATIC_TUNING at its default value of

FALSE and manually set the parameters that affect parallel execution. For most

OLTP environments and other types of systems that would not benefit from parallel

execution, do not enable parallel execution.

Automatically Derived Parameter Settings under Fully Automated Parallel Execution
When PARALLEL_AUTOMATIC_TUNING is TRUE, Oracle automatically sets

other parameters as shown in Table 26–1. For most systems, you do not need to

make further adjustments to have an adequately tuned, fully automated parallel

execution environment.

Note: Well established, manually tuned systems that achieve

desired resource use patterns may not benefit from automated

parallel execution.

Table 26–1 Parameters Affected by PARALLEL_AUTOMATIC_TUNING

Parameter Default

Default if PARALLEL_
AUTOMATIC_

TUNING = TRUE Comments

PARALLEL_ADAPTIVE_
MULTI_USER

FALSE TRUE -

PROCESSES 6

The greater of: 1.2 x PARALLEL_
MAX_SERVERS or

PARALLEL_MAX_SERVERS
+ 6 + 5

+ (CPUs x 4)

Value is forced up to minimum if
PARALLEL_AUTOMATIC_
TUNING is TRUE.

SESSIONS
(PROCESSES x

1.1) + 5
(PROCESSES x 1.1) + 5

Automatic parallel tuning indi-
rectly affects SESSIONS. If you
do not set SESSIONS, Oracle
sets it based on the value for
PROCESSES.

Step One: Selecting Automated or Manual Tuning of Parallel Execution

26-6 Oracle8i Tuning

As mentioned, you can manually adjust the parameters shown in Table 26–1, even if

you set PARALLEL_AUTOMATIC_TUNING to TRUE. You might need to do this if

you have a highly customized environment or if your system does not perform

optimally using the completely automated settings.

Because parallel execution improves performance for a wide range of system types,

you might want to use the examples at the end of this section as starting points.

After observing your system’s performance using these initial settings, you can

further customize your system for parallel execution.

PARALLEL_MAX_
SERVERS

0 CPU x 10

Use this limit to maximize the
number of processes that parallel
execution uses. The value for this
parameter is port-specific so pro-
cessing may vary from system to
system.

LARGE_POOL_SIZE None

PARALLEL_
EXECUTION_

POOL+
MTS heap requirements +
Backup buffer requests +

600KB

Oracle does not allocate parallel
execution buffers from the
SHARED_POOL.

PARALLEL_EXECUTION_
MESSAGE_SIZE

2KB
(port specific)

4KB
(port specific)

Default increased since Oracle al-
locates memory from the
LARGE_POOL.

Table 26–1 Parameters Affected by PARALLEL_AUTOMATIC_TUNING

Parameter Default

Default if PARALLEL_
AUTOMATIC_

TUNING = TRUE Comments

Step Two: Setting the Degree of Parallelism and Enabling Adaptive Multi-User

Tuning Parallel Execution 26-7

Step Two: Setting the Degree of Parallelism and Enabling Adaptive
Multi-User

In this step, establish your system’s degree of parallelism (DOP) and consider

whether to enable adaptive multi-user.

Degree of Parallelism and Adaptive Multi-User and How They Interact
DOP specifies the number of available processes, or threads, used in parallel

operations. Each parallel thread may use one or two query processes depending on

the query’s complexity.

The adaptive multi-user feature adjusts DOP based on user load. For example, you

may have a table with a DOP of 5. This DOP may be acceptable with 10 users. But if

10 more users enter the system and you enable the

PARALLEL_ADAPTIVE_MULTI_USER feature, Oracle reduces the DOP to spread

resources more evenly according to the perceived system load.

It is best to use the parallel adaptive multi-user feature when users process

simultaneous parallel execution operations. If you enable

PARALLEL_AUTOMATIC_TUNING, Oracle automatically sets

PARALLEL_ADAPTIVE_MULTI_USER to TRUE.

How the Adaptive Multi-User Algorithm Works
The adaptive multi-user algorithm has several inputs. The algorithm first considers

the number of allocated threads as calculated by the database resource manager.

The algorithm then considers the default settings for parallelism as set in INIT.ORA,

as well as parallelism options used in CREATE TABLE and ALTER TABLE

commands and SQL hints.

Note: Once Oracle determines the DOP for a query, the DOP does

not change for the duration of the query.

Note: Disable adaptive multi-user for single-user, batch

processing systems or if your system already provides optimal

performance.

Step Two: Setting the Degree of Parallelism and Enabling Adaptive Multi-User

26-8 Oracle8i Tuning

When a system is overloaded and the input DOP is larger than the default DOP, the

algorithm uses the default degree as input. The system then calculates a reduction

factor that it applies to the input DOP.

Enabling Parallelism for Tables and Queries
The DOP of tables involved in parallel operations affect the DOP for operations on

those tables. Therefore, after setting parallel tuning-related parameters, enable

parallel execution for each table you want parallelized using the PARALLEL option

of the CREATE TABLE or ALTER TABLE commands. You can also use the

PARALLEL hint with SQL statements to enable parallelism for that operation only.

When you parallelize tables, you can also specify the DOP or allow Oracle to set it

automatically based on the value of PARALLEL_THREADS_PER_CPU.

Controlling Performance with PARALLEL_THREADS_PER_CPU
The initialization parameter PARALLEL_THREADS_PER_CPU affects algorithms

controlling both the DOP and the adaptive multi-user feature. Oracle multiplies the

value of PARALLEL_THREADS_PER_CPU by the number of CPUs per instance to

derive the number of threads to use in parallel operations.

The adaptive multi-user feature also uses the default DOP to compute the target

number of query server processes that should exist in a system. When a system is

running more processes than the target number, the adaptive algorithm reduces the

DOP of new queries as required. Therefore, you can also use

PARALLEL_THREADS_PER_CPU to control the adaptive algorithm.

The default for PARALLEL_THREADS_PER_CPU is appropriate for most systems.

However, if your I/O subsystem cannot keep pace with the processors, you may

need to increase the value for PARALLEL_THREADS_PER_CPU. In this case, you

need more processes to achieve better system scalability. If too many processes are

running, reduce the number.

The default for PARALLEL_THREADS_PER_CPU on most platforms is 2. However,

the default for machines with relatively slow I/O subsystems can be as high as 8.

Step Three: Tuning General Parameters

Tuning Parallel Execution 26-9

Step Three: Tuning General Parameters
This section discusses the following types of parameters:

■ Parameters Establishing Resource Limits for Parallel Operations

■ Parameters Affecting Resource Consumption

■ Parameters Related to I/O

Parameters Establishing Resource Limits for Parallel Operations
The parameters that establish resource limits are:

■ PARALLEL_MAX_SERVERS

■ PARALLEL_MIN_SERVERS

■ LARGE_POOL_SIZE/SHARED_POOL_SIZE

■ SHARED_POOL_SIZE

■ PARALLEL_MIN_PERCENT

■ PARALLEL_SERVER_INSTANCES

PARALLEL_MAX_SERVERS
The recommended value is 2 x DOP x number_of_concurrent_users.

The PARALLEL_MAX_SEVERS parameter sets a resource limit on the maximum

number of processes available for parallel execution. If you set

PARALLEL_AUTOMATIC_TUNING to FALSE, you need to manually specify a

value for PARALLEL_MAX_SERVERS.

Most parallel operations need at most twice the number of query server processes

as the maximum DOP attributed to any table in the operation.

If PARALLEL_AUTOMATIC_TUNING is FALSE, the default value for

PARALLEL_MAX_SERVERS is 5. This is sufficient for some minimal operations,

but not enough for executing parallel execution. If you manually set the parameter

PARALLEL_MAX_SERVERS, set it to 10 times the number of CPUs. This is a

reasonable starting value.

To support concurrent users, add more query server processes. You probably want

to limit the number of CPU-bound processes to be a small multiple of the number of

CPUs: perhaps 4 to 16 times the number of CPUs. This would limit the number of

concurrent parallel execution statements to be in the range of 2 to 8.

Step Three: Tuning General Parameters

26-10 Oracle8i Tuning

If a database’s users initiate too many concurrent operations, Oracle may not have

enough query server processes. In this case, Oracle executes the operations

sequentially or displays an error if PARALLEL_MIN_PERCENT is set to another

value other than the default value of 0 (zero).

When Users Have Too Many Processes When concurrent users have too many query

server processes, memory contention (paging), I/O contention, or excessive context

switching can occur. This contention can reduce system throughput to a level lower

than if parallel execution were not used. Increase the PARALLEL_MAX_SERVERS

value only if your system has sufficient memory and I/O bandwidth for the

resulting load. Limiting the total number of query server processes may restrict the

number of concurrent users that can execute parallel operations, but system

throughput tends to remain stable.

Increasing the Number of Concurrent Users
To increase the number of concurrent users, you could restrict the number of

concurrent sessions that resource consumer groups can have. For example:

■ You can enable PARALLEL_ADAPTIVE_MULTI_USER

■ You can set a large limit for users running batch jobs

■ You can set a medium limit for users performing analyses

■ You can prohibit a particular class of user from using parallelism

Limiting the Number of Resources for a User
You can limit the amount of parallelism available to a given user by establishing

resource consumer group for the user. Do this to limit the number of sessions,

concurrent logons, and the number of parallel processes that any one or group of

users can have.

Each query server process working on a parallel execution statement is logged on

with a session ID; each process counts against the user’s limit of concurrent

sessions. For example, to limit a user to 10 processes, set the user’s limit to 11. One

process is for the parallel coordinator and there remain 10 parallel processes that

consist of two sets of query server servers. The user’s maximum DOP would thus

be 5.

See Also: For more information about resource consumer groups,

refer to discussions on the "Database Resource Manager" in the

Oracle8i Administrator’s Guide and Oracle8i Concepts.

Step Three: Tuning General Parameters

Tuning Parallel Execution 26-11

PARALLEL_MIN_SERVERS
The recommended value is 0 (zero).

The system parameter PARALLEL_MIN_SERVERS allows you to specify the

number of processes to be started and reserved for parallel operations at startup in

a single instance. The syntax is:

 PARALLEL_MIN_SERVERS=n

Where n is the number of processes you want to start and reserve for parallel

operations.

Setting PARALLEL_MIN_SERVERS balances the startup cost against memory

usage. Processes started using PARALLEL_MIN_SERVERS do not exit until the

database is shutdown. This way, when a query is issued the processes are likely to

be available. It is desirable, however, to recycle query server processes periodically

since the memory these processes use can become fragmented and cause the high

water mark to slowly increase. When you do not set PARALLEL_MIN_SERVERS,

processes exit after they are idle for 5 minutes.

LARGE_POOL_SIZE/SHARED_POOL_SIZE
The following discussion of how to tune the large pool is also true for tuning the

shared pool, except as noted under the heading "SHARED_POOL_SIZE" on

page 26-17. You must also increase the value for this memory setting by the amount

you determine

There is no recommended value for LARGE_POOL_SIZE. Instead, Oracle

recommends leaving this parameter unset and having Oracle to set it for you by

setting the PARALLEL_AUTOMATIC_TUNING parameter to TRUE. The exception

to this is when the system-assigned value is inadequate for your processing

requirements.

See Also: "Formula for Memory, Users, and Parallel Execution

Server Processes" on page 27-2 for more information on balancing

concurrent users, DOP, and resources consumed. Also refer to the

Oracle8i Administrator’s Guide for more information about

managing resources with user profiles and Oracle8i Parallel Server
Concepts and Administration for more information on querying GV$

views.

Step Three: Tuning General Parameters

26-12 Oracle8i Tuning

Oracle automatically computes LARGE_POOL_SIZE if

PARALLEL_AUTOMATIC_TUNING is TRUE. To manually set a value for

LARGE_POOL_SIZE, query the V$SGASTAT view and increase or decrease the

value for LARGE_POOL_SIZE depending on your needs.

For example, if Oracle displays the following error on startup:

 ORA-27102: out of memory
 SVR4 Error: 12: Not enough space

Consider reducing the value for LARGE_POOL_SIZE low enough so your database

starts. If after lowering the value of LARGE_POOL_SIZE you see the error:

 ORA-04031: unable to allocate 16084 bytes of shared memory ("large
 pool","unknown object","large pool hea","PX msg pool")

Execute the following query to determine why Oracle could not allocate the 16,084

bytes:

 SELECT NAME, SUM(BYTES) FROM V$SGASTAT WHERE POOL=’LARGE POOL’ GROUP BY
 ROLLUP (NAME) ;

Oracle should respond with output similar to:

 NAME SUM(BYTES)
 -------------------------- ----------
 PX msg pool 1474572
 free memory 562132
 2036704
 3 rows selected.

To resolve this, increase the value for LARGE_POOL_SIZE. This example shows the

LARGE_POOL_SIZE to be about 2MB. Depending on the amount of memory

available, you could increase the value of LARGE_POOL_SIZE to 4MB and attempt

to start your database. If Oracle continues to display an ORA-4031 message,

gradually increase the value for LARGE_POOL_SIZE until startup is successful.

Note: When PARALLEL_AUTOMATIC_TUNING is set to TRUE,

Oracle allocates parallel execution buffers from the large pool.

When this parameter is FALSE, Oracle allocates parallel execution

buffers from the shared pool.

Step Three: Tuning General Parameters

Tuning Parallel Execution 26-13

Computing Additional Memory Requirements for Message Buffers
After you determine the initial setting for the large or shared pool, you must

calculate additional memory requirements for message buffers and determine how

much additional space you need for cursors.

Adding Memory for Message Buffers You must increase the value for the LARGE_- or

the SHARED_POOL_SIZE parameters to accommodate message buffers. The

message buffers allow query server processes to communicate with each other. If

you enable automatic parallel tuning, Oracle allocates space for the message buffer

from the large pool. Otherwise, Oracle allocates space from the shared pool.

Oracle uses a fixed number of buffers per virtual connection between producer and

consumer query servers. Connections increase as the square of the DOP increases.

For this reason, the maximum amount of memory used by parallel execution is

bound by the highest DOP allowed on your system. You can control this value

using either the PARALLEL_MAX_SERVERS parameter or by using policies and

profiles.

Calculate how much additional memory you need for message buffers according

the following 5 steps. These 5 steps are nearly the same steps Oracle performs when

you set the PARALLEL_AUTOMATIC_TUNING parameter to TRUE. If you enable

automatic tuning and check the computed value, you will get the same result.

1. Determine the Maximum DOP possible on your system. When determining this

value, consider how you parallelize your batch jobs: you use more memory for

a single job using a large DOP than you use for multiple jobs with smaller

DOPs. Thus, to ensure you have enough memory for message buffers, calculate

an "upper bound" DOP. This DOP should also take multiple instances into

account. In other words, to use a degree of 4 in 2 instances, the number you

calculate should be 8, not 4. A conservative way to compute the maximum

value is to take the value of PARALLEL_MAX_SERVERS multiplied by the

number of instances and divide by 4. This number is the DOP in the formula

appearing after step 5.

2. Determine the number of instances participating in the SQL statements. For

most installations, this number will be 1. This value is INSTANCES in the

formula.

3. Estimate the maximum number of concurrent queries executing at this DOP. A

number of 1 is a reasonable value if either

See Also: Oracle8i Concepts, for information on how Oracle makes

connections between servers.

Step Three: Tuning General Parameters

26-14 Oracle8i Tuning

PARALLEL_ADAPTIVE_MULTI_USER is set to TRUE or if you have set DOP

to be a value which is either greater than or equal to the value for

PARALLEL_MAX_SERVERS divided by 4. This is because your DOP is then

bound by the number of servers. This number is USERS in the formula below.

4. Calculate the maximum number of query server process groups per query.

Normally, Oracle uses only one group of query server processes per query.

Sometimes with subqueries, however, Oracle uses one group of query server

processes for each subquery. A conservative starting value for this number is 2.

This number is GROUPS in the formula appearing after step 5.

5. Determine the parallel message size using the value for the parameter

PARALLEL_MESSAGE_SIZE. This is usually 2KB or 4KB. Use the SQLPlus

SHOW PARAMETERS command to see the current value for

PARALLEL_MESSAGE_SIZE.

Memory Formula for SMP Systems Most SMP systems use the following formula:

Where CONNECTIONS = (DOP2 + 2 x DOP).

Memory Formula for MPP Systems If you are using OPS and the value for INSTANCES

is greater than 1, use the following formula. This formula calculates the number of

buffers needed for local virtual connections as well as for remote physical

connections. You can use the value of REMOTE as the number of remote

connections among nodes to help tune your operating system. The formula is:

Where:

■ CONNECTIONS = (DOP2 + 2 x DOP)

■ LOCAL = CONNECTIONS/INSTANCES

■ REMOTE = CONNECTIONS - LOCAL

Each instance uses the memory computed by the formula.

Memory in bytes = (3 x SETS x USERS x SIZE x CONNECTIONS)

 Memory in bytes = (GROUPS x USERS x SIZE) x ((LOCAL x 3) + (REMOTE x 2))

Step Three: Tuning General Parameters

Tuning Parallel Execution 26-15

Add this amount to your original setting for the large or shared pool. However,

before setting a value for either of these memory structures, you must also consider

additional memory for cursors as explained under the following heading.

Calculating Additional Memory for Cursors Parallel execution plans consume more space

in the SQL area than serial execution plans. You should regularly monitor shared

pool resource use to ensure both structures have enough memory to accommodate

your system’s processing requirements.

Adjusting Memory After Processing Begins
The formulae in this section are just starting points. Whether you are using

automated or manual tuning, you should monitor usage on an on-going basis to

make sure the size of memory is not too large or too small. To do this, tune the large

and shared pools pool after examining the size of structures in the large pool using

a query syntax of:

 SELECT POOL, NAME, SUM(BYTES) FROM V$SGASTAT WHERE POOL LIKE ’%pool%’
 GROUP BY ROLLUP (POOL, NAME);

Oracle responds with output similar to:

POOL NAME SUM(BYTES)
----------- -------------------------- ----------
large pool PX msg pool 38092812
large pool free memory 299988
large pool 38392800
shared pool Checkpoint queue 38496
shared pool KGFF heap 1964
shared pool KGK heap 4372
shared pool KQLS heap 1134432
shared pool LRMPD SGA Table 23856

See Also: For more information about execution plans, please

refer to Chapter 13, "Using EXPLAIN PLAN". For more information

about how query servers communicate, please refer to Oracle8i
Concepts.

Note: If you used parallel execution in previous releases and now

intend to manually tune it, reduce the amount of memory allocated

for LARGE_POOL_SIZE to account for the decreased demand on

this pool.

Step Three: Tuning General Parameters

26-16 Oracle8i Tuning

shared pool PLS non-lib hp 2096
shared pool PX subheap 186828
shared pool SYSTEM PARAMETERS 55756
shared pool State objects 3907808
shared pool character set memory 30260
shared pool db_block_buffers 200000
shared pool db_block_hash_buckets 33132
shared pool db_files 122984
shared pool db_handles 52416
shared pool dictionary cache 198216
shared pool dlm shared memory 5387924
shared pool enqueue_resources 29016
shared pool event statistics per sess 264768
shared pool fixed allocation callback 1376
shared pool free memory 26329104
shared pool gc_* 64000
shared pool latch nowait fails or sle 34944
shared pool library cache 2176808
shared pool log_buffer 24576
shared pool log_checkpoint_timeout 24700
shared pool long op statistics array 30240
shared pool message pool freequeue 116232
shared pool miscellaneous 267624
shared pool processes 76896
shared pool session param values 41424
shared pool sessions 170016
shared pool sql area 9549116
shared pool table columns 148104
shared pool trace_buffers_per_process 1476320
shared pool transactions 18480
shared pool trigger inform 24684
shared pool 52248968
 90641768
41 rows selected.

Evaluate the memory used as shown in your output and alter the setting for

LARGE_POOL_SIZE based on your processing needs.

To obtain more memory usage statistics, execute the query:

 SELECT * FROM V$PX_PROCESS_SYSSTAT WHERE STATISTIC LIKE ’Buffers%’;

Step Three: Tuning General Parameters

Tuning Parallel Execution 26-17

Oracle responds with output similar to:

STATISTIC VALUE
------------------------------ ----------
Buffers Allocated 23225
Buffers Freed 23225
Buffers Current 0
Buffers HWM 3620
4 Rows selected.

The amount of memory used appears in the statistics "Buffers Current" and "Buffers

HWM". Calculate a value for the bytes by multiplying the number of buffers by the

value for PARALLEL_EXECUTION_MESSAGE_SIZE. Compare the high water

mark to the parallel execution message pool size to determine if you allocated too

much memory. For example, in the first output, the value for large pool as shown in

’px msg pool’ is 38092812, or 38MB. The ’Buffers HWM’ fromthe second output is 3,620,

which when multiplied by a parallel execution message size of 4,096 is 14,827,520,

or approximately 15MB. In this case, the high water mark has reached

approximately 40% of its capacity.

SHARED_POOL_SIZE
As mentioned earlier, if PARALLEL_AUTOMATIC_TUNING is FALSE, Oracle

allocates query server processes from the shared pool. In this case, tune the shared

pool as described under the previous heading for large pool except for the

following:

■ Allow for other clients of the shared pool such as shared cursors and stored

procedures

■ Larger values improve performance in multi-user systems but smaller values

use less memory

You must also take into account that using parallel execution generates more

cursors. Look at statistics in the V$SQLAREA view to determine how often Oracle

recompiles cursors. If the cursor hit ratio is poor, increase the size of the pool.

Use the following query to determine how much memory each component uses and

thus to tune the value for SHARED_POOL_SIZE.

 SELECT POOL, NAME, SUM(BYTES) FROM V$SGASTAT WHERE POOL LIKE ’%pool%’
 GROUP BY ROLLUP (POOL, NAME);

Step Three: Tuning General Parameters

26-18 Oracle8i Tuning

Oracle responds with output similar to:

POOL NAME SUM(BYTES)
----------- -------------------------- ----------
shared pool Checkpoint queue 38496
shared pool KGFF heap 1320
shared pool KGK heap 4372
shared pool KQLS heap 904528
shared pool LRMPD SGA Table 23856
shared pool PLS non-lib hp 2096
shared pool PX msg pool 373864
shared pool PX subheap 65188
shared pool SYSTEM PARAMETERS 55828
shared pool State objects 3877520
shared pool character set memory 30260
shared pool db_block_buffers 200000
shared pool db_block_hash_buckets 33132
shared pool db_files 122984
shared pool db_handles 36400
shared pool dictionary cache 181792
shared pool dlm shared memory 5387924
shared pool enqueue_resources 25560
shared pool event statistics per sess 189120
shared pool fixed allocation callback 1376
shared pool free memory 36255072
shared pool gc_* 64000
shared pool latch nowait fails or sle 34944
shared pool library cache 559676
shared pool log_buffer 24576
shared pool log_checkpoint_timeout 24700
shared pool long op statistics array 21600
shared pool message pool freequeue 116232
shared pool miscellaneous 230016
shared pool network connections 17280
shared pool processes 53736
shared pool session param values 58684
shared pool sessions 121440
shared pool sql area 1232748
shared pool table columns 148104
shared pool trace_buffers_per_process 1025232
shared pool transactions 18480
shared pool trigger inform 16456
shared pool 51578592
 51578592
40 rows selected.

Step Three: Tuning General Parameters

Tuning Parallel Execution 26-19

You can then monitor the number of buffers used by parallel execution in the same

way as explained previously, and compare the ’shared pool PX msg pool’ to the

current high water mark reported in output from the view

V$PX_PROCESS_SYSSTAT.

PARALLEL_MIN_PERCENT
The recommended value for this parameter is 0 (zero).

This parameter allows users to wait for an acceptable DOP depending on the

application in use. Setting this parameter to values other than 0 (zero) causes Oracle

to return an error when the required minimum DOP cannot be satisfied by the

system at a given time.

For example, if you set PARALLEL_MIN_PERCENT to 50, which translates to

"50%", and the DOP is reduced because of the adaptive algorithm or because of a

resource limitation, then oracle returns ORA-12827. For example:

 SELECT /*+ PARALLEL(e, 4, 1) */ d.deptno, SUM(SAL)
 FROM emp e, dept d WHERE e.deptno = d.deptno
 GROUP BY d.deptno ORDER BY d.deptno;

Oracle responds with this message:

 ORA-12827: INSUFFICIENT PARALLEL QUERY SLAVES AVAILABLE

PARALLEL_SERVER_INSTANCES
The recommended value is to set this parameter equal to the number of instances in

your parallel server environment.

The PARALLEL_SERVER_INSTANCES parameter specifies the number of instances

configured in a parallel server environment. Oracle uses the value of this parameter

to compute values for LARGE_POOL_SIZE when

PARALLEL_AUTOMATIC_TUNING is set to TRUE.

Parameters Affecting Resource Consumption
The parameters that affect resource consumption are:

■ HASH_AREA_SIZE

■ SORT_AREA_SIZE

■ PARALLEL_EXECUTION_MESSAGE_SIZE

■ OPTIMIZER_PERCENT_PARALLEL

Step Three: Tuning General Parameters

26-20 Oracle8i Tuning

■ PARALLEL_BROADCAST_ENABLE

The first group of parameters discussed in this section affects memory and resource

consumption for all parallel operations, and in particular for parallel execution. A

second subset of parameters discussed in this section explains parameters affecting

parallel DML and DDL. Chapter 27, "Understanding Parallel Execution

Performance Issues" describes in detail how these parameters interrelate.

To control resource consumption, configure memory at two levels:

■ At the Oracle level, so the system uses an appropriate amount of memory from

the operating system.

■ At the operating system level for consistency. On some platforms you may need

to set operating system parameters that control the total amount of virtual

memory available, summed across all processes.

The SGA is typically part of real physical memory. The SGA is static and of fixed

size; if you want to change its size, shut down the database, make the change, and

restart the database. Oracle allocates the large and shared pools out of the SGA.

A large percentage of the memory used in data warehousing operations is more

dynamic. This memory comes from process memory and both the size of process

memory and the number of processes can vary greatly. This memory is controlled

by the HASH_AREA_SIZE and SORT_AREA_SIZE parameters. Together these

parameters control the amount of virtual memory used by Oracle.

Process memory, in turn, comes from virtual memory. Total virtual memory should

be somewhat larger than available real memory, which is the physical memory

minus the size of the SGA. Virtual memory generally should not exceed twice the

size of the physical memory minus the SGA size. If you set virtual memory to a

value several times greater than real memory, the paging rate may increase when

the machine is overloaded.

As a general rule for memory sizing, each process requires adequate address space

for hash joins. A dominant factor in high volume data warehousing operations is

the relationship between memory, the number of processes, and the number of hash

join operations. Hash joins and large sorts are memory-intensive operations, so you

may want to configure fewer processes, each with a greater limit on the amount of

memory it can use. Sort performance, however, degrades with increased memory

use.

Step Three: Tuning General Parameters

Tuning Parallel Execution 26-21

HASH_AREA_SIZE
Set HASH_AREA_SIZE using one of two approaches. The first approach examines

how much memory is available after configuring the SGA and calculating the

amount of memory processes the system uses during normal loads.

The total amount of memory that Oracle processes are allowed to use should be

divided by the number of processes during the normal load. These processes

include parallel execution servers. This number determines the total amount of

working memory per process. This amount then needs to be shared among different

operations in a given query. For example, setting HASH_AREA_SIZE or

SORT_AREA_SIZE to half or one third of this number is reasonable.

Set these parameters to the highest number that does not cause swapping. After

setting these parameters as described, you should watch for swapping and free

memory. If there is swapping, decrease the values for these parameters. If a

significant amount of free memory remains, you may increase the values for these

parameters.

The second approach to setting HASH_AREA_SIZE requires a thorough

understanding of the types of hash joins you execute and an understanding of the

amount of data you will be querying against. If the queries and query plans you

execute are well understood, this approach is reasonable.

HASH_AREA_SIZE should be approximately half of the square root of S, where S is

the size in megabytes of the smaller of the inputs to the join operation. In any case,

the value for HASH_AREA_SIZE should not be less than 1MB.

This relationship can be expressed as follows:

For example, if S equals 16MB, a minimum appropriate value for

HASH_AREA_SIZE might be 2MB summed over all parallel processes. Thus if you

have 2 parallel processes, a minimum value for HASH_AREA_SIZE might be 1MB.

A smaller hash area is not advisable.

For a large data warehouse, HASH_AREA_SIZE may range from 8MB to 32MB or

more. This parameter provides for adequate memory for hash joins. Each process

performing a parallel hash join uses an amount of memory equal to

HASH_AREA_SIZE.

HASH_AREA_SIZE >=
S
2

Step Three: Tuning General Parameters

26-22 Oracle8i Tuning

Hash join performance is more sensitive to HASH_AREA_SIZE than sort

performance is to SORT_AREA_SIZE. As with SORT_AREA_SIZE, too large a hash

area may cause the system to run out of memory.

The hash area does not cache blocks in the buffer cache; even low values of

HASH_AREA_SIZE will not cause this to occur. Too small a setting, however, could

adversely affect performance.

HASH_AREA_SIZE is relevant to parallel execution operations and to the query

portion of DML or DDL statements.

SORT_AREA_SIZE
The recommended values for this parameter fall in the range from 256KB to 4MB.

This parameter specifies the amount of memory to allocate per query server process

for sort operations. If you have a lot of system memory, you can benefit from setting

SORT_AREA_SIZE to a large value. This can dramatically increase the performance

of sort operations because the entire process is more likely to be performed in

memory. However, if memory is a concern for your system, you may want to limit

the amount of memory allocated for sort and hash operations.

If the sort area is too small, an excessive amount of I/O is required to merge a large

number of sort runs. If the sort area size is smaller than the amount of data to sort,

then the sort will move to disk, creating sort runs. These must then be merged again

using the sort area. If the sort area size is very small, there will be many runs to

merge and multiple passes may be necessary. The amount of I/O increases as

SORT_AREA_SIZE decreases.

If the sort area is too large, the operating system paging rate will be excessive. The

cumulative sort area adds up quickly because each query server process can allocate

this amount of memory for each sort. For such situations, monitor the operating

system paging rate to see if too much memory is being requested.

SORT_AREA_SIZE is relevant to parallel execution operations and to the query

portion of DML or DDL statements. All CREATE INDEX statements must do some

sorting to generate the index. Commands that require sorting include:

■ CREATE INDEX

■ Direct-load INSERT (if an index is involved)

■ ALTER INDEX ... REBUILD

See Also: "HASH_AREA_SIZE" on page 26-21.

Step Three: Tuning General Parameters

Tuning Parallel Execution 26-23

PARALLEL_EXECUTION_MESSAGE_SIZE
The recommended value for PARALLEL_EXECUTION_MESSAGE_SIZE is 4KB. If

PARALLEL_AUTOMATIC_TUNING is TRUE, the default is 4KB. If

PARALLEL_AUTOMATIC_TUNING is FALSE, the default is slightly greater than

2KB.

The PARALLEL_EXECUTION_MESSAGE_SIZE parameter specifies the upper limit

for the size of parallel execution messages. The default value is operating system

specific and this value should be adequate for most applications. Larger values for

PARALLEL_EXECUTION_MESSAGE_SIZE require larger values for

LARGE_POOL_SIZE or SHARED_POOL_SIZE, depending on whether you’ve

enabled parallel automatic tuning.

While you may experience significantly improved response time by increasing the

value for PARALLEL_EXECUTION_ MESSAGE_SIZE, memory use also drastically

increases. For example, if you double the value for PARALLEL_EXECUTION_

MESSAGE_SIZE, parallel execution requires a message source pool that is twice as

large.

Therefore, if you set PARALLEL_AUTOMATIC_TUNING to FALSE, then you must

adjust the SHARED_POOL_SIZE to accommodate parallel execution messages. If

you have set PARALLEL_AUTOMATIC_TUNING to TRUE, but have set

LARGE_POOL_SIZE manually, then you must adjust the LARGE_POOL_SIZE to

accommodate parallel execution messages.

OPTIMIZER_PERCENT_PARALLEL
The recommended value is 100/number_of_concurrent_users.

This parameter determines how aggressively the optimizer attempts to parallelize a

given execution plan. OPTIMIZER_PERCENT_PARALLEL encourages the

optimizer to use plans with low response times because of parallel execution, even

if total resource used is not minimized.

The default value of OPTIMIZER_PERCENT_PARALLEL is 0 (zero), which, if

possible, parallelizes the plan using the fewest resources. Here, the execution time

of the operation may be long because only a small amount of resource is used.

Step Three: Tuning General Parameters

26-24 Oracle8i Tuning

A nonzero setting of OPTIMIZER_PERCENT_PARALLEL is overridden if you use a

FIRST_ROWS hint or set OPTIMIZER_MODE to FIRST_ROWS.

PARALLEL_BROADCAST_ENABLE
The default value is FALSE.

Set this parameter to TRUE if you are joining a very large join result set with a very

small result set (size being measured in bytes, rather than number of rows). In this

case, the optimizer has the option of broadcasting the small set’s rows to each of the

query server processes that are processing the rows of the larger set. The result is

enhanced performance.

You cannot dynamically set the parameter PARALLEL_BROADCAST_ENABLE as

it only affects only hash joins and merge joins.

Parameters Affecting Resource Consumption for Parallel DML and Parallel DDL
The parameters that affect parallel DML and parallel DDL resource consumption

are:

■ TRANSACTIONS

■ ROLLBACK_SEGMENTS

■ FAST_START_PARALLEL_ROLLBACK

■ LOG_BUFFER

■ DML_LOCKS

■ ENQUEUE_RESOURCES

Note: Given an appropriate index, Oracle can quickly select a

single record from a table; Oracle does not require parallelism to do

this. A full scan to locate the single row can be executed in parallel.

Normally, however, each parallel process examines many rows. In

this case, the response time of a parallel plan will be longer and

total system resource use will be much greater than if it were done

by a serial plan using an index. With a parallel plan, the delay is

shortened because more resources are used. The parallel plan could

use up to n times more resources where n is equal to the value set

for the degree of parallelism. A value between 0 and 100 sets an

intermediate trade-off between throughput and response time. Low

values favor indexes; high values favor table scans.

Step Three: Tuning General Parameters

Tuning Parallel Execution 26-25

Parallel inserts, updates, and deletes require more resources than serial DML

operations require. Likewise, PARALLEL CREATE TABLE ... AS SELECT and

PARALLEL CREATE INDEX may require more resources. For this reason you may

need to increase the value of several additional initialization parameters. These

parameters do not affect resources for queries.

TRANSACTIONS
For parallel DML and DDL, each query server process starts a transaction. The

parallel coordinator uses the two-phase commit protocol to commit transactions;

therefore the number of transactions being processed increases by the DOP. You

may thus need to increase the value of the TRANSACTIONS initialization

parameter.

The TRANSACTIONS parameter specifies the maximum number of concurrent

transactions. The default assumes no parallelism. For example, if you have a DOP

of 20, you will have 20 more new server transactions (or 40, if you have two server

sets) and 1 coordinator transaction; thus you should increase TRANSACTIONS by

21 (or 41), if they are running in the same instance. If you do not set this parameter,

Oracle sets it to 1.1 x SESSIONS.

ROLLBACK_SEGMENTS
The increased number of transactions for parallel DML and DDL requires more

rollback segments. For example, one command with a DOP of 5 uses 5 server

transactions distributed among different rollback segments. The rollback segments

should belong to tablespaces that have free space. The rollback segments should

also be unlimited, or you should specify a high value for the MAXEXTENTS

parameter of the STORAGE clause. In this way they can extend and not run out of

space.

FAST_START_PARALLEL_ROLLBACK
If a system crashes when there are uncommitted parallel DML or DDL transactions,

you can speed up transaction recovery during startup by using the

FAST_START_PARALLEL_ROLLBACK parameter.

This parameter controls the DOP used when recovering "dead transactions." Dead

transactions are transactions that are active before a system crash. By default, the

DOP is chosen to be at most two times the value of the CPU_COUNT parameter.

See Also: Oracle8i SQL Reference for complete information about

parameters.

Step Three: Tuning General Parameters

26-26 Oracle8i Tuning

If the default DOP is insufficient, set the parameter to the HIGH. This gives a

maximum DOP to be at most 4 times the value of the CPU_COUNT parameter. This

feature is available by default.

LOG_BUFFER
Check the statistic "redo buffer allocation retries" in the V$SYSSTAT view. If this

value is high, try to increase the LOG_BUFFER size. A common LOG_BUFFER size

for a system generating numerous logs is 3 to 5MB. If the number of retries is still

high after increasing LOG_BUFFER size, a problem may exist with the disk on

which the log files reside. In that case, tune the I/O subsystem to increase the I/O

rates for redo. One way of doing this is to use fine-grained striping across multiple

disks. For example, use a stripe size of 16KB. A simpler approach is to isolate redo

logs on their own disk.

DML_LOCKS
This parameter specifies the maximum number of DML locks. Its value should

equal the total of locks on all tables referenced by all users. A parallel DML

operation’s lock and enqueue resource requirement is very different from serial

DML. Parallel DML holds many more locks, so you should increase the value of the

ENQUEUE_RESOURCES and DML_LOCKS parameters by equal amounts.

Table 26–2 shows the types of locks acquired by coordinator and query server

processes for different types of parallel DML statements. Using this information,

you can determine the value required for these parameters. A query server process

can work on one or more partitions or subpartitions, but a partition or subpartition

can only be worked on by one server process (this is different from parallel

execution).

Table 26–2 Locks Acquired by Parallel DML Statements

Type of statement
Coordinator process
acquires:

Each parallel execution
server acquires:

Parallel UPDATE or DELETE
into partitioned table; WHERE
clause pruned to a subset of
partitions/subpartitions

1 table lock SX

1 partition lock X per
pruned (sub)partition

1 table lock SX

1 partition lock NULL per
pruned (sub)partition owned
by the query server process

1 partition-wait lock S per
pruned (sub)partition owned
by the query server process

Step Three: Tuning General Parameters

Tuning Parallel Execution 26-27

Consider a table with 600 partitions running with a DOP of 100. Assume all

partitions are involved in a parallel UPDATE/DELETE statement with no

row-migrations.

Parallel row-migrating
UPDATE into partitioned table;
WHERE clause pruned to a
subset of (sub)partitions

1 table lock SX 1 table lock SX

1 partition X lock per
pruned (sub)partition

1 partition lock NULL per
pruned (sub)partition owned
by the query server process

1 partition-wait lock S per
pruned partition owned by the
query server process

1 partition lock SX for all
other (sub)partitions

1 partition lock SX for all other
(sub)partitions

Parallel UPDATE, DELETE, or
INSERT into partitioned table

1 table lock SX

Partition locks X for all
(sub)partitions

1 table lock SX

1 partition lock NULL per
(sub)partition owned by the
query server process

1 partition-wait lock S per
(sub)partition owned by the
query server process

Parallel INSERT into
nonpartitioned table

1 table lock X None

Note: Table, partition, and partition-wait DML locks all appear as

TM locks in the V$LOCK view.

The coordinator acquires: 1 table lock SX.

600 partition locks X.

Total server processes acquire: 100 table locks SX.

600 partition locks NULL.

600 partition-wait locks S.

Table 26–2 Locks Acquired by Parallel DML Statements

Type of statement
Coordinator process
acquires:

Each parallel execution
server acquires:

Step Three: Tuning General Parameters

26-28 Oracle8i Tuning

ENQUEUE_RESOURCES
This parameter sets the number of resources that can be locked by the lock manager.

Parallel DML operations require many more resources than serial DML. Therefore,

increase the value of the ENQUEUE_RESOURCES and DML_LOCKS parameters

by equal amounts.

Parameters Related to I/O
The parameters that affect I/O are:

■ DB_BLOCK_BUFFERS

■ DB_BLOCK_SIZE

■ DB_FILE_MULTIBLOCK_READ_COUNT

■ HASH_MULTIBLOCK_IO_COUNT

■ SORT_MULTIBLOCK_READ_COUNT

■ DISK_ASYNCH_IO and TAPE_ASYNCH_IO

These parameters also affect the optimizer which ensures optimal performance for

parallel execution I/O operations.

DB_BLOCK_BUFFERS
When you perform parallel updates and deletes, the buffer cache behavior is very

similar to any system running a high volume of updates. For more information, see

"Tuning the Buffer Cache" on page 19-25.

DB_BLOCK_SIZE
The recommended value is 8KB or 16KB.

Set the database block size when you create the database. If you are creating a new

database, use a large block size.

DB_FILE_MULTIBLOCK_READ_COUNT
The recommended value is 8 for 8KB block size, or 4 for 16KB block size.

This parameter determines how many database blocks are read with a single

operating system READ call. The upper limit for this parameter is

platform-dependent. If you set DB_FILE_MULTIBLOCK_READ_COUNT to an

See Also: "DML_LOCKS" on page 26-26.

Step Three: Tuning General Parameters

Tuning Parallel Execution 26-29

excessively high value, your operating system will lower the value to the highest

allowable level when you start your database. In this case, each platform uses the

highest value possible. Maximum values generally range from 64KB to 1MB.

HASH_MULTIBLOCK_IO_COUNT
The recommended value is 4.

This parameter specifies how many blocks a hash join reads and writes at once.

Increasing the value of HASH_MULTIBLOCK_IO_COUNT decreases the number

of hash buckets. If a system is I/O bound, you can increase the efficiency of I/O by

having larger transfers per I/O.

Because memory for I/O buffers comes from the HASH_AREA_SIZE, larger I/O

buffers mean fewer hash buckets. There is a trade-off, however. For large tables

(hundreds of gigabytes in size) it is better to have more hash buckets and slightly

less efficient I/Os. If you find an I/O bound condition on temporary space during

hash joins, consider increasing the value of HASH_MULTIBLOCK_IO_COUNT.

SORT_MULTIBLOCK_READ_COUNT
The recommended value is to use the default value.

The SORT_MULTIBLOCK_READ_COUNT parameter specifies the number of

database blocks to read each time a sort performs a read from a temporary segment.

Temporary segments are used by a sort when the data does not fit in

SORT_AREA_SIZE of memory.

If the system is performing too many I/Os per second during sort operations and

the CPUs are relatively idle during that time, consider increasing the

SORT_MUTLIBLOCK_READ_COUNT parameter to force the sort operations to

perform fewer, larger I/Os.

DISK_ASYNCH_IO and TAPE_ASYNCH_IO
The recommended value is TRUE.

These parameters enable or disable the operating system’s asynchronous I/O

facility. They allow query server processes to overlap I/O requests with processing

when performing table scans. If the operating system supports asynchronous I/O,

leave these parameters at the default value of TRUE.

See Also: For more information, please see "Tuning Sorts" on

page 20-34.

Example Parameter Setting Scenarios for Parallel Execution

26-30 Oracle8i Tuning

Figure 26–1 Asynchronous Read

Asynchronous operations are currently supported for parallel table scans, hash

joins, sorts, and serial table scans. However, this feature may require operating

system specific configuration and may not be supported on all platforms. Check

your Oracle operating system specific documentation.

Example Parameter Setting Scenarios for Parallel Execution
The following examples describe a limited variety of parallel execution

implementation possibilities. Each example begins by using either automatic or

manual parallel execution tuning. Oracle automatically sets other parameters based

on each sample system’s characteristics and on how parallel execution tuning was

initialized. The examples then describe setting the degree of parallelism and the

enabling of the adaptive multi-user feature.

The effects that the parameter settings in these examples have on internally-derived

settings and overall performance are only approximations. Your system’s

performance characteristics will vary depending on operating system dependencies

and user workloads.

With additional adjustments, you can fine tune these examples to make them more

closely resemble your environment. To further analyze the consequences of setting

PARALLEL_AUTOMATIC_TUNING to TRUE, refer to Table 26–1 on page 26-5.

In your production environment, after you set the DOP for your tables and enable

the adaptive multi-user feature, you may want to analyze system performance as

I/O:
read block #1

CPU:
process block #1

I/O:
read block #2

CPU:
process block #2

Synchronous read

I/O:
read block #1

CPU:
process block #1

I/O:
read block #2

CPU:
process block #2

Asynchronous read

Example Parameter Setting Scenarios for Parallel Execution

Tuning Parallel Execution 26-31

explained in "Phase Four - Monitoring Parallel Execution Performance" on

page 26-78. If your system performance remains poor, refer to Phase One’s

explanation of "Step Three: Tuning General Parameters" on page 26-9.

The following four examples describe different system types in ascending order of

size and complexity.

Example One: Small Datamart
In this example, the DBA has limited parallel execution experience and does not

have time to closely monitor the system.

The database is mostly a star type schema with some summary tables and a few

tables in third normal form. The workload is mostly "ad hoc" in nature. Users expect

parallel execution to improve the performance of their high-volume queries.

Other facts about the system are:

■ CPUS = 4

■ Main Memory = 750MB

■ Disk = 40GB

■ Users = 16

The DBA makes the following settings:

■ PARALLEL_AUTOMATIC_TUNING = TRUE

■ SHARED_POOL_SIZE = 12MB

■ TRANSACTIONS = Left unset to use system default

Oracle automatically makes the following default settings:

■ PARALLEL_MAX_SERVERS = 64

■ PARALLEL_ADAPTIVE_MULTI_USER = TRUE

■ PARALLEL_THREADS_PER_CPU = 2

■ PROCESSES = 76

■ SESSIONS = 88

■ TRANSACTIONS = 96

■ LARGE_POOL_SIZE = 29MB

Example Parameter Setting Scenarios for Parallel Execution

26-32 Oracle8i Tuning

Parameter Settings for DOP and the Adaptive Multi-User Feature
The DBA parallelizes every table having more than 10,000 rows using a command

similar to the following:

 ALTER TABLE employee PARALLEL;

In this example, because PARALLEL_THREADS_PER_CPU is 2 and the number of

CPUs is 4, the DOP is 8. Because PARALLEL_ADAPTIVE_MULTI_USER is set to

TRUE, Oracle may reduce this DOP in response to the system load that exists at the

time of the query’s initiation.

Example Two: Medium-sized Data Warehouse
In this example the DBA is experienced but is also busy with other responsibilities.

The DBA knows how to organize users into resource consumer groups and uses

views and other roles to control access to parallelism. The DBA also has

experimented with manually adjusting the settings that automated parallel tuning

generates and has chosen to use all of them except for the

PARALLEL_ADAPTIVE_MULTI_USER parameter which the DBA sets to FALSE.

The system workload involves some adhoc queries and a high volume of batch

operations to convert a central repository into summary tables and star schemas.

Most queries on this system are generated by Oracle Express and other tools.

The database has source tables in third normal form and end-user tables in a star

schema and summary form only.

Other facts about the system are:

■ CPUS = 8

■ Main Memory = 2GB

■ Disk = 80GB

■ Users = 40

The DBA makes the following settings:

■ PARALLEL_AUTOMATIC_TUNING = TRUE

■ PARALLEL_ADAPTIVE_MULTI_USER = FALSE

■ PARALLEL_THREADS_PER_CPU = 4

■ SHARED_POOL_SIZE = 20MB

Example Parameter Setting Scenarios for Parallel Execution

Tuning Parallel Execution 26-33

The DBA also sets other parameters unrelated to parallelism. As a result, Oracle

responds by automatically adjusting the following parameter settings:

■ PROCESSES = 307

■ SESSIONS = 342

■ TRANSACTIONS = 376

■ PARALLEL_MAX_SERVERS = 256

■ LARGE_POOL_SIZE = 78MB

Parameter Settings for DOP and the Adaptive Multi-User Feature
The DBA parallelizes some tables in the data warehouse while creating other views

for special users:

 ALTER TABLE sales PARALLEL;
 CREATE VIEW invoice_parallel AS SELECT /*+ PARALLEL(P) */ * FROM invoices P;

The DBA allows the system to use the PARALLEL_THREADS_PER_CPU setting of

4 with 8 CPUs. The DOP for the tables is 32. This means a simple query uses 32

processes while more complex queries use 64.

Example Three: Large Data Warehouse
In this example, the DBA is experienced and is occupied primarily with managing

this system. The DBA has good control over resources and understands how to tune

the system. The DBA schedules large queries in batch mode.

The workload includes some adhoc parallel queries. As well, a large number of

serial queries are processed against a star schema. There is also some batch

processing that generates summary tables and indexes. The database is completely

denormalized and the Oracle Parallel Server option is in use.

Other facts about the system are:

■ 24 Nodes, 1 CPU per node

■ Uses MPP Architecture (Massively Parallel Processing)

■ Main Memory = 750MB per node

■ Disk = 200GB

■ Users = 256

The DBA uses manual parallel tuning by setting the following:

Example Parameter Setting Scenarios for Parallel Execution

26-34 Oracle8i Tuning

■ PARALLEL_AUTOMATIC_TUNING = FALSE

■ PARALLEL_THREADS_PER_CPU = 1

■ PARALLEL_MAX_SERVERS = 10

■ SHARED_POOL_SIZE = 75MB

■ PARALLEL_SERVER_INSTANCES = 24

■ PARALLEL_SERVER = TRUE

■ PROCESSES = 40

■ SESSIONS = 50

■ TRANSACTIONS = 60

The DBA also sets other parameters unrelated to parallel execution. Because

PARALLEL_AUTOMATIC_TUNING is set to FALSE, Oracle allocates parallel

execution buffers from the SHARED_POOL.

Parameter Settings for DOP and the Adaptive Multi-User Feature
The DBA parallelizes tables in the data warehouse by explicitly setting the DOP

using syntax similar to the following:

 ALTER TABLE department1 PARALLEL 10;
 ALTER TABLE department2 PARALLEL 5;
 CREATE VIEW current_sales AS SELECT /*+ PARALLEL(P, 20) */ * FROM sales P;

In this example, Oracle does not make calculations for parallel execution because

the DBA has manually set all parallel execution parameters.

EXAMPLE Four: Very Large Data Warehouse
In this example, the DBA is very experienced and is dedicated to administering this

system. The DBA has good control over the environment, but the variety of users

requires the DBA to devote constant attention to the system.

The DBA sets PARALLEL_AUTOMATIC_TUNING to TRUE which makes Oracle

allocate parallel execution buffers from the large pool.

PARALLEL_ADAPTIVE_MULTI_USER is automatically enabled. After gaining

experience with the system, the DBA fine-tunes the system supplied defaults to

further improve performance.

The database is a very large data warehouse with data marts residing on the same

machine. The data marts are generated and refreshed from data in the warehouse.

Example Parameter Setting Scenarios for Parallel Execution

Tuning Parallel Execution 26-35

The warehouse is mostly normalized while the marts are mostly star schemas and

summary tables. The DBA has carefully customized system parameters through

experimentation.

Other facts about the system are:

■ CPUS = 64

■ Main Memory 32GB

■ Disk = 3TB

■ Users = 1,000

The DBA makes the following settings:

■ PARALLEL_AUTOMATIC_TUNING = TRUE

■ PARALLEL_MAX_SERVERS = 600

■ PARALLEL_MIN_SERVER = 600

■ LARGE_POOL_SIZE = 1,300MB

■ SHARED_POOL_SIZE = 500MB

■ PROCESSES = 800

■ SESSIONS = 900

■ TRANSACTIONS = 1,024

Parameter Settings for DOP and the Adaptive Multi-User Feature
The DBA has carefully evaluated which users and tables require parallelism and

has set the values according to their requirements. The DBA has taken all steps

mentioned in the earlier examples, but in addition, the DBA also uses the following

command during peak user hours to enable the adaptive DOP algorithms:

 ALTER SYSTEM SET PARALLEL_ADAPTIVE_MULTI_USER = TRUE;
During off hours when batch processing is about to begin, the DBA disables

adaptive processing by issuing the command:

 ALTER SYSTEM SET PARALLEL_ADAPTIVE_MULTI_USER = FALSE;

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-36 Oracle8i Tuning

Phase Two - Tuning Physical Database Layouts for Parallel Execution
This section describes how to tune the physical database layout for optimal

performance of parallel execution.

■ Types of Parallelism

■ Striping Data

■ Partitioning Data

■ Determining the Degree of Parallelism

■ Populating the Database Using Parallel Load

■ Setting Up Temporary Tablespaces for Parallel Sort and Hash Join

■ Creating Indexes in Parallel

■ Additional Considerations for Parallel DML Only

Types of Parallelism
Different parallel operations use different types of parallelism. The optimal physical

database layout depends on what parallel operations are most prevalent in your

application.

The basic unit of parallelism is a called a granule. The operation being parallelized (a

table scan, table update, or index creation, for example) is divided by Oracle into

granules. Query server processes execute the operation one granule at a time. The

number of granules and their size affect the DOP (degree of parallelism) you can

use. It also affects how well the work is balanced across query server processes.

Block Range Granules
Block range granules are the basic unit of most parallel operations. This is true even

on partitioned tables; it is the reason why, on Oracle, the parallel degree is not

related to the number of partitions.

Block range granules are ranges of physical blocks from a table. Because they are

based on physical data addresses, Oracle can size block range granules to allow

better load balancing. Block range granules permit dynamic parallelism that does

not depend on static pre-allocation of tables or indexes. On SMP (symmetric

multi-processors) systems, granules are located on different devices to drive as

many disks as possible. On many MPP (massively parallel processing) systems,

block range granules are preferentially assigned to query server processes that have

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-37

physical proximity to the disks storing the granules. Block range granules are also

used with global striping.

When block range granules are used predominantly for parallel access to a table or

index, there are administrative considerations such as recovery or using partitions

for deleting portions of data that may influence partition layout more than

performance considerations. The number of disks that you stripe partitions over

should be at least equal to the value of the DOP so that parallel execution

operations can take advantage of partition pruning.

Partition Granules
When partition granules are used, a query server process works on an entire

partition or subpartition of a table or index. Because partition granules are statically

determined when a table or index is created, partition granules do not allow as

much flexibility in parallelizing an operation. This means that the allowable DOP

might be limited, and that load might not be well balanced across query server

processes.

Partition granules are the basic unit of parallel index range scans and parallel

operations that modify multiple partitions of a partitioned table or index. These

operations include parallel update, parallel delete, parallel direct-load insert into

partitioned tables, parallel creation of partitioned indexes, and parallel creation of

partitioned tables. Operations such as parallel DML and CREATE LOCAL INDEX,

do not recognize block range granules.

When partition granules are used for parallel access to a table or index, it is

important that there be a relatively large number of partitions (at least three times

the DOP), so Oracle can effectively balance work across the query server processes.

Striping Data
To avoid I/O bottlenecks during parallel processing, tablespaces accessed by

parallel operations should be striped. As shown in Figure 26–2, tablespaces should

always stripe over at least as many devices as CPUs; in this example, there are four

CPUs. As was mentioned for partitioned granules, the number of disks over which

you stripe these tablespaces should be at least equal to the value set for DOP.

See Also: For MPP systems, see your platform-specific

documentation.

See Also: Oracle8i Concepts for information on disk striping and

partitioning.

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-38 Oracle8i Tuning

Stripe tablespaces for tables, tablespaces for indexes, rollback segments, and

temporary tablespaces. You must also spread the devices over controllers, I/O

channels, and/or internal busses.

Figure 26–2 Striping Objects Over at Least as Many Devices as CPUs

To stripe data during loads, use the FILE= clause of parallel loader to load data

from multiple load sessions into different files in the tablespace. To make striping

effective, ensure that enough controllers and other I/O components are available to

support the bandwidth of parallel data movement into and out of the striped

tablespaces.

The operating system or volume manager can perform striping (OS striping), or

you can perform striping manually for parallel operations.

We recommend using a large stripe size of at least 64KB with OS striping when

possible. This approach always performs better than manual striping, especially in

multi-user environments.

Operating System Striping Operating system striping is usually flexible and easy to

manage. It supports multiple users running sequentially as well as single users

running in parallel. Two main advantages make OS striping preferable to manual

striping, unless the system is very small or availability is the main concern:

■ For parallel scan operations (such as full table scan or fast full scan), operating

system striping increases the number of disk seeks. Nevertheless, this is largely

compensated by the large I/O size (DB_BLOCK_SIZE *

MULTIBLOCK_READ_COUNT) that should enable this operation to reach the

maximum I/O throughput for your platform. This maximum is in general

limited by the number of controllers or I/O buses of the platform, not by the

number of disks (unless you have a very small configuration).

4

0001

0002

tablespace 1

3

2

1

tablespace 2

tablespace 3

tablespace 44

0001

0002

3

2

1

4

0001

0002

3

2

1

4

0001

0002

3

2

1

Controller 2Controller 1

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-39

■ For index probes (for example, within a nested loop join or parallel index range

scan), operating system striping enables you to avoid hot spots: I/O is then

more evenly distributed across the disks.

Stripe size must be at least as large as the I/O size. If stripe size is larger than I/O

size by a factor of 2 or 4, then certain tradeoffs may arise. The large stripe size can

be beneficial because it allows the system to perform more sequential operations on

each disk; it decreases the number of seeks on disk. The disadvantage is that it

reduces the I/O parallelism so fewer disks are simultaneously active. If you

encounter problems, increase the I/O size of scan operations (going, for example,

from 64KB to 128KB), instead of changing the stripe size. The maximum I/O size is

platform-specific (in a range, for example, of 64KB to 1MB).

With OS striping, from a performance standpoint, the best layout is to stripe data,

indexes, and temporary tablespaces across all the disks of your platform. In this

way, maximum I/O performance (both in terms of throughput and number of I/Os

per second) can be reached when one object is accessed by a parallel operation. If

multiple objects are accessed at the same time (as in a multi-user configuration),

striping automatically limits the contention. If availability is a major concern,

associate this method with hardware redundancy, for example RAID5, which

permits both performance and availability.

Manual Striping You can use manual striping on all platforms. To do this, add

multiple files to each tablespace, each on a separate disk. If you use manual striping

correctly, your system will experience significant performance gains. However, you

should be aware of several drawbacks that may adversely affect performance if you

do not stripe correctly.

First, when using manual striping, the DOP is more a function of the number of

disks than of the number of CPUs. This is because it is necessary to have one server

process per datafile to drive all the disks and limit the risk of experiencing I/O

bottlenecks. Also, manual striping is very sensitive to datafile size skew which can

affect the scalability of parallel scan operations. Second, manual striping requires

more planning and set up effort that operating system striping.

See Also: Oracle8i Concepts for information on disk striping and

partitioning. For MPP systems, see your platform-specific Oracle

documentation regarding the advisability of disabling disk affinity

when using operating system striping.

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-40 Oracle8i Tuning

Local and Global Striping
Local striping, which applies only to partitioned tables and indexes, is a form of

non-overlapping disk-to-partition striping. Each partition has its own set of disks

and files, as illustrated in Table 26–3. There is no overlapping disk access, and no

overlapping of files.

An advantage of local striping is that if one disk fails, it does not affect other

partitions. Moreover, you still have some striping even if you have data in only one

partition.

A disadvantage of local striping is that you need many more disks to implement

it—each partition requires a few disks of its own. Another major disadvantage is

that after partition pruning to only a single or a few partitions, the system will have

limited I/O bandwidth. As a result, local striping is not very practical for parallel

operations. For this reason, consider local striping only if your main concern is

availability, and not parallel execution. A good compromise might be to use global

striping associated with RAID5, which permits both performance and availability.

Figure 26–3 Local Striping

Global striping, illustrated in Figure 26–4, entails overlapping disks and partitions.

Stripe 1

Stripe 2

Partition 1 Partition 2

Stripe 3

Stripe 4���
���
���
���
������

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-41

Figure 26–4 Global Striping

Global striping is advantageous if you have partition pruning and need to access

data only in one partition. Spreading the data in that partition across many disks

improves performance for parallel execution operations. A disadvantage of global

striping is that if one disk fails, all partitions are affected.

Analyzing Striping
There are two considerations when analyzing striping issues for your applications.

First, consider the cardinality of the relationships among the objects in a storage

system. Second, consider what you can optimize in your striping effort: full table

scans, general tablespace availability, partition scans, or some combinations of these

goals. These two topics are discussed under the following headings.

See Also: "Striping and Media Recovery" on page 26-44.

Stripe 1

Stripe 2

Partition 1 Partition 2

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-42 Oracle8i Tuning

Cardinality of Storage Object Relationships To analyze striping, consider the following

relationships:

Figure 26–5 Cardinality of Relationships

Figure 26–5 shows the cardinality of the relationships among objects in a typical

Oracle storage system. For every table there may be:

■ p partitions, shown in Figure 26–5 as a one-to-many relationship

■ s partitions for every tablespace, shown in Figure 26–5 as a many-to-one

relationship

■ f files for every tablespace, shown in Figure 26–5 as a one-to-many relationship

■ m files to n devices, shown in Figure 26–5 as a many-to-many relationship

Goals. You may wish to stripe an object across devices to achieve one of three goals:

■ Goal 1: To optimize full table scans. This means placing a table on many

devices.

■ Goal 2: To optimize availability. This means restricting the tablespace to a few

devices.

■ Goal 3: To optimize partition scans. This means achieving intra-partition

parallelism by placing each partition on many devices.

To attain both Goal 1 and Goal 2, having the table reside on many devices, with the

highest possible availability, you can maximize the number of partitions p and

minimize the number of partitions per tablespace s.

For highest availability but the least intra-partition parallelism, place each partition

in its own tablespace. Do not used striped files, and use one file per tablespace. To

minimize Goal 2 and thereby minimize availability, set f and n equal to 1.

When you minimize availability you maximize intra-partition parallelism. Goal 3

conflicts with Goal 2 because you cannot simultaneously maximize the formula for

Goal 3 and minimize the formula for Goal 2. You must compromise to achieve some

benefits of both goals.

table partitions tablespace devicesfiles

1 p s 1 1 f m n

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-43

Goal 1: To optimize full table scans. Having a table on many devices is beneficial

because full table scans are scalable.

Calculate the number of partitions multiplied by the number of files in the

tablespace multiplied by the number of devices per file. Divide this product by the

number of partitions that share the same tablespace, multiplied by the number of

files that share the same device. The formula is as follows:

You can do this by having t partitions, with every partition in its own tablespace, if

every tablespace has one file, and these files are not striped.

If the table is not partitioned, but is in one tablespace in one file, stripe it over n
devices.

Maximum t partitions, every partition in its own tablespace, f files in each

tablespace, each tablespace on a striped device:

Number of devices per table = p x f x n
s x m

t x 1 / p x 1 x 1, up to t devices

1 x 1 x n devices

t x f x n devices

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-44 Oracle8i Tuning

Goal 2: To optimize availability. Restricting each tablespace to a small number of

devices and having as many partitions as possible helps you achieve high

availability.

Availability is maximized when f = n = m = 1 and p is much greater than 1.

Goal 3: To optimize partition scans. Achieving intra-partition parallelism is

beneficial because partition scans are scalable. To do this, place each partition on

many devices.

Partitions can reside in a tablespace that can have many files. There could be either

■ Many files per tablespace or

■ Striped file

Striping and Media Recovery
Striping affects media recovery. Loss of a disk usually means loss of access to all

objects stored on that disk. If all objects are striped over all disks, then loss of any

disk stops the entire database. Furthermore, you may need to restore all database

files from backups, even if each file has only a small fraction of its total data stored

on the failed disk.

Often, the same OS subsystem that provides striping also provides mirroring. With

the declining price of disks, mirroring can provide an effective supplement to

backups and log archival--but not a substitute for them. Mirroring can help your

system recover from device failures more quickly than with a backup, but is not as

robust. Mirroring does not protect against software faults and other problems that

an independent backup would protect your system against.

You can effectively use mirroring if you are able to reload read-only data from the

original source tapes. If you have a disk failure, restoring data from backups could

involve lengthy downtime, whereas restoring it from a mirrored disk would enable

your system to get back online quickly.

Number of devices per tablespace = f x n
m

Number of devices per partition = f x n
s x m

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-45

RAID technology is even less expensive than mirroring. RAID avoids full

duplication in favor of more expensive write operations. For "read-mostly"

applications, this may suffice.

For more information about automatic file striping and tools you can use to

determine I/O distribution among your devices, refer to your operating system

documentation.

Partitioning Data
This section describes the partitioning features that significantly enhance data

access and greatly improve overall applications performance. This is especially true

for applications accessing tables and indexes with millions of rows and many

gigabytes of data.

Partitioned tables and indexes facilitate administrative operations by allowing these

operations to work on subsets of data. For example, you can add a new partition,

organize an existing partition, or drop a partition with less than a second of

interruption to a read-only application.

Using the partitioning methods described in this section can help you tune SQL

statements to avoid unnecessary index and table scans (using partition pruning).

You can also improve the performance of massive join operations when large

amount of data, for example, several millions rows, are joined together; do this

using partition-wise joins. Finally, partitioning data greatly improves manageability

of very large databases and dramatically reduces the time required for

administrative tasks such as backup and restore.

Note: RAID technology is particularly slow on write operations.

This slowness may affect your database restore time to a point that

RAID performance is unacceptable.

See Also: For a discussion of manually striping tables across

datafiles, refer to "Striping Disks" on page 20-22. For a discussion of

media recovery issues, see "Backup and Recovery of the Data

Warehouse" on page 11-9.

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-46 Oracle8i Tuning

Types of Partitioning
Oracle offers three partitioning methods:

■ Range

■ Hash

■ Composite

Each partitioning method has a different set of advantages and disadvantages.

Thus, each method is appropriate for a particular situation where the others are not.

Range Partitioning Range partitioning maps data to partitions based on boundaries

identified by ranges of column values that you establish for each partition. This

method is useful primarily for DSS applications that manage historical data.

Hash Partitioning Hash partitioning maps data to partitions based on a hashing

algorithm that Oracle applies to a partitioning key identified by the user. The

hashing algorithm evenly distributes rows among partitions. Therefore, the

resulting set of partitions should be approximately of the same size. This also makes

hash partitioning ideal for distributing data evenly across devices. Hash

partitioning is also a good and easy-to-use alternative to range partitioning when

data is not historical in content.

Composite Partitioning Composite partitioning combines the features of range and

hash partitioning. With composite partitioning, Oracle first distributes data into

partitions according to boundaries established by the partition ranges. Then Oracle

further divides the data into subpartitions within each range partition. Oracle uses a

hashing algorithm to distribute data into the subpartitions.

Index Partitioning
You can create both local and global indexes on a table partitioned by range, hash,

or composite. Local indexes inherit the partitioning attributes of their related tables.

See Also: Oracle8i Concepts, for more information on partitioning.

Note: You cannot create alternate hashing algorithms.

See Also: For more information, please refer to, and Oracle8i
Concepts. and the Oracle8i Administrator’s Guide.

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-47

For example, if you create a local index on a composite table, Oracle automatically

partitions the local index using the composite method.

Oracle only supports range partitioning for global indexes. Therefore, you cannot

partition global indexes using the hash or composite partitioning methods.

Performance Issues for Range, Hash and Composite Partitioning
The following section describes performance issues for range, hash, and composite

partitioning.

Performance Considerations for Range Partitioning As mentioned, range partitioning is a

convenient method for partitioning historical data. The boundaries of range

partitions define the ordering of the partitions in the tables or indexes.

The most common use of range partitioning leverages the partitioning of data into

time intervals on a column of type “date”. Because of this, SQL statements accessing

range partitions tend to focus on timeframes. An example of this is a SQL statement

similar to "select data from a particular period in time". In such a scenario, if each

partition represents one month’s worth of data, the query "find data of month

98-DEC" needs to access only the December partition of year 98. This reduces the

amount of data scanned to a fraction of the total data available. This optimization

method is called ’partition pruning’.

Range partitioning is also ideal when you periodically load new data and purge old

data. This ’adding’ or ’dropping’ of partitions is a major manageability

enhancement.

It is common to keep a ’rolling window’ of data, for example keeping the last 36

months of data online. Range partitioning simplifies this process: to add a new

month’s data you load it into a separate table, clean the data, index it, and then add

it to the range partitioned table using the EXCHANGE PARTITION command; all

while the table remains online. Once you add the new partition, you can drop the

’trailing’ month with the DROP PARTITION command.

In conclusion, consider using Range partitioning when:

■ Very large tables are frequently scanned by a range predicate on a column that

is a good partitioning column, such as ORDER_DATE or PURCHASE_DATE.

Partitioning the table on that column would enable partitioning pruning.

■ You want to maintain a ’rolling window’ of data

■ You cannot complete administrative operations on large tables, such as backup

and restore, in an allotted timeframe

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-48 Oracle8i Tuning

■ You need to implement parallel DML (PDML) operations

The following SQL example creates the table “Sales” for a period of two years, 1994

and 1995, and partitions it by range according to the column s_saledate to separate

the data into eight quarters, each corresponding to a partition:

 CREATE TABLE sales
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
 PARTITION BY RANGE(s_saledate)
 (PARTITION sal94q1 VALUES LESS THAN TO_DATE (01-APR-1994, DD-MON-YYYY),
 PARTITION sal94q2 VALUES LESS THAN TO_DATE (01-JUL-1994, DD-MON-YYYY),
 PARTITION sal94q3 VALUES LESS THAN TO_DATE (01-OCT-1994, DD-MON-YYYY),
 PARTITION sal94q4 VALUES LESS THAN TO_DATE (01-JAN-1995, DD-MON-YYYY),
 PARTITION sal95q1 VALUES LESS THAN TO_DATE (01-APR-1995, DD-MON-YYYY),
 PARTITION sal95q2 VALUES LESS THAN TO_DATE (01-JUL-1995, DD-MON-YYYY),
 PARTITION sal95q3 VALUES LESS THAN TO_DATE (01-OCT-1995, DD-MON-YYYY),
 PARTITION sal95q4 VALUES LESS THAN TO_DATE (01-JAN-1996, DD-MON-YYYY));

Performance Considerations for Hash Partitioning The way Oracle distributes data in

hashed partitions has no logical meaning. Therefore, hash partitioning is not an

effective way to manage historical data. However, hashed partitions share all other

performance characteristics of range partitions. This means using partition pruning

is limited to equality predicates. You can also use partition-wise joins, parallel index

access and PDML.

As a general rule, use hash partitioning:

■ To partition data, for example, to improve the availability and manageability of

large tables or to enable PDML, but your table does not store historical data so

range partitioning is not appropriate

■ To avoid data skew among partitions. Hash partitioning is an effective means of

distributing data because Oracle hashes the data into a number of partitions,

each of which can reside on a separate device. Thus, data is evenly spread over

as many devices as required to maximize I/O throughput. Similarly, you can

use hash partitioning to evenly distribute data among the nodes of an MPP

platform that uses the Oracle Parallel Server.

See Also: Partition-wise joins are described later in this chapter

under the heading "Partition-wise Joins" on page 26-52.

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-49

■ If it is important to use partition pruning and partition-wise joins according to a

partitioning key.

If you add or coalesce a hashed partition, Oracle automatically re-arranges the rows

to reflect the change in the number of partitions and subpartitions. The hash

function that Oracles uses is especially designed to limit the cost of this

reorganization. Instead of reshuffling all the rows in the table, Oracles uses an ’add

partition’ logic that splits one and only one of the existing hashed partitions.

Conversely, Oracle coalesces a partition by merging two existing hashed partitions.

Although this dramatically improves the manageability of hash partitioned tables, it

means that the hash function can cause a skew if the number of partitions of a hash

partitioned table, or the number of subpartitions in each partition of a composite

table, is not a power of 2. If you do not quantify the number of partitions by a

power of 2, in the worst case the largest partition can be twice the size of the

smallest. So for optimal performance, create partitions, or subpartitions per

partitions, using a power of two. For example, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,

and so on.

The following example creates 4 hashed partitions for the table “Sales” using the

column s_productid as the partition key:

 CREATE TABLE sales
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
 PARTITION BY HASH(s_productid)
 PARTITIONS 4;

Specify the partition names only if you want some of the partitions to have different

properties than the table. Otherwise, Oracle automatically generates internal names

for the partitions. Also, you can use the STORE IN clause to assign partitions to

tablespaces in a round-robin manner.

Performance Consideration for Composite Partitioning Composite partitioning offers the

benefits of both range and hash partitioning. With composite partitioning, Oracle

first partitions by range, and then within each range Oracle creates subpartitions

and distributes data within them using a hashing algorithm. Oracle uses the same

Note: In hash partitioning, partition pruning is limited to using

equality or inlist predicates.

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-50 Oracle8i Tuning

hashing algorithm to distribute data among the hash subpartitions of composite

partitioned tables as it does for hash partitioned tables.

Data placed in composite partitions is logically ordered only in terms of the

partition boundaries you use to define the range level partitions. The partitioning of

data within each partition has no logical organization beyond the identity of the

partition to which the subpartitions belong.

Consequently, tables and local indexes partitioned using the composite method:

■ Support historical data at the partition level

■ Support the use of subpartitions as units of parallelism for parallel operations

such as PDML, for example, space management and backup and recovery

■ Are subject to partition pruning and partition-wise joins on the range and hash

dimensions

Using Composite Partitioning Use the composite partitioning method for tables and

local indexes if:

■ Partitions must have a logical meaning to efficiently support historical data

■ The contents of a partition may be spread across multiple tablespaces, devices

or nodes of an MPP system.

■ You need to use both partition pruning and partition-wise joins even when the

pruning and join predicates use different columns of the partitioned table

■ You want to use a degree of parallelism that is greater than the number of

partitions for backup, recovery and parallel operations

When using the composite method, Oracle stores each subpartition on a different

segment. Thus, the subpartitions may have properties that are different from the

properties of the table or the partition to which the subpartitions belong.

The following SQL example partitions the table “Sales” by range on the column

s_saledate to create 4 partitions. This takes advantage of ordering data by a time

frame. Then within each range partition, the data is further subdivided into 4

subpartitions by hash on the column s_productid.

 CREATE TABLE sales(
 s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice)
 PARTITION BY RANGE (s_saledate)
 SUBPARTITION BY HASH (s_productid) SUBPARTITIONS 4

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-51

 (PARTITION sal94q1 VALUES LESS THAN TO_DATE (01-APR-1994, DD-MON-YYYY),
 PARTITION sal94q2 VALUES LESS THAN TO_DATE (01-JUL-1994, DD-MON-YYYY),
 PARTITION sal94q3 VALUES LESS THAN TO_DATE (01-OCT-1994, DD-MON-YYYY),
 PARTITION sal94q4 VALUES LESS THAN TO_DATE (01-JAN-1995, DD-MON-YYYY));

Each hashed subpartition contains sales of a single quarter ordered by product

code. The total number of subpartitions is 16.

Partition Pruning
Partition pruning improves query execution by using the cost-based optimizer to

analyze FROM and WHERE clauses in SQL statements to eliminate unneeded

partitions when building the partition access list. This allows Oracle to only

perform operations on partitions relevant to the SQL statement. Oracle can only do

this when you use range, equality, and inlist predicates on the range partitioning

columns, and equality and inlist predicates on the hash partitioning columns.

Partition pruning can also dramatically reduce the amount of data retrieved from

disk and reduce processing time. This results in substantial improvements in query

performance and resource utilization. If you partition the index and table on

different columns, partition pruning also eliminates index partitions even when the

underlying table’s partitions cannot be eliminated. Do this by creating a global

partitioned index.

On composite partitioned objects, Oracle can prune at both the range partition level

and hash subpartition level using the relevant predicates. For example, referring to

the table Sales from the previous example, partitioned by range on the column

s_saledate and subpartitioned by hash on column s_productid, consider the

following SQL statement

 SELECT * FROM sales
 WHERE s_saledate BETWEEN TO_DATE(01-JUL-1994, DD-MON-YYYY) AND
 TO_DATE(01-OCT-1994, DD-MON-YYYY) AND s_productid = 1200;

Oracle uses the predicate on the partitioning columns to perform partition pruning

as follows:

■ On the range dimension, Oracle only accesses partitions sal94q2 and sal94q3

■ On the hash dimension, Oracle only accesses the third partition, h3, where rows

with s_productid equal to 1200 are mapped

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-52 Oracle8i Tuning

Pruning Using DATE Columns
In the previous example the date value was fully specified, 4 digits for year, using

the TO_DATE function. While this is the recommended format for specifying date

values, the optimizer can prune partitions using the predicates on s_saledate when

you use other formats as in the following examples:

 SELECT * FROM sales
 WHERE s_saledate BETWEEN TO_DATE(01-JUL-1994, DD-MON-YY) AND
 TO_DATE(01-OCT-1994, DD-MON-YY) AND s_productid = 1200;

 SELECT * FROM sales
 WHERE s_saledate BETWEEN ’01-JUL-1994’ AND
 ’01-OCT-1994’ AND s_productid = 1200;

However, you will not be able to see which partitions Oracle is accessing as is

usually shown on the partition_start and partition_stop columns of the EXPLAIN

PLAN command output on the SQL statement. Instead, you will see the keyword

’KEY’ for both columns.

Avoiding I/O Bottlenecks
As mentioned, to avoid I/O bottlenecks, when Oracle is not scanning all partitions

because some have been eliminated by pruning, spread each partition over several

devices. On MPP systems, spread those devices over multiple nodes.

Partition-wise Joins
Partition-wise joins reduce query response time by minimizing the amount of data

exchanged among query servers when joins execute in parallel. This significantly

reduces response time and resource utilization, both in terms of CPU and memory.

In OPS (Oracle Parallel Server) environments it also avoids or at least limits the data

traffic over the interconnect which is the key to achieving good scalability for

massive join operations.

There are two variations of partition-wise join, full and partial as discussed under

the following headings.

Full Partition-wise Joins
A full partition-wise join divides a large join into smaller joins between a pair of

partitions from the two joined tables. To use this feature, you must equi-partition

both tables on their join keys. For example, consider a massive join between a sales

table and a customer table on the column ’customerid’. The query “find the records

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-53

of all customers who bought more than 100 articles in Quarter 3 of 1994" is a typical

example of a SQL statement performing a massive join. The following is an example

of this:

 SELECT c_customer_name, COUNT(*)
 FROM sales, customer
 WHERE s_customerid = c_customerid

AND s_saledate BETWEEN TO_DATE(01-jul-1994, DD-MON-YYYY) AND
 TO_DATE(01-oct-1994, DD-MON-YYYY)
 GROUP BY c_customer_name HAVING
 COUNT(*) > 100;

This join is a massive join typical in data warehousing environments. The entire

customer table is joined with one quarter of the sales data. In large data warehouse

applications, it might mean joining millions of rows. The hash method to use in that

case is obviously a hash join. But you can reduce the processing time for this hash

join even more if both tables are equi-partitioned on the customerid column. This

enables a full partition-wise join.

When you execute a full partition-wise join in parallel, the granule of parallelism, as

described under "Types of Parallelism" on page 26-36, is a partition. As a result, the

degree of parallelism is limited to the number of partitions. For example, you

should have at least 16 partitions to set the degree of parallelism of the query to 16.

You can use various partitioning methods to equi-partition both tables on the

column customerid with 16 partitions. These methods are described in the

following sub-sections.

Hash - Hash This is the simplest method: the Customer and Sales tables are both

partitioned by hash into 16 partitions, on s_customerid and c_customerid

respectively. This partitioning method should enable full partition-wise join when

the tables are joined on the customerid column.

In serial, this join is performed between a pair of matching hash partitions at a time:

when one partition pair has been joined, the join of another partition pair begins.

The join completes when the 16 partition pairs have been processed.

Note: A pair of matching hash partitions is defined as one

partition from each table with the same partition number. For

example, with full partition wise joins we join partition 0 of sales

with partition 0 of customer, partition 1 of sales with partition 1 of

customer, and so on.

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-54 Oracle8i Tuning

Parallel execution of a full partition-wise join is a straight-forward parallelization of

the serial execution. Instead of joining one partition pair at a time, 16 partition pairs

are joined in parallel by the 16 query servers. Figure 26–6 illustrates the parallel

execution of a full partition-wise join.

Figure 26–6 Parallel Execution of A Full Partition-wise Join

In Figure 26–6 we assume that the degree of parallelism and the number of

partitions are the same, in other words, 16 for both. It is possible to have more

partitions than the degree of parallelism to improve load balancing and limit

possible skew in the execution. If you have more partitions than query servers,

when one query server is done with the join of one pair of partitions, it requests that

the query coordinator give it another pair to join. This process repeats until all pairs

have been processed. This method allows dynamic load balancing when the

number of partition pairs is greater than the degree of parallelism, for example, 64

partitions with a degree of parallelism of 16.

In Oracle Parallel Server environments running on shared-nothing platforms or

MPPs, partition placements on nodes is critical to achieving good scalability. To

avoid remote I/O, both matching partitions should have affinity to the same node.

Partition pairs should be spread over all nodes to avoid bottlenecks and to use all

CPU resources available on the system.

Note: Always use a number of partitions that is a multiple of the

degree of parallelism.

Server

H1

H1

Server

H2

H2

Server

H3

H3

Server

H16

H16

. . .
Sales

Customer

Parallel
Execution
Servers

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-55

You can, however, have a node host multiple pairs when there are more pairs than

nodes. For example, with an 8-node system and 16 partition pairs, each node should

receive 2 pairs.

Composite - Hash This method is a variation of the hash/hash method. The sales

table is a typical example of a table storing historical data. For all the reasons

mentioned under the heading "Performance Considerations for Range Partitioning"

on page 26-47, a more logical partitioning method for sales is probably the range

method, not the hash method.

For example, assume you want to partition the Sales table by range on the column

s_saledate into 8 partitions. Also assume you have 2 years’ of data and each

partition represents a quarter. Instead of range partitioning you can use composite

to enable a full partition-wise join while preserving the partitioning on s_saledate.

Do this by partitioning the Sales table by range on s_saledate and then by

subpartitioning each partition by hash on s_customerid using 16 subpartitions per

partition, for a total of 128 subpartitions. The customer table can still use hash

partitioning with 16 partitions.

With that new partitioning method, a full partition-wise join works similarly to the

hash/hash method. The join is still divided into 16 smaller joins between hash

partition pairs from both tables. The difference is that now each hash partition in

the Sales table is composed of a set of 8 subpartitions, one from each range

partition.

Figure 26–7 illustrates how the hash partitions are formed in the Sales table. In

Figure 26–7, each cell represents a subpartition. Each row corresponds to one range

partition for a total of 8 range partitions; each range partition has 16 subpartitions.

Symmetrically, each column on the figure corresponds to one hash partition for a

total of 16 hash partitions; each hash partition has 8 subpartitions. Note that hash

partitions can be defined only if all partitions have the same number of

subpartitions, in this case, 16.

Hash partitions in a composite table are implicit. However, Oracle does not record

them in the data dictionary and you cannot manipulate them with DDL commands

as you can range partitions.

See Also: For more information on data affinity, please refer to

Oracle8i Parallel Server Concepts and Administration.

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-56 Oracle8i Tuning

Figure 26–7 Range and Hash Partitions of A Composite Table

This partitioning method is effective because it allows you to combine pruning (on

s_salesdate) with a full partition-wise join (on customerid). In the previous example

query, pruning is achieved by only scanning the subpartitions corresponding to Q3

of 1994, in other words, row number 3 on Figure 26–7. Oracle them joins these

subpartitions with the customer table using a full partition-wise join.

All characteristics of the hash/hash method also apply to the composite/hash

method. In particular for this example, these two points are common to both

methods:

94 - Q1

94 - Q1

94 - Q1

94 - Q1

94 - Q1

94 - Q1

94 - Q1

94 - Q1

Hash partition #9

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

H16

S
al

es
d

at
e

Customerid

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-57

■ The degree of parallelism for a full partition-wise join cannot exceed 16. This is

because even though the Sales table has 128 subpartitions, it has only 16 hash

partitions.

■ The same rules for data placement on MPP systems apply here. The only

difference is that a hash partition is now a collection of subpartitions. You must

ensure that all these subpartitions are placed on the same node with the

matching hash partition from the other table. For example, in Figure 26–7, you

should store hash partition 9 of the Sales table shown by the 8 circled

subpartitions, on the same node as hash partition 9 of the Customer table.

Composite - Composite (Hash Dimension) If needed, you can also partition the

Customer table by composite. For example, you can partition it by range on a zip

code column to enable pruning based on zip code. You should then subpartition it

by hash on customerid to enable a partition-wise join on the hash dimension.

Range - Range You can also use partition-wise joins for range partitioning. However,

this is more complex to implement because you must know your data’s distribution

before performing the join. Furthermore, this can lead to data skew during the

execution if you do not correctly identify the partition bounds so you have

partitions of equal size.

The basic principle for using range/range is the same as for hash/hash: you must

equi-partition both tables. This means that the number of partitions must be the

same and the partition bounds must be identical. For example, assume that you

know in advance that you have 10 million customers, and the values for customerid

vary from 1 to 10000000. In other words, you have possibly 10 million different

values. To create 16 partitions, you can range partition both tables, Sales on

s_customerid and Customer on c_customerid. You should define partition bounds

for both tables to generate partitions of the same size. In this example, partition

bounds should be defined as 625001, 1250001, 1875001, ..., 10000001, so each

partition contains 625000 rows.

Range - Composite, Composite - Composite (Range Dimension) Finally, you can also

subpartition one or both tables on another column. Therefore, the range/composite

and composite/composite methods on the range dimension are also valid for

enabling a full partition-wise join on the range dimension.

Partial Partition-wise Joins
Oracle can only perform partial partition-wise joins in parallel. Unlike full

partition-wise joins, partial partition-wise joins require you to partition only one

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-58 Oracle8i Tuning

table on the join key, not both. The partitioned table is referred to as the ’reference’

table. The other table may or may not be partitioned. Partial partition-wise joins are

more common than full partition-wise join because it requires that you only

partition one of the joined tables on the join key.

To execute a partial partition-wise join, Oracle dynamically re-partitions the other

table based on the partitioning of the reference table. Once the other table is

repartitioned, the execution is similar to a full partition-wise join.

The performance advantage that partial partition-wise joins have over conventional

parallel joins is that the reference table is not ’moved’ during the join operation.

Conventional parallel joins require both input tables to be re-distributed on the join

key. This re-distribution operation involves exchanging rows between query

servers. This is a very CPU-intensive operation and can lead to excessive

interconnect traffic in OPS environments. Partitioning large tables on a join key,

either a foreign or primary key, prevents this re-distribution every time the table is

joined on that key. Of course, if you choose a foreign key to partition the table,

which is the most common scenario, select a foreign key that is involved in many

queries.

To illustrate partial partition-wise joins, consider the previous Sales/Customer

example. Assume that customer is not partitioned or partitioned on a column other

than c_customerid. Because Sales is often joined with Customer on customerid and

because this join dominates our application workload, partition Sales on

s_customerid to enable partial partition-wise join every time Customer and Sales

are joined. As in full partition-wise join, we have several alternatives:

Hash the simplest method to enable a partial partition-wise join is to partition Sales

by hash on c_customerid. The number of partitions determines the maximum

degree of parallelism because the partition is the smallest granule of parallelism for

partial partition-wise join operations.

The parallel execution of a partial partition-wise join is illustrated in Figure 26–8

assuming that both the degree of parallelism and the number of partitions of Sales

are 16. The execution involves two sets of query servers: one set, labeled ’set 1’ on

the figure, scans the customer table in parallel. The granule of parallelism for the

scan operation is a range of blocks.

Rows from Customer that are selected by the first set, in this case this is all rows, are

re-distributed to the second set of query servers by hashing customerid. For

example, all rows in Customer that could have matching rows in partition H1 of

Sales are sent to query server 1 in the second set. Rows received by the second set of

query servers are joined with the rows from the corresponding partitions in Sales.

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-59

For example, query server number 1 in the second set joins all Customer rows that

it receives with partition H1 of Sales.

Figure 26–8 Partial Partition-wise Join

Considerations for full partition-wise joins also apply to partial partition-wise joins:

■ The degree of parallelism does not need to equal the number of partitions. In

Figure 26–8, the query executes with 8 query server sets. In this case, Oracle

assigns 2 partitions to each query server of the second set. Again, the number of

partitions should always be a multiple of the degree of parallelism.

■ In Oracle Parallel Server environments on shared-nothing platforms (MPPs),

each hash partition of sales should preferably have affinity to only one node to

avoid remote I/Os. Also, spread partitions over all nodes to avoid bottlenecks

and use all CPU resources available on the system. It is adequate for a node to

host multiple partitions when there are more partitions than nodes.

Server

H1

Server

H2

Server

H16

. . .

. . .

. . .

Sales

Parallel
execution
server
set 2

Parallel
execution
server
set 1

Customer

Parallel
execution
server
set 1

re-distribution
hash(c_customerid)

join

select

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-60 Oracle8i Tuning

Composite As with full partition-wise joins, the prime partitioning method for the

Sales table is to use the range method on column s_salesdate. This is because Sales

is a typical example of a table that stores historical data. To enable a partial

partition-wise join while preserving this range partitioning, you can subpartition

Sales by hash on column s_customerid using 16 subpartitions per partition. Pruning

and partial partition-wise joins can be used together if a query joins Customer and

Sales and if the query has a selection predicate on s_salesdate.

When Sales is composite, the granule of parallelism for partial-partition wise join is

a hash partition and not a subpartition. Refer to Figure 26–7 for the definition of a

hash partition in a composite table. Again, the number of hash partitions should be

a multiple of the degree of parallelism. Also, on an MPP system, ensure that each

hash partition has affinity to a single node. In the previous example, it means that

the 8 subpartitions composing a hash partition should have affinity to the same

node.

Range finally, you can use range partitioning on s_customerid to enable a partial

partition-wise join. This works similarly to the hash method, although it is not

recommended. The resulting data distribution could be skewed if the size of the

partitions differs. Moreover, this method is more complex to implement because it

requires prior knowledge of the values of the partitioning column which is also a

join key.

Benefits of Partition-wise Joins
Partition-wise joins offer benefits as described in this section:

■ Reduction of Communications Overhead

■ Reduction of Memory Requirements

Reduction of Communications Overhead Partition-wise joins reduce communications

overhead when they are executed in parallel. This is because in the default case,

parallel execution of a join operation by a set of parallel execution servers requires

the redistribution of each table on the join column into disjoint subsets of rows.

These disjoint subsets of rows are then joined pair-wise by a single parallel

execution server.

See Also: For more information on data affinity, please refer to

Oracle8i Parallel Server Concepts and Administration.

Phase Two - Tuning Physical Database Layouts for Parallel Execution

Tuning Parallel Execution 26-61

Oracle can avoid redistributing the partitions since the two tables are already

partitioned on the join column. This allows each parallel execution server to join a

pair of matching partitions.

This performance enhancement is even more noticeable in OPS configurations with

internode parallel execution. This is because partition-wise joins can dramatically

reduce interconnect traffic. Using this feature is an almost mandatory optimization

measure for large DSS configurations that use OPS.

Currently, most OPS platforms, such as MPP and SMP clusters, provide very

limited interconnect bandwidths compared to their processing powers. Ideally,

interconnect bandwidth should be comparable to disk bandwidth, but this is

seldom the case. As a result, most join operations in OPS experience excessively

high interconnect latencies without this optimization.

Reduction of Memory Requirements Partition-wise joins require less memory. In the

case of serial joins, the join is performed on a pair of matching partitions at the same

time. Thus, if data is evenly distributed across partitions, the memory requirement

is divided by the number of partition. In this case there is no skew.

In the parallel case it depends on the number of partition pairs that are joined in

parallel. For example, if the degree of parallelism is 20 and the number of partitions

is 100, 5 times less memory is required because only 20 joins of two partitions are

performed at the same time. The fact that partition-wise joins require less memory

has a direct effect on performance. For example, the join does not need to write

blocks to disk during the build phase of a hash join.

Performance Considerations for Parallel Partition-wise Joins
The performance improvements from parallel partition-wise joins also come with

disadvantages. The cost-based optimizer weighs the advantages and disadvantages

when deciding whether to use partition-wise joins.

■ In the case of range partitioning, data skew may increase response time if the

partitions are of different sizes. This is because some parallel execution servers

take longer than others to finish their joins. Oracle recommends the use of hash

(sub)partitioning to enable partition-wise joins because hash partitioning limits

the risk of skew; assuming that the number of partitions is a power of 2.

■ The number of partitions used for partition-wise join should, if possible, be a

multiple of the number of query servers. With a degree of parallelism of 16, for

example, it is acceptable to have 16, 32 or even 64 partitions (or subpartitions).

But Oracle will serially execute the last phase of the join if the degree of

parallelism is, for example, 17. This is because in the beginning of the execution,

Phase Two - Tuning Physical Database Layouts for Parallel Execution

26-62 Oracle8i Tuning

each parallel execution server works on a different partition pair. At the end of

this first phase, only one pair is left. Thus, a single query server joins this

remaining pair while all other query servers are idle.

■ Sometimes parallel joins can cause remote I/Os. For example, on Oracle Parallel

Server environments running on MPP configurations, if a pair of matching

partitions is not collocated on the same node, a partition-wise join requires extra

inter-node communication due to remote I/Os. This is because Oracle must

transfer at least one partition to the node where the join is performed. In this

case, it is better to explicitly redistribute the data than to use a partition-wise

join.

Phase Three - Creating, Populating, and Refreshing the Database

Tuning Parallel Execution 26-63

Phase Three - Creating, Populating, and Refreshing the Database
This section discusses the following topics:

■ Populating Databases Using Parallel Load

■ Creating Temporary Tablespaces for Parallel Sort and Hash Join

■ Creating Indexes in Parallel

■ Executing Parallel SQL Statements

■ Using EXPLAIN PLAN to Show Parallel Operations Plans

■ Additional Considerations for Parallel DML

Populating Databases Using Parallel Load
This section presents a case study illustrating how to create, load, index, and

analyze a large data warehouse fact table with partitions in a typical star schema.

This example uses SQL Loader to explicitly stripe data over 30 disks.

■ The example 120 GB table is named FACTS.

■ The system is a 10-CPU shared memory computer with more than 100 disk

drives.

■ Thirty disks (4 GB each) will be used for base table data, 10 disks for index, and

30 disks for temporary space. Additional disks are needed for rollback

segments, control files, log files, possible staging area for loader flat files, and so

on.

■ The FACTS table is partitioned by month into 12 logical partitions. To facilitate

backup and recovery, each partition is stored in its own tablespace.

■ Each partition is spread evenly over 10 disks, so a scan accessing few partitions

or a single partition can proceed with full parallelism. Thus there can be

intra-partition parallelism when queries restrict data access by partition

pruning.

■ Each disk has been further subdivided using an OS utility into 4 OS files with

names like /dev/D1.1, /dev/D1.2, ... , /dev/D30.4.

■ Four tablespaces are allocated on each group of 10 disks. To better balance I/O

and parallelize table space creation (because Oracle writes each block in a

datafile when it is added to a tablespace), it is best if each of the four tablespaces

on each group of 10 disks has its first datafile on a different disk. Thus the first

Phase Three - Creating, Populating, and Refreshing the Database

26-64 Oracle8i Tuning

tablespace has /dev/D1.1 as its first datafile, the second tablespace has /dev/D4.2
as its first datafile, and so on, as illustrated in Figure 26–9.

Figure 26–9 Datafile Layout for Parallel Load Example

Step 1: Create the Tablespaces and Add Datafiles in Parallel
Below is the command to create a tablespace named "Tsfacts1". Other tablespaces

are created with analogous commands. On a 10-CPU machine, it should be possible

to run all 12 CREATE TABLESPACE commands together. Alternatively, it might be

better to run them in two batches of 6 (two from each of the three groups of disks).

CREATE TABLESPACE Tsfacts1
DATAFILE /dev/D1.1' SIZE 1024MB REUSE
DATAFILE /dev/D2.1' SIZE 1024MB REUSE
DATAFILE /dev/D3.1' SIZE 1024MB REUSE
DATAFILE /dev/D4.1' SIZE 1024MB REUSE
DATAFILE /dev/D5.1' SIZE 1024MB REUSE
DATAFILE /dev/D6.1' SIZE 1024MB REUSE
DATAFILE /dev/D7.1' SIZE 1024MB REUSE
DATAFILE /dev/D8.1' SIZE 1024MB REUSE

����TSfacts1

����
TSfacts2

��TSfacts3

��
TSfacts4

����TSfacts5��TSfacts6��
��

TSfacts7

��
TSfacts8

��TSfacts9��
��

TSfacts10

��
TSfacts11

��
TSfacts12

/dev/D1.1

/dev/D1.2

/dev/D1.3

/dev/D1.4

/dev/D11.1

/dev/D11.2

/dev/D11.3

/dev/D11.4

/dev/D21.1

/dev/D21.2

/dev/D21.3

/dev/D21.4

����������
����������
��������
������

/dev/D2.1

/dev/D2.2

/dev/D2.3

/dev/D2.4

/dev/D12.1

/dev/D12.2

/dev/D12.3

/dev/D12.4

/dev/D22.1

/dev/D22.2

/dev/D22.3

/dev/D22.4

����������
����������
��������
������

/dev/D10.1

/dev/D10.2

/dev/D10.3

/dev/D10.4

/dev/D20.1

/dev/D20.2

/dev/D20.3

/dev/D20.4

/dev/D30.1

/dev/D30.2

/dev/D30.3

/dev/D30.4

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Phase Three - Creating, Populating, and Refreshing the Database

Tuning Parallel Execution 26-65

DATAFILE /dev/D9.1' SIZE 1024MB REUSE
DATAFILE /dev/D10.1 SIZE 1024MB REUSE
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0)
CREATE TABLESPACE Tsfacts2
DATAFILE /dev/D4.2' SIZE 1024MB REUSE
DATAFILE /dev/D5.2' SIZE 1024MB REUSE
DATAFILE /dev/D6.2' SIZE 1024MB REUSE
DATAFILE /dev/D7.2' SIZE 1024MB REUSE
DATAFILE /dev/D8.2' SIZE 1024MB REUSE
DATAFILE /dev/D9.2' SIZE 1024MB REUSE
DATAFILE /dev/D10.2 SIZE 1024MB REUSE
DATAFILE /dev/D1.2' SIZE 1024MB REUSE
DATAFILE /dev/D2.2' SIZE 1024MB REUSE
DATAFILE /dev/D3.2' SIZE 1024MB REUSE
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0)
...
CREATE TABLESPACE Tsfacts4
DATAFILE /dev/D10.4' SIZE 1024MB REUSE
DATAFILE /dev/D1.4' SIZE 1024MB REUSE
DATAFILE /dev/D2.4' SIZE 1024MB REUSE
DATAFILE /dev/D3.4 SIZE 1024MB REUSE
DATAFILE /dev/D4.4' SIZE 1024MB REUSE
DATAFILE /dev/D5.4' SIZE 1024MB REUSE
DATAFILE /dev/D6.4' SIZE 1024MB REUSE
DATAFILE /dev/D7.4' SIZE 1024MB REUSE
DATAFILE /dev/D8.4' SIZE 1024MB REUSE
DATAFILE /dev/D9.4' SIZE 1024MB REUSE
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0)
...
CREATE TABLESPACE Tsfacts12
DATAFILE /dev/D30.4' SIZE 1024MB REUSE
DATAFILE /dev/D21.4' SIZE 1024MB REUSE
DATAFILE /dev/D22.4' SIZE 1024MB REUSE
DATAFILE /dev/D23.4 SIZE 1024MB REUSE
DATAFILE /dev/D24.4' SIZE 1024MB REUSE
DATAFILE /dev/D25.4' SIZE 1024MB REUSE
DATAFILE /dev/D26.4' SIZE 1024MB REUSE
DATAFILE /dev/D27.4' SIZE 1024MB REUSE
DATAFILE /dev/D28.4' SIZE 1024MB REUSE
DATAFILE /dev/D29.4' SIZE 1024MB REUSE
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0)

Phase Three - Creating, Populating, and Refreshing the Database

26-66 Oracle8i Tuning

Extent sizes in the STORAGE clause should be multiples of the multiblock read size,

where:

blocksize * MULTIBLOCK_READ_COUNT = multiblock read size

INITIAL and NEXT should normally be set to the same value. In the case of parallel

load, make the extent size large enough to keep the number of extents reasonable,

and to avoid excessive overhead and serialization due to bottlenecks in the data

dictionary. When PARALLEL=TRUE is used for parallel loader, the INITIAL extent

is not used. In this case you can override the INITIAL extent size specified in the

tablespace default storage clause with the value specified in the loader control file,

for example, 64KB.

Tables or indexes can have an unlimited number of extents provided you have set

the COMPATIBLE system parameter to match the current release number, and use

the MAXEXTENTS keyword on the CREATE or ALTER command for the

tablespace or object. In practice, however, a limit of 10,000 extents per object is

reasonable. A table or index has an unlimited number of extents, so set the

PERCENT_INCREASE parameter to zero to have extents of equal size.

Step 2: Create the Partitioned Table
We create a partitioned table with 12 partitions, each in its own tablespace. The

table contains multiple dimensions and multiple measures. The partitioning column

is named "dim_2" and is a date. There are other columns as well.

CREATE TABLE fact (dim_1 NUMBER, dim_2 DATE, ...
meas_1 NUMBER, meas_2 NUMBER, ...)
PARALLEL
(PARTITION BY RANGE (dim_2)
PARTITION jan95 VALUES LESS THAN ('02-01-1995') TABLESPACE

Note: It is not desirable to allocate extents faster than about 2 or 3

per minute. See "ST (Space Transaction) Enqueue for Sorts and

Temporary Data" on page 27-12 for more information. Thus, each

process should get an extent that lasts for 3 to 5 minutes. Normally

such an extent is at least 50MB for a large object. Too small an

extent size incurs significant overhead and this affects performance

and scalability of parallel operations. The largest possible extent

size for a 4GB disk evenly divided into 4 partitions is 1GB. 100MB

extents should perform well. Each partition will have 100 extents.

You can then customize the default storage parameters for each

object created in the tablespace, if needed.

Phase Three - Creating, Populating, and Refreshing the Database

Tuning Parallel Execution 26-67

TSfacts1
PARTITION feb95 VALUES LESS THAN ('03-01-1995') TABLESPACE
TSfacts2
...
PARTITION dec95 VALUES LESS THAN ('01-01-1996') TABLESPACE
TSfacts12);

Step 3: Load the Partitions in Parallel
This section describes four alternative approaches to loading partitions in parallel.

The different approaches to loading help you manage the ramifications of the

PARALLEL=TRUE keyword of SQL*Loader that controls whether individual

partitions are loaded in parallel. The PARALLEL keyword entails restrictions such

as the following:

■ Indexes cannot be defined.

■ You need to set a small initial extent, because each loader session gets a new

extent when it begins, and it doesn’t use any existing space associated with the

object.

■ Space fragmentation issues arise.

However, regardless of the setting of this keyword, if you have one loader process

per partition, you are still effectively loading into the table in parallel.

Case 1

In this approach, assume 12 input files are partitioned in the same way as your

table. The DBA has 1 input file per partition of the table to be loaded. The DBA

starts 12 SQL*Loader sessions concurrently in parallel, entering statements like

these:

 SQLLDR DATA=jan95.dat DIRECT=TRUE CONTROL=jan95.ctl
 SQLLDR DATA=feb95.dat DIRECT=TRUE CONTROL=feb95.ctl
 . . .
 SQLLDR DATA=dec95.dat DIRECT=TRUE CONTROL=dec95.ctl

In the example, the keyword PARALLEL=TRUE is not set. A separate control file

per partition is necessary because the control file must specify the partition into

which the loading should be done. It contains a statement such as:

 LOAD INTO fact partition(jan95)

Phase Three - Creating, Populating, and Refreshing the Database

26-68 Oracle8i Tuning

The advantages of this approach are that local indexes are maintained by

SQL*Loader. You still get parallel loading, but on a partition level—without the

restrictions of the PARALLEL keyword.

A disadvantage is that you must partition the input prior to loading manually.

Case 2

In another common approach, assume an arbitrary number of input files that are

not partitioned in the same way as the table. The DBA can adopt a strategy of

performing parallel load for each input file individually. Thus if there are 7 input

files, the DBA can start 7 SQL*Loader sessions, using statements like the following:

 SQLLDR DATA=file1.dat DIRECT=TRUE PARALLEL=TRUE

Oracle partitions the input data so that it goes into the correct partitions. In this case

all the loader sessions can share the same control file, so there is no need to mention

it in the statement.

The keyword PARALLEL=TRUE must be used because each of the 7 loader sessions

can write into every partition. In case 1, every loader session would write into only

1 partition, because the data was partitioned prior to loading. Hence all the

PARALLEL keyword restrictions are in effect.

In this case Oracle attempts to spread the data evenly across all the files in each of

the 12 tablespaces—however an even spread of data is not guaranteed. Moreover,

there could be I/O contention during the load when the loader processes are

attempting to write to the same device simultaneously.

Case 3

In Case 3 (illustrated in the example), the DBA wants precise control over the load.

To achieve this, the DBA must partition the input data in the same way as the

datafiles are partitioned in Oracle.

This example uses 10 processes loading into 30 disks. To accomplish this, the DBA

must split the input into 120 files beforehand. The 10 processes will load the first

partition in parallel on the first 10 disks, then the second partition in parallel on the

second 10 disks, and so on through the 12th partition. The DBA runs the following

commands concurrently as background processes:

 SQLLDR DATA=jan95.file1.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D1.1
 ...
 SQLLDR DATA=jan95.file10.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D10.1
 WAIT;
 ...
 SQLLDR DATA=dec95.file1.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D30.4

Phase Three - Creating, Populating, and Refreshing the Database

Tuning Parallel Execution 26-69

 ...
 SQLLDR DATA=dec95.file10.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D29.4

For Oracle Parallel Server, divide the loader session evenly among the nodes. The

datafile being read should always reside on the same node as the loader session.

The keyword PARALLEL=TRUE must be used, because multiple loader sessions

can write into the same partition. Hence all the restrictions entailed by the

PARALLEL keyword are in effect. An advantage of this approach, however, is that

it guarantees that all of the data is precisely balanced, exactly reflecting your

partitioning.

Case 4

For this approach, all partitions must be in the same tablespace. You need to have

the same number of input files as datafiles in the tablespace, but you do not need to

partition the input the same way in which the table is partitioned.

For example, if all 30 devices were in the same tablespace, then you would

arbitrarily partition your input data into 30 files, then start 30 SQL*Loader sessions

in parallel. The statement starting up the first session would be similar to the

following:

 SQLLDR DATA=file1.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D1
 . . .
 SQLLDR DATA=file30.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D30

The advantage of this approach is that as in Case 3, you have control over the exact

placement of datafiles because you use the FILE keyword. However, you are not

required to partition the input data by value because Oracle does that for you.

A disadvantage is that this approach requires all the partitions to be in the same

tablespace. This minimizes availability.

Note: Although this example shows parallel load used with

partitioned tables, the two features can be used independent of one

another.

Phase Three - Creating, Populating, and Refreshing the Database

26-70 Oracle8i Tuning

Creating Temporary Tablespaces for Parallel Sort and Hash Join
For optimal space management performance use dedicated temporary tablespaces.

As with the TSfacts tablespace, we first add a single datafile and later add the

remainder in parallel as in this example:

 CREATE TABLESPACE TStemp TEMPORARY DATAFILE ’/dev/D31’
 SIZE 4096MB REUSE
 DEFAULT STORAGE (INITIAL 10MB NEXT 10MB PCTINCREASE 0);

Size of Temporary Extents
Temporary extents are all the same size, because the server ignores the

PCTINCREASE and INITIAL settings and only uses the NEXT setting for

temporary extents. This helps avoid fragmentation.

As a general rule, temporary extents should be smaller than permanent extents,

because there are more demands for temporary space, and parallel processes or

other operations running concurrently must share the temporary tablespace.

Normally, temporary extents should be in the range of 1MB to 10MB. Once you

allocate an extent it is yours for the duration of your operation. If you allocate a

large extent but only need to use a small amount of space, the unused space in the

extent is tied up.

At the same time, temporary extents should be large enough that processes do not

have to spend all their time waiting for space. Temporary tablespaces use less

overhead than permanent tablespaces when allocating and freeing a new extent.

However, obtaining a new temporary extent still requires the overhead of acquiring

a latch and searching through the SGA structures, as well as SGA space

consumption for the sort extent pool. Also, if extents are too small, SMON may take

a long time dropping old sort segments when new instances start up.

Operating System Striping of Temporary Tablespaces
Operating system striping is an alternative technique you can use with temporary

tablespaces. Media recovery, however, offers subtle challenges for large temporary

tablespaces. It does not make sense to mirror, use RAID, or back up a temporary

tablespace. If you lose a disk in an OS striped temporary space, you will probably

have to drop and recreate the tablespace. This could take several hours for our

120GB example. With Oracle striping, simply remove the defective disk from the

tablespace. For example, if /dev/D50 fails, enter:

 ALTER DATABASE DATAFILE ’/dev/D50’ RESIZE 1K;
 ALTER DATABASE DATAFILE ’/dev/D50’ OFFLINE;

Phase Three - Creating, Populating, and Refreshing the Database

Tuning Parallel Execution 26-71

Because the dictionary sees the size as 1KB, which is less than the extent size, the

corrupt file is not accessed. Eventually, you may wish to recreate the tablespace.

Be sure to make your temporary tablespace available for use:

 ALTER USER scott TEMPORARY TABLESPACE TStemp;

Creating Indexes in Parallel
Indexes on the fact table can be partitioned or non-partitioned. Local partitioned

indexes provide the simplest administration. The only disadvantage is that a search

of a local non-prefixed index requires searching all index partitions.

The considerations for creating index tablespaces are similar to those for creating

other tablespaces. Operating system striping with a small stripe width is often a

good choice, but to simplify administration it is best to use a separate tablespace for

each index. If it is a local index you may want to place it into the same tablespace as

the partition to which it corresponds. If each partition is striped over a number of

disks, the individual index partitions can be rebuilt in parallel for recovery.

Alternatively, operating system mirroring can be used. For these reasons the

NOLOGGING option of the index creation statement may be attractive for a data

warehouse.

Tablespaces for partitioned indexes should be created in parallel in the same

manner as tablespaces for partitioned tables.

Partitioned indexes are created in parallel using partition granules, so the maximum

DOP possible is the number of granules. Local index creation has less inherent

parallelism than global index creation, and so may run faster if a higher DOP is

used. The following statement could be used to create a local index on the fact table:

 CREATE INDEX I on fact(dim_1,dim_2,dim_3) LOCAL
 PARTITION jan95 TABLESPACE Tsidx1,
 PARTITION feb95 TABLESPACE Tsidx2,
 ...
 PARALLEL(DEGREE 12) NOLOGGING;

To backup or restore January data, you only need to manage tablespace Tsidx1.

See Also: For MPP systems, see your platform-specific

documentation regarding the advisability of disabling disk affinity

when using operating system striping.

Phase Three - Creating, Populating, and Refreshing the Database

26-72 Oracle8i Tuning

Executing Parallel SQL Statements
After analyzing your tables and indexes, you should see performance

improvements that scales linearly with the degree of parallelism used. The

following operations should scale:

■ Table scans

■ NESTED LOOP JOIN

■ SORT MERGE JOIN

■ HASH JOIN

■ "NOT IN"

■ GROUP BY

■ SELECT DISTINCT

■ UNION and UNION ALL

■ AGGREGATION

■ PL/SQL functions called from SQL

■ ORDER BY

■ CREATE TABLE AS SELECT

■ CREATE INDEX

■ REBUILD INDEX

■ REBUILD INDEX PARTITION

■ MOVE PARTITION

■ SPLIT PARTITION

■ UPDATE

Note: To maintain optimal performance, analyze your tablespaces

frequently so statistics are up-to-date.

See Also: Oracle8i Concepts for a discussion of partitioned

indexes. For more information on analyzing statistics, please refer

to Chapter 7, "Optimizer Modes, Plan Stability, and Hints"

Phase Three - Creating, Populating, and Refreshing the Database

Tuning Parallel Execution 26-73

■ DELETE

■ INSERT ... SELECT

■ ENABLE CONSTRAINT

■ STAR TRANSFORMATION

Start with simple parallel operations. Evaluate total I/O throughput with SELECT

COUNT(*) FROM facts. Evaluate total CPU power by adding a complex WHERE

clause. I/O imbalance may suggest a better physical database layout. After you

understand how simple scans work, add aggregation, joins, and other operations

that reflect individual aspects of the overall workload. Look for bottlenecks.

Besides query performance you should also monitor parallel load, parallel index

creation, and parallel DML, and look for good utilization of I/O and CPU resources.

Using EXPLAIN PLAN to Show Parallel Operations Plans
Use the EXPLAIN PLAN command to see the execution plans for parallel queries.

EXPLAIN PLAN output shows optimizer information in the COST, BYTES, and

CARDINALITY columns. For more information on using EXPLAIN PLAN, please

refer to Chapter 13, "Using EXPLAIN PLAN".

There are several ways to optimize the parallel execution of join statements. You can

alter your system’s configuration, adjust parameters as discussed earlier in this

chapter, or use hints, such as the DISTRIBUTION hint. For more information on

hints for parallel operations, please refer to "Hints for Parallel Execution" on

page 7-57.

Additional Considerations for Parallel DML
When you want to refresh your data warehouse database using parallel insert,

update, or delete on a data warehouse, there are additional issues to consider when

designing the physical database. These considerations do not affect parallel

execution operations. These issues are:

■ Limitation on the Degree of Parallelism

■ Using Local and Global Striping

■ Increasing INITRANS and MAXTRANS

■ Limitation on Available Number of Transaction Free Lists

■ Using Multiple Archivers

Phase Three - Creating, Populating, and Refreshing the Database

26-74 Oracle8i Tuning

■ [NO]LOGGING Option

PDML and Direct-load Restrictions
A complete listing of PDML and direct-load insert restrictions is found in Oracle8i
Concepts. If a parallel restriction is violated, the operation is simply performed

serially. If a direct-load insert restriction is violated, then the APPEND hint is

ignored and a conventional insert is performed. No error message is returned.

Limitation on the Degree of Parallelism
If you are performing parallel insert, update, or delete operations, the DOP is equal

to or less than the number of partitions in the table.

Using Local and Global Striping
Parallel DML works mostly on partitioned tables. It does not use asynchronous I/O

and may generate a high number of random I/O requests during index

maintenance of parallel UPDATE and DELETE operations. For local index

maintenance, local striping is most efficient in reducing I/O contention, because one

server process only goes to its own set of disks and disk controllers. Local striping

also increases availability in the event of one disk failing.

For global index maintenance, (partitioned or non-partitioned), globally striping the

index across many disks and disk controllers is the best way to distribute the

number of I/Os.

Increasing INITRANS and MAXTRANS
If you have global indexes, a global index segment and global index blocks are

shared by server processes of the same parallel DML statement. Even if the

operations are not performed against the same row, the server processes may share

the same index blocks. Each server transaction needs one transaction entry in the

index block header before it can make changes to a block. Therefore, in the CREATE

INDEX or ALTER INDEX statements, you should set INITRANS, the initial number

of transactions allocated within each data block, to a large value, such as the

maximum DOP against this index. Leave MAXTRANS, the maximum number of

concurrent transactions that can update a data block, at its default value, which is

the maximum your system can support. This value should not exceed 255.

See Also: "Phase Three - Creating, Populating, and Refreshing the

Database" on page 26-63.

Phase Three - Creating, Populating, and Refreshing the Database

Tuning Parallel Execution 26-75

If you run a DOP of 10 against a table with a global index, all 10 server processes

might attempt to change the same global index block. For this reason you must set

MAXTRANS to at least 10 so all server processes can make the change at the same

time. If MAXTRANS is not large enough, the parallel DML operation fails.

Limitation on Available Number of Transaction Free Lists
Once a segment has been created, the number of process and transaction free lists is

fixed and cannot be altered. If you specify a large number of process free lists in the

segment header, you may find that this limits the number of transaction free lists

that are available. You can abate this limitation the next time you recreate the

segment header by decreasing the number of process free lists; this leaves more

room for transaction free lists in the segment header.

For UPDATE and DELETE operations, each server process may require its own

transaction free list. The parallel DML DOP is thus effectively limited by the

smallest number of transaction free lists available on any of the global indexes the

DML statement must maintain. For example, if you have two global indexes, one

with 50 transaction free lists and one with 30 transaction free lists, the DOP is

limited to 30.

The FREELISTS parameter of the STORAGE clause is used to set the number of

process free lists. By default, no process free lists are created.

The default number of transaction free lists depends on the block size. For example,

if the number of process free lists is not set explicitly, a 4KB block has about 80

transaction free lists by default. The minimum number of transaction free lists is 25.

Using Multiple Archivers
Parallel DDL and parallel DML operations may generate a large amount of redo

logs. A single ARCH process to archive these redo logs might not be able to keep

up. To avoid this problem, you can spawn multiple archiver processes. This can be

done manually or by using a job queue.

Database Writer Process (DBWn) Workload
Parallel DML operations dirty a large number of data, index, and undo blocks in the

buffer cache during a short period of time. If you see a high number of

"FREE_BUFFER_WAITS" after querying the V$SYSTEM_EVENT view as in the

following syntax:

See Also: Oracle8i Parallel Server Concepts and Administration for

information about transaction free lists.

Phase Three - Creating, Populating, and Refreshing the Database

26-76 Oracle8i Tuning

 SELECT TOTAL_WAITS FROM V$SYSTEM_EVENT WHERE EVENT = ’FREE BUFFER WAITS’;

Tune the DBWn process(es). If there are no waits for free buffers, the above query

does not return any rows.

[NO]LOGGING Option
The [NO]LOGGING option applies to tables, partitions, tablespaces, and indexes.

Virtually no log is generated for certain operations (such as direct-load INSERT) if

the NOLOGGING option is used. The NOLOGGING attribute is not specified at the

INSERT statement level, but is instead specified when using the ALTER or CREATE

command for the table, partition, index, or tablespace.

When a table or index has NOLOGGING set, neither parallel nor serial direct-load

INSERT operations generate undo or redo logs. Processes running with the

NOLOGGING option set run faster because no redo is generated. However, after a

NOLOGGING operation against a table, partition, or index, if a media failure

occurs before a backup is taken, then all tables, partitions, and indexes that have

been modified may be corrupted.

For backward compatibility, [UN]RECOVERABLE is still supported as an alternate

keyword with the CREATE TABLE command. This alternate keyword may not be

supported, however, in future releases.

At the tablespace level, the logging clause specifies the default logging attribute for

all tables, indexes, and partitions created in the tablespace. When an existing

tablespace logging attribute is changed by the ALTER TABLESPACE statement,

then all tables, indexes, and partitions created after the ALTER statement will have

the new logging attribute; existing ones will not change their logging attributes. The

tablespace level logging attribute can be overridden by the specifications at the

table, index, or partition level.

See Also: "Tuning the Redo Log Buffer" on page 19-6.

Note: Direct-load INSERT operations (except for dictionary

updates) never generate undo logs. The NOLOGGING attribute

does not affect undo, but only redo. To be precise, NOLOGGING

allows the direct-load INSERT operation to generate a negligible

amount of redo (range-invalidation redo, as opposed to full image

redo).

Phase Three - Creating, Populating, and Refreshing the Database

Tuning Parallel Execution 26-77

The default logging attribute is LOGGING. However, if you have put the database

in NOARCHIVELOG mode, by issuing ALTER DATABASE NOARCHIVELOG,

then all operations that can be done without logging will not generate logs,

regardless of the specified logging attribute.

See Also: Oracle8i SQL Reference.

Phase Four - Monitoring Parallel Execution Performance

26-78 Oracle8i Tuning

Phase Four - Monitoring Parallel Execution Performance
Phase Four discusses the following topics for monitoring parallel execution

performance:

■ Monitoring Parallel Execution Performance with Dynamic Performance Views

■ Monitoring Session Statistics

■ Monitoring Operating System Statistics

Monitoring Parallel Execution Performance with Dynamic Performance Views
After your system has run for a few days, monitor parallel execution performance

statistics to determine whether your parallel processing is optimal. Do this using

any of the views discussed in this phase.

View Names in Oracle Parallel Server
In Oracle Parallel Server, global versions of views described in this phase aggregate

statistics from multiple instances. The global views have names beginning with "G",

such as GV$FILESTAT for V$FILESTAT, and so on.

V$PX_SESSION
The V$PX_SESSION view shows data about query server sessions, groups, sets, and

server numbers. Displays real-time data about the processes working on behalf of

parallel execution. This table includes information about the requested DOP and

actual DOP granted to the operation.

V$PX_SESSTAT
The V$PX_SESSTAT view provides a join of the session information from

V$PX_SESSION and the V$SESSTAT table. Thus, all session statistics available to a

normal session are available for all sessions performed using parallel execution.

V$PX_PROCESS
The V$PX_PROCESS view contains information about the parallel processes.

Includes status, session ID, Process ID and other information.

V$PX_PROCESS_SYSSTAT
The V$PX_PROCESS_SYSSTAT view shows the status of query servers and

provides buffer allocation statistics.

Phase Four - Monitoring Parallel Execution Performance

Tuning Parallel Execution 26-79

V$PQ_SESSTAT
The V$PQ_SESSTAT view shows the status of all current server groups in the

system such as data about how queries allocate processes and how the multi-user

and load balancing algorithms are affecting the default and hinted values.

V$PQ_SESSTAT will be obsolete in a future release.

You may need to adjust some parameter settings to improve performance after

reviewing data from these views. In this case, refer to the discussion of "Step Three:

Tuning General Parameters" on page 26-9. Query these views periodically to

monitor the progress of long-running parallel operations.

.

V$FILESTAT
The V$FILESTAT view sums read and write requests, the number of blocks, and

service times for every datafile in every tablespace. Use V$FILESTAT to diagnose

I/O and workload distribution problems.

You can join statistics from V$FILESTAT with statistics in the DBA_DATA_FILES

view to group I/O by tablespace or to find the filename for a given file number.

Using a ratio analysis, you can determine the percentage of the total tablespace

activity used by each file in the tablespace. If you make a practice of putting just one

large, heavily accessed object in a tablespace, you can use this technique to identify

objects that have a poor physical layout.

You can further diagnose disk space allocation problems using the DBA_EXTENTS

view. Ensure that space is allocated evenly from all files in the tablespace.

Monitoring V$FILESTAT during a long-running operation and then correlating I/O

activity to the EXPLAIN PLAN output is a good way to follow progress.

Note: For many dynamic performance views, you must set the

parameter TIMED_STATISTICS to TRUE in order for Oracle to

collect statistics for each view. You can use the ALTER SYSTEM or

ALTER SESSION commands to turn TIMED_STATISTICS on and

off.

See Also: For more information on collecting statistics with the

DBMS_STATS package, refer to Chapter 7, "Optimizer Modes, Plan

Stability, and Hints".

Phase Four - Monitoring Parallel Execution Performance

26-80 Oracle8i Tuning

V$PARAMETER
The V$PARAMETER view lists the name, current value, and default value of all

system parameters. In addition, the view shows whether a parameter is a session

parameter that you can modify online with an ALTER SYSTEM or ALTER SESSION

command.

V$PQ_TQSTAT
The V$PQ_TQSTAT view provides a detailed report of message traffic at the table

queue level. V$PQ_TQSTAT data is valid only when queried from a session that is

executing parallel SQL statements. A table queue is the pipeline between query

server groups or between the parallel coordinator and a query server group or

between a query server group and the coordinator. Table queues are represented in

EXPLAIN PLAN output by the row labels of PARALLEL_TO_PARALLEL,

SERIAL_TO_PARALLEL, or PARALLEL_TO_SERIAL, respectively.

V$PQ_TQSTAT has a row for each query server process that reads from or writes to

in each table queue. A table queue connecting 10 consumer processes to 10

producer processes has 20 rows in the view. Sum the bytes column and group by

TQ_ID, the table queue identifier, to obtain the total number of bytes sent through

each table queue. Compare this with the optimizer estimates; large variations may

indicate a need to analyze the data using a larger sample.

Compute the variance of bytes grouped by TQ_ID. Large variances indicate

workload imbalances. You should investigate large variances to determine whether

the producers start out with unequal distributions of data, or whether the

distribution itself is skewed. If the data itself is skewed, this may indicate a low

cardinality, or low number of distinct values.

V$SESSTAT and V$SYSSTAT
The V$SESSTAT view provides parallel execution statistics for each session. The

statistics include total number of queries, DML and DDL statements executed in a

session and the total number of intra- and inter-instance messages exchanged

during parallel execution during the session.

V$SYSSTAT does the same as V$SESSTAT for the entire system.

Note: The V$PQ_TQSTAT view will be renamed in a future

release to V$PX_TQSTSAT.

See Also: Chapter 16, "Dynamic Performance Views".

Phase Four - Monitoring Parallel Execution Performance

Tuning Parallel Execution 26-81

Monitoring Session Statistics
These examples use the dynamic performance views just described.

Use V$PX_SESSION to determine the configuration of the server group executing in

parallel. In this example, Session ID 9 is the query coordinator, while sessions 7 and

21 are in the first group, first set. Sessions 18 and 20 are in the first group, second

set. The requested and granted DOP for this query is 2 as shown by Oracle’s

response to the following query:

 SELECT QCSID, SID, INST_ID "Inst",
 SERVER_GROUP "Group", SERVER_SET "Set",
 DEGREE "Degree", REQ_DEGREE "Req Degree"
 FROM GV$PX_SESSION
 ORDER BY QCSID, QCINST_ID, SERVER_GROUP, SERVER_SET;

Oracle responds with:

QCSID SID Inst Group Set Degree Req Degree
---------- ---------- ---------- ---------- ---------- ---------- ----------
 9 9 1
 9 7 1 1 1 2 2
 9 21 1 1 1 2 2
 9 18 1 1 2 2 2
 9 20 1 1 2 2 2
5 rows selected.

The processes shown in the output from the previous example using

GV$PX_SESSION collaborate to complete the same task. In the next example, we

execute a join query to determine the progress of these processes in terms of

physical reads. Use this query to track any specific statistic:

 SELECT QCSID, SID, INST_ID "Inst",
 SERVER_GROUP "Group", SERVER_SET "Set" ,
 NAME "Stat Name", VALUE
 FROM GV$PX_SESSTAT A, V$STATNAME B
 WHERE A.STATISTIC# = B.STATISTIC#
 AND NAME LIKE ’PHYSICAL READS’
 AND VALUE > 0
 ORDER BY QCSID, QCINST_ID, SERVER_GROUP, SERVER_SET;

Note: For a single instance, select from V$PX_SESSION and do

not include the column name "Instance ID".

Phase Four - Monitoring Parallel Execution Performance

26-82 Oracle8i Tuning

Oracle responds with output similar to:

QCSID SID Inst Group Set Stat Name VALUE
------ ----- ------ ------ ------ ------------------ ----------
 9 9 1 physical reads 3863
 9 7 1 1 1 physical reads 2
 9 21 1 1 1 physical reads 2
 9 18 1 1 2 physical reads 2
 9 20 1 1 2 physical reads 2
5 rows selected.

Use the previous type of query to track statistics in V$STATNAME. Repeat this

query as often as required to observe the progress of the query server processes.

The next query uses V$PX_PROCESS to check the status of the query servers.

 SELECT * FROM V$PX_PROCESS;

Your output should be similar to the following:

SERV STATUS PID SPID SID SERIAL
---- --------- ------ --------- ------ ------
P002 IN USE 16 16955 21 7729
P003 IN USE 17 16957 20 2921
P004 AVAILABLE 18 16959
P005 AVAILABLE 19 16962
P000 IN USE 12 6999 18 4720
P001 IN USE 13 7004 7 234
6 rows selected.

Monitoring System Statistics
The V$SYSSTAT and V$SESSTAT views contain several statistics for monitoring

parallel execution. Use these statistics to track the number of parallel queries,

DMLs, DDLs, DFOs, and operations. Each query, DML, or DDL can have multiple

parallel operations and multiple DFOs.

In addition, statistics also count the number of query operations for which the DOP

was reduced, or downgraded, due to either the adaptive multi-user algorithm or

due to the depletion of available parallel execution servers.

See Also: For more details about these views, please refer to the

Oracle8i Reference.

Phase Four - Monitoring Parallel Execution Performance

Tuning Parallel Execution 26-83

Finally, statistics in these views also count the number of messages sent on behalf of

parallel execution. The following syntax is an example of how to display these

statistics:

 SELECT NAME, VALUE FROM GV$SYSSTAT
 WHERE UPPER (NAME) LIKE ’%PARALLEL OPERATIONS%’
 OR UPPER (NAME) LIKE ’%PARALLELIZED%’
 OR UPPER (NAME) LIKE ’%PX%’ ;
 Oracle responds with output similar to:

NAME VALUE
-- ----------
queries parallelized 347
DML statements parallelized 0
DDL statements parallelized 0
DFO trees parallelized 463
Parallel operations not downgraded 28
Parallel operations downgraded to serial 31
Parallel operations downgraded 75 to 99 pct 252
Parallel operations downgraded 50 to 75 pct 128
Parallel operations downgraded 25 to 50 pct 43
Parallel operations downgraded 1 to 25 pct 12
PX local messages sent 74548
PX local messages recv’d 74128
PX remote messages sent 0
PX remote messages recv’d 0

14 rows selected.

Monitoring Operating System Statistics
There is considerable overlap between information available in Oracle and

information available though operating system utilities (such as sar and vmstat on

UNIX-based systems). Operating systems provide performance statistics on I/O,

communication, CPU, memory and paging, scheduling, and synchronization

primitives. The Oracle V$SESSTAT view provides the major categories of OS

statistics as well.

Typically, operating system information about I/O devices and semaphore

operations is harder to map back to database objects and operations than is Oracle

information. However, some operating systems have good visualization tools and

efficient means of collecting the data.

Phase Four - Monitoring Parallel Execution Performance

26-84 Oracle8i Tuning

Operating system information about CPU and memory usage is very important for

assessing performance. Probably the most important statistic is CPU usage. The

goal of low -level performance tuning is to become CPU bound on all CPUs. Once

this is achieved, you can move up a level and work at the SQL level to find an

alternate plan that might be more I/O intensive but uses less CPU.

Operating system memory and paging information is valuable for fine tuning the

many system parameters that control how memory is divided among

memory-intensive warehouse subsystems like parallel communication, sort, and

hash join.

Understanding Parallel Execution Performance Issues 27-1

27
Understanding Parallel Execution

Performance Issues

This chapter provides a conceptual explanation of parallel execution performance

issues and additional performance enhancement techniques. It also summarizes

tools and techniques you can use to obtain performance feedback on parallel

operations and explains how to resolve performance problems.

■ Understanding Parallel Execution Performance Issues

■ Parallel Execution Tuning Tips

■ Diagnosing Problems

Understanding Parallel Execution Performance Issues
■ Formula for Memory, Users, and Parallel Execution Server Processes

■ Setting Buffer Pool Size for Parallel Operations

■ Balancing the Formula

■ Examples: Balancing Memory, Users, and Parallel Execution Servers

■ Parallel Execution Space Management Issues

■ Tuning Parallel Execution on Oracle Parallel Server

See Also: Oracle8i Concepts, for basic principles of parallel

execution. Also see your operating system-specific Oracle

documentation for more information about tuning while using

parallel execution. See your operating system-specific Oracle

documentation for more information about tuning while using

parallel execution.

Understanding Parallel Execution Performance Issues

27-2 Oracle8i Tuning

Formula for Memory, Users, and Parallel Execution Server Processes
A key to the tuning of parallel operations is an understanding of the relationship

between memory requirements, the number of users (processes) a system can

support, and the maximum number of parallel execution servers. The goal is to

obtain dramatic performance enhancements made possible by parallelizing certain

operations, and by using hash joins rather than sort merge joins. You must balance

this performance goal with the need to support multiple users.

In considering the maximum number of processes a system can support, it is useful

to divide the processes into three classes, based on their memory requirements.

Table 27–1 defines high, medium, and low memory processes.

Analyze the maximum number of processes that can fit in memory as follows:

Figure 27–1 Formula for Memory/Users/Server Relationship

sga_size
+ (# low_memory_processes * low_memory_required)
+ (# medium_memory_processes * medium_memory_required)
+ (# high_memory_processes * high_memory_required)

total memory required

Understanding Parallel Execution Performance Issues

Understanding Parallel Execution Performance Issues 27-3

Table 27–1 Memory Requirements for Three Classes of Process

Class Description

Low Memory Processes:

100KB to 1MB

Low Memory Processes include table scans, index lookups, index nested
loop joins; single-row aggregates (such as sum or average with no GROUP
BYs, or very few groups), and sorts that return only a few rows; and direct
loading.

This class of Data Warehousing process is similar to OLTP processes in the
amount of memory required. Process memory could be as low as a few
hundred kilobytes of fixed overhead. You could potentially support
thousands of users performing this kind of operation. You can take this
requirement even lower by using the multi-threaded server, and support
even more users.

Medium Memory Processes:

1MB to 10MB

Medium Memory Processes include large sorts, sort merge join, GROUP
BY or ORDER BY operations returning a large number of rows, parallel
insert operations that involve index maintenance, and index creation.

These processes require the fixed overhead needed by a low memory
process, plus one or more sort areas, depending on the operation. For
example, a typical sort merge join would sort both its inputs—resulting in
two sort areas. GROUP BY or ORDER BY operations with many groups or
rows also require sort areas.

Look at the EXPLAIN PLAN output for the operation to identify the
number and type of joins, and the number and type of sorts. Optimizer
statistics in the plan show the size of the operations. When planning joins,
remember that you have several choices. The EXPLAIN PLAN statement is
described in Chapter 13, "Using EXPLAIN PLAN".

High Memory Processes:

10MB to 100MB

High memory processes include one or more hash joins, or a combination
of one or more hash joins with large sorts.

These processes require the fixed overhead needed by a low memory
process, plus hash area. The hash area size required might range from 8MB
to 32MB, and you might need two of them. If you are performing 2 or more
serial hash joins, each process uses 2 hash areas. In a parallel operation,
each parallel execution server does at most 1 hash join at a time; therefore,
you would need 1 hash area size per server.

In summary, the amount of hash join memory for an operation equals the
DOP multiplied by hash area size, multiplied by the lesser of either 2 or the
number of hash joins in the operation.

Understanding Parallel Execution Performance Issues

27-4 Oracle8i Tuning

Setting Buffer Pool Size for Parallel Operations
The formula to calculate the maximum number of processes your system can

support (referred to here as max_processes) is:

Figure 27–2 Formula for Calculating the Maximum Number of Processes

In general, if the value for max_processes is much larger than the number of users,

consider using parallel operations. If max_processes is considerably less than the

number of users, consider other alternatives, such as those described in "Balancing

the Formula" on page 27-5.

With the exception of parallel update and delete, parallel operations do not

generally benefit from larger buffer pool sizes. Parallel update and delete benefit

from a larger buffer pool when they update indexes. This is because index updates

have a random access pattern and I/O activity can be reduced if an entire index or

its interior nodes can be kept in the buffer pool. Other parallel operations can

benefit only if you can increase the size of the buffer pool and thereby accommodate

the inner table or index for a nested loop join.

Note: The process memory requirements of parallel DML (Data

Manipulation Language) and parallel DDL (Data Definition

Language) operations also depend upon the query portion of the

statement.

See Also: "Tuning the Buffer Cache" on page 19-25 for

information about setting the buffer pool size.

low_memory_processes
+ # medium_memory_processes
+ # high_memory_processes

max_processes

Understanding Parallel Execution Performance Issues

Understanding Parallel Execution Performance Issues 27-5

Balancing the Formula
Use the following techniques to balance the memory/users/server formula given in

Figure 27–1:

■ Oversubscribing with Attention to Paging

■ Reducing the Number of Memory-Intensive Processes

■ Decreasing Data Warehousing Memory per Process

■ Decreasing Parallelism for Multiple Users

Oversubscribing with Attention to Paging
You can permit the potential workload to exceed the limits recommended in the

formula. Total memory required, minus the SGA size, can be multiplied by a factor

of 1.2, to allow for 20% oversubscription. Thus, if you have 1GB of memory, you

might be able to support 1.2GB of demand: the other 20% could be handled by the

paging system.

You must, however, verify that a particular degree of oversubscription is viable on

your system. Do this by monitoring the paging rate and making sure you are not

spending more than a very small percent of the time waiting for the paging

subsystem. Your system may perform acceptably even if oversubscribed by 60%, if

on average not all of the processes are performing hash joins concurrently. Users

might then try to use more than the available memory, so you must continually

monitor paging activity in such a situation. If paging dramatically increases,

consider other alternatives.

On average, no more than 5% of the time should be spent simply waiting in the

operating system on page faults. More than 5% wait time indicates your paging

subsystem is I/O bound. Use your operating system monitor to check wait time:

The sum of time waiting and time running equals 100%. If your total system load is

close to 100% of your CPU, your system is not spending a lot of time waiting. If you

are waiting, it is not be due to paging.

If wait time for paging devices exceeds 5%, you must most likely reduce memory

requirements in one of these ways:

■ Reducing the memory required for each class of process

■ Reducing the number of processes in memory-intensive classes

■ Adding memory

Understanding Parallel Execution Performance Issues

27-6 Oracle8i Tuning

If the wait time indicates an I/O bottleneck in the paging subsystem, you could

resolve this by striping.

Reducing the Number of Memory-Intensive Processes
This section describes two things you can do to reduce the number of

memory-intensive processes:

■ Adjusting the Degree of Parallelism

■ Scheduling Parallel Jobs

Adjusting the Degree of Parallelism. You can adjust not only the number of operations

that run in parallel, but also the DOP (degree of parallelism) with which operations

run. To do this, issue an ALTER TABLE statement with a PARALLEL clause, or use

a hint.

You can limit the parallel pool by reducing the value of

PARALLEL_MAX_SERVERS. Doing so places a system-level limit on the total

amount of parallelism. It also makes your system easier to administer. More

processes are then forced to run in serial mode.

If you enable the parallel adaptive multi-user feature by setting the

PARALLEL_ADATIVE_MULTI_USER parameter to TRUE, Oracle controls adjusts

DOP based on user load.

Scheduling Parallel Jobs Queueing jobs is another way to reduce the number of

processes but not reduce parallelism. Rather than reducing parallelism for all

operations, you may be able to schedule large parallel batch jobs to run with full

parallelism one at a time, rather than concurrently. Queries at the head of the queue

would have a fast response time, those at the end of the queue would have a slow

response time. However, this method entails a certain amount of administrative

overhead.

See Also: For more information on parallel execution, refer to

Chapter 26, "Tuning Parallel Execution". For more information

about the ALTER TABLE statement, refer to the Oracle8i SQL
Reference.

See Also: For more information on the parallel adaptive

multi-user feature, please refer to "Degree of Parallelism and

Adaptive Multi-User and How They Interact" on page 26-7.

Understanding Parallel Execution Performance Issues

Understanding Parallel Execution Performance Issues 27-7

Decreasing Data Warehousing Memory per Process
The following discussion focuses upon the relationship of HASH_AREA_SIZE to

memory, but all the same considerations apply to SORT_AREA_SIZE. The lower

bound of SORT_AREA_SIZE, however, is not as critical as the 8MB recommended

minimum HASH_AREA_SIZE.

If every operation performs a hash join and a sort, the high memory requirement

limits the number of processes you can have. To allow more users to run

concurrently you may need to reduce the data warehouse’s process memory.

Moving Processes from High to Medium Memory Requirements You can move a process

from the high-memory to the medium-memory class by reducing the value for

HASH_AREA_SIZE. With the same amount of memory, Oracle always processes

hash joins faster than sort merge joins. Therefore, Oracle does not recommend that

you make your hash area smaller than your sort area.

Moving Processes from High or Medium Memory Requirements to Low Memory Requirements
If you need to support thousands of users, create access paths so operations do not

access data unnecessarily. To do this, perform one or more of the following:

■ Decrease the demand for index joins by creating indexes and/or summary

tables.

■ Decrease the demand for GROUP BY sorting by creating summary tables and

encouraging users and applications to reference summaries and materialized

views rather than detailed data.

■ Decrease the demand for ORDER BY sorts by creating indexes on frequently

sorted columns.

Decreasing Parallelism for Multiple Users
The easiest way to decrease parallelism for multiple users is to enable the parallel

adaptive multi-user feature as described under the heading "Degree of Parallelism

and Adaptive Multi-User and How They Interact" on page 26-7.

If you decide to control this manually, however, there is a trade-off between

parallelism for fast single-user response time and efficient use of resources for

multiple users. For example, a system with 2GB of memory and a

HASH_AREA_SIZE of 32MB can support about 60 parallel execution servers. A 10

CPU machine can support up to 3 concurrent parallel operations (2 * 10 * 3 = 60). To

See Also: For more information about summary tables, please

refer to Section VI, "Materialized Views".

Understanding Parallel Execution Performance Issues

27-8 Oracle8i Tuning

support 12 concurrent parallel operations, you could override the default

parallelism (reduce it), decrease HASH_AREA_SIZE, buy more memory, or you

could use some combination of these three strategies. Thus you could ALTER

TABLE t PARALLEL (DOP = 5) for all parallel tables t, set HASH_AREA_SIZE to

16MB, and increase PARALLEL_MAX_SERVERS to 120. By reducing the memory of

each parallel server by a factor of 2, and reducing the parallelism of a single

operation by a factor of 2, the system can accommodate 2 * 2 = 4 times more

concurrent parallel operations.

The penalty for using such an approach is that when a single operation happens to

be running, the system uses just half the CPU resource of the 10 CPU machine. The

other half is idle until another operation is started.

To determine whether your system is being fully utilized, use one of the graphical

system monitors available on most operating systems. These monitors often give

you a better idea of CPU utilization and system performance than monitoring the

execution time of an operation. Consult your operating system documentation to

determine whether your system supports graphical system monitors.

Examples: Balancing Memory, Users, and Parallel Execution Servers
The examples in this section show how to evaluate the relationship between

memory, users, and parallel execution servers, and balance the formula given in

Figure 27–1. They show concretely how you might adjust your system workload to

accommodate the necessary number of processes and users.

Example 1
Assume your system has 1GB of memory, the DOP is 10, and that your users

perform 2 hash joins with 3 or more tables. If you need 300MB for the SGA, that

Understanding Parallel Execution Performance Issues

Understanding Parallel Execution Performance Issues 27-9

leaves 700MB to accommodate processes. If you allow a generous hash area size,

such as 32MB, then your system can support:

Figure 27–3 Formula for Balancing Memory, Users, and Processes

This makes a total of 704MB. In this case, the memory is not significantly

oversubscribed.

Remember that every parallel, hash, or sort merge join operation takes a number of

parallel execution servers equal to twice the DOP, utilizing 2 server sets, and often

each individual process of a parallel operation uses a significant amount of memory.

Thus you can support many more users by running their processes serially, or by

using less parallelism to run their processes.

To service more users, you can reduce hash area size to 2MB. This configuration can

support 17 parallel operations, or 170 serial operations, but response times may be

significantly higher than if you were using hash joins.

The trade-off in this example reveals that by reducing memory per process by a

factor of 16, you can increase the number of concurrent users by a factor of 16. Thus

the amount of physical memory on the machine imposes another limit on the total

number of parallel operations you can run involving hash joins and sorts.

Example 2
In a mixed workload example, consider a user population with diverse needs, as

described in Table 27–2. In this situation, you would have to selectively allocate

resources. You could not allow everyone to run hash joins—even though they

outperform sort merge joins—because you do not have adequate memory to

support workload level.

You might consider it safe to oversubscribe by 50%, because of the infrequent batch

jobs that run during the day: 700MB * 1.5 = 1.05GB. This gives you enough virtual

memory for the total workload.

1 parallel operation (32MB * 10 * 2 = 640MB)

1 serial operation (32MB * 2 = 64MB)

Understanding Parallel Execution Performance Issues

27-10 Oracle8i Tuning

Example 3
Suppose your system has 2GB of memory and you have 200 query server processes

and 100 users doing performing heavy data warehousing operations involving hash

joins. You decide not to consider tasks such as index retrievals and small sorts.

Instead, you concentrate on the high memory processes. You might have 300

processes, of which 200 must come from the parallel pool and 100 are single

threaded. One quarter of the total 2GB of memory might be used by the SGA,

leaving 1.5GB of memory to handle all the processes. You could apply the formula

considering only the high memory requirements, including a factor of 20%

oversubscription:

Figure 27–4 Formula for Memory/User/Server Relationship: High-Memory Processes

Here, 5MB = 1.8GB/300. Less than 5MB of hash area would be available for each

process, whereas 8MB is the recommended minimum. If you must have 300

processes, you may need to reduce hash area size to change them from the highly

Table 27–2 How to Accommodate a Mixed Workload

User Needs How to Accommodate

DBA: runs nightly batch jobs, and
occasional batch jobs during the day.
These might be parallel operations that
perform hash joins and thus use a lot of
memory.

You might take 20 parallel execution servers, and set
HASH_AREA_SIZE to a mid-range value, perhaps 20MB, for a single
powerful batch job in the high memory class. This might be a large
GROUP BY operation with a join to produce a summary of data.
Twenty servers multiplied by 20MB equals 400MB of memory.

Analysts: interactive users who extract
data for their spreadsheets.

You might plan for 10 analysts running serial operations that use
complex hash joins accessing a large amount of data. You would not
allow them to perform parallel operations because of memory
requirements. Ten such serial processes at 40MB each equals 400MB
of memory.

Users: Several hundred users
performing simple lookups of
individual customer accounts, and
making reports on already joined,
partially summarized data.

To support hundreds of users performing low memory processes at
about 0.5MB each, you might reserve 200MB.

high_memory_req’d = 1.2 = =*
total_memory

#_high-memory_processes

1.5GB * 1.2

300

1.8GB

300

Understanding Parallel Execution Performance Issues

Understanding Parallel Execution Performance Issues 27-11

memory-intensive class to the moderately memory-intensive class. Then they may

fit within your system’s constraints.

Example 4
Consider a system with 2GB of memory and 10 users who want to run intensive

data warehousing parallel operations concurrently and still have good

performance. If you choose a DOP of 10, then the 10 users will require 200

processes. (Processes running large joins need twice the number of parallel

execution servers as the DOP, so you would set PARALLEL_MAX_SERVERS to 10 *

10 * 2.) In this example each process would get 1.8GB/200—or about 9MB of hash

area—which should be adequate.

With only 5 users doing large hash joins, each process would get over 16MB of hash

area, which would be fine. But if you want 32MB available for lots of hash joins, the

system could only support 2 or 3 users. By contrast, if users are just computing

aggregates the system needs adequate sort area size—and can have many more

users.

Example 5
If a system with 2GB of memory needs to support 1000 users, all of them running

large queries, you must evaluate the situation carefully. Here, the per-user memory

budget is only 1.8MB (that is, 1.8GB divided by 1,000). Since this figure is at the low

end of the medium memory process class, you must rule out parallel operations,

which use even more resources. You must also rule out large hash joins. Each

sequential process could require up to 2 hash areas plus the sort area, so you would

have to set HASH_AREA_SIZE to the same value as SORT_AREA_SIZE, which

would be 600KB(1.8MB/3). Such a small hash area size is likely to be ineffective.

Given the organization’s resources and business needs, is it reasonable for you to

upgrade your system’s memory? If memory upgrade is not an option, then you

must change your expectations. To adjust the balance you might:

■ Accept the fact that the system will actually support a limited number of users

executing large hash joins.

■ Give the users access to summary tables, rather than to the whole database.

■ Classify users into different groups, and give some groups more memory than

others. Instead of all users doing sorts with a small sort area, you could have a

few users doing high-memory hash joins, while most users use summary tables

or do low-memory index joins. (You could accomplish this by forcing users in

Understanding Parallel Execution Performance Issues

27-12 Oracle8i Tuning

each group to use hints in their queries such that operations are performed in a

particular way.)

Parallel Execution Space Management Issues
This section describes space management issues that occur when using parallel

execution. These issues are:

■ ST (Space Transaction) Enqueue for Sorts and Temporary Data

■ External Fragmentation

These problems become particularly important for parallel operations in an OPS

(Oracle Parallel Server) environment; the more nodes that are involved, the more

tuning becomes critical.

If you can implement locally-managed tablespaces, you can avoid these issues

altogether.

ST (Space Transaction) Enqueue for Sorts and Temporary Data
Every space management transaction in the database (such as creation of temporary

segments in PARALLEL CREATE TABLE, or parallel direct-load inserts of

non-partitioned tables) is controlled by a single ST enqueue. A high transaction rate,

for example, more than 2 or 3 transactions per minute, on ST enqueues may result

in poor scalability on OPS with many nodes, or a timeout waiting for space

management resources. Use the V$ROWCACHE and V$LIBRARYCACHE views to

locate this type of contention.

Try to minimize the number of space management transactions, in particular:

■ The number of sort space management transactions

■ The creation and removal of objects

■ Transactions caused by fragmentation in a tablespace

Use dedicated temporary tablespaces to optimize space management for sorts. This

is particularly beneficial on OPS. You can monitor this using V$SORT_SEGMENT.

Set INITIAL and NEXT extent size to a value in the range of 1MB to 10MB.

Processes may use temporary space at a rate of up to 1MB per second. Do not accept

Note: For more information about locally-managed tablespaces,

please refer to the Oracle8i Administrator’s Guide.

Understanding Parallel Execution Performance Issues

Understanding Parallel Execution Performance Issues 27-13

the default value of 40KB for next extent size, because this will result in many

requests for space per second.

External Fragmentation
External fragmentation is a concern for parallel load, direct-load insert, and

PARALLEL CREATE TABLE ... AS SELECT. Memory tends to become fragmented

as extents are allocated and data is inserted and deleted. This may result in a fair

amount of free space that is unusable because it consists of small, non-contiguous

chunks of memory.

To reduce external fragmentation on partitioned tables, set all extents to the same

size. Set the value for NEXT equal to the value for INITIAL and set

PERCENT_INCREASE to zero. The system can handle this well with a few

thousand extents per object. Therefore, set MAXEXTENTS to, for example, 1,000 to

3,000; never attempt to use a value for MAXEXTENS in excess of 10,000. For tables

that are not partitioned, the initial extent should be small.

Tuning Parallel Execution on Oracle Parallel Server
This section describe several aspects of parallel execution for OPS.

Lock Allocation
This section provides parallel execution tuning guidelines for optimal lock

management on OPS.

To optimize parallel execution on OPS, you need to correctly set

GC_FILES_TO_LOCKS. On OPS, a certain number of parallel cache management

(PCM) locks are assigned to each data file. Data block address (DBA) locking in its

default behavior assigns one lock to each block. During a full table scan a PCM lock

must then be acquired for each block read into the scan. To speed up full table

scans, you have three possibilities:

■ For data files containing truly read-only data, set the tablespace to read only.

Then PCM locking does not occur.

■ Alternatively, for data that is mostly read-only, assign very few hashed PCM

locks (for example, 2 shared locks) to each data file. Then these are the only

locks you have to acquire when you read the data.

■ If you want DBA or fine-grain locking, group together the blocks controlled by

each lock, using the ! option. This has advantages over default DBA locking

because with the default, you would need to acquire one million locks in order

Understanding Parallel Execution Performance Issues

27-14 Oracle8i Tuning

to read one million blocks. When you group the blocks you reduce the number

of locks allocated by the grouping factor. Thus a grouping of !10 would mean

that you would only have to acquire one tenth as many PCM locks as with the

default. Performance improves due to the dramatically reduced amount of lock

allocation. As a rule of thumb, performance with a grouping of !10 is

comparable to the speed of hashed locking.

To speed up parallel DML operations, consider using hashed locking or a high

grouping factor rather than database address locking. A parallel execution

server works on non-overlapping partitions; it is recommended that partitions

not share files. You can thus reduce the number of lock operations by having

only 1 hashed lock per file. Because the parallel execution server only works on

non-overlapping files, there are no lock pings.

The following guidelines effect memory usage, and thus indirectly affect

performance:

■ Never allocate PCM locks for datafiles of temporary tablespaces.

■ Never allocate PCM locks for datafiles that contain only rollback segments.

These are protected by GC_ROLLBACK_LOCKS and

GC_ROLLBACK_SEGMENTS.

■ Allocate specific PCM locks for the SYSTEM tablespace. This practice ensures

that data dictionary activity such as space management never interferes with

the data tablespaces at a cache management level (error 1575).

For example, on a read-only database with a data warehousing application’s

query-only workload, you might create 500 PCM locks on the SYSTEM

tablespace in file 1, then create 50 more locks to be shared for all the data in the

other files. Space management work will never interfere with the rest of the

database.

Load Balancing for Multiple Concurrent Parallel Operations
Load balancing distributes query server processes to spread CPU and memory use

evenly among nodes. It also minimizes communication and remote I/O among

nodes. Oracle does this by allocating servers to the nodes that are running the

fewest number of processes.

The load balancing algorithm attempts to maintain an even load across all nodes.

For example, if a DOP of 8 is requested on an 8-node MPP (Massively Parallel

See Also: Oracle8i Parallel Server Concepts and Administration for a

thorough discussion of PCM locks and locking parameters.

Understanding Parallel Execution Performance Issues

Understanding Parallel Execution Performance Issues 27-15

Processing) system with 1 CPU per node, the algorithm places 2 servers on each

node.

If the entire query server group fits on one node, the load balancing algorithm

places all the processes on a single node to avoid communications overhead. For

example, if a DOP of 8 is requested on a 2-node cluster with 16 CPUs per node, the

algorithm places all 16 query server processes on one node.

Using Parallel Instance Groups
A user or the DBA can control which instances allocate query server processes by

using "Instance Group" functionality. To use this feature, you must first assign each

active instance to at least one or more instance groups. Then you can dynamically

control which instances spawn parallel processes by activating a particular group of

instances.

Establish instance group membership on an instance-by-instance basis by setting

the initialization parameter INSTANCE_GROUPS to a name representing one or

more instance groups. For example, on a 32-node MPP system owned by both a

Marketing and a Sales organization, you could assign half the nodes to one

organization and the other half to the other organization using instance group

names. To do this, assign nodes 1-16 to the Marketing organization using the

following parameter syntax in each INIT.ORA file:

 INSTANCE_GROUPS=marketing

Then assign nodes 17-32 to Sales using this syntax in the remaining INIT.ORA files:

 INSTANCE_GROUPS=sales

Then a user or the DBA can activate the nodes owned by Sales to spawn query

server process by entering the following:

 ALTER SESSION SET PARALLEL_INSTANCE_GROUP = ’sales’;

In response, Oracle allocates query server processes to nodes 17-32. The default

value for PARALLEL_INSTANCE_GROUP is all active instances.

Note: As mentioned, an instance can belong to one or more

groups. You can enter multiple instance group names with the

INSTANCE_GROUP parameter using a comma as a separator.

Understanding Parallel Execution Performance Issues

27-16 Oracle8i Tuning

Disk Affinity
Some OPS platforms use disk affinity. Without disk affinity, Oracle tries to balance

the allocation evenly across instances; with disk affinity, Oracle tries to allocate

parallel execution servers for parallel table scans on the instances that are closest to

the requested data. Disk affinity minimizes data shipping and internode

communication on a shared nothing architecture. Disk affinity can thus significantly

increase parallel operation throughput and decrease response time.

Disk affinity is used for parallel table scans, parallel temporary tablespace

allocation, parallel DML, and parallel index scan. It is not used for parallel table

creation or parallel index creation. Access to temporary tablespaces preferentially

uses local datafiles. It guarantees optimal space management extent allocation.

Disks striped by the operating system are treated by disk affinity as a single unit.

In the following example of disk affinity, table T is distributed across 3 nodes, and a

full table scan on table T is being performed.

Figure 27–5 Disk Affinity Example

■ If a query requires 2 instances, then two instances from the set 1, 2, and 3 are

used.

■ If a query requires 3 instances, then instances 1, 2, and 3 are used.

■ If a query requires 4 instances, then all four instances are used.

■ If there are two concurrent operations against table T, each requiring 3 instances

(and enough processes are available on the instances for both operations), then

both operations use instances 1, 2, and 3. Instance 4 is not used. In contrast,

without disk affinity instance 4 is used.

Instance
1

Table T

Instance
2

Table T

Instance
3

Table T

Instance
4

Parallel Execution Tuning Tips

Understanding Parallel Execution Performance Issues 27-17

Parallel Execution Tuning Tips
This section describes performance techniques for parallel operations.

■ Overriding the Default Degree of Parallelism

■ Rewriting SQL Statements

■ Creating and Populating Tables in Parallel

■ Creating Indexes in Parallel

■ Diagnosing Problems

■ Refreshing Tables in Parallel

■ Using Hints with Cost Based Optimization

Overriding the Default Degree of Parallelism
The default DOP is appropriate for reducing response time while guaranteeing use

of CPU and I/O resources for any parallel operations. If an operation is I/O bound,

consider increasing the default DOP. If it is memory bound, or several concurrent

parallel operations are running, you might want to decrease the default DOP.

Oracle uses the default DOP for tables that have PARALLEL attributed to them in

the data dictionary, or when the PARALLEL hint is specified. If a table does not

have parallelism attributed to it, or has NOPARALLEL (the default) attributed to it,

then that table is never scanned in parallel—regardless of the default DOP that

would be indicated by the number of CPUs, instances, and devices storing that

table.

Use the following guidelines when adjusting the DOP:

■ You can modify the default DOP by changing the value for the

PARALLEL_THREADS_PER_CPU parameter.

■ You can adjust the DOP either by using ALTER TABLE or by using hints.

■ To increase the number of concurrent parallel operations, reduce the DOP, or set

the parameter PARALLEL_ADAPTIVE_MULTI_USER to TRUE.

See Also: Oracle8i Parallel Server Concepts and Administration for

more information on instance affinity.

Parallel Execution Tuning Tips

27-18 Oracle8i Tuning

■ For I/O-bound parallel operations, first spread the data over more disks than

there are CPUs. Then, increase parallelism in stages. Stop when the query

becomes CPU bound.

For example, assume a parallel indexed nested loop join is I/O bound

performing the index lookups, with #CPUs=10 and #disks=36. The default DOP

is 10, and this is I/O bound. You could first try a DOP of 12. If the application is

still I/O bound, try a DOP of 24; if still I/O bound, try 36.

Rewriting SQL Statements
The most important issue for parallel execution is ensuring that all parts of the

query plan that process a substantial amount of data execute in parallel. Use

EXPLAIN PLAN to verify that all plan steps have an OTHER_TAG of

PARALLEL_TO_PARALLEL, PARALLEL_TO_SERIAL,

PARALLEL_COMBINED_WITH_PARENT, or

PARALLEL_COMBINED_WITH_CHILD. Any other keyword (or null) indicates

serial execution, and a possible bottleneck.

By making the following changes you can increase the optimizer’s ability to

generate parallel plans:

■ Convert subqueries, especially correlated subqueries, into joins. Oracle can

parallelize joins more efficiently than subqueries. This also applies to updates.

■ Use a PL/SQL function in the WHERE clause of the main query, instead of a

correlated subquery.

■ Rewrite queries with distinct aggregates as nested queries. For example, rewrite

SELECT COUNT(DISTINCT C) FROM T;

To:

SELECT COUNT(*)FROM (SELECT DISTINCT C FROM T);

Creating and Populating Tables in Parallel
Oracle cannot return results to a user process in parallel. If a query returns a large

number of rows, execution of the query may indeed be faster; however, the user

process can only receive the rows serially. To optimize parallel execution

performance with queries that retrieve large result sets, use PARALLEL CREATE

See Also: "Updating the Table" on page 27-25.

Parallel Execution Tuning Tips

Understanding Parallel Execution Performance Issues 27-19

TABLE ... AS SELECT or direct-load insert to store the result set in the database. At

a later time, users can view the result set serially.

When combined with the NOLOGGING option, the parallel version of CREATE

TABLE ... AS SELECT provides a very efficient intermediate table facility.

For example:

 CREATE TABLE summary PARALLEL NOLOGGING
 AS SELECT dim_1, dim_2 ..., SUM (meas_1) FROM facts
 GROUP BY dim_1, dim_2;

These tables can also be incrementally loaded with parallel insert. You can take

advantage of intermediate tables using the following techniques:

■ Common subqueries can be computed once and referenced many times. This

may be much more efficient than referencing a complex view many times.

■ Decompose complex queries into simpler steps in order to provide

application-level checkpoint/restart. For example, a complex multi-table join on

a database 1 terabyte in size could run for dozens of hours. A crash during this

query would mean starting over from the beginning. Using CREATE TABLE ...

AS SELECT and/or PARALLEL INSERT AS SELECT, you can rewrite the query

as a sequence of simpler queries that run for a few hours each. If a system

failure occurs, the query can be restarted from the last completed step.

■ Materialize a Cartesian product. This may allow queries against star schemas to

execute in parallel. It may also increase scalability of parallel hash joins by

increasing the number of distinct values in the join column.

Consider a large table of retail sales data that is joined to region and to

department lookup tables. There are 5 regions and 25 departments. If the huge

table is joined to regions using parallel hash partitioning, the maximum

speedup is 5. Similarly, if the huge table is joined to departments, the maximum

speedup is 25. But if a temporary table containing the Cartesian product of

regions and departments is joined with the huge table, the maximum speedup

is 125.

■ Efficiently implement manual parallel deletes by creating a new table that omits

the unwanted rows from the original table, and then dropping the original

Note: Parallelism of the SELECT does not influence the CREATE

statement. If the CREATE is parallel, however, the optimizer tries to

make the SELECT run in parallel also.

Parallel Execution Tuning Tips

27-20 Oracle8i Tuning

table. Alternatively, you can use the convenient parallel delete feature, which

can directly delete rows from the original table.

■ Create summary tables for efficient multidimensional drill-down analysis. For

example, a summary table might store the sum of revenue grouped by month,

brand, region, and salesperson.

■ Reorganize tables, eliminating chained rows, compressing free space, and so on,

by copying the old table to a new table. This is much faster than export/import

and easier than reloading.

Creating Indexes in Parallel
Multiple processes can work together simultaneously to create an index. By

dividing the work necessary to create an index among multiple server processes,

the Oracle Server can create the index more quickly than if a single server process

created the index sequentially.

Parallel index creation works in much the same way as a table scan with an ORDER

BY clause. The table is randomly sampled and a set of index keys is found that

equally divides the index into the same number of pieces as the DOP. A first set of

query processes scans the table, extracts key, ROWID pairs, and sends each pair to a

process in a second set of query processes based on key. Each process in the second

set sorts the keys and builds an index in the usual fashion. After all index pieces are

built, the parallel coordinator simply concatenates the pieces (which are ordered) to

form the final index.

Parallel local index creation uses a single server set. Each server process in the set is

assigned a table partition to scan, and to build an index partition for. Because half as

many server processes are used for a given DOP, parallel local index creation can be

run with a higher DOP.

You can optionally specify that no redo and undo logging should occur during

index creation. This can significantly improve performance, but temporarily renders

the index unrecoverable. Recoverability is restored after the new index is backed

up. If your application can tolerate this window where recovery of the index

Note: Be sure to use the ANALYZE statement on newly created

tables. Also consider creating indexes. To avoid I/O bottlenecks,

specify a tablespace with at least as many devices as CPUs. To

avoid fragmentation in allocating space, the number of files in a

tablespace should be a multiple of the number of CPUs.

Parallel Execution Tuning Tips

Understanding Parallel Execution Performance Issues 27-21

requires it to be re-created, then you should consider using the NOLOGGING

option.

The PARALLEL clause in the CREATE INDEX statement is the only way in which

you can specify the DOP for creating the index. If the DOP is not specified in the

parallel clause of CREATE INDEX, then the number of CPUs is used as the DOP. If

there is no parallel clause, index creation is done serially.

When you add or enable a UNIQUE key or PRIMARY KEY constraint on a table,

you cannot automatically create the required index in parallel. Instead, manually

create an index on the desired columns using the CREATE INDEX statement and an

appropriate PARALLEL clause and then add or enable the constraint. Oracle then

uses the existing index when enabling or adding the constraint.

Multiple constraints on the same table can be enabled concurrently and in parallel if

all the constraints are already in the enabled novalidate state. In the following

example, the ALTER TABLE ... ENABLE CONSTRAINT statement performs the

table scan that checks the constraint in parallel:

 CREATE TABLE a (a1 NUMBER CONSTRAINT ach CHECK (a1 > 0) ENABLE NOVALIDATE)
 PARALLEL;
 INSERT INTO a values (1);
 COMMIT;
 ALTER TABLE a ENABLE CONSTRAINT ach;

Note: When creating an index in parallel, the STORAGE clause

refers to the storage of each of the subindexes created by the query

server processes. Therefore, an index created with an INITIAL of

5MB and a DOP of 12 consumes at least 60MB of storage during

index creation because each process starts with an extent of 5MB.

When the query coordinator process combines the sorted

subindexes, some of the extents may be trimmed, and the resulting

index may be smaller than the requested 60MB.

Parallel Execution Tuning Tips

27-22 Oracle8i Tuning

Parallel DML Tips
This section provides an overview of parallel DML functionality.

■ INSERT

■ Direct-Load INSERT

■ Parallelizing INSERT, UPDATE, and DELETE

INSERT
Oracle INSERT functionality can be summarized as follows:

If parallel DML is enabled and there is a PARALLEL hint or PARALLEL attribute

set for the table in the data dictionary, then inserts are parallel and appended,

unless a restriction applies. If either the PARALLEL hint or PARALLEL attribute is

missing, then the insert is performed serially.

Direct-Load INSERT
Append mode is the default during a parallel insert: data is always inserted into a

new block which is allocated to the table. Therefore the APPEND hint is optional.

You should use append mode to increase the speed of insert operations—but not

See Also: For more information on how extents are allocated

when using the parallel execution feature, see Oracle8i Concepts.
Also refer to the Oracle8i SQL Reference for the complete syntax of

the CREATE INDEX statement.

See Also: Oracle8i Concepts for a detailed discussion of parallel

DML and DOP. For a discussion of parallel DML affinity, please see

Oracle8i Parallel Server Concepts and Administration.

Table 27–3 Summary of INSERT Features

Insert Type Parallel Serial NOLOGGING

Conventional No Yes No

Direct Load
Insert
(Append)

Yes: requires:

■ ALTER SESSION ENABLE PARALLEL DML

■ Table PARALLEL attribute or PARALLEL hint

■ APPEND hint (optional)

Yes: requires:

■ APPEND hint

Yes: requires:

■ NOLOGGING
attribute set for
table or
partition

Parallel Execution Tuning Tips

Understanding Parallel Execution Performance Issues 27-23

when space utilization needs to be optimized. You can use NOAPPEND to override

append mode.

The APPEND hint applies to both serial and parallel insert: even serial inserts are

faster if you use this hint. APPEND, however, does require more space and locking

overhead.

You can use NOLOGGING with APPEND to make the process even faster.

NOLOGGING means that no redo log is generated for the operation. NOLOGGING

is never the default; use it when you wish to optimize performance. It should not

normally be used when recovery is needed for the table or partition. If recovery is

needed, be sure to take a backup immediately after the operation. Use the ALTER

TABLE [NO]LOGGING statement to set the appropriate value.

Parallelizing INSERT, UPDATE, and DELETE
When the table or partition has the PARALLEL attribute in the data dictionary, that

attribute setting is used to determine parallelism of INSERT, UPDATE, and DELETE

statements as well as queries. An explicit PARALLEL hint for a table in a statement

overrides the effect of the PARALLEL attribute in the data dictionary.

You can use the NOPARALLEL hint to override a PARALLEL attribute for the table

in the data dictionary. In general, hints take precedence over attributes.

DML operations are considered for parallelization only if the session is in a

PARALLEL DML enabled mode. (Use ALTER SESSION ENABLE PARALLEL DML

to enter this mode.) The mode does not affect parallelization of queries or of the

query portions of a DML statement.

Parallelizing INSERT ... SELECT In the INSERT... SELECT statement you can specify a

PARALLEL hint after the INSERT keyword, in addition to the hint after the SELECT

keyword. The PARALLEL hint after the INSERT keyword applies to the insert

operation only, and the PARALLEL hint after the SELECT keyword applies to the

select operation only. Thus parallelism of the INSERT and SELECT operations are

independent of each other. If one operation cannot be performed in parallel, it has

no effect on whether the other operation can be performed in parallel.

The ability to parallelize INSERT causes a change in existing behavior, if the user

has explicitly enabled the session for parallel DML, and if the table in question has a

See Also: Oracle8i Concepts.

See Also: Oracle8i Concepts for more information on parallel

INSERT, UPDATE and DELETE.

Parallel Execution Tuning Tips

27-24 Oracle8i Tuning

PARALLEL attribute set in the data dictionary entry. In that case existing INSERT ...

SELECT statements that have the select operation parallelized may also have their

insert operation parallelized.

If you query multiple tables, you can specify multiple SELECT PARALLEL hints

and multiple PARALLEL attributes.

Example

Add the new employees who were hired after the acquisition of ACME.

 INSERT /*+ PARALLEL(EMP) */ INTO EMP
 SELECT /*+ PARALLEL(ACME_EMP) */ *
 FROM ACME_EMP;

The APPEND keyword is not required in this example, because it is implied by the

PARALLEL hint.

Parallelizing UPDATE and DELETE The PARALLEL hint (placed immediately after the

UPDATE or DELETE keyword) applies not only to the underlying scan operation,

but also to the update/delete operation. Alternatively, you can specify

update/delete parallelism in the PARALLEL clause specified in the definition of the

table to be modified.

If you have explicitly enabled PDML (Parallel Data Manipulation Language) for the

session or transaction, UPDATE/DELETE statements that have their query

operation parallelized may also have their UPDATE/DELETE operation

parallelized. Any subqueries or updatable views in the statement may have their

own separate parallel hints or clauses, but these parallel directives do not affect the

decision to parallelize the update or delete. If these operations cannot be performed

in parallel, it has no effect on whether the UPDATE or DELETE portion can be

performed in parallel.

You can only use parallel UPDATE and DELETE on partitioned tables.

Example 1

Give a 10% salary raise to all clerks in Dallas.

 UPDATE /*+ PARALLEL(EMP) */ EMP
 SET SAL=SAL * 1.1
 WHERE JOB=’CLERK’ AND
 DEPTNO IN
 (SELECT DEPTNO FROM DEPT WHERE LOCATION=’DALLAS’);

The PARALLEL hint is applied to the update operation as well as to the scan.

Parallel Execution Tuning Tips

Understanding Parallel Execution Performance Issues 27-25

Example 2

Fire all employees in the accounting department, whose work will be outsourced.

 DELETE /*+ PARALLEL(EMP) */ FROM EMP
 WHERE DEPTNO IN
 (SELECT DEPTNO FROM DEPT WHERE DNAME=’ACCOUNTING’);

Again, the parallelism is applied to the scan as well as update operation on table

EMP.

Refreshing Tables in Parallel
Parallel DML combined with the updatable join views facility provides an efficient

solution for refreshing the tables of a data warehouse system. To refresh tables is to

update them with the differential data generated from the OLTP production system.

In the following example, assume that you want to refresh a table named

CUSTOMER(c_key, c_name, c_addr). The differential data contains either new rows

or rows that have been updated since the last refresh of the data warehouse. In this

example, the updated data is shipped from the production system to the data

warehouse system by means of ASCII files. These files must be loaded into a

temporary table, named DIFF_CUSTOMER, before starting the refresh process. You

can use SQL Loader with both the parallel and direct options to efficiently perform

this task.

Once DIFF_CUSTOMER is loaded, the refresh process can be started. It is

performed in two phases:

■ Updating the table

■ Inserting the new rows in parallel

Updating the Table
A straightforward SQL implementation of the update uses subqueries:

 UPDATE CUSTOMER
 SET(C_NAME, C_ADDR) =
 (SELECT C_NAME, C_ADDR
 FROM DIFF_CUSTOMER
 WHERE DIFF_CUSTOMER.C_KEY = CUSTOMER.C_KEY)
 WHERE C_KEY IN(SELECT C_KEY FROM DIFF_CUSTOMER);

Unfortunately, the two subqueries in the preceding statement affect the

performance.

Parallel Execution Tuning Tips

27-26 Oracle8i Tuning

An alternative is to rewrite this query using updatable join views. To do this you

must first add a primary key constraint to the DIFF_CUSTOMER table to ensure

that the modified columns map to a key-preserved table:

 CREATE UNIQUE INDEX DIFF_PKEY_IND ON DIFF_CUSTOMER(C_KEY)
 PARALLEL NOLOGGING;
 ALTER TABLE DIFF_CUSTOMER ADD PRIMARY KEY (C_KEY);

Update the CUSTOMER table with the following SQL statement:

 UPDATE /*+ PARALLEL(CUST_JOINVIEW) */
 (SELECT /*+ PARALLEL(CUSTOMER) PARALLEL(DIFF_CUSTOMER) */
 CUSTOMER.C_NAME as C_NAME
 CUSTOMER.C_ADDR as C_ADDR,
 DIFF_CUSTOMER.C_NAME as C_NEWNAME,
 DIFF_CUSTOMER.C_ADDR as C_NEWADDR
 WHERE CUSTOMER.C_KEY = DIFF_CUSTOMER.C_KEY) CUST_JOINVIEW
 SET C_NAME = C_NEWNAME, C_ADDR = C_NEWADDR;

The base scans feeding the join view CUST_JOINVIEW are done in parallel. You can

then parallelize the update to further improve performance but only if the

CUSTOMER table is partitioned.

Inserting the New Rows into the Table in Parallel
The last phase of the refresh process consists in inserting the new rows from the

DIFF_CUSTOMER to the CUSTOMER table. Unlike the update case, you cannot

avoid having a subquery in the insert statement:

 INSERT /*+PARALLEL(CUSTOMER)*/ INTO CUSTOMER
 SELECT * FROM DIFF_CUSTOMER
 WHERE DIFF_CUSTOMER.C_KEY NOT IN (SELECT /*+ HASH_AJ */ KEY FROM CUSTOMER);

But here, the HASH_AJ hint transforms the subquery into an anti-hash join. (The

hint is not required if the parameter ALWAYS_ANTI_JOIN is set to hash in the

initialization file). Doing so allows you to use parallel insert to execute the

preceding statement very efficiently. Parallel insert is applicable even if the table is

not partitioned.

See Also: "Rewriting SQL Statements" on page 27-18. Also see the

Oracle8i Application Developer’s Guide - Fundamentals for information

about key-preserved tables.

Diagnosing Problems

Understanding Parallel Execution Performance Issues 27-27

Using Hints with Cost Based Optimization
Cost-based optimization is a highly sophisticated approach to finding the best

execution plan for SQL statements. Oracle automatically uses cost-based

optimization with parallel execution.

Use discretion in employing hints. If used, hints should come as a final step in

tuning, and only when they demonstrate a necessary and significant performance

advantage. In such cases, begin with the execution plan recommended by

cost-based optimization, and go on to test the effect of hints only after you have

quantified your performance expectations. Remember that hints are powerful; if

you use them and the underlying data changes you may need to change the hints.

Otherwise, the effectiveness of your execution plans may deteriorate.

Always use cost-based optimization unless you have an existing application that

has been hand-tuned for rule-based optimization. If you must use rule-based

optimization, rewriting a SQL statement can greatly improve application

performance.

Diagnosing Problems
Use the decision tree in Figure 27–6 to diagnose parallel performance problems. The

questions in the decision points of Figure 27–6 are discussed in more detail after the

figure.

Some key issues in diagnosing parallel execution performance problems are the

following:

Note: You must use ANALYZE to gather current statistics for

cost-based optimization. In particular, tables used in parallel should

always be analyzed. Always keep your statistics current by running

ANALYZE after DDL and DML operations.

Note: If any table in a query has a DOP greater than one

(including the default DOP), Oracle uses the cost-based optimizer

for that query—even if OPTIMIZER_MODE = RULE, or if there is a

RULE hint in the query itself.

See Also: "OPTIMIZER_PERCENT_PARALLEL" on page 26-23.

This parameter controls parallel awareness.

Diagnosing Problems

27-28 Oracle8i Tuning

■ Quantify your performance expectations to determine whether there is a

problem.

■ Determine whether a problem pertains to optimization, such as inefficient plans

that may require re-analyzing tables or adding hints, or whether the problem

pertains to execution, such as simple operations like scanning, loading,

grouping, or indexing running much slower than published guidelines.

■ Determine whether the problem occurs when running in parallel, such as load

imbalance or resource bottlenecks, or whether the problem is also present for

serial operations.

Diagnosing Problems

Understanding Parallel Execution Performance Issues 27-29

Figure 27–6 Parallel Execution Performance Checklist

Is There Regression?
Does parallel execution’s actual performance deviate from what you expected? If

performance is as you expected, could there be an underlying performance

problem? Perhaps you have a desired outcome in mind to which you are comparing

the current outcome. Perhaps you have justifiable performance expectations that the

system does not achieve. You might have achieved this level of performance or

particular execution plan in the past, but now, with a similar environment and

operation, your system is not meeting this goal.

Memory
(paging, buffer, sort, and
hash area sizing)

Quantify/justify
performance expectations

Parallel
Execution?

- device contention
- I/O bound and too little
 parallelism
- CPU bound and too
 much parallelism
- too many concurrent
 users

Skew?

No

Yes

No

Regression?

Plan
Change?

No

Yes

Yes

No

Yes

- Number of distinct
 values < degree of
 parallelism
- diagnose with
 V$PQ_TQSTAT
- create temp tables
- I/O: reorg base tables,
 add devices to temp

Parallel
Plan?

Yes

- OPTIMIZER_PERCENT_
 PARALLEL = 100
- study parallel portion of
 EXPLAIN PLAN output

- analyze tables
- use index hints if CPU
 bound
- use index-only access
- use create table as select
- convert subqueries
 to joins
- study EXPLAIN PLAN
 output

No

Start

Diagnosing Problems

27-30 Oracle8i Tuning

If performance is not as you expected, can you quantify the deviation? For data

warehousing operations, the execution plan is key. For critical data warehousing

operations, save the EXPLAIN PLAN results. Then, as you analyze the data,

reanalyze, upgrade Oracle, and load new data, over time you can compare new

execution plans with old plans. Take this approach either proactively or reactively.

Alternatively, you may find that plan performance improves if you use hints. You

may want to understand why hints were necessary, and determine how to get the

optimizer to generate the desired plan without the hints. Try increasing the

statistical sample size: better statistics may give you a better plan. If you had to use

a PARALLEL hint, determine whether you had

OPTIMIZER_PERCENT_PARALLEL set to 100%.

Is There a Plan Change?
If there has been a change in the execution plan, determine whether the plan is (or

should be) parallel or serial.

Is There a Parallel Plan?
If the execution plan is or should be parallel:

■ Try increasing OPTIMIZER_PERCENT_PARALLEL to 100 if you want a

parallel plan, but the optimizer has not given you one.

■ Study the EXPLAIN PLAN output. Did you analyze all the tables? Perhaps you

need to use hints in a few cases. Verify that the hint provides better

performance.

Is There a Serial Plan?
If the execution plan is or should be serial, consider the following strategies:

■ Use an index. Sometimes adding an index can greatly improve performance.

Consider adding an extra column to the index: perhaps your operation could

See Also: For more information on the EXPLAIN PLAN

statement, refer to Chapter 13, "Using EXPLAIN PLAN". For

information on preserving plans throughout changes to your

system using Plan Stability and outlines, please refer to Chapter 7,

"Optimizer Modes, Plan Stability, and Hints".

See Also: Parallel EXPLAIN PLAN tags are defined in Table 13–2.

Diagnosing Problems

Understanding Parallel Execution Performance Issues 27-31

obtain all its data from the index, and not require a table scan. Perhaps you

need to use hints in a few cases. Verify that the hint gives better results.

■ If you do not analyze often, and you can spare the time, it is a good practice to

compute statistics. This is particularly important if you are performing many

joins and it will result in better plans. Alternatively, you can estimate statistics.

■ Use histograms for non-uniform distributions.

■ Check initialization parameters to be sure the values are reasonable.

■ Replace bind variables with literals.

■ Determine whether execution is I/O or CPU bound. Then check the optimizer

cost model.

■ Convert subqueries to joins.

■ Use CREATE TABLE ... AS SELECT to break a complex operation into smaller

pieces. With a large query referencing five or six tables, it may be difficult to

determine which part of the query is taking the most time. You can isolate

bottlenecks in the query by breaking it into steps and analyzing each step.

Is There Parallel Execution?
If the cause of regression cannot be traced to problems in the plan, then the problem

must be an execution issue. For data warehousing operations, both serial and

parallel, consider how your plan uses memory. Check the paging rate and make

sure the system is using memory as effectively as possible. Check buffer, sort, and

hash area sizing. After you run a query or DML operation, look at the V$SESSTAT,

V$PX_SESSTAT, and V$PQ_SYSSTAT views to see the number of server processes

used and other information for the session and system.

Note: Using different sample sizes can cause the plan to change.

Generally, the higher the sample size, the better the plan.

See Also: Oracle8i Concepts regarding CREATE TABLE ... AS

SELECT.

See Also: "Monitoring Parallel Execution Performance with

Dynamic Performance Views" on page 26-78.

Diagnosing Problems

27-32 Oracle8i Tuning

Is The Workload Evenly Distributed?
If you are using parallel execution, is there unevenness in workload distribution?

For example, if there are 10 CPUs and a single user, you can see whether the

workload is evenly distributed across CPUs. This may vary over time, with periods

that are more or less I/O intensive, but in general each CPU should have roughly

the same amount of activity.

The statistics in V$PQ_TQSTAT show rows produced and consumed per parallel

execution server. This is a good indication of skew and does not require single user

operation.

Operating system statistics show you the per-processor CPU utilization and

per-disk I/O activity. Concurrently running tasks make it harder to see what is

going on, however. It can be useful to run in single-user mode and check operating

system monitors that show system level CPU and I/O activity.

When workload distribution is unbalanced, a common culprit is the presence of

skew in the data. For a hash join, this may be the case if the number of distinct

values is less than the degree of parallelism. When joining two tables on a column

with only 4 distinct values, you will not get scaling on more than 4. If you have 10

CPUs, 4 of them will be saturated but 6 will be idle. To avoid this problem, change

the query: use temporary tables to change the join order such that all operations

have more values in the join column than the number of CPUs.

If I/O problems occur you may need to reorganize your data, spreading it over

more devices. If parallel execution problems occur, check to be sure you have

followed the recommendation to spread data over at least as many devices as CPUs.

If there is no skew in workload distribution, check for the following conditions:

■ Is there device contention? Are there enough disk controllers to provide

adequate I/O bandwidth?

■ Is the system I/O bound, with too little parallelism? If so, consider increasing

parallelism up to the number of devices.

■ Is the system CPU bound, with too much parallelism? Check the operating

system CPU monitor to see whether a lot of time is being spent in system calls.

The resource may be overcommitted, and too much parallelism may cause

processes to compete with themselves.

■ Are there more concurrent users than the system can support?

Part VI
 Materialized Views

Part Six discusses materialized views. The chapters in Part Six are:

■ Chapter 28, "Data Warehousing with Materialized Views"

■ Chapter 29, "Materialized Views"

■ Chapter 30, "Dimensions"

■ Chapter 31, "Query Rewrite"

■ Chapter 32, "Managing Materialized Views"

Data Warehousing with Materialized Views 28-1

28
Data Warehousing with Materialized Views

This chapter contains:

■ Overview of Data Warehousing with Materialized Views

■ Materialized Views

■ Oracle Tools for Data Warehousing

■ Getting Started

Overview of Data Warehousing with Materialized Views
An enterprise data warehouse contains historical detailed data about the

organization. Typically, data flows from one or more online transaction processing

(OLTP) databases into the data warehouse on a monthly, weekly, or daily basis. The

data is usually processed in a staging file before being added to the data warehouse.

Data warehouses typically range in size from tens of gigabytes to a few terabytes,

usually with the vast majority of the data stored in a few very large fact tables.

A data mart contains a subset of corporate data that is of value to a specific business

unit, department, or set of users. Typically, a data mart is derived from an enterprise

data warehouse.

One of the techniques employed in data warehouses to improve performance is the

creation of summaries, or aggregates. They are a special kind of aggregate view

which improves query execution times by precalculating expensive joins and

aggregation operations prior to execution, and storing the results in a table in the

database. For example, a table may be created which would contain the sum of sales

by region and by product.

Today, organizations using summaries spend a significant amount of time manually

creating summaries, identifying which ones to create, indexing the summaries,

Overview of Data Warehousing with Materialized Views

28-2 Oracle8i Tuning

updating them, and advising their users on which ones to use. The introduction of

summary management in the Oracle server changes the workload of the DBA

dramatically and means the end-user no longer has to be aware of which

summaries have been defined. The DBA creates one or more materialized views,

which are the equivalent of a summary. The end-user queries the tables and views

in the database and the query rewrite mechanism in the Oracle server automatically

rewrites the SQL query to use the summary tables. This results in a significant

improvement in response time for returning results from the query and eliminates

the need for the end-user or database application to be aware of the summaries that

exist within the data warehouse.

Although summaries are usually accessed indirectly via the query rewrite

mechanism, an end-user or database application can construct queries which

directly access the summaries. However, serious consideration should be given to

whether users should be allowed to do this because, once the summaries are

directly referenced in queries, the DBA will not be free to drop and create

summaries without affecting applications.

The summaries or aggregates that are referred to in this book and in literature on

data warehousing are created in Oracle using a schema object called a materialized

view. Materialized views can be used to perform a number of roles, such as

improving query performance or providing replicated data, as described below.

Materialized Views for Data Warehouses
In data warehouses, materialized views can be used to precompute and store

aggregated data such as sum of sales. Materialized views in these environments are

typically referred to as summaries since they store summarized data. They can also

be used to precompute joins with or without aggregations. So a materialized view is

used to eliminate overhead associated with expensive joins or aggregations for a

large or important class of queries.

Materialized Views for Distributed Computing
In distributed environments, materialized views are used to replicate data at

distributed sites and synchronize updates done at several sites with conflict

resolution methods. The materialized views as replicas provide local access to data

which otherwise would have to be accessed from remote sites.

Overview of Data Warehousing with Materialized Views

Data Warehousing with Materialized Views 28-3

Materialized Views for Mobile Computing
Materialized views are used to download a subset of data from central servers to

mobile clients, with periodic refreshes from the central servers and propagation of

updates by clients back to the central servers.

This chapter is focused on the use of materialized views in data warehouses. Refer

to Oracle8i Replication and Oracle8i Distributed Database Systems for details on

distributed and mobile computing.

Components of Summary Management
Summary management consists of:

■ Mechanisms to define summaries and dimensions

■ A refresh mechanism to ensure that all summaries contain the latest data

■ A query rewrite capability to transparently rewrite a query to use a summary

■ An advisor utility to recommend which summaries to create, retain, and drop

Many large decision support system (DSS) databases have schemas that do not

closely resemble a conventional data warehouse schema, but still require joins and

aggregates. The use of summary management features imposes no schema

restrictions, and may enable some existing DSS database applications to achieve

large gains in performance without requiring a redesign of the database or

application. This functionality is thus available to all database users.

Figure 28–1 illustrates where summary management is used in the warehousing

cycle. It is available once the data has been transformed and loaded into the data

warehouse. Therefore, referring to Figure 28–1, after the data has been transformed,

staged, and loaded into the detail data in the warehouse, then the summary

management process can be invoked. This means that summaries can be created,

queries can be rewritten, and the advisor can be used to plan summary usage and

creation.

Overview of Data Warehousing with Materialized Views

28-4 Oracle8i Tuning

Figure 28–1 Overview of Summary Management

Understanding the summary management process during the earliest stages of data

warehouse design can yield large dividends later on in the form of higher

performance, lower summary administration costs, and reduced storage

requirements.

Operational
Databases

Extraction of
Incremental
Detail Data

Incremental
Load and Refresh

Data
Transformations

Staging
file

Detail

Data Warehouse

Summary

Query
Rewrite

Extract
Program

Summary Mgmt
Administration

Summary Mgmt
Analysis & Tuning

Multidimensional
Analysis Tools

Workload
Statistics

MDDB
Data Mart

Data Validation
Summary Rollup
Summary Merge

Conversions
Integration

Key Restructuring
Derived Data

Pre-Summarization

Summary
Management

Overview of Data Warehousing with Materialized Views

Data Warehousing with Materialized Views 28-5

The summary management process begins with the creation of dimensions and

hierarchies that describe the business relationships and common access patterns in

the database. An analysis of the dimensions, combined with an understanding of

the typical work load, can then be used to create materialized views. Materialized

views improve query execution performance by pre-calculating expensive join or

aggregation operations prior to execution time. Query rewrite then automatically

recognizes when an existing materialized view can and should be used to satisfy a

request, and can transparently rewrite a request to use a materialized view, thus

improving performance.

Other considerations when building a warehouse include:

■ Horizontally partitioning the fact tables by a time attribute.

This improves scalabililty, simplifies system administration, and makes it

possible to define local indexes that can be efficiently rebuilt.

■ SQL*Loader can be directed to load a single partition of a table.

In this case, only the corresponding local index partitions are rebuilt.

■ Global indexes must be fully rebuilt after a direct load, which can be very costly

when loading a relatively small number of rows into a large table.

For this reason, it is strongly recommended that all fact table indexes should be

defined as local indexes. For example, this can be accomplished by having a

bitmap index on each key column (bitmap indexes are always local), and a

single multi-key index that includes all the key columns, with the partitioning

attribute as the leading column of the index.

Terminology
The following clarifies some basic data warehousing terms:

■ Dimension tables describe the business entities of an enterprise, which usually

represent hierarchical, categorical information such as time, departments,

locations, and products. Dimension tables are sometimes called lookup or
reference tables.

Dimension tables usually change slowly over time and are not modified on a

periodic schedule. They are typically not large, but they affect the performance

of long-running decision support queries that consist of joins of fact tables with

dimension tables, followed by aggregation to specific levels of the dimension

hierarchies.

Materialized Views

28-6 Oracle8i Tuning

■ Fact tables describe the business transactions of an enterprise. Fact tables are

sometimes called detail tables.

The vast majority of data in a data warehouse is stored in a few very large fact

tables. They are updated periodically with data from one or more operational

online transaction processing (OLTP) databases.

Fact tables include measures such as sales, units, and inventory.

– A simple measure is a numeric or character column of one table such as

FACT.SALES.

– A computed measure is an expression involving only simple measures of

one table, for example, FACT.REVENUES - FACT.EXPENSES.

– A multi-table measure is a computed measure defined on multiple tables,

for example, FACT_A.REVENUES - FACT_B.EXPENSES.

Fact tables also contain one or more keys that organize the business transactions

by the relevant business entities such as time, product, and market. In most

cases, the fact keys are non-null, form a unique compound key of the fact table,

and join with one and only one row of a dimension table.

■ A materialized view is a pre-computed table comprising aggregated and/or

joined data from fact and possibly dimension tables. Builders of data

warehouses will know a materialized view as a summary or aggregation.

Materialized Views
The most common situations where you would find materialized views useful are

in data warehousing applications and distributed systems. In warehousing

applications, large amounts of data are processed and similar queries are frequently

repeated. If these queries are pre-computed and the results stored in the data

warehouse as a materialized view, using materialized views significantly improves

performance by providing fast lookups into the set of results.

A materialized view definition can include any number of aggregates, as well as

any number of joins. In several ways, a materialized view behaves like an index:

■ The purpose of a materialized view is to increase request execution

performance.

■ The existence of a materialized view is transparent to SQL applications, so a

DBA can create or drop materialized views at any time without affecting the

validity of SQL applications.

Materialized Views

Data Warehousing with Materialized Views 28-7

■ A materialized view consumes storage space.

■ The contents of the materialized view must be maintained when the underlying

detail tables are modified.

This chapter shows how materialized views are used in a data warehousing

environment. However, the materialized view that is a key component of summary

management can also be used in a distributed environment to manage replicated

data. For further information, see Oracle8i Replication.

Schema Design Guidelines for Materialized Views
Before starting to define and use the various components of summary management,

it is recommended that you review your schema design to, wherever possible, abide

by these guidelines:

Guideline 1: Your dimensions should either be denormalized (each dimension

contained in one table) or the joins between tables in a normalized

or partially normalized dimension should guarantee that each

child-side row joins with one and only one parent-side row. The

benefits of maintaining this condition are described in "Creating a

Dimension" on page 30-3.

If desired, this condition can be enforced by adding FOREIGN KEY
and NOT NULL constraints on the child-side join key(s) and

PRIMARY KEY constraints on the parent-side join key(s). If your

materialized view contains only a single detail table, or if it

performs no aggregation, a preferred alternative would be to use

outer joins in place of inner joins. In this case, the Oracle optimizer

can guarantee the integrity of the result without enforced

referential integrity constraints.

Guideline 2: If dimensions are denormalized or partially denormalized,

hierarchical integrity must be maintained between the key

columns of the dimension table. Each child key value must

uniquely identify its parent key value, even if the dimension table is

denormalized. Hierarchical integrity in a denormalized dimension

can be verified by calling the VALIDATE_DIMENSION procedure

of the DBMS_OLAP package.

Materialized Views

28-8 Oracle8i Tuning

While guidelines 1, 2, and 3 are each important during schema design, guidelines 1

and 2 are even more important than guideline 3. If your schema design does not

follow guidelines 1 and 2, it does not then matter whether it follows guideline 3.

Guidelines 1, 2, and 3 affect both query rewrite performance and materialized view

refresh performance. Guideline 4 affects materialized view refresh performance

only. If your schema design does not follow guideline 4, then incremental refresh of

your materialized views will be either impossible or much less efficient.

If you are concerned with the time required to enable constraints and whether any

constraints may be violated, use the ENABLE NOVALIDATE clause to turn on

constraint checking without validating any of the existing constraints. The risk with

Guideline 3: Fact tables and dimension tables should similarly guarantee that

each fact table row joins with one and only one dimension table

row. This condition must be declared, and optionally enforced, by

adding FOREIGN KEY and NOT NULL constraints on the fact key

column(s) and PRIMARY KEY constraints on the dimension key

column(s), or by using outer joins as described in Guideline 1. In a

data warehouse, constraints are typically enabled with the

NOVALIDATE and RELY options to avoid constraint enforcement

performance overhead.

Guideline 4: Incremental loads of your detail data should be done using the

SQL*Loader direct-path option, or any bulk loader utility that

uses Oracle’s direct path interface (including INSERT AS SELECT
with the APPEND or PARALLEL hints). If the materialized view

contains more than one table and performs aggregation, or if

materialized view logs are not defined, then performing any other

type of DML to your data will necessitate a complete refresh.

Guideline 5: Horizontally partition your tables by a monotonically increasing

time column if possible (preferably of type DATE). For each table,

create a bitmap index for each key column, and create one local

index that includes all the key columns. Stripe each horizontal

partition across several storage devices for maximum

performance.

Guideline 6: After each load and before refreshing your materialized view, use

the VALIDATE_DIMENSION procedure of the DBMS_OLAP
package to incrementally verify dimensional integrity.

Guideline 7: Horizontally partition and index the materialized view like the

fact tables. Include a local concatenated index on all the

materialized view keys.

Getting Started

Data Warehousing with Materialized Views 28-9

this approach is that incorrect query results could occur if any constraints are

broken. Therefore, this is a decision for the designer to determine how clean the

data is and whether the risk of potential wrong results is too great.

Materialized view management can perform many useful functions, including

query rewrite and materialized view refresh, even if your data warehouse design

does not follow these guidelines; however, you will realize significantly greater

query execution performance and materialized view refresh performance benefits,

and you will require fewer materialized views if your schema design complies with

these guidelines.

Oracle Tools for Data Warehousing
The availability of powerful tools to help automate the analysis and administration

of the materialized views is an important factor in controlling data warehouse costs.

The following Oracle tools are available to help you create and manage a data

warehouse:

Data Mart Designer or Oracle Designer can be used to design the warehouse

schema. Data is then extracted, transformed, and transferred (ETT) from the

operational systems into the data warehouse or data mart. Data Mart Builder can

be used to specify the ETT process, populate the target data mart, and automatically

schedule loads and index rebuilds.

Discoverer can be used to query the database and queries executed via Discoverer

will be rewritten when appropriate. The Discoverer summary wizard can be used to

recommend which materialized views to create because Discoverer retains its own

workload statistics with respect to query usage.

The data mart may be analyzed natively with Discoverer or it can be optionally

exported to the Express multidimensional database server through the Relational
Access Manager (RAM). Analysis of the data in Express supports reach-through to

detail data stored in the Oracle8i server through RAM, and provides relational

access to tools like Oracle Sales Analyzer (OSA) and Oracle Express Objects (OEO).

Getting Started
The following chapters describe how to create materialized views and dimensions.

Although materialized views can be created at any time, so that they can used by

the other features in summary management such as warehouse refresh and query

rewrite, some parameters must be set. These can be defined either within the

Getting Started

28-10 Oracle8i Tuning

initialization parameter file or using the ALTER SYSTEM or ALTER SESSION

commands. The required parameters are identified by subject area.

■ Warehouse Refresh

JOB_QUEUE_PROCESSES

The number of background processes. This parameter determines how

many materialized views can be refreshed concurrently.

JOB_QUEUE_INTERVAL

In seconds, the interval between which the job queue scheduler checks to

see if a new job has been submitted to the job queue.

UTL_FILE_DIR

The directory where the refresh log is written. If unspecified, no refresh log

will be created.

■ Query Rewrite

OPTIMIZER_MODE="ALL_ROWS", "FIRST_ROWS", or "CHOOSE"

With tables analyzed, ensures that the cost-based optimizer is used, which

is a requirement to get Query Rewrite.

QUERY_REWRITE_ENABLED = True

Turns on query rewrite.

QUERY_REWRITE_INTEGRITY = enforced or trusted or stale_tolerated

Optional. Advises how fresh a materialized view must be to be eligible for

query rewrite. See Oracle8i Reference for further information about the

values for QUERY_REWRITE_INTEGRITY.

COMPATIBLE

Must be 8.1 or higher.

■ Advisor Workload

Recommended Parameters:

ORACLE_TRACE_COLLECTION_NAME = oraclsm

Trace collection file name.

ORACLE_TRACE_COLLECTION_PATH = ?/otrace/admin/cdf

Location where the collection file is stored.

Getting Started

Data Warehousing with Materialized Views 28-11

ORACLE_TRACE_COLLECTION_SIZE = 0

Initial size of the collection file.

Required Parameters and their Settings:

ORACLE_TRACE_ENABLE=true

Turns on Oracle Trace collection.

ORACLE_TRACE_FACILITY_NAME = oraclesm

Trace facility to collect data.

ORACLE_TRACE_FACILITY_PATH = ?/otrace/admin/cdf

Location of the Trace facility definition files.

■ Recommended Parameters for Parallelism

PARALLEL_MAX_SERVERS

Should be set high enough to take care of parallelism.

SORT_AREA_SIZE

Should be less than HASH_AREA_SIZE.

OPTIMIZER_MODE

Should equal CHOOSE (cost based optimizer).

OPTIMIZER_PERCENT_PARALLEL

Should equal 100.

Once these parameters have been set to the appropriate values, you will be ready to

move on to using the summary management features.

Getting Started

28-12 Oracle8i Tuning

Materialized Views 29-1

29
Materialized Views

The materialized views introduced in Oracle8i are generic objects that are used to

summarize, precompute, replicate, and distribute data. They are suitable in various

computing environments such as data warehousing, decision support, and

distributed, or mobile computing.

Several new functional areas have been developed to offer comprehensive and

robust support for the management and use of materialized views in different

computing environments. The new functionality includes transparent query

rewrite, object dependency management, staleness tracking of materialized data,

new refresh methods such as transactionally consistent refresh on commit, and

highly efficient incremental fast refresh using direct path and DML logs.

This chapter contains:

■ The Need for Materialized Views

■ Creating a Materialized View

■ Registration of an Existing Materialized View

■ Partitioning a Materialized View

■ Indexing Selection for Materialized Views

■ Invalidating a Materialized View

■ Guidelines for using Materialized Views in a Data Warehouse

■ Altering a Materialized View

■ Dropping a Materialized View

The Need for Materialized Views

29-2 Oracle8i Tuning

The Need for Materialized Views
Materialized views are used in warehouses to increase the speed of queries on very

large databases. Queries to large databases often involve joins between tables or

aggregations such as SUM, or both. These operations are very expensive in terms of

time and processing power. The type of materialized view that is created

determines how it can be refreshed and used by query rewrite.

Materialized views can be used in a number of ways and almost identical syntax

can be used to perform a number of roles. For example, a materialized view can be

used to replicate data, which was formerly achieved by using the CREATE

SNAPSHOT command. Now CREATE MATERIALIZED VIEW is a synonym for

CREATE SNAPSHOT.

Materialized views improve query performance by precalculating expensive join

and aggregation operations on the database prior to execution time and storing

these results in the database. The query optimizer can make use of materialized

views by automatically recognizing when an existing materialized view can and

should be used to satisfy a request. It then transparently rewrites the request to use

the materialized view. Queries are then directed to the materialized view and not to

the underlying detail tables or views. Rewriting queries to use materialized views

rather than detail relations results in a significant performance gain.

Figure 29–1 Transparent Query Rewrite

Thus, when using query rewrite, you want to create materialized views that satisfy

the largest number of queries. For example, if you identify twenty queries that are

StrategyGenerate Plan
Strategy

Query is
rewritten

User enters
query

Compare plan cost
and pick the best

StrategyGenerate Plan

StrategyQuery Results

Creating a Materialized View

Materialized Views 29-3

commonly applied to the detail or fact tables, then you might be able to satisfy them

with five or six well-written materialized views. A materialized view definition can

include any number of aggregations (SUM, COUNT(x) , COUNT(*) ,

COUNT(DISTINCT x) , AVG, VARIANCE, STDDEV, MIN, and MAX) and/or include

any number of joins. In case you are unsure of which materialized views to create,

Oracle provides a set of advisory functions in the DBMS_OLAP package to help in

designing and evaluating materialized views for query rewrites.

If a materialized view is to be used by query rewrite, it must be stored in the same

database as its fact or detail tables. A materialized view can be partitioned, and you

can define a materialized view on a partitioned table and one or more indexes on

the materialized view.

Materialized views are similar to indexes in several ways: they consume storage

space, they must be refreshed when the data in their master tables changes, and,

when used for query rewrites, they improve the performance of SQL execution and

their existence is transparent to SQL applications and users. Unlike indexes,

materialized views can be accessed directly using a SELECT statement and,

depending on the types of refresh that are required, they can also be accessed

directly in an INSERT, UPDATE, or DELETE statement.

Creating a Materialized View
To create a materialized view, use the CREATE MATERIALIZED VIEW command.

The following command creates the materialized view store_sales_mv.

CREATE MATERIALIZED VIEW store_sales_mv
 PCTFREE 0 TABLESPACE mviews
 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
 PARALLEL
 BUILD DEFERRED
 REFRESH COMPLETE
 ENABLE QUERY REWRITE
 AS
 SELECT
 s.store_name,
 SUM(dollar_sales) AS sum_dollar_sales
 FROM store s, fact f
 WHERE f.store_key = s.store_key

Note: Materialized views can also be used by Oracle Replication.

The techniques shown in this chapter illustrate how to use

materialized views in data warehouses.

Creating a Materialized View

29-4 Oracle8i Tuning

 GROUP BY s.store_name;

It is not uncommon in a data warehouse to have already created summary or

aggregation tables, and the DBA may not wish to repeat this work by building a

new materialized view. In this instance, the table that already exists in the database

can be registered as a prebuilt materialized view. This technique is described in

"Registration of an Existing Materialized View" on page 29-16.

Once you have selected the materialized views you want to create, follow the steps

below for each materialized view.

1. Do the physical design of the materialized view (existing user-defined

materialized views do not require this step). The materialized view should be

horizontally partitioned by a time attribute (if possible) and should match the

partitioning of the largest or most frequently updated detail or fact table (if

possible). Refresh performance generally benefits from a large number of

horizontal partitions because it can take advantage of the parallel capabilities in

Oracle.

2. Use the CREATE MATERIALIZED VIEW statement to create and, optionally,

populate the materialized view. If a user-defined materialized view already

exists, then use the PREBUILT option in the CREATE MATERIALIZED VIEW
statement. Otherwise, use the BUILD IMMEDIATE option to populate the

materialized view immediately, or the BUILD DEFERREDoption to populate the

materialized view at a more convenient time (the materialized view is disabled

for use by query rewrite until the first REFRESH, after which it will be

automatically enabled, provided the ENABLE QUERY REWRITE clause has

been specified).

Naming
The name given to a materialized view must conform to standard Oracle naming

conventions. However, if the materialized view is based on a user-defined prebuilt

table, then the name of the materialized view must exactly match that table name.

If you already have a naming convention for tables and indexes, you may consider

extending this naming scheme to the materialized views so that they are easily

See Also: For a complete description of CREATE MATERIALIZED
VIEW, see the Oracle8i SQL Reference.

See Also: See Oracle8i SQL Reference for descriptions of the SQL

statements CREATE MATERIALIZED VIEW, ALTER

MATERIALIZED VIEW, and DROP MATERIALIZED VIEW.

Creating a Materialized View

Materialized Views 29-5

identifiable. For example, instead of naming the materialized view sum_of_sales, it

could be called sum_of_sales_mv to denote that this is a materialized view and not a

table or view, for instance.

Storage Characteristics
Unless the materialized view is based on a user-defined prebuilt table, it requires

and occupies storage space inside the database. Therefore, the storage needs for the

materialized view should be specified in terms of the tablespace where it is to reside

and the size of the extents.

If you do not know how much space the materialized view will require, then the

DBMS_OLAP.ESTIMATE_SIZE package, which is described in "Summary Advisor"

on page 32-14, can provide an estimate on the bytes required to store this

materialized view. This information can then assist the design team in determining

into which tablespace the materialized view should reside.

Build Methods
Two build methods are available for creating the materialized view, as shown in the

table below. If you select BUILD IMMEDIATE, the materialized view definition is

added to the schema objects in the data dictionary, and then the fact or detail tables

are scanned as per the SELECT expression and the results are stored in the

materialized view. Depending on the size of the tables to be scanned, this build

process can take a considerable amount of time.

An alternative approach is to use the BUILD DEFERRED clause, which creates the

materialized view without data, thereby enabling it to be populated at a later date

using the DBMS_MVIEW.REFRESH package described in "Warehouse Refresh" on

page 32-3.

See Also: For a complete description of the STORAGE semantics,

see the Oracle8i SQL Reference.

Build Method Description

BUILD
DEFERRED

Create the materialized view definition but do not populate it with
data.

BUILD
IMMEDIATE

Create the materialized view and then populate it with data.

Creating a Materialized View

29-6 Oracle8i Tuning

Used for Query Rewrite
When a materialized view is defined, it will not automatically be used by the query

rewrite facility. Therefore, the clause ENABLE QUERY REWRITE must be specified

if the materialized view is to be considered available for rewriting queries.

If this clause is omitted or specified as DISABLE QUERY REWRITE when the

materialized view is initially created, the materialized view can subsequently be

enabled for query rewrite with the ALTER MATERIALIZED VIEW statement.

Query Rewrite Restrictions
Query rewrite is not possible with all materialized views. If query rewrite is not

occurring when it was expected, check to see if your materialized view does not

satisfy one of the following conditions.

Materialized View Restrictions
1. There cannot be non-repeatable expressions anywhere in the defining query

(ROWNUM, SYSDATE, non-repeatable PL/SQL functions, and so on).

2. There cannot be references to RAW or LONG RAW datatypes or object REFs.

3. The query must be a single-block query, that is, it cannot contain set functions

(UNION, MINUS, and so on). However, a materialized view can have multiple

query blocks (e.g., inline views in the FROM clause and subselects in the

WHERE or HAVING clauses).

4. If the materialized view was registered as PREBUILT, the precision of columns

must agree with the precision of the corresponding SELECT expressions unless

overridden by WITH REDUCED PRECISION.

Query Rewrite Restrictions
1. Detail tables must be local—only local detail tables or views can be accessed in

the query or used in the definition of the materialized view.

2. None of the detail tables can be owned by SYS, and the materialized view

cannot be owned by SYS.

Non-SQL Text Rewrite Restrictions
1. The FROM list cannot contain multiple occurrences of the same table or view.

Creating a Materialized View

Materialized Views 29-7

2. SELECT and GROUP BY lists, if present, must be the same in the query and the

materialized view and must contain straight columns, that is, no expressions

are allowed in the columns.

3. Aggregate operators must occur only as the outermost part of the expression,

that is, aggregates such as AVG(AVG(x)) or AVG(x)+AVG(x) are not allowed.

4. The WHERE clause must contain only inner or outer equijoins, which can be

connected by ANDs. That is, no ORs and no selections on single tables are

allowed in the WHERE clause.

5. HAVING or CONNECT BY clauses are not allowed.

Refresh Options
If you are going to refresh your materialized views from the detail or fact tables,

then you must add a REFRESH clause to the CREATE MATERIALIZED VIEW
statement. When defining the refresh clause, two elements need to be specified:

what type of refresh should occur and how to execute the refresh.

The two refresh execution modes are: ON COMMIT and ON DEMAND. The

method you select will determine the type of materialized view that can be defined.

If the materialized view is being refreshed using the ON COMMIT method, then,

following refresh operations, the alert log and trace file should be consulted to

check that no errors have occurred.

If a materialized view fails during refresh at COMMIT time, the user has to

explicitly invoke the refresh procedure using the DBMS_MVIEW package after

addressing the errors specified in the trace files. Until this is done, the view will no

longer be refreshed automatically at commit time.

Selecting the ON DEMAND execution mode means that you can take advantage of

the materialized view warehouse refresh facility, which provides a quick and efficient

Refresh Mode Description

ON COMMIT Refresh occurs automatically on the next COMMIT performed at the
master table. Can be used with materialized views on single table
aggregates and materialized views containing joins only.

ON DEMAND Refresh occurs when a user manually executes one of the available
refresh procedures contained in the DBMS_MVIEW package
(REFRESH, REFRESH_ALL_MVIEWS, REFRESH_DEPENDENT).

Creating a Materialized View

29-8 Oracle8i Tuning

mechanism for refreshing your materialized views, either in their entirety or only

with the additions to the detail data.

You can specify how you want your materialized views to be refreshed from the

detail tables by selecting one of four options: FORCE, COMPLETE, FAST, and NEVER.

Whether the fast refresh option is available will depend upon the type of

materialized view that has been created. The table below summarizes under what

conditions fast refresh is possible for the different types of materialized views.

Creation of the materialized view will fail and an error will be reported if these

conditions are not met.

Refresh Option Description

COMPLETE Refreshes by recalculating the materialized view’s defining query
when ATOMIC REFRESH=TRUE and COMPLETE is the same as
FORCE if ATOMIC REFRESH=FALSE.

FAST Refreshes by incrementally adding the new data that has been
inserted into the tables using direct path or from the materialized
view log.

FORCE First determines if fast refresh is possible and applies it if it is;
otherwise, it applies COMPLETE refresh.

NEVER Suppresses refresh of the materialized view.

Table 29–1 Requirements for Fast Refresh of Materialized Views

When the Materialized View has:

Only Joins
Joins and
Aggregates

Aggregate on a
Single Table

Detail tables only X X X

Single table only - - X

Table Appears only once in the FROM list X X X

No non-repeating expressions like SYSDATE and ROWNUM X X X

No references to RAW or LONG RAW X X X

No GROUP BY X - -

Rowids of all the detail tables must appear in the SELECT list
of the query

X - -

Creating a Materialized View

Materialized Views 29-9

Expressions are allowed in the GROUP BY and SELECT
clauses provided they are the same

- X X

Aggregates allowed but cannot be nested - X X

AVG with COUNT - X X

SUM with COUNT - - X

VARIANCE with COUNT and SUM - X X

STDDEV with COUNT and SUM - X X

WHERE clause contains join predicates which can be ANDed
bit not ORed.

X X -

No WHERE clause - - X

No HAVING or CONNECT BY X X X

No subqueries, inline views, or set functions like UNION or
MINUS

X X X

COUNT(*) must be present - - X

No MIN and MAX allowed - - X

If outer joins, then unique constraints must exist on the join
columns of the inner join table

X - -

Materialized View logs must exist and contain all columns
referenced in the materialized view and have been created
with the LOG NEW VALUES clause

- - X

Materialized view logs must exist with rowids of all the detail
tables

X - -

Non-aggregate expression in SELECT and GROUP BY must be
straight columns

- - X

DML to detail table X - X

Direct path data load X X X

ON COMMIT X - X

ON DEMAND X X X

Table 29–1 Requirements for Fast Refresh of Materialized Views

Creating a Materialized View

29-10 Oracle8i Tuning

Defining the Data for the Materialized View
The SELECT clause in the materialized view defines the data that it is to contain

and there are only a few restrictions on what may be specified. Any number of

tables may be joined together, however, they cannot be remote tables if you wish to

take advantage of query rewrite or the warehouse refresh facility. It is not only

tables that may be joined or referenced in the SELECT clause, because views, inline

views, subqueries and materialized views are all permissible.

Materialized Views with Joins and Aggregates
In data warehouses, materialized views would normally contain one of the

aggregates shown in the table below. To get warehouse incremental refresh, the

SELECT list must contain all of the GROUP BY columns (if present), and may

contain one or more aggregate functions. The aggregate function must be one of:

SUM, COUNT(x) , COUNT(*),COUNT(DISTINCT x), AVG, VARIANCE,
STDDEV, MIN, and MAX, and the expression to be aggregated can be any SQL value

expression.

Here are some examples of the type of materialized view which can be created.

Create Materialized View: Example 1

CREATE MATERIALIZED VIEW store_sales_mv
 PCTFREE 0 TABLESPACE mviews
 STORAGE (initial 16k next 16k pctincrease 0)
 BUILD DEFERRED
 REFRESH COMPLETE ON DEMAND
 ENABLE QUERY REWRITE
 AS
 SELECT
 s.store_name,
 SUM(dollar_sales) AS sum_dollar_sales
 FROM store s, fact f
 WHERE f.store_key = s.store_key
 GROUP BY s.store_name;

The statement above creates a materialized view store_sales_mv that computes the

sum of sales by store. It is derived by joining the tables store and fact on the column

store_key. The materialized view does not initially contain any data because the

build method is DEFERRED. When it is refreshed, a complete refresh is performed

and, once populated, this materialized view can be used by query rewrite.

Create Materialized View: Example 2

CREATE MATERIALIZED VIEW store_avgcnt_mv

Creating a Materialized View

Materialized Views 29-11

 PCTFREE 0 TABLESPACE mviews
 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
 BUILD IMMEDIATE
 REFRESH COMPLETE
 ENABLE QUERY REWRITE
 AS
 SELECT store_name,
 AVG(unit_sales) AS avgcnt_unit_sales,
 COUNT(DISTINCT(f.time_key)) AS count_days
 FROM store s, fact f, time t
 WHERE s.store_key = f.store_key AND
 f.time_key = t.time_key
 GROUP BY store_name, t.time_key;

The statement above creates a materialized view store_avgcnt_mv that computes the

average number of units sold by a store on a given date. It is derived by joining the

tables store, time, and fact on the columns store_key and time_key. The materialized

view is populated with data immediately because the build method is IMMEDIATE

and it is available for use by query rewrite. Note that the ON DEMAND clause has

been omitted from this materialized view definition because it is optional; because it

is the default, the materialized view will not be refreshed until a manual request is

made.

Create Materialized View: Example 3

CREATE MATERIALIZED VIEW store_stdcnt_mv
 PCTFREE 0 TABLESPACE mviews
 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
 BUILD IMMEDIATE
 REFRESH FAST
 ENABLE QUERY REWRITE
 AS
 SELECT store_name, t.time_key,
 STDDEV(unit_sales) AS stdcnt_unit_sales
 AVG(unit_sales) AS avgcnt_unit_sales
 COUNT(unit_sales) AS count_days
 SUM(unit_sales) AS sum_unit_sales
 FROM store s, fact f, time t
 WHERE s.store_key = f.store_key AND
 f.time_key = t.time_key
 GROUP BY store_name, t.time_key;

The statement above creates a materialized view store_stdcnt_mv that computes the

standard deviation for the number of units sold by a store on a given date. It is

derived by joining the tables store, time and fact on the column store_key and

Creating a Materialized View

29-12 Oracle8i Tuning

time_key. The materialized view is populated with data immediately because the

build method is immediate and it is available for use by query rewrite. In this

example, the refresh method is FAST, which is allowed because the COUNT and

SUM aggregates have been included to support fast refresh of the STDDEV

aggregate.

Create Materialized View: Example 4

CREATE MATERIALIZED VIEW store_var_mv
 PCTFREE 0 TABLESPACE mviews
 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
 PARALLEL
 BUILD DEFERRED
 REFRESH FORCE
 AS
 SELECT s.store_key, store_name,
 VARIANCE(unit_sales) AS var_unit_sales
 FROM fact f, store s, time t
 WHERE s.store_key = f.store_key AND
 f.time_key = t.time_key
 GROUP BY s.store_key, t.time_key, store_name;

The statement above creates a materialized view store_stdcnt_mv that computes the

variance for the number of units sold by a store on a given date. It is derived by

joining the tables store, time, and fact on the columns store_key and time_key. The

materialized view is not populated with data immediately and the materialized

view is not available for use by query rewrite because the ENABLE QUERY

REWRITE clause has not been specified. The refresh method is FORCE, which

means that the most suitable refresh method will be selected.

Single Table Aggregate Materialized Views
 A materialized view which contains one or more aggregates (SUM, AVG,

VARIANCE, STDDEV, COUNT) and a GROUP BY may be based on a single table.

The aggregate function can involve an expression on the columns such as

SUM(a*b). If this materialized view is to be incrementally refreshed, then a

materialized view log must be created on the detail table which includes the

INCLUDING NEW VALUES option, and contains all columns referenced in the

materialized view query definition.

In this release, it is assumed that the materialized view and all the base tables the

materialized view is dependent upon must belong to the same schema.

CREATE MATERIALIZED VIEW log on fact
 with rowid (store_key, time_key, dollar_sales, unit_sales)

Creating a Materialized View

Materialized Views 29-13

 including new values;

CREATE MATERIALIZED VIEW sum_sales
 PARALLEL
 BUILD IMMEDIATE
 REFRESH FAST ON COMMIT
 AS
 SELECT f.store_key, f.time_key,
 COUNT(*) AS count_grp,
SUM(f.dollar_sales) AS sum_dollar_sales,
 COUNT(f.dollar_sales) AS count_dollar_sales,
SUM(f.unit_sales) AS sum_unit_sales,
 COUNT(f.unit_sales) AS count_unit_sales
 FROM fact f
 GROUP BY f.store_key, f.time_key;

In this example, a materialized view has been created which contains aggregates on

a single table. Because the materialized view log has been created, the materialized

view is fast refreshable. Whenever DML is applied against the fact table, when the

commit is issued, the changes will be reflected in the materialized view.

Table 29–2 illustrates the aggregate requirements for a single table aggregate

materialized view.

Note that COUNT(*) must always be present.

Materialized Views Containing Only Joins
Materialized views may contain only joins and no aggregates, such as in the next

example where a materialized view is created which joins the fact to the store table.

Table 29–2 Single Table Aggregate Requirements

If aggregate X is present, aggregate Y is required and aggregate Z is optional

X Y Z

COUNT(expr) - -

SUM(expr) COUNT(expr) -

AVG(expr) COUNT(expr) SUM(expr)

STDDEV(expr) COUNT(expr) SUM(expr * expr)

VAR(expr) COUNT(expr) SUM(expr * expr)

Creating a Materialized View

29-14 Oracle8i Tuning

The advantage of creating this type of materialized view is that expensive joins

have been precalculated.

If you specify REFRESH FAST, Oracle performs further verification of the query

definition to ensure that fast refresh can always be performed if any of the detail

tables change. These additional checks include:

1. A materialized view log must be present for each detail table.

2. The rowids of all the detail tables must appear in the SELECT list of the

materialized view query definition.

3. If there are outer joins, unique constraints must be on the join columns of the

inner table.

For example, if you are joining the fact and a dimension table and the join is an

outer join with the fact table being the outer table, there must exist unique

constraints on the join columns of the dimension table.

If some of the above restrictions are not met, then the materialized view must be

created as REFRESH FORCE. If one of the tables did not meet all of the criteria, but

the other tables did, the materialized view would still be incrementally refreshable,

but only for the other tables for which all the criteria are met.

In this release, it is assumed that the materialized view and all the base tables the

materialized view is dependent upon must belong to the same schema.

In a data warehouse star schema, if space is at a premium, you can include the

rowid of the fact table only as this is the table that will be most frequently updated,

and the user can specify the FORCE option when the materialized view is created.

A materialized view log should contain the rowid of the master table. It is not

necessary to add other columns.

Incremental refresh for a materialized view containing only joins is possible after

any type of DML to the base tables (direct load or conventional INSERT, UPDATE,

or DELETE).

A materialized view containing only joins can be defined to be refreshed ON

COMMIT or ON DEMAND. If it is ON COMMIT, the refresh is performed at

commit time of the transaction that does DML on the detail table.

After a refresh on-commit, you are urged to check the alert log and trace files to see

if any error occurred during the refresh.

To speed up refresh, it is recommended that the user create indices on the columns

of the materialized view that stores the rowids of the fact table.

Creating a Materialized View

Materialized Views 29-15

CREATE MATERIALIZED VIEW LOG ON fact
 WITH ROWID;

CREATE MATERIALIZED VIEW LOG ON time
 WITH ROWID;

CREATE MATERIALIZED VIEW LOG ON store
 WITH ROWID;

CREATE MATERIALIZED VIEW detail_fact_mv
 PARALLEL
 BUILD IMMEDIATE
 REFRESH FAST
 AS
 SELECT
 f.rowid "fact_rid", t.rowid "time_rid", s.rowid "store_rid",
 s.store_key, s.store_name, f.dollar_sales,
 f.unit_sales, f.time_key
 FROM fact f, time t, store s
 WHERE f.store_key = s.store_key(+) AND
 f.time_key = t.time_key(+);

In the example shown above, in order to perform a REFRESH FAST, unique

constraints should exist on s.store_key and t.time_key. It is also recommended that

indexes be created on columns fact_rid, time_rid, and store_rid, as illustrated below,

which will improve the performance of refresh.

CREATE INDEX mv_ix_factrid ON
 detail_fact_mv(fact_rid);

Alternatively, if the example shown above did not include the columns time_rid and

store_rid, and if the refresh method was REFRESH FORCE, then this materialized

view would be fast refreshable if the fact table changed but not if the tables time or

store changed.

CREATE MATERIALIZED VIEW detail_fact_mv
 PARALLEL
 BUILD IMMEDIATE
 REFRESH FORCE
 AS
 SELECT
 f.rowid "fact_rid",
 s.store_key, s.store_name, f.dollar_sales,
 f.unit_sales, f.time_key
 FROM fact f, time t, store s

Registration of an Existing Materialized View

29-16 Oracle8i Tuning

 WHERE f.store_key = s.store_key(+) AND
 f.time_key = t.time_key(+);

Registration of an Existing Materialized View
Some data warehouses have implemented materialized views in ordinary user

tables. Although this solution provides the performance benefits of materialized

views, it does not provide query rewrite to all SQL applications, does not enable

materialized views defined in one application to be transparently accessed in

another application, and does not generally support fast parallel or fast incremental

materialized view refresh.

Because of these problems, and because existing materialized views may be

extremely large and expensive to rebuild, you should register your existing

materialized view tables with the Oracle server whenever possible. You can register

a user-defined materialized view with the CREATE MATERIALIZED VIEW ... ON
PREBUILT TABLEstatement. Once registered, the materialized view can be used for

query rewrites or maintained by one of the refresh methods, or both.

In some cases, user-defined materialized views are refreshed on a schedule that is

longer than the update cycle; for example, a monthly materialized view may be

updated only at the end of each month, and the materialized view values always

refer to complete time periods. Reports written directly against these materialized

views implicitly select only data that is not in the current (incomplete) time period.

If a user-defined materialized view already contains a time dimension:

■ It should be registered and then incrementally refreshed each update cycle.

■ A view should be created that selects the complete time period of interest.

For example, if a materialized view was formerly refreshed monthly at the end

of each month, then the view would contain the selection WHEREtime.month <

CURRENT_MONTH().

■ The reports should be modified to refer to the view instead of referring directly

to the user-defined materialized view.

If the user-defined materialized view does not contain a time dimension, then:

■ A new materialized view should be created that does include the time

dimension (if possible).

■ The view should aggregate over the time column in the new materialized view.

The table must reflect the materialization of the defining query at the time you

register it as a materialized view, and each column in the defining query must

Registration of an Existing Materialized View

Materialized Views 29-17

correspond to a column in the table that has a matching datatype. However, you

can specify WITH REDUCED PRECISION to allow the precision of columns in the

defining query to be different from that of the table columns.

The table and the materialized view must have the same name, but the table retains

its identity as a table and can contain columns that are not referenced in the

defining query of the materialized view (unmanaged columns). If rows are inserted

during a refresh operation, each unmanaged column of the row is set to its default

value, therefore the unmanaged columns cannot have NOT NULL constraints

unless they also have default values.

Unmanaged columns are not supported by single table aggregate materialized

views or materialized views containing joins only.

Materialized views based on prebuilt tables are eligible for selection by query

rewrite provided the parameter QUERY_REWRITE_INTEGRITY is set to at least the

level of TRUSTED. See Chapter 31, "Query Rewrite" for details about integrity

levels.

When you drop a materialized view that was created on a prebuilt table, the table

still exists—only the materialized view is dropped.

When a prebuilt table is registered as a materialized view, the parameter

QUERY_REWRITE_INTEGRITY must be set to at least STALE_TOLERATED

because, when it is created, the materialized view is marked as stale, therefore, only

stale integrity modes can be used.

CREATE TABLE sum_sales_tab
 PCTFREE 0 TABLESPACE mviews
 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
 AS
 SELECT f.store_key
 SUM(dollar_sales) AS dollar_sales,
 SUM(unit_sales) AS unit_sales,
 SUM(dollar_cost) AS dollar_cost
 FROM fact f GROUP BY f.store_key;

CREATE MATERIALIZED VIEW sum_sales_tab
ON PREBUILT TABLE WITHOUT REDUCED PRECISION
ENABLE QUERY REWRITE
AS
SELECT f.store_key,
 SUM(dollar_sales) AS dollar_sales,
 SUM(unit_sales) AS unit_sales,
 SUM(dollar_cost) AS dollar_cost
 FROM fact f GROUP BY f.store_key;

Partitioning a Materialized View

29-18 Oracle8i Tuning

This example illustrates the two steps required to register a user-defined table. First,

the table must be created, then the materialized view is defined using exactly the

same name as the table. This materialized view sum_sales_tab is eligible for use in

query rewrite.

Partitioning a Materialized View
Due to the large volume of data held in a data warehouse, partitioning is an

extremely useful option that can be used by the database designer.

Horizontally partitioning the fact tables by a time attribute improves scalability,

simplifies system administration, and makes it possible to define local indexes that

can be efficiently rebuilt. SQL*Loader can be directed to load a single partition of a

table. In this case, only the corresponding local index partitions are rebuilt. Global

indexes must be fully rebuilt after a direct load, which can be very costly when

loading a relatively small number of rows into a large table. For this reason, it is

strongly recommended that all fact table indexes should be defined as local indexes.

For example, this can be accomplished by having a bitmap index on each key

column (bitmap indexes are always local) and a single multikey index that includes

all the key columns, with the partitioning attribute as the leading column of the

multikey index.

Partitioning a materialized view also has benefits as far as refresh is concerned,

since the refresh procedure can use parallel DML to maintain the materialized view.

To realize these benefits, the materialized view has to be defined as PARALLEL and

parallel DML must be enabled in the session.

When the data warehouse or data mart contains a time dimension, it is often

desirable to archive the oldest information, and then reuse the storage for new

information. If the fact tables or materialized views include a time dimension and

are horizontally partitioned by the time attribute, then management of rolling

materialized views can be reduced to a few fast partition maintenance operations

provided that the unit of data that is rolled out equals, or is at least aligned with, the

horizontal partitions.

If you plan to have rolling materialized views in your warehouse, then you should

determine how frequently you plan to perform partition maintenance operations,

and you should plan to horizontally partition fact tables and materialized views to

reduce the amount of system administration overhead required when old data is

aged out.

Partitioning a Materialized View

Materialized Views 29-19

With the introduction of new partitioning options in Oracle8i, you are not restricted

to using range partitions. For example, a composite partition using both a time

value and, say, a store_key value could result in an ideal partition solution for your

data.

For further details about partitioning, see Oracle8i Concepts.

An ideal case for using partitions is when a materialized view contains a subset of

the data, which is obtained by defining an expression of the form WHERE time_key

< ’1-OCT-1998’ in the SELECT expression for the materialized view. If a WHERE

clause of this type is included, then query rewrite will be restricted to the exact
match case, which severely restricts when the materialized view is used. To

overcome this problem, use a partitioned materialized view with no WHERE clause

and then query rewrite will be able to use the materialized view and it will only

search the appropriate partition, thus improving query performance.

There are two approaches to partitioning a materialized view:

■ Partitioning the Materialized View

■ Partitioning the Prebuilt Table

Partitioning the Materialized View
Partitioning a materialized view involves defining the materialized view with the

standard Oracle partitioning clauses as illustrated in the example below. This

example creates a materialized view called part_sales_mv which uses three

partitions, is fast refreshed, and is eligible for query rewrite.

CREATE MATERIALIZED VIEW part_sales_mv
 PARALLEL
 PARTITION by RANGE (time_key)
 (
 PARTITION time_key
 VALUES LESS THAN (TO_DATE(’31-12-1997’, ’DD-MM-YYYY’))
 PCTFREE 0 PCTUSED
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf1,
 PARTITION month2
 VALUES LESS THAN (TO_DATE(’31-01-1998’, ’DD-MM-YYYY’))
 PCTFREE 0 PCTUSED
 STORAGE INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf2,
 PARTITION month3
 VALUES LESS THAN (TO_DATE(’31-01-1998’, ’DD-MM-YYYY’))

Partitioning a Materialized View

29-20 Oracle8i Tuning

 PCTFREE 0 PCTUSED
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf3)
BUILD DEFERRED
REFRESH FAST
ENABLE QUERY REWRITE
AS
SELECT f.store_key, f.time_key,
 SUM(f.dollar_sales) AS sum_dol_sales,
 SUM(f.unit_sales) AS sum_unit_sales
 FROM fact f GROUP BY f.time_key, f.store_key;

Partitioning a Prebuilt Table
Alternatively, a materialized view can be registered to a partitioned prebuilt table as

illustrated below.

CREATE TABLE part_fact_tab(
 time_key, store_key, sum_dollar_sales,
 sum_unit_sale)
 PARALLEL
 PARTITION by RANGE (time_key)
 (
 PARTITION month1
 VALUES LESS THAN (TO_DATE(’31-12-1997’, ’DD-MM-YYYY’))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITITAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf1,
 PARTITIION month2
 VALUES LESS THAN (TO_DATE(’31-01-1998’, ’DD-MM-YYYY’))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf2,
 PARTITION month3
 VALUES LESS THAN (TO_DATE(’31-01-1998’, DD-MM-YYYY’))
 PCTFREE 0 PCTUSED 99
 STORAGE INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf3)
AS
SELECT f.time_key, f.store_key,
 SUM(f.dollar_sales) AS sum_dollar_sales,
 SUM(f.unit_sales) AS sum_unit_sales
 FROM fact f GROUP BY f.time_key, f.store_key;

CREATE MATERIALIZED VIEW part_fact_tab

Invalidating a Materialized View

Materialized Views 29-21

ON PREBUILT TABLE
ENABLE QUERY REWRITE
AS
SELECT f.time_key, f.store_key,
 SUM(f.dollar_sales) AS sum_dollar_sales,
 SUM(f.unit_sales) AS sum_unit_sales
 FROM fact f GROUP BY f.time_key , f.store_key;

In this example, the table part_fact_tab has been partitioned over three months and

then the materialized view was registered to use the prebuilt table. This

materialized view is eligible for query rewrite because the ENABLE QUERY

REWRITE clause has been included.

Indexing Selection for Materialized Views
The two main operations on a materialized view are query execution and fast

incremental refresh, and each operation has different performance requirements.

Fast incremental refresh needs to perform an exact match on the materialized view

keys, and performs best when there is a concatenated index that includes all of the

materialized view keys. Query execution, on the other hand, may need to access

any subset of the materialized view key columns, and may need to join and

aggregate over a subset of those columns; consequently, query execution usually

performs best if there is a single-column bitmap index defined on each materialized

view key column.

One option for indexing the materialized view is to define a unique, local index that

contains all of the materialized view keys, and a single-column bitmap index on

each materialized view key, if storage space and refresh time permit.

In the case of materialized views containing joins only using the fast refresh option,

it is highly recommended that indexes be created on the columns which contain the

rowids to improve the performance of the refresh operation.

Invalidating a Materialized View
Dependencies related to materialized views are automatically maintained to ensure

correct operation. At DDL time, a materialized view depends on the detail tables

referenced in its definition.

A shared cursor depends on all objects referenced in the cursor. If a cursor is

rewritten, the cursor depends on the materialized view selected by query rewrite

and the dimensions of the tables of the cursor if they are being used by query

Guidelines for using Materialized Views in a Data Warehouse

29-22 Oracle8i Tuning

rewrite. Any operation that would invalidate these dimensions or the materialized

view would invalidate the cursor.

Therefore, any DDL operation, such as a DROP or ALTER, on any dependency in

the materialized view will cause it to become invalid.

The state of a materialized view can be checked by querying the table

USER_MVIEW_ANALYSIS or ALL_MVIEW_ANALYSIS. The column UNUSABLE

takes a value of Y or N and advises whether the materialized view may be used.

The column KNOWN_STALE also takes a value of Y or N and advises whether a

materialized view is known to be stale and finally column INVALID will be set to Y

if the materialized view is invalid and N if it is not.

A materialized view is automatically revalidated whenever it is referenced.

However, if a column has been dropped in a table referenced by a materialized view

or the owner of the materialized view didn’t have one of the query rewrite

privileges and that has now been granted to them, the command

ALTER MATERIALIZED VIEW mview_name ENABLE QUERY REWRITE

should be used to revalidate the materialized view and, if there are any problems,

an error will be returned.

Security Issues
To create a materialized view, the privilege CREATE MATERIALIZED VIEW is

required, and to create a materialized view that references a table in another

schema, the privilege CREATE ANY MATERIALIZED VIEW is needed.

If the materialized view is to be used by query rewrite, then the privilege QUERY

REWRITE should be granted, or if the materialized view references tables not in

your schema, then GLOBAL QUERY REWRITE must be granted.

If you continue to get a privilege error while trying to create a materialized view

and you believe that all the required privileges have been granted, then the problem

is most likely due to a privilege not being granted explicitly and it has been

inherited from a role instead. The owner of the materialized view must have

explicitly been granted SELECT access to the referenced tables.

Guidelines for using Materialized Views in a Data Warehouse
Determining what materialized views would be most beneficial, in terms of

performance gains, is aided by the analysis tools of the DBMS_OLAP package.

Specifically, you can call the DBMS_OLAP.RECOMMEND_MV procedure to see a list of

Dropping a Materialized View

Materialized Views 29-23

materialized views that Oracle recommends based on the statistics and the usage of

the target database. Note that this package currently only recommends materialized

views having aggregates on multiple tables.

If you are going to write your own materialized views without the aid of Oracle

analysis tools, then use these guidelines to achieve maximum performance:

1. Instead of defining multiple materialized views on the same tables with the

same GROUP BY columns but with different measures, define a single

materialized view including all of the different measures.

2. If your materialized view includes the aggregated measure AVG(x), also include

COUNT(x) to support incremental refresh. Similarly, if VARIANCE(x) or

STDDEV(x) is present, then always include COUNT(x) and SUM(x) to support

incremental refresh.

Altering a Materialized View
There are only three amendments that can be made to a materialized view:

■ change its refresh method

■ recompile

■ enable/disable its use for query rewrite

All other changes are achieved by dropping and then recreating the materialized

view.

The COMPILE option of the ALTER MATERIALIZED VIEW statement can be used

when the materialized view has been invalidated as described in "Invalidating a

Materialized View" on page 29-21. This compile process is quick, which means that

the materialized view can be used by query rewrite.

For further information about ALTER MATERIALIZED VIEW, see Oracle8i SQL
Reference.

Dropping a Materialized View
Use the DROP MATERIALIZED VIEW command to drop a materialized view. For

example:

DROP MATERIALIZED VIEW sales_sum_mv;

Dropping a Materialized View

29-24 Oracle8i Tuning

This command drops the materialized view sales_sum_mv . If the materialized

view was prebuilt on a table, then the table is not dropped but it can no longer be

maintained with the refresh mechanism.

Dimensions 30-1

30
Dimensions

This chapter contains:

■ Dimensions in a Data Warehouse

■ Creating a Dimension

■ Validating a Dimension

Dimensions in a Data Warehouse
Dimensions do not have to be defined, but spending time creating them can yield

significant benefits because they help query rewrite perform more complex types of

rewrite. They are mandatory if you use the advisor to recommend which

materialized views to create, drop, or retain.

A business process is an operational process within an organization about which

data can be collected. As an example, each store of a video chain might gather and

store data regarding sales and rentals of video tapes at the check-out counter. The

video chain management can build a data warehouse to analyze the sales of its

products across all stores over time and help answer questions such as:

■ What is the effect of promoting one product on the sale of a related product that

is not promoted?

■ What are the product sales before and after the promotion?

The data in the video chain’s data warehouse system has two important

components: dimensions and facts. The dimensions are products, locations (stores),

promotions, and time. One approach for identifying your dimensions is to review

your reference tables, such as a product table which contains everything about a

product, or a store table containing all information about a store. The facts are sales

Dimensions in a Data Warehouse

30-2 Oracle8i Tuning

(units sold or rented) and profits. A data warehouse contains facts about the sales of

each product at each store on a daily basis.

Dimension values are usually organized into hierarchies. Going up a level in the

hierarchy is called rolling up the data and going down a level in the hierarchy is

called drilling down the data. In the video chain example:

■ Within the time dimension, months roll up to quarters, quarters roll up to years,

and years roll up to all years.

■ Within the product dimension, products roll up to categories, categories roll up

to departments, and departments roll up to all departments.

■ Within the location dimension, stores roll up to cities, cities roll up to states,

states roll up to regions, regions roll up to countries, and countries roll up to all

countries, as shown in Figure 30–1.

Figure 30–1 Geography Dimension

Data analysis typically starts at higher levels in the dimensional hierarchy and

gradually drills down if the situation warrants such analysis.

You can visualize the dimensions of a business process as an n-dimensional data

cube. In the video chain example, the business dimensions product, location, and

time can be represented along the three axes of the cube. Each unit along the

product axis represents a different product, each unit along the location axis

represents a store, and each unit along the time axis represents a month. At the

intersection of these values is a cell that contains factual information, such as units

Country

All

State

City

Creating a Dimension

Dimensions 30-3

sold and profits made. Higher-level analysis consists of selecting and aggregating

the factual information within a subcube, such as rentals of comedy videos in

California stores during the second quarter of 1998.

Therefore, the first step towards creating a dimension is to identify the dimensions

within your data warehouse and then draw the hierarchies as shown in Figure 30–1.

For example, city is a child of state (because you can aggregate city-level data up to

state), and state. Using this approach, you should find it easier to translate this into

an actual dimension.

 In the case of normalized or partially normalized dimensions (a dimension that is

stored in more than one table), identify how these tables are joined. Note whether

the joins between the dimension tables can guarantee that each child-side row joins

with one and only one parent-side row. In the case of denormalized dimensions,

determine whether the child-side columns uniquely determine the parent-side (or

attribute) columns. These constraints can be enabled with the NOVALIDATE and

RELY options if the relationships represented by the constraints are guaranteed by

other means. Note that if the joins between fact and dimension tables do not

support this relationship, you still gain significant performance advantages from

defining the dimension with the CREATE DIMENSION statement. Another

alternative, subject to certain restrictions, is to use outer joins in the materialized

view definition (that is, in the CREATE MATERIALIZED VIEW statement).

You must not create dimensions in any schema that does not satisfy these

relationships, incorrect results can be returned from queries otherwise.

Creating a Dimension
Before you can create a dimension, tables must exist in the database which contain

this dimension data. For example, if you create a dimension called LOCATION, one

or more tables must exist which contains the city, state, and country information. In

a data warehouse, these dimension tables already exist. It is therefore a simple task

to identify which ones will be used.

You create a dimension with the CREATE DIMENSION statement. Within the

CREATE DIMENSION statement, use the LEVEL...IS clause to identify the names

of the dimension levels.

The location dimension contains a single hierarchy, with arrows drawn from the

child level to the parent level. At the top of this dimension graph is the special level

ALL, that represents aggregation over all rows. Each arrow in this graph indicates

that for any child there is one and only one parent. For example, each city must be

contained in exactly one state and each state must be contained in exactly one

Creating a Dimension

30-4 Oracle8i Tuning

country. States that belong to more than one country, or that belong to no country,

violate hierarchical integrity. Hierarchical integrity is necessary for the correct

operation of management functions for materialized views that include aggregates.

Therefore, using the entities illustrated in Figure 30–1 on page 30-2 as an example,

you can declare a dimension LOCATION which contains levels CITY, STATE, and

COUNTRY:

CREATE DIMENSION location_dim
LEVEL city IS location.city
LEVEL state IS location.state
LEVEL country IS location.country

Using your drawing of the dimension, translate each level in the diagram to a

LEVEL clause in the CREATE DIMENSION statement. You therefore define 3 levels:

city, state, and country. Then each level in the dimension must correspond to one or

more columns in a table in the database. Thus, level city is identified by the column

city in the table called location and level country is identified by a column called

country in the same table.

In this example, the database tables are denormalized and all the columns exist in

the same table. However, this is not a prerequisite for creating dimensions. "Using

Normalized Dimension Tables" on page 30-7 shows how to create a dimension that

has a normalized schema design using the JOIN KEY clause.

The next step is to declare the relationship between the levels with the HIERARCHY
statement and give that hierarchy a name. A hierarchical relationship is a functional
dependency from one level of a hierarchy to the next level in the hierarchy. Using the

level names defined previously, the CHILD OF relationship denotes that each child’s

level value is associated with one and only one parent level value. Again, using the

entities in Figure 30–1 on page 30-2, the following statements declare a hierarchy

LOC_ROLLUP and define the relationship between CITY, STATE, and COUNTRY.

HIERARCHY loc_rollup (
city CHILD OF
state CHILD OF
country)

In addition to the 1:n hierarchical relationships, dimensions also include 1:1

attribute relationships between the hierarchy levels and their dependent dimension

attributes. For example, if there are columns governor and mayor, then the

ATTRIBUTE...DETERMINES statement would be state to governor and city to

mayor.

Creating a Dimension

Dimensions 30-5

In our example, suppose a query was issued that queried by mayor instead of city.

Since this 1-1 relationship exists between the attribute and the level, city can be used

to identify the data.

ATTRIBUTE city DETERMINES mayor

This complete dimension definition is shown below including the creation of the

location table.

CREATE TABLE location (
city VARCHAR2(30),
state VARCHAR2(30),
country VARCHAR2(30),
mayor VARCHAR2(30),
governor VARCHAR2(30));

CREATE DIMENSION location_dim
LEVEL city IS location.city
LEVEL state IS location.state
LEVEL country IS location.country

HIERARCHY loc_rollup (
city CHILD OF
state CHILD OF
country)

ATTRIBUTE city DETERMINES location.mayor
ATTRIBUTE state DETERMINES location.governor;

The design, creation, and maintenance of dimensions is part of the design, creation,

and maintenance of your data warehouse schema. Once the dimension has been

created, check that it meets these requirements:

■ There must be a 1:n relationship between a parent and children. A parent can

have one or more children, but a child can have only one parent.

■ There must be a 1:1 attribute relationship between hierarchy levels and their
dependent dimension attributes. For example, if there is a column corporation,

then a possible attribute relationship would be corporation to president.

■ If the columns of a parent level and child level are in different relations, then
the connection between them also requires a 1:n join relationship. Each row

of the child table must join with one and only one row of the parent table. This

relationship is stronger than referential integrity alone because it requires that

the child join key must be non-null, that referential integrity must be

maintained from the child join key to the parent join key, and that the parent

join key must be unique.

Creating a Dimension

30-6 Oracle8i Tuning

■ Ensure (using database constraints if necessary) that the columns of each
hierarchy level are non-null and that hierarchical integrity is maintained.

■ The hierarchies of a dimension may overlap or be disconnected from each
other. However, the columns of a hierarchy level cannot be associated with

more than one dimension.

■ Join relationships that form cycles in the dimension graph are not supported.
For example, a hierarchy level cannot be joined to itself either directly or

indirectly.

Multiple Hierarchies
A single dimension definition can contain multiple hierarchies as illustrated below.

Suppose a department store wants to track the sales of certain items over time. The

first step is to define the time dimension over which sales will be tracked.

Figure 30–2 on page 30-6 illustrates a dimension "Time" with three time hierarchies.

Figure 30–2 Time_dim Dimension with Three Time Hierarchies

From the illustration, you can construct the following denormalized Time

dimension statement. The associated CREATE TABLE statement is also shown.

All

Season

curDate

Quarter

Year

Month

Week

Creating a Dimension

Dimensions 30-7

CREATE TABLE time (
curDate DATE,
month INTEGER,
quarter INTEGER,
year INTEGER,
season INTEGER,
week_num INTEGER,
dayofweek VARCHAR2(30),
month_name VARCHAR2(30));

CREATE DIMENSION time_dim
LEVEL curDate IS time.curDate
LEVEL month IS time.month
LEVEL quarter IS time.quarter
LEVEL year IS time.year
LEVEL season IS time.season
LEVEL week_num IS time.week_num

HIERARCHY calendar_rollup (
curDate CHILD OF
month CHILD OF
quarter CHILD OF
year)

HIERARCHY weekly_rollup (
 curDate CHILD OF
 week_num)

HIERARCHY seasonal_rollup (
 curDate CHILD OF
 season)

ATTRIBUTE curDate DETERMINES time.dayofweek
ATTRIBUTE month DETERMINES time.month_name;

Using Normalized Dimension Tables
The tables used to define a dimension may be normalized or denormalized and the

individual hierarchies can be normalized or denormalized. If the levels of a

hierarchy come from the same table, it is called a fully denormalized hierarchy. For

example, CALENDAR_ROLLUPin the Time dimension is a denormalized hierarchy. If

levels of a hierarchy come from different tables, such a hierarchy is either a fully or

partially normalized hierarchy. This section shows how to define a normalized

hierarchy.

Suppose the tracking of products is done by product, brand, and department. This

data is stored in the tables PRODUCT, BRAND, and DEPARTMENT. The product

Creating a Dimension

30-8 Oracle8i Tuning

dimension is normalized because the data entities ITEM_NAME, BRAND_ID, and

DEPT_ID are taken from different tables. The clause JOIN KEY within the

dimension definition specifies how to join together the levels in the hierarchy. The

dimension statement and the associated CREATE TABLE statements for the

PRODUCT, BRAND, and DEPARTMENT tables are shown below.

CREATE TABLE product (
item_name VARCHAR2(30),
brand_id INTEGER);

CREATE TABLE brand (
brand_id INTEGER,
brand_name VARCHAR2(30),
dept_id INTEGER);

CREATE TABLE department (
dept_id INTEGER,
dept_name VARCHAR2(30),
dept_type INTEGER);

CREATE DIMENSION product_dim
LEVEL item IS product.item_name
LEVEL brand_id IS brand.brand_id
LEVEL dept_id IS department.dept_id

HIERARCHY merchandise_rollup
(

item CHILD OF
brand_id CHILD OF
dept_id

JOIN KEY product.brand_id REFERENCES brand_id
JOIN KEY brand.dept_id REFERENCES dept_id

)
ATTRIBUTE brand_id DETERMINES product.brand_name
ATTRIBUTE dept_id DETERMINES (product.dept_name, product.dept_type);

Viewing Dimensions
Two procedures are available which allow you to display the dimensions that have

been defined. First, the file smdim.sql must be executed to provide the DEMO_DIM

package, which includes:

■ DEMO_DIM.PRINT_DIM to print a specific dimension

Creating a Dimension

Dimensions 30-9

■ DEMO_DIM.PRINT_ALLDIMS to print all dimensions

The DEMO_DIM.PRINT_DIM procedure has only one parameter, the name of the

dimension to display. The example below shows how to display the dimension

TIME_PD.

DEMO_DIM.PRINT_DIM (’TIME_PD’);

To display all of the dimensions that have been defined, call the procedure

DEMO_DIM.PRINT_ALLDIMS without any parameters as shown below.

DEMO_DIM.PRINT_ALLDIMS ();

Irrespective of which procedure is called, the output is identical. A sample display

is shown below.

DIMENSION GROCERY.TIME_PD
LEVEL FISCAL_QTR IS GROCERY.WEEK.FISCAL_QTR
LEVEL MONTH IS GROCERY.MONTH.MONTH
LEVEL QUARTER IS GROCERY.QUARTER.QUARTER
LEVEL TIME_KEY IS GROCERY.TIME.TIME_KEY
LEVEL WEEK IS GROCERY.WEEK.WEEK
LEVEL YEAR IS GROCERY.YEAR.YEAR
HIERARCHY WEEKLY_ROLLUP (
 TIME_KEY
 CHILD OF WEEK
 JOIN KEY GROCERY.TIME.WEEK REFERENCES WEEK
)
 HIERARCHY FISCAL_ROLLUP (
 TIME_KEY
 CHILD OF WEEK
 CHILD OF FISCAL_QTR
 JOIN KEY GROCERY.TIME.WEEK REFERENCES WEEK
)
 HIERARCHY CALENDAR_ROLLUP (
 TIME_KEY
 CHILD OF MONTH
 CHILD OF QUARTER
 CHILD OF YEAR
 JOIN KEY GROCERY.TIME.MONTH REFERENCES MONTH
 JOIN KEY GROCERY.MONTH.QUARTER REFERENCES QUARTER
 JOIN KEY GROCERY.QUARTER.YEAR REFERENCES YEAR
)

 ATTRIBUTE TIME_KEY DETERMINES GROCERY.TIME.DAY_NUMBER_IN_MONTH
 ATTRIBUTE TIME_KEY DETERMINES GROCERY.TIME.DAY_NUMBER_IN_YEAR

Validating a Dimension

30-10 Oracle8i Tuning

 ATTRIBUTE WEEK DETERMINES GROCERY.WEEK.WEEK_NUMBER_OF_YEAR
 ATTRIBUTE MONTH DETERMINES GROCERY.MONTH.FULL_MONTH_NAME

Dimensions and Constraints
Constraints plan an important role with dimensions. In most cases, full referential

integrity is enforced on the operational databases, and operational procedures can

be used to ensure that data flowing into the data warehouse (after data cleansing)

never violates referential integrity; so, in practice, referential integrity constraints

may or may not be enabled in the data warehouse.

It is recommended that constraints be enabled and, if validation time is a concern,

then the NOVALIDATE clause should be used as shown below. Primary and foreign

keys should be implemented as described. Referential integrity constraints and NOT
NULL constraints on the fact tables provide information that query rewrite can use

to extend the usefulness of materialized views.

ENABLE NOVALIDATE CONSTRAINT pk_time;

In addition, the RELY clause should be used to advise query rewrite that it can rely

upon the constraints being correct as shown below.

ALTER TABLE time MODIFY CONSTRAINT pk_time RELY;

Validating a Dimension
If the relationships described by the dimensions are incorrect, wrong results could

occur. Therefore, you should verify the relationships specified by CREATE

DIMENSION using the DBMS_OLAP.VALIDATE_DIMENSION procedure

periodically.

This procedure is easy to use and only has four parameters:

■ dimension name

■ owner name

■ set to TRUE to only check the new rows for tables of this dimension

■ set to TRUE to verify that all columns are not null

The example shown below validates the dimension time_fn in the Grocery schema

DBMS_OLAP.VALIDATE_DIMENSION (’TIME_FN’, ’GROCERY’, FALSE, TRUE);

Validating a Dimension

Dimensions 30-11

All exceptions encountered by the VALIDATE_DIMENSION procedure are placed

in the table MVIEW$_EXCEPTIONS, which is created in the user’s schema.

Querying this table will identify the exceptions that were found. For example:

OWNER TABLE_NAME DIMENSION_NAME RELATIONSHIP BAD_ROWID
-------- ----------- -------------- ------------ ------------------
GROCERY MONTH TIME_FN FOREIGN KEY AAAAuwAAJAAAARwAAA

However, rather than query this table, it may be better to query as follows where

the rowid of the invalid row is used to retrieve the actual row that has violated the

constraint. In this example, the dimension TIME_FD is checking a table called

month. It has found a row that violates the constraints and using the rowid, we can

see exactly which row in the month table is causing the problem.

SELECT * FROM month
WHERE rowid IN (select bad_rowid from mview$_exceptions);

MONTH QUARTER FISCAL_QTR YEAR FULL_MONTH_NAME MONTH_NUMB
---------- ---------- ---------- ---------- -------------------- ----------
199903 19981 19981 1998 March 3

Altering a Dimension
Some modification can be made to the dimension using the ALTER DIMENSION

statement. You can add or drop a level, hierarchy, or attribute from the dimension

using this command.

Referring to the time dimension in Figure 30–2, you could remove the attribute

month, drop the hierarchy weekly_rollup, and remove the level week. In addition,

you could add a new level called qtr1.

ALTER DIMENSION time_dim DROP attribute month;
ALTER DIMENSION time_dim DROP hierarchy weekly_rollup;
ALTER DIMENSION time_dim DROP LEVEL week;
ALTER DIMENSION time_dim ADD LEVEL qtr1 IS time.fiscal_qtr;

A dimension becomes invalid if you change any schema object which the

dimension is referencing. For example, if the table on which the dimension is

defined is altered.

To check the status of a dimension, view the contents of the column invalid in the

table ALL_DIMENSIONS.

To revalidate the dimension, use the COMPILE option as shown below.

ALTER DIMENSION time_dim COMPILE;

Validating a Dimension

30-12 Oracle8i Tuning

Deleting a Dimension
A dimension is removed using the DROP DIMENSION command. For example:

DROP DIMENSION time_dim;

Query Rewrite 31-1

31
Query Rewrite

This chapter contains:

■ Overview of Query Rewrite

■ Cost-Based Rewrite

■ Enabling Query Rewrite

■ When Does Oracle Rewrite a Query?

■ Query Rewrite Methods

■ When are Constraints and Dimensions Needed?

■ Accuracy of Query Rewrite

■ Did Query Rewrite Occur?

■ Guidelines for Using Query Rewrite

Overview of Query Rewrite
One of the major benefits of creating and maintaining materialized views is the

ability to take advantage of query rewrite, which transforms a SQL statement

expressed in terms of tables or views into a statement accessing one or more

materialized views that are defined on the detail tables. The transformation is

transparent to the end user or application, requiring no intervention and no

reference to the materialized view in the SQL statement. Because query rewrite is

transparent, materialized views can be added or dropped just like indexes without

invalidating the SQL in the application code.

Before the query is rewritten, it is subjected to several checks to determine whether

it is a candidate for query rewrite. If the query fails any of the checks, then the

Cost-Based Rewrite

31-2 Oracle8i Tuning

query is applied to the detail tables rather than the materialized view. This can be

costly in terms of response time and processing power.

The Oracle optimizer uses two different methods to recognize when to rewrite a

query in terms of one or more materialized views. The first method is based on

matching the SQL text of the query with the SQL text of the materialized view

definition. If the first method fails, the optimizer uses the more general method in

which it compares join conditions, data columns, grouping columns, and aggregate

functions between the query and a materialized view.

Query rewrite operates on queries and subqueries in the following types of SQL

statements:

■ SELECT

■ CREATE TABLE … AS SELECT

■ INSERT INTO … SELECT

and on subqueries in the set operators UNION, UNION ALL, INTERSECT, and

MINUS.

Several factors affect whether or not a given query is rewritten to use one or more

materialized views:

■ Enabling/disabling query rewrite

– by the CREATE or ALTER statement for individual materialized views

– by the initialization parameter QUERY_REWRITE_ENABLED

– by the REWRITE and NOREWRITE hints in SQL statements

■ Rewrite integrity levels

■ Dimensions and constraints

Cost-Based Rewrite
Query rewrite is available with cost-based optimization. Oracle optimizes the input

query with and without rewrite and selects the least costly alternative. The

optimizer rewrites a query by rewriting one or more query blocks, one at a time.

If the rewrite logic has a choice between multiple materialized views to rewrite a

query block, it will select one to optimize the ratio of the sum of the cardinality of

the tables in the rewritten query block to that in the original query block. Therefore,

the materialized view selected would be the one which can result in reading in the

least amount of data.

Enabling Query Rewrite

Query Rewrite 31-3

After a materialized view has been picked for a rewrite, the optimizer performs the

rewrite, and then tests whether the rewritten query can be rewritten further with

another materialized view. This process continues until no further rewrites are

possible. Then the rewritten query is optimized and the original query is optimized.

The optimizer compares these two optimizations and selects the least costly

alternative.

Since optimization is based on cost, it is important to collect statistics both on tables

involved in the query and on the tables representing materialized views. Statistics

are fundamental measures, such as the number of rows in a table, that are used to

calculate the cost of a (rewritten) query. They are created with the ANALYZE

statement or by using the DBMS_STATISTICS package.

Queries that contain in-line or named views are also candidates for query rewrite.

When a query contains a named view, the view name is used to do the matching

between a materialized view and the query. That is, the set of named views in a

materialized view definition should match exactly with the set of views in the

query. When a query contains an inline view, the inline view may be merged into

the query before matching between a materialized view and the query occurs.

Enabling Query Rewrite
Several steps must be followed to enable query rewrite:

1. Individual materialized views must have the ENABLE QUERY REWRITE

clause.

2. The initialization parameter QUERY_REWRITE_ENABLED must be set to

TRUE.

3. Cost-based optimization must be used either by setting the initialization

parameter OPTIMIZER_MODE to "ALL_ROWS" or "FIRST_ROWS", or by

analyzing the tables and setting OPTIMIZER_MODE to "CHOOSE".

If step 1 has not been completed, a materialized view will never be eligible for

query rewrite. ENABLE QUERY REWRITE can be specified either when the

materialized view is created, as illustrated below, or via the ALTER

MATERIALIZED VIEW statement.

 CREATE MATERIALIZED VIEW store_sales_mv
 ENABLE QUERY REWRITE
 AS
 SELECT s.store_name,
 SUM(dollar_sales) AS sum_dollar_sales
 FROM store s, fact f

Enabling Query Rewrite

31-4 Oracle8i Tuning

 WHERE f.store_key = s.store_key
 GROUP BY s.store_name;

You can use the initialization parameter QUERY_REWRITE_ENABLED to disable

query rewrite for all materialized views, or to enable it again for all materialized

views that are individually enabled. However, the QUERY_REWRITE_ENABLED

parameter cannot enable query rewrite for materialized views that have disabled it

with the CREATE or ALTER statement.

The NOREWRITE hint disables query rewrite in a SQL statement, overriding the

QUERY_REWRITE_ENABLED parameter, and the REWRITE (mview_name, ...) hint

restricts the eligible materialized views to those named in the hint.

Initialization Parameters for Query Rewrite
Query rewrite requires the following initialization parameter settings:

■ OPTIMIZER_MODE = "ALL_ROWS", "FIRST_ROWS", or "CHOOSE"

■ QUERY_REWRITE_ENABLED = TRUE

■ COMPATIBLE = 8.1.0 (or greater)

The QUERY_REWRITE_INTEGRITY parameter is optional, but must be set to

STALE_TOLERATED, TRUSTED, or ENFORCED if it is specified (see "Accuracy of

Query Rewrite" on page 31-18). It will default to ENFORCED if it is undefined.

Privileges for Enabling Query Rewrite
A materialized view is used based not on privileges the user has on that

materialized view, but based on privileges the user has on detail tables or views in

the query.

The system privilege GRANT REWRITE allows you to enable materialized views in

your own schema for query rewrite only if all tables directly referenced by the

materialized view are in that schema. The GRANT GLOBAL REWRITE privilege

allows you to enable materialized views for query rewrite even if the materialized

view references objects in other schemas.

The privileges for using materialized views for query rewrite are similar to those for

definer-rights procedures. See Oracle8i Concepts for further information.

When Does Oracle Rewrite a Query?

Query Rewrite 31-5

When Does Oracle Rewrite a Query?
A query gets rewritten only when a certain number of conditions are met:

1. Query rewrite must be enabled for the session.

2. A materialized view must be enabled for query rewrite.

3. The rewrite integrity level should allow the use of the materialized view. For

example, if a materialized view is not fresh and query rewrite integrity is set to

ENFORCED, then the materialized view will not be used.

4. Either all or part of the results requested by the query must be obtainable from

the precomputed result stored in the materialized view.

To determine this, the optimizer may depend on some of the data relationships

declared by the user via constraints and dimensions. Such data relationships

include hierarchies, referential integrity, and uniqueness of key data, and so on.

The following sections use an example schema and a few materialized views to

illustrate how the data relationships are used by the optimizer to rewrite queries. A

retail database consists of these tables:

STORE (store_key, store_name, store_city, store_state, store_country)
PRODUCT (prod_key, prod_name, prod_brand)
TIME (time_key, time_day, time_week, time_month)
FACT (store_key, prod_key, time_key, dollar_sales)

Two materialized views created on these tables contain only joins:

CREATE MATERIALIZED VIEW join_fact_store_time
 ENABLE QUERY REWRITE
 AS
 SELECT s.store_key, s.store_name, f.dollar_sales, t.time_key, t.time_day,
 f.prod_key, f.rowid, t.rowid
 FROM fact f, store s, time t
 WHERE f.time_key = t.time_key AND f.store_key = s.store_key;

CREATE MATERIALIZED VIEW join_fact_store_time_oj
 ENABLE QUERY REWRITE
 AS
 SELECT s.store_key, s.store_name, f.dollar_sales, t.time_key,
 f.rowid, t.rowid
 FROM fact f, store s, time t
 WHERE f.time_key = t.time_key(+) AND f.store_key = s.store_key(+);

and two materialized views contain joins and aggregates:

Query Rewrite Methods

31-6 Oracle8i Tuning

CREATE MATERIALIZED VIEW sum_fact_store_time_prod
 ENABLE QUERY REWRITE
 AS
 SELECT s.store_name, time_week, p.prod_key,
 SUM(f.dollar_sales) AS sum_sales,
 COUNT(f.dollar_sales) AS count_sales
 FROM fact f, store s, time t, product p
 WHERE f.time_key = t.time_key AND f.store_key = s.store_key AND
 f.prod_key = p.prod_key
 GROUP BY s.store_name, time_week, p.prod_key;

CREATE MATERIALIZED VIEW sum_fact_store_prod
 ENABLE QUERY REWRITE
 AS
 SELECT s.store_city, p.prod_name
 SUM(f.dollar_sales) AS sum_sales,
 COUNT(f.dollar_sales) AS count_sales
 FROM fact f, store s, product p
 WHERE f.store_key = s.store_key AND f.prod_key = p.prod_key
 GROUP BY store_city, p.prod_name;

You must compute statistics on the materialized views so that the optimizer can

determine based on cost whether to rewrite the queries.

ANALYZE TABLE join_fact_store_time COMPUTE STATISTICS;
ANALYZE TABLE join_fact_store_time_oj COMPUTE STATISTICS;
ANALYZE TABLE sum_fact_store_time_prod COMPUTE STATISTICS;
ANALYZE TABLE sum_fact_store_prod COMPUTE STATISTICS;

Query Rewrite Methods
The optimizer uses a number of different methods to rewrite a query. The first, most

important step is to determine if all or part of the results requested by the query can

be obtained from the precomputed results stored in a materialized view.

The simplest case occurs when the result stored in a materialized view exactly

matches what is requested by a query. The Oracle optimizer makes this type of

determination by comparing the SQL text of the query with the SQL text of the

materialized view definition. This method is most straightforward and also very

limiting.

When the SQL text comparison test fails, the Oracle optimizer performs a series of

generalized checks based on the joins, grouping, aggregates, and column data

Query Rewrite Methods

Query Rewrite 31-7

fetched. This is accomplished by individually comparing various clauses (SELECT,

FROM, WHERE, GROUP BY) of a query with those of a materialized view.

SQL Text Match Rewrite Methods
Two methods are used by the optimizer:

1. Full SQL text match

2. Partial SQL text match

In full SQL text match, the entire SQL text of a query is compared against the entire

SQL text of a materialized view definition (that is, the entire SELECT expression),

ignoring the white space during SQL text comparison. The following query

SELECT s.store_name, time_week, p.prod_key,
 SUM(f.dollar_sales) AS sum_sales,
 COUNT(f.dollar_sales) AS count_sales
FROM fact f, store s, time t, product p
WHERE f.time_key = t.time_key AND
 f.store_key = s.store_key AND
 f.prod_key = p.prod_key
GROUP BY s.store_name, time_week, p.prod_key;

which matches sum_fact_store_time_prod (white space excluded) will be rewritten as:

SELECT store_name, time_week, product_key, sum_sales, count_sales
FROM sum_fact_store_time_prod;

When full SQL text match fails, the optimizer then attempts a partial SQL text

match. In this method, the SQL text starting from the FROM clause of a query is

compared against the SQL text starting from the FROM clause of a materialized

view definition. Therefore, this query:

SELECT s.store_name, time_week, p.prod_key,
 AVG(f.dollar_sales) AS avg_sales
FROM fact f, store s, time t, product p
WHERE f.time_key = t.time_key AND
 f.store_key = s.store_key AND
 f.prod_key = p.prod_key
GROUP BY s.store_name, time_week, p.prod_key;

will be rewritten as:

SELECT store_name, time_week, prod_key, sum_sales/count_sales AS avg_sales
FROM sum_fact_store_time_prod;

Query Rewrite Methods

31-8 Oracle8i Tuning

Note that under the partial SQL text match rewrite method, the average of sales

aggregate required by the query is computed using sum of sales and count of sales

aggregates stored in the materialized view.

When neither SQL text match succeeds, the optimizer uses a general query rewrite

method.

General Query Rewrite Methods
The general query rewrite methods are much more powerful than SQL text match

methods because they can enable the use of a materialized view even if it contains

only part of the data requested by a query, or it contains more data than what is

requested by a query, or it contains data in a different form which can be converted

into a form required by a query. To achieve this, the optimizer compares the SQL

clauses (SELECT, FROM, WHERE, GROUP BY) individually between a query and a

materialized view.

The Oracle optimizer employs four different checks called:

■ Join Compatibility

■ Data Sufficiency

■ Grouping Compatibility

■ Aggregate Computability

Depending on the type of a materialized view, some or all four checks are made to

determine if the materialized view can be used to rewrite a query as illustrated in

the table below.

To perform these checks, the optimizer uses data relationships on which it can

depend. For example, primary key and foreign key relationships tell the optimizer

that each row in the foreign key table joins with at most one row in the primary key

Table 31–1 Materialized View Types and General Query Rewrite Methods

MV with
Joins Only

MV with Joins and
Aggregates

MV with Aggregates
on a Single Table

Join Compatibility X X -

Data Sufficiency X X X

Grouping Compatibility - X X

Aggregate Computability - X X

Query Rewrite Methods

Query Rewrite 31-9

table. Furthermore, if there is a NOT NULL constraint on the foreign key, it

indicates that each row in the foreign key table joins with exactly one row in the

primary key table.

Data relationships such as these are very important for query rewrite because they

tell what type of result is produced by joins, grouping, or aggregation of data.

Therefore, to maximize the rewritability of a large set of queries when such data

relationships exist in a database, they should be declared by the user.

Join Compatibility Check
In this check, the joins in a query are compared against the joins in a materialized

view. In general, this comparison results in the classification of joins into three

categories:

1. Common joins that occur in both the query and the materialized view

2. Delta joins that occur in the query but not in the materialized view

3. Delta joins that occur in the materialized view but not in the query

Common Joins The common join pairs between the two must be of same type, or the

join in the query must be derivable from the join in the materialized view. For

example, if a materialized view contains an outer join of table A with table B, and a

query contains an inner join of table A with table B, the result of the inner join can

be derived by filtering the anti-join rows from the result of the outer join.

For example, consider this query:

SELECT s.store_name, t.time_day, SUM(f.dollar_sales)
FROM fact f, store s, time t
WHERE f.time_key = t.time_key AND
 f.store_key = s.store_key AND
 t.time_day BETWEEN ’01-DEC-1997’ AND ’31-DEC-1997’
GROUP BY s.store_name, t.time_day;

The common joins between this query and the materialized view join_fact_store_time
are:

f.time_key = t.time_key AND f.store_key = s.store_key

They match exactly and the query can be rewritten as:

SELECT store_name, time_day, SUM(dollar_sales)
FROM join_fact_store_time
WHERE time_day BETWEEN ’01-DEC-1997’ AND ’31-DEC-1997’
GROUP BY store_name, time_day;

Query Rewrite Methods

31-10 Oracle8i Tuning

The query could also be answered using the join_fact_store_time_oj materialized

view where inner joins in the query can be derived from outer joins in the

materialized view. The rewritten version will (transparently to the user) filter out

the anti-join rows. The rewritten query will have the structure:

SELECT store_name, time_day, SUM(f.dollar_sales)
FROM join_fact_store_time_oj
WHERE time_key IS NOT NULL AND store_key IS NOT NULL AND
 time_day BETWEEN ’01-DEC-1997’ AND ’31-DEC-1997’
GROUP BY store_name, time_day;

In general, if you use an outer join in a materialized view containing only joins, you

should put in the materialized view either the primary key or the rowid on the right

side of the outer join. For example, in the previous example, join_fact_store_time_oj
there is a primary key on both store and time.

Another example of when a materialized view containing only joins is used is the

case of a semi-join rewrites. That is, a query contains either an EXISTS or an IN

subquery with a single table.

Consider this query, which reports the stores that had sales greater than $10,000

during the 1997 Christmas season.

SELECT DISTINCT store_name
FROM store s
WHERE EXISTS (SELECT *
 FROM fact f
 WHERE f.store_key = s.store_key
 AND f.dollar_sales > 10000
 and f.time_key between ’01-DEC-1997’ and ’31-DEC-1997’);

This query could also be seen as:

SELECT DISTINCT store_name
FROM store s
WHERE s.store_key in (SELECT f.store_key
 FROM fact f
 WHERE f.dollar_sales > 10000);

This query contains a semi-join ’f.store_key = s.store_key’ between the store and the

fact table. This query can be rewritten to use either the join_fact_store_time
materialized view, if foreign key constraints are active or join_fact_store_time_oj
materialized view, if primary keys are active. Observe that both materialized views

contain ’f.store_key = s.store_key’ which can be used to derive the semi-join in the

query.

Query Rewrite Methods

Query Rewrite 31-11

The query is rewritten with join_fact_store_time as follows:

SELECT store_name
FROM (SELECT DISTINCT store_name, store_key
 FROM join_fact_store_time
 WHERE dollar_sales > 10000
 AND f.time_key BETWEEN ’01-DEC-1997’ and ’31-DEC-1997’);

If the materialized view join_fact_store_time is partitioned by time_key, then this

query is likely to be more efficient than the original query because the original join

between store and fact has been avoided.

The query could be rewritten using join_fact_store_time_oj as follows.

SELECT store_name
FROM (SELECT DISTINCT store_name, store_key
 FROM join_fact_store_time_oj
 WHERE dollar_sales > 10000
 AND store_key IS NOT NULL
 AND time_key BETWEEN ’01-DEC-1997’ and ’31-DEC-1997’);

Rewrites with semi-joins are currently restricted to materialized views with joins

only and are not available for materialized views with joins and aggregates.

Query Delta Joins A query delta join is a join that appears in the query but not in the

materialized view. Any number and type of delta joins in a query are allowed and

they are simply retained when the query is rewritten with a materialized view.

Upon rewrite, the materialized view is joined to the appropriate tables in the delta

joins.

For example, consider this query:

SELECT store_name, prod_name, SUM(f.dollar_sales)
FROM fact f, store s, time t, product p
WHERE f.time_key = t.time_key AND
 f.store_key = s.store_key AND
 f.prod_key = p.prod_key AND
 t.time_day BETWEEN ’01-DEC-1997’ AND ’31-DEC-1997’
GROUP BY store_name, prod_name;

Using the materialized view join_fact_store_time, common joins are: f.time_key =

t.time_key AND f.store_key = s.store_key. The delta join in the query is f.prod_key

= p.prod_key.

The rewritten form will then join the join_fact_store_time materialized view with the

product table:

Query Rewrite Methods

31-12 Oracle8i Tuning

SELECT store_name, prod_name, SUM(f.dollar_sales)
FROM join_fact_store_time mv, product p
WHERE mv.prod_key = p.prod_key AND
 mv.time_day BETWEEN ’01-DEC-1997’ AND ’31-DEC-1997’
GROUP BY store_name, prod_name;

Materialized View Delta Joins All delta joins in a materialized view are required to be

lossless with respect to the result of common joins. A lossless join guarantees that

the result of common joins is not restricted. A lossless join is one where, if two tables

called A and B are joined together, rows in table A will always match with rows in

table B and no data will be lost, hence the term lossless join. For example, every row

with the foreign key matches a row with a primary key provided no nulls are

allowed in the foreign key. Therefore, to guarantee a lossless join, it is necessary to

have FOREIGN KEY, PRIMARY KEY, and NOT NULL constraints on appropriate

join keys. Alternatively, if the join between tables A and B is an outer join (A being

the outer table), it is lossless as it preserves all rows of table A.

All delta joins in a materialized view are required to be non-duplicating with

respect to the result of common joins. A non-duplicating join guarantees that the

result of common joins is not duplicated. For example, a non-duplicating join is one

where, if table A and table B are joined together, rows in table A will match with at

most one row in table B and no duplication occurs. To guarantee a non-duplicating

join, the key in table B must be constrained to unique values by using a primary key

or unique constraint.

Consider this query which joins FACT and TIME:

SELECT t.time_day, sum(f.dollar_sales)
FROM fact f, time t
WHERE f.time_key = t.time_key AND
 t.time_day BETWEEN ’01-DEC-1997’ AND ’31-DEC-1997’
GROUP t.time_day;

The materialized view join_fact_store_time has an additional join between FACT and

STORE: ’f.store_key = s.store_key’. This is the delta join in join_fact_store_time.

We can rewrite the query if this join is lossless and non-duplicating. This is the case

if f.store_key is a foreign key to p.store_key and is not null. The query is therefore

rewritten as:

SELECT time_day, SUM(f.dollar_sales)
FROM join_fact_store_time
WHERE time_day BETWEEN ’01-DEC-1997’ AND ’31-DEC-1997’
GROUP BY time_day;

Query Rewrite Methods

Query Rewrite 31-13

The query could also be rewritten with the materialized view join_fact_store_time_oj
where foreign key constraints are not needed. This view contains an outer join

between fact and store: ’f.store_key = s.store_key(+)’ which makes the join lossless.

If s.store_key is a primary key, then the non-duplicating condition is satisfied as

well and optimizer will rewrite the query as:

SELECT time_day, SUM(f.dollar_sales)
FROM join_fact_store_time_oj
WHERE time_key IS NOT NULL AND
 time_day BETWEEN ’01-DEC-1997’ AND ’31-DEC-1997’
GROUP BY time_day;

The current limitations restrict most rewrites with outer joins to materialized views

with joins only. There is very limited support for rewrites with materialized

aggregate views with outer joins. Those views should rely on foreign key

constraints to assure losslessness of delta materialized view joins.

Data Sufficiency Check
In this check, the optimizer determines if the necessary column data requested by a

query can be obtained from a materialized view. For this, the equivalence of one

column with another is used. For example, if an inner join between table A and

table B is based on a join predicate A.X = B.X, then the data in column A.X will

equal the data in column B.X in the result of the join. This data property is used to

match column A.X in a query with column B.X in a materialized view or vice versa.

For example, consider this query:

SELECT s.store_name, f.time_key, SUM(f.dollar_sales)
FROM fact f, store s, time t
WHERE f.time_key = t.time_key AND
 f.store_key = s.store_key
GROUP BY s.store_name, f.time_key;

This query can be answered with join_fact_store_time even though the materialized

view doesn’t have f.time_key. Instead, it has t.time_key which, through a join

condition ’f.time_key = t.time_key’, is equivalent to f.time_key.

Thus, the optimizer may select this rewrite:

SELECT store_name, time_day, SUM(dollar_sales)
FROM join_fact_store_time
GROUP BY store_name, time_key;

Query Rewrite Methods

31-14 Oracle8i Tuning

If some column data requested by a query cannot be obtained from a materialized

view, the optimizer further determines if it can be obtained based on a data

relationship called functional dependency. When the data in a column can

determine data in another column, such a relationship is called functional

dependency or functional determinance. For example, if a table contains a primary

key column called prod_key and another column called prod_name, then, given a

prod_key value, it is possible to look up the corresponding prod_name. The opposite

is not true, which means a prod_name value need not relate to a unique prod_key.

When the column data required by a query is not available from a materialized

view, such column data can still be obtained by joining the materialized view back

to the table that contains required column data provided the materialized view

contains a key that functionally determines the required column data.

For example, consider this query:

SELECT s.store_name, t.time_week, p.prod_name,
 SUM(f.dollar_sales) AS sum_sales,
FROM fact f, store s, time t, product p
WHERE f.time_key = t.time_key AND f.store_key = s.store_key AND
 f.prod_key = p.prod_key AND p.prod_brand = ’KELLOGG’
GROUP BY s.store_name, t.time_week, p.prod_name;

The materialized view sum_fact_store_time_prod contains p.prod_key, but not

p.prod_brand. However, we can join sum_fact_store_time_prod back to PRODUCT to

retrieve prod_brand because prod_key functionally determines prod_brand. The

optimizer rewrites this query using sum_fact_store_time_prod as:

SELECT mv.store_name, mv.time_week, p.product_key, mv.sum_sales,
FROM sum_fact_store_time_prod mv, product p
WHERE mv.prod_key = p.prod_key AND p.prod_brand = ’KELLOGG’
GROUP BY mv.store_name, mv.time_week, p.prod_key;

Here the PRODUCT table is called a joinback table because it was originally joined

in the materialized view but joined back again in the rewritten query.

There are two ways to declare functional dependency:

1. Using the primary key constraint

2. Using the DETERMINES clause of a dimension

The DETERMINES clause of a dimension definition may be the only way you could

declare functional dependency when the column that determines another column

cannot be a primary key. For example, the STORE table is a denormalized

dimension table which has columns store_key, store_name, store_city, city_name, and

Query Rewrite Methods

Query Rewrite 31-15

store_state. Store_key functionally determines store_name and store_city functionally

determines store_state.

The first functional dependency can be established by declaring store_key as the

primary key, but not the second functional dependency because the store_city

column contains duplicate values. In this situation, you can use the DETERMINES

clause of a dimension to declare the second functional dependency.

The following dimension definition illustrates how the functional dependencies are

declared.

CREATE DIMENSION store_dim
LEVEL store_key IS store.store_key
LEVEL city IS store.store_city
LEVEL state IS store.store_state
LEVEL country IS store.store_country
 HIERARCHY geographical_rollup (
 store_key CHILD OF
 city CHILD OF
 state CHILD OF
 country)
ATTRIBUTE store_key DETERMINES store.store_name;
ATTRIBUTE store_city DETERMINES store.city_name;

The hierarchy geographic_rollup declares hierarchical relationships which are also 1:n

functional dependencies. The 1:1 functional dependencies are declared using the

DETERMINES clause, such as store_city functionally determines city_name.

The following query:

SELECT s.store_city, p.prod_name
 SUM(f.dollar_sales) AS sum_sales,
FROM fact f, store s, product p
WHERE f.store_key = s.store_key AND f.prod_key = p.prod_key
 AND s.city_name = ’BELMONT’
GROUP BY s.store_city, p.prod_name;

can be rewritten by joining sum_fact_store_prod to the STORE table so that city_name
is available to evaluate the predicate. But the join will be based on the store_city
column, which is not a primary key in the STORE table; therefore, it allows

duplicates. This is accomplished by using an inline view which selects distinct

values and this view is joined to the materialized view as shown in the rewritten

query below.

SELECT iv.store_city, mv.prod_name, mv.sum_sales
FROM sum_fact_store_prod mv, (SELECT DISTINCT store_city, city_name

Query Rewrite Methods

31-16 Oracle8i Tuning

 FROM store) iv
WHERE mv.store_city = iv.store_city AND
 iv.store_name = ’BELMONT’
GROUP BY iv.store_city, mv.prod_name;

This type of rewrite was possible because the fact that store_city functionally

determines city_name as declared in the dimension.

Grouping Compatibility Check
This check is required only if both the materialized view and the query contain a

GROUP BY clause. The optimizer first determines if the grouping of data requested

by a query is exactly the same as the grouping of data stored in a materialized view.

That means, the level of grouping is the same in both the query and the

materialized view. For example, a query requests data grouped by store_city and a

materialized view stores data grouped by store_city and store_state. The grouping is

the same in both provided store_city functionally determines store_state, such as the

functional dependency shown in the dimension example above.

If the grouping of data requested by a query is at a coarser level compared to the

grouping of data stored in a materialized view, the optimizer can still use the

materialized view to rewrite the query. For example, the materialized view

sum_fact_store_time_prod groups by store_name, time_week, and prod_key. This query

groups by store_name, a coarser grouping granularity:

SELECT s.store_name, SUM(f.dollar_sales) AS sum_sales,
FROM fact f, store s
WHERE f.store_key = s.store_key
GROUP BY s.store_name;

Therefore, the optimizer will rewrite this query as:

SELECT store_name, SUM(sum_dollar_sales) AS sum_sales,
FROM sum_fact_store_time_prod
GROUP BY s.store_name;

In another example, a query requests data grouped by store_state whereas a

materialized view stores data grouped by store_city. If store_city is a CHILD OF

store_state (see the dimension example above), the grouped data stored in the

materialized view can be further grouped by store_state when the query is rewritten.

In other words, aggregates at store_city level (finer granularity) stored in a

materialized view can be rolled up into aggregates at store_state level (coarser

granularity).

Query Rewrite Methods

Query Rewrite 31-17

For example, consider the following query:

SELECT store_state, prod_name, SUM(f.dollar_sales) AS sum_sales
FROM fact f, store s, product p
WHERE f.store_key = s.store_key AND f.prod_key = p.prod_key
GROUP BY store_state, prod_name;

Because store_city functionally determines store_state, sum_fact_store_prod can be

used with a joinback to store table to retrieve store_state column data, and then

aggregates can be rolled up to store_state level, as shown below:

SELECT store_state, prod_name, sum(mv.sum_sales) AS sum_sales
FROM sum_fact_store_prod mv, (SELECT DISTINCT store_city, store_state
 FROM store) iv
WHERE mv.store_city = iv.store_city
GROUP BY store_state, prod_name;

Note that for this rewrite, the data sufficiency check determines that a joinback to

the STORE table is necessary, and the grouping compatibility check determines that

aggregate rollup is necessary.

Aggregate Computability Check
This check is required only if both the query and the materialized view contain

aggregates. Here the optimizer determines if the aggregates requested by a query

can be derived or computed from one or more aggregates stored in a materialized

view. For example, if a query requests AVG(X) and a materialized view contains

SUM(X) and COUNT(X), then AVG(X) can be computed as SUM(X) / COUNT(X).

If the grouping compatibility check determined that the rollup of aggregates stored

in a materialized view is required, then aggregate computability check determines if

it is possible to roll up each aggregate requested by the query using aggregates in

the materialized view.

For example, SUM(sales) at the city level can be rolled up to SUM(sales) at the state

level by summing all SUM(sales) aggregates in a group with the same state value.

However, AVG(sales) cannot be rolled up to a coarser level unless COUNT(sales) is

also available in the materialized view. Similarly, VARIANCE(sales) or

STDDEV(sales) cannot be rolled up unless COUNT(sales) and SUM(sales) are also

available in the materialized view. For example, given the query:

SELECT p.prod_name, AVG(f.dollar_sales) AS avg_sales
FROM fact f, product p
WHERE f.prod_key = p.prod_key
GROUP BY p.prod_name;

When are Constraints and Dimensions Needed?

31-18 Oracle8i Tuning

The materialized view sum_fact_store_prod can be used to rewrite it provided the

join between FACT and STORE is lossless and non-duplicating. Further, the query

groups by prod_name whereas the materialized view groups by store_city, prod_name,

which means the aggregates stored in the materialized view will have to be rolled

up. The optimizer will rewrite the query as:

SELECT mv.prod_name, SUM(mv.sum_sales)/SUM(mv.count_sales) AS avg_sales
FROM sum_fact_store_prod mv
GROUP BY mv.prod_name;

The argument of an aggregate such as SUM can be an arithmetic expression like

A+B. The optimizer will try to match an aggregate SUM(A+B) in a query with an

aggregate SUM(A+B) or SUM(B+A) stored in a materialized view. In other words,

expression equivalence is used when matching the argument of an aggregate in a

query with the argument of a similar aggregate in a materialized view. To

accomplish this, Oracle converts the aggregate argument expression into a

canonical form such that two different but equivalent expressions convert into the

same canonical form. For example, A*(B-C), A*B-C*A, (B-C)*A, and -A*C+A*B all

convert into the same canonical form and, therefore, they are successfully matched.

When are Constraints and Dimensions Needed?
To clarify when dimensions and constraints are required for the different types of

query rewrite, refer to Table 31–2.

Accuracy of Query Rewrite
Query rewrite offers three levels of rewrite integrity that are controlled by the

initialization parameter QUERY_REWRITE_INTEGRITY, which can either be set in

your parameter file or controlled using the ALTER SYSTEM or ALTER SESSION

command. The three values it can take are:

Table 31–2 Dimension and Constraint Requirements for Query Rewrite

Rewrite Checks Dimensions
Primary Key/Foreign Key/Not
Null Constraints

Matching SQL Text Not Required Not Required

Join Compatibility Not Required Required

Data Sufficiency Required OR Required

Grouping Compatibility Required Required

Aggregate Computability Not Required Not Required

Accuracy of Query Rewrite

Query Rewrite 31-19

■ ENFORCED

This is the default mode. The optimizer will only use materialized views which

it knows contain fresh data and only use those relationships that are based on

enforced constraints.

■ TRUSTED

In TRUSTED mode, the optimizer trusts that the data in the materialized views

based on prebuilt tables is correct, and the relationships declared in dimensions

and RELY constraints are correct. In this mode, the optimizer uses prebuilt

materialized views, and uses relationships that are not enforced as well as those

that are enforced. In this mode, the optimizer also ’trusts’ declared but not

enforced constraints and data relationships specified using dimensions.

■ STALE_TOLERATED

In STALE_TOLERATED mode, the optimizer uses materialized views that are

valid but contain stale data as well as those that contain fresh data. This mode

offers the maximum rewrite capability but creates the risk of generating wrong

results.

If rewrite integrity is set to the safest level, ENFORCED, the optimizer uses only

enforced primary key constraints and referential integrity constraints to ensure that

the results of the query are the same as the results when accessing the detail tables

directly.

If the rewrite integrity is set to levels other than ENFORCED, then there are several

situations where the output with rewrite may be different from that without it.

1. A materialized view can be out of synchronization with the master copy of the

data. This generally happens because the materialized view refresh procedure is

pending following bulk load or DML operations to one or more detail tables of

a materialized view. At some data warehouse sites, this situation is desirable

because it is not uncommon for some materialized views to be refreshed at

certain time intervals.

2. The relationships implied by the dimension objects are invalid. For example,

values at a certain level in a hierarchy do not roll up to exactly one parent value.

3. The values stored in a PREBUILT materialized view table may be incorrect.

4. Partition operations such as DROP and MOVE PARTITION on the detail table

could affect the results of the materialized view.

Did Query Rewrite Occur?

31-20 Oracle8i Tuning

Did Query Rewrite Occur?
Since query rewrite occurs transparently, special steps have to be taken to verify

that a query has been rewritten. Of course, if the query runs faster, this should

indicate that rewrite has occurred but this isn’t proof. Therefore, to confirm that

query rewrite does occur, use the EXPLAIN PLAN statement.

Explain Plan
The EXPLAIN PLAN facility is used as described in Oracle8i SQL Reference. For

query rewrite, all you need to check is that the object_name column in PLAN_TABLE

contains the materialized view name. If it does, then query rewrite will occur when

this query is executed.

In this example, the materialized view store_mv has been created.

CREATE MATERIALIZED VIEW store_mv
 ENABLE QUERY REWRITE
 AS
 SELECT
 s.region, SUM(grocery_sq_ft) AS sum_floor_plan
 FROM store s
 GROUP BY s.region;

If EXPLAIN PLAN is used on this SQL statement, the results are placed in the

default table PLAN_TABLE.

EXPLAIN PLAN
FOR
SELECT s.region, SUM(grocery_sq_ft)
FROM store s
GROUP BY s.region;

For the purposes of query rewrite, the only information of interest from

PLAN_TABLE is the OBJECT_NAME, which identifies the objects that will be used

to execute this query. Therefore, you would expect to see the object name

STORE_MV in the output as illustrated below.

SELECT object_name FROM plan_table;

OBJECT_NAME

STORE_MV
2 rows selected.

Did Query Rewrite Occur?

Query Rewrite 31-21

Controlling Query Rewrite
A materialized view is only eligible for query rewrite if the ENABLE QUERY

REWRITE clause has been specified, either initially when the materialized view was

first created or subsequently via an ALTER MATERIALIZED VIEW command.

The initialization parameters described above can be set using the ALTER SYSTEM

SET command. For a given user’s session, ALTER SESSION can be used to disable

or enable query rewrite for that session only. For example:

ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE;

The correctness of query rewrite can be set for a session, thus allowing different

users to work at different integrity levels.

ALTER SESSION SET QUERY_REWRITE_INTEGRITY = STALE_TOLERATED;
ALTER SESSION SET QUERY_REWRITE_INTEGRITY = TRUSTED;
ALTER SESSION SET QUERY_REWRITE_INTEGRITY = ENFORCED;

Rewrite Hints
Hints may be included in SQL statements to control whether query rewrite occurs.

Using the NOREWRITE hint with no argument in a query prevents the optimizer

from rewriting it.

The REWRITE hint with no argument in a query forces the optimizer to use a

materialized view (if any) to rewrite it regardless of the cost.

The REWRITE (mv1, mv2, ...) hint with argument(s) forces rewrite to select the most

suitable materialized view from the list of names specified.

For example, to prevent a rewrite, you can use:

SELECT /*+ NOREWRITE */ s.city, SUM(s.grocery_sq_ft)
FROM store s
GROUP BY s.city;

and to force a rewrite using mv1, you can use:

SELECT /*+ REWRITE (mv1) */ s.city, SUM(s.grocery_sq_ft)
FROM store s
GROUP BY s.city;

See Also: For more information about hints, please refer to

Chapter , "Using Hints" on page 7-36.

Guidelines for Using Query Rewrite

31-22 Oracle8i Tuning

Guidelines for Using Query Rewrite
The following guidelines will help in getting the maximum benefit from query

rewrite. They are not mandatory for using query rewrite and rewrite is not

guaranteed if you follow them. They are general rules of thumb.

Constraints
Make sure all inner joins referred to in a materialized view have referential integrity

(foreign key - primary key constraints) with additional NOT NULL constraints on

the foreign key columns. Since constraints tend to impose a large overhead, you

could make them NONVALIDATE and RELY and set the parameter

QUERY_REWRITE_INTEGRITY to STALE_TOLERATED or TRUSTED. However, if

you set QUERY_REWRITE_INTEGRITY to ENFORCED, all constraints must be

enforced to get maximum rewritability.

Dimensions
You can express the hierarchical relationships and functional dependencies in

normalized or denormalized dimension tables using the HIERARCHY clause of a

dimension. Dimensions can express intra-table relationships which cannot be

expressed by any constraints. Set the parameter QUERY_REWRITE_INTEGRITY to

TRUSTED or STALE_TOLERATED for query rewrite to take advantage of the

relationships declared in dimensions.

Outer Joins
Another way of avoiding constraints is to use outer joins in the materialized view.

Query rewrite will be able to derive an inner join in the query, such as (A.a = B.b),

from an outer join in the materialized view (A.a = B.b(+)), as long as the rowid of B

or column B.b is available in the materialized view. Most of the support for rewrites

with outer joins is provided for materialized views with joins only. To exploit it, a

materialized view with outer joins should store the rowid or primary key of the

inner table of an outer join. For example, the materialized view

join_fact_store_time_oj stores the primary keys store_key and time_key of the inner

tables of outer joins.

SQL Text Match
If you need to speed up an extremely complex, long-running query, you could

create a materialized view with the exact text of the query.

Guidelines for Using Query Rewrite

Query Rewrite 31-23

Aggregates
In order to get the maximum benefit from query rewrite, make sure that all

aggregates which are needed to compute ones in the targeted query are present in

the materialized view. The conditions on aggregates are quite similar to those for

incremental refresh. For instance, if AVG(x) is in the query, then you should store

COUNT(x) and AVG(x) or store SUM(x) and COUNT(x) in the materialized view.

Refer to Table 29–1, "Requirements for Fast Refresh of Materialized Views" on

page 29-8.

Grouping Conditions
Aggregating data at lower levels in the hierarchy is better than aggregating at

higher levels because lower levels can be used to rewrite more queries. Note,

however, that doing so will also take up more space. For example, instead of

grouping on state, group on city (unless space constraints prohibit it).

Instead of creating multiple materialized views with overlapping or hierarchically

related GROUP BY columns, create a single materialized view with all those

GROUP BY columns. For example, instead of using a materialized view that groups

by city and another materialized view that groups by month, use a materialized

view that groups by city and month.

Use GROUP BY on columns which correspond to levels in a dimension but not on

columns that are functionally dependent, because query rewrite will be able to use

the functional dependencies automatically based on the DETERMINES clause in a

dimension. For example, instead of grouping on city_name, group on city_id (as

long as there is a dimension which indicates that the attribute city_id determines

city_name, you will enable the rewrite of a query involving city_name).

Statistics
Optimization with materialized views is based on cost and the optimizer needs

statistics of both the materialized view and the tables in the query to make a

cost-based choice. Materialized views should thus have statistics collected using

either the ANALYZE TABLE statement or the DBMS_STATISTICS package.

See Also: For more information about collecting statistics, please

refer to "Generating Statistics" on page 7-7.

Guidelines for Using Query Rewrite

31-24 Oracle8i Tuning

Managing Materialized Views 32-1

32
Managing Materialized Views

This chapter contains:

■ Overview of Materialized View Management

■ Warehouse Refresh

■ Summary Advisor

■ Is a Materialized View Being Used?

Overview of Materialized View Management
The motivation for using materialized views is to improve performance, but the

overhead associated with materialized view management can become a significant

system management problem. Materialized view management activities include:

■ Identifying what materialized views to create initially

■ Indexing the materialized views

■ Ensuring that all materialized views and materialized view indexes are

refreshed properly each time the database is updated

■ Checking which materialized views have been used

■ Determining how effective each materialized view has been on workload

performance

■ Measuring the space being used by materialized views

■ Determining which new materialized views should be created

■ Determining which existing materialized views should be dropped

■ Archiving old detail and materialized view data that is no longer useful

Overview of Materialized View Management

32-2 Oracle8i Tuning

This chapter groups these tasks into two areas: warehouse refresh and warehouse

advisor, where warehouse refresh is concerned with ensuring that the materialized

views contain the correct and latest data and the warehouse advisor recommends the

materialized views to create, retain, and drop.

After the initial effort of creating and populating the data warehouse or data mart,

the major administration overhead is the update process, which involves the

periodic extraction of incremental changes from the operational systems;

transforming the data; verification that the incremental changes are correct,

consistent, and complete; bulk-loading the data into the warehouse; and refreshing

indexes and materialized views so that they are consistent with the detail data.

The update process must generally be performed within a limited period of time

known as the update window. The update window depends on the update frequency
(such as daily or weekly) and is business-dependent. For a daily update frequency,

an update window of two to six hours might be typical.

The update window usually displays the time for the following activities:

1. Loading the detail data.

2. Updating or rebuilding the indexes on the detail data.

3. Performing quality assurance tests on the data.

4. Refreshing the materialized views.

5. Updating the indexes on the materialized views.

A popular and efficient way to load data into a warehouse or data mart is to use

SQL*Loader with the DIRECT or PARALLEL option or to use another loader tool

that uses the Oracle direct path API.

Loading strategies can be classified as one-phase or two-phase. In one-phase loading,

data is loaded directly into the target table, quality assurance tests are performed,

and errors are resolved by performing DML operations prior to refreshing

materialized views. If a large number of deletions are possible, then storage

utilization may be adversely affected, but temporary space requirements and load

time are minimized. The DML that may be required after one-phase loading causes

multi-table aggregate materialized views to become unusable in the safest rewrite

integrity level.

See Also: See Oracle8i Utilities for the restrictions and

considerations when using SQL*Loader with the DIRECT or

PARALLEL keywords.

Warehouse Refresh

Managing Materialized Views 32-3

In a two-phase loading process:

■ Data is first loaded into a temporary table in the warehouse.

■ Quality assurance procedures are applied to the data.

■ Referential integrity constraints on the target table are disabled, and the local

index in the target partition is marked unusable.

■ The data is copied from the temporary area into the appropriate partition of the

target table using INSERT AS SELECT with the PARALLEL or APPEND hint.

■ The temporary table is dropped.

■ The constraints are enabled, usually with the NOVALIDATE option.

Immediately after loading the detail data and updating the indexes on the detail

data, the database can be opened for operation, if desired. Query rewrite can be

disabled by default (with ALTER SYSTEM SET QUERY_REWRITE_ENABLED =
FALSE) until all the materialized views are refreshed, but enabled at the session

level for any users who do not require the materialized views to reflect the data

from the latest load (with ALTER SESSION SET QUERY_REWRITE_ENABLED =
TRUE). However, as long as QUERY_REWRITE_INTEGRITY = ENFORCED or

TRUSTED, this is not necessary as the system ensures that only materialized views

with updated data participate in a query rewrite. These packages can be used to

refresh any type of materialized view, such as ones containing joins only, or joins

and aggregates, or aggregates on single tables.

Warehouse Refresh
When creating a materialized view, you have the option of specifying whether the

refresh occurs ON DEMAND or ON COMMIT. To use the fast warehouse refresh

facility, the ON DEMAND mode must be specified, then the materialized view can

be refreshed by calling one of the procedures in DBMS_MVIEW.

The DBMS_MVIEW package provides three different types of refresh operations.

■ DBMS_MVIEW.REFRESH

Refresh one or more materialized views.

■ DBMS_MVIEW.REFRESH_ALL_MVIEWS

Refresh all materialized views.

■ DBMS_MVIEW.REFRESH_DEPENDENT

Warehouse Refresh

32-4 Oracle8i Tuning

Refresh all table-based materialized views that depend on a specified detail

table or list of detail tables.

See "Manual Refresh Using the DBMS_MVIEW Package" on page 32-6 for more

information about this package.

Performing a refresh operation requires temporary space to rebuild the indexes, and

can require additional space for performing the refresh operation itself. Fast refresh

may also require temporary tables to be created in the user’s temporary tablespace.

Some sites may prefer to not refresh all of their materialized views at the same time.

Therefore, if you defer refreshing your materialized views, you can temporarily

disable query rewrite with ALTER SYSTEM SET QUERY_REWRITE_ENABLED =
FALSE. Users who still want access to the stale materialized views can override this

default with ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE. After

refreshing the materialized views, you can re-enable query rewrite as the default for

all sessions in the current database instance by setting ALTER SYSTEM SET
QUERY_REWRITE_ENABLED = TRUE.

Refreshing a materialized view automatically updates all of its indexes; in the case

of full refresh, this requires temporary sort space. If insufficient temporary space is

available to rebuild the indexes, then you must explicitly drop each index or mark it

unusable prior to performing the refresh operation.

When a materialized view is refreshed, one of four refresh methods may be

specified as shown in the table below.

Complete Refresh
A complete refresh occurs when the materialized view is initially defined, unless it

references a prebuilt table and complete refresh may be requested at any time

during the life of the materialized view. Since the refresh involves reading the detail

Refresh Option Description

COMPLETE C Refreshes by recalculating the materialized view’s defining
query when atomic refresh=TRUE and COMPLETE is the same
as FORCE if atomic refresh=FALSE.

FAST F Refreshes by incrementally applying changes to the detail tables.

FORCE ? Uses the default refresh method. If the default refresh method is
FORCE, it tries to do a fast refresh. If that is not possible, it does
a complete refresh.

ALWAYS A Unconditionally does a complete refresh.

Warehouse Refresh

Managing Materialized Views 32-5

table to compute the results for the materialized view, this can be a very

time-consuming process, especially if there are huge amounts of data to be read and

processed. Therefore, one should always consider the time required to process a

complete refresh before requesting it.

However, there are cases when the only refresh method available is complete

refresh because the materialized view does not satisfy the conditions specified in

the following section for a fast refresh.

Fast Refresh
Most data warehouses require periodic incremental updates to their detail data. As

described in "Schema Design Guidelines for Materialized Views" on page 28-7, you

can use the SQL*Loader direct path option, or any bulk load utility that uses

Oracle’s direct path interface, to perform incremental loads of detail data. Use of

Oracle’s direct path interface makes fast refresh of your materialized views efficient

because, instead of having to recompute the entire materialized view, the changes

are added to the existing data. Thus, applying only the changes can result in a very

fast refresh time.

The time required to perform incremental refresh is sensitive to several factors:

■ Whether the data in the materialized view container table is clustered by a

time attribute

■ Whether a concatenated index is available on the materialized view keys

■ The number of inner joins in the materialized view that have not been declared

as part of a referential integrity constraint or JOIN KEY declaration in a

CREATEor ALTER DIMENSION statement

The first two factors can be addressed by partitioning the materialized view

container by time, like the fact tables, and by creating a local concatenated index on

the materialized view keys. The third factor can be addressed by creating

dimensions and hierarchies for your schema, and by ensuring that all materialized

view inner joins are strict 1:n relationships whenever possible, as described below.

If an incremental load was performed, it is typically much faster to perform a fast

refresh than a complete refresh. Warehouse fast refresh is supported in all but the

following cases:

■ When there is more than one table in an aggregated materialized view, and

when any DML on the fact tables, other than a direct load, has occurred since

the last full refresh was performed

Warehouse Refresh

32-6 Oracle8i Tuning

■ When the materialized view contains detail relations that are views or

snapshots

■ When the materialized view contains AVG(x) without COUNT(x)

■ When the materialized view contains VARIANCE(x) without COUNT(x)

and SUM(x)

■ When the materialized view contains STDDEV(x) without COUNT(x) and SUM(x)

Note that incremental refresh may perform both inserts and updates to the

materialized view. If a new row is inserted, any columns in the materialized view,

other than key or measure columns, are set to their default values.

If you want to have a materialized view that can be fast refreshable, even when

DML operations such as UPDATE and DELETE are applied to the referenced table,

refer to Chapter 29, "Materialized Views", which describes the types of materialized

views that allow DML operations, provided a materialized view log exists.

Manual Refresh Using the DBMS_MVIEW Package
Three different refresh procedures are available in the DBMS_MVIEW package for

performing ON DEMAND refresh and they each have their own unique set of

parameters. To use this package, Oracle8 queues must be available, which means

that the following parameters must be set in the initialization parameter file. If

queues are unavailable, refresh will fail with an appropriate message.

Required Initialization Parameters for Warehouse Refresh

■ JOB_QUEUE_PROCESSES

The number of background processes. Determines how many materialized

views can be refreshed concurrently.

■ JOB_QUEUE_INTERVAL

In seconds, the interval between which the job queue scheduler checks to see if

a new job has been submitted to the job queue.

■ UTL_FILE_DIR

Determines the directory where the refresh log is written. If unspecified, no

refresh log will be created.

See Also: See Oracle8i Supplied Packages Reference for detailed

information about the DBMS_MVIEW package. Oracle8i Replication
explains how to use it in a replication environment.

Warehouse Refresh

Managing Materialized Views 32-7

These packages also create a log which, by default, is called refresh.log and is useful

in helping to diagnose problems during the refresh process. This log file can be

renamed by calling the procedure DBMS_OLAP.SET_LOGFILE_NAME (’log

filename’).

Refresh Specific Materialized Views
The DBMS_MVIEW.REFRESH procedure is used to refresh one or more

materialized views that are explicitly defined in the FROM list. This refresh

procedure can also be used to refresh materialized views used by replication, so not

all of the parameters are required. The required parameters to use this procedure

are:

■ The list of materialized views to refresh, delimited by a comma

■ The refresh method: A-Always, F-Fast, ?-Force, C-Complete

■ Rollback segment to use

■ Continue after errors

When refreshing multiple materialized views, if one of them has an error while

being refreshed, the entire job will continue if set to TRUE.

■ The following four parameters should be set to FALSE, 0,0,0

These are the values required by warehouse refresh, since these parameters are

used by the replication process.

■ Atomic refresh

If set to TRUE, then warehouse refresh is not used. It uses the

snapshot/replication refresh instead. If set to FALSE, the warehouse refresh

method is used and each refresh operation is performed within its own

transaction.

Therefore, to perform a fast refresh on the materialized view store_mv, the package

would be called as follows:

DBMS_MVIEW.REFRESH(’STORE_MV’, ’A’, ’’, TRUE, FALSE, 0,0,0, FALSE);

Multiple materialized views can be refreshed at the same time and they don’t all

have to use the same refresh method. To give them different refresh methods,

specify multiple method codes in the same order as the list of materialized views

(without commas). For example, the following specifies that store_mv will be

completely refreshed and product_mv will receive a fast refresh.

DBMS_MVIEW.REFRESH(’STORE_MV,PRODUCT_MV’, ’AF’, ’’, TRUE, FALSE, 0,0,0, FALSE);

Warehouse Refresh

32-8 Oracle8i Tuning

Refresh All Materialized Views
An alternative to specifying the materialized views to refresh is to use the

procedure DBMS_MVIEW.REFRESH_ALL_MVIEWS. This will result in all

materialized views being refreshed. If any of the materialized views fails to refresh,

then the number of failures is reported.

The parameters for this procedure are:

■ The number of failures

■ The datatype number

■ The refresh method: A-Always, F-Fast, ?-Force, C-Complete

■ Rollback segment to use

■ Continue after errors

An example of refreshing all materialized views is:

DBMS_MVIEW.REFRESH_ALL_MVIEWS (failures,'A','',FALSE,FALSE);

Refresh Dependent
The third option is the ability to refresh only those materialized views that depend

on a specific table using the procedure DBMS_MVIEW. REFRESH_DEPENDENT.

For example, suppose the changes have been received for the orders table but not

customer payments. The refresh dependent procedure can be called to refresh only

those materialized views that reference the ORDER table.

The parameters for this procedure are:

■ The number of failures

■ The dependent table

■ The refresh method: A-Always, F-Fast, ?-Force, C-Complete

■ Rollback segment to use

■ Continue after errors

A Boolean parameter. If set to TRUE, the number_of_failures output parameter

will be set to the number of refreshes that failed, and a generic error message

will indicate that failures occurred. The refresh log will give details of each of

the errors, as will the alert log for the instance. If set to FALSE, the default, then

refresh, will stop after it encounters the first error, and any remaining

materialized views in the list will not be refreshed.

Warehouse Refresh

Managing Materialized Views 32-9

■ Atomic refresh

A Boolean parameter.

In order to perform a full refresh on all materialized views that reference the

ORDERS table, use:

DBMS_mview.refresh_dependent (failures, ’ORDERS’, ’A’, ’’, FALSE, FALSE);

Tips for Refreshing Using Warehouse Refresh
If the process that is executing DBMS_MVIEW.REFRESH is interrupted or the

instance is shut down, any refresh jobs that were executing in job queue processes

will be requeued and will continue running. To remove these jobs, use the

DBMS_JOB.REMOVE procedure.

Materialized Views with Joins and Aggregates
Here are some guidelines for using the refresh mechanism for materialized views

with joins and aggregates.

1. The warehouse refresh facility only operates on materialized views containing

aggregates.

2. Always load new data using the direct-path option if possible. Avoid deletes

and updates because a complete refresh will be necessary. However, you can

drop a partition on a materialized view and do a fast refresh.

3. Place fixed key constraints on the fact table, and primary key constraints from

the fact table to the dimension table. Doing this enables refresh to identify the

fact table, which helps fast refresh.

4. During loading, disable all constraints and re-enable when finished loading.

5. Index the materialized view on the foreign key columns using a concatenated

index.

6. To speed up fast refresh, make the number of job queue processes greater than

the number of processors.

7. If there are many materialized views to refresh, it is faster to refresh all in a

single command than to call them individually.

8. Make use of the "?" refresh method to ensure getting a refreshed materialized

view that can be used to query rewrite. If a fast refresh cannot be done, a

complete refresh will be performed. Whereas, if a fast refresh had been

Warehouse Refresh

32-10 Oracle8i Tuning

requested and there was nothing to do, the materialized view would not be

refreshed at all.

9. Try to create materialized views that are fast refreshable because it is quick.

10. If a summary contains data that is based on data which is no longer in the fact

table, maintain the materialized view using fast refresh. If no job queues are

started, two job queue processes will be started by the refresh. This can be

modified by:

ALTER SYSTEM SET JOB_QUEUE_PROCESSES = value

11. In general, the more processors there are, the more job queue processes should

be created. Also, if you are doing mostly complete refreshes, reduce the number

of job queue processes, since each refresh consumes more system resources than

a fast refresh. The number of job queue processes limits the number of

materialized views that can be refreshed concurrently. In contrast, if you

perform mostly fast refreshes, increase the number of job queue processes.

Refresh of Materialized Views Containing a Single Table with Aggregates
A materialized view which contains aggregates and is based on a single table may

be fast refreshable, provided it adheres to the rules in Table 29–1, "Requirements for

Fast Refresh of Materialized Views" on page 29-8 when data changes are made

using either direct path or SQL DML statements. At refresh time, Oracle detects the

type of DML that has been done (direct-load or SQL DML) and uses either the

materialized view log or information available from the direct-path to determine

the new data. If changes will be made to your data using both methods, then refresh

should be performed after each type of data change rather than issuing one refresh

at the end. This is because Oracle can perform significant optimizations if it detects

that only one type of DML is done. It is therefore recommended that scenario 2 be

followed rather than scenario 1.

To improve fast refresh performance, it is highly recommended that indexes be

created on the columns which contain the rowids.

Scenario 1
■ Direct-load data to detail table

■ SQL DML such as INSERT or DELETE to detail table

■ Refresh materialized view

Warehouse Refresh

Managing Materialized Views 32-11

Scenario 2
■ Direct-load data to detail table

■ Refresh materialized view

■ SQL DML such as INSERT or DELETE to detail table

■ Refresh materialized view

Furthermore, for refresh ON-COMMIT, Oracle keeps track of the type of DML done

in the committed transaction. It is thus recommended that the user does not do

direct-path load and SQL DML to other tables in the same transaction as Oracle

may not be able to optimize the refresh phase.

If the user has a lot of updates to the table, it is better to bunch them in one

transaction, so that refresh of the materialized view will be performed just once at

commit time rather than after each update. In the warehouse, after a bulk load, the

user should enable parallel DML in the session and perform the refresh. Oracle will

use parallel DML to do the refresh, which will enhance performance tremendously.

There is more to gain if the materialized view is partitioned.

As an example, assume that a materialized view is partitioned and has a parallel

clause. The following sequence would be recommended in a data warehouse

1. Bulk load into detail table

2. ALTER SESSION ENABLE PARALLEL DML;

3. Refresh materialized view

Refresh of Materialized Views Containing only Joins
If a materialized view contains joins but no aggregates, then having an index on

each of the join column rowids in the detail table will enhance refresh performance

greatly since this type of materialized view tends to be much larger than

materialized views containing aggregates. For example, referring to the following

materialized view:

CREATE MATERIALIZED VIEW detail_fact_mv
 BUILD IMMEDIATE
 REFRESH FASY ON COMMIT
 AS
 SELECT
 f.rowid "fact_rid", t.rowid "time_rid", s.rowid "store_rid",
s.store_key, s.store_name, f.dollar_sales,
f.unit_sales, f.time_key
FROM fact f, time t, store s

Warehouse Refresh

32-12 Oracle8i Tuning

WHERE f.store_key = s.store_key(+) and
f.time_key = t.time_key(+);

Indexes should be created on columns FACT_RID, TIME_RID and STORE_RID.

Partitioning is highly recommended as is enabling parallel DML in the session

before invoking refresh because it will greatly enhance refresh performance.

This type of materialized view can also be fast refreshed if DML is performed on the

detail table. It is therefore recommended that the same procedure be applied to this

type of materialized view as for a single table aggregate. That is, perform one type

of change (direct-path load or DML) and then refresh the materialized view. This is

because Oracle can perform significant optimizations if it detects that only one type

of change has been done.

Also, it is recommended that the refresh be invoked after each table is loaded, rather

than load all the tables and then perform the refresh. Therefore, try to use scenario 2

below for your refresh procedures.

Scenario 1
apply changes to fact
apply changes to store
refresh detail_fact_mv

Scenario 2
apply changes to fact
refresh detail_fact_mv
apply changes to store
refresh detail_fact_mv

For refresh ON-COMMIT, Oracle keeps track of the type of DML done in the

committed transaction. It is therefore recommended that you do not perform

direct-path and conventional DML to other tables in the same transaction because

Oracle may not be able to optimize the refresh phase. For example, the following is

not recommended:

direct path new data into fact
Conventional dml into store
commit

One should also try not to mix different types of conventional DML statements if

possible. This would again prevent using various optimizations during fast refresh.

For example, try to avoid:

Warehouse Refresh

Managing Materialized Views 32-13

insert into fact ..
delete from fact ..
commit

If many updates are needed, try to group them all into one transaction because

refresh will be performed just once at commit time, rather than after each update.

Scenario 1
update fact
commit
update fact
commit
update fact
commit

Scenario 2
update fact
update fact
update fact
commit

Note that if, when you use the DBMS_MVIEW package to refresh a number of

materialized views containing only joins with the "atomic" parameter set to TRUE,

parallel DML is disabled, which could lead to poor refresh performance.

In a data warehousing environment, assuming that the materialized view has a

parallel clause, the following sequence of steps is recommended:

1. Bulk load into fact

2. ALTER SESSION ENABLE PARALLEL DML;

3. Refresh materialized view

Recommended Initialization Parameters for Parallelism
The following parameters

■ PARALLEL_MAX_SERVERS should be set high enough to take care of

parallelism.

■ SORT_AREA_SIZE should be less than HASH_AREA_SIZE.

■ OPTIMIZER_MODE should equal CHOOSE (cost based optimization).

Summary Advisor

32-14 Oracle8i Tuning

■ OPTIMIZER_PERCENT_PARALLEL should equal 100.

Monitoring a Refresh
While a job is running, a SELECT * FROM V$SESSION_LONGOPS statement will

tell you the progress of each materialized view being refreshed.

To look at the progress of which jobs are on which queue, use a SELECT * FROM
DBA_JOBS_RUNNING statement.

The table ALL_MVIEW_ANALYSIS contains the values, as a moving average, for

the time most recently refreshed and the average time to refresh using both full and

incremental methods.

Refresh will schedule the long running jobs first. Use the refresh log to check what

each refresh did.

Tips after Refreshing Materialized Views
After you have performed a load or incremental load and rebuilt the detail table

indexes, you need to re-enable integrity constraints (if any) and refresh the

materialized views and materialized view indexes that are derived from that detail

data. In a data warehouse environment, referential integrity constraints are

normally enabled with the NOVALIDATEor RELYoptions. An important decision to

make before performing a refresh operation is whether the refresh needs to be

recoverable. Because materialized view data is redundant and can always be

reconstructed from the detail tables, it may be preferable to disable logging on the

materialized view. To disable logging and run incremental refresh non-recoverably,

use the ALTER MATERIALIZED VIEW...NOLOGGING statement prior to REFRESH.

If the materialized view is being refreshed using the ON COMMIT method, then,

following refresh operations, the alert log (alert_ <SID>.log) and the trace file

(ora_<SID>_number.trc) should be consulted to check that no errors have occurred.

Summary Advisor
To help you select from among the many materialized views that are possible in

your schema, Oracle provides a collection of materialized view analysis and

advisory functions in the DBMS_OLAP package. These functions are callable from

any PL/SQL program.

Summary Advisor

Managing Materialized Views 32-15

Figure 32–1 Materialized Views and the Advisor

From within the DBMS_OLAP package, several facilities are available to:

■ Estimate the size of a materialized view

■ Recommend a materialized view

■ Recommend materialized views based on collected workload information

■ Report actual utilization of materialized views based on collected workload

Whenever the summary advisor is run, with the exception of reporting the size of a

materialized view, the results are placed in a table in the database which means that

they can be queried, thereby saving the need to keep running the advisor process.

Collecting Structural Statistics
The advisory functions of the DBMS_OLAP package require you to gather structural

statistics about fact table cardinalities, dimension table cardinalities, and the distinct

Summary
Advisor

Discoverer or
Third Party Tool

DBMS_OLAP
PL/SQL Package

Workload Collection
(optional)

Config
File

Trace
Log

format

collect

define
events

Oracle Trace
Manager

Warehouse

Oracle8i

Materialized
View and

Dimensions

Workload

Summary Advisor

32-16 Oracle8i Tuning

cardinalities of every dimension LEVEL column, JOIN KEY column, and fact table

key column. This can be accomplished by loading your data warehouse, then

gathering either exact or estimated statistics with the DBMS_STATS package or the

ANALYZE TABLE statement. Because gathering statistics is time-consuming and

extreme statistical accuracy is not required, it is generally preferable to estimate

statistics. The advisor cannot be used if no dimensions have been defined, which is

a good reason for ensuring that some time is spent creating them.

Collection of Dynamic Workload Statistics
Optionally, if you have purchased the Oracle Enterprise Manager Performance Pack,
then you may also run Oracle Trace to gather dynamic information about your

query work load, which can then be used by an advisory function. If Oracle Trace is

available, serious consideration should be given to collecting materialized view

usage. Not only does it enable the DBA to see which materialized views are in use,

but it also means that the advisor may detect some unusual query requests from the

users which would result in recommending some different materialized views.

Oracle Trace gathers the following work load statistics for the analysis of

materialized views:

■ The name of each materialized view selected by query rewrite

■ The estimated benefit obtained by using the materialized view, which is

roughly the ratio of the fact table cardinality to the materialized view

cardinality, adjusted for the need to further aggregate over the materialized

view or join it back to other relations

■ The "ideal materialized view" that could have been used by the request

Oracle Trace includes two new "point events" for collecting runtime statistics about

materialized views: one event that records the selected materialized view names at

request execution time, and another event that records the estimated benefit and

ideal materialized view at compile time. You can log just these two events for

materialized view analysis if desired, or you can join this information with other

information collected by Oracle Trace, such as the SQL text or the execution time of

the request, if other Trace events are also collected. A collection option in the Oracle

Trace Manager GUI provides a way to collect materialized view management

statistics.

To collect and analyze the summary event set, you must do the following:

1. Set six initialization parameters to collect data via Oracle Trace. Enabling these

parameters incurs some additional overhead at database connection, but is

otherwise transparent.

Summary Advisor

Managing Materialized Views 32-17

■ ORACLE_TRACE_COLLECTION_NAME = oraclesm

■ ORACLE_TRACE_COLLECTION_PATH = location of collection files

■ ORACLE_TRACE_COLLECTION_SIZE = 0

■ ORACLE_TRACE_ENABLE = TRUE turns on Trace collecting

■ ORACLE_TRACE_FACILITY_NAME = oraclesm

■ ORACLE_TRACE_FACILITY_PATH = location of trace facility files

For further information on these parameters, refer to the Oracle Trace Users
Guide.

2. Run the Oracle Trace Manager GUI, specify a collection name, and select the

SUMMARY_EVENT set. Oracle Trace Manager reads information from the

associated configuration file and registers events to be logged with Oracle.

While collection is enabled, the workload information defined in the event set

gets written to a flat log file.

3. When collection is complete, Oracle Trace automatically formats the Oracle

Trace log file into a set of relations, which have the predefined synonyms

V_192216243_F_5_E_14_8_1 and V_192216243_F_5_E_15_8_1. The workload

tables should be located in the same schema that the subsequent workload

analysis will be performed in. Alternatively, the collection file, which usually

has an extension of .CDF, can be formatted manually using otrcfmt. A manual

collection command is illustrated below:

otrcfmt collection_name.cdf user/password@database

4. Run the GATHER_TABLE_STATS procedure of the DBMS_STATS package or

ANALYZE...ESTIMATE STATISTICS to collect cardinality statistics on all fact

tables, dimension tables, and key columns (any column that appears in a

dimension LEVEL clause or JOIN KEY clause of a CREATE DIMENSION
statement).

Once these four steps have been completed, you will be ready to make

recommendations about your materialized views.

Recommending Materialized Views
The analysis and advisory functions for materialized views are RECOMMEND_MV and

RECOMMEND_MV_W in the DBMS_OLAP package. These functions automatically

recommend which materialized views to create, retain, or drop.

Summary Advisor

32-18 Oracle8i Tuning

■ RECOMMEND_MV uses structural statistics, but not workload statistics, to

generate recommendations.

■ RECOMMEND_MV_W uses both workload statistics and structural statistics.

You can call these functions to obtain a list of materialized view recommendations

that you can select, modify, or reject. Alternatively, you can use the DBMS_OLAP
package directly in your PL/SQL programs for the same purpose.

The summary advisor will not be able to recommend summaries if the following

conditions are not met:

1. All tables including existing materialized views must have been analyzed as

described in step 4 above.

2. Dimensions must exist.

3. The advisor should be able to identify the fact table because it will contain

foreign key references to other tables.

Four parameters are required to use these functions:

■ Fact table names or null to analyze all fact tables

■ The maximum storage that can be used for storing materialized views

■ A list or materialized views that you want to retain

■ A number between 0 to 100 that specifies the percentage of materialized views

that must be retained

A typical call to the package, where the main fact table is called FACT, would be:

DBMS_OLAP.RECOMMEND_MV(’fact’, 100000, ’’, 10);

No workload statistics are used in this example.

The results from calling this package are put in the table

MVIEWS$_RECOMMENDATIONS. The contents of this table can be queried or

they can be displayed using the SQL file sadvdemo.sql. The output from calling this

procedure is the same irrespective of whether the workload statistics are used.

The recommendations can be viewed by calling the procedure

DEMO_SUMADV.PRETTYPRINT_RECOMMENDATIONS, but first you need to

run sadvdemo.sql. It is suggested that SET SERVEROUTPUT ON SIZE 900000 be

See Also: See Oracle8i Supplied Packages Reference for detailed

information about the DBMS_OLAP package.

Summary Advisor

Managing Materialized Views 32-19

used to ensure that all the information can be displayed. A sample recommendation

that resulted from calling this package is shown below.

Recommendation Number 1
Recommended Action is DROP existing summary GROCERY.QTR_STORE_PROMO_SUM
Storage in bytes is 196020
Percent performance gain is null
Benefit-to-cost ratio is null

Recommendation Number 2
Recommended Action is RETAIN existing summary GROCERY.STORE_SUM
Storage in bytes is 21
Percent performance gain is null
Benefit-to-cost ratio is null

To call the package and use the workload statistics, the only difference is the

procedure name that is called. For example, instead of recommend_mv, it’s

recommend_mv_w.

DBMS_OLAP.RECOMMEND_MV_W(’fact’, 100000, ’’, 10);

Recommendation Number 3
Recommendation Number = 3
Recommended Action is CREATE new summary:
SELECT PROMOTION.PROMOTION_KEY, STORE.STORE_KEY, STORE.STORE_NAME,
 STORE.DISTRICT, STORE.REGION , COUNT(*), SUM(FACT.CUSTOMER_COUNT),
 COUNT(FACT.CUSTOMER_COUNT), SUM(FACT.DOLLAR_COST),
COUNT(FACT.DOLLAR_COST),
 SUM(FACT.DOLLAR_SALES), COUNT(FACT.DOLLAR_SALES), MIN(FACT.DOLLAR_SALES),
 MAX(FACT.DOLLAR_SALES), SUM(FACT.RANDOM1), COUNT(FACT.RANDOM1),
 SUM(FACT.RANDOM2), COUNT(FACT.RANDOM2), SUM(FACT.RANDOM3),
 COUNT(FACT.RANDOM3), SUM(FACT.UNIT_SALES), COUNT(FACT.UNIT_SALES)
FROM GROCERY.FACT, GROCERY.PROMOTION, GROCERY.STORE
WHERE FACT.PROMOTION_KEY = PROMOTION.PROMOTION_KEY AND FACT.STORE_KEY =
 STORE.STORE_KEY
GROUP BY PROMOTION.PROMOTION_KEY, STORE.STORE_KEY, STORE.STORE_NAME,
 STORE.DISTRICT, STORE.REGION

Storage in bytes is 257999.999999976
Percent performance gain is .533948057298649
Benefit-to-cost ratio is .00000206956611356085

Summary Advisor

32-20 Oracle8i Tuning

Recommendation Number 4
Recommended Action is CREATE new summary:
SELECT STORE.REGION, TIME.QUARTER, TIME.YEAR , COUNT(*),
 SUM(FACT.CUSTOMER_COUNT), COUNT(FACT.CUSTOMER_COUNT),
SUM(FACT.DOLLAR_COST),
 COUNT(FACT.DOLLAR_COST), SUM(FACT.DOLLAR_SALES),
COUNT(FACT.DOLLAR_SALES),
 MIN(FACT.DOLLAR_SALES), MAX(FACT.DOLLAR_SALES), SUM(FACT.RANDOM1),
 COUNT(FACT.RANDOM1), SUM(FACT.RANDOM2), COUNT(FACT.RANDOM2),
 SUM(FACT.RANDOM3), COUNT(FACT.RANDOM3), SUM(FACT.UNIT_SALES),
 COUNT(FACT.UNIT_SALES)
FROM GROCERY.FACT, GROCERY.STORE, GROCERY.TIME
WHERE FACT.STORE_KEY = STORE.STORE_KEY AND FACT.TIME_KEY = TIME.TIME_KEY
GROUP BY STORE.REGION, TIME.QUARTER, TIME.YEAR

Storage in bytes is 86
Percent performance gain is .523360688578368
Benefit-to-cost ratio is .00608558940207405

Estimating Materialized View Size
Since a materialized view occupies storage space in the database, it is helpful to

know how much space will be required before it is created. Rather than guess or

wait until it has been created and then discoverer that insufficient space is available

in the tablespace, use the package DBMS_ESTIMATE_SIZE. Calling this procedure

instantly returns an estimate of the size in bytes that the materialized view is likely

to occupy.

The parameters to this procedure are:

■ the name for sizing

■ the SELECT statement

and the package returns:

■ the number of rows it expects in the materialized view

■ the size of the materialized view in bytes

In the example shown below, the query that will be specified in the materialized

view is passed into the ESTIMATE_SUMMARY_SIZE package. Note that the SQL

statement is passed in without a ";".

DBMS_OLAP.estimate_summary_size (’simple_store’,
 ’SELECT
 product_key1, product_key2,

Is a Materialized View Being Used?

Managing Materialized Views 32-21

 SUM(dollar_sales) AS sum_dollar_sales,
 SUM(unit_sales) AS sum_unit_sales,
 SUM(dollar_cost) AS sum_dollar_cost,
 SUM(customer_count) AS no_of_customers
 FROM fact GROUP BY product_key1, product_key2’ ,
 no_of_rows, mv_size);

The procedure returns two values, an estimate for the number of rows and the size

of the materialized view in bytes, as shown below.

No of Rows: 17284
Size of Materialized view (bytes): 2281488

Is a Materialized View Being Used?
One of the major administrative problems with materialized views is knowing

whether they are being used. Materialized views could be in regular use or they

could have been created for a one-time problem that has now been resolved.

However, the usergroup who requested this level of analysis might never have told

the DBA that it was no longer required, so the materialized view remains in the

database occupying storage space and possibly being regularly refreshed.

If the Oracle Trace option is available, then it can advise the DBA which

materialized views are in use, using exactly the same procedure as for collecting

workload statistics. Trace collection is enabled and in this case the collection period

is likely to be longer that for query collection because Trace will only report on

materialized views that were used while it was collecting statistics. Therefore, if too

small a window is chosen, not all the materialized views that are in use will be

reported.

Once you are satisfied that you have collected sufficient data, the data is formatted

by Oracle Trace, just as if it were workload information, and then the package

EVALUATE_UTILIZATION_W is called. It analyses the data and then the results

are placed in the table MVIEWS$_EVALUATIONS.

In the example below, the utilization of materialized views is analyzed and the

results are displayed.

DBMS_OLAP.EVALUATE_UTILIZATION_W();

Note that no parameters are passed into the package.

Shown below is a sample output obtained by querying the table

MVIEW$EVALUATIONS which is providing the following information:

Is a Materialized View Being Used?

32-22 Oracle8i Tuning

■ Materialized view owner and name

■ Rank of this materialized view in descending benefit-to-cost ratio

■ Size of the materialized view in bytes

■ The number of times the materialized view appears in the workload

■ The cumulative benefit is calculated each time the materialized view is used as

■ The benefit-to-cost ratio is calculated as the incremental improvement in

performance to the size of the materialized view

MVIEW_OWNER MVIEW_NAME RANK SIZE FREQ CUMULATIVE BENEFIT
----------- ------------------- ----- ------ ---- ---------- ----------
GROCERY STORE_MIN_SUM 1 340 1 9001 26.4735294
GROCERY STORE_MAX_SUM 2 380 1 9001 23.6868421
GROCERY STORE_STDCNT_SUM 3 3120 1 3000.38333 .961661325
GROCERY QTR_STORE_PROMO_SUM 4 196020 2 0 0
GROCERY STORE_SALES_SUM 5 340 1 0 0
GROCERY STORE_SUM 6 21 10 0 0

Index-1

Index
A
ABORTED_REQUEST_THRESHOLD

procedure, 19-24

access path, 2-10

adaptive multi-user

algorithm for, 26-7

definition, 26-7

aggregate computability check, 31-17

aggregates, 27-18, 28-6, 29-10, 31-23

alert log, 12-3

ALL_HISTOGRAMS view, 7-6

ALL_INDEXES view, 6-16

ALL_OBJECTS view, 19-32

ALL_ROWS hint, 7-38

ALL_TAB_COLUMNS view, 7-5, 7-6

allocation

multi-threaded server, 19-21

of memory, 19-1

ALTER INDEX REBUILD statement, 6-9

ALTER MATERIALIZED VIEW statement, 29-4

enabling query rewrite, 31-4

ALTER SESSION statement

examples, 14-5

SET SESSION_CACHED_CURSORS, 19-18

ALTER SYSTEM DISCONNECT SESSION, 25-22

ALTER SYSTEM statement

CHECKPOINT option, 25-6

MTS_DISPATCHERS parameter, 21-8

ALTER TABLE statement

NOLOGGING option, 27-23

ALWAYS_ANTI_JOIN parameter, 7-22, 7-56

analysis dictionary, 12-4

ANALYZE statement, 11-4, 20-31, 27-20, 27-27,

32-16

analyzing data

for parallel processing, 26-78

AND_EQUAL hint, 6-7, 7-49

APPEND hint, 7-61, 27-22

application design, 2-9

application designer, 1-8

application developer, 1-8

application failover, 25-17, 25-19

applications

client/server, 3-9

decision support, 3-3, 26-3

distributed databases, 3-7

OLTP, 3-1

parallel query, 3-4

parallel server, 3-8

registering with the database, 5-1, 12-7

ARCH process, 21-16

multiple, 26-75

architecture and CPU, 18-10

array interface, 22-2

asynchronous I/O, 26-29

attributes, 30-4

audit trail, 12-4

AUTOEXTEND, 20-28

Average Elapsed Time data view, 15-10

B
B*-tree index, 6-15, 6-19

backups

data warehouse, 11-9

disk mirroring, 26-44

tuning, 20-52

Index-2

bandwidth, 26-3

Basic Statistics for Parse/Execute/Fetch drilldown

data view, 15-18

BEGIN_DISCRETE_TRANSACTION

procedure, 9-1, 9-3

benefit of tuning, 2-3

binary files

formatting using Oracle Trace, 15-5

bind variables, 19-16

bitmap

mapping to ROWIDs, 6-17

BITMAP CONVERSION row source, 6-20

bitmap index, 6-13, 6-18, 11-7

creating, 6-16

inlist iterator, 13-23

maintenance, 6-15

size, 6-20

storage considerations, 6-14

when to use, 6-13

BITMAP keyword, 6-16

BITMAP_MERGE_AREA_SIZE parameter, 6-15,

6-19, 7-22

block contention, 2-11

block size, 20-15

bottlenecks

disk I/O, 20-20

memory, 19-1

broadcast

distribution value, 13-8

buffer cache, 2-10

memory allocation, 19-29

partitioning, 19-33

reducing buffers, 19-29

reducing cache misses, 19-29

tuning, 19-25

buffer get, 4-5

buffer not pinned statistics, 19-27

buffer pinned statistics, 19-27

buffer pool

default cache, 19-31

keep cache, 19-32

multiple, 19-31, 19-32

RECYCLE cache, 19-31

syntax, 19-35

BUFFER_POOL clause, 19-35

BUFFER_POOL_name parameter, 19-34

build methods, 29-5

business rule, 1-8, 2-3, 2-7

C
CACHE hint, 7-63

cache hit ratios

increasing, 19-29

callback

failover, 25-23

cardinality, 6-20

CATPARR.SQL script, 19-29

CATPERF.SQL file, 19-37

chained rows, 20-30

channel bandwidth, 17-4

CHECKPOINT option

ALTER SYSTEM statement, 25-6

checkpoints

choosing checkpoint frequency, 20-39

performance, 20-39

redo log maintenance, 20-39

tuning, 20-38

CHOOSE hint, 7-40

CKPT process, 20-41

client/server applications, 3-9, 18-4

CLUSTER hint, 7-43

clusters, 6-24

collections in Oracle Trace, 15-4, 15-22

columns, to index, 6-4

common joins, 31-9

COMPATIBLE parameter, 6-16, 26-66

and parallel query, 7-57

complete refresh, 32-4

composite indexes, 6-5

composite partitioning, 26-46

examples of, 13-17

performance considerations, 26-49

concurrent users

increasing the number of, 26-10

CONNECT BY, 13-26

connection load balancing

multi-threaded server, 23-5

connection manager, 22-4

in the multi-threaded server, 23-3

Index-3

connection multiplexing

with the multi-threaded server, 23-3

connection pooling, 21-9

with the multi-threaded server, 23-3

connection-to-dispatcher

recommended ratio, 23-3

consistency, read, 18-7

consistent gets statistic, 19-26, 21-4, 21-22

consistent mode, TKPROF, 14-13

constraints, 6-10, 30-10, 31-22

contention

disk access, 20-20

free lists, 21-21

memory, 19-1

memory access, 21-1

redo allocation latch, 21-19

redo copy latches, 21-19

rollback segments, 21-3

tuning, 21-1

tuning resource, 2-11

context area, 2-10

context switching, 18-4

cost-based optimization, 7-3, 11-8, 27-27

parallel execution, 27-27

procedures for Plan Stability, 7-32

upgrading to, 7-34

cost-based rewrite, 31-2

count column, SQL trace, 14-13

CPU

checking utilization, 18-3

detecting problems, 18-3

system architecture, 18-10

tuning, 18-1

utilization, 18-1, 26-3

cpu column, SQL trace, 14-13

CPU Statistics data view, 15-11

CPU Statistics for Parse/Execute/Fetch drilldown

data view, 15-18

CPU_COUNT initialization parameter, 25-16

CREATE CLUSTER statement, 6-26

CREATE DIMENSION statement, 30-3

CREATE INDEX statement, 27-21

examples, 20-37

NOSORT option, 20-37

CREATE MATERIALIZED VIEW statement, 29-4

enabling query rewrite, 31-4

CREATE OUTLINE statement, 7-28

CREATE SNAPSHOT statement, 29-2

CREATE TABLE AS SELECT, 11-3, 27-18, 27-19,

27-31

CREATE TABLE statement

STORAGE clause, 20-24

TABLESPACE clause, 20-24

CREATE TABLESPACE statement, 20-24

CREATE_BITMAP_AREA_SIZE parameter, 6-15,

6-18

CREATE_STORED_OUTLINES parameter, 7-28

current column, SQL trace, 14-13

current mode, TKPROF, 14-13

CURSOR_NUM column

TKPROF_TABLE, 14-19

CURSOR_SPACE_FOR_TIME parameter

setting, 19-17

D
data

comparative, 12-5

design, tuning, 2-7

partitioning, 26-45

sources for tuning, 12-1

volume, 12-2

data block size, 20-15

data cache, 24-2

data dictionary, 12-2

data dictionary cache, 2-10, 19-20

Data Mart Builder, 28-9

Data Mart Designer, 28-9

data marts, 28-1

data sufficiency check, 31-13

data views in Oracle Trace, 15-6

Average Elapsed Time, 15-10

CPU Statistics, 15-11

Disk Reads, 15-9

Disk Reads/Execution Ratio, 15-9

Disk Reads/Logical Reads Ratio, 15-9

Disk Reads/Rows Fetched Ratio, 15-9

Execute Elapsed Time, 15-10

Fetch Elapsed Time, 15-11

Logical Reads, 15-9

Index-4

Logical Reads/Rows Fetched Ratio, 15-9

Number of Rows Processed, 15-11

Parse Elapsed Time, 15-10

Parse/Execution Ratio, 15-10

Re-Parse Frequency, 15-10

Rows Fetched/Fetch Count Ratio, 15-11

Rows Sorted, 15-11

Sorts in Memory, 15-11

Sorts on Disk, 15-11

Total Elapsed Time, 15-10

Waits by Average Wait Time, 15-12

Waits by Event Frequency, 15-12

Waits by Total Wait Time, 15-12

data warehouse, 28-1

ANALYZE statement, 11-4

backup, 11-9

bitmap index, 11-7

data mart, 28-1

dimension tables

(lookup tables), 28-5

fact tables (detail tables), 28-6

features, 11-1

hierarchies

rolling up and drilling down, 30-2

introduction, 11-1

Oracle Parallel Server, 11-6

parallel aware optimizer, 11-6

parallel index creation, 11-3

parallel load, 11-4

partition, 11-4

partitioned table, 26-47

recovery, 11-9

star schema, 11-8

database

buffers, 19-29

layout, 26-36

staging database, 28-1

statistics, gathering, 7-16

database administrator (DBA), 1-8

Database Connection event, 15-5

database writer process (DBWn)

behavior on checkpoints, 20-39

tuning, 18-8, 26-76

DATAFILE clause, 20-24

datafile placement on disk, 20-21

DATE_OF_INSERT column

TKPROF_TABLE, 14-18

db block gets statistic, 19-26, 21-4, 21-22

DB_BLOCK_BUFFERS parameter, 19-29, 19-34,

20-43

DB_BLOCK_LRU_LATCHES parameter, 19-34,

19-40

DB_BLOCK_MAX_DIRTY_TARGET

parameter, 20-41

DB_BLOCK_SIZE parameter

and parallel query, 26-28

tuning backups, 20-53

DB_FILE_DIRECT_IO_COUNT

parameter, 20-53

DB_FILE_MULTIBLOCK_READ_COUNT

parameter, 7-21, 20-37, 26-28

DBA locking, 27-13

DBA_DATA_FILES view, 26-79

DBA_EXTENTS view, 26-79

DBA_HISTOGRAMS view, 7-6

DBA_INDEXES view, 6-16

DBA_OBJECTS view, 19-32

DBA_TAB_COLUMNS view, 7-5, 7-6

DBMS_APPLICATION_INFO package, 5-2, 5-3

DBMS_MVIEW package, 32-6

DBMS_MVIEW.REFRESH procedure, 32-3

DBMS_MVIEW.REFRESH_ALL_MVIEWS

procedure, 32-3

DBMS_MVIEW.REFRESH_DEPENDENT

procedure, 32-3

DBMS_OLAP package, 29-22, 32-15, 32-17

DBMS_OLAP.RECOMMEND_MV

procedure, 29-22

DBMS_SHARED_POOL package, 10-3, 19-12,

19-24

DBMS_STATISTICS package, 31-3

DBMS_STATS package, 7-9, 32-16

DBMSPOOL.SQL script, 10-3, 19-12

DBMSUTL.SQL, 5-2

decision support, 3-3

processes, 27-3

query characteristics, 26-20

systems (DSS), 1-2

tuning, 26-3

with OLTP, 3-5

Index-5

decision support systems (DSS)

dimensions, 30-1

decomposition of SQL statements, 8-3

default cache, 19-31

degree of parallelism

and adaptive multi-user, 26-7

setting, 26-7

demand rate, 1-5

dependencies

dimensions, 29-21

materialized views, 29-21

DEPTH column

TKPROF_TABLE, 14-19

design dictionary, 12-4

designing and tuning, 2-10

detail report in Oracle Trace, 15-6

detail tables, 28-6

same as fact tables, 28-6

details property sheet in Oracle Trace, 15-14

device bandwidth, 17-4

evaluating, 20-16

device latency, 17-5

diagnosing tuning problems, 17-1

dictionary-mapped tablespaces, 20-28

dimension tables, 11-8, 28-6

(lookup tables), 28-5

normalized, 30-7

dimensions, 30-1, 30-10, 31-22

altering, 30-11

creating, 30-3

dependencies, 29-21

dimension tables (lookup tables), 28-5

dropping, 30-12

hierarchies

rolling up and drilling down, 30-2

in a decision support system, 30-1

using, 30-1

validating, 30-10

direct-load insert, 26-76

external fragmentation, 27-13

disabled constraint, 6-10

Discoverer, 28-9

discrete transactions

example, 9-4

processing, 9-2, 9-3

when to use, 9-1

disk affinity

and parallel query, 27-16

disabling with MPP, 26-39

with MPP, 26-71

disk column, SQL trace, 14-13

Disk Reads data view, 15-9

Disk Reads/Execution Ratio data view, 15-9

Disk Reads/Logical Reads Ratio data view, 15-9

Disk Reads/Rows Fetched Ratio data view, 15-9

DISK_ASYNCH_IO parameter, 26-29

DISKRATIO

to distribute backup I/O, 20-52

disks

contention, 20-20, 20-21

distributing I/O, 20-20

I/O requirements, 20-4

layout options, 20-15

monitoring OS file activity, 20-17

number required, 20-4

placement of datafiles, 20-21

placement of redo log files, 20-21

reducing contention, 20-20

speed characteristics, 20-3

testing performance, 20-5

dispatcher processes (Dnnn), 21-9

dispatcher-to-connection

recommended ratio, 23-3

distributed databases, 3-7

distributed query, 8-1, 8-10

distributing I/O, 20-20, 20-24

distribution

hints for, 7-58

DIUTIL package, 10-4

DML_LOCKS parameter, 26-26, 26-28

DOMAIN INDEX

and EXPLAIN PLAN, 13-24

domain indexes

using, 6-23

drilldown data views in Oracle Trace, 15-16

Basic Statistics for Parse/Execute/Fetch, 15-18

CPU Statistics for Parse/Execute/Fetch, 15-18

Parse Statistics, 15-18

Row Statistics for Execute/Fetch, 15-19

drilling down, 30-2

Index-6

hierarchies, 30-2

DROP MATERIALIZED VIEW statement, 29-4

prebuilt tables, 29-17

DROP_BY_CAT

procedure of OUTLN_PKG, 7-30

DROP_UNUSED

procedure of OUTLN_PKG, 7-30

DSS database

dimensions, 30-1

DSS memory, 26-20

duration events in Oracle Trace, 15-5

dynamic extension, 20-26

avoiding, 20-28

dynamic performance views

enabling statistics, 14-4

for tuning, 16-1

E
elapsed column, SQL trace, 14-13

enabled constraint, 6-10

enforced constraint, 6-10

ENFORCED mode, 31-19

ENQUEUE_RESOURCES parameter, 26-26, 26-28

Enterprise Manager, 12-7

equijoin, 4-9

errors

common tuning, 2-14

during discrete transactions, 9-3

estimating materialized view size, 32-20

EVALUATE_UTILIZATION_W package, 32-21

events in Oracle Trace, 15-5

examples

ALTER SESSION statement, 14-5

CREATE INDEX statement, 20-37

DATAFILE clause, 20-24

discrete transactions, 9-4

execution plan, 4-7

EXPLAIN PLAN output, 4-7, 13-25, 14-15

full table scan, 4-8

indexed query, 4-8

NOSORT option, 20-37

SET TRANSACTION statement, 20-29

SQL trace facility output, 14-15

STORAGE clause, 20-24

table striping, 20-24

TABLESPACE clause, 20-24

executable code as data source, 12-4

Execute Elapsed Time data view, 15-10

execution plans, 13-1

examples, 4-7, 14-6

parallel operations, 27-30

Plan Stability, 7-25

preserving with Plan Stability, 7-25

TKPROF, 14-7, 14-10

expectations for tuning, 1-9

EXPLAIN PLAN statement, 31-20

and DOMAIN INDEX, 13-24

and full partition-wise joins, 13-21

and partial partition-wise joins, 13-19

and partitioned objects, 13-13

examples of output, 4-7, 13-25, 14-15

formatting output for, 13-24

introduction, 12-6

invoking with the TKPROF program, 14-10

parallel query, 27-30

PLAN_TABLE, 13-2

query parallelization, 26-73

restrictions, 13-28

SQL decomposition, 8-6

extents

size, 26-66

temporary, 26-70

unlimited, 20-28

F
fact tables, 11-8, 28-6

same as detail tables, 28-6

facts, 30-1

failover, 11-6, 25-17

application, 25-19

BASIC, 25-21

callback, 25-23

METHOD, 25-21

PRECONNECT, 25-22

restrictions, 25-24

tuning, 25-23

TYPE, 25-21

FAST FULL SCAN, 11-3

Index-7

fast full scan, 6-8

fast refresh, 32-5

FAST_START_IO_TARGET initialization parameter

controlling checkpoints with, 20-40

recovery time and the, 25-4

FAST_START_PARALLEL_ROLLBACK

initialization parameter, 25-16

FAST_START_PARALLEL_ROLLBACK parameter

recovery parameter, 26-25

fast-start checkpoints

controlling checkpoints, 20-40

FAST_START_IO_TARGET initialization

parameter, 25-4

LOG_CHECKPOINT_INTERVAL initialization

parameter, 25-4

LOG_CHECKPOINT_TIMEOUT initialization

parameter, 25-3

fast-start on-demand rollback, 25-15

fast-start parallel rollback, 25-15

Fetch Elapsed Time data view, 15-11

file storage, designing, 20-5

FILESPERSET parameter

tuning backups, 20-53

FIRST_ROWS hint, 7-39, 26-24

FORMAT statement in Oracle Trace, 15-19, 15-20

formatter tables in Oracle Trace, 15-5

formatting

EXPLAIN PLAN output, 13-24

fragmentation, external, 27-13

free lists

adding, 21-22

contention, 21-21

reducing contention, 21-22

FREELISTS parameter, 26-75

FULL hint, 6-7, 7-42

full partition-wise joins, 13-21, 26-52

full table scan, 4-8

function-based indexes, 6-12

G
GATHER_ INDEX_STATS

procedure of DBMS_STATS, 7-9

GATHER_DATABASE_STATS

procedure of DBMS_STATS, 7-9

GATHER_SCHEMA_STATS

procedure of DBMS_STATS, 7-9

GATHER_TABLE_STATS

procedure of DBMS_STATS, 7-9

GC_FILES_TO_LOCKS parameter, 27-13

GC_ROLLBACK_LOCKS parameter, 27-14

GC_ROLLBACK_SEGMENTS parameter, 27-14

GETMISSES, V$ROWCACHE table, 19-20

GETS, V$ROWCACHE table, 19-20

global index, 26-74

goals for tuning, 1-9, 2-12

GROUP BY

decreasing demand for, 27-7

NOSORT, 20-38

grouping

compatibility check, 31-16

conditions, 31-23

GV$FILESTAT view, 26-78

H
handle

user, 25-23

hash

distribution value, 13-8

hash area, 2-11, 27-3

HASH hint, 7-44

hash join, 26-22, 27-3

hash partitioning, 13-14, 26-46

examples of, 13-15

HASH_AJ hint, 7-44, 7-55, 7-56

HASH_AREA_SIZE parameter, 7-21, 26-21

and parallel execution, 26-21

example, 27-7

relationship to memory, 27-7

HASH_JOIN_ENABLED parameter, 7-22

HASH_MULTIBLOCK_IO_COUNT

parameter, 7-22, 26-29

HASH_SJ hint, 7-44, 7-49, 7-56

hashed partitions

performance considerations, 26-48

hashing, 6-25

HASHKEYS parameter

CREATE CLUSTER statement, 6-26

hierarchies, 30-2

Index-8

multiple, 30-6

rolling up and drilling down, 30-2

hints, 7-36

access methods, 7-41

ALL_ROWS, 7-38

AND_EQUAL, 6-7, 7-49

as used in outlines, 7-26

CACHE, 7-63

CLUSTER, 7-43

degree of parallelism, 7-57

FIRST_ROWS, 7-39

FULL, 6-7, 7-42

HASH, 7-44

HASH_AJ, 7-44, 7-49, 7-55

HASH_SJ, 7-56

how to use, 7-36

INDEX, 6-7, 7-44, 7-52

INDEX_ASC, 7-46

INDEX_DESC, 7-46, 7-47

INDEX_FFS, 7-48

join operations, 7-52

MERGE_AJ, 7-49, 7-55

MERGE_SJ, 7-56

NO_MERGE, 7-65

NOCACHE, 7-64

NOPARALLEL hint, 7-58

optimization approach and goal, 7-38

ORDERED, 7-51, 7-52

PARALLEL hint, 7-57

parallel query option, 7-57

PQ_DISTRIBUTE, 7-58

PUSH_SUBQ, 7-66

query rewrite, 31-4, 31-21

ROWID, 7-43

RULE, 7-41

STAR, 7-52

USE_CONCAT, 7-50

USE_MERGE, 7-54

USE_NL, 7-53

histogram

creating, 7-5

number of buckets, 7-6

viewing, 7-6

HOLD_CURSOR, 19-10

I
ID column

PLAN_TABLE table, 13-4

in avoiding dynamic extension, 20-28

INDEX hint, 6-7, 6-16, 7-44

index join, 27-7

INDEX_ASC hint, 7-46

INDEX_COMBINE hint, 6-7, 6-16

INDEX_DESC hint, 7-46, 7-47

INDEX_FFS hint, 6-9, 7-48, 11-3

indexes

avoiding the use of, 6-7

bitmap, 6-13, 6-16, 6-18, 11-7

choosing columns for, 6-4

composite, 6-5

creating in parallel, 27-20

design, 2-9

domain, using, 6-23

enforcing uniqueness, 6-10

ensuring the use of, 6-6

example, 4-8

fast full scan, 6-8, 11-3

function-based, 6-12

global, 26-74

local, 26-74

modifying values of, 6-5

non-unique, 6-10

parallel, 11-3

parallel creation, 27-20, 27-21

parallel local, 27-20

partitioning, 26-46

placement on disk, 20-22

rebuilding, 6-9

recreating, 6-9

selectivity of, 6-4

statistics, gathering, 7-9

STORAGE clause, 27-21

when to create, 6-2

INITIAL extent size, 26-66, 27-13

initialization parameters

COMPATIBLE, 28-10, 31-4

CPU_COUNT, 25-16

FAST_START_PARALLEL_ROLLBACK, 25-16

JOB_QUEUE_INTERVAL, 28-10, 32-6

Index-9

JOB_QUEUE_PROCESSES, 28-10, 32-6

LOG_CHECKPOINT_INTERVAL, 25-4

LOG_CHECKPOINT_TIMEOUT, 25-3

MAX_DUMP_FILE_SIZE, 14-4

OPTIMIZER_MODE, 7-24, 7-38, 28-10, 28-11,

31-4, 32-13

OPTIMIZER_PERCENT_PARALLEL, 28-11,

32-14

ORACLE_TRACE_COLLECTION_SIZE, 28-11

ORACLE_TRACE_ENABLE, 28-11

ORACLE_TRACE_FACILITY_NAME, 28-11

ORACLE_TRACE_FACILITY_PATH, 28-11

PARALLEL_MAX_SERVERS, 25-14, 28-11,

32-13

PRE_PAGE_SGA, 19-5

QUERY_REWRITE_ENABLED, 28-10, 31-4

QUERY_REWRITE_INTEGRITY, 28-10

RECOVERY_PARALLELISM, 25-14

SESSION_CACHED_CURSORS, 19-18

SORT_AREA_SIZE, 28-11, 32-13

SQL_TRACE, 14-5

TIMED_STATISTICS, 14-4

USER_DUMP_DEST, 14-4

UTL_FILE_DIR, 28-10, 32-6

initialization parameters in Oracle Trace, 15-21

inlists, 7-46, 7-50

INSERT

append, 7-61

functionality, 27-22

internal write batch size, 20-43

intra transaction recovery, 25-16

I/O

analyzing needs, 20-2

asynchronous, 26-29

balancing, 20-22

distributing, 20-20, 20-24

insufficient, 17-5

multiple buffer pools, 19-32

parallel execution, 26-3

Statistics for Parse/Execute/Fetch, 15-18

striping to avoid bottleneck, 26-37

testing disk performance, 20-5

tuning, 2-11, 20-2

ISOLATION LEVEL, 9-5

J
join compatibility, 31-9

joins, 29-10

full partition-wise, 26-52

parallel, and PQ_DISTRIBUTE hint, 7-58

partial partition-wise, 26-57

partition-wise, 26-52

partition-wise, examples of full, 13-21

partition-wise, examples of partial, 13-19

partition-wise, full, 13-21

K
keep cache, 19-32

KEEP procedure, 10-5

keys, 28-6

L
large pool, 20-54

LARGE_POOL_SIZE, 20-54

LARGE_POOL_SIZE parameter, 26-12

latches

contention, 2-12, 18-9

redo allocation latch, 21-16

redo copy latches, 21-16

least recently used list (LRU), 18-8

library cache, 2-10

memory allocation, 19-15

tuning, 19-13

listening queue, 22-3

load

parallel, 11-4, 26-68

load balancing, 11-6, 20-22

multi-threaded server, 23-5

LOBS

temporary, 19-30

local index, 26-74

local striping, 26-40

lock contention, 2-11

log, 21-15

log buffer tuning, 2-10, 19-7

log writer process (LGWR) tuning, 20-21, 20-40

LOG_BUFFER parameter, 19-6, 20-40

and parallel execution, 26-26

Index-10

setting, 21-16

LOG_CHECKPOINT_INTERVAL initialization

parameter, 20-39

recovery time, 25-4

LOG_CHECKPOINT_TIMEOUT initialization

parameter, 20-39

recovery time, 25-3

LOG_SIMULTANEOUS_COPIES parameter, 21-19

LOG_SMALL_ENTRY_MAX_SIZE

parameter, 21-19

LOGGING option, 26-76

Logical Reads data view, 15-9

Logical Reads/Rows Fetched Ratio data view, 15-9

logical structure of database, 2-9

long waits

definition, 20-47

lookup tables, 28-5

(dimension tables), 28-5

LRU

aging policy, 19-31

latch, 19-34, 19-40

latch contention, 19-40, 21-20

M
Management Information Base (MIB), 12-5

manual refresh, 32-6

manual striping, 26-39

massively parallel system, 26-3

materialized views, 11-2

build methods, 29-5

containing only joins, 29-13

creating, 29-3

delta joins, 31-12

dependencies, 29-21

dropping, 29-17, 29-23

estimating size, 32-20

naming, 29-4

partitioning, 29-18

prebuilt, 29-4

query rewrite

hints, 31-4, 31-21

initialization parameters, 31-4

matching join graphs, 29-6

privileges, 31-4

refresh dependent, 32-8

refresh options, 29-7

refreshing, 29-8

refreshing all, 32-8

registration, 29-16

restrictions, 29-6

rewrites

enabling, 31-4

schema design guidelines, 28-7

security, 29-22

selecting views to create, 29-22

single table aggregate, 29-12

uses for, 28-2

max session memory statistic, 19-22

MAX_DUMP_FILE_SIZE, 14-4

SQL Trace parameter, 14-4

MAXEXTENTS keyword, 26-66, 27-13

MAXOPENCURSORS, 19-10

MAXOPENFILES parameter

tuning backups, 20-53

media recovery, 26-70

memory

configure at 2 levels, 26-20

insufficient, 17-4

process classification, 27-3

reducing usage, 19-42

tuning, 2-10

virtual, 26-20

memory allocation

and MTS, 19-21

buffer cache, 19-29

importance, 19-1

library cache, 19-15

shared SQL areas, 19-15

sort areas, 20-34

tuning, 19-2, 19-41

users, 19-6

memory/user/server relationship, 27-2

MERGE hint, 7-64

MERGE_AJ hint, 7-49, 7-55, 7-56

MERGE_SJ hint, 7-56

message rate, 17-5

method

applying, 2-12

tuning, 2-1

Index-11

tuning steps, 2-4

MIB, 12-5

migrated rows, 20-30

mirroring

disks, 26-44

redo log files, 20-21

monitoring, 12-5

parallel processing, 26-78

MPP

disk affinity, 26-39

MTS

large pool, 19-21

shared pool, 19-21

MTS_DISPATCHERS parameter, 21-8, 21-9

MTS_MAX_DISPATCHERS parameter, 21-8, 23-3

MTS_MAX_SERVERS parameter, 21-12, 23-4

MTS_SERVERS parameter, 23-4

setting, 21-13

multi-block reads, 20-27

MULTIBLOCK_READ_COUNT parameter, 26-66

multiple archiver processes, 26-75

multiple buffer pools, 19-31, 19-32, 19-35

multiple hierarchies, 30-6

multiple user handles, 25-23

multiplexing

with multi-threaded server, 23-1

multi-purpose applications, 3-5

multi-threaded server, 27-3

benefits, 23-1

configuring dispatchers, 23-3

connection pooling, 23-3

context area size, 2-10

definition, 23-1

large pool, 19-21

performance issues, 23-8

reducing contention, 21-5

setting up, 23-1

shared pool, 19-21

shared pool and, 19-21

tuning, 21-5, 23-1

tuning memory, 23-6

views with statistics for, 23-7

multi-threaded server

connection multiplexing, 23-3

multi-tier systems, 18-12

N
NAMESPACE column

V$LIBRARYCACHE table, 19-13

nested loop join, 27-3

nested query, 27-18

network

array interface, 22-2

bandwidth, 17-5

constraints, 17-5

detecting performance problems, 22-1

prestarting processes, 22-2

problem solving, 22-2

Session Data Unit, 22-3, 23-5

tuning, 22-1

NEXT extent, 27-13

NO_EXPAND hint, 7-50

NO_INDEX hint, 7-48

NO_MERGE hint, 7-65

NO_PUSH_JOIN_PRED hint, 7-66

NOAPPEND hint, 7-62, 27-23

NOARCHIVELOG mode, 26-77

NOCACHE hint, 7-64

NOLOGGING option, 26-71, 26-76, 27-19, 27-21,

27-23

NOPARALLEL attribute, 27-17

NOPARALLEL hint, 7-58

NOPARALLEL_INDEX hint, 7-63

NOREWRITE hint, 7-51, 31-4, 31-21

NOSORT option, 20-37, 20-38

NT performance, 24-4

Number of Rows Processed data view, 15-11

O
OBJECT_INSTANCE column

PLAN_TABLE table, 13-4

OBJECT_NAME column

PLAN_TABLE table, 13-4

OBJECT_NODE column

PLAN_TABLE table, 13-4

OBJECT_OWNER column

PLAN_TABLE table, 13-4

Index-12

OBJECT_TYPE column

PLAN_TABLE table, 13-4

OCIStmtFetch, 25-24

OCITransRollback, 25-24

online transaction processing (OLTP), 1-2, 3-1

processes, 27-3

with decision support, 3-5

OPEN_CURSORS parameter

allocating more private SQL areas, 19-9

increasing cursors per session, 19-15

operating system

data cache, 24-2

monitoring disk I/O, 20-17

monitoring tools, 12-3

striping, 26-38

tuning, 2-12, 17-6, 19-4

OPERATION column

PLAN_TABLE, 13-4, 13-9

OPTIMAL storage parameter, 20-30

optimization

choosing an approach and goal for, 7-3

cost-based, 7-3

parallel aware, 11-6

query rewrite

enabling, 31-4

hints, 31-4, 31-21

matching join graphs, 29-6

query rewrites

privileges, 31-4

rule-based, 7-24

optimizer, 31-2

Plan Stability, 7-25

OPTIMIZER column

PLAN_TABLE, 13-4

OPTIMIZER_FEATURES_ENABLED

parameter, 7-21

OPTIMIZER_INDEX_CACHING

for index optimization, 7-22

OPTIMIZER_INDEX_COST_ADJ

for index optimization, 7-22

OPTIMIZER_MODE, 7-3, 7-4, 7-21, 7-24, 7-38, 11-8,

27-27

OPTIMIZER_PERCENT_PARALLEL

parameter, 7-21, 11-7, 26-23, 27-30

OPTIMIZER_SEARCH_LIMIT parameter, 7-22

OPTIONS column

PLAN_TABLE table, 13-4

Oracle Designer, 28-9

Oracle Expert, 2-1, 12-11

Oracle Express Objects, 28-9

Oracle Forms, 14-5

control of parsing and private SQL areas, 19-10

Oracle Network Manager, 22-3

Oracle Parallel Server, 3-8, 11-6

CPU, 18-13

disk affinity, 27-16

parallel execution, 27-13

parallel load, 26-69

ST enqueue, 27-12

synchronization points, 2-8

Oracle Parallel Server Management (OPSM), 12-12

Oracle Performance Manager, 12-10

Oracle Precompilers

control of parsing and private SQL areas, 19-10

Oracle Sales Analyzer, 28-9

Oracle Server

client/server configuration, 3-9

configurations, 3-6

events, 15-5

Oracle striping, 26-39

Oracle Trace, 15-1, 19-39, 32-16

accessing collected data, 15-5

binary files, 15-5

collection results, 15-25

collections, 15-4, 15-22

command-line interface, 15-19

data views, 15-6

Average Elapsed Time, 15-10

CPU Statistics, 15-11

Disk Reads, 15-9

Disk Reads/Execution Ratio, 15-9

Disk Reads/Logical Reads Ratio, 15-9

Disk Reads/Rows Fetched Ratio, 15-9

Execute Elapsed Time, 15-10

Fetch Elapsed Time, 15-11

Logical Reads, 15-9

Logical Reads/Rows Fetched Ratio, 15-9

Number of Rows Processed, 15-11

Parse Elapsed Time, 15-10

Parse/Execution Ratio, 15-10

Index-13

Re-Parse Frequency, 15-10

Rows Fetched/Fetch Count Ratio, 15-11

Rows Sorted, 15-11

Sorts in Memory, 15-11

Sorts on Disk, 15-11

Total Elapsed Time, 15-10

Waits by Average Wait Time, 15-12

Waits by Event Frequency, 15-12

Waits by Total Wait Time, 15-12

deleting files, 15-21

details property sheet, 15-14

drilldown data views, 15-16, 15-18

Basic Statistics for Parse/Execute/

Fetch, 15-18

CPU Statistics for Parse/Execute/

Fetch, 15-18

Parse Statistics, 15-18

Row Statistics for Execute/Fetch, 15-19

duration events, 15-5

events, 15-5

FORMAT statement, 15-19, 15-20

formatter tables, 15-5

formatting data, 15-25

Oracle Trace Data Viewer, 15-6

parameters, 15-21

point events, 15-5

predefined data views, 15-6

reporting utility, 15-6, 15-26

SQL statement property sheet, 15-14

START statement, 15-19, 15-20

STOP statement, 15-19, 15-20

stored procedures, 15-24

using to collect workload data, 15-3

viewing data, 15-12

Oracle Trace Data Viewer, 15-6

Oracle Trace Manager, 15-4, 15-22

used for formatting collections, 15-5

ORACLE_TRACE_COLLECTION_NAME

parameter, 15-21, 15-22

ORACLE_TRACE_COLLECTION_PATH

parameter, 15-21

ORACLE_TRACE_COLLECTION_SIZE

parameter, 15-21

ORACLE_TRACE_ENABLE parameter, 15-21,

15-22

ORACLE_TRACE_FACILITY_NAME

parameter, 15-21, 15-22

ORACLE_TRACE_FACILITY_PATH

parameter, 15-21

order

preserving, 13-26

ORDER BY, 13-26

decreasing demand for, 27-7

ORDERED hint, 7-51

ORDERED_PREDICATES hint, 7-67

OTHER column

PLAN_TABLE table, 13-5

outer joins, 31-22

outlines

assigning category names to, 7-28

CREATE OUTLINE statement, 7-28

creating and using, 7-28

creating, using, 7-28

dropping, 7-30

dropping unused, 7-30

execution plans and Plan Stability, 7-25

hints, 7-26

managing with OUTLN_PKG, 7-30

matching with SQL statements, 7-27

reassigning categories, 7-31

storage requirements, 7-27

tables, moving, 7-31

using, 7-28

using to move to the cost-based optimizer, 7-32

viewing data for, 7-29

OUTLN_PKG

package to manage outlines, 7-30

overhead, process, 27-3

overloaded disks, 20-20

oversubscribing resources, 27-5, 27-9

P
packages

DBMS_APPLICATION_INFO, 5-2, 5-3

DBMS_SHARED_POOL, 10-3

DBMS_TRANSACTION, 9-4

DIUTIL, 10-4

OUTLN_PKG, 7-30

registering with the database, 5-1, 12-7

Index-14

STANDARD, 10-4

page table, 18-4

paging, 17-4, 18-4, 26-84, 27-5, 27-31

library cache, 19-15

rate, 26-20

reducing, 19-4

SGA, 19-41

subsystem, 27-5

parallel aware optimizer, 11-6

PARALLEL clause, 27-22, 27-23

RECOVER statement, 25-14

PARALLEL CREATE INDEX statement, 26-25

PARALLEL CREATE TABLE AS SELECT, 11-3

external fragmentation, 27-13

resources required, 26-25

parallel execution, 3-4

adjusting workload, 27-8

cost-based optimization, 27-27

detecting performance problems, 27-1

hints, 7-57

index creation, 27-20

introduction, 26-2

I/O parameters, 26-28

maximum processes, 27-2

parallel server, 27-13

plans, 27-30

process classification, 26-37, 26-39, 26-72, 27-4

query servers, 21-14

resource parameters, 26-20

rewriting SQL, 27-18

solving problems, 27-17

space management, 27-12

tuning, 26-1

tuning physical database layout, 26-36

tuning query servers, 21-14

understanding performance issues, 27-2

PARALLEL hint, 7-57, 27-17, 27-22, 27-30

parallel index, 27-21

creation, 11-3

parallel joins

and PQ_DISTRIBUTE hint, 7-58

parallel load, 11-4

example, 26-68

Oracle Parallel Server, 26-69

using, 26-63

parallel partition-wise joins

performance considerations, 26-61

parallel recovery, 25-14

parallel server, 3-8

disk affinity, 27-16

parallel execution tuning, 27-13

tuning, 12-12

PARALLEL_ADAPTIVE_MULTI_USER

parameter, 26-7, 26-32

PARALLEL_AUTOMATIC_TUNING

parameter, 26-4

PARALLEL_BROADCAST_ENABLE

parameter, 26-24

PARALLEL_EXECUTION_MESSAGE_SIZE

parameter, 26-23

PARALLEL_MAX_SERVERS initialization

parameter, 25-14, 26-10

PARALLEL_MAX_SERVERS parameter, 25-14,

26-9, 26-11, 27-6

and parallel execution, 26-9

PARALLEL_MIN_PERCENT parameter, 26-10,

26-19

PARALLEL_MIN_SERVERS parameter, 26-11

PARALLEL_SERVER_INSTANCES

and parallel execution, 26-19

PARALLEL_THREADS_PER_CPU

parameter, 26-4, 26-8

parallelism

degree, overriding, 27-17

enabing for tables and queries, 26-8

setting degree of, 26-7

parameter file, 12-4

PARENT_ID column

PLAN_TABLE table, 13-4

Parse Elapsed Time data view, 15-10

Parse Statistics drilldown data view, 15-18

Parse/Execution Ratio data view, 15-10

parsing, 18-6

Oracle Forms, 19-10

Oracle Precompilers, 19-10

reducing unnecessary calls, 19-9

partial partition-wise joins, 26-57

partition

pruning, 26-51

partition elimination, 8-6

Index-15

partition view, 8-6, 11-4

PARTITION_VIEW_ENABLED parameter, 8-7

partitioned objects

and EXPLAIN PLAN, 13-13

partitioned table, 11-4

data warehouse, 26-47

example, 26-66

partitioning

by hash, 13-14

by range, 13-13

composite, 26-46

data, 26-45

distribution value, 13-8

examples of, 13-15

examples of composite, 13-17

hash, 26-46

indexes, 26-46

range, 26-46

start and stop columns, 13-15

partition-wise joins, 26-52

benefits of, 26-60

full, 13-21

full, and EXPLAIN PLAN output, 13-21

parallel, performance considerations for, 26-61

partial, 26-57

partial, and EXPLAIN PLAN output, 13-19

PCM lock, 27-13

PCTFREE, 2-11, 20-31

PCTINCREASE parameter, 20-36

and SQL.BSQ file, 20-33

PCTUSED, 2-11, 20-31

performance

client/server applications, 3-9

decision support applications, 3-3

different types of applications, 3-1

distributed databases, 3-7

evaluating, 1-10

key factors, 17-2

mainframe, 24-4

monitoring registered applications, 5-1, 12-7

NT, 24-4

OLTP applications, 3-1

Parallel Server, 3-8

UNIX-based systems, 24-4

Performance Manager, 12-10

Performance Monitor, NT, 18-4

PHYRDS column

V$FILESTAT table, 20-19

physical database layout, 26-36

physical reads statistic, 19-26

PHYWRTS column

V$FILESTAT table, 20-19

ping UNIX command, 12-3

pinging, 2-12

PINS column

V$LIBRARYCACHE table, 19-14

Plan Stability, 7-25

limitations of, 7-25

preserving execution plans, 7-25

procedures for the cost-based optimizer, 7-32

use of hints, 7-25

PLAN_TABLE table

ID column, 13-4

OBJECT_INSTANCE column, 13-4

OBJECT_NAME column, 13-4

OBJECT_NODE column, 13-4

OBJECT_OWNER column, 13-4

OBJECT_TYPE column, 13-4

OPERATION column, 13-4

OPTIMIZER column, 13-4

OPTIONS column, 13-4

OTHER column, 13-5

PARENT_ID column, 13-4

POSITION column, 13-5

REMARKS column, 13-3

SEARCH_COLUMNS column, 13-4

STATEMENT_ID column, 13-3

structure, 13-2

TIMESTAMP column, 13-3

PL/SQL

package, 12-7

tuning PL/SQL areas, 19-7

point events in Oracle Trace, 15-5

POOL attribute, 21-9

POSITION column

PLAN_TABLE table, 13-5

POST_TRANSACTION option, 25-22

PQ_DISTRIBUTE hint, 7-58

PRE_PAGE_SGA parameter, 19-5

prebuilt materialized view, 29-4

Index-16

PRIMARY KEY constraint, 6-10, 27-21

private SQL areas, 19-9

PRIVATE_SGA variable, 23-6

proactive tuning, 2-1

process

and memory contention in parallel

processing, 26-10

classes of parallel execution, 26-37, 26-39, 26-72,

27-4

dispatcher process configuration, 21-9

DSS, 27-3

maximum number, 17-6, 27-2

maximum number for parallel query, 27-2

OLTP, 27-3

overhead, 27-3

prestarting, 22-2

priority, 24-2

scheduler, 24-2

scheduling, 18-4

processing, distributed, 3-9

pruning

partition, 26-51

using DATE columns, 26-52

PRVTPOOL.PLB, 10-4

PUSH_JOIN_PRED hint, 7-65

Q
queries

avoiding the use of indexes, 6-7

distributed, 8-1, 8-10

enabling parallelism for, 26-8

ensuring the use of indexes, 6-6

query column, SQL trace, 14-13

query delta joins, 31-11

query plan, 13-1

query rewrite

correctness, 31-18

enabling, 31-3, 31-4

hints, 31-4, 31-21

initialization parameters, 31-4

matching join graphs, 29-6

methods, 31-6

privileges, 31-4

query server process

tuning, 21-14

R
RAID, 20-25, 26-45, 26-70

random reads, 20-5

random writes, 20-5

range

distribution value, 13-8

range partitioning, 13-13, 26-46

examples of, 13-15

performance considerations, 26-47

raw device, 24-2

reactive tuning, 2-3

read consistency, 18-7

READ_CLIENT_INFO

procedure in DBMS_APPLICATION_INFO, 5-2

READ_MODULE

procedure in DBMS_APPLICATION_INFO, 5-2

read/write operations, 20-5

REBUILD, 6-9

RECOMMEND_MV function, 32-17

RECOMMEND_MV_W function, 32-17

record keeping, 2-13

RECOVER statement

PARALLEL clause, 25-14

recovery

data warehouse, 11-9

effect of checkpoints, 20-39

media, with striping, 26-44

parallel

intra transaction recovery, 25-16

parallel processes for, 25-14

PARALLEL_MAX_SERVERS initialization

parameter, 25-14

setting number of processes to use, 25-14

RECOVERY_PARALLELISM initialization

parameter, 25-14

recursive calls, 14-14, 20-26

recursive SQL, 10-1

RECYCLE cache, 19-31

redo allocation latch, 21-16, 21-19

REDO BUFFER ALLOCATION RETRIES, 21-15

redo copy latches, 21-17, 21-19

choosing how many, 21-17

Index-17

redo log buffer tuning, 19-6

redo log files

mirroring, 20-21

placement on disk, 20-21

reducing

buffer cache misses, 19-29

contention

dispatchers, 21-6

OS processes, 24-2

query servers, 21-15

redo log buffer latches, 21-15

shared servers, 21-10

data dictionary cache misses, 19-20

library cache misses, 19-15

paging and swapping, 19-4

rollback segment contention, 21-4

unnecessary parse calls, 19-9

reference tables, 28-5

refresh options, 29-7

registering applications with database, 5-1, 12-7

regression, 27-29, 27-31

Relational Access Manager, 28-9

RELEASE_CURSOR, 19-10

RELOADS column

V$LIBRARYCACHE table, 19-14

REMARKS column

PLAN_TABLE table, 13-3

remote SQL statement, 8-1

Re-Parse Frequency data view, 15-10

reparsing, 18-6

resource

adding, 1-4

consumption, parameters affecting, 26-20

consumption, parameters affecting parallel

DML/DDL, 26-25

limiting for users, 26-10

limits, 26-9

oversubscribing, 27-5

oversubscription, 27-9

parallel query usage, 26-20

tuning contention, 2-11

response time, 1-2, 1-3

optimizing, 7-4, 7-39

REWRITE hint, 7-50, 31-4, 31-21

rewrites

hints, 31-21

initialization parameters, 31-4

privileges, 31-4

query optimization

hints, 31-4, 31-21

matching join graphs, 29-6

RMAN

tuning for backups, 20-52

roles in tuning, 1-7

rollback segments, 18-8, 26-25

assigning to transactions, 20-29

choosing how many, 21-4

contention, 21-3

creating, 21-4

detecting dynamic extension, 20-26

dynamic extension, 20-29

ROLLBACK_SEGMENTS parameter, 26-25

rollbacks

fast-start on-demand, 25-15

fast-start parallel, 25-15

rolling up a hierarchy, 30-2

round-robin

distribution value, 13-8

Row Statistics for Execute/Fetch drilldown data

views, 15-19

ROWID hint, 7-43

ROWIDs

mapping to bitmaps, 6-17

rows column, SQL trace, 14-13

Rows Fetched/Fetch Count Ratio data view, 15-11

Rows Sorted data view, 15-11

RowSource event, 15-5

RULE hint, 7-41, 27-27

rule-based optimization, 7-24

S
sar UNIX command, 18-4, 26-83

scalability, 11-6, 18-8

scalable operations, 26-72

schema design guidelines

materialized views, 28-7

schema statistics

gathering, 7-14

SEARCH_COLUMN column

Index-18

PLAN_TABLE table, 13-4

segments, 20-26

selectivity, index, 6-4

sequence cache, 2-10

sequential reads, 20-5

sequential writes, 20-5

serializable transactions, 9-5

server/memory/user relationship, 27-2

service time, 1-2, 1-3

Session Data Unit (SDU), 22-3, 23-5

session memory statistic, 19-22

SESSION_CACHED_CURSORS parameter, 18-7,

19-18

SET TRANSACTION statement, 20-29

SET_ACTION

procedure in DBMS_APPLICATION_INFO, 5-2

SET_CLIENT_INFO

procedure in DBMS_APPLICATION_INFO, 5-2

SET_MODULE

procedure in DBMS_APPLICATION_INFO, 5-2

SGA size, 19-7, 26-20

SGA statistics, 16-2

shared pool, 2-10

contention, 2-11

keeping objects pinned in, 10-3

multi-threaded server and, 19-21

tuning, 19-10, 19-23

shared servers

configuring, 23-4

processes, 21-13

shared SQL areas

finding large areas, 10-5

identical SQL statements, 10-2

keeping in the shared pool, 10-3

memory allocation, 19-15

statements considered, 10-1

SHARED_POOL_RESERVED_SIZE

parameter, 19-24, 19-25

SHARED_POOL_SIZE parameter, 19-20, 19-25

allocating library cache, 19-15

tuning the shared pool, 19-21

short waits

definition, 20-47

SHOW SGA statement, 19-6

Simple Network Management Protocol

(SNMP), 12-5

single table aggregate requirements, 29-13

single tier, 18-11

SIZES procedure, 10-5

skew

workload, 27-32

SNMP, 12-5

sort areas

memory allocation, 20-34

process local area, 2-11

SORT_AREA_RETAINED_SIZE parameter, 19-41,

20-36

SORT_AREA_SIZE parameter, 6-15, 7-21, 19-41,

26-22

and parallel execution, 26-22

tuning sorts, 20-35

SORT_MULTIBLOCK_READ_COUNT

parameter, 20-37, 26-29

sorts

(disk) statistic, 20-34

(memory) statistic, 20-34

avoiding on index creation, 20-37

tuning, 20-34

Sorts in Memory data view, 15-11

Sorts on Disk data view, 15-11

source data for tuning, 12-1

space management, 26-70

parallel execution, 27-12

reducing transactions, 27-12

spin count, 18-9

SPINCOUNT parameter, 21-2

SQL area tuning, 19-7

SQL Loader, 26-63

SQL Parse event, 15-5

SQL statement property sheet in Oracle

Trace, 15-14

SQL statements

avoiding the use of indexes, 6-7

decomposition, 8-3

ensuring the use of indexes, 6-6

inefficient, 18-7

matching with outlines, 7-27

modifying indexed data, 6-5

recursive, 10-1

reparsing, 18-6

Index-19

tuning, 2-10

SQL text match, 31-7, 31-22

SQL trace facility, 12-6, 14-2, 14-6, 19-8, 19-39

enabling, 14-4

example of output, 14-15

output, 14-12

parse calls, 19-8

statement truncation, 14-14

steps to follow, 14-3

trace file, 12-3

trace files, 14-4

SQL*Plus script, 12-7

SQL_STATEMENT column

TKPROF_TABLE, 14-18

SQL_TRACE parameter, 14-5

SQL.BSQ file, 20-33

SQLUTLCHAIN.SQL, 12-7

ST enqueue, 27-12

staging database, 28-1

staging file, 28-1

STALE_TOLERATED mode, 31-19

STANDARD package, 10-4

STAR hint, 7-52

star query, 11-8

star schema, 11-8

star transformation, 7-66, 11-8

STAR_TRANSFORMATION hint, 7-66, 11-8

STAR_TRANSFORMATION_ENABLED

parameter, 7-67, 11-8

start columns

in partitioning and EXPLAIN PLAN, 13-15

START statement in Oracle Trace, 15-19, 15-20

STATEMENT_ID column

PLAN_TABLE table, 13-3

statistics, 16-2, 27-31, 31-23

consistent gets, 19-26, 21-4, 21-22

current value, 16-4

db block gets, 19-26, 21-4

dispatcher processes, 21-7

gathering with DBMS_STATS, 7-9

generating, 7-7

generating for cost-based optimization, 7-7

max session memory, 19-22

operating system, 26-83

physical reads, 19-26

query servers, 21-14

rate of change, 16-5

session memory, 19-22

shared server processes, 21-10, 21-15

sorts (disk), 20-34

sorts (memory), 20-34

undo block, 21-3

when to generate, 7-24

stop columns

in partitioning and EXPLAIN PLAN, 13-15

STOP statement in Oracle Trace, 15-19, 15-20

storage

file, 20-5

STORAGE clause

CREATE TABLE statement, 20-24

examples, 20-24

modifying parameters, 20-33

modifying SQL.BSQ, 20-33

OPTIMAL, 20-30

parallel query, 27-21

stored outlines

assigning category names to, 7-28

creating, using, 7-28

dropping, 7-30

dropping unused, 7-30

execution plans and Plan Stability, 7-25

hints, 7-26

managing with OUTLN_PKG, 7-30

matching with SQL statements, 7-27

reassigning categories, 7-31

storage requirements, 7-27

tables, moving, 7-31

using, 7-28

viewing data for, 7-29

stored procedures

in Oracle Trace, 15-24

KEEP, 10-5

READ_MODULE, 5-5

registering with the database, 5-1, 12-7

SET_ACTION, 5-3

SET_CLIENT_INFO, 5-4

SET_MODULE, 5-2

SIZES, 10-5

striping, 20-22, 26-38

analyzing, 26-41

Index-20

and disk affinity, 27-16

example, 26-63

examples, 20-24

local, 26-40

manual, 20-23, 26-38, 26-39

media recovery, 26-44

operating system, 26-38

operating system software, 20-25

Oracle, 26-39

temporary tablespace, 26-70

subquery

correlated, 27-18

summary advisor, 32-14

summary management, 28-3

swapping, 17-4, 18-4

library cache, 19-15

reducing, 19-4

SGA, 19-41

switching processes, 18-4

symmetric multiprocessor, 26-3

System Global Area tuning, 19-5

system-specific Oracle documentation

software constraints, 17-6

USE_ASYNC_IO, 26-30

T
table queue, 26-80

table statistics

gathering, 7-11

tables

detail tables, 28-6

dimension tables (lookup tables), 28-5

enabling parallelism for, 26-8

fact tables, 28-6

formatter, in Oracle Trace, 15-5

placement on disk, 20-22

striping examples, 20-24

tablespace

creating, example, 26-64

dedicated temporary, 26-70

dictionary-mapped, 20-28

temporary, 20-36

TABLESPACE clause, 20-24

CREATE TABLE statement, 20-24

TAPE_ASYNCH_IO parameter, 26-29

TCP.NODELAY option, 22-3

temporary extent, 26-70

TEMPORARY keyword, 20-36

temporary LOBS, 19-30

temporary tablespace

optimizing sort, 20-36

size, 26-70

striping, 26-70

testing, 2-13

thrashing, 18-4

thread, 24-2

throughput, 1-3

optimizing, 7-4, 7-38

tiers, 18-11

TIMED_STATISTICS parameter, 14-4, 24-1, 26-79

SQL Trace, 14-4

TIMESTAMP column

PLAN_TABLE table, 13-3

TKPROF program, 14-2, 14-6, 19-39

editing the output SQL script, 14-17

example of output, 14-15

generating the output SQL script, 14-17

introduction, 12-6

syntax, 14-7

using the EXPLAIN PLAN statement, 14-10

TKPROF_TABLE, 14-18

querying, 14-17

TNSNAMES.ORA, 25-21

Total Elapsed Time data view, 15-10

Trace, Oracle, 15-1

transaction processing monitor, 18-12, 18-13

TRANSACTIONAL option

SHUTDOWN, 25-22

transactions

assigning rollback segments, 20-29

discrete, 9-1

rate, 27-12

serializable, 9-5

TRANSACTIONS parameter, 26-25

transmission time, 17-5

transparent application failover, 25-19

Transparent Gateway, 8-11

triggers

in tuning OLTP applications, 4-4

Index-21

TRUSTED mode, 31-19

tuning

access path, 2-10

and design, 2-10

application design, 2-9

business rule, 2-7

checkpoints, 20-38

client/server applications, 3-9

contention, 21-1

CPU, 18-1

data design, 2-7

data sources, 12-1

database logical structure, 2-9

decision support systems, 3-3

diagnosing problems, 17-1

distributed databases, 3-7

expectations, 1-9

factors, 17-1

goals, 1-9, 2-12

I/O, 2-11, 20-2

large pool for MTS, 19-21

library cache, 19-13

logical structure, 6-3

memory allocation, 2-10, 19-2, 19-41

method, 2-1

monitoring registered applications, 5-1, 12-7

multi-threaded server, 21-5

OLTP applications, 3-1

operating system, 2-12, 17-6, 19-4

parallel execution, 3-4, 26-36

parallel server, 3-8

personnel, 1-7

proactive, 2-1

production systems, 2-4

query servers, 21-14

reactive, 2-3

shared pool, 19-10, 19-21

shared pool for MTS, 19-21

sorts, 20-34

SQL, 2-10

SQL and PL/SQL areas, 19-7

System Global Area (SGA), 19-5

two-phase commit, 26-25

two-tier, 18-11

U
undo block statistic, 21-3

UNION ALL view, 8-7

UNIQUE constraint, 6-10, 27-21

UNIQUE index, 6-16

uniqueness, 6-10

UNIX system performance, 24-4

unlimited extents, 20-28

unusable, 32-4

update frequency, 32-2

update window, 32-2

UPDATE_BY_CAT

procedure of OUTLN_PKG, 7-30, 7-31

upgrading

to the cost-based optimizer, 7-34

USE_CONCAT hint, 7-50

USE_MERGE hint, 7-54

USE_NL hint, 7-53

USE_STORED_OUTLINES parameter, 7-28

user

handles, 25-23

memory allocation, 19-7

user resources

limiting, 26-10

USER_DUMP_DEST, 14-4

SQL Trace parameter, 14-4

USER_HISTOGRAMS view, 7-6

USER_ID column

TKPROF_TABLE, 14-19

USER_INDEXES view, 6-16

USER_OULTINE_HINTS

view for stored outline hints, 7-29

USER_OUTLINES

view for stored outlines, 7-29

USER_TAB_COLUMNS view, 7-5, 7-6

user/server/memory relationship, 27-2

UTLBSTAT.SQL, 12-7

UTLCHAIN.SQL, 20-31

UTLDTREE.SQL, 12-7

UTLESTAT.SQ, 12-7

UTLLOCKT.SQ, 12-7

UTLXPLAN.SQL, 13-2

Index-22

V
V$ dynamic performance views, 12-5

V$BACKUP_ASYNC_IO

for tuning backups, 20-46

view, description, 20-47

V$BACKUP_SYNC_IO

for tuning backups, 20-46

view, description, 20-47

V$BH view, 19-29

V$BUFFER_POOL_STATISTICS view, 19-38, 19-40

V$DATAFILE view, 20-19

V$DISPATCHER view, 21-6

V$FAST_START_SERVERS view, 11-10, 25-16

V$FAST_START_TRANSACTIONS view, 11-11,

25-16

V$FILESTAT view

and parallel query, 26-79

disk I/O, 20-19

PHYRDS column, 20-19

PHYWRTS column, 20-19

V$FIXED_TABLE view, 16-2

V$INSTANCE view, 16-2

V$LATCH view, 16-2, 21-2, 21-17

V$LATCH_CHILDREN view, 19-40

V$LATCH_MISSES view, 18-9

V$LIBRARYCACHE view, 16-2

NAMESPACE column, 19-13

PINS column, 19-14

RELOADS column, 19-14

V$LOCK view, 16-3

V$MYSTAT view, 16-3

V$PARAMETER view, 26-80

V$PQ_SESSTAT view, 26-79, 27-31

V$PQ_SYSSTAT view, 27-31

V$PQ_TQSTAT view, 26-80, 27-32

V$PROCESS, 16-3

V$PX_PROCESS view, 26-78

V$PX_SESSION view, 26-78

V$PX_SESSTAT view, 26-78

V$QUEUE view, 21-7, 21-10

V$RESOURCE_LIMIT view, 21-2

V$ROLLSTAT view, 16-2

V$ROWCACHE view, 16-2

GETMISSES column, 19-20

GETS column, 19-20

performance statistics, 19-19

using, 19-19

V$SESSION view, 16-3, 25-22

application registration, 5-1, 12-7

V$SESSION_EVENT view, 16-3

network information, 22-1

V$SESSION_WAIT view, 16-3, 19-39, 21-2

network information, 22-1

V$SESSTAT view, 16-3, 18-5, 26-80, 26-83

network information, 22-2

using, 19-22

V$SGA view, 16-2

V$SGASTAT view, 16-2

V$SHARED_POOL_RESERVED view, 19-25

V$SORT_SEGMENT view, 27-12

V$SORT_USAGE view, 4-5, 16-2

V$SQLAREA, 16-2, 18-7

application registration, 5-1, 5-5, 12-7

resource-intensive statements, 4-5

V$SQLTEXT view, 16-2

V$SYSSTAT view, 16-2, 18-5, 18-6, 26-75, 26-80

detecting dynamic extension, 20-27

examining recursive calls, 20-27

redo buffer allocation, 21-15

redo buffer allocation retries, 26-26

tuning sorts, 20-34

using, 19-26

V$SYSTEM_EVENT view, 16-2, 18-9, 21-1, 21-2

V$WAITSTAT view, 16-2, 21-2

reducing free list contention, 21-21

rollback segment contention, 21-3

views

instance level, 16-2

materialized views

dependencies, 29-21

multi-threaded server, 23-7

tuning, 16-1

USER_OUTLINE_HINTS, 7-29

USER_OUTLINES, 7-29

V$FAST_START_SERVERS, 25-16

V$FAST_START_TRANSACTIONS, 25-16

virtual memory, 26-20

vmstat UNIX command, 18-4, 26-83

Index-23

W
wait time, 1-3, 1-4, 27-5

Waits by Average Wait Time data view, 15-12

Waits by Event Frequency data view, 15-12

Waits by Total Wait Time data view, 15-12

warehouse, 28-1

advisor, 32-2

refresh, 29-7, 32-2

refresh, tips, 32-9

workload, 1-6, 18-1

adjusting, 27-8

exceeding, 27-5

skew, 27-32

write batch size, 20-43

Index-24

	PDF Directory
	Send Us Your Comments
	Preface
	Part I� Introduction to Tuning
	1 Introduction to Oracle Performance Tuning
	What Is Performance Tuning?
	Trade-offs Between Response Time and Throughput
	Critical Resources
	Effects of Excessive Demand
	Adjustments to Relieve Problems

	Who Tunes?
	Setting Performance Targets
	Setting User Expectations
	Evaluating Performance

	2 Performance Tuning Methods
	When Is Tuning Most Effective?
	Proactive Tuning While Designing and Developing Systems
	Reactive Tuning to Improve Production Systems

	Prioritized Tuning Steps
	Step 1: Tune the Business Rules
	Step 2: Tune the Data Design
	Step 3: Tune the Application Design
	Step 4: Tune the Logical Structure of the Database
	Step 5: Tune Database Operations
	Step 6: Tune the Access Paths
	Step 7: Tune Memory Allocation
	Step 8: Tune I/O and Physical Structure
	Step 9: Tune Resource Contention
	Step 10: Tune the Underlying Platform(s)

	Applying the Tuning Method
	Set Clear Goals for Tuning
	Create Minimum Repeatable Tests
	Test Hypotheses
	Keep Records and Automate Testing
	Avoid Common Errors
	Stop Tuning When Objectives Are Met
	Demonstrate Meeting the Objectives

	Part II� Application Design Tuning for Designers and Programmers
	3 Application and System Performance Characteristics
	Types of Applications
	Online Transaction Processing (OLTP)
	Data Warehousing
	Multipurpose Applications

	Oracle Configurations
	Distributed Systems
	The Oracle Parallel Server
	Client/Server Configurations

	4 Tuning Database Operations
	Tuning Goals
	Tuning a Serial SQL Statement
	Tuning Parallel Execution
	Tuning OLTP Applications

	Methodology for Tuning Database Operations
	Step 1: Find the Statements that Consume the Most Resources
	Step 2: Tune These Statements To Use Fewer Resources

	Approaches to SQL Statement Tuning
	Restructure the Indexes
	Restructure the Statement
	Modify or Disable Triggers
	Restructure the Data
	Keeping Statistics Current and Using Plan Stability to Preserve Execution Plans

	5 Registering Applications
	DBMS_APPLICATION_INFO Package
	Privileges
	Setting the Module Name
	Example
	Syntax

	Setting the Action Name
	Example
	Syntax

	Setting the Client Information
	Syntax

	Retrieving Application Information
	Querying V$SQLAREA
	READ_MODULE Syntax
	READ_CLIENT_INFO Syntax

	6 Data Access Methods
	Using Indexes
	When to Create Indexes
	Tuning the Logical Structure
	Choosing Columns and Expressions to Index
	Choosing Composite Indexes
	Writing Statements that Use Indexes
	Writing Statements that Avoid Using Indexes
	Assessing the Value of Indexes
	Using Fast Full Index Scans
	Re-creating Indexes
	Compacting Indexes
	Using Nonunique Indexes to Enforce Uniqueness
	Using Enabled Novalidated Constraints

	Using Function-based Indexes
	Function-based Indexes and Index Organized Tables

	Using Bitmap Indexes
	When to Use Bitmap Indexes
	Creating Bitmap Indexes
	Initialization Parameters for Bitmap Indexing
	Using Bitmap Access Plans on Regular B*-tree Indexes
	Estimating Bitmap Index Size
	Bitmap Index Restrictions

	Using Domain Indexes
	Using Clusters
	Using Hash Clusters
	When to Use a Hash Cluster
	Creating Hash Clusters

	7 Optimizer Modes, Plan Stability, and Hints
	Using Cost-based Optimization
	When to Use the Cost-based Approach
	Using the Cost-based Approach
	Choosing a Goal for the Cost-based Approach
	Using Histograms for Nonuniformly Distributed Data

	Generating Statistics
	Gathering Statistics with the DBMS_STATS Package
	Gathering New Optimizer Statistics

	Automated Statistics Gathering
	Parameters Affecting Cost-based Optimization Plans
	Parameters Affecting How the Optimizer Uses Indexes
	Tips for Using the Cost-based Approach

	Using Rule-Based Optimization
	Using Plan Stability to Preserve Execution Plans
	Plan Stability Uses Hints and Exact Text Matching
	Matching SQL Statements with Outlines
	How Oracle Stores Outlines
	Parameter Settings to Enable Plan Stability

	Creating Outlines
	Creating and Assigning Categories to Stored Outlines
	Using Stored Outlines
	Viewing Outline Data

	Managing Stored Outlines with the OUTLN_PKG Package
	Moving Outline Tables

	Plan Stability Procedures for the Cost-based Optimizer
	Using Outlines to Move to the Cost-based Optimizer
	RDBMS Upgrades and the Cost-based Optimizer

	Using Hints
	Specifying Hints
	Hints for Optimization Approaches and Goals
	Hints for Access Methods
	Hints for Join Orders
	Hints for Join Operations
	Hints for Parallel Execution
	Additional Hints
	Using Hints with Views

	8 Tuning Distributed Queries
	Remote and Distributed Queries
	Remote Data Dictionary Information
	Remote SQL Statements
	Distributed SQL Statements
	EXPLAIN PLAN and SQL Decomposition
	Partition Views

	Distributed Query Restrictions
	Transparent Gateways
	Summary: Optimizing Performance of Distributed Queries

	9 Transaction Modes
	Using Discrete Transactions
	Deciding When to Use Discrete Transactions
	How Discrete Transactions Work
	Errors During Discrete Transactions
	Usage Notes
	Example

	Using Serializable Transactions

	10 Managing SQL and Shared PL/SQL Areas
	Comparing SQL Statements and PL/SQL Blocks
	Testing for Identical SQL Statements
	Aspects of Standardized SQL Formatting

	Keeping Shared SQL and PL/SQL in the Shared Pool
	Reserving Space for Large Allocations
	Preventing Objects from Aging Out

	11 Optimizing Data Warehouse Applications
	Characteristics of Data Warehouse Applications
	Building a Data Warehouse
	Materialized Views and Dimensions
	Parallel CREATE TABLE . . . AS SELECT
	Parallel Index Creation
	Fast Full Index Scan
	Partitioned Tables
	ANALYZE Statement
	Parallel Load
	Constraints

	Querying a Data Warehouse
	Oracle Parallel Server Option
	Parallel-Aware Optimizer
	Parallel Execution
	Bitmap Indexes
	Domain Indexes
	Star Queries
	Query Rewrites

	Tuning Data Warehouse Applications
	Backup and Recovery of the Data Warehouse
	Tuning Fast-start Parallel Recovery

	Part III� Application Design Tools for Designers and DBAs
	12 Overview of Diagnostic Tools
	Sources of Data for Tuning
	Data Volumes
	Online Data Dictionary
	Operating System Tools
	Dynamic Performance Tables
	Oracle Trace and Oracle Trace Data Viewer
	SQL Trace Facility
	Alert Log
	Application Program Output
	Users
	Initialization Parameter Files
	Program Text
	Design (Analysis) Dictionary
	Comparative Data

	Dynamic Performance Views
	Oracle and SNMP Support
	EXPLAIN PLAN
	Oracle Trace and Oracle Trace Data Viewer
	The SQL Trace Facility and TKPROF
	Supported Scripts
	Application Registration
	Oracle Enterprise Manager, Packs, and Applications
	Introduction to Oracle Enterprise Manager
	Oracle Diagnostics Pack
	Oracle Tuning Pack

	Oracle Parallel Server Management
	Tools You May Have Developed

	13 Using EXPLAIN PLAN
	Introduction to EXPLAIN PLAN
	Creating the Output Table
	Displaying PLAN_TABLE Output
	Output Table Columns
	Bitmap Indexes and EXPLAIN PLAN

	EXPLAIN PLAN and Partitioned Objects
	Examples of How EXPLAIN PLAN Displays Range and Hash Partitioning
	Pruning Information with Composite Partitioned Objects
	Partial Partition-wise Joins
	Full Partition-wise Joins
	INLIST ITERATOR and EXPLAIN PLAN
	DOMAIN INDEX and EXPLAIN PLAN

	Formatting EXPLAIN PLAN Output
	Using the EXPLAIN PLAN Statement
	Selecting PLAN_TABLE Output in Table Format
	Selecting PLAN_TABLE Output in Nested Format
	EXPLAIN PLAN Restrictions

	14 The SQL Trace Facility and TKPROF
	Introduction to SQL Trace and TKPROF
	About the SQL Trace Facility
	About TKPROF
	Using the SQL Trace Facility and TKPROF

	Step 1: Set Initialization Parameters for Trace File Management
	Step 2: Enable the SQL Trace Facility
	Enabling the SQL Trace Facility for Your Current Session
	Enabling the SQL Trace Facility for an Instance

	Step 3: Format Trace Files with TKPROF
	Sample TKPROF Output
	Syntax of TKPROF
	TKPROF Statement Examples

	Step 4: Interpret TKPROF Output
	Tabular Statistics
	Library Cache Misses
	Statement Truncation
	User Issuing the SQL Statement
	Execution Plan
	Deciding Which Statements to Tune

	Step 5: Store SQL Trace Facility Statistics
	Generating the TKPROF Output SQL Script
	Editing the TKPROF Output SQL Script
	Querying the Output Table

	Avoiding Pitfalls in TKPROF Interpretation
	Finding Which Statements Constitute the Bulk of the Load
	The Argument Trap
	The Read Consistency Trap
	The Schema Trap
	The Time Trap
	The Trigger Trap
	The "Correct" Version

	TKPROF Output Example
	Header
	Body
	Summary

	15 Using Oracle Trace
	Introduction to Oracle Trace
	Using Oracle Trace Data

	Using Oracle Trace Manager
	Managing Collections
	Collecting Event Data
	Accessing Collected Data

	Using Oracle Trace Data Viewer
	Oracle Trace Predefined Data Views
	Viewing Oracle Trace Data
	SQL Statement Property Page
	Details Property Page
	Example of Details Property Page
	Getting More Information on a Selected Query

	Manually Collecting Oracle Trace Data
	Using the Oracle Trace Command-Line Interface
	Using Initialization Parameters to Control Oracle Trace
	Using Stored Procedures to Control Oracle Trace
	Oracle Trace Collection Results
	Formatting Oracle Trace Data to Oracle Tables
	Oracle Trace Statistics Reporting Utility

	Part IV� Part IV� Optimizing Instance Performance
	16 Dynamic Performance Views
	Instance-Level Views for Tuning
	Session-Level or Transient Views for Tuning
	Current Statistic Values and Rates of Change
	Finding the Current Value of a Statistic
	Finding the Rate of Change of a Statistic

	17 Diagnosing System Performance Problems
	Tuning Factors for Well Designed Existing Systems
	Insufficient CPU
	Insufficient Memory
	Insufficient I/O
	Network Constraints
	Software Constraints

	18 Tuning CPU Resources
	Understanding CPU Problems
	Detecting and Solving CPU Problems
	System CPU Utilization
	Oracle CPU Utilization

	Solving CPU Problems by Changing System Architectures
	Single Tier to Two-Tier
	Multi-Tier: Using Smaller Client Machines
	Two-Tier to Three-Tier: Using a Transaction Processing Monitor
	Three-Tier: Using Multiple TP Monitors
	Oracle Parallel Server

	19 Tuning Memory Allocation
	Understanding Memory Allocation Issues
	Detecting Memory Allocation Problems
	Solving Memory Allocation Problems
	Tuning Operating System Memory Requirements
	Reducing Paging and Swapping
	Fitting the System Global Area into Main Memory
	Allocating Adequate Memory to Individual Users

	Tuning the Redo Log Buffer
	Tuning Private SQL and PL/SQL Areas
	Identifying Unnecessary Parse Calls
	Reducing Unnecessary Parse Calls

	Tuning the Shared Pool
	Tuning the Library Cache
	Tuning the Data Dictionary Cache

	Tuning the Large Pool and Shared Pool for the Multi-threaded Server Architecture
	Reducing Memory Use With Three-Tier Connections

	The V$SESSTAT View
	Querying the V$SESSTAT View

	Tuning Reserved Space from the Shared Pool
	Reserved List Tuning Parameters
	Controlling Space Reclamation of the Shared Pool
	Initial Parameter Values
	SHARED_POOL_ RESERVED_SIZE Too Small
	SHARED_POOL_ RESERVED_SIZE Too Large
	SHARED_POOL_SIZE Too Small

	Tuning the Buffer Cache
	Evaluating Buffer Cache Activity by Means of the Cache Hit Ratio
	Increasing the Cache Hit Ratio by Reducing Buffer Cache Misses
	Removing Unnecessary Buffers when Cache Hit Ratio Is High

	Accommodating LOBs in the Buffer Cache
	Temporary LOBs

	Tuning Multiple Buffer Pools
	Overview of the Multiple Buffer Pool Feature
	When to Use Multiple Buffer Pools
	Tuning the Buffer Cache Using Multiple Buffer Pools
	Enabling Multiple Buffer Pools
	Using Multiple Buffer Pools
	Dictionary Views Showing Default Buffer Pools
	Sizing Each Buffer Pool
	Identifying and Eliminating LRU Latch Contention

	Tuning Sort Areas
	Reallocating Memory
	Reducing Total Memory Usage

	20 Tuning I/O
	Understanding I/O Problems
	Tuning I/O: Top Down and Bottom Up
	Analyzing I/O Requirements
	Planning File Storage
	Choosing Data Block Size
	Evaluating Device Bandwidth

	Detecting I/O Problems
	Checking System I/O Utilization
	Checking Oracle I/O Utilization

	Solving I/O Problems
	Reducing Disk Contention by Distributing I/O
	What Is Disk Contention?
	Separating Datafiles and Redo Log Files
	Striping Table Data
	Separating Tables and Indexes
	Reducing Disk I/O Unrelated to Oracle

	Striping Disks
	The Purpose of Striping
	I/O Balancing and Striping
	Striping Disks Manually
	Striping Disks with Operating System Software
	Striping Hardware with RAID

	Avoiding Dynamic Space Management
	Detecting Dynamic Extension
	Allocating Extents
	Evaluating Unlimited Extents
	Evaluating Multiple Extents
	Avoiding Dynamic Space Management in Rollback Segments
	Reducing Migrated and Chained Rows
	Modifying the SQL.BSQ File

	Tuning Sorts
	Sorting to Memory
	Sorting to Disk
	Optimizing Sort Performance with Temporary Tablespaces
	Improving Sort Performance by Striping Temporary Tablespaces
	Improving Sort Performance Using SORT_MULTIBLOCK_READ_COUNT
	Using NOSORT to Create Indexes Without Sorting
	GROUP BY NOSORT

	Tuning Checkpoints
	How Checkpoints Affect Performance
	Choosing Checkpoint Frequency
	Fast-Start Checkpointing

	Tuning LGWR and DBWn I/O
	Tuning LGWR I/O
	Tuning DBWn I/O

	Tuning Backup and Restore Operations
	Locating the Source of a Bottleneck
	Using Fixed Views to Monitor Backup Operations
	Improving Backup Throughput

	Configuring the Large Pool

	21 Tuning Resource Contention
	Understanding Contention Issues
	Detecting Contention Problems
	Solving Contention Problems
	Reducing Contention for Rollback Segments
	Identifying Rollback Segment Contention
	Creating Rollback Segments

	Reducing Contention for Multi-threaded Server Processes
	Identifying Contention Using the Dispatcher-specific Views
	Reducing Contention for Dispatcher Processes
	Reducing Contention for Shared Server Processes

	Reducing Contention for Parallel Execution Servers
	Identifying Contention for Parallel Execution Servers
	Reducing Contention for Parallel Execution Servers

	Reducing Contention for Redo Log Buffer Latches
	Detecting Contention for Space in the Redo Log Buffer
	Detecting Contention for Redo Log Buffer Latches
	Examining Redo Log Activity
	Reducing Latch Contention

	Reducing Contention for the LRU Latch
	Reducing Free List Contention
	Identifying Free List Contention
	Adding More Free Lists

	22 Tuning Networks
	Detecting Network Problems
	Solving Network Problems
	Using Array Interfaces
	Using Prestarted Processes
	Adjusting Session Data Unit Buffer Size
	Increasing the Listener Queue Size
	Using TCP.NODELAY
	Using Shared Server Processes Rather than Dedicated Server Processes
	Using Connection Manager

	23 Tuning the Multi-Threaded Server Architecture
	Setting Up MTS
	Application Types that Benefit from MTS

	Improving User Scalability with MTS
	Configuring Dispatchers
	Connection Pooling and Connection Multiplexing

	Maximizing Throughput and Response Time with MTS
	Configuring and Managing the Number of Shared Servers
	Tuning the SDU Size

	Balancing Load Connections
	Tuning Memory Use with MTS
	Configuring the Large Pool and Shared Pool for MTS
	Limiting Memory Use Per User Session by Setting PRIVATE_SGA

	MTS-related Views with Connection, Load and Statistics Data
	MTS Feature Performance Issues

	24 Tuning the Operating System
	Understanding Operating System Performance Issues
	Operating System and Hardware Caches
	Raw Devices
	Process Schedulers

	Detecting Operating System Problems
	Solving Operating System Problems
	Performance on UNIX-Based Systems
	Performance on NT Systems
	Performance on Mainframe Computers

	25 Tuning Instance Recovery Performance
	Understanding Instance Recovery
	How Oracle Applies Redo Log Information
	Trade-offs of Minimizing Recovery Duration

	Tuning the Duration of Instance and Crash Recovery
	Using Initialization Parameters to Influence Instance and Crash Recovery Time
	Using Redo Log Size to Influence Checkpointing Frequency
	Using SQL Statements to Initiate Checkpoints

	Monitoring Instance Recovery
	Tuning the Phases of Instance Recovery
	Tuning the Rolling Forward Phase
	Tuning the Rolling Back Phase

	Transparent Application Failover
	What Is Transparent Application Failover?
	How does Transparent Application Failover Work?
	Transparent Application Failover Implementation Scenarios
	Transparent Application Failover Topics for the DBA
	Transparent Application Failover Topics for Application Developers
	Transparent Application Failover Restrictions

	Part V� Parallel Execution
	26 Tuning Parallel Execution
	Introduction to Parallel Execution Tuning
	When to Implement Parallel Execution

	Phase One - Initializing and Tuning Parameters for Parallel Execution
	Step One: Selecting Automated or Manual Tuning of Parallel Execution
	Automatically Derived Parameter Settings under Fully Automated Parallel Execution

	Step Two: Setting the Degree of Parallelism and Enabling Adaptive Multi-User
	Degree of Parallelism and Adaptive Multi-User and How They Interact
	Enabling Parallelism for Tables and Queries
	Controlling Performance with PARALLEL_THREADS_PER_CPU

	Step Three: Tuning General Parameters
	Parameters Establishing Resource Limits for Parallel Operations
	Parameters Affecting Resource Consumption
	Parameters Related to I/O

	Example Parameter Setting Scenarios for Parallel Execution
	Example One: Small Datamart
	Example Two: Medium-sized Data Warehouse
	Example Three: Large Data Warehouse
	EXAMPLE Four: Very Large Data Warehouse

	Phase Two - Tuning Physical Database Layouts for Parallel Execution
	Types of Parallelism
	Partitioning Data
	Partition Pruning
	Partition-wise Joins

	Phase Three - Creating, Populating, and Refreshing the Database
	Populating Databases Using Parallel Load
	Creating Temporary Tablespaces for Parallel Sort and Hash Join
	Creating Indexes in Parallel
	Executing Parallel SQL Statements
	Using EXPLAIN PLAN to Show Parallel Operations Plans
	Additional Considerations for Parallel DML

	Phase Four - Monitoring Parallel Execution Performance
	Monitoring Parallel Execution Performance with Dynamic Performance Views
	Monitoring Session Statistics
	Monitoring Operating System Statistics

	27 Understanding Parallel Execution Performance Issues
	Understanding Parallel Execution Performance Issues
	Formula for Memory, Users, and Parallel Execution Server Processes
	Setting Buffer Pool Size for Parallel Operations
	Balancing the Formula
	Examples: Balancing Memory, Users, and Parallel Execution Servers
	Parallel Execution Space Management Issues
	Tuning Parallel Execution on Oracle Parallel Server

	Parallel Execution Tuning Tips
	Overriding the Default Degree of Parallelism
	Rewriting SQL Statements
	Creating and Populating Tables in Parallel
	Creating Indexes in Parallel
	Parallel DML Tips
	Refreshing Tables in Parallel
	Using Hints with Cost Based Optimization

	Diagnosing Problems
	Is There Regression?
	Is There a Plan Change?
	Is There a Parallel Plan?
	Is There a Serial Plan?
	Is There Parallel Execution?
	Is The Workload Evenly Distributed?

	Part VI� Part VI� Materialized Views
	28 Data Warehousing with Materialized Views
	Overview of Data Warehousing with Materialized Views
	Materialized Views for Data Warehouses
	Materialized Views for Distributed Computing
	Materialized Views for Mobile Computing
	Components of Summary Management
	Terminology

	Materialized Views
	Schema Design Guidelines for Materialized Views

	Oracle Tools for Data Warehousing
	Getting Started

	29 Materialized Views
	The Need for Materialized Views
	Creating a Materialized View
	Naming
	Storage Characteristics
	Build Methods
	Used for Query Rewrite
	Query Rewrite Restrictions
	Refresh Options
	Defining the Data for the Materialized View

	Registration of an Existing Materialized View
	Partitioning a Materialized View
	Partitioning the Materialized View
	Partitioning a Prebuilt Table

	Indexing Selection for Materialized Views
	Invalidating a Materialized View
	Security Issues

	Guidelines for using Materialized Views in a Data Warehouse
	Altering a Materialized View
	Dropping a Materialized View

	30 Dimensions
	Dimensions in a Data Warehouse
	Creating a Dimension
	Multiple Hierarchies
	Using Normalized Dimension Tables
	Viewing Dimensions
	Dimensions and Constraints

	Validating a Dimension
	Altering a Dimension
	Deleting a Dimension

	31 Query Rewrite
	Overview of Query Rewrite
	Cost-Based Rewrite
	Enabling Query Rewrite
	Initialization Parameters for Query Rewrite
	Privileges for Enabling Query Rewrite

	When Does Oracle Rewrite a Query?
	Query Rewrite Methods
	SQL Text Match Rewrite Methods
	General Query Rewrite Methods

	When are Constraints and Dimensions Needed?
	Accuracy of Query Rewrite
	Did Query Rewrite Occur?
	Explain Plan
	Controlling Query Rewrite

	Guidelines for Using Query Rewrite
	Constraints
	Dimensions
	Outer Joins
	SQL Text Match
	Aggregates
	Grouping Conditions
	Statistics

	32 Managing Materialized Views
	Overview of Materialized View Management
	Warehouse Refresh
	Complete Refresh
	Fast Refresh
	Tips for Refreshing Using Warehouse Refresh
	Recommended Initialization Parameters for Parallelism
	Monitoring a Refresh
	Tips after Refreshing Materialized Views

	Summary Advisor
	Collecting Structural Statistics
	Collection of Dynamic Workload Statistics
	Recommending Materialized Views
	Estimating Materialized View Size

	Is a Materialized View Being Used?

	Index

