
Oracle8 i

Administrator’s Guide

Release 8.1.5

February 1999

Part No. A67772-01

Administrator’s Guide, Release 8.1.5

Part No. A67772-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Joyce Fee

Contributing Authors: Alex Tsukerman, Andre Kruglikov, Ann Rhee, Ashwini Surpur, Bhaskar
Himatsingka, Harvey Eneman, Jags Srinivasan, Lois Price, Robert Jenkins, Sophia Yeung, Vinay Srihari,
Wei Huang, Jonathan Klein, Mike Hartstein, Bill Lee, Diana Lorentz, Lance Ashdown, Phil Locke, Ekrem
Soylemez, Connie Dialaris, Steven Wertheimer, Val Kane, Mary Rhodes, Archna Kalra, Nina Lewis

Graphic Designer: Valarie Moore

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by such
use of the Programs.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. Except as may be expressly permitted in your license agreement
for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are "restricted computer software"
and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Net8, Oracle Call Interface, Oracle7, Oracle8, Oracle8i, Oracle
Designer, Oracle Enterprise Manager, Oracle Forms, Oracle Parallel Server, Oracle Server Manager,
Oracle SQL*Loader, LogMiner, PL/SQL, Pro*C, SQL*Net and SQL*Plus, and Trusted Oracle are
trademarks or registered trademarks of Oracle Corporation. All other company or product names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

 iii

Contents

Send Us Your Comments ... xxi

Preface .. xxiii

Part I Basic Database Administration

1 The Oracle Database Administrator

Types of Oracle Users... 1-2
Database Administrators... 1-2
Security Officers.. 1-3
Application Developers ... 1-3
Application Administrators .. 1-3
Database Users.. 1-3
Network Administrators ... 1-4

Database Administrator Security and Privileges ... 1-4
The Database Administrator’s Operating System Account ... 1-4
Database Administrator Usernames.. 1-5
The DBA Role.. 1-6

Database Administrator Authentication .. 1-6
Selecting an Authentication Method ... 1-6
Using Operating System Authentication .. 1-7
OSOPER and OSDBA... 1-8
Using an Authentication Password File.. 1-9

Password File Administration.. 1-9

 iv

Using ORAPWD ... 1-10
Setting REMOTE_LOGIN_ PASSWORDFILE.. 1-11
Adding Users to a Password File ... 1-12
Connecting with Administrator Privileges... 1-14
Maintaining a Password File... 1-15

Database Administrator Utilities... 1-17
SQL*Loader ... 1-17
Export and Import .. 1-17

Priorities of a Database Administrator ... 1-17
Step 1: Install the Oracle Software.. 1-18
Step 2: Evaluate the Database Server Hardware.. 1-18
Step 3: Plan the Database... 1-18
Step 4: Create and Open the Database... 1-19
Step 5: Implement the Database Design.. 1-20
Step 6: Back Up the Database.. 1-20
Step 7: Enroll System Users ... 1-20
Step 8: Tune Database Performance... 1-20

Identifying Oracle Software Releases .. 1-21
Release Number Format .. 1-21
Versions of Other Oracle Software... 1-22
Checking Your Current Release Number ... 1-22

2 Creating an Oracle Database

Considerations Before Creating a Database .. 2-2
Creation Prerequisites .. 2-3
Using an Initial Database... 2-3
Migrating an Older Version of the Database.. 2-3

Creating an Oracle Database .. 2-3
Steps for Creating an Oracle Database .. 2-4
Creating a Database: Example .. 2-7
Troubleshooting Database Creation .. 2-8
Dropping a Database.. 2-8

Parameters .. 2-9
DB_NAME and DB_DOMAIN... 2-9
CONTROL_FILES... 2-10

 v

DB_BLOCK_SIZE ... 2-11
DB_BLOCK_BUFFERS... 2-11
PROCESSES... 2-12
ROLLBACK_SEGMENTS ... 2-12
License Parameters ... 2-12
LICENSE_MAX_SESSIONS and LICENSE_SESSIONS _WARNING................................ 2-13
LICENSE_MAX_USERS .. 2-13

Considerations After Creating a Database .. 2-14
Initial Tuning Guidelines ... 2-14

Allocating Rollback Segments .. 2-14
Choosing the Number of DB_BLOCK_LRU_LATCHES.. 2-15
Distributing I/O.. 2-15

3 Starting Up and Shutting Down

Starting Up a Database .. 3-2
Preparing to Start an Instance... 3-2
Starting an Instance: Scenarios ... 3-3

Altering Database Availability .. 3-7
Mounting a Database to an Instance.. 3-7
Opening a Closed Database .. 3-7
Opening a Database in Read-Only Mode ... 3-8
Restricting Access to an Open Database ... 3-8

Shutting Down a Database ... 3-9
Shutting Down with the NORMAL Option ... 3-10
Shutting Down with the IMMEDIATE Option .. 3-11
Shutting Down with the TRANSACTIONAL Option .. 3-11
Shutting Down with the ABORT Option .. 3-12

Suspending and Resuming a Database .. 3-12
Using Parameter Files .. 3-13

The Sample Parameter File.. 3-14
The Number of Parameter Files.. 3-14
The Location of the Parameter File in Distributed Environments 3-15

Part II Oracle Server Configuration

 vi

4 Managing Oracle Processes

Setting Up Server Processes.. 4-2
When to Connect to a Dedicated Server Process ... 4-2

Configuring Oracle for Multi-Threaded Server Architecture .. 4-3
MTS_DISPATCHERS: Setting the Initial Number of Dispatchers (Required) 4-5

Modifying Server Processes.. 4-6
Changing the Minimum Number of Shared Server Processes .. 4-6
Adding and Removing Dispatcher Processes .. 4-7

Tracking Oracle Processes ... 4-7
Monitoring the Processes of an Oracle Instance... 4-8
Trace Files, the ALERT File, and Background Processes .. 4-10
Starting the Checkpoint Process ... 4-12

Managing Processes for the Parallel Query Option... 4-12
Managing the Query Servers .. 4-13
Variations in the Number of Query Server Processes ... 4-13

Managing Processes for External Procedures .. 4-14
Terminating Sessions ... 4-15

Identifying Which Session to Terminate ... 4-16
Terminating an Active Session ... 4-16
Terminating an Inactive Session... 4-17

5 Managing Control Files

Guidelines for Control Files ... 5-2
Name Control Files... 5-2
Multiplex Control Files on Different Disks... 5-2
Place Control Files Appropriately.. 5-3
Manage the Size of Control Files .. 5-3

Creating Control Files .. 5-3
Creating Initial Control Files... 5-4
Creating Additional Control File Copies, and Renaming and Relocating Control Files ... 5-5
New Control Files ... 5-5
Creating New Control Files... 5-6

Troubleshooting After Creating Control Files .. 5-8
Checking for Missing or Extra Files ... 5-8
Handling Errors During CREATE CONTROLFILE .. 5-9

 vii

Dropping Control Files.. 5-9

6 Managing the Online Redo Log

What Is the Online Redo Log? ... 6-2
Redo Threads .. 6-2
Online Redo Log Contents .. 6-2
How Oracle Writes to the Online Redo Log... 6-3

Planning the Online Redo Log... 6-5
Multiplexing Online Redo Log Files.. 6-5
Placing Online Redo Log Members on Different Disks .. 6-9
Setting the Size of Online Redo Log Members... 6-9
Choosing the Number of Online Redo Log Files... 6-9

Creating Online Redo Log Groups and Members ... 6-11
Creating Online Redo Log Groups .. 6-11
Creating Online Redo Log Members ... 6-11

Renaming and Relocating Online Redo Log Members .. 6-12
Dropping Online Redo Log Groups and Members ... 6-14

Dropping Log Groups.. 6-14
Dropping Online Redo Log Members ... 6-15

Forcing Log Switches ... 6-16
Verifying Blocks in Redo Log Files ... 6-16
Clearing an Online Redo Log File ... 6-17

Restrictions .. 6-17
Listing Information about the Online Redo Log.. 6-18

7 Managing Archived Redo Logs

What Is the Archived Redo Log? ... 7-2
Choosing Between NOARCHIVELOG and ARCHIVELOG Mode ... 7-4

Running a Database in NOARCHIVELOG Mode... 7-4
Running a Database in ARCHIVELOG Mode ... 7-4

Turning Archiving On and Off .. 7-7
Setting the Initial Database Archiving Mode ... 7-7
Changing the Database Archiving Mode.. 7-7
Enabling Automatic Archiving... 7-8
Disabling Automatic Archiving ... 7-9

 viii

Performing Manual Archiving ... 7-10
Specifying the Archive Destination .. 7-11

Specifying Archive Destinations .. 7-11
Understanding Archive Destination States .. 7-13

Specifying the Mode of Log Transmission .. 7-14
Normal Transmission Mode ... 7-15
Standby Transmission Mode... 7-15

Managing Archive Destination Failure .. 7-16
Specifying the Minimum Number of Successful Destinations .. 7-17
Re-Archiving to a Failed Destination... 7-19

Tuning Archive Performance .. 7-20
Specifying Multiple ARCn Processes... 7-20
Setting Archive Buffer Parameters... 7-22

Displaying Archived Redo Log Information... 7-23
Using LogMiner to Analyze Online and Archived Redo Logs .. 7-25

How Can You Use LogMiner?.. 7-26
Restrictions... 7-26
Creating a Dictionary File.. 7-27
Specifying Redo Logs for Analysis .. 7-29
Using LogMiner .. 7-30
Using LogMiner: Scenarios ... 7-32

8 Managing Job Queues

SNP Background Processes... 8-2
Multiple SNP processes ... 8-3
Starting up SNP processes... 8-3

Managing Job Queues.. 8-3
DBMS_JOB Package ... 8-4
Submitting a Job to the Job Queue ... 8-4
How Jobs Execute ... 8-9
Removing a Job from the Job Queue.. 8-11
Altering a Job... 8-11
Broken Jobs .. 8-12
Forcing a Job to Execute... 8-14
Terminating a Job.. 8-14

 ix

Viewing Job Queue Information ... 8-15

Part III Database Storage

9 Managing Tablespaces

Guidelines for Managing Tablespaces ... 9-2
Using Multiple Tablespaces .. 9-2
Specifying Tablespace Storage Parameters... 9-3
Assigning Tablespace Quotas to Users ... 9-3

Creating Tablespaces.. 9-3
Creating Locally Managed Tablespaces.. 9-5
Creating a Temporary Tablespace ... 9-6

Managing Tablespace Allocation... 9-8
Altering Storage Settings for Tablespaces... 9-8
Coalescing Free Space .. 9-8

Altering Tablespace Availability ... 9-10
Bringing Tablespaces Online .. 9-10
Taking Tablespaces Offline ... 9-10

Making a Tablespace Read-Only ... 9-12
Prerequisites .. 9-13
Making a Read-Only Tablespace Writeable ... 9-14
Creating a Read-Only Tablespace on a WORM Device.. 9-14

Dropping Tablespaces.. 9-14
Using the DBMS_SPACE_ADMIN Package ... 9-16

Scenario 1 ... 9-16
Scenario 2 ... 9-17
Scenario 3 ... 9-17
Scenario 4 ... 9-17

Transporting Tablespaces Between Databases.. 9-18
Introduction to Transportable Tablespaces .. 9-18
Current Limitations.. 9-20
Step 1: Pick a Self-contained Set of Tablespaces .. 9-20
Step 2: Generate a Transportable Tablespace Set... 9-22
Step 3: Transport the Tablespace Set ... 9-23
Step 4: Plug In the Tablespace Set .. 9-23

 x

Object Behaviors ... 9-24
Transporting and Attaching Partitions for Data Warehousing: Example.......................... 9-27
Publishing Structured Data on CDs... 9-29
Mounting the Same Tablespace Read-only on Multiple Databases 9-29
Archive Historical Data via Transportable Tablespaces ... 9-30
Using Transportable Tablespaces to Perform TSPITR .. 9-30

Viewing Information About Tablespaces .. 9-31

10 Managing Datafiles

Guidelines for Managing Datafiles ... 10-2
Determine the Number of Datafiles... 10-2
Set the Size of Datafiles .. 10-4
Place Datafiles Appropriately... 10-4
Store Datafiles Separate From Redo Log Files.. 10-4

Creating and Adding Datafiles to a Tablespace .. 10-5
Changing a Datafile’s Size... 10-5

Enabling and Disabling Automatic Extension for a Datafile ... 10-5
Manually Resizing a Datafile .. 10-6

Altering Datafile Availability ... 10-7
Bringing Datafiles Online in ARCHIVELOG Mode .. 10-8
Taking Datafiles Offline in NOARCHIVELOG Mode .. 10-8

Renaming and Relocating Datafiles .. 10-9
Renaming and Relocating Datafiles for a Single Tablespace ... 10-9
Renaming and Relocating Datafiles for Multiple Tablespaces .. 10-10

Verifying Data Blocks in Datafiles .. 10-12
Viewing Information About Datafiles .. 10-13

11 Using the Database Resource Manager

Introduction ... 11-2
Using Database Resource Manager Packages ... 11-3

Using the DBMS_RESOURCE_MANAGER Package ... 11-3
The DBMS_RESOURCE_MANAGER_PRIVS Package .. 11-10
Using the DBMS_SESSION Package to Change a User’s Resource Consumer Groups 11-11

Database Resource Manager Views .. 11-12

 xi

12 Guidelines for Managing Schema Objects

Managing Space in Data Blocks .. 12-2
The PCTFREE Parameter... 12-2
The PCTUSED Parameter.. 12-4
Selecting Associated PCTUSED and PCTFREE Values .. 12-6

Setting Storage Parameters ... 12-7
Storage Parameters You Can Specify... 12-7
Setting INITRANS and MAXTRANS .. 12-9
Setting Default Storage Parameters for Segments in a Tablespace 12-10
Setting Storage Parameters for Data Segments .. 12-10
Setting Storage Parameters for Index Segments .. 12-10
Setting Storage Parameters for LOB Segments .. 12-11
Changing Values for Storage Parameters ... 12-11
Understanding Precedence in Storage Parameters.. 12-11

Deallocating Space ... 12-13
Viewing the High Water Mark ... 12-13
Issuing Space Deallocation Statements ... 12-13

Understanding Space Use of Datatypes ... 12-17
Summary of Oracle Datatypes.. 12-19

13 Managing Partitioned Tables and Indexes

What Are Partitioned Tables and Indexes?.. 13-2
Partitioning Methods ... 13-2

Using the Range Partitioning Method... 13-3
Using the Hash Partitioning Method... 13-4
Using the Composite Partitioning Method... 13-5

Creating Partitions.. 13-9
Maintaining Partitions... 13-9

Moving Partitions ... 13-10
Adding Partitions ... 13-11
Dropping Partitions.. 13-12
Coalescing Partitions.. 13-14
Modifying Partition Default Attributes... 13-14
Truncating Partitions ... 13-15
Splitting Partitions.. 13-17

 xii

Merging Partitions .. 13-18
Exchanging Table Partitions.. 13-18
Rebuilding Index Partitions .. 13-20
Moving the Time Window in a Historical Table.. 13-20
Quiescing Applications During a Multi-Step Maintenance Operation 13-21

14 Managing Tables

Guidelines for Managing Tables ... 14-2
Design Tables Before Creating Them .. 14-2
Specify How Data Block Space Is to Be Used ... 14-3
Specify Transaction Entry Parameters... 14-3
Specify the Location of Each Table... 14-3
Parallelize Table Creation.. 14-4
Consider Creating UNRECOVERABLE Tables ... 14-4
Estimate Table Size and Set Storage Parameters.. 14-5
Plan for Large Tables.. 14-5
Table Restrictions.. 14-6

Creating Tables .. 14-9
Altering Tables .. 14-10
Manually Allocating Storage for a Table.. 14-11
Dropping Tables.. 14-12

Dropping Columns... 14-13
Index-Organized Tables... 14-13

What Are Index-Organized Tables?... 14-14
Creating Index-Organized Tables .. 14-16
Maintaining Index-Organized Tables.. 14-19
Analyzing Index-Organized Tables ... 14-21
Using the ORDER BY Clause with Index-Organized Tables ... 14-22
Converting Index-Organized Tables to Regular Tables.. 14-22

15 Managing Views, Sequences and Synonyms

Managing Views.. 15-2
Creating Views.. 15-2
Modifying a Join View ... 15-4
Replacing Views.. 15-8

 xiii

Dropping Views.. 15-9
Managing Sequences ... 15-9

Creating Sequences .. 15-10
Altering Sequences ... 15-10
Initialization Parameters Affecting Sequences... 15-11
Dropping Sequences .. 15-11

Managing Synonyms ... 15-11
Creating Synonyms .. 15-12
Dropping Synonyms .. 15-12

16 Managing Indexes

Guidelines for Managing Indexes... 16-2
Create Indexes After Inserting Table Data.. 16-3
Limit the Number of Indexes per Table .. 16-3
Specify Transaction Entry Parameters... 16-4
Specify Index Block Space Use ... 16-4
Specify the Tablespace for Each Index .. 16-4
Parallelize Index Creation ... 16-5
Consider Creating Indexes with NOLOGGING.. 16-5
Estimate Index Size and Set Storage Parameters ... 16-5
Considerations Before Disabling or Dropping Constraints ... 16-7

Creating Indexes ... 16-7
Creating an Index Associated with a Constraint ... 16-8
Creating an Index Explicitly ... 16-8
Creating an Index Online .. 16-9
Creating a Function-Based Index ... 16-9
Re-creating an Existing Index ... 16-12
Creating a Key-Compressed Index .. 16-12

Altering Indexes.. 16-13
Monitoring Space Use of Indexes.. 16-14
Dropping Indexes ... 16-15

17 Managing Clusters

Guidelines for Managing Clusters.. 17-2
Choose Appropriate Tables for the Cluster .. 17-4

 xiv

Choose Appropriate Columns for the Cluster Key ... 17-4
Specify Data Block Space Use ... 17-5
Specify the Space Required by an Average Cluster Key and Its Associated Rows 17-5
Specify the Location of Each Cluster and Cluster Index Rows.. 17-5
Estimate Cluster Size and Set Storage Parameters... 17-6

Creating Clusters... 17-6
Creating Clustered Tables ... 17-7
Creating Cluster Indexes ... 17-7

Altering Clusters ... 17-8
Altering Cluster Tables and Cluster Indexes.. 17-9

Dropping Clusters .. 17-10
Dropping Clustered Tables ... 17-10
Dropping Cluster Indexes ... 17-11

18 Managing Hash Clusters

Guidelines for Managing Hash Clusters ... 18-2
Advantages of Hashing ... 18-2
Disadvantages of Hashing... 18-3
Estimate Size Required by Hash Clusters and Set Storage Parameters.............................. 18-4
Creating Hash Clusters .. 18-4
Controlling Space Use Within a Hash Cluster ... 18-6

Altering Hash Clusters... 18-8
Dropping Hash Clusters .. 18-9

19 Detecting and Repairing Data
Block Corruption

DBMS_REPAIR Package Contents.. 19-2
Step 1: Detect and Report Corruptions ... 19-2

DBMS_REPAIR: Using the check_object and admin_tables Procedures 19-3
DB_VERIFY: Performing an Offline Database Check ... 19-3
ANALYZE: Corruption Reporting... 19-3
DB_BLOCK_CHECKING (Block Checking Initialization Parameter)................................ 19-3

Step 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR ... 19-4
Step 3: Make Objects Usable .. 19-5

Corruption Repair: Using the fix_corrupt_blocks and skip_corrupt_blocks Procedures 19-5

 xv

Implications when Skipping Corrupt Blocks ... 19-5
Step 4: Repair Corruptions and Rebuild Lost Data ... 19-6

Recover Data Using the dump_orphan_keys Procedures.. 19-6
Repair Freelists Using the rebuild_freelists Procedure... 19-6

Limitations and Restrictions... 19-6
DBMS_REPAIR Procedures.. 19-7

check_object... 19-7
fix_corrupt_blocks .. 19-8
dump_orphan_keys ... 19-9
rebuild_freelists .. 19-10
skip_corrupt_blocks ... 19-11
admin_tables ... 19-11

DBMS_REPAIR Exceptions .. 19-12

20 General Management of Schema Objects

Creating Multiple Tables and Views in a Single Operation .. 20-2
Renaming Schema Objects ... 20-2
Analyzing Tables, Indexes, and Clusters ... 20-3

Using Statistics for Tables, Indexes, and Clusters ... 20-4
Validating Tables, Indexes, and Clusters.. 20-8
Listing Chained Rows of Tables and Clusters.. 20-8

Truncating Tables and Clusters.. 20-9
Enabling and Disabling Triggers... 20-11

Enabling Triggers ... 20-12
Disabling Triggers .. 20-12

Managing Integrity Constraints... 20-13
Integrity Constraint States... 20-14
Deferring Constraint Checks .. 20-16
Managing Constraints That Have Associated Indexes ... 20-18
Setting Integrity Constraints Upon Definition... 20-18
Modifying Existing Integrity Constraints ... 20-20
Dropping Integrity Constraints .. 20-21
Reporting Constraint Exceptions ... 20-21

Managing Object Dependencies ... 20-23
Manually Recompiling Views .. 20-25

 xvi

Manually Recompiling Procedures and Functions.. 20-25
Manually Recompiling Packages ... 20-25

Managing Object Name Resolution.. 20-25
Changing Storage Parameters for the Data Dictionary ... 20-26

Structures in the Data Dictionary ... 20-27
Errors that Require Changing Data Dictionary Storage ... 20-29

Displaying Information About Schema Objects .. 20-29
Oracle Dictionary Storage Packages .. 20-30
Example 1: Displaying Schema Objects By Type ... 20-31
Example 2: Displaying Column Information.. 20-31
Example 3: Displaying Dependencies of Views and Synonyms.. 20-32
Example 4: Displaying General Segment Information.. 20-32
Example 5: Displaying General Extent Information.. 20-32
Example 6: Displaying the Free Space (Extents) of a Database ... 20-33
Example 7: Displaying Segments that Cannot Allocate Additional Extents 20-33

21 Managing Rollback Segments

Guidelines for Managing Rollback Segments .. 21-2
Use Multiple Rollback Segments.. 21-2
Choose Between Public and Private Rollback Segments .. 21-3
Specify Rollback Segments to Acquire Automatically .. 21-3
Set Rollback Segment Sizes Appropriately ... 21-4
Create Rollback Segments with Many Equally Sized Extents.. 21-5
Set an Optimal Number of Extents for Each Rollback Segment .. 21-5
Set the Storage Location for Rollback .. 21-7

Creating Rollback Segments... 21-7
Bringing New Rollback Segments Online... 21-8

Specifying Storage Parameters for Rollback Segments .. 21-8
Setting Storage Parameters When Creating a Rollback Segment .. 21-8
Changing Rollback Segment Storage Parameters .. 21-9
Altering Rollback Segment Format .. 21-9
Shrinking a Rollback Segment Manually .. 21-10

Taking Rollback Segments Online and Offline ... 21-10
Bringing Rollback Segments Online .. 21-11
Taking Rollback Segments Offline ... 21-12

 xvii

Explicitly Assigning a Transaction to a Rollback Segment .. 21-13
Dropping Rollback Segments .. 21-13
Monitoring Rollback Segment Information.. 21-14

Displaying Rollback Segment Information... 21-14

Part IV Database Security

22 Establishing Security Policies

System Security Policy... 22-2
Database User Management ... 22-2
User Authentication ... 22-2
Operating System Security.. 22-3

Data Security Policy ... 22-3
User Security Policy ... 22-4

General User Security .. 22-4
End-User Security... 22-5
Administrator Security .. 22-7
Application Developer Security ... 22-9
Application Administrator Security .. 22-11

Password Management Policy ... 22-11
Account Locking... 22-12
Password Aging and Expiration .. 22-12
Password History ... 22-14
Password Complexity Verification .. 22-14

Auditing Policy ... 22-18

23 Managing Users and Resources

Session and User Licensing .. 23-2
Concurrent Usage Licensing... 23-2
Connecting Privileges .. 23-3
Setting the Maximum Number of Sessions .. 23-4
Setting the Session Warning Limit ... 23-4
Changing Concurrent Usage Limits While the Database is Running................................. 23-4
Named User Limits .. 23-5

 xviii

Viewing Licensing Limits and Current Values .. 23-6
User Authentication.. 23-7

Database Authentication ... 23-8
External Authentication... 23-8
Enterprise Authentication ... 23-10

Oracle Users ... 23-11
Creating Users ... 23-11
Altering Users.. 23-15
Dropping Users ... 23-16

Managing Resources with Profiles .. 23-17
Creating Profiles ... 23-18
Assigning Profiles ... 23-18
Altering Profiles .. 23-19
Using Composite Limits .. 23-19
Dropping Profiles ... 23-21
Enabling and Disabling Resource Limits .. 23-21

Listing Information About Database Users and Profiles .. 23-22
Listing Information about Users and Profiles: Examples ... 23-23

Examples ... 23-26

24 Managing User Privileges and Roles

Identifying User Privileges ... 24-2
System Privileges .. 24-2
Object Privileges.. 24-3

Managing User Roles ... 24-4
Creating a Role .. 24-4
Predefined Roles ... 24-5
Role Authorization ... 24-6
Dropping Roles ... 24-8

Granting User Privileges and Roles .. 24-9
Granting System Privileges and Roles... 24-9
Granting Object Privileges and Roles .. 24-10
Granting Privileges on Columns .. 24-11

Revoking User Privileges and Roles ... 24-12
Revoking System Privileges and Roles.. 24-12

 xix

Revoking Object Privileges and Roles ... 24-12
Effects of Revoking Privileges .. 24-14
Granting to and Revoking from the User Group PUBLIC ... 24-15

Granting Roles Using the Operating System or Network ... 24-16
Using Operating System Role Identification .. 24-17
Using Operating System Role Management .. 24-18
Granting and Revoking Roles When OS_ROLES=TRUE ... 24-18
Enabling and Disabling Roles When OS_ROLES=TRUE ... 24-19
Using Network Connections with Operating System Role Management 24-19

Listing Privilege and Role Information ... 24-19
Listing Privilege and Role Information: Examples.. 24-20

25 Auditing Database Use

Guidelines for Auditing .. 25-2
Audit via the Database or Operating System... 25-2
Keep Audited Information Manageable ... 25-2

Creating and Deleting the Database Audit Trail Views.. 25-4
Creating the Audit Trail Views .. 25-4
Deleting the Audit Trail Views... 25-5

Managing Audit Trail Information ... 25-5
Events Audited by Default.. 25-7
Setting Auditing Options .. 25-7
Enabling and Disabling Database Auditing ... 25-13
Controlling the Growth and Size of the Audit Trail ... 25-14
Protecting the Audit Trail.. 25-16

Viewing Database Audit Trail Information... 25-17
Listing Active Statement Audit Options... 25-18
Listing Active Privilege Audit Options... 25-18
Listing Active Object Audit Options for Specific Objects... 25-19
Listing Default Object Audit Options.. 25-19
Listing Audit Records .. 25-19
Listing Audit Records for the AUDIT SESSION Option .. 25-20

Auditing Through Database Triggers ... 25-20

Index

 xx

xxi

Send Us Your Comments

Administrator’s Guide, Release 8.1.5

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). Please send your comments to:

Server Technologies Documentation Manager

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7228

or e-mail comments to the Information Development department at the following e-mail address:

infodev@us.oracle.com

xxii

xxiii

Preface

This guide is for people who administer the operation of an Oracle database system.

These people, referred to as "database administrators" (DBAs), are assumed to be

responsible for ensuring the smooth operation of an Oracle database system and for

monitoring its use. The responsibilities of database administrators are described in

Chapter 1.

Attention: The Oracle8i Administrator’s Guide contains information
that describes the features and functionality of the Oracle8 and the
Oracle8 Enterprise Edition products. Oracle8 and Oracle8
Enterprise Edition have the same basic features. However, several
advanced features are available only with the Enterprise Edition,
and some of these are optional. For example, to perform automated
tablespace point-in-time recovery (using Recovery Manager), you
must have the Enterprise Edition.

For information about the differences between Oracle8 and the
Oracle8 Enterprise Edition and the features and options that are
available to you, please refer to Getting to Know Oracle8i and the
Oracle8i Enterprise Edition.

xxiv

Audience
Readers of this guide are assumed to be familiar with relational database concepts.

They are also assumed to be familiar with the operating system environment under

which they are running Oracle.

Readers Interested in Installation and Migration Information
Administrators frequently participate in installing the Oracle Server software and

migrating existing Oracle databases to newer formats (for example, Version 7

databases to Oracle8 format). This guide is not an installation or migration manual.

If your primary interest is installation, see your operating system-specific Oracle

documentation.

If your primary interest is database or application migration, see the Oracle8i
Migration manual.

Readers Interested in Application Design Information
In addition to administrators, experienced users of Oracle and advanced database

application designers might also find information in this guide useful.

However, database application developers should also see the Oracle8i Application
Developer’s Guide - Fundamentals and the documentation for the tool or language

product they are using to develop Oracle database applications.

How to Use This Guide
Every reader of this guide should read Chapter 1 of Oracle8i Concepts. This

overview of the concepts and terminology related to Oracle provides a foundation

for the more detailed information in this guide. The rest of Oracle8i Concepts
explains the Oracle architecture and features, and how they operate in more detail.

Structure
This guide contains the following parts and chapters.

xxv

Part I: Basic Database Administration

Part II: Oracle Server Configuration

Chapter 1, "The Oracle Database

Administrator"

This chapter serves as a general introduction

to typical tasks performed by database

administrators, such as installing software

and planning a database.

Chapter 2, "Creating an Oracle

Database"

This chapter describes the most important

considerations when creating a database.

Consult this chapter when in the database

planning stage.

Chapter 3, "Starting Up and

Shutting Down"

Consult this chapter when you wish to start

up a database, alter its availability, or shut it

down. Parameter files related to starting up

and shutting down are also described here.

Chapter 4, "Managing Oracle

Processes"

This chapter helps you identify different

Oracle processes, such as dedicated server

processes and multi-threaded server

processes. Consult this chapter when

configuring, modifying, tracking and

managing processes.

Chapter 5, "Managing Control

Files"

This chapter describes all aspects of

managing control files (such as naming,

creating, troubleshooting, and dropping

control files).

Chapter 6, "Managing the Online

Redo Log"

This chapter describes all aspects of

managing the online redo log: planning,

creating, renaming, dropping, or clearing

online redo log files.

Chapter 7, "Managing Archived

Redo Logs"

Consult this chapter for information about

archive modes, tuning archiving, and

viewing.

Chapter 8, "Managing Job Queues" Consult this chapter before working with job

queues. All aspects of submitting, removing,

altering, and fixing job queues are described.

xxvi

Part III: Database Storage

Chapter 9, "Managing Tablespaces" This chapter provides guidelines to

follow as you manage tablespaces, and

describes how to create, manage, alter,

drop and move data betweentablespaces.

Chapter 10, "Managing Datafiles" This chapter provides guidelines to

follow as you manage datafiles, and

describes how to create, change, alter,

rename and view information about

datafiles.

Chapter 11, "Using the Database

Resource Manager"

This chapter describes how to use the

Database Resource Manager to allocate

resources.

Chapter 12, "Guidelines for Managing

Schema Objects"

Consult this chapter for descriptions of

common tasks, such as setting storage

parameters, deallocating space and

managing space.

Chapter 13, "Managing Partitioned

Tables and Indexes"

This chapter describes what a partitioned

table (and index) is and how to create and

manage it.

Chapter 14, "Managing Tables" Consult this chapter for general table

management guidelines, as well as

information about creating, altering,

maintaining and dropping tables.

Chapter 15, "Managing Views,

Sequences and Synonyms"

This chapter describes all aspects of

managing views, sequences and

synonyms.

Chapter 16, "Managing Indexes" Consult this chapter for general

guidelines about indexes, including

creating, altering, monitoring and

dropping indexes.

Chapter 17, "Managing Clusters" Consult this chapter for general

guidelines to follow when creating,

altering and dropping clusters.

xxvii

Part IV: Database Security

Chapter 18, "Managing Hash Clusters" Consult this chapter for general

guidelines to follow when altering or

dropping hash clusters.

Chapter 19, "Detecting and Repairing

Data Block Corruption"

This chapter describes how to use the

procedures in the DBMS_REPAIR

package to detect and correct data block

corruption.

Chapter 20, "General Management of

Schema Objects"

This chapter covers more specific aspects

of schema management than those

identified in Chapter 12. Consult this

chapter for information about table

analysis, truncation of tables and clusters,

database triggers, integrity constraints,

object dependencies. You will also find a

number of specific examples.

Chapter 21, "Managing Rollback

Segments"

Consult this chapter for guidelines to

follow when working with rollback

segments.

Chapter 22, "Establishing Security

Policies"

This chapter describes all aspects of

database security, including system, data

and user security policies, as well as

specific tasks associated with password

management.

Chapter 23, "Managing Users and

Resources"

This chapter describes session and user

licensing, user authentication, and

provides specific examples of tasks

associated with managing users and

resources.

Chapter 24, "Managing User Privileges

and Roles"

This chapter contains information about

all aspects of managing user privileges

and roles. Consult this chapter to find out

how to grant and revoke privileges and

roles.

Chapter 25, "Auditing Database Use" This chapter describes how to create,

manage and view audit information.

xxviii

Conventions
This section explains the conventions used in this manual including the following:

■ text

■ syntax diagrams and notation

■ code examples

Text
This section explains the conventions used within the text.

UPPERCASE Characters
Uppercase text is used to call attention to command keywords, object names,

parameters, filenames, and so on.

For example, "If you create a private rollback segment, the name must be included

in the ROLLBACK_SEGMENTS parameter of the parameter file."

Italicized Characters
Italicized words within text are book titles or emphasized words.

Syntax Diagrams and Notation
The syntax diagrams and notation in this manual show the syntax for SQL

commands, functions, hints, and other elements. This section tells you how to read

syntax diagrams and examples and write SQL statements based on them.

Keywords
Keywords are words that have special meanings in the SQL language. In the syntax

diagrams in this manual, keywords appear in uppercase. You must use keywords in

your SQL statements exactly as they appear in the syntax diagram, except that they

can be either uppercase or lowercase. For example, you must use the CREATE

keyword to begin your CREATE TABLE statements just as it appears in the

CREATE TABLE syntax diagram.

Parameters
Parameters act as place holders in syntax diagrams. They appear in lowercase.

Parameters are usually names of database objects, Oracle datatype names, or

expressions. When you see a parameter in a syntax diagram, substitute an object or

expression of the appropriate type in your SQL statement. For example, to write a

xxix

CREATE TABLE statement, use the name of the table you want to create, such as

EMP, in place of the table parameter in the syntax diagram. (Note that parameter

names appear in italics in the text.)

This list shows parameters that appear in the syntax diagrams in this manual and

examples of the values you might substitute for them in your statements:

Code Examples
SQL and SQL*Plus commands and statements are separated from the text of

paragraphs in a monospaced font as follows:

INSERT INTO emp (empno, ename) VALUES (1000, ’JFEE);

Parameter Description Examples

table The substitution value must be the
name of an object of the type
specified by the parameter.

emp

’text’ The substitution value must be a
character literal in single quotes.

’Employee Records’

condition The substitution value must be a
condition that evaluates to TRUE or
FALSE.

ename > ’A’

date

d

The substitution value must be a
date constant or an expression of
DATE datatype.

TO_DATE (

’01-Jan-1996’,

DD-MON-YYYY’)

expr The substitution value can be an
expression of any datatype.

sal + 1000

integer The substitution value must be an
integer.

72

rowid The substitution value must be an
expression of datatype ROWID.

00000462.0001.0001

subquery The substitution value must be a
SELECT statement contained in
another SQL statement.

SELECT ename

 FROM emp

statement_name

block_name

The substitution value must be an
identifier for a SQL statement or
PL/SQL block.

s1

b1

xxx

ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

Example statements can include punctuation, such as commas or quotation marks.

All punctuation in example statements is required. All example statements

terminate with a semicolon (;). Depending on the application, a semicolon or other

terminator may or may not be required to end a statement.

Uppercase words in example statements indicate the keywords within Oracle SQL.

When you issue statements, however, keywords are not case sensitive.

Lowercase words in example statements indicate words supplied only for the

context of the example. For example, lowercase words may indicate the name of a

table, column, or file.

Part I
Basic Database Administration

The Oracle Database Administrator 1-1

1
The Oracle Database Administrator

This chapter describes the responsibilities of the person who administers the Oracle

server, the database administrator.

The following topics are included:

■ Types of Oracle Users

■ Database Administrator Security and Privileges

■ Database Administrator Authentication

■ Password File Administration

■ Database Administrator Utilities

■ Priorities of a Database Administrator

■ Identifying Oracle Software Releases

Types of Oracle Users

1-2 Oracle8i Administrator’s Guide

Types of Oracle Users
At your site, the types of users and their responsibilities may vary. For example, at a

large site the duties of a database administrator might be divided among several

people.

This section includes the following topics:

■ Database Administrators

■ Security Officers

■ Application Developers

■ Application Administrators

■ Database Users

■ Network Administrators

Database Administrators
Because an Oracle database system can be quite large and have many users,

someone or some group of people must manage this system. The database
administrator (DBA) is this manager. Every database requires at least one person to

perform administrative duties.

A database administrator’s responsibilities can include the following tasks:

■ installing and upgrading the Oracle server and application tools

■ allocating system storage and planning future storage requirements for the

database system

■ creating primary database storage structures (tablespaces) after application

developers have designed an application

■ creating primary objects (tables, views, indexes) once application developers

have designed an application

■ modifying the database structure, as necessary, from information given by

application developers

■ enrolling users and maintaining system security

■ ensuring compliance with your Oracle license agreement

■ controlling and monitoring user access to the database

■ monitoring and optimizing the performance of the database

Types of Oracle Users

The Oracle Database Administrator 1-3

■ planning for backup and recovery of database information

■ maintaining archived data on tape

■ backing up and restoring the database

■ contacting Oracle Corporation for technical support

Security Officers
In some cases, a database might also have one or more security officers. A security
officer is primarily concerned with enrolling users, controlling and monitoring user

access to the database, and maintaining system security. You might not be

responsible for these duties if your site has a separate security officer.

Application Developers
An application developer designs and implements database applications An

application developer’s responsibilities include the following tasks:

■ designing and developing the database application

■ designing the database structure for an application

■ estimating storage requirements for an application

■ specifying modifications of the database structure for an application

■ relaying the above information to a database administrator

■ tuning the application during development

■ establishing an application’s security measures during development

Application Administrators
An Oracle site might also have one or more application administrators. An

application administrator is responsible for the administration needs of a particular

application.

Database Users
Database users interact with the database via applications or utilities. A typical

user’s responsibilities include the following tasks:

■ entering, modifying, and deleting data, where permitted

Database Administrator Security and Privileges

1-4 Oracle8i Administrator’s Guide

■ generating reports of data

Network Administrators
At some sites there may be one or more network administrators. Network

administrators may be responsible for administering Oracle networking products,

such as Net8.

See Also: "Network Administration" in Oracle8i Distributed Database Systems

Database Administrator Security and Privileges
To accomplish administrative tasks in Oracle, you need extra privileges both within

the database and possibly in the operating system of the server on which the

database runs. Access to a database administrator’s account should be tightly

controlled.

This section includes the following topics:

■ The Database Administrator’s Operating System Account

■ Database Administrator Usernames

■ The DBA Role

The Database Administrator’s Operating System Account
To perform many of the administrative duties for a database, you must be able to

execute operating system commands. Depending on the operating system that

executes Oracle, you might need an operating system account or ID to gain access

to the operating system. If so, your operating system account might require more

operating system privileges or access rights than many database users require (for

example, to perform Oracle software installation). Although you do not need the

Oracle files to be stored in your account, you should have access to them.

In addition, Enterprise Manager requires that your operating system account or ID

be distinguished in some way to allow you to use operating system privileged
Enterprise Manager commands.

See Also: The method of distinguishing a database administrator’s account is

operating system specific. See your operating system-specific Oracle documentation

for information.

Database Administrator Security and Privileges

The Oracle Database Administrator 1-5

Database Administrator Usernames
Two user accounts are automatically created with the database and granted the

DBA role. These two user accounts are:

■ SYS (initial password: CHANGE_ON_INSTALL)

■ SYSTEM (initial password: MANAGER)

These two usernames are described in the following sections.

You will probably want to create at least one additional administrator username to

use when performing daily administrative tasks.

SYS
When any database is created, the user SYS, identified by the password

CHANGE_ON_INSTALL, is automatically created and granted the DBA role.

All of the base tables and views for the database’s data dictionary are stored in the

schema SYS. These base tables and views are critical for the operation of Oracle. To

maintain the integrity of the data dictionary, tables in the SYS schema are

manipulated only by Oracle; they should never be modified by any user or database

administrator, and no one should create any tables in the schema of the user SYS.

(However, you can change the storage parameters of the data dictionary settings if

necessary.)

Most database users should never be able to connect using the SYS account. You can

connect to the database using this account but should do so only when instructed

by Oracle personnel or documentation.

SYSTEM
When a database is created, the user SYSTEM, identified by the password

MANAGER, is also automatically created and granted all system privileges for the

database.

The SYSTEM username creates additional tables and views that display

administrative information, and internal tables and views used by Oracle tools.

Never create in the SYSTEM schema tables of interest to individual users.

Note: To prevent inappropriate access to the data dictionary

tables, you must change the passwords for the SYS and SYSTEM

usernames immediately after creating an Oracle database.

Database Administrator Authentication

1-6 Oracle8i Administrator’s Guide

The DBA Role
A predefined role, named "DBA", is automatically created with every Oracle

database. This role contains all database system privileges. Therefore, it is very

powerful and should be granted only to fully functional database administrators.

Database Administrator Authentication
Database administrators must often perform special operations such as shutting

down or starting up a database. Because these operations should not be performed

by normal database users, the database administrator usernames need a more

secure authentication scheme.

This section includes the following topics:

■ Selecting an Authentication Method

■ Using Operating System Authentication

■ OSOPER and OSDBA

■ Using an Authentication Password File

Selecting an Authentication Method
The following methods for authenticating database administrators replace the

CONNECT INTERNAL syntax provided with earlier versions of Oracle:

■ operating system authentication

■ password files

Depending on whether you wish to administer your database locally on the same

machine where the database resides or to administer many different databases from

a single remote client, you can choose between operating system authentication or

password files to authenticate database administrators. Figure 1–1 illustrates the

choices you have for database administrator authentication schemes.

Database Administrator Authentication

The Oracle Database Administrator 1-7

Figure 1–1 Database Administrator Authentication Methods

On most operating systems, OS authentication for database administrators involves

placing the OS username of the database administrator in a special group (on UNIX

systems, this is the DBA group) or giving that OS username a special process right.

The database uses password files to keep track of database usernames that have

been granted administrator privileges.

See Also: "User Authentication" in Oracle8i Concepts.

Using Operating System Authentication
If you choose, you can have your operating system authenticate users performing

database administration operations.

1. Set up the user to be authenticated by the operating system.

2. Make sure that the initialization parameter,

REMOTE_LOGIN_PASSWORDFILE, is set to NONE, which is the default value

for this parameter.

3. Authenticated users should now be able to connect to a local database, or to

connect to a remote database over a secure connection, by typing one of the

following commands:

 CONNECT / AS SYSOPER

Remote Database
Administration

Local Database
Administration

Yes Yes

No No

Use OS
authentication

Use a
password file

Do you
have a secure

connection?

Do you
want to use OS
authentication?

Database Administrator Authentication

1-8 Oracle8i Administrator’s Guide

 CONNECT / AS SYSDBA

If you successfully connect as INTERNAL using an earlier release of Oracle, you

should be able to continue to connect successfully using the new syntax shown in

Step 3.

OSOPER and OSDBA
Two special operating system roles control database administrator logins when

using operating system authentication: OSOPER and OSDBA.

OSOPER and OSDBA can have different names and functionality, depending on

your operating system.

The OSOPER and OSDBA roles can only be granted to a user through the operating

system. They cannot be granted through a GRANT statement, nor can they be

revoked or dropped. When a user logs on with administrator privileges and

REMOTE_LOGIN_PASSWORDFILE is set to NONE, Oracle communicates with the

operating system and attempts to enable first OSDBA and then, if unsuccessful,

OSOPER. If both attempts fail, the connection fails. How you grant these privileges

through the operating system is operating system specific.

If you are performing remote database administration, you should consult your

Net8 documentation to determine if you are using a secure connection. Most

popular connection protocols, such as TCP/IP and DECnet, are not secure,

regardless of which version of Net8 you are using.

See Also: For information about OS authentication of database administrators, see

your operating system-specific Oracle documentation.

Note: To connect as SYSOPER or SYSDBA using OS

authentication you do not need the SYSOPER or SYSDBA system

privileges. Instead, the server verifies that you have been granted

the appropriate OSDBA or OSOPER roles at the operating system

level.

OSOPER Permits the user to perform STARTUP, SHUTDOWN, ALTER
DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP,
ARCHIVE LOG, and RECOVER, and includes the
RESTRICTED SESSION privilege.

OSDBA Contains all system privileges with ADMIN OPTION, and the
OSOPER role; permits CREATE DATABASE and time-based
recovery.

Password File Administration

The Oracle Database Administrator 1-9

Using an Authentication Password File
If you have determined that you need to use a password file to authenticate users

performing database administration, you must complete the steps outlined below.

Each of these steps is explained in more detail in the following sections of this

chapter.

1. Create the password file using the ORAPWD utility.

 ORAPWD FILE= filename PASSWORD=password ENTRIES=max_users

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to

EXCLUSIVE.

3. Add users to the password file by using SQL to grant the appropriate privileges

to each user who needs to perform database administration, as shown in the

following examples.

 GRANT SYSDBA TO scott;
 GRANT SYSOPER TO scott;

The privilege SYSDBA permits the user to perform the same operations as

OSDBA. Likewise, the privilege SYSOPER permits the user to perform the same

operations as OSOPER.

4. Privileged users should now be able to connect to the database by using a

command similar to the one shown below.

 CONNECT scott/tiger@acct.hq.com AS SYSDBA

Password File Administration
You can create a password file using the password file creation utility, ORAPWD or,

for selected operating systems, you can create this file as part of your standard

installation.

This section includes the following topics:

■ Using ORAPWD

■ Setting REMOTE_LOGIN_ PASSWORDFILE

■ Adding Users to a Password File

■ Connecting with Administrator Privileges

■ Maintaining a Password File

Password File Administration

1-10 Oracle8i Administrator’s Guide

See Also: See your operating system-specific Oracle documentation for information

on using the installer utility to install the password file.

Using ORAPWD
When you invoke the password file creation utility without supplying any

parameters, you receive a message indicating the proper use of the command as

shown in the following sample output:

 orapwd
Usage: orapwd file=<fname> password=<password> entries=<users>

where
file - name of password file (mand),
password - password for SYS and INTERNAL (mand),
entries - maximum number of distinct DBAs and OPERs (opt),
There are no spaces around the equal-to (=) character.

For example, the following command creates a password file named ACCT.PWD

that allows up to 30 privileged users with different passwords. The file is initially

created with the password SECRET for users connecting as SYSOPER or SYSDBA:

ORAPWD FILE=acct.pwd PASSWORD=secret ENTRIES=30

Following are descriptions of the parameters in the ORAPWD utility.

FILE
This parameter sets the name of the password file being created. You must specify

the full pathname for the file. The contents of this file are encrypted, and the file is

not user-readable. This parameter is mandatory.

The types of file names allowed for the password file are operating system specific.

Some platforms require the password file to be a specific format and located in a

specific directory. Other platforms allow the use of environment variables to specify

the name and location of the password file. See your operating system-specific

Oracle documentation for the names and locations allowed on your platform.

If you are running multiple instances of Oracle using the Oracle Parallel Server, the

environment variable for each instance should point to the same password file.

WARNING: It is critically important to the security of your
system that you protect your password file and environment
variables that identify the location of the password file. Any user
with access to these could potentially compromise the security of
the connection.

Password File Administration

The Oracle Database Administrator 1-11

PASSWORD
This parameter sets the password for SYSOPER and SYSDBA. If you issue the

ALTER USER command to change the password after connecting to the database,

both the password stored in the data dictionary and the password stored in the

password file are updated. The INTERNAL user is supported for backwards

compatibility only. This parameter is mandatory.

ENTRIES
This parameter sets the maximum number of entries allowed in the password file.

This corresponds to the maximum number of distinct users allowed to connect to

the database as SYSDBA or SYSOPER. Entries can be reused as users are added to

and removed from the password file. This parameter is required if you ever want

this password file to be EXCLUSIVE.

See Also: Consult your operating system-specific Oracle documentation for the

exact name of the password file or for the name of the environment variable used to

specify this name for your operating system.

Setting REMOTE_LOGIN_ PASSWORDFILE
In addition to creating the password file, you must also set the initialization

parameter REMOTE_LOGIN_PASSWORDFILE to the appropriate value. The

values recognized are described below.

WARNING: If you ever need to exceed this limit, you must create
a new password file. It is safest to select a number larger than you
think you will ever need.

Note: To start up an instance or database, you must use Enterprise

Manager. You must specify a database name and a parameter file to

initialize the instance settings. You may specify a fully-qualified

remote database name using Net8. However, the initialization

parameter file and any associated files, such as a configuration file,

must exist on the client machine. That is, the parameter file must be

on the machine where you are running Enterprise Manager.

Password File Administration

1-12 Oracle8i Administrator’s Guide

NONE
Setting this parameter to NONE causes Oracle to behave as if the password file does

not exist. That is, no privileged connections are allowed over non-secure

connections. NONE is the default value for this parameter.

EXCLUSIVE
An EXCLUSIVE password file can be used with only one database. Only an

EXCLUSIVE file can contain the names of users other than SYSOPER and SYSDBA.

Using an EXCLUSIVE password file allows you to grant SYSDBA and SYSOPER

system privileges to individual users and have them connect as themselves.

SHARED
A SHARED password file can be used by multiple databases. However, the only

users recognized by a SHARED password file are SYSDBA and SYSOPER; you

cannot add users to a SHARED password file. All users needing SYSDBA or

SYSOPER system privileges must connect using the same name, SYS, and

password. This option is useful if you have a single DBA administering multiple

databases.

Adding Users to a Password File
When you grant SYSDBA or SYSOPER privileges to a user, that user’s name and

privilege information is added to the password file. If the server does not have an

EXCLUSIVE password file, that is, if the initialization parameter

REMOTE_LOGIN_PASSWORDFILE is NONE or SHARED, you receive an error

message if you attempt to grant these privileges.

A user’s name only remains in the password file while that user has at least one of

these two privileges. When you revoke the last of these privileges from a user, that

user is removed from the password file.

To Create a Password File and Add New Users to It

1. Follow the instructions for creating a password file.

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to

EXCLUSIVE.

Suggestion: To achieve the greatest level of security, you should

set the REMOTE_LOGIN_PASSWORDFILE file initialization

parameter to EXCLUSIVE immediately after creating the password

file.

Password File Administration

The Oracle Database Administrator 1-13

3. Connect with SYSDBA privileges as shown in the following example:

 CONNECT SYS/change_on_install AS SYSDBA

4. Start up the instance and create the database if necessary, or mount and open an

existing database.

5. Create users as necessary. Grant SYSOPER or SYSDBA privileges to yourself

and other users as appropriate.

6. These users are now added to the password file and can connect to the database

as SYSOPER or SYSDBA with a username and password (instead of using SYS).

The use of a password file does not prevent OS authenticated users from

connecting if they meet the criteria for OS authentication.

Granting and Revoking SYSOPER and SYSDBA Privileges
If your server is using an EXCLUSIVE password file, use the GRANT command to

grant the SYSDBA or SYSOPER system privilege to a user, as shown in the

following example:

GRANT SYSDBA TO scott;

Use the REVOKE command to revoke the SYSDBA or SYSOPER system privilege

from a user, as shown in the following example:

REVOKE SYSDBA FROM scott;

Because SYSDBA and SYSOPER are the most powerful database privileges, the

ADMIN OPTION is not used. Only users currently connected as SYSDBA (or

INTERNAL) can grant SYSDBA or SYSOPER system privileges to another user. This

is also true of REVOKE. These privileges cannot be granted to roles, since roles are

only available after database startup. Do not confuse the SYSDBA and SYSOPER

database privileges with operating system roles, which are a completely

independent feature.

See Also: For more information about system privileges, see Chapter 24, "Managing

User Privileges and Roles".

Listing Password File Members
Use the V$PWFILE_USERS view to determine which users have been granted

SYSDBA and SYSOPER system privileges for a database. The columns displayed by

this view are as follows:

Password File Administration

1-14 Oracle8i Administrator’s Guide

USERNAME
The name of the user that is recognized by the password file.

SYSDBA
If the value of this column is TRUE, the user can log on with SYSDBA system

privileges.

SYSOPER
If the value of this column is TRUE, the user can log on with SYSOPER system

privileges.

Connecting with Administrator Privileges
When you connect with SYSOPER or SYSDBA privileges using a username and

password, you are connecting with a default schema of SYS, not the schema that is

generally associated with your username.

Connecting with Administrator Privileges: Example
For example, assume user SCOTT has issued the following commands:

CONNECT scott/tiger
CREATE TABLE scott_test(name VARCHAR2(20));

Later, when SCOTT issues these commands:

CONNECT scott/tiger AS SYSDBA
SELECT * FROM scott_test;

He receives an error that SCOTT_TEST does not exist. That is because SCOTT now

references the SYS schema by default, whereas the table was created in the SCOTT

schema.

Non-Secure Remote Connections
To connect to Oracle as a privileged user over a non-secure connection, you must

meet the following conditions:

■ The server to which you are connecting must have a password file.

■ You must be granted the SYSOPER or SYSDBA system privilege.

■ You must connect using a username and password.

Password File Administration

The Oracle Database Administrator 1-15

Local and Secure Remote Connections
To connect to Oracle as a privileged user over a local or a secure remote connection,

you must meet either of the following sets of conditions:

■ You can connect using a password file, provided that you meet the criteria

outlined for non-secure connections in the previous bulleted list.

■ If the server is not using a password file, or you have not been granted

SYSOPER or SYSDBA privileges and are therefore not in the password file, your

operating system name must be authenticated for a privileged connection by

the operating system. This form of authentication is operating system specific.

Consult your operating system-specific Oracle documentation for details on

operating system authentication.

See Also: "Password File Administration" on page 1-9.

Maintaining a Password File
This section describes how to expand, relocate, and remove the password file, as

well as how to avoid changing the state of the password file.

Expanding the Number of Password File Users
If you receive the file full error (ORA-1996) when you try to grant SYSDBA or

SYSOPER system privileges to a user, you must create a larger password file and re-

grant the privileges to the users.

To Replace a Password File

1. Note which users have SYSDBA or SYSOPER privileges by querying the

V$PWFILE_USERS view.

2. Shut down the database.

3. Delete the existing password file.

4. Follow the instructions for creating a new password file using the ORAPWD

utility in "Using ORAPWD" on page 1-10. Be sure to set the ENTRIES parameter

to a sufficiently large number.

5. Follow the instructions in "Adding Users to a Password File" on page 1-12.

Password File Administration

1-16 Oracle8i Administrator’s Guide

Relocating the Password File
After you have created the password file, you can relocate it as you choose. After

relocating the password file, you must reset the appropriate environment variables

to the new pathname. If your operating system uses a predefined pathname, you

cannot change the password file location.

Removing a Password File
If you determine that you no longer need to use a password file to authenticate

users, you can delete the password file and reset the

REMOTE_LOGIN_PASSWORDFILE initialization parameter to NONE. After

removing this file, only users who can be authenticated by the operating system can

perform database administration operations.

Changing the Password File State
The password file state is stored in the password file. When you first create a

password file, its default state is SHARED. You can change the state of the

password file by setting the parameter REMOTE_LOGIN_PASSWORDFILE. When

you start up an instance, Oracle retrieves the value of this parameter from the

initialization parameter file stored on your client machine. When you mount the

database, Oracle compares the value of this parameter to the value stored in the

password file. If these values do not match, the value stored in the file is

overwritten.

WARNING: Do not remove or modify the password file if you
have a database or instance mounted using
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE (or
SHARED). If you do, you will be unable to reconnect remotely
using the password file. Even if you replace it, you cannot use the
new password file, because the timestamp and checksums will be
wrong.

WARNING: You should use caution to ensure that an
EXCLUSIVE password file is not accidentally changed to
SHARED. If you plan to allow instance start up from multiple
clients, each of those clients must have an initialization
parameter file, and the value of the parameter
REMOTE_LOGIN_PASSWORDFILE must be the same in each of
these files. Otherwise, the state of the password file could change
depending upon where the instance was started.

Priorities of a Database Administrator

The Oracle Database Administrator 1-17

Database Administrator Utilities
Several utilities are available to help you maintain and control the Oracle server.

The following topics are included in this section:

■ SQL*Loader

■ Export and Import

SQL*Loader
SQL*Loader is used by both database administrators and users of Oracle. It loads

data from standard operating system files (files in text or C data format) into Oracle

database tables.

See Also: Oracle8i Utilities

Export and Import
The Export and Import utilities allow you to move existing data in Oracle format to

and from Oracle databases. For example, export files can archive database data, or

move data among different Oracle databases that run on the same or different

operating systems.

See Also: Oracle8i Utilities

Priorities of a Database Administrator
In general, you must perform a series of steps to get the database system up and

running, and then maintain it.

The following steps are required to configure an Oracle server and database on any

type of computer system. The following sections include details about each step.

To Configure an Oracle Server

■ Step 1: Install the Oracle Software

■ Step 2: Evaluate the Database Server Hardware

■ Step 3: Plan the Database

■ Step 4: Create and Open the Database

■ Step 5: Implement the Database Design

Priorities of a Database Administrator

1-18 Oracle8i Administrator’s Guide

■ Step 6: Back Up the Database

■ Step 7: Enroll System Users

■ Step 8: Tune Database Performance

Step 1: Install the Oracle Software
As the database administrator, you must install the Oracle server software and any

front-end tools and database applications that access the database. In some

distributed processing installations, the database is controlled by a central computer

and the database tools and applications are executed on remote machines; in this

case, you must also install the Oracle Net8 drivers necessary to connect the remote

machines to the computer that executes Oracle.

See Also: For more information, see "Identifying Oracle Software Releases" on

page 1-21.

For specific requirements and instructions for installation, see your operating

system-specific Oracle documentation and your installation guides for your front-

end tools and Net8 drivers.

Step 2: Evaluate the Database Server Hardware
After installation, evaluate how Oracle and its applications can best use the

available computer resources. This evaluation should reveal the following

information:

■ how many disk drives are available to Oracle and its databases

■ how many, if any, dedicated tape drives are available to Oracle and its

databases

■ how much memory is available to the instances of Oracle you will run (see your

system’s configuration documentation)

Step 3: Plan the Database
As the database administrator, you must plan:

Note: If migrating to a new release, back up your existing

production database before installation. For more information on

preserving your existing production database, see Oracle8i
Migration.

Priorities of a Database Administrator

The Oracle Database Administrator 1-19

■ the database’s logical storage structure

■ the overall database design

■ a backup strategy for the database

It is important to plan how the logical storage structure of the database will affect

system performance and various database management operations. For example,

before creating any tablespaces for your database, you should know how many data

files will make up the tablespace, where the data files will be physically stored (on

which disk drives), and what type of information will be stored in each tablespace.

When planning the database’s overall logical storage structure, take into account

the effects that this structure will have when the database is actually created and

running. Such considerations include how the database’s logical storage structure

will affect the following items:

■ the performance of the computer executing Oracle

■ the performance of the database during data access operations

■ the efficiency of backup and recovery procedures for the database

Plan the relational design of the database’s objects and the storage characteristics

for each of these objects. By planning relationships between objects and the physical

storage of each object before creating it, you can directly impact the performance of

the database as a unit. Be sure to plan for the growth of the database.

In distributed database environments, this planning stage is extremely important.

The physical location of frequently accessed data can dramatically affect application

performance.

During the above planning phases, also plan a backup strategy for the database.

After developing this strategy, you might find that you want to alter the database’s

planned logical storage structure or database design to improve backup efficiency.

It is beyond the scope of this book to discuss relational and distributed database

design; if you are not familiar with such design issues, refer to accepted industry-

standard books that explain these studies.

See Also: See Chapters 9 through 21 for specific information on creating logical

storage structures, objects, and integrity constraints for your database.

Step 4: Create and Open the Database
Once you have finalized the database design, you can create the database and open

it for normal use. Depending on your operating system, a database may already

Priorities of a Database Administrator

1-20 Oracle8i Administrator’s Guide

have been created during the installation procedure for Oracle. If so, all you need to

do is start an instance and mount and open the initial database.

To determine if your operating system creates an initial database during the

installation of Oracle, check your installation or user’s guide. If no database is

created during installation or you want to create an additional database, see

Chapter 2 of this book for this procedure.

See Also: See Chapter 3 for database and instance startup and shutdown

procedures.

Step 5: Implement the Database Design
Once you have created and started the database, you can create the database’s

planned logical structure by creating all necessary rollback segments and

tablespaces. Once this is built, you can create the objects for your database.

See Also: See Chapters 9 through 21 for instructions on creating logical storage

structures and objects for your database.

Step 6: Back Up the Database
After you have created the database structure, carry out the planned backup

strategy for your database by creating any additional redo log files, taking the first

full database backup (online or offline), and scheduling future database backups at

regular intervals.

See Also: See the Oracle8i Backup and Recovery Guide for instructions on customizing

your backup operations and performing recovery procedures.

Step 7: Enroll System Users
Once you have backed up the database structure, you can begin to enroll the users

of the database in accordance with your Oracle license agreement, create roles for

these users, and grant appropriate roles to them.

See Also: See Chapters 22 through 24 for the procedures to create user accounts and

roles, and information on complying with your license agreement.

Step 8: Tune Database Performance
Optimizing the database system’s performance is one of your ongoing

responsibilities.

Identifying Oracle Software Releases

The Oracle Database Administrator 1-21

See Also: Oracle8i Tuning for information about tuning your database and

applications.

Identifying Oracle Software Releases
Because Oracle products are always undergoing development and change, several

releases of the products can be in use at any one time. To identify a software

product fully, as many as five numbers may be required.

This section includes the following topics:

■ Release Number Format

■ Versions of Other Oracle Software

■ Checking Your Current Release Number

Release Number Format
An Oracle Server distribution tape might be labeled "Release 8.1.5.1." The following

sections translate this number.

Figure 1–2 Example of an Oracle Release Number

Version Number
The version number, such as 8, is the most general identifier. A version is a major

new edition of the software, which usually contains significant new functionality.

Maintenance Release Number
The maintenance release number signifies different releases of the general version,

starting with 0, as in version 8.0. The maintenance release number increases when

bug fixes or new features to existing programs become available; in the example

here, 8.1 indicates the first maintenance release of the version 8.

8.1.5.1
Version Number

Maintenance Release
Number

Patch Release
Number

Port–Specific Patch
Release Number

Identifying Oracle Software Releases

1-22 Oracle8i Administrator’s Guide

Patch Release Number
The patch release number identifies a specific level of the object code, such as 8.1.5.

A patch release contains fixes for serious bugs that cannot wait until the next

maintenance release. The first distribution of a maintenance release always has a

patch number of 0.

Port-Specific Patch Release Number
A fourth number (and sometimes a fifth number) can be used to identify a

particular emergency patch release of a software product on that operating system,

such as 8.1.5.1. or 8.1.5.1.3. An emergency patch is not usually intended for wide

distribution; it usually fixes or works around a particular, critical problem.

Examples of Release Numbers
The following examples show possible release numbers for Oracle8i:

Versions of Other Oracle Software
As Oracle Corporation introduces new products and enhances existing ones, the

version numbers of the individual products increment independently. Thus, you

might have an Oracle server Release 8.1.5.1 system working with Oracle Forms

Version 4.0.3, SQL*Plus Version 3.1.9, and Pro*FORTRAN Version 1.5.2. (These

numbers are used only for illustration.)

Checking Your Current Release Number
To see which release of Oracle and its components you are using, query the data

dictionary view PRODUCT_COMPONENT_VERSION, as shown below (This

information is useful if you need to call Oracle Support.):

SELECT * FROM product_component_version;

PRODUCT VERSION STATUS
------------------- ----------------- ----------
CORE 3.4.1.0.0 Production

8.0.0 the first distribution of Oracle8i

8.1.0 the first maintenance release of Oracle8i

8.2.0 the second maintenance release (the third release in all) of Oracle8i

8.2.2 the second patch release after the second maintenance release

Identifying Oracle Software Releases

The Oracle Database Administrator 1-23

NLSRTL 3.1.3.0.0 Production
Oracle8i Server 8.1.4.0.0 Beta Release
PL/SQL 2.2.1.0.0 Beta
TNS for SunOS: 2.1.4.0.0 Production
5 rows selected

Identifying Oracle Software Releases

1-24 Oracle8i Administrator’s Guide

Creating an Oracle Database 2-1

2
Creating an Oracle Database

This chapter lists the steps necessary to create an Oracle database, and includes the

following topics:

■ Considerations Before Creating a Database

■ Creating an Oracle Database

■ Parameters

■ Considerations After Creating a Database

■ Initial Tuning Guidelines

Considerations Before Creating a Database

2-2 Oracle8i Administrator’s Guide

Considerations Before Creating a Database
This section includes the following topics:

■ Creation Prerequisites

■ Using an Initial Database

■ Migrating an Older Version of the Database

Database creation prepares several operating system files so they can work together

as an Oracle database. You need only create a database once, regardless of how

many datafiles it has or how many instances access it. Creating a database can also

erase information in an existing database and create a new database with the same

name and physical structure.

Creating a database includes the following operations:

■ creating new datafiles or erasing data that existed in previous datafiles

■ creating information structures that Oracle requires to access and use the

database (the data dictionary)

■ creating and initializing the control files and redo log files for the database

Consider the following issues before you create a database:

■ Plan your database tables and indexes, and estimate how much space they will

require.

■ Plan how to protect your new database, including the configuration of its online

and archived redo log (and how much space it will require), and a backup

strategy.

■ Select the database character set. You must specify the database character set

when you create the database. After the database is created, you cannot change

the character set choices without re-creating the database. Hence, it is important

that you carefully consider which character set(s) to use. All character data,

including data in the data dictionary, is stored in the database character set. If

users access the database using a different character set, the database character

set should be the same as, or a superset of, all character sets they use.

Also become familiar with the principles and options of starting up and shutting

down an instance, mounting and opening a database, and using parameter files.

See Also: The Oracle8i National Language Support Guide.

For information about tables, indexes, and space management, see Chapters 12

through 19.

Creating an Oracle Database

Creating an Oracle Database 2-3

For information about the online and archive redo logs, and database backup and

recovery see Chapter 6, "Managing the Online Redo Log" and Chapter 7, "Managing

Archived Redo Logs".

Creation Prerequisites
To create a new database, you must have the following:

■ the operating system privileges associated with a fully operational database

administrator

■ sufficient memory to start the Oracle instance

■ sufficient disk storage space for the planned database on the computer that

executes Oracle

Using an Initial Database
Depending on your operating system, a database might have been created

automatically as part of the installation procedure for Oracle. You can use this initial

database and customize it to meet your information management requirements, or

discard it and create one or more new databases to replace it.

Migrating an Older Version of the Database
If you are using a previous release of Oracle, database creation is required only if

you want an entirely new database. Otherwise, you can migrate your existing

Oracle databases managed by a previous version of Oracle and use them with the

new version of the Oracle software.

See Also: Oracle8i Migration manual for information about migrating an existing

database.

For more information about migrating an existing database, see your operating

system-specific Oracle documentation.

Creating an Oracle Database
This section includes the following topics:

■ Steps for Creating an Oracle Database

■ Creating a Database: Example

■ Troubleshooting Database Creation

Creating an Oracle Database

2-4 Oracle8i Administrator’s Guide

■ Dropping a Database

Steps for Creating an Oracle Database
These steps, which describe how to create an Oracle database, should be followed in

the order presented.

To Create a New Database and Make It Available for System Use

1. Back up any existing databases.

2. Create parameter files.

3. Edit new parameter files.

4. Check the instance identifier for your system.

5. Start SQL*Plus and connect to Oracle as SYSDBA.

6. Start an instance.

7. Create the database.

8. Back up the database.

See Also: These steps provide general information about database creation on all

operating systems. See your operating system-specific Oracle documentation for

information about creating databases on your platform.

Step 1: Back up any existing databases. Oracle Corporation strongly recommends that

you make complete backups of all existing databases before creating a new

database, in case database creation accidentally affects some existing files. Backup

should include parameter files, datafiles, redo log files, and control files.

Step 2: Create parameter files. The instance (System Global Area and background

processes) for any Oracle database is started using a parameter file.

Each database on your system should have at least one customized parameter file

that corresponds only to that database. Do not use the same file for several

databases.

To create a parameter file for the database you are about to make, use your

operating system to make a copy of the parameter file that Oracle provided on the

distribution media. Give this copy a new filename. You can then edit and customize

this new file for the new database.

Creating an Oracle Database

Creating an Oracle Database 2-5

See Also: For more information about copying the parameter file, see your

operating system-specific Oracle documentation.

Step 3: Edit new parameter files. To create a new database, inspect and edit the

following parameters of the new parameter file:

You should also edit the appropriate license parameter(s):

Step 4: Check the instance identifier for your system. If you have other databases, check

the Oracle instances identifier. The Oracle instance identifier should match the name

of the database (the value of DB_NAME) to avoid confusion with other Oracle

instances that are running concurrently on your system.

See your operating system-specific Oracle documentation for more information.

Note: In distributed processing environments, Enterprise

Manager is often executed from a client machine of the network. If

a client machine is being used to execute Enterprise Manager and

create a new database, you need to copy the new parameter file

(currently located on the computer executing Oracle) to your client

workstation. This procedure is operating system dependent. For

more information about copying files among the computers of your

network, see your operating system-specific Oracle documentation.

Parameter Described

DB_NAME on page 2-9

DB_DOMAIN on page 2-9

CONTROL_FILES on page 2-10

DB_BLOCK_SIZE on page 2-11

DB_BLOCK_BUFFERS on page 2-11

PROCESSES on page 2-12

ROLLBACK_SEGMENTS on page 2-12

Parameter Described

LICENSE_MAX_SESSIONS on page 2-13

LICENSE_SESSION_WARNING on page 2-13

LICENSE_MAX_USERS on page 2-13

Creating an Oracle Database

2-6 Oracle8i Administrator’s Guide

Step 5: Start SQL*Plus and connect to Oracle as SYSDBA. Connect to the database as

SYSDBA.

$ SQLPLUS /nolog
connect username/password as sysdba

Step 6: Start an instance. You can start an instance without mounting a database;

typically, you do so only during database creation. Use the STARTUP command

with the NOMOUNT option:

STARTUP NOMOUNT;

At this point, there is no database. Only an SGA and background processes are

started in preparation for the creation of a new database.

Step 7: Create the database. To create the new database, use the SQL CREATE

DATABASE statement, optionally setting parameters within the statement to name

the database, establish maximum numbers of files, name the files and set their sizes,

and so on.

When you execute a CREATE DATABASE statement, Oracle performs the following

operations:

■ creates the datafiles for the database

■ creates the control files for the database

■ creates the redo log files for the database

■ creates the SYSTEM tablespace and the SYSTEM rollback segment

■ creates the data dictionary

■ creates the users SYS and SYSTEM

■ specifies the character set that stores data in the database

■ mounts and opens the database for use

See Also: You can also create a database with a locally managed SYSTEM

tablespace; for more information, see "Creating a Database with a Locally Managed

SYSTEM Tablespace" on page 9-5.

WARNING: Make sure that the datafile and redo log file names
that you specify do not conflict with files of another database.

Creating an Oracle Database

Creating an Oracle Database 2-7

Step 8: Back up the database. You should make a full backup of the database to ensure

that you have a complete set of files from which to recover if a media failure occurs.

See Also: The Oracle8i Backup and Recovery Guide.

For more information about parameter files see "Using Parameter Files" on

page 3-13.

For information about the CREATE DATABASE statement, character sets, and

database creation see the Oracle8i SQL Reference.

Creating a Database: Example
The following statement is an example of a CREATE DATABASE statement:

CREATE DATABASE test
 DATAFILE ’test_system’ SIZE 10M
 LOGFILE GROUP 1 (’test_log1a’, ’test_log1b’) SIZE 500K,
 GROUP 2 (’test_log2a’, ’test_log2b’) SIZE 500K;

The values of the MAXLOGFILES, MAXLOGMEMBERS, MAXDATAFILES,

MAXLOGHISTORY, and MAXINSTANCES options in this example assume the

default values, which are operating system-dependent. The database is mounted in

the default modes NOARCHIVELOG and EXCLUSIVE and then opened.

The items and information in the example statement above result in creating a

database with the following characteristics:

■ The new database is named TEST.

■ The SYSTEM tablespace of the new database is comprised of one 10 MB datafile

named TEST_SYSTEM.

■ The new database has two online redo log groups, each containing two 500 KB

members.

Creating an Oracle Database

2-8 Oracle8i Administrator’s Guide

■ The new database does not overwrite any existing control files specified in the

parameter file.

See Also: For more information about setting limits during database creation, see

the Oracle8i SQL Reference.

See your operating system-specific Oracle documentation for information about

operating system limits.

Troubleshooting Database Creation
If for any reason database creation fails, shut down the instance and delete any files

created by the CREATE DATABASE statement before you attempt to create it once

again.

After correcting the error that caused the failure of the database creation, return to

"Creating a Database: Example".

Dropping a Database
To drop a database, remove its datafiles, redo log files, and all other associated files

(control files, parameter files, archived log files).

To view the names of the database’s datafiles and redo log files, query the data

dictionary views V$DATAFILE and V$LOGFILE.

See Also: For more information about these views, see the Oracle8i Reference.

Note: You can set several limits during database creation. Some of

these limits are also subject to superseding limits of the operating

system and can affect each other. For example, if you set

MAXDATAFILES, Oracle allocates enough space in the control file

to store MAXDATAFILES filenames, even if the database has only

one datafile initially; because the maximum control file size is

limited and operating system-dependent, you might not be able to

set all CREATE DATABASE parameters at their theoretical

maximums.

Parameters

Creating an Oracle Database 2-9

Parameters
As described in Step 3 of the section "Creating an Oracle Database", Oracle suggests

you alter a minimum set of parameters. These parameters are described in the

following sections:

■ DB_NAME and DB_DOMAIN

■ CONTROL_FILES

■ DB_BLOCK_SIZE

■ PROCESSES

■ ROLLBACK_SEGMENTS

■ License Parameters

■ DB_BLOCK_BUFFERS

■ LICENSE_MAX_SESSIONS and LICENSE_SESSIONS _WARNING

■ LICENSE_MAX_USERS

DB_NAME and DB_DOMAIN
A database’s global database name (name and location within a network structure) is

created by setting both the DB_NAME and DB_DOMAIN parameters before database

creation. After creation, the database’s name cannot be easily changed. The DB_NAME

parameter determines the local name component of the database’s name, while the

DB_DOMAIN parameter indicates the domain (logical location) within a network

structure. The combination of the settings for these two parameters should form a

database name that is unique within a network. For example, to create a database with a

global database name of TEST.US.ACME.COM, edit the parameters of the new

parameter file as follows:

DB_NAME = TEST
DB_DOMAIN = US.ACME.COM

DB_NAME must be set to a text string of no more than eight characters. During

database creation, the name provided for DB_NAME is recorded in the datafiles,

redo log files, and control file of the database. If during database instance startup

the value of the DB_NAME parameter (of the parameter file) and the database

name in the control file are not the same, the database does not start.

DB_DOMAIN is a text string that specifies the network domain where the database

is created; this is typically the name of the organization that owns the database. If

Parameters

2-10 Oracle8i Administrator’s Guide

the database you are about to create will ever be part of a distributed database

system, pay special attention to this initialization parameter before database

creation.

See Also: For more information about distributed databases, see Oracle8i Distributed
Database Systems.

CONTROL_FILES
Include the CONTROL_FILES parameter in your new parameter file and set its

value to a list of control filenames to use for the new database. If you want Oracle to

create new operating system files when creating your database’s control files, make

sure that the filenames listed in the CONTROL_FILES parameter do not match any

filenames that currently exist on your system. If you want Oracle to reuse or

overwrite existing files when creating your database’s control files, make sure that

the filenames listed in the CONTROL_FILES parameter match the filenames that

currently exist.

If no filenames are listed for the CONTROL_FILES parameter, Oracle uses a default

filename.

Oracle Corporation strongly recommends you use at least two control files stored

on separate physical disk drives for each database. Therefore, when specifying the

CONTROL_FILES parameter of the new parameter file, follow these guidelines:

■ List at least two filenames for the CONTROL_FILES parameter.

■ Place each control file on a separate physical disk drives by fully specifying

filenames that refer to different disk drives for each filename.

When you execute the CREATE DATABASE statement (in Step 7), the control files

listed in the CONTROL_FILES parameter of the parameter file will be created.

WARNING: Use extreme caution when setting this option. If you
inadvertently specify a file that you did not intend and execute
the CREATE DATABASE statement, the previous contents of that
file will be overwritten.

Note: The file specification for control files is operating system-

dependent. Regardless of your operating system, always fully specify

filenames for your control files.

Parameters

Creating an Oracle Database 2-11

See Also: The default filename for the CONTROL_FILES parameter is operating

system-dependent. See your operating system-specific Oracle documentation for

details.

DB_BLOCK_SIZE
The default data block size for every Oracle server is operating system-specific. The

Oracle data block size is typically either 2K or 4K. Generally, the default data block

size is adequate. In some cases, however, a larger data block size provides greater

efficiency in disk and memory I/O (access and storage of data). Such cases include:

■ Oracle is on a large computer system with a large amount of memory and fast

disk drives. For example, databases controlled by mainframe computers with

vast hardware resources typically use a data block size of 4K or greater.

■ The operating system that runs Oracle uses a small operating system block size.

For example, if the operating system block size is 1K and the data block size

matches this, Oracle may be performing an excessive amount of disk I/O

during normal operation. For best performance in this case, a database block

should consist of multiple operating system blocks.

Each database’s block size is set during database creation by the initialization

parameter DB_BLOCK_SIZE. The block size cannot be changed after database creation

except by re-creating the database. If a database’s block size is different from the

operating system block size, make the database block size a multiple of the operating

system’s block size.

For example, if your operating system’s block size is 2K (2048 bytes), the following

setting for the DB_BLOCK_SIZE initialization parameter would be valid:

DB_BLOCK_SIZE=4096

DB_BLOCK_SIZE also determines the size of the database buffers in the buffer

cache of the System Global Area (SGA).

See Also: For details about your default block size, see your operating system-

specific Oracle documentation.

DB_BLOCK_BUFFERS
This parameter determines the number of buffers in the buffer cache in the System

Global Area (SGA). The number of buffers affects the performance of the cache.

Larger cache sizes reduce the number of disk writes of modified data. However, a

Parameters

2-12 Oracle8i Administrator’s Guide

large cache may take up too much memory and induce memory paging or

swapping.

Estimate the number of data blocks that your application accesses most frequently,

including tables, indexes, and rollback segments. This estimate is a rough

approximation of the minimum number of buffers the cache should have. Typically,

1000 to 2000 is a practical minimum for the number of buffers.

See Also: For more information about tuning the buffer cache, see Oracle8i Tuning.

PROCESSES
This parameter determines the maximum number of operating system processes

that can be connected to Oracle concurrently. The value of this parameter must

include 5 for the background processes and 1 for each user process. For example, if

you plan to have 50 concurrent users, set this parameter to at least 55.

ROLLBACK_SEGMENTS
This parameter is a list of the rollback segments an Oracle instance acquires at

database startup. List your rollback segments as the value of this parameter.

See Also: For more information about how many rollback segments you need, see

Oracle8i Tuning.

License Parameters
Oracle helps you ensure that your site complies with its Oracle license agreement. If

your site is licensed by concurrent usage, you can track and limit the number of

sessions concurrently connected to an instance. If your site is licensed by named

users, you can limit the number of named users created in a database. To use this

facility, you need to know which type of licensing agreement your site has and what

the maximum number of sessions or named users is. Your site might use either type

of licensing (session licensing or named user licensing), but not both.

See Also: For more information about managing licensing, see "Session and User

Licensing" on page 23-2.

Attention: After installation, you must create at least one rollback

segment in the SYSTEM tablespace in addition to the SYSTEM

rollback segment before you can create any schema objects.

Parameters

Creating an Oracle Database 2-13

LICENSE_MAX_SESSIONS and LICENSE_SESSIONS _WARNING
You can set a limit on the number of concurrent sessions that can connect to a

database on the specified computer. To set the maximum number of concurrent

sessions for an instance, set the parameter LICENSE_MAX_SESSIONS in the

parameter file that starts the instance, as shown in the following example:

LICENSE_MAX_SESSIONS = 80

In addition to setting a maximum number of sessions, you can set a warning limit

on the number of concurrent sessions. Once this limit is reached, additional users

can continue to connect (up to the maximum limit), but Oracle sends a warning for

each connecting user. To set the warning limit for an instance, set the parameter

LICENSE_SESSIONS_WARNING. Set the warning limit to a value lower than

LICENSE_MAX_SESSIONS.

For instances running with the Parallel Server, each instance can have its own

concurrent usage limit and warning limit. However, the sum of the instances’ limits

must not exceed the site’s session license.

See Also: For more information about setting these limits when using the Parallel

Server, see Oracle8i Parallel Server Concepts and Administration.

LICENSE_MAX_USERS
You can set a limit on the number of users created in the database. Once this limit is

reached, you cannot create more users.

To limit the number of users created in a database, set the LICENSE_MAX_USERS

parameter in the database’s parameter file, as shown in the following example:

LICENSE_MAX_USERS = 200

For instances running with the Parallel Server, all instances connected to the same

database should have the same named user limit.

See Also: For more information about setting this limit when using the Parallel

Server see Oracle8i Parallel Server Concepts and Administration.

Note: This mechanism assumes that each person accessing the

database has a unique user name and that no people share a user

name. Therefore, so that named user licensing can help you ensure

compliance with your Oracle license agreement, do not allow

multiple users to log in using the same user name.

Considerations After Creating a Database

2-14 Oracle8i Administrator’s Guide

Considerations After Creating a Database
After you create a database, the instance is left running, and the database is open

and available for normal database use. If more than one database exists in your

database system, specify the parameter file to use with any subsequent database

startup.

If you plan to install other Oracle products to work with this database, see the

installation instructions for those products; some products require you to create

additional data dictionary tables. See your operating system-specific Oracle

documentation for the additional products. Usually, command files are provided to

create and load these tables into the database’s data dictionary.

The Oracle server distribution media can include various SQL files that let you

experiment with the system, learn SQL, or create additional tables, views, or

synonyms.

A newly created database has only two users, SYS and SYSTEM. The passwords for

these two usernames should be changed soon after the database is created.

See Also: For more information about the users SYS and SYSTEM see "Database

Administrator Usernames" on page 1-5.

For information about changing a user’s password see "Altering Users" on

page 23-15.

Initial Tuning Guidelines
You can make a few significant tuning alterations to Oracle immediately following

installation. By following these instructions, you can reduce the need to tune Oracle

when it is running. This section gives recommendations for the following

installation issues:

■ Allocating Rollback Segments

■ Choosing the Number of DB_BLOCK_LRU_LATCHES

■ Distributing I/O

Allocating Rollback Segments
Proper allocation of rollback segments makes for optimal database performance.

The size and number of rollback segments required for optimal performance

depends on your application. Oracle8i Tuning contains some general guidelines for

choosing how many rollback segments to allocate based on the number of concurrent

Initial Tuning Guidelines

Creating an Oracle Database 2-15

transactions on your Oracle server. These guidelines are appropriate for most application

mixes.

To create rollback segments, use the CREATE ROLLBACK SEGMENT statement.

See Also: For information about the CREATE ROLLBACK SEGMENT statement,

see the Oracle8i SQL Reference.

Choosing Sizes for Rollback Segments
The size of your rollback segment can also affect performance. Rollback segment

size is determined by the storage parameters in the CREATE ROLLBACK

SEGMENT statement. Your rollback segments must be large enough to hold the

rollback entries for your transactions.

See Also: For information about choosing sizes for your rollback segments, see

Oracle8i Tuning.

Choosing the Number of DB_BLOCK_LRU_LATCHES
Contention for the LRU (least recently used) latch can impede performance on

symmetric multiprocessor (SMP) machines with a large number of CPUs. The LRU

latch controls the replacement of buffers in the buffer cache. For SMP systems,

Oracle automatically sets the number of LRU latches to be one half the number of

CPUs on the system. For non-SMP systems, one LRU latch is sufficient.

You can specify the number of LRU latches on your system with the initialization

parameter DB_BLOCK_LRU_LATCHES. This parameter sets the maximum value

for the desired number of LRU latches. Each LRU latch will control a set of buffers and

Oracle balances allocation of replacement buffers among the sets.

See Also: For more information on LRU latches, see Oracle8i Tuning.

Distributing I/O
Proper distribution of I/O can improve database performance dramatically. I/O can

be distributed during installation of Oracle. Distributing I/O during installation can

reduce the need to distribute I/O later when Oracle is running.

There are several ways to distribute I/O when you install Oracle:

■ redo log file placement

■ datafile placement

■ separation of tables and indexes

Initial Tuning Guidelines

2-16 Oracle8i Administrator’s Guide

■ density of data (rows per data block)

See Also: For information about ways to distribute I/O, see Oracle8i Tuning.

Starting Up and Shutting Down 3-1

3
Starting Up and Shutting Down

This chapter describes the procedures for starting and stopping an Oracle database,

and includes the following topics:

■ Starting Up a Database

■ Altering Database Availability

■ Shutting Down a Database

■ Suspending and Resuming a Database

■ Using Parameter Files

Starting Up a Database

3-2 Oracle8i Administrator’s Guide

Starting Up a Database
This section includes the following topics:

■ Preparing to Start an Instance

■ Starting an Instance: Scenarios

To start up a database or an instance from the command line, use SQL*Plus to

connect to Oracle with administrator privileges and then issue the STARTUP

command. You can also use Recovery Manager to execute STARTUP and

SHUTDOWN commands. If you are using the Enterprise Manager GUI and prefer

not to use the command line, refer to the Oracle Enterprise Manager Administrator’s
Guide for instructions.

You can start an instance and database in a variety of ways:

■ start the instance without mounting a database

■ start the instance and mount the database, but leave it closed

■ start the instance, and mount and open the database in:

– unrestricted mode (accessible to all users)

– restricted mode (accessible to database administrators only)

In addition, you can force the instance to start, or start the instance and have

complete media recovery begin immediately. If your operating system supports the

Oracle Parallel Server, you may start an instance and mount the database in either

exclusive or shared mode.

See Also: For more information about starting a database in an OPS environment,

see Oracle8i Parallel Server Concepts and Administration.

For more information on SQL*Plus command syntax, see SQL*Plus User’s Guide and
Reference.

For more information about Recovery Manager commands, see the Oracle8i Backup
and Recovery Guide.

Preparing to Start an Instance
You need to perform several tasks before attempting to start an instance.

Note: You cannot start a database instance if you are connected to

the database via a multi-threaded server process.

Starting Up a Database

Starting Up and Shutting Down 3-3

1. Start SQL*Plus without connecting to the database by entering:

 sqlplus /nolog

2. Connect to Oracle as SYSDBA:

 connect username/password as sysdba

Note that you cannot be connected via a multi-threaded server.

3. When you enter a STARTUP command, specify the database name and full path

of the parameter file:

 STARTUP database_name PFILE= myinit.ora

If you do not specify the PFILE option, Oracle uses the standard parameter file.

If you do not specify a database name Oracle uses the value for DB_NAME in

the parameter file that starts the instance.

See Also: The use of filenames is specific to your operating system. See your

operating system-specific Oracle documentation.

For information about the DB_NAME parameter, see Oracle8i Reference.

Starting an Instance: Scenarios
The following scenarios describe the many ways in which you can start up an

instance.

Starting an Instance Without Mounting a Database
You can start an instance without mounting a database; typically, you do so only

during database creation. Use the STARTUP command with the NOMOUNT

option:

STARTUP NOMOUNT;

Note: You may encounter problems starting up an instance if

control files, database files, or redo log files are not available. If one

or more of the files specified by the CONTROL_FILES parameter

does not exist or cannot be opened when you attempt to mount a

database, Oracle returns a warning message and does not mount

the database. If one or more of the datafiles or redo log files is not

available or cannot be opened when attempting to open a database,

Oracle returns a warning message and does not open the database.

Starting Up a Database

3-4 Oracle8i Administrator’s Guide

Starting an Instance and Mounting a Database
You can start an instance and mount a database without opening it, which you can

do when you want to perform specific maintenance operations. For example, the

database must be mounted but not open during the following tasks:

■ renaming datafiles

■ adding, dropping, or renaming redo log files

■ enabling and disabling redo log archiving options

■ performing full database recovery

Start an instance and mount the database, but leave it closed by using the STARTUP

command with the MOUNT option:

STARTUP MOUNT;

Starting an Instance, and Mounting and Opening a Database
Normal database operation means that an instance is started and the database is

mounted and open; this mode allows any valid user to connect to the database and

perform typical data access operations.

Start an instance and then mount and open the database by using the STARTUP

command by itself:

STARTUP;

Restricting Access to a Database at Startup
You can start an instance and mount and open a database in restricted mode so that

the database is available only to administrative personnel (not general database

users). Use this mode of database startup when you need to accomplish one of the

following tasks:

■ perform structure maintenance, such as rebuilding indexes

■ perform an export or import of database data

■ perform a data load (with SQL*Loader)

■ temporarily prevent typical users from using data

Typically, all users with the CREATE SESSION system privilege can connect to an

open database. Opening a database in restricted mode allows database access only

to users with both the CREATE SESSION and RESTRICTED SESSION system

privilege; only database administrators should have the RESTRICTED SESSION

system privilege.

Starting Up a Database

Starting Up and Shutting Down 3-5

Start an instance (and, optionally, mount and open the database) in restricted mode

by using the STARTUP command with the RESTRICT option:

STARTUP RESTRICT;

Later, use the ALTER SYSTEM statement to disable the RESTRICTED SESSION

feature.

See Also: For more information on the ALTER SYSTEM statement, see the Oracle8i
SQL Reference.

Forcing an Instance to Start
In unusual circumstances, you might experience problems when attempting to start

a database instance. You should not force a database to start unless you are faced

with the following:

■ You cannot shut down the current instance with the SHUTDOWN NORMAL,

SHUTDOWN IMMEDIATE, or SHUTDOWN TRANSACTIONAL commands.

■ You experience problems when starting an instance.

If one of these situations arises, you can usually solve the problem by starting a new

instance (and optionally mounting and opening the database) using the STARTUP

command with the FORCE option:

STARTUP FORCE;

If an instance is running, STARTUP FORCE shuts it down with mode ABORT

before restarting it.

Starting an Instance, Mounting a Database, and Starting Complete Media
Recovery
If you know that media recovery is required, you can start an instance, mount a

database to the instance, and have the recovery process automatically start by using

the STARTUP command with the RECOVER option:

STARTUP OPEN RECOVER;

If you attempt to perform recovery when no recovery is required, Oracle issues an

error message.

Starting Up a Database

3-6 Oracle8i Administrator’s Guide

Starting in Exclusive or Parallel Mode
If your Oracle server allows multiple instances to access a single database

concurrently, choose whether to mount the database exclusively or in parallel. For

example, open in parallel mode you can issue:

STARTUP OPEN sales PFILE=INITSALE.ORA PARALLEL;

Starting Up an Instance and Database: Example
The following statement starts an instance using the parameter file INITSALE.ORA,

mounts and opens the database named sales in exclusive mode, and restricts

access to administrative personnel. The database administrator is already connected

with administrator privileges.

STARTUP OPEN sales PFILE=INITSALE.ORA EXCLUSIVE RESTRICT;

Automatic Database Startup at Operating System Start
Many sites use procedures to enable automatic startup of one or more Oracle

instances and databases immediately following a system start. The procedures for

performing this task are specific to each operating system.

Starting Remote Instances
If your local Oracle server is part of a distributed database, you might need to start

a remote instance and database. Procedures for starting and stopping remote

instances vary widely depending on communication protocol and operating

system.

See Also: For more information about making a database available to non-

privileged users, see "Restricting Access to an Open Database" on page 3-8.

For more information about recovering control files, database files, and redo logs,

see Chapter 6, "Managing the Online Redo Log" and Chapter 7, "Managing

Archived Redo Logs".

For more information about the side effects of aborting the current instance, see

"Shutting Down with the ABORT Option" on page 3-12.

For more information about starting up in exclusive or parallel mode, see the

Oracle8i Parallel Server Concepts and Administration manual.

For more information about the restrictions that apply when combining options of

the STARTUP statement, see the Oracle8i SQL Reference.

For more information about automatic startup procedure topics, see your operating

system-specific Oracle documentation.

Altering Database Availability

Starting Up and Shutting Down 3-7

Altering Database Availability
You can make a database partially available by starting an instance and opening a

mounted database. The following sections explain how to alter a database’s

availability:

■ Mounting a Database to an Instance

■ Opening a Closed Database

■ Opening a Database in Read-Only Mode

■ Restricting Access to an Open Database

Mounting a Database to an Instance
When you need to perform specific administrative operations, the database must be

started and mounted to an instance, but closed. You can achieve this scenario by

starting the instance and mounting the database.

When mounting the database, indicate whether to mount the database exclusively

to this instance or concurrently to other instances.

To mount a database to a previously started instance, use the SQL statement ALTER

DATABASE with the MOUNT option. Use the following statement when you want

to mount a database in exclusive mode:

ALTER DATABASE MOUNT;

See Also: For a list of operations that require the database to be mounted and

closed (and procedures to start an instance and mount a database in one step), see

"Starting an Instance and Mounting a Database" on page 3-4.

Opening a Closed Database
You can make a mounted but closed database available for general use by opening

the database. To open a mounted database, use the SQL ALTER DATABASE

statement with the OPEN option:

ALTER DATABASE OPEN;

After executing this statement, any valid Oracle user with the CREATE SESSION

system privilege can connect to the database.

Altering Database Availability

3-8 Oracle8i Administrator’s Guide

Opening a Database in Read-Only Mode
Opening a database in read-only mode enables you to query an open database

while eliminating any potential for online data content changes. While opening a

database in read-only mode guarantees that datafile and redo log files are not

written to, it does not restrict database recovery or "state" modifications that don’t

generate redo. For example, you can take datafiles offline or bring them online since

these operations do not effect data content.

Ideally, you open a database read-only when you alternate a standby database

between read-only and recovery mode; note that these are mutually exclusive

modes.

The following statement opens a database in read-only mode:

ALTER DATABASE OPEN READ ONLY;

You can also open a database in read-write mode as follows:

ALTER DATABASE OPEN READ WRITE;

See Also: For more information about the ALTER DATABASE statement, see the

Oracle8i SQL Reference.

For more conceptual details about opening a database in read-only mode, see

Oracle8i Concepts.

Restricting Access to an Open Database
Under normal conditions, all users with the CREATE SESSION system privilege can

connect to an instance. However, you can take an instance in and out of restricted

mode. When an instance is in restricted mode, only users who have both the

CREATE SESSION and RESTRICTED SESSION system privileges can connect to it.

Typically, only administrators have the RESTRICTED SESSION system privilege.

Restricted mode is useful when you need to perform the following tasks:

■ perform structure maintenance, such as rebuilding indexes

■ perform an export or import of database data

■ perform a data load (with SQL*Loader)

Note: You cannot use the RESETLOGS clause with a READ ONLY

clause.

Shutting Down a Database

Starting Up and Shutting Down 3-9

■ temporarily prevent non-administrator users from using data

To place an instance in restricted mode, use the SQL statement ALTER SYSTEM

with the ENABLE RESTRICTED SESSION option. After placing an instance in

restricted mode, you might want to kill all current user sessions before performing

any administrative tasks. To lift an instance from restricted mode, use ALTER

SYSTEM with the DISABLE RESTRICTED SESSION option.

See Also: For more information about starting a database instance, and mounting

and opening the database in restricted mode, see "Restricting Access to a Database

at Startup" on page 3-4.

For more information on the ALTER SYSTEM statement, see the Oracle8i SQL
Reference.

Shutting Down a Database
The following sections describe shutdown procedures:

■ Shutting Down with the NORMAL Option

■ Shutting Down with the IMMEDIATE Option

■ Shutting Down with the TRANSACTIONAL Option

■ Shutting Down with the ABORT Option

To initiate database shutdown, use the SQL*Plus SHUTDOWN command. Control

is not returned to the session that initiates a database shutdown until shutdown is

complete. Users who attempt connections while a shutdown is in progress receive a

message like the following:

ORA-01090: shutdown in progress - connection is not permitted

Attention: You cannot shut down a database if you are connected

to the database via a multi-threaded server process.

Shutting Down a Database

3-10 Oracle8i Administrator’s Guide

To shut down a database and instance, first connect as SYSOPER or SYSDBA.

Figure 3–1 shows the sequence of events when the different SHUTDOWN

commands are entered during a transfer of funds from one bank account to another.

Figure 3–1 Sequence of Events During Different Types of SHUTDOWN.

Shutting Down with the NORMAL Option
Normal database shutdown proceeds with the following conditions:

■ No new connections are allowed after the statement is issued.

■ Before the database is shut down, Oracle waits for all currently connected users

to disconnect from the database.

Transfer
of funds

Check account
balances

Insert new
funds

Remove funds
from old
account

Commit

Logout

Shutdown
Normal

Database
down

Shutdown
Immediate

Database
down

Shutdown
Transactional

Database
down

Shutting Down a Database

Starting Up and Shutting Down 3-11

■ The next startup of the database will not require any instance recovery

procedures.

To shut down a database in normal situations, use the SHUTDOWN command with

the NORMAL option:

 SHUTDOWN NORMAL;

Shutting Down with the IMMEDIATE Option
Use immediate database shutdown only in the following situations:

■ A power shutdown is going to occur soon.

■ The database or one of its applications is functioning irregularly.

Immediate database shutdown proceeds with the following conditions:

■ Any uncommitted transactions are rolled back. (If long uncommitted

transactions exist, this method of shutdown might not complete quickly, despite

its name.)

■ Oracle does not wait for users currently connected to the database to

disconnect; Oracle implicitly rolls back active transactions and disconnects all

connected users.

To shut down a database immediately, use the SHUTDOWN command with the

IMMEDIATE option

SHUTDOWN IMMEDIATE;

Shutting Down with the TRANSACTIONAL Option
When you wish to perform a planned shutdown of an instance while allowing

active transactions to complete first, use the SHUTDOWN command with the

TRANSACTIONAL option:

SHUTDOWN TRANSACTIONAL;

Note: The SHUTDOWN IMMEDIATE statement disconnects all

existing idle connections and shuts down the database. If, however,

you have submitted processes (for example, inserts, selects or

updates) that are awaiting results, the SHUTDOWN

TRANSACTIONAL statement allows the process to complete

before disconnecting.

Suspending and Resuming a Database

3-12 Oracle8i Administrator’s Guide

After submitting this statement, no client can start a new transaction on this

instance. If clients attempt to start a new transaction, they are disconnected. After

all transactions have completed, any client still connected to the instance is

disconnected. At this point, the instance shuts down just as it would when a

SHUTDOWN IMMEDIATE statement is submitted.

A transactional shutdown prevents clients from losing work, and at the same time,

does not require all users to log off.

Shutting Down with the ABORT Option
You can shut down a database instantaneously by aborting the database’s instance.

If possible, perform this type of shutdown only in the following situations:

■ The database or one of its applications is functioning irregularly and neither of

the other types of shutdown work.

■ You need to shut down the database instantaneously (for example, if you know

a power shutdown is going to occur in one minute).

■ You experience problems when starting a database instance.

Aborting an instance shuts down a database and yields the following results:

■ Current client SQL statements being processed by Oracle are immediately

terminated.

■ Uncommitted transactions are not rolled back.

■ Oracle does not wait for users currently connected to the database to

disconnect; Oracle implicitly disconnects all connected users.

If both the normal and immediate shutdown options do not work, abort the current

database instance immediately by issuing the SHUTDOWN command with the

ABORT option:

SHUTDOWN ABORT;

Suspending and Resuming a Database
The ALTER SYSTEM SUSPEND statement suspends all I/O (datafile, control file,

and file header) as well as queries, in all instances, enabling you to make copies of

the database without having to handle ongoing transactions. Do not start a new

instance while you suspend another instance, since the new instance will not be

Using Parameter Files

Starting Up and Shutting Down 3-13

suspended. Use the ALTER SYSTEM RESUME statement to resume normal

database operations.

The suspend/resume feature is useful in systems that allow you to mirror a disk or

file and then split the mirror. If you use a system that is unable to split a mirrored

disk from an existing database while writes are occurring, then you can use the

suspend/ resume feature to facilitate the split. The suspend/resume feature is not a

handy substitute for normal shutdown operations, however, since copies of a

suspended database can contain uncommitted updates.

Note that you can issue SUSPEND and RESUME statements from different

instances. For example, if instances 1, 2, and 3 are running, and you issue a

SUSPEND statement from instance 1, then you can issue the RESUME statement

from instance 1, 2, or 3 with the same effect.

To Facilitate Mirror Splits Using SUSPEND and RESUME:

1. Place the database tablespaces in hot backup mode using the ALTER

TABLESPACE BEGIN BACKUP statement.

2. If your mirror system has problems with splitting a mirror while disk writes are

occurring, issue the ALTER SYSTEM SUSPEND statement.

3. Split your mirrors.

4. Issue the ALTER SYSTEM RESUME statement to resume your database.

5. Take the tablespaces out of hot backup mode using the ALTER TABLESPACE

END BACKUP statement.

6. Copy the control file and archive the online redo logs as usual for a backup.

See Also: For more information about the ALTER SYSTEM SUSPEND/RESUME

and ALTER TABLESPACE statements, see the Oracle8i SQL Reference.

Using Parameter Files
The following sections include information about how to use parameter files:

■ The Sample Parameter File

■ The Number of Parameter Files

WARNING: Do not use the SUSPEND statement as a substitute
for placing a tablespace in hot backup mode.

Using Parameter Files

3-14 Oracle8i Administrator’s Guide

■ The Location of the Parameter File in Distributed Environments

To start an instance, Oracle must read a parameter file, which is a text file containing a

list of instance configuration parameters. Often, although not always, this file is named

INIT.ORA or INITsid.ORA, where sid is operating system specific.

You can edit parameter values in a parameter file with a basic text editor; however,

editing methods are operating system-specific. For detailed information about

initialization parameters, see the Oracle8i Reference.

Oracle treats string literals defined for National Language Support (NLS)

parameters in the file as if they are in the database character set.

See Also: For more information about initialization parameter file, see your

operating system-specific Oracle documentation.

The Sample Parameter File
A sample parameter file (INIT.ORA or INITsid.ORA) is included in the Oracle

distribution set. This sample file’s parameters are adequate for initial installations of an

Oracle database. After your system is operating and you have some experience with

Oracle, you will probably want to change some parameter values.

See Also: For more information about optimizing a database’s performance using

the parameter file, see the Oracle8i Tuning manual.

The Number of Parameter Files
Each Oracle database has at least one parameter file that corresponds only to that

database. This way, database-specific parameters such as DB_NAME and

CONTROL_FILES in a given file always pertain to a particular database. It is also

possible to have several different parameter files for a single database. For example,

you can have several different parameter files for a single database so you can

optimize the database’s performance in different situations.

Note: If you are using Oracle Enterprise Manager, see the Oracle
Enterprise Manager Administrator’s Guide information about using

stored configurations as an alternative to the initialization

parameter file.

Using Parameter Files

Starting Up and Shutting Down 3-15

The Location of the Parameter File in Distributed Environments
The client you use to access the database must be able to read a database’s

parameter file to start a database’s instance. Therefore, always store a database’s

parameter file on the computer executing the client.

In non-distributed processing installations, the same computer executes Oracle and

the client. This computer already has the parameter file stored on one of its disk

drives. In distributed processing installations, however, local client workstations

can administer a database stored on a remote machine. In this type of configuration,

the local client machines must each store a copy of the parameter file for the

corresponding databases.

See Also: For more information about using administering Oracle in a distributed

environment, see Oracle8i Distributed Database Systems.

Using Parameter Files

3-16 Oracle8i Administrator’s Guide

Part II
 Oracle Server Configuration

Managing Oracle Processes 4-1

4
Managing Oracle Processes

This chapter describes how to manage the processes of an Oracle instance, and

includes the following topics:

■ Setting Up Server Processes

■ Configuring Oracle for Multi-Threaded Server Architecture

■ Modifying Server Processes

■ Tracking Oracle Processes

■ Managing Processes for the Parallel Query Option

■ Managing Processes for External Procedures

■ Terminating Sessions

Setting Up Server Processes

4-2 Oracle8i Administrator’s Guide

Setting Up Server Processes
When a user process executes the database application, and a separate, distinct

server process executes the associated Oracle server on behalf of each user, the

separate server process is a dedicated server process (see Figure 4–1). Oracle is

automatically installed for this configuration. If your operating system can support

Oracle in this configuration, it may also support multi-threaded server processes.

Figure 4–1 Oracle Dedicated Server Processes

When to Connect to a Dedicated Server Process
If possible, users should connect to an instance via a dispatcher. This keeps the

number of processes required for the running instance low. In the following

User
Process

Application
Code

System Global Area

User
Process

Application
Code

Oracle
Server Code

Program
Interface

Database Server

Client Workstation

Dedicated
Server

Process

Oracle
Server Code

Configuring Oracle for Multi-Threaded Server Architecture

Managing Oracle Processes 4-3

situations, however, users and administrators should explicitly connect to an

instance using a dedicated server process:

■ to submit a batch job (for example, when a job can allow little or no idle time for

the server process)

■ to use Enterprise Manager to start up, shut down, or perform media recovery

on a database

■ to use Recovery Manager to back up, restore or recover a database

To request a dedicated server connection, users must include the

SERVER=DEDICATED clause in their Net8 TNS connect string.

See Also: For a complete description of Net8 connect string syntax, see your

operating system-specific Oracle documentation and your Net8 Administrator’s
Guide.

For more information about initialization parameters and parameter files, see the

Oracle8i Reference.

Configuring Oracle for Multi-Threaded Server Architecture
Consider an order entry system with dedicated server processes. A customer places

an order as a clerk enters the order into the database. For most of the transaction,

the clerk is on the telephone talking to the customer and the server process

dedicated to the clerk’s user process remains idle. The server process is not needed

during most of the transaction, and the system is slower for other clerks entering

orders because the idle server process is holding system resources.

The multi-threaded server architecture eliminates the need for a dedicated server

process for each connection (see Figure 4–2). A small number of shared server

processes can perform the same amount of processing as many dedicated server

processes. Also, since the amount of memory required for each user is relatively

small, less memory and process management are required, and more users can be

supported.

Configuring Oracle for Multi-Threaded Server Architecture

4-4 Oracle8i Administrator’s Guide

Figure 4–2 Oracle Multi-Threaded Sever Processes

To set up your system in a multi-threaded server configuration, start a network

listener process and set the MTS_DISPATCHERS parameter (which is a required

parameter that sets the initial number of dispatchers).

After setting this initialization parameter, restart the instance, which at this point

will use the multi-threaded server configuration. The multi-threaded server

architecture requires Net8. User processes targeting the multi-threaded server must

connect through Net8, even if they are on the same machine as the Oracle instance.

System Global Area

CodeCodeCodeCodeCodeCode

User
Process

Database Server

Client Workstation

CodeCodeApplication
Code

Dispatcher Processes

Shared

1

2

3
4

5

6

7

Server
Processes

Response

Oracle
Server CodeOracle

Server Code
Oracle

Server CodeOracle
Server Code

Request
Queue

Queues

Configuring Oracle for Multi-Threaded Server Architecture

Managing Oracle Processes 4-5

See Also: For more information about starting and managing the network listener

process, see Oracle8i Distributed Database Systems and the Oracle Net8 Administrator’s
Guide.

MTS_DISPATCHERS: Setting the Initial Number of Dispatchers (Required)
The number of dispatcher processes started at instance startup is controlled by the

parameter MTS_DISPATCHERS. Estimate the number of dispatchers to start for

each network protocol before instance startup.

When setting the MTS_DISPATCHERS parameter, you can include any valid

protocol.

The appropriate number of dispatcher processes for each instance depends upon

the performance you want from your database, the host operating system’s limit on

the number of connections per process, (which is operating system dependent) and

the number of connections required per network protocol.

The instance must be able to provide as many connections as there are concurrent

users on the database system. After instance startup, you can start more dispatcher

processes if needed.

See Also: For more information about dispatcher processes, see "Adding and

Removing Dispatcher Processes" on page 4-7.

Calculating the Initial Number of Dispatcher Processes
Once you know the number of possible connections per process for your operating

system, calculate the initial number of dispatcher processes to create during

instance startup, per network protocol, using the following formula.

number maximum number of concurrent sessions
of = CEIL (—————————————————————————————————————)
dispatchers connections per dispatcher

For example, assume that your system typically has 900 users concurrently

connected via TCP/IP and 600 users connected via SPX, and supports 255

connections per process. In this case, the MTS_DISPATCHERS parameter should be

set as follows:

MTS_DISPATCHERS = "(PROTOCOL=TCP) (DISPATCHERS=4)"
MTS_DISPATCHERS = "(PROTOCOL=SPX) (DISPATCHERS=3)"

Note: Here, connections per dispatcher is operating system dependent.

Modifying Server Processes

4-6 Oracle8i Administrator’s Guide

Examples

Example 1 To force the IP address used for the dispatchers, enter the following:

MTS_DISPATCHERS="(ADDRESS=(PARTIAL=TRUE)(PROTOCOL=TCP)\
 (HOST=144.25.16.201))(DISPATCHERS=2)"

This will start two dispatchers that will listen in on HOST=144.25.16.201, which

must be a card that is accessible to the dispatchers.

Example 2 To force the exact location of dispatchers, add the PORT as follows:

MTS_DISPATCHERS="(ADDRESS=(PARTIAL=TRUE)(PROTOCOL=TCP)\
 (HOST=144.25.16.201)(PORT=5000))(DISPATCHERS=1)"
MTS_DISPATCHERS="(ADDRESS=(PARTIAL=TRUE)(PROTOCOL=TCP)\
 (HOST=144.25.16.201)(PORT=5001))(DISPATCHERS=1)"

Modifying Server Processes
This section describes changes you can make after starting an instance, and includes

the following topics:

■ Changing the Minimum Number of Shared Server Processes

■ Adding and Removing Dispatcher Processes

Changing the Minimum Number of Shared Server Processes
After starting an instance, you can change the minimum number of shared server

processes by using the SQL command ALTER SYSTEM.

Oracle will eventually terminate servers that are idle when there are more shared

servers than the minimum limit you specify.

If you set MTS_SERVERS to 0, Oracle will terminate all current servers when they

become idle and will not start any new servers until you increase MTS_SERVERS.

Thus, setting MTS_SERVERS to 0 may be used to effectively disables the multi-

threaded server.

To control the minimum number of shared server processes, you must have the

ALTER SYSTEM privilege.

Note: You can specify multiple MTS_DISPATCHERS in the

INIT.ORA file, but they must be adjacent to each other. Also,

MTS_DISPATCHERS defaults to 1.

Tracking Oracle Processes

Managing Oracle Processes 4-7

The following statement sets the number of shared server processes to two:

ALTER SYSTEM SET MTS_SERVERS = 2

Adding and Removing Dispatcher Processes
You can control the number of dispatcher processes in the instance. If the

V$QUEUE, V$DISPATCHER and V$DISPATCHER_RATE views indicate that the

load on the dispatcher processes is consistently high, starting additional dispatcher

processes to route user requests may improve performance; you can start additional

dispatchers until the number of dispatchers equals MTS_MAX_DISPATCHER. In

contrast, if the load on dispatchers is consistently low, reducing the number of

dispatchers may improve performance.

To change the number of dispatcher processes, use the SQL command ALTER

SYSTEM. Changing the number of dispatchers for a specific protocol has no effect

on dispatchers for other protocols.

You can start new dispatcher processes for protocols specified in the

MTS_DISPATCHERS parameter, or you may add new MTS_DISPATCHERS

configurations. Therefore, you can add dispatchers for protocols for which there are

dispatchers, and you can start dispatchers for protocols for which there are

currently no dispatchers.

If you reduce the number of dispatchers for a particular protocol, the dispatchers

are not immediately removed. Rather, Oracle eventually terminates dispatchers

down to the limit you specify in MTS_DISPATCHERS.

To control the number of dispatcher processes, you must have the ALTER SYSTEM

privilege.

The following example shows how to add a dispatcher process for the SPX protocol

(where previously there was only one MTS_DISPATCHER configuration):

ALTER SYSTEM
 SET MTS_DISPATCHERS = ’(INDEX=1) (PRO=SPX)’;

See Also: For more information about tuning the multi-threaded server, see Oracle8i
Tuning.

Tracking Oracle Processes
An Oracle instance can have many background processes, which you should track if

possible. This section describes how to track these processes, and includes the

following topics:

Tracking Oracle Processes

4-8 Oracle8i Administrator’s Guide

■ Monitoring the Processes of an Oracle Instance

■ Trace Files, the ALERT File, and Background Processes

■ Starting the Checkpoint Process

See Also: For more information about tuning Oracle processes, see Oracle8i Tuning.

Monitoring the Processes of an Oracle Instance
Monitors provide a means of tracking database activity and resource usage. You can

operate several monitors simultaneously. Table 4–1 lists the Enterprise Manager

monitors that can help you track Oracle processes:

Monitoring Locks
Table 4–2 describes two methods of monitoring locking information for ongoing

transactions within an instance:

Table 4–1 Enterprise Manager Monitors

Monitor Name Description

Process The Process monitor summarizes information about
all Oracle processes, including client-server, user,
server, and background processes, currently accessing
the database via the current database instance.

Session The Session monitor shows the session ID and status
of each connected Oracle session.

Table 4–2 Oracle Monitoring Facilities

Monitor Name Description

Enterprise Manager
Monitors

The Monitor feature of Enterprise Manager/GUI
provides two monitors for displaying lock
information for an instance: Lock and Latch Monitors.

UTLLOCKT.SQL The UTLLOCKT.SQL script displays a simple
character lock wait-for graph in tree-structured
fashion. Using an ad hoc query tool (such as
Enterprise Manager or SQL*Plus), the script prints the
sessions in the system that are waiting for locks and
the corresponding blocking locks. The location of this
script file is operating system dependent; see your
operating system-specific Oracle documentation. (A
second script, CATBLOCK.SQL, creates the lock
views that UTLLOCKT.SQL needs, so you must run it
before running UTLLOCKT.SQL.)

Tracking Oracle Processes

Managing Oracle Processes 4-9

Monitoring Dynamic Performance Tables
The following views, created on the dynamic performance tables, are useful for

monitoring Oracle instance processes:

Following is a typical query of one of the dynamic performance tables,

V$DISPATCHER. The output displays the processing load on each dispatcher

process in the system:

SELECT (busy/(busy + idle)) * 100 "% OF TIME BUSY"
 FROM v$dispatcher;

Distinguishing Oracle Background Processes from Operating System
Background Processes
When you run many Oracle databases concurrently on one computer, Oracle

provides a mechanism for naming the processes of an instance. The background

process names are prefixed by an instance identifier to distinguish the set of

processes for each instance.

For example, an instance named TEST might have background processes with the

following names:

View (Monitor) Name Description

V$CIRCUIT Contains information about virtual circuits, which are
user connections through dispatchers and servers.

V$QUEUE Contains information about the multi-threaded message
queues.

V$DISPATCHER Contains information about dispatcher processes.

V$DISPATCHER_RATE Contains rate statistics for dispatcher processes.

V$SHARED_SERVER Contains information about shared server processes.

V$SQLAREA Contains statistics about shared SQL area and contains
one row per SQL string. Also provides statistics about
SQL statements that are in memory, parsed, and ready
for execution.

V$SESS_IO Contains I/O statistics for each user session.

V$LATCH Contains statistics for non-parent latches and summary
statistics for parent latches.

V$SYSSTAT Contains system statistics.

Tracking Oracle Processes

4-10 Oracle8i Administrator’s Guide

■ ORA_TEST_DBWR

■ ORA_TEST_LGWR

■ ORA_TEST_SMON

■ ORA_TEST_PMON

■ ORA_TEST_RECO

■ ORA_TEST_LCK0

■ ORA_TEST_ARCH

■ ORA_TEST_D000

■ ORA_TEST_S000

■ ORA_TEST_S001

See Also: For more information about views and dynamic performance tables see

the Oracle8i Reference.

For more information about the instance identifier and the format of the Oracle

process names, see your operating system-specific Oracle documentation.

Trace Files, the ALERT File, and Background Processes
Each server and background process can write to an associated trace file. When an

internal error is detected by a process, it dumps information about the error to its

trace file. Some of the information written to a trace file is intended for the database

administrator, while other information is for Oracle WorldWide Support. Trace file

information is also used to tune applications and instances.

The ALERT file is a special trace file. The ALERT file of a database is a chronological

log of messages and errors, which includes the following:

■ all internal errors (ORA-600), block corruption errors (ORA-1578), and deadlock

errors (ORA-60) that occur

■ administrative operations, such as CREATE/ALTER/DROP DATABASE/

TABLESPACE/ROLLBACK SEGMENT SQL statements and STARTUP,

SHUTDOWN, and ARCHIVE LOG

■ several messages and errors relating to the functions of shared server and

dispatcher processes

■ errors occurring during the automatic refresh of a snapshot

Tracking Oracle Processes

Managing Oracle Processes 4-11

■ the values of all initialization parameters at the time the database and instance

start

Oracle uses the ALERT file to keep a log of these special operations as an alternative

to displaying such information on an operator’s console (although many systems

display information on the console). If an operation is successful, a "completed"

message is written in the ALERT file, along with a timestamp.

Using the Trace Files
You can periodically check the ALERT file and other trace files of an instance to see

if the background processes have encountered errors. For example, when the Log

Writer process (LGWR) cannot write to a member of a group, an error message

indicating the nature of the problem is written to the LGWR trace file and the

database’s ALERT file. If you see such error messages, a media or I/O problem has

occurred, and should be corrected immediately.

Oracle also writes values of initialization parameters to the ALERT file, in addition

to other important statistics. For example, when you shut down an instance

normally or immediately (but do not abort), Oracle writes the highest number of

sessions concurrently connected to the instance, since the instance started, to the

ALERT file. You can use this number to see if you need to upgrade your Oracle

session license.

Specifying the Location of Trace Files
All trace files for background processes and the ALERT file are written to the

destination specified by the initialization parameter

BACKGROUND_DUMP_DEST. All trace files for server processes are written to the

destination specified by the initialization parameter USER_DUMP_DEST. The

names of trace files are operating system specific, but usually include the name of

the process writing the file (such as LGWR and RECO).

Controlling the Size of Trace Files
You can control the maximum size of all trace files (excluding the ALERT file) using

the initialization parameter MAX_DUMP_FILE_SIZE. This limit is set as a number

of operating system blocks. To control the size of an ALERT file, you must manually

delete the file when you no longer need it; otherwise Oracle continues to append to

the file. You can safely delete the ALERT file while the instance is running, although

you might want to make an archived copy of it first.

Managing Processes for the Parallel Query Option

4-12 Oracle8i Administrator’s Guide

Controlling When Oracle Writes to Trace Files
Background processes always write to a trace file when appropriate. However, trace

files are written on behalf of server processes (in addition to being written to during

internal errors) only if the initialization parameter SQL_TRACE is set to TRUE.

Regardless of the current value of SQL_TRACE, each session can enable or disable

trace logging on behalf of the associated server process by using the SQL command

ALTER SESSION with the SET SQL_TRACE parameter.

ALTER SESSION SET SQL_TRACE TRUE;

For the multi-threaded server, each session using a dispatcher is routed to a shared

server process, and trace information is written to the server’s trace file only if the

session has enabled tracing (or if an error is encountered). Therefore, to track tracing

for a specific session that connects using a dispatcher, you might have to explore

several shared server’s trace files. Because the SQL trace facility for server processes

can cause significant system overhead, enable this feature only when collecting

statistics.

See Also: For information about the names of trace files, see your operating system-

specific Oracle documentation.

For complete information about the ALTER SESSION command, see the Oracle8i
SQL Reference.

Starting the Checkpoint Process
If the Checkpoint process (CKPT) is not enabled, the Log Writer process (LGWR) is

responsible for updating the headers of all control files and data files to reflect the

latest checkpoint. To reduce the time necessary to complete a checkpoint, especially

when a database is comprised of many data files, enable the CKPT background

process by setting the CHECKPOINT_PROCESS parameter in the database’s

parameter file to TRUE. (The default is FALSE.)

Managing Processes for the Parallel Query Option
This section describes how, with the parallel query option, Oracle can perform

parallel processing. In this configuration Oracle can divide the work of processing

certain types of SQL statements among multiple query server processes. The

following topics are included:

■ Managing the Query Servers

■ Variations in the Number of Query Server Processes

Managing Processes for the Parallel Query Option

Managing Oracle Processes 4-13

See Also: For more information about the parallel query option, see Oracle8i Tuning.

Managing the Query Servers
When you start your instance, the Oracle Server creates a pool of query server

processes available for any query coordinator. Specify the number of query server

processes that the Oracle Server creates at instance startup via the initialization

parameter PARALLEL_MIN_SERVERS.

Query server processes remain associated with a statement throughout its execution

phase. When the statement is completely processed, its query server processes

become available to process other statements. The query coordinator process

returns any resulting data to the user process issuing the statement.

Variations in the Number of Query Server Processes
If the volume of SQL statements processed concurrently by your instance changes

drastically, the Oracle Server automatically changes the number of query server

processes in the pool to accommodate this volume.

If this volume increases, the Oracle Server automatically creates additional query

server processes to handle incoming statements. The maximum number of query

server processes for your instance is specified by the initialization parameter

PARALLEL_MAX_SERVERS.

If this volume subsequently decreases, the Oracle Server terminates a query server

process if it has been idle for the period of time specified by the initialization

parameter PARALLEL_SERVER_IDLE_TIME. The Oracle Server does not reduce

the size of the pool below the value of PARALLEL_MIN_SERVERS, no matter how

long the query server processes have been idle.

If all query servers in the pool are occupied and the maximum number of query

servers has been started, a query coordinator processes the statement sequentially.

See Also: For more information about monitoring an instance’s pool of query

servers and determining the appropriate values of the initialization parameters, see

Oracle8i Tuning.

Managing Processes for External Procedures

4-14 Oracle8i Administrator’s Guide

Managing Processes for External Procedures
You may have shared libraries of C functions that you wish to call from an Oracle

database. This section describes how to set up an environment for calling those

external procedures.

The database administrator grants execute privileges for appropriate libraries to

application developers, who in turn create external procedures and grant execute

privilege on the specific external procedures to other users.

To Set Up an Environment for Calling External Procedures

1. Edit the tnsnames.ora file by adding an entry that enables you to connect to the

listener process (and subsequently, the EXTPROC process).

2. Edit the listener.ora file by adding an entry for the "external procedure listener."

3. Start a separate listener process to exclusively handle external procedures.

4. The EXTPROC process spawned by the listener inherits the operating system

privileges of the listener, so Oracle strongly recommends that you restrict the

privileges for the separate listener process. The process should not have

permission to read or write to database files, or the Oracle server address space.

Also, the owner of this separate listener process should not be "oracle" (which is

the default owner of the server executable and database files).

5. If not already installed, place the extproc executable in $ORACLE_HOME/bin.

Be aware that the external library (DLL file) must be statically linked. In other

words, it must not reference any external symbols from other external libraries

(DLL files). These symbols are not resolved and can cause your external procedure

to fail.

Sample Entry in tnsnames.ora
The following is a sample entry for the external procedure listener in tnsnames.ora.

extproc_connection_data = (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)
 (KEY=extproc_key)
)
 (CONNECT_DATA = (SID = extproc_agent)

Note: Although not required, it is recommended that you perform

these tasks during installation.

Terminating Sessions

Managing Oracle Processes 4-15

)

In this example, and all callouts for external procedures, the entry name

extproc_connection_data cannot be changed; it must be entered exactly as it

appears here. The key you specify—in this case extproc_key—must match the

KEY you specify in the listener.ora file. Additionally, the SID name you specify—in

this case extproc_agent—must match the SID_NAME entry in the listener.ora file.

Sample Entry in listener.ora
The following is a sample entry for the external procedure in listener.ora.

EXTERNAL_PROCEDURE_LISTENER =

(ADDRESS_LIST =
 (ADDRESS = (PROTOCOL=ipc)
 (KEY=extproc_key)
)
)
...
SID_LIST_EXTERNAL_PROCEDURE_LISTENER =

(SID_LIST =
 (SID_DESC = (SID_NAME=extproc_agent)
 (ORACLE_HOME=/oracle)
 (PROGRAM=extproc)
)
)

In this example, the PROGRAM must be extproc, and cannot be changed; it must be

entered exactly as it appears in this example. The SID_NAME must match the SID

name in the tnsnames.ora file. The ORACLE_HOME must be set to the directory

where your Oracle software is installed. The extproc executable must reside in

$ORACLE_HOME/bin.

See Also: For more information about external procedures, see the PL/SQL User’s
Guide and Reference.

Terminating Sessions
In some situations, you might want to terminate current user sessions. For example,

you might want to perform an administrative operation and need to terminate all

non-administrative sessions.

This section describes the various aspects of terminating sessions, and includes the

following topics:

Terminating Sessions

4-16 Oracle8i Administrator’s Guide

■ Identifying Which Session to Terminate

■ Terminating an Active Session

■ Terminating an Inactive Session

When a session is terminated, the session’s transaction is rolled back and resources

(such as locks and memory areas) held by the session are immediately released and

available to other sessions.

Terminate a current session using the SQL statement ALTER SYSTEM KILL

SESSION.

The following statement terminates the session whose SID is 7 and serial number is

15:

ALTER SYSTEM KILL SESSION ’7,15’;

Identifying Which Session to Terminate
To identify which session to terminate, specify the session’s index number and

serial number. To identify the index (SID) and serial numbers of a session, query the

V$SESSION dynamic performance table.

The following query identifies all sessions for the user JWARD:

SELECT sid, serial#
 FROM v$session
 WHERE username = ’JWARD’;
SID SERIAL# STATUS
--------- --------- --------
 7 15 ACTIVE
 12 63 INACTIVE

A session is ACTIVE when it is making a SQL call to Oracle. A session is INACTIVE

if it is not making a SQL call to Oracle.

See Also: For a complete description of the status values for a session, see Oracle8i
Tuning.

Terminating an Active Session
If a user session is making a SQL call to Oracle (is ACTIVE) when it is terminated,

the transaction is rolled back and the user immediately receives the following

message:

ORA-00028: your session has been killed

Terminating Sessions

Managing Oracle Processes 4-17

If, after receiving the ORA-00028 message, a user submits additional statements

before reconnecting to the database, Oracle returns the following message:

ORA-01012: not logged on

If an active session cannot be interrupted (for example, it is performing network I/

O or rolling back a transaction), the session cannot be terminated until the operation

completes. In this case, the session holds all resources until it is terminated.

Additionally, the session that issues the ALTER SYSTEM statement to terminate a

session waits up to 60 seconds for the session to be terminated; if the operation that

cannot be interrupted continues past one minute, the issuer of the ALTER SYSTEM

statement receives a message indicating that the session has been "marked" to be

terminated. A session marked to be terminated is indicated in V$SESSION with a

status of "KILLED" and a server that is something other than "PSEUDO."

Terminating an Inactive Session
If the session is not making a SQL call to Oracle (is INACTIVE) when it is

terminated, the ORA-00028 message is not returned immediately. The message is

not returned until the user subsequently attempts to use the terminated session.

When an inactive session has been terminated, STATUS in the view V$SESSION is

"KILLED." The row for the terminated session is removed from V$SESSION after

the user attempts to use the session again and receives the ORA-00028 message.

In the following example, the administrator terminates an inactive session:

SELECT sid,serial#,status,server
 FROM v$session
 WHERE username = ’JWARD’;

SID SERIAL# STATUS SERVER
---------- -------- --------- ---------
 7 15 INACTIVE DEDICATED
 12 63 INACTIVE DEDICATED
2 rows selected.

ALTER SYSTEM KILL SESSION ’7,15’;
Statement processed.

SELECT sid, serial#, status, server
 FROM v$session
 WHERE username = ’JWARD’;

SID SERIAL# STATUS SERVER
--------- -------- --------- ---------
 7 15 KILLED PSEUDO

Terminating Sessions

4-18 Oracle8i Administrator’s Guide

 12 63 INACTIVE DEDICATED
2 rows selected.

Managing Control Files 5-1

5
Managing Control Files

This chapter explains how to create and maintain the control files for your database,

and includes the following topics:

■ Guidelines for Control Files

■ Creating Control Files

■ Troubleshooting After Creating Control Files

■ Dropping Control Files

Guidelines for Control Files

5-2 Oracle8i Administrator’s Guide

Guidelines for Control Files
This section describes guidelines you can use to manage the control files for a

database, and includes the following topics:

■ Name Control Files

■ Multiplex Control Files on Different Disks

■ Place Control Files Appropriately

■ Manage the Size of Control Files

Name Control Files
Assign control file names via the CONTROL_FILES initialization parameter in the

database’s parameter file. CONTROL_FILES indicates one or more names of control

files separated by commas. The instance startup procedure recognizes and opens all

the listed files. The instance maintains all listed control files during database

operation.

During database operation, Oracle writes to all necessary files listed for the

CONTROL_FILES parameter.

Multiplex Control Files on Different Disks
Every Oracle database should have at least two control files, each stored on a

different disk. If a control file is damaged due to a disk failure, the associated

instance must be shut down. Once the disk drive is repaired, the damaged control

file can be restored using an intact copy of the control file and the instance can be

restarted; no media recovery is required.

Behavior of Multiplexed Control Files
The following list describes the behavior of multiplexed control files:

■ Two or more filenames are listed for the initialization parameter

CONTROL_FILES in the database’s parameter file.

■ The first file listed in the CONTROL_FILES parameter is the only file read by

the Oracle Server during database operation.

■ If any of the control files become unavailable during database operation, the

instance becomes inoperable and should be aborted.

Creating Control Files

Managing Control Files 5-3

The only disadvantage of having multiple control files is that all operations that

update the control files (such as adding a datafile or checkpointing the database)

can take slightly longer. However, this difference is usually insignificant (especially

for operating systems that can perform multiple, concurrent writes) and does not

justify using only a single control file.

Place Control Files Appropriately
Each copy of a control file should be stored on a different disk drive. Furthermore, a

control file copy should be stored on every disk drive that stores members of online

redo log groups, if the online redo log is multiplexed. By storing control files in

these locations, you minimize the risk that all control files and all groups of the

online redo log will be lost in a single disk failure.

Manage the Size of Control Files
The main determinants of a control file’s size are the values set for the

MAXDATAFILES, MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, and

MAXINSTANCES parameters in the CREATE DATABASE statement that created

the associated database. Increasing the values of these parameters increases the size

of a control file of the associated database.

See Also: The maximum control file size is operating system specific. See your

operating system-specific Oracle documentation for more information.

Creating Control Files
Every Oracle database has a control file. A control files records the physical structure

of the database and contains:

■ the database name

■ names and locations of associated databases and online redo log files

■ the timestamp of the database creation

■ the current log sequence number

■ checkpoint information

Attention: Oracle strongly recommends that your database has a

minimum of two control files on different disks.

Creating Control Files

5-4 Oracle8i Administrator’s Guide

The control file of an Oracle database is created at the same time as the database. By

default, at least one copy of the control file must be created during database

creation. On some operating systems, Oracle creates multiple copies. You should

create two or more copies of the control file during database creation. You might

also need to create control files later, if you lose control files or want to change

particular settings in the control files.

This section describes ways to create control files, and includes the following topics:

■ Creating Initial Control Files

■ Creating Additional Control File Copies, and Renaming and Relocating Control

Files

■ New Control Files

■ Creating New Control Files

Creating Initial Control Files
You create the initial control files of an Oracle database by specifying one or more

control filenames in the CONTROL_FILES parameter in the parameter file used

during database creation. The filenames specified in CONTROL_FILES should be

fully specified. Filename specification is operating system-specific.

If files with the specified names currently exist at the time of database creation, you

must specify the CONTROLFILE REUSE parameter in the CREATE DATABASE

statement, or else an error occurs. Also, if the size of the old control file differs from

that of the new one, you cannot use the REUSE option. The size of the control file

changes between some releases of Oracle, as well as when the number of files

specified in the control file changes. Configuration parameters such as

MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES, and

MAXINSTANCES affect control file size.

If you do not specify files for CONTROL_FILES before database creation, Oracle

uses a default filename. The default name is also operating system-specific.

You can subsequently change the value of the CONTROL_FILES parameter to add

more control files or to change the names or locations of existing control files.

See Also: For more information about specifying control files, see your operating

system-specific Oracle documentation.

Creating Control Files

Managing Control Files 5-5

Creating Additional Control File Copies, and Renaming and Relocating Control Files
You add a new control file by copying an existing file to a new location and adding

the file’s name to the list of control files.

Similarly, you rename an existing control file by copying the file to its new name or

location, and changing the file’s name in the control file list.

In both cases, to guarantee that control files do not change during the procedure,

shut down the instance before copying the control file.

To Multiplex or Move Additional Copies of the Current Control Files

1. Shut down the database.

2. Copy an existing control file to a different location, using operating system

commands.

3. Edit the CONTROL_FILES parameter in the database’s parameter file to add

the new control file’s name, or to change the existing control filename.

4. Restart the database.

New Control Files
You can create a new control file for a database using the CREATE CONTROLFILE

statement. This is recommended in the following situations:

■ All control files for the database have been permanently damaged and you do

not have a control file backup.

■ You want to change one of the permanent database settings originally specified

in the CREATE DATABASE statement, including the database’s name,

MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES,

and MAXINSTANCES.

For example, you might need to change a database’s name if it conflicts with

another database’s name in a distributed environment. As another example,

you might need to change one of the previously mentioned parameters if the

original setting is too low.

The following statement creates a new control file for the PROD database (formerly

a database that used a different database name):

CREATE CONTROLFILE
 SET DATABASE prod
 LOGFILE GROUP 1 (’logfile1A’, ’logfile1B’) SIZE 50K,
 GROUP 2 (’logfile2A’, ’logfile2B’) SIZE 50K

Creating Control Files

5-6 Oracle8i Administrator’s Guide

 NORESETLOGS
 DATAFILE ’datafile1’ SIZE 3M, ’datafile2’ SIZE 5M
 MAXLOGFILES 50
 MAXLOGMEMBERS 3
 MAXDATAFILES 200
 MAXINSTANCES 6
 ARCHIVELOG;

See Also: For more information about the CREATE CONTROLFILE statement, see

the Oracle8i SQL Reference.

Creating New Control Files
This section provides step-by-step instructions for creating new control files.

To Create New Control Files

1. Make a list of all datafiles and online redo log files of the database.

If you followed the recommendations for database backups, you should already

have a list of datafiles and online redo log files that reflect the current structure

of the database.

If you have no such lists and your control file has been damaged so that the

database cannot be opened, try to locate all of the datafiles and online redo log

files that constitute the database. Any files not specified in Step 5 are not

recoverable once a new control file has been created. Moreover, if you omit any

of the files that make up the SYSTEM tablespace, you might not be able to

recover the database.

2. Shut down the database.

If the database is open, shut down the database with normal priority, if

possible. Use the IMMEDIATE or ABORT options only as a last resort.

3. Back up all datafiles and online redo log files of the database.

4. Start up an new instance, but do not mount or open the database.

WARNING: The CREATE CONTROLFILE statement can
potentially damage specified datafiles and online redo log files;
omitting a filename can cause loss of the data in that file, or loss
of access to the entire database. Employ caution when using this
command and be sure to follow the steps in the next section.

Creating Control Files

Managing Control Files 5-7

5. Create a new control file for the database using the CREATE CONTROLFILE

statement.

When creating the new control file, select the RESETLOGS option if you have

lost any online redo log groups in addition to the control files. In this case, you

will need to recover from the loss of the redo logs (Step 8). You must also

specify the RESETLOGS option if you have renamed the database. Otherwise,

select the NORESETLOGS option.

6. Store a backup of the new control file on an offline storage device.

7. Edit the parameter files of the database.

Edit the parameter files of the database to indicate all of the control files created

in Step 5 and Step 6 (not including the backup control file) in the

CONTROL_FILES parameter.

8. Recover the database if necessary.

If you are creating the control file as part of recovery, recover the database. If the

new control file was created using the NORESETLOGS option (Step 5), you can

recover the database with complete, closed database recovery.

If the new control file was created using the RESETLOGS option, you must

specify USING BACKUP CONTROL FILE. If you have lost online or archived

redo logs or datafiles, use the procedures for recovering those files.

9. Open the database.

Open the database using one of the following methods:

■ If you did not perform recovery, open the database normally.

■ If you performed complete, closed database recovery in Step 8, start up the

database.

■ If you specified RESETLOGS when creating the control file, use the ALTER

DATABASE statement, indicating RESETLOGS.

The database is now open and available for use.

See Also: See the Oracle8i Backup and Recovery Guide for more information about:

■ listing database files

■ backing up all datafiles and online redo log files of the database

■ recovering online or archived redo log files

■ closed database recovery

Troubleshooting After Creating Control Files

5-8 Oracle8i Administrator’s Guide

Troubleshooting After Creating Control Files
After issuing the CREATE CONTROLFILE statement, you may encounter some

common errors. This section describes the most common control file usage errors,

and includes the following topics:

■ Checking for Missing or Extra Files

■ Handling Errors During CREATE CONTROLFILE

Checking for Missing or Extra Files
After creating a new control file and using it to open the database, check the ALERT

log to see if Oracle has detected inconsistencies between the data dictionary and the

control file, such as a datafile that the data dictionary includes but the control file

does not list.

If a datafile exists in the data dictionary but not in the new control file, Oracle

creates a placeholder entry in the control file under the name MISSINGnnnn (where

nnnn is the file number in decimal). MISSINGnnnn is flagged in the control file as

being offline and requiring media recovery.

In the following two cases only, the actual datafile corresponding to MISSINGnnnn
can be made accessible by renaming MISSINGnnnn to point to it.

Case 1: The new control file was created using the CREATE CONTROLFILE

statement with the NORESETLOGS option, thus allowing the database to be

opened without using the RESETLOGS option. This would be possible only if all

online redo logs are available.

Case 2: It was necessary to use the RESETLOGS option of the CREATE

CONTROLFILE statement, thus forcing the database to be opened using the

RESETLOGS option, but the actual datafile corresponding to MISSINGnnnn was

read-only or offline normal.

If, on the other hand, it was necessary to open the database using the RESETLOGS

option, and MISSINGnnnn corresponds to a datafile that was not read-only or

offline normal, then the rename operation cannot be used to make the datafile

accessible (since the datafile requires media recovery that is precluded by the results

of RESETLOGS). In this case, the tablespace containing the datafile must be

dropped.

In contrast, if a datafile indicated in the control file is not present in the data

dictionary, Oracle removes references to it from the new control file. In both cases,

Dropping Control Files

Managing Control Files 5-9

Oracle includes an explanatory message in the ALERT file to let you know what it

found.

Handling Errors During CREATE CONTROLFILE
If Oracle sends you an error (usually error ORA-01173, ORA-01176, ORA-01177,

ORA-01215, or ORA-01216) when you attempt to mount and open the database

after creating a new control file, the most likely cause is that you omitted a file from

the CREATE CONTROLFILE statement or included one that should not have been

listed. In this case, you should restore the files you backed up in Step 3 and repeat

the procedure from Step 4, using the correct filenames.

Dropping Control Files
You can drop control files from the database. For example, you might want to do so

if the location of a control file is inappropriate. Remember that the database must

have at least two control files at all times.

1. Shut down the database.

2. Edit the CONTROL_FILES parameter in the database’s parameter file to delete

the old control file’s name.

3. Restart the database.

WARNING: This operation does not physically delete the
unwanted control file from the disk. Use operating system
commands to delete the unnecessary file after you have dropped
the control file from the database.

Dropping Control Files

5-10 Oracle8i Administrator’s Guide

Managing the Online Redo Log 6-1

6
Managing the Online Redo Log

This chapter explains how to manage the online redo log and includes the following

topics:

■ What Is the Online Redo Log?

■ Planning the Online Redo Log

■ Creating Online Redo Log Groups and Members

■ Renaming and Relocating Online Redo Log Members

■ Dropping Online Redo Log Groups and Members

■ Forcing Log Switches

■ Verifying Blocks in Redo Log Files

■ Clearing an Online Redo Log File

■ Listing Information about the Online Redo Log

See Also: For more information about managing the online redo logs of the

instances when using Oracle Parallel Server, see Oracle8i Parallel Server Concepts and
Administration.

To learn how checkpoints and the redo log impact instance recovery, see Oracle8i
Tuning.

What Is the Online Redo Log?

6-2 Oracle8i Administrator’s Guide

What Is the Online Redo Log?
The most crucial structure for recovery operations is the online redo log, which

consists of two or more pre-allocated files that store all changes made to the

database as they occur. Every instance of an Oracle database has an associated

online redo log to protect the database in case of an instance failure.

Redo Threads
Each database instance has its own online redo log groups. These online redo log

groups, multiplexed or not, are called an instance’s thread of online redo. In typical

configurations, only one database instance accesses an Oracle database, so only one

thread is present. When running the Oracle Parallel Server, however, two or more

instances concurrently access a single database; each instance has its own thread.

This chapter describes how to configure and manage the online redo log when the

Oracle Parallel Server is not used. Hence, the thread number can be assumed to be 1

in all discussions and examples of commands.

See Also: For complete information about configuring the online redo log with the

Oracle Parallel Server, see Oracle8i Parallel Server Concepts and Administration.

Online Redo Log Contents
Online redo log files are filled with redo records. A redo record, also called a redo
entry, is made up of a group of change vectors, each of which is a description of a

change made to a single block in the database. For example, if you change a salary

value in an employee table, you generate a redo record containing change vectors

that describe changes to the data segment block for the table, the rollback segment

data block, and the transaction table of the rollback segments.

Redo entries record data that you can use to reconstruct all changes made to the

database, including the rollback segments. Therefore, the online redo log also

protects rollback data. When you recover the database using redo data, Oracle reads

the change vectors in the redo records and applies the changes to the relevant

blocks.

Redo records are buffered in a circular fashion in the redo log buffer of the SGA and

are written to one of the online redo log files by the Oracle background process Log

Writer (LGWR). Whenever a transaction is committed, LGWR writes the

transaction’s redo records from the redo log buffer of the SGA to an online redo log

Note: Oracle does not recommend backing up the online redo log.

What Is the Online Redo Log?

Managing the Online Redo Log 6-3

file, and a system change number (SCN) is assigned to identify the redo records for

each committed transaction. Only once all redo records associated with a given

transaction are safely on disk in the online logs is the user process notified that the

transaction has been committed.

Redo records can also be written to an online redo log file before the corresponding

transaction is committed. If the redo log buffer fills, or another transaction commits,

LGWR flushes all of the redo log entries in the redo log buffer to an online redo log

file, even though some redo records may not be committed. If necessary, Oracle can

roll back these changes.

How Oracle Writes to the Online Redo Log
The online redo log of a database consists of two or more online redo log files.

Oracle requires a minimum of two files to guarantee that one is always available for

writing while the other is being archived (if in ARCHIVELOG mode).

LGWR writes to online redo log files in a circular fashion; when the current online

redo log file fills, LGWR begins writing to the next available online redo log file.

When the last available online redo log file is filled, LGWR returns to the first online

redo log file and writes to it, starting the cycle again. Figure 6–1 illustrates the

circular writing of the online redo log file. The numbers next to each line indicate

the sequence in which LGWR writes to each online redo log file.

Filled online redo log files are available to LGWR for re-use depending on whether

archiving is enabled:

■ If archiving is disabled (NOARCHIVELOG mode), a filled online redo log file is

available once the changes recorded in it have been written to the datafiles.

■ If archiving is enabled (ARCHIVELOG mode), a filled online redo log file is

available to LGWR once the changes recorded in it have been written to the

datafiles and once the file has been archived.

What Is the Online Redo Log?

6-4 Oracle8i Administrator’s Guide

Figure 6–1 Circular Use of Online Redo Log Files by LGWR

Active (Current) and Inactive Online Redo Log Files
At any given time, Oracle uses only one of the online redo log files to store redo

records written from the redo log buffer. The online redo log file that LGWR is

actively writing is called the current online redo log file.

Online redo log files that are required for instance recovery are called active online

redo log files. Online redo log files that are not required for instance recovery are

called inactive.

If you have enabled archiving, Oracle cannot re-use or overwrite an active online

log file until ARCn has archived its contents. If archiving is disabled, when the last

online redo log file fills, writing continues by overwriting the first available active

file.

LGWR

1, 4, 7, ...

3, 6, 9, ...

2, 5, 8, ...

Online Redo
Log File

#3

Online Redo
Log File

#2

Online Redo
Log File

#1

Planning the Online Redo Log

Managing the Online Redo Log 6-5

Log Switches and Log Sequence Numbers
A log switch is the point at which Oracle ends writing to one online redo log file and

begins writing to another. A log switch always occurs when the current online redo

log file is completely filled and writing must continue to the next online redo log

file. You can also force log switches manually.

Oracle assigns each online redo log file a new log sequence number every time that a

log switch occurs and LGWR begins writing to it. If Oracle archives online redo log

files, the archived log retains its log sequence number. The online redo log file that

is cycled back for use is given the next available log sequence number.

Each online or archived redo log file is uniquely identified by its log sequence

number. During crash, instance, or media recovery, Oracle properly applies redo log

files in ascending order by using the log sequence number of necessary archived

and online redo log files.

Planning the Online Redo Log
This section describes guidelines you should consider when configuring a database

instance’s online redo log, and includes the following topics:

■ Multiplexing Online Redo Log Files

■ Placing Online Redo Log Members on Different Disks

■ Setting the Size of Online Redo Log Members

■ Choosing the Number of Online Redo Log Files

Multiplexing Online Redo Log Files
Oracle provides the capability to multiplex an instance’s online redo log files to

safeguard against damage to its online redo log files. When multiplexing online

redo log files, LGWR concurrently writes the same redo log information to multiple

identical online redo log files, thereby eliminating a single point of redo log failure.

Note: Oracle recommends that you multiplex your redo log files;

the loss of the log file data can be catastrophic if recovery is

required.

Planning the Online Redo Log

6-6 Oracle8i Administrator’s Guide

Figure 6–2 Multiplexed Online Redo Log Files

The corresponding online redo log files are called groups. Each online redo log file in

a group is called a member. In Figure 6–2, A_LOG1 and B_LOG1 are both members

of Group 1; A_LOG2 and B_LOG2 are both members of Group 2, and so forth. Each

member in a group must be exactly the same size.

Notice that each member of a group is concurrently active, or, concurrently written

to by LGWR, as indicated by the identical log sequence numbers assigned by

LGWR. In Figure 6–2, first LGWR writes to A_LOG1 in conjunction with B_LOG1,

then A_LOG2 in conjunction with B_LOG2, etc. LGWR never writes concurrently to

members of different groups (for example, to A_LOG1 and B_LOG2).

Responding to Online Redo Log Failure
Whenever LGWR cannot write to a member of a group, Oracle marks that member

as stale and writes an error message to the LGWR trace file and to the database’s

alert file to indicate the problem with the inaccessible files. LGWR reacts differently

when certain online redo log members are unavailable, depending on the reason for

the unavailability.

Disk BDisk A

1, 3, 5, ...

2, 4, 6, ...

��
����

Group 1

Group 2

����B_LOG1��
��

B_LOG2

����A_LOG1��
��

A_LOG2

LGWR

Group 1

Group 2

Planning the Online Redo Log

Managing the Online Redo Log 6-7

Legal and Illegal Configurations
To safeguard against a single point of online redo log failure, a multiplexed online

redo log is ideally symmetrical: all groups of the online redo log have the same

number of members. Nevertheless, Oracle does not require that a multiplexed online

redo log be symmetrical. For example, one group can have only one member, while

other groups have two members. This configuration protects against disk failures

that temporarily affect some online redo log members but leave others intact.

The only requirement for an instance’s online redo log is that it have at least two

groups. Figure 6–3 shows legal and illegal multiplexed online redo log

configurations. The second configuration is illegal because it has only one group.

If Then

LGWR can successfully write to at
least one member in a group

Writing proceeds as normal; LGWR simply writes to
the available members of a group and ignores the
unavailable members.

LGWR cannot access the next
group at a log switch because the
group needs to be archived

Database operation temporarily halts until the group
becomes available, or, until the group is archived.

All members of the next group are
inaccessible to LGWR at a log
switch because of media failure

Oracle returns an error and the database instance
shuts down. In this case, you may need to perform
media recovery on the database from the loss of an
online redo log file.

If the database checkpoint has moved beyond the lost
redo log (which is not the current log in this
example), media recovery is not necessary since
Oracle has saved the data recorded in the redo log to
the datafiles. Simply drop the inaccessible redo log
group. If Oracle did not archive the bad log, use
ALTER DATABASE CLEAR UNARCHIVED LOG to
disable archiving before the log can be dropped.

If all members of a group suddenly
become inaccessible to LGWR
while it is writing to them

Oracle returns an error and the database instance
immediately shuts down. In this case, you may need
to perform media recovery. If the media containing
the log is not actually lost— for example, if the drive
for the log was inadvertently turned off — media
recovery may not be needed. In this case, you only
need to turn the drive back on and let Oracle perform
instance recovery.

Planning the Online Redo Log

6-8 Oracle8i Administrator’s Guide

Figure 6–3 Legal and Illegal Multiplexed Online Redo Log Configuration

��
��

A_LOG3Group 3

��
�

Group 1

Group 2

��
Group 3

Group 1

Group 2

ILLEGAL

LEGAL
Disk A

��A_LOG1

��A_LOG2

��
��

B_LOG3

��B_LOG2

Group 3

Group 1

Group 2

Disk A

��A_LOG1

Disk B

��B_LOG1

Disk B

��B_LOG1

Planning the Online Redo Log

Managing the Online Redo Log 6-9

Placing Online Redo Log Members on Different Disks
When setting up a multiplexed online redo log, place members of a group on

different disks. If a single disk fails, then only one member of a group becomes

unavailable to LGWR and other members remain accessible to LGWR, so the

instance can continue to function.

If you archive the redo log, spread online redo log members across disks to

eliminate contention between the LGWR and ARCn background processes. For

example, if you have two groups of duplexed online redo log members, place each

member on a different disk and set your archiving destination to a fifth disk.

Consequently, there is never contention between LGWR (writing to the members)

and ARCn (reading the members).

Datafiles and online redo log files should also be on different disks to reduce

contention in writing data blocks and redo records.

See Also: For more information about how the online redo log affects backup and

recovery, see Oracle8i Backup and Recovery Guide.

Setting the Size of Online Redo Log Members
When setting the size of online redo log files, consider whether you will be

archiving the redo log. Online redo log files should be sized so that a filled group

can be archived to a single unit of offline storage media (such as a tape or disk),

with the least amount of space on the medium left unused. For example, suppose

only one filled online redo log group can fit on a tape and 49% of the tape’s storage

capacity remains unused. In this case, it is better to decrease the size of the online

redo log files slightly, so that two log groups could be archived per tape.

With multiplexed groups of online redo logs, all members of the same group must

be the same size. Members of different groups can have different sizes; however,

there is no advantage in varying file size between groups. If checkpoints are not set

to occur between log switches, make all groups the same size to guarantee that

checkpoints occur at regular intervals.

See Also: The default size of online redo log files is operating system-dependent;

for more details see your operating system-specific Oracle documentation.

Choosing the Number of Online Redo Log Files
The best way to determine the appropriate number of online redo log files for a

database instance is to test different configurations. The optimum configuration has

Planning the Online Redo Log

6-10 Oracle8i Administrator’s Guide

the fewest groups possible without hampering LGWR’s writing redo log

information.

In some cases, a database instance may require only two groups. In other situations,

a database instance may require additional groups to guarantee that a recycled

group is always available to LGWR. During testing, the easiest way to determine if

the current online redo log configuration is satisfactory is to examine the contents of

the LGWR trace file and the database’s alert log. If messages indicate that LGWR

frequently has to wait for a group because a checkpoint has not completed or a

group has not been archived, add groups.

Consider the parameters that can limit the number of online redo log files before

setting up or altering the configuration of an instance’s online redo log. The

following parameters limit the number of online redo log files that you can add to a

database:

■ The MAXLOGFILES parameter used in the CREATE DATABASE statement

determines the maximum number of groups of online redo log files per

database; group values can range from 1 to MAXLOGFILES. The only way to

override this upper limit is to re-create the database or its control file; thus, it is

important to consider this limit before creating a database. If MAXLOGFILES is not

specified for the CREATE DATABASE statement, Oracle uses an operating system

default value.

■ The LOG_FILES initialization parameter (in the parameter file) can temporarily

decrease the maximum number of groups of online redo log files for the

duration of the current instance. Nevertheless, LOG_FILES cannot override

MAXLOGFILES to increase the limit. If LOG_FILES is not set in the database’s

parameter file, Oracle uses an operating system-specific default value.

■ The MAXLOGMEMBERS parameter used in the CREATE DATABASE

statement determines the maximum number of members per group. As with

MAXLOGFILES, the only way to override this upper limit is to re-create the

database or control file; thus, it is important to consider this limit before creating a

database. If no MAXLOGMEMBERS parameter is specified for the CREATE

DATABASE statement, Oracle uses an operating system default value.

See Also: For the default and legal values of the MAXLOGFILES and

MAXLOGMEMBERS parameters, and the LOG_FILES initialization parameter, see

your operating system-specific Oracle documentation.

Creating Online Redo Log Groups and Members

Managing the Online Redo Log 6-11

Creating Online Redo Log Groups and Members
You can create groups and members of online redo log files during or after database

creation. Plan the online redo log of a database and create all required groups and

members of online redo log files during database creation. To create new online

redo log groups and members, you must have the ALTER DATABASE system

privilege.

In some cases, you might need to create additional groups or members of online

redo log files. For example, adding groups to an online redo log can correct redo log

group availability problems. A database can have up to MAXLOGFILES groups.

Creating Online Redo Log Groups
To create a new group of online redo log files, use the SQL statement ALTER

DATABASE with the ADD LOGFILE parameter.

The following statement adds a new group of redo logs to the database:

ALTER DATABASE ADD LOGFILE (’/oracle/dbs/log1c.rdo’, ’/oracle/dbs/log2c.rdo’) SIZE 500K;

Using the ALTER DATABASE statement with the ADD LOGFILE option, you can

specify the number that identifies the group with the GROUP option:

ALTER DATABASE ADD LOGFILE GROUP 10 (’/oracle/dbs/log1c.rdo’, ’/oracle/dbs/log2c.rdo’)
SIZE 500K;

Using group numbers can make administering redo log groups easier. However, the

group number must be between 1 and MAXLOGFILES; do not skip redo log file

group numbers (that is, do not number your groups 10, 20, 30, and so on), or you

will consume space in the control files of the database.

Creating Online Redo Log Members
In some cases, you might not need to create a complete group of online redo log

files; the group may already exist, but not be complete because one or more

Note: Use fully specify filenames of new log members to indicate

where the operating system file should be created; otherwise, the

file is created in the default directory of the database server, which

is operating system-dependent. To reuse an existing operating

system file, you do not have to indicate the file size.

Renaming and Relocating Online Redo Log Members

6-12 Oracle8i Administrator’s Guide

members of the group were dropped (for example, because of a disk failure). In this

case, you can add new members to an existing group.

To create new online redo log members for an existing group, use the SQL

statement ALTER DATABASE with the ADD LOG MEMBER parameter.

The following statement adds a new redo log member to redo log group number 2:

ALTER DATABASE ADD LOGFILE MEMBER ’/oracle/dbs/log2b.rdo’ TO GROUP 2;

Notice that filenames must be specified, but sizes need not be; the size of the new

members is determined from the size of the existing members of the group.

When using the ALTER DATABASE command, you can alternatively identify the

target group by specifying all of the other members of the group in the TO

parameter, as shown in the following example:

ALTER DATABASE ADD LOGFILE MEMBER ’/oracle/dbs/log2c.rdo’ TO
(’/oracle/dbs/log2a.rdo’, ’/oracle/dbs/log2b.rdo’);

Renaming and Relocating Online Redo Log Members
You can rename online redo log members to change their locations. This procedure

is necessary, for example, if the disk currently used for some online redo log files is

going to be removed, or if datafiles and a number of online redo log files are stored

on the same disk and should be separated to reduce contention.

To rename online redo log members, you must have the ALTER DATABASE system

privilege. Additionally, you might also need operating system privileges to copy

files to the desired location and privileges to open and back up the database.

Before renaming any online redo log members, ensure that the new online redo log

files already exist.

Note: Fully specify the filenames of new log members to indicate

where the operating system files should be created; otherwise, the

files will be created in the default directory of the database server.

WARNING: The following steps only modify the internal file
pointers in a database’s control files; they do not physically
rename or create any operating system files. Use your computer’s
operating system to copy the existing online redo log files to the
new location.

Renaming and Relocating Online Redo Log Members

Managing the Online Redo Log 6-13

To Rename Online Redo Log Members

1. Back up the database.

Before making any structural changes to a database, such as renaming or

relocating online redo log members, completely back up the database

(including the control file) in case you experience any problems while

performing this operation.

2. Copy the online redo log files to the new location.

Operating system files, such as online redo log members, must be copied using

the appropriate operating system commands. See your operating system

manual for more information about copying files.

3. Rename the online redo log members.

Use the ALTER DATABASE statement with the RENAME FILE clause to

rename the database’s online redo log files.

4. Open the database for normal operation.

The online redo log alterations take effect the next time that the database is

opened. Opening the database may require shutting down the current instance

(if the database was previously opened by the current instance) or just opening

the database using the current instance.

5. Back up the control file.

As a precaution, after renaming or relocating a set of online redo log files,

immediately back up the database’s control file.

The following example renames the online redo log members. However, first

assume that:

■ The database is currently mounted by, but closed to, the instance.

■ The log files are located on two disk: diska and diskb .

■ The online redo log is duplexed: one group consists of the members /diska/
logs/log1a.rdo and /diskb/logs/log1b.rdo , and the second group

consists of the members /diska/logs/log2a.rdo and /diskb/logs/
log2b.rdo .

Note: You can execute an operating system command to copy a

file without exiting SQL*Plus by using the HOST command.

Dropping Online Redo Log Groups and Members

6-14 Oracle8i Administrator’s Guide

■ The online redo log files located on diska must be relocated to diskc . The

new filenames will reflect the new location: /diskc/logs/log1c.rdo and /
diskc/logs/log2c.rdo .

The files /diska/logs/log1a.rdo and /diska/logs/log2a.rdo on diska
must be copied to the new files /diskc/logs/log1c.rdo and /diskc/logs/
log2c.rdo on diskc .

ALTER DATABASE RENAME FILE ’ /diska/logs/log1a.rdo’, ’/diska/logs/log2a.rdo’
TO ’/diskc/logs/log1c.rdo’, ’/diskc/logs/log2c.rdo’;

Dropping Online Redo Log Groups and Members
In some cases, you may want to drop an entire group of online redo log members.

For example, you want to reduce the number of groups in an instance’s online redo

log. In a different case, you may want to drop one or more specific online redo log

members. For example, if a disk failure occurs, you may need to drop all the online

redo log files on the failed disk so that Oracle does not try to write to the

inaccessible files. In other situations, particular online redo log files become

unnecessary; for example, a file might be stored in an inappropriate location.

Dropping Log Groups
To drop an online redo log group, you must have the ALTER DATABASE system

privilege. Before dropping an online redo log group, consider the following

restrictions and precautions:

■ An instance requires at least two groups of online redo log files, regardless of

the number of members in the groups. (A group is one or more members.)

■ You can drop an online redo log group only if it is not the active group. If you

need to drop the active group, first force a log switch to occur; see "Forcing Log

Switches" on page 6-16.

■ Make sure an online redo log group is archived (if archiving is enabled) before

dropping it. To see whether this has happened, use the SQL*Plus ARCHIVE

LOG statement with the LIST parameter.

Drop an online redo log group with the SQL statement ALTER DATABASE with the

DROP LOGFILE clause.

The following statement drops redo log group number 3:

ALTER DATABASE DROP LOGFILE GROUP 3;

Dropping Online Redo Log Groups and Members

Managing the Online Redo Log 6-15

When an online redo log group is dropped from the database, the operating system

files are not deleted from disk. Rather, the control files of the associated database are

updated to drop the members of the group from the database structure. After

dropping an online redo log group, make sure that the drop completed successfully,

and then use the appropriate operating system command to delete the dropped

online redo log files.

Dropping Online Redo Log Members
To drop an online redo log member, you must have the ALTER DATABASE system

privilege.

Consider the following restrictions and precautions before dropping individual

online redo log members:

■ It is permissible to drop online redo log files so that a multiplexed online redo

log becomes temporarily asymmetric. For example, if you use duplexed groups

of online redo log files, you can drop one member of one group, even though all

other groups have two members each. However, you should rectify this

situation immediately so that all groups have at least two members, and

thereby eliminate the single point of failure possible for the online redo log.

■ An instance always requires at least two valid groups of online redo log files,

regardless of the number of members in the groups. (A group is one or more

members.) If the member you want to drop is the last valid member of the

group, you cannot drop the member until the other members become valid; to

see a redo log file’s status, use the V$LOGFILE view. A redo log file becomes

INVALID if Oracle cannot access it. It becomes STALE if Oracle suspects that it

is not complete or correct; a stale log file becomes valid again the next time its

group is made the active group.

■ You can drop an online redo log member only if it is not part of an active group.

If you want to drop a member of an active group, first force a log switch to

occur.

■ Make sure the group to which an online redo log member belongs is archived

(if archiving is enabled) before dropping the member. To see whether this has

happened, use the SQL*Plus ARCHIVE LOG command with the LIST

parameter.

To drop specific inactive online redo log members, use the SQL ALTER DATABASE

statement with the DROP LOGFILE MEMBER clause.

The following statement drops the redo log /oracle/dbs/log3c.rdo :

Forcing Log Switches

6-16 Oracle8i Administrator’s Guide

ALTER DATABASE DROP LOGFILE MEMBER ’/oracle/dbs/log3c.rdo’;

When an online redo log member is dropped from the database, the operating

system file is not deleted from disk. Rather, the control files of the associated

database are updated to drop the member from the database structure. After

dropping an online redo log file, make sure that the drop completed successfully,

and then use the appropriate operating system command to delete the dropped

online redo log file.

See Also: For information on dropping a member of an active group, see "Forcing

Log Switches" on page 6-16.

For more information about SQL*Plus command syntax, see the SQL*Plus User’s
Guide and Reference.

Forcing Log Switches
A log switch occurs when LGWR stops writing to one online redo log group and

starts writing to another. By default, a log switch occurs automatically when the

current online redo log file group fills.

You can force a log switch to make the currently active group inactive and available

for online redo log maintenance operations. For example, you want to drop the

currently active group, but are not able to do so until the group is inactive. You may

also wish to force a log switch if the currently active group needs to be archived at a

specific time before the members of the group are completely filled; this option is

useful in configurations with large online redo log files that take a long time to fill.

To force a log switch, you must have the ALTER SYSTEM privilege. To force a log switch, use

either the SQL statement ALTER SYSTEM with the SWITCH LOGFILE option.

The following statement forces a log switch:

ALTER SYSTEM SWITCH LOGFILE;

See Also: For information on forcing log switches with the Oracle Parallel Server,

see Oracle8i Parallel Server Concepts and Administration.

Verifying Blocks in Redo Log Files
You can configure Oracle to use checksums to verify blocks in the redo log files. Set

the initialization parameter LOG_BLOCK_CHECKSUM to TRUE to enable redo log

block checking. The default value of LOG_BLOCK_CHECKSUM is FALSE.

Clearing an Online Redo Log File

Managing the Online Redo Log 6-17

If you enable redo log block checking, Oracle computes a checksum for each redo log

block written to the current log. Oracle writes the checksums in the header of the

block.

Oracle uses the checksum to detect corruption in a redo log block. Oracle tries to

verify the redo log block when it writes the block to an archive log file and when the

block is read from an archived log during recovery.

If Oracle detects a corruption in a redo log block while trying to archive it, the

system tries to read the block from another member in the group. If the block is

corrupted in all members the redo log group, then archiving cannot proceed.

Clearing an Online Redo Log File
If you have enabled redo log block checking, Oracle verifies each block before

archiving it. If a particular redo log block is corrupted in all members of a group,

archiving stops. Eventually all the redo logs become filled and database activity is

halted until archiving can resume.

In this situation, use the SQL statement ALTER DATABASE ... CLEAR LOGFILE to

clear the corrupted redo logs and avoid archiving them. The cleared redo logs are

available for use even though they were not archived.

The following statement clears the log files in redo log group number 3:

ALTER DATABASE CLEAR UNARCHIVED LOGFILE GROUP 3;

Restrictions
You can clear a redo log file whether it is archived or not. When it is not archived,

however, you must include the keyword UNARCHIVED in your ALTER

DATABASE CLEAR LOGFILE statement.

If you clear a log file that is needed for recovery of a backup, then you can no longer

recover from that backup. Oracle writes a message in the alert log describing the

backups from which you cannot recover.

If you want to clear an unarchived redo log that is needed to bring an offline

tablespace online, use the clause UNRECOVERABLE DATAFILE in the ALTER

DATABASE CLEAR LOGFILE statement.

Note: If you clear an unarchived redo log file, you should make

another backup of the database.

Listing Information about the Online Redo Log

6-18 Oracle8i Administrator’s Guide

If you clear a redo log needed to bring an offline tablespace online, you will not be

able to bring the tablespace online again. You will have to drop the tablespace or

perform an incomplete recovery. Note that tablespaces taken offline normal do not

require recovery.

See Also: For a complete description of the ALTER DATABASE statement, see the

Oracle8i SQL Reference.

Listing Information about the Online Redo Log
Use the VLOG, VLOGFILE, and V$THREAD views to see information about the

online redo log of a database; the V$THREAD view is of particular interest for

Parallel Server administrators.

The following query returns information about the online redo log of a database

used without the Parallel Server:

SELECT group#, bytes, members FROM sys.v$log;

GROUP# BYTES MEMBERS
---------- ---------- ----------
 1 81920 2
 2 81920 2

To see the names of all of the member of a group, use a query similar to the

following:

SELECT * FROM sys.v$logfile
 WHERE group# = 2;

GROUP# STATUS MEMBER
---------- ---------- ---------
 2 LOG2A
 2 STALE LOG2B
 2 LOG2C

If STATUS is blank for a member, then the file is in use.

Managing Archived Redo Logs 7-1

7
Managing Archived Redo Logs

This chapter describes how to archive redo data. It includes the following topics:

■ What Is the Archived Redo Log?

■ Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

■ Turning Archiving On and Off

■ Specifying the Archive Destination

■ Specifying the Mode of Log Transmission

■ Managing Archive Destination Failure

■ Tuning Archive Performance

■ Displaying Archived Redo Log Information

■ Using LogMiner to Analyze Online and Archived Redo Logs

See Also: If you are using Oracle with the Parallel Server, see Oracle8i Parallel Server
Concepts and Administration for additional information about archiving in the OPS

environment.

What Is the Archived Redo Log?

7-2 Oracle8i Administrator’s Guide

What Is the Archived Redo Log?
Oracle allows you to save filled groups of online redo log files, known as archived
redo logs, to one or more offline destinations. Archiving is the process of turning

online redo logs into archived redo logs. The background process ARCn automates

archiving operations. You can use archived logs to:

■ Recover a database.

■ Update a standby database.

■ Gain information about the history of a database via the LogMiner utility.

An archived redo log file is a copy of one of the identical filled members of an

online redo log group: it includes the redo entries present in the identical members

of a group and also preserves the group’s unique log sequence number. For

example, if you are multiplexing your online redo logs, and if Group 1 contains

member files A_LOG1 and B_LOG1, then ARCn will archive one of these identical

members. Should A_LOG1 become corrupted, then ARCn can still archive the

identical B_LOG1.

If you enable archiving, LGWR is not allowed to re-use and hence overwrite an

online redo log group until it has been archived. Therefore, the archived redo log

contains a copy of every group created since you enabled archiving. Figure 7–1

shows how ARCn archives redo logs:

What Is the Archived Redo Log?

Managing Archived Redo Logs 7-3

Figure 7–1 Archival of online redo logs

WARNING: Oracle recommends that you do not copy a current
online log. If you do, and then restore that copy, the copy will
appear at the end of the redo thread. Since additional redo may
have been generated in the thread, when you attempt to execute
recovery by supplying the redo log copy, recovery will
erroneously detect the end of the redo thread and prematurely
terminate, possibly corrupting the database. The best way to back
up the contents of the current online log is always to archive it,
then back up the archived log.

Destination
1

Destination
2

LOG4
(inactive)

LOG3
(inactive)

LOG2
(inactive)

LOG1
(inactive)

LGWR

LOG5
(active)

ARC1ARC0 ARC2

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

7-4 Oracle8i Administrator’s Guide

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
This section describes the issues you must consider when choosing to run your

database in NOARCHIVELOG or ARCHIVELOG mode, and includes the following

topics:

■ Running a Database in NOARCHIVELOG Mode

■ Running a Database in ARCHIVELOG Mode

Running a Database in NOARCHIVELOG Mode
When you run your database in NOARCHIVELOG mode, you disable the archiving

of the online redo log. The database’s control file indicates that filled groups are not

required to be archived. Therefore, when a filled group becomes inactive after a log

switch, the group is available for reuse by LGWR.

The choice of whether to enable the archiving of filled groups of online redo log

files depends on the availability and reliability requirements of the application

running on the database. If you cannot afford to lose any data in your database in

the event of a disk failure, use ARCHIVELOG mode. Note that the archiving of

filled online redo log files can require you to perform extra administrative

operations.

NOARCHIVELOG mode protects a database only from instance failure, but not

from media failure. Only the most recent changes made to the database, which are

stored in the groups of the online redo log, are available for instance recovery. In

other words, if you are using NOARCHIVELOG mode, you can only restore (not

recover) the database to the point of the most recent full database backup. You

cannot recover subsequent transactions.

Also, in NOARCHIVELOG mode you cannot perform online tablespace backups.

Furthermore, you cannot use online tablespace backups previously taken while the

database operated in ARCHIVELOG mode. You can only use whole database

backups taken while the database is closed to restore a database operating in

NOARCHIVELOG mode. Therefore, if you decide to operate a database in

NOARCHIVELOG mode, take whole database backups at regular, frequent

intervals.

Running a Database in ARCHIVELOG Mode
When you run a database in ARCHIVELOG mode, you enable the archiving of the

online redo log. The database control file indicates that a group of filled online redo

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

Managing Archived Redo Logs 7-5

log files cannot be used by LGWR until the group is archived. A filled group is

immediately available for archiving after a redo log switch occurs.

The archiving of filled groups has these advantages:

■ A database backup, together with online and archived redo log files, guarantees

that you can recover all committed transactions in the event of an operating

system or disk failure.

■ You can use a backup taken while the database is open and in normal system

use if you keep an archived log.

■ You can keep a standby database current with its original database by

continually applying the original’s archived redo logs to the standby.

Decide how you plan to archive filled groups of the online redo log. You can

configure an instance to archive filled online redo log files automatically, or you can

archive manually. For convenience and efficiency, automatic archiving is usually

best. Figure 7–2 illustrate how the process archiving the filled groups (ARCn in this

illustration) generates the database’s online redo log.

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

7-6 Oracle8i Administrator’s Guide

Figure 7–2 Online Redo Log File Use in ARCHIVELOG Mode

Distributed Database Recovery If all databases in a distributed database operate in

ARCHIVELOG mode, you can perform coordinated distributed database recovery.

If any database in a distributed database uses NOARCHIVELOG mode, however,

recovery of a global distributed database (to make all databases consistent) is

limited by the last full backup of any database operating in NOARCHIVELOG

mode.

See Also: You can also configure Oracle to verify redo log blocks when they are

archived. For more information, see "Verifying Blocks in Redo Log Files" on

page 6-16.

LGWR

ARCH ARCH ARCH

LGWR LGWR

0001

0002

0001

0002

0003

TIME

LGWR

Archived
Redo Log
Files

Online
Redo Log
Files

Log
0004

Log
0003

Log
0002

0001 0002

0001

0003

0002

0001

Log
0001

Turning Archiving On and Off

Managing Archived Redo Logs 7-7

Turning Archiving On and Off
This section describes aspects of archiving, and includes the following topics:

■ Setting the Initial Database Archiving Mode

■ Changing the Database Archiving Mode

■ Enabling Automatic Archiving

■ Disabling Automatic Archiving

■ Performing Manual Archiving

See Also: If a database is automatically created during Oracle installation, the initial

archiving mode of the database is operating system specific. See your operating

system-specific Oracle documentation.

Setting the Initial Database Archiving Mode
You set a database’s initial archiving mode as part of database creation in the

CREATE DATABASE statement. Usually, you can use the default of

NOARCHIVELOG mode at database creation because there is no need to archive

the redo information generated then. After creating the database, decide whether to

change from the initial archiving mode.

Changing the Database Archiving Mode
To switch a database’s archiving mode between NOARCHIVELOG and

ARCHIVELOG mode, use the SQL statement ALTER DATABASE with the

ARCHIVELOG or NOARCHIVELOG option. The following statement switches the

database’s archiving mode from NOARCHIVELOG to ARCHIVELOG:

ALTER DATABASE ARCHIVELOG;

Before switching the database’s archiving mode, perform the following operations:

1. Shut down the database instance.

An open database must be closed and dismounted and any associated instances

shut down before you can switch the database’s archiving mode. You cannot

disable archiving if any datafiles need media recovery.

2. Back up the database.

Before making any major change to a database, always back up the database to

protect against any problems.

Turning Archiving On and Off

7-8 Oracle8i Administrator’s Guide

3. Start a new instance and mount but do not open the database.

To enable or disable archiving, the database must be mounted but not open.

4. Switch the database’s archiving mode.

After using the ALTER DATABASE command to switch a database’s archiving

mode, open the database for normal operation. If you switched to ARCHIVELOG

mode, you should also set the archiving options—decide whether to enable Oracle

to archive groups of online redo log files automatically as they fill.

If you want to archive filled groups, you may have to execute some additional

steps, depending on your operating system; see your O/S-specific Oracle

documentation for details for your system.

See Also: See Oracle8i Parallel Server Concepts and Administration for more

information about switching the archiving mode when using the Oracle Parallel

Server.

Enabling Automatic Archiving
If your operating system permits, you can enable automatic archiving of the online

redo log. Under this option, no action is required to copy a group after it fills; Oracle

automatically archives it. For this convenience alone, automatic archiving is the

method of choice for archiving.

You can enable automatic archiving before or after instance startup. To enable

automatic archiving after instance startup, you must be connected to Oracle with

administrator privileges.

See Also: Always specify an archived redo log destination and filename format

when enabling automatic archiving; see "Specifying Archive Destinations" on

page 7-11. If automatic archiving is enabled, you can still perform manual archiving;

see "Performing Manual Archiving" on page 7-10.

Note: If you are using the Oracle Parallel Server, you must mount

the database exclusively, using one instance, to switch the

database’s archiving mode.

WARNING: Oracle does not automatically archive log files
unless the database is also in ARCHIVELOG mode.

Turning Archiving On and Off

Managing Archived Redo Logs 7-9

Enabling Automatic Archiving at Instance Startup
To enable automatic archiving of filled groups each time an instance is started,

include the initialization parameter LOG_ARCHIVE_START parameter in the

database’s parameter file and set it to TRUE:

LOG_ARCHIVE_START=TRUE

The new value takes effect the next time you start the database.

Enabling Automatic Archiving After Instance Startup
To enable automatic archiving of filled online redo log groups without shutting

down the current instance, use the SQL statement ALTER SYSTEM with the

ARCHIVE LOG START parameter; you can optionally include the archiving

destination.

ALTER SYSTEM ARCHIVE LOG START;

If you use the ALTER SYSTEM method, you do not need to shut down the instance

to enable automatic archiving. If an instance is shut down and restarted after

automatic archiving is enabled, however, the instance is reinitialized using the

settings of the parameter file, which may or may not enable automatic archiving.

Disabling Automatic Archiving
You can disable automatic archiving of the online redo log groups at any time. Once

you disable automatic archiving, however, you must manually archive groups of

online redo log files in a timely fashion. If you run a database in ARCHIVELOG

mode and disable automatic archiving, and if all groups of online redo log files are

filled but not archived, then LGWR cannot reuse any inactive groups of online redo

log groups to continue writing redo log entries. Therefore, database operation is

temporarily suspended until you perform the necessary archiving.

You can disable automatic archiving at or after instance startup. To disable

automatic archiving after instance startup, you must be connected with

administrator privilege and have the ALTER SYSTEM privilege.

Disabling Automatic Archiving at Instance Startup
To disable the automatic archiving of filled online redo log groups each time a

database instance is started, set the LOG_ARCHIVE_START parameter of a

database’s parameter file to FALSE:

LOG_ARCHIVE_START=FALSE

Turning Archiving On and Off

7-10 Oracle8i Administrator’s Guide

The new value takes effect the next time the database is started.

Disabling Automatic Archiving after Instance Startup
To disable the automatic archiving of filled online redo log groups without shutting

down the current instance, use the SQL statement ALTER SYSTEM with the

ARCHIVE LOG STOP parameter. The following statement stops archiving:

ALTER SYSTEM ARCHIVE LOG STOP;

If ARCn is archiving a redo log group when you attempt to disable automatic

archiving, ARCn finishes archiving the current group, but does not begin archiving

the next filled online redo log group.

The instance does not have to be shut down to disable automatic archiving. If an

instance is shut down and restarted after automatic archiving is disabled, however,

the instance is reinitialized using the settings of the parameter file, which may or

may not enable automatic archiving.

Performing Manual Archiving
If you operate your database in ARCHIVELOG mode, then you must archive

inactive groups of filled online redo log files. You can manually archive groups of

the online redo log whether or not automatic archiving is enabled:

■ If automatic archiving is not enabled, then you must manually archive groups

of filled online redo log files in a timely fashion. If all online redo log groups are

filled but not archived, LGWR cannot reuse any inactive groups of online redo

log members to continue writing redo log entries. Therefore, database operation

is temporarily suspended until the necessary archiving is performed.

■ If automatic archiving is enabled, but you want to rearchive an inactive group

of filled online redo log members to another location, you can use manual

archiving. Note that the instance can decide to reuse the redo log group before

you have finished manually archiving, and thereby overwrite the files; if this

happens, Oracle will put an error message in the ALERT file.

To archive a filled online redo log group manually, connect with administrator

privileges. Use the SQL statement ALTER SYSTEM with the ARCHIVE LOG clause

to manually archive filled online redo log files. The following statement archives all

unarchived log files:

ALTER SYSTEM ARCHIVE LOG ALL;

Specifying the Archive Destination

Managing Archived Redo Logs 7-11

See Also: With both manual or automatic archiving, you need to specify a thread

only when you are using the Oracle Parallel Server. See Oracle8i Parallel Server
Concepts and Administration for more information.

Specifying the Archive Destination
When archiving redo logs, determine the destination to which you will archive. You

should familiarize yourself with the various destination states as well as the

practice of using fixed views to access archive information.

Specifying Archive Destinations
You must decide whether to make a single destination for the logs or multiplex them,

i.e., archive the logs to more than one location.

Specify the number of locations for your primary database archived logs by setting

the following initialization parameters:

The first method is to use the LOG_ARCHIVE_DEST_n parameter (where n is an

integer from 1 to 5) to specify from one to five different destinations for archival.

Each numerically-suffixed parameter uniquely identifies an individual destination,

For example, LOG_ARCHIVE_DEST_1, LOG_ARCHIVE_DEST_2, and so on.

Specify the location for LOG_ARCHIVE_DEST_n using these keywords:

Parameter Host Example

LOG_ARCHIVE_DEST_n
(where n is an integer from 1 to 5)

Remote
or local

LOG_ARCHIVE_DEST_1 = ’LOCATION =
/disk1/arc’

LOG_ARCHIVE_DEST_2 = ’SERVICE =
standby1’

LOG_ARCHIVE_DEST and
LOG_ARCHIVE_DUPLEX_DEST

Local
only

LOG_ARCHIVE_DEST = /oracle/arc

LOG_ARCHIVE_DUPLEX_DEST = /bak

Keyword Indicates Example

LOCATION A local filesystem
location.

LOG_ARCHIVE_DEST_1= 'LOCATION=/arc'

SERVICE Remote archival via
Net8 service name.

LOG_ARCHIVE_DEST_2 = 'SERVICE=standby1'

Specifying the Archive Destination

7-12 Oracle8i Administrator’s Guide

If you use the LOCATION keyword, specify a valid pathname for your operating

system. If you specify SERVICE, Oracle translates the net service name through the

tnsnames.ora file to a connect descriptor. The descriptor contains the information

necessary for connecting to the remote database. Note that the service name must

have an associated database SID, so that Oracle correctly updates the log history of

the control file for the standby database.

The second method, which allows you to specify a maximum of two locations, is to

use the LOG_ARCHIVE_DEST parameter to specify a primary archive destination

and the LOG_ARCHIVE_DUPLEX_DEST to determine an optional secondary
location. Whenever Oracle archives a redo log, it archives it to every destination

specified by either set of parameters.

To Set the Destination for Archived Redo Logs Using LOG_ARCHIVE_DEST_ n:

1. Use SQL*Plus to shut down the database.

 SHUTDOWN IMMEDIATE;

2. Edit the LOG_ARCHIVE_DEST_n parameter to specify from one to five

archiving locations. The LOCATION keyword specifies an O/S-specific

pathname. For example, enter:

 LOG_ARCHIVE_DEST_1 = ’LOCATION = /disk1/archive’
 LOG_ARCHIVE_DEST_2 = ’LOCATION = /disk2/archive’
 LOG_ARCHIVE_DEST_3 = ’LOCATION = /disk3/archive’

If you are archiving to a standby database, use the SERVICE keyword to specify

a valid net service name from the tnsnames.ora file. For example, enter:

 LOG_ARCHIVE_DEST_4 = ’SERVICE = standby1’

3. Edit the LOG_ARCHIVE_FORMAT parameter, using %s to include the log

sequence number as part of the filename and %t to include the thread number.

Use capital letters (%S and %T) to pad the filename to the left with zeroes. For

example, enter:

 LOG_ARCHIVE_FORMAT = arch%s.arc

For example, the above settings will generate archived logs as follows for log

sequence numbers 100, 101, and 102:

 /disk1/archive/arch100.arc, /disk1/archive/arch101.arc, /disk1/archive/arch102.arc
 /disk2/archive/arch100.arc, /disk2/archive/arch101.arc, /disk2/archive/arch102.arc
 /disk3/archive/arch100.arc, /disk3/archive/arch101.arc, /disk3/archive/arch102.arc

Specifying the Archive Destination

Managing Archived Redo Logs 7-13

To Set the Destination for Archived Redo Logs Using LOG_ARCHIVE_DEST and
LOG_ARCHIVE_DUPLEX_DEST:

1. Use SQL*Plus to shut down the database.

 SHUTDOWN IMMEDIATE;

2. Specify destinations for the LOG_ARCHIVE_DEST and

LOG_ARCHIVE_DUPLEX_DEST parameter (you can also specify

LOG_ARCHIVE_DUPLEX_DEST dynamically using the ALTER SYSTEM

command). For example, enter:

 LOG_ARCHIVE_DEST = ’/disk1/archive’
 LOG_ARCHIVE_DUPLEX_DEST = ’/disk2/archive’

3. Edit the LOG_ARCHIVE_FORMAT parameter, using %s to include the log

sequence number as part of the filename and %t to include the thread number.

Use capital letters (%S and %T) to pad the filename to the left with zeroes. For

example, enter:

 LOG_ARCHIVE_FORMAT = arch_%t_%s.arc

For example, the above settings will generate archived logs as follows for log

sequence numbers 100 and 101 in thread 1:

 /disk1/archive/arch_1_100.arc, /disk1/archive/arch_1_101.arc
 /disk2/archive/arch_1_100.arc, /disk2/archive/arch_1_100.arc

See Also: For more information about archiving to standby databases, see Oracle8i
Backup and Recovery Guide.

Understanding Archive Destination States
The LOG_ARCHIVE_DEST_STATE_n (where n is an integer from 1 to 5) parameter

identifies the status of the specified destination. The destination parameters can

have two values: ENABLE and DEFER. ENABLE indicates that Oracle can use the

destination, whereas DEFER indicates that it should not.

Each archive destination has three variable characteristics:

■ Valid/Invalid, which indicates whether the disk location or service name

information is specified.

■ Enabled/Disabled, which indicates whether Oracle should use the destination

information.

Specifying the Mode of Log Transmission

7-14 Oracle8i Administrator’s Guide

■ Active/Inactive, which indicates whether there was a problem accessing the

destination.

Several destination states are possible. Obtain the current destination status

information for each instance by querying the V$ARCHIVE_DEST view. You will

access the most recently entered parameter definition—which does not necessarily

contain the complete archive destination data.

The status information that appears in the view is shown in Table 7–1:

See Also: For detailed information about V$ARCHIVE_DEST as well as the archive

destination parameters, see the Oracle8i Reference.

Specifying the Mode of Log Transmission
There are two modes of transmitting archived logs to their destination: normal
archiving transmission and standby transmission mode. Normal transmission involves

Table 7–1 Destination States

VALID ENABLED ACTIVE State Meaning

FALSE N/A N/A INACTIVE The user has not provided or
has deleted the destination
information.

TRUE TRUE TRUE VALID The user has properly
initialized the destination,
which is available for
archiving.

TRUE TRUE FALSE ERROR An error occurred creating or
writing to the destination file;
refer to error data.

TRUE FALSE TRUE DEFERRED The user manually and
temporarily disabled the
destination.

TRUE FALSE FALSE DISABLED The user manually and
temporarily disabled the
destination following an error;
refer to error data.

N/A N/A N/A BAD
PARAM

A parameter error occurred;
refer to error data. Usually this
state is only seen when
LOG_ARCHIVE_START is not
set.

Specifying the Mode of Log Transmission

Managing Archived Redo Logs 7-15

transmitting files to a local disk. Standby transmission involves transmitting files

via a network to either a local or remote standby database.

Normal Transmission Mode
In normal transmission mode, the archiving destination is another disk drive of the

database server, since in this configuration archiving does not contend with other

files required by the instance and completes quickly so the group can become

available to LGWR. Specify the destination with either the

LOG_ARCHIVE_DEST_n or LOG_ARCHIVE_DEST parameters.

Ideally, you should permanently move archived redo log files and corresponding

database backups from the local disk to inexpensive offline storage media such as

tape. Because a primary value of archived logs is database recovery, you want to

ensure that these logs are safe should disaster strike your primary database.

Standby Transmission Mode
In standby transmission mode, the archiving destination is either a local or remote

standby database.

If you are operating your standby database in managed recovery mode, you can keep

your standby database in sync with your source database by automatically

applying transmitted archive logs.

To transmit files successfully to a standby database, either ARCn or a server process

must do the following:

■ Recognize a remote location.

■ Transmit the archived logs by means of a remote file server (RFS) process.

Each ARCn process creates a corresponding RFS for each standby destination. For

example, if three ARCn processes are archiving to two standby databases, then

Oracle establishes six RFS connections.

You can transmit archived logs through a network to a remote location by using

Net8. Indicate a remote archival by specifying a Net8 service name as an attribute of

the destination. Oracle then translates the service name, which you set by means of

WARNING: You can maintain a standby database on a local disk,
but Oracle strongly encourages you to maximize disaster
protection by maintaining your standby database at a remote site.

Managing Archive Destination Failure

7-16 Oracle8i Administrator’s Guide

the SERVICE_NAME parameter, through the tnsnames.ora file to a connect
descriptor. The descriptor contains the information necessary for connecting to the

remote database. Note that the service name must have an associated database SID,

so that Oracle correctly updates the log history of the control file for the standby

database.

The RFS process, which runs on the destination node, acts as a network server to

the ARCn client. Essentially, ARCn pushes information to RFS, which transmits it to

the standby database.

The RFS process, which is required when archiving to a remote destination, is

responsible for the following tasks:

■ Consuming network I/O from the ARCn process.

■ Creating file names on the standby database by using the

STANDBY_ARCHIVE_DEST parameter.

■ Populating the log files at the remote site.

■ Updating the standby database’s control file (which Recovery Manager can

then use for recovery).

Archived redo logs are integral to maintaining a standby database, which is an exact

replica of a database. You can operate your database in standby archiving mode,

which automatically updates a standby database with archived redo logs from the

original database.

See Also: For a detailed description of standby databases, see the relevant chapter

in the Oracle8i Backup and Recovery Guide.

For information about Net8, see the Net8 Administrator’s Guide.

Managing Archive Destination Failure
Sometimes archive destinations can fail, which can obviously cause problems when

you operate in automatic archiving mode. To minimize the problems associated

with destination failure, Oracle8i allows you to specify:

■ The minimum number of destinations to which Oracle must successfully

archive.

■ When and how often ARCn attempts to re-archive to a failed destination.

Managing Archive Destination Failure

Managing Archived Redo Logs 7-17

Specifying the Minimum Number of Successful Destinations
The optional parameter LOG_ARCHIVE_MIN_SUCCEED_DEST=n (where n is an

integer from 1 to 5) determines the minimum number of destinations to which

Oracle must successfully archive a redo log group before it can reuse online log

files. The default value is 1.

Specifying Mandatory and Optional Destinations
Using the LOG_ARCHIVE_DEST_n parameter, you can specify whether a

destination has the attributes OPTIONAL (default) or MANDATORY. The

LOG_ARCHIVE_MIN_SUCCEED_DEST=n parameter uses all MANDATORY

destinations plus some number of OPTIONAL non-standby destinations to

determine whether LGWR can over-write the online log.

When determining whether how to set your parameters, note that:

■ Not specifying MANDATORY for a destination is the same as specifying

OPTIONAL.

■ You must have at least one local destination, which you can declare OPTIONAL

or MANDATORY.

■ When using LOG_ARCHIVE_MIN_SUCCEED_DEST=n at least one local

destination will operationally be treated as MANDATORY, since the minimum

value for LOG_ARCHIVE_MIN_SUCCEED_DEST is 1.

■ The failure of any MANDATORY destination, including a MANDATORY

standby destination, makes the LOG_ARCHIVE_MIN_SUCCEED_DEST

parameter irrelevant.

■ The LOG_ARCHIVE_MIN_SUCCEED_DEST value cannot be greater than the

number of destinations, nor greater than the number of MANDATORY

destinations plus the number of OPTIONAL local destinations.

■ If you DEFER a MANDATORY destination, and Oracle overwrites the online

log without transferring the archived log to the standby site, then you must

transfer the log to the standby manually.

If you wish, you can also determine whether destinations are mandatory or

optional by using the LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST

parameters. Note the following rules:

■ Any destination declared via LOG_ARCHIVE_DEST is mandatory.

Managing Archive Destination Failure

7-18 Oracle8i Administrator’s Guide

■ Any destination declared via LOG_ARCHIVE_DUPLEX_DEST is optional if

LOG_ARCHIVE_MIN_SUCCEED_DEST = 1 and mandatory if

LOG_ARCHIVE_MIN_SUCCEED_DEST = 2.

Sample Scenarios
You can see the relationship between the LOG_ARCHIVE_DEST_n and

LOG_ARCHIVE_MIN_SUCCEED_DEST parameters most easily through sample

scenarios. In example 1, you archive to three local destinations, each of which you

declare as OPTIONAL. Table 7–2 illustrates the possible values for

LOG_ARCHIVE_MIN_SUCCEED_DEST=n in our example.

This example shows that even though you do not explicitly set any of your

destinations to MANDATORY using the LOG_ARCHIVE_DEST_n parameter,

Oracle must successfully archive to these locations when

LOG_ARCHIVE_MIN_SUCCEED_DEST is set to 1, 2, or 3.

In example 2, consider a case in which:

■ You specify two MANDATORY destinations.

■ You specify two OPTIONAL destinations.

■ No destination is a standby database.

Table 7–2 LOG_ARCHIVE_MIN_SUCCEED_DEST Values for Example 1

Value Meaning

1 Oracle can reuse log files only if at least one of the OPTIONAL destinations
succeeds.

2 Oracle can reuse log files only if at least two of the OPTIONAL destinations
succeed.

3 Oracle can reuse log files only if all of the OPTIONAL destinations succeed.

4 ERROR: The value is greater than the number of destinations.

5 ERROR: The value is greater than the number of destinations.

Managing Archive Destination Failure

Managing Archived Redo Logs 7-19

Table 7–3 shows the possible values for LOG_ARCHIVE_MIN_SUCCEED_DEST=n:

This example shows that Oracle must archive to the destinations you specify as

MANDATORY, regardless of whether you set

LOG_ARCHIVE_MIN_SUCCEED_DEST to archive to a smaller number.

See Also: For additional information about

LOG_ARCHIVE_MIN_SUCCEED_DEST=n or any other parameters that relate to

archiving, see the Oracle8i Reference.

Re-Archiving to a Failed Destination
Use the REOPEN attribute of the LOG_ARCHIVE_DEST_n parameter to determine

whether and when ARCn attempts to re-archive to a failed destination following an

error. REOPEN applies to all errors, not just OPEN errors.

REOPEN=n sets the minimum number of seconds before ARCn should try to

reopen a failed destination. The default value for n is 300 seconds. A value of 0 is

the same as turning off the REOPEN option, in other words, ARCn will not attempt

to archive after a failure. If you do not specify the REOPEN keyword, ARCn will

never reopen a destination following an error.

You cannot use REOPEN to specify a limit on the number of attempts to reconnect

and transfer archived logs. The REOPEN attempt either succeeds or fails, in which

case the REOPEN information is reset.

If you specify REOPEN for an OPTIONAL destination, Oracle can overwrite online

logs if there is an error. If you specify REOPEN for a MANDATORY destination,

Oracle stalls the production database when it cannot successfully archive. This

scenario requires you to:

■ Archive manually to the failed destination.

Table 7–3 LOG_ARCHIVE_MIN_SUCCEED_DEST Values for Example 2

Value Meaning

1 Oracle ignores the value and uses the number of MANDATORY destinations
(in this example, 2).

2 Oracle can reuse log files even if no OPTIONAL destination succeeds.

3 Oracle can reuse logs only if at least one OPTIONAL destination succeeds.

4 Oracle can reuse logs only if both OPTIONAL destinations succeed.

5 ERROR: The value is greater than the number of destinations.

Tuning Archive Performance

7-20 Oracle8i Administrator’s Guide

■ Change the destination by deferring the destination, specifying the destination

as optional, or changing the service.

■ Drop the destination.

When using the REOPEN keyword, note that:

■ ARCn reopens a destination only when starting an archive operation from the

beginning of the log file, never during a current operation. ARCn always retries

the log copy from the beginning.

■ If a REOPEN time was specified or defaulted, ARCn checks to see whether the

time of the recorded error plus the REOPEN interval is less than the current

time. If it is, ARCn retries the log copy.

■ The REOPEN clause successfully affects the ACTIVE=TRUE destination state;

the VALID and ENABLED states are not changed.

Tuning Archive Performance
For most databases, ARCn has no effect on overall system performance. On some

large database sites, however, archiving can have an impact on system performance.

On one hand, if ARCn works very quickly, overall system performance can be

reduced while ARCn runs, since CPU cycles are being consumed in archiving. On

the other hand, if ARCn runs extremely slowly, it has little detrimental effect on

system performance, but it takes longer to archive redo log files, and can create a

bottleneck if all redo log groups are unavailable because they are waiting to be

archived.

Use the following methods to tune archiving:

■ Specifying Multiple ARCn Processes

■ Setting Archive Buffer Parameters

See Also: For more information about tuning a database, see Oracle8i Tuning.

Specifying Multiple ARC n Processes
Specify up to ten ARCn processes for each database instance. Enable the multiple

processing feature at startup or at runtime by setting the parameter

LOG_ARCHIVE_MAX_PROCESSES=n (where n is any integer from 1 to 10). By

default, the parameter is set to 0.

Because LGWR automatically increases the number of ARCn processes should the

current number be insufficient to handle the current workload, the parameter is

Tuning Archive Performance

Managing Archived Redo Logs 7-21

intended to allow you to specify the initial number of ARCn processes or to increase

or decrease the current number.

Creating multiple processes is especially useful when you:

■ Use more than two online redo logs.

■ Archive to more than one destination.

Multiple ARCn processing prevents the bottleneck that occurs when LGWR

switches through the multiple online redo logs faster than a single ARCn process

can write inactive logs to multiple destinations. Note that each ARCn process works

on only one inactive log at a time, but must archive to each specified destination.

For example, if you maintain five online redo log files, then you may decide to start

the instance using three ARCn processes. As LGWR actively writes to one of the log

files, the ARCn processes can simultaneously archive up to three of the inactive log

files to various destinations. As Figure illustrates, each instance of ARCn assumes

responsibility for a single log file and archives it to all of the defined destinations.

Tuning Archive Performance

7-22 Oracle8i Administrator’s Guide

Figure 7–3 Using Multiple Arch Processes

Setting Archive Buffer Parameters
This section describes aspects of using the archive buffer initialization parameters

for tuning, and includes the following topics:

■ Minimizing the Impact on System Performance

■ Improving Archiving Speed

You can tune archiving to cause it to run either as slowly as possible without being

a bottleneck or as quickly as possible without reducing system performance

substantially. To do so, adjust the values of the initialization parameters

LOG_ARCHIVE_BUFFERS (the number of buffers allocated to archiving) and

LOG_ARCHIVE_BUFFER_SIZE (the size of each such buffer).

Note: When you change the value of LOG_ARCHIVE_BUFFERS

or LOG_ARCHIVE_BUFFER_SIZE, the new value takes effect the

next time you start the instance.

Destination
1

Destination
2

LOG4
(inactive)

LOG3
(inactive)

LOG2
(inactive)

LOG1
(inactive)

LGWR

LOG5
(active)

ARC1ARC0 ARC2

Displaying Archived Redo Log Information

Managing Archived Redo Logs 7-23

Minimizing the Impact on System Performance
To make ARCn work as slowly as possible without forcing the system to wait for

redo logs, begin by setting the number of archive buffers

(LOG_ARCHIVE_BUFFERS) to 1 and the size of each buffer

(LOG_ARCHIVE_BUFFER_SIZE) to the maximum possible.

If the performance of the system drops significantly while ARCn is working, make

the value of LOG_ARCHIVE_BUFFER_SIZE lower until system performance is no

longer reduced when ARCn runs.

Improving Archiving Speed
To improve archiving performance, use multiple archive buffers to force the ARCn
process or processes to read the archive log at the same time that they write the

output log. You can set LOG_ARCHIVE_BUFFERS to 2, but for a very fast tape

drive you may want to set it to 3 or more. Then,set the size of the archive buffers to

a moderate number, and increase it until archiving is as fast as you want it to be

without impairing system performance.

See Also: This maximum is operating system dependent; see your operating

system-specific Oracle documentation. For more information about the

LOG_ARCHIVE parameters, see the Oracle8i Reference.

Displaying Archived Redo Log Information
There are several fixed views that contain useful information about archived redo

logs.

Note: If you want to set archiving to be very slow, but find that

Oracle frequently has to wait for redo log files to be archived before

they can be reused, you can create additional redo log file groups.

Adding groups can ensure that a group is always available for

Oracle to use.

Fixed View Description

V$DATABASE Identifies whether the database is in ARCHIVELOG or
NOARCHIVELOG mode.

Displaying Archived Redo Log Information

7-24 Oracle8i Administrator’s Guide

For example, the following query displays which online redo log group requires

archiving:

SELECT group#, archived
 FROM sys.v$log;

GROUP# ARC
---------- ---
1 YES
2 NO

To see the current archiving mode, query the V$DATABASE view:

SELECT log_mode FROM sys.v$database;

LOG_MODE

NOARCHIVELOG

The SQL statement ARCHIVE LOG LIST also shows archiving information for the

connected instance:

ARCHIVE LOG LIST;

V$ARCHIVED_LOG Displays historical archived log information from the
control file. If you use a recovery catalog, the
RC_ARCHIVED_LOG view contains similar
information.

V$ARCHIVE_DEST Describes the current instance, all archive destinations,
and the current value, mode, and status of these
destinations.

V$BACKUP_REDOLOG Contains information about any backups of archived
logs. If you use a recovery catalog, the
RC_BACKUP_REDOLOG contains similar
information.

V$LOG Displays all online redo log groups for the database
and indicates which need to be archived.

V$LOG_HISTORY Contains log history information such as which logs
have been archived and the SCN range for each
archived log.

Fixed View Description

Using LogMiner to Analyze Online and Archived Redo Logs

Managing Archived Redo Logs 7-25

Database log mode ARCHIVELOG
Automatic archival ENABLED
Archive destination destination
Oldest online log sequence 30
Next log sequence to archive 32
Current log sequence number 33

This display tells you all the necessary information regarding the archived redo log

settings for the current instance:

■ The database is currently operating in ARCHIVELOG mode.

■ Automatic archiving is enabled.

■ The destination of the archived redo log (operating system specific).

■ The oldest filled online redo log group has a sequence number of 30.

■ The next filled online redo log group to archive has a sequence number of 32.

■ The current online redo log file has a sequence number of 33.

You must archive all redo log groups with a sequence number equal to or greater

than the Next log sequence to archive, yet less than the Current log sequence number. For

example, the display above indicates that the online redo log group with sequence

number 32 needs to be archived.

See Also: For more information on the data dictionary views, see the Oracle8i
Reference.

Using LogMiner to Analyze Online and Archived Redo Logs
The Oracle utility LogMiner allows you to read information contained in online and

archived redo logs based on selection criteria. LogMiner’s fully relational SQL

interface provides direct access to a complete historical view of a database—without

forcing you to restore archived redo log files.

This section contains the following topics:

■ How Can You Use LogMiner?

■ Restrictions

■ Creating a Dictionary File

■ Specifying Redo Logs for Analysis

■ Using LogMiner

Using LogMiner to Analyze Online and Archived Redo Logs

7-26 Oracle8i Administrator’s Guide

■ Using LogMiner: Scenarios

How Can You Use LogMiner?
LogMiner is especially useful for identifying and undoing logical corruption.

LogMiner processes redo log files, translating their contents into SQL statements

that represent the logical operations performed to the database. The

V$LOGMNR_CONTENTS view then lists the reconstructed SQL statements that

represent the original operations (SQL_REDO column) and the corresponding SQL

statement to undo the operations (SQL_UNDO column). Apply the SQL_UNDO

statements to roll back the original changes to the database.

Furthermore, you can use the V$LOGMNR_CONTENTS view to:

■ Determine when a logical corruption to the database may have begun,

pinpointing the time or SCN to which you need to perform incomplete

recovery.

■ Track changes to a specific table.

■ Track changes made by a specific user.

■ Map data access patterns.

■ Use archived data for tuning and capacity planning.

See Also: For more information about the LogMiner data dictionary views, see the

Oracle8i Reference.

Restrictions
LogMiner has the following usage and compatibility requirements. LogMiner only:

■ Runs in Oracle version 8.1 or later.

■ Analyzes redo log files from any version 8.0 or later database that uses the same

database character set and runs on the same hardware platform as the

analyzing instance.

■ Analyzes the contents of the redo log files completely with the aid of a

dictionary created by a PL/SQL package. The dictionary allows LogMiner to

translate internal object identifiers and data types to object name and external

data formats.

■ Obtains information about DML operations on conventional tables. It does not

support operations on:

Using LogMiner to Analyze Online and Archived Redo Logs

Managing Archived Redo Logs 7-27

■ Index-organized tables

■ Clustered tables/indexes

■ Non-scalar data types

■ Chained rows

Creating a Dictionary File
LogMiner runs in an Oracle instance with the database either mounted or

unmounted. LogMiner uses a dictionary file, which is a special file that indicates the

database that created it as well as the time the file was created. The dictionary file is

not required, but is recommended.

Without a dictionary file, the equivalent SQL statements will use Oracle internal

object IDs for the object name and present column values as hex data. For example,

instead of the SQL statement:

INSERT INTO emp(name, salary) VALUES ('John Doe', 50000);

LogMiner will display:

insert into Object#2581(col#1, col#2) values (hextoraw('4a6f686e20446f65'),
hextoraw('c306'));"

Create a dictionary file by mounting a database and then extracting dictionary

information into an external file. You must create the dictionary file from the same

database that generated the log files you want to analyze. Once created, you can use

the dictionary file to analyze redo logs.

When creating the dictionary, specify the following:

■ DICTIONARY_FILENAME to name the dictionary file.

■ DICTIONARY_LOCATION to specify the location of the file.

To Create a Dictionary File on an Oracle8 i Database:

1. Make sure to specify a directory for use by the PL/SQL procedure by setting

the init.ora parameter UTL_FILE_DIR. If you do not reference this

parameter, the procedure will fail. For example, set the following to use /
oracle/logs :

 UTL_FILE_DIR = /oracle/logs

2. Use SQL*Plus to mount and then open the database whose files you want to

analyze. For example, enter:

Using LogMiner to Analyze Online and Archived Redo Logs

7-28 Oracle8i Administrator’s Guide

 STARTUP

3. Execute the PL/SQL procedure DBMS_LOGMNR_D.BUILD. Specify both a

filename for the dictionary and a directory pathname for the file. This

procedure creates the dictionary file, which you should use to analyze log files.

For example, enter the following to create file dictionary.ora in /oracle/
logs :

 EXECUTE dbms_logmnr_d.build(
 dictionary_filename =>'dictionary.ora',
 dictionary_location => '/oracle/logs');

To Create a Dictionary File on an Oracle8 Database:

Although LogMiner only runs on databases of release 8.1 or higher, you can use it

to analyze redo logs from release 8.0 databases.

1. Use an O/S utility to copy the dbmslogmnrd.sql script, which is contained in

the $ORACLE_HOME/rdbms/admin directory on the Oracle8i database, to the

same directory in the Oracle8 database. For example, enter:

 % cp /8.1/oracle/rdbms/admin/dbmslogmnrd.sql /8.0/oracle/rdbms/admin/dbmslogmnrd.sql

2. Use SQL*Plus to mount and then open the database whose files you want to

analyze. For example, enter:

 STARTUP

3. Execute the copied dbmslogmnrd.sql script on the 8.0 database to create the

DBMS_LOGMNR_D package. For example, enter:

 @dbmslogmnrd.sql

4. Specify a directory for use by the PL/SQL package by setting the init.ora
parameter UTL_FILE_DIR. If you do not reference this parameter, the

procedure will fail. For example, set the following to use /8.0/oracle/logs :

 UTL_FILE_DIR = /8.0/oracle/logs

5. Execute the PL/SQL procedure DBMS_LOGMNR_D.BUILD. Specify both a

filename for the dictionary and a directory pathname for the file. This

procedure creates the dictionary file, which you should use to analyze log files.

For example, enter the following to create file dictionary.ora in /8.0/
oracle/logs :

 EXECUTE dbms_logmnr_d.build(
 dictionary_filename =>'dictionary.ora',
 dictionary_location => '/8.0/oracle/logs');

Using LogMiner to Analyze Online and Archived Redo Logs

Managing Archived Redo Logs 7-29

See Also: For information about DBMS_LOGMNR_D, see the Oracle8i Supplied
Packages Reference.

Specifying Redo Logs for Analysis
Once you have created a dictionary file, you can begin analyzing redo logs. Your

first step is to specify the log files that you want to analyze using the

ADD_LOGFILE procedure. Use the following constants:

■ NEW to create a new list.

■ ADDFILE to add redo logs to a list.

■ REMOVEFILE to remove redo logs from the list.

To Use the LogMiner:

1. Use SQL*Plus to start an Oracle instance, with the database either mounted or

unmounted. For example, enter:

 startup

2. Create a list of logs by specifying the NEW option when executing the

DBMS_LOGMNR.ADD_LOGFILE procedure. For example, enter the following

to specify /oracle/logs/log1.f :

 execute dbms_logmnr.add_logfile(
 LogFileName => '/oracle/logs/log1.f',
 Options => dbms_logmnr.NEW);

3. If desired, add more logs by specifying the ADDFILE option. For example,

enter the following to add /oracle/logs/log2.f :

 execute dbms_logmnr.add_logfile(
 LogFileName => '/oracle/logs/log2.f',
 Options => dbms_logmnr.ADDFILE);

4. If desired, remove logs by specifying the REMOVEFILE option. For example,

enter the following to remove /oracle/logs/log2.f :

 execute dbms_logmnr.add_logfile(
 LogFileName => '/oracle/logs/log2.f',
 Options => dbms_logmnr.REMOVEFILE);

See Also: For information about DBMS_LOGMNR, see the Oracle8i Supplied
Packages Reference.

Using LogMiner to Analyze Online and Archived Redo Logs

7-30 Oracle8i Administrator’s Guide

Using LogMiner
Once you have created a dictionary file and specified which logs to analyze, you can

start LogMiner and begin your analysis. Use the following options to narrow the

range of your search at start time:

Once you have started LogMiner, you can make use of the following data dictionary

views for analysis:

To Use the LogMiner:

1. Issue the DBMS_LOGMNR.START_LOGMNR procedure to start the LogMiner

utility. For example, to start LogMiner using /oracle/dictionary.ora ,

issue:

 execute dbms_logmnr.start_logmnr(
 DictFileName =>'/oracle/dictionary.ora');

Optionally, set the StartTime and EndTime parameters to filter data by time.

Note that the procedure expects date values: use the TO_DATE function to

specify date and time, as in this example:

 execute dbms_logmnr.start_logmnr(
 DictFileName => ‘/oracle/dictionary.ora’,
 StartTime => to_date(‘01-Jan-98 08:30:00’, 'DD-MON-YYYY HH:MI:SS')
 EndTime => to_date('01-Jan-1998 08:45:00', 'DD-MON-YYYY HH:MI:SS'));

This option Specifies

StartScn The beginning of an SCN range.

EndScn The termination of an SCN range.

StartTime The beginning of a time interval.

EndTime The end of a time interval.

DictFileName The name of the dictionary file.

This view Displays information about

V$LOGMNR_DICTIONARY The dictionary file in use.

V$LOGMNR_PARAMETERS Current parameter settings for the LogMiner.

V$LOGMNR_FILES Which redo log files are being analyzed.

V$LOGMNR_CONTENTS The contents of the redo log files being analyzed.

Using LogMiner to Analyze Online and Archived Redo Logs

Managing Archived Redo Logs 7-31

Use the StartScn and EndScn parameters to filter data by SCN, as in this

example:

 execute dbms_logmnr.start_logmnr(
 DictFileName => '/oracle/dictionary.ora',
 StartScn => 100,
 EndScn => 150);

2. View the output via the V$LOGMNR_CONTENTS table. LogMiner returns all

rows in SCN order, which is the same order applied in media recovery. For

example, the following query lists information about operations:

SELECT operation, sql_redo FROM v$logmnr_contents;
OPERATION SQL_REDO
--------- --
INTERNAL
INTERNAL
START set transaction read write;
UPDATE update SYS.UNDO$ set NAME = 'RS0', USER# = 1, FILE# = 1, BLOCK# = 2450, SCNBAS =
COMMIT commit;
START set transaction read write;
UPDATE update SYS.UNDO$ set NAME = 'RS0', USER# = 1, FILE# = 1, BLOCK# = 2450, SCNBAS =
COMMIT commit;
START set transaction read write;
UPDATE update SYS.UNDO$ set NAME = 'RS0', USER# = 1, FILE# = 1, BLOCK# = 2450, SCNBAS =
COMMIT commit;
11 rows selected.

See Also: For information about DBMS_LOGMNR, see the Oracle8i Supplied
Packages Reference.

For more information about the LogMiner data dictionary views, see Oracle8i
Reference.

Analyzing Archived Redo Log Files from Other Databases You can run LogMiner on an

instance of a database while analyzing redo log files from a different database. To

analyze archived redo log files from other databases, LogMiner must:

■ Access a dictionary file that is both created from the same database as the redo

log files and created with the same database character set.

■ Run on the same hardware platform that generated the log files, although it

does not need to be on the same system.

■ Use redo log files that can be applied for recovery from Oracle version 8.0 and

later.

Using LogMiner to Analyze Online and Archived Redo Logs

7-32 Oracle8i Administrator’s Guide

Using LogMiner: Scenarios
This section contains the following LogMiner scenarios:

■ Tracking a User

■ Calculating Table Access Statistics

Tracking a User
In this example, you are interested in seeing all changes to the database in a specific

time range by one of yours users: JOEDEVO. You perform this operation in the

following steps:

■ Step 1: Creating the Dictionary

■ Step 2: Adding Logs and Limiting the Search Range

■ Step 3: Starting the LogMiner and Analyzing the Data

Step 1: Creating the Dictionary To use the LogMiner to analyze JOEDEVO’s data, you

must create a dictionary file before starting LogMiner.

You decide to do the following:

■ Call the dictionary file orc1dict.ora.

■ Place the dictionary in directory /user/local/dbs .

■ Set the initialization parameter UTL_FILE_DIR to /user/local/dbs.

Set the initialization parameter UTL_FILE_DIR in the init.ora file
UTL_FILE_DIR = /user/local/dbs

Start SQL*Plus and then connect to the database
connect system/manager

Open the database to create the dictionary file
startup

Create the dictionary file
execute dbms_logmnr_d.build(
dictionary_filename => ‘orcldict.ora’,
dictionary_location => ‘/usr/local/dbs’);

The dictionary has been created and can be used later
shutdown;

Using LogMiner to Analyze Online and Archived Redo Logs

Managing Archived Redo Logs 7-33

Step 2: Adding Logs and Limiting the Search Range Now that the dictionary is created,

you decide to view the changes that happened at a specific time. You do the

following:

■ Create a list of log files for use and specify log log1orc1.ora .

■ Add log log2orc1.ora to the list.

■ Start LogMiner and limit the search to the range between 8:30 a.m. and 8:45

a.m. on January 1, 1998.

Start SQL*Plus, connect as SYSTEM, then start the instance
connect system/manager
startup nomount

Supply the list of logfiles to the reader. The Options flag is set to indicate this is a
new list.

execute dbms_logmnr.add_logfile(Options => dbms_logmnr.NEW,
LogFileName => ‘log1orc1.ora’);

Add a file to the existing list. The Options flag is clear to indicate that you are
adding a file to the existing list

execute dbms_logmnr.add_logfile(Options => dbms_logmnr.ADDFILE,
LogFileName => ‘log2orc1.ora’);

Step 3: Starting the LogMiner and Analyzing the Data At this point the

V$LOGMNR_CONTENTS table is available for queries. You decide to find all

changes made by user JOEDEVO to the salary table. As you discover, JOEDEVO

requested two operations: he deleted his old salary and then inserted a new, higher

salary. You now have the data necessary to undo this operation (and perhaps to

justify firing JOEDEVO!).

Start the LogMiner. Limit the search to the specified time range.
execute dbms_logmnr.start_logmnr(
DictFileName => ‘orcldict.ora’,
StartTime => to_date(‘01-Jan-98 08:30:00’, 'DD-MON-YYYY HH:MI:SS')
EndTime => to_date('01-Jan-1998 08:45:00', 'DD-MON-YYYY HH:MI:SS'));

SELECT sql_redo, sql_undo FROM v$logmnr_contents
WHERE username = ‘JOEDEVO’ AND tablename = ‘SALARY’;

The following data is displayed (properly formatted)

SQL_REDO SQL_UNDO
-------- --------
delete * from SALARY insert into SALARY(NAME,EMPNO, SAL)

Using LogMiner to Analyze Online and Archived Redo Logs

7-34 Oracle8i Administrator’s Guide

where EMPNO = 12345 values (‘JOEDEVO’, 12345,500)
and ROWID = ‘AAABOOAABAAEPCABA’;

insert into SALARY(NAME, EMPNO, SAL) delete * from SALARY
values(‘JOEDEVO’,12345,2500) where EMPNO = 12345
 and ROWID = ‘AAABOOAABAAEPCABA’;
2 rows selected

Calculating Table Access Statistics
The redo logs generated by Oracle RDBMS contain the history of all changes made

to the database. Mining the redo logs can thus generate a wealth of information that

can be used for tuning the database. In this example, you manage a direct

marketing database and want to determine how productive the customer contacts

have been in generating revenue for a two week period in August.

First, you start LogMiner and specify a range of times:

execute dbms_logmnr.start_logmnr(
StartTime => ‘07-Aug-98’,
EndTime => ‘15-Aug-98’,
DictFileName => ‘/usr/local/dict.ora’);

Next, you query V$LOGMNR_CONTENTS to determine which tables have been

modified in the time range you specified:

select seg_owner, seg_name, count(*) as Hits from
V$LOGMNR_CONTENTS where seg_name not like ‘%$’ group by
seg_owner, seg_name;

SEG_OWNER SEG_NAME Hits
--------- -------- ----
CUST ACCOUNT 384
SCOTT EMP 12
SYS DONOR 12
UNIV DONOR 234
UNIV EXECDONOR 325
UNIV MEGADONOR 32

See Also: For detailed information about V$LOGMNR_CONTENTS or any of the

LogMiner views or initialization parameters, see the Oracle8i Reference.

For information about DBMS_LOGMNR.ADD_LOGFILE or any other PL/SQL

packages, see the Oracle8i Supplied Packages Reference.

Managing Job Queues 8-1

8
Managing Job Queues

This chapter describes how to use job queues to schedule periodic execution of

PL/SQL code, and includes the following topics:

■ SNP Background Processes

■ Managing Job Queues

■ Viewing Job Queue Information

SNP Background Processes

8-2 Oracle8i Administrator’s Guide

SNP Background Processes
This section describes SNP background processes and their role in managing job

queues, and includes the following topics:

■ Multiple SNP processes

■ Starting up SNP processes

You can schedule routines to be performed periodically using the job queue. A

routine is any PL/SQL code. To schedule a job, you submit it to the job queue and

specify the frequency at which the job is to be run. You can also alter, disable, or

delete jobs you have submitted.

To maximize performance and accommodate many users, a multi-process Oracle

system uses some additional processes called background processes. Background

processes consolidate functions that would otherwise be handled by multiple

Oracle programs running for each user process. Background processes

asynchronously perform I/O and monitor other Oracle processes to provide

increased parallelism for better performance and reliability.

SNP background processes execute job queues. SNP processes periodically wake up

and execute any queued jobs that are due to be run. You must have at least one SNP

process running to execute your queued jobs in the background.

SNP background processes differ from other Oracle background processes, in that

the failure of an SNP process does not cause the instance to fail. If an SNP process

fails, Oracle restarts it.

SNP background processes will not execute jobs if the system has been started in

restricted mode. However, you can use the ALTER SYSTEM command to turn this

behavior on and off as follows:

ALTER SYSTEM ENABLE RESTRICTED SESSION;
ALTER SYSTEM DISABLE RESTRICTED SESSION;

When you ENABLE a restricted session, SNP background processes do not execute

jobs; when you DISABLE a restricted session, SNP background processes execute

jobs.

See Also: For more information on SNP background processes, see Oracle8i
Concepts.

Managing Job Queues

Managing Job Queues 8-3

Multiple SNP processes
An instance can have up to 36 SNP processes, named SNP0 to SNP9, and SNPA to

SNPZ. If an instance has multiple SNP processes, the task of executing queued jobs

can be shared across these processes, thus improving performance. Note, however,

that each job is run at any point in time by only one process. A single job cannot be

shared simultaneously by multiple SNP processes.

Starting up SNP processes
Job queue initialization parameters enable you to control the operation of the SNP

background processes. When you set these parameters in the initialization

parameter file for an instance, they take effect the next time you start the instance.

Table 8–1 describes the job queue initialization parameters.

Managing Job Queues
This section describes the various aspects of managing job queues, and includes the

following topics:

■ DBMS_JOB Package

■ Submitting a Job to the Job Queue

■ How Jobs Execute

■ Removing a Job from the Job Queue

Table 8–1 Job Queue Initialization Parameters

Parameter Name Description

JOB_QUEUE_PROCESSES Default: 0

Range of values: 0...36

Multiple instances: can have different
values

Sets the number of SNP background processes
per instance.

JOB_QUEUE_INTERVAL Default: 60 (seconds)

Range of values: 1...3600 (seconds)

Multiple instances: can have different
values

Sets the interval between wake-ups for the
SNP background processes of the instance.

Managing Job Queues

8-4 Oracle8i Administrator’s Guide

■ Altering a Job

■ Broken Jobs

■ Forcing a Job to Execute

■ Terminating a Job

DBMS_JOB Package
To schedule and manage jobs in the job queue, use the procedures in the DBMS_JOB

package. There are no database privileges associated with using job queues. Any

user who can execute the job queue procedures can use the job queue. Table 8–2 lists

the job queue procedures in the DBMS_JOB package.

Submitting a Job to the Job Queue
To submit a new job to the job queue, use the SUBMIT procedure in the DBMS_JOB

package:

DBMS_JOB.SUBMIT(job OUT BINARY_INTEGER,
 what IN VARCHAR2,
 next_date IN DATE DEFAULT SYSDATE,

Table 8–2 Procedures in the DBMS_JOB Package

Procedure Description Described

SUBMIT Submits a job to the job queue. on page 8-4

REMOVE Removes a specified job from the
job queue.

 on page 8-11

CHANGE Alters a specified job. You can alter
the job description, the time at
which the job will be run, or the
interval between executions of the
job.

 on page 8-11

WHAT Alters the job description for a
specified job.

 on page 8-11

NEXT_DATE Alters the next execution time for a
specified job.

 on page 8-12

INTERVAL Alters the interval between
executions for a specified job.

 on page 8-12

BROKEN Disables job execution. If a job is
marked as broken, Oracle does not
attempt to execute it.

 on page 8-12

RUN Forces a specified job to run. on page 8-13

Managing Job Queues

Managing Job Queues 8-5

 interval IN VARCHAR2 DEFAULT ’null’,
 no_parse IN BOOLEAN DEFAULT FALSE)

The SUBMIT procedure returns the number of the job you submitted. Table 8–3

describes the procedure’s parameters.

As an example, let’s submit a new job to the job queue. The job calls the procedure

DBMS_DDL.ANALYZE_OBJECT to generate optimizer statistics for the table

DQUON.ACCOUNTS. The statistics are based on a sample of half the rows of the

ACCOUNTS table. The job is run every 24 hours:

VARIABLE jobno number;
begin
 2> DBMS_JOB.SUBMIT(:jobno,
 3> ’dbms_ddl.analyze_object(’’TABLE’’,
 4> ’’DQUON’’, ’’ACCOUNTS’’,
 5> ’’ESTIMATE’’, NULL, 50);’
 6> SYSDATE, ’SYSDATE + 1’);
 7> commit;

Table 8–3 Parameters for DBMS_JOB.SUBMIT

Parameter Description

job This is the identifier assigned to the job you created. You must
use the job number whenever you want to alter or remove the
job.

For more information about job numbers, see "Job Numbers" on
page 8-7.

what This is the PL/SQL code you want to have executed.

For more information about defining a job, see "Job Definitions"
on page 8-7.

next_date This is the next date when the job will be run. The default value
is SYSDATE.

interval This is the date function that calculates the next time to execute
the job. The default value is NULL. INTERVAL must evaluate to
a future point in time or NULL.

For more information on how to specify an execution interval,
see "Job Execution Interval" on page 8-8.

no_parse This is a flag. The default value is FALSE.

If NO_PARSE is set to FALSE (the default), Oracle parses the
procedure associated with the job. If NO_PARSE is set to TRUE,
Oracle parses the procedure associated with the job the first time
that the job is executed. If, for example, you want to submit a job
before you have created the tables associated with the job, set
NO_PARSE to TRUE.

Managing Job Queues

8-6 Oracle8i Administrator’s Guide

 8> end;
 9> /
Statement processed.
print jobno
JOBNO

14144

Job Environment
When you submit a job to the job queue or alter a job’s definition, Oracle records the

following environment characteristics:

■ the current user

■ the user submitting or altering a job

■ the current schema

■ MAC privileges (if appropriate)

Oracle also records the following NLS parameters:

■ NLS_LANGUAGE

■ NLS_TERRITORY

■ NLS_CURRENCY

■ NLS_ISO_CURRENCY

■ NLS_NUMERIC_CHARACTERS

■ NLS_DATE_FORMAT

■ NLS_DATE_LANGUAGE

■ NLS_SORT

Oracle restores these environment characteristics every time a job is executed.

NLS_LANGUAGE and NLS_TERRITORY parameters are defaults for unspecified

NLS parameters.

You can change a job’s environment by using the DBMS_SQL package and the

ALTER SESSION command.

Managing Job Queues

Managing Job Queues 8-7

Jobs and Import/Export
Jobs can be exported and imported. Thus, if you define a job in one database, you

can transfer it to another database. When exporting and importing jobs, the job’s

number, environment, and definition remain unchanged.

Job Owners
When you submit a job to the job queue, Oracle identifies you as the owner of the

job. Only a job’s owner can alter the job, force the job to run, or remove the job from

the queue.

Job Numbers
A queued job is identified by its job number. When you submit a job, its job number

is automatically generated from the sequence SYS.JOBSEQ.

Once a job is assigned a job number, that number does not change. Even if the job is

exported and imported, its job number remains the same.

Job Definitions
The job definition is the PL/SQL code specified in the WHAT parameter of the SUBMIT

procedure.

Normally the job definition is a single call to a procedure. The procedure call can

have any number of parameters.

Note: If the job number of a job you want to import matches the

number of a job already existing in the database, you will not be

allowed to import that job. Submit the job as a new job in the

database.

Note: In the job definition, use two single quotation marks around

strings. Always include a semicolon at the end of the job definition.

Managing Job Queues

8-8 Oracle8i Administrator’s Guide

There are special parameter values that Oracle recognizes in a job definition.

Table 8–4 lists these parameters.

The following are examples of valid job definitions:

’myproc(’’10-JAN-82’’, next_date, broken);’
’scott.emppackage.give_raise(’’JFEE’’, 3000.00);’
’dbms_job.remove(job);’

Job Execution Interval
The INTERVAL date function is evaluated immediately before a job is executed. If

the job completes successfully, the date calculated from INTERVAL becomes the

new NEXT_DATE. If the INTERVAL date function evaluates to NULL and the job

completes successfully, the job is deleted from the queue.

If a job should be executed periodically at a set interval, use a date expression

similar to ’SYSDATE + 7’ in the INTERVAL parameter. For example, if you set the

execution interval to ’SYSDATE + 7’ on Monday, but for some reason (such as a

network failure) the job is not executed until Thursday, ’SYSDATE + 7’ then

executes every Thursday, not Monday.

If you always want to automatically execute a job at a specific time, regardless of the

last execution (for example, every Monday), the INTERVAL and NEXT_DATE

parameters should specify a date expression similar to

’NEXT_DAY(TRUNC(SYSDATE), "MONDAY")’.

Table 8–4 Special Parameter Values for Job Definitions

Parameter Mode Description

job IN The number of the current job.

next_date IN/OUT The date of the next execution of the job.
The default value is SYSDATE.

broken IN/OUT Status of job, broken or not broken. The
IN value is FALSE.

Managing Job Queues

Managing Job Queues 8-9

Table 8–5 lists some common date expressions used for job execution intervals.

Database Links and Jobs
If you submit a job that uses a database link, the link must include a username and

password. Anonymous database links will not succeed.

See Also: For more information on the DBMS_SQL package, see the Oracle8i Supplied
Packages Reference.

How Jobs Execute
SNP background processes execute jobs. To execute a job, the process creates a

session to run the job.

When an SNP process runs a job, the job is run in the same environment in which it

was submitted and with the owner’s default privileges.

When you force a job to run using the procedure DBMS_JOB.RUN, the job is run by

your user process. When your user process runs a job, it is run with your default

privileges only. Privileges granted to you through roles are unavailable.

Job Queue Locks
Oracle uses job queue locks to ensure that a job is executed one session at a time.

When a job is being run, its session acquires a job queue (JQ) lock for that job.

Table 8–5 Common Job Execution Intervals

Date Expression Evaluation

’SYSDATE + 7’ exactly seven days from
the last execution

’SYSDATE + 1/48’ every half hour

’NEXT_DAY(TRUNC(SYSDATE),
’’MONDAY’’) + 15/24’

every Monday at 3PM

’NEXT_DAY(ADD_MONTHS
(TRUNC(SYSDATE, ’’Q’’), 3),
’’THURSDAY’’)’

first Thursday of each
quarter

Note: When specifying NEXT_DATE or INTERVAL, remember

that date literals and strings must be enclosed in single quotation

marks. Also, the value of INTERVAL must be enclosed in single

quotation marks.

Managing Job Queues

8-10 Oracle8i Administrator’s Guide

Interpreting Information about JQ Locks You can use the Enterprise Manager Lock

Monitor or the locking views in the data dictionary to examine information about

locks currently held by sessions.

The following query lists the session identifier, lock type, and lock identifiers for all

sessions holding JQ locks:

SELECT sid, type, id1, id2
 FROM v$lock
 WHERE type = ’JQ’;

SID TY ID1 ID2
---------- -- ---------- ----------
 12 JQ 0 14144
1 row selected.

In the query above, the identifier for the session holding the lock is 12. The ID1 lock

identifier is always 0 for JQ locks. The ID2 lock identifier is the job number of the

job the session is running.

Job Execution Errors
When a job fails, information about the failure is recorded in a trace file and the

alert log. Oracle writes message number ORA-12012 and includes the job number of

the failed job.

The following can prevent the successful execution of queued jobs:

■ not having any SNP background processes to run the job

■ a network or instance failure

■ an exception when executing the job

Job Failure and Execution Times If a job returns an error while Oracle is attempting to

execute it, Oracle tries to execute it again. The first attempt is made after one minute, the

second attempt after two minutes, the third after four minutes, and so on, with the interval

doubling between each attempt. When the retry interval exceeds the execution interval,

Oracle continues to retry the job at the normal execution interval. However, if the job fails

16 times, Oracle automatically marks the job as broken and no longer tries to execute it.

Thus, if you can correct the problem that is preventing a job from running before

the job has failed sixteen times, Oracle will eventually run that job again.

See Also: For more information about the locking views, see the Oracle8i Reference.

For more information about locking, see Oracle8i Concepts.

Managing Job Queues

Managing Job Queues 8-11

Removing a Job from the Job Queue
To remove a job from the job queue, use the REMOVE procedure in the DBMS_JOB

package:

DBMS_JOB.REMOVE(job IN BINARY_INTEGER)

The following statement removes job number 14144 from the job queue:

DBMS_JOB.REMOVE(14144);

Restrictions
You can remove currently executing jobs from the job queue. However, the job will

not be interrupted, and the current execution will be completed.

You can remove only jobs you own. If you try to remove a job that you do not own,

you receive a message that states the job is not in the job queue.

Altering a Job
To alter a job that has been submitted to the job queue, use the procedures

CHANGE, WHAT, NEXT_DATE, or INTERVAL in the DBMS_JOB package.

In this example, the job identified as 14144 is now executed every three days:

DBMS_JOB.CHANGE(14144, null, null, ’SYSDATE + 3’);

Restrictions
You can alter only jobs that you own. If you try to alter a job that you do not own,

you receive a message that states the job is not in the job queue.

Syntax for CHANGE
You can alter any of the user-definable parameters associated with a job by calling

the DBMS_JOB.CHANGE procedure. Table 8–3 describes the procedure’s

parameters.

DBMS_JOB.CHANGE(job IN BINARY_INTEGER,
 what IN VARCHAR2,
 next_date IN DATE,
 interval IN VARCHAR2)

Managing Job Queues

8-12 Oracle8i Administrator’s Guide

If you specify NULL for WHAT, NEXT_DATE, or INTERVAL when you call the

procedure CHANGE, the current value remains unchanged.

Syntax for WHAT
You can alter the definition of a job by calling the DBMS_JOB.WHAT procedure.

Table 8–3 describes the procedure’s parameters.

DBMS_JOB.WHAT(job IN BINARY_INTEGER,
 what IN VARCHAR2)

Syntax for NEXT_DATE
You can alter the next date that Oracle executes a job by calling the

DBMS_JOB.NEXT_DATE procedure. Table 8–3 describes the procedure’s

parameters.

DBMS_JOB.NEXT_DATE(job IN BINARY_INTEGER,
next_date IN DATE)

Syntax for INTERVAL
You can alter the execution interval of a job by calling the DBMS_JOB.INTERVAL

procedure. Table 8–3 describes the procedure’s parameters.

DBMS_JOB.INTERVAL(job IN BINARY_INTEGER,
 interval IN VARCHAR2)

Broken Jobs
A job is labeled as either broken or not broken. Oracle does not attempt to run

broken jobs. However, you can force a broken job to run by calling the procedure

DBMS_JOB.RUN.

When you submit a job it is considered not broken.

Note: When you change a job’s definition using the WHAT

parameter in the procedure CHANGE, Oracle records your current

environment. This becomes the new environment for the job.

Note: When you execute procedure WHAT, Oracle records your

current environment. This becomes the new environment for the

job.

Managing Job Queues

Managing Job Queues 8-13

There are two ways a job can break:

■ Oracle has failed to successfully execute the job after 16 attempts.

■ You have marked the job as broken, using the procedure DBMS_JOB.BROKEN.

To mark a job as broken or not broken, use the procedure BROKEN in the

DBMS_JOB package. Table 8–4 describes the procedure’s parameters:

DBMS_JOB.BROKEN(job IN BINARY_INTEGER,
 broken IN BOOLEAN,
 next_date IN DATE DEFAULT SYSDATE)

The following example marks job 14144 as not broken and sets its next execution

date to the following Monday:

DBMS_JOB.BROKEN(14144, FALSE, NEXT_DAY(SYSDATE, ’MONDAY’));

Once a job has been marked as broken, Oracle will not attempt to execute the job

until you either mark the job as not broken, or force the job to be executed by calling

the procedure DBMS_JOB.RUN.

Restrictions
You can mark as broken only jobs that you own. If you try to mark a job you do not

own, you receive a message stating that the job is not in the job queue.

Running Broken Jobs
If a problem has caused a job to fail 16 times, Oracle marks the job as broken. Once

you have fixed this problem, you can run the job by either:

■ forcing the job to run by calling DBMS_JOB.RUN

■ marking the job as not broken by calling DBMS_JOB.BROKEN and waiting for

Oracle to execute the job

If you force the job to run by calling the procedure DBMS_JOB.RUN, Oracle runs

the job immediately. If the job succeeds, then Oracle labels the job as not broken and

resets its count of the number of failed executions for the job.

Once you reset a job’s broken flag (by calling either RUN or BROKEN), job

execution resumes according to the scheduled execution intervals set for the job.

Managing Job Queues

8-14 Oracle8i Administrator’s Guide

Forcing a Job to Execute
There may be times when you would like to manually execute a job. For example, if

you have fixed a broken job, you may want to test the job immediately by forcing it

to execute.

To force a job to be executed immediately, use the procedure RUN in the DBMS_JOB

package. Oracle attempts to run the job, even if the job is marked as broken:

DBMS_JOB.RUN(job IN BINARY_INTEGER)

When you run a job using DBMS_JOB.RUN, Oracle recomputes the next execution

date. For example, if you create a job on a Monday with a NEXT_DATE value of

’SYSDATE’ and an INTERVAL value of ’SYSDATE + 7’, the job is run every 7 days

starting on Monday. However, if you execute RUN on Wednesday, the next

execution date will be the next Wednesday.

Restrictions
You can only run jobs that you own. If you try to run a job that you do not own, you

receive a message that states the job is not in the job queue.

The following statement runs job 14144 in your session and recomputes the next

execution date:

DBMS_JOB.RUN(14144);

The procedure RUN contains an implicit commit. Once you execute a job using

RUN, you cannot roll back.

Terminating a Job
You can terminate a running job by marking the job as broken, identifying the

session running the job, and disconnecting that session. You should mark the job as

broken, so that Oracle does not attempt to run the job again.

After you have identified the session running the job (via V$SESSION), you can

disconnect the session using the SQL statement ALTER SYSTEM.

See Also: For examples of viewing information about jobs and sessions, see the

following section, "Viewing Job Queue Information".

Note: When you force a job to run, the job is executed in your

current session. Running the job reinitializes your session’s

packages.

Viewing Job Queue Information

Managing Job Queues 8-15

For more information on V$SESSION, see the Oracle8i Reference.

Viewing Job Queue Information
You can view information about jobs in the job queue via the data dictionary views

in Table 8–6:

For example, you can display information about a job’s status and failed executions.

The following sample query creates a listing of the job number, next execution time,

failures, and broken status for each job you have submitted:

SELECT job, next_date, next_sec, failures, broken
 FROM user_jobs;

JOB NEXT_DATE NEXT_SEC FAILURES B
---------- --------- -------- ---------- -
 9125 01-NOV-94 00:00:00 4 N
 14144 24-OCT-94 16:35:35 0 N
 41762 01-JAN-00 00:00:00 16 Y
3 rows selected.

You can also display information about jobs currently running. The following

sample query lists the session identifier, job number, user who submitted the job,

and the start times for all currently running jobs:

SELECT sid, r.job, log_user, r.this_date, r.this_sec
 FROM dba_jobs_running r, dba_jobs j
 WHERE r.job = j.job;

SID JOB LOG_USER THIS_DATE THIS_SEC
---------- ---------- -------------------- --------- --------
 12 14144 JFEE 24-OCT-94 17:21:24
 25 8536 SCOTT 24-OCT-94 16:45:12
2 rows selected.

See Also: For more information on data dictionary views, see the Oracle8i Reference.

Table 8–6 Views for Job Queue Information

View Description

DBA_JOBS Lists all the jobs in the database.

USER_JOBS Lists all jobs owned by the user.

DBA_JOBS_RUNNING Lists all jobs in the database that are currently
running. This view joins V$LOCK and JOB$.

Viewing Job Queue Information

8-16 Oracle8i Administrator’s Guide

Part III
 Database Storage

Managing Tablespaces 9-1

9
Managing Tablespaces

This chapter describes the various aspects of tablespace management, and includes

the following topics:

■ Guidelines for Managing Tablespaces

■ Creating Tablespaces

■ Managing Tablespace Allocation

■ Altering Tablespace Availability

■ Making a Tablespace Read-Only

■ Dropping Tablespaces

■ Using the DBMS_SPACE_ADMIN Package

■ Transporting Tablespaces Between Databases

■ Viewing Information About Tablespaces

Guidelines for Managing Tablespaces

9-2 Oracle8i Administrator’s Guide

Guidelines for Managing Tablespaces
Before working with tablespaces of an Oracle database, familiarize yourself with the

guidelines provided in the following sections:

■ Using Multiple Tablespaces

■ Specifying Tablespace Storage Parameters

■ Assigning Tablespace Quotas to Users

Using Multiple Tablespaces
Using multiple tablespaces allows you more flexibility in performing database

operations. For example, when a database has multiple tablespaces, you can

perform the following tasks:

■ Separate user data from data dictionary data.

■ Separate one application’s data from another’s.

■ Store different tablespaces’ datafiles on separate disk drives to reduce I/O

contention.

■ Separate rollback segment data from user data, preventing a single disk failure

from causing permanent loss of data.

■ Take individual tablespaces offline while others remain online.

■ Reserve a tablespace for a particular type of database use, such as high update

activity, read-only activity, or temporary segment storage.

■ Back up individual tablespaces.

Some operating systems set a limit on the number of files that can be

simultaneously open; these limits can affect the number of tablespaces that can be

simultaneously online. To avoid exceeding your operating system’s limit, plan your

tablespaces efficiently. Create only enough tablespaces to fill your needs, and create

these tablespaces with as few files as possible. If you need to increase the size of a

tablespace, add one or two large datafiles, or create datafiles with the autoextend

option set on, rather than many small datafiles.

Review your data in light of these advantages and decide how many tablespaces

you will need for your database design.

Creating Tablespaces

Managing Tablespaces 9-3

Specifying Tablespace Storage Parameters
When you create a new tablespace, you can specify default storage parameters for

objects that will be created in the tablespace. Storage parameters specified when an

object is created override the default storage parameters of the tablespace

containing the object. However, if you do not specify storage parameters when

creating an object, the object’s segment automatically uses the default storage

parameters for the tablespace.

Set the default storage parameters for a tablespace to account for the size of a

typical object that the tablespace will contain (you estimate this size). You can

specify different storage parameters for an unusual or exceptional object when

creating that object.

See Also: For information about estimating the sizes of objects, see Chapters 11

through 17.

Assigning Tablespace Quotas to Users
Grant to users who will be creating tables, clusters, snapshots, indexes, and other

objects the privilege to create the object and a quota (space allowance or limit) in the

tablespace intended to hold the object’s segment. The security administrator is

responsible for granting the required privileges to create objects to database users

and for assigning tablespace quotas, as necessary, to database users.

See Also: To learn more about assigning tablespace quotas to database users, see

"Assigning Tablespace Quotas" on page 23-13.

Creating Tablespaces
The steps for creating tablespaces vary by operating system. On most operating

systems you indicate the size and fully specified filenames when creating a new

tablespace or altering a tablespace by adding datafiles. In each situation Oracle

automatically allocates and formats the datafiles as specified. However, on some

operating systems, you must create the datafiles before installation.

Note: If you do not specify the default storage parameters for a

new tablespace, the default storage parameters of Oracle become

the tablespace’s default storage parameters.

Creating Tablespaces

9-4 Oracle8i Administrator’s Guide

The first tablespace in any database is always the SYSTEM tablespace. Therefore,

the first datafiles of any database are automatically allocated for the SYSTEM

tablespace during database creation.

You might create a new tablespace for any of the following reasons:

■ You want to allocate more disk storage space for the associated database,

thereby enlarging the database.

■ You need to create a logical storage structure in which to store a specific type of

data separate from other database data.

To increase the total size of the database you can alternatively add a datafile to an

existing tablespace, rather than adding a new tablespace.

To create a new tablespace, use the SQL statement CREATE TABLESPACE. You

must have the CREATE TABLESPACE system privilege to create a tablespace.

As an example, let’s create the tablespace RB_SEGS (to hold rollback segments for

the database), with the following characteristics:

■ The data of the new tablespace is contained in a single datafile, 50M in size.

■ The default storage parameters for any segments created in this tablespace are

explicitly set.

■ After the tablespace is created, it is left offline.

The following statement creates the tablespace RB_SEGS:

 CREATE TABLESPACE rb_segs
 DATAFILE ’datafilers_1’ SIZE 50M
 DEFAULT STORAGE (
 INITIAL 50K
 NEXT 50K
 MINEXTENTS 2
 MAXEXTENTS 50
 PCTINCREASE 0)
 OFFLINE;

If you do not fully specify filenames when creating tablespaces, the corresponding

datafiles are created in the ORACLE_HOME/dbs directory.

Note: No data can be inserted into any tablespace until the

current instance has acquired at least two rollback segments

(including the SYSTEM rollback segment).

Creating Tablespaces

Managing Tablespaces 9-5

See Also: See your operating system-specific Oracle documentation for information

about initially creating a tablespace.

For more information about adding a datafile, see "Creating and Adding Datafiles

to a Tablespace" on page 10-5.

For more information about the CREATE TABLESPACE statement, see the Oracle8i
SQL Reference.

Creating Locally Managed Tablespaces
Typically, tablespaces are "dictionary mapped," which means that such tablespaces

rely on SQL dictionary tables to track space utilization. Locally managed tablespaces,

on the other hand, use bit maps (instead of SQL dictionary tables) to track used and

free space.

Creating and using locally managed tablespaces offers you the following benefits:

■ Improves concurrence of space operations

You allocate and deallocate space by changing the bit values (0 to 1 for

allocation, 1 to 0 for deallocation).

■ Eliminates recursion during space management operations

■ Supports temporary tablespace management in standby databases

■ Reduces user reliance on the data dictionary

Necessary information is stored in segment headers and bit map blocks.

The following statement creates a locally managed tablespace named TBS_1; every

extent is 128K, and each bit in the bit map describes 64 blocks:

CREATE TABLESPACE tbs_1 DATAFILE ’file_1.f’
 BITMAP ALLOCATION UNIFORM SIZE 128K;

See Also: For detailed syntax on creating locally managed tablespaces, see the

Oracle8i SQL Reference.

Creating a Database with a Locally Managed SYSTEM Tablespace
You can create a database with a locally managed SYSTEM tablespace. However,

rollback segments for this database must also be created in uniform-managed

locally managed tablespaces. A locally managed SYSTEM tablespace is always

system-managed. Also, you cannot later revert to a version of Oracle earlier than

8.1.

Creating Tablespaces

9-6 Oracle8i Administrator’s Guide

See Also: For more information about creating a database with a locally managed

SYSTEM tablespace, see the Oracle8i SQL Reference.

Creating a Temporary Tablespace
If you wish to improve the concurrence of multiple sort operations, reduce their

overhead, or avoid Oracle space management operations altogether, you can create

temporary tablespaces.

Within a temporary tablespace, all sort operations for a given instance and

tablespace share a single sort segment. Sort segments exist in every instance that

performs sort operations within a given tablespace. You cannot store permanent

objects in a temporary tablespace. You can view the allocation and deallocation of

space in a temporary tablespace sort segment via the V$SORT_SEGMENT table.

To identify a tablespace as temporary during tablespace creation, issue the

following statement:

CREATE TABLESPACE tablespace TEMPORARY;

To identify a tablespace as temporary in an existing tablespace, issue the following

statement:

ALTER TABLESPACE tablespace TEMPORARY;

See Also: For more information about the CREATE TABLESPACE and ALTER

TABLESPACE statements, see the Oracle8i SQL Reference.

For more information about V$SORT_SEGMENT, see the Oracle8i Reference.

For more information about Oracle space management, see Oracle8i Concepts.

Temporary Datafiles
Temporary datafiles differ from permanent datafiles in that they do not appear in

the DBA_DATA_FILES view. Instead, they appear in the DBA_TEMP_FILES view,

which is similar to DBA_DATA_FILES view except that it contains information

about temporary datafiles. In SQL, files belonging to temporary tablespaces are also

identified as TEMPFILES, rather than DATAFILES.

Note: You can take temporary tablespaces offline. Returning

temporary tablespaces online does not affect their temporary status.

Creating Tablespaces

Managing Tablespaces 9-7

See Also: For more information about temporary datafiles and DBA_TEMP_FILES,

see the Oracle8i Reference.

Creating a Locally Managed Temporary Tablespace
If you wish to allocate space that can contain schema objects for the duration of a

session in the database, you can create a locally managed temporary tablespace.

You must have the CREATE TABLESPACE system privilege to create a locally

managed temporary tablespace.

The following statement creates a temporary tablespace in which each extent is

16M. The default database block size is 2M; each bit in the map represents one

extent, thus each bit maps 8,000 blocks.

CREATE TEMPORARY TABLESPACE tbs_1 TEMPFILE ’file_1.f’
 BITMAP ALLOCATION UNIFORM SIZE 16M;

See Also: For more information about creating a locally managed temporary

tablespace, see the Oracle8i SQL Reference.

Altering a Locally Managed Temporary Tablespace
You can alter or add a datafile (or temporary file) to a locally managed temporary

tablespace.

The following statement adds files to a locally managed temporary tablespace:

ALTER TABLESPACE tbs_1
 ADD TEMPFILE ’file_1.f’;

The following statements take offline and bring online temporary files:

ALTER DATABASE TEMPFILE ’temp_file_1.f’ OFFLINE;
ALTER DATABASE TEMPFILE ’temp_file_1.f’ ONLINE;

The following statement resizes temporary file TEMP_FILE_1.F to 12K:

ALTER DATABASE TEMPFILE ’temp_file_1.f’ RESIZE 12K;

The following statement drops a temporary file:

ALTER DATABASE TEMPFILE ’temp_file_1.f’ DROP;

See Also: For details and restrictions about statements used to alter locally

managed temporary tablespaces, see the Oracle8i SQL Reference.

Managing Tablespace Allocation

9-8 Oracle8i Administrator’s Guide

Managing Tablespace Allocation
This section describes aspects of managing tablespace allocation, and includes the

following topics:

■ Altering Storage Settings for Tablespaces

■ Coalescing Free Space

Altering Storage Settings for Tablespaces
You can change the default storage parameters of a tablespace to change the default

specifications for future objects created in the tablespace. To change the default

storage parameters for objects subsequently created in the tablespace, use the SQL

statement ALTER TABLESPACE. Also, to alter the default storage parameters of a

tablespace, you must have the ALTER TABLESPACE system privilege.

 ALTER TABLESPACE users
 DEFAULT STORAGE (
 INITIAL 50K
 NEXT 50K
 MINEXTENTS 2
 MAXEXTENTS 20
 PCTINCREASE 50);

New values for the default storage parameters of a tablespace affect only future

extents allocated for the segments within the tablespace.

Coalescing Free Space
Space for tablespace segments is managed using extents, which are made up of a

specific number of contiguous data blocks. The free extent closest in size to the

required extent is used when allocating new extents to a tablespace segment. Thus,

a larger free extent can be fragmented, or smaller contiguous free extents can be

coalesced into one larger free extent (see Figure 9–1). However, continuous

allocation and deallocation of free space fragments your tablespace and makes

allocation of larger extents more difficult. By default, SMON (system monitor)

processes incrementally coalesce the free extents of tablespaces in the background.

If desired, you can disable SMON coalescing.

Managing Tablespace Allocation

Managing Tablespaces 9-9

Figure 9–1 Coalescing Free Space

If you find that fragmentation of space is high (contiguous space on your disk

appears as non-contiguous), you can coalesce your free space in a single space

transaction. After every eight coalesces the space transaction commits and other

transactions can allocate or deallocate space. You must have ALTER TABLESPACE

privileges to coalesce tablespaces. You can coalesce all available free space extents in

a tablespace into larger contiguous extents on a per tablespace basis by using the

following command:

ALTER TABLESPACE tablespace COALESCE;

You can also use this command to supplement SMON and extent allocation

coalescing, thereby improving space allocation performance in severely fragmented

tablespaces. Issuing this command does not effect the performance of other users

accessing the same tablespace. Like other options of the ALTER TABLESPACE

statement, the COALESCE option is exclusive; when specified, it should be the only

option.

Viewing Information about Tablespaces
To display statistics about coalesceable extents for tablespaces, you can view the

DBA_FREE_SPACE_COALESCED view. You can query this view to determine if

you need to coalesce space in a particular tablespace.

See Also: For information about the contents of DBA_FREE_SPACE_COALESCED,

see the Oracle8i Reference.

U

U

U

U

U

U

U

U

F

F

FFF FF F

F

F

F F U F F F FF U

F U U FJFEE1.ORA

Input

Output
EXTENT 2

F = free data block
U = used data block

Input

Output
EXTENT 1

Altering Tablespace Availability

9-10 Oracle8i Administrator’s Guide

Altering Tablespace Availability
You can bring an offline tablespace online to make the schema objects within the

tablespace available to database users. Alternatively, you can take an online

tablespace offline while the database is open, so that this portion of the database is

temporarily unavailable for general use but the rest is open and available. This

section includes the following topics:

■ Bringing Tablespaces Online

■ Taking Tablespaces Offline

Bringing Tablespaces Online
You can bring any tablespace in an Oracle database online whenever the database is

open. The only exception is that the SYSTEM tablespace must always be online

because the data dictionary must always be available to Oracle. A tablespace is

normally online so that the data contained within it is available to database users.

To bring an offline tablespace online while the database is open, use the SQL

statement ALTER TABLESPACE. You must have the MANAGE TABLESPACE

system privilege to bring a tablespace online.

The following statement brings the USERS tablespace online:

ALTER TABLESPACE users ONLINE;

Taking Tablespaces Offline
You may wish to take a tablespace offline for any of the following reasons:

■ To make a portion of the database unavailable while allowing normal access to

the remainder of the database.

■ To perform an offline tablespace backup (even though a tablespace can be

backed up while online and in use).

Note: If a tablespace to be brought online was not taken offline

"cleanly" (that is, using the NORMAL option of the ALTER

TABLESPACE OFFLINE statement), you must first perform media

recovery on the tablespace before bringing it online. Otherwise,

Oracle returns an error and the tablespace remains offline.

Altering Tablespace Availability

Managing Tablespaces 9-11

■ To make an application and its group of tables temporarily unavailable while

updating or maintaining the application.

To take an online tablespace offline while the database is open, use the SQL

command ALTER TABLESPACE. You must have the MANAGE TABLESPACE

system privilege to take a tablespace offline.

You can specify any of the following priorities when taking a tablespace offline:

normal offline A tablespace can be taken offline normally if no
error conditions exist for any of the datafiles of the
tablespace. No datafile in the tablespace can be
currently offline as the result of a write error. With
normal offline priority, Oracle takes a checkpoint
for all datafiles of the tablespace as it takes them
offline.

temporary offline A tablespace can be taken offline temporarily, even
if there are error conditions for one or more files of
the tablespace. With temporary offline priority,
Oracle takes offline the datafiles that are not already
offline, checkpointing them as it does so.

If no files are offline, but you use the temporary
option, media recovery is not required to bring the
tablespace back online. However, if one or more
files of the tablespace are offline because of write
errors, and you take the tablespace offline
temporarily, the tablespace will require recovery
before you can bring it back online.

immediate offline A tablespace can be taken offline immediately,
without Oracle’s taking a checkpoint on any of the
datafiles. With immediate offline priority, media
recovery for the tablespace is required before the
tablespace can be brought online. You cannot take a
tablespace offline immediately if the database is
running in NOARCHIVELOG mode.

Making a Tablespace Read-Only

9-12 Oracle8i Administrator’s Guide

Take a tablespace offline temporarily only when you cannot take it offline normally;

in this case, only the files taken offline because of errors need to be recovered before

the tablespace can be brought online. Take a tablespace offline immediately only

after trying both the normal and temporary options.

The following example takes the USERS tablespace offline normally:

ALTER TABLESPACE users OFFLINE NORMAL;

See Also: Before taking an online tablespace offline, verify that the tablespace

contains no active rollback segments. For more information see "Taking Rollback

Segments Offline" on page 21-12.

Making a Tablespace Read-Only
This section describes issues related to making tablespaces read-only, and includes

the following topics:

■ Prerequisites

■ Making a Read-Only Tablespace Writeable

■ Creating a Read-Only Tablespace on a WORM Device

Making a tablespace read-only prevents further write operations on the datafiles in

the tablespace. After making the tablespace read-only, you should back it up.

Use the SQL statement ALTER TABLESPACE to change a tablespace to read-only.

You must have the ALTER TABLESPACE system privilege to make a tablespace

read-only. The following statement makes the FLIGHTS tablespace read-only:

ALTER TABLESPACE flights READ ONLY

After a tablespace is read-only, you can copy its files to read-only media. You must

then rename the datafiles in the control file to point to the new location by using the

SQL statement ALTER DATABASE RENAME.

WARNING: If you must take a tablespace offline, use the normal
option (the default) if possible; this guarantees that the
tablespace will not require recovery to come back online, even if
you reset the redo log sequence (using an ALTER DATABASE
OPEN RESETLOGS statement after incomplete media recovery)
before bringing the tablespace back online.

Making a Tablespace Read-Only

Managing Tablespaces 9-13

A read-only tablespace is neither online nor offline. Issuing the ALTER

TABLESPACE statement with the ONLINE or OFFLINE option does not change the

read-only state of the tablespace; rather, it causes all of the datafiles in the

tablespace to be brought online or offline.

The ALTER TABLESPACE...READ ONLY statement waits until active transactions

are complete before performing the read-only operation. Thus, you do not have to

wait for transactions to complete before making a tablspace read-only.

Prerequisites
Before you can make a tablespace read-only, the following conditions must be met.

It may be easiest to meet these restrictions by performing this function in restricted

mode, so that only users with the RESTRICTED SESSION system privilege can be

logged on.

■ The tablespace must be online.

This is necessary to ensure that there is no undo information that needs to be

applied to the tablespace.

■ The tablespace must not contain any active rollback segments.

For this reason, the SYSTEM tablespace can never be made read-only, since it

contains the SYSTEM rollback segment. Additionally, because the rollback

segments of a read-only tablespace are not accessible, it is recommended that

you drop the rollback segments before you make a tablespace read-only.

■ The tablespace must not currently be involved in an online backup, since the

end of a backup updates the header file of all datafiles in the tablespace.

■ The COMPATIBLE initialization parameter must be set to 7.1.0 or greater.

For better performance while accessing data in a read-only tablespace, you might

want to issue a query that accesses all of the blocks of the tables in the tablespace

just before making it read-only. A simple query, such as SELECT COUNT (*),

executed against each table will ensure that the data blocks in the tablespace can be

subsequently accessed most efficiently. This eliminates the need for Oracle to check

the status of the transactions that most recently modified the blocks.

See Also: For more information about read-only tablespaces, see Oracle8i Concepts.

WARNING: You cannot rename or resize datafiles belonging to a
read-only tablespace.

Dropping Tablespaces

9-14 Oracle8i Administrator’s Guide

Making a Read-Only Tablespace Writeable
Whenever you create a tablespace, it is both readable and writeable. To change a

read-only tablespace back to a read-write tablespace, use the SQL command ALTER

TABLESPACE. You must have the ALTER TABLESPACE system privilege to change

a read-only tablespace to a read-write tablespace. The following command makes

the FLIGHTS tablespace writeable:

ALTER TABLESPACE flights READ WRITE;

Making a read-only tablespace writeable updates the control file for the datafiles, so

that you can use the read-only version of the datafiles as a starting point for

recovery.

Prerequisites
To issue this command, all of the datafiles in the tablespace must be online. Use the

DATAFILE ONLINE option of the ALTER DATABASE command to bring a datafile

online. The V$DATAFILE view lists the current status of a datafile.

Creating a Read-Only Tablespace on a WORM Device
To create a read-only tablespace on a WORM (Write Once Read Many) device when

you have read-only files that do not require updating:

1. Create a writeable tablespace on another device. Create the objects that belong

in the tablespace and insert your data.

2. Issue the ALTER TABLESPACE command with the READ ONLY option to

change the tablespace to read-only.

3. Copy the datafiles of the tablespace onto the WORM device. Use operating

system commands to copy the files.

4. Take the tablespace offline.

5. Rename the datafiles to coincide with the names of the datafiles you copied

onto your WORM device. Renaming the datafiles changes their names in the

control file.

6. Bring the tablespace online.

Dropping Tablespaces
You can drop a tablespace and its contents (the segments contained in the

tablespace) from the database if the tablespace and its contents are no longer

Dropping Tablespaces

Managing Tablespaces 9-15

required. Any tablespace in an Oracle database, except the SYSTEM tablespace, can

be dropped. You must have the DROP TABLESPACE system privilege to drop a

tablespace.

When you drop a tablespace, only the file pointers in the control files of the

associated database are dropped. The datafiles that constituted the dropped

tablespace continue to exist. To free previously used disk space, delete the datafiles

of the dropped tablespace using the appropriate commands of your operating

system after completing this procedure.

You cannot drop a tablespace that contains any active segments. For example, if a

table in the tablespace is currently being used or the tablespace contains an active

rollback segment, you cannot drop the tablespace. For simplicity, take the

tablespace offline before dropping it.

After a tablespace is dropped, the tablespace’s entry remains in the data dictionary

(see the DBA_TABLESPACES view), but the tablespace’s status is changed to

INVALID.

To drop a tablespace, use the SQL command DROP TABLESPACE. The following

statement drops the USERS tablespace, including the segments in the tablespace:

DROP TABLESPACE users INCLUDING CONTENTS;

If the tablespace is empty (does not contain any tables, views, or other structures),

you do not need to check the Including Contained Objects checkbox. If the

tablespace contains any tables with primary or unique keys referenced by foreign

keys of tables in other tablespaces and you want to cascade the drop of the

FOREIGN KEY constraints of the child tables, select the Cascade Drop of Integrity

Constraints checkbox to drop the tablespace.

Use the CASCADE CONSTRAINTS option of the DROP TABLESPACE statement to

cascade the drop of the FOREIGN KEY constraints in the child tables.

WARNING: Once a tablespace has been dropped, the
tablespace’s data is not recoverable. Therefore, make sure that all
data contained in a tablespace to be dropped will not be required
in the future. Also, immediately before and after dropping a
tablespace from a database, back up the database completely.
This is strongly recommended so that you can recover the database if
you mistakenly drop a tablespace, or if the database experiences a
problem in the future after the tablespace has been dropped.

Using the DBMS_SPACE_ADMIN Package

9-16 Oracle8i Administrator’s Guide

See Also: For more information about taking tablespaces offline, see "Taking

Tablespaces Offline" on page 9-10.

For more information about the DROP TABLESPACE statement, see the Oracle8i SQL
Reference.

Using the DBMS_SPACE_ADMIN Package
The DBMS_SPACE_ADMIN package provides administrators with defect diagnosis

and repair functionality. The following scenarios describe typical situations in

which you can use the DBMS_SPACE_ADMIN package to diagnose and resolve

problems.

The DBMS_SPACE_ADMIN package contains the following procedures:

■ SEGMENT_VERIFY

■ SEGMENT_CORRUPT

■ SEGMENT_DROP_CORRUPT

■ SEGMENT_DUMP

■ TABLESPACE_VERIFY

■ TABLESPACE_REBUILD_BITMAPS

■ TABLESPACE_FIX_BITMAPS

■ TABLESPACE_MIGRATE_TO_BITMAP

■ TABELSPACE_MIGRATE_FROM_BITMAP

See Also: For details about these procedures, see the Oracle8i Supplied Packages
Reference.

Scenario 1
The TABLESPACE_VERIFY procedure discovers that a segment has allocated

blocks that are marked "free" in the bit map, but no overlap between segments was

reported.

In this scenario, perform the following tasks:

■ Call the SEGMENT_EXTENT_MAP_DUMP procedure to dump the ranges that

the administrator allocated to the segment.

Using the DBMS_SPACE_ADMIN Package

Managing Tablespaces 9-17

■ For each range, call the TABLESPACE_FIX_BITMAPS procedure with the

TABLESPACE_MAKE_USED option to mark the space as used.

Scenario 2
You cannot drop a segment because the bit map has segment blocks marked "free."

The system has automatically marked it corrupt.

In this scenario, perform the following tasks:

■ Call the SEGMENT_VERIFY procedure with the SEGMENT_CHECK_ALL

option. If no overlaps are reported, perform the following:

■ Call the SEGMENT_EXTENT_MAP_DUMP procedure to dump the ranges

that the administrator allocated to the segment.

■ For each range, call the TABLESPACE_FIX_BITMAPS procedure with the

TABLESPACE_MAKE_FREE option to mark the space as "free."

■ Call the SEGMENT_DROP_CORRUPT procedure to drop the SEG$ entry.

Scenario 3
The TABLESPACE_VERIFY procedure has reported some overlapping. Some of the

real data must be sacrificed based on previous internal errors.

After choosing the object to be sacrificed, say table T1, perform the following tasks:

■ Make a list of all objects that T1 overlaps.

■ Drop table T1. If necessary, follow up by calling the

SEGMENT_DROP_CORRUPT procedure.

■ Call the SEGMENT_VERIFY procedure on all objects that T1 overlapped. If

necessary, call the TABLESPACE_FIX_BITMAPS procedure to mark appropriate

bit maps as used.

■ Rerun the TABLESPACE_VERIFY procedure to verify the problem is resolved.

Scenario 4
A set of bitmap blocks has media corruption.

In this scenario, perform the following tasks:

■ Call the TABLESPACE_REBUILD_MAPS procedure, either on all bitmap

blocks, or on a single block if only one is corrupt.

Transporting Tablespaces Between Databases

9-18 Oracle8i Administrator’s Guide

■ Call the TABLESPACE_VERIFY procedure to verify that the bit maps are

consistent.

See Also: For more information about the DBMS_SPACE_ADMIN package, see the

Oracle8i Supplied Packages Reference.

Transporting Tablespaces Between Databases
This section describes how to transport tablespaces between databases, and

includes the following topics:

■ Introduction to Transportable Tablespaces

■ Current Limitations

■ Step 1: Pick a Self-contained Set of Tablespaces

■ Step 2: Generate a Transportable Tablespace Set

■ Step 3: Transport the Tablespace Set

■ Step 4: Plug In the Tablespace Set

■ Object Behaviors

■ Transporting and Attaching Partitions for Data Warehousing: Example

■ Publishing Structured Data on CDs

■ Mounting the Same Tablespace Read-only on Multiple Databases

■ Archive Historical Data via Transportable Tablespaces

■ Using Transportable Tablespaces to Perform TSPITR

Introduction to Transportable Tablespaces

You can use transportable tablespaces to move a subset of an Oracle database and

"plug" it in to another Oracle database, essentially moving tablespaces between the

databases. Transporting tablespaces is particularly useful for:

Note: You must have the Oracle8i Enterprise Edition of Oracle to

generate a transportable tablespace set. However, you can use any

edition of Oracle (Enterprise, Work group, or Personal Oracle8i) to

plug a transportable tablespace set into an Oracle database.

Transporting Tablespaces Between Databases

Managing Tablespaces 9-19

■ Feeding data from OLTP systems to data warehouse staging systems

■ Updating data warehouses and data marts from staging systems

■ Loading data marts from central data warehouses

■ Archiving OLTP and data warehouse systems efficiently

■ Data publishing to internal and external customers

Moving data via transportable tablespaces can be much faster than performing

either an import/export or unload/load of the same data, because transporting a

tablespace only requires the copying of datafiles and integrating the tablespace

structural information. You can also use transportable tablespaces to move index

data, thereby avoiding the index rebuilds you would have to perform when

importing or loading table data.

To move or copy a set of tablespaces you must perform the following tasks:

■ Step 1: Pick a Self-contained Set of Tablespaces

■ Step 2: Generate a Transportable Tablespace Set

A transportable set consists of datafiles for the set of tablespaces being

transported and a file containing structural information for the set of

tablespaces.

■ Step 3: Transport the Tablespace Set

Copy the datafiles and the export file to the target database. You can do this

using any facility for copying flat files (for example, an O/S copying utility, ftp,

or publishing on CDs)

■ Step 4: Plug In the Tablespace Set

Invoke Import to plug the set of tablespaces into the target database.

See Also: For more details about transportable tablespaces and their use in data

marts and data warehousing, see Oracle8i Concepts.

For information about using transportable tablespaces to perform media recovery,

see the Oracle8i Backup and Recovery Guide.

For information about transportable tablespace compatibility issues (between

different Oracle releases), see Oracle8i Migration.

Transporting Tablespaces Between Databases

9-20 Oracle8i Administrator’s Guide

Current Limitations
Be aware of the following limitations as you plan for and use transportable

tablespaces:

■ The source and target database must be on the same hardware platform. For

example, you can transport tablespaces between Sun Solaris Oracle databases,

or you can transport tablespaces between NT Oracle databases. However, you

cannot transport a tablespace from a SUN Solaris Oracle database to an NT

Oracle database.

■ The source and target database must have the same database block size.

■ The source and target database must use the same character set.

■ You cannot transport a tablespace to a target database in which a tablespace

with the same name already exists.

■ Currently, transportable tablespaces do not support:

– snapshot/replication

– function-based indexes

– Scoped REFs

– domain indexes (a new type of index provided by extensible indexing)

– 8.0-compatible advanced queues with multiple recipients

Step 1: Pick a Self-contained Set of Tablespaces
You can only transport a set of tablespaces that is self-contained. In this context

"self-contained" means that there are no references from inside the set of tablespaces

pointing outside of the tablespaces. For example, if there is an index in the set of

tablespaces for a table that is outside of the set of tablespaces, then the set of

tablespaces is not self-contained.

The tablespace set you wish to copy must contain either all partitions of a

partitioned table, or none of the partitions of a partitioned table. If you wish to

transport a subset of a partition table, you must exchange the partitions into tables.

When transporting a set of tablespaces, you can choose to include referential

integrity constraints. However, doing so can determine whether or not a set of

tablespaces is self-contained. If you decide not to transport constraints, then the

constraints are not considered as pointers. Some examples of self contained

tablespace violations follow:

Transporting Tablespaces Between Databases

Managing Tablespaces 9-21

■ An index inside the set of tablespaces is for a table outside of the set of

tablespaces.

■ A partitioned table is partially contained in the set of tablespaces.

■ A table inside the set of tablespaces contains a LOB column that points to LOBs

outside the set of tablespaces.

To determine whether a set of tablespaces is self-contained, you can invoke a built-

in PL/SQL procedure, giving it the list of the tablespace names and indicating that

you wish to transport referential integrity constraints. For example, suppose you

want to determine whether tablespaces ts1 and ts2 are self-contained (with

constraints taken into consideration). You can issue the following command:

execute dbms_tts.transport_set_check(’ts1,ts2’, TRUE)

Here, transport_set_check is a PL/SQL routine in the PL/SQL package

DBMS_TTS, with the following prototype:

PROCEDURE transport_set_check(ts_list IN varchar2, incl_constraints IN boolean)

 ts_list - list of tablespace names separated by comma
 incl_constraints - TRUE if one would like to take constraints into consideration. FALSE
 otherwise.

After invoking this PL/SQL routine, you can see all violations by selecting from the

TRANSPORT_SET_VIOLATIONS view. If the set of tablespaces is self-contained,

this view will be empty. If the set of tablespaces is not self-contained, this view lists

all the violations. For example, suppose there are two violations: a foreign key

constraint, dept_fk , across the tablespace set boundary, and a partitioned table,

sales , that is partially contained in the tablespace set. Querying

TRANSPORT_SET_VIOLATIONS results in the following:

select * from transport_set_violations;
VIOLATIONS

Constraint DEPT_FK between table JIM.EMP in tablespace FOO and table JIM.DEPT in
tablespace OTHER
Partitioned table JIM.SALES is partially contained in the transportable set

Object references (such as REFs) across the tablespace set are not considered

violations. REFs are not checked by the TRANSPORT_SET_CHECK routine. When

a tablespace containing dangling REFs is plugged into a database, queries following

that dangling REF indicate user error.

See Also: For more information about REFs, see the Oracle8i Application Developer’s
Guide - Fundamentals.

Transporting Tablespaces Between Databases

9-22 Oracle8i Administrator’s Guide

Step 2: Generate a Transportable Tablespace Set
After identifying the self-contained set of tablespaces you want to transport,

generate a transportable set by performing the following tasks:

1. Make all tablespaces in the set you are copying read-only. Of course, if the

tablespaces are already read-only, you do not have to perform this step.

 ALTER TABLESPACE sales READ ONLY;

2. Invoke the Export utility and specify which tablespaces are in the transportable

set, as follows:

 EXP TRANSPORT_TABLESPACE=y TABLESPACES=sales_1,sales_2
 TRIGGERS=y/n CONSTRAINTS=y/n GRANTS=y/n FILE=expdat.dmp

When prompted, connect as "sys as sysdba."

You must always specify TABLESPACES. The FILE parameter specifies the

name of the structural information export file to be created.

If you set TRIGGERS=n, triggers are not exported. If you set TRIGGERS=y,

triggers are exported without a validity check. Invalid triggers cause

compilation errors during the subsequent import.

If you set GRANTS=y, all grants on the exported tables are exported too;

otherwise, all GRANTS are ignored.

If you set CONSTRAINTS=y, referential integrity constraints are exported;

otherwise, referential integrity constraints are ignored.

The default setting for all of these options is ’y.’

3. Copy the datafiles to a separate storage space or to the target database.

4. If necessary, put the tablespaces in the copied set back into read-write mode as

follows:

 ALTER TABLESPACE sales_1 READ WRITE;

If the tablespace sets being transported are not self-contained, export will fail and

indicate that the transportable set is not self-contained. You must then return to Step

1 to resolve all violations.

Note: Although the Export utility is used, only data dictionary

structural information is exported. Hence, this operation is even

quicker for a large tablespace.

Transporting Tablespaces Between Databases

Managing Tablespaces 9-23

Step 3: Transport the Tablespace Set
Transport both the datafiles and the export file to a place accessible to the target

database. You can use any facility for copying flat files (for example, an O/S

copying utility, ftp, or publishing on CDs).

Step 4: Plug In the Tablespace Set
To plug in a tablespace set, perform the following tasks:

1. Put the copied tablespace set datafiles in a location where the target database

can access them.

2. Plug in the tablespaces and integrate the structural information using the

following import statement:

 IMP TRANSPORT_TABLESPACE=y DATAFILES=’/db/sales_jan’,’/db/sales_feb’,...fn
 TABLESPACES=sales_1,sales_2,... TTS_OWNERS=dcranney,jfee
 FROMUSER=dcranney,jfee TOUSER=smith,williams FILE=expdat.dmp

When prompted, connect as "sys as sysdba."

Following are two more examples:

 IMP TRANSPORT_TABLESPACE=y DATAFILES=’(/db/staging1.f,/db/staging2.f)’

 IMP TRANSPORT_TABLESPACE=y DATAFILES=’/db/staging.f’ TABLESPACES=jan OWNERS=smith

You must specify DATAFILES.

TABLESPACES,TTS_OWNERS, FROMUSER and TOUSER are optional. The

FILE parameter specifies the name of the structural information export file.

When you specify TABLESPACES, the supplied tablespace names are compared

to those in the export file. Import returns an error if there is any mismatch.

Otherwise, tablespace names are extracted from the export file.

TTS_OWNERS lists all users who own data in the tablespace set. When you

specify TTS_OWNERS, the user names are compared to those in the export file.

Import returns an error if there is any mismatch. Otherwise, owner names are

extracted from the export file.

If you do not specify FROMUSER and TOUSER, all database objects (such as

tables and indexes) will be created under the same user as in the source

database. Those users must already exist in the target database. If not, import

will return an error indicating that some required users do not exist in the target

database.

Transporting Tablespaces Between Databases

9-24 Oracle8i Administrator’s Guide

You can use FROMUSER and TOUSER to change the owners of objects. For

example, if you specify FROMUSER=dcranney,jfee TOUSER=smith,
williams , objects in the tablespace set owned by dcranney in the source

database will be owned by smith in the target database after the tablespace set

is plugged in. Similarly, objects owned by jfee in the source database will be

owned by williams in the target database. In this case, the target database

does not have to have users dcranney and jfee , but must have users smith
and williams .

After this statement successfully executes, all tablespaces in the set being copied

remain in read-only mode. You should check the import logs to ensure no error

has occurred. At this point, you can issue the ALTER TABLESPACE...READ

WRITE statement to place the new tablespaces in read-write mode.

When dealing with a large number of datafiles, specifying the list of datafile names

in the command line can be a laborious process; it may even exceed the command

line limit. In this situation, you may use an import parameter file. For example, one

of the commands in this step is equivalent to the following:

IMP PARFILE=’par.f’

The file par.f contains the following:

TRANSPORT_TABLESPACE=y
DATAFILES=/db/staging.f
TABLESPACES=jan
TT_OWNERS=smith

To transport a tablespace between databases, both the source and target database

must be running Oracle8i, with the init.ora compatibility parameter set to 8.1.

Object Behaviors
Most objects, whether data in a tablespace or structural information associated with

the tablespace, behave normally after being transported to a different database.

However, the following objects are exceptions:

■ ROWIDs

■ REFs

■ Privileges

■ Partitioned Tables

■ Objects

Transporting Tablespaces Between Databases

Managing Tablespaces 9-25

■ Advanced Queues

■ Indexes

■ Triggers

■ Snapshots/Replication

ROWIDs
When a database contains tablespaces that have been plugged in (from other

databases), the ROWIDs in that database are no longer unique. A ROWID is

guaranteed unique only within a table.

REFs
REFs are not checked when Oracle determines if a set of tablespaces is self-

contained. As a result, a plugged-in tablespace may contain dangling REFs. Any

query following dangling REFs returns a user error.

Privileges
Privileges are transported if you specify GRANTS=y during export. During import,

some grants may fail. For example, the user being granted a certain right may not

exist, or a role being granted a particular right may not exist.

Partitioned Tables
You cannot move a partitioned table via transportable tablespaces when only a

subset of the partitioned table is contained in the set of tablespaces. You must

ensure that all partitions in a table are in the tablespace set, or exchange the

partitions into tables before copying the tablespace set. However, you should note

that exchanging partitions with tables invalidates the global index of the partitioned

table.

At the target database, you can exchange the tables back into partitions if there is

already a partitioned table that exactly matches the column in the target database. If

all partitions of that table come from the same foreign database, the exchange

operation is guaranteed to succeed. If they do not, in rare cases, the exchange

operation may return an error indicating that there is a data object number conflict.

If you receive a data object conflict number error when exchanging tables back into

partitions, you can move the offending partition using the ALTER TABLE MOVE

PARTITION statement. After doing so, retry the exchange operation.

Transporting Tablespaces Between Databases

9-26 Oracle8i Administrator’s Guide

If you specify the WITHOUT VALIDATION option of the exchange statement, the

statement will return immediately because it only manipulates structural

information. Moving partitions, however, may be slow because the data in the

partition can be copied. See "Transporting and Attaching Partitions for Data

Warehousing: Example" on page 9-27 for an example using partitioned tables.

Objects
A transportable tablespace set can contain:

■ tables

■ indexes

■ bitmap indexes

■ index-organized tables

■ LOBs

■ nested tables

■ varrays

■ tables with user-defined type columns

If the tablespace set contains a pointer to a BFILE, you must move the BFILE and set

the directory correctly in the target database.

Advanced Queues
You can use transportable tablespaces to move or copy Oracle advanced queues, as

long as these queues are not 8.0-compatible queues with multiple recipients. After a

queue is transported to a target database, the queue is initially disabled. After

making the transported tablespaces read-write in the target database, you can

enable the queue by starting it up via the built-in PL/SQL routine

dbms_aqadm.start_queue() .

Indexes
You can transport regular indexes and bitmap indexes. When the transportable set

fully contains a partitioned table, you can also transport the global index of the

partitioned table.

Function-based indexes and domain indexes are not supported. If they exist in a

tablespace, you must drop them before you can transport the tablespace.

Transporting Tablespaces Between Databases

Managing Tablespaces 9-27

Triggers
Triggers are exported without a validity check. In other words, Oracle does not

verify that the trigger refers only to objects within the transportable set. Invalid

triggers will cause a compilation error during the subsequent import.

Snapshots/Replication
Transporting snapshot or replication structural information is not supported. If a

table in the tablespace you want to transport is replicated, you must drop the

replication structural information and convert the table into a normal table before

you can transport the tablespace.

Transporting and Attaching Partitions for Data Warehousing: Example
Typical enterprise data warehouses contain one or more large fact tables. These fact

tables may be partitioned by date, making the enterprise data warehouse a

historical database. You can build indexes to speed up star queries. In fact, Oracle

recommends that you build local indexes for such historically partitioned tables to

avoid rebuilding global indexes every time you drop the oldest partition from the

historical database.

Suppose every month you would like to load one month’s worth of data into the

data warehouse. There is a large fact table in the data warehouse called "sales",

which has the following columns:

CREATE TABLE sales (invoice_no NUMBER,
 sale_year INT NOT NULL,
 sale_month INT NOT NULL,
 sale_day INT NOT NULL)
 PARTITION BY RANGE (sale_year, sale_month, sale_day)
 (partition jan98 VALUES LESS THAN (1998, 2, 1),
 partition feb98 VALUES LESS THAN (1998, 3, 1),
 partition mar98 VALUES LESS THAN (1998, 4, 1),
 partition apr98 VALUES LESS THAN (1998, 5, 1),
 partition may98 VALUES LESS THAN (1998, 6, 1),
 partition jun98 VALUES LESS THAN (1998, 7, 1));

You create a local nonprefixed index:

 CREATE INDEX sales_index ON sales(invoice_no) LOCAL;

Initially, all partitions are empty, and are in the same default tablespace. Each

month, you wish to create one partition and attach it to the partitioned sales
table.

Transporting Tablespaces Between Databases

9-28 Oracle8i Administrator’s Guide

Suppose it is July 1998, and you would like to load the July sales data into the

partitioned table. In a staging database, you create a new tablespace, ts_jul . You

also create a table, jul_sales , in that tablespace with exactly the same column

types as the sales table. You can create the table jul_sales using the CREATE

TABLE...AS SELECT statement. After creating and populating jul_sales , you can

also create an index, jul_sale_index , for the table, indexing the same column as

the local indexes in the sales table. After building the index, transport the

tablespace ts_jul to the data warehouse.

In the data warehouse, add a partition to the sales table for the July sales data.

This also creates another partition for the local nonprefixed index:

 ALTER TABLE sales ADD PARTITION jul98 VALUES LESS THAN (1998, 8, 1);

Attach the transported table jul_sales to the table sales by exchanging it with

the new partition:

 ALTER TABLE sales EXCHANGE PARTITION jul98 WITH TABLE jul_sales INCLUDING INDEXES
 WITHOUT VALIDATION;

This statement places the July sales data into the new partition jul98 , attaching the

new data to the partitioned table. This statement also converts the index

jul_sale_index into a partition of the local index for the sales table. This

statement should return immediately, because it only operates on the structural

information; it simply switches database pointers. If you know that the data in the

new partition does not overlap with data in previous partitions, you are advised to

specify the WITHOUT VALIDATION option; otherwise the statement will go

through all the new data in the new partition in an attempt to validate the range of

that partition.

If all partitions of the sales table came from the same staging database (the staging

database is never destroyed), the exchange statement will always succeed. In

general, however, if data in a partitioned table comes from different databases, it’s

possible that the exchange operation may fail. For example, if the jan98 partition

of sales did not come from the same staging database, the above exchange

operation can fail, returning the following error:

ORA-19728: data object number conflict between table JUL_SALES and partition JAN98 in
table SALES

To resolve this conflict, move the offending partition by issuing the following

statement:

ALTER TABLE sales MOVE PARTITION jan98;

Then retry the exchange operation.

Transporting Tablespaces Between Databases

Managing Tablespaces 9-29

After the exchange succeeds, you can safely drop jul_sales and

jul_sale_index (both are now empty). Thus you have successfully loaded the

July sales data into your data warehouse.

Publishing Structured Data on CDs
Transportable tablespaces provide a way to publish structured data on CDs. A data

provider may load a tablespace with data to be published, generate the

transportable set, and copy the transportable set to a CD. This CD can then be

distributed.

When customers receive this CD, they can plug it in to an existing database without

having to copy the datafiles from the CD to disk storage. For example, suppose on

an NT machine D: drive is the CD drive. You can plug in a transportable set with

datafile catalog.f and export file expdat.dmp as follows:

IMP TRANSPORT_TABLESPACE=y DATAFILES=’D:\catalog.f’ FILE=’D:\expdat.dmp’

You can remove the CD while the database is still up. Subsequent queries to the

tablespace will return an error indicating that Oracle cannot open the datafiles on

the CD. However, operations to other parts of the datafile are not affected. Placing

the CD back into the drive makes the tablespace readable again.

Removing the CD is the same as removing the datafiles for a read-only tablespace.

If you shut down and restart the database, Oracle will indicate that it cannot find

the removed datafile and will not open the database (unless you set the

initialization parameter READ_ONLY_OPEN_DELAYED to true). When

READ_ONLY_OPEN_DELAYED is set to TRUE, Oracle reads the file only when

someone queries the plugged-in tablespace. Thus, when plugging in a tablespace on

a CD, you should always set the READ_ONLY_OPEN_DELAYED initialization

parameter to TRUE, unless the CD is permanently attached to the database.

Mounting the Same Tablespace Read-only on Multiple Databases
You can use transportable tablespaces to mount a tablespace read-only on multiple

databases. In this way, separate databases can share the same data on disk instead

of duplicating data on separate disks. The tablespace datafiles must be accessible by

all databases. To avoid database corruption, the tablespace must remain read-only

in all the databases mounting the tablespace.

You can mount the same tablespace read-only on multiple databases in either of the

following ways:

Transporting Tablespaces Between Databases

9-30 Oracle8i Administrator’s Guide

■ Plug the tablespaces into each of the databases you wish to mount the

tablespace. Generate a transportable set in a single database. Put the datafiles in

the transportable set on a disk accessible to all databases. Import the structural

information into each database.

■ Generate the transportable set in one of the databases and plug it into other

databases. If you use this approach, it is assumed that the datafiles are already

on the shared disk, and they belong to an existing tablespace in one of the

databases. You can make the tablespace read-only, generate the transportable

set, and then plug the tablespace in to other databases while the datafiles

remain in the same location on the shared disk.

You can make the disk accessible by multiple computers via several ways. You may

use either a clustered file system or raw disk, as that is required by Oracle Parallel

Server. Because Oracle will only read these type of datafiles on shared disk, you can

also use NFS. Be aware, however, that if a user queries the shared tablespace while

NFS is down, the database may hang until the NFS operation times out.

Later, you can drop the read-only tablespace in some of the databases. Doing so will

not modify the datafiles for the tablespace; thus the drop operation will not corrupt

the tablespace. Do not make the tablespace read-write unless only one database is

mounting the tablespace.

Archive Historical Data via Transportable Tablespaces
Since a transportable tablespace set is a self-contained set of files that can be

plugged into any Oracle database, you can archive old/historical data in an

enterprise data warehouse via the transportable tablespace procedures described in

this chapter.

See Also: For more details, see the Oracle8i Backup and Recovery Guide.

Using Transportable Tablespaces to Perform TSPITR
You can use transportable tablespaces to perform tablespace point-in-time recovery

(TSPITR).

See Also: For information about how to perform TSPITR using transportable

tablespaces, see the Oracle8i Backup and Recovery Guide.

Viewing Information About Tablespaces

Managing Tablespaces 9-31

Viewing Information About Tablespaces
The following data dictionary views provide useful information about tablespaces

of a database:

■ USER_EXTENTS, DBA_EXTENTS

■ USER_SEGMENTS, DBA_SEGMENTS

■ USER_FREE_SPACE, DBA_FREE_SPACE

■ DBA_USERS

■ DBA_TS_QUOTAS

■ USER_TABLESPACES, DBA_TABLESPACES

■ DBA_DATA_FILES

■ V$DATAFILE

The following examples illustrate how to use the views not already illustrated in

other chapters of this manual. They assume you are using a database that contains

two tablespaces, SYSTEM and USERS. USERS is made up of two files, FILE1

(100MB) and FILE2 (200MB); the tablespace has been taken offline normally.

Listing Tablespaces and Default Storage Parameters: Example
To list the names and default storage parameters of all tablespaces in a database,

use the following query on the DBA_TABLESPACES view:

SELECT tablespace_name "TABLESPACE",
 initial_extent "INITIAL_EXT",
 next_extent "NEXT_EXT",
 min_extents "MIN_EXT",
 max_extents "MAX_EXT",
 pct_increase
 FROM sys.dba_tablespaces;

TABLESPACE INITIAL_EXT NEXT_EXT MIN_EXT MAX_EXT PCT_INCREASE
---------- ----------- -------- ------- ------- ------------
SYSTEM 10240000 10240000 1 99 50
USERS 10240000 10240000 1 99 50

Listing the Datafiles and Associated Tablespaces of a Database: Example
To list the names, sizes, and associated tablespaces of a database, enter the

following query on the DBA_DATA_FILES view:

Viewing Information About Tablespaces

9-32 Oracle8i Administrator’s Guide

SELECT file_name, bytes, tablespace_name
 FROM sys.dba_data_files;

FILE_NAME BYTES TABLESPACE_NAME
------------ ---------- -------------------
filename1 10240000 SYSTEM
filename2 10240000 USERS
filename3 20480000 USERS

Listing the Free Space (Extents) of Each Tablespace: Example
To see the amount of space available in the free extents of each tablespace in the

database, enter the following query:

SELECT tablespace_name "TABLESPACE", file_id,
 COUNT(*) "PIECES",
 MAX(blocks) "MAXIMUM",
 MIN(blocks) "MINIMUM",
 AVG(blocks) "AVERAGE",
 SUM(blocks) "TOTAL"
 FROM sys.dba_free_space
WHERE tablespace_name = ’SYSTEM’
GROUP BY tablespace_name, file_id;

TABLESPACE FILE_ID PIECES MAXIMUM MINIMUM AVERAGE TOTAL
---------- ------- ------ ------- ------- ------- ------
SYSTEM 1 2 2928 115 1521.5 3043

TOTAL shows the amount of free space in each tablespace, PIECES shows the

amount of fragmentation in the datafiles of the tablespace, and MAXIMUM shows

the largest contiguous area of space. This query is useful when you are going to

create a new object or you know that a segment is about to extend, and you want to

make sure that there is enough space in the containing tablespace.

Managing Datafiles 10-1

10
Managing Datafiles

This chapter describes the various aspects of datafile management, and includes the

following topics:

■ Guidelines for Managing Datafiles

■ Creating and Adding Datafiles to a Tablespace

■ Changing a Datafile’s Size

■ Altering Datafile Availability

■ Renaming and Relocating Datafiles

■ Verifying Data Blocks in Datafiles

■ Viewing Information About Datafiles

See Also: Datafiles can also be created as part of database recovery from a media

failure. For more information, see the Oracle8i Backup and Recovery Guide.

Guidelines for Managing Datafiles

10-2 Oracle8i Administrator’s Guide

Guidelines for Managing Datafiles
This section describes aspects of managing datafiles, and includes the following

topics:

■ Determine the Number of Datafiles

■ Set the Size of Datafiles

■ Place Datafiles Appropriately

■ Store Datafiles Separate From Redo Log Files

Every datafile has two associated file numbers: an absolute file number and a relative
file number.

An absolute file number uniquely identifies a datafile in the database. Prior to

Oracle8, the absolute file number was referred to as simply the "file number."

A relative file number uniquely identifies a datafile within a tablespace. For small

and medium size databases, relative file numbers usually have the same value as

the absolute file number. However, when the number of datafiles in a database

exceeds a threshold (typically 1023), the relative file number will differ from the

absolute file number. You can locate relative file numbers in many data dictionary

views.

Determine the Number of Datafiles
At least one datafile is required for the SYSTEM tablespace of a database; a small

system might have a single datafile. In general, keeping a few large datafiles is

preferable to many small datafiles, because you can keep fewer files open at the

same time.

You can add datafiles to tablespaces, subject to the following operating system-

specific datafile limits:

operating system limit Each operating system sets a limit on the
maximum number of open files per process.
Regardless of all other limits, more datafiles
cannot be created when the operating system
limit of open files is reached.

Oracle system limit Oracle imposes a maximum limit on the
number of datafiles for any Oracle database
opened by any instance. This limit is port-
specific.

Guidelines for Managing Datafiles

Managing Datafiles 10-3

When determining a value for DB_FILES, take the following into consideration:

■ If the value of DB_FILES is too low, you will be unable to add datafiles beyond

the DB_FILES limit without first shutting down the database.

■ IF the value of DB_FILES is too high, memory is unnecessarily consumed.

Theoretically, an Oracle database can have an unlimited number of datafiles.

Nevertheless, you should consider the following when determining the number of

datafiles:

■ Performance is better with a small number of datafiles rather than a large

number of small datafiles. Large files also increase the granularity of a

recoverable unit.

■ Operating systems often impose a limit on the number of files a process can

open simultaneously. Oracle’s DBW0 process can open all online datafiles.

Oracle is also capable of treating open file descriptors as a cache, automatically

closing files when the number of open file descriptors reaches the operating

system-defined limit.

control file upper bound When you issue CREATE DATABASE or
CREATE CONTROLFILE statements, the
MAXDATAFILES parameter specifies an
initial size of the datafile portion of the
control file. Later, if you add a file whose
number exceeds MAXDATAFILES but is less
than or equal to DB_FILES, the control file
automatically expands to allow the datafile
portion to accommodate more files.

instance or SGA upper bound When starting an Oracle8 instance, the
database’s parameter file indicates the
amount of SGA space to reserve for datafile
information; the maximum number of
datafiles is controlled by the DB_FILES
parameter. This limit applies only for the life
of the instance.

Note: The default value of DB_FILES is
operating system specific.

With the Oracle Parallel Server, all instances
must set the instance datafile upper bound to
the same value.

Guidelines for Managing Datafiles

10-4 Oracle8i Administrator’s Guide

Oracle allows more datafiles in the database than the operating system-defined

limit; this can have a negative performance impact. When possible, adjust the

operating system limit on open file descriptors so that it is larger than the number

of online datafiles in the database.

The operating system specific limit on the maximum number of datafiles allowed in

a tablespace is typically 1023 files.

See Also: For more information on operating system limits, see your operating

system-specific Oracle documentation.

For information about Parallel Server operating system limits, see Oracle8i Parallel
Server Concepts and Administration.

For more information about MAXDATAFILES, see the Oracle8i SQL Reference.

Set the Size of Datafiles
The first datafile (in the original SYSTEM tablespace) must be at least 7M to contain

the initial data dictionary and rollback segment. If you install other Oracle products,

they may require additional space in the SYSTEM tablespace (for online help, for

example); see the installation instructions for these products.

Place Datafiles Appropriately
Tablespace location is determined by the physical location of the datafiles that

constitute that tablespace. Use the hardware resources of your computer

appropriately.

For example, if several disk drives are available to store the database, it might be

helpful to store table data in a tablespace on one disk drive, and index data in a

tablespace on another disk drive. This way, when users query table information,

both disk drives can work simultaneously, retrieving table and index data at the

same time.

Store Datafiles Separate From Redo Log Files
Datafiles should not be stored on the same disk drive that stores the database’s redo

log files. If the datafiles and redo log files are stored on the same disk drive and that

disk drive fails, the files cannot be used in your database recovery procedures.

If you multiplex your redo log files, then the likelihood of losing all of your redo log

files is low, so you can store datafiles on the same drive as some redo log files.

Changing a Datafile’s Size

Managing Datafiles 10-5

Creating and Adding Datafiles to a Tablespace
You can create and add datafiles to a tablespace to increase the total amount of disk

space allocated for the tablespace, and consequently the database.

Ideally, when creating a tablespace DBAs should estimate the potential size of the

database objects and add sufficient files or devices. Doing so ensures that data is

spread evenly across all devices.

To add datafiles to a tablespace, use either the Add Datafile dialog box of Enterprise

Manager/GUI, or the SQL command ALTER TABLESPACE. You must have the

ALTER TABLESPACE system privilege to add datafiles to a tablespace.

The following statement creates a new datafile for the RB_SEGS tablespace:

ALTER TABLESPACE rb_segs
 ADD DATAFILE ’filename1’ SIZE 1M;

If you add new datafiles to a tablespace and do not fully specify the filenames,

Oracle creates the datafiles in the default directory of the database server. Unless

you want to reuse existing files, make sure the new filenames do not conflict with

other files; the old files that have been previously dropped will be overwritten.

Changing a Datafile’s Size
This section describes the various ways to alter the size of a datafile, and includes

the following topics:

■ Enabling and Disabling Automatic Extension for a Datafile

■ Manually Resizing a Datafile

Enabling and Disabling Automatic Extension for a Datafile
You can create datafiles or alter existing datafiles so that they automatically increase

in size when more space is needed in the database. The files increase in specified

increments up to a specified maximum.

Setting your datafiles to extend automatically results in the following:

■ reduces the need for immediate intervention when a tablespace runs out of

space

■ ensures applications will not halt because of failures to allocate extents

Changing a Datafile’s Size

10-6 Oracle8i Administrator’s Guide

To find out if a datafile is auto-extensible, query the DBA_DATA_FILES view and

examine the AUTOEXTENSIBLE column.

You can specify automatic file extension when you create datafiles via the following

SQL commands:

■ CREATE DATABASE

■ CREATE TABLESPACE

■ ALTER TABLESPACE

You can enable or disable automatic file extension for existing datafiles, or manually

resize a datafile using the SQL statement ALTER DATABASE.

The following example enables automatic extension for a datafile, FILENAME2,

added to the USERS tablespace:

ALTER TABLESPACE users
 ADD DATAFILE ’filename2’ SIZE 10M
 AUTOEXTEND ON
 NEXT 512K
 MAXSIZE 250M;

The value of NEXT is the minimum size of the increments added to the file when it

extends. The value of MAXSIZE is the maximum size to which the file can

automatically extend.

The next example disables automatic extension for the datafile FILENAME2:

ALTER DATABASE DATAFILE ’filename2’
 AUTOEXTEND OFF;

See Also: For more information about the SQL statements for creating or altering

datafiles, see the Oracle8i SQL Reference.

Manually Resizing a Datafile
You can manually increase or decrease the size of a datafile using the ALTER

DATABASE command.

Because you can change the sizes of datafiles, you can add more space to your

database without adding more datafiles. This is beneficial if you are concerned

about reaching the maximum number of datafiles allowed in your database.

Manually reducing the sizes of datafiles allows you to reclaim unused space in the

database. This is useful for correcting errors in estimates of space requirements.

Altering Datafile Availability

Managing Datafiles 10-7

In this example, assume that the datafile FILENAME2 has extended up to 250M.

However, because its tablespace now stores smaller objects, the datafile can be

reduced in size.

The following command decreases the size of datafile FILENAME2:

ALTER DATABASE DATAFILE ’filename2’
 RESIZE 100M;

See Also: For more information about the implications resizing files has for

downgrading, see Oracle8i Migration.

For more information about the ALTER DATABASE statement, see the Oracle8i SQL
Reference.

Altering Datafile Availability
This section describes ways to alter datafile availability, and includes the following

topics:

■ Bringing Datafiles Online in ARCHIVELOG Mode

■ Taking Datafiles Offline in NOARCHIVELOG Mode

In very rare situations, you might need to bring specific datafiles online (make them

available) or take specific files offline (make them unavailable). For example, when

Oracle has problems writing to a datafile, it can automatically take the datafile

offline. You might need to take the damaged datafile offline or bring it online

manually.

Offline datafiles cannot be accessed. Bringing online a datafile in a read-only

tablespace makes the file readable. No one can write to the file unless its associated

tablespace is returned to the read-write state. The files of a read-only tablespace can

Note: It is not always possible to decrease the size of a file to a

specific value.

Note: You can make all datafiles in a tablespace, other than the

files in the SYSTEM tablespace, temporarily unavailable by taking

the tablespace offline. You must leave these files in the tablespace to

bring the tablespace back online.

Altering Datafile Availability

10-8 Oracle8i Administrator’s Guide

independently be taken online or offline using the DATAFILE option of the ALTER

DATABASE command.

To bring a datafile online or take it offline, in either archiving mode, you must have

the ALTER DATABASE system privilege. You can perform these operations only

when the database is open in exclusive mode.

Bringing Datafiles Online in ARCHIVELOG Mode
To bring an individual datafile online, issue the SQL statement ALTER DATABASE

and include the DATAFILE parameter.

The following statement brings the specified datafile online:

ALTER DATABASE DATAFILE ’filename’ ONLINE;

See Also: For more information about bringing datafiles online during media

recovery, see the Oracle8i Backup and Recovery Guide.

Taking Datafiles Offline in NOARCHIVELOG Mode
To take a datafile offline when the database is in NOARCHIVELOG mode, use the

ALTER DATABASE command with the DATAFILE parameter and the OFFLINE

DROP option. This allows you to take the datafile offline and drop it immediately. It

is useful, for example, if the datafile contains only data from temporary segments

and has not been backed up and the database is in NOARCHIVELOG mode.

The following statement brings the specified datafile offline:

ALTER DATABASE DATAFILE ’filename’ OFFLINE DROP;

Note: To use this option of the ALTER DATABASE statement, the

database must be in ARCHIVELOG mode. This requirement

prevents you from accidentally losing the datafile, since taking the

datafile offline while in NOARCHIVELOG mode is likely to result

in losing the file.

Renaming and Relocating Datafiles

Managing Datafiles 10-9

Renaming and Relocating Datafiles
This section describes the various aspects of renaming and relocating datafiles, and

includes the following topics:

■ Renaming and Relocating Datafiles for a Single Tablespace

■ Renaming and Relocating Datafiles for Multiple Tablespaces

You can rename datafiles to change either their names or locations. Oracle provides

options to make the following changes:

■ Rename and relocate datafiles in a single offline tablespace (for example,

FILENAME1 and FILENAME2 in TBSP1) while the rest of the database is open.

■ Rename and relocate datafiles in several tablespaces simultaneously (for

example, FILE1 in TBSP1 and FILE2 in TBSP2) while the database is mounted

but closed.

Renaming and relocating datafiles with these procedures only change the pointers

to the datafiles, as recorded in the database’s control file; it does not physically

rename any operating system files, nor does it copy files at the operating system

level. Therefore, renaming and relocating datafiles involve several steps. Read the

steps and examples carefully before performing these procedures.

You must have the ALTER TABLESPACE system privilege to rename datafiles of a

single tablespace.

Renaming and Relocating Datafiles for a Single Tablespace

To Rename or Relocate Datafiles from a Single Tablespace

1. Take the non-SYSTEM tablespace that contains the datafiles offline.

2. Copy the datafiles to the new location or new names using operating system

commands.

3. Make sure that the new, fully specified filenames are different from the old

filenames.

Note: To rename or relocate datafiles of the SYSTEM tablespace,

you must use the second option, because you cannot take the

SYSTEM tablespace offline.

Renaming and Relocating Datafiles

10-10 Oracle8i Administrator’s Guide

4. Use the SQL statement ALTER TABLESPACE with the RENAME DATAFILE

option to change the filenames within the database.

For example, the following statement renames the datafiles FILENAME1 and

FILENAME2 to FILENAME3 and FILENAME4, respectively:

 ALTER TABLESPACE users
 RENAME DATAFILE ’filename1’, ’filename2’
 TO ’filename3’, ’filename4’;

The new file must already exist; this command does not create a file. Also, always

provide complete filenames (including their paths) to properly identify the old and

new datafiles. In particular, specify the old filename exactly as it appears in the

DBA_DATA_FILES view of the data dictionary.

Renaming and Relocating Datafiles for Multiple Tablespaces
You can rename and relocate datafiles of one or more tablespaces using the SQL

command ALTER DATABASE with the RENAME FILE option. This option is the

only choice if you want to rename or relocate datafiles of several tablespaces in one

operation, or rename or relocate datafiles of the SYSTEM tablespace. If the database

must remain open, consider instead the procedure outlined in the previous section.

To rename datafiles of several tablespaces in one operation or to rename datafiles of

the SYSTEM tablespace, you must have the ALTER DATABASE system privilege.

1. Ensure that the database is mounted but closed.

2. Copy the datafiles to be renamed to their new locations and new names, using

operating system commands.

3. Make sure the new copies of the datafiles have different fully specified

filenames from the datafiles currently in use.

4. Use the SQL statement ALTER DATABASE to rename the file pointers in the

database’s control file.

For example, the following statement renames the datafiles FILENAME 1 and

FILENAME2 to FILENAME3 and FILENAME4, respectively:

 ALTER DATABASE
 RENAME FILE ’filename1’, ’filename2’
 TO ’filename3’, ’filename4’;

The new file must already exist; this command does not create a file. Also, always

provide complete filenames (including their paths) to properly identify the old and

Renaming and Relocating Datafiles

Managing Datafiles 10-11

new datafiles. In particular, specify the old filename exactly as it appears in the

DBA_DATA_FILES view of the data dictionary.

Relocating Datafiles: Example
For this example, assume the following conditions:

■ An open database has a tablespace named USERS that is made up of datafiles

located on the same disk of a computer.

■ The datafiles of the USERS tablespace are to be relocated to a different disk

drive.

■ You are currently connected with administrator privileges to the open database

while using Enterprise Manager.

To Relocate Datafiles

1. Identify the datafile names of interest.

The following query of the data dictionary view DBA_DATA_FILES lists the

datafile names and respective sizes (in bytes) of the USERS tablespace:

 SELECT file_name, bytes FROM sys.dba_data_files
 WHERE tablespace_name = ’USERS’;
 FILE_NAME BYTES

 FILENAME1 102400000
 FILENAME2 102400000

Here, FILENAME1 and FILENAME2 are two fully specified filenames, each

1MB in size.

2. Back up the database.

Before making any structural changes to a database, such as renaming and

relocating the datafiles of one or more tablespaces, always completely back up

the database.

3. Take the tablespace containing the datafile offline, or shut down the database

and restart and mount it, leaving it closed. Either option closes the datafiles of

the tablespace.

Verifying Data Blocks in Datafiles

10-12 Oracle8i Administrator’s Guide

4. Copy the datafiles to their new locations using operating system commands.

For this example, the existing files FILENAME1 and FILENAME2 are copied to

FILENAME3 and FILENAME4.

5. Rename the datafiles within Oracle.

The datafile pointers for the files that make up the USERS tablespace, recorded

in the control file of the associated database, must now be changed from

FILENAME1 and FILENAME2 to FILENAME3 and FILENAME4, respectively.

If the tablespace is offline but the database is open, use the ALTER

TABLESPACE...RENAME DATAFILE statement. If the database is mounted but

closed, use the ALTER DATABASE...RENAME FILE statement.

6. Bring the tablespace online, or shut down and restart the database.

If the USERS tablespace is offline and the database is open, bring the tablespace

back online. If the database is mounted but closed, open the database.

7. Back up the database. After making any structural changes to a database,

always perform an immediate and complete backup.

See Also: For more information about the DBA_DATA_FILES data dictionary view,

see the Oracle8i Reference.

For more information about taking a tablespace offline, see "Taking Tablespaces

Offline" on page 9-10.

Verifying Data Blocks in Datafiles
If you want to configure Oracle to use checksums to verify data blocks, set the

initialization parameter DB_BLOCK_CHECKSUM to TRUE. The value of this

parameter can be changed dynamically, or set in the initialization parameter file.

The default value of DB_BLOCK_CHECKSUM is FALSE.

When you enable block checking, Oracle computes a checksum for each block

written to disk. Checksums are computed for all data blocks, including temporary

blocks.

The DBW0 process calculates the checksum for each block and stores it in the

block’s header. Checksums are also computed by the direct loader.

Note: You can execute an operating system command to copy a

file by using the HOST command.

Viewing Information About Datafiles

Managing Datafiles 10-13

The next time Oracle reads a data block, it uses the checksum to detect corruption in

the block. If a corruption is detected, Oracle returns message ORA-01578 and writes

information about the corruption to a trace file.

Viewing Information About Datafiles
The following data dictionary views provide useful information about the datafiles

of a database:

■ USER_EXTENTS, DBA_EXTENTS

■ USER_SEGMENTS, DBA_SEGMENTS

■ USER_FREE_SPACE, DBA_FREE_SPACE

■ DBA_USERS

■ DBA_TS_QUOTAS

■ USER_TABLESPACES, DBA_TABLESPACES

■ DBA_DATA_FILES

■ V$DATAFILE

The following example illustrates how to use a view not already illustrated in other

chapters of this manual. Assume you are using a database that contains two

tablespaces, SYSTEM and USERS. USERS is made up of two files, FILE1 (100MB)

and FILE2 (200MB); the tablespace has been taken offline normally. Here, you query

V$DATAFILE to view status information about datafiles of a database:

SELECT name,
 file#,
 status,
 checkpoint_change# "CHECKPOINT" FROM v$datafile;

NAME FILE# STATUS CHECKPOINT
-------------------------------- ----- ------- ----------
filename1 1 SYSTEM 3839
filename2 2 OFFLINE 3782
filename3 3 OFFLINE 3782

WARNING: Setting DB_BLOCK_CHECKSUM to TRUE can
cause performance overhead. Set this parameter to TRUE only
under the advice of Oracle Support personnel to diagnose data
corruption problems.

Viewing Information About Datafiles

10-14 Oracle8i Administrator’s Guide

FILE# lists the file number of each datafile; the first datafile in the SYSTEM

tablespace created with the database is always file 1. STATUS lists other information

about a datafile. If a datafile is part of the SYSTEM tablespace, its status is SYSTEM

(unless it requires recovery). If a datafile in a non-SYSTEM tablespace is online, its

status is ONLINE. If a datafile in a non-SYSTEM tablespace is offline, its status can

be either OFFLINE or RECOVER. CHECKPOINT lists the final SCN written for a

datafile’s most recent checkpoint.

Using the Database Resource Manager 11-1

11
Using the Database Resource Manager

This chapter describes how to use the Database Resource Manager and includes the

following topics:

■ Using Database Resource Manager Packages

■ Database Resource Manager Views

Introduction

11-2 Oracle8i Administrator’s Guide

Introduction
Typically, when database resource allocation decisions are left to the operating

system (OS), you may encounter the following problems:

■ Excessive overhead

Excessive overhead results from OS context switching between Oracle servers

when the number of servers is high.

■ Inefficient scheduling

The OS de-schedules Oracle servers while they hold latches, which is inefficient.

■ Poor resource partitioning

The OS fails to partition CPU resources appropriately among tasks of varying

importance.

■ Inability to manage database-specific resources, such as parallel slaves and

active sessions

Oracle’s Database Resource Manager allocates resources based on a resource plan

that is specified by database administrators. Database Resource Manager ultimately

offers you more control over resource management decisions and addresses the

problems caused by inefficient OS scheduling.

Administrators use the basic elements of Database Resource Manager described in

Table 11–1.

Table 11–1 Database Resource Manager Elements

Element Description

resource consumer group user sessions grouped together based on
resource processing requirements

resource plan contains directives that specify which
resources are allocated to resource
consumer groups

resource allocation method the method/policy used by Database
Resource Manager when allocating for a
particular resource; used by resource
consumer groups and resource plans

resource plan directive used by administrators to associate
resource consumer groups with particular
plans and partition resources among
resource consumer groups

Using Database Resource Manager Packages

Using the Database Resource Manager 11-3

See Also: For detailed conceptual information about the Database Resource

Manager, see Oracle8i Concepts.

Using Database Resource Manager Packages
To create resource plans and resource consumer groups, use the following packages:

■ DBMS_RESOURCE_MANAGER

■ DBMS_RESOURCE_MANAGER_PRIVS

Using the DBMS_RESOURCE_MANAGER Package
Use the DBMS_RESOURCE_MANAGER package to maintain resource plans,

resource consumer groups, and plan directives. You can also use this package to

group together changes to the plan schema.

You must have the SYSTEM privilege to administer the Database Resource

Manager. Typically, administrators have this SYSTEM privilege with the ADMIN

option. Following are procedures that grant and revoke this SYSTEM privilege.

grant_system_privilege(grantee_name in varchar2,admin_option in boolean)

revoke_system_privilege (revokee_name in varchar2)

Administering Resource Plans

You can use the following procedures to create, update, or delete resource plans:

create_plan(plan in varchar2, comment in varchar2,
 cpu_mth in varchar2 DEFAULT ’EMPHASIS’,
 max_active_sess_target_mth in varchar2 DEFAULT
 ’MAX_ACTIVE_SESS_ABSOLUTE’,
 parallel_degree_limit_mth in varchar2 DEFAULT
 ’PARALLEL_DEGREE_LIMIT_ABSOLUTE’)
update_plan(plan in varchar2, new_comment in varchar2)
 DEFAULT NULL, new_cpu_mth in varchar2
 DEFAULT NULL, new_max_active_sess_target_mth in
 varchar2 DEFAULT NULL,

Note: You must create a pending area before creating any

Resource Manager objects. For more details see "Creating and

Administering the Pending Area" on page 11-5.

Using Database Resource Manager Packages

11-4 Oracle8i Administrator’s Guide

 new_parallel_degree_limit_mth in varchar2
 DEFAULT NULL)
delete_plan(plan in varchar2)
delete_plan_cascade(plan in varchar2)

The delete_plan procedure deletes the specified plan as well as all the plan

directives it refers to. The delete_plan_cascade procedure deletes the specified

plan as well as all its descendants (plan directives, subplans, resource consumer

groups). If delete_plan_cascade encounters an error, it will roll back, leaving

the plan schema unchanged.

If you do not specify the arguments to update_plan procedure, they remain

unchanged in the data dictionary.

If you wish to use a default resource allocation method, you need not specify it

when creating or updating a plan. The method defaults are:

■ cpu_method =’EMPHASIS’

■ parallel_degree_limit_mth =’PARALLEL_DEGREE_LIMIT_ABSOLUTE’

Administering Resource Consumer Groups
You can use the following procedures to create, update, or delete resource consumer

groups:

create_consumer_group(consumer_group in varchar2,
 comment in varchar2, cpu_mth in varchar2
 DEFAULT ’ROUND-ROBIN’)
update_consumer_group(consumer_group in varchar2,
 new_comment in varchar2 DEFAULT NULL,
 new_cpu_mth in varchar2 DEFAULT NULL)
delete_consumer_group(consumer_group in varchar2)

You need not specify the cpu_mth parameter if you wish to use the default CPU

method, which is ROUND-ROBIN.

If you do not specify the arguments for the update_consumer_group procedure,

they remain unchanged in the data dictionary.

Administering Resource Plan Directives
You can use the following procedures to create, update, or delete resource plan

directives:

create_plan_directive(plan in varchar2, group_or_subplan
 in varchar2, comment in varrchar2, cpu_p1 in number
DEFAULT NULL, cpu_p2 in number

Using Database Resource Manager Packages

Using the Database Resource Manager 11-5

DEFAULT NULL, cpu_p3 in number
DEFAULT NULL, cpu_p4 in number
DEFAULT NULL, cpu_p5 in number
DEFAULT NULL, cpu_p6 in number
DEFAULT NULL, cpu_p7 in number
DEFAULT NULL, cpu_p8 in number
DEFAULT NULL, max_active_sess_target_p1 in number
DEFAULT NULL, parallel_degree_limit_p1 in number DEFAULT NULL)
update_plan_directive(plan in varchar2, group_or_subplan
 in varchar2, new_comment in varchar2
DEFAULT NULL, new_cpu_p1 in number
DEFAULT NULL, new_cpu_p2 in number
DEFAULT NULL, new_cpu_p3 in number DEFAULT NULL, new_cpu_p4 in number
DEFAULT NULL, new_cpu_p5 in number DEFAULT NULL, new_cpu_p6 in number
DEFAULT NULL, new_cpu_p7 in number DEFAULT NULL, new_cpu_p8 in number
DEFAULT NULL, max_active_sess_target_p1 in number
DEFAULT NULL, new_parallel_degree_limit_p1 in number
DEFAULT NULL)
delete_plan_directive(plan in varchar2, group_or_subplan
 in varchar2)

All parameters default to NULL.

If you do not specify the arguments for the update_plan_directive
procedure, they remain unchanged in the data dictionary.

Creating and Administering the Pending Area
All changes to the plan schema can be done within a pending area, which is a

"scratch" area for plan schema changes. You must create this pending area, make

changes as necessary and submit the changes (validation is optional).

You can use the following procedures to create, validate, and submit pending

changes for the Database Resource Manager:

dbms_resource_manager.create_pending_area

dbms_resource_manager.validate_pending_area

dbms_resource_manager.clear_pending_area

dbms_resource_manager.submit_pending_area

Note: The changes come into effect and become active only if the

submit_pending_area procedure completes successfully.

Using Database Resource Manager Packages

11-6 Oracle8i Administrator’s Guide

You can also view the current schema containing your changes by selecting from

the appropriate user views while the pending area is active. You can clear the

pending area to abort the current changes any time as well. Call the validate
procedure to check whether your changes are valid.

The changes made within the pending area must adhere to the following rules:

1. No plan schema may contain any loops.

2. All plan and/or resource consumer groups referred to by plan directives must

exist.

3. All plans must have plan directives that point to either plans or resource

consumer groups.

4. All percentages in any given level must not add up to greater than 100 for the

emphasis resource allocation method.

5. A plan that is currently being used as a top plan by an active instance cannot be

deleted.

6. The plan directive parameter parallel_degree_limit_p1 can appear only

in plan directives that refer to resource consumer groups (not other resource

plans).

7. There can be no more than 32 resource consumer groups in any active plan

schema. Also, at most, a plan can have 32 children. All leaves of a top plan must

be consumer resource groups; at the lowest level in a plan schema the plan

directives must refer to consumer groups.

8. Plans and resource consumer groups may not have the same name.

9. There must be a plan directive for OTHER_GROUPS somewhere in an active

plan schema. This ensures that a session not covered by the currently active

plan is allocated resources as specified by the OTHER_GROUPS directive.

Database Resource Manager allows "orphan" resource consumer groups (resource

consumer groups with no plan directives referring to them) because you may wish

to create a resource consumer group that is not currently being used, but will be

used in the future.

You will receive an error message if any of the above rules are broken when checked

by the validate or submit procedures. You may then make changes to fix the

problem(s) and reissue the validate or submit procedures. The

Using Database Resource Manager Packages

Using the Database Resource Manager 11-7

submit_pending_area clears the pending area after validating and committing

the changes (if valid).

The following commands create a multi-level schema, and use the default plan and

resource consumer group methods as illustrated in Figure 11–1:

begin
dbms_resource_manager.create_pending_area();
dbms_resource_manager.create_plan(plan => ’BUGDB_PLAN’,
 comment => ’Resource plan/method for bug users’sessions’);
dbms_resource_manager.create_plan(plan => ’MAILDB_PLAN’,
 comment => ’Resource plan/method for mail users’ sessions’);
dbms_resource_manager.create_plan(plan => ’MYDB_PLAN’,
 comment => ’Resource plan/method for bug and mail users’ sessions’);
dbms_resource_manager.create_consumer_group(consumer_group => ’Bug_Online_group’,
 comment => ’Resource consumer group/method for online bug users’ sessions’);
dbms_resource_manager.create_consumer_group(consumer_group => ’Bug_Batch_group’,
comment => ’Resource consumer group/method for bug users’ sessions who run batch jobs’);
dbms_resource_manager.create_consumer_group(consumer_group => ’Bug_Maintenance_group’,
 comment => ’Resource consumer group/method for users’ sessions who maintain
 the bug db’);
dbms_resource_manager.create_consumer_group(consumer_group => ’Mail_users_group’,
 comment => ’Resource consumer group/method for mail users’ sessions’);
dbms_resource_manager.create_consumer_group(consumer_group => ’Mail_Postman_group’,
 comment => ’Resource consumer group/method for mail postman’);
dbms_resource_manager.create_consumer_group(consumer_group => ’Mail_Maintenance_group’,
 comment => ’Resource consumer group/method for users’ sessions who maintain the mail
 db’);
dbms_resource_manager.create_plan_directive(plan => ’BUGDB_PLAN’, group_or_subplan =>
’Bug_Online_group’,
 comment => ’online bug users’ sessions at level 0’, cpu_p1 => 80, cpu_p2=> 0,
 parallel_degree_limit_p1 => 8);
dbms_resource_manager.create_plan_directive(plan => ’BUGDB_PLAN’, group_or_subplan =>
’Bug_Batch_group’,
 comment => ’batch bug users’ sessions at level 0’, cpu_p1 => 20, cpu_p2 => 0,
 parallel_degree_limit_p1 => 2);
dbms_resource_manager.create_plan_directive(plan => ’BUGDB_PLAN’, group_or_subplan =>
’Bug_Maintenance_group’,
 comment => ’bug maintenance users’ sessions at level 1’, cpu_p1 => 0, cpu_p2 => 100,
parallel_degree_limit_p1 => 3);

Note: A call to submit_pending_area may fail even if

validate_pending_area succeeds. This can happen if, for

example, a plan being deleted is loaded by an instance after a call to

validate_pending_area , but before a call to

submit_pending_area .

Using Database Resource Manager Packages

11-8 Oracle8i Administrator’s Guide

dbms_resource_manager.create_plan_directive(plan => ’MAILDB_PLAN’, group_or_subplan =>
’Mail_Postman_group’,
 comment => ’mail postman at level 0’, cpu_p1 => 40, cpu_p2 => 0,
 parallel_degree_limit_p1 => 4);
dbms_resource_manager.create_plan_directive(plan => ’MAILDB_PLAN’, group_or_subplan =>
’Mail_users_group’,
 comment => ’mail users’ sessions at level 1’, cpu_p1 => 0, cpu_p2 => 80,
 parallel_degree_limit_p1 => 4);
dbms_resource_manager.create_plan_directive(plan => ’MAILDB_PLAN’, group_or_subplan =>
’Mail_Maintenance_group’,
 comment => ’mail maintenance users’ sessions at level 1’, cpu_p1 => 0, cpu_p2 => 20,
 parallel_degree_limit_p1 => 2);
dbms_resource_manager.create_plan_directive(plan => ’MYDB_PLAN’, group_or_subplan =>
’MAILDB_PLAN’,
 comment=> ’all mail users’ sessions at level 0’, cpu_p1 => 30);
dbms_resource_manager.create_plan_directive(plan => ’MYDB_PLAN’, group_or_subplan =>
’BUGDB_PLAN’,
 comment => ’all bug users’ sessions at level 0’, cpu_p1 = 70);
dbms_resource_manager.validate_pending_area();
dbms_resource_manager.submit_pending_area();
end;
/

The preceding call to validate_pending_area is optional because the validation

is implicitly performed in submit_pending_area .

Using Database Resource Manager Packages

Using the Database Resource Manager 11-9

Figure 11–1 Multi-level Schema

Assigning Resource Consumer Groups to Users
In addition to providing the above procedures to maintain resource plans and

resource consumer groups, the DATABASE_RESOURCE_MANAGER package also

contains procedures to assign resource consumer groups to users. The following

procedure sets the initial consumer group of a user:

set_initial_consumer_group(user in varchar2, consumer_group in varchar2)

The initial consumer group of a user is the consumer group to which any session

created by that user initially belongs. You must grant the switch privilege directly to

the user or PUBLIC before it can be the user’s initial consumer group. The switch

privilege for the initial consumer group cannot come from a role granted to that

user (these semantics are similar to those for ALTER USER DEFAULT ROLE).

If you have not set the initial consumer group for a user, the user’s initial consumer

group will automatically be the consumer group DEFAULT_CONSUMER_GROUP.

DEFAULT_CONSUMER_GROUP has switch privileges granted to PUBLIC;

therefore, all users are automatically granted switch privilege for this consumer

group.

Upon deletion of a consumer group, all users having the deleted group as their

initial consumer group will have the DEFAULT_CONSUMER_GROUP as their

initial consumer group. All sessions belonging to a deleted consumer group will be

switched to DEFAULT_CONSUMER_GROUP.

MYDB
PLAN

MAILDB
PLAN

BUGDB
PLAN

100% @
Level 2

20% @
Level 1

80% @
Level 1

20% @
Level 2

80% @
Level 2

40% @
Level 1

70% @
Level 1

MAIL_MAINT.
GROUP

ONLINE
GROUP

BATCH
GROUP

BUG_MT.
GROUP

MAILUSERS
GROUP

POSTMAN
GROUP

30% @
Level 1

Using Database Resource Manager Packages

11-10 Oracle8i Administrator’s Guide

Changing Resource Consumer Groups
You can use the following procedure to change the resource consumer group of a

specific session:

switch_consumer_group_for_sess(session_id in number, session_serial
 in number, consumer_group in varchar2)

You can use the following procedure to change the resource consumer group for all

sessions with a given user id:

switch_consumer_group_for_user(user in varchar2, class in varchar2)

Both procedures also change the resource consumer group of any (PQ) slave

sessions that are related to the top user session.

See Also: For information about views associated with Database Resource Manager,

see the Oracle8i Reference.

The DBMS_RESOURCE_MANAGER_PRIVS Package
Use the DBMS_RESOURCE_MANAGER_PRIVS package to maintain privileges

associated with resource consumer groups. The procedures in this package are

executed with the privileges of the caller.

Granting Switch Privileges
To grant the privilege to switch to a consumer group, use the following procedure:

grant_switch_consumer_group(grantee_name in varchar2, consumer_group in varchar2,
 grant_option in boolean)

If you grant a user permission to switch to a particular consumer group, then that

user can switch their current consumer group to the new consumer group.

If you grant a role permission to switch to a particular resource consumer group,

then any users who have been granted that role and have enabled that role can

immediately switch their current consumer group to the new consumer group.

If you grant PUBLIC the permission to switch to a particular consumer group, then

any user can switch to that group.

If the grant_option argument is TRUE, then users granted switch privilege for the

consumer group may also grant switch privileges for that consumer group to

others.

Using Database Resource Manager Packages

Using the Database Resource Manager 11-11

Revoking Switch Privileges
To revoke the privilege to switch to resource consumer groups, use the following

procedure:

revoke_switch_consumer_group(revokee_name in varchar2, consumer_group in varchar2)

If you revoke a user’s switch privileges to a particular consumer group, then any

subsequent attempts by that user to switch to that consumer group will fail. If you

revoke the initial consumer group from a user, then that user will automatically be

part of the DEFAULT_CONSUMER_GROUP when logging in.

If you revoke a role’s switch privileges to a consumer group, then any users who

only had switch privilege for the consumer group via that role will not be able to

subsequently switch to that consumer group.

If you revoke from PUBLIC switch privileges to a consumer group, then any users

who could previously only use the consumer group via PUBLIC will not be able to

subsequently switch to that consumer group.

Using the DBMS_SESSION Package to Change a User’s Resource Consumer Groups
You can change your current resource consumer group by calling the following

procedure in the DBMS_SESSION package:

switch_current_consumer_group(new_consumer_group in varchar2,
 old_consumer_group out varchar2, initial_group_on_error in boolean)

This procedure enables users to switch to a consumer group for which they have

the switch privilege. If the caller is another procedure, then this procedure enables

users to switch to a consumer group for which the owner of that procedure has

switch privileges. This procedure also returns the old consumer group to users, and

can be used to switch back to the old consumer group later.

The parameter initial_group_on_error controls the behavior of the procedure

in the event of an error; if the parameter is set to TRUE and an error occurs, the

invoker’s consumer group is set to his/her initial consumer group.

Database Resource Manager Views

11-12 Oracle8i Administrator’s Guide

Database Resource Manager Views
The following dynamic performance table views are associated with Database

Resource Manager:

■ V$SESSION

■ V$MYSESSION

■ V$RSRC_CONSUMER_GROUP

■ V$RSRC_PLAN

■ V$RSRC_CONSUMER_GROUP_CPU_MTH

■ V$RSRC_PLAN_CPU_MTH

■ V$PARALLEL_DEGREE_LIMIT_MTH

The following static data dictionary views are associated with Database Resource

Manager:

■ DBA_RSRC_CONSUMER_GROUP_PRIVS

■ DBA_RSRC_MANAGER_SYSTEM_PRIVS

■ DBA_RSRC_CONSUMER_GROUPS

■ DBA_RSRC_PLAN_DIRECTIVES

■ DBA_RSRC_PLANS

■ USER_RSRC_CONSUMER_GROUP_PRIVS

■ USER_RSRC_MANAGER_SYSTEM_PRIVS

■ DBA_USERS

■ USERS_USERS

See Also: For detailed information about the contents of each of these views, see the

Oracle8i Reference.

Guidelines for Managing Schema Objects 12-1

12
Guidelines for Managing Schema Objects

This chapter describes guidelines for managing schema objects, and includes the

following topics:

■ Managing Space in Data Blocks

■ Setting Storage Parameters

■ Deallocating Space

■ Understanding Space Use of Datatypes

You should familiarize yourself with the concepts in this chapter before attempting

to manage specific schema objects as described in Chapters 13–18.

Managing Space in Data Blocks

12-2 Oracle8i Administrator’s Guide

Managing Space in Data Blocks
This section describes the various aspects of managing space in data blocks, and

includes the following topics:

■ The PCTFREE Parameter

■ The PCTUSED Parameter

■ Selecting Associated PCTUSED and PCTFREE Values

You can use the PCTFREE and PCTUSED parameters to make the following

changes:

■ increase the performance of writing and retrieving data

■ decrease the amount of unused space in data blocks

■ decrease the amount of row chaining between data blocks

The PCTFREE Parameter
The PCTFREE parameter is used to set the percentage of a block to be reserved for

possible updates to rows that already are contained in that block. For example,

assume that you specify the following parameter within a CREATE TABLE

statement:

PCTFREE 20

This indicates that 20% of each data block used for this table’s data segment will be

kept free and available for possible updates to the existing rows already within each

block. Figure 12–1 illustrates PCTFREE.

Managing Space in Data Blocks

Guidelines for Managing Schema Objects 12-3

Figure 12–1 PCTFREE

Notice that before the block reaches PCTFREE, the free space of the data block is

filled by both the insertion of new rows and by the growth of the data block header.

Specifying PCTFREE
The default for PCTFREE is 10 percent. You can use any integer between 0 and 99,

inclusive, as long as the sum of PCTFREE and PCTUSED does not exceed 100.

A smaller PCTFREE has the following effects:

■ reserves less room for updates to expand existing table rows

■ allows inserts to fill the block more completely

■ may save space, because the total data for a table or index is stored in fewer

blocks (more rows or entries per block)

A small PCTFREE might be suitable, for example, for a segment that is rarely

changed.

A larger PCTFREE has the following effects:

■ reserves more room for future updates to existing table rows

PCTFREE = 20

20% Free Space

Block allows row inserts
until 80% is occupied,
leaving 20% free for updates
to existing rows in the block

Database Block

Managing Space in Data Blocks

12-4 Oracle8i Administrator’s Guide

■ may require more blocks for the same amount of inserted data (inserting fewer

rows per block)

■ may improve update performance, because Oracle does not need to chain row

pieces as frequently, if ever

A large PCTFREE is suitable, for example, for segments that are frequently updated.

Ensure that you understand the nature of the table or index data before setting

PCTFREE. Updates can cause rows to grow. New values might not be the same size

as values they replace. If there are many updates in which data values get larger,

PCTFREE should be increased. If updates to rows do not affect the total row width,

PCTFREE can be low. Your goal is to find a satisfactory trade-off between densely

packed data and good update performance.

PCTFREE for NonClustered Tables If the data in the rows of a nonclustered table is

likely to increase in size over time, reserve some space for these updates. Otherwise,

updated rows are likely to be chained among blocks.

PCTFREE for Clustered Tables The discussion for nonclustered tables also applies

to clustered tables. However, if PCTFREE is reached, new rows from any table

contained in the same cluster key go into a new data block that is chained to the

existing cluster key.

PCTFREE for Indexes You can specify PCTFREE only when initially creating an

index.

The PCTUSED Parameter
After a data block becomes full as determined by PCTFREE, Oracle does not

consider the block for the insertion of new rows until the percentage of the block

being used falls below the parameter PCTUSED. Before this value is achieved,

Oracle uses the free space of the data block only for updates to rows already

contained in the data block. For example, assume that you specify the following

parameter within a CREATE TABLE statement:

PCTUSED 40

In this case, a data block used for this table’s data segment is not considered for the

insertion of any new rows until the amount of used space in the block falls to 39%

or less (assuming that the block’s used space has previously reached PCTFREE).

Figure 12–2 illustrates this.

Managing Space in Data Blocks

Guidelines for Managing Schema Objects 12-5

Figure 12–2 PCTUSED

Specifying PCTUSED
The default value for PCTUSED is 40 percent. After the free space in a data block

reaches PCTFREE, no new rows are inserted in that block until the percentage of

space used falls below PCTUSED. The percent value is for the block space available

for data after overhead is subtracted from total space.

You can specify any integer between 0 and 99 (inclusive) for PCTUSED, as long as

the sum of PCTUSED and PCTFREE does not exceed 100.

A smaller PCTUSED has the following effects:

■ reduces processing costs incurred during UPDATE and DELETE statements for

moving a block to the free list when it has fallen below that percentage of usage

■ increases the unused space in a database

A larger PCTUSED has the following effects:

■ improves space efficiency

■ increases processing cost during INSERTs and UPDATEs

No new rows are
inserted until amount
of used space falls
below 40%

PCTUSED = 40
Database Block

60% unused
space

Managing Space in Data Blocks

12-6 Oracle8i Administrator’s Guide

Selecting Associated PCTUSED and PCTFREE Values
If you decide not to use the default values for PCTFREE or PCTUSED, keep the

following guidelines in mind:

■ The sum of PCTFREE and PCTUSED must be equal to or less than 100.

■ If the sum equals 100, then Oracle attempts to keep no more than PCTFREE free

space, and processing costs are highest.

■ Block overhead is not included in the computation of PCTUSED or PCTFREE.

■ The smaller the difference between 100 and the sum of PCTFREE and

PCTUSED (as in PCTUSED of 75, PCTFREE of 20), the more efficient space

usage is, at some performance cost.

Examples of Choosing PCTFREE and PCTUSED Values
The following examples show how and why specific values for PCTFREE and

PCTUSED are specified for tables.

Example 1 Scenario: Common activity includes UPDATE statements
that increase the size of the rows.

Settings: PCTFREE = 20

PCTUSED = 40

Example 2 Scenario: Most activity includes INSERT and DELETE
statements, and UPDATE statements that do not
increase the size of affected rows.

Settings: PCTFREE = 5

PCTUSED = 60

Explanation: PCTFREE is set to 5 because most
UPDATE statements do not increase row
sizes. PCTUSED is set to 60 so that space
freed by DELETE statements is used soon,
yet processing is minimized.

Example 3 Scenario: The table is very large; therefore,
storage is a primary concern. Most activity
includes read-only transactions.

Settings: PCTFREE = 5

PCTUSED = 40

Explanation: PCTFREE is set to 5 because this is a large table
and you want to completely fill each block.

Setting Storage Parameters

Guidelines for Managing Schema Objects 12-7

Setting Storage Parameters
This section describes the storage parameters you can set for various data

structures, and includes the following topics:

■ Storage Parameters You Can Specify

■ Setting INITRANS and MAXTRANS

■ Setting Default Storage Parameters for Segments in a Tablespace

■ Setting Storage Parameters for Data Segments

■ Setting Storage Parameters for Index Segments

■ Setting Storage Parameters for LOB Segments

■ Changing Values for Storage Parameters

■ Understanding Precedence in Storage Parameters

You can set storage parameters for the following types of logical storage structures:

■ tablespaces (most defaults for any segment in the tablespace)

■ tables, clusters, snapshots, and snapshot logs (data segments)

■ indexes (index segments)

■ rollback segments

Storage Parameters You Can Specify
Every database has default values for storage parameters. You can specify defaults

for a tablespace, which override the system defaults to become the defaults for

objects created in that tablespace only. Furthermore, you can specify storage settings

for each individual object. The storage parameters you can set are:

INITIAL
The size, in bytes, of the first extent allocated when a segment is created.

Default: 5 data blocks

Minimum: 2 data blocks (rounded up)

Maximum: operating system specific

Setting Storage Parameters

12-8 Oracle8i Administrator’s Guide

NEXT
The size, in bytes, of the next incremental extent to be allocated for a segment. The

second extent is equal to the original setting for NEXT. From there forward, NEXT is

set to the previous size of NEXT multiplied by (1 + PCTINCREASE/100).

Default: 5 data blocks

Minimum: 1 data block

Maximum: operating system specific

MAXEXTENTS
The total number of extents, including the first, that can ever be allocated for the

segment.

Default: dependent on the data block size and operating system

Minimum: 1 (extent)

Maximum: unlimited

MINEXTENTS
The total number of extents to be allocated when the segment is created. This allows

for a large allocation of space at creation time, even if contiguous space is not

available.

Default: 1 (extent)

Minimum: 1 (extent)

Maximum: unlimited

PCTINCREASE
The percentage by which each incremental extent grows over the last incremental

extent allocated for a segment. If PCTINCREASE is 0, then all incremental extents

are the same size. If PCTINCREASE is greater than zero, then each time NEXT is

calculated, it grows by PCTINCREASE. PCTINCREASE cannot be negative.

The new NEXT equals 1 + PCTINCREASE/100, multiplied by the size of the last

incremental extent (the old NEXT) and rounded up to the next multiple of a block

size.

Default: 50 (%)

Minimum: 0 (%)

Maximum: operating system specific

Setting Storage Parameters

Guidelines for Managing Schema Objects 12-9

INITRANS
Specifies the number of DML transaction entries for which space should be initially

reserved in the data block header. Space is reserved in the headers of all data blocks

in the associated data or index segment.

The default value is 1 for tables and 2 for clusters and indexes.

MAXTRANS
As multiple transactions concurrently access the rows of the same data block, space

is allocated for each DML transaction’s entry in the block. Once the space reserved

by INITRANS is depleted, space for additional transaction entries is allocated out of

the free space in a block, if available. Once allocated, this space effectively becomes

a permanent part of the block header. The MAXTRANS parameter limits the

number of transaction entries that can concurrently use data in a data block.

Therefore, you can limit the amount of free space that can be allocated for

transaction entries in a data block using MAXTRANS.

The default value is an operating system-specific function of block size, not

exceeding 255.

See Also: For specific details about storage parameters, see the Oracle8i SQL
Reference.

Some defaults are operating system specific; see your operating system-specific

Oracle documentation.

Setting INITRANS and MAXTRANS
Transaction entry settings for the data blocks allocated for a table, cluster, or index

should be set individually for each object based on the following criteria:

■ the space you would like to reserve for transaction entries compared to the

space you would reserve for database data

■ the number of concurrent transactions that are likely to touch the same data

blocks at any given time

For example, if a table is very large and only a small number of users

simultaneously access the table, the chances of multiple concurrent transactions

requiring access to the same data block is low. Therefore, INITRANS can be set low,

especially if space is at a premium in the database.

Alternatively, assume that a table is usually accessed by many users at the same

time. In this case, you might consider preallocating transaction entry space by using

Setting Storage Parameters

12-10 Oracle8i Administrator’s Guide

a high INITRANS (to eliminate the overhead of having to allocate transaction entry

space, as required when the object is in use) and allowing a higher MAXTRANS so

that no user has to wait to access necessary data blocks.

Setting Default Storage Parameters for Segments in a Tablespace
You can set default storage parameters for each tablespace of a database. Any

storage parameter that you do not explicitly set when creating or subsequently

altering a segment in a tablespace automatically is set to the corresponding default

storage parameter for the tablespace in which the segment resides.

With partitioned tables, you can set default storage parameters at the table level.

When creating a new partition of the table, the default storage parameters are

inherited from the partitioned table (unless you specify them for the individual

partition). If no storage parameters are specified for the partitioned table, then they

are inherited from the tablespace.

When specifying MINEXTENTS at the tablespace level, any extent allocated in the

tablespace is rounded to a multiple of the number of minimum extents. Basically,

the number of extents is a multiple of the number of blocks.

Setting Storage Parameters for Data Segments
You can set the storage parameters for the data segment of a nonclustered table,

snapshot, or snapshot log using the STORAGE clause of the CREATE or ALTER

statement for tables, snapshots, or snapshot logs.

In contrast, you set the storage parameters for the data segments of a cluster using

the STORAGE clause of the CREATE CLUSTER or ALTER CLUSTER command,

rather than the individual CREATE or ALTER commands that put tables and

snapshots into the cluster. Storage parameters specified when creating or altering a

clustered table or snapshot are ignored. The storage parameters set for the cluster

override the table’s storage parameters.

Setting Storage Parameters for Index Segments
Storage parameters for an index segment created for a table index can be set using

the STORAGE clause of the CREATE INDEX or ALTER INDEX command. Storage

parameters of an index segment created for the index used to enforce a primary key

or unique key constraint can be set in the ENABLE clause of the CREATE TABLE or

ALTER TABLE commands or the STORAGE clause of the ALTER INDEX command.

Setting Storage Parameters

Guidelines for Managing Schema Objects 12-11

A PCTFREE setting for an index only has an effect when the index is created. You

cannot specify PCTUSED for an index segment.

Setting Storage Parameters for LOB Segments
You can set storage parameters for LOB segments using the NOCACHE,

NOLOGGING and PCTVERSION LOB storage parameters of the CREATE TABLE

statement.

See Also: For a complete list of storage parameters for LOB segments, see the

Oracle8i SQL Reference.

Changing Values for Storage Parameters
You can alter default storage parameters for tablespaces and specific storage

parameters for individual segments if the current settings are incorrect. All default

storage parameters can be reset for a tablespace. However, changes affect only new

objects created in the tablespace, or new extents allocated for a segment.

The INITIAL and MINEXTENTS storage parameters cannot be altered for an

existing table, cluster, index, or rollback segment. If only NEXT is altered for a

segment, the next incremental extent is the size of the new NEXT, and subsequent

extents can grow by PCTINCREASE as usual.

If both NEXT and PCTINCREASE are altered for a segment, the next extent is the

new value of NEXT, and from that point forward, NEXT is calculated using

PCTINCREASE as usual.

Understanding Precedence in Storage Parameters
The storage parameters in effect at a given time are determined by the following

types of SQL statements, listed in order of precedence:

1. ALTER TABLE/CLUSTER/SNAPSHOT/SNAPSHOT LOG/INDEX/

ROLLBACK SEGMENT statement

2. CREATE TABLE/CLUSTER/SNAPSHOT/SNAPSHOT LOG/CREATE

INDEX/ROLLBACK SEGMENT statement

3. ALTER TABLESPACE statement

4. CREATE TABLESPACE statement

5. Oracle default values

Setting Storage Parameters

12-12 Oracle8i Administrator’s Guide

Any storage parameter specified at the object level overrides the corresponding

option set at the tablespace level. When storage parameters are not explicitly set at

the object level, they default to those at the tablespace level. When storage

parameters are not set at the tablespace level, Oracle system defaults apply. If

storage parameters are altered, the new options apply only to the extents not yet

allocated.

Storage Parameter Example
Assume the following statement has been executed:

CREATE TABLE test_storage
 (. . .)
 STORAGE (INITIAL 100K NEXT 100K
 MINEXTENTS 2 MAXEXTENTS 5
 PCTINCREASE 50);

Also assume that the initialization parameter DB_BLOCK_SIZE is set to 2K. The

following table shows how extents are allocated for the TEST_STORAGE table. Also

shown is the value for the incremental extent, as can be seen in the NEXT column of

the USER_SEGMENTS or DBA_SEGMENTS data dictionary views:

If you change the NEXT or PCTINCREASE storage parameters with an ALTER

statement (such as ALTER TABLE), the specified value replaces the current value

stored in the data dictionary. For example, the following statement modifies the

NEXT storage parameter of the TEST_STORAGE table before the third extent is

allocated for the table:

ALTER TABLE test_storage STORAGE (NEXT 500K);

Note: The storage parameters for temporary segments always use

the default storage parameters set for the associated tablespace.

Table 12–1 Extent Allocations

Extent# Extent Size Value for NEXT

1 50 blocks or 102400 bytes 50 blocks or 102400 bytes

2 50 blocks or 102400 bytes 75 blocks or153600 bytes

3 75 blocks or 153600 bytes 113 blocks or 231424 bytes

4 115 blocks or 235520 bytes 170 blocks or 348160 bytes

5 170 blocks or 348160 bytes 255 blocks or 522240 bytes

Deallocating Space

Guidelines for Managing Schema Objects 12-13

As a result, the third extent is 500K when allocated, the fourth is (500K*1.5)=750K,

and so on.

Deallocating Space
This section describes aspects of deallocating unused space, and includes the

following topics:

■ Viewing the High Water Mark

■ Issuing Space Deallocation Statements

It is not uncommon to allocate space to a segment, only to find out later that it is not

being used. For example, you may set PCTINCREASE to a high value, which could

create a large extent that is only partially used. Or you could explicitly overallocate

space by issuing the ALTER TABLE...ALLOCATE EXTENT statement. If you find

that you have unused or overallocated space, you can release it so that the unused

space can be used by other segments.

Viewing the High Water Mark
Prior to deallocation, you can use the DBMS_SPACE package, which contains a

procedure (UNUSED_SPACE) that returns information about the position of the

high water mark and the amount of unused space in a segment.

Within a segment, the high water mark indicates the amount of used space. You

cannot release space below the high water mark (even if there is no data in the

space you wish to deallocate). However, if the segment is completely empty, you

can release space using the TRUNCATE...DROP STORAGE statement.

Issuing Space Deallocation Statements
The following statements deallocate unused space in a segment (table, index or

cluster). The KEEP clause is optional.

ALTER TABLE table DEALLOCATE UNUSED KEEP integer;
ALTER INDEX index DEALLOCATE UNUSED KEEP integer;
ALTER CLUSTER cluster DEALLOCATE UNUSED KEEP integer;

When you explicitly identify an amount of unused space to KEEP, this space is

retained while the remaining unused space is deallocated. If the remaining number

of extents becomes smaller than MINEXTENTS, the MINEXTENTS value changes

to reflect the new number. If the initial extent becomes smaller, the INITIAL value

changes to reflect the new size of the initial extent.

Deallocating Space

12-14 Oracle8i Administrator’s Guide

If you do not specify the KEEP clause, all unused space (everything above the high

water mark) is deallocated, as long as the size of the initial extent and

MINEXTENTS are preserved. Thus, even if the high water mark occurs within the

MINEXTENTS boundary, MINEXTENTS remains and the initial extent size is not

reduced.

See Also: For details on the syntax and options associated with deallocating unused

space, see the Oracle8i SQL Reference.

You can verify that deallocated space is freed by looking at the DBA_FREE_SPACE

view. For more information on this view, see the Oracle8i Reference.

Deallocating Space: Examples
This section includes various space deallocation scenarios. Prior to reading it, you

should familiarize yourself with the ALTER...DEALLOCATE UNUSED statements

in the Oracle8i Reference.

Example 1

Table DQUON consists of three extents (see Figure 12–3). The first extent is 10K, the

second is 20K, and the third is 30K. The high water mark is in the middle of the

second extent, and there is 40K of unused space. The following statement

deallocates all unused space, leaving table DQUON with two remaining extents.

The third extent disappears, and the second extent size is 10K.

ALTER TABLE dquon DEALLOCATE UNUSED;

Deallocating Space

Guidelines for Managing Schema Objects 12-15

Figure 12–3 Deallocating All Unused Space

If you deallocate all unused space from DQUON and KEEP 10K (see Figure 12–4),

the third extent is deallocated and the second extent remains in tact.

Table dquon

Before

10K

Extent 1

After

30K

UNUSED SPACE = 40K

Extent 3

20K

Extent 2

ALTER TABLE dquon DEALLOCATE UNUSED;

High Water Mark

Table dquon

10K

Extent 1

10K

Extent 2

Deallocating Space

12-16 Oracle8i Administrator’s Guide

Figure 12–4 Deallocating Unused Space, KEEP 10K

If you deallocate all unused space from DQUON and KEEP 20K, the third extent is

cut to 10K, and the size of the second extent remains the same.

ALTER TABLE dquon DEALLOCATE UNUSED KEEP 20K;

Example 2

When you issue the ALTER TABLE DQUON DEALLOCATE UNUSED statement,

you completely deallocate the third extent, and the second extent is left with 10K.

Note that the size of the next allocated extent defaults to the size of the last

completely deallocated extent, which in this example, is 30K. However, if you can

explicitly set the size of the next extent using the ALTER...STORAGE [NEXT]

statement.

Example 3

To preserve the MINEXTENTS number of extents, DEALLOCATE can retain extents

that were originally allocated to an instance (added below the high water mark),

while deallocating extents that were originally allocated to the segment.

Table dquon

Before

10K

Extent 1

After

30K

UNUSED SPACE = 40K

Extent 3

20K

Extent 2

ALTER TABLE dquon DEALLOCATE UNUSED KEEP 10K;

High Water Mark

Table dquon

10K

Extent 1

20K

Extent 2

High Water Mark

Understanding Space Use of Datatypes

Guidelines for Managing Schema Objects 12-17

For example, table DQUON has a MINEXTENTS value of 2. Examples 1 and 2 still

yield the same results. However, if the MINEXTENTS value is 3, then the ALTER

TABLE DQUON DEALLOCATE UNUSED statement has no effect, while the

ALTER TABLE DQUON DEALLOCATE UNUSED KEEP 10K statement removes

the third extent and changes the value of MINEXTENTS to 2.

Understanding Space Use of Datatypes
When creating tables and other data structures, you need to know how much space

they will require. Each datatype has different space requirements, as described

below.

Character
Datatypes

The CHAR and VARCHAR2 datatypes store alphanumeric data in
strings of ASCII (American Standard Code for Information
Interchange) or EBCDIC (Extended Binary Coded Decimal
Interchange Code) values, depending on the character set used by
the hardware that runs Oracle. Character datatypes can also store
data using character sets supported by the National Language
Support (NLS) feature of Oracle.

The CHAR datatype stores fixed-length character strings. When a
table is created with a CHAR column, a column length (in bytes, not
characters) between 1 and 255 can be specified for the CHAR
column; the default is 1 byte. Extra blanks are used to fill remaining
space in the column for values less than the column length.

The VARCHAR2 datatype stores variable-length character strings.
When a table is created with a VARCHAR2 column, a maximum
column length (in bytes, not characters) between 1 and 4000 is
specified for the VARCHAR2 column. For each row, each value in the
column is stored as a variable- length field. Extra blanks are not used
to fill remaining space in the column.

Number
Datatype

The NUMBER datatype stores fixed and floating point numbers.

Positive numbers in the range 1 x 10-130 to 9.99...9 x 10125 (with up to
38 significant digits), negative numbers in the range

You can optionally specify a precision (total number of digits) and
scale (number of digits to the right of the decimal point) when
defining a NUMBER column. Oracle guarantees portability of
numbers with a precision equal to or less than 38 digits. You can
specify a scale and no precision:

Understanding Space Use of Datatypes

12-18 Oracle8i Administrator’s Guide

-1 x 10-130 to -9.99..9x 10125 (with up to 38 significant digits), and
zero. If precision is not specified, the column stores values as given.
If no scale and no precision are specified:

column_name NUMBER (*, scale)

In this case, the precision is 38 and the specified scale is maintained.

DATE
Datatype

The DATE datatype stores point-in-time values such as dates and
times. Date data is stored in fixed length fields of seven bytes each.

LONG
Datatype

Columns defined as LONG store variable length character data
containing up to two gigabytes of information. LONG data is text
data and is appropriately converted when moved between different
character sets. LONG data cannot be indexed.

Note: You can convert LONG data to LOB data, which has fewer
restrictions. For more information see the Oracle8i Application
Developer’s Guide - Large Objects (LOBs).

RAW and
LONG RAW
Datatypes

RAW is a variable-length datatype like the VARCHAR2 character
datatype, except that Net8 (which connects user sessions to the
instance) and the Import and Export utilities do not perform
character conversion when transmitting RAW or LONG RAW data.
In contrast, Net8 and Export/Import automatically convert CHAR,
VARCHAR2, and LONG data between the database character set
and the user session character set if the two character sets are
different.

RAW data can be indexed; LONG RAW data cannot be indexed.

rowids,
ROWID
pseudocolumn
and ROWID
datatype

Every row in a nonclustered table of an Oracle database is assigned
a unique rowid that corresponds to the physical address of a row’s
row piece (or the initial row piece if the row is chained among
multiple row pieces).

Each table in an Oracle database has an internal pseudo-column
named ROWID. This pseudocolumn is not evident when listing the
structure of a table by executing a SELECT statement, or a
DESCRIBE statement using SQL*Plus, but can be retrieved with a
SQL query using the reserved word ROWID as a column name.

Understanding Space Use of Datatypes

Guidelines for Managing Schema Objects 12-19

See Also: For more information about NLS and support for different character sets,

see the Oracle8i National Language Support Guide.

For more information about datatypes, see the Oracle8i SQL Reference.

Summary of Oracle Datatypes
Table 12–2 summarizes important information about each Oracle datatype.

rowids use a binary representation of the physical address for each
row selected. A rowid’s VARCHAR2 hexadecimal representation is
divided into three pieces: block.slot.file. Here, block is the data
block within a file that contains the row, relative to its datafile; row
is the row in the block; and file is the datafile that contains the row.
A row’s assigned ROWID remains unchanged usually. Exceptions
occur when the row is exported and imported (using the Import
and Export utilities). When a row is deleted from a table (and the
encompassing transaction is committed), the deleted row’s
associated ROWID can be assigned to a row inserted in a
subsequent transaction.

Table 12–2 Summary of Oracle Datatype Information

Datatype Description Column Length (bytes)

CHAR (size)

NCHAR (size)

Fixed-length character
data of length size.

Fixed-length character
data of length size
characters or bytes,
depending on the
choice of national
character set.

Fixed for every row in the table (with
trailing spaces); maximum size is
2000 bytes per row, default size is one
byte per row. Consider the character
set that is used before setting size.
(Are you using a one or two byte
character set?)

Maximum size is determined by the
number of bytes required to store
each character, with an upper limit of
2000 bytes. Default and minimum
size is one character or one byte,
depending on the character set.

Understanding Space Use of Datatypes

12-20 Oracle8i Administrator’s Guide

VARCHAR2 (size)

NVARCHAR2
(size)

Variable-length
character string
having maximum
length size bytes. A
maximum size must
be specified.

Variable-length
character string
having maximum
length size characters
or bytes, depending
on the choice of
national character set.

Maximum size is 4000, and minimum
is 1. You must specify size for
VARCHAR2.

Maximum size is determined by the
number of bytes required to store
each character, with an upper limit of
4000 bytes. You must specify size for
NVARCHAR2.

NUMBER (p, s) Number having
precision p and scale s.
The precision p can
range from 1 to 38.
The scale s can range
from -84 to 127.

Variable for each row. The maximum
space required for a given column is
21 bytes per row.

DATE Fixed-length date and
time data, ranging
from January 1, 4712
B.C. to December 31,
4712 A.D. Default
format: DD-MON-YY.

Fixed at seven bytes for each row in
the table.

LONG Variable-length
character data.

Variable for each row in the table up

to 231 -1 bytes, or two gigabytes per
row.

RAW (size) Raw binary data of
length size bytes.

Variable for each row in the table, up
to 2000 bytes per row. You must
specify size for a RAW value.

LONG RAW Variable-length raw
binary data.

Variable for each row in the table, up
to two gigabytes per row.

ROWID Hex data representing
unique row addresses.
This datatype is
primarily for values
returned by the
ROWID
pseudocolumn.

Fixed at six bytes for each row in the
table.

Table 12–2 Summary of Oracle Datatype Information (Cont.)

Datatype Description Column Length (bytes)

Understanding Space Use of Datatypes

Guidelines for Managing Schema Objects 12-21

UROWID [(size)] Hexadecimal string
representing the
logical address of a
row of an index-
organized table.

The optional size is the size of a
column of type UROWID. The
maximum size and default is 4000
bytes.

CHAR (size) Fixed-length character
data of length size
bytes.

Maximum size is 2000 bytes. Default
and minimum size is 1 byte.

Table 12–2 Summary of Oracle Datatype Information (Cont.)

Datatype Description Column Length (bytes)

Understanding Space Use of Datatypes

12-22 Oracle8i Administrator’s Guide

Managing Partitioned Tables and Indexes 13-1

13
Managing Partitioned Tables and Indexes

This chapter describes various aspects of managing partitioned tables and indexes,

and includes the following sections:

■ What Are Partitioned Tables and Indexes?

■ Partitioning Methods

■ Creating Partitions

■ Maintaining Partitions

What Are Partitioned Tables and Indexes?

13-2 Oracle8i Administrator’s Guide

What Are Partitioned Tables and Indexes?

Today’s enterprises frequently run mission-critical databases containing upwards of

several hundred gigabytes and, in many cases, several terabytes of data. These

enterprises are challenged by the support and maintenance requirements of very

large databases (VLDB), and must devise methods to meet those challenges.

One way to meet VLDB demands is to create and use partitioned tables and indexes.

Partitioned tables or indexes can be divided into a number of pieces, called

subpartitions, which have the same logical attributes. For example, all partitions (or

subpartitions) in a table share the same column and constraint definitions, and all

partitions (or subpartitions) in an index share the same index options. Each

partition (or subpartition) is stored in a separate segment and can have different

physical attributes (such as PCTFREE, PCTUSED, INITRANS, MAXTRANS,

TABLESPACE, and STORAGE).

Although you are not required to keep each table or index partition in a separate

tablespace, it is to your advantage to do so. Storing partitions in separate

tablespaces enables you to:

■ reduce the possibility of data corruption in multiple partitions

■ back up and recover each partition independently

■ control the mapping of partitions to disk drives (important for balancing I/O

load)

■ improve manageability, availability and performance

See Also: For more detailed information on partitioning concepts and benefits, see

Oracle8i Concepts.

Partitioning Methods
There are three partitioning methods:

■ Range Partitioning

■ Hash Partitioning

■ Composite Partitioning

Note: Before attempting to create a partitioned table or index or

perform maintenance operations on any partition, review the

information about partitioning in Oracle8i Concepts.

Partitioning Methods

Managing Partitioned Tables and Indexes 13-3

This section describes how to use each of these methods.

Using the Range Partitioning Method
You can use range partitioning to map rows to partitions based on ranges of column

values. Range partitioning is defined by the partitioning specification for a table or

index, and by the partitioning specifications for each individual partition.

The following example shows a table of four partitions (one for each quarter’s

sales); a row with SALE_YEAR=1998, SALE_MONTH=8 and SALE_DAY=18 has

partitioning key (1998, 8, 18), belongs in the third partition, and is stored in

tablespace TSC. A row with SALE_YEAR=1998, SALE_MONTH=8 and

SALE_DAY=1 has partitioning key (1998, 8, 1), and also belongs in the third

partition, stored in tablespace TSC.

CREATE TABLE sales
 (invoice_no NUMBER,
 sale_year INT NOT NULL,
 sale_month INT NOT NULL,
 sale_day INT NOT NULL)
 PARTITION BY RANGE (sale_year, sale_month, sale_day)
 (PARTITION sales_q1 VALUES LESS THAN (1998, 04, 01)
 TABLESPACE tsa,
 PARTITION sales_q2 VALUES LESS THAN (1998, 07, 01)
 TABLESPACE tsb,
 PARTITION sales_q3 VALUES LESS THAN (1998, 10, 01)
 TABLESPACE tsc,
 PARTITION sales_q4 VALUES LESS THAN (1999, 01, 01)
 TABLESPACE tsd);

Maintaining Range Partitions
The only maintenance operation to perform on partitions created using the range

partitioning method is the merging of partitions. You can use the ALTER

TABLE...MERGE PARTITIONS command to merge the contents of two adjacent

range partitions into one partition. You might want to do this to keep historical data

online in larger partitions. For example, you might want to have daily partitions,

with the oldest partition rolled up into weekly partitions, which can then be rolled

up into monthly partitions, and so on.

See Also: For more details about range partitioning, see Oracle8i Concepts.

For more details about CREATE TABLE...PARTITION syntax, see the Oracle8i SQL
Reference.

Partitioning Methods

13-4 Oracle8i Administrator’s Guide

Using the Hash Partitioning Method
Hash partitioning controls the physical placement of data across a fixed number of

partitions. Rows are mapped into partitions based on a hash value of the

partitioning key. Creating and using hash partitions gives you a highly tunable

method of data placement.

The following example shows how to specify all storage attributes for partitions at

the table level:

CREATE TABLE scubagear(
 id NUMBER,
 name VARCHAR2 (60))
TABLESPACE ocean
STORAGE (INITIAL 19k)
 PARTITION BY HASH (id)
 PARTITIONS 4;

You can store hash partitions in specific tablespaces, as shown in the following

statement:

CREATE TABLE scubagear (...)
 STORAGE (INITIAL 10k)
 PARTITION BY HASH (id) PARTITIONS 16
 STORE IN (h1to4, h4to8, h8to12, h12to16);

Or, you can name and store each hash partition in a specific tablespace:

CREATE TABLE product(...)
 STORAGE (INITIAL 10k)
 PARTITION BY HASH (id)
 (PARTITION p1 TABLESPACE h1,
 PARTITION p2 TABLESPACE h2);

You can also specify partition-level tablespaces for hash-partitioned indexes:

CREATE INDEX bcd_type ON scubagear(id) LOCAL
PARTITIONS 4 STORE IN (ix1, ix2);

CREATE INDEX bcd_type ON scubagear(id) LOCAL
(PARTITION p1 TABLESPACE ix1, PARTITION p2 TABLESPACE ix2,
 PARTITION p3 TABLESPACEix3, PARTITION p4 TABLESPACE ix4);

Maintaining Hash Partitions
All current range partition maintenance operations are supported for hash

partitions, except for the following:

Partitioning Methods

Managing Partitioned Tables and Indexes 13-5

■ ALTER TABLE...SPLIT PARTITION

■ ALTER TABLE...DROP PARTITION

■ ALTER TABLE...MERGE PARTITIONS

Additionally, there are two maintenance operations specifically for partitions

created using the has partitioning method:

■ Coalescing Hash Partitions

■ Adding Hash Partitions

Coalescing Hash Partitions To remove a single hash partition and redistribute the

data, use the following statement:

ALTER TABLE scubagear COALESCE PARTITION;

Note that the partition being coalesced is determined by the hash function. Also,

when you coalesce a hash partition and redistribute the data, local indexes are not

maintained. You can coalesce the hash partition in parallel.Local index partitions

corresponding to partitions that absorbed rows must be rebuilt from existing

partitions.

Adding Hash Partitions To add a single hash partition and redistribute the data, use

one of the following statements:

ALTER TABLE scubagear ADD PARTITION;
ALTER TABLE scubagear
 ADD PARTITION p3 TABLESPACE t3;

Local indexes are not maintained when you add a hash partition. You can also add

the hash partition in parallel.

See Also: For detailed syntax information about the CREATE TABLE

PARTITION...BY HASH and ALTER TABLE statements, see the Oracle8i SQL
Reference.

For more details about hash partitioning, see Oracle8i Concepts.

Using the Composite Partitioning Method
Composite partitioning partitions data using the range method, and within each

partition, subpartitions it using the hash method. Composite partitions are ideal for

both historical data and striping, and provide improved manageability of range

partitioning and data placement, as well as the parallelism advantages of hash

partitioning.

Partitioning Methods

13-6 Oracle8i Administrator’s Guide

When creating a composite partition, you specify the following:

■ partitioning method (range)

■ partitioning key

■ partition descriptions (including partition bounds)

■ subpartitioning method (hash)

■ subpartitioning columns

■ number of subpartitions per partition or descriptions of subpartitions

You may also wish to use the STORE IN clause to specify tablespaces across which

each table partition’s subpartitions will be spread.

The following statement creates a composite-partitioned table:

CREATE TABLE scubagear (equipno NUMBER, equipname VARCHAR(32), price NUMBER)
 PARTITION BY RANGE (equipno) SUBPARTITION BY HASH(equipname)
 SUBPARTITIONS 8 STORE IN (ts1, ts3, ts5, ts7)
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2000),
 PARTITION p3 VALUES LESS THAN (MAXVALUE));

The following statement shows you can specify subpartition names and names of

tablespaces in which subpartitions should be placed.

CREATE TABLE scubagear (equipno NUMBER, equipname VARCHAR(32), price NUMBER)
 PARTITION BY RANGE (equipno) SUBPARTITION BY HASH (equipname)
 SUBPARTITIONS 8 STORE IN (ts1, ts3, ts5, ts7)
 (PARTITION p1 VALUES LESS THAN (1000) PCTFREE 40,
 PARTITION p2 VALUES LESS THAN (2000) STORE IN (ts2, ts4, ts6, ts8),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
 (SUBPARTITION p3_s1 TABLESPACE ts4,
 SUBPARTITION p3_s2 TABLESPACE ts5));

Maintaining Composite Partitions
You can perform all range partition maintenance operations on a composite

partitioned table or index, and modify default attributes for table partitions.

Maintaining Composite Subpartitions
This section describes how to accomplish specific subpartition maintenance

operations, including:

■ Modifying Subpartitions (tables and indexes)

■ Rebuilding Subpartitions (indexes only)

Partitioning Methods

Managing Partitioned Tables and Indexes 13-7

■ Renaming Subpartitions (tables and indexes)

■ Exchanging Subpartitions (tables only)

■ Adding Subpartitions (tables only)

■ Coalescing Subpartitions (tables only)

■ Moving Subpartitions (tables only)

■ Truncating Subpartitions (tables only)

Modifying Subpartitions You can mark a subpartition of a local index on a partitioned

table marked unusable as follows.

ALTER INDEX scuba
 MODIFY SUBPARTITION bcd_types UNUSABLE;

You can also allocate or deallocate storage for a subpartition of a table or index

using the MODIFY SUBPARTITION clause.

Rebuilding Subpartitions You can rebuild a subpartition to regenerate the data in an

index subpartition. The following statement rebuilds a subpartition of a local index

on a table:

ALTER INDEX scuba
 REBUILD SUBPARTITION bcd_types
 TABLESPACE tbs23 PARALLEL (DEGREE 2);

Note that in this example, the index is rebuilt in a different tablespace.

Renaming Subpartitions You can assign new names to subpartitions of a table or

index. The following statement shows how to assign a new name to a subpartition

of a local index on a table:

ALTER INDEX scuba RENAME SUBPARTITION bcd_types TO bcd_brands;

This next statement simply shows how to rename a subpartition that has a system-

generated name that was a consequence of adding a partition to an underlying

table:

ALTER INDEX scuba RENAME SUBPARTITION sys_subp3254 TO bcd_types;

You can also assign a new name to a subpartition of a table:

ALTER TABLE diving RENAME SUBPARTITION locations_us
 TO us_monterey;

Partitioning Methods

13-8 Oracle8i Administrator’s Guide

Exchanging Subpartitions The following statement shows how to convert a

subpartition of a table into a nonpartitioned table:

ALTER TABLE diving
 EXCHANGE SUBPARTITION locations_us
 WITH TABLE us_ca INCLUDING INDEXES;

Adding Subpartitions The following statement shows how to add a subpartition to a

partition of a table. The newly added subpartition is populated with rows rehashed

from other subpartitions of the same partition as determined by the hash function:

ALTER TABLE diving MODIFY PARTITION locations_us
 ADD SUBPARTITION us_monterey TABLESPACE us1;

Coalescing Subpartitions The following statement shows how to distribute contents of

a subpartition (selected by the RDBMS) of the specified partition of a table into one

or more remaining subpartitions (determined by the hash function) of the same

partition, and then destroy the selected subpartition. Basically, this operation is the

inverse of the ALTER TABLE MODIFY PARTITION ADD SUBPARTITION

statement:

ALTER TABLE diving MODIFY PARTITION us_locations
 COALESCE PARTITION;

Moving Subpartitions The following statement shows how to move data in a

subpartition of a table:

ALTER TABLE scuba_gear MOVE SUBPARTITION bcd_types
 TABLESPACE tbs23 PARALLEL (DEGREE 2);

Truncating Subpartitions The following statement shows how to truncate data in a

subpartition of a table:

ALTER TABLE diving
 TRUNCATE SUBPARTITION us_locations
 DROP STORAGE;

See Also: For more details about the syntax of statements in this section, see the

Oracle8i SQL Reference.

Maintaining Partitions

Managing Partitioned Tables and Indexes 13-9

Creating Partitions
Creating a partitioned table is very similar to creating a table or index: you must use

the CREATE TABLE statement with the PARTITION by clause. Also, you must

specify the tablespace name for each partition.

The following example shows a CREATE TABLE statement that contains four

partitions, one for each quarter’s worth of sales. A row with SALE_YEAR=1998,

SALE_MONTH=7, and SALE_DAY=18 has the partitioning key (1998, 7, 18), and is

in the third partition, in the tablespace TSC. A row with SALE_YEAR=1998,

SALE_MONTH=7, and SALE_DAY=1 has the partitioning key (1998, 7, 1), and also

is in the third partition.

CREATE TABLE sales
 (invoice_no NUMBER,
 sale_year INT NOT NULL,
 sale_month INT NOT NULL,
 sale_day INT NOT NULL)
PARTITION BY RANGE (sale_year, sale_month, sale_day)
 (PARTITION sales_q1 VALUES LESS THAN (1998, 04, 01)
 TABLESPACE tsa,
 PARTITION sales_q2 VALUES LESS THAN (1998, 07, 01)
 TABLESPACE tsb,
 PARTITION sales_q3 VALUES LESS THAN (1998, 10, 01)
 TABLESPACE tsc,
 PARTITION sales q4 VALUES LESS THAN (1999, 01, 01)
 TABLESPACE tsd);

See Also: For more information about the CREATE TABLE statement and

PARTITION clause, see Oracle8i SQL Reference.

For information about partition keys, partition names, bounds, and equipartitioned

tables and indexes, see Oracle8i Concepts.

Maintaining Partitions
This section describes how to perform the following specific partition maintenance

operations:

■ Moving Partitions

■ Adding Partitions

■ Dropping Partitions

■ Coalescing Partitions

Maintaining Partitions

13-10 Oracle8i Administrator’s Guide

■ Modifying Partition Default Attributes

■ Truncating Partitions

■ Splitting Partitions

■ Merging Partitions

■ Exchanging Table Partitions

■ Rebuilding Index Partitions

■ Moving the Time Window in a Historical Table

■ Quiescing Applications During a Multi-Step Maintenance Operation

See Also: For information about the SQL syntax for DDL statements, see Oracle8i
SQL Reference.

For information about the catalog views that describe partitioned tables and

indexes, and the partitions of a partitioned table or index, see Oracle8i Reference.

For information about Import, Export and partitions, see Oracle8i Utilities.

For general information about partitioning, see Oracle8i Concepts.

Moving Partitions
You can use the MOVE PARTITION clause of the ALTER TABLE statement to:

■ re-cluster data and reduce fragmentation

■ move a partition to another tablespace

■ modify create-time attributes

Typically, you can change the physical storage attributes of a partition in a single

step via a ALTER TABLE/INDEX...MODIFY PARTITION statement. However,

there are some physical attributes, such as TABLESPACE, that you cannot modify

via MODIFY PARTITION. In these cases you can use the MOVE PARTITION

clause.

Moving Table Partitions
You can use the MOVE PARTITION clause to move a partition. For example, a DBA

wishes to move the most active partition to a tablespace that resides on its own disk

(in order to balance I/O). The DBA can issue the following statement:

ALTER TABLE parts MOVE PARTITION depot2
 TABLESPACE ts094 NOLOGGING;

Maintaining Partitions

Managing Partitioned Tables and Indexes 13-11

This statement always drops the partition’s old segment and creates a new segment,

even if you don’t specify a new tablespace.

When the partition you are moving contains data, MOVE PARTITION marks the

matching partition in each local index, and all global index partitions as unusable.

You must rebuild these index partitions after issuing MOVE PARTITION.

Moving Index Partitions
Some operations, such as MOVE PARTITION and DROP TABLE PARTITION, mark

all partitions of a global index unusable. You can rebuild the entire index by

rebuilding each partition individually using the ALTER INDEX REBUILD

PARTITION statement. You can perform these rebuilds concurrently.

You can also simply drop the index and re-create it.

Adding Partitions
This section describes how to add new partitions to a partitioned table and how

partitions are added to local indexes.

Adding Table Partitions
You can use the ALTER TABLE...ADD PARTITION statement to add a new partition

to the "high" end (the point after the last existing partition). If you wish to add a

partition at the beginning or in the middle of a table, or if the partition bound on the

highest partition is MAXVALUE, you should instead use the SPLIT PARTITION

statement.

When the partition bound of the highest partition is anything other than

MAXVALUE, you can add a partition using the ALTER TABLE...ADD PARTITION

statement.

For example, a DBA has a table, SALES, which contains data for the current month

in addition to the previous 12 months. On January 1, 1999, the DBA adds a partition

for January:

ALTER TABLE sales
 ADD PARTITION jan96 VALUES LESS THAN (’01-FEB-1999’)
 TABLESPACE tsx;

When there are local indexes defined on the table and you issue the ALTER

TABLE...ADD PARTITION statement, a matching partition is also added to each

local index. Since Oracle assigns names and default physical storage attributes to

Maintaining Partitions

13-12 Oracle8i Administrator’s Guide

the new index partitions, you may wish to rename or alter them after the ADD

operation is complete.

Adding Index Partitions
You cannot explicitly add a partition to a local index. Instead, new partitions are

added to local indexes only when you add a partition to the underlying table.

You cannot add a partition to a global index because the highest partition always

has a partition bound of MAXVALUE. If you wish to add a new highest partition,

use the ALTER INDEX...SPLIT PARTITION statement.

Dropping Partitions
This section describes how to use the ALTER TABLE DROP PARTITION statement

to drop table and index partitions and their data.

Dropping Table Partitions
You can use the ALTER TABLE DROP PARTITION statement to drop table

partitions.

If there are local indexes defined for the table, ALTER TABLE DROP PARTITION

also drops the matching partition from each local index.

Dropping Table Partitions Containing Data and Global Indexes If, however, the partition

contains data and one or more global indexes are defined on the table, use either of

the following methods to drop the table partition:

1. Leave the global indexes in place during the ALTER TABLE...DROP

PARTITION statement. In this situation DROP PARTITION marks all global

index partitions unusable, so you must rebuild them afterwards.

Note: You cannot drop the only partition in a table.

Note: The ALTER TABLE...DROP PARTITION statement not only

marks all global index partitions as unusable, it also renders all

nonpartitioned indexes unusable. You cannot rebuild the entire

partitioned index in a single statement. If you wish to rebuild a

partitioned index, you must write a separate REBUILD statement

for each partition in the partitioned index. Here, sal1 is a

nonpartitioned index.

Maintaining Partitions

Managing Partitioned Tables and Indexes 13-13

 ALTER TABLE sales DROP PARTITION dec94;
 ALTER INDEX sales_area_ix REBUILD sal1;

This method is most appropriate for large tables where the partition being

dropped contains a significant percentage of the total data in the table.

2. Issue the DELETE command to delete all rows from the partition before you

issue the ALTER TABLE...DROP PARTITION statement. The DELETE

command updates the global indexes, and also fires triggers and generates redo

and undo logs.

For example, a DBA wishes to drop the first partition, which has a partition

bound of 10000. The DBA issues the following statements:

 DELETE FROM sales WHERE TRANSID < 10000;
 ALTER TABLE sales DROP PARTITION dec94;

This method is most appropriate for small tables, or for large tables when the

partition being dropped contains a small percentage of the total data in the

table.

Dropping Table Partitions Containing Data and Referential Integrity Constraints If a

partition contains data and the table has referential integrity constraints, choose

either of the following methods to drop the table partition:

1. Disable the integrity constraints, issue the ALTER TABLE...DROP PARTITION

statement, then enable the integrity constraints:

 ALTER TABLE sales
 DISABLE CONSTRAINT dname_sales1;
 ALTER TABLE sales DROP PARTITTION dec94;
 ALTER TABLE sales
 ENABLE CONSTRAINT dname_sales1;

This method is most appropriate for large tables where the partition being

dropped contains a significant percentage of the total data in the table.

2. Issue the DELETE command to delete all rows from the partition before you

issue the ALTER TABLE...DROP PARTITION statement. The DELETE

Note: You can substantially reduce the amount of logging by

setting the NOLOGGING attribute (using ALTER

TABLE...MODIFY PARTITION...NOLOGGING) for the partition

before deleting all of its rows.

Maintaining Partitions

13-14 Oracle8i Administrator’s Guide

command enforces referential integrity constraints, and also fires triggers and

generates redo and undo log.

 DELETE FROM sales WHERE TRANSID < 10000;
 ALTER TABLE sales DROP PARTITION dec94;

This method is most appropriate for small tables or for large tables when the

partition being dropped contains a small percentage of the total data in the

table.

Dropping Index Partitions
You cannot explicitly drop a partition of a local index. Instead, local index partitions

are dropped only when you drop a partition from the underlying table.

If a global index partition is empty, you can explicitly drop it by issuing the ALTER

INDEX...DROP PARTITION statement.

If a global index partition contains data, dropping the partition causes the next

highest partition to be marked unusable. For example, a DBA wishes to drop the

index partition P1 and P2 is the next highest partition. The DBA must issue the

following statements:

ALTER INDEX npr DROP PARTITION P1;
ALTER INDEX npr REBUILD PARTITION P2;

Coalescing Partitions
You can distribute contents of a partition (selected by the RDBMS) of a table

partitioned using the hash method into one or more partitions determined by the

hash function, and then destroy the selected partition.

The following statement reduces by one the number of partitions in a table by

coalescing its last partition:

ALTER TABLE ouu1
 COALESCE PARTITION;

Modifying Partition Default Attributes
You can modify default attributes of a partition of a local index on tables created

using the composite method (or a partition of a composite table).

Note: You cannot drop the highest partition in a global index.

Maintaining Partitions

Managing Partitioned Tables and Indexes 13-15

The following statement changes the (partition-level default) PCTFREE attribute of

a partition of a local index on a partitioned table:

ALTER INDEX scuba_1
 MODIFY DEFAULT ATTRIBUTES FOR PARTITION bcd_1998
 PCTFREE 25;

Truncating Partitions
Use the ALTER TABLE...TRUNCATE PARTITION statement when you wish to

remove all rows from a table partition. You cannot truncate an index partition;

however, the ALTER TABLE TRUNCATE PARTITION statement truncates the

matching partition in each local index.

Truncating Partitioned Tables
You can use the ALTER TABLE...TRUNCATE PARTITION statement to remove all

rows from a table partition with or without reclaiming space. If there are local

indexes defined for this table, ALTER TABLE...TRUNCATE PARTITION also

truncates the matching partition from each local index.

Truncating Table Partitions Containing Data and Global Indexes If, however, the partition

contains data and global indexes, use either of the following methods to truncate

the table partition:

1. Leave the global indexes in place during the ALTER TABLE TRUNCATE

PARTITION statement.

 ALTER TABLE sales TRUNCATE PARTITION dec94;
 ALTER INDEX sales_area_ix REBUILD sal1;

This method is most appropriate for large tables where the partition being

truncated contains a significant percentage of the total data in the table.

Note: The ALTER TABLE...TRUNCATE PARTITION statement

not only marks all global index partitions as unusable, it also

renders all nonpartitioned indexes unusable. You cannot rebuild

the entire partitioned index in a single statement. If you wish to

rebuild a partitioned index, you must write a separate REBUILD

statement for each partition in the partitioned index. Here, sal1 is

a nonpartitioned index.

Maintaining Partitions

13-16 Oracle8i Administrator’s Guide

2. Issue the DELETE command to delete all rows from the partition before you

issue the ALTER TABLE...TRUNCATE PARTITION statement. The DELETE

command updates the global indexes, and also fires triggers and generates redo

and undo log.

This method is most appropriate for small tables, or for large tables when the

partition being truncated contains a small percentage of the total data in the

table.

Truncating Table Partitions Containing Data and Referential Integrity Constraints If a

partition contains data and has referential integrity constraints, choose either of the

following methods to truncate the table partition:

1. Disable the integrity constraints, issue the ALTER TABLE...TRUNCATE

PARTITION statement, then re-enable the integrity constraints:

 ALTER TABLE sales
 DISABLE CONSTRAINT dname_sales1;
 ALTER TABLE sales TRUNCATE PARTITTION dec94;
 ALTER TABLE sales
 ENABLE CONSTRAINT dname_sales1;

This method is most appropriate for large tables where the partition being

truncated contains a significant percentage of the total data in the table.

2. Issue the DELETE command to delete all rows from the partition before you

issue the ALTER TABLE...TRUNCATE PARTITION statement. The DELETE

command enforces referential integrity constraints, and also fires triggers and

generates redo and undo log.

 DELETE FROM sales WHERE TRANSID < 10000;
 ALTER TABLE sales TRUNCATE PARTITION dec94;

This method is most appropriate for small tables, or for large tables when the

partition being truncated contains a small percentage of the total data in the

table.

Note: You can substantially reduce the amount of logging by

setting the NOLOGGING attribute (using ALTER

TABLE...MODIFY PARTITION...NOLOGGING) for the partition

before deleting all of its rows.

Maintaining Partitions

Managing Partitioned Tables and Indexes 13-17

Splitting Partitions
This form of ALTER TABLE/INDEX divides a partition into two partitions. You can

use the SPLIT PARTITION clause when a partition becomes too large and causes

backup, recovery or maintenance operations to take a long time. You can also use

the SPLIT PARTITION clause to redistribute the I/O load; note that you cannot use

this clause for hash partitions.

Splitting Table Partitions
You can split a table partition by issuing the ALTER TABLE...SPLIT PARTITION

statement. If there are local indexes defined on the table, this statement also splits

the matching partition in each local index. Because Oracle assigns system-generated

names and default storage attributes to the new index partitions, you may wish to

rename or alter these index partitions after splitting them.

If the partition you are splitting contains data, the ALTER TABLE...SPLIT

PARTITION statement marks the matching partitions (there are two) in each local

index, as well as all global index partitions, as unusable. You must rebuild these

index partitions after issuing the ALTER TABLE...SPLIT PARTITION statement.

Splitting a Table Partition: Scenario In this scenario "fee_katy" is a partition in the table

"VET_cats," which has a local index, JAF1. There is also a global index, VET on the

table. VET contains two partitions, VET_parta, and VET_partb.

To split the partition "fee_katy", and rebuild the index partitions, the DBA issues the

following statements:

ALTER TABLE vet_cats SPLIT PARTITION
 fee_katy at (100) INTO (PARTITION
 fee_katy1 ..., PARTITION fee_katy2 ...);
ALTER INDEX JAF1 REBUILD PARTITION SYS_P00067;
ALTER INDEX JAF1 REBUILD PARTITION SYS_P00068;
ALTER INDEX VET REBUILD PARTITION VET_parta;
ALTER INDEX VET REBUILD PARTITION VET_partb;

Note: You must examine the data dictionary to locate the names

assigned to the new local index partitions. In this particular

scenario, they are SYS_P00067 and SYS_P00068. If you wish, you

can rename them. Also, unless JAF1 already contained partitions

fee_katy1 and fee_katy2, names assigned to local index partitions

produced by this split will match those of corresponding base table

partitions.

Maintaining Partitions

13-18 Oracle8i Administrator’s Guide

Splitting Index Partitions
You cannot explicitly split a partition in a local index. A local index partition is split

only when you split a partition in the underlying table.

The following statement splits the global index partition containing data, QUON1:

ALTER INDEX quon1 SPLIT
 PARTITION canada AT VALUES LESS THAN (100) INTO
 PARTITION canada1 ..., PARTITION canada2 ...);
ALTER INDEX quon1 REBUILD PARTITION canada1;
ALTER INDEX quon1 REBUILD PARTITION canada2;

You only need to rebuild if the index partition that you split was unusable.

Merging Partitions
You can merge the contents of two adjacent partitions of a range or composite

partitioned table into one. The resulting partition inherits the higher upper bound

of the two merged partitions.

The following statement merges two adjacent partitions of a range partitioned table:

ALTER TABLE diving
 MERGE PARTITIONS bcd1, bcd2 INTO PARTITION bcd1bcd2;

Exchanging Table Partitions
You can convert a partition into a nonpartitioned table, and a table into a partition

of a partitioned table by exchanging their data (and index) segments. Exchanging

table partitions is most useful when you have an application using nonpartitioned

tables which you want to convert to partitions of a partitioned table. For example,

you may already have partition views that you wish to migrate into partitioned

tables.

Converting a Partition View into a Partitioned Table: Scenario
This scenario describes how to convert a partition view (also called "manual

partition") into a partitioned table. The partition view is defined as follows:

CREATE VIEW accounts
 SELECT * FROM accounts_jan98
 UNION ALL
 SELECT * FROM accounts_feb98
 UNION ALL
 ...
SELECT * FROM accounts_dec98;

Maintaining Partitions

Managing Partitioned Tables and Indexes 13-19

To Incrementally Migrate the Partition View to a Partitioned Table

1. Initially, only the two most recent partitions, ACCOUNTS_NOV98 and

ACCOUNTS_DEC98, will be migrated from the view to the table by creating

the partitioned table. Each partition gets a segment of 2 blocks (as a

placeholder).

 CREATE TABLE accounts_new (...)
 TABLESPACE ts_temp STORAGE (INITIAL 2)
 PARTITION BY RANGE (opening_date)
 (PARTITION jan98 VALUES LESS THAN (’01-FEB-1998’),
 ...
 PARTITION dec98 VALUES LESS THAN (’01-FEB-1998’));

2. Use the EXCHANGE command to migrate the tables to the corresponding

partitions.

 ALTER TABLE accounts_new
 EXCHANGE PARTITION nov98 WITH TABLE
 accounts_nov98 WITH VALIDATION;

 ALTER TABLE accounts_new
 EXCHANGE PARTITION dec98 WITH TABLE
 accounts_dec98 WITH VALIDATION;

So now the placeholder data segments associated with the NOV98 and DEC98

partitions have been exchanged with the data segments associated with the

ACCOUNTS_NOV98and ACCOUNTS_DEC98 tables.

3. Redefine the ACCOUNTS view.

 CREATE OR REPLACE VIEW accounts
 SELECT * FROM accounts_jan98
 UNION ALL
 SELECT * FROM accounts_feb_98
 UNION ALL
 ...
 UNION ALL
 SELECT * FROM accounts_new PARTITION (nov98)
 UNION ALL
 SELECT * FROM accounts_new PARTITION (dec98);

4. Drop the ACCOUNTS_NOV98 and ACCOUNTS_DEC98 tables, which own the

placeholder segments that were originally attached to the NOV98 and DEC98

partitions.

5. After all the tables in the UNIONALL view are converted into partitions, drop

the view and rename the partitioned to the name of the view being dropped.

Maintaining Partitions

13-20 Oracle8i Administrator’s Guide

 DROP VIEW accounts;
 RENAME accounts_new TO accounts;

See Also: For more information about the syntax and usage of the statements in this

section, see Oracle8i SQL Reference.

Rebuilding Index Partitions
Some operations, such as ALTER TABLE...DROP PARTITION, mark all partitions of

a global index unusable. You can rebuild global index partitions in two ways:

1. Rebuild each partition by issuing the ALTER INDEX...REBUILD PARTITION

statement (you can run the rebuilds concurrently).

2. Drop the index and re-create it.

Moving the Time Window in a Historical Table
A historical table describes the business transactions of an enterprise over intervals

of time. Historical tables can be base tables, which contain base information; for

example, sales, checks, orders. Historical tables can also be rollup tables, which

contain summary information derived from the base information via operations

such as GROUP BY, AVERAGE, or COUNT.

The time interval in a historical table is a rolling window; DBAs periodically delete

sets of rows that describe the oldest transaction, and in turn allocate space for sets

of rows that describe the most recent transaction. For example, at the close of

business on April 30, 1995 the DBA deletes the rows (and supporting index entries)

that describe transactions from April 1994, and allocates space for the April 1995

transactions.

To Move the Time Window in a Historical Table Now consider a specific example. You

have a table, ORDER, which contains 13 months of transactions: a year of historical

data in addition to orders for the current month. There is one partition for each

month; the partitions are named ORDER_yymm, as are the tablespaces in which

they reside.

The ORDER table contains two local indexes, ORDER_IX_ONUM, which is a local,

prefixed, unique index on the order number, and ORDER_IX_SUPP, which is a

local, non-prefixed index on the supplier number. The local index partitions are

Note: This method is more efficient because the table is scanned

only once.

Maintaining Partitions

Managing Partitioned Tables and Indexes 13-21

named with suffixes that match the underlying table. There is also a global unique

index, ORDER_IX_CUST, for the customer name. ORDER_IX_CUST contains three

partitions, one for each third of the alphabet. So on October 31, 1994, change the

time window on ORDER as follows:

1. Back up the data for the oldest time interval.

 ALTER TABLESPACE ORDER_9310 BEGIN BACKUP;
 ALTER TABLESPACE ORDER_9310 END BACKUP;

2. Drop the partition for the oldest time interval.

 ALTER TABLE ORDER DROP PARTITION ORDER_9310;

3. Add the partition to the most recent time interval.

 ALTER TABLE ORDER ADD PARTITION ORDER_9411;

4. Drop and re-create the global indexes.

 ALTER INDEX ORDER DROP PARTITION ORDER_IX_CUST;
 ALTER INDEX REBUILD PARTITION ORDER_IX_CUST;

Quiescing Applications During a Multi-Step Maintenance Operation
Ordinarily, Oracle acquires sufficient locks to ensure that no operation (DML, DDL,

utility) interferes with an individual DDL statement, such as ALTER TABLE...DROP

PARTITION. However, if the partition maintenance operation requires several

steps, it is the DBA’s responsibility to ensure that applications (or other

maintenance operations) do not interfere with the multi-step operation in progress.

For example, there are referential integrity constraints on the table ORDER, and you

do not wish to disable them to drop the partition. Instead, you can replace Step 2

from the previous section with the following:

DELETE FROM ORDER WHERE ODATE < TO_DATE(01-NOV-93);
ALTER TABLE ORDER DROP PARTITION ORDER_9310;

You can ensure that no one inserts new rows into ORDER between the DELETE

step and the DROP PARTITION steps by revoking access privileges from an

APPLICATION role, which is used in all applications. You can also bring down all

user-level applications during a well-defined batch window each night or weekend.

Maintaining Partitions

13-22 Oracle8i Administrator’s Guide

Managing Tables 14-1

14
Managing Tables

This chapter describes the various aspects of managing tables, and includes the

following topics:

■ Guidelines for Managing Tables

■ Creating Tables

■ Altering Tables

■ Manually Allocating Storage for a Table

■ Dropping Tables

■ Index-Organized Tables

Before attempting tasks described in this chapter, familiarize yourself with the

concepts in Chapter 12, "Guidelines for Managing Schema Objects".

Guidelines for Managing Tables

14-2 Oracle8i Administrator’s Guide

Guidelines for Managing Tables
This section describes guidelines to follow when managing tables, and includes the

following topics:

■ Design Tables Before Creating Them

■ Specify How Data Block Space Is to Be Used

■ Specify Transaction Entry Parameters

■ Specify the Location of Each Table

■ Parallelize Table Creation

■ Consider Creating UNRECOVERABLE Tables

■ Estimate Table Size and Set Storage Parameters

■ Plan for Large Tables

■ Table Restrictions

Use these guidelines to make managing tables as easy as possible.

Design Tables Before Creating Them
Usually, the application developer is responsible for designing the elements of an

application, including the tables. Database administrators are responsible for setting

storage parameters and defining clusters for tables, based on information from the

application developer about how the application works and the types of data

expected.

Working with your application developer, carefully plan each table so that the

following occurs:

■ Tables are normalized.

■ Each column is of the proper datatype.

■ Columns that allow nulls are defined last, to conserve storage space.

■ Tables are clustered whenever appropriate, to conserve storage space and

optimize performance of SQL statements.

Guidelines for Managing Tables

Managing Tables 14-3

Specify How Data Block Space Is to Be Used
By specifying the PCTFREE and PCTUSED parameters during the creation of each

table, you can affect the efficiency of space utilization and amount of space reserved

for updates to the current data in the data blocks of a table’s data segment.

See Also: For information about specifying PCTFREE and PCTUSED, see

"Managing Space in Data Blocks" on page 12-2.

Specify Transaction Entry Parameters
By specifying the INITRANS and MAXTRANS parameters during the creation of

each table, you can affect how much space is initially and can ever be allocated for

transaction entries in the data blocks of a table’s data segment.

See Also: For information about specifying INITRANS and MAXTRANS, see

"Setting Storage Parameters" on page 12-7.

Specify the Location of Each Table
If you have the proper privileges and tablespace quota, you can create a new table

in any tablespace that is currently online. Therefore, you should specify the

TABLESPACE option in a CREATE TABLE statement to identify the tablespace that

will store the new table.

If you do not specify a tablespace in a CREATE TABLE statement, the table is

created in your default tablespace.

When specifying the tablespace to contain a new table, make sure that you

understand implications of your selection. By properly specifying a tablespace

during the creation of each table, you can:

■ increase the performance of the database system

■ decrease the time needed for database administration

The following examples show how incorrect storage locations of schema objects can

affect a database:

■ If users’ objects are created in the SYSTEM tablespace, the performance of

Oracle can be reduced, since both data dictionary objects and user objects must

contend for the same datafiles.

■ If an application’s associated tables are arbitrarily stored in various tablespaces,

the time necessary to complete administrative operations (such as backup and

recovery) for that application’s data can be increased.

Guidelines for Managing Tables

14-4 Oracle8i Administrator’s Guide

See Also: For information about specifying tablespaces, see "Assigning Tablespace

Quotas to Users" on page 9-3.

Parallelize Table Creation
You can parallelize the creation of tables created with a subquery in the CREATE

TABLE command. Because multiple processes work together to create the table,

performance of the table creation can improve.

See Also: For more information about parallel table creation, see the Oracle8i Parallel
Server Concepts and Administration guide.

For information about the CREATE TABLE command, see the Oracle8i SQL
Reference.

Consider Creating UNRECOVERABLE Tables
When you create an unrecoverable table, the table cannot be recovered from

archived logs (because the needed redo log records are not generated for the

unrecoverable table creation). Thus, if you cannot afford to lose the table, you

should take a backup after the table is created. In some situations, such as for tables

that are created for temporary use, this precaution may not be necessary.

You can create an unrecoverable table by specifying UNRECOVERABLE when you

create a table with a subquery in the CREATE TABLE...AS SELECT statement.

However, rows inserted afterwards are recoverable. In fact, after the statement is

completed, all future statements are fully recoverable.

Creating an unrecoverable table has the following benefits:

■ Space is saved in the redo log files.

■ The time it takes to create the table is decreased.

■ Performance improves for parallel creation of large tables.

In general, the relative performance improvement is greater for larger

unrecoverable tables than for smaller tables. Creating small unrecoverable tables

has little effect on the time it takes to create a table. However, for larger tables the

performance improvement can be significant, especially when you are also

parallelizing the table creation.

Guidelines for Managing Tables

Managing Tables 14-5

Estimate Table Size and Set Storage Parameters
Estimating the sizes of tables before creating them is useful for the following

reasons:

■ You can use the combined estimated size of tables, along with estimates for

indexes, rollback segments, and redo log files, to determine the amount of disk

space that is required to hold an intended database. From these estimates, you

can make correct hardware purchases and other decisions.

■ You can use the estimated size of an individual table to better manage the disk

space that the table will use. When a table is created, you can set appropriate

storage parameters and improve I/O performance of applications that use the

table.

For example, assume that you estimate the maximum size of a table before

creating it. If you then set the storage parameters when you create the table,

fewer extents will be allocated for the table’s data segment, and all of the table’s

data will be stored in a relatively contiguous section of disk space. This

decreases the time necessary for disk I/O operations involving this table.

Whether or not you estimate table size before creation, you can explicitly set storage

parameters when creating each nonclustered table. (Clustered tables automatically

use the storage parameters of the cluster.) Any storage parameter that you do not

explicitly set when creating or subsequently altering a table automatically uses the

corresponding default storage parameter set for the tablespace in which the table

resides.

If you explicitly set the storage parameters for the extents of a table’s data segment,

try to store the table’s data in a small number of large extents rather than a large

number of small extents.

Plan for Large Tables
There are no limits on the physical size of tables and extents. You can specify the

keyword UNLIMITED for MAXEXTENTS, thereby simplifying your planning for

large objects, reducing wasted space and fragmentation, and improving space

reuse. However, keep in mind that while Oracle allows an unlimited number of

extents, when the number of extents in a table grows very large, you may see an

impact on performance when performing any operation requiring that table.

Note: You cannot alter data dictionary tables to have

MAXEXTENTS greater than the allowed block maximum.

Guidelines for Managing Tables

14-6 Oracle8i Administrator’s Guide

If you have such tables in your database, consider the following recommendations:

Separate the Table from Its Indexes Place indexes in separate tablespaces from

other objects, and on separate disks if possible. If you ever need to drop and re-

create an index on a very large table (such as when disabling and enabling a

constraint, or re-creating the table), indexes isolated into separate tablespaces can

often find contiguous space more easily than those in tablespaces that contain other

objects.

Allocate Sufficient Temporary Space If applications that access the data in a very

large table perform large sorts, ensure that enough space is available for large

temporary segments and that users have access to this space (temporary segments

always use the default STORAGE settings for their tablespaces).

Table Restrictions
Before creating tables, make sure you are aware of the following restrictions:

■ Tables containing new object types cannot be imported into a pre-Oracle8

database

■ You cannot move types and extent tables to a different schema when the

original data still exists in the database.

■ You cannot merge an exported table into a pre-existing table having the same

name in a different schema.

Oracle has a limit on the total number of columns that a table (or attributes that an

object type) can have (see Oracle8i SQL Reference for this limit.) When you create a

table that contains user-defined type data, Oracle maps columns of user-defined

type to relational columns for storing the user-defined type data. These "hidden"

relational columns are not visible in a DESCRIBE table statement and are not

returned by a SELECT * statement. Therefore, when you create an object table, or a

relational table with columns of REF, varray, nested table, or object type, the total

number of columns that Oracle actually creates for the table may be more than

those you specify, because Oracle creates hidden columns to store the user-defined

type data. The following formulas determine the total number of columns created

for a table with user-defined type data:

Number of columns in an object table:
num_columns(object_table) =
 num_columns(object_identifier)
 + num_columns(row_type)
 + number of top-level object columns in the object type of table
 + num_columns(object_type)

Guidelines for Managing Tables

Managing Tables 14-7

Number of columns in a relational table:
num_columns(relational_table) =
 number of scalar columns in the table
 + number of object columns in the table
 + SUM [num_columns(object_type(i))] i= 1 -> n
 + SUM [num_columns(nested_table(j))] j= 1 -> m
 + SUM [num_columns(varray(k))] k= 1 -> p
 + SUM [num_columns(REF(l))] l= 1 -> q

where in the given relational table
object_type(i) is the ith object type column and
 n is the total number of such object type columns
nested_table(j) is the jth nested_table column and
 m is the total number of such nested table columns
varray(k) is the kth varray column and
 p is the total number of such varray columns,
REF(l) is the lth REF column and
 q is the total number of such REF columns.

num_columns(object identifier) = 1
num_columns(row_type) = 1
num_columns(REF) = 1, if REF is unscoped
 = 1, if the REF is scoped and the object identifier
 is system generated and the REF has no
 referential constraint
 = 2, if the REF is scoped and the object identifier
 is system generated and the REF has a
 referential constraint
 = 1 + number of columns in the primary key,
 if the object identifier is primary key based
num_columns(nested_table) = 2
num_columns(varray) = 1
num_columns(object_type) = number of scalar attributes in the object type
 + SUM[num_columns(object_type(i))] i= 1 -> n
 + SUM[num_columns(nested_table(j))] j= 1 -> m
 + SUM[num_columns(varray(k))] k= 1 -> p
 + SUM[num_columns(REF(l))] l= 1 -> q

where in the given object type:

object_type(i) is an embedded object type attribute and
 n is the total number of such object type attributes,
nested_table(j) is an embedded nested_table attribute and
 m is the total number of such nested table attributes,
varray(k) is an embedded varray attribute and
 p is the total number of such varray attributes,
REF(l) is an embedded REF attribute and

Guidelines for Managing Tables

14-8 Oracle8i Administrator’s Guide

 q is the total number of such REF attributes.

Example 1
CREATE TYPE physical_address_type AS OBJECT
 (no CHAR(4), street CHAR(31), city CHAR(5), state CHAR(3));
CREATE TYPE phone_type AS VARRAY(5) OF CHAR(15);
CREATE TYPE electronic_address_type AS OBJECT
 (phones phone_type, fax CHAR(12), email CHAR(31));
CREATE TYPE contact_info_type AS OBJECT
 (physical_address physical_address_type,
 electronic_address electronic_address_type);
CREATE TYPE employee_type AS OBJECT
 (eno NUMBER, ename CHAR(60),
 contact_info contact_info_type);

CREATE TABLE employee_object_table OF employee_type;

To calculate number of columns in employee object table, we first need to calculate

number of columns required for employee_type:

num_columns(physical_address_type) =
 number of scalar attributes = 4
num_columns(phone_type) =
 num_columns(varray) = 1
num_columns(electronic_address_type) =
 number of scalar attributes
 + num_columns(phone_type)
 = 2 + 1 = 3
num_columns(contact_info_type) =
 num_columns(physical_address_type)
 + num_columns(electronic_address_type)
 = 3 + 4 = 7
num_columns(employee_type) =
 number of scalar attributes
 + num_columns(contact_info_type)
 = 2 + 7 = 9

num_columns (employee_object_table) =
 num_columns(object_identifier)
 + num_columns(row_type)
 + number of top level object columns in employee_type
 + num_columns(employee_type)
 = 1 + 1 + 1 + 9 = 12

Example 2:
CREATE TABLE employee_relational_table (einfo employee_type);

num_columns (employee_relational_table) =

Creating Tables

Managing Tables 14-9

 number of object columns in table
 + num_columns(employee_type)
 = 1 + 9 = 10

Example 3:
CREATE TYPE project_type AS OBJECT (pno NUMBER, pname CHAR(30), budget NUMBER);

CREATE TYPE project_set_type AS TABLE OF project_type;

CREATE TABLE department
 (dno NUMBER, dname CHAR(30),
 mgr REF employee_type REFERENCES employee_object_table,
 project_set project_set_type)
NESTED TABLE project_set STORE AS project_set_nt;

num_columns(department) =
 number of scalar columns
 + num_columns(mgr)
 + num_columns(project_set)
 = 2 + 2 + 2 = 6

Creating Tables
To create a new table in your schema, you must have the CREATE TABLE system

privilege. To create a table in another user’s schema, you must have the CREATE

ANY TABLE system privilege. Additionally, the owner of the table must have a

quota for the tablespace that contains the table, or the UNLIMITED TABLESPACE

system privilege.

Create tables using the SQL statement CREATE TABLE. When user SCOTT issues

the following statement, he creates a nonclustered table named EMP in his schema

and stores it in the USERS tablespace:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 job VARCHAR2(10),
 mgr NUMBER(5),
 hiredate DATE DEFAULT (sysdate),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(3) NOT NULL
 CONSTRAINT dept_fkey REFERENCES dept)
PCTFREE 10
PCTUSED 40
TABLESPACE users

Altering Tables

14-10 Oracle8i Administrator’s Guide

STORAGE (INITIAL 50K
 NEXT 50K
 MAXEXTENTS 10
 PCTINCREASE 25);

Notice that integrity constraints are defined on several columns of the table and that

several storage settings are explicitly specified for the table.

See Also: For more information about system privileges, see Chapter 24, "Managing

User Privileges and Roles". For more information about tablespace quotas, see

Chapter 23, "Managing Users and Resources".

Altering Tables
To alter a table, the table must be contained in your schema, or you must have

either the ALTER object privilege for the table or the ALTER ANY TABLE system

privilege.

A table in an Oracle database can be altered for the following reasons:

■ to add or drop one or more columns to or from the table

■ to add or modify an integrity constraint on a table

■ to modify an existing column’s definition (datatype, length, default value, and

NOT NULL integrity constraint)

■ to modify data block space usage parameters (PCTFREE, PCTUSED)

■ to modify transaction entry settings (INITRANS, MAXTRANS)

■ to modify storage parameters (NEXT, PCTINCREASE)

■ to enable or disable integrity constraints or triggers associated with the table

■ to drop integrity constraints associated with the table

You can increase the length of an existing column. However, you cannot decrease it

unless there are no rows in the table. Furthermore, if you are modifying a table to

increase the length of a column of datatype CHAR, realize that this may be a time

consuming operation and may require substantial additional storage, especially if

the table contains many rows. This is because the CHAR value in each row must be

blank-padded to satisfy the new column length.

When altering the data block space usage parameters (PCTFREE and PCTUSED) of

a table, note that new settings apply to all data blocks used by the table, including

blocks already allocated and subsequently allocated for the table. However, the

Manually Allocating Storage for a Table

Managing Tables 14-11

blocks already allocated for the table are not immediately reorganized when space

usage parameters are altered, but as necessary after the change.

When altering the transaction entry settings (INITRANS, MAXTRANS) of a table,

note that a new setting for INITRANS applies only to data blocks subsequently

allocated for the table, while a new setting for MAXTRANS applies to all blocks

(already and subsequently allocated blocks) of a table.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new

settings for the other storage parameters (for example, NEXT, PCTINCREASE)

affect only extents subsequently allocated for the table. The size of the next extent

allocated is determined by the current values of NEXT and PCTINCREASE, and is

not based on previous values of these parameters.

You can alter a table using the SQL command ALTER TABLE. The following

statement alters the EMP table:

ALTER TABLE emp
 PCTFREE 30
 PCTUSED 60;

See Also: See "Managing Object Dependencies" on page 20-23 for information about

how Oracle manages dependencies.

Manually Allocating Storage for a Table
Oracle dynamically allocates additional extents for the data segment of a table, as

required. However, you might want to allocate an additional extent for a table

explicitly. For example, when using the Oracle Parallel Server, an extent of a table

can be allocated explicitly for a specific instance.

A new extent can be allocated for a table using the SQL command ALTER TABLE

with the ALLOCATE EXTENT option.

WARNING: Before altering a table, familiarize yourself with the
consequences of doing so.

If a new column is added to a table, the column is initially null.
You can add a column with a NOT NULL constraint to a table
only if the table does not contain any rows.

If a view or PL/SQL program unit depends on a base table, the
alteration of the base table may affect the dependent object.

Dropping Tables

14-12 Oracle8i Administrator’s Guide

See Also: For information about the ALLOCATE EXTENT option, see Oracle8i
Parallel Server Concepts and Administration.

Dropping Tables
To drop a table, the table must be contained in your schema or you must have the

DROP ANY TABLE system privilege.

To drop a table that is no longer needed, use the SQL command DROP TABLE. The

following statement drops the EMP table:

DROP TABLE emp;

If the table to be dropped contains any primary or unique keys referenced by

foreign keys of other tables and you intend to drop the FOREIGN KEY constraints

of the child tables, include the CASCADE option in the DROP TABLE command, as

shown below:

DROP TABLE emp CASCADE CONSTRAINTS;

WARNING: Before dropping a table, familiarize yourself with
the consequences of doing so:

■ Dropping a table removes the table definition from the data
dictionary. All rows of the table are no longer accessible.

■ All indexes and triggers associated with a table are dropped.

■ All views and PL/SQL program units dependent on a dropped table
remain, yet become invalid (not usable). See "Managing Object
Dependencies" on page 20-23 for information about how Oracle
manages such dependencies.

■ All synonyms for a dropped table remain, but return an error when
used.

■ All extents allocated for a nonclustered table that is dropped are
returned to the free space of the tablespace and can be used by any
other object requiring new extents or new objects. All rows
corresponding to a clustered table are deleted from the blocks of the
cluster.

Index-Organized Tables

Managing Tables 14-13

Dropping Columns
Oracle enables you to drop columns from rows in a table, thereby cleaning up

unused, and potentially space-demanding columns without having to export/

import data, and recreate indexes and constraints.

You can drop columns you no longer need or mark columns to be dropped at a

future time when there is less demand on your system’s resources.

The following statement drops unused columns from table t1:

ALTER TABLE t1 DROP UNUSED COLUMNS;

Restrictions
The following restrictions apply to drop column operations:

■ You cannot drop a column from an object type table.

■ You cannot drop columns from nested tables.

■ You cannot drop all columns in a table.

■ You cannot drop a partitioning key column.

■ You cannot drop a column from tables owned by SYS.

■ You cannot drop a parent key column.

See Also: For more information about the syntax used for dropping columns from

tables, see the Oracle8i SQL Reference.

Index-Organized Tables
This section describes aspects of managing index-organized tables, and includes the

following topics:

■ What Are Index-Organized Tables?

■ Creating Index-Organized Tables

■ Maintaining Index-Organized Tables

■ Analyzing Index-Organized Tables

■ Using the ORDER BY Clause with Index-Organized Tables

■ Converting Index-Organized Tables to Regular Tables

Index-Organized Tables

14-14 Oracle8i Administrator’s Guide

What Are Index-Organized Tables?
Index-organized tables are tables with data rows grouped according to the primary

key. This clustering is achieved using a B*-tree index. B*-tree indexes are special

types of index trees that differ from regular table B-tree indexes in that they store

both the primary key and non-key columns. The attributes of index-organized

tables are stored entirely within the physical data structures for the index.

Why Use Index-Organized Tables?
Index-organized tables provide fast key-based access to table data for queries

involving exact match and range searches. Changes to the table data (such as

adding new rows, updating rows, or deleting rows) result only in updating the

index structure (because there is no separate table storage area).

Also, storage requirements are reduced because key columns are not duplicated in

the table and index. The remaining non-key columns are stored in the index

structure.

Index-organized tables are particularly useful when you are using applications that

must retrieve data based on a primary key. Also, index-organized tables are suitable

for modeling application-specific index structures. For example, content-based

information retrieval applications containing text, image and audio data require

inverted indexes that can be effectively modeled using index-organized tables.

See Also: For more details about index-organized tables, see Oracle8i Concepts.

Differences Between Index-Organized and Regular Tables
Index-organized tables are like regular tables with a primary key index on one or

more of its columns. However, instead of maintaining two separate storage spaces

for the table and B*tree index, an index-organized table only maintains a single

B*tree index containing the primary key of the table and other column values.

Index-Organized Tables

Managing Tables 14-15

Figure 14–1 Structure of Regular Table versus Index-Organized Table

Index-organized tables are suitable for accessing data by way of primary key or any

key that is a valid prefix of the primary key. Also, there is no duplication of key

values because a separate index structure containing the key values and ROWID is

not created. Table 14–1 summarizes the difference between an index-organized table

and a regular table.

Table 14–1 Comparison of Index-Organized Table with a Regular Table

Regular Table Index-Organized Table

ROWID uniquely identifies a row;
primary key can be optionally specified

Primary key uniquely identifies a row;
primary key must be specified

ROWID pseudo-column refers to
physical block address

ROWID pseudocolumn refers to primary key-
based logical ROWID

Secondary indexes store physical data Secondary indexes store primary key-based
logical ROWID

Can be stored in a hash or index cluster Cannot be stored in a hash or index cluster

FINANCE
STOCK

FINANCE ROWID
INVEST ROWID

Index

STOCK ROWID
TRADE ROWID

Index

Finance
Invest
Stock
Trade

5543
6879
4254
3345

Table

STOCK 6874
TRADE 5543

Index
FINANCE 3345
INVEST 4254

Index

Regular Table and Index Index-Organized Table

Finance
Stock

Table

Indexed data is
stored in index.

Index-Organized Tables

14-16 Oracle8i Administrator’s Guide

Creating Index-Organized Tables
You can use the CREATE TABLE statement to create index-organized tables; when

doing so, you need to provide the following additional information:

■ An ORGANIZATION INDEX qualifier, which indicates that this is an index-

organized table.

■ A primary key, specified through a column constraint clause (for a single

column primary key) or a table constraint clause (for a multiple-column

primary key). A primary key must be specified for index-organized tables.

■ An optional row overflow specification clause, which preserves dense

clustering of the B*tree index by storing the row column values exceeding the

specified threshold in a separate overflow data segment.

The row overflow tablespace is defined as a percentage of the block size. If a row

size is greater than the specified threshold value (PCTTHRESHOLD), the non-

key column values are stored in the overflow tablespace. In other words, the

row is broken at a column boundary into two pieces, a head piece and tail piece.

The head piece fits in the specified threshold and is stored along with the key in

the index leaf block. The tail piece is stored in the overflow area as one or more

row pieces. Thus, the index entry contains the key value, the non-key column

values that fit the specified threshold, and a pointer to the rest of the row.

■ The following example shows the information to provide when creating index-

organized tables:

 CREATE TABLE docindex(
 token char(20),
 doc_id NUMBER,
 token_frequency NUMBER,
 token_offsets VARCHAR2(512),
 CONSTRAINT pk_docindex PRIMARY KEY (token, doc_id))
 ORGANIZATION INDEX TABLESPACE ind_tbs
 PCTTHRESHOLD 20
 OVERFLOW TABLESPACE ovf_tbs;

This example shows that the ORGANIZATION INDEX qualifier specifies an index-

organized table, where the key columns and non-key columns reside in an index

defined on columns that designate the primary key (token,doc_id) for the table.

Index-organized tables can store object types. For example, you can create an index-

organized table containing a column of object type mytype (for the purpose of this

example) as follows:

CREATE TABLE iot (c1 NUMBER primary key, c2 mytype)
 ORGANIZATION INDEX;

Index-Organized Tables

Managing Tables 14-17

However, you cannot create an index-organized table of object types. For example,

the following statement would not be valid:

CREATE TABLE iot of mytype ORGANIZATION INDEX;

See Also: For more details about the CREATE INDEX statement, see the Oracle8i
SQL Reference.

Using the AS Subquery
You can create an index-organized table using the AS subquery. Creating an index-

organized table in this manner enables you to load the table in parallel by using the

PARALLEL option.

The following statement creates an index-organized table (in parallel) by selecting

rows from a conventional table, rt :

CREATE TABLE iot(i primary key, j) ORGANIZATION INDEX PARALLEL (DEGREE 2)
 AS SELECT * FROM rt;

See Also: For details about the syntax for creating index-organized tables, see the

Oracle8i SQL Reference.

Using the Overflow Clause
The overflow clause specified in the earlier example indicates that any non-key

columns of rows exceeding 20% of the block size are placed in a data segment

stored in the TEXT_COLLECTION_OVERFLOWtablespace. The key columns

should fit the specified threshold.

If an update of a non-key column causes the row to decrease in size, Oracle

identifies the row piece (head or tail) to which the update is applicable and rewrites

that piece.

If an update of a non-key column causes the row to increase in size, Oracle

identifies the piece (head or tail) to which the update is applicable and rewrites that

row piece. If the update’s target turns out to be the head piece, note that this piece

may again be broken into 2 to keep the row size below the specified threshold.

The non-key columns that fit in the index leaf block are stored as a row head-piece

that contains a ROWID field linking it to the next row piece stored in the overflow

data segment. The only columns that are stored in the overflow area are those that

do not fit.

Index-Organized Tables

14-18 Oracle8i Administrator’s Guide

Choosing and Monitoring a Threshold Value You should choose a threshold value that

can accommodate your key columns, as well as the first few non-key columns (if

they are frequently accessed).

After choosing a threshold value, you can monitor tables to verify that the value

you specified is appropriate. You can use the ANALYZE TABLE...LIST CHAINED

ROWS statement to determine the number and identity of rows exceeding the

threshold value.

See Also: For more information about the ANALYZE statement see the Oracle8i
SQL Reference.

Using the INCLUDING clause In addition to specifying PCTTHRESHOLD, you can use

the INCLUDING <column_name> clause to control which non-key columns are

stored with the key columns. Oracle accommodates all non-key columns up to the

column specified in the INCLUDING clause in the index leaf block, provided it

does not exceed the specified threshold. All non-key columns beyond the column

specified in the INCLUDING clause are stored in the overflow area.

For example, you can modify the previous example where an index-organized table

was created so that it always has the token_offsets column value stored in the

overflow area:

 CREATE TABLE docindex(
 token CHAR(20),
 doc_id NUMBER,
 token_frequency NUMBER,
 token_offsets VARCHAR2(512),
 CONSTRAINT pk_docindex PRIMARY KEY (token, doc_id))
 ORGANIZATION INDEX TABLESPACE ind_tbs
 PCTTHRESHOLD 20
 INCLUDING token_frequency
 OVERFLOW TABLESPACE ovf_tbs;

Here, only non-key columns up to token_frequency (in this case a single column

only) are stored with the key column values in the index leaf block.

Using Key Compression
Creating an index-organized table using key compression enables you to eliminate

repeated occurrences of key column prefix values.

Key compression breaks an index key into a prefix and a suffix entry. Compression

is achieved by sharing the prefix entries among all the suffix entries in an index

block. This sharing can lead to huge savings in space, allowing you to store more

keys per index block while improving performance.

Index-Organized Tables

Managing Tables 14-19

You can enable key compression using the COMPRESS clause while:

■ creating an index-organized table

■ moving an index-organized table

You can also specify the prefix length (as the number of key columns), which

identifies how the key columns are broken into a prefix and suffix entry.

CREATE TABLE iot(i INT, j INT, k INT, l INT, PRIMARY KEY (i, j, k)) ORGANIZATION INDEX
COMPRESS;

The preceding statement is equivalent to the following statement:

CREATE TABLE iot(i INT, j INT, k INT, l INT, PRIMARY KEY(i, j, k)) ORGANIZATION INDEX
COMPRESS 2;

For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5) (1,3,4), (1,4,4) the repeated

occurrences of (1,2), (1,3) are compressed away.

You can also override the default prefix length used for compression as follows:

CREATE TABLE iot(i INT, j INT, k INT, l INT, PRIMARY KEY (i, j, k)) ORGANIZATION INDEX
COMPRESS 1;

For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4), the repeated

occurrences of 1 are compressed away.

You can disable compression as follows:

ALTER TABLE A MOVE NOCOMPRESS;

See Also: For more details about key compression, see Oracle8i Concepts and the

Oracle8i SQL Reference.

Maintaining Index-Organized Tables
Index-organized tables differ from regular tables only in physical organization;

logically, they are manipulated in the same manner. You can use an index-organized

table in place of a regular table in INSERT, SELECT, DELETE, and UPDATE

statements.

Altering Index-Organized Tables
You can use the ALTER TABLE statement to modify physical and storage attributes

for both primary key index and overflow data segments. All the attributes specified

prior to the OVERFLOW keyword are applicable to the primary key index segment.

All attributes specified after the OVERFLOW key word are applicable to the

Index-Organized Tables

14-20 Oracle8i Administrator’s Guide

overflow data segment. For example, you can set the INITRANS of the primary key

index segment to 4 and the overflow of the data segment INITRANS to 6 as follows:

ALTER TABLE docindex INITRANS 4 OVERFLOW INITRANS 6;

You can also alter PCTTHRESHOLD and INCLUDING column values. A new

setting is used to break the row into head and overflow tail pieces during

subsequent operations. For example, the PCTHRESHOLD and INCLUDING

column values can be altered for the docindex table as follows:

ALTER TABLE docindex PCTTHRESHOLD 15 INCLUDING doc_id;

By setting the INCLUDING column to doc_id , all the columns that follow

doc_id , namely, token_frequency and token_offsets , are stored in the

overflow data segment.

For index-organized tables created without an overflow data segment, you can add

an overflow data segment by using the ADD OVERFLOW clause. For example, if

the docindex table did not have an overflow segment, then you can add an

overflow segment as follows:

ALTER TABLE docindex ADD OVERFLOW TABLESPACE ovf_tbs;

See Also: For details about the ALTER TABLE statement, see the Oracle8i SQL
Reference.

Moving (Rebuilding) Index-Organized Tables
Because index-organized tables are primarily stored in a B*-tree index, you may

encounter fragmentation as a consequence of incremental updates. However, you

can use the ALTER TABLE...MOVE statement to rebuild the index and reduce this

fragmentation.

The following statement rebuilds the index-organized table docindex after setting

its INITRANS to 10:

ALTER TABLE docindex MOVE INITRANS10;

You can move index-organized tables with no overflow data segment online using

the ONLINE option. For example, if the docindex table does not have an overflow

data segment, then you can perform the move online as follows:

ALTER TABLE docindex MOVE ONLINE INITRANS 10;

The following statement rebuilds the index-organized table docindex along with

its overflow data segment:

Index-Organized Tables

Managing Tables 14-21

ALTER TABLE docindex MOVE TABLESPACE ix_tbs OVERFLOW TABLESPACE ov_tbs;

And in this last statement, index-organized table iot is moved while the LOB index

and data segment for C2 are rebuilt:

ALTER TABLE iot MOVE LOB (C2) STORE AS (TABLESPACE lob_ts);

See Also: For more information about the MOVE option, see the Oracle8i SQL
Reference.

Scenario: Updating the Key Column
A key column update is logically equivalent to deleting the row with the old key

value and inserting the row with the new key value at the appropriate place to

maintain the primary key order.

Logically, in the following example, the employee row for dept_id=20 and

e_id=10 are deleted and the employee row for dept_id=23 and e_id=10 are

inserted:

UPDATE employees
 SET dept_id=23
 WHERE dept_id=20 and e_id=10;

Analyzing Index-Organized Tables
Just like conventional tables, index-organized tables are analyzed using the

ANALYZE statement:

ANALYZE TABLE docindex COMPUTE STATISTICS;

The ANALYZE statement analyzes both the primary key index segment and the

overflow data segment, and computes logical as well as physical statistics for the

table.

■ The logical statistics can be queries using USER_TABLES, ALL_TABLES or

DBA_TABLES.

■ You can query the physical statistics of the primary key index segment using

USER_INDEXES, ALL_INDEXES or DBA_INDEXES (and using the primary

key index name). For example, you can obtain the primary key index segment’s

physical statistics for the table docindex as follows:

 SELECT * FROM DBA_INDEXES WHERE INDEX_NAME= ’PK_DOCINDEX’;

Index-Organized Tables

14-22 Oracle8i Administrator’s Guide

■ You can query the physical statistics for the overflow data segment using the

USER_TABLES, ALL_TABLES or DBA_TABLES. You can identify the overflow

entry by searching for IOT_TYPE = ’IOT_OVERFLOW’. For example, you can

obtain overflow data segment physical attributes associated with the docindex
table as follows:

 SELECT * FROM DBA_TABLES WHERE IOT_TYPE=’IOT_OVERFLOW’ and IOT_NAME= ’DOCINDEX’

Using the ORDER BY Clause with Index-Organized Tables
If an ORDER BY clause only references the primary key column or a prefix of it,

then the optimizer avoids the sorting overhead as the rows are returned sorted on

the primary key columns.

For example, you create the following table:

CREATE TABLE employees (dept_id INTEGER, e_id INTEGER, e_name
 VARCHAR2, PRIMARY KEY (dept_id, e_id)) ORGANIZATION INDEX;

The following queries avoid sorting overhead because the data is already sorted on

the primary key:

SELECT * FROM employees ORDER BY (dept_id, e_id);
SELECT * FROM employees ORDER BY (dept_id);

If, however, you have an ORDER BY clause on a suffix of the primary key column

or non-primary key columns, additional sorting is required (assuming no other

secondary indexes are defined).

SELECT * FROM employees ORDER BY (e_id);
SELECT * FROM employees ORDER BY (e_name);

Converting Index-Organized Tables to Regular Tables
You can convert index-organized tables to regular tables using the Oracle IMPORT/

EXPORT utilities, or the CREATE TABLE...AS SELECT statement.

To convert an index-organized table to a regular table:

■ Export the index-organized table data using conventional path

■ Create a regular table definition with the same definition

Index-Organized Tables

Managing Tables 14-23

■ Import the index-organized table data, making sure IGNORE=y (ensures that

object exists error is ignored)

See Also: For more details about using IMPORT/EXPORT, see Oracle8i Utilities.

Note: Before converting an index-organized table to a regular

table, be aware that index-organized tables cannot be exported

using pre-Oracle8 versions of the Export utility.

Index-Organized Tables

14-24 Oracle8i Administrator’s Guide

Managing Views, Sequences and Synonyms 15-1

15
Managing Views, Sequences and

Synonyms

This chapter describes aspects of view management, and includes the following

topics:

■ Managing Views

■ Managing Sequences

■ Managing Synonyms

Before attempting tasks described in this chapter, familiarize yourself with the

concepts in Chapter 12, "Guidelines for Managing Schema Objects".

Managing Views

15-2 Oracle8i Administrator’s Guide

Managing Views
A view is a tailored presentation of the data contained in one or more tables (or

other views), and takes the output of a query and treats it as a table. You can think

of a view as a "stored query" or a "virtual table." You can use views in most places

where a table can be used.

This section describes aspects of managing views, and includes the following topics:

■ Creating Views

■ Modifying a Join View

■ Replacing Views

■ Dropping Views

Creating Views
To create a view, you must fulfill the requirements listed below:

■ To create a view in your schema, you must have the CREATE VIEW privilege;

to create a view in another user’s schema, you must have the CREATE ANY

VIEW system privilege. You may acquire these privileges explicitly or via a role.

■ The owner of the view (whether it is you or another user) must have been

explicitly granted privileges to access all objects referenced in the view

definition; the owner cannot have obtained these privileges through roles. Also,

the functionality of the view is dependent on the privileges of the view’s owner.

For example, if the owner of the view has only the INSERT privilege for Scott’s

EMP table, the view can only be used to insert new rows into the EMP table, not

to SELECT, UPDATE, or DELETE rows from it.

■ If the owner of the view intends to grant access to the view to other users, the

owner must have received the object privileges to the base objects with the

GRANT OPTION or the system privileges with the ADMIN OPTION.

You can create views using the SQL command CREATE VIEW. Each view is defined

by a query that references tables, snapshots, or other views. The query that defines a

view cannot contain the FOR UPDATE clause. For example, the following statement

creates a view on a subset of data in the EMP table:

CREATE VIEW sales_staff AS
 SELECT empno, ename, deptno
 FROM emp
 WHERE deptno = 10
 WITH CHECK OPTION

Managing Views

Managing Views, Sequences and Synonyms 15-3

CONSTRAINT sales_staff_cnst;

The query that defines the SALES_STAFF view references only rows in department

10. Furthermore, the CHECK OPTION creates the view with the constraint that

INSERT and UPDATE statements issued against the view cannot result in rows that

the view cannot select. For example, the following INSERT statement successfully

inserts a row into the EMP table by means of the SALES_STAFF view, which

contains all rows with department number 10:

INSERT INTO sales_staff VALUES (7584, ’OSTER’, 10);

However, the following INSERT statement is rolled back and returns an error

because it attempts to insert a row for department number 30, which could not be

selected using the SALES_STAFF view:

INSERT INTO sales_staff VALUES (7591, ’WILLIAMS’, 30);

The following statement creates a view that joins data from the EMP and DEPT

tables:

CREATE VIEW division1_staff AS
 SELECT ename, empno, job, dname
 FROM emp, dept
 WHERE emp.deptno IN (10, 30)
 AND emp.deptno = dept.deptno;

The DIVISION1_STAFF view joins information from the EMP and DEPT tables. The

CHECK OPTION is not specified in the CREATE VIEW statement for this view.

Expansion of Defining Queries at View Creation Time
In accordance with the ANSI/ISO standard, Oracle expands any wildcard in a top-

level view query into a column list when a view is created and stores the resulting

query in the data dictionary; any subqueries are left intact. The column names in an

expanded column list are enclosed in quote marks to account for the possibility that

the columns of the base object were originally entered with quotes and require them

for the query to be syntactically correct.

As an example, assume that the DEPT view is created as follows:

CREATE VIEW dept AS SELECT * FROM scott.dept;

Oracle stores the defining query of the DEPT view as:

SELECT "DEPTNO", "DNAME", "LOC" FROM scott.dept

Managing Views

15-4 Oracle8i Administrator’s Guide

Views created with errors do not have wildcards expanded. However, if the view is

eventually compiled without errors, wildcards in the defining query are expanded.

Creating Views with Errors
If there are no syntax errors in a CREATE VIEW statement, Oracle can create the

view even if the defining query of the view cannot be executed; the view is

considered "created with errors." For example, when a view is created that refers to

a non-existent table or an invalid column of an existing table, or when the view

owner does not have the required privileges, the view can be created anyway and

entered into the data dictionary. However, the view is not yet usable.

To create a view with errors, you must include the FORCE option of the CREATE

VIEW command:

CREATE FORCE VIEW AS;

By default, views are not created with errors. When a view is created with errors,

Oracle returns a message indicating the view was created with errors. The status of

a view created with errors is INVALID. If conditions later change so that the query

of an invalid view can be executed, the view can be recompiled and become valid

(usable).

See Also: For information changing conditions and their impact on views, see

"Managing Object Dependencies" on page 20-23.

Modifying a Join View
A modifiable join view is a view that contains more than one table in the top-level

FROM clause of the SELECT statement, and that does not contain any of the

following:

■ DISTINCT operator

■ aggregate functions: AVG, COUNT, GLB, MAX, MIN, STDDEV, SUM, or

VARIANCE

■ set operations: UNION, UNION ALL, INTERSECT, MINUS

■ GROUP BY or HAVING clauses

■ START WITH or CONNECT BY clauses

■ ROWNUM pseudocolumn

Managing Views

Managing Views, Sequences and Synonyms 15-5

With some restrictions, you can modify views that involve joins. If a view is a join

on other nested views, then the other nested views must be mergeable into the top

level view.

The examples in following sections use the EMP and DEPT tables. These examples

work only if you explicitly define the primary and foreign keys in these tables, or

define unique indexes. Following are the appropriately constrained table definitions

for EMP and DEPT:

CREATE TABLE dept (
 deptno NUMBER(4) PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13));

CREATE TABLE emp (
 empno NUMBER(4) PRIMARY KEY,
 ename VARCHAR2(10),
 job varchar2(9),
 mgr NUMBER(4),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 FOREIGN KEY(DEPTNO) REFERENCES DEPT(DEPTNO));

You could also omit the primary and foreign key constraints listed above, and create

a UNIQUE INDEX on DEPT (DEPTNO) to make the following examples work.

See Also: For more information about mergeable views see Oracle8i Tuning.

Key-Preserved Tables
The concept of a key-preserved table is fundamental to understanding the restrictions

on modifying join views. A table is key preserved if every key of the table can also

be a key of the result of the join. So, a key-preserved table has its keys preserved

through a join.

The key-preserving property of a table does not depend on the actual data in the

table. It is, rather, a property of its schema and not of the data in the table. For

example, if in the EMP table there was at most one employee in each department,

then DEPT.DEPTNO would be unique in the result of a join of EMP and DEPT, but

DEPT would still not be a key-preserved table.

Note: It is not necessary that the key or keys of a table be selected

for it to be key preserved. It is sufficient that if the key or keys were

selected, then they would also be key(s) of the result of the join.

Managing Views

15-6 Oracle8i Administrator’s Guide

If you SELECT all rows from EMP_DEPT_VIEW, the results are:

EMPNO ENAME DEPTNO DNAME LOC
---------- ---------- ---------- -------------- -----
 7782 CLARK 10 ACCOUNTING NEW YORK
 7839 KING 10 ACCOUNTING NEW YORK
 7934 MILLER 10 ACCOUNTING NEW YORK
 7369 SMITH 20 RESEARCH DALLAS
 7876 ADAMS 20 RESEARCH DALLAS
 7902 FORD 20 RESEARCH DALLAS
 7788 SCOTT 20 RESEARCH DALLAS
 7566 JONES 20 RESEARCH DALLAS
8 rows selected.

In this view, EMP is a key-preserved table, because EMPNO is a key of the EMP

table, and also a key of the result of the join. DEPT is not a key-preserved table,

because although DEPTNO is a key of the DEPT table, it is not a key of the join.

DML Statements and Join Views
Any UPDATE, INSERT, or DELETE statement on a join view can modify only one

underlying base table.

UPDATE Statements The following example shows an UPDATE statement that

successfully modifies the EMP_DEPT view:

UPDATE emp_dept
 SET sal = sal * 1.10
 WHERE deptno = 10;

The following UPDATE statement would be disallowed on the EMP_DEPT view:

UPDATE emp_dept
 SET loc = ’BOSTON’
 WHERE ename = ’SMITH’;

This statement fails with an ORA-01779 error (’’cannot modify a column which

maps to a non key-preserved table’’), because it attempts to modify the underlying

DEPT table, and the DEPT table is not key preserved in the EMP_DEPT view.

In general, all modifiable columns of a join view must map to columns of a key-

preserved table. If the view is defined using the WITH CHECK OPTION clause,

then all join columns and all columns of repeated tables are not modifiable.

So, for example, if the EMP_DEPT view were defined using WITH CHECK

OPTION, the following UPDATE statement would fail:

UPDATE emp_dept

Managing Views

Managing Views, Sequences and Synonyms 15-7

 SET deptno = 10
 WHERE ename = ’SMITH’;

The statement fails because it is trying to update a join column.

DELETE Statements You can delete from a join view provided there is one and only
one key-preserved table in the join.

The following DELETE statement works on the EMP_DEPT view:

DELETE FROM emp_dept
 WHERE ename = ’SMITH’;

This DELETE statement on the EMP_DEPT view is legal because it can be translated

to a DELETE operation on the base EMP table, and because the EMP table is the

only key-preserved table in the join.

In the following view, a DELETE operation cannot be performed on the view

because both E1 and E2 are key-preserved tables:

CREATE VIEW emp_emp AS
 SELECT e1.ename, e2.empno, deptno
 FROM emp e1, emp e2
 WHERE e1.empno = e2.empno;

If a view is defined using the WITH CHECK OPTION clause and the key-preserved

table is repeated, then rows cannot be deleted from such a view:

CREATE VIEW emp_mgr AS
 SELECT e1.ename, e2.ename mname
 FROM emp e1, emp e2
 WHERE e1.mgr = e2.empno
 WITH CHECK OPTION;

No deletion can be performed on this view because the view involves a self-join of

the table that is key preserved.

INSERT Statements The following INSERT statement on the EMP_DEPT view

succeeds:

INSERT INTO emp_dept (ename, empno, deptno)
 VALUES (’KURODA’, 9010, 40);

This statement works because only one key-preserved base table is being modified

(EMP), and 40 is a valid DEPTNO in the DEPT table (thus satisfying the FOREIGN

KEY integrity constraint on the EMP table).

Managing Views

15-8 Oracle8i Administrator’s Guide

An INSERT statement like the following would fail for the same reason that such an

UPDATE on the base EMP table would fail: the FOREIGN KEY integrity constraint

on the EMP table is violated.

INSERT INTO emp_dept (ename, empno, deptno)
 VALUES (’KURODA’, 9010, 77);

The following INSERT statement would fail with an ORA-01776 error (’’cannot

modify more than one base table through a view’’).

INSERT INTO emp_dept (empno, ename, loc)
 VALUES (9010, ’KURODA’, ’BOSTON’);

An INSERT cannot implicitly or explicitly refer to columns of a non-key-preserved

table. If the join view is defined using the WITH CHECK OPTION clause, then you

cannot perform an INSERT to it.

Using the UPDATABLE_ COLUMNS Views
The views described in Table 15–1 can assist you when modifying join views.

Replacing Views
To replace a view, you must have all the privileges required to drop and create a

view. If the definition of a view must change, the view must be replaced; you cannot

alter the definition of a view. You can replace views in the following ways:

■ You can drop and re-create the view.

Table 15–1 UPDATABLE_COLUMNS Views

View Name Description

USER_UPDATABLE_COLUMNS Shows all columns in all tables and views
in the user’s schema that are modifiable.

DBA_UPDATABLE_COLUMNS Shows all columns in all tables and views
in the DBA schema that are modifiable.

ALL_UPDATABLE_VIEWS Shows all columns in all tables and views
that are modifiable.

WARNING: When a view is dropped, all grants of corresponding
object privileges are revoked from roles and users. After the view
is re-created, privileges must be re-granted.

Managing Sequences

Managing Views, Sequences and Synonyms 15-9

■ You can redefine the view with a CREATE VIEW statement that contains the OR

REPLACE option. The OR REPLACE option replaces the current definition of a

view and preserves the current security authorizations. For example, assume

that you create the SALES_STAFF view as given in the previous example, and

grant several object privileges to roles and other users. However, now you need

to redefine the SALES_STAFF view to change the department number specified

in the WHERE clause. You can replace the current version of the SALES_STAFF

view with the following statement:

 CREATE OR REPLACE VIEW sales_staff AS
 SELECT empno, ename, deptno
 FROM emp
 WHERE deptno = 30
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

Before replacing a view, consider the following effects:

■ Replacing a view replaces the view’s definition in the data dictionary. All

underlying objects referenced by the view are not affected.

■ If a constraint in the CHECK OPTION was previously defined but not included

in the new view definition, the constraint is dropped.

■ All views and PL/SQL program units dependent on a replaced view become

invalid (not usable). See "Managing Object Dependencies" on page 20-23 for

more information on how Oracle manages such dependencies.

Dropping Views
You can drop any view contained in your schema. To drop a view in another user’s

schema, you must have the DROP ANY VIEW system privilege. Drop a view using

the SQL command DROP VIEW. For example, the following statement drops a view

named SALES_STAFF:

DROP VIEW sales_staff;

Managing Sequences
This section describes various aspects of managing sequences, and includes the

following topics:

■ Creating Sequences

■ Altering Sequences

■ Initialization Parameters Affecting Sequences

Managing Sequences

15-10 Oracle8i Administrator’s Guide

■ Dropping Sequences

Creating Sequences
To create a sequence in your schema, you must have the CREATE SEQUENCE

system privilege; to create a sequence in another user’s schema, you must have the

CREATE ANY SEQUENCE privilege. Create a sequence using the SQL command

CREATE SEQUENCE. For example, the following statement creates a sequence

used to generate employee numbers for the EMPNO column of the EMP table:

CREATE SEQUENCE emp_sequence
 INCREMENT BY 1
 START WITH 1
 NOMAXVALUE
 NOCYCLE
 CACHE 10;

The CACHE option pre-allocates a set of sequence numbers and keeps them in

memory so that sequence numbers can be accessed faster. When the last of the

sequence numbers in the cache has been used, Oracle reads another set of numbers

into the cache.

Oracle might skip sequence numbers if you choose to cache a set of sequence

numbers. For example, when an instance abnormally shuts down (for example,

when an instance failure occurs or a SHUTDOWN ABORT statement is issued),

sequence numbers that have been cached but not used are lost. Also, sequence

numbers that have been used but not saved are lost as well. Oracle might also skip

cached sequence numbers after an export and import; see Oracle8i Utilities for

details.

See Also: For information about how the Oracle Parallel Server affects cached

sequence numbers, see Oracle8i Parallel Server Concepts and Administration.

For performance information on caching sequence numbers, see Oracle8i Tuning.

Altering Sequences
To alter a sequence, your schema must contain the sequence, or you must have the

ALTER ANY SEQUENCE system privilege. You can alter a sequence to change any

of the parameters that define how it generates sequence numbers except the

sequence’s starting number. To change the starting point of a sequence, drop the

sequence and then re-create it. When you perform DDL on sequence numbers you

will lose the cache values.

Managing Synonyms

Managing Views, Sequences and Synonyms 15-11

Alter a sequence using the SQL command ALTER SEQUENCE. For example, the

following statement alters the EMP_SEQUENCE:

ALTER SEQUENCE emp_sequence
 INCREMENT BY 10
 MAXVALUE 10000
 CYCLE
 CACHE 20;

Initialization Parameters Affecting Sequences
The initialization parameter SEQUENCE_CACHE_ENTRIES sets the number of

sequences that may be cached at any time. If auditing is enabled for your system,

allow one additional sequence for the sequence to identify audit session numbers.

If the value for SEQUENCE_CACHE_ENTRIES is too low, Oracle might skip

sequence values, as in the following scenario: assume you are using five cached

sequences, the cache is full, and SEQUENCE_CACHE_ENTRIES = 4. If four

sequences are currently cached, then a fifth sequence replaces the least recently

used sequence in the cache and all remaining values (up to the last sequence

number cached) in the displaced sequence are lost.

Dropping Sequences
You can drop any sequence in your schema. To drop a sequence in another schema,

you must have the DROP ANY SEQUENCE system privilege. If a sequence is no

longer required, you can drop the sequence using the SQL command DROP

SEQUENCE. For example, the following statement drops the ORDER_SEQ

sequence:

DROP SEQUENCE order_seq;

When a sequence is dropped, its definition is removed from the data dictionary.

Any synonyms for the sequence remain, but return an error when referenced.

Managing Synonyms
You can create both public and private synonyms. A public synonym is owned by

the special user group named PUBLIC and is accessible to every user in a database.

A private synonym is contained in the schema of a specific user and available only

to the user and the user’s grantees.

This section includes the following synonym management information:

Managing Synonyms

15-12 Oracle8i Administrator’s Guide

■ Creating Synonyms

■ Dropping Synonyms

Creating Synonyms
To create a private synonym in your own schema, you must have the CREATE

SYNONYM privilege; to create a private synonym in another user’s schema, you

must have the CREATE ANY SYNONYM privilege. To create a public synonym,

you must have the CREATE PUBLIC SYNONYM system privilege.

Create a synonym using the SQL command CREATE SYNONYM. For example, the

following statement creates a public synonym named PUBLIC_EMP on the EMP

table contained in the schema of JWARD:

CREATE PUBLIC SYNONYM public_emp FOR jward.emp;

Dropping Synonyms
You can drop any private synonym in your own schema. To drop a private

synonym in another user’s schema, you must have the DROP ANY SYNONYM

system privilege. To drop a public synonym, you must have the DROP PUBLIC

SYNONYM system privilege.

Drop a synonym that is no longer required using the SQL command DROP

SYNONYM. To drop a private synonym, omit the PUBLIC keyword; to drop a

public synonym, include the PUBLIC keyword.

For example, the following statement drops the private synonym named EMP:

DROP SYNONYM emp;

The following statement drops the public synonym named PUBLIC_EMP:

DROP PUBLIC SYNONYM public_emp;

When you drop a synonym, its definition is removed from the data dictionary. All

objects that reference a dropped synonym remain; however, they become invalid

(not usable).

See Also: For more information about how dropping synonyms can affect other

schema objects, see "Managing Object Dependencies" on page 20-23.

Managing Indexes 16-1

16
Managing Indexes

This chapter describes various aspects of index management, and includes the

following topics:

■ Guidelines for Managing Indexes

■ Creating Indexes

■ Altering Indexes

■ Monitoring Space Use of Indexes

■ Dropping Indexes

Before attempting tasks described in this chapter, familiarize yourself with the

concepts in Chapter 12, "Guidelines for Managing Schema Objects".

Guidelines for Managing Indexes

16-2 Oracle8i Administrator’s Guide

Guidelines for Managing Indexes
This section describes guidelines to follow when managing indexes, and includes

the following topics:

■ Create Indexes After Inserting Table Data

■ Limit the Number of Indexes per Table

■ Specify the Tablespace for Each Index

■ Specify Transaction Entry Parameters

■ Specify Index Block Space Use

■ Parallelize Index Creation

■ Consider Creating Indexes with NOLOGGING

■ Estimate Index Size and Set Storage Parameters

An index is an optional structure associated with tables and clusters, which you can

create explicitly to speed SQL statement execution on a table. Just as the index in

this manual helps you locate information faster than if there were no index, an

Oracle index provides a faster access path to table data.

The absence or presence of an index does not require a change in the wording of

any SQL statement. An index merely offers a fast access path to the data; it affects

only the speed of execution. Given a data value that has been indexed, the index

points directly to the location of the rows containing that value.

Indexes are logically and physically independent of the data in the associated table.

You can create or drop an index any time without affecting the base tables or other

indexes. If you drop an index, all applications continue to work; however, access to

previously indexed data might be slower. Indexes, being independent structures,

require storage space.

Oracle automatically maintains and uses indexes after they are created. Oracle

automatically reflects changes to data, such as adding new rows, updating rows, or

deleting rows, in all relevant indexes with no additional action by users.

See Also: For information about performance implications of index creation, see

Oracle8i Tuning.

For more information about indexes, see Oracle8i Concepts.

If you have the Oracle Objects option, you can define domain-specific operators and

indexing schemes and integrate them into the server. For more information see the

Oracle8i Data Cartridge Developer’s Guide.

Guidelines for Managing Indexes

Managing Indexes 16-3

Create Indexes After Inserting Table Data
You should create an index for a table after inserting or loading data (via

SQL*Loader or Import) into the table. It is more efficient to insert rows of data into a

table that has no indexes and then create the indexes for subsequent access. If you

create indexes before table data is loaded, every index must be updated every time

a row is inserted into the table. You must also create the index for a cluster before

inserting any data into the cluster.

When an index is created on a table that already has data, Oracle must use sort

space. Oracle uses the sort space in memory allocated for the creator of the index

(the amount per user is determined by the initialization parameter

SORT_AREA_SIZE), but must also swap sort information to and from temporary

segments allocated on behalf of the index creation.

If the index is extremely large, you may want to perform the following tasks.

To Manage a Large Index

1. Create a new temporary segment tablespace.

2. Alter the index creator’s temporary segment tablespace.

3. Create the index.

4. Remove the temporary segment tablespace and re-specify the creator’s

temporary segment tablespace, if desired.

See Also: Under certain conditions, data can be loaded into a table with

SQL*Loader’s "direct path load" and an index can be created as data is loaded; see

Oracle8i Utilities for more information.

Limit the Number of Indexes per Table
A table can have any number of indexes. However, the more indexes there are, the

more overhead is incurred as the table is modified. Specifically, when rows are

inserted or deleted, all indexes on the table must be updated as well. Also, when a

column is updated, all indexes that contain the column must be updated.

Thus, there is a trade-off between the speed of retrieving data from a table and the

speed of updating the table. For example, if a table is primarily read-only, having

more indexes can be useful; but if a table is heavily updated, having fewer indexes

may be preferable.

Guidelines for Managing Indexes

16-4 Oracle8i Administrator’s Guide

Specify Transaction Entry Parameters
By specifying the INITRANS and MAXTRANS parameters during the creation of

each index, you can affect how much space is initially and can ever be allocated for

transaction entries in the data blocks of an index’s segment. You should also leave

room for updates and later identify long-term (for example, the life of the index)

values for these settings.

See Also: For more information about setting these parameters, see "Setting Storage

Parameters" on page 12-7.

Specify Index Block Space Use
When an index is created for a table, data blocks of the index are filled with the

existing values in the table up to PCTFREE. The space reserved by PCTFREE for an

index block is only used when a new row is inserted into the table and the

corresponding index entry must be placed in the correct index block (that is,

between preceding and following index entries). If no more space is available in the

appropriate index block, the indexed value is placed where it belongs (based on the

lexical set ordering). Therefore, if you plan on inserting many rows into an indexed

table, PCTFREE should be high to accommodate the new index values. If the table is

relatively static without many inserts, PCTFREE for an associated index can be low

so that fewer blocks are required to hold the index data.

See Also: PCTUSED cannot be specified for indexes. See "Managing Space in Data

Blocks" on page 12-2 for information about the PCTFREE parameter.

Specify the Tablespace for Each Index
Indexes can be created in any tablespace. An index can be created in the same or

different tablespace as the table it indexes.

If you use the same tablespace for a table and its index, then database maintenance

may be more convenient (such as tablespace or file backup and application

availability or update) and all the related data will always be online together.

Using different tablespaces (on different disks) for a table and its index produces

better performance than storing the table and index in the same tablespace, due to

reduced disk contention.

If you use different tablespaces for a table and its index and one tablespace is offline

(containing either data or index), then the statements referencing that table are not

guaranteed to work.

Guidelines for Managing Indexes

Managing Indexes 16-5

Parallelize Index Creation
You can parallelize index creation. Because multiple processes work together to

create the index, Oracle can create the index more quickly than if a single server

process created the index sequentially.

When creating an index in parallel, storage parameters are used separately by each

query server process. Therefore, an index created with an INITIAL value of 5M and

a parallel degree of 12 consumes at least 60M of storage during index creation.

See Also: For more information on parallel index creation, see Oracle8i Tuning.

Consider Creating Indexes with NOLOGGING
You can create an index and generate minimal redo log records by specifying

NOLOGGING in the CREATE INDEX statement.

Creating an index with NOLOGGING has the following benefits:

■ Space is saved in the redo log files.

■ The time it takes to create the index is decreased.

■ Performance improves for parallel creation of large indexes.

In general, the relative performance improvement is greater for larger indexes

created without LOGGING than for smaller ones. Creating small indexes without

LOGGING has little affect on the time it takes to create an index. However, for

larger indexes the performance improvement can be significant, especially when

you are also parallelizing the index creation.

Estimate Index Size and Set Storage Parameters
Estimating the size of an index before creating one is useful for the following

reasons:

■ You can use the combined estimated size of indexes, along with estimates for

tables, rollback segments, and redo log files, to determine the amount of disk

space that is required to hold an intended database. From these estimates, you

can make correct hardware purchases and other decisions.

Note: Because indexes created using LOGGING are not archived,

you should perform a backup after you create the index.

Guidelines for Managing Indexes

16-6 Oracle8i Administrator’s Guide

■ You can use the estimated size of an individual index to better manage the disk

space that the index will use. When an index is created, you can set appropriate

storage parameters and improve I/O performance of applications that use the

index.

For example, assume that you estimate the maximum size of a index before

creating it. If you then set the storage parameters when you create the index,

fewer extents will be allocated for the table’s data segment, and all of the

index’s data will be stored in a relatively contiguous section of disk space. This

decreases the time necessary for disk I/O operations involving this index.

The maximum size of a single index entry is approximately one-half the data block

size. As with tables, you can explicitly set storage parameters when creating an

index.

See Also: For specific information about storage parameters, see "Setting Storage

Parameters" on page 12-7.

Coalescing Indexes
When you encounter index fragmentation (due to improper sizing or increased

growth), you can rebuild or coalesce the index. Before you perform either task,

though, weigh the costs and benefits of each option and choose the one that works

best for your situation. Table 16–1 describes costs and benefits associated with

rebuilding and coalescing indexes.

In situations where you have B-tree index leaf blocks that can be freed up for reuse,

you can merge those leaf blocks using the following statement:

ALTER INDEX vmoore COALESCE;

Table 16–1 To Rebuild or Coalesce...That Is the Question.

REBUILD COALESCE

Quickly moves index to another
tablespace.

Cannot move index to another
tablespace.

Higher costs. Requires more disk
space.

Lower costs. Does not require more
disk space.

Creates new tree, shrinks height if
applicable.

Coalesces leaf blocks within same
branch of tree.

Enables you to quickly change storage
and tablespace parameters without
having to drop the original index.

Quickly frees up index leaf blocks for
use.

Creating Indexes

Managing Indexes 16-7

Figure 16–1 illustrates the effect of an ALTER INDEX COALESCE on the index

VMOORE. Before performing the operation, the first two leaf blocks are 50% full,

which means you have an opportunity to reduce fragmentation and completely fill

the first block while freeing up the second (in this example, assume that

PCTFREE=0).

Figure 16–1 Coalescing Indexes

Considerations Before Disabling or Dropping Constraints
Because unique and primary keys have associated indexes, you should factor in the

cost of dropping and creating indexes when considering whether to disable or drop

a UNIQUE or PRIMARY KEY constraint. If the associated index for a UNIQUE key

or PRIMARY KEY constraint is extremely large, you may save time by leaving the

constraint enabled rather than dropping and re-creating the large index.

Creating Indexes
This section describes how to create an index, and includes the following topics:

■ Creating an Index Associated with a Constraint

■ Creating an Index Explicitly

■ Creating a Function-Based Index

■ Re-creating an Existing Index

■ Creating a Key-Compressed Index

B-tree Index

Before ALTER INDEX vmoore COALESCE;

B-tree Index

After ALTER INDEX vmoore COALESCE;

Creating Indexes

16-8 Oracle8i Administrator’s Guide

To enable a UNIQUE key or PRIMARY KEY (which creates an associated index), the

owner of the table needs a quota for the tablespace intended to contain the index, or

the UNLIMITED TABLESPACE system privilege.

LOBS, LONG and LONG RAW columns cannot be indexed.

Oracle enforces a UNIQUE key or PRIMARY KEY integrity constraint by creating a

unique index on the unique key or primary key. This index is automatically created

by Oracle when the constraint is enabled; no action is required by the issuer of the

CREATE TABLE or ALTER TABLE statement to create the index. This includes both

when a constraint is defined and enabled, and when a defined but disabled

constraint is enabled.

In general, it is better to create constraints to enforce uniqueness than it is to use the

CREATE UNIQUE INDEX syntax. A constraint’s associated index always assumes

the name of the constraint; you cannot specify a specific name for a constraint

index.

If you do not specify storage options (such as INITIAL and NEXT) for an index, the

default storage options of the host tablespace are automatically used.

Creating an Index Associated with a Constraint
You can set the storage options for the indexes associated with UNIQUE key and

PRIMARY KEY constraints using the ENABLE clause with the USING INDEX

option. The following statement defines a PRIMARY KEY constraint and specifies

the associated index’s storage option:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY, . . .)
 ENABLE PRIMARY KEY USING INDEX
 TABLESPACE users
 PCTFREE 0;

Creating an Index Explicitly
You can create indexes explicitly (outside of integrity constraints) using the SQL

command CREATE INDEX. The following statement creates an index named

EMP_ENAME for the ENAME column of the EMP table:

CREATE INDEX emp_ename ON emp(ename)
 TABLESPACE users
 STORAGE (INITIAL 20K
 NEXT 20k
 PCTINCREASE 75)

Creating Indexes

Managing Indexes 16-9

 PCTFREE 0;

Notice that several storage settings are explicitly specified for the index.

Creating an Index Online
Previously, when creating an index on a table there has always been a DML S-lock

on that table during the index build operation, which meant you could not perform

DML operations on the base table during the build.

Now, with the ever-increasing size of tables and necessity for continuous

operations, you can create and rebuild indexes online—meaning you can update

base tables at the same time you are building or rebuilding indexes on that table.

Note, though, that there are still DML SS-locks, which means you cannot perform

other DDL operations during an online index build.

The following statements perform online index build operations:

ALTER INDEX emp_name REBUILD ONLINE;

CREATE INDEX emp_name ON emp (mgr, emp1, emp2, emp3) ONLINE;

See Also: For more information about the syntax for creating online indexes, see the

Oracle8i SQL Reference.

Creating a Function-Based Index
Function-based indexes facilitate queries that qualify a value returned by a function or

expression. The value of the function or expression is pre-computed and stored in

the index.

Advantages of function-based indexing include support for linguistic sorts based on

linguistic sort keys (collation), efficient linguistic collation of SQL statements, and

an efficient mechanism for evaluating predicates involving functions.

The following statement defines an index on Area(geo) :

CREATE INDEX area_index ON rivers (Area(geo)) DESC;

Note: While you can perform DML operations during an online

index build, Oracle recommends that you do not perform major/

large DML operations during this procedure. For example, if you

wish to load rows that total up to 30% of the size of an existing

table, you should perform this load before the online index build.

Creating Indexes

16-10 Oracle8i Administrator’s Guide

The area_index is defined on the function area(geo) :

SELECT id, geo Area(geo), desc
FROM rivers r
WHERE Area(geo) >5000;

In this SQL statement, when Area(geo) is referenced in the WHERE clause, the

optimizer considers using the index area_index .

See Also: For more conceptual information about function-based indexes, see

Oracle8i Concepts.

For information about function-based indexing and application development, see

the Oracle8i Application Developer’s Guide - Fundamentals.

Example 1
The following statement creates a function-based index, idx on table emp:

CREATE INDEX idx ON emp (UPPER(emp_name));

Now the SELECT statement uses the function-based index on UPPER(emp_name)
to retrieve all employees with names like :KEYCOL:

SELECT * FROM emp WHERE UPPER(emp_name) like :KEYCOL;

SELECT statements can use either an index range scan (the expression is a prefix of

the index) or index full scan (preferable when the index specifies a high degree of

parallelism).

CREATE INDEX idx ON t (a + b * (c - 1), a, b);
SELECT a FROM t WHERE a + b * (c - 1) < 100;

Example 2
You can also use function-based indexes to support NLS sort index as well.

NLSSORT is a function that returns a sort key that has been given a string. Thus, if

you want to build an index on name using NLSSORT, issue the following statement:

Note: Table owners should have EXECUTE privileges on the

functions used in function-based indexes. Also, because a function-

based index depends upon any function it is using, it can be

invalidated when a function changes.

Creating Indexes

Managing Indexes 16-11

CREATE INDEX nls_index ON t_table (NLSSORT(name, ’NLS_SORT = German’));

This statement creates the nls_index on table t_table with the collation

sequence German.

Now, to select from NLS_SORT:

SELECT * FROM t_table ORDER BY name;

Rows will be ordered using the collation sequence in German.

Example 3
Another use for function-based indexing is to perform non-case-sensitive searches:

CREATE INDEX case_insensitive_idx ON emp_table (UPPER(empname));

A query on this new index would look like the following:

SELECT * FROM emp_table WHERE UPPER(empname) = ’JOE’;

Example 4
This example also illustrates the most common uses of function-based indexing: a

case-insensitive sort and language sort.

CREATE INDEX empi ON emp
 UPPER ((ename), NLSSORT(ename));

Here, an NLS_SORT specification does not appear in the NLSSORT argument

because NLSSORT looks at the session setting for the language of the linguistic sort

key. If you wish to use a language other than the language specified for the session

setting, replace NLSSORT(ename) in the example above with the following:

NLSSORT(ename, NLS_SORT=’German’)

This line directs the sort to use a German linguistic sort key.

Creating Indexes

16-12 Oracle8i Administrator’s Guide

See Also: For more information about function-based indexing, see Oracle8i
Concepts and Oracle8i SQL Reference.

Re-creating an Existing Index
Before re-creating or rebuilding an existing index, compare the costs and benefits

associated with rebuilding to those associated with coalescing indexes as described

in Table 16–1 on page 16-6.

You can create an index using an existing index as the data source. Creating an

index in this manner allows you to change storage characteristics or move to a new

tablespace. Re-creating an index based on an existing data source also removes

intra-block fragmentation. In fact, compared to dropping the index and using the

CREATE INDEX command, re-creating an existing index offers better performance.

Issue the following statement to re-create an existing index:

ALTER INDEX index_name REBUILD;

The REBUILD clause must immediately follow the index name, and precede any

other options. Also, the REBUILD clause cannot be used in conjunction with the

DEALLOCATE UNUSED clause.

See Also: For more information on the ALTER INDEX command and optional

clauses, see the Oracle8i SQL Reference.

Creating a Key-Compressed Index
Creating an index using key compression enables you to eliminate repeated

occurrences of key column prefix values.

Note: CREATE INDEX stores the timestamp of the most recent

function used in the function-based index. This timestamp is

updated when the index is validated. When performing tablespace

point-in-time recovery of a function-based index, if the timestamp

on the most recent function used in the index is newer than the

timestamp stored in the index, then the index will be marked

invalid. You must use the ANALYZE VALIDATE INDEX statement

to validate this index.

Altering Indexes

Managing Indexes 16-13

Key compression breaks an index key into a prefix and a suffix entry. Compression

is achieved by sharing the prefix entries among all the suffix entries in an index

block. This sharing can lead to huge savings in space, allowing you to store more

keys per index block while improving performance.

Key compression can be useful in the following situations:

■ You have a non-unique index where ROWID is appended to make the key

unique. If you use key compression here, the duplicate key will be stored as a

prefix entry on the index block without the ROWID. The remaining rows will be

suffix entries consisting of only the ROWID

■ You have a unique multi-column index.

You can enable key compression using the COMPRESS clause.You can also specify

the prefix length (as the number of key columns), which identifies how the key

columns are broken into a prefix and suffix entry. For example, the following

statement will compress away duplicate occurrences of a key in the index leaf block.

CREATE INDEX emp_ename (ename)
 TABLESPACE users
 COMPRESS 1

The COMPRESS clause can also be specified during rebuild. For example, during

rebuild you can disable compression as follows:

ALTER INDEX emp_ename REBUILD NOCOMPRESS;

See Also: For more details about the CREATE INDEX statement, see the Oracle8i
SQL Reference.

Altering Indexes
To alter an index, your schema must contain the index or you must have the ALTER

ANY INDEX system privilege. You can alter an index only to change the transaction

entry parameters or to change the storage parameters; you cannot change its

column structure.

Alter the storage parameters of any index, including those created by Oracle to

enforce primary and unique key integrity constraints, using the SQL command

ALTER INDEX. For example, the following statement alters the EMP_ENAME

index:

ALTER INDEX emp_ename
 INITRANS 5
 MAXTRANS 10

Monitoring Space Use of Indexes

16-14 Oracle8i Administrator’s Guide

 STORAGE (PCTINCREASE 50);

When you alter the transaction entry settings (INITRANS, MAXTRANS) of an

index, a new setting for INITRANS applies only to data blocks subsequently

allocated, while a new setting for MAXTRANS applies to all blocks (currently and

subsequently allocated blocks) of an index.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new

settings for the other storage parameters affect only extents subsequently allocated

for the index.

For indexes that implement integrity constraints, you can also adjust storage

parameters by issuing an ALTER TABLE statement that includes the ENABLE

clause with the USING INDEX option. For example, the following statement

changes the storage options of the index defined in the previous section:

ALTER TABLE emp
 ENABLE PRIMARY KEY USING INDEX
 PCTFREE 5;

Monitoring Space Use of Indexes
If key values in an index are inserted, updated, and deleted frequently, the index

may or may not use its acquired space efficiently over time. Monitor an index’s

efficiency of space usage at regular intervals by first analyzing the index’s structure

and then querying the INDEX_STATS view:

SELECT pct_used FROM sys.index_stats WHERE name = ’ indexname ’;

The percentage of an index’s space usage will vary according to how often index

keys are inserted, updated, or deleted. Develop a history of an index’s average

efficiency of space usage by performing the following sequence of operations

several times:

■ analyzing statistics

■ validating the index

■ checking PCT_USED

■ dropping and re-creating (or coalescing) the index

When you find that an index’s space usage drops below its average, you can

condense the index’s space by dropping the index and rebuilding it, or coalescing it.

Dropping Indexes

Managing Indexes 16-15

See Also: For information about analyzing an index’s structure, see "Analyzing

Tables, Indexes, and Clusters" on page 20-3.

Dropping Indexes
To drop an index, the index must be contained in your schema, or you must have

the DROP ANY INDEX system privilege.

You might want to drop an index for any of the following reasons:

■ The index is no longer required.

■ The index is not providing anticipated performance improvements for queries

issued against the associated table. (For example, the table might be very small,

or there might be many rows in the table but very few index entries.)

■ Applications do not use the index to query the data.

■ The index has become invalid and must be dropped before being rebuilt.

■ The index has become too fragmented and must be dropped before being

rebuilt.

When you drop an index, all extents of the index’s segment are returned to the

containing tablespace and become available for other objects in the tablespace.

How you drop an index depends on whether you created the index explicitly with a

CREATE INDEX statement, or implicitly by defining a key constraint on a table.

You cannot drop only the index associated with an enabled UNIQUE key or

PRIMARY KEY constraint. To drop a constraint’s associated index, you must

disable or drop the constraint itself.

DROP INDEX emp_ename;

See Also: For information about analyzing indexes, see "Analyzing Tables, Indexes,

and Clusters" on page 20-3.

For more information about dropping a constraint’s associated index, see

"Managing Integrity Constraints" on page 20-13.

Note: If a table is dropped, all associated indexes are dropped

automatically.

Dropping Indexes

16-16 Oracle8i Administrator’s Guide

Managing Clusters 17-1

17
Managing Clusters

This chapter describes aspects of managing clusters (including clustered tables and

indexes), and includes the following topics:

■ Guidelines for Managing Clusters

■ Creating Clusters

■ Altering Clusters

■ Dropping Clusters

Before attempting tasks described in this chapter, familiarize yourself with the

concepts in Chapter 12, "Guidelines for Managing Schema Objects".

Guidelines for Managing Clusters

17-2 Oracle8i Administrator’s Guide

Guidelines for Managing Clusters
A cluster provides an optional method of storing table data. A cluster is made up of

a group of tables that share the same data blocks, which are grouped together

because they share common columns and are often used together. For example, the

EMP and DEPT table share the DEPTNO column. When you cluster the EMP and

DEPT tables (see Figure 17–1), Oracle physically stores all rows for each department

from both the EMP and DEPT tables in the same data blocks. You should not use

clusters for tables that are frequently accessed individually.

Because clusters store related rows of different tables together in the same data

blocks, properly used clusters offer two primary benefits:

■ Disk I/O is reduced and access time improves for joins of clustered tables.

■ The cluster key is the column, or group of columns, that the clustered tables have

in common. You specify the columns of the cluster key when creating the

cluster. You subsequently specify the same columns when creating every table

added to the cluster. Each cluster key value is stored only once each in the

cluster and the cluster index, no matter how many rows of different tables

contain the value.

Therefore, less storage might be required to store related table and index data in

a cluster than is necessary in non-clustered table format. For example, notice

how each cluster key (each DEPTNO) is stored just once for many rows that

contain the same value in both the EMP and DEPT tables.

After creating a cluster, you can create tables in the cluster. However, before any

rows can be inserted into the clustered tables, a cluster index must be created. Using

clusters does not affect the creation of additional indexes on the clustered tables;

they can be created and dropped as usual.

Guidelines for Managing Clusters

Managing Clusters 17-3

Figure 17–1 Clustered Table Data

Related data stored
together, more

efficiently

related data stored
apart, taking up

more space

Clustered Tables Unclustered Tables

DNAME10 LOC

SALES BOSTON

EMPNO ENAME

1000
1321
1841

SMITH
JONES
WARD

. . .

. . .

. . .

. . .

DNAME20 LOC

ADMIN NEW YORK

EMPNO ENAME

932
1139
1277

KEHR
WILSON
NORMAN

. . .

. . .

. . .

. . .

Clustered Key
(DEPTO)

ENAMEEMPNO

932
1000
1139
1277
1321
1841

DEPTNO

KEHR
SMITH
WILSON
NORMAN
JONES
WARD

20
10
20
20
10
10

. . .

. . .

. . .

. . .

. . .

. . .

. . .

EMP TABLE

DNAMEDEPTNO

10
20

LOC

SALES
ADMIN

BOSTON
NEW YORK

DEPT Table

Guidelines for Managing Clusters

17-4 Oracle8i Administrator’s Guide

The following sections describe guidelines to consider when managing clusters, and

includes the following topics:

■ Choose Appropriate Tables for the Cluster

■ Choose Appropriate Columns for the Cluster Key

■ Specify Data Block Space Use

■ Specify the Space Required by an Average Cluster Key and Its Associated Rows

■ Specify the Location of Each Cluster and Cluster Index Rows

■ Estimate Cluster Size and Set Storage Parameters

See Also: For more information about clusters, see Oracle8i Concepts.

Choose Appropriate Tables for the Cluster
Use clusters to store one or more tables that are primarily queried (not

predominantly inserted into or updated) and for which the queries often join data

of multiple tables in the cluster or retrieve related data from a single table.

Choose Appropriate Columns for the Cluster Key
Choose cluster key columns carefully. If multiple columns are used in queries that

join the tables, make the cluster key a composite key. In general, the characteristics

that indicate a good cluster index are the same as those for any index.

A good cluster key has enough unique values so that the group of rows

corresponding to each key value fills approximately one data block. Having too few

rows per cluster key value can waste space and result in negligible performance

gains. Cluster keys that are so specific that only a few rows share a common value

can cause wasted space in blocks, unless a small SIZE was specified at cluster

creation time (see below).

Too many rows per cluster key value can cause extra searching to find rows for that

key. Cluster keys on values that are too general (for example, MALE and FEMALE)

result in excessive searching and can result in worse performance than with no

clustering.

A cluster index cannot be unique or include a column defined as LONG.

See Also: For information about characteristics of a good index, see "Guidelines for

Managing Indexes" on page 16-2.

Guidelines for Managing Clusters

Managing Clusters 17-5

Specify Data Block Space Use
By specifying the PCTFREE and PCTUSED parameters during the creation of a

cluster, you can affect the space utilization and amount of space reserved for

updates to the current rows in the data blocks of a cluster’s data segment. Note that

PCTFREE and PCTUSED parameters set for tables created in a cluster are ignored;

clustered tables automatically use the settings set for the cluster.

See Also: For more information about setting PCTFREE and PCTUSED, see

"Managing Space in Data Blocks" on page 12-2.

Specify the Space Required by an Average Cluster Key and Its Associated Rows
The CREATE CLUSTER command has an optional argument, SIZE, which is the

estimated number of bytes required by an average cluster key and its associated

rows. Oracle uses the SIZE parameter when performing the following tasks:

■ estimating the number of cluster keys (and associated rows) that can fit in a

clustered data block

■ limiting the number of cluster keys placed in a clustered data block; this

maximizes the storage efficiency of keys within a cluster

SIZE does not limit the space that can be used by a given cluster key. For example, if

SIZE is set such that two cluster keys can fit in one data block, any amount of the

available data block space can still be used by either of the cluster keys.

By default, Oracle stores only one cluster key and its associated rows in each data

block of the cluster’s data segment. Although block size can vary from one

operating system to the next, the rule of one key per block is maintained as

clustered tables are imported to other databases on other machines.

If all the rows for a given cluster key value cannot fit in one block, the blocks are

chained together to speed access to all the values with the given key. The cluster

index points to the beginning of the chain of blocks, each of which contains the

cluster key value and associated rows. If the cluster SIZE is such that more than one

key fits in a block, blocks can belong to more than one chain.

Specify the Location of Each Cluster and Cluster Index Rows
If you have the proper privileges and tablespace quota, you can create a new cluster

and the associated cluster index in any tablespace that is currently online. Always

specify the TABLESPACE option in a CREATE CLUSTER/INDEX statement to

identify the tablespace to store the new cluster or index.

Creating Clusters

17-6 Oracle8i Administrator’s Guide

The cluster and its cluster index can be created in different tablespaces. In fact,

creating a cluster and its index in different tablespaces that are stored on different

storage devices allows table data and index data to be retrieved simultaneously

with minimal disk contention.

Estimate Cluster Size and Set Storage Parameters
Following are benefits of estimating a cluster’s size before creating it:

■ You can use the combined estimated size of clusters, along with estimates for

indexes, rollback segments, and redo log files, to determine the amount of disk

space that is required to hold an intended database. From these estimates, you

can make correct hardware purchases and other decisions.

■ You can use the estimated size of an individual cluster to better manage the

disk space that the cluster will use. When a cluster is created, you can set

appropriate storage parameters and improve I/O performance of applications

that use the cluster.

Whether or not you estimate table size before creation, you can explicitly set storage

parameters when creating each non-clustered table. Any storage parameter that you

do not explicitly set when creating or subsequently altering a table automatically

uses the corresponding default storage parameter set for the tablespace in which the

table resides. Clustered tables also automatically use the storage parameters of the

cluster.

Creating Clusters
This section describes how to create clusters, and includes the following topics:

■ Creating Clustered Tables

■ Creating Cluster Indexes

To create a cluster in your schema, you must have the CREATE CLUSTER system

privilege and a quota for the tablespace intended to contain the cluster or the

UNLIMITED TABLESPACE system privilege.

To create a cluster in another user’s schema, you must have the CREATE ANY

CLUSTER system privilege and the owner must have a quota for the tablespace

intended to contain the cluster or the UNLIMITED TABLESPACE system privilege.

You can create a cluster using the SQL CREATE CLUSTER statement. The following

statement creates a cluster named EMP_DEPT, which stores the EMP and DEPT

tables, clustered by the DEPTNO column:

Creating Clusters

Managing Clusters 17-7

CREATE CLUSTER emp_dept (deptno NUMBER(3))
 PCTUSED 80
 PCTFREE 5
 SIZE 600
 TABLESPACE users
 STORAGE (INITIAL 200k
 NEXT 300K
 MINEXTENTS 2
 MAXEXTENTS 20
 PCTINCREASE 33);

Creating Clustered Tables
To create a table in a cluster, you must have either the CREATE TABLE or CREATE

ANY TABLE system privilege. You do not need a tablespace quota or the

UNLIMITED TABLESPACE system privilege to create a table in a cluster.

You can create a table in a cluster using the SQL CREATE TABLE statement with the

CLUSTER option. The EMP and DEPT tables can be created in the EMP_DEPT

cluster using the following statements:

CREATE TABLE dept (
 deptno NUMBER(3) PRIMARY KEY, . . .)
 CLUSTER emp_dept (deptno);

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 . . .
 deptno NUMBER(3) REFERENCES dept)
 CLUSTER emp_dept (deptno);

Creating Cluster Indexes
To create a cluster index, one of the following conditions must be true:

■ Your schema contains the cluster and you have the CREATE INDEX system

privilege.

■ You have the CREATE ANY INDEX system privilege.

Note: You can specify the schema for a clustered table in the

CREATE TABLE statement. A clustered table can be in a different

schema than the schema containing the cluster.Also, the names of

the columns don’t have to match, but their structure does.

Altering Clusters

17-8 Oracle8i Administrator’s Guide

In either case, you must also have either a quota for the tablespace intended to

contain the cluster index, or the UNLIMITED TABLESPACE system privilege.

A cluster index must be created before any rows can be inserted into any clustered

table. The following statement creates a cluster index for the EMP_DEPT cluster:

CREATE INDEX emp_dept_index
 ON CLUSTER emp_dept
 INITRANS 2
 MAXTRANS 5
 TABLESPACE users
 STORAGE (INITIAL 50K
 NEXT 50K
 MINEXTENTS 2
 MAXEXTENTS 10
 PCTINCREASE 33)
 PCTFREE 5;

Several storage settings are explicitly specified for the cluster and cluster index.

See Also: See Chapter 24, "Managing User Privileges and Roles" for more

information about system privileges, and Chapter 23, "Managing Users and

Resources" for information about tablespace quotas.

Altering Clusters
You can alter an existing cluster to change the following settings:

■ data block space usage parameters (PCTFREE, PCTUSED)

■ the average cluster key size (SIZE)

■ transaction entry settings (INITRANS, MAXTRANS)

■ storage parameters (NEXT, PCTINCREASE)

To alter a cluster, your schema must contain the cluster or you must have the

ALTER ANY CLUSTER system privilege.

When you alter data block space usage parameters (PCTFREE and PCTUSED) or

the cluster size parameter (SIZE) of a cluster, the new settings apply to all data

blocks used by the cluster, including blocks already allocated and blocks

subsequently allocated for the cluster. Blocks already allocated for the table are

reorganized when necessary (not immediately).

When you alter the transaction entry settings (INITRANS, MAXTRANS) of a

cluster, a new setting for INITRANS applies only to data blocks subsequently

Altering Clusters

Managing Clusters 17-9

allocated for the cluster, while a new setting for MAXTRANS applies to all blocks

(already and subsequently allocated blocks) of a cluster.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new

settings for the other storage parameters affect only extents subsequently allocated

for the cluster.

To alter a cluster, use the ALTER CLUSTER statement. The following statement

alters the EMP_DEPT cluster:

ALTER CLUSTER emp_dept
 PCTFREE 30
 PCTUSED 60;

Altering Cluster Tables and Cluster Indexes
You can alter clustered tables using the SQL ALTER TABLE statement. However,

any data block space parameters, transaction entry parameters, or storage

parameters you set in an ALTER TABLE statement for a clustered table generate an

error message (ORA-01771, "illegal option for a clustered table"). Oracle uses the

parameters of the cluster for all clustered tables. Therefore, you can use the ALTER

TABLE command only to add or modify columns, drop non-cluster key columns, or

add, drop, enable, or disable integrity constraints or triggers for a clustered table.

Manually Allocating Storage for a Cluster
Oracle dynamically allocates additional extents for the data segment of a cluster as

required. In some circumstances, however, you might want to allocate an additional

extent for a cluster explicitly. For example, when using the Oracle Parallel Server,

you can allocate an extent of a cluster explicitly for a specific instance.

You allocate a new extent for a cluster using the ALTER CLUSTER statement with

the ALLOCATE EXTENT option.

See Also: For information about altering tables, see "Altering Tables" on page 14-10.

You alter cluster indexes exactly as you do other indexes. For more information, see

"Altering Indexes" on page 16-13.

Note: When estimating the size of cluster indexes, remember that

the index is on each cluster key, not the actual rows; therefore, each

key will only appear once in the index.

Dropping Clusters

17-10 Oracle8i Administrator’s Guide

For more information about the CLUSTER parameter in the ALTER CLUSTER

statement, see Oracle8i Parallel Server Concepts and Administration.

Dropping Clusters
This section describes aspects of dropping clusters, and includes the following

topics:

■ Dropping Clustered Tables

■ Dropping Cluster Indexes

A cluster can be dropped if the tables within the cluster are no longer necessary.

When a cluster is dropped, so are the tables within the cluster and the

corresponding cluster index; all extents belonging to both the cluster’s data segment

and the index segment of the cluster index are returned to the containing tablespace

and become available for other segments within the tablespace.

Dropping Clustered Tables
To drop a cluster, your schema must contain the cluster or you must have the DROP

ANY CLUSTER system privilege. You do not have to have additional privileges to

drop a cluster that contains tables, even if the clustered tables are not owned by the

owner of the cluster.

Clustered tables can be dropped individually without affecting the table’s cluster,

other clustered tables, or the cluster index. A clustered table is dropped just as a

non-clustered table is dropped—with the DROP TABLE statement.

See Also: For information about dropping a table, see "Dropping Tables" on

page 14-12.

Note: When you drop a single table from a cluster, Oracle deletes

each row of the table individually. To maximize efficiency when

you intend to drop an entire cluster, drop the cluster including all

tables by using the DROP CLUSTER statement with the

INCLUDING TABLES option. Drop an individual table from a

cluster (using the DROP TABLE statement) only if you want the

rest of the cluster to remain.

Dropping Clusters

Managing Clusters 17-11

Dropping Cluster Indexes
A cluster index can be dropped without affecting the cluster or its clustered tables.

However, clustered tables cannot be used if there is no cluster index; you must re-

create the cluster index to allow access to the cluster. Cluster indexes are sometimes

dropped as part of the procedure to rebuild a fragmented cluster index.

To drop a cluster that contains no tables, and its cluster index, use the SQL DROP

CLUSTER statement. For example, the following statement drops the empty cluster

named EMP_DEPT:

DROP CLUSTER emp_dept;

If the cluster contains one or more clustered tables and you intend to drop the tables

as well, add the INCLUDING TABLES option of the DROP CLUSTER statement, as

follows:

DROP CLUSTER emp_dept INCLUDING TABLES;

If the INCLUDING TABLES option is not included and the cluster contains tables,

an error is returned.

If one or more tables in a cluster contain primary or unique keys that are referenced

by FOREIGN KEY constraints of tables outside the cluster, the cluster cannot be

dropped unless the dependent FOREIGN KEY constraints are also dropped. This

can be easily done using the CASCADE CONSTRAINTS option of the DROP

CLUSTER statement, as shown in the following example:

DROP CLUSTER emp_dept INCLUDING TABLES CASCADE CONSTRAINTS;

Oracle returns an error if you do not use the CASCADE CONSTRAINTS option and

constraints exist.

See Also: For information about dropping an index, see "Dropping Indexes" on

page 16-15.

Dropping Clusters

17-12 Oracle8i Administrator’s Guide

Managing Hash Clusters 18-1

18
Managing Hash Clusters

This chapter describes how to manage hash clusters, and includes the following

topics:

■ Guidelines for Managing Hash Clusters

■ Altering Hash Clusters

■ Dropping Hash Clusters

See Also: Before attempting tasks described in this chapter, familiarize yourself

with the concepts in Chapter 12, "Guidelines for Managing Schema Objects".

Guidelines for Managing Hash Clusters

18-2 Oracle8i Administrator’s Guide

Guidelines for Managing Hash Clusters
This section describes guidelines to consider before attempting to manage hash

clusters, and includes the following topics:

■ Advantages of Hashing

■ Disadvantages of Hashing

■ Estimate Size Required by Hash Clusters and Set Storage Parameters

Storing a table in a hash cluster is an optional way to improve the performance of

data retrieval. A hash cluster provides an alternative to a non-clustered table with

an index or an index cluster. With an indexed table or index cluster, Oracle locates

the rows in a table using key values that Oracle stores in a separate index. To use

hashing, you create a hash cluster and load tables into it. Oracle physically stores

the rows of a table in a hash cluster and retrieves them according to the results of a

hash function.

Oracle uses a hash function to generate a distribution of numeric values, called hash
values, which are based on specific cluster key values. The key of a hash cluster, like

the key of an index cluster, can be a single column or composite key (multiple

column key). To find or store a row in a hash cluster, Oracle applies the hash

function to the row’s cluster key value; the resulting hash value corresponds to a

data block in the cluster, which Oracle then reads or writes on behalf of the issued

statement.

To find or store a row in an indexed table or cluster, a minimum of two (there are

usually more) I/Os must be performed:

■ one or more I/Os to find or store the key value in the index

■ another I/O to read or write the row in the table or cluster

In contrast, Oracle uses a hash function to locate a row in a hash cluster; no I/O is

required. As a result, a minimum of one I/O operation is necessary to read or write

a row in a hash cluster.

See Also: For more information about hash clusters, see Oracle8i Concepts.

Advantages of Hashing
If you opt to use indexing rather than hashing, consider whether to store a table

individually or as part of a cluster.

Hashing is most advantageous when you have the following conditions:

Guidelines for Managing Hash Clusters

Managing Hash Clusters 18-3

■ Most queries are equality queries on the cluster key:

 SELECT . . . WHERE cluster_key = . . . ;

In such cases, the cluster key in the equality condition is hashed, and the

corresponding hash key is usually found with a single read. In comparison, for

an indexed table the key value must first be found in the index (usually several

reads), and then the row is read from the table (another read).

■ The tables in the hash cluster are primarily static in size so that you can

determine the number of rows and amount of space required for the tables in

the cluster. If tables in a hash cluster require more space than the initial

allocation for the cluster, performance degradation can be substantial because

overflow blocks are required.

Disadvantages of Hashing
Hashing is not advantageous in the following situations:

■ Most queries on the table retrieve rows over a range of cluster key values. For

example, in full table scans or queries like the following, a hash function cannot

be used to determine the location of specific hash keys; instead, the equivalent

of a full table scan must be done to fetch the rows for the query:

 SELECT . . . WHERE cluster_key < . . . ;

With an index, key values are ordered in the index, so cluster key values that

satisfy the WHERE clause of a query can be found with relatively few I/Os.

■ The table is not static and continually growing. If a table grows without limit,

the space required over the life of the table (its cluster) cannot be pre-

determined.

■ Applications frequently perform full-table scans on the table and the table is

sparsely populated. A full-table scan in this situation takes longer under

hashing.

■ You cannot afford to pre-allocate the space that the hash cluster will eventually

need.

See Also: For more information about creating hash clusters and specifying hash

functions see the Oracle8i SQL Reference.

For information about hash functions and specifying user-defined hash functions,

see Oracle8i Concepts.

Guidelines for Managing Hash Clusters

18-4 Oracle8i Administrator’s Guide

Even if you decide to use hashing, a table can still have separate indexes on any

columns, including the cluster key. See the Oracle8i Application Developer’s Guide -
Fundamentals for additional recommendations.

Estimate Size Required by Hash Clusters and Set Storage Parameters
As with index clusters, it is important to estimate the storage required for the data

in a hash cluster.

Oracle guarantees that the initial allocation of space is sufficient to store the hash

table according to the settings SIZE and HASHKEYS. If settings for the storage

parameters INITIAL, NEXT, and MINEXTENTS do not account for the hash table

size, incremental (additional) extents are allocated until at least SIZE*HASHKEYS is

reached. For example, assume that the data block size is 2K, the available data space

per block is approximately 1900 bytes (data block size minus overhead), and that

the STORAGE and HASH parameters are specified in the CREATE CLUSTER

command as follows:

STORAGE (INITIAL 100K
 NEXT 150K
 MINEXTENTS 1
 PCTINCREASE 0)
SIZE 1500
HASHKEYS 100

In this example, only one hash key can be assigned per data block. Therefore, the

initial space required for the hash cluster is at least 100*2K or 200K. The settings for

the storage parameters do not account for this requirement. Therefore, an initial

extent of 100K and a second extent of 150K are allocated to the hash cluster.

Alternatively, assume the HASH parameters are specified as follows:

SIZE 500 HASHKEYS 100

In this case, three hash keys are assigned to each data block. Therefore, the initial

space required for the hash cluster is at least 34*2K or 68K. The initial settings for

the storage parameters are sufficient for this requirement (an initial extent of 100K is

allocated to the hash cluster).

Creating Hash Clusters
After creating a hash cluster, you can create tables in the cluster. A hash cluster is

created using the SQL command CREATE CLUSTER. The following statement

creates a cluster named TRIAL_CLUSTER that stores the TRIAL table, clustered by

the TRIALNO column:

Guidelines for Managing Hash Clusters

Managing Hash Clusters 18-5

CREATE CLUSTER trial_cluster (trialno NUMBER(5,0))
 PCTUSED 80
 PCTFREE 5
 TABLESPACE users
 STORAGE (INITIAL 250K NEXT 50K
 MINEXTENTS 1 MAXEXTENTS 3
 PCTINCREASE 0)
 HASH IS trialno HASHKEYS 150;

CREATE TABLE trial (
 trialno NUMBER(5,0) PRIMARY KEY,
 ...)
 CLUSTER trial_cluster (trialno);

The following sections explain setting the parameters of the CREATE CLUSTER

command specific to hash clusters.

See Also: For additional information about creating tables in a cluster, guidelines

for setting other parameters of the CREATE CLUSTER command, and the privileges

required to create a hash cluster, see "Creating Clusters" on page 17-6.

Creating Single Table Hash Clusters
You can also create a single table hash cluster, which provides fast access to rows in a

table; however, this table must be the only table in the hash cluster. Essentially, there

must be a one-to-one mapping between hash keys and data rows. The following

statement creates a single-table hash cluster named PEANUT with the cluster key

VARIETY:

CREATE CLUSTER peanut (variety NUMBER)
 SIZE 512 SINGLE TABLE HASHKEYS 500;

Oracle rounds the HASHKEY value up to the nearest prime number, so this cluster

has a maximum of 503 hash key values, each of size 512 bytes:

See Also: For more information about the CREATE CLUSTER statement, see the

Oracle8i SQL Reference.

Note: The single table option is valid only for hash clusters.

HASHKEYS must also be specified.

Guidelines for Managing Hash Clusters

18-6 Oracle8i Administrator’s Guide

Controlling Space Use Within a Hash Cluster
When creating a hash cluster, it is important to choose the cluster key correctly and

set the HASH IS, SIZE, and HASHKEYS parameters so that performance and space

use are optimal. The following guidelines describe how to set these parameters.

Choosing the Key
Choosing the correct cluster key is dependent on the most common types of queries

issued against the clustered tables. For example, consider the EMP table in a hash

cluster. If queries often select rows by employee number, the EMPNO column

should be the cluster key.Iif queries often select rows by department number, the

DEPTNO column should be the cluster key. For hash clusters that contain a single

table, the cluster key is typically the entire primary key of the contained table.

The key of a hash cluster, like that of an index cluster, can be a single column or a

composite key (multiple column key). A hash cluster with a composite key must

use Oracle’s internal hash function.

Setting HASH IS
Specify the HASH IS parameter only if the cluster key is a single column of the

NUMBER datatype, and contains uniformly distributed integers. If the above

conditions apply, you can distribute rows in the cluster so that each unique cluster

key value hashes, with no collisions, to a unique hash value. If these conditions do

not apply, omit this option so that you use the internal hash function.

Setting SIZE
SIZE should be set to the average amount of space required to hold all rows for any

given hash key. Therefore, to properly determine SIZE, you must be aware of the

characteristics of your data:

■ If the hash cluster is to contain only a single table and the hash key values of the

rows in that table are unique (one row per value), SIZE can be set to the average

row size in the cluster.

■ If the hash cluster is to contain multiple tables, SIZE can be set to the average

amount of space required to hold all rows associated with a representative hash

value.

■ If the hash cluster does not use the internal hash function (if you specified

HASH IS) and you expect little or no collisions, you can set SIZE as estimated;

no collisions occur and space is used as efficiently as possible.

Guidelines for Managing Hash Clusters

Managing Hash Clusters 18-7

■ If you expect frequent collisions on inserts, the likelihood of overflow blocks

being allocated to store rows is high. To reduce the possibility of overflow

blocks and maximize performance when collisions are frequent, you should

increase SIZE according to Table 18–1.

Overestimating the value of SIZE increases the amount of unused space in the

cluster. If space efficiency is more important than the performance of data retrieval,

disregard the above adjustments and use the estimated value for SIZE.

Setting HASHKEYS
For maximum distribution of rows in a hash cluster, Oracle rounds the HASHKEYS

value up to the nearest prime number.

Controlling Space in Hash Clusters: Examples
The following examples show how to correctly choose the cluster key and set the

HASH IS, SIZE, and HASHKEYS parameters. For all examples, assume that the

data block size is 2K and that on average, 1950 bytes of each block is available data

space (block size minus overhead).

Table 18–1 SIZE Increase Chart

Available Space per
Block/Calculated SIZE Setting for SIZE

1 Calculated SIZE

2 Calculated SIZE + 15%

3 Calculated SIZE + 12%

4 Calculated SIZE + 8%

>4 Calculated SIZE

Example 1 You decide to load the EMP table into a hash cluster. Most queries
retrieve employee records by their employee number. You estimate
that the maximum number of rows in the EMP table at any given
time is 10000 and that the average row size is 55 bytes.

In this case, EMPNO should be the cluster key. Since this column
contains integers that are unique, the internal hash function can be
bypassed. SIZE can be set to the average row size, 55 bytes; note
that 34 hash keys are assigned per data block. HASHKEYS can be
set to the number of rows in the table, 10000, rounded up to the
next highest prime number, 10007:

Altering Hash Clusters

18-8 Oracle8i Administrator’s Guide

Altering Hash Clusters
You can alter a hash cluster with the SQL ALTER CLUSTER statement:

ALTER CLUSTER emp_dept . . . ;

The implications for altering a hash cluster are identical to those for altering an

index cluster. However, note that the SIZE, HASHKEYS, and HASH IS parameters

cannot be specified in an ALTER CLUSTER statement. You must re-create the

cluster to change these parameters and then copy the data from the original cluster.

See Also: For more information about altering an index cluster, see ""Altering

Clusters" on page 17-8.

CREATE CLUSTER emp_cluster (empno
NUMBER)
. . .
SIZE 55
HASH IS empno HASHKEYS 10007;

Example 2 Conditions similar to the previous example exist. In this case,
however, rows are usually retrieved by department number. At
most, there are 1000 departments with an average of 10 employees
per department. Note that department numbers increment by 10 (0,
10, 20, 30, . . .).

In this case, DEPTNO should be the cluster key. Since this column
contains integers that are uniformly distributed, the internal hash
function can be bypassed. A pre-estimated SIZE (the average
amount of space required to hold all rows per department) is 55
bytes * 10, or 550 bytes. Using this value for SIZE, only three hash
keys can be assigned per data block. If you expect some collisions
and want maximum performance of data retrieval, slightly alter
your estimated SIZE to prevent collisions from requiring overflow
blocks. By adjusting SIZE by 12%, to 620 bytes (see previous section
about setting SIZE for clarification), only three hash keys are
assigned per data block, leaving more space for rows from expected
collisions.

HASHKEYS can be set to the number of unique department
numbers, 1000, rounded up to the next highest prime number, 1009:

CREATE CLUSTER emp_cluster (deptno NUMBER)
. . .
SIZE 620
HASH IS deptno HASHKEYS 1009;

Dropping Hash Clusters

Managing Hash Clusters 18-9

Dropping Hash Clusters
You can drop a hash cluster using the SQL DROP CLUSTER statement:

DROP CLUSTER emp_dept;

A table in a hash cluster is dropped using the SQL DROP TABLE statement. The

implications of dropping hash clusters and tables in hash clusters are the same for

index clusters.

See Also: For more information about dropping clusters, see "Dropping Clusters"

on page 17-10.

Dropping Hash Clusters

18-10 Oracle8i Administrator’s Guide

Detecting and Repairing Data Block Corruption 19-1

19
Detecting and Repairing Data

Block Corruption

Oracle provides different methods for detecting and correcting data block

corruption. One method is to drop and re-create an object after the corruption is

detected; however, this is not always possible or desirable. If data block corruption

is limited to a subset of rows, another option is to rebuild the table by selecting all

data except for the corrupt rows.

Yet another way to manage data block corruption is to use the DBMS_REPAIR
package. You can use DBMS_REPAIR to detect and repair corrupt blocks in tables

and indexes. Using this approach, you can address corruptions where possible, and

also continue to use objects while you attempt to rebuild or repair them.

DBMS_REPAIR uses the following approach to address corruptions:

■ Step 1: Detect and Report Corruptions

■ Step 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR

■ Step 3: Make Objects Usable

■ Step 4: Repair Corruptions and Rebuild Lost Data

Note: Any corruption that involves the loss of data requires

analysis and understanding of how that data fits into the overall

database system. Hence, DBMS_REPAIR is not a magic wand—

you must still determine whether the repair approach provided by

this package is the appropriate tool for each specific corruption

problem. Depending on the nature of the repair, you may lose data

and logical inconsistencies can be introduced; therefore you need to

weigh the gains and losses associated with using DBMS_REPAIR.

DBMS_REPAIR Package Contents

19-2 Oracle8i Administrator’s Guide

DBMS_REPAIR Package Contents
Table 19–1 describes the procedures that make up the DBMS_REPAIR package.

Step 1: Detect and Report Corruptions
Your first task, before using DBMS_REPAIR, should be the detection and reporting

of corruptions. Reporting not only indicates what is wrong with a block, but also

identifies the associated repair directive. You have several options, in addition to

DBMS_REPAIR, for detecting corruptions. Table 19–2 describes the different

detection methodologies.

Table 19–1 DBMS_REPAIR Procedures

Procedure Name Description

check_object Detects and reports corruptions in a table or index.

fix_corrupt_blocks Marks blocks (that were previously identified by the
check_object procedure) as corrupt.

dump_orphan_keys Reports index entries that point to rows in corrupt
data blocks.

rebuild_freelists Rebuilds an object’s freelists.

skip_corrupt_blocks When used, ignores blocks marked corrupt during
table and index scans. If not used, you get error
ORA-1578 when encountering blocks marked
corrupt.

admin_tables Provides administrative functions (create, drop,
purge) for DBMS_REPAIR repair and orphan key
tables. Note: These tables are always created in the
SYS schema.

Table 19–2 Comparison of Corruption Detection Methods

Detection Method Description

DBMS_REPAIR Performs block checking for a specified table, partition or index.

Populates a repair table with results.

DB_VERIFY External command-line utility that performs block checking on
an offline database.

ANALYZE Used with the VALIDATE STRUCTURE option, verifies the
integrity of the structure of an index, table or cluster; checks or
verifies that your tables and indexes are in sync.

Step 1: Detect and Report Corruptions

Detecting and Repairing Data Block Corruption 19-3

DBMS_REPAIR: Using the check_object and admin_tables Procedures
The check_object procedure checks and reports block corruptions for a specified

object. Similar to the ANALYZE...VALIDATE STRUCTURE statement for indexes

and tables, block checking is performed for index and data blocks respectively.

Not only does check_object report corruptions, but it also identifies any fixes

that would occur if fix_corrupt_blocks is subsequently run on the object. This

information is made available by populating a repair table, which must first be

created by the admin_tables procedure.

After you run the check_object procedure, a simple query on the repair table

shows the corruptions and repair directives for the object. With this information,

you can assess how best to address the problems reported.

DB_VERIFY: Performing an Offline Database Check
Typically, you use DB_VERIFY as an offline diagnostic utility when you encounter

data corruption problems.

See Also: For more information about DB_VERIFY, see Oracle8i Utilities.

ANALYZE: Corruption Reporting
The ANALYZE TABLE...VALIDATE STRUCTURE statement validates the structure

of the analyzed object. If Oracle successfully validates the structure, a message

confirming its validation is returned to you. If Oracle encounters corruption in the

structure of the object, an error message is returned to you. In this case, you would

drop and re-create the object.

See Also: For more information about the ANALYZE statement, see the Oracle8i
SQL Reference.

DB_BLOCK_CHECKING (Block Checking Initialization Parameter)
You can set block checking for instances via the DB_BLOCK_CHECKING

parameter (the default value is TRUE); this checks data and index blocks whenever

DB_BLOCK_CHECKING Identifies corrupt blocks before they actually are marked
corrupt. Checks are performed when changes are made to a
block.

Table 19–2 Comparison of Corruption Detection Methods

Detection Method Description

Step 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR

19-4 Oracle8i Administrator’s Guide

they are modified. DB_BLOCK_CHECKING is a dynamic parameter, modifiable by

the ALTER SYSTEM SET statement.

Step 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR
Before using DBMS_REPAIR you must weigh the benefits of its use in relation to the

liabilities; you should also examine other options available for addressing corrupt

objects.

A first step is to answer the following questions:

1. What is the extent of the corruption?

To determine if there are corruptions and repair actions, execute the

check_object procedure, and query the repair table.

2. What other options are available for addressing block corruptions?

Assuming the data is available from another source, drop, re-create and re-

populate the object. Another option is to issue the CREATE TABLE...AS

SELECT statement from the corrupt table to create a new one.

You can ignore the corruption by excluding corrupt rows from select

statements.

Perform media recovery.

3. What logical corruptions or side effects will be introduced when you use

DBMS_REPAIR to make an object usable? Can these be addressed? What is the

effort required to do so?

You may not have access to rows in blocks marked corrupt. However, a block

may be marked corrupt even though there are still rows that you can validly

access.

Referential integrity constraints may be broken when blocks are marked

corrupt. If this occurs, disable and re-enable the constraint; any inconsistencies

will be reported. After fixing all issues, you should be able to successfully re-

enable the constraint.

Logical corruption may occur when there are triggers defined on the table. For

example, if rows are re-inserted, should insert triggers be fired or not? You can

address these issues only if you understand triggers and their use in your

installation.

Freelist blocks may be inaccessible. If a corrupt block is at the head or tail of a

freelist, space management reinitializes the freelist. There then may be blocks

Step 3: Make Objects Usable

Detecting and Repairing Data Block Corruption 19-5

that should be on a freelist, that aren’t. You can address this by running the

rebuild_freelists procedure.

Indexes and tables may be out of sync. You can address this by first executing

the dump_orphan_keys procedure (to obtain information from the keys that

might be useful in rebuilding corrupted data). Then issue the ALTER INDEX

REBUILD ONLINE statement to get the table and its indexes back in sync.

4. If repair involves loss of data, can this data be retrieved?

You can retrieve data from the index when a data block is marked corrupt. The

dump_orphan_keys procedures can help you retrieve this information. Of

course, retrieving data in this manner depends on the amount of redundancy

between the indexes and the table.

Step 3: Make Objects Usable
In this step DBMS_REPAIR makes the object usable by ignoring corruptions during

table and index scans.

Corruption Repair: Using the fix_corrupt_blocks and skip_corrupt_blocks
Procedures

You make a corrupt object usable by establishing an environment that skips

corruptions that remain outside the scope of DBMS_REPAIR’s repair capabilities.

If corruptions involve a loss of data, such as a bad row in a data block, all such

blocks are marked corrupt by the fix_corrupt_blocks procedure. Then, you can

run the skip_corrupt_blocks procedure, which will skip blocks marked

corrupt for the object. When skip is set, table and index scans skip all blocks

marked corrupt. This applies to both media and software corrupt blocks.

Implications when Skipping Corrupt Blocks
If an index and table are out of sync, then a SET TRANSACTION READ ONLY

transaction may be inconsistent in situations where one query probes only the

index, and then a subsequent query probes both the index and the table. If the table

block is marked corrupt, then the two queries will return different results, thereby

breaking the rules of a read-only transaction. One way to approach this is to not

skip corruptions when in a SET TRANSACTION READ ONLY transaction.

Step 4: Repair Corruptions and Rebuild Lost Data

19-6 Oracle8i Administrator’s Guide

A similar issue occurs when selecting rows that are chained. Essentially, a query of

the same row may or may not access the corruption—thereby giving different

results.

Step 4: Repair Corruptions and Rebuild Lost Data
After making an object usable, you can perform the following repair activities.

Recover Data Using the dump_orphan_keys Procedure s
The dump_orphan_keys procedure reports on index entries that point to rows in

corrupt data blocks. All such index entries are inserted into an orphan key table that

stores the key and rowid of the corruption.

After the index entry information has been retrieved, you can rebuild the index

using the ALTER INDEX REBUILD ONLINE statement.

Repair Freelists Using the rebuild_freelists Procedure
When a block marked "corrupt" is found at the head or tail of a freelist, the freelist is

reinitialized and an error is returned. Although this takes the offending block off the

freelist, it causes you to lose freelist access to all blocks that followed the corrupt

block.

You can use the rebuild_freelists procedure to reinitialize the freelists. The

object is scanned, and if it is appropriate for a block to be on the freelist, it is added

to the master freelist. Freelist groups are handled by meting out the blocks in an

equitable fashion—a block at a time. Any blocks marked "corrupt" in the object are

ignored during the rebuild.

Limitations and Restrictions
DBMS_REPAIR procedures have the following limitations:

■ Tables with LOBS, nested tables, and VARRAYS are supported, but the out of

line columns are ignored.

■ Clusters are supported in the skip_corrupt_blocks and

rebuild_freelist procedures, but not in the check_object procedure.

■ Index-organized tables and LOB indexes are not supported.

■ The dump_orphan_keys procedure does not operate on bitmap indexes or

function-based indexes.

DBMS_REPAIR Procedures

Detecting and Repairing Data Block Corruption 19-7

■ The dump_orphan_keys procedure processes keys that are, at most, 3,950

bytes long.

DBMS_REPAIR Procedures
This sections contains detailed descriptions of the DBMS_REPAIR procedures.

check_object
The check_object procedure checks the specified objects, and populates the

repair table with information about corruptions and repair directives. Validation

consists of block checking all blocks in the object. You may optionally specify a

range, partition name, or subpartition name when you wish to check a portion of an

object.

procedure check_object(schema_name IN varchar2,
 object_name IN varchar2,
 partition_name IN varchar2 DEFAULT NULL,
 object_type IN binary_integer DEFAULT TABLE_OBJECT,
 repair_table_name IN varchar2 DEFAULT ’REPAIR_TABLE’,
 flags IN binary_integer DEFAULT NULL,
 relative_fno IN binary_integer DEFAULT NULL,
 block_start IN binary_integer DEFAULT NULL,
 block_end IN binary_integer DEFAULT NULL,
 corrupt_count OUT binary_integer)

DBMS_REPAIR Procedures

19-8 Oracle8i Administrator’s Guide

fix_corrupt_blocks
Use this procedure to fix the corrupt blocks in specified objects based on

information in the repair table that was previously generated by the

check_object procedure. Prior to effecting any change to a block, the block is

checked to ensure the block is still corrupt. Corrupt blocks are repaired by marking

the block software corrupt. When a repair is effected, the associated row in the

repair table is updated with a fix timestamp.

Table 19–3 The check_object Procedure

Argument Description

schema_name Schema name of the object to be checked.

object_name Name of the table or index to be checked.

partition_name
(optional)

Partition or subpartition name to be checked. If this is a
partitioned object, and partition_name is not specified,
then all partitions and subpartitions are checked. If this is a
partitioned object, and the specified partition contains
subpartitions, then all subpartitions are checked.

object_type
(optional)

Type of the object to be processed. Must be either
TABLE_OBJECT or INDEX_OBJECT. The default is
TABLE_OBJECT.

repair_table_name
(optional)

Name of the repair table to be populated. The table must exist
in the SYS schema. Use the admin_tables procedure to
create a repair table. The default name is ’REPAIR_TABLE’.

flags (optional) Reserved for future use.

relative_fno
(optional)

Relative file number. Used when specifying a block range.

block_start
(optional)

The first block to process if specifying a block range. May be
specified only if the object is a single table, partition, or
subpartition.

block_end (optional) The last block to process if specifying a block range. May be
specified only if the object is a single table, partition, or
subpartition.

If only one of block_start or block_end is specified, then the
other defaults to the first or last block in the file respectively.

corrupt_count The number of corruptions reported.

DBMS_REPAIR Procedures

Detecting and Repairing Data Block Corruption 19-9

procedure fix_corrupt_blocks(
 schema_name IN varchar2,
 object_name IN varchar2,
 partition_name IN varchar2 DEFAULT NULL,
 object_type IN binary_integer DEFAULT TABLE_OBJECT,

repair_table_name IN varchar2 DEFAULT ’REPAIR_TABLE’,
 flags IN boolean DEFAULT NULL,
 fix_count OUT binary_integer)

dump_orphan_keys
Reports on index entries that point to rows in corrupt data blocks. For each such

index entry encountered, a row is inserted into the specified orphan table.

If the repair table is specified, then any corrupt blocks associated with the base table

are handled in addition to all data blocks that are marked software corrupt.

Otherwise, only blocks that are marked corrupt are handled.

This information may be useful for rebuilding lost rows in the table and for

diagnostic purposes.

procedure dump_orphan_keys(
 schema_name IN varchar2,
 object_name IN varchar2,

Table 19–4 The fix_corrupt_blocks Procedure

Argument Description

schema_name Schema name.

object_name Name of the object with corrupt blocks to be fixed.

partition_name
(optional)

Partition or subpartition name to be processed. If this is a
partitioned object, and partition_name is not specified, then
all partitions and subpartitions are processed. If this is a
partitioned object, and the specified partition contains
subpartitions, then all subpartitions are processed.

object_type
(optional)

Type of the object to be processed. Must be either
TABLE_OBJECT or INDEX_OBJECT. The default is
TABLE_OBJECT.

repair_table_name
(optional)

Name of the repair table with the repair directives. Must exist in
the SYS schema.

flags (optional) Reserved for future use.

fix_count The number of blocks fixed.

DBMS_REPAIR Procedures

19-10 Oracle8i Administrator’s Guide

 partition_name IN varchar2 DEFAULT NULL,
 object_type IN binary_integer DEFAULT INDEX_OBJECT,
 repair_table_name IN varchar2 DEFAULT ’REPAIR_TABLE’,
 orphan_table_name IN varchar2 DEFAULT ’ORPHAN_KEY_TABLE’,
 key_count OUT binary_integer)

rebuild_freelists
Rebuilds the freelists for the specified object. All free blocks are placed on the

master freelist. All other freelists are zeroed. If the object has multiple freelist

groups, then the free blocks are distributed among all freelists, allocating to the

different groups in round-robin fashion.

procedure rebuild_freelists(
 schema_name IN varchar2,
 object_name IN varchar2,
 partition_name IN varchar2 DEFAULT NULL,

Table 19–5 The dump_orphan_keys Procedure

Argument Description

schema_name Schema name.

object_name Object name.

partition_name
(optional)

Partition or subpartition name to be processed. If this is a
partitioned object, and partition_name is not specified,
then all partitions and subpartitions are processed. If this is a
partitioned object, and the specified partition contains
subpartitions, then all subpartitions are processed.

object_type
(optional)

Type of the object to be processed. The default is
INDEX_OBJECT.

repair_table_name
(optional)

Name of the repair table that has information regarding
corrupt blocks in the base table. The specified table must exist
in the SYS schema. The admin_tables procedure is used to
create the table.

orphan_table_name
(optional)

Name of the orphan key table to populate with information
regarding each index entry that refers to a row in a corrupt
data block. The specified table must exist in the SYS schema.
The admin_tables procedure is used to create the table.

key_count Number of index entries processed.

DBMS_REPAIR Procedures

Detecting and Repairing Data Block Corruption 19-11

 object_type IN binary_integer DEFAULT TABLE_OBJECT);

skip_corrupt_blocks
Enables or disables the skipping of corrupt blocks during index and table scans of

the specified object. When the object is a table, skip applies to the table and its

indexes. When the object is a cluster, it applies to all of the tables in the cluster, and

their respective indexes.

procedure skip_corrupt_blocks(
 schema_name IN varchar2,
 object_name IN varchar2,
 partition_name IN varchar2 DEFAULT NULL,
 object_type IN binary_integer DEFAULT TABLE_OBJECT,
 flags IN boolean DEFAULT SKIP_FLAG);

Table 19–6 The rebuild_freelists Procedure

Argument Description

schema_name Schema name.

object_name Name of the object whose freelists are to be rebuilt.

partition_name
(optional)

Partition or subpartition name whose freelists are to be rebuilt. If this
is a partitioned object, and partition_name is not specified, then all
partitions and subpartitions are processed. If this is a partitioned
object, and the specified partition contains subpartitions, then all
subpartitions are processed.

object_type
(optional)

Type of the object to be processed. Must be either TABLE_OBJECT or
INDEX_OBJECT. The default is TABLE_OBJECT.

DBMS_REPAIR Procedures

19-12 Oracle8i Administrator’s Guide

admin_tables
Provides administrative functions for repair and orphan key tables.

procedure admin_tables(
 table_name IN varchar2,
 table_type IN binary_integer,
 action IN binary_integer,
 tablespace IN varchar2 DEFAULT NULL);

Table 19–7 The skip_corrupt_blocks Procedure

Argument Description

schema_name Schema name of the object to be processed.

object_name Name of the object.

partition_name
(optional)

Partition or subpartition name to be processed. If this is a partitioned
object, and partition_name is not specified, then all partitions and
subpartitions are processed. If this is a partitioned object, and the
specified partition contains subpartitions, then all subpartitions are
processed.

object_type
(optional)

Type of the object to be processed. Must be either TABLE_OBJECT or
CLUSTER_OBJECT. The default is TABLE_OBJECT.

flags
(optional)

If SKIP_FLAG is specified, turns on the skip of software corrupt blocks
for the object during index and table scans. If NOSKIP_FLAG is
specified, scans that encounter software corrupt blocks return an ORA-
1578.

DBMS_REPAIR Exceptions

Detecting and Repairing Data Block Corruption 19-13

DBMS_REPAIR Exceptions

Table 19–8 The admin_tables Procedure

Argument Description

table_name Name of the table to be processed. Defaults to ’ORPHAN_KEY_TABLE’
or ’REPAIR_TABLE’ based on the specified table_type. When specified,
the table name must have the appropriate prefix, ’ORPHAN_’ or
’REPAIR_’.

table_type Type of table, must be one of ORPHAN_TABLE or REPAIR_TABLE.

action Indicates what administrative action to perform. Must be
CREATE_ACTION, PURGE_ACTION, or DROP_ACTION. If the table
already exists, and CREATE_ACTION is specified, then an error is
returned. PURGE_ACTION indicates to delete all rows in the table that
are associated with non-existent objects. If the table does not exist, and
DROP_ACTION is specified, then an error is returned.

When CREATE_ACTION and DROP_ACTION are specified, an
associated view named DBA_<table_name> is created and dropped
respectively. The view is defined so that rows associated with non-
existent objects are eliminated.

Created in the SYS schema.

tablespace
(optional)

Indicates the tablespace to use when creating a table. By default, SYS’s
default tablespace is used. An error is returned if the tablespace is
specified and the action is not CREATE_ACTION.

942 repair table doesn’t exist

1418 specified index doesn’t exist

24120 invalid parameter

24121 can’t specify CASCADE_FLAG and a block range

24122 invalid block range

24124 invalid action parameter specified

24126 CASCADE_FLAG specified and object is not a table

DBMS_REPAIR Exceptions

19-14 Oracle8i Administrator’s Guide

24127 tablespace specified and action is not CREATE_ACTION

24128 partition specified for non-partitioned object

24129 invalid orphan key table name - must have ’ORPHAN_’
prefix

24129 specified repair table does not start with ’REPAIR_’ prefix

24131 repair table has incorrect columns

24132 repair table name is too long

General Management of Schema Objects 20-1

20
General Management of Schema Objects

This chapter describes general schema object management issues that fall outside

the scope of Chapters 11 through 19, and includes the following topics:

■ Creating Multiple Tables and Views in a Single Operation

■ Renaming Schema Objects

■ Analyzing Tables, Indexes, and Clusters

■ Truncating Tables and Clusters

■ Enabling and Disabling Triggers

■ Managing Integrity Constraints

■ Managing Object Dependencies

■ Managing Object Name Resolution

■ Changing Storage Parameters for the Data Dictionary

■ Displaying Information About Schema Objects

Creating Multiple Tables and Views in a Single Operation

20-2 Oracle8i Administrator’s Guide

Creating Multiple Tables and Views in a Single Operation
To create schema objects you must have the required privileges for any included

operation. For example, to create multiple tables using the CREATE SCHEMA

command, you must have the privileges required to create tables.

You can create several tables and views and grant privileges in one operation using

the SQL statement CREATE SCHEMA. The CREATE SCHEMA statement is useful

if you want to guarantee the creation of several tables and views and grants in one

operation. If an individual table, view or grant fails, the entire statement is rolled

back. None of the objects are created, nor are the privileges granted. The following

statement creates two tables and a view that joins data from the two tables:

CREATE SCHEMA AUTHORIZATION scott
 CREATE TABLE dept (
 deptno NUMBER(3,0) PRIMARY KEY,
 dname VARCHAR2(15),
 loc VARCHAR2(25)
 CREATE TABLE emp (
 empno NUMBER(5,0) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 job VARCHAR2(10),
 mgr NUMBER(5,0),
 hiredate DATE DEFAULT (sysdate),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(3,0) NOT NULL
 CONSTRAINT dept_fkey REFERENCES dept)
 CREATE VIEW sales_staff AS
 SELECT empno, ename, sal, comm
 FROM emp
 WHERE deptno = 30
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst
 GRANT SELECT ON sales_staff TO human_resources;

The CREATE SCHEMA statement does not support Oracle extensions to the ANSI

CREATE TABLE and CREATE VIEW commands; this includes the STORAGE

clause.

Renaming Schema Objects
To rename an object, you must own it. You can rename schema objects in either of

the following ways:

■ drop and re-create the object

■ rename the object using the SQL statement RENAME

Analyzing Tables, Indexes, and Clusters

General Management of Schema Objects 20-3

If you drop and re-create an object, all privileges granted for that object are lost.

Privileges must be re-granted when the object is re-created. Alternatively, a table,

view, sequence, or a private synonym of a table, view, or sequence can be renamed

using the RENAME statement. When using the RENAME statement, grants made

for the object are carried forward for the new name. For example, the following

statement renames the SALES_STAFF view:

RENAME sales_staff TO dept_30;

Before renaming a schema object, consider the following effects:

■ All views and PL/SQL program units dependent on a renamed object become

invalid, and must be recompiled before next use.

■ All synonyms for a renamed object return an error when used.

See Also: For more information about how Oracle manages object dependencies,

see "Managing Object Dependencies" on page 20-23.

Analyzing Tables, Indexes, and Clusters
This section describes how to analyze tables, indexes, and clusters, and includes the

following topics:

■ Using Statistics for Tables, Indexes, and Clusters

■ Validating Tables, Indexes, and Clusters

■ Listing Chained Rows of Tables and Clusters

You can analyze a table, index, or cluster to gather data about it, or to verify the

validity of its storage format. To analyze a table, cluster, or index, you must own the

table, cluster, or index or have the ANALYZE ANY system privilege.

These schema objects can also be analyzed to collect or update statistics about

specific objects. When a DML statement is issued, the statistics for the referenced

objects are used to determine the most efficient execution plan for the statement.

This optimization is called "cost-based optimization." The statistics are stored in the

data dictionary.

Note: You cannot rename a stored PL/SQL program unit, public

synonym, index, or cluster. To rename such an object, you must

drop and re-create it.

Analyzing Tables, Indexes, and Clusters

20-4 Oracle8i Administrator’s Guide

A table, index, or cluster can be analyzed to validate the structure of the object. For

example, in rare cases such as hardware or other system failures, an index can

become corrupted and not perform correctly. When validating the index, you can

confirm that every entry in the index points to the correct row of the associated

table. If a schema object is corrupt, you can drop and re-create it.

A table or cluster can be analyzed to collect information about chained rows of the

table or cluster. These results are useful in determining whether you have enough

room for updates to rows. For example, this information can show whether

PCTFREE is set appropriately for the table or cluster.

See Also: For more information about analyzing tables, indexes, and clusters for

performance statistics and the optimizer, see Oracle8i Tuning.

For information about analyzing index-organized tables, see Chapter 14, "Managing

Tables".

Using Statistics for Tables, Indexes, and Clusters
Statistics about the physical storage characteristics of a table, index, or cluster can be

gathered and stored in the data dictionary using the SQL statement ANALYZE with

the STATISTICS option. Oracle can use these statistics when cost-based

optimization is employed to choose the most efficient execution plan for SQL

statements accessing analyzed objects. You can also use statistics generated by this

command to write efficient SQL statements that access analyzed objects.

You can compute or estimate statistics using the ANALYZE statement, with either

the COMPUTE STATISTICS or ESTIMATE STATISTICS option:

COMPUTE

STATISTICS

When computing statistics, an entire object is scanned to gather
data about the object. This data is used by Oracle to compute
exact statistics about the object. Slight variances throughout the
object are accounted for in these computed statistics. Because an
entire object is scanned to gather information for computed
statistics, the larger the size of an object, the more work that is
required to gather the necessary information.

Analyzing Tables, Indexes, and Clusters

General Management of Schema Objects 20-5

See Also: For more information about the SQL statement ANALYZE, see the

Oracle8i SQL Reference.

For more information about the data dictionary views containing statistics, see the

Oracle8i Reference.

Viewing Object Statistics
Whether statistics for an object are computed or estimated, the statistics are stored

in the data dictionary. The statistics can be queried using the following data

dictionary views:

■ USER_INDEXES, ALL_INDEXES, DBA_INDEXES

■ USER_TABLES, ALL_TABLES, DBA_TABLES

■ USER_TAB_COLUMNS, ALL_TAB_COLUMNS, DBA_TAB_COLUMNS

ESTIMATE

STATISTICS

When estimating statistics, Oracle gathers representative
information from portions of an object. This subset of
information provides reasonable, estimated statistics about the
object. The accuracy of estimated statistics depends upon how
representative the sampling used by Oracle is. Only parts of an
object are scanned to gather information for estimated statistics,
so an object can be analyzed quickly. You can optionally specify
the number or percentage of rows that Oracle should use in
making the estimate.

Note: When calculating statistics for tables or clusters, the amount

of temporary space required to perform the calculation is related to

the number of rows specified. For COMPUTE STATISTICS, enough

temporary space to hold and sort the entire table plus a small

overhead for each row is required. For ESTIMATE STATISTICS,

enough temporary space to hold and sort the requested sample of

rows plus a small overhead for each row is required. For indexes,

no temporary space is required for analyzing.

Note: Rows in these views contain entries in the statistics columns

only for indexes, tables, and clusters for which you have gathered

statistics. The entries are updated for an object each time you

ANALYZE the object.

Analyzing Tables, Indexes, and Clusters

20-6 Oracle8i Administrator’s Guide

Table Statistics You can gather the following statistics on a table:

■ number of rows

■ number of blocks that have been used *

■ number of blocks never used

■ average available free space

■ number of chained rows

■ average row length

■ number of distinct values per column

■ the second smallest value per column *

■ the second largest value per column *

Index Statistics You can gather the following statistics on an index:

■ index level *

■ number of leaf blocks

■ number of distinct keys

■ average number of leaf blocks/key

■ average number of data blocks/key

■ clustering factor

Cluster Statistics The only statistic that can be gathered for a cluster is the average

cluster key chain length; this statistic can be estimated or computed. Statistics for

tables in a cluster and all indexes associated with the cluster’s tables (including the

Note: The * symbol indicates that the numbers will always be an

exact value when computing statistics.

Note: Statistics for all indexes associated with a table are

automatically gathered when the table is analyzed.

Analyzing Tables, Indexes, and Clusters

General Management of Schema Objects 20-7

cluster key index) are automatically gathered when the cluster is analyzed for

statistics.

Computing Statistics
The following statement computes statistics for the EMP table:

ANALYZE TABLE emp COMPUTE STATISTICS;

The following query estimates statistics on the EMP table, using the default

statistical sample of 1064 rows:

ANALYZE TABLE emp ESTIMATE STATISTICS;

To specify the statistical sample that Oracle should use, include the SAMPLE option

with the ESTIMATE STATISTICS option. You can specify an integer that indicates

either a number of rows or index values, or a percentage of the rows or index values

in the table. The following statements show examples of each option:

ANALYZE TABLE emp
 ESTIMATE STATISTICS
 SAMPLE 2000 ROWS;
ANALYZE TABLE emp
 ESTIMATE STATISTICS
 SAMPLE 33 PERCENT;

In either case, if you specify a percentage greater than 50, or a number of rows or

index values that is greater than 50% of those in the object, Oracle computes the

exact statistics, rather than estimating.

Removing Statistics for a Schema Object
You can remove statistics for a table, index, or cluster from the data dictionary using

the ANALYZE command with the DELETE STATISTICS option. For example, you

might want to delete statistics for an object if you do not want cost-based

optimization to be used for statements regarding the object. The following

statement deletes statistics for the EMP table from the data dictionary:

ANALYZE TABLE emp DELETE STATISTICS;

Note: If the data dictionary currently contains statistics for the

specified object when an ANALYZE statement is issued, the new

statistics replace the old statistics in the data dictionary.

Analyzing Tables, Indexes, and Clusters

20-8 Oracle8i Administrator’s Guide

Shared SQL and Analyzing Statistics
Analyzing a table, cluster, or index can affect current shared SQL statements, which

are statements currently in the shared pool. Whenever an object is analyzed to

update or delete statistics, all shared SQL statements that reference the analyzed

object are flushed from memory so that the next execution of the statement can take

advantage of the new statistics.

You can call the following procedures:

DBMS_UTILITY.-ANALYZE_SCHEMA()
This procedure takes two arguments: the name of a schema and an analysis method

(’COMPUTE’, ’ESTIMATE’, or ’DELETE’). It gathers statistics on all of the objects in

the schema.

DBMS_DDL.-ANALYZE_OBJECTS()
This procedure takes four arguments: the type of object (’CLUSTER’, ’TABLE’, or

’INDEX’), the schema of the object, the name of the object, and an analysis method

(’COMPUTE’, ’ESTIMATE’, or ’DELETE’). It gathers statistics on the object.

You should call these procedures periodically to update the statistics.

Validating Tables, Indexes, and Clusters
To verify the integrity of the structure of a table, index, cluster, or snapshot, use the

ANALYZE command with the VALIDATE STRUCTURE option. If the structure is

valid, no error is returned. However, if the structure is corrupt, you receive an error

message. If a table, index, or cluster is corrupt, you should drop it and re-create it. If

a snapshot is corrupt, perform a complete refresh and ensure that you have

remedied the problem; if not, drop and re-create the snapshot.

The following statement analyzes the EMP table:

ANALYZE TABLE emp VALIDATE STRUCTURE;

You can validate an object and all related objects by including the CASCADE

option. The following statement validates the EMP table and all associated indexes:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE;

Listing Chained Rows of Tables and Clusters
You can look at the chained and migrated rows of a table or cluster using the

ANALYZE command with the LIST CHAINED ROWS option. The results of this

command are stored in a specified table created explicitly to accept the information

returned by the LIST CHAINED ROWS option.

Truncating Tables and Clusters

General Management of Schema Objects 20-9

To create an appropriate table to accept data returned by an ANALYZE...LIST

CHAINED ROWS statement, use the UTLCHAIN.SQL script provided with Oracle.

The UTLCHAIN.SQL script creates a table named CHAINED_ROWS in the schema

of the user submitting the script.

After a CHAINED_ROWS table is created, you can specify it when using the

ANALYZE statement. For example, the following statement inserts rows containing

information about the chained rows in the EMP_DEPT cluster into the

CHAINED_ROWS table:

ANALYZE CLUSTER emp_dept LIST CHAINED ROWS INTO chained_rows;

See Also: The name and location of the UTLCHAIN.SQL script are operating

system-dependent; see your operating system-specific Oracle documentation.

For more information about reducing the number of chained and migrated rows in

a table or cluster, see Oracle8i Tuning.

Truncating Tables and Clusters
You can delete all rows of a table or all rows in a group of clustered tables so that

the table (or cluster) still exists, but is completely empty. For example, you may

have a table that contains monthly data, and at the end of each month, you need to

empty it (delete all rows) after archiving its data.

To delete all rows from a table, you have the following three options:

1. Using the DELETE statement

You can delete the rows of a table using the DELETE statement. For example,

the following statement deletes all rows from the EMP table:

 DELETE FROM emp;

2. Using the DROP and CREATE statements

You can drop a table and then re-create the table. For example, the following

statements drop and then re-create the EMP table:

 DROP TABLE emp;
 CREATE TABLE emp (. . .);

3. Using TRUNCATE

You can delete all rows of the table using the SQL statement TRUNCATE. For

example, the following statement truncates the EMP table:

 TRUNCATE TABLE emp;

Truncating Tables and Clusters

20-10 Oracle8i Administrator’s Guide

Using DELETE
If there are many rows present in a table or cluster when using the DELETE

command, significant system resources are consumed as the rows are deleted. For

example, CPU time, redo log space, and rollback segment space from the table and

any associated indexes require resources. Also, as each row is deleted, triggers can

be fired. The space previously allocated to the resulting empty table or cluster

remains associated with that object.With DELETE you can choose which rows to

delete, whereas TRUNCATE and DROP wipe out the entire object.

Using DROP and CREATE
When dropping and re-creating a table or cluster, all associated indexes, integrity

constraints, and triggers are also dropped, and all objects that depend on the

dropped table or clustered table are invalidated. Also, all grants for the dropped

table or clustered table are dropped.

Using TRUNCATE
Using the TRUNCATE statement provides a fast, efficient method for deleting all

rows from a table or cluster. A TRUNCATE statement does not generate any

rollback information and it commits immediately; it is a DDL statement and cannot

be rolled back. A TRUNCATE statement does not affect any structures associated

with the table being truncated (constraints and triggers) or authorizations. A

TRUNCATE statement also specifies whether space currently allocated for the table

is returned to the containing tablespace after truncation.

You can truncate any table or cluster in the user’s associated schema. Also, any user

that has the DROP ANY TABLE system privilege can truncate a table or cluster in

any schema.

Before truncating a table or clustered table containing a parent key, all referencing

foreign keys in different tables must be disabled. A self-referential constraint does

not have to be disabled.

As a TRUNCATE statement deletes rows from a table, triggers associated with the

table are not fired. Also, a TRUNCATE statement does not generate any audit

information corresponding to DELETE statements if auditing is enabled. Instead, a

single audit record is generated for the TRUNCATE statement being issued.

A hash cluster cannot be truncated. Also, tables within a hash or index cluster

cannot be individually truncated; truncation of an index cluster deletes all rows

Enabling and Disabling Triggers

General Management of Schema Objects 20-11

from all tables in the cluster. If all the rows must be deleted from an individual

clustered table, use the DELETE command or drop and re-create the table.

The REUSE STORAGE or DROP STORAGE options of the TRUNCATE command

control whether space currently allocated for a table or cluster is returned to the

containing tablespace after truncation. The default option, DROP STORAGE,

reduces the number of extents allocated to the resulting table to the original setting

for MINEXTENTS. Freed extents are then returned to the system and can be used

by other objects.

Alternatively, the REUSE STORAGE option specifies that all space currently

allocated for the table or cluster remains allocated to it. For example, the following

statement truncates the EMP_DEPT cluster, leaving all extents previously allocated

for the cluster available for subsequent inserts and deletes:

TRUNCATE CLUSTER emp_dept REUSE STORAGE;

The REUSE or DROP STORAGE option also applies to any associated indexes.

When a table or cluster is truncated, all associated indexes are also truncated. Also

note that the storage parameters for a truncated table, cluster, or associated indexes

are not changed as a result of the truncation.

See Also: See Chapter 25, "Auditing Database Use", for information about auditing.

Enabling and Disabling Triggers
Database triggers are procedures that are stored in the database and activated

("fired") when a user makes a particular modification, such as adding a row to a

table. You can use triggers to supplement the standard capabilities of Oracle to

provide a highly customized database management system. For example, you can

create a trigger to restrict DML operations against a table, allowing only statements

issued during regular business hours.

Database triggers are implicitly executed when any of the following statements are

issued against an associated table:

■ INSERT

■ UPDATE

■ DELETE

■ STARTUP

■ SHUTDOWN

■ LOGON

Enabling and Disabling Triggers

20-12 Oracle8i Administrator’s Guide

A trigger can be in either of two distinct modes:

To enable or disable triggers using the ALTER TABLE statement, you must own the

table, have the ALTER object privilege for the table, or have the ALTER ANY

TABLE system privilege. To enable or disable an individual trigger using the

ALTER TRIGGER statement, you must own the trigger or have the ALTER ANY

TRIGGER system privilege.

See Also: For more details about triggers, see Oracle8i Concepts.

For details about creating triggers, see Oracle8i SQL Reference.

Enabling Triggers
You enable a disabled trigger using the ALTER TRIGGER statement with the

ENABLE option. To enable the disabled trigger named REORDER on the

INVENTORY table, enter the following statement:

ALTER TRIGGER reorder ENABLE;

To enable all triggers defined for a specific table, use the ALTER TABLE statement

with the ENABLE ALL TRIGGERS option. To enable all triggers defined for the

INVENTORY table, enter the following statement:

ALTER TABLE inventory
 ENABLE ALL TRIGGERS;

Disabling Triggers
You may want to temporarily disable a trigger if one of the following conditions is

true:

■ An object that the trigger references is not available.

■ You have to perform a large data load and want it to proceed quickly without

firing triggers.

■ You are loading data into the table to which the trigger applies.

enabled An enabled trigger executes its trigger body if a triggering
statement is issued and the trigger restriction, if any, evaluates
to TRUE. By default, triggers are enabled when first created.

disabled A disabled trigger does not execute its trigger body, even if a
triggering statement is issued and the trigger restriction (if
any) evaluates to TRUE.

Managing Integrity Constraints

General Management of Schema Objects 20-13

You disable a trigger using the ALTER TRIGGER statement with the DISABLE

option. To disable the trigger REORDER on the INVENTORY table, enter the

following statement:

ALTER TRIGGER reorder DISABLE;

You can disable all triggers associated with a table at the same time using the

ALTER TABLE statement with the DISABLE ALL TRIGGERS option. For example,

to disable all triggers defined for the INVENTORY table, enter the following

statement:

ALTER TABLE inventory
 DISABLE ALL TRIGGERS;

Managing Integrity Constraints
Integrity constraints are rules or statements about data in a database. Enabled

constraints check data as it is entered or updated in the database and prevent data

that does not conform to the constraint’s rule from being entered. Validated

constraints can guarantee uniqueness, master-detail relationships, compliance with

an expression, or that NULLs are not present.

These rules, or statements are always true when the constraint is enabled and

validated. However, the statement may or may not be true when the constraint is

disabled (or put in "enable novalidate" state) because data in violation of the

integrity constraint can be in the database.The following sections explain the

mechanisms and procedures for managing integrity constraints:

■ Integrity Constraint States

■ Deferring Constraint Checks

■ Managing Constraints That Have Associated Indexes

■ Setting Integrity Constraints Upon Definition

■ Modifying Existing Integrity Constraints

■ Dropping Integrity Constraints

■ Reporting Constraint Exceptions

See Also: You can identify exceptions to a specific integrity constraint while

attempting to enable the constraint. See "Reporting Constraint Exceptions" on

page 20-21.

For general information about integrity constraints, see Oracle8i Concepts.

Managing Integrity Constraints

20-14 Oracle8i Administrator’s Guide

Integrity Constraint States
An integrity constraint defined on a table can be in one of four states:

Disabling Constraints
To enforce the rules defined by integrity constraints, the constraints should always

be enabled. However, you may wish to temporarily disable the integrity constraints

of a table for the following performance reasons:

■ when loading large amounts of data into a table

disable novalidate When a constraint is disable novalidated, the rule defined by
the constraint is not enforced on the data values in the columns
included in the constraint; however, the definition of the
constraint is retained in the data dictionary.

This mode is useful when you are performing a data
warehouse rollup or load and you want to speed up the load
process.

enable novalidate A table with enable novalidate constraints can contain invalid
data, but it is not possible to add new invalid data to it.

Useful as an intermediate state before validating the data in the
table using enable validate. This ensures no new data can
violate the constraint, and no locks are held when taking
constraints from enable no validate to enable validate.

This mode is useful when you don’t want to enable the
constraint to check for exceptions, for example, after a data
warehouse load.

enable and
validate

An enabled constraint is enforced and known to be valid
(validity of table data is checked). The definition of the
constraint is stored in the data dictionary.

This is the normal operational state for constraint processing.
This state is useful for preventing invalid data entry during
regular OLTP processing.

disable validate Allows you to have a unique constraint without an index.
Tables in this state cannot be updated.

Enables you to load nonpartitioned data into a partitioned table
using the EXCHANGE PARTITION statement. Also useful
when you have tables for data warehousing purposes and want
to minimize space usage.

Managing Integrity Constraints

General Management of Schema Objects 20-15

■ when performing batch operations that make massive changes to a table (for

example, changing every employee’s number by adding 1000 to the existing

number)

■ when importing or exporting one table at a time

In all three cases, temporarily disabling integrity constraints can improve the

performance of the operation, especially in data warehouse configurations.

It is possible to enter data that violates a constraint while that constraint is disabled.

Thus, you should always enable the constraint after completing any of the

operations listed in the bullets above.

Enable Novalidate Constraints
When a constraint is in the enable novalidate state, all subsequent statements are

checked for conformity to the constraint; however, any existing data in the table is

not checked. A table with enable novalidated constraints can contain invalid data,

but it is not possible to add new invalid data to it. Enabling constraints in the

novalidated state is most useful in data warehouse configurations that are

uploading valid OLTP data.

Enabling a constraint does not require validation. Enabling a constraint novalidate

is much faster than enabling and validating a constraint. Also, validating a

constraint that is already enabled does not require any DML locks during validation

(unlike validating a previously disabled constraint). Enforcement guarantees that

no violations are introduced during the validation. Hence, enabling without

validating enables you to reduce the downtime typically associated with enabling a

constraint.

Enabling Constraints
While a constraint is enabled, no row violating the constraint can be inserted into

the table. However, while the constraint is disabled such a row can be inserted; this

row is known as an exception to the constraint. If the constraint is in the enable

novalidated state, violations resulting from data entered while the constraint was

disabled remain. The rows that violate the constraint must be either updated or

deleted in order for the constraint to be put in the validated state.

You can examine all rows violating constraints in the EXCEPTIONS table

See Also: For details about the EXCEPTIONS table, see Oracle8i Reference.

Managing Integrity Constraints

20-16 Oracle8i Administrator’s Guide

Integrity Constraint States: Procedures and Benefits
Using integrity constraint states in the following order can ensure the best benefits:

1. disable state

2. perform the operation (load, export, import)

3. enable novalidate state

4. enable state

Some benefits of using constraints in this order are:

■ no locks are held

■ all constraints can go to enable state concurrently

■ constraint enabling is done in parallel

■ concurrent activity on table permitted

Deferring Constraint Checks
When Oracle checks a constraint, it signals an error if the constraint is not satisfied.

You can defer checking the validity of constraints until the end of a transaction.

When you issue the SET CONSTRAINTS statement, the SET CONSTRAINTS mode

lasts for the duration of the transaction, or until another SET CONSTRAINTS

statement resets the mode.

See Also: For more details about the SET CONSTRAINTS statement, see the

Oracle8i SQL Reference.

For general information about constraints, see Oracle8i Concepts.

How To Defer Constraint Checks

Select Appropriate Data You may wish to defer constraint checks on UNIQUE and

FOREIGN keys if the data you are working with has any of the following

characteristics:

■ tables are snapshots

Note: You cannot issue a SET CONSTRAINT statement inside a

trigger.

Managing Integrity Constraints

General Management of Schema Objects 20-17

■ tables that contain a large amount of data being manipulated by another

application, which may or may not return the data in the same order

■ update cascade operations on FOREIGN keys

When dealing with bulk data being manipulated by outside applications, you can

defer checking constraints for validity until the end of a transaction.

Ensure Constraints Are Created Deferrable After you have identified and selected the

appropriate tables, make sure the tables’ FOREIGN, UNIQUE and PRIMARY key

constraints are created deferrable. You can do so by issuing a statement similar to

the following:

CREATE TABLE dept (
 deptno NUMBER PRIMARY KEY,
 dname VARCHAR2 (30)
);
CREATE TABLE emp (
 empno NUMBER,
 ename VARCHAR2 (30),
 deptno NUMBER REFERENCES (dept),
 CONSTRAINT epk PRIMARY KEY (empno) DEFERRABLE,
 CONSTRAINT efk FOREIGN KEY (deptno)
 REFERENCES (dept. deptno) DEFERRABLE);
INSERT INTO dept VALUES (10, ’Accounting’);
INSERT INTO dept VALUES (20, ’SALES’);
INSERT INTO emp VALUES (1, ’Corleone’, 10);
INSERT INTO emp VALUES (2, ’Costanza’, 20);
COMMIT;

SET CONSTRAINT efk DEFERRED;
UPDATE dept SET deptno = deptno + 10
 WHERE deptno = 20;

SELECT * from emp ORDER BY deptno;
EMPNO ENAME DEPTNO
----- -------------- -------
 1 Corleone 10
 2 Costanza 20
UPDATE emp SET deptno = deptno + 10
 WHERE deptno = 20;
SELECT * FROM emp ORDER BY deptno;

EMPNO ENAME DEPTNO
----- -------------- -------
 1 Corleone 10
 2 Costanza 30
COMMIT;

Managing Integrity Constraints

20-18 Oracle8i Administrator’s Guide

Set All Constraints Deferred Within the application being used to manipulate the data,

you must set all constraints deferred before you actually begin processing any data.

Use the following DML statement to set all deferrable constraints deferred:

SET CONSTRAINTS ALL DEFERRED;

Check the Commit (Optional) You can check for constraint violations before committing

by issuing the SET CONSTRAINTS ALL IMMEDIATE statement just before issuing

the COMMIT. If there are any problems with a constraint, this statement will fail

and the constraint causing the error will be identified. If you commit while

constraints are violated, the transaction will be rolled back and you will receive an

error message.

Managing Constraints That Have Associated Indexes
When you create a UNIQUE or PRIMARY key, Oracle checks to see if an existing

index can be used to enforce uniqueness for the constraint. If there is no such index,

Oracle creates one.

When Oracle is using a unique index to enforce a constraint, and constraints

associated with the unique index are dropped or disabled, the index is dropped.

While enabled foreign keys reference a PRIMARY or UNIQUE key, you cannot

disable or drop the PRIMARY or UNIQUE key constraint or the index.

Setting Integrity Constraints Upon Definition
When an integrity constraint is defined in a CREATE TABLE or ALTER TABLE

statement, it can be enabled, disabled, or validated or not validated by including

one of the following clauses in the constraint definition:

■ ENABLE

Note: The SET CONSTRAINTS statement applies only to the

current transaction. The defaults specified when you create a

constraint remain as long as the constraint exists. The ALTER

SESSION SET CONSTRAINTS statement applies for the current

session only.

Note: Deferrable UNIQUE and PRIMARY keys all must use non-

unique indexes.

Managing Integrity Constraints

General Management of Schema Objects 20-19

■ DISABLE

■ ENABLE [VALIDATE]

■ DISABLE [NOVALIDATE]

■ ENABLE NOVALIDATE

■ DISABLE VALIDATE

If none of these clauses are identified in a constraint’s definition, Oracle

automatically enables and validates the constraint.

Disabling Constraints Upon Definition
The following CREATE TABLE and ALTER TABLE statements both define and

disable integrity constraints:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY DISABLE, . . . ;

ALTER TABLE emp
 ADD PRIMARY KEY (empno) DISABLE;

An ALTER TABLE statement that defines and disables an integrity constraint never

fails because of rows of the table that violate the integrity constraint. The definition

of the constraint is allowed because its rule is not enforced.

See Also: For more information about constraint exceptions, see "Reporting

Constraint Exceptions" on page 20-21.

Enabling Constraints Upon Definition
The following CREATE TABLE and ALTER TABLE statements both define and

enable integrity constraints:

CREATE TABLE emp (
 empno NUMBER(5) CONSTRAINT emp.pk PRIMARY KEY, . . . ;
ALTER TABLE emp
 ADD CONSTRAINT emp.pk PRIMARY KEY (empno);

An ALTER TABLE statement that defines and attempts to enable an integrity

constraint may fail because rows of the table may violate the integrity constraint. In

this case, the statement is rolled back and the constraint definition is not stored and

not enabled.

Managing Integrity Constraints

20-20 Oracle8i Administrator’s Guide

To enable a UNIQUE key or PRIMARY KEY, which creates an associated index, the

owner of the table also needs a quota for the tablespace intended to contain the

index, or the UNLIMITED TABLESPACE system privilege.

Modifying Existing Integrity Constraints
You can use the ALTER TABLE statement to enable, disable or modify a constraint.

Disabling Enabled Constraints
The following statements disable integrity constraints:

ALTER TABLE dept
 DISABLE CONSTRAINT dname_ukey;
ALTER TABLE dept
 DISABLE PRIMARY KEY,
 DISABLE UNIQUE (dname, loc);

The following statements enable novalidate disabled integrity constraints:

ALTER TABLE dept
 ENABLE NOVALIDATE CONSTRAINT dname_ukey;
ALTER TABLE dept
 ENABLE NOVALIDATE PRIMARY KEY,
 ENABLE NOVALIDATE UNIQUE (dname, loc);

The following statements enable or validate disabled integrity constraints:

ALTER TABLE dept
 MODIFY CONSTRAINT dname_key VALIDATE;
ALTER TABLE dept
 MODIFY PRIMARY KEY ENABLE NOVALIDATE;

The following statements enable disabled integrity constraints:

ALTER TABLE dept
 ENABLE CONSTRAINT dname_ukey;
ALTER TABLE dept
 ENABLE PRIMARY KEY,
 ENABLE UNIQUE (dname, loc);

To disable or drop a UNIQUE key or PRIMARY KEY constraint and all dependent

FOREIGN KEY constraints in a single step, use the CASCADE option of the

DISABLE or DROP clauses. For example, the following statement disables a

PRIMARY KEY constraint and any FOREIGN KEY constraints that depend on it:

ALTER TABLE dept
 DISABLE PRIMARY KEY CASCADE;

Managing Integrity Constraints

General Management of Schema Objects 20-21

Dropping Integrity Constraints
You can drop an integrity constraint if the rule that it enforces is no longer true, or if

the constraint is no longer needed. You can drop the constraint using the ALTER

TABLE statement with the DROP clause. The following two statements drop

integrity constraints:

ALTER TABLE dept
 DROP UNIQUE (dname, loc);
ALTER TABLE emp
 DROP PRIMARY KEY,
 DROP CONSTRAINT dept_fkey;

Dropping UNIQUE key and PRIMARY KEY constraints drops the associated

unique indexes. Also, if FOREIGN KEYs reference a UNIQUE or PRIMARY KEY,

you must include the CASCADE CONSTRAINTS clause in the DROP statement, or

you cannot drop the constraint.

Reporting Constraint Exceptions
If exceptions exist when a constraint is validated, an error is returned and the

integrity constraint remains novalidated. When a statement is not successfully

executed because integrity constraint exceptions exist, the statement is rolled back.

If exceptions exist, you cannot validate the constraint until all exceptions to the

constraint are either updated or deleted.

You cannot use the CREATE TABLE statement to determine which rows are in

violation. To determine which rows violate the integrity constraint, issue the ALTER

TABLE statement with the EXCEPTIONS option in the ENABLE clause. The

EXCEPTIONS option places the ROWID, table owner, table name, and constraint

name of all exception rows into a specified table.

The following statement attempts to validate the PRIMARY KEY of the DEPT table,

and if exceptions exist, information is inserted into a table named EXCEPTIONS:

Note: You must create an appropriate exceptions report table to

accept information from the EXCEPTIONS option of the ENABLE

clause before enabling the constraint. You can create an exception

table by submitting the script UTLEXCPT.SQL, which creates a

table named EXCEPTIONS. You can create additional exceptions

tables with different names by modifying and re-submitting the

script.

Managing Integrity Constraints

20-22 Oracle8i Administrator’s Guide

ALTER TABLE dept ENABLE PRIMARY KEY EXCEPTIONS INTO exceptions;

If duplicate primary key values exist in the DEPT table and the name of the

PRIMARY KEY constraint on DEPT is SYS_C00610, the following rows might be

placed in the table EXCEPTIONS by the previous statement:

SELECT * FROM exceptions;

ROWID OWNER TABLE_NAME CONSTRAINT
------------------ --------- -------------- -----------
AAAAZ9AABAAABvqAAB SCOTT DEPT SYS_C00610
AAAAZ9AABAAABvqAAG SCOTT DEPT SYS_C00610

A more informative query would be to join the rows in an exception report table

and the master table to list the actual rows that violate a specific constraint, as

shown in the following example:

SELECT deptno, dname, loc FROM dept, exceptions
 WHERE exceptions.constraint = ’SYS_C00610’
 AND dept.rowid = exceptions.row_id;

DEPTNO DNAME LOC
---------- -------------- -----------
10 ACCOUNTING NEW YORK
10 RESEARCH DALLAS

All rows that violate a constraint must be either updated or deleted from the table

containing the constraint. When updating exceptions, you must change the value

violating the constraint to a value consistent with the constraint or a null. After the

row in the master table is updated or deleted, the corresponding rows for the

exception in the exception report table should be deleted to avoid confusion with

later exception reports. The statements that update the master table and the

exception report table should be in the same transaction to ensure transaction

consistency.

To correct the exceptions in the previous examples, you might issue the following

transaction:

UPDATE dept SET deptno = 20 WHERE dname = ’RESEARCH’;
DELETE FROM exceptions WHERE constraint = ’SYS_C00610’;
COMMIT;

Managing Object Dependencies

General Management of Schema Objects 20-23

When managing exceptions, the goal is to eliminate all exceptions in your exception

report table.

See Also: The exact name and location of the UTLEXCPT.SQL script is operating

system specific. For more information, see your operating system-specific Oracle

documentation.

Managing Object Dependencies
This section describes the various object dependencies, and includes the following

topics:

■ Manually Recompiling Views

■ Manually Recompiling Procedures and Functions

■ Manually Recompiling Packages

First, review Table 20–1, which shows how objects are affected by changes in other

objects on which they depend.

Note: While you are correcting current exceptions for a table with

the constraint disabled, other users may issue statements creating

new exceptions. You can avoid this by enable novalidating the

constraint before you start eliminating exceptions.

Table 20–1 Operations that Affect Object Status

Operation
Resulting Status
of Object

Resulting Status
of Dependent
Objects

CREATE table, sequence, synonym VALID if there are
no errors

No change1

ALTER table (ADD column MODIFY
column)
RENAME table, sequence, synonym,
view

VALID if there no
errors

INVALID

DROP table, sequence, synonym, view,
procedure, function, package

None; the object is
dropped

INVALID

Managing Object Dependencies

20-24 Oracle8i Administrator’s Guide

Oracle automatically recompiles an invalid view or PL/SQL program unit the next

time it is used. In addition, a user can force Oracle to recompile a view or program

unit using the appropriate SQL command with the COMPILE parameter. Forced

compilations are most often used to test for errors when a dependent view or

program unit is invalid, but is not currently being used. In these cases, automatic

recompilation would not otherwise occur until the view or program unit was

CREATE view, procedure2 VALID if there are
no errors;
INVALID if there
are syntax or
authorization
errors

No change1

CREATE OR REPLACE view or

procedure2

VALID if there are
no error;
INVALID if there
are syntax or
authorization
errors

INVALID

REVOKE object privilege3 ON

objectTO/FROM user

No change All objects of user
that depend on
object are

INVALID3

REVOKE object privilege3 ON object
TO/FROM PUBLIC

No change All objects in the
database that
depend on object

are INVALID3

REVOKE system privilege4 TO/FROM
user

No change All objects of user

are INVALID4

REVOKE system privilege4 TO/FROM
PUBLIC

No change All objects in the
database are

INVALID4

1 May cause dependent objects to be made INVALID, if object did not exist earlier.
2 Stand-alone procedures and functions, packages, and triggers.
3 Only DML object privileges, including SELECT, INSERT, UPDATE, DELETE, and
EXECUTE; revalidation does not require recompiling.
4 Only DML system privileges, including SELECT, INSERT, UPDATE, DELETE ANY
TABLE, and EXECUTE ANY PROCEDURE; revalidation does not require recompiling.

Table 20–1 Operations that Affect Object Status (Cont.)

Operation
Resulting Status
of Object

Resulting Status
of Dependent
Objects

Managing Object Name Resolution

General Management of Schema Objects 20-25

executed. To identify invalid dependent objects, query the views USER_/ALL_/

DBA_OBJECTS.

Manually Recompiling Views
To recompile a view manually, you must have the ALTER ANY TABLE system

privilege or the view must be contained in your schema. Use the ALTER VIEW

command with the COMPILE parameter to recompile a view. The following

statement recompiles the view EMP_DEPT contained in your schema:

ALTER VIEW emp_dept COMPILE;

Manually Recompiling Procedures and Functions
To recompile a stand-alone procedure manually, you must have the ALTER ANY

PROCEDURE system privilege or the procedure must be contained in your schema.

Use the ALTER PROCEDURE/FUNCTION statement with the COMPILE

parameter to recompile a stand-alone procedure or function. The following

statement recompiles the stored procedure UPDATE_SALARY contained in your

schema:

ALTER PROCEDURE update_salary COMPILE;

Manually Recompiling Packages
To recompile a package manually, you must have the ALTER ANY PROCEDURE

system privilege or the package must be contained in your schema. Use the ALTER

PACKAGE statement with the COMPILE parameter to recompile either a package

body or both a package specification and body. The following statements recompile

just the body, and the body and specification of the package ACCT_MGMT,

respectively:

ALTER PACKAGE acct_mgmt COMPILE BODY;
ALTER PACKAGE acct_mgmt COMPILE PACKAGE;

Managing Object Name Resolution
This section describes how Oracle resolves an object name.

1. First. Oracle attempts to qualify the first piece of the name referenced in the

SQL statement. For example, in SCOTT.EMP, SCOTT is the first piece. If there is

only one piece, the one piece is considered the first piece.

Changing Storage Parameters for the Data Dictionary

20-26 Oracle8i Administrator’s Guide

a. In the current schema, Oracle searches for an object whose name matches

the first piece of the object name. If it does not find such an object, it

continues with Step b.

b. If no schema object is found in the current schema, Oracle searches for a

public synonym that matches the first piece of the name. If it does not find

one, it continues with Step c.

c. If no public synonym is found, Oracle searches for a schema whose name

matches the first piece of the object name. If it finds one, it returns to Step b,

now using the second piece of the name as the object to find in the qualified

schema. If the second piece does not correspond to a object in the

previously qualified schema or there is not a second piece, Oracle returns

an error.

If no schema is found in Step c, the object cannot be qualified and Oracle

returns an error.

2. A schema object has been qualified. Any remaining pieces of the name must

match a valid part of the found object. For example, if SCOTT.EMP.DEPTNO is

the name, SCOTT is qualified as a schema, EMP is qualified as a table, and

DEPTNO must correspond to a column (because EMP is a table). If EMP is

qualified as a package, DEPTNO must correspond to a public constant,

variable, procedure, or function of that package.

When global object names are used in a distributed database, either explicitly or

indirectly within a synonym, the local Oracle resolves the reference locally. For

example, it resolves a synonym to a remote table’s global object name. The partially

resolved statement is shipped to the remote database, and the remote Oracle

completes the resolution of the object as described here.

Changing Storage Parameters for the Data Dictionary
This section describes aspects of changing data dictionary storage parameters, and

includes the following topics:

■ Structures in the Data Dictionary

■ Errors that Require Changing Data Dictionary Storage

If your database is very large or contains an unusually large number of objects,

columns in tables, constraint definitions, users, or other definitions, the tables that

make up the data dictionary might at some point be unable to acquire additional

extents. For example, a data dictionary table may need an additional extent, but

there is not enough contiguous space in the SYSTEM tablespace. If this happens,

Changing Storage Parameters for the Data Dictionary

General Management of Schema Objects 20-27

you cannot create new objects, even though the tablespace intended to hold the

objects seems to have sufficient space. To remedy this situation, you can change the

storage parameters of the underlying data dictionary tables to allow them to be

allocated more extents, in the same way that you can change the storage settings for

user-created segments. For example, you can adjust the values of NEXT or

PCTINCREASE for the data dictionary table.

Structures in the Data Dictionary
The following tables and clusters contain the definitions of all the user-created

objects in the database:

WARNING: Exercise caution when changing the storage settings
for the data dictionary objects. If you choose inappropriate
settings, you could damage the structure of the data dictionary
and be forced to re-create your entire database. For example, if
you set PCTINCREASE for the data dictionary table USER$ to 0
and NEXT to 2K, that table will quickly reach the maximum
number of extents for a segment, and you will not be able to
create any more users or roles without exporting, re-creating, and
importing the entire database.

SEG$ segments defined in the database (including
temporary segments)

OBJ$ user-defined objects in the database (including
clustered tables); indexed by I_OBJ1 and I_OBJ2

UNDO$ rollback segments defined in the database; indexed
by I_UNDO1

FET$ available free extents not allocated to any segment

UET$ extents allocated to segments

TS$ tablespaces defined in the database

FILE$ files that make up the database; indexed by I_FILE1

FILEXT$ datafiles with the AUTOEXTEND option set on

TAB$ tables defined in the database (includes clustered
tables); indexed by I_TAB1

Changing Storage Parameters for the Data Dictionary

20-28 Oracle8i Administrator’s Guide

Of all of the data dictionary segments, the following are the most likely to require

change:

CLU$ clusters defined in the database

IND$ indexes defined in the database; indexed by I_IND1

ICOL$ columns that have indexes defined on them
(includes individual entries for each column in a
composite index); indexed by I_ICOL1

COL$ columns defined in tables in the database; indexed
by I_COL1 and I_COL2

CON$ constraints defined in the database (includes
information on constraint owner); indexed by
I_CON1 and I_CON2

CDEF$ definitions of constraints in CON$; indexed by
I_CDEF1, I_CDEF2, and I_CDEF3

CCOL$ columns that have constraints defined on them
(includes individual entries for each column in a
composite key); indexed by I_CCOL1

USER$ users and roles defined in the database; indexed by
I_USER1

TSQ$ tablespace quotas for users (contains one entry for
each tablespace quota defined for each user)

C_OBJ# cluster containing TAB$, CLU$, ICOL$, IND$, and
COL$: indexed by I_OBJ#

C_TS# cluster containing FET$, TS$, and FILE$; indexed by
I_TS#

C_USER# cluster containing USER and TSQ$$; indexed by
I_USER#

C_COBJ# cluster containing CDEF$ and CCOL$; indexed by
I_COBJ#

C_TS# if the free space in your database is very fragmented

C_OBJ# if you have many indexes or many columns in your
tables

Displaying Information About Schema Objects

General Management of Schema Objects 20-29

For the clustered tables, you must change the storage settings for the cluster, not for

the table.

Errors that Require Changing Data Dictionary Storage
Oracle returns an error if a user tries to create a new object that requires Oracle to

allocate an additional extent to the data dictionary when it is unable to allocate an

extent. The error message ORA-1653, "failed to allocate extent of size num in

tablespace ’name’" indicates this kind of problem.

If you receive this error message and the segment you were trying to change (such

as a table or rollback segment) has not reached the limits specified for it in its

definition, check the storage settings for the object that contains its definition.

For example, if you received an ORA-1547 while trying to define a new PRIMARY

KEY constraint on a table and there is sufficient space for the index that Oracle must

create for the key, check if CON$ or C_COBJ# cannot be allocated another extent; to

do this, query DBA_SEGMENTS and consider changing the storage parameters for

CON$ or C_COBJ#.

See Also: For more information, see "Example 7: Displaying Segments that Cannot

Allocate Additional Extents" on page 20-33.

Displaying Information About Schema Objects
The data dictionary provides many views about the schema objects described in this

book. The following list summarizes the views associated with schema objects:

■ ALL_OBJECTS, USER_OBJECTS, DBA_OBJECTS

■ ALL_CATALOG, USER_CATALOG, DBA_CATALOG

■ ALL_TABLES, USER_TABLES, DBA_TABLES

■ ALL_TAB_COLUMNS, USER_TAB_COLUMNS, DBA_TAB_COLUMNS

■ ALL_TAB_COMMENTS, USER_TAB_COMMENTS

■ ALL_COL_COMMENTS, USER_COL_COMMENTS, DBA_COL_COMMENTS

■ ALL_VIEWS, USER_VIEWS, DBA_VIEWS

CON$, C_COBJ# if you use integrity constraints heavily

C_USER# If you have a large number of users defined in your
database

Displaying Information About Schema Objects

20-30 Oracle8i Administrator’s Guide

■ ALL_INDEXES, USER_INDEXES, DBA_INDEXES

■ ALL_IND_COLUMNS, USER_IND_COLUMNS, DBA_IND_COLUMNS

■ USER_CLUSTERS, DBA_CLUSTERS

■ USER_CLU_COLUMNS, DBA_CLU_COLUMNS

■ ALL_SEQUENCES, USER_SEQUENCES, DBA_SEQUENCES

■ ALL_SYNONYMS, USER_SYNONYMS, DBA_SYNONYMS

■ ALL_DEPENDENCIES, USER_DEPENDENCIES, DBA_DEPENDENCIES

The following data dictionary views contain information about the segments of a

database:

■ USER_SEGMENTS

■ DBA_SEGMENTS

The following data dictionary views contain information about a database’s extents:

■ USER_EXTENTS

■ DBA_EXTENTS

■ USER_FREE_SPACE

■ DBA_FREE_SPACE

Oracle Dictionary Storage Packages
Table 20–2 describes packages that are supplied with Oracle to either allow PL/SQL

access to some SQL features, or to extend the functionality of the database.

Table 20–2 Supplied Packages: Additional Functionality

Procedure Description

dbms_space.unused_space Returns information about unused space in an
object (table, index, or cluster).

dbms_space.free_blocks Returns information about free blocks in an
object (table, index, or cluster).

dbms_session.free_unused_
user_memory

Procedure for reclaiming unused memory after
performing operations requiring large amounts
of memory (where large>100K). This procedure
should only be used in cases where memory is at
a premium.

Displaying Information About Schema Objects

General Management of Schema Objects 20-31

The following examples demonstrate ways to display miscellaneous schema objects.

Example 1: Displaying Schema Objects By Type
The following query lists all of the objects owned by the user issuing the query:

SELECT object_name, object_type FROM user_objects;

OBJECT_NAME OBJECT_TYPE
------------------------- -------------------
EMP_DEPT CLUSTER
EMP TABLE
DEPT TABLE
EMP_DEPT_INDEX INDEX
PUBLIC_EMP SYNONYM
EMP_MGR VIEW

Example 2: Displaying Column Information
Column information, such as name, datatype, length, precision, scale, and default

data values can be listed using one of the views ending with the _COLUMNS suffix.

For example, the following query lists all of the default column values for the EMP

and DEPT tables:

SELECT table_name, column_name, data_default
 FROM user_tab_columns
 WHERE table_name = ’DEPT’ OR table_name = ’EMP’;

TABLE_NAME COLUMN_NAME DATA_DEFAULT
---------- ------------- --------------------
DEPT DEPTNO
DEPT DNAME
DEPT LOC ’NEW YORK’
EMP EMPNO
EMP ENAME
EMP JOB
EMP MGR
EMP HIREDATE SYSDATE
EMP SAL
EMP COMM
EMP DEPTNO

Notice that not all columns have user-specified defaults. These columns

automatically have NULL as the default.

Displaying Information About Schema Objects

20-32 Oracle8i Administrator’s Guide

Example 3: Displaying Dependencies of Views and Synonyms
When you create a view or a synonym, the view or synonym is based on its

underlying base object. The ALL/USER/DBA_DEPENDENCIES data dictionary

views can be used to reveal the dependencies for a view and the ALL/USER/

DBA_SYNONYMS data dictionary views can be used to list the base object of a

synonym. For example, the following query lists the base objects for the synonyms

created by the user JWARD:

SELECT table_owner, table_name, synonym_name
 FROM sys.dba_synonyms
 WHERE owner = ’JWARD’;

TABLE_OWNER TABLE_NAME SYNONYM_NAME
---------------------- ----------- -----------------
SCOTT DEPT DEPT
SCOTT EMP EMP

Example 4: Displaying General Segment Information
The following query returns the name of each rollback segment, the tablespace that

contains each, and the size of each rollback segment:

SELECT segment_name, tablespace_name, bytes, blocks, extents
 FROM sys.dba_segments
 WHERE segment_type = ’ROLLBACK’;

SEGMENT_NAME TABLESPACE_NAME BYTES BLOCKS EXTENTS
------------ --------------- --------- ------- ---------
RS1 SYSTEM 20480 10 2
RS2 TS1 40960 20 3
SYSTEM SYSTEM 184320 90 3

Example 5: Displaying General Extent Information
General information about the currently allocated extents in a database is stored in

the DBA_EXTENTS data dictionary view. For example, the following query

identifies the extents associated with rollback segments and the size of each of those

extents:

SELECT segment_name, bytes, blocks
 FROM sys.dba_extents
 WHERE segment_type = ’ROLLBACK’;

Displaying Information About Schema Objects

General Management of Schema Objects 20-33

SEGMENT_NAME BYTES BLOCKS
--------------- --------- --------
RS1 10240 5
RS1 10240 5
SYSTEM 51200 25
SYSTEM 51200 25
SYSTEM 51200 25

Notice that the RS1 rollback segment is comprised of two extents, both 10K, while

the SYSTEM rollback segment is comprised of three equally sized extents of 50K.

Example 6: Displaying the Free Space (Extents) of a Database
Information about the free extents (extents not allocated to any segment) in a

database is stored in the DBA_FREE_SPACE data dictionary view. For example, the

following query reveals the amount of free space available via free extents in each

tablespace:

SELECT tablespace_name, file_id, bytes, blocks
 FROM sys.dba_free_space;

TABLESPACE_NAME FILE_ID BYTES BLOCKS
------------------- --------- -------- ----------
SYSTEM 1 8120320 3965
SYSTEM 1 10240 5
TS1 2 10432512 5094

Example 7: Displaying Segments that Cannot Allocate Additional Extents
You can also use DBA_FREE_SPACE, in combination with the views

DBA_SEGMENTS, DBA_TABLES, DBA_CLUSTERS, DBA_INDEXES, and

DBA_ROLLBACK_SEGS, to determine if any other segment is unable to allocate

additional extents for data dictionary objects only.

 A segment may not be allocated to an extent for any of the following reasons:

■ The tablespace containing the segment does not have enough room for the next

extent.

■ The segment has the maximum number of extents, as recorded in the data

dictionary (in SEG.MAX_EXTENTS).

Displaying Information About Schema Objects

20-34 Oracle8i Administrator’s Guide

■ The segment has the maximum number of extents allowed by the data block

size, which is operating system specific.

The following query returns the names, owners, and tablespaces of all segments

that fit any of the above criteria:

SELECT seg.owner, seg.segment_name,
 seg.segment_type, seg.tablespace_name,
 DECODE(seg.segment_type,
 ’TABLE’, t.next_extent,
 ’CLUSTER’, c.next_extent,
 ’INDEX’, i.next_extent,
 ’ROLLBACK’, r.next_extent)
FROM sys.dba_segments seg,
 sys.dba_tables t,
 sys.dba_clusters c,
 sys.dba_indexes i,
 sys.dba_rollback_segs r

WHERE ((seg.segment_type = ’TABLE’
 AND seg.segment_name = t.table_name
 AND seg.owner = t.owner
 AND NOT EXISTS (SELECT tablespace_name
 FROM dba_free_space free
 WHERE free.tablespace_name = t.tablespace_name
 AND free.bytes >= t.next_extent))
OR (seg.segment_type = ’CLUSTER’
 AND seg.segment_name = c.cluster_name
 AND seg.owner = c.owner
 AND NOT EXISTS (SELECT tablespace_name
 FROM dba_free_space free
 WHERE free.tablespace_name = c.tablespace_name
 AND free.bytes >= c.next_extent))
OR (seg.segment_type = ’INDEX’
 AND seg.segment_name = i.index_name
 AND seg.owner = i.owner
 AND NOT EXISTS (SELECT tablespace_name
 FROM dba_free_space free
 WHERE free.tablespace_name = i.tablespace_name
 AND free.bytes >= i.next_extent))
OR (seg.segment_type = ’ROLLBACK’
 AND seg.segment_name = r.segment_name

Note: While the STORAGE clause value for MAXEXTENTS can

be UNLIMITED, data dictionary tables cannot have MAXEXTENTS

greater than the allowed block maximum. Thus, data dictionary

tables cannot be converted to unlimited format.

Displaying Information About Schema Objects

General Management of Schema Objects 20-35

 AND seg.owner = r.owner
 AND NOT EXISTS (SELECT tablespace_name
 FROM dba_free_space free
 WHERE free.tablespace_name = r.tablespace_name
 AND free.bytes >= r.next_extent)))
OR seg.extents = seg.max_extents OR seg.extents = data_block_size ;

Once you have identified a segment that cannot allocate additional extents, you can

solve the problem in either of two ways, depending on its cause:

■ If the tablespace is full, add datafiles to the tablespace.

■ If the segment has too many extents, and you cannot increase MAXEXTENTS

for the segment, perform the following steps: first, export the data in the

segment; second, drop and re-create the segment, giving it a larger INITIAL

setting so that it does not need to allocate so many extents; and third, import

the data back into the segment.

Note: When you use this query, replace data_block_size with the

data block size for your system.

Displaying Information About Schema Objects

20-36 Oracle8i Administrator’s Guide

Managing Rollback Segments 21-1

21
Managing Rollback Segments

This chapter describes how to manage rollback segments, and includes the

following topics:

■ Guidelines for Managing Rollback Segments

■ Creating Rollback Segments

■ Specifying Storage Parameters for Rollback Segments

■ Taking Rollback Segments Online and Offline

■ Explicitly Assigning a Transaction to a Rollback Segment

■ Dropping Rollback Segments

■ Monitoring Rollback Segment Information

See Also: If you are using Oracle with the Parallel Server option, see Oracle8i
Parallel Server Concepts and Administration.

Guidelines for Managing Rollback Segments

21-2 Oracle8i Administrator’s Guide

Guidelines for Managing Rollback Segments
This section describes guidelines to consider before creating or managing the

rollback segments of your databases, and includes the following topics:

■ Use Multiple Rollback Segments

■ Choose Between Public and Private Rollback Segments

■ Specify Rollback Segments to Acquire Automatically

■ Set Rollback Segment Sizes Appropriately

■ Create Rollback Segments with Many Equally Sized Extents

■ Set an Optimal Number of Extents for Each Rollback Segment

■ Set the Storage Location for Rollback

Every database contains one or more rollback segments, which are portions of the

database that record the actions of transactions in the event that a transaction is

rolled back. You use rollback segments to provide read consistency, roll back

transactions, and recover the database.

See Also: For more information about rollback segments, see Oracle8i Concepts.

Use Multiple Rollback Segments
Using multiple rollback segments distributes rollback segment contention across

many segments and improves system performance. Multiple rollback segments are

required in the following situations:

■ When a database is created, a single rollback segment named SYSTEM is

created in the SYSTEM tablespace. You can create any objects in non-SYSTEM

tablespaces, but you cannot write to them until you have created and brought

online at least one additional rollback segment in a non- SYSTEM tablespace

(for non-SYSTEM objects).

■ When many transactions are concurrently proceeding, more rollback

information is generated at the same time. You can indicate the number of

concurrent transactions you expect for the instance with the parameter

TRANSACTIONS, and the number of transactions you expect each rollback

segment to have to handle with the parameter

TRANSACTIONS_PER_ROLLBACK_SEGMENT. Then, when an instance

opens a database, it attempts to acquire at least TRANSACTIONS/

TRANSACTIONS_PER_ROLLBACK_SEGMENT rollback segments to handle

the maximum amount of transactions. Therefore, after setting the parameters,

Guidelines for Managing Rollback Segments

Managing Rollback Segments 21-3

create TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_ SEGMENT

rollback segments.

See Also: In order to start instances in an Oracle Parallel Server environment, you

must give each instance access to its own rollback segment, in addition to the

SYSTEM rollback segment. For additional details, see Oracle8i Parallel Server
Concepts and Administration.

Add a Rollback Segment to the SYSTEM Tablespace
An instance always acquires the SYSTEM rollback segment in addition to any other

rollback segments it needs. However, if there are multiple rollback segments, Oracle

tries to use the SYSTEM rollback segment only for special system transactions and

distributes user transactions among other rollback segments. If there are too many

transactions for the non-SYSTEM rollback segments, Oracle uses the SYSTEM

segment.

Choose Between Public and Private Rollback Segments
A private rollback segment is acquired explicitly by an instance when the instance

opens the database. Public rollback segments form a pool of rollback segments that

any instance requiring a rollback segment can use.

If a database does not have the Parallel Server option, public and private rollback

segments are identical. Therefore, you can create all public rollback segments. A

database with the Parallel Server option can also have only public segments, as long

as the number of segments is high enough that each instance opening the database

can acquire at least one rollback segment in addition to its SYSTEM rollback

segment. You may also use private rollback segments when using the Oracle

Parallel Server.

See Also: For more information about the Parallel Server option and rollback

segments, see Oracle8i Parallel Server Concepts and Administration.

For more information about public and private rollback segments, see Oracle8i
Concepts.

Specify Rollback Segments to Acquire Automatically
When an instance starts, it acquires by default TRANSACTIONS/

TRANSACTIONS_PER_ROLLBACK_SEGMENT rollback segments. If you want to

ensure that the instance acquires particular rollback segments that have particular

sizes or particular tablespaces, specify the rollback segments by name in the

ROLLBACK_SEGMENTS parameter in the instance’s parameter file.

Guidelines for Managing Rollback Segments

21-4 Oracle8i Administrator’s Guide

The instance acquires all the rollback segments listed in this parameter, even if more

than TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_SEGMENT segments

are specified. The rollback segments can be either private or public.

Set Rollback Segment Sizes Appropriately
Total rollback segment size should be set based on the size of the most common

transactions issued against a database. In general, short transactions experience

better performance when the database has many smaller rollback segments, while

long-running transactions, like batch jobs, perform better with larger rollback

segments. Generally, rollback segments can handle transactions of any size easily;

however, in extreme cases when a transaction is either very short or very long, a

user might want to use an appropriately sized rollback segment.

If a system is running only short transactions, rollback segments should be small so

that they are always cached in main memory. If the rollback segments are small

enough, they are more likely to be cached in the SGA according to the LRU

algorithm, and database performance is improved because less disk I/O is

necessary. The main disadvantage of small rollback segments is the increased

likelihood of the error "snapshot too old" when running a long query involving

records that are frequently updated by other transactions. This error occurs because

the rollback entries needed for read consistency are overwritten as other update

entries wrap around the rollback segment. Consider this issue when designing an

application’s transactions, and make them short atomic units of work so that you

can avoid this problem.

In contrast, long-running transactions work better with larger rollback segments,

because the rollback entries for a long-running transaction can fit in preallocated

extents of a large rollback segment.

When database systems applications concurrently issue a mix of very short and

very long transactions, performance can be optimized if transactions are explicitly

assigned to a rollback segment based on the transaction/rollback segment size. You

can minimize dynamic extent allocation and truncation for rollback segments. This

is not required for most systems and is intended for extremely large or small

transactions.

To optimize performance when issuing a mix of extremely small and large

transactions, make a number of rollback segments of appropriate size for each type

of transaction (such as small, medium, and large). Most rollback segments should

correspond to the typical transactions, with a fewer number of rollback segments

for the atypical transactions. Then set OPTIMAL for each such rollback segment so

that the rollback segment returns to its intended size if it has to grow.

Guidelines for Managing Rollback Segments

Managing Rollback Segments 21-5

You should tell users about the different sets of rollback segments that correspond

to the different types of transactions. Often, it is not beneficial to assign a transaction

explicitly to a specific rollback segment; however, you can assign an atypical

transaction to an appropriate rollback segment created for such transactions. For

example, you can assign a transaction that contains a large batch job to a large

rollback segment.

When a mix of transactions is not prevalent, each rollback segment should be 10%

of the size of the database’s largest table because most SQL statements affect 10% or

less of a table; therefore, a rollback segment of this size should be sufficient to store

the actions performed by most SQL statements.

Generally speaking, you should set a high MAXEXTENTS for rollback segments;

this allows a rollback segment to allocate subsequent extents as it needs them.

Create Rollback Segments with Many Equally Sized Extents
Each rollback segment’s total allocated space should be divided among many

equally sized extents. In general, optimal rollback I/O performance is observed if

each rollback segment for an instance has 10 to 20 equally sized extents.

After determining the desired total initial size of a rollback segment and the number

of initial extents for the segment, use the following formula to calculate the size of

each extent of the rollback segment:

T / n = s

where:

T = total initial rollback segment size, in bytes

n = number of extents initially allocate

s = calculated size, in bytes, of each extent initially allocated

After s is calculated, create the rollback segment and specify the storage parameters

INITIAL and NEXT as s, and MINEXTENTS to n. PCTINCREASE cannot be

specified for rollback segments and therefore defaults to 0. Also, if the size s of an

extent is not an exact multiple of the data block size, it is rounded up to the next

multiple.

Set an Optimal Number of Extents for Each Rollback Segment
You should carefully assess the kind of transactions the system runs when setting

the OPTIMAL parameter for each rollback segment. For a system that executes

Guidelines for Managing Rollback Segments

21-6 Oracle8i Administrator’s Guide

long-running transactions frequently, OPTIMAL should be large so that Oracle does

not have to shrink and allocate extents frequently. Also, for a system that executes

long queries on active data, OPTIMAL should be large to avoid "snapshot too old"

errors. OPTIMAL should be smaller for a system that mainly executes short

transactions and queries so that the rollback segments remain small enough to be

cached in memory, thus improving system performance.

To obtain estimates and monitor the effectiveness of the OPTIMAL settings for

rollback segments, use the MONITOR ROLLBACK statement. The following

statistics are given for each rollback segment:

Assuming that an instance has equally sized rollback segments with comparably

sized extents, the OPTIMAL parameter for a given rollback segment should be set

Size, High Water the most space ever allocated for the rollback
segment, in bytes

Size, Optimal the OPTIMAL size of the rollback segment, in
bytes

Occurrences, Wraps the cumulative number of times a transaction
continues writing from one extent in a rollback
segment to another existing extent

Occurrences, Extends the cumulative number of times a new extent is
allocated for a rollback segment

Shrinks the cumulative number of times Oracle has
truncated extents from the rollback segment

Average Size, Shrunk the average size of the space Oracle truncated
from the rollback segment, in bytes

Average Size, Active the average number of bytes in active extents in
the rollback segment, measured over time

Creating Rollback Segments

Managing Rollback Segments 21-7

slightly higher than Average Sizes, Active. Table 21–1 provides additional

information on how to interpret the statistics given in this monitor.

Set the Storage Location for Rollback
If possible, create one tablespace specifically to hold all rollback segments. This way,

all rollback segment data is stored separately from other types of data. Creating this

"rollback segment" tablespace can provide the following benefits:

■ A tablespace holding rollback segments can always be kept online, thus

maximizing the combined storage capacity of rollback segments at all times.

Note that if some rollback segments are not available, the overall database

operation can be affected.

■ Because tablespaces with active rollback segments cannot be taken offline,

designating a tablespace to hold all rollback segments of a database ensures that

the data stored in other tablespaces can be taken offline without concern for the

database’s rollback segments.

■ A tablespace’s free extents are likely to be more fragmented if the tablespace

contains rollback segments that frequently allocate and deallocate extents.

Creating Rollback Segments
To create rollback segments, you must have the CREATE ROLLBACK SEGMENT

system privilege. To create additional rollback segments for a database, use the SQL

Table 21–1 Analyzing the Effectiveness of Current OPTIMAL Settings

Shrinks
Average Sizes,
Shrunk Analysis and Recommendation

Low Low If Average Sizes, active is close to Sizes,
Optimal, then the OPTIMAL setting is
correct. Otherwise, OPTIMAL is too large
(not many shrinks are being performed.)

Low High Excellent: a good setting for OPTIMAL.

High Low OPTIMAL is too small: too many shrinks
are being performed.

High High Periodic long transactions are probably
causing these statistics. Set the OPTIMAL
parameter higher until Shrinks is low.

Specifying Storage Parameters for Rollback Segments

21-8 Oracle8i Administrator’s Guide

statement CREATE ROLLBACK SEGMENT. The tablespace to contain the new

rollback segment must be online.

The following statement creates a public rollback segment named USERS_RS in the

USERS tablespace, using the default storage parameters of the USERS tablespace:

CREATE PUBLIC ROLLBACK SEGMENT users_rs TABLESPACE users;

Bringing New Rollback Segments Online
If you create a private rollback segment, you should add the name of this new

rollback segment to the ROLLBACK_SEGMENTS parameter in the parameter file

for the database. Doing so enables the private rollback segment to be captured by

the instance at instance start up. For example, if two new private rollback segments

are created and named RS1 and RS2, the ROLLBACK_SEGMENTS parameter of the

parameter file should be similar to the following:

ROLLBACK SEGMENTS= (RS1, RS2)

See Also: Once a rollback segment is created, it is not available for use by

transactions of any instance until it is brought online. See "Taking Rollback

Segments Online and Offline" on page 21-10 for more information.

Specifying Storage Parameters for Rollback Segments
This section describes aspects of specifying rollback segment storage parameters,

and includes the following topics:

■ Setting Storage Parameters When Creating a Rollback Segment

■ Changing Rollback Segment Storage Parameters

■ Altering Rollback Segment Format

■ Shrinking a Rollback Segment Manually

Setting Storage Parameters When Creating a Rollback Segment
Suppose you wanted to create a public rollback segment DATA1_RS with storage

parameters and optimal size set as follows:

■ The rollback segment is allocated an initial extent of 50K.

■ The rollback segment is allocated the second extent of 50K.

■ The optimal size of the rollback segment is 750K.

Specifying Storage Parameters for Rollback Segments

Managing Rollback Segments 21-9

■ The minimum number of extents and the number of extents initially allocated

when the segment is created is 15.

■ The maximum number of extents that the rollback segment can allocate,

including the initial extent, is 100.

The following statement creates a rollback segment with these characteristics:

CREATE PUBLIC ROLLBACK SEGMENT data1_rs
 TABLESPACE users
 STORAGE (
 INITIAL 50K
 NEXT 50K
 OPTIMAL 750K
 MINEXTENTS 15
 MAXEXTENTS 100);

Changing Rollback Segment Storage Parameters
You can change a rollback segment’s storage parameters after creating it. However,

you cannot alter the size of any extent currently allocated to a rollback segment. You

can only affect future extents.

Alter a rollback segment’s storage parameters using the SQL statement ALTER

ROLLBACK SEGMENT.

The following statement alters the maximum number of extents that the DATA1_RS

rollback segment can allocate.

ALTER PUBLIC ROLLBACK SEGMENT data1_rs
STORAGE (MAXEXTENTS 120);

You can alter the settings for the SYSTEM rollback segment, including the

OPTIMAL parameter, just as you can alter those of any rollback segment.

See Also: For guidance on setting sizes and storage parameters (including

OPTIMAL) for rollback segments, see "Guidelines for Managing Rollback

Segments" on page 21-2.

Altering Rollback Segment Format
To alter rollback segments, you must have the ALTER ROLLBACK SEGMENT

system privilege.

You can define limited or unlimited format for rollback segments. When converting

to limited or unlimited format, you must take the rollback segments offline. If you

Taking Rollback Segments Online and Offline

21-10 Oracle8i Administrator’s Guide

identify unlimited format for rollback segments, extents for that segment must have

a minimum of 4 data blocks. Thus, a limited format rollback segment cannot be

converted to unlimited format if it has less than 4 data blocks in any extent. If you

want to convert from limited to unlimited format and have less than 4 data blocks

in an extent, your only choice is to drop and re-create the rollback segment.

Shrinking a Rollback Segment Manually
To shrink a rollback segment you must have the ALTER ROLLBACK SEGMENT

system privilege.

You can manually decrease the size of a rollback segment using the SQL statement

ALTER ROLLBACK SEGMENT. The rollback segment you are trying shrink must

be online.

The following statement shrinks rollback segment RBS1 to 100K:

ALTER ROLLBACK SEGMENT rbs1 SHRINK TO 100K;

See Also: For a complete description of the ALTER ROLLBACK SEGMENT

statement, see the Oracle8i SQL Reference.

Taking Rollback Segments Online and Offline
This section describes aspects of taking rollback segments online and offline, and

includes the following topics:

■ Bringing Rollback Segments Online

■ Taking Rollback Segments Offline

A rollback segment is either online and available to transactions, or offline and

unavailable to transactions. Generally, rollback segments are online and available

for use by transactions.

You may wish to take online rollback segments offline in the following situations:

■ When you want to take a tablespace offline, and the tablespace contains

rollback segments. You cannot take a tablespace offline if it contains rollback

segments that transactions are currently using. To prevent associated rollback

segments from being used, you can take them offline before taking the

tablespace offline.

Taking Rollback Segments Online and Offline

Managing Rollback Segments 21-11

■ You want to drop a rollback segment, but cannot because transactions are

currently using it. To prevent the rollback segment from being used, you can

take it offline before dropping it.

You might later want to bring an offline rollback segment back online so that

transactions can use it. When a rollback segment is created, it is initially offline, and

you must explicitly bring a newly created rollback segment online before it can be

used by an instance’s transactions. You can bring an offline rollback segment online

via any instance accessing the database that contains the rollback segment.

Bringing Rollback Segments Online
You can bring online only a rollback segment whose current status (as shown in the

DBA_ROLLBACK_SEGS data dictionary view) is OFFLINE or PARTLY

AVAILABLE. To bring an offline rollback segment online, use the SQL statement

ALTER ROLLBACK SEGMENT with the ONLINE option.

Bringing a PARTLY AVAILABLE Rollback Segment Online
A rollback segment in the PARTLY AVAILABLE state contains data for an in-doubt

or recovered distributed transaction, and yet to be recovered transactions. You can

view its status in the data dictionary view DBA_ROLLBACK_SEGS as PARTLY

AVAILABLE. The rollback segment usually remains in this state until the

transaction is resolved either automatically by RECO, or manually by a DBA.

However, you might find that all rollback segments are PARTLY AVAILABLE. In

this case, you can bring a PARTLY AVAILABLE segment online, as described above.

Some resources used by the rollback segment for the in-doubt transaction remain

inaccessible until the transaction is resolved. As a result, the rollback segment may

have to grow if other transactions assigned to it need additional space.

As an alternative to bringing a PARTLY AVAILABLE segment online, you might

find it easier to create a new rollback segment temporarily, until the in-doubt

transaction is resolved.

Bringing Rollback Segment Online Automatically
If you would like a rollback segment to be automatically brought online whenever

you start up the database, add the segment’s name to the ROLLBACK_SEGMENTS

parameter in the database’s parameter file.

Note: You cannot take the SYSTEM rollback segment offline.

Taking Rollback Segments Online and Offline

21-12 Oracle8i Administrator’s Guide

Bringing Rollback Segments Online: Example
The following statement brings the rollback segment USER_RS_2 online:

ALTER ROLLBACK SEGMENT user_rs_2 ONLINE;

After you bring a rollback segment online, its status in the data dictionary view

DBA_ROLLBACK_SEGS is ONLINE.

See Also: For information about the ROLLBACK_SEGMENTS and

DBA_ROLLBACK_SEGS parameters, see the Oracle8i Reference.

To see a query for checking rollback segment state, see "Displaying Rollback

Segment Information" on page 21-14.

Taking Rollback Segments Offline
To take an online rollback segment offline, use the ALTER ROLLBACK SEGMENT

command with the OFFLINE option. The rollback segment’s status in the

DBA_ROLLBACK_SEGS data dictionary view must be "ONLINE", and the rollback

segment must be acquired by the current instance.

The following example takes the rollback segment USER_RS_2 offline:

ALTER ROLLBACK SEGMENT user_rs_2 OFFLINE;

If you try to take a rollback segment that does not contain active rollback entries

offline, Oracle immediately takes the segment offline and changes its status to

"OFFLINE".

In contrast, if you try to take a rollback segment that contains rollback data for

active transactions (local, remote, or distributed) offline, Oracle makes the rollback

segment unavailable to future transactions and takes it offline after all the active

transactions using the rollback segment complete. Until the transactions complete,

the rollback segment cannot be brought online by any instance other than the one

that was trying to take it offline. During this period, the rollback segment’s status in

the view DBA_ROLLBACK_SEGS remains ONLINE; however, the rollback

segment’s status in the view V$ROLLSTAT is PENDING OFFLINE.

The instance that tried to take a rollback segment offline and caused it to change to

PENDING OFFLINE can bring it back online at any time; if the rollback segment is

brought back online, it will function normally.

Taking Public and Private Rollback Segments Offline
After you take a public or private rollback segment offline, it remains offline until

you explicitly bring it back online or you restart the instance.

Dropping Rollback Segments

Managing Rollback Segments 21-13

See Also: For information on viewing rollback segment status, see "Displaying

Rollback Segment Information" on page 21-14.

For information about the views DBA_ROLLBACK_SEGS and V$ROLLSTAT, see

the Oracle8i Reference.

Explicitly Assigning a Transaction to a Rollback Segment
A transaction can be explicitly assigned to a specific rollback segment using the SET

TRANSACTION statement with the USE ROLLBACK SEGMENT clause.

Transactions are explicitly assigned to rollback segments for the following reasons:

■ The anticipated amount of rollback information generated by a transaction can

fit in the current extents of the assigned rollback segment.

■ Additional extents do not have to be dynamically allocated (and subsequently

truncated) for rollback segments, which reduces overall system performance.

To assign a transaction to a rollback segment explicitly, the rollback segment must

be online for the current instance, and the SET TRANSACTION USE ROLLBACK

SEGMENT statement must be the first statement of the transaction. If a specified

rollback segment is not online or a SET TRANSACTION USE ROLLBACK

SEGMENT clause is not the first statement in a transaction, an error is returned.

For example, if you are about to begin a transaction that contains a significant

amount of work (more than most transactions), you can assign the transaction to a

large rollback segment, as follows:

SET TRANSACTION USE ROLLBACK SEGMENT large_rs1;

After the transaction is committed, Oracle will automatically assign the next

transaction to any available rollback segment unless the new transaction is

explicitly assigned to a specific rollback segment by the user.

Dropping Rollback Segments
You can drop rollback segments when the extents of a segment become too

fragmented on disk, or the segment needs to be relocated in a different tablespace.

Before dropping a rollback segment, make sure that status of the rollback segment is

OFFLINE. If the rollback segment that you want to drop is currently ONLINE,

PARTLY AVAILABLE, NEEDS RECOVERY, or INVALID, you cannot drop it. If the

status is INVALID, the segment has already been dropped. Before you can drop it,

you must take it offline.

Monitoring Rollback Segment Information

21-14 Oracle8i Administrator’s Guide

To drop a rollback segment, you must have the DROP ROLLBACK SEGMENT

system privilege.

If a rollback segment is offline, you can drop it using the SQL statement DROP

ROLLBACK SEGMENT.

The following statement drops the DATA1_RS rollback segment:

DROP PUBLIC ROLLBACK SEGMENT data1_rs;

If you use the DROP ROLLBACK SEGMENT statement, indicate the correct type of

rollback segment to drop, public or private, by including or omitting the PUBLIC

keyword.

After a rollback segment is dropped, its status changes to INVALID. The next time a

rollback segment is created, it takes the row vacated by a dropped rollback segment,

if one is available, and the dropped rollback segment’s row no longer appears in the

DBA_ROLLBACK_SEGS view.

See Also: For more information about the view DBA_ROLLBACK_SEGS, see the

Oracle8i Reference.

Monitoring Rollback Segment Information
For a detailed description of how to use the MONITOR for the corresponding

operation, see "Set an Optimal Number of Extents for Each Rollback Segment" on

page 21-5.

Displaying Rollback Segment Information
The DBA_ROLLBACK_SEGS data dictionary view stores information about the

rollback segments of a database. For example, the following query lists the name,

associated tablespace, and status of each rollback segment in a database:

SELECT segment_name, tablespace_name, status
 FROM sys.dba_rollback_segs;

Note: If a rollback segment specified in ROLLBACK_SEGMENTS

is dropped, make sure to edit the parameter files of the database to

remove the name of the dropped rollback segment from the list in

the ROLLBACK_SEGMENTS parameter. If this step is not

performed before the next instance startup, startup fails because it

cannot acquire the dropped rollback segment.

Monitoring Rollback Segment Information

Managing Rollback Segments 21-15

SEGMENT_NAME TABLESPACE_NAME STATUS
------------- ---------------- ------
SYSTEM SYSTEM ONLINE
PUBLIC_RS SYSTEM ONLINE
USERS_RS USERS ONLINE

In addition, the following data dictionary views contain information about the

segments of a database, including rollback segments:

■ USER_SEGMENTS

■ DBA_SEGMENTS

Displaying All Rollback Segments
The following query returns the name of each rollback segment, the tablespace that

contains it, and its size:

SELECT segment_name, tablespace_name, bytes, blocks, extents
 FROM sys.dba_segments
 WHERE segment_type = ’ROLLBACK’;

SEGMENT_NAME TABLESPACE_NAME BYTES BLOCKS EXTENTS
------------ --------------- ------- ------ ---------
RS1 SYSTEM 20480 10 2
RS2 TS1 40960 20 3
SYSTEM SYSTEM 184320 90 3

Displaying Whether a Rollback Segment Has Gone Offline
When you take a rollback segment offline, it does not actually go offline until all

active transactions in it have completed. Between the time when you attempt to

take it offline and when it actually is offline, its status in DBA_ROLLBACK_SEGS

remains ONLINE, but it is not used for new transactions. To determine whether any

rollback segments for an instance are in this state, use the following query:

SELECT name, xacts ’ACTIVE TRANSACTIONS’
 FROM v$rollname, v$rollstat
WHERE status = ’PENDING OFFLINE’
 AND v$rollname.usn = v$rollstat.usn;

NAME ACTIVE TRANSACTIONS
---------- --------------------
RS2 3

Monitoring Rollback Segment Information

21-16 Oracle8i Administrator’s Guide

If your instance is part of a Parallel Server configuration, this query displays

information for rollback segments of the current instance only, not those of other

instances.

Displaying Deferred Rollback Segments
The following query shows which rollback segments are private and which are

public. Note that it only displays information about the rollback segments that are

currently online for the current instance:

SELECT segment_name, tablespace_name, owner
 FROM sys.dba_rollback_segs;

SEGMENT_NAME TABLESPACE_NAME OWNER
------------- ---------------- ------
SYSTEM SYSTEM SYS
PUBLIC_RS SYSTEM PUBLIC
USERS_RS USERS SYS

Displaying All Deferred Rollback Segments
The following query shows all deferred rollback segments (rollback segments that

were created to hold rollback entries for tablespaces taken offline until the

tablespaces are brought back online):

SELECT segment_name, segment_type, tablespace_name
 FROM sys.dba_segments
WHERE segment_type = ’DEFERRED ROLLBACK’;

SEGMENT_NAME SEGMENT_TYPE TABLESPACE_NAME
------------ ----------------- ----------------
USERS_RS DEFERRED ROLLBACK USERS

Part IV
 Database Security

Establishing Security Policies 22-1

22
Establishing Security Policies

This chapter provides guidelines for developing security policies for database

operation, and includes the following topics:

■ System Security Policy

■ Data Security Policy

■ User Security Policy

■ Password Management Policy

■ Auditing Policy

System Security Policy

22-2 Oracle8i Administrator’s Guide

System Security Policy
This section describes aspects of system security policy, and includes the following

topics:

■ Database User Management

■ User Authentication

■ Operating System Security

Each database has one or more administrators who are responsible for maintaining

all aspects of the security policy: the security administrators. If the database system

is small, the database administrator may have the responsibilities of the security

administrator. However, if the database system is large, a special person or group of

people may have responsibilities limited to those of a security administrator.

After deciding who will manage the security of the system, a security policy must

be developed for every database. A database’s security policy should include

several sub-policies, as explained in the following sections.

Database User Management
Database users are the access paths to the information in an Oracle database.

Therefore, tight security should be maintained for the management of database

users. Depending on the size of a database system and the amount of work required

to manage database users, the security administrator may be the only user with the

privileges required to create, alter, or drop database users. On the other hand, there

may be a number of administrators with privileges to manage database users.

Regardless, only trusted individuals should have the powerful privileges to

administer database users.

User Authentication
Database users can be authenticated (verified as the correct person) by Oracle using

the host operating system, network services, or the database. Generally, user

authentication via the host operating system is preferred for the following reasons:

■ Users can connect to Oracle faster and more conveniently without specifying a

username or password.

■ Centralized control over user authorization in the operating system: Oracle

need not store or manage user passwords and usernames if the operating

system and database correspond.

■ User entries in the database and operating system audit trails correspond.

Data Security Policy

Establishing Security Policies 22-3

User authentication by the database is normally used when the host operating

system cannot support user authentication.

See Also: For more information about network authentication, see Oracle8i
Distributed Database Systems.

For more information about user authentication, see "Creating Users" on page 23-11.

Operating System Security
If applicable, the following security issues must also be considered for the operating

system environment executing Oracle and any database applications:

■ Database administrators must have the operating system privileges to create

and delete files.

■ Typical database users should not have the operating system privileges to

create or delete files related to the database.

■ If the operating system identifies database roles for users, the security

administrators must have the operating system privileges to modify the

security domain of operating system accounts.

See Also: For more information about operating system security issues for Oracle

databases, see your operating system-specific Oracle documentation.

Data Security Policy
Data security includes the mechanisms that control the access to and use of the

database at the object level. Fine-grained access control can also limit data access to

a more granular level. Your data security policy determines which users have access

to a specific schema object, and the specific types of actions allowed for each user on

the object. For example, user SCOTT can issue SELECT and INSERT statements but

not DELETE statements using the EMP table. Your data security policy should also

define the actions, if any, that are audited for each schema object.

Your data security policy will be determined primarily by the level of security you

wish to establish for the data in your database. For example, it may be acceptable to

have little data security in a database when you wish to allow any user to create any

schema object, or grant access privileges for their objects to any other user of the

system. Alternatively, it might be necessary for data security to be very controlled

when you wish to make a database or security administrator the only person with

the privileges to create objects and grant access privileges for objects to roles and

users.

User Security Policy

22-4 Oracle8i Administrator’s Guide

Overall data security should be based on the sensitivity of data. If information is not

sensitive, then the data security policy can be more lax. However, if data is

sensitive, a security policy should be developed to maintain tight control over

access to objects.

User Security Policy
This section describes aspects of user security policy, and includes the following

topics:

■ General User Security

■ End-User Security

■ Administrator Security

■ Application Developer Security

■ Application Administrator Security

General User Security
For all types of database users, consider the following general user security issues:

■ Password Security

■ Privilege Management

Password Security
If user authentication is managed by the database, security administrators should

develop a password security policy to maintain database access security. For

example, database users should be required to change their passwords at regular

intervals, and of course, when their passwords are revealed to others. By forcing a

user to modify passwords in such situations, unauthorized database access can be

reduced.

Secure Connections with Encrypted Passwords

To better protect the confidentiality of your password, Oracle can be configured to

use encrypted passwords for client/server and server/server connections.

By setting the following values, you can require that the password used to verify a

connection always be encrypted:

User Security Policy

Establishing Security Policies 22-5

■ Set the ORA_ENCRYPT_LOGIN environment variable to TRUE on the client

machine.

■ Set the DBLINK_ENCRYPT_LOGIN server initialization parameter to TRUE.

If enabled at both the client and server, passwords will not be sent across the

network "in the clear", but will be encrypted using a modified DES (Data

Encryption Standard) algorithm.

The DBLINK_ENCRYPT_LOGIN parameter is used for connections between two

Oracle servers (for example, when performing distributed queries). If you are

connecting from a client, Oracle checks the ORA_ENCRYPT_LOGIN environment

variable.

Whenever you attempt to connect to a server using a password, Oracle encrypts the

password before sending it to the server. If the connection fails and auditing is

enabled, the failure is noted in the audit log. Oracle then checks the appropriate

DBLINK_ENCRYPT_LOGIN or ORA_ENCRYPT_LOGIN value. If it set to FALSE,

Oracle attempts the connection again using an unencrypted version of the

password. If the connection is successful, the connection replaces the previous

failure in the audit log, and the connection proceeds. To prevent malicious users

from forcing Oracle to re-attempt a connection with an unencrypted version of the

password, you must set the appropriate values to TRUE.

Privilege Management
Security administrators should consider issues related to privilege management for

all types of users. For example, in a database with many usernames, it may be

beneficial to use roles (which are named groups of related privileges that you grant

to users or other roles) to manage the privileges available to users. Alternatively, in

a database with a handful of usernames, it may be easier to grant privileges

explicitly to users and avoid the use of roles.

Security administrators managing a database with many users, applications, or

objects should take advantage of the benefits offered by roles. Roles greatly simplify

the task of privilege management in complicated environments.

End-User Security
Security administrators must also define a policy for end-user security. If a database

is large with many users, the security administrator can decide what groups of

users can be categorized, create user roles for these user groups, grant the necessary

privileges or application roles to each user role, and assign the user roles to the

User Security Policy

22-6 Oracle8i Administrator’s Guide

users. To account for exceptions, the security administrator must also decide what

privileges must be explicitly granted to individual users.

Using Roles for End-User Privilege Management
Roles are the easiest way to grant and manage the common privileges needed by

different groups of database users.

Consider a situation where every user in the accounting department of a company

needs the privileges to run the ACCTS_RECEIVABLE and ACCTS_PAYABLE

database applications. Roles are associated with both applications, and contain the

object privileges necessary to execute those applications.

The following actions, performed by the database or security administrator, address

this simple security situation:

1. Create a role named ACCOUNTANT.

2. Grant the roles for the ACCTS_RECEIVABLE and ACCTS_PAYABLE database

applications to the ACCOUNTANT role.

3. Grant each user of the accounting department the ACCOUNTANT role.

This security model is illustrated in Figure 22–1.

Figure 22–1 User Role

This plan addresses the following potential situations:

Users

User Roles

Application Roles

Application Privileges

ACCOUNTANT
Role

ACCTS_PAY
Role

ACCTS_REC
Role

Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

User Security Policy

Establishing Security Policies 22-7

■ If accountants subsequently need a role for a new database application, that

application’s role can be granted to the ACCOUNTANT role, and all users in

the accounting department will automatically receive the privileges associated

with the new database application. The application’s role does not need to be

granted to individual users requiring use of the application.

■ Similarly, if the accounting department no longer requires the need for a specific

application, the application’s role can be dropped from the ACCOUNTANT

role.

■ If the privileges required by the ACCTS_RECEIVABLE or ACCTS_PAYABLE

applications change, the new privileges can be granted to, or revoked from, the

application’s role. The security domain of the ACCOUNTANT role, and all

users granted the ACCOUNTANT role automatically reflect the privilege

modification.

■ You have an index where a user requires only 1 role.

When possible, utilize roles in all possible situations to make end-user privilege

management efficient and simple.

Administrator Security
Security administrators should have a policy addressing administrator security. For

example, when the database is large and there are several types of database

administrators, the security administrator may decide to group related

administrative privileges into several administrative roles. The administrative roles

can then be granted to appropriate administrator users. Alternatively, when the

database is small and has only a few administrators, it may be more convenient to

create one administrative role and grant it to all administrators.

Protection for Connections as SYS and SYSTEM
After database creation, immediately change the passwords for the administrative

SYS and SYSTEM usernames to prevent unauthorized access to the database.

Connecting as SYS and SYSTEM gives a user the powerful privileges to modify a

database in many ways. Therefore, privileges for these usernames are extremely

sensitive, and should only be available to select database administrators.

See Also: The passwords for these accounts can be modified using the procedures

described in "Altering Users" on page 23-15.

User Security Policy

22-8 Oracle8i Administrator’s Guide

Protection for Administrator Connections
Only database administrators should have the capability to connect to a database

with administrator privileges. Connecting as SYSDBA gives a user unrestricted

privileges to do anything to a database (such as startup, shutdown, and recover) or

the objects within a database (such as create, drop, and delete from). Only users

with SYS-privileged connections can alter data dictionary tables (for example,

connect as SYSDBA/SYSOPER).

Using Roles for Administrator Privilege Management
Roles are the easiest way to restrict the powerful system privileges and roles

required by personnel administrating of the database.

Consider a scenario where the database administrator responsibilities at a large

installation are shared among several database administrators, each responsible for

the following specific database management jobs:

■ an administrator responsible for object creation and maintenance

■ an administrator responsible for database tuning and performance

■ a security administrator responsible for creating new users, granting roles and

privileges to database users

■ a database administrator responsible for routine database operation (for

example, startup, shutdown, backup)

■ an administrator responsible for emergency situations, such as database

recovery

■ new, inexperienced database administrators needing limited capabilities to

experiment with database management

In this scenario, the security administrator should structure the security for

administrative personnel as follows:

1. Six roles should be defined to contain the distinct privileges required to

accomplish each type of job (for example, DBA_OBJECTS, DBA_TUNE,

DBA_SECURITY, DBA_MAINTAIN, DBA_RECOV, DBA_NEW).

2. Each role is granted the appropriate privileges.

3. Each type of database administrator can be granted the corresponding role.

This plan diminishes the likelihood of future problems in the following ways:

User Security Policy

Establishing Security Policies 22-9

■ If a database administrator’s job description changes to include more

responsibilities, that database administrator can be granted other

administrative roles corresponding to the new responsibilities.

■ If a database administrator’s job description changes to include fewer

responsibilities, that database administrator can have the appropriate

administrative roles revoked.

■ The data dictionary always stores information about each role and each user, so

information is available to disclose the task of each administrator.

Application Developer Security
Security administrators must define a special security policy for the application

developers using a database. A security administrator may grant the privileges to

create necessary objects to application developers. Alternatively, the privileges to

create objects may only be granted to a database administrator, who receives

requests for object creation from developers.

Application Developers and Their Privileges
Database application developers are unique database users who require special

groups of privileges to accomplish their jobs. Unlike end users, developers need

system privileges, such as CREATE TABLE, CREATE PROCEDURE, and so on.

However, only specific system privileges should be granted to developers to restrict

their overall capabilities in the database.

The Application Developer’s Environment: Test and Production Databases
In many cases, application development is restricted to test databases and not

allowed on production databases. This restriction ensures that application

developers do not compete with end users for database resources, and that they

cannot detrimentally affect a production database.

After an application has been thoroughly developed and tested, it is permitted

access to the production database and made available to the appropriate end users

of the production database.

User Security Policy

22-10 Oracle8i Administrator’s Guide

Free Versus Controlled Application Development
The database administrator can define the following options when determining

which privileges should be granted to application developers:

Although some database systems use only one of these options, other systems could

mix them. For example, application developers can be allowed to create new stored

procedures and packages, but not allowed to create tables or indexes. A security

administrator’s decision regarding this issue should be based on the following:

■ the control desired over a database’s space usage

■ the control desired over the access paths to schema objects

■ the database used to develop applications—if a test database is being used for

application development, a more liberal development policy would be in order

Roles and Privileges for Application Developers
Security administrators can create roles to manage the privileges required by the

typical application developer. For example, a typical role named

APPLICATION_DEVELOPER might include the CREATE TABLE, CREATE VIEW,

and CREATE PROCEDURE system privileges. Consider the following when

defining roles for application developers:

■ CREATE system privileges are usually granted to application developers so that

they can create their own objects. However, CREATE ANY system privileges,

which allow a user to create an object in any user’s schema, are not usually

granted to developers. This restricts the creation of new objects only to the

developer’s user account.

■ Object privileges are rarely granted to roles used by application developers.

This is often impractical because granting object privileges via roles often

restricts their usability in the creation of other objects (primarily views and

Free
Development

An application developer is allowed to create new schema
objects, including tables, indexes, procedures, packages, and so
on. This option allows the application developer to develop an
application independent of other objects.

Controlled
Development

An application developer is not allowed to create new schema
objects. All required tables, indexes, procedures, and so on are
created by a database administrator, as requested by an
application developer. This option allows the database
administrator to completely control a database’s space usage
and the access paths to information in the database.

Password Management Policy

Establishing Security Policies 22-11

stored procedures). It is more practical to allow application developers to create

their own objects for development purposes.

Space Restrictions Imposed on Application Developers
While application developers are typically given the privileges to create objects as

part of the development process, security administrators must maintain limits on

what and how much database space can be used by each application developer. For

example, as the security administrator, you should specifically set or restrict the

following limits for each application developer:

■ the tablespaces in which the developer can create tables or indexes

■ the quota for each tablespace accessible to the developer

See Also: Both limitations can be set by altering a developer’s security domain. For

more information, see "Altering Users" on page 23-15.

Application Administrator Security
In large database systems with many database applications (for example,

precompiler and Forms applications), you might want to have application

administrators. An application administrator is responsible for the following types

of tasks:

■ creating roles for an application and managing the privileges of each

application role

■ creating and managing the objects used by a database application

■ maintaining and updating the application code and Oracle procedures and

packages, as necessary

Often, an application administrator is also the application developer who designed

the application. However, these jobs might not be the responsibility of the

developer and can be assigned to another individual familiar with the database

application.

Password Management Policy
Database security systems depend on passwords being kept secret at all times. Still,

passwords are vulnerable to theft, forgery, and misuse.To allow for greater control

over database security, Oracle’s password management policy is controlled by

DBAs.

Password Management Policy

22-12 Oracle8i Administrator’s Guide

This section describes the following aspects of Oracle password management:

■ Account Locking

■ Password Aging and Expiration

■ Password History

■ Password Complexity Verification

Account Locking
When a particular user exceeds a designated number of failed login attempts, the

server automatically locks that user’s account. DBAs specify the permissible

number of failed login attempts using the CREATE PROFILE statement. DBAs also

specify the amount of time accounts remain locked.

In the following example, the maximum number of failed login attempts for the

user ASHWINI is 4, and the amount of time the account will remain locked is 30

days; the account will unlock automatically after the passage of 30 days.

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 PASSWORD_LOCK_TIME 30;
ALTER USER ashwini PROFILE prof;

If the DBA does not specify a time interval for unlocking the account,

ACCOUNT_LOCK _TIME reverts to a default value. If the DBA specifies

ACCOUNT_LOCK_TIME as UNLIMITED, then the system security officer must

explicitly unlock the account. Thus, the amount of time an account remains locked

depends upon how the DBA configures the resource profile assigned to the user.

After a user successfully logs into an account, that user’s unsuccessful login attempt

count, if there is one, is reset to 0.

The security officer can also explicitly lock user accounts. When this occurs, the

account cannot be unlocked automatically; only the security officer should unlock

the account.

See Also: For more information about the CREATE PROFILE statement, see the

Oracle8i SQL Reference.

Password Aging and Expiration
DBAs use the CREATE PROFILE statement to specify a maximum lifetime for

passwords. When the specified amount of time passes and the password expires,

Password Management Policy

Establishing Security Policies 22-13

the user or DBA must change the password. The following statement indicates that

ASHWINI can use the same password for 90 days before it expires:

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 PASSWORD_LOCK_TIME 30
 PASSWORD_LIFE_TIME 90;
ALTER USER ashwini PROFILE prof;

DBAs can also specify a grace period using the CREATE PROFILE statement. Users

enter the grace period upon the first attempt to login to a database account after

their password has expired. During the grace period, a warning message appears

each time users try to log in to their accounts, and continues to appear until the

grace period expires. Users must change the password within the grace period. If

the password is not changed within the grace period, the account expires and no

further logins to that account are allowed until the password is changed.

Figure 22–2 shows the chronology of the password lifetime and grace period.

Figure 22–2 Chronology of Password Lifetime and Grace Period.

For example, the lifetime of a password is 60 days, and the grace period is 3 days. If

the user tries to log in on any day after the 60th day (this could be the 70th day,

100th day, or another; the point here is that it is the first login attempt after the

password lifetime), that user receives a warning message indicating that the

password is about to expire in 3 days. If the user does not change the password

within three days from the first day of the grace period, the user’s account expires.

The following statement indicates that the user must change the password within 3

days of its expiration:

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 ACCOUNT_LOCK_TIME 30
 PASSWORD_GRACE_TIME 3;
ALTER USER ashwini PROFILE prof;

The security officer can also explicitly expire the account. This is particularly useful

for new accounts.

Password
Life time

last password
change

1st login after
password lifetime

Expires ...

.Grace period

Password Management Policy

22-14 Oracle8i Administrator’s Guide

See Also: For more information about the CREATE PROFILE statement, see

Oracle8i SQL Reference.

Password History
DBAs use the CREATE PROFILE statement to specify a time interval during which

users cannot reuse a password.

In the following statement, the DBA indicates that the user cannot reuse her

password for 60 days.

CREATE PROFILE prof LIMIT
 PASSWORD_REUSE_TIME 60
 PASSWORD_REUSE_MAX UNLIMITED;

The next statement shows that the number of password changes the user must

make before her current password can be used again is 3.

CREATE PROFILE prof LIMIT
PASSWORD_REUSE_MAX 3
PASSWORD_REUSE_TIME UNLIMITED;

Password Complexity Verification
Oracle’s password complexity verification routine can be specified using a PL/SQL

script (utlpwdmg.sql), which sets the default profile parameters.

The password complexity verification routine performs the following checks:

■ The password has a minimum length of 4.

■ The password is not the same as the userid.

■ The password has at least one alpha, one numeric, and one punctuation mark.

■ The password does not match simple words like welcome, account, database, or

user.

Note: If you specify PASSWORD_REUSE_TIME or

PASSWORD_REUSE_MAX, you must set the other to UNLIMITED

or not specify it at all.

Password Management Policy

Establishing Security Policies 22-15

■ The password differs from the previous password by at least 3 letters.

Password Verification Routine Formatting Guidelines
DBAs can enhance the existing password verification complexity routine or create

their own password verification routines using PL/SQL or third-party tools.

The DBA-authored PL/SQL call must adhere to the following format:

routine_name (
userid_parameter IN VARCHAR(30),
password_parameter IN VARCHAR (30),
old_password_parameter IN VARCHAR (30)
)
RETURN BOOLEAN

After a new routine is created, it must be assigned as the password verification

routine using the user’s profile or the system default profile.

CREATE/ALTER PROFILE profile_name LIMIT
PASSWORD_VERIFY_FUNCTIONroutine_name

The password verify routine must be owned by SYS.

Password Verification Routine: Sample Script The following sample script sets default

password resource limits and provides minimum checking of password complexity.

You can use this sample script as a model when developing your own complexity

checks for a new password.

This script sets the default password resource parameters, and must be run to

enable the password features. However, you can change the default resource

parameters if necessary.

The default password complexity function performs the following minimum

complexity checks:

■ The password satisfies minimum length requirements.

■ The password is not the username. You can modify this function based on your

requirements.

Note: Oracle recommends that you do not change passwords

using the ALTER USER statement because it does not fully support

the password verification function. Instead, you should use

OCIPasswordChange() to change passwords.

Password Management Policy

22-16 Oracle8i Administrator’s Guide

This function must be created in SYS schema, and you must connect sys/
<password> as sysdba before running the script.

CREATE OR REPLACE FUNCTION verify_function
(username varchar2,
 password varchar2,
 old_password varchar2)
 RETURN boolean IS
 n boolean;
 m integer;
 differ integer;
 isdigit boolean;
 ischar boolean;
 ispunct boolean;
 digitarray varchar2(20);
 punctarray varchar2(25);
 chararray varchar2(52);

BEGIN
 digitarray:= '0123456789';
 chararray:= 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
 punctarray:='!"#$%&()’’*+,-/:;<=>?_';

 --Check if the password is same as the username
IF password = username THEN
 raise_application_error(-20001, 'Password same as user');
END IF;

 --Check for the minimum length of the password
IF length(password) < 4 THEN
 raise_application_error(-20002, 'Password length less than 4');
END IF;

 --Check if the password is too simple. A dictionary of words may be
 --maintained and a check may be made so as not to allow the words
 --that are too simple for the password.
IF NLS_LOWER(password) IN ('welcome', 'database', 'account', 'user', 'password', 'oracle',
'computer', 'abcd') THEN raise_application_error(-20002, 'Password too simple');
END IF;

 --Check if the password contains at least one letter, one digit and one
 --punctuation mark.
 --1. Check for the digit
 --You may delete 1. and replace with 2. or 3.
isdigit:=FALSE;
m := length(password);
FOR i IN 1..10 LOOP
 FOR j IN 1..m LOOP
 IF substr(password,j,1) = substr(digitarray,i,1) THEN
 isdigit:=TRUE;

Password Management Policy

Establishing Security Policies 22-17

 GOTO findchar;
 END IF;
 END LOOP;
END LOOP;
IF isdigit = FALSE THEN
 raise_application_error(-20003, 'Password should contain at least one
digit, one character and one punctuation');
END IF;
 --2. Check for the character
<<findchar>>
ischar:=FALSE;
FOR i IN 1..length(chararray) LOOP
 FOR j IN 1..m LOOP
 IF substr(password,j,1) = substr(chararray,i,1) THEN
 ischar:=TRUE;
 GOTO findpunct;
 END IF;
 END LOOP;
END LOOP;
IF ischar = FALSE THEN
 raise_application_error(-20003, 'Password should contain at least one digit, one
character and one punctuation');
END IF;
 --3. Check for the punctuation
<<findpunct>>
ispunct:=FALSE;
FOR i IN 1..length(punctarray) LOOP
 FOR j IN 1..m LOOP
 IF substr(password,j,1) = substr(punctarray,i,1) THEN
 ispunct:=TRUE;
 GOTO endsearch;
 END IF;
 END LOOP;
END LOOP;
IF ispunct = FALSE THEN raise_application_error(-20003, 'Password should contain at least
one \ digit, one character and one punctuation');
END IF;

<<endsearch>>

 --Check if the password differs from the previous password by at least 3 letters
IF old_password = '' THEN
 raise_application_error(-20004, 'Old password is null');
END IF;
 --Everything is fine; return TRUE ;
differ := length(old_password) - length(password);

IF abs(differ) < 3 THEN
 IF length(password) < length(old_password) THEN

Auditing Policy

22-18 Oracle8i Administrator’s Guide

 m := length(password);
 ELSE
 m:= length(old_password);
 END IF;
 differ := abs(differ);
 FOR i IN 1..m LOOP
 IF substr(password,i,1) != substr(old_password,i,1) THEN
 differ := differ + 1;
 END IF;
 END LOOP;
 IF differ < 3 THEN
 raise_application_error(-20004, 'Password should differ by at
 least 3 characters');
 END IF;
 END IF;
 --Everything is fine; return TRUE ;
 RETURN(TRUE);
END;

Auditing Policy
Security administrators should define a policy for the auditing procedures of each

database. You may, for example, decide to have database auditing disabled unless

questionable activities are suspected. When auditing is required, the security

administrator must decide what level of detail to audit the database; usually,

general system auditing is followed by more specific types of auditing after the

origins of suspicious activity are determined.

Managing Users and Resources 23-1

23
Managing Users and Resources

This chapter describes how to control access to an Oracle database, and includes the

following topics:

■ Session and User Licensing

■ User Authentication

■ Oracle Users

■ Managing Resources with Profiles

■ Listing Information About Database Users and Profiles

See Also: For guidelines on establishing security policies for users and profiles, see

Chapter 22, "Establishing Security Policies".

Privileges and roles control the access a user has to a database and the schema

objects within the database. For information on privileges and roles, see Chapter 24,

"Managing User Privileges and Roles".

Session and User Licensing

23-2 Oracle8i Administrator’s Guide

Session and User Licensing
This section describes aspects of session and user licensing, and includes the

following topics:

■ Concurrent Usage Licensing

■ Connecting Privileges

■ Setting the Maximum Number of Sessions

■ Setting the Session Warning Limit

■ Changing Concurrent Usage Limits While the Database is Running

■ Named User Limits

■ Viewing Licensing Limits and Current Values

Oracle helps you ensure that your site complies with its Oracle Server license

agreement. If your site is licensed by concurrent usage, you can track and limit the

number of sessions concurrently connected to a database. If your site is licensed by

named users, you can limit the number of named users created in a database. In

either case, you control the licensing facilities, and must enable the facilities and set

the appropriate limits.

To use the licensing facility, you need to know which type of licensing agreement

your site has, and what the maximum number of sessions or named users is. Your

site may use either type of licensing (concurrent usage or named user), but not both.

Concurrent Usage Licensing
Concurrent usage licensing limits the number of sessions that can be connected

simultaneously to the database on the specified computer. You can set a limit on the

number of concurrent sessions before you start an instance. In fact, you should have

set this limit as part of the initial installation procedure. You can also change the

maximum number of concurrent sessions while the database is running.

Note: In a few cases, a site might have an unlimited license, rather

than concurrent usage or named user licensing. In these cases only,

leave the licensing mechanism disabled, and omit

LICENSE_MAX_SESSIONS, LICENSE_SESSIONS_WARNING, and

LICENSE_MAX_USERS from the parameter file, or set the value of

all three to 0.

Session and User Licensing

Managing Users and Resources 23-3

See Also: For information about the initial installation procedure, see Chapter 2,

"Creating an Oracle Database".

Connecting Privileges
After your instance’s session limit is reached, only users with RESTRICTED

SESSION privilege (usually DBAs) can connect to the database. When a user with

RESTRICTED SESSION privileges connects, Oracle sends the user a message

indicating that the maximum limit has been reached, and writes a message to the

ALERT file. When the maximum is reached, you should connect only to terminate

unneeded processes. Do not raise the licensing limits unless you have upgraded

your Oracle license agreement.

In addition to setting a maximum concurrent session limit, you can set a warning

limit on the number of concurrent sessions. After this limit is reached, additional

users can continue to connect (up to the maximum limit); however, Oracle writes an

appropriate message to the ALERT file with each connection, and sends each

connecting user who has the RESTRICTED SESSION privilege a warning indicating

that the maximum is about to be reached.

If a user is connecting with administrator privileges, the limits still apply; however,

Oracle enforces the limit after the first statement the user executes.

In addition to enforcing the concurrent usage limits, Oracle tracks the highest

number of concurrent sessions for each instance. You can use this "high water

mark."

See Also: For information about terminating sessions, see "Terminating Sessions" on

page 4-15.

For information about Oracle licensing limit upgrades, see "Viewing Licensing

Limits and Current Values" on page 23-6.

Session and User Licensing

23-4 Oracle8i Administrator’s Guide

Parallel Server Concurrent Usage Limits
For instances running with the Parallel Server, each instance can have its own

concurrent usage limit and warning limit. However, the sum of the instances’ limits

must not exceed the site’s concurrent usage license.

See Also: For more information about setting and changing limits in a parallel

server environment, see Oracle8i Parallel Server Concepts and Administration.

Setting the Maximum Number of Sessions
To set the maximum number of concurrent sessions for an instance, set the

parameter LICENSE_MAX_SESSIONS as follows:

LICENSE_MAX_SESSIONS = 80

If you set this limit, you are not required to set a warning limit

(LICENSE_SESSIONS_WARNING). However, using the warning limit makes the

maximum limit easier to manage, because it gives you advance notice that your site

is nearing maximum use.

Setting the Session Warning Limit
To set the warning limit for an instance, set the parameter

LICENSE_SESSIONS_WARNING in the parameter file used to start the instance.

Set the session warning to a value lower than the concurrent usage maximum limit

(LICENSE_MAX_SESSIONS).

Changing Concurrent Usage Limits While the Database is Running
To change either the maximum concurrent usage limit or the warning limit while

the database is running, use the ALTER SYSTEM command with the appropriate

WARNING: Sessions that connect to Oracle through
multiplexing software or hardware (such as a TP monitor) each
contribute individually to the concurrent usage limit. However,
the Oracle licensing mechanism cannot distinguish the number
of sessions connected this way. If your site uses multiplexing
software or hardware, you must consider that and set the
maximum concurrent usage limit lower to account for the
multiplexed sessions.

Session and User Licensing

Managing Users and Resources 23-5

option. The following statement changes the maximum limit to 100 concurrent

sessions:

ALTER SYSTEM SET LICENSE_MAX_SESSIONS = 100;

The following statement changes both the warning limit and the maximum limit:

ALTER SYSTEM
 SET LICENSE_MAX_SESSIONS = 64
 LICENSE_SESSIONS_WARNING = 54;

If you change either limit to a value lower than the current number of sessions, the

current sessions remain; however, the new limit is enforced for all future

connections until the instance is shut down. To change the limit permanently,

change the value of the appropriate parameter in the parameter file.

To change the concurrent usage limits while the database is running, you must have

the ALTER SYSTEM privilege. Also, to connect to an instance after the instance’s

maximum limit has been reached, you must have the RESTRICTED SESSION

privilege.

Named User Limits
Named user licensing limits the number of individuals authorized to use Oracle on

the specified computer. To enforce this license, you can set a limit on the number of

users created in the database before you start an instance. You can also change the

maximum number of users while the instance is running, or disable the limit

altogether. You cannot create more users after reaching this limit. If you try to do so,

Oracle returns an error indicating that the maximum number of users have been

created, and writes a message to the ALERT file.

This mechanism operates on the assumption that each person accessing the

database has a unique username, and that there are no shared usernames. Do not

allow multiple users to connect using the same username.

See Also: For instances running with the Parallel Server, all instances connected to

the same database should have the same named user limit. See Oracle8i Parallel
Server Concepts and Administration for more information.

WARNING: Do not raise the concurrent usage limits unless you
have appropriately upgraded your Oracle Server license. Contact
your Oracle representative for more information.

Session and User Licensing

23-6 Oracle8i Administrator’s Guide

Setting User Limits
To limit the number of users created in a database, set the LICENSE_MAX_USERS

parameter in the database’s parameter file. The following example sets the

maximum number of users to 200:

LICENSE_MAX_USERS = 200

If the database contains more than LICENSE_MAX_USERS when you start it,

Oracle returns a warning and writes an appropriate message in the ALERT file. You

cannot create additional users until the number of users drops below the limit or

until you delete users or upgrade your Oracle license.

Changing User Limits
To change the maximum named users limit, use the ALTER SYSTEM command

with the LICENSE_MAX_USERS option. The following statement changes the

maximum number of defined users to 300:

ALTER SYSTEM SET LICENSE_MAX_USERS = 300;

If you try to change the limit to a value lower than the current number of users,

Oracle returns an error and continues to use the old limit. If you successfully

change the limit, the new limit remains in effect until you shut down the instance;

to change the limit permanently, change the value of LICENSE_MAX_USERS in the

parameter file.

To change the maximum named users limit, you must have the ALTER SYSTEM

privilege.

Viewing Licensing Limits and Current Values
You can see the current limits of all of the license settings, the current number of

sessions, and the maximum number of concurrent sessions for the instance by

querying the V$LICENSE data dictionary view. You can use this information to

determine if you need to upgrade your Oracle license to allow more concurrent

sessions or named users:

SELECT sessions_max s_max,
 sessions_warning s_warning,
 sessions_current s_current,

WARNING: Do not raise the named user limit unless you have
appropriately upgraded your Oracle license. Contact your Oracle
representative for more information.

User Authentication

Managing Users and Resources 23-7

 sessions_highwater s_high,
 users_max
 FROM v$license;

S_MAX S_WARNING S_CURRENT S_HIGH USERS_MAX

100 80 65 82 50

In addition, Oracle writes the session high water mark to the database’s ALERT file

when the database shuts down, so you can check for it there.

To see the current number of named users defined in the database, use the

following query:

SELECT COUNT(*) FROM dba_users;

COUNT(*)

174

User Authentication
This section describes aspects of authenticating users, and includes the following

topics:

■ Database Authentication

■ External Authentication

■ Enterprise Authentication

Depending on how you want user identities to be authenticated, there are three

ways to define users before they are allowed to create a database session:

1. You can configure Oracle so that it performs both identification and

authentication of users. This is called database authentication.

2. You can configure Oracle so that it performs only the identification of users

(leaving authentication up to the operating system or network service). This is

called external authentication.

3. You can configure Oracle so that it performs only the identification of users.

This is called enterprise authentication.

User Authentication

23-8 Oracle8i Administrator’s Guide

Database Authentication
If you choose database authentication for a user, administration of the user account,

password, and authentication of that user is performed entirely by Oracle. To have

Oracle authenticate a user, specify a password for the user when you create or alter

the user. Users can change their password at any time. Passwords are stored in an

encrypted format. Each password must be made up of single-byte characters, even

if your database uses a multi-byte character set.

To enhance security when using database authentication, Oracle recommends the

use of password management, including account locking, password aging and

expiration, password history, and password complexity verification.

The following statement creates a user who is identified and authenticated by

Oracle:

CREATE USER scott IDENTIFIED BY tiger;

See Also: For more information about the CREATE USER and ALTER USER

statements, see Oracle8i SQL Reference.

For more information about valid passwords, see Oracle8i SQL Reference.

For more information about Oracle password management, see Chapter 22,

"Establishing Security Policies".

Advantages of Database Authentication
Following are advantages of database authentication:

■ User accounts and all authentication are controlled by the database.There is no

reliance on anything outside of the database.

■ Oracle provides strong password management features to enhance security

when using database authentication.

■ It is easier to administer small user communities.

External Authentication
When you choose external authentication for a user, the user account is maintained

by Oracle, but password administration and user authentication is performed by an

external service. This external service can be the operating system or a network

service, such as Net8.

With external authentication, your database relies on the underlying operating

system or network authentication service to restrict access to database accounts. A

User Authentication

Managing Users and Resources 23-9

database password is not used for this type of login. If your operating system or

network service permits, you can have it authenticate users. If you do so, set the

parameter OS_AUTHENT_PREFIX, and use this prefix in Oracle usernames. This

parameter defines a prefix that Oracle adds to the beginning of every user’s

operating system account name. Oracle compares the prefixed username with the

Oracle usernames in the database when a user attempts to connect.

For example, assume that OS_AUTHENT_PREFIX is set as follows:

OS_AUTHENT_PREFIX=OPS$

If a user with an operating system account named "TSMITH" is to connect to an

Oracle database and be authenticated by the operating system, Oracle checks that

there is a corresponding database user "OPS$TSMITH" and, if so, allows the user to

connect. All references to a user authenticated by the operating system must include

the prefix, as seen in "OPS$TSMITH".

The default value of this parameter is "OPS$" for backward compatibility with

previous versions of Oracle. However, you might prefer to set the prefix value to

some other string or a null string (an empty set of double quotes: ""). Using a null

string eliminates the addition of any prefix to operating system account names, so

that Oracle usernames exactly match operating system usernames.

After you set OS_AUTHENT_PREFIX, it should remain the same for the life of a

database. If you change the prefix, any database username that includes the old

prefix cannot be used to establish a connection, unless you alter the username to

have it use password authentication.

The following command creates a user who is identified by Oracle and

authenticated by the operating system or a network service:

CREATE USER scott IDENTIFIED EXTERNALLY;

Using CREATE USER IDENTIFIED EXTERNALLY, you can create database

accounts that must be authenticated via the operating system or network service

and cannot be authenticated using a password.

See Also: The text of the OS_AUTHENT_PREFIX parameter is case sensitive on

some operating systems. See your operating system-specific Oracle documentation

for more information about this initialization parameter.

Operating System Authentication
By default, Oracle only allows operating system authenticated logins over secure

connections. Therefore, if you want the operating system to authenticate a user, by

default that user cannot connect to the database over Net8. This means the user

User Authentication

23-10 Oracle8i Administrator’s Guide

cannot connect using a multi-threaded server, since this connection uses Net8. This

default restriction prevents a remote user from impersonating another operating

system user over a network connection.

If you are not concerned about remote users impersonating another operating

system user over a network connection, and you want to use operating system user

authentication with network clients, set the parameter REMOTE_OS_AUTHENT

(default is FALSE) to TRUE in the database’s parameter file. Setting the initialization

parameter REMOTE_OS_AUTHENT to TRUE allows the RDBMS to accept the

client operating system username received over a non-secure connection and use it

for account access. The change will take effect the next time you start the instance

and mount the database.

Network Authentication
Network authentication is performed via Net8, which may be configured to use a

third party service such as Kerberos. If you are using Net8 as the only external

authentication service, the setting of the parameter REMOTE_OS_AUTHENT is

irrelevant, since Net8 only allows secure connections.

See Also: For information about network authentication, see Oracle8i Distributed
Database Systems.

Advantages of External Authentication
Following are advantages of external authentication:

■ More choices of authentication mechanism are available, such as smart cards,

fingerprints, Kerberos, or the operating system.

■ If you are already using some external mechanism for authentication, such as

one of those listed above, there may be less administrative overhead to use that

mechanism with the database as well.

Enterprise Authentication
If you choose enterprise authentication for a user, the user account is maintained by

Oracle, but password administration and user authentication is performed by the

Oracle Security Service (OSS). This authentication service can be shared among

multiple Oracle database servers and allows user’s authentication and

authorization information to be managed centrally.

Use the following command to create a user (known as a global user) who is

identified by Oracle and authenticated by the Oracle Security Service:

Oracle Users

Managing Users and Resources 23-11

CREATE USER scott IDENTIFIED GLOBALLY as ’<external name>’;

See Also: For information about the contents of the <EXTERNAL NAME> string,

see Oracle8i Distributed Database Systems.

Advantages of Enterprise Authentication
Following are advantages of enterprise authentication:

■ It is easier to administer large user communities with many databases.

■ You can use industry standard public key certificates, giving increased

opportunity for interoperability.

See Also: For information about enterprise authentication, see Oracle8i Distributed
Database Systems.

Oracle Users
Each Oracle database has a list of valid database users. To access a database, a user

must run a database application and connect to the database instance using a valid

username defined in the database. This section explains how to manage users for a

database, and includes the following topics:

■ Creating Users

■ Altering Users

■ Dropping Users

Creating Users
To create a database user, you must have the CREATE USER system privilege.

When creating a new user, tablespace quotas can be specified for any tablespace in

the database, even if the creator does not have a quota on a specified tablespace.

Because it is a powerful privilege, a security administrator is normally the only user

who has the CREATE USER system privilege.

You create a user with the SQL statement CREATE USER. Using either option, you

can also specify the new user’s default and temporary segment tablespaces,

tablespace quotas, and profile.

CREATE USER OPS$jward
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE data_ts
 TEMPORARY TABLESPACE temp_ts

Oracle Users

23-12 Oracle8i Administrator’s Guide

 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 PROFILE clerk;

See Also: A newly created user cannot connect to the database until granted the

CREATE SESSION system privilege; see "Granting System Privileges and Roles" on

page 24-9.

Specifying a Name
Within each database a username must be unique with respect to other usernames

and roles; a user and role cannot have the same name. Furthermore, each user has

an associated schema. Within a schema, each schema object must have a unique

name.

Setting a User’s Authentication
In the previous CREATE USER statement, the new user is to be authenticated using

the operating system. The username includes the default prefix "OPS$." If the

OS_AUTHENT_PREFIX parameter is set differently (that is, if it specifies either no

prefix or some other prefix), modify the username accordingly, by omitting the

prefix or substituting the correct prefix.

Alternatively, you can create a user who is authenticated using the database and a

password:

CREATE USER jward
 IDENTIFIED BY airplane
 . . . ;

In this case, the connecting user must supply the correct password to the database

to connect successfully.

User Passwords in Multi-Byte Character Sets In a database that uses a multi-byte

character set, passwords must include only single-byte characters. Multi-byte

characters are not accepted in passwords.

See Also: For more information about valid passwords, see the Oracle8i SQL
Reference.

Assigning a Default Tablespace
Each user has a default tablespace. When a user creates a schema object and

specifies no tablespace to contain it, Oracle stores the object in the user’s default

tablespace.

Oracle Users

Managing Users and Resources 23-13

The default setting for every user’s default tablespace is the SYSTEM tablespace. If

a user does not create objects, this default setting is fine. However, if a user creates

any type of object, consider specifically setting the user’s default tablespace. You

can set a user’s default tablespace during user creation, and change it later.

Changing the user’s default tablespace affects only objects created after the setting

is changed.

Consider the following issues when deciding which tablespace to specify:

■ Set a user’s default tablespace only if the user has the privileges to create objects

(such as tables, views, and clusters).

■ Set a user’s default tablespace to a tablespace for which the user has a quota.

■ If possible, set a user’s default tablespace to a tablespace other than the

SYSTEM tablespace to reduce contention between data dictionary objects and

user objects for the same datafiles.

In the previous CREATE USER statement, JWARD’s default tablespace is DATA_TS.

Assigning a Temporary Tablespace
Each user also has a temporary tablespace. When a user executes a SQL statement

that requires a temporary segment, Oracle stores the segment in the user’s

temporary tablespace.

If a user’s temporary tablespace is not explicitly set, the default is the SYSTEM

tablespace. However, setting each user’s temporary tablespace reduces file

contention among temporary segments and other types of segments. You can set a

user’s temporary tablespace at user creation, and change it later.

In the previous CREATE USER statement, JWARD’s temporary tablespace is

TEMP_TS, a tablespace created explicitly to only contain temporary segments.

Assigning Tablespace Quotas
You can assign each user a tablespace quota for any tablespace. Assigning a quota

does two things:

■ Users with privileges to create certain types of objects can create those objects in

the specified tablespace.

■ Oracle limits the amount of space that can be allocated for storage of a user’s

objects within the specified tablespace to the amount of the quota.

By default, a user has no quota on any tablespace in the database. If the user has the

privilege to create a schema object, you must assign a quota to allow the user to

Oracle Users

23-14 Oracle8i Administrator’s Guide

create objects. Minimally, assign users a quota for the default tablespace, and

additional quotas for other tablespaces in which they will create objects.

You can assign a user either individual quotas for a specific amount of disk space in

each tablespace or an unlimited amount of disk space in all tablespaces. Specific

quotas prevent a user’s objects from consuming too much space in the database.

You can assign a user’s tablespace quotas when you create the user, or add or

change quotas later. If a new quota is less than the old one, then the following

conditions hold true:

■ If a user has already exceeded a new tablespace quota, the user’s objects in the

tablespace cannot be allocated more space until the combined space of these

objects falls below the new quota.

■ If a user has not exceeded a new tablespace quota, or if the space used by the

user’s objects in the tablespace falls under a new tablespace quota, the user’s

objects can be allocated space up to the new quota.

Revoking Tablespace Access You can revoke a user’s tablespace access by changing

the user’s current quota to zero. After a quota of zero is assigned, the user’s objects

in the revoked tablespace remain, but the objects cannot be allocated any new space.

UNLIMITED TABLESPACE System Privilege To permit a user to use an unlimited

amount of any tablespace in the database, grant the user the UNLIMITED

TABLESPACE system privilege. This overrides all explicit tablespace quotas for the

user. If you later revoke the privilege, explicit quotas again take effect. You can

grant this privilege only to users, not to roles.

Before granting the UNLIMITED TABLESPACE system privilege, consider the

consequences of doing so:

Advantage

■ You can grant a user unlimited access to all tablespaces of a database with one

statement.

Disadvantages

■ The privilege overrides all explicit tablespace quotas for the user.

■ You cannot selectively revoke tablespace access from a user with the

UNLIMITED TABLESPACE privilege. You can grant access selectively only

after revoking the privilege.

Oracle Users

Managing Users and Resources 23-15

Setting Default Roles
You cannot set a user’s default roles in the CREATE USER statement. When you

first create a user, the user’s default role setting is ALL, which causes all roles

subsequently granted to the user to be default roles. Use the ALTER USER

command to change the user’s default roles.

Altering Users
Users can change their own passwords. However, to change any other option of a

user’s security domain, you must have the ALTER USER system privilege. Security

administrators are normally the only users that have this system privilege, as it

allows a modification of any user’s security domain. This privilege includes the

ability to set tablespace quotas for a user on any tablespace in the database, even if

the user performing the modification does not have a quota for a specified

tablespace.

You can alter a user’s security settings with the SQL statement ALTER USER.

Changing a user’s security settings affects the user’s future sessions, not current

sessions.

The following statement alters the security settings for user AVYRROS:

ALTER USER avyrros
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE data_ts
 TEMPORARY TABLESPACE temp_ts
 QUOTA 100M ON data_ts
 QUOTA 0 ON test_ts
 PROFILE clerk;

The ALTER USER statement here changes AVYRROS’s security settings as follows:

■ Authentication is changed to use AVYRROS’s operating system account.

■ AVYRROS’s default and temporary tablespaces are explicitly set.

■ AVYRROS is given a 100M quota for the DATA_TS tablespace.

WARNING: When you create a role (other than a user role), it is
granted to you implicitly and added as a default role. You will get
an error at login if you have more than MAX_ENABLED_ROLES.
You can avoid this error by altering the user’s default roles to be
less than MAX_ENABLED_ROLES. Thus, you should change the
DEFAULT ROLE settings of SYS and SYSTEM before creating
user roles.

Oracle Users

23-16 Oracle8i Administrator’s Guide

■ AVYRROS’s quota on the TEST_TS is revoked.

■ AVYRROS is assigned the CLERK profile.

Changing a User’s Authentication Mechanism
Most non-DBA users can still change their own passwords with the ALTER USER

statement, as follows:

ALTER USER andy
 IDENTIFIED BY swordfish;

Users can change their own passwords this way, without any special privileges

(other than those to connect to the database). Users should be encouraged to change

their passwords frequently.

Users must have the ALTER USER privilege to switch between Oracle database

authentication, external authentication, and enterprise authentication; usually, only

DBAs should have this privilege.

Passwords in Multi-Byte Character Sets In a database that uses a multi-byte character

set, passwords must include only single-byte characters. Multi-byte characters are

not accepted in passwords.

See Also: For more information about valid passwords, see the Oracle8i SQL
Reference.

Changing a User’s Default Roles
A default role is one that is automatically enabled for a user when the user creates a

session. You can assign a user zero or more default roles.

See Also: For more information on changing users’ default roles, see Chapter 24,

"Managing User Privileges and Roles".

Dropping Users
When a user is dropped, the user and associated schema are removed from the data

dictionary and all schema objects contained in the user’s schema, if any, are

immediately dropped.

Note: If a user’s schema and associated objects must remain but

the user must be denied access to the database, revoke the CREATE

SESSION privilege from the user.

Managing Resources with Profiles

Managing Users and Resources 23-17

A user that is currently connected to a database cannot be dropped. To drop a

connected user, you must first terminate the user’s sessions using the SQL

statement ALTER SYSTEM with the KILL SESSION clause.

To drop a user and all the user’s schema objects (if any), you must have the DROP

USER system privilege. Because the DROP USER system privilege is so powerful, a

security administrator is typically the only type of user that has this privilege.

You can drop a user from a database using the SQL statement DROP USER.

If the user’s schema contains any schema objects, use the CASCADE option to drop

the user and all associated objects and foreign keys that depend on the tables of the

user successfully. If you do not specify CASCADE and the user’s schema contains

objects, an error message is returned and the user is not dropped. Before dropping a

user whose schema contains objects, thoroughly investigate which objects the user’s

schema contains and the implications of dropping them before the user is dropped.

Pay attention to any unknown cascading effects. For example, if you intend to drop

a user who owns a table, check whether any views or procedures depend on that

particular table.

DROP USER jones CASCADE;

See Also: For more information about terminating sessions, see "Terminating

Sessions" on page 4-15.

Managing Resources with Profiles
A profile is a named set of resource limits. If resource limits are turned on, Oracle

limits database usage and instance resources to whatever is defined in the user’s

profile. You can assign a profile to each user, and a default profile to all users who

do not have specific profiles. For profiles to take effect, resource limits must be

turned on for the database as a whole.

This section describes aspects of profile management, and includes the following

topics:

■ Creating Profiles

■ Assigning Profiles

■ Altering Profiles

■ Using Composite Limits

■ Dropping Profiles

■ Enabling and Disabling Resource Limits

Managing Resources with Profiles

23-18 Oracle8i Administrator’s Guide

Creating Profiles
To create a profile, you must have the CREATE PROFILE system privilege. You can

create profiles using the SQL statement CREATE PROFILE. At the same time, you

can explicitly set particular resource limits.

The following statement creates the profile CLERK:

CREATE PROFILE clerk LIMIT
 SESSIONS_PER_USER 2
 CPU_PER_SESSION unlimited
 CPU_PER_CALL 6000
 LOGICAL_READS_PER_SESSION unlimited
 LOGICAL_READS_PER_CALL 100
 IDLE_TIME 30
 CONNECT_TIME 480;

All unspecified resource limits for a new profile take the limit set by the DEFAULT

profile. You can also specify limits for the DEFAULT profile.

Using the DEFAULT Profile
Each database has a DEFAULT profile, and its limits are used in two cases:

■ If a user is not explicitly assigned a profile, then the user conforms to all the

limits of the DEFAULT profile.

■ All unspecified limits of any profile use the corresponding limit of the

DEFAULT profile.

Initially, all limits of the DEFAULT profile are set to UNLIMITED. However, to

prevent unlimited resource consumption by users of the DEFAULT profile, the

security administrator should change the default limits using the ALTER PROFILE

statement:

ALTER PROFILE default LIMIT
 . . . ;

Any user with the ALTER PROFILE system privilege can adjust the limits in the

DEFAULT profile. The DEFAULT profile cannot be dropped.

Assigning Profiles
After a profile has been created, you can assign it to database users. Each user can

be assigned only one profile at any given time. If a profile is assigned to a user who

already has a profile, the new profile assignment overrides the previously assigned

Managing Resources with Profiles

Managing Users and Resources 23-19

profile. Profile assignments do not affect current sessions. Profiles can be assigned

only to users and not to roles or other profiles.

Profiles can be assigned to users using the SQL statements CREATE USER or

ALTER USER.

See Also: For more information about assigning a profile to a user, see "Creating

Users" on page 23-11 and "Altering Users" on page 23-15.

Altering Profiles
You can alter the resource limit settings of any profile using the SQL statement

ALTER PROFILE. To alter a profile, you must have the ALTER PROFILE system

privilege.

Any adjusted profile limit overrides the previous setting for that profile limit. By

adjusting a limit with a value of DEFAULT, the resource limit reverts to the default

limit set for the database. All profiles not adjusted when altering a profile retain the

previous settings. Any changes to a profile do not affect current sessions. New

profile settings are used only for sessions created after a profile is modified.

The following statement alters the CLERK profile:

ALTER PROFILE clerk LIMIT
 CPU_PER_CALL default
 LOGICAL_READS_PER_SESSION 20000;

See Also: For information about default profiles, see "Using the DEFAULT Profile"

on page 23-18.

Using Composite Limits
You can limit the total resource cost for a session via composite limits. In addition to

setting specific resource limits explicitly for a profile, you can set a single composite

limit that accounts for resource limits in a profile. You can set a profile’s composite

limit using the COMPOSITE_LIMIT parameter of the SQL statements CREATE

PROFILE or ALTER PROFILE. A composite limit is set via service units, which are

weighted amounts of each resource.

The following CREATE PROFILE statement is defined using the

COMPOSITE_LIMIT parameter:

CREATE PROFILE clerk LIMIT
 COMPOSITE_LIMIT 20000
 SESSIONS_PER_USER 2
 CPU_PER_CALL 1000;

Managing Resources with Profiles

23-20 Oracle8i Administrator’s Guide

Notice that both explicit resource limits and a composite limit can exist concurrently

for a profile. The limit that is reached first stops the activity in a session. Composite

limits allow additional flexibility when limiting the use of system resources.

Determining the Value of the Composite Limit
The correct composite limit depends on the total amount of resource used by an

average profile user. As with each specific resource limit, historical information

should be gathered to determine the normal range of composite resource usage for

a typical profile user.

See Also: For information on how to calculate the composite limit see the Oracle8i
SQL Reference.

Setting Resource Costs
Each system has its own characteristics; some system resources may be more

valuable than others. Oracle enables you to give each system resource a cost. Costs

weight each system resource at the database level. Costs are only applied to the

composite limit of a profile; costs do not apply to set individual resource limits

explicitly.

To set resource costs, you must have the ALTER RESOURCE system privilege.

Only certain resources can be given a cost: CPU_PER_ SESSION,

LOGICAL_READS_PER_SESSION, CONNECT_TIME, and PRIVATE_SGA. Set

costs for a database using the SQL command ALTER RESOURCE COST:

ALTER RESOURCE COST
 CPU_PER_SESSION 1
 LOGICAL_READS_PER_SESSION 50;

A large cost means that the resource is very expensive, while a small cost means

that the resource is not expensive. By default, each resource is initially given a cost

of 0. A cost of 0 means that the resource should not be considered in the composite

limit (that is, it does not cost anything to use this resource). No resource can be

given a cost of NULL.

See Also: For additional information and recommendations on setting resource

costs, see your operating system-specific Oracle documentation and the Oracle8i
SQL Reference.

Managing Resources with Profiles

Managing Users and Resources 23-21

Dropping Profiles
To drop a profile, you must have the DROP PROFILE system privilege. You can

drop a profile using the SQL statement DROP PROFILE. To successfully drop a

profile currently assigned to a user, use the CASCADE option.

The following statement drops the profile CLERK, even though it is assigned to a

user:

DROP PROFILE clerk CASCADE;

Any user currently assigned to a profile that is dropped is automatically assigned to

the DEFAULT profile. The DEFAULT profile cannot be dropped. Note that when a

profile is dropped, the drop does not affect currently active sessions; only sessions

created after a profile is dropped abide by any modified profile assignments.

Enabling and Disabling Resource Limits
A profile can be created, assigned to users, altered, and dropped at any time by any

authorized database user, but the resource limits set for a profile are enforced only

when you enable resource limitation for the associated database. Resource

limitation enforcement can be enabled or disabled by two different methods, as

described in the next two sections.

To alter the enforcement of resource limitation while the database remains open,

you must have the ALTER SYSTEM system privilege.

Enabling and Disabling Resource Limits Before Startup
If a database can be temporarily shut down, resource limitation can be enabled or

disabled by the RESOURCE_LIMIT initialization parameter in the database’s

parameter file. Valid values for the parameter are TRUE (enables enforcement) and

FALSE; by default, this parameter’s value is set to FALSE. Once the parameter file

has been edited, the database instance must be restarted to take effect. Every time

an instance is started, the new parameter value enables or disables the enforcement

of resource limitation.

Enabling and Disabling Resource Limits While the Database is Open
If a database cannot be temporarily shut down or the resource limitation feature

must be altered temporarily, you can enable or disable the enforcement of resource

limitation using the SQL command ALTER SYSTEM. After an instance is started, an

ALTER SYSTEM statement overrides the value set by the RESOURCE_LIMIT

Listing Information About Database Users and Profiles

23-22 Oracle8i Administrator’s Guide

parameter. For example, the following statement enables the enforcement of

resource limitation for a database:

ALTER SYSTEM
 SET RESOURCE_LIMIT = TRUE;

An ALTER SYSTEM statement does not permanently determine the enforcement of

resource limitation. If the database is shut down and restarted, the enforcement of

resource limits is determined by the value set for the RESOURCE_LIMIT parameter.

Listing Information About Database Users and Profiles
The data dictionary stores information about every user and profile, including the

following:

■ all users in a database

■ each user’s default tablespace for tables, clusters, and indexes

■ each user’s tablespace for temporary segments

■ each user’s space quotas, if any

■ each user’s assigned profile and resource limits

■ the cost assigned to each applicable system resource

■ each current session’s memory usage

The following data dictionary views may be of interest when you work with

database users and profiles:

■ ALL_USERS

■ USER_USERS

■ DBA_USERS

■ USER_TS_QUOTAS

■ DBA_TS_QUOTAS

■ USER_PASSWORD_LIMITS

■ USER_RESOURCE_LIMITS

Note: This does not apply to password resources.

Listing Information About Database Users and Profiles

Managing Users and Resources 23-23

■ DBA_PROFILES

■ RESOURCE_COST

■ V$SESSION

■ V$SESSTAT

■ V$STATNAME

See Also: See the Oracle8i Reference for detailed information about each view.

Listing Information about Users and Profiles: Examples
The examples in this section assume a database in which the following statements

have been executed:

CREATE PROFILE clerk LIMIT
 SESSIONS_PER_USER 1Oracle8i SQL Reference.
 IDLE_TIME 30
 CONNECT_TIME 600;

CREATE USER jfee
 IDENTIFIED BY wildcat
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp_ts
 QUOTA 500K ON users
 PROFILE clerk;

CREATE USER dcranney
 IDENTIFIED BY bedrock
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp_ts
 QUOTA unlimited ON users;

CREATE USER userscott
 IDENTIFIED BY "scott1"
 PASSWORD_LIFETIME 60
 PASSWORD_GRACE_TIME 10;

Listing All Users and Associated Information
The following query lists users and their associated information as defined in the

database:

SELECT username, profile, account_status from dba_users;
USERNAME PROFILE ACCOUNT_STATUS
--------------- --------------- ----------------
SYS DEFAULT OPEN

Listing Information About Database Users and Profiles

23-24 Oracle8i Administrator’s Guide

SYSTEM DEFAULT OPEN
BLAKE DEFAULT OPEN
SCOTT DEFAULT OPEN
ADAMS DEFAULT OPEN
JFEE DEFAULT OPEN
DCRANNEY DEFAULT OPEN
JONES DEFAULT OPEN
CLARK DEFAULT OPEN
U DEFAULT LOCKED

All passwords are encrypted to preserve security.

Listing All Tablespace Quotas
The following query lists all tablespace quotas specifically assigned to each user:

SELECT * FROM sys.dba_ts_quotas;
TABLESPACE USERNAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
---------- --------- -------- ---------- ------- ----------
SYSTEM SYSTEM 0 0 0 0
SYSTEM JFEE 0 512000 0 250
SYSTEM DCRANNEY 0 -1 0 -1

When specific quotas are assigned, the exact number is indicated in the

MAX_BYTES column. Unlimited quotas are indicated by "-1".

Listing All Profiles and Assigned Limits
The following query lists all profiles in the database and associated settings for each

limit in each profile:

SELECT * FROM sys.dba_profiles
 ORDER BY profile;
PROFILE RESOURCE_NAME RESOURCE LIMIT

------------------------- --------------- ---------- --------------
DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED
DEFAULT SESSIONS_PER_USER KERNEL 1
DEFAULT CPU_PER_CALL KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED
DEFAULT CONNECT_TIME KERNEL 30
DEFAULT IDLE_TIME KERNEL 600
DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED
DEFAULT PRIVATE_SGA KERNEL UNLIMITED
DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD UNLIMITED
DEFAULT PASSWORD_LIFE_TIME PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED

Listing Information About Database Users and Profiles

Managing Users and Resources 23-25

DEFAULT PASSWORD_LOCK_TIME PASSWORD UNLIMITED
DEFAULT PASSWORD_GRACE_TIME PASSWORD UNLIMITED
DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_TIME PASSWORD UNLIMITED
PROF COMPOSITE_LIMIT KERNEL DEFAULT
PROF PRIVATE_SGA KERNEL DEFAULT
PROF CONNECT_TIME KERNEL DEFAULT
PROF IDLE_TIME KERNEL DEFAULT
PROF LOGICAL_READS_PER_CALL KERNEL DEFAULT
PROF LOGICAL_READS_PER_SESSION KERNEL DEFAULT
PROF SESSIONS_PER_USER KERNEL DEFAULT
PROF CPU_PER_CALL KERNEL DEFAULT
PROF CPU_PER_SESSION KERNEL DEFAULT
PROF FAILED_LOGIN_ATTEMPTS PASSWORD 5
PROF PASSWORD_LIFE_TIME PASSWORD 60
PROF PASSWORD_REUSE_MAX PASSWORD UNLIMITED
PROF PASSWORD_LOCK_TIME PASSWORD 1
PROF PASSWORD_GRACE_TIME PASSWORD 10
PROF PASSWORD_VERIFY_FUNCTION PASSWORD UNLIMITED
PROF PASSWORD_REUSE_TIME PASSWORD 60
32 rows selected.

Viewing Memory Use Per User Session
The following query lists all current sessions, showing the Oracle user and current

memory use per session:

SELECT username, value || ’bytes’ "Current session memory"
 FROM v$session sess, v$sesstat stat, v$statname name
WHERE sess.sid = stat.sid
 AND stat.statistic# = name.statistic#
 AND name.name = ’SESSION_MEMORY’;

The amount of space indicated in "Current session memory" is allocated in the

shared pool for each session connected through the multi-threaded server. You can

limit the amount of memory allocated per user with the PRIVATE_SGA resource

limit.

To see the maximum memory ever allocated to each session since the instance

started, replace ’session memory’ in the query above with ’max session memory’.

Examples

23-26 Oracle8i Administrator’s Guide

Examples
This section contains examples that use functions described throughout this

chapter.

1. The following statement creates the profile prof:

 CREATE PROFILE prof limit
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LIFE_TIME 60
 PASSWORD_REUSE_MAX 60
 PASSWORD_REUSE_TIME UNLIMITED
 PASSWORD_VERIFY_FUNCTION verify_function
 PASSWORD_LOCK_TIME 1
 PASSWORD_GRACE_TIME 10;

2. The following statement creates a user with the same password as the username

with profile prof;

 CREATE USER userscott IDENTIFIED BY userscott PROFILE prof;
 ORA-28003: Password verification for the specified password failed
 ORA-20001: Password same as user

3. The following statement creates user userscott identified by "scott1%" with

profile prof;

 CREATE USER userscott IDENTIFIED BY "scott%" PROFILE prof;

4. The following statement changes the user's password to "scott%" again and

returns an error:

 ALTER USER userscott IDENTIFIED BY "scott%";
 ORA-28007: The password cannot be reused

5. The following statement locks the user account:

 ALTER USER userscott ACCOUNT LOCK;

6. The following statement checks the user account status:

 SELECT username, user_id, account_status, lock_date
 FROM dba_users
 WHERE username='USERSCOTT';

7. The following statement expires the password:

 ALTER USER userscott PASSWORD EXPIRE;

8. The following statement checks the user account status:

Examples

Managing Users and Resources 23-27

 SELECT username, user_id, account_status, expiry_date
 FROM dba_users
 WHERE username='USERSCOTT';

9. The following statement unlocks the user:

 ALTER USER userscott ACCOUNT UNLOCK;

10. The following statement checks the account status:

 SELECT username, user_id, account_status, expiry_date
 FROM dba_users
 WHERE username='USERSCOTT';

Examples

23-28 Oracle8i Administrator’s Guide

Managing User Privileges and Roles 24-1

24
Managing User Privileges and Roles

This chapter explains how to control the ability to execute system operations and

access to schema objects using privileges and roles. The following topics are

included:

■ Identifying User Privileges

■ Managing User Roles

■ Granting User Privileges and Roles

■ Revoking User Privileges and Roles

■ Granting Roles Using the Operating System or Network

■ Listing Privilege and Role Information

See Also: For information about controlling access to a database, see Chapter 23.

For suggested general database security policies, see Chapter 22.

Identifying User Privileges

24-2 Oracle8i Administrator’s Guide

Identifying User Privileges
This section describes Oracle user privileges, and includes the following topics:

■ System Privileges

■ Object Privileges

A user privilege is a right to execute a particular type of SQL statement, or a right to access

another user’s object. Oracle also provides shortcuts for grouping privileges that are

commonly granted or revoked together.

System Privileges
There are over 100 distinct system privileges. Each system privilege allows a user to

perform a particular database operation or class of database operations.

For security reasons, system privileges do not allow users to access the data

dictionary. Hence, users with ANY privileges (such as UPDATE ANY TABLE,

SELECT ANY TABLE or CREATE ANY INDEX) cannot access dictionary tables and

views that have not been granted to PUBLIC.

See Also: For a complete list/description of system privileges, see the Oracle8i SQL
Reference.

System Privilege Restrictions
The dictionary protection mechanism prevents unauthorized users from accessing

dictionary objects.

Access to dictionary objects is restricted to the users SYSDBA and SYSOPER.

System privileges providing access to objects in other schemas do not give you

access to dictionary objects. For example, the SELECT ANY TABLE privilege allows

you to access views and tables in other schemas, but does not enable you to select

dictionary objects (base tables of dynamic performance views, views, packages, and

synonyms).

Also, attempting to connect with the SQL*Plus command connect SYS/
password results in failure. However, the following two SQL*Plus commands are

valid:

WARNING: System privileges can be very powerful, and should
be cautiously granted to roles and trusted users of the database.
Users with the ANY privilege cannot access the data dictionary.

Identifying User Privileges

Managing User Privileges and Roles 24-3

 connect SYS/password as SYSDBA
 connect SYS/password as SYSOPER

Accessing Frequently Used Dictionary Objects
Users with explicit object privileges and the SYSDBA can access dictionary objects.

If, however, you need access to dictionary objects and do not have explicit object

privileges, you can be granted the following roles:

■ SELECT_CATALOG_ROLE

Enables users to SELECT all exported catalog views and tables granted to this

role. Grant this role to users who must access all exported views and tables in

the data dictionary.

■ EXECUTE_CATALOG_ROLE

Provides EXECUTE privilege on exported packages in the dictionary.

■ DELETE_CATALOG_ROLE

Enables users to delete records from the AUD$ table.

These roles enable database administrators to access certain objects in the dictionary

while maintaining dictionary security.

See Also: For details about any exported table or view, see the Oracle8i Reference.

Object Privileges
Each type of object has different privileges associated with it. For a detailed list of

objects and associated privileges, see the Oracle8i SQL Reference.

Object Privilege Shortcut
The ALL and ALL PRIVILEGES shortcuts grant or revoke all available object

privileges for a object. This shortcut is not a privilege; rather, it is a way of granting

or revoking all object privileges with one word in GRANT and REVOKE

Note: SYSDBA should not grant any user the object privileges for

nonexported objects in the dictionary; doing so may compromise

the integrity of the database.

Managing User Roles

24-4 Oracle8i Administrator’s Guide

statements. Note that if all object privileges are granted using the ALL shortcut,

individual privileges can still be revoked.

Likewise, all individually granted privileges can be revoked using the ALL

shortcut. However, if you REVOKE ALL, and revoking causes integrity constraints

to be deleted (because they depend on a REFERENCES privilege that you are

revoking), you must include the CASCADE CONSTRAINTS option in the REVOKE

statement.

Managing User Roles
This section describes aspects of managing roles, and includes the following topics:

■ Creating a Role

■ Predefined Roles

A role groups several privileges and roles, so that they can be granted to and revoked

from users simultaneously. Roles can be enabled and disabled per user.

See Also: For information about roles, see Oracle8i Concepts.

Creating a Role
You can create a role using the SQL statement CREATE ROLE.

You must have the CREATE ROLE system privilege to create a role. Typically, only

security administrators have this system privilege.

The following statement creates the CLERK role, which is authorized by the

database using the password BICENTENNIAL:

CREATE ROLE clerk
IDENTIFIED BY bicentennial;

Role Names
You must give each role you create a unique name among existing usernames and

role names of the database. Roles are not contained in the schema of any user.

Note: Immediately after creation, a role has no privileges

associated with it. To associate privileges with a new role, you must

grant privileges or other roles to the new role.

Managing User Roles

Managing User Privileges and Roles 24-5

Role Names in Multi-Byte Character Sets
In a database that uses a multi-byte character set, Oracle recommends that each role

name contain at least one single-byte character. If a role name contains only multi-

byte characters, the encrypted role name/password combination is considerably

less secure.

Predefined Roles
The roles listed in Table 24–1 are automatically defined for Oracle databases. These

roles are provided for backward compatibility to earlier versions of Oracle. You can

grant and revoke privileges and roles to these predefined roles, much the way you

do with any role you define.

Table 24–1 Predefined Roles

Role Name Privileges Granted To Role
CONNECT1 ALTER SESSION, CREATE CLUSTER,

CREATE DATABASE LINK, CREATE
SEQUENCE, CREATE SESSION, CREATE
SYNONYM, CREATE TABLE, CREATE
VIEW

CREATE TYPE 7 CREATE TYPE, EXECUTE, EXECUTE ANY
TYPE

RESOURCE 1,2 CREATE CLUSTER, CREATE INDEXTYPE,
CREATE OPERATOR, CREATE
PROCEDURE, CREATE SEQUENCE,
CREATE TABLE, CREATE TRIGGER,
CREATE TYPE

DBA 1,3, 4 All system privileges WITH ADMIN
OPTION

EXP_FULL_DATABASE 5 SELECT ANY TABLE, BACKUP ANY
TABLE, INSERT, DELETE, AND UPDATE
ON THE TABLES SYS.INCVID, SYS.INCFIL,
AND SYS.INCEXP

IMP_FULL_DATABASE 5 BECOME USER

DELETE_CATALOG_ROLE 6 DELETE privileges on all dictionary
packages for this role.

EXECUTE_CATALOG_ROLE 6 EXECUTE privilege on all dictionary
packages for this role.

SELECT_CATALOG_ROLE 6 SELECT privilege on all catalog tables and
views for this role.

Managing User Roles

24-6 Oracle8i Administrator’s Guide

Role Authorization
A database role can optionally require authorization when a user attempts to enable

the role. Role authorization can be maintained by the database (using passwords),

by the operating system, or by a network service.

To alter the authorization method for a role, you must have the ALTER ANY ROLE

system privilege or have been granted the role with the ADMIN OPTION.

See Also: For more information about network roles, see Oracle8i Distributed
Database Systems.

RECOVERY_CATALOG_OWNER8 DROP ROLE
RECOVERY_CATALOG_OWNER, CREATE
ROLE RECOVERY_CATALOG_OWNER,,
CREATE TRIGGER, CREATE PROCEDURE
TO RECOVERY_CATALOG_OWNER

HS_ADMIN_ROLE9 HS_EXTERNAL_OBJECT,
HS_EXTERNAL_USER

AQ_USER_ROLE10

AQ_ADMINISTRATOR_ROLE10

SNMPAGENT11

1Created by SQL.BSQ. For backward compatibility. Not recommended for use.
2Grantees of the RESOURCE role also receive the UNLIMITED TABLESPACE system privilege
as an explicit grant (not as part of the RESOURCE role). For backward compatibility. Not
recommended for use.
3Grantees of the DBA role also receive the UNLIMITED TABLESPACE system privilege with
the ADMIN option as an explicit grant (not as part of the DBA role). Therefore when the DBA
role is revoked, any explicit grant of UNLIMITED TABLESPACE is also revoked.
4Also includes the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles if CATEXP.SQL
has been run.
5Created by CATEXP.SQL.
6These roles must be granted to users who do not have the DBA role, but require access to the
views and tables in the data dictionary.
7The CREATE TYPE command is only available if the Oracle objects option is installed on your
database server.
8Created by CAT.SQL.
9Created by CATQUEUE.SQL.
10Only granted when you have the Advanced Queuing option.
11Only granted when you have the Intelligent Agents option.

Table 24–1 Predefined Roles (Cont.)

Role Name Privileges Granted To Role

Managing User Roles

Managing User Privileges and Roles 24-7

Role Authorization by the Database
The use of a role can be protected by an associated password. If you are granted a

role protected by a password, you can enable or disable the role only by supplying

the proper password for the role in a SET ROLE statement.

See Also: For more information about valid passwords, see the Oracle8i Reference.

Role Authorization by the Operating System
The following statement creates a role named ACCTS_REC and requires that the

operating system authorize its use:

CREATE ROLE role IDENTIFIED EXTERNALLY;

Role authentication via the operating system is useful only when the operating

system is able to dynamically link operating system privileges with applications.

When a user starts an application, the operating system grants an operating system

privilege to the user. The granted operating system privilege corresponds to the role

associated with the application. At this point, the application can enable the

application role. When the application is terminated, the previously granted

operating system privilege is revoked from the user’s operating system account.

If a role is authorized by the operating system, you must configure information for

each user at the operating system level. This operation is operating system

dependent.

If roles are granted by the operating system, you do not need to have the operating

system authorize them also; this is redundant.

See Also: For more information about roles granted by the operating system, see

"Granting Roles Using the Operating System or Network" on page 24-16.

Role Authorization and Network Clients
If users connect to the database over Net8, by default their roles cannot be

authenticated by the operating system. This includes connections through a multi-

threaded server, as this connection requires Net8. This restriction is the default

Note: In a database that uses a multi-byte character set,

passwords for roles must include only single-byte characters.

Multi-byte characters are not accepted in passwords.

Managing User Roles

24-8 Oracle8i Administrator’s Guide

because a remote user could impersonate another operating system user over a

network connection.

If you are not concerned with this security risk and want to use operating system

role authentication for network clients, set the parameter REMOTE_OS_ROLES in

the database’s parameter file to TRUE. The change will take effect the next time you

start the instance and mount the database. (The parameter is FALSE by default.)

Withholding Authorization
A role can also be created without authorization. If a role is created without any

protection, the role can be enabled or disabled by any grantee.

Changing a Role’s Authorization
You can set and change the authorization method for a role using the SQL statement

ALTER ROLE.

The following statement alters the CLERK role to be authorized externally:

ALTER ROLE clerk
IDENTIFIED EXTERNALLY;

Changing a User’s Default Roles
A user’s list of default roles can be set and altered using the SQL statement ALTER

USER.

See Also: See "Altering Users" on page 23-15 for more information about these

options.

Using the MAX_ENABLED_ROLES Parameter A user can enable as many roles as specified

by the initialization parameter MAX_ENABLED_ROLES. All indirectly granted roles

enabled as a result of enabling a primary role are included in this count. The database

administrator can alter this limitation by modifying the value for this parameter. Higher

values permit each user session to have more concurrently enabled roles. However, the

larger the value for this parameter, the more memory space is required on behalf of each

user session; this is because the PGA size is affected for each user session, and requires 4

bytes per role. Determine the highest number of roles that will be concurrently enabled

by any one user and use this value for the MAX_ENABLED_ROLES parameter.

Dropping Roles
In some cases, it may be appropriate to drop a role from the database. The security

domains of all users and roles granted a dropped role are immediately changed to

Granting User Privileges and Roles

Managing User Privileges and Roles 24-9

reflect the absence of the dropped role’s privileges. All indirectly granted roles of

the dropped role are also removed from affected security domains. Dropping a role

automatically removes the role from all users’ default role lists.

Because the creation of objects is not dependent on the privileges received via a role,

tables and other objects are not dropped when a role is dropped.

To drop a role, you must have the DROP ANY ROLE system privilege or have been

granted the role with the ADMIN OPTION.

You can drop a role using the SQL statement DROP ROLE.

The following statement drops the role CLERK:

DROP ROLE clerk;

Granting User Privileges and Roles
This section describes aspects of granting privileges and roles, and includes the

following topics:

■ Granting System Privileges and Roles

■ Granting Object Privileges and Roles

■ Granting Privileges on Columns

Granting System Privileges and Roles
You can grant system privileges and roles to other roles and users using the SQL

statement GRANT.

To grant a system privilege or role, you must have the ADMIN OPTION for all

system privileges and roles being granted. Also, any user with the GRANT ANY

ROLE system privilege can grant any role in a database.

The following statement grants the system privilege and the ACCTS_PAY role to the

user JWARD:

GRANT create session, accts_pay
TO jward;

Granting User Privileges and Roles

24-10 Oracle8i Administrator’s Guide

The ADMIN Option
When a user creates a role, the role is automatically granted to the creator with the

ADMIN OPTION. A grantee with the ADMIN option has several expanded

capabilities:

■ The grantee can grant or revoke the system privilege or role to or from any user

or other role in the database. (Users cannot revoke a role from themselves.)

■ The grantee can further grant the system privilege or role with the ADMIN

OPTION.

■ The grantee of a role can alter or drop the role.

In the following statement, the security administrator grants the NEW_DBA role to

MICHAEL:

GRANT new_dba TO michael WITH ADMIN OPTION;

The user MICHAEL can not only use all of the privileges implicit in the NEW_DBA

role, but can grant, revoke, or drop the NEW_DBA role as deemed necessary.

Because of these powerful capabilities, exercise caution when granting system

privileges or roles with the ADMIN OPTION. Such privileges are usually reserved

for a security administrator and rarely granted to other administrators or users of

the system.

Granting Object Privileges and Roles
You can grant object privileges to roles and users using the SQL command GRANT.

To grant an object privilege, you must fulfill one of the following conditions:

■ You own the object specified.

■ You have been granted the object privileges being granted with the GRANT

OPTION.

The following statement grants the SELECT, INSERT, and DELETE object privileges

for all columns of the EMP table to the users JFEE and TSMITH:

Note: Object privileges cannot be granted along with system

privileges and roles in the same GRANT statement.

Granting User Privileges and Roles

Managing User Privileges and Roles 24-11

GRANT select, insert, delete ON emp TO jfee, tsmith;

To grant the INSERT object privilege for only the ENAME and JOB columns of the

EMP table to the users JFEE and TSMITH, issue the following statement:

GRANT insert(ename, job) ON emp TO jfee, tsmith;

To grant all object privileges on the SALARY view to the user JFEE, use the ALL

shortcut, as shown in the following example:

GRANT ALL ON salary TO jfee;

The GRANT OPTION
The user whose schema contains an object is automatically granted all associated

object privileges with the GRANT OPTION. This special privilege allows the

grantee several expanded privileges:

■ The grantee can grant the object privilege to any users in the database, with or

without the GRANT OPTION, or to any role in the database.

■ If the grantee receives object privileges for a table with the GRANT OPTION

and the grantee has the CREATE VIEW or CREATE ANY VIEW system

privilege, the grantee can create views on the table and grant the corresponding

privileges on the view to any user or role in the database.

The GRANT OPTION is not valid when granting an object privilege to a role.

Oracle prevents the propagation of object privileges via roles so that grantees of a

role cannot propagate object privileges received by means of roles.

Note: System privileges and roles cannot be granted along with

object privileges in the same GRANT statement.

Revoking User Privileges and Roles

24-12 Oracle8i Administrator’s Guide

Granting Privileges on Columns
You can grant INSERT, UPDATE, or REFERENCES privileges on individual

columns in a table.

Grant INSERT privilege on the ACCT_NO column of the ACCOUNTS table to

SCOTT:

GRANT INSERT (acct_no)
ON accounts TO scott;

Revoking User Privileges and Roles
This section describes aspects of revoking user privileges and roles, and includes

the following topics:

■ Revoking System Privileges and Roles

■ Revoking Object Privileges and Roles

Revoking System Privileges and Roles
You can revoke system privileges and/or roles using the SQL statement REVOKE.

Any user with the ADMIN OPTION for a system privilege or role can revoke the

privilege or role from any other database user or role The revoker does not have to

be the user that originally granted the privilege or role. Also, users with the

GRANT ANY ROLE can revoke any role.

The following statement revokes the CREATE TABLE system privilege and the

ACCTS_REC role from TSMITH:

REVOKE create table, accts_rec FROM tsmith;

WARNING: Before granting a column-specific INSERT privilege,
determine if the table contains any columns on which NOT
NULL constraints are defined. Granting selective insert capability
without including the NOT NULL columns prevents the user
from inserting any rows into the table. To avoid this situation,
make sure that each NOT NULL column is either insertable or
has a non-NULL default value. Otherwise, the grantee will not be
able to insert rows into the table and will receive an error.

Revoking User Privileges and Roles

Managing User Privileges and Roles 24-13

Revoking Object Privileges and Roles
You can revoke object privileges using the SQL command REVOKE.

To revoke an object privilege, the revoker must be the original grantor of the object

privilege being revoked.

For example, assuming you are the original grantor, to revoke the SELECT and

INSERT privileges on the EMP table from the users JFEE and TSMITH, you would

issue the following statement:

REVOKE select, insert ON emp
FROM jfee, tsmith;

The following statement revokes all privileges (which were originally granted to the

role HUMAN_RESOURCE) from the table DEPT:

REVOKE ALL ON dept FROM human_resources;

Revoking Column-Selective Object Privileges
Although users can grant column-selective INSERT, UPDATE, and REFERENCES

privileges for tables and views, they cannot selectively revoke column specific

privileges with a similar REVOKE statement. Instead, the grantor must first revoke

the object privilege for all columns of a table or view, and then selectively re-grant

the column-specific privileges that should remain.

For example, assume that role HUMAN_RESOURCES has been granted the

UPDATE privilege on the DEPTNO and DNAME columns of the table DEPT. To

Note: The ADMIN OPTION for a system privilege or role cannot

be selectively revoked. The privilege or role must be revoked and

then the privilege or role re-granted without the ADMIN OPTION.

Note: This statement above would only revoke the privileges that

the grantor authorized, not the grants made by other users. The

GRANT OPTION for an object privilege cannot be selectively

revoked. The object privilege must be revoked and then re-granted

without the GRANT OPTION. Users cannot revoke object

privileges from themselves.

Revoking User Privileges and Roles

24-14 Oracle8i Administrator’s Guide

revoke the UPDATE privilege on just the DEPTNO column, you would issue the

following two statements:

REVOKE UPDATE ON dept FROM human_resources;
GRANT UPDATE (dname) ON dept TO human_resources;

The REVOKE statement revokes UPDATE privilege on all columns of the DEPT table

from the role HUMAN_RESOURCES. The GRANT statement re-grants UPDATE

privilege on the DNAME column to the role HUMAN_RESOURCES.

Revoking the REFERENCES Object Privilege
If the grantee of the REFERENCES object privilege has used the privilege to create a

foreign key constraint (that currently exists), the grantor can revoke the privilege

only by specifying the CASCADE CONSTRAINTS option in the REVOKE

statement:

REVOKE REFERENCES ON dept FROM jward CASCADE CONSTRAINTS;

Any foreign key constraints currently defined that use the revoked REFERENCES

privilege are dropped when the CASCADE CONSTRAINTS options is specified.

Effects of Revoking Privileges
Depending on the type of privilege, there may be cascading effects when a privilege

is revoked.

System Privileges
There are no cascading effects when revoking a system privilege related to DDL

operations, regardless of whether the privilege was granted with or without the

ADMIN OPTION. For example, assume the following:

1. The security administrator grants the CREATE TABLE system privilege to JFEE

with the ADMIN OPTION.

2. JFEE creates a table.

3. JFEE grants the CREATE TABLE system privilege to TSMITH.

4. TSMITH creates a table.

5. The security administrator revokes the CREATE TABLE system privilege from

JFEE.

6. JFEE’s table continues to exist. TSMITH still has the table and the CREATE

TABLE system privilege.

Revoking User Privileges and Roles

Managing User Privileges and Roles 24-15

Cascading effects can be observed when revoking a system privilege related to a

DML operation. For example, if SELECT ANY TABLE is granted to a user, and that

user has created any procedures, all procedures contained in the user’s schema

must be re-authorized before they can be used again.

Object Privileges
Revoking an object privilege may have cascading effects that should be investigated

before issuing a REVOKE statement.

■ Object definitions that depend on a DML object privilege can be affected if the

DML object privilege is revoked. For example, assume the procedure body of

the TEST procedure includes a SQL statement that queries data from the EMP

table. If the SELECT privilege on the EMP table is revoked from the owner of

the TEST procedure, the procedure can no longer be executed successfully.

■ Object definitions that require the ALTER and INDEX DDL object privileges are

not affected if the ALTER or INDEX object privilege is revoked. For example, if

the INDEX privilege is revoked from a user that created an index on someone

else’s table, the index continues to exist after the privilege is revoked.

■ When a REFERENCES privilege for a table is revoked from a user, any foreign

key integrity constraints defined by the user that require the dropped

REFERENCES privilege are automatically dropped. For example, assume that

the user JWARD is granted the REFERENCES privilege for the DEPTNO

column of the DEPT table and creates a foreign key on the DEPTNO column in

the EMP table that references the DEPTNO column. If the REFERENCES

privilege on the DEPTNO column of the DEPT table is revoked, the foreign key

constraint on the DEPTNO column of the EMP table is dropped in the same

operation.

■ The object privilege grants propagated using the GRANT OPTION are revoked

if a grantor’s object privilege is revoked. For example, assume that USER1 is

granted the SELECT object privilege with the GRANT OPTION, and grants the

SELECT privilege on EMP to USER2. Subsequently, the SELECT privilege is

revoked from USER1. This revoke is cascaded to USER2 as well. Any objects

that depended on USER1’s and USER2’s revoked SELECT privilege can also be

affected, as described in previous bullet items.

Granting to and Revoking from the User Group PUBLIC
Privileges and roles can also be granted to and revoked from the user group

PUBLIC. Because PUBLIC is accessible to every database user, all privileges and

roles granted to PUBLIC are accessible to every database user.

Granting Roles Using the Operating System or Network

24-16 Oracle8i Administrator’s Guide

Security administrators and database users should grant a privilege or role to

PUBLIC only if every database user requires the privilege or role. This

recommendation reinforces the general rule that at any given time, each database

user should only have the privileges required to accomplish the group’s current

tasks successfully.

Revoking a privilege from PUBLIC can cause significant cascading effects. If any

privilege related to a DML operation is revoked from PUBLIC (for example,

SELECT ANY TABLE, UPDATE ON emp), all procedures in the database, including

functions and packages, must be reauthorized before they can be used again. Therefore,

exercise caution when granting DML-related privileges to PUBLIC.

See Also: For more information about object dependencies, see "Managing Object

Dependencies" on page 20-23.

When Do Grants and Revokes Take Effect?
Depending on what is granted or revoked, a grant or revoke takes effect at different

times:

■ All grants/revokes of system and object privileges to anything (users, roles, and

PUBLIC) are immediately observed.

■ All grants/revokes of roles to anything (users, other roles, PUBLIC) are only

observed when a current user session issues a SET ROLE statement to re-enable

the role after the grant/revoke, or when a new user session is created after the

grant/revoke.

Granting Roles Using the Operating System or Network
This section describes aspects of granting roles via your operating system or

network, and includes the following topics:

■ Using Operating System Role Identification

■ Using Operating System Role Management

■ Granting and Revoking Roles When OS_ROLES=TRUE

■ Enabling and Disabling Roles When OS_ROLES=TRUE

■ Using Network Connections with Operating System Role Management

Instead of a security administrator explicitly granting and revoking database roles

to and from users using GRANT and REVOKE statements, the operating system

that operates Oracle can grant roles to users at connect time. Roles can be

Granting Roles Using the Operating System or Network

Managing User Privileges and Roles 24-17

administered using the operating system and passed to Oracle when a user creates

a session. As part of this mechanism, each user’s default roles and the roles granted

to a user with the ADMIN OPTION can be identified. Even if the operating system

is used to authorize users for roles, all roles must be created in the database and

privileges assigned to the role with GRANT statements.

Roles can also be granted through a network service. For information about

network roles, see Oracle8i Distributed Database Systems.

The advantage of using the operating system to identify a user’s database roles is

that privilege management for an Oracle database can be externalized. The security

facilities offered by the operating system control a user’s privileges. This option

may offer advantages of centralizing security for a number of system activities. For

example, MVS Oracle administrators may want RACF groups to identify a database

user’s roles, UNIX Oracle administrators may want UNIX groups to identify a

database user’s roles, or VMS Oracle administrators may want to use rights

identifiers to identify a database user’s roles.

The main disadvantage of using the operating system to identify a user’s database

roles is that privilege management can only be performed at the role level.

Individual privileges cannot be granted using the operating system, but can still be

granted inside the database using GRANT statements.

A secondary disadvantage of using this feature is that by default users cannot

connect to the database through the multi-threaded server, or any other network

connection, if the operating system is managing roles. However, you can change

this default; see "Using Network Connections with Operating System Role

Management" on page 24-19.

See Also: The features described in this section are available only on some

operating systems. This information is operating system-dependent; see your

operating system-specific Oracle documentation.

Using Operating System Role Identification
To operate a database so that it uses the operating system to identify each user’s

database roles when a session is created, set the initialization parameter OS_ROLES

to TRUE (and restart the instance, if it is currently running). When a user attempts

to create a session with the database, Oracle initializes the user’s security domain

using the database roles identified by the operating system.

To identify database roles for a user, each Oracle user’s operating system account

must have operating system identifiers (these may be called groups, rights

identifiers, or other similar names) that indicate which database roles are to be

Granting Roles Using the Operating System or Network

24-18 Oracle8i Administrator’s Guide

available for the user. Role specification can also indicate which roles are the default

roles of a user and which roles are available with the ADMIN OPTION. No matter

which operating system is used, the role specification at the operating system level

follows the format:

ORA_<ID>_<ROLE>[_[D][A]]
where:

ID
The definition of ID varies on different operating systems. For example, on VMS, ID

is the instance identifier of the database; on MVS, it is the machine type; on UNIX, it

is the system ID.

D
This optional character indicates that this role is to be a default role of the database

user.

A
This optional character indicates that this role is to be granted to the user with the

ADMIN OPTION. This allows the user to grant the role to other roles only. (Roles

cannot be granted to users if the operating system is used to manage roles.)

For example, an operating system account might have the following roles identified

in its profile:

ORA_PAYROLL_ROLE1
ORA_PAYROLL_ROLE2_A
ORA_PAYROLL_ROLE3_D
ORA_PAYROLL_ROLE4_DA

When the corresponding user connects to the PAYROLL instance of Oracle, ROLE3

and ROLE4 are defaults, while ROLE2 and ROLE4 are available with the ADMIN

OPTION.

Using Operating System Role Management
When you use operating system managed roles, it is important to note that database

roles are being granted to an operating system user. Any database user to which the

OS user is able to connect will have the authorized database roles enabled. For this

reason, you should consider defining all Oracle users as IDENTIFIED

Note: If either the D or A characters are specified, they must be

preceded by an underscore.

Granting Roles Using the Operating System or Network

Managing User Privileges and Roles 24-19

EXTERNALLY if you are using OS_ROLES = TRUE, so that the database accounts

are tied to the OS account that was granted privileges.

Granting and Revoking Roles When OS_ROLES=TRUE
If OS_ROLES is set to TRUE, the operating system completely manages the grants

and revokes of roles to users. Any previous grants of roles to users via GRANT

statements do not apply; however, they are still listed in the data dictionary. Only the role

grants made at the operating system level to users apply. Users can still grant privileges

to roles and users.

Enabling and Disabling Roles When OS_ROLES=TRUE
If OS_ROLES is set to TRUE, any role granted by the operating system can be

dynamically enabled using the SET ROLE command. If the role was defined to

require a password or operating system authorization, that still applies. However,

any role not identified in a user’s operating system account cannot be specified in a

SET ROLE statement, even if a role has been granted using a GRANT statement

when OS_ROLES = FALSE. (If you specify such a role, Oracle ignores it.)

When OS_ROLES = TRUE, a user can enable as many roles as specified by the

parameter MAX_ENABLED_ROLES.

Using Network Connections with Operating System Role Management
If you want to have the operating system manage roles, by default users cannot

connect to the database through the multi-threaded server. This restriction is the

default because a remote user could impersonate another operating system user

over a non-secure connection.

If you are not concerned with this security risk and want to use operating system

role management with the multi-threaded server, or any other network connection,

set the parameter REMOTE_OS_ROLES in the database’s parameter file to TRUE.

The change will take effect the next time you start the instance and mount the

database. (The default setting of this parameter is FALSE.)

Note: If the operating system grants a role to a user with the

ADMIN OPTION, the user can grant the role only to other roles.

Listing Privilege and Role Information

24-20 Oracle8i Administrator’s Guide

Listing Privilege and Role Information
To list the grants made for objects, a user can query the following data dictionary

views:

■ ALL_COL_PRIVS, USER_COL_PRIVS, DBA_COL_PRIVS

■ ALL_COL_PRIVS_MADE, USER_COL_PRIVS_MADE

■ ALL_COL_PRIVS_RECD, USER_COL_PRIVS_RECD

■ ALL_TAB_PRIVS, USER_TAB_PRIVS, DBA_TAB_PRIVS

■ ALL_TAB_PRIVS_MADE, USER_TAB_PRIVS_MADE

■ ALL_TAB_PRIVS_RECD, USER_TAB_PRIVS_RECD

■ DBA_ROLES

■ USER_ROLE_PRIVS, DBA_ROLE_PRIVS

■ USER_SYS_PRIVS, DBA_SYS_PRIVS

■ COLUMN_PRIVILEGES

■ ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, ROLE_TAB_PRIVS

■ SESSION_PRIVS, SESSION_ROLES

See Also: See the Oracle8i Reference for a detailed description of these data dictionary

views.

Listing Privilege and Role Information: Examples
For the following examples, assume the following statements are issued:

CREATE ROLE security_admin IDENTIFIED BY honcho;

GRANT create profile, alter profile, drop profile,
 create role, drop any role, grant any role, audit any,
 audit system, create user, become user, alter user, drop user
 TO security_admin WITH ADMIN OPTION;

GRANT SELECT, DELETE ON sys.aud$ TO security_admin;

GRANT security_admin, create session TO swilliams;

GRANT security_admin TO system_administrator;

GRANT create session TO jward;

Listing Privilege and Role Information

Managing User Privileges and Roles 24-21

GRANT SELECT, DELETE ON emp TO jward;

GRANT INSERT (ename, job) ON emp TO swilliams, jward;

Listing All System Privilege Grants
The following query indicates all system privilege grants made to roles and users:

SELECT * FROM sys.dba_sys_privs;

GRANTEE PRIVILEGE ADM
-------------- --------------------------------- ---
SECURITY_ADMIN ALTER PROFILE YES
SECURITY_ADMIN ALTER USER YES
SECURITY_ADMIN AUDIT ANY YES
SECURITY_ADMIN AUDIT SYSTEM YES
SECURITY_ADMIN BECOME USER YES
SECURITY_ADMIN CREATE PROFILE YES
SECURITY_ADMIN CREATE ROLE YES
SECURITY_ADMIN CREATE USER YES
SECURITY_ADMIN DROP ANY ROLE YES
SECURITY_ADMIN DROP PROFILE YES
SECURITY_ADMIN DROP USER YES
SECURITY_ADMIN GRANT ANY ROLE YES
SWILLIAMS CREATE SESSION NO
JWARD CREATE SESSION NO

Listing All Role Grants
The following query returns all the roles granted to users and other roles:

SELECT * FROM sys.dba_role_privs;

GRANTEE GRANTED_ROLE ADM
------------------ ------------------------------------ ---
SWILLIAMS SECURITY_ADMIN NO

Listing Object Privileges Granted to a User
The following query returns all object privileges (not including column-specific

privileges) granted to the specified user:

SELECT table_name, privilege, grantable FROM sys.dba_tab_privs
 WHERE grantee = ’JWARD’;

TABLE_NAME PRIVILEGE GRANTABLE
----------- ------------ ----------
EMP SELECT NO

Listing Privilege and Role Information

24-22 Oracle8i Administrator’s Guide

EMP DELETE NO

To list all the column-specific privileges that have been granted, use the following

query:

SELECT grantee, table_name, column_name, privilege
 FROM sys.dba_col_privs;

GRANTEE TABLE_NAME COLUMN_NAME PRIVILEGE
----------- ------------ ------------- --------------
SWILLIAMS EMP ENAME INSERT
SWILLIAMS EMP JOB INSERT
JWARD EMP NAME INSERT
JWARD EMP JOB INSERT

Listing Privilege and Role Information

Managing User Privileges and Roles 24-23

Listing the Current Privilege Domain of Your Session
The following query lists all roles currently enabled for the issuer:

SELECT * FROM session_roles;

If SWILLIAMS has enabled the SECURITY_ADMIN role and issues this query,

Oracle returns the following information:

ROLE

SECURITY_ADMIN

The following query lists all system privileges currently available in the issuer’s

security domain, both from explicit privilege grants and from enabled roles:

SELECT * FROM session_privs;

If SWILLIAMS has the SECURITY_ADMIN role enabled and issues this query,

Oracle returns the following results:

PRIVILEGE
--
AUDIT SYSTEM
CREATE SESSION
CREATE USER
BECOME USER
ALTER USER
DROP USER
CREATE ROLE
DROP ANY ROLE
GRANT ANY ROLE
AUDIT ANY
CREATE PROFILE
ALTER PROFILE
DROP PROFILE

If the SECURITY_ADMIN role is disabled for SWILLIAMS, the first query would

have returned no rows, while the second query would only return a row for the

CREATE SESSION privilege grant.

Listing Roles of the Database
The DBA_ROLES data dictionary view can be used to list all roles of a database and

the authentication used for each role. For example, the following query lists all the

roles in the database:

SELECT * FROM sys.dba_roles;

Listing Privilege and Role Information

24-24 Oracle8i Administrator’s Guide

ROLE PASSWORD
---------------- --------
CONNECT NO
RESOURCE NO
DBA NO
SECURITY_ADMIN YES

Listing Information About the Privilege Domains of Roles
The ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, and ROLE_TAB_PRIVS data

dictionary views contain information on the privilege domains of roles.

For example, the following query lists all the roles granted to the SYSTEM_ADMIN

role:

SELECT granted_role, admin_option
 FROM role_role_privs
 WHERE role = ’SYSTEM_ADMIN’;
GRANTED_ROLE ADM
---------------- ----
SECURITY_ADMIN NO

The following query lists all the system privileges granted to the

SECURITY_ADMIN role:

SELECT * FROM role_sys_privs WHERE role = ’SECURITY_ADMIN’;

ROLE PRIVILEGE ADM
----------------------- ----------------------------- ---
SECURITY_ADMIN ALTER PROFILE YES
SECURITY_ADMIN ALTER USER YES
SECURITY_ADMIN AUDIT ANY YES
SECURITY_ADMIN AUDIT SYSTEM YES
SECURITY_ADMIN BECOME USER YES
SECURITY_ADMIN CREATE PROFILE YES
SECURITY_ADMIN CREATE ROLE YES
SECURITY_ADMIN CREATE USER YES
SECURITY_ADMIN DROP ANY ROLE YES
SECURITY_ADMIN DROP PROFILE YES
SECURITY_ADMIN DROP USER YES
SECURITY_ADMIN GRANT ANY ROLE YES

Listing Privilege and Role Information

Managing User Privileges and Roles 24-25

The following query lists all the object privileges granted to the

SECURITY_ADMIN role:

SELECT table_name, privilege FROM role_tab_privs
 WHERE role = ’SECURITY_ADMIN’;

TABLE_NAME PRIVILEGE
--------------------------- ----------------
AUD$ DELETE
AUD$ SELECT

Listing Privilege and Role Information

24-26 Oracle8i Administrator’s Guide

Auditing Database Use 25-1

25
Auditing Database Use

This chapter describes how to use the Oracle auditing facilities, and includes the

following topics:

■ Guidelines for Auditing

■ Creating and Deleting the Database Audit Trail Views

■ Managing Audit Trail Information

■ Viewing Database Audit Trail Information

■ Auditing Through Database Triggers

Guidelines for Auditing

25-2 Oracle8i Administrator’s Guide

Guidelines for Auditing
This section describes guidelines for auditing and includes the following topics:

■ Audit via the Database or Operating System

■ Keep Audited Information Manageable

Audit via the Database or Operating System
The data dictionary of every database has a table named SYS.AUD$, commonly

referred to as the database audit trail.

Either the database or operating system audit trail can store all audit records

generated as the result of statement, privilege, or object auditing.

Your operating system may or may not support database auditing to the operating

system audit trail. If this option is available, consider the advantages and

disadvantages of using either the database or operating system auditing trail to

store database audit records.

Using the database audit trail offers the following advantages:

■ You can view selected portions of the audit trail with the predefined audit trail

views of the data dictionary.

■ You can use Oracle tools (such as Oracle Reports) to generate audit reports.

Alternatively, your operating system audit trail may allow you to consolidate audit

records from multiple sources including Oracle and other applications. Therefore,

examining system activity might be more efficient because all audit records are in

one place.

See Also: Your operating system may also contain an audit trail that stores audit

records generated by the operating system auditing facility. However, this facility is

operating system-dependent. See your operating system-specific Oracle

documentation.

Keep Audited Information Manageable
Although auditing is relatively inexpensive, limit the number of audited events as

much as possible. This will minimize the performance impact on the execution of

statements that are audited, and minimize the size of the audit trail.

Use the following general guidelines when devising an auditing strategy:

■ Evaluate your purpose for auditing.

Guidelines for Auditing

Auditing Database Use 25-3

After you have a clear understanding of the reasons for auditing, you can

devise an appropriate auditing strategy and avoid unnecessary auditing.

For example, suppose you are auditing to investigate suspicious database

activity. This information by itself is not specific enough. What types of

suspicious database activity do you suspect or have you noticed? A more

focused auditing purpose might be to audit unauthorized deletions from

arbitrary tables in the database. This purpose narrows the type of action being

audited and the type of object being affected by the suspicious activity.

■ Audit knowledgeably.

Audit the minimum number of statements, users, or objects required to get the

targeted information. This prevents unnecessary audit information from

cluttering the meaningful information and consuming valuable space in the

SYSTEM tablespace. Balance your need to gather sufficient security information

with your ability to store and process it.

For example, if you are auditing to gather information about database activity,

determine exactly what types of activities you are tracking, audit only the

activities of interest, and audit only for the amount of time necessary to gather

the information you desire. Do not audit objects if you are only interested in

each session’s logical I/O information.

Auditing Suspicious Database Activity
When you audit to monitor suspicious database activity, use the following

guidelines:

■ Audit generally, then specifically.

When starting to audit for suspicious database activity, it is common that not

much information is available to target specific users or schema objects.

Therefore, audit options must be set more generally at first. Once preliminary

audit information is recorded and analyzed, the general audit options should be

turned off and more specific audit options enabled. This process should

continue until enough evidence is gathered to make concrete conclusions about

the origin of the suspicious database activity.

■ Protect the audit trail.

When auditing for suspicious database activity, protect the audit trail so that

audit information cannot be added, changed, or deleted without being audited.

See Also: For more information about the audit trail, see "Protecting the Audit

Trail" on page 25-16.

Creating and Deleting the Database Audit Trail Views

25-4 Oracle8i Administrator’s Guide

Auditing Normal Database Activity
When your purpose for auditing is to gather historical information about particular

database activities, use the following guidelines:

■ Audit only pertinent actions.

To avoid cluttering meaningful information with useless audit records and

reduce the amount of audit trail administration, only audit the targeted

database activities.

■ Archive audit records and purge the audit trail.

After you have collected the required information, archive the audit records of

interest and purge the audit trail of this information.

Creating and Deleting the Database Audit Trail Views
This section describes how to create and delete database audit trail views, and

includes the following topics:

■ Creating the Audit Trail Views

■ Deleting the Audit Trail Views

The database audit trail (SYS.AUD$) is a single table in each Oracle database’s data

dictionary. To help you view meaningful auditing information in this table, several

predefined views are provided. They must be created for you to use auditing; you

can later delete them if you decide not to use auditing.

Audit trail views are created automatically when you run the script

CATALOG.SQL.

Creating the Audit Trail Views
If you decide to use auditing, create the auditing views by connecting as SYS and

running the script CATAUDIT.SQL. This script creates the following views:

■ STMT_AUDIT_OPTION_MAP

■ AUDIT_ACTIONS

■ ALL_DEF_AUDIT_OPTS

■ DBA_STMT_AUDIT_OPTS

■ USER_OBJ_AUDIT_OPTS, DBA_OBJ_AUDIT_OPTS

■ USER_AUDIT_TRAIL, DBA_AUDIT_TRAIL

Managing Audit Trail Information

Auditing Database Use 25-5

■ USER_AUDIT_SESSION, DBA_AUDIT_SESSION

■ USER_AUDIT_STATEMENT, DBA_AUDIT_STATEMENT

■ USER_AUDIT_OBJECT, DBA_AUDIT_OBJECT

■ DBA_AUDIT_EXISTS

■ USER_AUDIT_SESSION, DBA_AUDIT_SESSION

■ USER_TAB_AUDIT_OPTS

See Also: For information about these views, see the Oracle8i Reference.

For examples of audit information interpretations, see "Viewing Database Audit

Trail Information" on page 25-17.

Deleting the Audit Trail Views
If you disable auditing and no longer need the audit trail views, delete them by

connecting to the database as SYS and running the script file CATNOAUD.SQL.

The name and location of the CATNOAUD.SQL script are operating system-

dependent.

Managing Audit Trail Information
This section describes various aspects of managing audit trail information, and

includes the following topics:

■ Events Audited by Default

■ Setting Auditing Options

■ Enabling and Disabling Database Auditing

■ Controlling the Growth and Size of the Audit Trail

■ Protecting the Audit Trail

Depending on the events audited and the auditing options set, the audit trail

records can contain different types of information. The following information is

always included in each audit trail record, provided that the information is

meaningful to the particular audit action:

■ user name

■ session identifier

■ terminal identifier

Managing Audit Trail Information

25-6 Oracle8i Administrator’s Guide

■ name of the object accessed

■ operation performed or attempted

■ completion code of the operation

■ date and time stamp

Audit trail records written to the operating system audit trail contain some

encodings that are not readable. These can be decoded as follows:

Action Code
This describes the operation performed or attempted. The AUDIT_ACTIONS data

dictionary table contains a list of these codes and their descriptions.

Privileges Used
This describes any system privileges used to perform the operation. The

SYSTEM_PRIVILEGE_MAP table lists all of these codes, and their descriptions.

Completion Code
This describes the result of the attempted operation. Successful operations return a

value of zero, while unsuccessful operations return the Oracle error code describing

why the operation was unsuccessful.

Managing Audit Trail Information

Auditing Database Use 25-7

Events Audited by Default
Regardless of whether database auditing is enabled,Oracle will always audit certain

database-related actions into the operating system audit trail. These events include

the following:

On operating systems that do not make an audit trail accessible to Oracle, these

audit trail records are placed in an Oracle audit trail file in the same directory as

background process trace files.

Setting Auditing Options
Depending on the auditing options set, audit records can contain different types of

information. However, all auditing options generate the following information:

■ the user that executed the audited statement

■ the action code (a number) that indicates the audited statement executed by the

user

■ the object or objects referenced in the audited statement

■ the date and time that the audited statement was executed

The audit trail does not store information about any data values that might be

involved in the audited statement. For example, old and new data values of

updated rows are not stored when an UPDATE statement is audited. However, this

instance startup An audit record is generated that lists the OS user
starting the instance, the user’s terminal identifier, the
date and time stamp, and whether database auditing
was enabled or disabled. This is stored in the OS audit
trail because the database audit trail is not available
until after startup has successfully completed.
Recording the state of database auditing at startup
also prevents an administrator from restarting a
database with database auditing disabled (so they can
perform unaudited actions).

instance shutdown An audit record is generated that lists the OS user
shutting down the instance, the user’s terminal
identifier, the date and time stamp.

connections to the
database with
administrator
privileges

An audit record is generated that lists the OS user
connecting to Oracle as SYSOPER or SYSDBA, to
provide accountability of users with administrator
privileges.

Managing Audit Trail Information

25-8 Oracle8i Administrator’s Guide

specialized type of auditing can be performed on DML statements involving tables

by using database triggers.

Oracle allows you to set audit options at three levels:

See Also: For examples of trigger usage for this specialized type of auditing, see

"Auditing Through Database Triggers" on page 25-20.

Statement Audit Options
Valid statement audit options that can be included in AUDIT and NOAUDIT

statements are listed in the Oracle8i SQL Reference.

Shortcuts for Statement Audit Options Shortcuts are provided so that you can specify

several related statement options with one word.

Shortcuts are not statement options themselves; rather, they are ways of specifying

sets of related statement options with one word in AUDIT and NOAUDIT

statements. Shortcuts for system privileges and statement options are detailed in the

Oracle8i SQL Reference.

Auditing Connections and Disconnections
The SESSION statement option (and CONNECT shortcut) is unique because it does

not generate an audit record when a particular type of statement is issued; this

option generates a single audit record for each session created by connections to an

instance. An audit record is inserted into the audit trail at connect time and updated

at disconnect time. Cumulative information about a session such as connection

time, disconnection time, logical and physical I/Os processed, and more is stored in

a single audit record that corresponds to the session.

See Also: The Oracle8i SQL Reference also lists additional audit options not covered

by the shortcuts.

statement audits on the type of SQL statement used, such as any
SQL statement on a table (which records each CREATE,
TRUNCATE, and DROP TABLE statement)

privilege audits use of a particular system privilege, such as
CREATE TABLE

object audits specific statements on specific objects, such as
ALTER TABLE on the EMP table

Managing Audit Trail Information

Auditing Database Use 25-9

Privilege Audit Options
Privilege audit options exactly match the corresponding system privileges. For

example, the option to audit use of the DELETE ANY TABLE privilege is DELETE

ANY TABLE. To turn this option on, you would use a statement similar to the

following example:

AUDIT DELETE ANY TABLE
 BY ACCESS
 WHENEVER NOT SUCCESSFUL;

Oracle’s system privileges are listed in "System Privileges" on page 24-2.

Object Audit Options
The Oracle8i SQL Reference lists valid object audit options and the schema object

types for which each option is available.

Shortcut for Object Audit Options The ALL shortcut can be used to specify all available

object audit options for a schema object. This shortcut is not an option itself; rather,

it is a way of specifying all object audit options with one word in AUDIT and

NOAUDIT statements.

Enabling Audit Options
The SQL statement AUDIT turns on statement and privilege audit options, and

object audit options. To use it to set statement and privilege options, you must have

the AUDIT SYSTEM privilege. To use it to set object audit options, you must own

the object to be audited or have the AUDIT ANY privilege. Audit statements that

set statement and privilege audit options can include a BY clause to specify a list of

users or application proxies to limit the scope of the statement and privilege audit

options.

You can set any auditing option, and specify the following conditions for auditing:

■ WHENEVER SUCCESSFUL/WHENEVER NOT SUCCESSFUL

■ BY SESSION/BY ACCESS

A new database session picks up auditing options from the data dictionary when

the session is created. These auditing options remain in force for the duration of the

database connection. Setting new system or object auditing options causes all

Managing Audit Trail Information

25-10 Oracle8i Administrator’s Guide

subsequent database sessions to use these options; existing sessions will continue

using the audit options in place at session creation.

See Also: For a complete description of the AUDIT command, see the Oracle8i SQL
Reference.

For more information about enabling and disabling auditing, see "Enabling and

Disabling Database Auditing" on page 25-13.

Enabling Statement Privilege Auditing To audit all successful and unsuccessful

connections to and disconnections from the database, regardless of user, BY

SESSION (the default and only value for this option), enter the following statement:

AUDIT SESSION;

You can set this option selectively for individual users also, as in the next example:

AUDIT SESSION
BY scott, lori;

To audit all successful and unsuccessful uses of the DELETE ANY TABLE system

privilege, enter the following statement:

AUDIT DELETE ANY TABLE;

To audit all unsuccessful SELECT, INSERT, and DELETE statements on all tables

and unsuccessful uses of the EXECUTE PROCEDURE system privilege, by all

database users, and by individual audited statement, issue the following statement:

AUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE,
 EXECUTE PROCEDURE
 BY ACCESS
 WHENEVER NOT SUCCESSFUL;

The AUDIT SYSTEM system privilege is required to set any statement or privilege

audit option. Normally, the security administrator is the only user granted this

system privilege.

WARNING: The AUDIT statement only specifies auditing
options; it does not enable auditing as a whole. To turn auditing
on and control whether Oracle generates audit records based on
the audit options currently set, set the parameter AUDIT_TRAIL
in the database’s parameter file.

Managing Audit Trail Information

Auditing Database Use 25-11

Enabling Object Auditing To audit all successful and unsuccessful DELETE statements

on the SCOTT.EMP table, BY SESSION (the default value), enter the following

statement:

AUDIT DELETE ON scott.emp;

To audit all successful SELECT, INSERT, and DELETE statements on the DEPT table

owned by user JWARD, BY ACCESS, enter the following statement:

AUDIT SELECT, INSERT, DELETE
 ON jward.dept
 BY ACCESS
 WHENEVER SUCCESSFUL;

To set the default object auditing options to audit all unsuccessful SELECT

statements, BY SESSION (the default), enter the following statement:

AUDIT SELECT
 ON DEFAULT
 WHENEVER NOT SUCCESSFUL;

A user can set any object audit option for the objects contained in the user’s schema.

The AUDIT ANY system privilege is required to set an object audit option for an

object contained in another user’s schema or to set the default object auditing

options; normally, the security administrator is the only user granted this system

privilege.

Disabling Audit Options
The NOAUDIT command turns off the various audit options of Oracle. Use it to

reset statement and privilege audit options, and object audit options. A NOAUDIT

statement that sets statement and privilege audit options can include the BY USER

option to specify a list of users to limit the scope of the statement and privilege

audit options.

You can use a NOAUDIT statement to disable an audit option selectively using the

WHENEVER clause. If the clause is not specified, the auditing option is disabled

entirely, for both successful and unsuccessful cases.

Managing Audit Trail Information

25-12 Oracle8i Administrator’s Guide

The BY SESSION/BY ACCESS option pair is not supported by the NOAUDIT

command; audit options, no matter how they were turned on, are turned off by an

appropriate NOAUDIT statement.

See Also: For a complete syntax listing of the NOAUDIT command, see the Oracle8i
SQL Reference.

Also see "Enabling and Disabling Database Auditing" on page 25-13.

Disabling Statement and Privilege Auditing
The following statements turn off the corresponding audit options:

NOAUDIT session;
NOAUDIT session BY scott, lori;
NOAUDIT DELETE ANY TABLE;
NOAUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE,
 EXECUTE PROCEDURE;

The following statements turn off all statement (system) and privilege audit

options:

NOAUDIT ALL;
NOAUDIT ALL PRIVILEGES;

To disable statement or privilege auditing options, you must have the AUDIT

SYSTEM system privilege.

Disabling Object Auditing The following statements turn off the corresponding

auditing options:

NOAUDIT DELETE
 ON emp;
NOAUDIT SELECT, INSERT, DELETE
 ON jward.dept;

Furthermore, to turn off all object audit options on the EMP table, enter the

following statement:

NOAUDIT ALL

WARNING: The NOAUDIT statement only specifies auditing
options; it does not disable auditing as a whole. To turn auditing
off and stop Oracle from generating audit records, even though
you have audit options currently set, set the parameter
AUDIT_TRAIL in the database’s parameter file.

Managing Audit Trail Information

Auditing Database Use 25-13

 ON emp;

Disabling Default Object Audit Options To turn off all default object audit options, enter

the following statement:

NOAUDIT ALL
 ON DEFAULT;

Note that all schema objects created before this NOAUDIT statement is issued

continue to use the default object audit options in effect at the time of their creation,

unless overridden by an explicit NOAUDIT statement after their creation.

To disable object audit options for a specific object, you must be the owner of the

schema object. To disable the object audit options of an object in another user’s

schema or to disable default object audit options, you must have the AUDIT ANY

system privilege. A user with privileges to disable object audit options of an object

can override the options set by any user.

Enabling and Disabling Database Auditing
Any authorized database user can set statement, privilege, and object auditing

options at any time, but Oracle does not generate and store audit records in the

audit trail unless database auditing is enabled. The security administrator is

normally responsible for this operation.

Database auditing is enabled and disabled by the AUDIT_TRAIL initialization

parameter in the database’s parameter file. The parameter can be set to the

following values:

After you have edited the parameter file, restart the database instance to enable or

disable database auditing as intended.

DB enables database auditing and directs all
audit records to the database audit trail

OS enables database auditing and directs all
audit records to the operating system
audit trail

NONE disables auditing (This value is the
default.)

Managing Audit Trail Information

25-14 Oracle8i Administrator’s Guide

See Also: For more information about editing parameter files, see the Oracle8i
Reference.

Controlling the Growth and Size of the Audit Trail
If the audit trail becomes completely full and no more audit records can be inserted,

audited statements cannot be successfully executed until the audit trail is purged.

Warnings are returned to all users that issue audited statements. Therefore, the

security administrator must control the growth and size of the audit trail.

When auditing is enabled and audit records are being generated, the audit trail

grows according to two factors:

■ the number of audit options turned on

■ the frequency of execution of audited statements

To control the growth of the audit trail, you can use the following methods:

■ Enable and disable database auditing. If it is enabled, audit records are

generated and stored in the audit trail; if it is disabled, audit records are not

generated.

■ Be very selective about the audit options that are turned on. If more selective

auditing is performed, useless or unnecessary audit information is not

generated and stored in the audit trail.

■ Tightly control the ability to perform object auditing. This can be done two

different ways:

– A security administrator owns all objects and the AUDIT ANY system

privilege is never granted to any other user. Alternatively, all schema

objects can belong to a schema for which the corresponding user does not

have CREATE SESSION privilege.

– All objects are contained in schemas that do not correspond to real database

users (that is, the CREATE SESSION privilege is not granted to the

corresponding user) and the security administrator is the only user granted

the AUDIT ANY system privilege.

In both scenarios, object auditing is controlled entirely by the security

administrator.

The maximum size of the database audit trail (SYS.AUD$ table) is predetermined

during database creation. By default, up to 99 extents, each 10K in size, can be

allocated for this table.

Managing Audit Trail Information

Auditing Database Use 25-15

You cannot move SYS.AUD$ to another tablespace as a means of controlling the

growth and size of the audit trail. However, you can modify the default storage

parameters (except INITIAL) in SYS.AUD$.

See Also: If you are directing audit records to the operating system audit trail, see

your operating system-specific Oracle documentation for more information about

managing the operating system audit trail.

For more details on the SYS.AUD$ storage parameters, see the Oracle8i Reference.

Purging Audit Records from the Audit Trail
After auditing is enabled for some time, the security administrator may want to

delete records from the database audit trail both to free audit trail space and to

facilitate audit trail management.

For example, to delete all audit records from the audit trail, enter the following

statement:

DELETE FROM sys.aud$;

Alternatively, to delete all audit records from the audit trail generated as a result of

auditing the table EMP, enter the following statement:

DELETE FROM sys.aud$
 WHERE obj$name=’EMP’;

If audit trail information must be archived for historical purposes, the security

administrator can copy the relevant records to a normal database table (for

example, using "INSERT INTO table SELECT ... FROM sys.aud$...") or export the

audit trail table to an operating system file.

Only the user SYS, a user who has the DELETE ANY TABLE privilege, or a user to

whom SYS has granted DELETE privilege on SYS.AUD$ can delete records from the

database audit trail.

See Also: For information about exporting tables, see Oracle8i Utilities.

Note: If the audit trail is completely full and connections are being

audited (that is, if the SESSION option is set), typical users cannot

connect to the database because the associated audit record for the

connection cannot be inserted into the audit trail. In this case, the

security administrator must connect as SYS (operations by SYS are

not audited) and make space available in the audit trail.

Managing Audit Trail Information

25-16 Oracle8i Administrator’s Guide

Reducing the Size of the Audit Trail
As with any database table, after records are deleted from the database audit trail,

the extents allocated for this table still exist.

If the database audit trail has many extents allocated for it, but many of them are

not being used, the space allocated to the database audit trail can be reduced using

the following steps:

1. If you want to save information currently in the audit trail, copy it to another

database table or export it using the EXPORT utility.

2. Connect as with administrator privileges.

3. Truncate SYS.AUD$ using the TRUNCATE command.

4. Reload archived audit trail records generated from Step 1.

The new version of SYS.AUD$ is allocated only as many extents as are necessary to

contain current audit trail records.

Protecting the Audit Trail
When auditing for suspicious database activity, protect the integrity of the audit

trail’s records to guarantee the accuracy and completeness of the auditing

information.

To protect the database audit trail from unauthorized deletions, grant the DELETE

ANY TABLE system privilege to security administrators only.

To audit changes made to the database audit trail, use the following statement:

AUDIT INSERT, UPDATE, DELETE
 ON sys.aud$
 BY ACCESS;

Audit records generated as a result of object audit options set for the SYS.AUD$

table can only be deleted from the audit trail by someone connected with

administrator privileges, which itself has protection against unauthorized use. As a

final measure of protecting the audit trail, any operation performed while

connected with administrator privileges is audited in the operating system audit

trail, if available.

Note: SYS.AUD$ is the only SYS object that should ever be

directly modified.

Viewing Database Audit Trail Information

Auditing Database Use 25-17

See Also: For more information about the availability of an operating system audit

trail and possible uses, see your operating system-specific Oracle documentation.

Viewing Database Audit Trail Information
This section offers examples that demonstrate how to examine and interpret the

information in the audit trail, and includes the following topics:

■ Listing Active Statement Audit Options

■ Listing Active Privilege Audit Options

■ Listing Active Object Audit Options for Specific Objects

■ Listing Default Object Audit Options

■ Listing Audit Records

■ Listing Audit Records for the AUDIT SESSION Option

You may have to audit a database for the following suspicious activities:

■ Passwords, tablespace settings, and quotas for some database users are being

altered without authorization.

■ A high number of deadlocks are occurring, most likely because of users

acquiring exclusive table locks.

■ Rows are arbitrarily being deleted from the EMP table in SCOTT’s schema.

As an example, say that you suspect the users JWARD and SWILLIAMS of several

of these detrimental actions. The database administrator may then issue the

following statements (in order):

AUDIT ALTER, INDEX, RENAME ON DEFAULT
 BY SESSION;
CREATE VIEW scott.employee AS SELECT * FROM scott.emp;
AUDIT SESSION BY jward, swilliams;
AUDIT ALTER USER;
AUDIT LOCK TABLE
 BY ACCESS
 WHENEVER SUCCESSFUL;
AUDIT DELETE ON scott.emp
 BY ACCESS
 WHENEVER SUCCESSFUL;

The following statements are subsequently issued by the user JWARD:

ALTER USER tsmith QUOTA 0 ON users;
DROP USER djones;

Viewing Database Audit Trail Information

25-18 Oracle8i Administrator’s Guide

The following statements are subsequently issued by the user SWILLIAMS:

LOCK TABLE scott.emp IN EXCLUSIVE MODE;
DELETE FROM scott.emp WHERE mgr = 7698;
ALTER TABLE scott.emp ALLOCATE EXTENT (SIZE 100K);
CREATE INDEX scott.ename_index ON scott.emp (ename);
CREATE PROCEDURE scott.fire_employee (empid NUMBER) AS
 BEGIN
 DELETE FROM scott.emp WHERE empno = empid;
 END;
/

EXECUTE scott.fire_employee(7902);

The following sections show the information that can be listed using the audit trail

views in the data dictionary.

Listing Active Statement Audit Options
The following query returns all the statement audit options that are set:

SELECT * FROM sys.dba_stmt_audit_opts;

USER_NAME AUDIT_OPTION SUCCESS FAILURE
-------------------- ------------------- ---------- ---------
JWARD SESSION BY SESSION BY SESSION
SWILLIAMS SESSION BY SESSION BY SESSION
 LOCK TABLE BY ACCESS NOT SET

Notice that the view reveals the statement audit options set, whether they are set for

success or failure (or both), and whether they are set for BY SESSION or BY

ACCESS.

Listing Active Privilege Audit Options
The following query returns all the privilege audit options that are set:

SELECT * FROM sys.dba_priv_audit_opts;

USER_NAME PRIVILEGE SUCCESS FAILURE
------------------- -------------------- --------- ----------
ALTER USER BY SESSION BY SESSION

Viewing Database Audit Trail Information

Auditing Database Use 25-19

Listing Active Object Audit Options for Specific Objects
The following query returns all audit options set for any objects contained in

SCOTT’s schema:

SELECT * FROM sys.dba_obj_audit_opts
 WHERE owner = ’SCOTT’ AND object_name LIKE ’EMP%’;

OWNER OBJECT_NAME OBJECT_TY ALT AUD COM DEL GRA IND INS LOC ...
----- ----------- --------- --- --- --- --- --- --- --- --- ...
SCOTT EMP TABLE S/S -/- -/- A/- -/- S/S -/- -/- ...
SCOTT EMPLOYEE VIEW -/- -/- -/- A/- -/- S/S -/- -/- ...

Notice that the view returns information about all the audit options for the specified

object. The information in the view is interpreted as follows:

■ The character "-" indicates that the audit option is not set.

■ The character "S" indicates that the audit option is set, BY SESSION.

■ The character "A" indicates that the audit option is set, BY ACCESS.

■ Each audit option has two possible settings, WHENEVER SUCCESSFUL and

WHENEVER NOT SUCCESSFUL, separated by "/". For example, the DELETE

audit option for SCOTT.EMP is set BY ACCESS for successful delete statements

and not set at all for unsuccessful delete statements.

Listing Default Object Audit Options
The following query returns all default object audit options:

SELECT * FROM all_def_audit_opts;

ALT AUD COM DEL GRA IND INS LOC REN SEL UPD REF EXE
--- --- --- --- --- --- --- --- --- --- --- --- ---
S/S -/- -/- -/- -/- S/S -/- -/- S/S -/- -/- -/- -/-

Notice that the view returns information similar to the USER_OBJ_AUDIT_OPTS

and DBA_OBJ_AUDIT_OPTS views (see previous example).

Listing Audit Records
The following query lists audit records generated by statement and object audit

options:

 SELECT * FROM sys.dba_audit_object;

Auditing Through Database Triggers

25-20 Oracle8i Administrator’s Guide

Listing Audit Records for the AUDIT SESSION Option
The following query lists audit information corresponding to the AUDIT SESSION

statement audit option:

SELECT username, logoff_time, logoff_lread, logoff_pread,
 logoff_lwrite, logoff_dlock
 FROM sys.dba_audit_session;

USERNAME LOGOFF_TI LOGOFF_LRE LOGOFF_PRE LOGOFF_LWR LOGOFF_DLO
---------- --------- ---------- ---------- ---------- ----------
JWARD 02-AUG-91 53 2 24 0
SWILLIAMS 02-AUG-91 3337 256 630 0

Auditing Through Database Triggers
You can use triggers to supplement the built-in auditing features of Oracle.

Although you can write triggers to record information similar to that recorded by

the AUDIT command, do so only when you need more detailed audit information.

For example, you can use triggers to provide value-based auditing on a per-row

basis for tables.

When deciding whether to create a trigger to audit database activity, consider the

advantages that the standard Oracle database auditing features provide compared

to auditing by triggers:

■ Standard auditing options cover DML and DDL statements regarding all types

of schema objects and structures.

■ All database audit information is recorded centrally and automatically using

the auditing features of Oracle.

■ Auditing features enabled using the standard Oracle features are easier to

declare and maintain and less prone to errors than are auditing functions

defined through triggers.

■ Any changes to existing auditing options can also be audited to guard against

malicious database activity.

Note: In some fields, the Oracle AUDIT command is considered a

security audit facility, while triggers can provide a financial audit

facility.

Auditing Through Database Triggers

Auditing Database Use 25-21

■ Using the database auditing features, you can generate records once every time

an audited statement is issued (BY ACCESS) or once for every session that

issues an audited statement (BY SESSION). Triggers cannot audit by session; an

audit record is generated each time a trigger-audited table is referenced.

■ Database auditing can audit unsuccessful data access. In comparison, any audit

information generated by a trigger is rolled back if the triggering statement is

rolled back.

■ Connections and disconnections, as well as session activity (such as physical

I/Os, logical I/Os, and deadlocks), can be recorded by standard database

auditing.

When using triggers to provide sophisticated auditing, normally use AFTER

triggers. By using AFTER triggers, you record auditing information after the

triggering statement is subjected to any applicable integrity constraints, preventing

cases where audit processing is carried out unnecessarily for statements that

generate exceptions to integrity constraints.

When you should use AFTER row as opposed to AFTER statement triggers

depends on the information being audited. For example, row triggers provide

value-based auditing on a per-row basis for tables. Triggers can also allow the user

to supply a "reason code" for issuing the audited SQL statement, which can be

useful in both row and statement-level auditing situations.

The following trigger audits modifications to the EMP table on a per-row basis. It

requires that a "reason code" be stored in a global package variable before the

update. The trigger demonstrates the following:

■ how triggers can provide value-based auditing

■ how to use public package variables

Comments within the code explain the functionality of the trigger.

CREATE TRIGGER audit_employee
AFTER INSERT OR DELETE OR UPDATE ON emp
FOR EACH ROW
BEGIN
/* AUDITPACKAGE is a package with a public package
 variable REASON. REASON could be set by the
 application by a command such as EXECUTE
 AUDITPACKAGE.SET_REASON(reason_string). Note that a
 package variable has state for the duration of a
 session and that each session has a separate copy of
 all package variables. */
IF auditpackage.reason IS NULL THEN
 raise_application_error(-20201,’Must specify reason with ’,

Auditing Through Database Triggers

25-22 Oracle8i Administrator’s Guide

 ’AUDITPACKAGE.SET_REASON(reason_string)’);
END IF;

/* If the above conditional evaluates to TRUE, the
 user-specified error number and message is raised,
 the trigger stops execution, and the effects of the
 triggering statement are rolled back. Otherwise, a
 new row is inserted into the pre-defined auditing
 table named AUDIT_EMPLOYEE containing the existing
 and new values of the EMP table and the reason code
 defined by the REASON variable of AUDITPACKAGE. Note
 that the "old" values are NULL if triggering
 statement is an INSERT and the "new" values are NULL
 if the triggering statement is a DELETE. */
INSERT INTO audit_employee VALUES
 (:old.ssn, :old.name, :old.job_classification, :old.sal,
 :new.ssn, :new.name, :new.job_classification, :new.sal,
 auditpackage.reason, user, sysdate);
END;

Optionally, you can also set the reason code back to NULL if you want to force the

reason code to be set for every update. The following AFTER statement trigger sets

the reason code back to NULL after the triggering statement is executed:

CREATE TRIGGER audit_employee_reset
 AFTER INSERT OR DELETE OR UPDATE ON emp
BEGIN
 auditpackage.set_reason(NULL);
END;

The previous two triggers are both fired by the same type of SQL statement.

However, the AFTER row trigger is fired once for each row of the table affected by

the triggering statement, while the AFTER statement trigger is fired only once after

the triggering statement execution is completed.

 Index-1

Index
A
abort

shutting down an instance, 3-12

access

data

managing, 24-1

system privileges, 24-2

database

controling, 23-1

database administrator account, 1-4

granting privileges, 24-9

restricting, 3-4

revoking privileges, 24-12

object

granting privileges, 24-10

privilege types, 24-3

revoking privileges, 24-12

accounts

operating-system

database administrator, 1-4

role identification, 24-17

user

SYS and SYSTEM, 1-5

active destination state

for archived redo logs, 7-14

ADD LOGFILE MEMBER option

ALTER DATABASE command, 6-12

ADD LOGFILE option

ALTER DATABASE command, 6-11

ADD PARTITION clause

ALTER TABLE command, 13-11

ADMIN OPTION

about, 24-10

revoking, 24-12

admin_tables procedure, 19-3, 19-11

AFTER triggers

auditing and, 25-21

ALERT file

about, 4-10

location of, 4-11

session high water mark in, 23-7

size of, 4-11

using, 4-10

when written, 4-12

ALL_INDEXES view

filling with data, 20-5

ALL_TAB_COLUMNS view

filling with data, 20-5

ALL_TABLES view

filling with data, 20-5

allocation

extents, 14-11

extents for clusters, 17-9

minimizing extents for rollback segments, 21-13

temporary space, 14-6

alphanumeric datatypes, 12-17

ALTER CLUSTER command

ALLOCATE EXTENT option, 17-9

MAXTRANS option, 12-9

using for hash clusters, 18-8

using for index clusters, 17-9

ALTER DATABASE command

ADD LOGFILE MEMBER option, 6-12

ADD LOGFILE option, 6-11

ARCHIVELOG option, 7-7

CLEAR LOGFILE option, 6-17

CLEAR UNARCHIVED LOGFILE option, 6-7

Index-2

database partially available to users, 3-7

DATAFILE...OFFLINE DROP option, 10-8

DROP LOGFILE MEMBER option, 6-15

DROP LOGFILE option, 6-14

MOUNT option, 3-7

NOARCHIVELOG option, 7-7

OPEN option, 3-7

RENAME FILE option

datafiles for multiple tablespaces, 10-10

UNRECOVERABLE DATAFILE option, 6-17

ALTER FUNCTION command

COMPILE option, 20-25

ALTER INDEX COALESCE, 16-7

ALTER INDEX command, 13-18

about, 16-13

MAXTRANS option, 12-9

MOVE PARTITION clause, 13-11

REBUILD PARTITION clause, 13-11, 13-20

ALTER PACKAGE command

COMPILE option, 20-25

ALTER PROCEDURE command

COMPILE option, 20-25

ALTER PROFILE command

altering resource limits, 23-19

COMPOSITE_LIMIT option, 23-19

ALTER RESOURCE COST command, 23-20

ALTER ROLE command

changing authorization method, 24-8

ALTER ROLLBACK SEGMENT command

changing storage parameters, 21-9

OFFLINE option, 21-12

ONLINE option, 21-11, 21-12

PUBLIC option, 21-9

STORAGE clause, 21-9

ALTER SEQUENCE command, 15-11

ALTER SESSION command

SET SQL_TRACE parameter, 4-10

ALTER SYSTEM command

ARCHIVE LOG ALL option, 7-10

ARCHIVE LOG option, 7-10

ENABLE RESTRICTED SESSION option, 3-9

SET LICENSE_MAX_SESSIONS option, 23-4

SET LICENSE_MAX_USERS option, 23-6

SET LICENSE_SESSIONS_WARNING

option, 23-4

SET MTS_DISPATCHERS option, 4-7

SET MTS_SERVERS option, 4-6

SET RESOURCE_LIMIT option, 23-21

SWITCH LOGFILE option, 6-16

ALTER SYSTEM RESUME, 3-13

ALTER SYSTEM SUSPEND, 3-8

ALTER TABLE command

ADD PARTITION clause, 13-11

ALLOCATE EXTENT option, 14-11

DISABLE ALL TRIGGERS option, 20-13

DISABLE integrity constraint option, 20-20

DROP integrity constraint option, 20-21

DROP PARTITION clause, 13-12

ENABLE ALL TRIGGERS option, 20-12

ENABLE integrity constraint option, 20-20

example, 14-11

MAXTRANS option, 12-9

MODIFY PARTITION clause, 13-10

SPLIT PARTITION clause, 13-11, 13-17

TRUNCATE PARTITION clause, 13-15

ALTER TABLESPACE command

ADD DATAFILE parameter, 10-5

ONLINE option

example, 9-10

READ ONLY option, 9-12

READ WRITE option, 9-14

RENAME DATA FILE option, 10-10

ALTER TRIGGER command

DISABLE option, 20-13

ENABLE option, 20-12

ALTER USER privilege, 23-15

ALTER VIEW command

COMPILE option, 20-25

altering

cluster indexes, 17-9

clustered tables, 17-9

clusters, 17-8

database status, 3-7

hash clusters, 18-8

indexes, 16-13

public rollback segments, 21-9

rollback segment storage parameters, 21-9

sequences, 15-10

storage parameters, 14-10

tables, 14-10, 14-11

 Index-3

tablespace storage, 9-8

users, 23-15

ANALYZE command

CASCADE option, 20-8

COMPUTE STATISTICS option, 20-7

ESTIMATE STATISTICS SAMPLE option, 20-7

LIST CHAINED ROWS option, 20-9

shared SQL and, 20-8

STATISTICS option, 20-4

VALIDATE STRUCTURE option, 20-8

ANALYZE TABLE VALIDATE STRUCTURE, 19-3

analyzing archived redo logs, 7-25

analyzing objects

about, 20-3

privileges, 20-3

application administrator, 1-3

database administrator versus, 22-11

application developers

privileges for, 22-9

roles for, 22-10

application development

security for, 22-10

applications

quiescing during maintenance operations, 13-21

ARCH process

specifying multiple processes, 7-20

archive buffer parameters, 7-22

ARCHIVE LOG command

LIST option, 6-14

ARCHIVE LOG option

ALTER SYSTEM command, 7-10

archived redo logs, 7-2

analyzing, 7-25

archiving modes, 7-7

automatic archiving, 7-8

destination states, 7-13

active/inactive, 7-14

bad param, 7-14

deferred, 7-14

enabled/disabled, 7-13

valid/invalid, 7-13

destinations

re-archiving to failed, 7-19

sample scenarios, 7-18

enabling automatic archiving, 7-8

failed destinations and, 7-16

multiplexing, 7-11

normal transmission of, 7-14

specifying destinations for, 7-11

standby transmission of, 7-14

status information, 7-24

transmitting, 7-14

tuning, 7-20

ARCHIVELOG mode, 7-4, 7-6

advantages, 7-5

archiving, 7-4

automatic archiving in, 7-5

definition of, 7-4

distributed databases, 7-6

enabling, 7-7

manual archiving in, 7-5

running in, 7-4

switching to, 7-7

taking datafiles offline and online in, 10-8

archiving

advantages, 7-4

automatic

disabling, 7-9

disabling at instance startup, 7-9

enabling, 7-8

enabling after instance startup, 7-9

enabling at instance startup, 7-9

changing archiving mode, 7-7

destination states, 7-13

active/inactive, 7-14

enabled/disabled, 7-13

valid/invalid, 7-13

destinations

failure, 7-16

disabling, 7-7

disadvantages, 7-4

enabling, 7-7, 7-9

increasing speed of, 7-23

manual, 7-10

minimizing impact on system performance, 7-

23

multiple ARCH processes, 7-20

privileges

disabling, 7-9

enabling, 7-8

Index-4

for manual archiving, 7-10

setting archive buffer parameters, 7-22

setting initial mode, 7-7

to failed destinations, 7-19

tuning, 7-20

viewing information on, 7-24

AUDIT command, 25-9

schema objects, 25-11

statement auditing, 25-10

system privileges, 25-10

audit trail, 25-14

archiving, 25-15

auditing changes to, 25-16

controlling size of, 25-14

creating and deleting, 25-4

deleting views, 25-5

interpreting, 25-17

maximum size of, 25-14

protecting integrity of, 25-16

purging records from, 25-15

recording changes to, 25-16

records in, 25-7

reducing size of, 25-16

table that holds, 25-2

views on, 25-4

AUDIT_TRAIL parameter

setting, 25-13

auditing, 25-2

AUDIT command, 25-9

audit option levels, 25-8

audit trail records, 25-5

default options, 25-11

disabling default options, 25-13

disabling options, 25-11, 25-12, 25-13

disabling options versus auditing, 25-12

enabling options, 25-9, 25-13

enabling options versus auditing, 25-10

guidelines, 25-2

historical information, 25-4

keeping information manageable, 25-2

managing the audit trail, 25-4

operating-system audit trails, 25-7

policies for, 22-18

privilege audit options, 25-9

privileges required for object, 25-11

privileges required for system, 25-10

schema objects, 25-11

session level, 25-8

shortcuts for object, 25-9

shortcuts for system, 25-8

statement, 25-10

statement level, 25-8

suspicious activity, 25-3

system privileges, 25-10

triggers and, 25-20

using the database, 25-2

viewing

active object options, 25-19

active privilege options, 25-18

active statement options, 25-18

defauly object options, 25-19

views, 25-4

authentication

database managed, 23-8

operating system, 1-7

password file, 1-9

password policy, 22-4

specifying when creating a user, 23-12

users, 22-2, 23-7, 23-9

authorization

changing for roles, 24-8

omitting for roles, 24-8

operating-system role management and, 24-7

roles

about, 24-6

multi-threaded server and, 24-7

automatic archiving

archive log destination, 7-8

B
background processes

Oracle8i processes, 4-9

BACKGROUND_DUMP_DEST parameter, 4-11

backups

after creating new databases

full backups, 2-7

guidelines, 1-20

before database creation, 2-4

effects of archiving on, 7-4

 Index-5

bad param destination state, 7-14

bitmapped tablespaces, 9-5

bringing online

tablespaces, 9-10

broken jobs

about, 8-12

marking, 8-13

running, 8-13

buffers

buffer cache in SGA, 2-11

bug fixes, 1-21

C
CASCADE option

integrity constraints, 17-11

when dropping unique or primary keys, 20-20

cascading revokes, 24-14

CATAUDIT.SQL

running, 25-4

CATBLOCK.SQL script, 4-8

CATNOAUD.SQL

running, 25-5

change vectors, 6-2

CHAR datatype

increasing column length, 14-10

space use of, 12-17

character sets

multi-byte characters

in role names, 24-5

in role passwords, 24-7

user passwords and, 23-12

parameter file and, 3-14

specifying when creating a database, 2-2

supported by Oracle, 12-17

CHECK constraint, 20-19

check_object procedure, 19-3, 19-7

checkpoint process (CKPT)

starting, 4-12

CHECKPOINT_PROCESS parameter

setting, 4-12

checksums

for data blocks, 10-12

redo log blocks, 6-16

CKPT, 4-12

CLEAR LOGFILE option

ALTER DATABASE command, 6-17

clearing redo log files, 6-7, 6-17

restrictions, 6-17

cluster keys

columns for, 17-4

SIZE parameter, 17-5

clustered tables, 17-10

clusters

allocating extents, 17-9

altering, 17-8

analyzing statistics, 20-3

choosing data, 17-4

columns for cluster key, 17-4

creating, 17-6

dropped tables and, 14-13

dropping, 17-10

estimating space, 17-5, 17-6

guidelines for managing, 17-4

hash

contrasted with index, 18-2

hash clusters, 18-1

index

contrasted with hash, 18-2

index creation, 17-8

indexes and, 16-2

keys, 17-2

location, 17-5

managing, 17-1

overview of, 17-2

privileges

for creating, 17-6

for dropping, 17-10

specifying PCTFREE for, 12-4

storage parameters, 12-10

truncating, 20-9

validating structure, 20-8

columns

displaying information about, 20-31

granting privileges for selected, 24-10

granting privileges on, 24-11

increasing length, 14-10

INSERT privilege and, 24-11

listing users granted to, 24-21

privileges, 24-11

Index-6

revoking privileges on, 24-13

commands, SQL

CREATE DATABASE, 6-10

commands, SQL*Plus

ARCHIVE LOG, 6-14

HOST, 6-13

committing transactions

writing redo log buffer and, 6-2

composite limits, 23-19

costs and, 23-20

service units, 23-19

COMPUTE STATISTICS option, 20-7

configuring an instance

with dedicated server processes, 4-2

CONNECT role, 24-5

connecting

administrator privileges, 3-10

connections

auditing, 25-8

dedicated servers, 4-2

during shutdown, 3-9

control files

adding, 5-5

changing size, 5-4

conflicts with data dictionary, 5-8

creating

about, 5-3

additional control files, 5-5

initially, 5-4

new files, 5-5

default name, 2-10, 5-4

dropping, 5-9

errors during creation, 5-9

guidelines for, 5-2

importance of mirrored, 5-2

location of, 5-3

log sequence numbers, 6-5

managing, 5-1

mirroring, 2-10

moving, 5-5

names, 5-2

number of, 5-3

overwriting existing, 2-10

relocating, 5-5

renaming, 5-5

requirement of one, 5-3

size of, 5-3

specifying names before database creation, 2-10

unavailable during startup, 3-3

CONTROL_FILES parameter

overwriting existing control files, 2-10

setting

before database creation, 2-10, 5-4

names for, 5-2

costs

resource limits and, 23-20

CREATE CLUSTER command

example, 17-7

for hash clusters, 18-4

HASH IS option, 18-6

HASHKEYS option, 18-7

SIZE option, 18-6

CREATE CONTROLFILE command

about, 5-5

checking for inconsistencies, 5-8

NORESETLOGS option, 5-7

RESETLOGS option, 5-7

CREATE DATABASE command

CONTROLFILE REUSE option, 5-4

example, 2-7

MAXLOGFILES option, 6-10

MAXLOGMEMBERS option, 6-10

CREATE INDEX command

explicitly, 16-8

ON CLUSTER option, 17-8

UNRECOVERABLE, 16-5

with a constraint, 16-8

CREATE PROFILE command

about, 23-18

COMPOSITE_LIMIT option, 23-19

CREATE ROLE command

IDENTIFIED BY option, 24-7

IDENTIFIED EXTERNALLY option, 24-7

CREATE ROLLBACK SEGMENT command

about, 21-8

tuning guidelines, 2-15

CREATE SCHEMA command

multiple tables and views, 20-2

privileges required, 20-2

CREATE SEQUENCE command, 15-10

 Index-7

CREATE SYNONYM command, 15-12

CREATE TABLE command

about, 14-9

CLUSTER option, 17-7

PARTITION clause, 13-9

UNRECOVERABLE, 14-4

CREATE TABLESPACE command

datafile names in, 9-4

example, 9-4

CREATE USER command

IDENTIFIED BY option, 23-12

IDENTIFIED EXTERNALLY option, 23-12

CREATE VIEW command

about, 15-2

OR REPLACE option, 15-9

WITH CHECK OPTION, 15-3

creating

audit trail, 25-4

cluster index, 17-6

clustered tables, 17-6

clusters, 17-6

control files, 5-3

database, 1-19, 2-1

backing up the new database, 2-7

during installation, 2-3

executing CREATE DATABASE, 2-6

migration from different versions, 2-3

preparing to, 2-2

prerequisites for, 2-3

problems encountered while, 2-8

databases, 7-7

datafiles, 9-3, 10-5

hash clustered tables, 18-4

hash clusters, 18-4

indexes

explicitly, 16-8

multiple objects, 20-2

online redo log groups, 6-11

parameter file, 2-4

partitioned objects, 13-9

partitioned tables, 13-9

profiles, 23-18

redo log members, 6-11

rollback segments

about, 21-8

specifying storage parameters, 21-8

sequences, 15-10

synonyms, 15-12

tables, 14-9

tablespaces, 9-3

rollback segments required, 9-5

views, 15-2

D
data

security of, 22-3

data blocks

altering size of, 2-11

managing space usage of, 12-2

managing space use of, 12-2

operating system blocks versus, 2-11

PCTFREE storage parameter, 12-3

PCTUSED storage parameter, 12-5

shared in clusters, 17-2

size of, 2-11

verifying, 10-12

data dictionary

changing storage parameters, 20-29

conflicts with control files, 5-8

dropped tables and, 14-12

schema object views, 20-29

segments in the, 20-27

setting storage parameters of, 20-26

V$DBFILE view, 2-8

V$DISPATCHER view, 4-7

V$LOGFILE view, 2-8

V$QUEUE view, 4-7

data integrity, 20-19

integrity constraints, 20-19

database administrator, 1-2

application administrator versus, 22-11

initial priorities, 1-17

operating-system account, 1-4

password files for, 1-7

responsibilities of, 1-2

roles

about, 1-6

for security, 22-8

security and privileges of, 1-4

Index-8

security for, 22-7

security officer versus, 1-3, 22-2

usernames, 1-5

utilities for, 1-17

database links

job queues and, 8-9

Database Resource Manager, 11-1

databases

administering, 1-1

auditing, 25-1

availability, 3-7

backing up

after creation of, 1-20

full backups, 2-7

control files of, 5-2

CREATE DATABASE command, 2-7

creating

opening and, 1-19

trouble-shooting problems, 2-8

design of

implementing, 1-20

dropping, 2-8

exclusive mode, 3-6

global database name

about, 2-9

global database names

in a distributed system, 2-9

hardware evaluation, 1-18

logical structure of, 1-19

managing

size of, 10-1

migration of, 2-3

mounting a database, 3-4

mounting to an instance, 3-7

names

about, 2-9

conflicts in, 2-9

opening

a closed database, 3-7

parallel mode, 3-6

physical structure of, 1-19

planning, 1-18

production, 22-9, 22-11

renaming, 5-5

restricting access to, 3-4, 3-8

specifying control files, 2-10

starting up

before database creation, 2-6

general procedures for, 3-2

restricting access, 3-4

structure of

distributed database, 1-19

test, 22-9

tuning

archiving large databases, 7-20

responsibilities for, 1-20

user responsibilities, 1-3

viewing datafiles and redo log files, 2-8

datafiles

adding to a tablespace, 10-5

bringing online and offline, 10-7

checking associated tablespaces, 9-31

creating, 9-3

database administrators access, 1-4

default directory, 10-5

dropping, 9-14

NOARCHIVELOG mode, 10-8

fully specifying filenames, 10-5

identifying filenames, 10-11

location, 10-4

managing, 10-1

maximum number of, 10-2

minimum number of, 10-2

MISSING, 5-8

monitoring, 10-13

online, 10-8

privileges to rename, 10-9

privileges to take offline, 10-8

relocating, 10-9, 10-10

relocating, example, 10-11

renaming, 10-9, 10-10

renaming for single tables, 10-9

reusing, 10-5

size of, 10-4

storing separately from redo log files, 10-4

unavailable when database is opened, 3-3

verifying data blocks, 10-12

viewing

general status of, 10-13

V$DBFILE and V$LOGFILE views, 2-8

 Index-9

datatypes

character, 12-17

DATE, 12-18

individual type names, 12-17

LONG, 12-18

NUMBER, 12-17

space use of, 12-17

summarized, 12-19

DATE datatype, 12-18

DB_BLOCK_BUFFERS parameter

setting before database creation, 2-11

DB_BLOCK_CHECKING parameter, 19-3

DB_BLOCK_CHECKSUM, 10-12

DB_BLOCK_SIZE parameter

database buffer cache size and, 2-11

setting before creation, 2-11

DB_DOMAIN parameter

setting before database creation, 2-9

DB_NAME parameter

setting before database creation, 2-9

DB_VERIFY utility, 19-3

DBA, 1-2

DBA role, 1-6, 24-5

DBA_DATA_FILES, 9-31, 10-13

DBA_EXTENTS, 10-13

DBA_FREE_SPACE, 9-31, 10-13

DBA_FREE_SPACE_COALESCED view, 9-9

DBA_INDEXES view

filling with data, 20-5

DBA_ROLLBACK_SEGS view, 21-14

DBA_SEGMENTS, 9-31, 10-13

DBA_TAB_COLUMNS view

filling with data, 20-5

DBA_TABLES view

filling with data, 20-5

DBA_TABLESPACES, 9-31, 10-13

DBA_TABLESPACES view, 9-15

DBA_TS_QUOTAS, 9-31, 10-13

DBA_USERS, 9-31, 10-13

DBMS_JOB package

altering a job, 8-11

forcing jobs to execute, 8-14

job queues and, 8-3

REMOVE procedure and, 8-11

submitting jobs, 8-4

DBMS_LOGMNR_D.BUILD package, 7-28

DBMS_LOGMNR.ADD_LOGFILE package

LogMiner, 7-29

DBMS_LOGMNR.START_LOGMNR package

LogMiner, 7-30

DBMS_REPAIR package, 19-1

DBMS_RESOURCE_MANAGER package, 11-3

DBMS_RESOURCE_MANAGER_PRIVS

package, 11-10

DBMS_SESSION package, 11-11

DBMS_UTILITY.ANALYZE_SCHEMA()

running, 20-8

dedicated server processes

configuring, 4-2

connecting with, 4-2

trace files for, 4-10

dedicated servers

multi-threaded servers contrasted with, 4-3

default

audit options, 25-11

disabling, 25-13

profile, 23-18

role, 23-16

tablespace quota, 23-13

temporary tablespace, 23-13

user tablespaces, 23-12

DEFAULT_CONSUMER_GROUP, 11-9

deferred destination state, 7-14

deleting

table statistics, 20-4

dependencies

displaying, 20-32

destination states for archived redo logs, 7-13

destinations

archived redo logs

sample scenarios, 7-18

developers, application, 22-9

dictionary files

LogMiner and the, 7-27

disabled destination state

for archived redo logs, 7-13

disabling

archiving, 7-7, 7-9

audit options, 25-11, 25-12

auditing, 25-13

Index-10

integrity constraints, 20-18

effects on indexes, 16-7

resource limits, 23-21

triggers, 20-12

disconnections

auditing, 25-8

dispatcher processes

number to start, 4-5

privileges to change number of, 4-7

removing, 4-7

setting the number of, 4-7

spawning new, 4-7

distributed databases

running in ARCHIVELOG mode, 7-6

running in NOARCHIVELOG mode, 7-6

starting a remote instance, 3-6

distributed processing

parameter file location in, 3-15

distributing I/O, 2-15

DROP CLUSTER command

CASCADE CONSTRAINTS option, 17-11

dropping

cluster with no tables, 17-11

hash cluster, 18-9

INCLUDING TABLES option, 17-11

DROP LOGFILE MEMBER option

ALTER DATABASE command, 6-15

DROP LOGFILE option

ALTER DATABASE command, 6-14

DROP PARTITION clause

ALTER TABLE command, 13-12

DROP PROFILE command, 23-21

DROP ROLE command, 24-8, 24-9

DROP ROLLBACK SEGMENT command, 21-14

DROP SYNONYM command, 15-12

DROP TABLE command

about, 14-12

CASCADE CONSTRAINTS option, 14-12

for clustered tables, 17-10

DROP TABLESPACE command, 9-15

DROP USER command, 23-17

DROP USER privilege, 23-17

dropping

audit trail, 25-4

cluster indexes, 17-10

clusters, 17-10

control files, 5-9

databases, 2-8

datafiles, 9-14

hash clusters, 18-9

index partition, 13-14

indexes, 16-15

integrity constraints

about, 20-21

effects on indexes, 16-7

online redo log groups, 6-14

online redo log members, 6-14

profiles, 23-21

roles, 24-8

rollback segments, 21-11, 21-13

sequences, 15-11

synonyms, 15-12

table partitions, 13-12

tables, 14-12

tablespaces

about, 9-14

required privileges, 9-15

users, 23-16

views, 15-9

dump_orphan_keys procedure, 19-6, 19-9

dynamic performance tables

using, 4-9

E
enabled destination state

for archived redo logs, 7-13

enabling

archiving, 7-7

auditing options

about, 25-9

privileges for, 25-13

integrity constraints

at creation, 20-18

example, 20-19

reporting exceptions, 20-21

when violations exist, 20-15

resource limits, 23-21

triggers, 20-12

encryption

 Index-11

Oracle passwords, 23-8

enroll

database users, 1-20

Enterprise Manager

operating system account, 1-4

environment of a job, 8-6

errors

ALERT file and, 4-10

ORA-00028, 4-16

ORA-01090, 3-9

ORA-01173, 5-9

ORA-01176, 5-9

ORA-01177, 5-9

ORA-1215, 5-9

ORA-1216, 5-9

ORA-1547, 20-29

ORA-1628 through 1630, 20-29

snapshot too old, 21-5

trace files and, 4-10

when creating a database, 2-8

when creating control file, 5-9

while starting an instance, 3-5

ESTIMATE STATISTICS option, 20-7

estimating size

hash clusters, 18-4

tables, 14-5

evaluating

hardware for the Oracle8i, 1-18

example

creating constraints, 20-19

examples

altering an index, 16-13

exceptions

integrity constraints, 20-21

exclusive mode

of the database, 3-6

rollback segments and, 21-3

terminating remaining user sessions, 4-16

EXP_FULL_DATABASE role, 24-5

Export utility

about, 1-17

restricted mode and, 3-4

exporting jobs, 8-7

exports

modes, 7-14, 7-18, 7-19

extents

allocating

clusters, 17-9

index creation, 16-6

tables, 14-11

data dictionary views for, 20-30

displaying free extents, 20-33

displaying information on, 20-32

dropped tables and, 14-12

F
failures

media

multiplexed online redo logs, 6-5

files

OS limit on number open, 9-2

fix_corrupt_blocks procedure, 19-5, 19-7

forcing a log switch, 6-16

with the ALTER SYSTEM command, 6-16

FOREIGN KEY constraint

enabling, 20-19

free space

coalescing, 9-8

listing free extents, 20-33

tablespaces and, 9-32

function-based indexes, 16-9

functions

recompiling, 20-25

G
global database name, 2-9

global index

dropping partition with, 13-12, 13-15

splitting partition in, 13-18

global user, 23-10

GRANT command

ADMIN option, 24-10

GRANT option, 24-11

object privileges, 24-10

SYSOPER/SYSDBA privileges, 1-13

system privileges and roles, 24-9

when takes effect, 24-15

GRANT OPTION

Index-12

about, 24-11

revoking, 24-13

granting privileges and roles

listing grants, 24-19

shortcuts for object privileges, 24-3

SYSOPER/SYSDBA privileges, 1-13

groups

redo log files

LOG_FILES initialization parameter, 6-10

Guidelines, 10-2

guidelines

for managing rollback segments, 21-2

H
hardware

evaluating, 1-18

hash clusters

altering, 18-8

choosing key, 18-6

clusters, 18-1

controlling space use of, 18-6

creating, 18-4

dropping, 18-9

estimating storage, 18-4

example, 18-7

managing, 18-1

usage, 18-2

high water mark

for a session, 23-3

historical table

moving time window in, 13-20

HOST command

SQL*Plus, 6-13

I
I/O

distributing, 2-15

identification

users, 23-7

IMP_FULL_DATABASE role, 24-5

implementing database design, 1-20

Import utility

about, 1-17

restricted mode and, 3-4

importing

jobs, 8-7

inactive destination state

for archived redo logs, 7-14

index partition

dropping, 13-14

moving, 13-11

rebuilding, 13-20

splitting, 13-18

indexes

adding partition, 13-12

altering, 16-13

analyzing statistics, 20-3

cluster

altering, 17-9

creating, 17-6

dropping, 17-10

managing, 17-1

correct tables and columns, 16-8

creating

after inserting table data, 16-3

explicitly, 16-8

unrecoverably, 16-5

disabling and dropping constraints and, 16-7

dropped tables and, 14-12

dropping, 16-15

estimating size, 16-5

extent allocation for, 16-6

guidelines for managing, 16-2

INITRANS for, 16-4

limiting per table, 16-3

managing, 16-1, 16-15

MAXTRANS for, 16-4

monitoring space use of, 16-14

overview of, 16-2

parallelizing index creation, 16-5

PCTFREE for, 16-4

PCTUSED for, 16-4

privileges

for altering, 16-13

for dropping, 16-15

separating from a table, 14-6

setting storage parameters for, 16-5

SQL*Loader and, 16-3

 Index-13

storage parameters, 12-10

tablespace for, 16-4

temporary segments and, 16-3

validating structure, 20-8

index-organized table, 14-14

in-doubt transactions

rollback segments and, 21-11

initial

passwords for SYS and SYSTEM, 1-5

INITIAL storage parameter, 12-7

altering, 14-11

initialization parameters

affecting sequences, 15-11

LOG_ARCHIVE_BUFFER_SIZE, 7-22, 7-23

LOG_ARCHIVE_BUFFERS, 7-22, 7-23

LOG_ARCHIVE_DEST_n, 7-11

LOG_ARCHIVE_DEST_STATE_n, 7-13

LOG_ARCHIVE_MAX_PROCESSES, 7-20

LOG_ARCHIVE_MIN_SUCCEED_DEST, 7-17

LOG_ARCHIVE_START, 7-9, 7-14

LOG_BLOCK_CHECKSUM, 6-16

LOG_FILES, 6-10

multi-threaded server and, 4-4

INITRANS storage parameter

altering, 14-11

default, 12-9

guidelines for setting, 12-9

transaction entries and, 12-9

INSERT privilege

granting, 24-11

revoking, 24-13

installation

and creating a database, 2-3

Oracle8i, 1-18

tuning recommendations for, 2-14

instance menu

prevent Connections option, 3-9

instances

aborting, 3-12

shutting down immediately, 3-11

starting, 3-2

starting before database creation, 2-6

integrity constraints

disabling, 20-14, 20-19

disabling on creation, 20-18

dropping, 20-21

dropping and disabling, 16-7

dropping tablespaces and, 9-15

enabling, 20-14

enabling on creation, 20-18

enabling when violations exist, 20-15

exceptions to, 20-21

managing, 20-15

violations, 20-15

when to disable, 20-15

INTERNAL

alternatives to, 1-8

connecting for shutdown, 3-10

OSOPER and OSDBA, 1-8

security for, 22-8

INTERNAL date function

executing jobs and, 8-8

invalid destination state

for archived redo logs, 7-13

J
Job, 8-3

job queues, 8-2, 8-3

executing jobs in, 8-9

locks, 8-9

privileges for using, 8-4

removing jobs from, 8-11

scheduling jobs, 8-3

viewing, 8-15

jobs

altering, 8-11

broken, 8-12

database links and, 8-9

executing, 8-9

exporting, 8-7

forcing to execute, 8-14

importing, 8-7

INTERNAL date function and, 8-8

job definition, 8-7

job number, 8-7

killing, 8-14

managing, 8-3

marking broken jobs, 8-13

ownership of, 8-7

Index-14

removing from job queue, 8-11

running broken jobs, 8-13

scheduling, 8-3

submitting to job queue, 8-4

trace files, 8-10

troubleshooting, 8-10

join view, 15-4

DELETE statements, 15-7

key-preserved tables in, 15-5

mergeable, 15-5

modifying

rule for, 15-6

when modifiable, 15-4

JQ locks, 8-9

K
key-preserved tables

in join views, 15-5

keys

cluster, 17-2

killing

jobs, 8-14

L
LGWR, 4-11

LICENSE_MAX_SESSIONS parameter

changing while instance runs, 23-4

setting, 23-4

setting before database creation, 2-12

LICENSE_MAX_USERS parameter

changing while database runs, 23-6

setting, 23-6

setting before database creation, 2-12

LICENSE_SESSION_WARNING parameter

setting before database creation, 2-12

LICENSE_SESSIONS_WARNING parameter

changing while instance runs, 23-4

setting, 23-4

licensing

complying with license agreement, 2-12, 23-2

concurrent usage, 23-2

named user, 23-2, 23-5

number of concurrent sessions, 2-13

privileges for changing named user limits, 23-6

privileges for changing session limits, 23-5

session-based, 23-2

viewing limits, 23-6

limits

composite limits, 23-19

concurrent usage, 23-2

resource limits, 23-19

session, high water mark, 23-3

LIST CHAINED ROWS option, 20-9

location

rollback segments, 21-7

locks

job queue, 8-9

monitoring, 4-8

log sequence number

control files, 6-5

log switches

description, 6-5

forcing, 6-16

log sequence numbers, 6-5

multiplexed redo log files and, 6-7

privileges, 6-16

waiting for archiving to complete, 6-7

log writer process (LGWR)

multiplexed redo log files and, 6-6

online redo logs available for use, 6-3

trace file monitoring, 4-11

trace files and, 6-6

writing to online redo log files, 6-2, 6-3

LOG_ARCHIVE_BUFFER_SIZE initialization

parameter, 7-23

LOG_ARCHIVE_BUFFERS initialization

parameter, 7-23

LOG_ARCHIVE_BUFFERS parameter

setting, 7-23

LOG_ARCHIVE_DEST initialization parameter

specifying destinations using, 7-11

LOG_ARCHIVE_DEST_n initialization

parameter, 7-11

REOPEN option, 7-19

LOG_ARCHIVE_DUPLEX_DEST initialization

parameter

specifying destinations using, 7-11

LOG_ARCHIVE_MAX_PROCESSES initialization

 Index-15

parameter, 7-20

LOG_ARCHIVE_MIN_SUCCEED_DEST

initialization parameter, 7-17

LOG_ARCHIVE_START initialization

parameter, 7-9

bad param destination state, 7-14

setting, 7-9

LOG_BLOCK_CHECKSUM initialization parameter

enabling redo block checking with, 6-16

LOG_FILES initialization parameter

number of log files, 6-10

logical structure of a database, 1-19

LogMiner, 7-25

LogMiner utility, 7-25, 7-31

dictionary file, 7-27

using the, 7-29, 7-30

using to analyze archived redo logs, 7-25

LONG datatype, 12-18

M
maintenance release number, 1-21

managing

auditing, 25-1

cluster indexes, 17-1

clustered tables, 17-1

clusters, 17-1

indexes, 16-1, 16-15

jobs, 8-3

object dependencies, 20-23

profiles, 23-17

roles, 24-4

rollback segments, 21-1

sequences, 15-9

synonyms, 15-11

tables, 14-1

users, 23-11

views, 15-1, 15-9

manual archiving

in ARCHIVELOG mode, 7-10

marked user session, 4-17

MAX_DUMP_FILE_SIZE parameter, 4-11

MAX_ENABLED_ROLES parameter

default roles and, 24-8

enabling roles and, 24-8

MAXDATAFILES parameter

changing, 5-5

MAXEXTENTS storage parameter

about, 12-8

setting for the data dictionary, 20-27

MAXINSTANCES parameter

changing, 5-5

MAXLOGFILES option

CREATE DATABASE command, 6-10

MAXLOGFILES parameter

changing, 5-5

MAXLOGHISTORY

changing, 5-5

MAXLOGMEMBERS option

CREATE DATABASE command, 6-10

MAXLOGMEMBERS parameter

changing, 5-5

MAXTRANS storage parameter

altering, 14-11

default, 12-9

guidelines for setting, 12-9

transaction entries and, 12-9

media recovery

effects of archiving on, 7-4

memory

viewing per user, 23-25

migration

database migration, 2-3

MINEXTENTS storage parameter

about, 12-8

altering, 14-11

mirrored control files

importance of, 5-2

mirrored files

online redo log, 6-6

location, 6-9

size, 6-9

mirroring

control files, 2-10

modes

exclusive, 3-6

parallel, 3-6

restricted, 3-4, 3-8

modifiable join view

definition of, 15-4

Index-16

MODIFY PARTITION clause

ALTER TABLE command, 13-10

modifying

a join view, 15-4

monitoring

datafiles, 10-13

locks, 4-8

performance tables, 4-9

processes of an instance, 4-8

rollback segments, 21-6

tablespaces, 10-13

mounting a database, 3-4

exclusive mode, 3-6

parallel mode, 3-6

MOVE PARTITION clause

ALTER TABLE command, 13-11

moving

control files, 5-5

index partitions, 13-11

relocating, 10-9

table partition, 13-10

MTS_DISPATCHERS parameter

setting initially, 4-5

multiplexing

archived redo logs, 7-11

redo log files, 6-5

groups, 6-6

multi-threaded server

configuring dispatchers, 4-5

database startup and, 3-2

dedicated server contrasted with, 4-3

enabling and disabling, 4-6

OS role management restrictions, 24-19

restrictions on OS role authorization, 24-7

starting, 4-4

N
named user limits, 23-5

setting initially, 2-13

Net8

service names in, 7-15

transmitting archived logs via, 7-15

network protocol

dispatcher for each, 4-5

NEXT storage parameter, 12-8

setting for the data dictionary, 20-27

NOARCHIVELOG mode

archiving, 7-4

definition, 7-4

media failure, 7-4

no hot backups, 7-4

running in, 7-4

switching to, 7-7

taking datafiles offline in, 10-8

NOAUDIT command

disabling audit options, 25-11

privileges, 25-12

schema objects, 25-12

statements, 25-12

normal transmission mode

definition, 7-15

NOT NULL constraint, 20-19

NUMBER datatype, 12-17

O
objects, schema

cascading effects on revoking, 24-14

default tablespace for, 23-13

granting privileges, 24-10

in a revoked tablespace, 23-14

owned by dropped users, 23-16

privileges with, 24-3

revoking privileges, 24-12

offline rollback segments

about, 21-10

bringing online, 21-11

when to use, 21-10

offline tablespaces

altering, 9-10

priorities, 9-10

rollback segments and, 21-10

online index, 16-7

online redo log, 6-2

creating

groups and members, 6-11

creating members, 6-11

do not back up, 7-3

dropping groups, 6-14

 Index-17

dropping members, 6-14

forcing a log switch, 6-16

guidelines for configuring, 6-5

INVALID members, 6-15

location of, 6-9

managing, 6-1

moving files, 6-13

number of files in the, 6-9

optimum configuration for the, 6-9

privileges

adding groups, 6-11

dropping groups, 6-14

dropping members, 6-15

forcing a log switch, 6-16

renaming files, 6-13

renaming members, 6-12

STALE members, 6-15

storing separately from datafiles, 10-4

unavailable when database is opened, 3-3

viewing information about, 6-18

online rollback segments

about, 21-10

bringing rollback segments online, 21-11

taking offline, 21-12

when new, 21-8

online tablespaces

altering, 9-10

opening a database

after creation, 1-19

mounted database, 3-7

operating system

accounts, 24-17

auditing with, 25-2

authentication, 24-16

database administrators requirements for, 1-4

deleting datafiles, 9-15

enabling and disabling roles, 24-19

limit of number of open files, 10-2

Oracle8i process names, 4-9

renaming and relocating files, 10-9

role identification, 24-17

roles and, 24-16

security in, 22-3

OPTIMAL storage parameter, 21-5

Oracle blocks, 2-11

Oracle8i

installing, 1-18

Oracle8i Server

complying with license agreement, 23-2

identifying releases, 1-21

processes

checkpoint (CKPT), 4-12

monitoring, 4-8

operating-system names, 4-9

trace files fpr, 4-10

Oracle8i Server processes

processes

dedicated server processes, 4-2

identifying and managing, 4-7

ORAPWD utility, 1-9

OS authentication, 1-7

OS_ROLES parameter

operating-system authorization and, 24-7

REMOTE_OS_ROLES and, 24-19

using, 24-17

owner of a queued job, 8-7

P
packages

DBMS_LOGMNR_D.BUILD, 7-28

DBMS_LOGMNR.ADD_LOGFILE, 7-29

DBMS_LOGMNR.START_LOGMNR, 7-30

privileges for recompiling, 20-25

recompiling, 20-25

parallel mode

of the database, 3-6

parallel query option

number of server processes, 4-13

parallelizing index creation, 16-5

parallelizing table creation, 14-4

query servers, 4-13

Parallel Server

ALTER CLUSTER..ALLOCATE EXTENT, 17-10

datafile upper bound for instances, 10-3

licensed session limit and, 2-13

limits on named users and, 23-5

named users and, 2-13

own rollback segments, 21-3

sequence numbers and, 15-10

Index-18

session and warning limits, 23-4

specifying thread for archiving, 7-11

threads of online redo log, 6-2

V$THREAD view, 6-18

PARALLEL_MAX_SERVERS parameter, 4-13

PARALLEL_MIN_SERVERS parameter, 4-13

PARALLEL_SERVER_IDLE_TIME parameter, 4-13

parameter files

character set of, 3-14

creating for database creation, 2-4

editing before database creation, 2-5

individual parameter names, 2-9

location of, 3-15

minimum set of, 2-9

number of, 3-14

sample of, 3-14

partition

adding to index, 13-12

dropping from index, 13-14

PARTITION clause

CREATE TABLE command, 13-9

partitioned index

rebuilding partitions, 13-20

partitioned objects, 13-1 to 13-21

adding, 13-11

creating, 13-9

definition, 13-2

maintaining, 13-9 to 13-21

merging, 13-18

moving, 13-10

quiescing applications during maintenance

of, 13-21

splitting partition, 13-17

truncating, 13-15

partitioned table

adding partitions, 13-11

converting to non-partitioned, 13-18

splitting partition, 13-17

partitioned view

converting to partitioned table, 13-18

passwords

authentication file for, 1-9

changing for roles, 24-8

initial for SYS and SYSTEM, 1-5

password file, 1-12

creating, 1-9

OS authentication, 1-7

relocating, 1-16

removing, 1-16

state of, 1-16

privileges for changing for roles, 24-6

privileges to alter, 23-15

roles, 24-7

security policy for users, 22-4

setting REMOTE_LOGIN_PASSWORD

parameter, 1-11

user authentication, 23-8

patch release number, 1-22

PCTFREE storage parameter

altering, 14-10

block overhead and, 12-6

clustered tables, 12-4

default, 12-3

guidelines for setting, 12-3

how it works, 12-2

indexes, 12-4

non-clustered tables, 12-4

PCTUSED and, 12-6

PCTINCREASE storage parameter

about, 12-8

altering, 12-11

setting for the data dictionary, 20-27

PCTUSED storage parameter

altering, 14-10

block overhead and, 12-6

default, 12-5

guidelines for setting, 12-5

how it works, 12-4

PCTFREE and, 12-6

pending area, 11-5

performance

location of datafiles and, 10-4

tuning archiving, 7-20

performance tables

dynamic performance tables, 4-9

physical structure of a database, 1-19

PL/SQL program units

dropped tables and, 14-12

replaced views and, 15-9

planning

 Index-19

database creation, 2-2

relational design, 1-19

the database, 1-18

precedence of storage parameters, 12-11

predefined roles, 1-6

prerequisites

for creating a database, 2-3

PRIMARY KEY constraint

disabling, 20-19

dropping associated indexes, 16-15

enabling, 20-19

enabling on creation, 16-8

foreign key references when dropped, 20-20

indexes associated with, 16-8

storage of associated indexes, 16-8

private

rollback segments, 21-8

taking offline, 21-12

synonyms, 15-11

privileges, 24-2, 24-3

adding datafiles to a tablespace, 10-5

adding redo log groups, 6-11

altering

default storage parameters, 9-8

dispatcher privileges, 4-7

indexes, 16-13

named user limit, 23-6

passwords, 23-16

role authentication, 24-6

rollback segments, 21-9

sequences, 15-10

tables, 14-10

users, 23-15

analyzing objects, 20-3

application developers and, 22-9

audit object, 25-11

auditing system, 25-10

auditing use of, 25-9

bringing datafiles offline and online, 10-8

bringing tablespaces online, 9-10

cascading revokes, 24-14

cluster creation, 17-6

coalescing tablespaces, 9-9

column, 24-11

CREATE SCHEMA command, 20-2

creating

roles, 24-4

rollback segments, 21-7

sequences, 15-10

synonyms, 15-12

tables, 14-9

tablespaces, 9-4

users, 23-11

views, 15-2

database administrator, 1-4

disabling automatic archiving, 7-9

dropping

clusters, 17-10

indexes, 16-15

online redo log members, 6-15

redo log groups, 6-14

roles, 24-9

rollback segments, 21-14

sequences, 15-11

synonyms, 15-12

tables, 14-12

views, 15-9

dropping profiles, 23-21

enabling and disabling resource limits, 23-21

enabling and disabling triggers, 20-12

enabling automatic archiving, 7-8

for changing session limits, 23-5

forcing a log switch, 6-16

granting

about, 24-9

object privileges, 24-10

required privileges, 24-10

system privileges, 24-9

grouping with roles, 24-4

individual privilege names, 24-2

job queues and, 8-4

listing grants, 24-20

manually archiving, 7-10

object, 24-3

on selected columns, 24-13

operating system

required for database administrator, 1-4

policies for managing, 22-5

recompiling packages, 20-25

recompiling procedures, 20-25

Index-20

recompiling views, 20-25

renaming

datafiles of a tablespace, 10-9

datafiles of several tablespaces, 10-10

objects, 20-2

redo log members, 6-12

replacing views, 15-8

RESTRICTED SESSION system privilege, 3-4,

3-8

revoking, 24-12

ADMIN OPTION, 24-12

GRANT OPTION, 24-13

object privileges, 24-14

system privileges, 24-12

revoking object, 24-12

revoking object privileges, 24-12

setting resource costs, 23-20

system, 24-2

taking tablespaces offline, 9-10

truncating, 20-10

procedures

recompiling, 20-25

processes, 4-1

SNP background processes, 8-2

PROCESSES parameter

setting before database creation, 2-12

profiles, 23-17

altering, 23-19

assigning to users, 23-18

composite limit, 23-19

creating, 23-18

default, 23-18

disabling resource limits, 23-21

dropping, 23-21

enabling resource limits, 23-21

listing, 23-22

managing, 23-17

privileges for dropping, 23-21

privileges to alter, 23-19

privileges to set resource costs, 23-20

PUBLIC_DEFAULT, 23-18

setting a limit to null, 23-19

viewing, 23-24

program global area (PGA)

effect of MAX_ENABLED_ROLES on, 24-8

public

synonyms, 15-11

public rollback segments

making available for use, 21-10

taking offline, 21-12

PUBLIC user group

granting and revoking privileges to, 24-15

procedures and, 24-15

PUBLIC_DEFAULT profile

dropping profiles and, 23-21

using, 23-18

Q
query server process

about, 4-13

quotas

listing, 23-22

revoking from users, 23-14

setting to zero, 23-14

tablespace, 23-13

tablespace quotas, 9-3

temporary segments and, 23-14

unlimited, 23-14

viewing, 23-24

R
read-only database open, 3-8

read-only tablespaces

altering to writable, 9-14

creating, 9-12

datafiles, 10-8

on a WORM device, 9-14

REBUILD PARTITION clause

ALTER INDEX command, 13-11, 13-20

rebuild_freelists procedure, 19-6, 19-10

recompiling

automatically, 20-24

functions, 20-25

packages, 20-25

procedures, 20-25

views, 20-25

recovery

creating new control files, 5-5

 Index-21

startup with automatic, 3-5

redo entries

content of, 6-2

See redo records

redo log buffers

writing of, 6-2

redo log files

active (current), 6-4

archived

advantages of, 7-2

contents of, 7-2

log switches and, 6-5

archived redo log files, 7-7

archived redo logs, 7-4

available for use, 6-3

circular use of, 6-3

clearing, 6-7, 6-17

restrictions, 6-17

contents of, 6-2

creating

groups and members, 6-11

creating members, 6-11

distributed transaction information in, 6-3

groups, 6-6

creating, 6-11

decreasing number, 6-10

dropping, 6-14

LOG_FILES initialization parameter, 6-10

members, 6-6

threads, 6-2

how many in redo log, 6-9

inactive, 6-4

legal and illegal configurations, 6-7

LGWR and the, 6-3

log sequence numbers of, 6-5

log switches, 6-5

members, 6-6

creating, 6-11

dropping, 6-14

maximum number of, 6-10

mirrored

log switches and, 6-7

multiplexed

diagrammed, 6-6

if all inaccessible, 6-7

multiplexing, 6-5

groups, 6-6

if some members inaccessible, 6-7

online, 6-2

recovery use of, 6-2

requirement of two, 6-3

threads of, 6-2

online redo log, 6-1

planning the, 6-5 to 6-10

privileges

adding groups and members, 6-11

redo entries, 6-2

requirements, 6-7

verifying blocks, 6-16

viewing, 2-8

redo records, 6-2

REFERENCES privilege

CASCADE CONSTRAINTS option, 24-13

revoking, 24-13

referential integrity constraints

dropping table partition with, 13-13

truncating table partition with, 13-16

relational design

planning, 1-19

releases

checking the release number, 1-22

identifying for Oracle8i, 1-21

maintenance release number, 1-21

patch release number, 1-22

port-specific release number, 1-22

versions of other Oracle software, 1-22

relocating

control files, 5-5

datafiles, 10-9, 10-10

remote connections, 1-16

connecting as SYSOPER/SYSDBA, 1-14

password files, 1-9

REMOTE_LOGIN_PASSWORDFILE parameter, 1-

11

REMOTE_OS_AUTHENT parameter

setting, 23-10

REMOTE_OS_ROLES parameter

setting, 24-8, 24-19

RENAME command, 20-2

renaming

Index-22

control files, 5-5

datafiles, 10-9, 10-10

datafiles with a single table, 10-9

online redo log members, 6-12

schema objects, 20-2

REOPEN option

LOG_ARCHIVE_DEST_n initialization

parameter, 7-19

replacing

views, 15-8

resource allocation methods, 11-2

resource consumer groups, 11-2

resource limits

altering in profiles, 23-19

assigning with profiles, 23-18

composite limits and, 23-19

costs and, 23-20

creating profiles and, 23-18

disabling, 23-21

enabling, 23-21

privileges to enable and disable, 23-21

privileges to set costs, 23-20

profiles, 23-17

PUBLIC_DEFAULT profile and, 23-18

service units, 23-19

setting to null, 23-19

resource plan directives, 11-2

resource plans, 11-2

RESOURCE role, 24-5

RESOURCE_LIMIT parameter

enabling and disabling limits, 23-21

resources

profiles, 23-17

responsibilities

of a database administrator, 1-2

of database users, 1-3

RESTRICTED SESSION privilege

instances in restricted mode, 3-8

restricted mode and, 3-4

session limits and, 23-3

restricting access to database

starting an instance, 3-4

REVOKE command, 24-12

when takes effect, 24-15

revoking

privileges and roles

SYSOPER/DBA privileges, 1-13

revoking privileges and roles

on selected columns, 24-13

REVOKE command, 24-12

shortcuts for object privileges, 24-3

when using operating-system roles, 24-18

roles

ADMIN OPTION and, 24-10

application developers and, 22-10

authorization, 24-6

backward compatibility, 24-5

changing authorization for, 24-8

changing passwords, 24-8

CONNECT role, 24-5

database authorization, 24-7

DBA role, 1-6, 24-5

default, 23-16

dropping, 24-8

EXP_FULL_DATABASE, 24-5

GRANT command, 24-19

GRANT OPTION and, 24-11

granting

about, 24-9

grouping with roles, 24-4

IMP_FULL_DATABASE, 24-5

listing, 24-22

listing grants, 24-21

listing privileges and roles in, 24-23

management using the operating system, 24-16

managing, 24-4

multi-byte characters

in names, 24-5

multi-byte characters in passwords, 24-7

multi-threaded server and, 24-7

operating system granting of, 24-17, 24-19

operating-system authorization, 24-7

OS management and the multi-threaded

server, 24-19

passwords for enabling, 24-7

predefined, 1-6, 24-5

privileges

changing authorization method, 24-6

changing passwords, 24-6

for creating, 24-4

 Index-23

for dropping, 24-9

granting system privileges or roles, 24-9

RESOURCE role, 24-5

REVOKE command, 24-19

revoking, 24-12

revoking ADMIN OPTION, 24-12

security and, 22-6

SET ROLE command, 24-19

unique names for, 24-4

without authorization, 24-8

rollback segments

acquiring automatically, 21-3, 21-11

acquiring on startup, 2-12

allocating, 2-14

altering public, 21-9

altering storage parameters, 21-9

AVAILABLE, 21-11

bringing

online, 21-11

online automatically, 21-11

online when new, 21-8

PARTLY AVAILABLE segment online, 21-11

checking if offline, 21-12

choosing how many, 2-14

choosing size for, 2-14

creating, 21-8

creating after database creation, 21-3

creating public and private, 21-3

decreasing size of, 21-10

deferred, 21-16

displaying

all deferred rollback segments, 21-16

deferred rollback segments, 21-16

information on, 21-14

PENDING OFFLINE segments, 21-15

displaying names of all, 21-15

dropping, 21-13

equally sized extents, 21-5

explicitly assigning transactions to, 21-13

guidelines for managing, 21-2

initial, 21-2

invalid status, 21-14

listing extents in, 20-32

location of, 21-7

making available for use, 21-10

managing, 21-1

monitoring, 21-6

OFFLINE, 21-11

offline rollback segments, 21-10

offline status, 21-12

online rollback segments, 21-10

online status, 21-12

PARTLY AVAILABLE, 21-11

PENDING OFFLINE, 21-12

privileges

for dropping, 21-14

required to alter, 21-9

required to create, 21-7

setting size of, 21-4

status for dropping, 21-13

status or state, 21-11

storage parameters, 21-8

storage parameters and, 21-8

taking offline, 21-12

taking tablespaces offline and, 9-12

transactions and, 21-13

using multiple, 21-2

ROLLBACK_SEGMENTS parameter

adding rollback segments to, 21-8

setting before database creation, 2-12

rows

chaining across blocks, 12-4, 20-8

violating integrity constraints, 20-15

S
schema objects

creating multiple objects, 20-2

default audit options, 25-11

dependencies between, 20-23

disabling audit options, 25-12

enabling audit options on, 25-11

listing by type, 20-31

listing information, 20-29

privileges to access, 24-3

privileges to rename, 20-2

renaming, 20-2, 20-3

SCN, 10-14

security

accessing a database, 22-2

Index-24

administrator of, 22-2

application developers and, 22-9

auditing policies, 22-18

authentication of users, 22-2

data, 22-3

database security, 22-2

database users and, 22-2

establishing policies, 22-1

general users, 22-4

multi-byte characters

in role names, 24-5

in role passwords, 24-7

in user passwords, 23-12

operating-system security and the

database, 22-3

policies for database administrators, 22-7

privilege management policies, 22-5

privileges, 22-2

protecting the audit trail, 25-16

REMOTE_OS_ROLES parameter, 24-19

roles to force security, 22-6

security officer, 1-3

sensitivity, 22-3

segments

data and index

default storage parameters, 12-10

data dictionary, 20-27

displaying information on, 20-32

monitoring, 21-15

rollback, 21-1

temporary storage parameters, 12-12

sensitivity

security, 22-3

SEQUENCE_CACHE_ENTRIES parameter, 15-11

sequences

altering, 15-10

creating, 15-10

dropping, 15-11

initialization parameters, 15-11

managing, 15-9

Parallel Server and, 15-10

privileges for altering, 15-10

privileges for creating, 15-10

privileges for dropping, 15-11

server units

composite limits and, 23-19

servers

dedicated

multi-threaded contrasted with, 4-3

multi-threaded

dedicated contrasted with, 4-3

session limits, license

setting initially, 2-13

session monitor, 4-8

session, user

active, 4-16

inactive, 4-17

marked to be terminated, 4-17

terminating, 4-15

viewing terminated sessions, 4-17

sessions

auditing connections and disconnections, 25-8

limits per instance, 23-2

listing privilege domain of, 24-22

number of concurrent sessions, 2-13

Parallel Server session limits, 2-13

setting maximum for instance, 23-4

setting warning limit for instance, 23-4

viewing current number and high water

mark, 23-6

viewing memory use, 23-25

SET ROLE command

how password is set, 24-7

when using operating-system roles, 24-19

SET TRANSACTION command

USE ROLLBACK SEGMENT option, 21-13

setting archive buffer parameters, 7-22

SGA

determing buffers in cache, 2-11

shared mode

rollback segments and, 21-3

shared pool

ANALYZE command and, 20-8

shared server processes

changing the minimum number of, 4-6

privileges to change number of, 4-6

trace files for, 4-10

shared SQL areas

ANALYZE command and, 20-8

shortcuts

 Index-25

CONNECT, for auditing, 25-8

object auditing, 25-9

object privileges, 24-3

statement level auditing options, 25-8

Shut Down menu

Abort Instance option, 3-12

Immediate option, 3-11

SHUTDOWN command

ABORT option, 3-12

IMMEDIATE option, 3-11

NORMAL option, 3-11

shutting down a database, 3-1

shutting down an instance

aborting the instance, 3-12

connecting and, 3-9

connecting as INTERNAL, 3-10

example of, 3-11

immediately, 3-11

normally, 3-10

size

datafile, 10-4

hash clusters, 18-4

rollback segments, 21-4

skip_corrupt_blocks procedure, 19-5, 19-11

snapshot logs

storage parameters, 12-10

snapshots

storage parameters, 12-10

too old

OPTIMAL storage parameter and, 21-5

SNP background processes

about, 8-2

software versions, 1-21

SORT_AREA_SIZE parameter

index creation and, 16-3

space

adding to the database, 9-4

used by indexes, 16-14

space management

PCTFREE, 12-2

PCTUSED, 12-4

specifying destinations

for archived redo logs, 7-11

specifying multiple ARCH processes, 7-20

SPLIT PARTITION clause, 13-18

ALTER INDEX command, 13-18

ALTER TABLE command, 13-11, 13-17

SQL statements

disabling audit options, 25-12

enabling audit options on, 25-10

SQL trace facility

when to enable, 4-12

SQL*Loader

about, 1-17

indexes and, 16-3

SQL*Plus commands

See commands, SQL*Plus

SQL_TRACE parameter

trace files and, 4-10

STALE status

of redo log members, 6-15

standby transmission mode

definition of, 7-15

Net8 and, 7-15

RFS processes and, 7-15

Start Up Instance dialog box, 3-2

starting a database

about, 3-1

general procedures, 3-2

starting an instance

at database creation, 3-3

automatically at system startup, 3-6

database closed and mounted, 3-4

database name conflicts and, 2-9

dispatcher processes and, 4-5

enabling automatic archiving, 7-9

examples of, 3-6

exclusive mode, 3-6

forcing, 3-5

general procedures, 3-2

mounting and opening the database, 3-4

multi-threaded server and, 3-2

normally, 3-4

parallel mode, 3-6

problems encountered while, 3-5

recovery and, 3-5

remote instance startup, 3-6

restricted mode, 3-4

with multi-threaded servers, 4-4

without mounting a database, 3-3

Index-26

STARTUP command, 3-2

FORCE option, 3-5

MOUNT option, 3-4

NOMOUNT option, 2-6, 3-3

RECOVER option, 3-5

specifying database name, 3-3

statistics

updating, 20-4

Step, 1-18, 1-20

storage

altering tablespaces, 9-8

quotas and, 23-14

revoking tablespaces and, 23-14

unlimited quotas, 23-14

storage parameters

applicable objects, 12-7

changing settings, 12-11

data dictionary, 20-26

default, 12-7

for the data dictionary, 20-27

INITIAL, 12-7, 14-11

INITRANS, 12-9, 14-11

MAXEXTENTS, 12-8

MAXTRANS, 12-9, 14-11

MINEXTENTS, 12-8, 14-11

NEXT, 12-8

OPTIMAL (in rollback segments), 21-5

PCTFREE, 14-10

PCTINCREASE, 12-8

PCTUSED, 14-10

precedence of, 12-11

rollback segments, 21-8

SYSTEM rollback segment, 21-9

temporary segments, 12-12

stored procedures

privileges for recompiling, 20-25

using privileges granted to PUBLIC, 24-15

stream

tape drive, 7-23

SWITCH LOGFILE option

ALTER SYSTEM command, 6-16

synonyms

creating, 15-12

displaying dependencies of, 20-32

dropped tables and, 14-12

dropping, 15-12

managing, 15-11

private, 15-11

privileges for creating, 15-12

privileges for dropping, 15-12

public, 15-11

SYS

initial password, 1-5

objects owned, 1-5

policies for protecting, 22-7

privileges, 1-5

user, 1-5

SYS.AUD$

audit trail, 25-2

creating and deleting, 25-4

SYSOPER/SYSDBA privileges

adding users to the password file, 1-12

connecting with, 1-14

determining who has privileges, 1-13

granting and revoking, 1-13

SYSTEM

initial password, 1-5

objects owned, 1-5

policies for protecting, 22-7

user, 1-5

System Change Number (SCN)

checking for a datafile, 10-14

system change number (SCN)

when determined, 6-2

System Global Area, 2-11

System Global Area (SGA), 2-11

system privileges, 24-2

SYSTEM rollback segment

altering storage parameters of, 21-9

SYSTEM tablespace

cannot drop, 9-15

initial rollback segment, 21-2

non-data dictionary tables and, 14-3

restrictions on taking offline, 10-7

when created, 9-4

T
table partition

containing global index, 13-12

 Index-27

creating, 13-9

dropping, 13-12

exchanging, 13-18

splitting, 13-17

truncating, 13-15

tables

adding partitions, 13-11

allocating extents, 14-11

altering, 14-10, 14-11

analyzing statistics, 20-3

clustered, 17-2

clustered tables

altering, 17-9

creating, 17-6

dropping, 17-10

managing, 17-1

privileges to drop, 17-10

creating, 14-9

designing before creating, 14-2

dropping, 14-12

estimating size, 14-5

guidelines for managing, 14-1, 14-6

hash clustered

creating, 18-4

managing, 18-1

increasing column length, 14-10

indexes and, 16-2

key-preserved, 15-5

limiting indexes on, 16-3

location, 14-10

location of, 14-3

managing, 14-1

parallelizing creation of, 14-4

privileges for creation, 14-9

privileges for dropping, 14-12

privileges to alter, 14-10

schema of clustered, 17-7

separating from indexes, 14-6

specifying PCTFREE for, 12-4

specifying tablespace, 14-3, 14-10

storage parameters, 12-10

SYSTEM tablespace and, 14-3

temporary space and, 14-6

transaction parameters, 14-3

truncating, 20-9

UNRECOVERABLE, 14-4

validating structure, 20-8

tablespace set, 9-20

tablespaces

adding datafiles, 10-5

altering availability, 9-10

altering storage settings, 9-8

assigning defaults for users, 23-12

assigning user quotas, 9-3

bringing online, 9-10

checking default storage parameters, 9-31

coalescing, 9-8

creating, 9-3

creating additional, 9-4

default quota, 23-13

default storage parameters for, 12-10

default temporary, 23-13

dropping

about, 9-14

required privileges, 9-15

guidelines for managing, 9-2

listing files of, 9-31

listing free space in, 9-32

location, 10-4

managing, 10-1

monitoring, 10-13

privileges for creating, 9-4

privileges to take offline, 9-10

quotas

assigning, 9-3

quotas for users, 23-13

read-only, 9-12

revoking from users, 23-14

rollback segments required, 9-5

setting default storage parameters for, 9-3

SYSTEM tablespace, 9-4

taking offline normal, 9-10

taking offline temporarily, 9-11

temporary, 23-13

unlimited quotas, 23-14

using multiple, 9-2

viewing quotas, 23-24

writable, 9-14

taking offline

tablespaces, 9-10

Index-28

tape drives

streaming for archiving, 7-23

temporary segments

index creation and, 16-3

temporary space

allocating, 14-6

terminating

a user session, 4-15

terminating sessions

active sessions, 4-16

identifying sessions, 4-16

inactive session, example, 4-17

inactive sessions, 4-17

test

security for databases, 22-9

threads

online redo log, 6-2

time window

moving, in historical table, 13-20

tip

object privilege shortcut, 24-3

shortcuts for auditing objects, 25-9

statement auditing shortcut, 25-8

TNSNAMES.ORA file, 7-12

To, 10-5, 21-12

trace files

job failures and, 8-10

location of, 4-11

log writer, 4-11

log writer process and, 6-6

size of, 4-11

using, 4-10, 4-11

when written, 4-12

transaction entries

guidelines for storage, 12-9

transactions

assigning to specific rollback segment, 21-13

committing

writing redo log buffers and, 6-2

rollback segments and, 21-13

TRANSACTIONS parameter

using, 21-2

TRANSACTIONS_PER_ROLLBACK_SEGMENT

parameter

using, 21-2

transmitting archived redo logs, 7-14

in normal transmission mode, 7-14

in standby transmission mode, 7-14

transportable tablespaces, 9-18

triggers

auditing, 25-20

disabling, 20-12

dropped tables and, 14-12

enabling, 20-12

examples, 25-20

privileges for enabling and disabling, 20-12

TRUNCATE command, 20-9

DROP STORAGE option, 20-11

REUSE STORAGE option, 20-11

TRUNCATE PARTITION clause

ALTER TABLE command, 13-15

truncating

clusters, 20-9

partitioned objects, 13-15

privileges for, 20-10

tables, 20-9

tuning

archiving, 7-20

databases, 1-20

initially, 2-14

U
UNIQUE key constraints

disabling, 20-19

dropping associated indexes, 16-15

enabling, 20-19

enabling on creation, 16-8

foreign key references when dropped, 20-20

indexes associated with, 16-8

storage of associated indexes, 16-8

UNLIMITED TABLESPACE privilege, 23-14

unrecoverable

tables, 14-4

UNRECOVERABLE DATAFILE option

ALTER DATABASE command, 6-17

unrecoverable indexes

indexes, 16-5

UPDATE privilege

revoking, 24-13

 Index-29

Use, 10-10, 23-10

USER_DUMP_DEST parameter, 4-11

USER_EXTENTS, 10-13

USER_FREE, 9-31, 10-13

USER_INDEXES view

filling with data, 20-5

USER_SEGMENTS, 9-31, 10-13

USER_TAB_COLUMNS view

filling with data, 20-5

USER_TABLES view

filling with data, 20-5

USER_TABLESPACES, 9-31, 10-13

usernames

SYS and SYSTEM, 1-5

users

altering, 23-15

assigning profiles to, 23-18

assigning tablespace quotas, 9-3

assigning unlimited quotas for, 23-14

auhentication

database authentication, 23-8

authentication

about, 22-2, 23-7

changing default roles, 23-16

composite limits and, 23-19

default tablespaces, 23-12

dropping, 23-16

dropping profiles and, 23-21

dropping roles and, 24-8

end-user security policies, 22-5

enrolling, 1-20

identification, 23-7

in a newly created database, 2-14

limiting number of, 2-13

listing, 23-22

listing privileges granted to, 24-20

listing roles granted to, 24-21

managing, 23-11

multi-byte characters

in passwords, 23-12

objects after dropping, 23-16

password security, 22-4

policies for managing privileges, 22-5

privileges for changing passwords, 23-15

privileges for creating, 23-11

privileges for dropping, 23-17

PUBLIC group, 24-15

security and, 22-2

security for general users, 22-4

session, terminating, 4-17

specifying user names, 23-12

tablespace quotas, 23-13

unique user names, 2-13, 23-5

viewing information on, 23-23

viewing memory use, 23-25

viewing tablespace quotas, 23-24

utilities

Export, 1-17

for the database administrator, 1-17

Import, 1-17

SQL*Loader, 1-17

UTLCHAIN.SQL, 20-8

UTLLOCKT.SQL script, 4-8

V
V$ARCHIVE view, 7-23

V$ARCHIVE_DEST view

obtaining destination status, 7-14

V$DATABASE view, 7-24

V$DATAFILE, 9-31, 10-13

V$DBFILE view, 2-8

V$DISPATCHER view

controlling dispatcher process load, 4-7

V$LICENSE view, 23-6

V$LOG view, 7-23

displaying archiving status, 7-23

online redo log, 6-18

viewing redo data with, 6-18

V$LOGFILE view, 2-8

logfile status, 6-15

viewing redo data with, 6-18

V$LOGMNR_CONTENTS view, 7-31

using to analyze archived redo logs, 7-25

V$PWFILE_USERS view, 1-13

V$QUEUE view

controlling dispatcher process load, 4-7

V$ROLLNAME

finding PENDING OFFLINE segments, 21-15

V$ROLLSTAT

Index-30

finding PENDING OFFLINE segments, 21-15

V$SESSION, 8-14

V$SESSION view, 4-17

V$THREAD view, 6-18

viewing redo data with, 6-18

valid destination state

for archived redo logs, 7-13

VALIDATE STRUCTURE option, 20-8

VARCHAR2 datatype, 12-17

space use of, 12-17

verifying blocks

redo log files, 6-16

versions, 1-21

of other Oracle software, 1-22

view

partitioned

converting to partitioned table, 13-18

views

creating, 15-2

creating with errors, 15-4

displaying dependencies of, 20-32

dropped tables and, 14-12

dropping, 15-9

FOR UPDATE clause and, 15-3

managing, 15-1, 15-9

ORDER BY clause and, 15-3

privileges, 15-2

privileges for dropping, 15-9

privileges for recompiling, 20-25

privileges to replace, 15-8

recompiling, 20-25

replacing, 15-8

V$ARCHIVE, 7-23

V$ARCHIVE_DEST, 7-14

V$DATABASE, 7-24

V$LOG, 6-18, 7-23

V$LOGFILE, 6-15, 6-18

V$LOGMNR_CONTENTS, 7-25, 7-31

V$THREAD, 6-18

wildcards in, 15-4

WITH CHECK OPTION, 15-3

violating integrity constraints, 20-15

W
warning

changing data dictionary storage

parameters, 20-27

creating a rollback segment, 2-12

disabling audit options, 25-12

enabling auditing, 25-10

setting the CONTROL_FILES parameter, 2-10

use mirrored control files, 5-2

wildcards

in views, 15-4

WORM devices

and read-only tablespaces, 9-14

writable tablespaces, 9-14

	PDF Directory
	Contents
	1� The Oracle Database Administrator
	Types of Oracle Users 1-2
	Database Administrators 1-2
	Security Officers 1-3
	Application Developers 1-3
	Application Administrators 1-3
	Database Users 1-3
	Network Administrators 1-4

	Database Administrator Security and Privileges 1-4
	The Database Administrator’s Operating System Account 1-4
	Database Administrator Usernames 1-5
	The DBA Role 1-6

	Database Administrator Authentication 1-6
	Selecting an Authentication Method 1-6
	Using Operating System Authentication 1-7
	OSOPER and OSDBA 1-8
	Using an Authentication Password File 1-9

	Password File Administration 1-9
	Using ORAPWD 1-10
	Setting REMOTE_LOGIN_ PASSWORDFILE 1-11
	Adding Users to a Password File 1-12
	Connecting with Administrator Privileges 1-14
	Maintaining a Password File 1-15

	Database Administrator Utilities 1-17
	SQL*Loader 1-17
	Export and Import 1-17

	Priorities of a Database Administrator 1-17
	Step 1: Install the Oracle Software 1-18
	Step 2: Evaluate the Database Server Hardware 1-18
	Step 3: Plan the Database 1-18
	Step 4: Create and Open the Database 1-19
	Step 5: Implement the Database Design 1-20
	Step 6: Back Up the Database 1-20
	Step 7: Enroll System Users 1-20
	Step 8: Tune Database Performance 1-20

	Identifying Oracle Software Releases 1-21
	Release Number Format 1-21
	Versions of Other Oracle Software 1-22
	Checking Your Current Release Number 1-22

	2� Creating an Oracle Database
	Considerations Before Creating a Database 2-2
	Creation Prerequisites 2-3
	Using an Initial Database 2-3
	Migrating an Older Version of the Database 2-3

	Creating an Oracle Database 2-3
	Steps for Creating an Oracle Database 2-4
	Creating a Database: Example 2-7
	Troubleshooting Database Creation 2-8
	Dropping a Database 2-8

	Parameters 2-9
	DB_NAME and DB_DOMAIN 2-9
	CONTROL_FILES 2-10
	DB_BLOCK_SIZE 2-11
	DB_BLOCK_BUFFERS 2-11
	PROCESSES 2-12
	ROLLBACK_SEGMENTS 2-12
	License Parameters 2-12
	LICENSE_MAX_SESSIONS and LICENSE_SESSIONS _WARNING 2-13
	LICENSE_MAX_USERS 2-13

	Considerations After Creating a Database 2-14
	Initial Tuning Guidelines 2-14
	Allocating Rollback Segments 2-14
	Choosing the Number of DB_BLOCK_LRU_LATCHES 2-15
	Distributing I/O 2-15

	3� Starting Up and Shutting Down
	Starting Up a Database 3�2
	Preparing to Start an Instance 3�2
	Starting an Instance: Scenarios 3�3

	Altering Database Availability 3�7
	Mounting a Database to an Instance 3�7
	Opening a Closed Database 3�7
	Opening a Database in Read-Only Mode 3�8
	Restricting Access to an Open Database 3�8

	Shutting Down a Database 3�9
	Shutting Down with the NORMAL Option 3�10
	Shutting Down with the IMMEDIATE Option 3�11
	Shutting Down with the TRANSACTIONAL Option 3�11
	Shutting Down with the ABORT Option 3�12

	Suspending and Resuming a Database 3�12
	Using Parameter Files 3�13
	The Sample Parameter File 3�14
	The Number of Parameter Files 3�14
	The Location of the Parameter File in Distributed Environments 3�15

	4� Managing Oracle Processes
	Setting Up Server Processes 4�2
	When to Connect to a Dedicated Server Process 4�2

	Configuring Oracle for Multi-Threaded Server Architecture 4�3
	MTS_DISPATCHERS: Setting the Initial Number of Dispatchers (Required) 4�5

	Modifying Server Processes 4�6
	Changing the Minimum Number of Shared Server Processes 4�6
	Adding and Removing Dispatcher Processes 4�7

	Tracking Oracle Processes 4�7
	Monitoring the Processes of an Oracle Instance 4�8
	Trace Files, the ALERT File, and Background Processes 4�10
	Starting the Checkpoint Process 4�12

	Managing Processes for the Parallel Query Option 4�12
	Managing the Query Servers 4�13
	Variations in the Number of Query Server Processes 4�13

	Managing Processes for External Procedures 4�14
	Terminating Sessions 4�15
	Identifying Which Session to Terminate 4�16
	Terminating an Active Session 4�16
	Terminating an Inactive Session 4�17

	5� Managing Control Files
	Guidelines for Control Files 5�2
	Name Control Files 5�2
	Multiplex Control Files on Different Disks 5�2
	Place Control Files Appropriately 5�3
	Manage the Size of Control Files 5�3

	Creating Control Files 5�3
	Creating Initial Control Files 5�4
	Creating Additional Control File Copies, and Renaming and Relocating Control Files 5�5
	New Control Files 5�5
	Creating New Control Files 5�6

	Troubleshooting After Creating Control Files 5�8
	Checking for Missing or Extra Files 5�8
	Handling Errors During CREATE CONTROLFILE 5�9

	Dropping Control Files 5�9

	6� Managing the Online Redo Log
	What Is the Online Redo Log? 6-2
	Redo Threads 6-2
	Online Redo Log Contents 6-2
	How Oracle Writes to the Online Redo Log 6-3

	Planning the Online Redo Log 6-5
	Multiplexing Online Redo Log Files 6-5
	Placing Online Redo Log Members on Different Disks 6-9
	Setting the Size of Online Redo Log Members 6-9
	Choosing the Number of Online Redo Log Files 6-9

	Creating Online Redo Log Groups and Members 6-11
	Creating Online Redo Log Groups 6-11
	Creating Online Redo Log Members 6-11

	Renaming and Relocating Online Redo Log Members 6-12
	Dropping Online Redo Log Groups and Members 6-14
	Dropping Log Groups 6-14
	Dropping Online Redo Log Members 6-15

	Forcing Log Switches 6-16
	Verifying Blocks in Redo Log Files 6-16
	Clearing an Online Redo Log File 6-17
	Restrictions 6-17

	Listing Information about the Online Redo Log 6-18

	7� Managing Archived Redo Logs
	What Is the Archived Redo Log? 7-2
	Choosing Between NOARCHIVELOG and ARCHIVELOG Mode 7-4
	Running a Database in NOARCHIVELOG Mode 7-4
	Running a Database in ARCHIVELOG Mode 7-4

	Turning Archiving On and Off 7-7
	Setting the Initial Database Archiving Mode 7-7
	Changing the Database Archiving Mode 7-7
	Enabling Automatic Archiving 7-8
	Disabling Automatic Archiving 7-9
	Performing Manual Archiving 7-10

	Specifying the Archive Destination 7-11
	Specifying Archive Destinations 7-11
	Understanding Archive Destination States 7-13

	Specifying the Mode of Log Transmission 7-14
	Normal Transmission Mode 7-15
	Standby Transmission Mode 7-15

	Managing Archive Destination Failure 7-16
	Specifying the Minimum Number of Successful Destinations 7-17
	Re-Archiving to a Failed Destination 7-19

	Tuning Archive Performance 7-20
	Specifying Multiple ARCn Processes 7-20
	Setting Archive Buffer Parameters 7-22

	Displaying Archived Redo Log Information 7-23
	Using LogMiner to Analyze Online and Archived Redo Logs 7-25
	How Can You Use LogMiner? 7-26
	Restrictions 7-26
	Creating a Dictionary File 7-27
	Specifying Redo Logs for Analysis 7-29
	Using LogMiner 7-30
	Using LogMiner: Scenarios 7-32

	8� Managing Job Queues
	SNP Background Processes 8-2
	Multiple SNP processes 8-3
	Starting up SNP processes 8-3

	Managing Job Queues 8-3
	DBMS_JOB Package 8-4
	Submitting a Job to the Job Queue 8-4
	How Jobs Execute 8-9
	Removing a Job from the Job Queue 8-11
	Altering a Job 8-11
	Broken Jobs 8-12
	Forcing a Job to Execute 8-14
	Terminating a Job 8-14

	Viewing Job Queue Information 8-15

	9� Managing Tablespaces
	Guidelines for Managing Tablespaces 9�2
	Using Multiple Tablespaces 9�2
	Specifying Tablespace Storage Parameters 9�3
	Assigning Tablespace Quotas to Users 9�3

	Creating Tablespaces 9�3
	Creating Locally Managed Tablespaces 9�5
	Creating a Temporary Tablespace 9�6

	Managing Tablespace Allocation 9�8
	Altering Storage Settings for Tablespaces 9�8
	Coalescing Free Space 9�8

	Altering Tablespace Availability 9�10
	Bringing Tablespaces Online 9�10
	Taking Tablespaces Offline 9�10

	Making a Tablespace Read-Only 9�12
	Prerequisites 9�13
	Making a Read-Only Tablespace Writeable 9�14
	Creating a Read-Only Tablespace on a WORM Device 9�14

	Dropping Tablespaces 9�14
	Using the DBMS_SPACE_ADMIN Package 9�16
	Scenario 1 9�16
	Scenario 2 9�17
	Scenario 3 9�17
	Scenario 4 9�17

	Transporting Tablespaces Between Databases 9�18
	Introduction to Transportable Tablespaces 9�18
	Current Limitations 9�20
	Step 1: Pick a Self-contained Set of Tablespaces 9�20
	Step 2: Generate a Transportable Tablespace Set 9�22
	Step 3: Transport the Tablespace Set 9�23
	Step 4: Plug In the Tablespace Set 9�23
	Object Behaviors 9�24
	Transporting and Attaching Partitions for Data Warehousing: Example 9�27
	Publishing Structured Data on CDs 9�29
	Mounting the Same Tablespace Read-only on Multiple Databases 9�29
	Archive Historical Data via Transportable Tablespaces 9�30
	Using Transportable Tablespaces to Perform TSPITR 9�30

	Viewing Information About Tablespaces 9�31

	10� Managing Datafiles
	Guidelines for Managing Datafiles 10�2
	Determine the Number of Datafiles 10�2
	Set the Size of Datafiles 10�4
	Place Datafiles Appropriately 10�4
	Store Datafiles Separate From Redo Log Files 10�4

	Creating and Adding Datafiles to a Tablespace 10�5
	Changing a Datafile’s Size 10�5
	Enabling and Disabling Automatic Extension for a Datafile 10�5
	Manually Resizing a Datafile 10�6

	Altering Datafile Availability 10�7
	Bringing Datafiles Online in ARCHIVELOG Mode 10�8
	Taking Datafiles Offline in NOARCHIVELOG Mode 10�8

	Renaming and Relocating Datafiles 10�9
	Renaming and Relocating Datafiles for a Single Tablespace 10�9
	Renaming and Relocating Datafiles for Multiple Tablespaces 10�10

	Verifying Data Blocks in Datafiles 10�12
	Viewing Information About Datafiles 10�13

	11� Using the Database Resource Manager
	Introduction 11�2
	Using Database Resource Manager Packages 11�3
	Using the DBMS_RESOURCE_MANAGER Package 11�3
	The DBMS_RESOURCE_MANAGER_PRIVS Package 11�10
	Using the DBMS_SESSION Package to Change a User’s Resource Consumer Groups 11�11

	Database Resource Manager Views 11�12

	12� Guidelines for Managing Schema Objects
	Managing Space in Data Blocks 12�2
	The PCTFREE Parameter 12�2
	The PCTUSED Parameter 12�4
	Selecting Associated PCTUSED and PCTFREE Values 12�6

	Setting Storage Parameters 12�7
	Storage Parameters You Can Specify 12�7
	Setting INITRANS and MAXTRANS 12�9
	Setting Default Storage Parameters for Segments in a Tablespace 12�10
	Setting Storage Parameters for Data Segments 12�10
	Setting Storage Parameters for Index Segments 12�10
	Setting Storage Parameters for LOB Segments 12�11
	Changing Values for Storage Parameters 12�11
	Understanding Precedence in Storage Parameters 12�11

	Deallocating Space 12�13
	Viewing the High Water Mark 12�13
	Issuing Space Deallocation Statements 12�13

	Understanding Space Use of Datatypes 12�17
	Summary of Oracle Datatypes 12�19

	13� Managing Partitioned Tables and Indexes
	What Are Partitioned Tables and Indexes? 13�2
	Partitioning Methods 13�2
	Using the Range Partitioning Method 13�3
	Using the Hash Partitioning Method 13�4
	Using the Composite Partitioning Method 13�5

	Creating Partitions 13�9
	Maintaining Partitions 13�9
	Moving Partitions 13�10
	Adding Partitions 13�11
	Dropping Partitions 13�12
	Coalescing Partitions 13�14
	Modifying Partition Default Attributes 13�14
	Truncating Partitions 13�15
	Splitting Partitions 13�17
	Merging Partitions 13�18
	Exchanging Table Partitions 13�18
	Rebuilding Index Partitions 13�20
	Moving the Time Window in a Historical Table 13�20
	Quiescing Applications During a Multi-Step Maintenance Operation 13�21

	14� Managing Tables
	Guidelines for Managing Tables 14�2
	Design Tables Before Creating Them 14�2
	Specify How Data Block Space Is to Be Used 14�3
	Specify Transaction Entry Parameters 14�3
	Specify the Location of Each Table 14�3
	Parallelize Table Creation 14�4
	Consider Creating UNRECOVERABLE Tables 14�4
	Estimate Table Size and Set Storage Parameters 14�5
	Plan for Large Tables 14�5
	Table Restrictions 14�6

	Creating Tables 14�9
	Altering Tables 14�10
	Manually Allocating Storage for a Table 14�11
	Dropping Tables 14�12
	Dropping Columns 14�13

	Index-Organized Tables 14�13
	What Are Index-Organized Tables? 14�14
	Creating Index-Organized Tables 14�16
	Maintaining Index-Organized Tables 14�19
	Analyzing Index-Organized Tables 14�21
	Using the ORDER BY Clause with Index-Organized Tables 14�22
	Converting Index-Organized Tables to Regular Tables 14�22

	15� Managing Views, Sequences and Synonyms
	Managing Views 15�2
	Creating Views 15�2
	Modifying a Join View 15�4
	Replacing Views 15�8
	Dropping Views 15�9

	Managing Sequences 15�9
	Creating Sequences 15�10
	Altering Sequences 15�10
	Initialization Parameters Affecting Sequences 15�11
	Dropping Sequences 15�11

	Managing Synonyms 15�11
	Creating Synonyms 15�12
	Dropping Synonyms 15�12

	16� Managing Indexes
	Guidelines for Managing Indexes 16�2
	Create Indexes After Inserting Table Data 16�3
	Limit the Number of Indexes per Table 16�3
	Specify Transaction Entry Parameters 16�4
	Specify Index Block Space Use 16�4
	Specify the Tablespace for Each Index 16�4
	Parallelize Index Creation 16�5
	Consider Creating Indexes with NOLOGGING 16�5
	Estimate Index Size and Set Storage Parameters 16�5
	Considerations Before Disabling or Dropping Constraints 16�7

	Creating Indexes 16�7
	Creating an Index Associated with a Constraint 16�8
	Creating an Index Explicitly 16�8
	Creating an Index Online 16�9
	Creating a Function-Based Index 16�9
	Re-creating an Existing Index 16�12
	Creating a Key-Compressed Index 16�12

	Altering Indexes 16�13
	Monitoring Space Use of Indexes 16�14
	Dropping Indexes 16�15

	17� Managing Clusters
	Guidelines for Managing Clusters 17�2
	Choose Appropriate Tables for the Cluster 17�4
	Choose Appropriate Columns for the Cluster Key 17�4
	Specify Data Block Space Use 17�5
	Specify the Space Required by an Average Cluster Key and Its Associated Rows 17�5
	Specify the Location of Each Cluster and Cluster Index Rows 17�5
	Estimate Cluster Size and Set Storage Parameters 17�6

	Creating Clusters 17�6
	Creating Clustered Tables 17�7
	Creating Cluster Indexes 17�7

	Altering Clusters 17�8
	Altering Cluster Tables and Cluster Indexes 17�9

	Dropping Clusters 17�10
	Dropping Clustered Tables 17�10
	Dropping Cluster Indexes 17�11

	18� Managing Hash Clusters
	Guidelines for Managing Hash Clusters 18�2
	Advantages of Hashing 18�2
	Disadvantages of Hashing 18�3
	Estimate Size Required by Hash Clusters and Set Storage Parameters 18�4
	Creating Hash Clusters 18�4
	Controlling Space Use Within a Hash Cluster 18�6

	Altering Hash Clusters 18�8
	Dropping Hash Clusters 18�9

	19� Detecting and Repairing Data Block Corruption
	DBMS_REPAIR Package Contents 19�2
	Step 1: Detect and Report Corruptions 19�2
	DBMS_REPAIR: Using the check_object and admin_tables Procedures 19�3
	DB_VERIFY: Performing an Offline Database Check 19�3
	ANALYZE: Corruption Reporting 19�3
	DB_BLOCK_CHECKING (Block Checking Initialization Parameter) 19�3

	Step 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR 19�4
	Step 3: Make Objects Usable 19�5
	Corruption Repair: Using the fix_corrupt_blocks and skip_corrupt_blocks Procedures 19�5
	Implications when Skipping Corrupt Blocks 19�5

	Step 4: Repair Corruptions and Rebuild Lost Data 19�6
	Recover Data Using the dump_orphan_keys Procedures 19�6
	Repair Freelists Using the rebuild_freelists Procedure 19�6

	Limitations and Restrictions 19�6
	DBMS_REPAIR Procedures 19�7
	check_object 19�7
	fix_corrupt_blocks 19�8
	dump_orphan_keys 19�9
	rebuild_freelists 19�10
	skip_corrupt_blocks 19�11
	admin_tables 19�11

	DBMS_REPAIR Exceptions 19�12

	20� General Management of Schema Objects
	Creating Multiple Tables and Views in a Single Operation 20�2
	Renaming Schema Objects 20�2
	Analyzing Tables, Indexes, and Clusters 20�3
	Using Statistics for Tables, Indexes, and Clusters 20�4
	Validating Tables, Indexes, and Clusters 20�8
	Listing Chained Rows of Tables and Clusters 20�8

	Truncating Tables and Clusters 20�9
	Enabling and Disabling Triggers 20�11
	Enabling Triggers 20�12
	Disabling Triggers 20�12

	Managing Integrity Constraints 20�13
	Integrity Constraint States 20�14
	Deferring Constraint Checks 20�16
	Managing Constraints That Have Associated Indexes 20�18
	Setting Integrity Constraints Upon Definition 20�18
	Modifying Existing Integrity Constraints 20�20
	Dropping Integrity Constraints 20�21
	Reporting Constraint Exceptions 20�21

	Managing Object Dependencies 20�23
	Manually Recompiling Views 20�25
	Manually Recompiling Procedures and Functions 20�25
	Manually Recompiling Packages 20�25

	Managing Object Name Resolution 20�25
	Changing Storage Parameters for the Data Dictionary 20�26
	Structures in the Data Dictionary 20�27
	Errors that Require Changing Data Dictionary Storage 20�29

	Displaying Information About Schema Objects 20�29
	Oracle Dictionary Storage Packages 20�30
	Example 1: Displaying Schema Objects By Type 20�31
	Example 2: Displaying Column Information 20�31
	Example 3: Displaying Dependencies of Views and Synonyms 20�32
	Example 4: Displaying General Segment Information 20�32
	Example 5: Displaying General Extent Information 20�32
	Example 6: Displaying the Free Space (Extents) of a Database 20�33
	Example 7: Displaying Segments that Cannot Allocate Additional Extents 20�33

	21� Managing Rollback Segments
	Guidelines for Managing Rollback Segments 21�2
	Use Multiple Rollback Segments 21�2
	Choose Between Public and Private Rollback Segments 21�3
	Specify Rollback Segments to Acquire Automatically 21�3
	Set Rollback Segment Sizes Appropriately 21�4
	Create Rollback Segments with Many Equally Sized Extents 21�5
	Set an Optimal Number of Extents for Each Rollback Segment 21�5
	Set the Storage Location for Rollback 21�7

	Creating Rollback Segments 21�7
	Bringing New Rollback Segments Online 21�8

	Specifying Storage Parameters for Rollback Segments 21�8
	Setting Storage Parameters When Creating a Rollback Segment 21�8
	Changing Rollback Segment Storage Parameters 21�9
	Altering Rollback Segment Format 21�9
	Shrinking a Rollback Segment Manually 21�10

	Taking Rollback Segments Online and Offline 21�10
	Bringing Rollback Segments Online 21�11
	Taking Rollback Segments Offline 21�12

	Explicitly Assigning a Transaction to a Rollback Segment 21�13
	Dropping Rollback Segments 21�13
	Monitoring Rollback Segment Information 21�14
	Displaying Rollback Segment Information 21�14

	22� Establishing Security Policies
	System Security Policy 22�2
	Database User Management 22�2
	User Authentication 22�2
	Operating System Security 22�3

	Data Security Policy 22�3
	User Security Policy 22�4
	General User Security 22�4
	End-User Security 22�5
	Administrator Security 22�7
	Application Developer Security 22�9
	Application Administrator Security 22�11

	Password Management Policy 22�11
	Account Locking 22�12
	Password Aging and Expiration 22�12
	Password History 22�14
	Password Complexity Verification 22�14

	Auditing Policy 22�18

	23� Managing Users and Resources
	Session and User Licensing 23�2
	Concurrent Usage Licensing 23�2
	Connecting Privileges 23�3
	Setting the Maximum Number of Sessions 23�4
	Setting the Session Warning Limit 23�4
	Changing Concurrent Usage Limits While the Database is Running 23�4
	Named User Limits 23�5
	Viewing Licensing Limits and Current Values 23�6

	User Authentication 23�7
	Database Authentication 23�8
	External Authentication 23�8
	Enterprise Authentication 23�10

	Oracle Users 23�11
	Creating Users 23�11
	Altering Users 23�15
	Dropping Users 23�16

	Managing Resources with Profiles 23�17
	Creating Profiles 23�18
	Assigning Profiles 23�18
	Altering Profiles 23�19
	Using Composite Limits 23�19
	Dropping Profiles 23�21
	Enabling and Disabling Resource Limits 23�21

	Listing Information About Database Users and Profiles 23�22
	Listing Information about Users and Profiles: Examples 23�23

	Examples 23�26

	24� Managing User Privileges and Roles
	Identifying User Privileges 24�2
	System Privileges 24�2
	Object Privileges 24�3

	Managing User Roles 24�4
	Creating a Role 24�4
	Predefined Roles 24�5
	Role Authorization 24�6
	Dropping Roles 24�8

	Granting User Privileges and Roles 24�9
	Granting System Privileges and Roles 24�9
	Granting Object Privileges and Roles 24�10
	Granting Privileges on Columns 24�11

	Revoking User Privileges and Roles 24�12
	Revoking System Privileges and Roles 24�12
	Revoking Object Privileges and Roles 24�12
	Effects of Revoking Privileges 24�14
	Granting to and Revoking from the User Group PUBLIC 24�15

	Granting Roles Using the Operating System or Network 24�16
	Using Operating System Role Identification 24�17
	Using Operating System Role Management 24�18
	Granting and Revoking Roles When OS_ROLES=TRUE 24�18
	Enabling and Disabling Roles When OS_ROLES=TRUE 24�19
	Using Network Connections with Operating System Role Management 24�19

	Listing Privilege and Role Information 24�19
	Listing Privilege and Role Information: Examples 24�20

	25� Auditing Database Use
	Guidelines for Auditing 25�2
	Audit via the Database or Operating System 25�2
	Keep Audited Information Manageable 25�2

	Creating and Deleting the Database Audit Trail Views 25�4
	Creating the Audit Trail Views 25�4
	Deleting the Audit Trail Views 25�5

	Managing Audit Trail Information 25�5
	Events Audited by Default 25�7
	Setting Auditing Options 25�7
	Enabling and Disabling Database Auditing 25�13
	Controlling the Growth and Size of the Audit Trail 25�14
	Protecting the Audit Trail 25�16

	Viewing Database Audit Trail Information 25�17
	Listing Active Statement Audit Options 25�18
	Listing Active Privilege Audit Options 25�18
	Listing Active Object Audit Options for Specific Objects 25�19
	Listing Default Object Audit Options 25�19
	Listing Audit Records 25�19
	Listing Audit Records for the AUDIT SESSION Option 25�20

	Auditing Through Database Triggers 25�20

	Send Us Your Comments
	Preface
	1 The Oracle Database Administrator
	Types of Oracle Users
	Database Administrators
	Security Officers
	Application Developers
	Application Administrators
	Database Users
	Network Administrators

	Database Administrator Security and Privileges
	The Database Administrator’s Operating System Account
	Database Administrator Usernames
	SYS
	SYSTEM

	The DBA Role

	Database Administrator Authentication
	Selecting an Authentication Method
	Using Operating System Authentication
	OSOPER and OSDBA
	Using an Authentication Password File

	Password File Administration
	Using ORAPWD
	Setting REMOTE_LOGIN_ PASSWORDFILE
	Adding Users to a Password File
	Granting and Revoking SYSOPER and SYSDBA Privileges
	Listing Password File Members

	Connecting with Administrator Privileges
	Connecting with Administrator Privileges: Example
	Non-Secure Remote Connections
	Local and Secure Remote Connections

	Maintaining a Password File
	Expanding the Number of Password File Users
	Relocating the Password File
	Removing a Password File
	Changing the Password File State

	Database Administrator Utilities
	SQL*Loader
	Export and Import

	Priorities of a Database Administrator
	Step 1: Install the Oracle Software
	Step 2: Evaluate the Database Server Hardware
	Step 3: Plan the Database
	Step 4: Create and Open the Database
	Step 5: Implement the Database Design
	Step 6: Back Up the Database
	Step 7: Enroll System Users
	Step 8: Tune Database Performance

	Identifying Oracle Software Releases
	Release Number Format
	Version Number
	Maintenance Release Number
	Patch Release Number
	Port-Specific Patch Release Number
	Examples of Release Numbers

	Versions of Other Oracle Software
	Checking Your Current Release Number

	2 Creating an Oracle Database
	Considerations Before Creating a Database
	Creation Prerequisites
	Using an Initial Database
	Migrating an Older Version of the Database

	Creating an Oracle Database
	Steps for Creating an Oracle Database
	Creating a Database: Example
	Troubleshooting Database Creation
	Dropping a Database

	Parameters
	DB_NAME and DB_DOMAIN
	CONTROL_FILES
	DB_BLOCK_SIZE
	DB_BLOCK_BUFFERS
	PROCESSES
	ROLLBACK_SEGMENTS
	License Parameters
	LICENSE_MAX_SESSIONS and LICENSE_SESSIONS _WARNING
	LICENSE_MAX_USERS

	Considerations After Creating a Database
	Initial Tuning Guidelines
	Allocating Rollback Segments
	Choosing Sizes for Rollback Segments

	Choosing the Number of DB_BLOCK_LRU_LATCHES
	Distributing I/O

	3 Starting Up and Shutting Down
	Starting Up a Database
	Preparing to Start an Instance
	Starting an Instance: Scenarios
	Starting an Instance Without Mounting a Database
	Starting an Instance and Mounting a Database
	Starting an Instance, and Mounting and Opening a Database
	Restricting Access to a Database at Startup
	Forcing an Instance to Start
	Starting an Instance, Mounting a Database, and Starting Complete Media Recovery
	Starting in Exclusive or Parallel Mode
	Starting Up an Instance and Database: Example
	Automatic Database Startup at Operating System Start
	Starting Remote Instances

	Altering Database Availability
	Mounting a Database to an Instance
	Opening a Closed Database
	Opening a Database in Read-Only Mode
	Restricting Access to an Open Database

	Shutting Down a Database
	Shutting Down with the NORMAL Option
	Shutting Down with the IMMEDIATE Option
	Shutting Down with the TRANSACTIONAL Option
	Shutting Down with the ABORT Option

	Suspending and Resuming a Database
	Using Parameter Files
	The Sample Parameter File
	The Number of Parameter Files
	The Location of the Parameter File in Distributed Environments

	4 Managing Oracle Processes
	Setting Up Server Processes
	When to Connect to a Dedicated Server Process

	Configuring Oracle for Multi-Threaded Server Architecture
	MTS_DISPATCHERS: Setting the Initial Number of Dispatchers (Required)
	Calculating the Initial Number of Dispatcher Processes
	Examples

	Modifying Server Processes
	Changing the Minimum Number of Shared Server Processes
	Adding and Removing Dispatcher Processes

	Tracking Oracle Processes
	Monitoring the Processes of an Oracle Instance
	Monitoring Locks
	Monitoring Dynamic Performance Tables
	Distinguishing Oracle Background Processes from Operating System Background Processes

	Trace Files, the ALERT File, and Background Processes
	Using the Trace Files
	Specifying the Location of Trace Files
	Controlling the Size of Trace Files
	Controlling When Oracle Writes to Trace Files

	Starting the Checkpoint Process

	Managing Processes for the Parallel Query Option
	Managing the Query Servers
	Variations in the Number of Query Server Processes

	Managing Processes for External Procedures
	Sample Entry in tnsnames.ora
	Sample Entry in listener.ora

	Terminating Sessions
	Identifying Which Session to Terminate
	Terminating an Active Session
	Terminating an Inactive Session

	5 Managing Control Files
	Guidelines for Control Files
	Name Control Files
	Multiplex Control Files on Different Disks
	Behavior of Multiplexed Control Files

	Place Control Files Appropriately
	Manage the Size of Control Files

	Creating Control Files
	Creating Initial Control Files
	Creating Additional Control File Copies, and Renaming and Relocating Control Files
	New Control Files
	Creating New Control Files

	Troubleshooting After Creating Control Files
	Checking for Missing or Extra Files
	Handling Errors During CREATE CONTROLFILE

	Dropping Control Files

	6 Managing the Online Redo Log
	What Is the Online Redo Log?
	Redo Threads
	Online Redo Log Contents
	How Oracle Writes to the Online Redo Log
	Active (Current) and Inactive Online Redo Log Files
	Log Switches and Log Sequence Numbers

	Planning the Online Redo Log
	Multiplexing Online Redo Log Files
	Responding to Online Redo Log Failure
	Legal and Illegal Configurations

	Placing Online Redo Log Members on Different Disks
	Setting the Size of Online Redo Log Members
	Choosing the Number of Online Redo Log Files

	Creating Online Redo Log Groups and Members
	Creating Online Redo Log Groups
	Creating Online Redo Log Members

	Renaming and Relocating Online Redo Log Members
	Dropping Online Redo Log Groups and Members
	Dropping Log Groups
	Dropping Online Redo Log Members

	Forcing Log Switches
	Verifying Blocks in Redo Log Files
	Clearing an Online Redo Log File
	Restrictions

	Listing Information about the Online Redo Log

	7 Managing Archived Redo Logs
	What Is the Archived Redo Log?
	Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
	Running a Database in NOARCHIVELOG Mode
	Running a Database in ARCHIVELOG Mode

	Turning Archiving On and Off
	Setting the Initial Database Archiving Mode
	Changing the Database Archiving Mode
	Enabling Automatic Archiving
	Enabling Automatic Archiving at Instance Startup
	Enabling Automatic Archiving After Instance Startup

	Disabling Automatic Archiving
	Disabling Automatic Archiving at Instance Startup
	Disabling Automatic Archiving after Instance Startup

	Performing Manual Archiving

	Specifying the Archive Destination
	Specifying Archive Destinations
	Understanding Archive Destination States

	Specifying the Mode of Log Transmission
	Normal Transmission Mode
	Standby Transmission Mode

	Managing Archive Destination Failure
	Specifying the Minimum Number of Successful Destinations
	Specifying Mandatory and Optional Destinations
	Sample Scenarios

	Re-Archiving to a Failed Destination

	Tuning Archive Performance
	Specifying Multiple ARCn Processes
	Setting Archive Buffer Parameters
	Minimizing the Impact on System Performance
	Improving Archiving Speed

	Displaying Archived Redo Log Information
	Using LogMiner to Analyze Online and Archived Redo Logs
	How Can You Use LogMiner?
	Restrictions
	Creating a Dictionary File
	Specifying Redo Logs for Analysis
	Using LogMiner
	Using LogMiner: Scenarios
	Tracking a User
	Calculating Table Access Statistics

	8 Managing Job Queues
	SNP Background Processes
	Multiple SNP processes
	Starting up SNP processes

	Managing Job Queues
	DBMS_JOB Package
	Submitting a Job to the Job Queue
	Job Environment
	Jobs and Import/Export
	Job Owners
	Job Numbers
	Job Definitions
	Job Execution Interval
	Database Links and Jobs

	How Jobs Execute
	Job Queue Locks
	Job Execution Errors

	Removing a Job from the Job Queue
	Restrictions

	Altering a Job
	Restrictions
	Syntax for CHANGE
	Syntax for WHAT
	Syntax for NEXT_DATE
	Syntax for INTERVAL

	Broken Jobs
	Restrictions
	Running Broken Jobs

	Forcing a Job to Execute
	Restrictions

	Terminating a Job

	Viewing Job Queue Information

	9 Managing Tablespaces
	Guidelines for Managing Tablespaces
	Using Multiple Tablespaces
	Specifying Tablespace Storage Parameters
	Assigning Tablespace Quotas to Users

	Creating Tablespaces
	Creating Locally Managed Tablespaces
	Creating a Database with a Locally Managed SYSTEM Tablespace

	Creating a Temporary Tablespace
	Temporary Datafiles
	Creating a Locally Managed Temporary Tablespace
	Altering a Locally Managed Temporary Tablespace

	Managing Tablespace Allocation
	Altering Storage Settings for Tablespaces
	Coalescing Free Space
	Viewing Information about Tablespaces

	Altering Tablespace Availability
	Bringing Tablespaces Online
	Taking Tablespaces Offline

	Making a Tablespace Read-Only
	Prerequisites
	Making a Read-Only Tablespace Writeable
	Prerequisites

	Creating a Read-Only Tablespace on a WORM Device

	Dropping Tablespaces
	Using the DBMS_SPACE_ADMIN Package
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	Transporting Tablespaces Between Databases
	Introduction to Transportable Tablespaces
	Current Limitations
	Step 1: Pick a Self-contained Set of Tablespaces
	Step 2: Generate a Transportable Tablespace Set
	Step 3: Transport the Tablespace Set
	Step 4: Plug In the Tablespace Set
	Object Behaviors
	ROWIDs
	REFs
	Privileges
	Partitioned Tables
	Objects
	Advanced Queues
	Indexes
	Triggers
	Snapshots/Replication

	Transporting and Attaching Partitions for Data Warehousing: Example
	Publishing Structured Data on CDs
	Mounting the Same Tablespace Read-only on Multiple Databases
	Archive Historical Data via Transportable Tablespaces
	Using Transportable Tablespaces to Perform TSPITR

	Viewing Information About Tablespaces
	Listing Tablespaces and Default Storage Parameters: Example
	Listing the Datafiles and Associated Tablespaces of a Database: Example
	Listing the Free Space (Extents) of Each Tablespace: Example

	10 Managing Datafiles
	Guidelines for Managing Datafiles
	Determine the Number of Datafiles
	Set the Size of Datafiles
	Place Datafiles Appropriately
	Store Datafiles Separate From Redo Log Files

	Creating and Adding Datafiles to a Tablespace
	Changing a Datafile’s Size
	Enabling and Disabling Automatic Extension for a Datafile
	Manually Resizing a Datafile

	Altering Datafile Availability
	Bringing Datafiles Online in ARCHIVELOG Mode
	Taking Datafiles Offline in NOARCHIVELOG Mode

	Renaming and Relocating Datafiles
	Renaming and Relocating Datafiles for a Single Tablespace
	Renaming and Relocating Datafiles for Multiple Tablespaces
	Relocating Datafiles: Example

	Verifying Data Blocks in Datafiles
	Viewing Information About Datafiles

	11 Using the Database Resource Manager
	Introduction
	Using Database Resource Manager Packages
	Using the DBMS_RESOURCE_MANAGER Package
	Administering Resource Plans
	Administering Resource Consumer Groups
	Administering Resource Plan Directives
	Creating and Administering the Pending Area
	Assigning Resource Consumer Groups to Users
	Changing Resource Consumer Groups

	The DBMS_RESOURCE_MANAGER_PRIVS Package
	Granting Switch Privileges
	Revoking Switch Privileges

	Using the DBMS_SESSION Package to Change a User’s Resource Consumer Groups

	Database Resource Manager Views

	12 Guidelines for Managing Schema Objects
	Managing Space in Data Blocks
	The PCTFREE Parameter
	Specifying PCTFREE

	The PCTUSED Parameter
	Specifying PCTUSED

	Selecting Associated PCTUSED and PCTFREE Values
	Examples of Choosing PCTFREE and PCTUSED Values

	Setting Storage Parameters
	Storage Parameters You Can Specify
	INITIAL
	NEXT
	MAXEXTENTS
	MINEXTENTS
	PCTINCREASE
	INITRANS
	MAXTRANS

	Setting INITRANS and MAXTRANS
	Setting Default Storage Parameters for Segments in a Tablespace
	Setting Storage Parameters for Data Segments
	Setting Storage Parameters for Index Segments
	Setting Storage Parameters for LOB Segments
	Changing Values for Storage Parameters
	Understanding Precedence in Storage Parameters
	Storage Parameter Example

	Deallocating Space
	Viewing the High Water Mark
	Issuing Space Deallocation Statements
	Deallocating Space: Examples

	Understanding Space Use of Datatypes
	Summary of Oracle Datatypes

	13 Managing Partitioned Tables and Indexes
	What Are Partitioned Tables and Indexes?
	Partitioning Methods
	Using the Range Partitioning Method
	Maintaining Range Partitions

	Using the Hash Partitioning Method
	Maintaining Hash Partitions

	Using the Composite Partitioning Method
	Maintaining Composite Partitions
	Maintaining Composite Subpartitions

	Creating Partitions
	Maintaining Partitions
	Moving Partitions
	Moving Table Partitions
	Moving Index Partitions

	Adding Partitions
	Adding Table Partitions
	Adding Index Partitions

	Dropping Partitions
	Dropping Table Partitions
	Dropping Index Partitions

	Coalescing Partitions
	Modifying Partition Default Attributes
	Truncating Partitions
	Truncating Partitioned Tables

	Splitting Partitions
	Splitting Table Partitions
	Splitting Index Partitions

	Merging Partitions
	Exchanging Table Partitions
	Converting a Partition View into a Partitioned Table: Scenario

	Rebuilding Index Partitions
	Moving the Time Window in a Historical Table
	Quiescing Applications During a Multi-Step Maintenance Operation

	14 Managing Tables
	Guidelines for Managing Tables
	Design Tables Before Creating Them
	Specify How Data Block Space Is to Be Used
	Specify Transaction Entry Parameters
	Specify the Location of Each Table
	Parallelize Table Creation
	Consider Creating UNRECOVERABLE Tables
	Estimate Table Size and Set Storage Parameters
	Plan for Large Tables
	Table Restrictions

	Creating Tables
	Altering Tables
	Manually Allocating Storage for a Table
	Dropping Tables
	Dropping Columns
	Restrictions

	Index-Organized Tables
	What Are Index-Organized Tables?
	Why Use Index-Organized Tables?
	Differences Between Index-Organized and Regular Tables

	Creating Index-Organized Tables
	Using the AS Subquery
	Using the Overflow Clause
	Using Key Compression

	Maintaining Index-Organized Tables
	Altering Index-Organized Tables
	Moving (Rebuilding) Index-Organized Tables
	Scenario: Updating the Key Column

	Analyzing Index-Organized Tables
	Using the ORDER BY Clause with Index-Organized Tables
	Converting Index-Organized Tables to Regular Tables

	15 Managing Views, Sequences and Synonyms
	Managing Views
	Creating Views
	Expansion of Defining Queries at View Creation Time
	Creating Views with Errors

	Modifying a Join View
	Key-Preserved Tables
	DML Statements and Join Views
	Using the UPDATABLE_ COLUMNS Views

	Replacing Views
	Dropping Views

	Managing Sequences
	Creating Sequences
	Altering Sequences
	Initialization Parameters Affecting Sequences
	Dropping Sequences

	Managing Synonyms
	Creating Synonyms
	Dropping Synonyms

	16 Managing Indexes
	Guidelines for Managing Indexes
	Create Indexes After Inserting Table Data
	Limit the Number of Indexes per Table
	Specify Transaction Entry Parameters
	Specify Index Block Space Use
	Specify the Tablespace for Each Index
	Parallelize Index Creation
	Consider Creating Indexes with NOLOGGING
	Estimate Index Size and Set Storage Parameters
	Coalescing Indexes

	Considerations Before Disabling or Dropping Constraints

	Creating Indexes
	Creating an Index Associated with a Constraint
	Creating an Index Explicitly
	Creating an Index Online
	Creating a Function-Based Index
	Example 1
	Example 2
	Example 3
	Example 4

	Re-creating an Existing Index
	Creating a Key-Compressed Index

	Altering Indexes
	Monitoring Space Use of Indexes
	Dropping Indexes

	17 Managing Clusters
	Guidelines for Managing Clusters
	Choose Appropriate Tables for the Cluster
	Choose Appropriate Columns for the Cluster Key
	Specify Data Block Space Use
	Specify the Space Required by an Average Cluster Key and Its Associated Rows
	Specify the Location of Each Cluster and Cluster Index Rows
	Estimate Cluster Size and Set Storage Parameters

	Creating Clusters
	Creating Clustered Tables
	Creating Cluster Indexes

	Altering Clusters
	Altering Cluster Tables and Cluster Indexes
	Manually Allocating Storage for a Cluster

	Dropping Clusters
	Dropping Clustered Tables
	Dropping Cluster Indexes

	18 Managing Hash Clusters
	Guidelines for Managing Hash Clusters
	Advantages of Hashing
	Disadvantages of Hashing
	Estimate Size Required by Hash Clusters and Set Storage Parameters
	Creating Hash Clusters
	Creating Single Table Hash Clusters

	Controlling Space Use Within a Hash Cluster
	Choosing the Key
	Setting HASH IS
	Setting SIZE
	Setting HASHKEYS
	Controlling Space in Hash Clusters: Examples

	Altering Hash Clusters
	Dropping Hash Clusters

	19 Detecting and Repairing Data Block Corruption
	DBMS_REPAIR Package Contents
	Step 1: Detect and Report Corruptions
	DBMS_REPAIR: Using the check_object and admin_tables Procedures
	DB_VERIFY: Performing an Offline Database Check
	ANALYZE: Corruption Reporting
	DB_BLOCK_CHECKING (Block Checking Initialization Parameter)

	Step 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR
	Step 3: Make Objects Usable
	Corruption Repair: Using the fix_corrupt_blocks and skip_corrupt_blocks Procedures
	Implications when Skipping Corrupt Blocks

	Step 4: Repair Corruptions and Rebuild Lost Data
	Recover Data Using the dump_orphan_keys Procedures
	Repair Freelists Using the rebuild_freelists Procedure

	Limitations and Restrictions
	DBMS_REPAIR Procedures
	check_object
	fix_corrupt_blocks
	dump_orphan_keys
	rebuild_freelists
	skip_corrupt_blocks
	admin_tables

	DBMS_REPAIR Exceptions

	20 General Management of Schema Objects
	Creating Multiple Tables and Views in a Single Operation
	Renaming Schema Objects
	Analyzing Tables, Indexes, and Clusters
	Using Statistics for Tables, Indexes, and Clusters
	Viewing Object Statistics
	Computing Statistics
	Removing Statistics for a Schema Object
	Shared SQL and Analyzing Statistics

	Validating Tables, Indexes, and Clusters
	Listing Chained Rows of Tables and Clusters

	Truncating Tables and Clusters
	Using DELETE
	Using DROP and CREATE
	Using TRUNCATE

	Enabling and Disabling Triggers
	Enabling Triggers
	Disabling Triggers

	Managing Integrity Constraints
	Integrity Constraint States
	Disabling Constraints
	Enable Novalidate Constraints
	Enabling Constraints
	Integrity Constraint States: Procedures and Benefits

	Deferring Constraint Checks
	How To Defer Constraint Checks

	Managing Constraints That Have Associated Indexes
	Setting Integrity Constraints Upon Definition
	Disabling Constraints Upon Definition
	Enabling Constraints Upon Definition

	Modifying Existing Integrity Constraints
	Disabling Enabled Constraints

	Dropping Integrity Constraints
	Reporting Constraint Exceptions

	Managing Object Dependencies
	Manually Recompiling Views
	Manually Recompiling Procedures and Functions
	Manually Recompiling Packages

	Managing Object Name Resolution
	Changing Storage Parameters for the Data Dictionary
	Structures in the Data Dictionary
	Errors that Require Changing Data Dictionary Storage

	Displaying Information About Schema Objects
	Oracle Dictionary Storage Packages
	Example 1: Displaying Schema Objects By Type
	Example 2: Displaying Column Information
	Example 3: Displaying Dependencies of Views and Synonyms
	Example 4: Displaying General Segment Information
	Example 5: Displaying General Extent Information
	Example 6: Displaying the Free Space (Extents) of a Database
	Example 7: Displaying Segments that Cannot Allocate Additional Extents

	21 Managing Rollback Segments
	Guidelines for Managing Rollback Segments
	Use Multiple Rollback Segments
	Add a Rollback Segment to the SYSTEM Tablespace

	Choose Between Public and Private Rollback Segments
	Specify Rollback Segments to Acquire Automatically
	Set Rollback Segment Sizes Appropriately
	Create Rollback Segments with Many Equally Sized Extents
	Set an Optimal Number of Extents for Each Rollback Segment
	Set the Storage Location for Rollback

	Creating Rollback Segments
	Bringing New Rollback Segments Online

	Specifying Storage Parameters for Rollback Segments
	Setting Storage Parameters When Creating a Rollback Segment
	Changing Rollback Segment Storage Parameters
	Altering Rollback Segment Format
	Shrinking a Rollback Segment Manually

	Taking Rollback Segments Online and Offline
	Bringing Rollback Segments Online
	Bringing a PARTLY AVAILABLE Rollback Segment Online
	Bringing Rollback Segment Online Automatically
	Bringing Rollback Segments Online: Example

	Taking Rollback Segments Offline
	Taking Public and Private Rollback Segments Offline

	Explicitly Assigning a Transaction to a Rollback Segment
	Dropping Rollback Segments
	Monitoring Rollback Segment Information
	Displaying Rollback Segment Information
	Displaying All Rollback Segments
	Displaying Whether a Rollback Segment Has Gone Offline
	Displaying Deferred Rollback Segments
	Displaying All Deferred Rollback Segments

	22 Establishing Security Policies
	System Security Policy
	Database User Management
	User Authentication
	Operating System Security

	Data Security Policy
	User Security Policy
	General User Security
	Password Security
	Privilege Management

	End-User Security
	Using Roles for End-User Privilege Management

	Administrator Security
	Protection for Connections as SYS and SYSTEM
	Protection for Administrator Connections
	Using Roles for Administrator Privilege Management

	Application Developer Security
	Application Developers and Their Privileges
	The Application Developer’s Environment: Test and Production Databases
	Free Versus Controlled Application Development
	Roles and Privileges for Application Developers
	Space Restrictions Imposed on Application Developers

	Application Administrator Security

	Password Management Policy
	Account Locking
	Password Aging and Expiration
	Password History
	Password Complexity Verification
	Password Verification Routine Formatting Guidelines

	Auditing Policy

	23 Managing Users and Resources
	Session and User Licensing
	Concurrent Usage Licensing
	Connecting Privileges
	Parallel Server Concurrent Usage Limits

	Setting the Maximum Number of Sessions
	Setting the Session Warning Limit
	Changing Concurrent Usage Limits While the Database is Running
	Named User Limits
	Setting User Limits
	Changing User Limits

	Viewing Licensing Limits and Current Values

	User Authentication
	Database Authentication
	Advantages of Database Authentication

	External Authentication
	Operating System Authentication
	Network Authentication
	Advantages of External Authentication

	Enterprise Authentication
	Advantages of Enterprise Authentication

	Oracle Users
	Creating Users
	Specifying a Name
	Setting a User’s Authentication
	Assigning a Default Tablespace
	Assigning a Temporary Tablespace
	Assigning Tablespace Quotas
	Setting Default Roles

	Altering Users
	Changing a User’s Authentication Mechanism
	Changing a User’s Default Roles

	Dropping Users

	Managing Resources with Profiles
	Creating Profiles
	Using the DEFAULT Profile

	Assigning Profiles
	Altering Profiles
	Using Composite Limits
	Determining the Value of the Composite Limit
	Setting Resource Costs

	Dropping Profiles
	Enabling and Disabling Resource Limits
	Enabling and Disabling Resource Limits Before Startup
	Enabling and Disabling Resource Limits While the Database is Open

	Listing Information About Database Users and Profiles
	Listing Information about Users and Profiles: Examples
	Listing All Users and Associated Information
	Listing All Tablespace Quotas
	Listing All Profiles and Assigned Limits
	Viewing Memory Use Per User Session

	Examples

	24 Managing User Privileges and Roles
	Identifying User Privileges
	System Privileges
	System Privilege Restrictions
	Accessing Frequently Used Dictionary Objects

	Object Privileges
	Object Privilege Shortcut

	Managing User Roles
	Creating a Role
	Role Names
	Role Names in Multi-Byte Character Sets

	Predefined Roles
	Role Authorization
	Role Authorization by the Database
	Role Authorization by the Operating System
	Role Authorization and Network Clients
	Withholding Authorization
	Changing a Role’s Authorization
	Changing a User’s Default Roles

	Dropping Roles

	Granting User Privileges and Roles
	Granting System Privileges and Roles
	The ADMIN Option

	Granting Object Privileges and Roles
	The GRANT OPTION

	Granting Privileges on Columns

	Revoking User Privileges and Roles
	Revoking System Privileges and Roles
	Revoking Object Privileges and Roles
	Revoking Column-Selective Object Privileges
	Revoking the REFERENCES Object Privilege

	Effects of Revoking Privileges
	System Privileges
	Object Privileges

	Granting to and Revoking from the User Group PUBLIC
	When Do Grants and Revokes Take Effect?

	Granting Roles Using the Operating System or Network
	Using Operating System Role Identification
	Using Operating System Role Management
	Granting and Revoking Roles When OS_ROLES=TRUE
	Enabling and Disabling Roles When OS_ROLES=TRUE
	Using Network Connections with Operating System Role Management

	Listing Privilege and Role Information
	Listing Privilege and Role Information: Examples
	Listing All System Privilege Grants
	Listing All Role Grants
	Listing Object Privileges Granted to a User
	Listing the Current Privilege Domain of Your Session
	Listing Roles of the Database
	Listing Information About the Privilege Domains of Roles

	25 Auditing Database Use
	Guidelines for Auditing
	Audit via the Database or Operating System
	Keep Audited Information Manageable
	Auditing Suspicious Database Activity
	Auditing Normal Database Activity

	Creating and Deleting the Database Audit Trail Views
	Creating the Audit Trail Views
	Deleting the Audit Trail Views

	Managing Audit Trail Information
	Events Audited by Default
	Setting Auditing Options
	Statement Audit Options
	Auditing Connections and Disconnections
	Privilege Audit Options
	Object Audit Options
	Enabling Audit Options
	Disabling Audit Options
	Disabling Statement and Privilege Auditing

	Enabling and Disabling Database Auditing
	Controlling the Growth and Size of the Audit Trail
	Purging Audit Records from the Audit Trail
	Reducing the Size of the Audit Trail

	Protecting the Audit Trail

	Viewing Database Audit Trail Information
	Listing Active Statement Audit Options
	Listing Active Privilege Audit Options
	Listing Active Object Audit Options for Specific Objects
	Listing Default Object Audit Options
	Listing Audit Records
	Listing Audit Records for the AUDIT SESSION Option

	Auditing Through Database Triggers

	Index

