Oracle8i

Oracle8i JDBC Developer’s Guide and Reference

Release 8.1.5

February 1999
Part No. A64685-01

ORACLE



Oracle8i JDBC Developer’s Guide and Reference, Release 8.1.5
Part No. A64685-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.
Primary Author: Thomas Pfaeffle

Contributors: Prabha Krishna, Bernie Harris, Ana Hernandez, Anthony Lau, Paul Lo, Jack Melnick,
Janice Wong, Brian Wright, Joyce Yang

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright, patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are "restricted computer software" and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-14, Rights in Data -- General,
including Alternate 11l (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and PL/SQL, JDeveloper, Net8, Oracle Objects, Oracle8i, Oracle8, and
other Oracle products mentioned herein are trademarks or registered trademarks of Oracle Corporation.
All other company or product names mentioned are used for identification purposes only and may be
trademarks of their respective owners.



cContents

SENA US YOUT COMMENTS ...ttt ettt et ettt et e st et ese e enes et ene e eseneeee iX
Pl I AC R ... oottt ettt ettt ettt ettt ettt ettt ettt ettt ettt eens Xi
a1 (=T Lo (=10 I AN B o [ 11 0 o1 IR Xi
Y E T BT ) A0 o1 (U Xi
R EoLT=To T ToT U] g =T a1 €= o (o] o I Xii
Conventions Used iNn thiS IMANUAL .............cccoiiiuiiiiii ettt et sbae s s srae e XV

1 Overview

WAL IS JDBC? ...ttt e b bbb sttt a et e s et e b e e resbeebesbestesbestestessenbetaensebeareeas 1-2
JDBC VEISUS SQLI ...ttt s e sttt s e e st e st e eate e s be e s reesaeeesbeesteesneesabeeneeenaeesnee e 1-2
Advantages of SQLJ over JDBC for Static SQL .......cccceivveririeieie e 1-3
General Guidelines for using JDBC and SQLJ ........cociiiiiiiinine e 1-3
T YTl B YT g A o] oV (=To) (1 ST 1-4
JDBC Thin Client-Side Driver ArChiteCtUIE.........ooeieieeecr e 1-5
JDBC OCI Client-Side Driver ArChiteCIUIE........cccoviii it 1-5
JDBC Server Driver ArChIECIUIE .......cccviviice ettt 1-6
Oracle Extensions to the JDBC Standard ............ccccceiiiiinieiese s 1-6
Supported JIDK and JDBEC VEISIONS......ccciiiiiiiiieie ettt sttt sae e seeseese e ebe e saesseneas 1-6
JDBC and the Oracle APPliCatioN SEIVEL ... i 1-6
N |2 T - T N 0 T 1-7

2 Getting Started
(@] 1e] [N 1 1 =T O B T g A/ 2-2



Introducing the Oracle JDBC DIIVEIS .....cccccciieieriireeeiese e s iese st aere s snessesnens 2-2

Choosing the APPropPriate DIIVET .........coiiiiiiiiieiee et e 2-4
Requirements and Compatibilities for Oracle JDBC DIiVErS.......cccccooveiieneiieiesee e 2-5
Verifying a JDBC Client INStallation ...........ccooviiviiiiiiie s ene 2-6

Check Installed Directories and FileS..........cociiiiiiiiiieiie e 2-6

Check the EnVironment VariablesS. ... 2-7

Make Sure You Can Compile and RUN JAVA.........ccoeiiiiiiiiiie e 2-7

Determining the Version of the JDBC DIIVEr .........ccooiiiiiiiineiene e 2-8

Testing JDBC and the Database Connection: JdbcCheckup......c..ccoovvvvvicvciccciccce e 2-8

Basic Features

FIrst StEPS INJDBC ..ottt b e s b et et st se e be s eeste st e e eneenearenrn 3-2
IMPOITING PACKAGES ... .ot ettt sb et 3-2
Registering the JIDBC DIIVELS. ......ccc ittt et sttt st sbesnenas 3-3
Opening a Connection t0 @ DAtabase. ........c.cccviiviireieiee e 3-3
Creating a Statement ODJECT ..o 3-8
Executing a Query and Returning a Result Set Object ... 3-8
Processing the RESUIL SEL .........cvoviiiici et aene e 3-9
Closing the Result Set and Statement ODJECTS .........cccoiiiiiie i 3-9
CloSiNg the CONNECTION......coiiiiiieeee ettt b e e sttt sbe e e b enes 3-10

Sample: Connecting, Querying, and Processing the Results ..o, 3-10

DAtatyPe IMAPPINGS ..ottt bbbt e bt e s s b bt b e b b e b b e bt e b st e ne e 3-11
Oracle IDBC EXIENSION TYPES ....c.uiiiiiuieiirieriinie ettt sttt st sbe bt seesbe e e e nbeseenes 3-12

Using Java Streams iN JDBC .......c.coii i sise sttt sa e aenee e ane s s 3-14
Streaming LONG or LONG RAW COIUMNS.......c.ooiiiiiiiiiiieeee e 3-14
Streaming CHAR, VARCHAR, or RAW COIUMNS .......coiiiiiiiieieese e 3-19
Data Streaming and Multiple COIUMNS ..o 3-20
Streaming and ROW PrefetChing ... 3-23
(04 o171 g To I B ] £ =TT o o EOO OSSPSR 3-23
Streaming LOBs and EXternal Files.........ccococviiiiiiiiie e 3-23

Using Stored Procedures in JDBC Programs..........coccoceiaerieneneeeneeese e see s sese e sieseeseeneaneas 3-24
PL/SQL StOred PrOCEAUIES........cuviie ettt ettt re et te e sresaa e be e beene e 3-24
JaVa STOFed PrOCEAUIES ......c.oiiiieeiiiieree et 3-25

Error Messages anNd JDBC ... ..ot et e enea 3-25

SEIVEI-STAE BASICS ... ettt ettt b ettt et e e e st e m et e e beebe et e ebesbe et e beee s 3-26



Session and TranSACtioN CONTEXE ........ccviiviiiii it sb s reeerre s 3-26

Connecting t0 the Database ..o e 3-26
Application Basics VErsus APPIEt BASICS .......ccciviiiiiieiiiinesenenesee e sesre e senseanens 3-27
WA o] o] [ Tor=1d To] I = 7= 1] or TSRS 3-27
WY o] o] [=] 27 TS ot ST R U UTPUSTRRN 3-27

Oracle Extensions

INtroduction t0 Oracle EXTENSIONS.........coiiiiiiiiiie et s eb e ene s 4-2
Oracle IDBC Packages and ClaSSES.......ccviirieiiiiirerieieieeieeeiese e sese st ste st saessesaeseeseessesessessessesees 4-6
Classes of the oracle.jdbc2 PACKAge ........ccooeiiiiiiiiie e 4-6
Classes of the oracle.sql PACKage. ........ccouiiiiiiiie e 4-7
Classes of the oracle.jdbc.driver Package.........ccooviieiireiiiciiciicccese e 4-22
Data Access and Manipulation: Oracle Types VS. JaVa TYPES ......ccevvrererirenienieneie e 4-32
Data Conversion CONSIAEIAIONS ......c..ciiiiiieiieeiee ettt sb e e 4-32
Using Result Set and Statement EXTENSIONS .......ccccoveveiviiniinicsee e 4-33
Comparing get and set Methods for oracle.sql.* Format with Java Format ...................... 4-34
Using Result Set Meta Data EXIENSIONS........cociiiiiiiieicieieseie e 4-44
WOIKING WILN LOBS......ciiiiiiiie et sttt e s e e te et s te st saese e teseensenaenenneanens 4-45
Getting BLOB and CLOB LOCALOIS. .......cciiiiiiiiiie ettt sttt s 4-46
Passing BLOB and CLOB LOCALOIS .......ccccuiiiiiirierie ettt s e se e 4-47
Reading and Writing BLOB and CLOB DAt ........cccccuciviiiiiinnienie e see s 4-48
Creating and Populating a BLOB or CLOB COlUMN ..ot 4-52
Accessing and Manipulating BLOB and CLOB Data..........c.cccoceriniieiieeieeeeeene e 4-54
LCTc u T aTo I =] ot VI o T | (] SR 4-55
PaSSING BFILE LOCALOIS ......cuioiiieieeiieiteiiete sttt ettt st st st ene b es 4-56
REAAING BFILE DAL ......cceiiiiiiiieeeee ettt sttt sb et 4-57
Creating and Populating a BFILE COIUMN .......cooieiiic e 4-58
Accessing and Manipulating BFILE Data.........ccccooeiiiiiiiiiieiceesee e e 4-60
Working With Oracle ODJECE TYPES ....ccuiuieirieiirieie ettt e eseeesneeneas 4-62
Using Default Java Classes for Oracle ODJECES ........ccvveieiviiciiiiesie e 4-62
Creating Custom Java Classes for Oracle ODJECtS.........ccooiiioiiiiiiiiiee e 4-65
Using JPUblisher With JDBC ..ottt e 4-82
Working with Oracle ObjJect REFEIENCES........ccciv i 4-83
Retrieving an ObJect REFEIENCE. ... s 4-84
Passing an Object Reference to a Callable Statement............ccccoiiiiiniicincce 4-85



Vi

Accessing and Updating Object Values through an Object Reference...........ccccoevveveinene, 4-85

Passing an Object Reference to a Prepared Statement ...........ccocooeiiiiiiininienccc e 4-86
WOIKING WIN AT TAYS ....viiiiiiie ettt sa e ete e seete e etesbe e s rens e eeseeeeneenenneens 4-87
Retrieving an Array and itS EIEMENTS.........ccooviiiieiii e 4-88
Passing an Array to a Prepared StatemMent ...t 4-93
Passing an Array to a Callable Statement ...........ccccveviie e 4-94
Using a Type Map to Map Array EIEMENTS ... 4-94
Additional Oracle EXTENSIONS ........cuoiiiiise et bbb 4-97
Performance EXIENSIONS.......cccoiriiiiicce s 4-97
Additional TYPe EXIENSIONS .....cc.oiuiiiiiieitet ettt st bbb 4-111
Oracle JDBC Notes and LimMitatioNs .........cccoiiiiiiiiiieese e e 4-115

Advanced Topics

USING INLS Lottt et b e b bt s bt e Rt e bt b bt e bt e bt e b ekt s be et e be e et e st et eneeneabeetas 5-2
How JDBC Drivers Perform NLS CONVEISIONS..........ccoeirrririiinreesrereeseesresee s 5-2
INLS RESTFICTIONS.......ecteetietieieie sttt bbbt b bt se e s bbb et eb e st b eeb et e sbe st e sbene e e neene 5-5

WOTKING WITH APPIETS. ..ttt bbbt b et bt sae e e e nbeene 5-7
(0700 1T o 72N o] o1 =] £ 5-7
Connecting an Applet to a Database. ..o 5-9
Using Applets With FIr@WallS ..o 5-14
T Vo LT AN o] o] 1] SRS 5-17
Specifying an Applet in an HTML Page.......c.ccoiiiiiiiiie e 5-19
Browser Security and JDK Version ConSiderations ............ccocoeieneieienens e 5-20

JDBC 0N the Server: the SErVer DIIVEN ... s 5-22
Connecting to the Database with the Server DIiVer ... 5-22
Session and Transaction Context for the Server DIiVer ... 5-23
TeSting JDBC 0N the SEIVET ......ci sttt er e en et nne s 5-24
Server Driver SUPPOIE FOr NLS ...t e 5-25

Embedded SQLO2 SYNTAX ......uiiiiiiiiiieeeieeeie ettt ettt sbe st e see e e e e e eneanea 5-26
TimMe aNd DAt LItEralS.......cccooiiiiiiiiiieei e 5-26
1= = L U Tod € o] o 3OS 5-28
LIKE ESCAPE CHATACLEIS ... .ottt ittt ettt sb e et sbe e see e 5-29
OULET JOINS ...t r bR bttt n et 5-29
FUNCHION CAll SYNTAX ....ueiiiiiiiie et ettt besbeeeneas 5-30
SQLI2 t0 SQL SYNtaxX EXAMPIE .....c.ciiiiiie ettt 5-30



Coding Tips and Troubleshooting

JDBC and MUII-TRFEAAING ..cvevieieiiieeiee sttt bttt 6-2
Performance OPtIMIZAtION.........coiiei s et se e e e reeresneere s 6-5
Disabling AUto-ComMMIt MOGE........ccoiiiiiircere et 6-5
PrefetChiNg ROWS ...t ettt s be bbb 6-6
BatChiNg UPAALES.......ociieiiii ettt s ena s nte s ne st te e e e e eneereene e 6-6
COMMON PrOBIBMIS ...ttt bbb ettt b e b sttt b e e et e e ere s 6-6
Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables...................... 6-7
Memory Leaks and RUNNING OUL OFf CUISOIS .......cccveiiiveiiise e 6-7
Boolean Parameters in PL/SQL Stored ProCedUreS.........ccovvieiiiiiie e 6-7
Opening More Than 16 OCIl Connections fOr @ PrOCESS .........cccviirerirenie e 6-8
Basic DebUQQING PrOCEAUIES ........cucieieiie et st ere s ete s e ere sttt e ae e sseneesanneeneareenenes 6-9
TrapPiNg EXCEPTIONS ..ottt ettt b bbbt be bt e b b e e see e 6-9
LOgQiNg JDBC CallS......cooiiiiiiitiiiiesiee ettt et b bbb seeneenea 6-10
Net8 Tracing to Trap NetWOrk EVENTS .......cccviiiiiecre s 6-10
USING THird PArty TOOIS .......coiiiiii ittt e 6-13
Transaction Isolation Levels and the Oracle SErver..........ciiieie e 6-13

Sample Applications

Sample Applications for Basic JDBC FEALUIES ........c.ccoiiiiiiiieieiieeeee e 7-2
=T a T o T - VSRR 7-2
Sample Applications for JDBC 2.0-Compliant Oracle EXtensions..........cccocoeiiinicininenene. 7-4
LOB SAMIPIE ...ttt bbb bbbt bbbttt ettt b ne e 7-4
2 I ST T g o = S 7-10
Sample Applications for Other Oracle EXtENSIONS ........cccoieiiiiiiiiiie e 7-14
REF CURSOR SaMPIE ...ttt bbb bbb 7-14
F N g (VS T= 10 110 1SS 7-16
Creating Customized Java Classes for Oracle ODJECtS........ccooviiiiiiiiiiie e 7-20
SQLDALA SAMPIE ...ttt bbb bt r e 7-20
CUStOMDAtUM SAMPIE.....ooiii et re e re e e 7-26
Creating SIgNEd APPIELS ....c.i it sbe b e e e 7-31
JDBC versus SQLJ SAMPIE COE ... .ot e 7-38
SQL Program to Create Tables and ObJECTS..........ccccvvivriiiereiire e 7-39
JDBC Version of the SamPle COAE ..ot 7-41
SQLJ Version of the SAMPIe COE........c.iiie e 7-44

Vil



Reference Information
Valid SQL-JDBC Datatype Mappings

............................................................................................ 8-2
Supported SQL and PL/SQL DatatyPeS .....cccvivirririereriesesieseieiesseeesesessessessessessessesassesssssessenes 8-4
N TS O g F= T Ty £=T ST =1 S TU ] o] o 1o o OSSP 8-8
Related INFOIMETION .......ooiii bbb bbbttt sbe e 8-8
Oracle JDBC Drivers and SQL .......ovoiiiiiiiiieeciecre ettt st sbeeba e beenreenas 8-8
JAVA TECANOIOQY ...ttt bbb e sb e et 8-8
[0 LTe AN o] o] [=] £SO TR SRRTR 8-9

A JDBC Error Messages

viii



Send Us Your Comments

JDBC Developer’s Guide and Reference, Release 8.1.5
Part No. A64685-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

Electronic mail — jpgcomnt@us.oracle.com

FAX - 650-506-7225. Attn: Java Products Group, Information Development Manager
Postal service:

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 40p978

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle World Wide Support Center.






Preface

This preface contains these sections:
« Intended Audience

« Manual Structure

« Related Documentation

= Conventions Used in this Manual

Intended Audience

This manual assumes that you are an experienced programmer and that you
understand Oracle databases, the SQL and Java programming languages, and the
principles of JDBC.

Manual Structure

The JDBC Developers Guide and Reference contains eight chapters and one appendix:

Chapter 1, "Overview" This chapter provides an overview of the Oracle
implementation of JDBC and the Oracle JDBC
driver architecture.

Chapter 2, "Getting Started" This chapter introduces the Oracle JDBC drivers
and some scenarios of how you can use them.
This chapter also guides you through the basics
of testing your installation and configuration.

Xi



Chapter 3, "Basic Features"

Chapter 4, "Oracle Extensions"

Chapter 5, "Advanced Topics

Chapter 6, "Coding Tips and
Troubleshooting"

Chapter 7, "Sample
Applications"

Chapter 8, "Reference
Information”

Appendix A, "JDBC Error
Messages"

Related Documentation

This chapter covers the basic steps in creating
any JDBC application. It also discusses
additional basic features of Java and JDBC
supported by the Oracle JDBC drivers.

This chapter describes JDBC extensions
provided by Oracle: packages, classes, and
datatypes. It also describes the support for
LOBs, objects, and collections provided by the
extensions.

This chapter describes advanced JDBC topics
such as using NLS, working with applets, the
server-side driver, and embedded SQL92 syntax.

This chapter includes coding tips and general
guidelines for troubleshooting your JDBC
applications.

This chapter presents sample applications that
highlight advanced JDBC features and Oracle
extensions.

This chapter contains detailed JDBC reference
information.

This appendix lists errors that can be thrown by
the JDBC drivers.

This manual contains references to the following Oracle publications:
«  Oracle8i JPublisher User’s Guide

This book describes how to use the JPublisher utility to translate object types
and other user-defined types to Java classes. If you are developing SQLJ or
JDBC applications that use object types, var r ay types, nested table types, or
REF types, then you are required to have Java classes that correspond to these
types. JPublisher helps you do this by creating the mapping between object
types and Java classes, and between object attribute types and their

corresponding Java types.

Xii



Oracle8i SQLJ Developer’s Guide and Reference

This book describes the use of SQLJ to embed static SQL operations directly into
Java code. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

Oracle8i Java Stored Procedures Developer’s Guide

This book describes Java stored procedures, which lets Java programmers
access the Oracle RDBMS. With stored procedures (functions, procedures,
database triggers, and SQL methods), Java developers can implement business
logic at the server level, thereby improving application performance, scalability,
and security.

Oracle8i Enterprise JavaBeans and CORBA Developer’s Guide

This manual describes the Oracle extensions to the JavaBeans and CORBA
specifications.

Net8 Administrator’s Guide

Refer to this manual for more information about ANO (Advanced Network
Option), the Oracle8 Connection Manager, and about Net8 network
administration in general.

Oracle8i Error Messages

Refer to this document set for more information on error messages that can be
passed by the Oracle Database and the Oracle JDBC drivers.

Oracle8i National Language Support Guide

Refer to this manual for more information on NLS environment variables,
character sets, territories, and locale data. In addition, it contains an overview of
common NLS issues, some typical scenarios, and some NLS considerations for
OCI and SQL programmers.

Oracle8i Application Developer’s Guide - Large Objects (LOBs) and the Oracle8i
Application Developer’s Reference - Packages

These books describe how to access and manipulate large objects (LOBS) using
PL/SQL code and the DBMS_L OB package.

Oracle8i SQL Reference

This reference contains a complete description of the content and syntax of the
Structured Query Language (SQL) used to manage information in an Oracle
database.

Xiii



«  PL/SQL User’s Guide and Reference

PL/SQL is Oracle’s procedural extension to SQL. An advanced
fourth-generation programming language (4GL), PL/SQL offers seamless SQL
access, tight integration with the Oracle server and tools, portability, security,
and modern software engineering features such as data encapsulation,
overloading, exception handling, and information hiding. This guide explains
all the concepts behind PL/SQL and illustrates every facet of the language.

«  Oracle8i Application Server documentation

Refer to this documentation for more information on how the Oracle8i
Application Server supports JDBC.

«  Oracle8 JDeveloper Suite documentation

Refer to this documentation for more information on how Oracle8 JDeveloper
Suite supports JDBC.

Xiv



Conventions Used in this Manual

Solaris syntax is used in this book, but file names and directory names for Windows

NT are the same unless otherwise noted.

The term [ORACLE_HQOVE] is used to indicate the full path of the Oracle home
directory.

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

<> Angle brackets enclose user-supplied names.
[1 Brackets enclose optional clauses from which you can choose one or
none.

XV



XVi



1

Overview

This chapter provides an overview of the Oracle implementation of JDBC and
contains these topics:

What is JDBC?

JDBC versus SQLJ

Basic Driver Architecture

Oracle Extensions to the JDBC Standard
Supported JDK and JDBC Versions
JDBC and the Oracle Application Server
JDBC and IDEs

Overview 1-1



What is JDBC?

What is JDBC?

JDBC (Java Database Connectivity) is a standard Java interface for connecting to
relational databases from Java. The JDBC standard was defined by Sun
Microsystems, allowing individual providers to implement and extend the standard
with their own JDBC drivers.

JDBC is based on the X/Open SQL Call Level Interface, and complies with the
SQL92 Entry Level standard.

In addition to the standard JDBC API, Oracle drivers have extensions to properties,
types, and performance.

JDBC versus SQLJ

This section has the following subsections:
« Advantages of SQLJ over JDBC for Static SQL
« General Guidelines for using JDBC and SQLJ

Developers who are familiar with the Oracle Call Interface (OCI) layer of client-side
C code will recognize that JDBC provides the power and flexibility for the Java
programmer that OCI does for the C or C++ programmer. Just as with OCI, you can
use JDBC to query and update tables where, for example, the number and types of
the columns are not known until runtime. This capability is called dynamic SQL.
Therefore, JDBC is a way to use dynamic SQL statements in Java programs. Using
JDBC, a calling program can construct SQL statements at runtime. Your JDBC
program is compiled and run like any other Java program. No analysis or checking
of the SQL statements is performed. Any errors that are made in your SQL code
raise runtime errors. JDBC is designed as an API for dynamic SQL.

However, many applications do not need to construct SQL statements dynamically
because the SQL statements they use are fixed or static. In this case, you can use
SQLJ to embed static SQL in Java programs. In static SQL, all of the SQL statements
are complete or "textually evident" in the Java program. That is, details of the
database object, such as the column names, number of columns in the table, and
table name, are known before runtime. SQLJ provides advantages for these
applications because it permits error checking at precompile time.

The precompile step of a SQLJ program performs syntax-checking of the embedded
SQL, type checking against the database to assure that the data exchanged between
Java and SQL have compatible types and proper type conversions, and schema
checking to assure congruence between SQL constructs and the database schema.
The result of the precompilation is Java source code with SQL runtime code which,

1-2 JDBC Developer’s Guide and Reference



JDBC versus SQLJ

in turn, can use JDBC calls. The generated Java code compiles and runs like any
other Java program.

Although SQLJ provides direct support for static SQL operations that are known at
the time the program is written, it can also inter-operate with dynamic SQL through
JDBC. SQLJ allows you to create JDBC objects when they are needed for dynamic
SQL operations. In this way, SQLJ and JDBC can co-exist in the same program.
Convenient conversions are supported between JDBC connections and SQLJ
connection contexts, as well as between JDBC result sets and SQLJ iterators. For
more information on this, see the Oracle8i SQLJ Developer’s Guide and Reference.

The syntax and semantics of SQLJ and JDBC do not depend on the configuration
under which they are running, thus enabling implementation on the client or
database side or in the middle tier.

Advantages of SQLJ over JDBC for Static SQL

While JDBC provides a complete dynamic SQL interface from Java to relational
databases, SQLIJ fills a complementary role for static SQL.

Although you can use static SQL statements in your JDBC programs, they can be
represented more conveniently in SQLJ. Some advantages you gain in using SQLJ
over JDBC for static SQL statements are:

« SQLJsource programs are smaller than equivalent JDBC programs because
SQLJ provides a shorter syntax.

« SQLJ uses database connections to type-check static SQL code. JDBC, being a
completely dynamic API, does not do any type checking until run-time.

« SQLJ programs allow direct embedding of Java bind expressions within SQL
statements. JDBC requires separate get and/or set call statements for each bind
variable and specifies the binding by position number.

« SQLIJ provides strong typing of query outputs and return parameters and
allows type-checking on calls. JDBC passes values to and from SQL without
compile-time type checking.

« SQLIJ provides simplified rules for calling SQL stored procedures and functions.

General Guidelines for using JDBC and SQLJ

Use SQLJ to write your program when:

=« you want to be able to check your program for errors at translation-time rather
than at run-time.

Overview 1-3



Basic Driver Architecture

= you want to write an application that you can deploy to another database.
Using SQLJ, you can customize the static SQL for that database at
deployment-time.

= Yyou are working with a database that contains compiled SQL. You will want to
use SQLJ because you cannot compile SQL statements in a JDBC program.

Use JDBC to write your program when:

= your program uses dynamic SQL. For example, you have a program that builds
queries on-the-fly or has an interactive component.

= Yyou do not want to have a SQLJ layer during deployment or development. For
example, you might want to download only the JDBC Thin driver and not the
SQLJ runtime libraries to minimize download time over a slow link.

Basic Driver Architecture
This section has the following subsections:
= JDBC Thin Client-Side Driver Architecture
= JDBC OCI Client-Side Driver Architecture
= JDBC Server Driver Architecture

Figure 1-1 illustrates the driver-database architecture for the JDBC Thin, OCI, and
Server drivers.

1-4 JDBC Developer’s Guide and Reference



Basic Driver Architecture

Figure 1-1 Driver-Database Architecture

Oracle 8.1.5

JDBC Thin Driver

Java Sockets

I Java Engine
JDBC OCI Driver SQL Engine JDBC Server Driver

OCI C Library PL/SQL Engine == KPRB C Library

JDBC Thin Client-Side Driver Architecture

The Oracle JDBC Thin driver is a Type IV driver that is targeted to applet
developers. This driver is written in 100% Pure Java and complies with the JDBC
1.22 standard.

For communicating with the database, the driver includes an equivalent
implementation of Oracle’s TTC presentation protocol and Net8 session protocol in
Java. Both of these protocols are lightweight implementation versions of their
counterparts on the server. The Net8 protocol runs over TCP/IP only. To use this
driver, it is not necessary to install any Oracle-specific software on the client.

The HTTP protocol is stateless but the Thin driver is not. The initial HTTP request
to download the applet and the Thin driver is stateless. Once the Thin driver
establishes the database connection, the communication between the browser and
the database is stateful and in a two-tier configuration.

JDBC OCI Client-Side Driver Architecture

The JDBC OCI driver is a Type Il driver that is targeted to client-server Java
applications programmers and Java-based middle-tier developers. The JDBC OCI
driver converts JDBC invocations to calls to the Oracle Call Interface (OCI). These
calls are then sent over Net8 to the Oracle database server.

Overview 1-5



Oracle Extensions to the JDBC Standard

The JDBC OCI driver is written in a combination of Java and C because it must
make calls to the OCI libraries. The driver requires the presence of the OCI libraries,
Net8, CORE libraries, and other necessary files on each client machine or
middle-tier application server on which it is installed.

JDBC Server Driver Architecture

The JDBC Server driver allows Java programs that use the Oracle 8.1.5 Java Virtual
Machine (VM) and run inside the database to communicate with the SQL engine.
The Server driver, the Java VM, the database, the KPRB (server-side) C library, and
the SQL engine all run within the same address space. There are no network
round-trips involved. The programs access the SQL engine by using function calls.

Oracle Extensions to the JDBC Standard

The Oracle JDBC drivers support many of the features described in the JDBC 2.0
standard. This support is provided in the form of Oracle-defined extensions for
Oracle datatypes, object types, and their mappings to Java. For more information on
these extensions, see Chapter 4, "Oracle Extensions".

Supported JDK and JDBC Versions

Oracle’s JDBC drivers, release 8.1.5, support the JDK versions 1.0.2 and 1.1.x. They
also comply with JDBC version 1.22 and, in addition, implement most of the
features of JDBC version 2.0.

Note: There are special considerations for using the Thin driver
with JDK 1.0.2 and 1.1.1 in the context of applets. See "Working
with Applets" on page 5-7 for more information on this topic.

JDBC and the Oracle Application Server

Oracle Application Server is a collection of middleware services and tools that
provide a scalable, robust, secure, and extensible platform for distributed,
object-oriented applications. Oracle Application Server supports access to
applications from both Web clients (browsers) using the Hypertext Transfer Protocol
(HTTP), and CORBA clients, which use the Common Object Request Broker
Architecture (CORBA) and the Internet Inter-ORB Protocol (11OP).

1-6 JDBC Developer’s Guide and Reference



JDBC and IDEs

You can use the JDBC OCI drivers on a middle tier in conjunction with Oracle Web
Application Server versions 3.0 and higher. The Oracle Web Application Server
bundles JDBC with its distribution. For more information on the use of JDBC and
the Oracle Web Application Server, see your Oracle Web Application Server
documentation.

JDBC and IDEs

The Oracle JDeveloper Suite provides developers with a single, integrated set of
products to build, debug and deploy component-based database applications for
the Oracle Internet platform. The Oracle JDeveloper environment contains
integrated support for JDBC, including 100% Pure Java and native Oracle8 drivers.
The database component of Oracle JDeveloper uses the JDBC drivers to manage the
connection between the application running on the client and the server. See your
Oracle JDeveloper documentation for more information.

Overview 1-7



JDBC and IDEs

1-8 JDBC Developer’s Guide and Reference



2

Getting Started

This chapter guides you through the basics of testing your installation and
configuration and running a simple application. The following topics are discussed:

« Oracle JDBC Drivers
« Requirements and Compatibilities for Oracle JDBC Drivers

« \erifying a JDBC Client Installation

Getting Started 2-1



Oracle JDBC Drivers

Oracle JDBC Drivers

This section has the following subsections:
« Introducing the Oracle JDBC Drivers
« Choosing the Appropriate Driver

Oracle offers two different drivers for client-side use (one of which can also be used
in a middle tier) and one for server-side use. Most of the information in the
following chapters focuses on the client-side drivers. The server-side driver is
described in detail in "JDBC on the Server: the Server Driver" on page 5-22.

Introducing the Oracle JDBC Drivers

This section describes the Oracle JDBC drivers and provides scenarios for how you
would use them. Oracle produces JDBC drivers for use in clients and in the server.
The client-side drivers can be used in Java applications or Java applets that run
either on the client or in the middle tier of a three-tier configuration. The server-side
driver provides server-side JDBC support which allows the Java VM to
communicate with the SQL engine.

Common Features of Oracle JDBC Drivers

The server-side and client-side Oracle JDBC drivers provide the same functionality.
They all support the following standards and features:

« JDBC1.22

= most of the IDBC 2.0 features

« the same syntax and APIs

= the same Oracle extensions

« full support for multi-threaded applications

The only differences between the drivers are in how they connect to the database
and how they transfer data.

JDBC Thin Driver

The Oracle JDBC Thin driver is a 100% Pure Java implementation that complies
with the JDBC 1.22 standard. The JDBC Thin driver uses Java Sockets to connect
directly to the Oracle Server and is typically used for Java applets in either a
two-tier or three-tier configuration, though it can also be used for Java applications.
The JDBC Thin driver provides its own implementation of a TCP/IP version of

2-2 JDBC Developer’s Guide and Reference



Oracle JDBC Drivers

Oracle’s Net8. Because it is written entirely in Java, this driver is
platform-independent. When the JDBC Thin driver is used with an applet, the client
browser must have the capability to support Java sockets.

The JDBC Thin driver does not require Oracle software on the client side; it can be
downloaded into a browser simultaneously with the Java applet being run. From
the client (usually a browser), you select a URL from an HTML page that contains a
Java applet tag. The web server downloads the Java applet and the JDBC Thin
driver to the client. The JDBC Thin driver then establishes a direct connection to the
database server using Java Sockets.

The JDBC Thin driver connects to any Oracle database of version 7.2.3 and higher.
The JDBC Thin driver allows a direct connection to the database by emulating Net8
and TTC (the wire protocol used by OCI) on top of Java sockets. The driver
supports only TCP/IP protocol and requires a TNS listener to be listening on
TCP/IP sockets from the database server.

For a discussion of relevant firewall, browser, and security issues, see "Working
with Applets" on page 5-7.

JDBC OCI Driver

The JDBC OCI driver provides an implementation of the JDBC interfaces using the
Oracle Call Interface (OCI). The OCI driver makes use of the OCI cache, C entry
points to OCI, and the OCI library. The use of native methods to call C entry points
makes the driver platform-specific. The JDBC OCI driver also requires an Oracle
client installation including Net8.

The JDBC OCI driver is compatible with all Oracle versions because it interfaces to
Oracle databases through OCI. The driver also supports all installed Net8 adapters,
including IPC, named pipes, TCP/IP, and IPX/SPX.

Because the JDBC OCI driver contains C code, it is not suitable for use in applets.
However, it is an excellent choice for Java applications or Java middle tiers such as
the Oracle Web Application Server. You can use the JDBC OCI driver in these
configurations:

« with aJava application running on a client machine in a two-tier configuration
« with aJava application running on a middle tier in a three-tier configuration

« with aJava servlet running on a middle tier in a three-tier configuration

Getting Started 2-3



Oracle JDBC Drivers

JDBC Server Driver

Oracle’s JDBC Server driver is for server-side use only. The Server driver provides
server-side JDBC support for any Java program used in the database, Java stored
procedure, Enterprise Java Beans (EJB) and for communication with SQL and
PL/SQL programs. The Server driver is fully consistent with, and supports the
same features and extensions as the client-side drivers. For more information on the
server-side driver, see "JDBC on the Server: the Server Driver" on page 5-22.

Choosing the Appropriate Driver

Four main considerations that you must bear in mind when choosing which JDBC
driver to use for your application or applet are:

« If you are writing an applet, you must use the JDBC Thin driver. JDBC
OCl-based driver classes cannot be downloaded to a Web browser, because they
call native (C language) methods.

Notes:

« JDBC Thin drivers use a subset of the Net8 protocol, written
entirely in Java, and connect using the TCP/IP protocol.

= There are other restrictions on applets besides your choice of
JDBC driver. For information on these restrictions, see "Browser
Security and JDK Version Considerations" on page 5-20.

« If you desire maximum portability, then choose the JDBC Thin driver. You can
connect to an Oracle8 data server from either an application or an applet using
the JDBC Thin driver.

« Ifyou are writing an application and need maximum performance, then choose
the JDBC OCI driver.

« Ifyou are running in the Oracle database server using the Oracle 8.1.5 Java VM,
then choose the JDBC Server driver.

2-4 JDBC Developer’s Guide and Reference



Requirements and Compatibilities for Oracle JDBC Drivers

Requirements and Compatibilities for Oracle JDBC Drivers

Table 2-1 lists the compatibilities between versions of the Oracle database and the

JDBC drivers.

Table 2—1 JDBC Driver-Database Compatibility

Database Version

Driver Version

Remarks

8.1.5

JDBC Thin Driver
JDBC OCI Driver
JDBC Server Driver

Both client- and server-side
drivers offer full object support
when run against an 8.1.5
database.

8.14

JDBC Thin Driver
JDBC OCI Driver
JDBC Server Driver

Both client- and server-side
drivers offer full object support
when run against an 8.1.4
database.

8.0.x

JDBC Thin Driver
JDBC OCI Driver

Note: the JDBC Server driver is not
available for version 8.0.x

The JDBC OCI and Thin drivers
do not support objects when run
against an 8.0.x database. This is
because JDBC depends on
PL/SQL functions that did not
exist in 8.0.x.

7.X

JDBC Thin Driver
JDBC OCI Driver

Note: the JDBC Server driver is not
available for version 7.x

The JDBC OCI and Thin drivers
do not support objects when run
against a 7.x database. This is
because JDBC depends on
PL/SQL functions that did not
existin 7.x

The JDBC OCI driver does not
support LOBs.

Getting Started 2-5



Verifying a JDBC Client Installation

Verifying a JDBC Client Installation
This section has the following subsections:
« Check Installed Directories and Files
« Check the Environment Variables
« Make Sure You Can Compile and Run Java
« Testing JDBC and the Database Connection: JdbcCheckup

Installation of an Oracle JDBC driver is platform-specific. Follow the installation
instructions for the driver you want to install in your platform-specific
documentation.

This section describes the steps of verifying an Oracle client installation of the JDBC
drivers. It assumes that you have already installed the driver of your choice.

If you have installed the JDBC Thin driver, no further installation on the client
machine is necessary (the JDBC Thin driver requires a TCP/IP listener to be
running on the database machine).

If you have installed the JDBC OCI driver, you must also install the Oracle client
software. This includes Net8 and the OCI libraries.

Check Installed Directories and Files

This section assumes that you have already installed the Sun Microsystems Java
Developer’s Kit (JDK) on your system. The Oracle JDBC drivers are compatible with
JDK versions 1.0.2 and 1.1.x. The Oracle JDBC drivers for version 8.1.5 do not
support the JDK 1.2.

Directories for JDBC

Installing the Oracle Java server products creates, among other things, aj dbc
directory under [ ORACLE_HQOVE] , containing these subdirectories and files:

« deno/ sanpl es: The sanpl es directory contains sample programs, including
examples of how to use SQL92 and Oracle SQL syntax, PL/SQL blocks,
streams, and the Oracle JDBC type and performance extensions. The deno
directory contains only the sanpl es subdirectory.

« doc: The doc directory contains documentation about the JDBC drivers.

« |lib:Theli b directory contains. zi p files with required Java classes:
cl asses111. zi p for JDK 1.1.1and cl asses102. zi p for JDK 1.0.2.

2-6 JDBC Developer’s Guide and Reference



Verifying a JDBC Client Installation

« readne.txt:Thereadne. t xt file contains up to the minute facts about the
drivers that might not be in the manual.

Check that all these directories have been created and populated.

Check the Environment Variables

This section describes the environment variables that must be set for the JDBC OCI
driver and the JDBC Thin driver.

Solaris and Windows NT Platforms

You must set the CLASSPATH for your installed JDBC OCI or Thin driver.
Depending on whether you are using the JDK version 1.0.2 or version 1.1.1, you
must set one of these values for the CLASSPATH:

« [Oracle Hone]/jdbc/lib/classesl02.zip

OR

« [Oracle Hone]/jdbc/lib/classeslll. zip

JDBC OClI Drivers: If you are installing the JDBC OCI driver, you must also set the

following value for the library path environment variable (this will be
LD LI BRARY_PATH on Solaris or PATHon Windows NT).

« [Oracle Hone]/lib
On Solaris, this directory contains the shared object library | i boci j dbc8. so.

JDBC Thin Drivers: If you are installing the JDBC Thin driver, you do not have to set
any other environment variables.

Make Sure You Can Compile and Run Java

To further ensure that Java is set up properly on your client system, go to the
sanpl es directory (for example, C. \ or acl e\ or a81\ j dbc\ deno\ sanpl es if
you are using the JDBC driver on a Windows NT machine), then see if j avac (the
Java compiler) and j ava (the Java interpreter) will run without error. Enter:

j avac
then enter:
j ava

Each should give you a list of options and parameters and then exit.

Getting Started 2-7



Verifying a JDBC Client Installation

Determining the Version of the JDBC Driver

If at any time you need to determine the version of the JDBC driver that you
installed, you can invoke the get Dri ver Ver si on() method of the
O acl eDat abaseMet aDat a class.

Here is sample code showing how to do it:

inport java.sql.*;
inport oracle.jdbc.driver.*;

cl ass JDBCVer si on

{
public static void main (Sring args [])
throws SQException

{
/! Load the Gracle JDBC dri ver

Dri ver Manager . regi ster Dri ver

(new oracl e.jdbc. driver. OacleDriver());

Gonnecti on conn = Dri ver Manager . get Connect i on
("jdbc:oracl e:thin: @ost: port:sid',"scott","tiger");

Il Geate Oracl e Dat abaseMet aDat a obj ect
Dat abaseMet aDat a neta = conn. get MetabData ();

/] gets driver info:
Systemout. println("JDBC driver version is " + neta. getDriverVersion());

}
}

Testing JDBC and the Database Connection: JdbcCheckup

The sanpl es directory contains sample programs for a particular Oracle JDBC
driver. One of the programs, JdbcCheckup. j ava, is designed to test JDBC and the
database connection. The program queries you for your user name, password, and
the name of a database to which you want to connect. The program connects to the
database, queries for the string "Hel | o Wor | d", and prints it to the screen.

Go to the sanpl es directory and compile and run JdbcCheckup. j ava. If the
results of the query print without error, then your Java and JDBC installations are
correct.

Although JdbcCheckup. j ava is a simple program, it illustrates several important
functions:

« imports the necessary Java classes, including JDBC classes

2-8 JDBC Developer’s Guide and Reference



Verifying a JDBC Client Installation

« registers the JDBC driver

= connects to the database

« executes asimple query

= outputs the query results to your screen

"First Steps in JDBC" on page 3-2, describes these functions in greater detail. A
listing of JdbcCheckup. j ava for the JDBC OCI driver appears below.

/*

* This sanpl e can be used to check the JDBC installation.

* Just run it and provide the connect information. It wll select
* "Hello Wirld' fromthe dat abase.

*/

/1 You need to inport the java.sgl package to use JDBC
inport java.sql.*;

/]l V¢ inport java.io to be able to read fromthe comand |ine
inport java.io.*;

cl ass JdbcCheckup
{
public static void main (Sring args [])
throws SQ.Exception, |CException
{
/1 Load the Qracle JDBC driver
Dri ver Manager . regi ster Dri ver (new oracl e. j dbc. driver. Qacl eDriver());

/1 Pronpt the user for connect infornation

Systemout.printin ("Please enter infornation to test connection to
the dat abase");

Sring user;

Sring password;

Sring dat abase;

user = readEntry ("user: ");
int slash_index = user.indexd ('/');
if (slash_index !=-1)

{
password = user.substring (slash_index + 1);
user = user.substring (0, slash_index);

}

el se

password = readEntry ("password: ");

Getting Started 2-9



Verifying a JDBC Client Installation

dat abase = readEntry ("database (a TNSNAME entry): ");

Systemout. print ("Connecting to the database...");
Systemout . fl ush ();

Systemout. println ("Connecting...");
Gonnecti on conn =
Ori ver Manager . get Gonnect i on ("] dbc: oracl e: oci 8: @ + dat abase,
user, password);

Systemout. println ("connected.");

Il Qeate a statenent
Satenment stnt = conn.createStatenent ();

/] Do the SQ "Hello Wrld" thing
Resul t Set rset = stm.executeQuery ("select '"Hello Verld
fromdual ");

while (rset.next ())
Systemout.printin (rset.getSring (1));
/1l close the result set, the statement and connect
rset.close();
stn. cl ose();
conn. cl ose();
Systemout. println ("Your JDBC installation is correct.");

}

/I Uility function to read a line fromstandard i nput
static String readentry (Sring pronpt)
{
try
{
SringBuffer buffer = new SringBuffer ();

Systemout. print (pronpt);
Systemout . fl ush ();
int ¢ =Systemin.read ();
vwhile (c !'=’"\n & c !I=-1)
{
buf f er. append ((char)c);
c = Systemin.read ();

}
return buffer.toString ().trim();

catch (1 CException €)

2-10 JDBC Developer’s Guide and Reference



Verifying a JDBC Client Installation

return ""

Getting Started 2-11



Verifying a JDBC Client Installation

2-12 JDBC Developer’s Guide and Reference



3

Basic Features

This chapter covers the most basic steps taken in any JDBC application. It also
describes additional basic features of Java and JDBC supported by the Oracle JDBC
drivers. It includes the following topics:

First Steps in JDBC

Sample: Connecting, Querying, and Processing the Results
Datatype Mappings

Using Java Streams in JDBC

Using Stored Procedures in JDBC Programs

Error Messages and JDBC

Server-Side Basics

Application Basics versus Applet Basics

Basic Features 3-1



First Steps in JDBC

First Steps in JDBC

This section describes how to get up and running with the Oracle JDBC drivers.
When using the Oracle JDBC drivers, you must include certain driver-specific
information in your programs. This section describes, in the form of a tutorial,
where and how to add the information. The tutorial guides you through creating
code to connect to and query a database from the client.

To connect to and query a database from the client, you must provide code for these
tasks:

Importing Packages
Registering the JDBC Drivers

Opening a Connection to a Database

1.

2.

3

4. Creating a Statement Object

5. Executing a Query and Returning a Result Set Object
6. Processing the Result Set

7. Closing the Result Set and Statement Objects
8. Closing the Connection

You must supply Oracle driver-specific information for the first three tasks, which
allow your program to use the JDBC API to access a database. For the other tasks,
you can use standard JDBC Java code as you would for any Java application.

Importing Packages
Regardless of which Oracle JDBC driver you use, you must include the following
i mport statements at the beginning of your program.
i mport java.sql.* JDBC packages.
i mport java.mth.* Java math packages; for example, these are required
for the Bi gDeci nal classes.

You will need to add the following Oracle packages to your program when you
want to access the extended functionality provided by the Oracle drivers. However,
they are not required for the example presented in this section:

3-2 JDBC Developer’s Guide and Reference



First Steps in JDBC

oracle.jdbc.driver.* Add these packages if you use any Oracle-specific

and oracl e. sql . * extensions to JDBC in your program. For more
information on Oracle extensions, see Chapter 4,
"Oracle Extensions".

Registering the JDBC Drivers

You must provide the code to register your installed driver with your program. You
do this with the static r egi st er Dri ver () method of the JDBC Dri ver Manager
class. This class provides a basic service for managing a set of JDBC drivers.

Note: Alternatively, you can use the f or Nane() method of the
j ava. | ang. C ass class to load the JDBC drivers directly. For
example:

O ass.forName ("oracle.jdbc.driver.OacleDriver");

However, this method is valid only for JDK-compliant Java virtual
machines. It is not valid for Microsoft Java virtual machines.

Because you are using one of Oracle’s JDBC drivers, you declare a specific driver
name string tor egi st er Dri ver () . You register the driver only once in your Java
application.

Dri ver Manager . regi sterDriver (new oracle.jdbc.driver.Oaclelxiver());

Note: If you are registering a Thin driver in an applet, you must
enter a driver string that is different from the one used in these
examples. For more information on registering a Thin driver for an
applet, see "Coding Applets" on page 5-7.

Opening a Connection to a Database

You open a connection to the database with the static get Connect i on() method
of the JDBC Dr i ver Manager class. This method returns an object of the JDBC
Connect i on class which needs as input a userid, password, connect string that
identifies the JDBC driver to use, and the name of the database to which you want
to connect.

Connecting to a database is a step where you must enter Oracle JDBC
driver-specific information in the get Connect i on() method. If you are not

Basic Features 3-3



First Steps in JDBC

familiar with this method, continue reading the "Understanding the Forms of
getConnection()" section below.

If you are already familiar with the get Connect i on() method, you can skip
ahead to either of these sections, depending on the driver you installed:

= "Opening a Connection for the JDBC OCI Driver" on page 3-6
= "Opening a Connection for the JDBC Thin Driver" on page 3-7

Note: The instructions in this section are specific to the client-side
drivers only. To find out how to open a database connection using
the server-side driver, see "Server-Side Basics" on page 3-26.

Understanding the Forms of getConnection()

The get Connecti on() method is an overloaded method that you declare by the
techniques described in these sections:

« "Specifying a Database URL, Userid, and Password" on page 3-4
« "Specifying a Database URL That Includes Userid and Password" on page 3-5
« "Specifying a Database URL and Properties Object" on page 3-6

Note: You do not have to specify the database name if there is a
default connection. For more information about default
connections, see "Connecting to the Database with the Server
Driver" on page 5-22.

If you want to specify a database name in the connection, it must be in one of the
following formats:

= a Net8 keyword-value pair
« astring of the form <host_name>:<port_number>:<sid> (Thin driver only)
« a TNSNAMES entry (OCI driver only)

For information on how to specify a keyword-value pair or a TNSNAMES entry, see
your Net8 Administrator’s Guide.

Specifying a Database URL, Userid, and Password
get Gnnection(String UR., Sring user, Sring password);

3-4 JDBC Developer’s Guide and Reference



First Steps in JDBC

where the URL is of the form:

j dbc: or acl e: <dri vert ype>. @dat abase>

The following example connects user scot t with password ti ger to a database
with SID or cl through port 1521 of host myhost , using the Thin driver.

Gonnecti on conn =
Ori ver Manager . get Gonnection ("] dbc: oracl e: t hi n: @yhost : 1521: orcl ",
"scott", "tiger");

If you want to use the default connection for an OCI driver, specify either:

Gonnecti on conn = Dri ver Manager . get GConnect i on
("jdbc: oracl e: oci 8: scott/tiger@);
OR

Gonnecti on conn =
Ori ver Manager . get Gonnection ("j dbc: oracl e: oci 8: @, "scott", "tiger");

For all JDBC drivers you can also specify the database with a Net8 keyword-value
pair. The Net8 keyword-value pair substitutes for the TNSNAMES entry. The following
example uses the same parameters as the preceding example, but in the
keyword-value format:;

Gonnecti on conn =
Dri ver Manager . get Gonnect i on
(j dbc: oracl e: oci 8: @4Host Sring”, "scott","tiger");

OR

Qonnection conn =

Dri ver Manager . get Gonnect i on("j dbc: or acl e: oci 8: @descri pt i on=( addr ess=( host =
nyhost ) ( pr ot ocol =t cp) (port =1521)) (connect _dat a=(si d=orcl)))",

"scott", “"tiger");

Specifying a Database URL That Includes Userid and Password
get Gonnection(String UR);

where the URL is of the form:

j dbc: oracl e: <dri vert ype>: <user>/ <passwor d>@dat abase>

Basic Features 3-5



First Steps in JDBC

The following example connects user scot t with password ti ger to a database
using the OCI driver. In this case, however, the URL includes the userid and
password, and is the only input parameter.

Gonnecti on conn =
Dri ver Manager . get Connect i on("j dbc: or acl e: oci 8: scott/ ti ger @yhost);

Specifying a Database URL and Properties Object
get Gonnection(String UR., Properties info);

where the URL is of the form:

j dbc: or acl e: <dri vert ype>. @dat abase>

In addition to the URL, use an object of the standard Java Pr operti es class as
input. For example:

java. util.Properties info = newjava.util.Properties();
info.put ("user", "scott");

i nfo.put ("password","tiger");

i nfo.put ("defaul t RowPrefetch”,"15");

get Gonnection ("jdbc: oracl e:oci 8: @, info);

Oracle Extensions to Connection Properties Object Oracle has defined several extensions
to the connection properties that Oracle JDBC drivers support. For more
information on this form of the get Connect i on() method and the Oracle
extensions to the Pr opert i es object, see "Oracle Extensions for Connection
Properties” on page 4-109.

Opening a Connection for the JDBC OCI Driver

For the JDBC OCI driver, you can specify the database by a TNSNAMES entry. You
can find the available TNSNAMES entries listed in the file t nsnanes. or a on the
client computer from which you are connecting. On Windows NT this file is located
in [ ORACLE_HOVE] \ NETVWORK\ ADM N. On UNIX systems, you can find it in

/var/ opt/oracl e.

For example, if you want to connect to the database on host nyhost as user scot t
with password t i ger that has a TNSNAMES entry of MyHost St ri ng, enter:

Qonnection conn =
Dri ver Manager . get Gonnect i on ("] dbc: oracl e: oci 8: @yHost S ring”,
"scott", "tiger");

Note that both the ": " and "@ characters are necessary.

3-6 JDBC Developer’s Guide and Reference



First Steps in JDBC

For the JDBC OCI driver (as with the Thin driver), you can also specify the database
with a Net8 keyword-value pair. This is less readable than a TNSNAMES entry but
does not depend on the accuracy of the TNSNAMES. ORA file. The Net8 keyword-value
pair also works with other JDBC drivers.

For example, if you want to connect to the database on host nyhost that has a
TCP/IP listener up on port 1521, and the Sl D (system identifier) is or cl , use a
statement such as:

Gonnecti on conn =
Dri ver Manager . get Gonnect i on("j dbc: or acl e: oci 8: @descr i pt i on=( addr ess=( host =
nyhost ) ( pr ot ocol =t cp) (port=1521)) (connect _dat a=(si d=orcl)))",
"scott", "tiger");

Opening a Connection for the JDBC Thin Driver

Because you can use the JDBC Thin driver in applets that do not depend on an
Oracle client installation, you cannot use a TNSNAMES entry to identify the database
to which you want to connect. You have to either:

« explicitly list the host name, TCP/IP port and Oracle SID of the database to
which you want to connect

OR

= use a keyword-value pair list

Note: The JDBC Thin driver supports only the TCP/IP protocol.

For example, use this string if you want to connect to the database on host myhost
that has a TCP/IP listener on port 1521 for the database S| D (system identifier)
or cl . You can logon as user scot t, with password t i ger :

Gonnecti on conn =
Ori ver Manager . get Gonnect i on
("jdbc: oracl e:thi n: @yhost : 1521: orcl ", "scott", "tiger");

You can also specify the database with a Net8 keyword-value pair. This is less
readable than the first version, but also works with the other JDBC drivers.

Gonnecti on conn =
Dri ver Manager . get Connect i on
("jdbc: oracl e: t hi n: @descri pti on=(addr ess=( host =nyhost ) ( pr ot ocol =t cp)
(port=1521)) (connect _data=(sid=orcl)))", "scott", "tiger");

Basic Features 3-7



First Steps in JDBC

Note: If you are writing a connection statement for an applet, you
must enter a connect string that is different from the one used in
these examples. For more information on connecting to a database
with an applet, see "Coding Applets" on page 5-7.

Creating a Statement Object

Once you connect to the database and, in the process, create your Connect i on
object, the next step is to create a St at enent object. The cr eat eSt at ermrent ()
method of your JDBC Connect i on object returns an object of the JDBC

St at ement class. To continue the example from the previous section where the
Connect i on object conn was created, here is an example of how to create the
St at emrent object:

Satenent stnt = conn.createSatenent();

Note that there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Executing a Query and Returning a Result Set Object

To query the database, use the execut eQuer y() method of your St at enent
object. This method takes a SQL statement as input and returns an object of the
JDBC Resul t Set class.

To continue the example, once you create the St at ement object st nt , the next step
is to execute a query that populates a Resul t Set object with the contents of the
ENAME (employee name) column of a table of employees that is named EMP:

Resul t Set rset = stm. executeQuery ("SELECT enane FROM enp");

Again, there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

3-8 JDBC Developer’s Guide and Reference



First Steps in JDBC

Note: The JDBC drivers actually return an Or acl eResul t Set
object, but into a standard Resul t Set output variable. If you want
to use Oracle extensions to process the result set, then you must
cast the output to Or acl eResul t Set . This is further discussed in
"Classes of the oracle.jdbc.driver Package" on page 4-22.

Processing the Result Set

Once you execute your query, use the next () method of your Resul t Set object to
iterate through the results. This method loops through the result set row by row,
detecting the end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the various get XXX()
methods of the Resul t Set object, where XXX corresponds to a Java datatype.

For example, the following code will iterate through the Resul t Set objectr set
from the previous section, and will retrieve and print each employee name:

vhile (rset.next())
Systemout. println (rset.getring(l));

Once again, this is standard JDBC syntax. The next () method returns false when it
reaches the end of the result set. The employee names are materialized as Java
Strings.

Closing the Result Set and Statement Objects

You must explicitly close the Resul t Set and St at enent objects after you finish
using them. This applies to all Resul t Set and St at emrent objects you create
when using the Oracle JDBC drivers. The drivers do not have finalizer methods;
cleanup routines are performed by the cl ose() method of the Resul t Set and

St at enent classes. If you do not explicitly close your Resul t Set and

St at enent objects, serious memory leaks could occur. You could also run out of
cursors in the database. Closing a result set or statement releases the corresponding
cursor in the database.

For example, if your Resul t Set objectisr set and your St at enent object is
st nt, close the result set and statement with these lines:

rset. cl ose()
stnt. close();

Basic Features 3-9



Sample: Connecting, Querying, and Processing the Results

When you close a St at enent object that a given Connect i on object creates, the
connection itself remains open.

Closing the Connection

You must close your connection to the database once you finish your work. Use the
cl ose() method of the Connect i on class to do this. For example, if your
Connect i on object is conn, close the connection with this statement:

conn. cl ose();

Sample: Connecting, Querying, and Processing the Results

The steps in the preceding sections are illustrated in the following example, which
registers an Oracle JDBC Thin driver, connects to the database, creates a
St at ement object, executes a query, and processes the result set.

Note that the code for creating the St at enent object, executing the query,
returning and processing the Resul t Set object, and closing the statement and
connection all follow standard JDBC syntax.

inport java.sql.*;
inport java.math. *;
inport java.io.*;

inport java.aw.*;

cl ass JdbcTest {
public static void main (Sring args []) throws SQException {
/1 Load Oracle driver
Driver Manager.regi sterDriver (new oracle.jdbc.driver.Qaclelriver());

// Gonnect to the local database
Gonnecti on conn =
Ori ver Manager . get Connecti on (" dbc: oracl e: t hi n: @yhost : 1521: CRQL",
"scott", "tiger");

/1 Query the enpl oyee nanes
Satement stnt = conn.createStatenent ();
Resul t Set rset = stni.executeQery ("SELECT enane FRMenp");

/!l Print the nane out

while (rset.next ())
Systemout.println (rset.getSring (1));

3-10 JDBC Developer’s Guide and Reference



Datatype Mappings

//close the result set, statenent, and the connection
rset.close();
stnt. close();
conn. cl ose();

}

If you want to adapt the code for the OCI driver, replace the Connect i on
statement with the following:

Gonnect i on conn = Dri ver Manager . get Connect i on ("j dbc: or acl e: oci 8: @4Host St ri ng”,
"scott", "tiger");

where MyHost St ri ng is an entry in the TNSNAMES. ORA file.

Note: If you are creating code for an applet, the
get Connecti on() andregi sterDriver () strings will be
different. For more information, see "Coding Applets" on page 5-7.

Datatype Mappings

The Oracle JDBC drivers support the SQL datatypes required by JDBC 1.22. In
addition, the Oracle JDBC drivers support the Oracle-specific RON D datatype and
user-defined types of the REF CURSOR category.

For reference, the following table shows the default mappings between JDBC
datatypes, native Java datatypes, SQL datatypes, and the corresponding Java
datatypes defined by Oracle extensions.

The Standard JDBC Datatypes column lists the datatypes supported by the JDBC
1.22 standard. All of these dataypes are defined in the j ava. sqgl . Types class.

The Java Native Datatypes column lists the datatypes defined by the Java language.
The SQL Datatypes column lists the SQL datatypes that exist in the database.

The Oracle Extensions—Java Classes that Represent SQL Datatypes column lists the
oracl e. sqgl . * Java types that correspond to each SQL datatype in the database.
These are Oracle extensions that let you retrieve all SQL data in the form of a
oracl e. sqgl . * Java type. Mapping SQL datatypes into the or acl e. sql
datatypes lets you store and retrieve data without losing information. Refer to
"Classes of the oracle.sgl Package" on page 4-7 for more information on the

oracl e. sqgl . * package.

Basic Features 3-11



Datatype Mappings

For a list of all of the Java datatypes to which you can validly map a SQL datatype,

see "Valid SQL-JDBC Datatype Mappings" on page 8-2.

Table 3—1 Mapping Between JDBC, Java Native, and Oracle Datatypes
Standard JDBC Java Native Oracle Extensions—Java Classes
Datatypes Datatypes SQL Datatypes that Represent SQL Datatypes
java.sql.Types.CHAR java.lang.String CHAR oracle.sql.CHAR
java.sql.Types.VARCHAR java.lang.String VARCHAR?2 oracle.sql.CHAR
java.sql.Types.LONGVARCHAR java.lang.String LONG oracle.sql.CHAR
java.sql.Types.NUMERIC java.math.BigDecimal NUMBER oracle.sql.NUMBER
java.sgl.Types.DECIMAL java.math.BigDecimal NUMBER oracle.sql.NUMBER
java.sgl.Types.BIT boolean NUMBER oracle.sql. NUMBER
java.sql.Types. TINYINT byte NUMBER oracle.sql. NUMBER
java.sgl.Types.SMALLINT short NUMBER oracle.sql.NUMBER
java.sgl.Types.INTEGER int NUMBER oracle.sql. NUMBER
java.sql.Types.BIGINT long NUMBER oracle.sql. NUMBER
java.sgl.Types.REAL float NUMBER oracle.sql. NUMBER
java.sgl.Types.FLOAT double NUMBER oracle.sql. NUMBER
java.sql.Types.DOUBLE double NUMBER oracle.sql. NUMBER
java.sgl.Types.BINARY byte[] NUMBER oracle.sql. NUMBER
java.sgl.Types.VARBINARY byte[] RAW oracle.sql.RAW
java.sql.Types.LONGVARBINARY byte[] LONGRAW oracle.sql. NUMBER
java.sql.Types.DATE java.sgl.Date DATE oracle.sql.DATE
java.sgl.Types. TIME java.sgl.Time DATE oracle.sql.DATE
java.sql.Types. TIMESTAMP javal.sgl.Timestamp DATE oracle.sql.DATE

Oracle JDBC Extension Types

In addition, the following JDBC extensions for SQL datatypes (most of which
comply with the JDBC 2.0 standard) are supported. They are not described until
Chapter 4, "Oracle Extensions", but are summarized here for reference. Table 3-2
shows their mappings to Oracle datatypes.

The SQL Datatype column lists the SQL datatypes that exist in the database.

3-12 JDBC Developer’s Guide and Reference



Datatype Mappings

The JDBC Extensions for SQL Datatypes column lists the types into which Oracle
datatypes should map according to the JDBC 2.0 standard. The class

oracl e.jdbc.driver. O acl eTypes. * includes the definitions of
Oracle-specific types that do not exist in the JDBC standard and is a superset of
oracle.sql.*.

The Oracle Extensions—Java Classes that Represent SQL Datatypes column lists the
oracl e. sqgl . * Java types that correspond to each SQL datatype in the database.
These are Oracle extensions that let you retrieve all SQL data in the form of a
oracl e. sqgl . * Java type. Refer to "Classes of the oracle.sql Package" on page 4-7
for more information on the or acl e. sql . * package.

For a list of all of the Java datatypes to which you can validly map a SQL datatype,
see "Valid SQL-JDBC Datatype Mappings" on page 8-2.

Table 3—-2 Mapping Oracle Extension JDBC Types to Oracle Datatypes

SQL Datatype

JDBC Extensions Oracle Extensions—Java Classes
for SQL Datatypes that Represent SQL Datatypes

ROWID

oracle.jdbc.driver.OracleTypes.ROWID oracle.sql.ROWID

user-defined types of
the REF CURSOR
category

oracle.jdbc.driver.OracleTypes.CURSOR java.sgl.ResultSet

BLOB oracle.jdbc.driver.OracleTypes.BLOB oracle.sql.BLOB
CLOB oracle.jdbc.driver.OracleTypes.CLOB oracle.sql.CLOB
BFILE oracle.jdbc.driver.OracleTypes.BFILE oracle.sql.BFILE
Object Value oracle.jdbc.driver.OracleTypes.STRUCT If there is no entry for the object value in the type map:

. oracle.sql.STRUCT
If there is an entry for the object value in the type map:
. customized Java class

Object Reference

oracle.jdbc.driver.OracleTypes.REF class that extends oracle.sql.REF

Collections (varrays
and nested tables)

oracle.jdbc.driver.OracleTypes. ARRAY oracle.sql.ARRAY

See Chapter 4, "Oracle Extensions", for more information on type mappings. In
Chapter 4 you can also find more information on:

« packagesoracl e. sqgl ,oracl e.jdbc.driver,andoracl e.jdbc2

= type extensions for the Oracle RON D datatype and user-defined types of the
REF CURSOR category

= how to use type maps with object values and collections

Basic Features 3-13



Using Java Streams in JDBC

Using Java Streams in JDBC
This section has the following subsections:
« Streaming LONG or LONG RAW Columns
« Streaming CHAR, VARCHAR, or RAW Columns
« Data Streaming and Multiple Columns
« Streaming and Row Prefetching
« Closing a Stream
« Streaming LOBs and External Files

This section describes how the Oracle JDBC drivers handle Java streams for several
datatypes. Data streams allow you to read LONG column data of up to 2 gigabytes.
Methods associated with streams let you read the data incrementally.

Oracle JDBC drivers support the manipulation of data streams in either direction
between server and client. The drivers support all stream conversions: binary,
ASCII, and Unicode. Following is a brief description of each type of stream:

= binary stream: returns the RAWbytes of the data. This corresponds to the
get Bi narySt rean() method.

« ASCII stream: returns ASCII bytes in ISO-Latin-1 encoding. This corresponds to
the get Asci i Strean{) method.

« Unicode stream: returns Unicode bytes with the UCS- 2 encoding. This
corresponds to the get Uni codeSt r ean{) method.

The methods get Bi naryStrean{(), get Ascii Strean(), and
get Uni codeSt r ean( ), return the bytes of data in an | nput St r eamobject. These
methods are described in greater detail in Chapter 4, "Oracle Extensions".

Streaming LONG or LONG RAW Columns

When a query selects one or more LONGor LONG RAWcolumns, the JDBC driver
transfers these columns to the client in streaming mode. After a call to
execut eQuery() ornext (), the data of the LONGcolumn is waiting to be read.

To access the data in a LONG column, you can get the column as a Java

I nput St r eamand use the r ead() method of the | nput St r eamobject. As an
alternative, you can get the data as a string or byte array, in which case the driver
will do the streaming for you.

3-14 JDBC Developer’s Guide and Reference



Using Java Streams in JDBC

You can get LONGand LONG RAWdata with any of the three stream types. The driver
performs NLS conversions for you depending on the character set of your database
and the driver. For more information about NLS, see "Using NLS" on page 5-2.

LONG RAW Data Conversions

A call to get Bi nar ySt ream() returns RAWdata "as-is". A call to

get Asci i Stream() converts the RAWdata to hexadecimal and returns the ASCII
representation. A call to get Uni codeSt r ean() converts the RAWdata to
hexadecimal and returns the Unicode bytes.

For example, if your LONG RAWcolumn contains the bytes 20 21 22, you receive the
following bytes:

LONG RAW BinaryStream  ASCIIStream UnicodeStream
20 21 22 20 21 22 49 52 49 53 49 54 0049 0052 0049 0053 0049 0054
which is also which is also:

145 Y 6 B A I A

For example, the LONG RAWvalue 20 is represented in hexadecimal as 14 or "1" "4".
In ASCII, 1 is represented by "49" and "4" is represented by "52". In Unicode, a
padding of zeros is used to separate individual values. So, the hexadecimal value 14
is represented as 0 "1" 0 "4". The Unicode representation is 0 "49" 0 "52".

LONG Data Conversions

When you get LONGdata with get Asci i St rean{), the drivers assume that the
underlying data in the database uses an US7ASCI | or WE8I SOB859P1 character
set. If the assumption is true, the drivers return bytes corresponding to ASCII
characters. If the database is not using an US7ASCI | or WE8I SCB859P1 character
set, acall to get Asci i St rean() returns gibberish.

When you get LONGdata with get Uni codeSt r ean() , you get a stream of
Unicode characters in the UCS- 2 encoding. This applies to all underlying database
character sets that Oracle supports.

When you get LONGdata with get Bi nar ySt r ean( ), there are two possible cases:

« Ifthe driver is JDBC OCI and the client character set is not US7TASCI | or
VE8| SOB8859P1, then a call to get Bi nar ySt r ean{() returns UTF- 8. If the
client character set is US7TASCI | or VE8I SCB859P1 then the call returns a
US7ASCI | stream of bytes.

Basic Features 3-15



Using Java Streams in JDBC

« Ifthe driver is JDBC Thin and the database character set is not US7TASCI | or
VE8I SOB8859P1, then a call to get Bi nar ySt rean{() returns UTF- 8. If the
server-side character set is US7ASCI | or WE8I SO8859P1 then the call returns a
US7ASCI | stream of bytes.

For more information on how the drivers return data based on character set, see
"Using NLS" on page 5-2.

Note: Receiving LONGor LONGRAWcolumns as a stream (the
default case) requires you to pay special attention to the order in
which you receive data from the database. For more information,
see "Data Streaming and Multiple Columns" on page 3-20.

Table 3-3 summarizes LONGand LONG RAWdata conversions for each stream type.

Table 3-3 LONG and LONG RAW Data Conversions

Datatype BinaryStream AsciiStream UnicodeStream
LONG bytes representing characters in bytes representing bytes representing
Unicode UTF- 8. The bytes can characters in ISO-Latin-1 characters in Unicode

represent characters in US7ASCI | or (WE8I SOB8859P1) encoding UCS- 2 encoding
WE8I SCB859P1 if:

« thevalue of NLS_LANGon the
clientis US7TASCI | or
WE8| SC8859P1.

OR

« the database character set is
US7ASCI | or WESI SCB859P1.

LONG RAW | as-is ASCII representation of Unicode representation
hexadecimal bytes of hexadecimal bytes

Streaming Example for LONG RAW Data

One of the features of a get XXXSt r eam() method is that it allows you to fetch data
incrementally. In contrast, get Byt es() fetches all of the data in one call. This
section contains two examples of getting a stream of binary data. The first version
uses the get Bi nar ySt r ean{) method to obtain LONG RAWdata; the second
version uses the get Byt es() method.

3-16 JDBC Developer’s Guide and Reference



Using Java Streams in JDBC

Getting a LONG RAW Data Column with getBinaryStream() This Java example writes the
contents of a LONGRAWcolumn to a file on the local file system. In this case, the
driver fetches the data incrementally.

The following code creates the table that stores a column of LONG RAWdata
associated with the name LESLIE:

-- S code:
create tabl e streamexanpl e (NAME varchar2 (256), G FDATA long raw;

insert into streanexanpl e val ues (' LESLIE , ' 00010203040506070809' ) ;
The following Java code snippet writes the data from the LESLIE LONG RAWcolumn
into afilecalledl eslie. gif:

Resul t Set rset = stm. executeQuiery ("sel ect @ FDATA from streanexanpl e where
NAME= LESLIE ");

/1 get first row
if (rset.next())

{
// Get the QF data as a streamfromQacle to the client
Input Sreamgif_data = rset.getB naryStream (1);
try
{
FleQutputSreamfile = null;
file = newFHleQutputSream("leslie.gif");
int chunk;
while ((chunk = gif _data.read()) !=-1)
file.wite(chunk);
}
catch (Exception e)
{
Sring err = e.toSring();
Systemout. println(err);
}
finaly
if file!=null()
file.close();
}
}

In this example the contents of the G FDATA column are transferred incrementally
in chunk-sized pieces between the database and the client. The | nput St r eam

Basic Features 3-17



Using Java Streams in JDBC

object returned by the call to get Bi nar ySt r ean() reads the data directly from the
database connection.

Getting a LONG RAW Data Column with getBytes() This version of the example gets the
content of the G FDATA column with get Byt es() instead of

get Bi narySt ream() . In this case, the driver fetches all of the data in one call and
stores it in a byte array. The previous code snippet can be rewritten as:

Result Set rset2 = stnt. executeQuery ("sel ect G FDATA from streanexanpl e where
NAME= LESLIE ") ;

/1 get first row
if (rset2. next())

{
/] Gt the QF data as a streamfromQacle to the client
byte[] bytes = rset2.getBytes(1);
try
{
FleQutputSreamfile = null;
file =newHleQutputSream("leslie2.gif");
file.wite(bytes);
}
catch (Exception e)
{
Sring err = e.tosring();
Systemout. println(err);
}
finaly
{
if file!=null()
file.close();
}
}

Because a LONG RAWcolumn can contain up to 2 gigabytes of data, the get Byt es()
example will probably use much more memory than the get Bi narySt r eam()
example. Use streams if you do not know the maximum size of the data in your
LONG or LONG RAWcolumns.

Avoiding Streaming for LONG or LONG RAW

The JDBC driver automatically streams any LONGand LONG RAWcolumns.
However, there may be situations where you want to avoid data streaming. For

3-18 JDBC Developer’s Guide and Reference



Using Java Streams in JDBC

example, if you have a very small LONG column, you might want to avoid returning
the data incrementally and instead, return the data in one call.

To avoid streaming, use the def i neCol umType() method to redefine the type of
the LONGcolumn. For example, if you redefine the LONGor LONG RAWcolumn as
type VARCHAR or VARBI NARY, then the driver will not automatically stream the
data.

If you redefine column types with def i neCol umType(), you must declare the
types of all columns in the query. If you do not, execut eQuer y() will fail. In
addition, you must cast the St at enent object to the type
oracle.jdbc.driver.Oacl eStatenent.

As an added benefit, using def i neCol unmType() saves the driver two round
trips to the database when executing the query. Without def i neCol utmType(),
the JDBC driver has to request the datatypes of the column types.

Using the example from the previous section, the St at enent object st nt is cast to
the Or acl eSt at ement and the column containing LONG RAWdata is redefined to
be of the type VARBI NARAY. The data is not streamed; instead, data is returned by
writing it to a byte array.

[/cast the statenent stm to an O acl eX at enent
oracle.jdbc.driver. OacleStatenent ostm =
(oracle.jdbc.driver.Oacl eSatenent)stnt;

/lredefine the LONG col unm at index position 1 to VARB NARY
ost m . def i neCol umType(1, Types. VARBI NARY) ;

/] Do a query to get the inages naned ' LESLIE
Resul t Set rset = ostnt. execut eQiery
("sel ect A FDATA fromstreanexanpl e where NAME=' LESLIE ") ;

/] The data is not streaned here
rset.next();
byte [] bytes = rset.getBytes(1);

Streaming CHAR, VARCHAR, or RAW Columns

If you use the def i neCol unmType() Oracle extension to redefine a CHAR,
VARCHAR, or RAWcolumn as a LONGVARCHAR or LONGVARBI NARY, then you can get
the column as a stream. The program will behave as if the column were actually of
type LONGor LONG RAWNote that there is not much point to this, because these
columns are usually short.

Basic Features 3-19



Using Java Streams in JDBC

If you try to get a CHAR, VARCHAR, or RAWcolumn as a data stream without
redefining the column type, the JDBC driver will return a Java | nput St r eam but
no real streaming occurs. In the case of these datatypes, the JDBC driver fully
fetches the data into an in-memory buffer during a call to execut eQuer y() or
next (). The get XXXSt r ean() entry points return a stream that reads data from
this buffer.

Note: Inversion 8.1.5, the set XXXSt r ean() methods are not
available for CHAR, VARCHAR, and RAWdatatypes.

Data Streaming and Multiple Columns

If your query selects multiple columns and one of the columns contains a data
stream, then the contents of the columns following the stream column are usually
not available until the stream has been read. This is because the database sends each
row as a set of bytes representing the columns in the SELECT order: the data after a
streaming column can be read only after the stream has been read.

For example, consider the following query:

Resul t Set rset = stn. execut eQuery
("sel ect DATECQ, LONGD, NUMBEROQ from TABLE');
whil e rset. next ()

{
//get the date data
java.sql.Date date = rset.getDate(1);
/] get the streaning data
Input Streamis = rset. getAscii Srean{2);
/]l Qpen a file to store the gif data
FleQutputStreamfile = new F | eQut put SSiream ("ascii.dat");
/1 Loop, reading fromthe ascii streamand
Il wite tothe file
int chunk;
while ((chunk =is.read ()) !=-1)
file.wite(chunk);
I/ Qose the file
file.close();
//get the nunber col unm data
int n=rset.getInt(3);
}

3-20 JDBC Developer’s Guide and Reference



Using Java Streams in JDBC

The incoming data for each row has the following shape:

<a date><the characters of the |long col umm><a nunber >

When you call r set . next (), the JDBC driver stops reading the row data just
before the first character of the LONGcolumn. Then the driver uses
rset.getAscii Strean() toread the characters of the LONGcolumn directly out
of the database connection as a Java stream. The driver reads the NUVBER data from
the third column only after it reads the last byte of the data from the stream.

An exception to this behavior is LOB data, which is also transferred between server
and client as a Java stream. For more information on how the driver treats LOB
data, see "Streaming LOBs and External Files" on page 3-23.

Bypassing Streaming Data Columns

There might be situations where you want to avoid reading a column that contains
streaming data. If you do not want to read the data for the streaming column, then
call the cl ose() method of the stream object. This method discards the stream data
and allows the driver to continue reading data for all the non-streaming columns
that follow the stream. Even though you are intentionally discarding the stream, it
is good programming practice to call the columns in SELECT list order.

In the following example, the stream data in the LONGcolumn is discarded and the
data from only the DATE and NUMBER column is recovered:

Resul t Set rset = stn. execut eQuery
("sel ect DATEQQ., LONGOD, NUMBEROQL from TABLE');
whil e rset. next ()

//get the date
java.sql.Date date = rset.getDate(1);

/laccess the streamdata and discard it with close()
Input Streamis = rset. getAscii Srean{2);
is.close();

//get the nunber col unm data
int n=rset.getInt(3);

Basic Features 3-21



Using Java Streams in JDBC

Streaming Data Precautions

This section describes some of the precautions you must take to ensure that you do
not accidentally discard or lose your stream data. The drivers automatically discard
stream data if you perform any JDBC operation that communicates with the
database, other than reading the current stream. Two common precautions are
described in the following sections:

« Use the Stream Data after You Access It
« Call the Stream Column in SELECT List Order

Use the Stream Data after You Access It To recover the data from a column containing a
data stream, it is not enough to get the column; you must read and store its
contents. Otherwise, the contents will be discarded when you get the next column.

Call the Stream Column in SELECT List Order If your query selects multiple columns, the
database sends each row as a set of bytes representing the columns in the SELECT
order. If one of the columns contains stream data, the database sends the entire data
stream before proceeding to the next column.

If you do not use the SELECT list order to access data, then you can lose the stream
data. That is, if you bypass the stream data column and access data in a column that
follows it, the stream data will be lost. For example, if you try to access the data for
the NUMBER column before reading the data from the stream data column, the JDBC
driver first reads then discards the streaming data automatically. This can be very
inefficient if the LONGcolumn contains a large amount of data.

If you try to access the LONGcolumn later in the program, the data will not be
available and the driver will return a "St r eam C osed" error. This is illustrated in
the following example:

Resul t Set rset = stn. execut eQuery
("sel ect DATEQQ., LONGOD, NUMBEROQL from TABLE');
vhi | e rset. next()

{
int n=rset.getlnt(3); // This discards the streaning data
Input Streamis = rset. getAscii Strean{2);
/] Raises an error: streamclosed.
}

If you get the stream but do not use it before you get the NUMBER column, the stream
still closes automatically:

Resul t Set rset = stm. execut eQiery
("sel ect DATECQ, LONGOA, NUMBEROL from TABLE');

3-22 JDBC Developer’s Guide and Reference



Using Java Streams in JDBC

vhil e rset. next ()

{
Input Streamis = rset.getAscii Srean{2); // Get the stream
int n=rset.getInt(3);
/] D scards streanming data and cl oses the stream

}

int c =is.read(); // cis -1 no nore characters to read-streamcl osed

Streaming and Row Prefetching

If the JDBC driver encounters a column containing a data stream, row prefetching is
set back to 1.

Closing a Stream

You can discard the data from a stream at any time by calling the stream’s cl ose()
method. You can also close and discard the stream by closing its result set or
connection object. You can find more information about the cl ose() method for
data streams in "Bypassing Streaming Data Columns" on page 3-21. For information
on how to avoid closing a stream and discarding its data by accident, see
"Streaming Data Precautions" on page 3-22.

Streaming LOBs and External Files

The term large object (LOB) refers to a data item that is too large to be stored directly
in a database table. Instead, a locator is stored in the database table and points to
the location of the actual data. The JDBC drivers provide support for three types of
LOBs: BLOBs (unstructured binary data), CLOBs (single-byte character data) and
BFILEs (external files). The Oracle JDBC drivers support the streaming of CLOB,
BLOB, and BFI LE data.

LOBs behave differently from the other types of streaming data described in this
chapter. The driver transfers LOB data between server and client as a Java stream.
However, unlike most Java streams, a locator representing the LOB data is stored in
the table. Thus, you can access the LOB data at any time during the life of the
connection.

Streaming BLOBs and CLOBs When a query selects one or more CLOB or BLOB
columns, the JDBC driver transfers to the client the data pointed to by the locator.
The driver performs the transfer as a Java stream. To manipulate CLOB or BLOB data
from JDBC, use methods in the Oracle extension classes or acl e. sql . BLOB and
oracl e. sqgl . CLOB. These classes provide functionality such as reading from the

Basic Features 3-23



Using Stored Procedures in JDBC Programs

CLOB or BLOB into an input stream, writing from an output stream into a CLOB or
BLOB, determining the length of a CLOB or BLOB, and closing a CLOB or BLOB.

For a complete discussion of how to use streaming CLOB and BLOB data, see
"Reading and Writing BLOB and CLOB Data" on page 4-48.

Streaming BFILEs An external file, or BFI LE, is used to store a locator to a file that is
outside the database, stored somewhere on the filesystem of the data server. The
locator points to the actual location of the file.

When a query selects one or more BFI LE columns, the JDBC driver transfers to the
client the file pointed to by the locator. The transfer is performed in a Java stream.
To manipulate BFI LE data from JDBC, use methods in the Oracle extension classes
oracl e. sqgl . BFI LE. These classes provide functionality such as reading from the
BFI LE into an input stream, writing from an output stream into a BFI LE
determining the length of a BFI LE, and closing a BFI LE.

For a complete discussion of how to use streaming BFI LE data, see "Reading BFILE
Data" on page 4-57.

Using Stored Procedures in JDBC Programs

This section describes how the Oracle JDBC drivers support stored procedures and
includes these subsections:

« PL/SQL Stored Procedures

« Java Stored Procedures

PL/SQL Stored Procedures

Oracle JDBC drivers support execution of PL/SQL stored procedures and
anonymous blocks. They support both SQL92 escape syntax and Oracle escape
syntax. The following PL/SQL calls are all available from any Oracle JDBC driver:

/1 SQ92 Synt ax
Cal | abl e atenent cs1 = conn. prepareCal |

( "{call proc (?2,?2}" ) ;
conn. prepar eCal |

("{? =cal func (?,?2)}" ) ;

Gl | abl e at enent c¢s2

/1l Oacle Syntax
Cal | abl eX at enent cs3

conn. prepar eCal |
( "beginproc (:1, :2); end;" ) ;
Cal | abl e at enent cs4 = conn. prepareCal |
( "begin:1:=func(:2,:3); end;" ) ;

3-24 JDBC Developer’s Guide and Reference



Error Messages and JDBC

As an example of using Oracle syntax, here is a PL/SQL code snippet that creates a
stored function. The PL/SQL function gets a character and concatenates a suffix to
it:

create or replace function foo (val 1 char)
return char as
begi n
retum vall || 'suffix;
end;

Your invocation call in your JDBC program should look like:

Connection conn = DriverManager.getConnection
(‘'jdbcoracle:oci8:@<hoststring>", "scott”, "tiger");

CallableStatement cs =

conn.prepareCall ("begin ? :=foo(?); end;");
csregisterOutParameter(1, Types.CHAR);
cs.setString(2, "aa);
cs.executeUpdate);
String result = proc.getString(1);

Java Stored Procedures

You can use JDBC to invoke Java stored procedures through the SQL and PL/SQL
engines. The syntax for calling Java stored procedures is the same as the syntax for
calling PL/SQL stored procedures. See the Oracle8i Java Stored Procedures Developer’s
Guide for more information on using Java stored procedures.

Error Messages and JDBC

To handle exceptions, the Oracle JDBC drivers throw a

j ava. sqgl . SQLExcepti on() . Two types of errors can be returned. The first type,
Oracle database errors, are returned from the Oracle database itself and consist of
an error number and a text message describing the error. These errors are
documented in the publication Oracle8i Error Messages.

The second type of error is returned by the JDBC driver itself. These messages
consist of a text message, but do not have an error number. These messages describe
the error and identify the method that threw the error.

You can return errors with these methods:

Basic Features 3-25



Server-Side Basics

« get Message() : returns the error message associated with the object that threw
the exception

« printStackTrace() : prints this object name and its stacktrace to the
specified print stream

This example uses both get Message() and pri nt St ackTr ace() to return
errors.

cat ch( SQLException e);
{

Systemout. println("exception: " + e.get Message());
e. printStackTrace();

}

The text of all error messages has been internationalized. That is, they are available
in all of the languages and character sets supported by Oracle. These error messages
are listed in Appendix A, "JDBC Error Messages".

Server-Side Basics
This section has the following subsections:
= Session and Transaction Context
« Connecting to the Database

The tutorial presented in "First Steps in JDBC" on page 3-2, describes connecting to
and querying a database using the client-side driver. The following sections
describe some of the basic differences if you run the tutorial using the server-side
driver. For a complete discussion of the server-side driver, see "JDBC on the Server:
the Server Driver" on page 5-22.

Session and Transaction Context

The server-side driver operates within a default session and default transaction
context. For more information on default session and transaction context for the
server-side driver, see "Session and Transaction Context for the Server Driver" on
page 5-23.

Connecting to the Database

The Server driver uses a default connection to the database. You can connect to the
database with either the Dri ver Manager . get Connecti on() method or the

3-26 JDBC Developer’s Guide and Reference



Application Basics versus Applet Basics

Oracle-specific APl def aul t Connecti on() method. For more information on
connecting to the database with the server-side driver, see "Connecting to the
Database with the Server Driver" on page 5-22.

Application Basics versus Applet Basics

This section has the following subsections:
« Application Basics

« Applet Basics

Application Basics

Applet Basics

You can use either the Oracle JDBC Thin driver or the JDBC OCI driver to create an
application. Because the JDBC OCI driver uses native methods, there can be
significant performance advantages in using this driver for your applications.

An application that can run on a client can run on the server by using the JDBC
Server driver.

If you are using a JDBC OCI driver in an application, then the application will
require an Oracle installation on its clients. For example, the application will require
the installation of Net8 and client libraries.

Applications and Encryption

For applications that use the Oracle OCI driver, you can encrypt data by using Net8
ANO (Advanced Networking Option). For more information on ANO, please refer
to the Net8 Administrator’s Guide.

This section describes the issues you should take into consideration if you are
writing an applet that uses the JDBC Thin driver.

Applets and Security

An applet cannot open network connections except to the host machine from which
it was downloaded. Therefore, an applet can connect to databases only on the
originating machine. If you want to connect to a database running on a different
machine, either:

Basic Features 3-27



Application Basics versus Applet Basics

« Use Oracle8 Connection Manager on the host machine. The applet can connect
to Oracle8 Connection Manager, which in turn connects to a database on
another machine.

« Usessigned applets. If your browser supports JDK 1.1.x, then you can use signed
applets. Signed applets can request socket connection privileges to other
machines.

Both of these topics are described in greater detail in "Connecting an Applet to a
Database" on page 5-9.

Applets and Firewalls

An applet that uses the JDBC Thin driver can connect to a database through a
firewall. See "Using Applets with Firewalls" on page 5-14 for more information on
configuring the firewall and on writing connect strings for the applet.

Applets and Encryption
Applets that use the JDBC Thin driver do not support data encryption.

Packaging and Deploying Applets

To package and deploy an applet, you must place the JDBC Thin driver classes and
the applet classes in the same zip file. This is described in detail in "Packaging
Applets" on page 5-17.

3-28 JDBC Developer’s Guide and Reference



A

Oracle Extensions

This chapter describes Oracle extensions to standard JDBC, including the following
topics:

Introduction to Oracle Extensions

Oracle JDBC Packages and Classes

Data Access and Manipulation: Oracle Types vs. Java Types
Working with LOBs

Working with Oracle Object Types

Working with Oracle Object References

Working with Arrays

Additional Oracle Extensions

Oracle JDBC Notes and Limitations

Oracle Extensions 4-1



Introduction to Oracle Extensions

Introduction to Oracle Extensions

Oracle’s implementation of JDBC supports versions 1.0.2 and 1.1.x of the Sun
Microsystems JDK and complies with JDBC 1.22, included with these JDK versions.
This chapter describes Oracle extensions to JDBC 1.22, organized into two
categories:

= type extensions to comply with a subset of JIDBC 2.0, which is a part of JIDK 1.2
« additional Oracle-specific type extensions and performance extensions

This section describes how Oracle JDBC supports these extensions, including the
Java packages created and the datatype support issues that must be considered.

Note: The JDBC OCI, Thin, and Server drivers support the same
functionality, and all of the Oracle extensions.

Packages Oracle release 8.1.5 does not support JDK 1.2. The JDBC 2.0 interfaces are
part of the j ava. sql package that is included with the JDK 1.2. Therefore, to
support JDBC 2.0 types, as well as additional Oracle extensions, the Oracle JDBC
distribution includes the following Java packages:

« oracle.jdbc2 (asubset of the standard JDBC 2.0 interfaces)
« oracle. sql (classes to support all Oracle type extensions)

« oracle.jdbc.driver (classes to support database access and updates in
Oracle type formats)

"Oracle JDBC Packages and Classes" on page 4-6 further describes these packages
and their classes.

Oracle Datatype Support A key feature of the Oracle JDBC extensions is the type
support in the or acl e. sql . * package. This package includes classes that map to
all of the Oracle SQL datatypes, acting as wrappers for raw SQL data. This
functionality provides two significant advantages in manipulating SQL data:

« Accessing data directly in SQL format is more efficient than first converting it to
Java format.

« Performing mathematical manipulations of the data directly in SQL format
avoids the loss of precision that occurs in converting between SQL and Java
formats.

4-2 JDBC Developer’'s Guide and Reference



Introduction to Oracle Extensions

Once manipulations are complete and it is time to output the information, each of
the or acl e. sql . * type support classes has all of the necessary methods to
convert data to appropriate Java formats.

For a more detailed description of these general issues, see "Classes of the oracle.sql
Package" on page 4-7.

Specific information relating to particular or acl e. sql . * datatype classes is
discussed in the sections "Working with LOBs" on page 4-45 and "Additional Type
Extensions" on page 4-111.

Oracle Object Support Perhaps the most noteworthy Oracle8 type is Oracle objects.
Oracle8 supports the use of structured objects in the database, where an object
datatype is a user-defined type with nested attributes. For example, a user
application could define an Enpl oyee object type, where each Enpl oyee object
hasafi r st nane attribute (a character string), al ast nane attribute (another
character string), and an enpl oyeenunber attribute (integer).

Oracle’s JDBC implementation supports Oracle object datatypes. When you work
with Oracle object datatypes in a Java application you must consider the following:

« how to map between Oracle object datatypes and Java classes

« how to store Oracle object attributes in corresponding Java objects (they can be
stored in Java format or in or acl e. sqgl . * format)

« how to convert attribute data between SQL and Java formats
« how to access data

To manually create Java classes to correspond to your Oracle objects, Oracle
recommends that you use the Oracle8i JPublisher utility to create the classes. To do
this, you must define attributes according to how you want to store the data.
JPublisher handles this task seamlessly with command-line options.

A type map defines the correspondence between Oracle object datatypes and Java
classes. Type maps are objects of a special Java class that specify which Java class
corresponds to each Oracle object datatype. Oracle JDBC uses these type maps to
determine which Java class to instantiate and populate when it retrieves Oracle
object data from a result set.

Each Java class created to correspond to an Oracle object datatype must implement
one of two supported interfaces: the JDBC-standard SQLDat a interface or the
Oracle Cust onDat uminterface. Each of these interfaces specifies methods to
convert data between SQL and Java. Currently, JPublisher supports only the

Cust onmDat uminterface.

Oracle Extensions 4-3



Introduction to Oracle Extensions

JPublisher automatically defines get methods of the Java classes, which retrieve
data into your Java application. For more information on the JPublisher utility, see
the Oracle8i JPublisher User’s Guide.

"Working with Oracle Object Types" on page 4-62 describes Oracle JDBC support for
Oracle objects.

Support for Schema Naming Oracle JDBC classes have the ability to accept and return
fully qualified schema names. A fully qualified schema name has this syntax:

{[ schena_nane] . }[ sql _t ype_nang]

where schema_nane is the name of the schema and sq/ _t ype nane is the SQL
type name of the object. Notice that the schena_nane and the sq/ _t ype _nane is
separated by a dot (".").

To specify an object type in JDBC, you use its fully qualified name (that is, a schema
name and SQL type name). It is not necessary to enter a schema name if the type
name is in current naming space (that is, the current schema). Schema naming
follows these rules:

« Both the schema name and the type name may or may not be quoted. However,
if the SQL type name has a dot in it, such as CORPORATE. EMPLOYEE, the type
name must be quoted.

« The JDBC driver looks for the first unquoted dot in the object’s name and uses
the string before the dot as the schema name and the string following the dot as
the type name. If no dot is found, the JDBC driver takes the current schema as
default. That is, you can specify only the type name (without indicating a
schema) instead of specifying the fully qualified name if the object type name
belongs to the current schema. This also explains why you must quote the type
name if the type name has a dot in it.

For example, assume that user Scott creates a type called per son. addr ess
and then wants to use it in his session. Scott might want to skip the schema
name and pass in per son. addr ess to the JDBC driver. In this case, if

per son. addr ess is not quoted, then the dot will be detected, and the JDBC
driver will mistakenly interpret per son as the schema name and addr ess as
the type name.

= JDBC passes the object type name string to the database unchanged. That is, the
JDBC driver will not change the character case even if it is quoted.

For example, if ScQt T. Per sonType is passed to the JDBC driver as an object
type name, the JDBC driver will pass the string to the database unchanged. As

4-4 JDBC Developer’'s Guide and Reference



Introduction to Oracle Extensions

another example, if there is white space between characters in the type name
string, then the JDBC driver will not remove the white space.

The JDBC driver assumes that schema names do not contain dots (".").

The JDBC driver does not allow double quotes (") as part of the schema name or
the type name.

Oracle Extensions 4-5



Oracle JDBC Packages and Classes

Oracle JDBC Packages and Classes

This section discusses the Java packages that support the Oracle JDBC extensions
and the key classes that are included in these packages. This section has the
following subsections:

« Classes of the oracle.jdbc2 Package
« Classes of the oracle.sql Package
« Classes of the oracle.jdbc.driver Package

You can refer to the Javadoc for more information about all of the classes mentioned
in this section.

Classes of the oracle.jdbc2 Package

The or acl e. j dbc2 package contains the Oracle implementation of the standard
JDBC 2.0 interfaces. The JDBC 2.0 interfaces are part of the j ava. sql package
included in the JDK 1.2. However, since the drivers do not currently support JDK
1.2, these interfaces have been made available to the Oracle 1.0.2 and 1.1.x drivers as
the or acl e. j dbc2 package. This package contains the JDBC 2.0 features of the
JDK 1.2 j ava. sql package that the Oracle drivers support.

The following interfaces are implemented by or acl e. sql . * type classes for JDBC
2.0-compliant Oracle type extensions. These interfaces are equivalent to the
interfaces published by Sun Microsystems; the or acl e. j dbc2 versions add no
new features.

« oracle.jdbc2. Array isimplemented by or acl e. sgl . ARRAY

« oracle.jdbc2. Struct isimplemented by or acl e. sql . STRUCT
« oracle.jdbc2. Ref isimplemented by or acl e. sql . REF

« oracle.jdbc2. d obisimplemented by oracl e. sql . CLOB

« oracle.jdbc2. Bl obisimplemented by or acl e. sql . BLOB

In addition, Oracle includes the following standard JDBC 2.0 interfaces for users
employing the JDBC-standard SQLDat a interface to create Java classes that map to
Oracle objects:

« oracle.jdbc2. SQ.Dat a implemented by classes that map to Oracle objects;
users must provide this implementation

« oracle.jdbc2. SQLI nput implemented by classes that read object data;
Oracle provides a SQLI nput class that the JDBC drivers use

4-6 JDBC Developer’'s Guide and Reference



Oracle JDBC Packages and Classes

« oracle.jdbc2. SQLCut put implemented by classes that write object data;
Oracle provides a SQLQut put class that the JDBC drivers use

The SQLDat a interface is one of the two features you can use to support Oracle
objects in Java. The other feature is the Oracle Cust onDat uminterface, contained in
the or acl e. sql package. See "Understanding the SQLData Interface" on page 4-69
for more information about SQLDat a, SQLI nput , and SQLQut put .

Note: Oracle recommends using the Cust onDat uminterface
instead of the SQLDat a interface. Cust onDat umworks more easily
in conjunction with other features of the Oracle Java product
offerings, such as the JPublisher utility (which can automatically
generate Cust onDat umclasses corresponding to Oracle objects)
and SQLJ.

Classes of the oracle.sql Package

The or acl e. sql package supports direct access to data in SQL format and consists
primarily of classes that map to the Oracle SQL datatypes.

These classes provide Java mappings for the Oracle SQL types and are wrapper
classes for the raw SQL data. Because data in an or acl e. sql . * object remains in
SQL format, no information is lost. For SQL primitive types, these classes simply
wrap the SQL data. For SQL structured types (objects and arrays), they provide
additional information such as conversion methods and details of structure.

Each of the Oracle datatype classes extends or acl e. sql . Dat um a superclass that
encapsulates functionality common to all of the datatypes. Some of the classes are
for JDBC 2.0-compliant datatypes. These classes, as Table 4-1 indicates, implement
standard JDBC 2.0 interfaces in the or acl e. j dbc2 package, as well as extending
oracl e. sqgl . Dat um

Table 4-1 lists the or acl e. sql datatype classes and their corresponding Oracle
SQL types.

Table 4-1 Oracle Datatype Classes

Java Class Oracle SQL Type (and Description)
and Interface Implemented if for JDBC 2.0

oracl e. sqgl . STRUCT STRUCT (objects)
JDBC 2.0, implements or acl e. j dbc2. Struct

Oracle Extensions 4-7



Oracle JDBC Packages and Classes

Table 4-1 Oracle Datatype Classes (Cont.)

Java Class Oracle SQL Type (and Description)
and Interface Implemented if for JDBC 2.0

oracl e. sqgl . REF REF (object references)
JDBC 2.0, implements or acl e. j dbc2. Ref

oracl e. sgl . ARRAY  varr ay or nested table (collections)
JDBC 2.0, implements or acl e. j dbc2. Arr ay

oracl e.sqgl . BLOB BL OB (large binary objects)
JDBC 2.0, implements or acl e. j dbc?2. Bl ob

oracle.sqgl.CLOB CL OB (large character objects)
JDBC 2.0, implements or acl e. j dbc2. C ob

oracl e.sql . BFILE  BFI LE (external files)
oracl e. sqgl . CHAR CHAR, VARCHAR2
oracl e. sql . DATE DATE

oracl e. sql . NUMBER NUMBER

oracl e. sql . RAW RAW

oracle.sqgl. ROND  ROW D (row identifiers)

The following sections describe each class listed in Table 4-1. Additional details
about use of the Oracle extended types (STRUCT, REF, ARRAY, BLOB, CLOB, BFI LE,
and ROW D) are described in "Working with LOBs" on page 4-45, "Working with
Oracle Object References" on page 4-83, "Working with Arrays" on page 4-87, and
"Additional Type Extensions" on page 4-111.

4-8 JDBC Developer’'s Guide and Reference



Oracle JDBC Packages and Classes

Notes:

« Beware of possible confusion between the STRUCT class, used
for objects only, and the general term structured objects, which
often indicates either objects or collections. The ARRAY class
supports collections, which can be either var r ays or nested
tables.

« For information about retrieving data from a result set or
callable statement object into or acl e. sql . * types as opposed
to Java types, see "Data Access and Manipulation: Oracle Types
vs. Java Types" on page 4-32.

« The LONG LONGRAWor REF CURSCR SQL types have no
oracl e. sqgl . * classes. Use standard JDBC functionality for
these types. For example, retrieve LONG or LONG RAWdata as
input streams using the standard JDBC methods
get Asci Strean{),get Bi naryStrean(), and
get Uni codeSt rean() . Use get Cur sor () for REF CURSOR

types.

In addition to the datatype classes, the or acl e. sql package includes these
support classes and interfaces:

oracl e. sqgl . ArrayDescri pt or class: used in constructing
oracl e. sqgl . ARRAY objects; describes the SQL type of the array. See "Class
oracle.sql. ARRAY" on page 4-14 for more information.

oracl e. sqgl . Struct Descri pt or class: used in constructing

oracl e. sgl . STRUCT objects, which you can use as a default mapping to
Oracle objects in the database. See "Class oracle.sql.STRUCT" on page 4-10 for
more information.

oracl e. sqgl . Charact er Set and or acl e. sgl . Char act er Set Fact ory
classes: used in constructing character set objects, which in turn are used in
constructing or acl e. sql . CHAR objects. See "Class oracle.sql.CHAR" on
page 4-19 for more information.

oracl e. sqgl . Cust onmDat umand or acl e. sql . Cust onDat unfact ory
interfaces: used in Java classes implementing the Oracle Cust onDat umscenario
of Oracle object support. (The other possible scenario is the JDBC-standard
SQLDat a implementation. See "Understanding the CustomDatum Interface" on
page 4-75 for more information on Cust onDat um)

Oracle Extensions 4-9



Oracle JDBC Packages and Classes

Refer to the Javadoc for additional information about these classes. The rest of this
section further describes the or acl e. sql . * classes.

General oracle.sql Datatype Support
Each of the Oracle datatype classes provides, among other things, the following:

= 0ne or more constructors, typically with a constructor that uses raw bytes as
input and a constructor that takes a Java type as input

« data storage as Java byte arrays for SQL data
« agetBytes() method, which returns the SQL data as a byte array

« atoJdbc() method that converts the data into an object of a corresponding
Java class as defined in the JDBC specification

The JDBC driver does not convert Oracle-specific datatypes that are not part of
the JDBC specification, such as RON D; the driver returns the object in the
corresponding or acl e. sql . * format. For example, it returns an Oracle RON D
asanoracl e. sql . RON D.

« astringVal ue() orintVal ue() method, where appropriate, to convert the
SQL datatoa Stringoranint

« additional conversion, get , and set methods as appropriate for the
functionality of the datatype (such as methods in the LOB classes that get the
data as a stream, and methods in the REF class that get and set object data
through the object reference)

Refer to the Javadoc for additional information about these classes.

Class oracle.sql.STRUCT

For any given Oracle object type, if you do not specify a mapping to a Java class in
your connection’s type map, data from the object type will be materialized in Java
in an instance of the or acl e. sql . STRUCT class.

The STRUCT class implements the standard JDBC 2.0 or acl e. j dbc2. Struct
class and extends or acl e. sql . Dat um

In the database, Oracle stores the raw bytes of object data in a linearized form. A
STRUCT object is a wrapper for the raw bytes of an Oracle object and contains a
"values" array of or acl e. sql . Dat umobjects holding the attribute values in SQL
format. The STRUCT object also contains the SQL type name of the Oracle object.

In most cases you will probably want to create a custom Java type definition class to
map to your Oracle object, although using the STRUCT class may suffice in some

4-10 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

cases (see "Using STRUCT Objects" on page 4-63). The attributes of a STRUCT can be
materialized as j ava. | ang. Obj ect [] objects if you use the get Attri but es()
method, or as or acl e. sql . Dat un{] objects if you use the

get Oracl eAttri but es() method. The oracl e. sqgl . * format gives you the
same advantages as using or acl e. sql . * datatype classes in general:

The STRUCT class completely preserves data, because it maintains the data in
SQL format. This is useful if you want to manipulate data but not necessarily
display it.

It allows complete flexibility in how your Java application unpacks data.

Notes:

« Elements of the values array, although of the generic Dat um
type, would actually contain data associated with the relevant
oracl e. sqgl . * type appropriate for the given attribute, such
as or acl e. sql . CHAR in the case of CHAR data. You can cast
an element as the appropriate or acl e. sql . * type as desired.

« The JDBC driver materializes nested objects in the values array
of a STRUCT object as instances of STRUCT themselves.

« Refer to the Javadoc for more information about particular
features and methods of the or acl e. sql . STRUCT class.

In some cases you might want to manually create a STRUCT object to pass it to a
prepared statement or callable statement. To do this, you must also create a

Struct Descri pt or object. For more information on creating a STRUCT object, see
"Creating STRUCT Objects and Descriptors" on page 4-13.

The STRUCT class includes the following methods:

get Attri but es() : retrieves the values from the values array, using the type
map (if one has been defined) to determine which Java classes to use in
materializing the data. Conceptually, get At t ri but es() returns aJava array
containing the attribute values. The types of the attribute values are those that a
call to get Obj ect () on the same underlying types will return. That is, they are
the "default" JDBC types for the corresponding underlying types.

For example, assume that you have defined a SQL type PERSON with a name
attribute of type CHAR and an age attribute of type NUMBER. If you use

get Attri but es() to get the object attributes of PERSQON, then it will return
the name as a Java St r i ng type and the age as a Java Bi gDeci mal type.

Oracle Extensions 4-11



Oracle JDBC Packages and Classes

If you are calling get At tri but es() on a nested object, then you can
optionally specify a type map (j ava. uti | . Map object) if you do not want to
use your connection’s default type map.

« getOracl eAttri butes(): retrieves the values of the values array as
oracl e. sqgl . * objects

« get SQLTypeNane() : returns the fully qualified type name
(schema.sgl_type_name) of the Oracle object that this STRUCT represents

« getDescriptor():returnsthe Struct Descri pt or object for this STRUCT
object (see "Creating STRUCT Objects and Descriptors” on page 4-13 for
information about the St r uct Descri pt or class)

« get Connecti on() : returns the current connection

« getDescriptor():returnsthe Or acl eType that identifies the Oracle object
type
« get Map() : returns the current type map

« isConvertibl eTo(Cd ass) : determines if a datum object can be converted to
a particular class

« makeJdbcArray(int):returnsaJDBC array representation of the datum
« setDatumArray(Datuni]): setsthe Dat umarray.

« setDescriptor(StructDescriptor):setsthe descriptor

« stringVal ue():converts to a String representation of the datum object

« toBytes(): packs the bytes representing the attributes into the format that is
actually used in the database

« tod ass(d ass):applies the normal algorithms for converting a SQL
structured type to a specific Java class

« toJddbc(): consults the current map to determine what class to convert to, and
then usest oCl ass()

« toJddbc(Dictionary): consultsthe map to determine what class to convert
to, and then usest oCl ass()

« tOoSTRUCT(Obj ect, Oracl eConnecti on):returns the corresponding
STRUCT object from the input Java object

4-12 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

Creating STRUCT Objects and Descriptors To create an or acl e. sql . STRUCT object, a
STRUCT descriptor must first exist for the given Oracle object type. This descriptor is
an object of the or acl e. sql . Struct Descri pt or class.

A Struct Descri pt or describes a type of SQL structured object (Oracle object).
Only one Struct Descri pt or is necessary for each Oracle object type.

The driver caches STRUCT descriptor objects to avoid recreating them if the type has
already been encountered. The Oracle JDBC extensions provide a static

creat eDescri pt or () method that will either construct a new

Struct Descri pt or object or return an existing one.

To create a St ruct Descri pt or object, pass in a Java string parameter with the
SQL type name of the Oracle object type and a connection object to the
Struct Descriptor. createDescriptor() method:

SructDescriptor structdesc = StructDescriptor. createDescriptor(sql_type_nane,
connecti on);

where sql _t ype_nan® is a Java string containing the name of the Oracle object
type (such as EMPLOYEE) and connect i on is your connection object.

You can also call the St ruct Descri pt or object if you need to create a new
STRUCT object. To construct a new St r uct Descr i pt or object, pass in a Java string
parameter with the SQL type name of the Oracle object type and your connection
object:

SructDescriptor structdesc = new SructDescriptor(sql _type nane, connection);

To construct a STRUCT object, pass in the St r uct Descr i pt or, your connection
object, and an array of Java objects containing the attributes you want the STRUCT
to contain.

STRUCT struct = new STRUCT(struct desc, connection, attributes);

where st ruct desc isthe St ruct Descr i pt or created previously, connecti on
is your connection object, and at t ri but es is an array of type
java.lang. Qbject[].

Using StructDescriptor get Methods A STRUCT descriptor can be referred to as a "type
object." This means that it contains information about the type code and type name
of the object type and how to convert to and from the given type. Remember, there
should be only one St r uct Descri pt or object for any one Oracle object type. You
can then use that descriptor to create as many STRUCT objects as you need for that

type.

Oracle Extensions 4-13



Oracle JDBC Packages and Classes

The Struct Descri pt or class includes the get Name() method to return the fully
qualified SQL type name of the Oracle object (that is, in schema.sqgl_type_name
format. For example, CORPORATE. EMPLOYEE)

Embedded Objects The JDBC driver seamlessly handles embedded objects (STRUCT
objects that are attributes of STRUCT objects) in the same way that it normally
handles objects. When the JDBC driver retrieves an attribute that is an object, it
follows the same rules of conversion, using the type map if it is available, or else
using default mapping.

Class oracle.sql.REF

The or acl e. sql . REF class is the generic class that supports Oracle object
references. This class, as with all of the or acl e. sqgl . * datatype classes, is a
subclass of or acl e. sql . Dat um It implements the standard JDBC 2.0
oracl e. j dbc2. Ref interface.

Selecting a REF retrieves only a pointer to an object; it does not materialize the
object. However, there are methods to accomplish this.

The or acl e. sql . REF class includes the following methods:
« get Val ue() : retrieves object attributes (using your type map as necessary)
« set Val ue(): sets object attributes (using your type map as necessary)

« get BaseTypeNane() : retrieves the fully-qualified SQL structured type name
of the referenced item

The set REF() and set Ref () methods of the Or acl ePr epar edSt at ement and
O acl eCal | abl eSt at enrent classes support passing a REF object as an input
parameter to a prepared statement. Similarly, the get REF() and get Ref ()
methods of the Or acl eCal | abl eSt at ement and Or acl eResul t Set support
passing a REF object as an output parameter.

You cannot create REF objects using JDBC.

For more information on how to use REF objects, see "Working with Oracle Object
References" on page 4-83.

Class oracle.sql.ARRAY

The or acl e. sqgl . ARRAY class supports Oracle collections, either var r ays or
nested tables. If you select either a var r ay or nested table from the database, then
the JDBC driver materializes it as an object of the ARRAY class; the structure of the
data is equivalent in either case. The or acl e. sgl . ARRAY class extends

4-14 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

oracl e. sqgl . Dat um(as do all of the or acl e. sql . * classes) and implements
oracl e. jdbc2. Array, a standard JDBC 2.0 array interface.

You might want to manually create an ARRAY object to pass it to a prepared
statement or callable statement, perhaps to insert into the database. This involves
the use of ArrayDescr i pt or objects, which "Creating ARRAY Objects and
Descriptors" on page 4-15 describes.

The ARRAY class includes the following methods:

« get Array(): retrieves the contents of the array in "default” JDBC types. If it
retrieves an array of objects, then get Array() uses the type map to determine
the types

« getOracl eArray():identical to get Array(), but retrieves the elements in
oracl e. sqgl . * format

« getArrayDescriptor():returnsthe ArrayDescri pt or object that pertains
to this array (see "Creating ARRAY Objects and Descriptors" on page 4-15 for
information about the Ar r ayDescr i pt or class)

« getBaseType(): returns the SQL type code for the array elements (see "Class
oracle.jdbc.driver.OracleTypes" on page 4-28 for information about type codes)

« get SQLTypeNane() : returns the SQL type name of the array elements

« get BaseTypeNane() : for named types (such as Oracle objects), returns the
particular type name (for example, EMPLOYEE)

« get Resul t Set () : materializes an array as a result set

Creating ARRAY Objects and Descriptors The set ARRAY() method of the

O acl ePrepar edSt at enent or O acl eCal | abl eSt at enent class supports
passing an array as an input parameter to a prepared statement. You must first
construct an array descriptor, which is an or acl e. sql . ArrayDescri pt or object,
and then you must construct the or acl e. sql . ARRAY object for the array you want
to pass.

An ArrayDescri pt or object describes the SQL type of an array; however, you
need only one array descriptor for any one SQL type. You can reuse the same
descriptor object to create multiple instances of an or acl e. sql . Arr ay object for
the same array type.

Collections are strongly typed. Oracle supports only "named arrays", that is, an
array given a SQL type name. For example, when you create an array with the
CREATE TYPE statement:

Oracle Extensions 4-15



Oracle JDBC Packages and Classes

CREATE TYPE numvarray AS varray(22) GF NMBER(S, 2);

the SQL type name for the collection type is num varr ay.

Note: The name of the collection type has nothing to do with the
type name of the elements. For example:

CREATE TYPE person AS object (cl NUMBER(5), c2
VARCHAR2( 30) ) ;

CREATE TYPE array_of persons AS varray(10) OF
person;

in the preceding statements, the SQL type name of the collection
type is array_of _per sons. The SQL type name of the elements
of the collection is per son.

To construct an Ar rayDescr i pt or object, pass the SQL type name of the
collection type and your Connect i on object (which JDBC uses to go to the
database to gather meta data) to the constructor.

ArrayDescriptor arraydesc = ArrayDescri ptor. createDescriptor(sql _type_nane,
connection);

where sql _t ype_nan® is the type name of the array and connect i on is your
Connect i on object.

To construct an ARRAY object, pass in the array descriptor, your connection object,
and a Java object containing the individual elements you want the array to contain.

ARRAY array = new ARRAY(arraydesc, connection, elenents);

where ar r aydesc is the array descriptor created previously,connect i on is your
connection object, and el enent s is a Java array of objects. The two possibilities for
the contents of el enent s are:

= an array of Java primitives. For example,int[].

= an array of Java objects. (For example, xxx[ ] where xxx represents the name of
a Java object type.) For example, I nt eger[].

4-16 JDBC Developer’'s Guide and Reference



Oracle JDBC Packages and Classes

Notes:

« Theset ARRAY(),set Array(), and set Obj ect () methods
of the Or acl ePr epar edSt at enent class take an object of the
type or acl e. sgl . ARRAY as an argument, not an array of
objects.

= Refer to the Javadoc for more information about the features of
the ARRAY and ArrayDescri pt or classes.

Using ArrayDescriptor get Methods An array descriptor can be referred to as a type
object, meaning it has information about the array’s SQL type name, the type code of
the array’s elements and, if the array is a STRUCT, the type name of the elements.
The array descriptor also contains the information on how to convert to and from
the given type. You need only one array descriptor object for any one type, then you
can use that descriptor to create as many arrays of that type as you want.

The ArrayDescri pt or class has the following methods for retrieving an element’s
type code and type name:

« get BaseType() : returns the integer type code associated with this array
descriptor (according to integer constants defined in the Or acl eTypes class,
which "Classes of the oracle.jdbc.driver Package" on page 4-22 describes)

« get BaseNane() : returns a string with the type name associated with this
array element if it is a STRUCT, REF or collection

Note: The elements of an array cannot be of type ARRAY.
Collections cannot have elements of type col | ect i on. But Oracle
objects and STRUCTS can have attributes of Java type ARRAY (SQL
typecol | ection).

Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE

BLOBs, CLOBs, and BFI LEs, all referred to as LOBs, are for data items that are too
large to store directly in the database table. Instead, the database table stores a
locator that points to the location of the actual data.

The or acl e. sql package supports LOBs in several ways:

« BLOBs point to large unstructured binary data items and are supported by the
oracl e. sqgl . BLOB class.

Oracle Extensions 4-17



Oracle JDBC Packages and Classes

CLOBs point to large fixed-width character data items (that is, characters that
require a fixed number of bytes per character) and are supported by the
oracl e. sqgl . CLOB class.

BFI LEs point to the content of external files (operating system files) and are
supported by the or acl e. sql . BFI LE class.

You can select a BLOB, CLOB, or BFI LE locator from the database using a standard
SELECT statement, but bear in mind that you are receiving only the locator, not the
data itself. Additional steps are necessary to retrieve the data. This is described in
"Working with LOBs" on page 4-45.

Note: Theoracl e. sql . CLOB class supports all character sets
that the Oracle data server supports for CLOB types.

The or acl e. sql . BLOB class includes the following methods:

get Bi nar yQut put St r ean() : returns the BLOB data

get Bi nar ySt r eam() : returns the BLOB designated by this Bl ob instance as a
stream of bytes

get Byt es() : reads from the BLOB data, starting at a specified point, into a
supplied buffer

I engt h() : returns the length of the BLOB in bytes

posi ti on() : determines the byte position in the BLOB where a given pattern
begins

put Byt es() : writes BLOB data, starting at a specified point, from a supplied
buffer

The or acl e. sql . CLOB class includes the following methods:

get Asci i Qut put St r ean() : writes CLOB data from an ASCII stream

get Asci i Stream() : returns the CLOB value designated by the Cl ob object as
a stream of Ascii bytes

get Char act er Qut put St r eant ) : writes CLOB data from a Unicode stream

get Char act er St r ean() : returns the CLOB data as a stream of Unicode
characters

get Char s() : retrieves characters from a specified point in the CLOB data into a
character array

4-18 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

« | ength(): returns the length of the CLOB in characters

« position():determines the character position in the CLOB at which a given
substring begins

« put Char s() : writes characters from a character array to a specified point in
the CLOB data

« getSubString():retrieves a substring from a specified point in the CLOB data
« putString():writes astring to a specified point in the CLOB data

The or acl e. sql . BFI LE class includes the following methods:

« openFil e(): opens the external file

« closeFil e():closes the external file

« getBinaryStrean() : returns the contents of the external file as a stream of
bytes

« get Byt es():reads from the external file, starting at a specified point, into a
supplied buffer

« get Nane() : gets the name of the external file
« getDirAlias():getsthe directory alias of the external file
« | ength(): returns the length of the BFI LE in bytes

« position():determines the byte position at which the given byte pattern
begins

Note: You cannot write to a BFI LE; you can only read from it.

Class oracle.sql.CHAR

The CHAR class has special functionality for NLS conversion of character data. A key
attribute of the CHAR class, and a parameter always passed in when a CHAR object is
constructed, is the NLS character set used in presenting the character data. Without
the character set being known, the bytes of data in the CHAR object are meaningless.

CHAR objects that the driver constructs and returns can be in the database character
set, UTF- 8, or ISO-Latin-1 (WE8I SOB8859P1). CHAR objects which are Oracle8
objects, are returned in the database character set.

Oracle Extensions 4-19



Oracle JDBC Packages and Classes

JDBC constructs and populates CHAR objects once character data has been read from
the database. Additionally, you might want to construct a CHAR object yourself (to
pass in to a prepared statement, for example).

When you construct a CHAR object, you must provide character set information to
the CHAR object by way of an instance of the or acl e. sql . Char act er Set class.
Each instance of the Char act er Set class represents one of the NLS character sets
that Oracle supports. A Char act er Set instance encapsulates methods and
attributes of the character set, mainly involving functionality to convert to or from
other character sets. You can find a complete list of the character sets that Oracle
supports in the Oracle8i National Language Support Guide.

If you use a CHAR object based on a character set that Oracle does not support, then
the JDBC driver will not be able to perform character set conversions with it. For
example, you will not be able to use the CHAR object in an

O acl ePreparedSt at enent . set Oracl eQbj ect () call.

Follow these general steps to construct a CHAR object:

1. Create a Char act er Set instance by calling the static Char act er Set . nake()
method. This method is a factory for the character set class. It takes as input an
integer Or acl el d, which corresponds to a character set that Oracle supports.
For example:

int oracleld = CharacterSet. JAL6SII S CHARSET; // this is character set 832
Character Set nycharset = Charact er Set. nake(Q acl el d) ;

Each character set that Oracle supports has a unique predefined Or acl el d. If
you enter an invalid Or acl el d, an exception will not be thrown. Instead, when
you try to use the character set, you will receive unpredictable results. For more
information on character sets and character set IDs, see the Oracle8i National
Language Support Guide.

2. Construct a CHAR object. Pass to the constructor a string (or the bytes that
represent the string) and the Char act er Set object that indicates how to
interpret the bytes based on the character set. For example:

Sring nystring = "teststring";
HAR nychar = new CHAR(teststring, nycharset);

The CHAR class has multiple constructors: they can take a string, a byte array, or
an object as input along with the Char act er Set object. In the case of a string,

4-20 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

the string is converted to the character set indicated by the Char act er Set
object before being placed into the CHAR object.

Refer to the CHAR class Javadoc for more information.

Notes:
« The Char act er Set object cannot be null.

« The Char act er Set class is an abstract class, therefore it has
no constructor. The only way to create instances is through use
of the make() method.

= The server recognizes the special value
Char act er Set . DEFAULT _CHARSET as the database character
set. For the client, this value is not meaningful.

= Oracle does not intend or recommend that users extend the
Char act er Set class.

The CHAR class provides these methods for translating character data to strings:

get St ri ng() : converts the sequence of characters represented by the CHAR
object to a string, returning a Java St r i ng object. If the character set is not
recognized (that is, if you entered an invalid Or acl el D), then get St ri ng()
throws a SQLExcepti on.

toString():identical toget Stri ng(), butif the character set is not
recognized (that is, if you entered an invalid Or acl el D), thent oSt ri ng()
returns a hexadecimal representation of the CHAR data and does not throw a
SQLExcepti on.

get Stri ngW t hRepl acenent () : identical to get St ri ng() , except a default
replacement character replaces characters that have no Unicode representation
in the character set of this CHAR object. This default character varies from
character set to character set, but is often a question mark.

The server (database) and the client (or application running on the client) can use
different character sets. When you use the methods of this class to transfer data
between the server and the client, the JDBC drivers must convert the data from the
server character set to the client character set (or vice versa). To convert the data, the
drivers use Oracle’s National Language Support (NLS). For more information on
how the JDBC drivers convert between character sets, see "Using NLS" on page 5-2.
For more information on NLS, see the Oracle8i National Language Support Guide.

Oracle Extensions 4-21



Oracle JDBC Packages and Classes

Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW

These classes map to primitive SQL datatypes, which are a part of standard JDBC.
These classes provide conversions to and from their corresponding JDBC Java
types. For more information, see the Javadoc.

Class oracle.sql.ROWID

This class supports Oracle ROW Ds, which are unique identifiers for rows in
database tables. You can select a RON D as you would select any column of data
from the table. Note, however, that you cannot manually update RO Ds; the Oracle
database updates them automatically as appropriate.

The or acl e. sql . ROW Dclass does not implement any noteworthy functionality
beyond what is in the or acl e. sql . Dat umsuperclass. However, RON D does
provide a st ri ngVal ue() method that overrides the st ri ngVal ue() method in
the or acl e. sql . Dat umclass and returns the hexadecimal representation of the
ROW D bytes.

For information about accessing RON D data, see "Additional Oracle Extensions" on
page 4-97.

Classes of the oracle.jdbc.driver Package

Theoracl e. j dbc. dri ver package includes classes that add extended features to
enable data access in or acl e. sql format. In addition, these classes provide
Oracle-specific extensions to allow access to raw SQL format data by using

oracl e. sqgl . * objects.

Table 4-2 lists key classes for connections, statements, and result sets in this
package.

Table 4-2 Connection, Statement, and Result Set Classes

Class Key Functionality
Oracl eDri ver implements j ava. sql . Dri ver
Or acl eConnecti on methods to return Oracle statement objects; methods

to set Oracle performance extensions for any
statement executed in the current connection
(implements j ava. sql . Connecti on)

4-22 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

Table 4-2 Connection, Statement, and Result Set Classes (Cont.)

Class Key Functionality

Or acl eSt at enent methods to set Oracle performance extensions for
individual statement; superclass of
O acl ePr epar edSt at enrent and
Oracl eCal | abl eSt at enent (implements
j ava. sql . St at enent)

O acl ePreparedSt at enent set methods to bind or acl e. sql . * typesintoa
prepared statement (implements
j ava. sql . Prepar edSt at enmrent ; extends
Oracl eSt at enent)

O acl eCal | abl eSt at ement  get methods to retrieve data in or acl e. sql
format; set methods to bind or acl e. sql . * types
into a callable statement (inherited from
O acl ePr epar edSt at enent ) (implements
j ava. sql . Cal | abl eSt at errent ; extends
Pr epar edSt at enent)

O acl eResul t Set get methods to retrieve datain or acl e. sql
format (implements j ava. sql . Resul t Set)

O acl eResul t Set Met aDat a  methods to get information about Oracle result sets
(implementsj ava. sql . Resul t Set Met aDat a)

Theoracl e. jdbc. dri ver package additionally includes:
« stream classes
« the Oracl eTypes class

The stream classes extend standard Java stream classes and read and write Oracle
LOB, LONG and LONG RAWdata.

O acl eTypes defines integer constants, which identify SQL types. For standard
types, it uses the same values as the standard j ava. sql . Types. In addition, it
adds constants for Oracle extended types.

The remainder of this section describes the classes of the or acl e. j dbc. dri ver
package. For more information about using these classes to access Oracle type
extensions, see "Data Access and Manipulation: Oracle Types vs. Java Types" on
page 4-32.

Oracle Extensions 4-23



Oracle JDBC Packages and Classes

Class oracle.jdbc.driver.OracleDriver

Use this class to register the Oracle JDBC drivers for use by your application. You
can input a new instance of this class to the staticr egi st er Dri ver () method of
thej ava. sql . Dri ver Manager class so that your application can access and use
the Oracle drivers. Ther egi st er Dri ver () method takes as input a "driver" class;
that is, a class that implements the j ava. sql . Dri ver interface, as is the case with
O acl eDri ver.

Once you register the Oracle JDBC drivers, you can create your connection using
the Dri ver Manager class. For more information on registering drivers and writing
a connection string, see "First Steps in JDBC" on page 3-2.

Class oracle.jdbc.driver.OracleConnection

This class extends standard JDBC connection functionality to create and return
Oracle statement objects, set flags and options for Oracle performance extensions,
and support type maps for Oracle objects.

"Performance Extensions" on page 4-97 describes the performance extensions,
including row prefetching, update batching, and metadata TABLE REMARKS
reporting.

Key methods include;

« CreateStatenent():allocates a new Or acl eSt at enent object

« prepareStatenent():allocates a new Or acl ePr epar edSt at enent object
« prepareCall ():allocates a new Or acl eCal | abl eSt at enent object

« getTransactionl sol ati on(): gets this connection’s current isolation mode

« setTransactionl sol ati on() : changes the transaction isolation level using
one of the TRANSACTI ON_* values

These or acl e. j dbc. dri ver. Oracl eConnecti on methods are Oracle-defined
extensions:

« get Def aul t Execut eBat ch() : retrieves the default update-batching value
for this connection

« set Def aul t Execut eBat ch() : sets the default update-batching value for this
connection

« get Def aul t RowPr ef et ch() : retrieves the default row-prefetch value for this
connection

4-24 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

« set Def aul t RowPr ef et ch() : sets the default row-prefetch value for this
connection

« get Remar ksReporting(): returns true if TABLE REMARKS reporting is
enabled

« set Rermar ksReporting():enables or disables TABLE REMARKS reporting

« get TypeMap() : retrieves the type map for this connection (for use in mapping
Oracle object types to Java classes)

« set TypeMap() : initializes or updates the type map for this connection (for use
in mapping Oracle object types to Java classes)

Class oracle.jdbc.driver.OracleStatement

This class extends standard JDBC statement functionality and is the superclass of
the Or acl ePrepar edSt at ement and Or acl eCal | abl eSt at ement classes.
Extended functionality includes support for setting flags and options for Oracle
performance extensions on a statement-by-statement basis, as opposed to the

O acl eConnect i on class that sets these on a connection-wide basis.

"Performance Extensions" on page 4-97 describes the performance extensions,
including row prefetching and column type definitions.

Key methods include:

« executeQuery():executes a database query and returns an
O acl eResul t Set object

« getResultSet():retrievesan Or acl eResul t Set object
« close():closes the current statement

These oracl e. j dbc. dri ver. Oracl eSt at enent methods are Oracle-defined
extensions:

« defineCol umType() : defines the type you will use to retrieve data from a
particular database table column

« get RowPr ef et ch() : retrieves the row-prefetch value for this statement

« set RowPr ef et ch() : sets the row-prefetch value for this statement

Class oracle.jdbc.driver.OraclePreparedStatement

This class extends standard JDBC prepared statement functionality, is a subclass of
the Or acl eSt at enment class, and is the superclass of the

Oracle Extensions 4-25



Oracle JDBC Packages and Classes

O acl eCal | abl eSt at enrent class. Extended functionality consists of set
methods for binding or acl e. sql . * types and objects into prepared statements,
and methods to support Oracle performance extensions on a
statement-by-statement basis.

"Performance Extensions" on page 4-97 describes the performance extensions,
including database update batching.

Key methods include:
« get Execut eBat ch() : retrieves the update-batching value for this statement
« Set Execut eBat ch() : sets the update-batching value for this statement

« setOracl eObj ect () :ageneric set method for binding or acl e. sql . * data
into a prepared statement as an or acl e. sql . Dat umobject

«  set XXX():set methods, such set BLOB( ), for binding specific
oracl e. sqgl . * types into prepared statements. For more information on all of
the set XXX() methods available for or acl e. sql . * types, see the Javadoc.

« set CustonmDat um() : binds a Cust orDat umobject (for use in mapping Oracle
object types to Java) into a prepared statement

« set Null (): sets the value of the object specified by its SQL type name to
NULL. For set Nul | (param_i ndex, type_code, sql _type_nane),if
t ype_code is REF, ARRAY, or STRUCT, then sql _t ype_nane is the fully
qualified name (schema.sgl_type_name) of the SQL type.

« close():closes the current statement

Class oracle.jdbc.driver.OracleCallableStatement

This class extends standard JDBC callable statement functionality and is a subclass
of the Or acl eSt at enent and Or acl ePr epar edSt at enent classes. Extended
functionality includes set methods for binding structured objects and

or acl e. sqgl .* objects into prepared statements, and get methods for retrieving
data into or acl e. sql . * objects.

Key methods include:

« getOracl eObj ect () :ageneric get method for retrieving data into an
or acl e. sqgl . Dat umobiject. It can be cast to the specific or acl e. sql . * type
as necessary.

« get XXX():get methods, such as get CLOB( ), for retrieving data into specific
oracl e. sqgl . * objects. For more information on all of the get XXX() methods
available for or acl e. sql . * types, see the Javadoc.

4-26 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

set Oracl eObj ect () : ageneric set method for binding or acl e. sql . * data
into a callable statement as an or acl e. sql . Dat umobject

set XXX() : set methods inherited from Or acl ePr epar edSt at enent , such
as set BLOB( ), for binding specific or acl e. sqgl . * objects into callable
statements. For more information on all of the set XXX() methods available for
oracl e. sql . * types, see the Javadoc.

set Nul | () : sets the value of the object specified by its SQL type name to
NULL. For set Nul | (param_ i ndex, type_code, sql _type_nane),if
t ype_code is REF, ARRAY, or STRUCT, then sql _t ype_nane is the fully
qualified (schema.type) name of the SQL type.

regi st er Qut Par anet er () : registers the SQL type code of the statement’s
output parameter. JDBC requires this for any callable statement with an QUT
parameter. It takes an integer parameter index (the position of the output
variable in the statement, relative to the other parameters) and an integer SQL
type (the type constant defined in or acl e. j dbc. dri ver. Oracl eTypes).

This is an overloaded method. There is a version of this method that you use for
named types only; that is, when the SQL type code is Or acl eTypes. REF,
STRUCT, or ARRAY. In this case, in addition to a parameter index and SQL type,
the method also takes a St r i ng SQL type name (the name of the Oracle object
type in the database, such as EMPLOYEE).

cl ose() : closes the current result set, if any, and the current statement

Class oracle.jdbc.driver.OracleResultSet

This class extends standard JDBC result set functionality, implementing get
methods for retrieving data into or acl e. sqgl . * objects.

Key methods include:

get Oracl e(bj ect () : ageneric get method for retrieving data into an
or acl e. sqgl . Dat umobiject. It can be cast to the specific or acl e. sql . * type
as necessary.

get XXX() : get methods, such as get CLOB( ), for retrieving data into
oracl e. sqgl . * objects

next () : advances to the next row of the result set

Oracle Extensions 4-27



Oracle JDBC Packages and Classes

Class oracle.jdbc.driver.OracleResultSetMetaData

This class extends standard JDBC result set metadata functionality to retrieve
information about Oracle result set objects.

Key methods include the following:

« get Col umCount () : returns the number of columns in an Oracle result set

« get Col umNane() : returns the name of a specified column in an Oracle result
set

« get Col umType() : returns the SQL type of a specified column in an Oracle
result set. If the column stores an Oracle object or collection, then this method
returns Or acl eTypes. STRUCT or Or acl eTypes. ARRAY respectively.

« get Col umTypeNane() : returns the SQL type name of the data stored in the
column. If the column stores an array or collection, then this method returns its
SQL type name. If the column stores REF data, then this method returns the
SQL type name of the objects to which the REF points.

« get Tabl eNane() : returns the name of the table from which an Oracle result
set column was selected

Oracle Stream Classes

Oracle uses many stream classes that extend standard Java stream classes to provide
special functionality, such as writing directly to an Oracle database. The JDBC
drivers use these classes which are in the or acl e. j dbc. dri ver package but does
not intend them for use by Java applications programmers. For more information
on Java streams, see "Using Java Streams in JDBC" on page 3-14.

Class oracle.jdbc.driver.OracleTypes

The Or acl eTypes class defines constants that JDBC uses to identify SQL types.
Each variable in this class has a constant integer value. The

oracl e.jdbc.driver. O acl eTypes class contains a copy of the standard Java
j ava. sql . Types class and contains these additional Oracle type extensions:

« Oracl eTypes. STRUCT
« Oracl eTypes. REF

« Oracl eTypes. ARRAY
« Oracl eTypes. BLOB

« OacleTypes. CLOB

4-28 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

« Oracl eTypes. BFI LE
« Oracl eTypes. RON D
Asinj ava. sql . Types, all of the variable names are in all-caps.

JDBC uses the SQL types identified by the elements of the Or acl eTypes class in
two main areas: registering output parameters and in the set Nul | () method of
the Pr epar edSt at enent class.

OracleTypes and Registering Output Parameters The SQL types in the Or acl eTypes
class identify the SQL type of the output parameters in the

regi st er Qut Par anet er () method of the j ava. sql . Cal | abl eSt at enent
and oracl e.jdbc. driver. O acl eCal | abl eSt at enent classes.

These are the forms that r egi st er Qut put Par anet er () can take for
Cal | abl eSt at ement and Or acl eCal | abl eSt at enent :

Cal | abl et at enent . regi st er Qut Paranet er (i nt i ndex, int sqgl Type)
Cal | abl e atenent . regi sterQut Paraneter (int i ndex, int sql Type, int scale)

Qacl eCal | abl et at enent . regi st er Qut Paraneter (i nt index, int sql Type, Sring
sgl _nane)

In these prototypes, i ndex represents the parameter index, sgl Type represents the
SQL datatype (one of the Or acl eTypes, in this case), sql _nane represents the
name given to the datatype (that is, the "named type"), and scal e represents the
number of digits to the right of the decimal point when sql Type is a NUMERI Cor
DECI MAL datatype.

Any output parameter datatype except STRUCT, ARRAY, or REF can use the two
forms of Cal | abl eSt at emrent . regi st er Qut Paraneter ().

The Or acl eCal | abl eSt at enent form of r egi st er Qut Par anet er () can be
used only when the output parameter is of type STRUCT, ARRAY, or REF and
requires you to provide the name of the named type.

The following example uses a Cal | abl eSt at enent to call a procedure named
pr ocout , which returns a CHAR datatype. Note the use of the Or acl eTypes. CHAR
SQL name in the r egi st er Qut Par anet er () method.

Cal | abl et at enent procout = conn. prepareCall ("BEAN procout (?); BEND");
procout . regi sterQut Paraneter (1, O acl eTypes. CHAR ;
procout . execute ();
Systemout.printin ("Qut argunent is: " + procout.getString (1));

Oracle Extensions 4-29



Oracle JDBC Packages and Classes

The next example uses a Cal | abl eSt at enent to call pr ocout , which returns a
STRUCT datatype. The form of r egi st er Qut Par anet er () requires you to specify
the name of the SQL type, Or acl eTypes. STRUCT, as well as the SQL type name
(that is, the name of the named type) EMPLOYEE.

The example assumes that no type mapping has been declared for the EMPLOYEE
type, so it is retrieved into a STRUCT datatype. To retrieve the value of EMPLOYEE
into the default STRUCT datatype, the statement object pr ocout is cast to an

O acl eCal | abl eSt at erent and the get STRUCT() is applied.

Cal | abl et at enent procout = conn. prepareCall ("BEAN procout (?); BEND");
procout . regi sterQut Paraneter (1, O acl eTypes. STRICT, "BEWLOYEE');
procout . execute ();

/1 get the value into a STRUCT because it
/] is assumed that no type map has been defi ned
STRUCT enp = ((QO acl eCal | abl et at enent ) procout ) . get STRUICT (1) ;

OracleTypes and the setNull() Method The SQL types in the Or acl eTypes class
identify the object, which the set Nul | () method sets to NULL. The set Nul | ()
method can be found in the j ava. sqgl . Prepar edSt at enent and

oracl e.jdbc.driver. O acl ePreparedSt at enent classes.

These are the forms that set Nul | () can take for Pr epar edSt at enent and
O acl ePrepar edSt at enent classes:

PreparedStatenent. set Nul | (i nt index, int sql Type)
Q acl ePreparedSatenent. setNul | (i nt index, int sqgl Type, Sring sqgl _nane)

In these prototypes, i ndex represents the parameter index, sgl Type represents the
SQL datatype (one of the Or acl eTypes, in this case), and sgl _narme represents
the name given to the datatype (that is, the name of the "named type"). If you enter
aninvalid sql Type,a" Parameter Type Conflict" erroristhrown.

You can use the Pr epar edSt at enent form of set Nul | () to set to NULL the
value of an object of any datatype, except STRUCT, ARRAY, or REF.

You can use the Or acl ePr epar edSt at ement form of set Nul | () only when you
set to NULL the value of an object of datatype STRUCT, ARRAY, or REF.

The following example uses a Pr epar edSt at enent to insert a NULL numeric
value into the database. Note the use of Or acl eTypes. NUMERI Cto identify the
numeric object that is set to NULL.

PreparedStatenent pstm =

4-30 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

conn. prepareStatenent ("I NSERT | NTO numtabl e VALLES (?)");

pstnt.setNull (1, OacleTypes. NMER O;
pstnt. execute ();

In this example, the prepared statement inserts a NULL STRUCT object of type
EMPLOYEE into the database. Note that an Or acl ePr epar edSt at enent is
required to set a STRUCT object to NULL. Thus, the prepared statement pst nt must
be cast to Or acl ePr epar edSt at enent .

PreparedStatenent pstm =
conn. prepareSt at enent ("1 NSERT | NTO enpl oyee_t abl e VALUES (?)");

((Cacl ePreparedStatenent)pstnt). set Nul | (1, O acl eTypes. STRCT, "BEWLOYEE');
pstnt. execute ();

Oracle Extensions 4-31



Data Access and Manipulation: Oracle Types vs. Java Types

Data Access and Manipulation: Oracle Types vs. Java Types
This section contains the following subsections:
« Data Conversion Considerations
« Using Result Set and Statement Extensions
« Comparing get and set Methods for oracle.sgl.* Format with Java Format
« Using Result Set Meta Data Extensions

This section describes data access in or acl e. sql . * formats as opposed to Java
formats. As discussed in the introduction to this chapter, the or acl e. sql . *
formats are a key factor of the Oracle JDBC extensions, offering significant
advantages in efficiency and precision in manipulating SQL data.

Using or acl e. sql . * formats involves casting your result sets and statements to
O acl eResul t Set, Oracl eSt at enent , Or acl ePr epar edSt at enent , and

O acl eCal | abl eSt at enent objects as appropriate, and using the

get Oracl eObj ect (),set Oacl eCbj ect (), get XXX(), and set XXX() (where
XXX corresponds to the types in the or acl e. sgl package) methods of these
classes. Refer to the Javadoc for additional information about these classes and
methods.

Data Conversion Considerations

When JDBC programs retrieve SQL data into Java variables, the SQL data is
converted to the Java datatypes of those variables. The Java datatypes can be
represented as members of the or acl e. sql package instead of as members of the
java.l angorj ava. sql . Types packages. In processing speed and effort, the
oracl e. sql . * classes provide the most efficient way of representing SQL data.
These classes store the usual representations of SQL data as byte arrays. They do
not reformat the data or perform any character-set conversions (aside from the
usual network conversions) on it. The data remains in SQL format; therefore, no
information is lost. For SQL primitive types (such as NUMBER, and CHAR), the
oracl e. sqgl . * classes simply wrap the SQL data. For SQL structured types (such
as objects and arrays), the classes provide additional information such as
conversion methods and structure details.

If you are moving data within the database, then you will probably want to keep
your data in or acl e. sql . * format. If you are displaying the data, or performing
calculations on it in a Java application running outside of the database, then you
will probably want to represent the data as a member of j ava. sql . Types. * or

j ava. |l ang. *. Similarly, if you are using a parser that expects the data to be in Java

4-32 JDBC Developer’s Guide and Reference



Data Access and Manipulation: Oracle Types vs. Java Types

format, you must represent the data in one of the Java formats instead of as an
oracle.sql.*.

Converting SQL NULL Data

Java represents a SQL NULL datum by the Java value nul | . Java datatypes fall into
two categories: the fixed set of scalar types (such as byt e, i nt, f | oat ) and object
types (such as objects and arrays). The Java scalar types cannot represent nul | .
Instead, they store the null as the value zero (as defined by the JDBC specification).
This can lead to ambiguity when you try to interpret your results.

In contrast, Java object types can represent nul | . The Java language defines an
object wrapper type corresponding to every scalar type (for example, | nt eger for
i nt, Fl oat for fl oat) that can represent nul | . The object wrapper types must be
used as the targets for SQL data to detect SQL NULL without ambiguity.

Using Result Set and Statement Extensions

The JDBC St at erent object returns an Or acl eResul t Set object, typed as a

j ava. sql . Resul t Set . If you want to apply only standard JDBC methods to the
object, keep it as a Resul t Set type. However, if you want to use the Oracle
extensions on the object, you must cast it to an Or acl eResul t Set type. The object
is unchanged. The type by which the Java compiler will identify the object is
changed.

When you execute a SELECT statement in a Java application using a standard JDBC
St at enent object, Oracle’s JDBC drivers returnaj ava. sql . Resul t Set object.
You can use this standard Resul t Set object if all you need are standard JDBC
Resul t Set methods, but to use Oracle extensions you must cast the result set to an
O acl eResul t Set object.

For example, assuming you have a standard St at enent object st nt , do the
following if you want to use only standard JDBC Resul t Set methods:

Result Set rs = stnt. execut eQiery(" SELECT * FROMenp");

If you need the extended functionality provided by the Oracle extensions to JDBC,
you can select the results into a standard Resul t Set object, as above, and then cast
that object into an Or acl eResul t Set object later.

Similarly, when you want to execute a stored procedure using a callable statement,
the JDBC drivers will return an Or acl eCal | abl eSt at enent object typed as a

j ava. sql . Cal | abl eSt at enent . If you want to apply only standard JDBC
methods to the object, then keep itas a Cal | abl eSt at enent type. However, if

Oracle Extensions 4-33



Data Access and Manipulation: Oracle Types vs. Java Types

you want to use the Oracle extensions on the object, you must cast it to an
O acl eCal | abl eSt at enent type. The object is unchanged. The type by which
the Java compiler identifies the object is changed.

You use the standard JDBC j ava. sql . Connect i on. pr epar eSt at enent ()
method to create a Pr epar edSt at ement object. If you want to apply only
standard JDBC methods to the object, keep it as a Pr epar edSt at enent type.
However, if you want to use the Oracle extensions on the object, you must cast it to
an Or acl ePr epar edSt at ement type. The object is unchanged. The type by
which the Java compiler identifies the object is changed.

Key extensions to the result set and statement classes include

get Oracl e(bj ect () and set Or acl eCbj ect () methods that you can use to
access and manipulate data in or acl e. sqgl . * formats instead of standard Java
formats. For more information see the next section: "Comparing get and set
Methods for oracle.sql.* Format with Java Format".

Comparing get and set Methods for oracle.sql.* Format with Java Format

This section describes get and set methods, particularly the JDBC standard
get Obj ect () and set Obj ect () methods and the Oracle-specific

get Oracl eObj ect () and set Or acl eCbj ect () methods, and how to access
datain or acl e. sql . * format compared with Java format.

Although there are specific get XXX() methods for all of the Oracle SQL types (as
described in "Other getXXX() Methods" on page 4-37), you can use the general get
methods for convenience or simplicity, or if you are not certain in advance what
type of data you will receive.

Standard getObject() Method

The standard JDBC get Obj ect () method of a result set or callable statement
returns data into aj ava. | ang. Qbj ect object. The format of the data returned is
based on its original type, as follows:

« For SQL datatypes that are not Oracle-specific, get Obj ect () returns the
default Java type corresponding to the column’s SQL type, following the
mapping specified in the JDBC specification.

« For Oracle-specific datatypes (such as RON D, discussed in "Additional Type
Extensions" on page 4-111), get Obj ect () returns an object of the appropriate
oracl e. sql . * class (such asor acl e. sql . ROW D).

« For Oracle objects, get Obj ect () returns an object of the Java class specified in
your type map. (Type maps specify the correlation between Java classes and

4-34 JDBC Developer’s Guide and Reference



Data Access and Manipulation: Oracle Types vs. Java Types

database SQL types and are discussed in "Understanding Type Maps" on

page 4-66.) The get Obj ect ( par anet er _i ndex) method uses the
connection’s default type map. The get Qhj ect ( par anet er _i ndex, nap)
enables you to pass in a type map. If the type map does not provide a mapping
for a particular Oracle object, then get Obj ect () returns an

oracl e. sqgl . STRUCT object.

For more information on get Qbj ect () return types, see Table 4-3, "Summary of
getObject() and getOracleObject() Return Types" on page 4-36.

Oracle getOracleObject() Method

If you want to retrieve data from a result set or callable statement into an

oracl e. sqgl . * object, then cast your result set to an Or acl eResul t Set type or
your callable statement to an Or acl eCal | abl eSt at enent type and use the
get Or acl e(bj ect () method.

When you use get Or acl ebj ect (), the data will be of the appropriate
oracl e. sqgl . * type and is returned into an Dat umobject. The prototype for the
method is:

public oracle.sql . Dat umget O acl eChj ect (i nt paranet er_i ndex)

When you have retrieved data into a Dat umobiject, you can use the standard Java
i nstanceO () operator to determine which or acl e. sql . * type it really is.

For more information on get Or acl eCbj ect () return types, see Table 4-3,
"Summary of getObject() and getOracleObject() Return Types" on page 4-36.

Example: Using getOracleObject() with a ResultSet The following example creates a table
that contains a column of character data (in this case, a row number) and a column
containing a BFI LE locator. A SELECT statement gets the contents of the table into a
result set. The get Or acl ehj ect () then retrieves the CHAR data into the

char _dat umvariable and the BFI LE locator into the bf i | e_dat umvariable. Note
that because get Or acl eObj ect () returns a Dat umobject, the results must be cast
to CHAR and BFI LE respectively.

stnt. execute ("CREATE TABLE bfile_table (x varchar2 (30), b bfile)");
stmtexecute ('INSERT INTO bfile_table VALUES ('one’, bflename (TEST_DIR,
file1))’;

ResultSet rset = stmt.executeQuery (‘'SELECT * FROM string_table");
while (rsetnext ())

{
CHAR char_datum = (CHAR) ((OracleResultSet)rset).getOracleObject (1);

Oracle Extensions 4-35



Data Access and Manipulation: Oracle Types vs. Java Types

BFILE bfil e datum= (BFILE) ((Qacl eResul tSet)rset). get O acl eChject (2);

}...

Example: Using getOracleObject() in a Callable Statement The following example prepares
a call to the procedure myGet Dat e( ) , which associates a character string (in this
case a hame) with a date. The program passes the string SCOTT to the prepared call,
and registers the DATE type as an output parameter. After the call is executed,

get Oracl eObj ect () retrieves the date associated with the name SCOTT. Note
that since get Or acl eQhj ect () returns a Dat umobiject, the results are cast to a
DATE object.

QacleCl | abl e atenent cstm =
(Qacl eCal | abl eSt at enent ) conn. prepareCal | ("begin nyGetDate (?, ?); end;");

cstm.setSring (1, "SQOIT');
cstm.registerQut Paraneter (2, Types. DATE);
cstm. execute ();

DATE date = (DATE) ((QacleCall abl eStatenent)cstnt). get Oacl ethject (2);

Summary of getObject() and getOracleObject() Return Types

Table 4-3 summarizes the information in the preceding sections, "Standard
getObject() Method" on page 4-34 and "Oracle getOracleObject() Method" on
page 4-35.

This table lists the underlying return types for each method for each Oracle SQL
type, but keep in mind the signatures of the methods when you write your code:

« get Obj ect () always returns data into aj ava. | ang. (bj ect
« getOracl eObj ect () always returns data into an or acl e. sql . Dat um
You must cast the returned object to use any special functionality (see "Casting Your

get Method Return Values" on page 4-39).

Table 4-3 Summary of getObject() and getOracleObject() Return Types

getObject() getOracleObject()
Oracle SQL Type Underlying Return Type Underlying Return Type
CHAR String oracle.sql. CHAR
VARCHAR2 String oracle.sql. CHAR

4-36 JDBC Developer’'s Guide and Reference



Data Access and Manipulation: Oracle Types vs. Java Types

Table 4-3 Summary of getObject() and getOracleObject() Return Types (Cont.)

Oracle SQL Type

getObject()
Underlying Return Type

getOracleObject()
Underlying Return Type

LONG
NUMBER
RAW
LONGRAW
DATE
ROWID

REF CURSOR
BLOB

CLOB

BFILE

Oracle object

Oracle object reference

collection (varray or
nested table)

String
java.math.BigDecimal
byte[]

byte[]
java.sgl.Timestamp
oracle.sql.ROWID
java.sql.ResultSet
oracle.sql.BLOB
oracle.sql.CLOB
oracle.sql.BFILE

class specified in type map
OR

oracle.sql.STRUCT
(if no type map entry)

oracle.sql.REF
oracle.sql. ARRAY

oracle.sql.CHAR
oracle.sql. NUMBER
oracle.sql.RAW
oracle.sql.RAW
oracle.sql.DATE
oracle.sql.ROWID
(not supported)
oracle.sql.BLOB
oracle.sql.CLOB
oracle.sql.BFILE
oracle.sql.STRUCT

oracle.sql.REF
oracle.sql. ARRAY

For information on type compatibility between all SQL and Java types, see
Table 8-1, "Valid SQL Datatype-Java Class Mappings" on page 8-2.

Other getXXX() Methods

Standard JDBC provides a get XXX() for each standard Java type, such as
getByte(),getlnt(),getFl oat (), and soon. Each of these returns exactly
what the method name implies (a byt e, ani nt,af | oat, and so on).

In addition, the Or acl eResul t Set and Or acl eCal | abl eSt at enent classes
provide a full complement of get XXX() methods corresponding to all of the
oracl e. sqgl . * types. Each get XXX() method returns an or acl e. sql . XXX. For
example, get RON D() returns an or acl e. sql . RON D.

Oracle Extensions 4-37



Data Access and Manipulation: Oracle Types vs. Java Types

Some of these extensions are taken from the JDBC 2.0 specification. They return
objects of type or acl e. j dbc2. * instead of or acl e. sql . *. For example,
compare the prototypes:

oracl e. jdbc2. Bl ob get Bl ob(i nt paraneter_i ndex)

which returns an or acl e. j dbc2 type for BLOBs, in contrast to:

oracl e.sqgl . BLOB get BLOB(i nt paraneter_i ndex)

which returns an or acl e. sqgl type for BLOBs.

Although there is no particular performance advantage in using the specific
get XXX() methods, they can save you the trouble of casting because they return
specific object types.

Table 4-4 summarizes the underlying return types and the signature types for each
get XXX() method. You must cast to an Or acl eResul t Set or
O acl eCal | abl eSt at enrent to use methods that are Oracle-specific.

Table 4-4 Summary of getXXX() Return Types

Oracle
Method Underlying Return Type  Signature Type Specific?
getArray() oracle.sql. ARRAY oracle.jdbc2.Array Yes
getARRAY() oracle.sql. ARRAY oracle.sql. ARRAY Yes
getBfile() oracle.sql.BFILE oracle.sql.BFILE Yes
getBFILE() oracle.sql.BFILE oracle.sql.BFILE Yes
getBigDecimal() BigDecimal BigDecimal No
getBlob() oracle.sql.BLOB oracle.jdbc2.Blob Yes
getBLOB oracle.sql.BLOB oracle.sql.BLOB Yes
getBoolean() boolean boolean No
getByte() byte byte No
getBytes() byte[] byte[] No
getCHAR() oracle.sql.CHAR oracle.sql.CHAR Yes
getClob() oracle.sql.CLOB oracle.jdbc2.Clob Yes
getCLOB() oracle.sql.CLOB oracle.sql.CLOB Yes
getDate() java.sql.Date java.sql.Date No

4-38 JDBC Developer’'s Guide and Reference



Data Access and Manipulation: Oracle Types vs. Java Types

Table 4-4 Summary of getXXX() Return Types (Cont.)

Oracle
Method Underlying Return Type Signature Type Specific?
getDATE() oracle.sql.DATE oracle.sql.DATE Yes
getDouble() double double No
getFloat() float float No
getint() int int No
getLong() long long No
getNUMBER() oracle.sql. NUMBER oracle.sq. NUMBER Yes
getRAW() oracle.sql.RAW oracle.sql.RAW Yes
getRef() oracle.sql.REF oracle.jdbc2.Ref Yes
getREF() oracle.sql.REF oracle.sql.REF Yes
getROWID() oracle.sql.ROWID oracle.sql.ROWID Yes
getShort() short short No
getString() String String No
getSTRUCT() oracle.sql.STRUCT. oracle.sql.STRUCT Yes
getTime() java.sql.Time java.sql.Time No
getTimestamp java.sql.Timestamp java.sgl.Timestamp No

Casting Your get Method Return Values
As described in "Standard getObject() Method" on page 4-34, Oracle’s

implementation of get Obj ect () always returnsaj ava. | ang. Obj ect and
get Oracl eObj ect () always returns an or acl e. sql . Dat um Usually, you
would cast the returned object to the appropriate class so that you could use

particular methods and functionality of that class.

In addition, you have the option of using a specific get XXX() method instead of
the generic get Qbj ect () or get Oracl eObj ect () methods. The get XXX()
methods enable you to avoid casting because the return type of get XXX()
corresponds to the type of object returned. For example, get CLOB() returns an
oracl e. sqgl . CLOBasopposedtoaj ava. | ang. Obj ect .

Example: Casting Return Values This example assumes that you have fetched data of
type CHAR into a result set (where it is in column 1). Because you want to

Oracle Extensions 4-39



Data Access and Manipulation: Oracle Types vs. Java Types

manipulate the CHAR data without losing precision, cast your result set to an

O acl eResul t Set or s and use get Or acl e(oj ect () to return the CHAR data.
(If you do not cast your result set, you have to use get Qbj ect (), which returns
your character data into a Java St ri ng and loses some of the precision of your SQL
data.) By casting the result set, you can use get Or acl eCbj ect () and return data
inoracl e. sql . * format.

The get Or acl ebj ect () method returns an or acl e. sql . CHAR object into an
oracl e. sqgl . Dat umreturn variable unless you cast the output. Cast the

get Oracl eObj ect () outputtooracl e. sql . CHARif you want to use a CHAR
return variable and later use any special functionality of that class (such as the
get Char act er Set () method that returns the character set used to represent the
characters).

(HAR char = (GHAR) or s. get O acl e(hj ect (1);
CharacterSet cs = char. get Character Set ();

Alternatively, return into a generic or acl e. sql . Dat umreturn variable and cast
this object later whenever you must use the CHAR get Char act er Set () method.

Dat um rawdat um = ors. get O acl e(hj ect (1) ;
CharacterSet cs = ((CHAR rawdat un) . get Char act er Set () ;

This uses the get Char act er Set () method of or acl e. sqgl . CHAR The
get Char act er Set () method is not defined on or acl e. sql . Dat umand would
not be reachable without the cast.

Standard setObject() and Oracle setOracleObject() Methods

Just as there is a standard get Obj ect () and Oracle-specific

get Oracl eObj ect () inresult sets and callable statements for retrieving data,
there is also a standard set Qbj ect () and an Oracle-specific

set Oracl eObj ect () in Oracle prepared statements and callable statements for
updating data. The set Or acl eObj ect () methods take or acl e. sql . * input
parameters.

You can use the set Obj ect () method to bind standard Java types to a prepared
statement or callable statement; it takes aj ava. | ang. Qbj ect as input. You can
use the set Or acl eObj ect () method to bind or acl e. sql . * types; it takes an
oracl e. sqgl . Dat um(or any subclass) as input. The set Cbj ect () method
supports some or acl e. sql . * types—see note below. For other or acl e. sql . *
types, you must use set Or acl eCbj ect ().

4-40 JDBC Developer’s Guide and Reference



Data Access and Manipulation: Oracle Types vs. Java Types

To use set Or acl e(hj ect (), you must cast your prepared statement or callable
statement to an Or acl ePr epar edSt at ement or Or acl eCal | abl eSt at enent
object.

Note: The set bj ect () method has been implemented so that
you can also input instances of the or acl e. sqgl . * classes that
correspond to JDBC 2.0-compliant Oracle extensions: BLOB, CLOB,
BFI LE, STRUCT, REF, and ARRAY.

Example: Using setObject() and setOracleObject() in a Prepared Statement This example
assumes that you have fetched character data into a standard result set (where it is
in column 1), and you want to cast the results to an Or acl eResul t Set so that you
can use Oracle-specific formats and methods. Since you want to use the data as
oracl e. sgl . CHAR format, cast the results of the get Or acl eCbj ect () (which
returns type or acl e. sql . Dat um to CHAR. Similarly, since you want to
manipulate the data in column 2 as strings, cast the data to aJava St ri ng type
(since get Obj ect () returns data of type Obj ect ). In this example, r s represents
the result set, char Val represents the data from column 1 in or acl e. sql . CHAR
format, and st r Val represents the data from column 2 in Java St ri ng format.

CHAR char Val =(CHAR ((Oracl eResul t Set ) rs) . get O acl e(hj ect (1) ;
Sring strval =(String)rs. get ject(2);

For some prepared statement ps, the set Or acl eQbj ect () method binds the
oracl e. sql . CHAR data represented by the char Val variable to the prepared
statement. To bind the or acl e. sql . * data, the prepared statement must be cast to
an Or acl ePr epar edSt at enent . Similarly, the set Obj ect () method binds the
Java St r i ng data represented by the variable st r Val .

Prepar edSt at enent ps= conn. prepar e at enent (" t ext_of _prepared_st at enent") ;
((CO acl ePrepar edSt at enent ) ps) . set O acl e(hj ect (1, charVal ) ;
ps. set bj ect (2, strval);

Other setXXX() Methods

As with get XXX() methods, there are several specific set XXX() methods.
Standard set XXX() methods are provided for binding standard Java types, and
Oracle-specific set XXX() methods are provided for binding Oracle-specific types.

In addition, for compatibility with the JDBC 2.0 standard,
O acl ePreparedSt at enent and Or acl eCal | abl eSt at erent classes provide
set XXX() methods that take or acl e. j dbc?2 input parameters for BLOBs, CLOBs,

Oracle Extensions 4-41



Data Access and Manipulation: Oracle Types vs. Java Types

object references, and arrays. For example, there is a set Bl ob() method that takes
anoracl e. jdbc2. Bl ob input parameter, and a set BLOB() method that takes an
oracl e. sqgl . BLOB input parameter.

Similarly, there are two forms of the set Nul | () method:
« Vvoid setNull (int paraneterindex, i nt sql Type)

behaves in a similar way to the standard Java

j ava. sql . Prepar edSt at enent . set Nul | () . This method takes a
parameter index and a SQL type code defined by j ava. sql . Types. You use
this method to set an object (except for REFs, ARRAYS, or STRUCTS) to NULL.

« void setNull (int paraneterindex, i nt sql Type, String sqgl_type nane)

takes a SQL type name in addition to a parameter index and a SQL type code.
You use this method only when the SQL type code is REF, ARRAY, or STRUCT.

Similarly, the Or acl eCal | abl eSt at enent .r egi st er Qut Par anet er () method
also has an overloaded method that you use when working with REFs, ARRAYs, or
STRUCTS.

voi d regi sterQut Paraneter (int paraneterindex, int sql Type, Sring
sql _type_nane)

There is no particular performance advantage in using the specific set XXX()
methods for binding Oracle-specific types over the methods for binding standard
Java types.

Table 4-5 summarizes the input types for all of the set XXX() methods. To use
methods that are Oracle-specific, you must cast your statement to an
O acl ePreparedSt at emrent or Or acl eCal | abl eSt at enent .

Table 4-5 Summary of setXXX() Input Parameter Types

Method Input Parameter Type Oracle Specific?
setArray() oracle.jdbc2.Array Yes
setARRAY() oracle.sql. ARRAY Yes
setBfile() oracle.sgl.BFILE Yes
setBFILE() oracle.sql.BFILE Yes
setBigDecimal() BigDecimal No
setBlob() oracle.jdbc2.Blob Yes
setBLOB() oracle.sql.BLOB Yes

4-42 JDBC Developer’s Guide and Reference



Data Access and Manipulation: Oracle Types vs. Java Types

Table 4-5 Summary of setXXX() Input Parameter Types (Cont.)

Method

Input Parameter Type

Oracle Specific?

setBoolean()
setByte()
setBytes()
setCHAR()
setClob()
setCLOB()
setDate()
setDATE()
setDouble()
setFloat()
setint()
setLong()
setNUMBER()
setRAW()
setRef()
setREF()
setROWID()
setShort()
setString()
setSTRUCT()
setTime()

setTimestamp()

boolean

byte

byte[]
oracle.sql.CHAR
oracle.jdbc2.Clob
oracle.sql.CLOB
java.sql.Date
oracle.sql.DATE
double

float

int

long

oracle.sq. NUMBER
oracle.sql.RAW
oracle.jdbc2.Ref
oracle.sql.REF
oracle.sql.ROWID
short

String
oracle.sql.STRUCT
java.sql.Time

java.sgl.Timestamp

No
No
No
Yes
Yes
Yes
No
Yes
No
No
No

Yes
Yes
Yes
Yes
Yes
No
No
Yes
No
No

For information on type compatibility between all SQL and Java types, see
Table 8-1, "Valid SQL Datatype-Java Class Mappings" on page 8-2.

Oracle Extensions 4-43



Data Access and Manipulation: Oracle Types vs. Java Types

Using Result Set Meta Data Extensions

Although the or acl e. j dbc. dri ver. Oracl eResul t Set Met aDat a class does
not implement the full JDBC 2.0 API for retrieving result set meta data, it does
provide many methods to retrieve information about an Oracle result set.

The get Col umTypeNane() method takes a column number and returns the SQL
type name for columns of type REF, STRUCT, or ARRAY. In contrast, the

get Col umType() method takes a column number and returns the SQL type. If
the column stores an Oracle object or collection, then it returns an

O acl eTypes. STRUCT or an Or acl eTypes. ARRAY. For a list of the key methods
provided by Or acl eResul t Set Met adat a, see "Class
oracle.jdbc.driver.OracleResultSetMetaData" on page 4-28.

The following example uses several of the methods in the
O acl eResul t Set Met adat a class to retrieve the number of columns from the
EMP table, and each column’s numerical type and SQL type name.

Dat abaseMet aDat a dbrmd = conn. get Met abDat a() ;
Resul t Set rset = dbmd. get Tabl es("", "SCOIT", "BW', null);

while (rset.next())

{
Q acl eResul t Set Met aDat a orsnd = ((O acl eResul t Set)rset) . get Met aDat a() ;
i nt nun@ol utms = or snd. get Gol unmGount () ;
Systemout . println("Numof colums =" + nunGol ums);

for (int i=0; i<nunolums; i++)
{
Systemout. print ("Col uim Nane=" + orsnd. get Col umNane (i +1));
Systemout. print (" Type=" + orsnd. get Gl umType (i + 1) );
Systemout. println (" Type Nane=" + orsnd. get Gl umTypeNane (i + 1));
}
}

The program returns the following output:

Numof columims = 5

Gol umn Nane=TABLE_CAT Type=12 Type Nane=VARCHAR?

Gol umn Nane=TABLE_SCHEM Type=12 Type Nane=VARCHAR2
Gol unn Nane=TABLE_NAME Type=12 Type Name=VARCHAR2
Gl unn Nane=TABLE_TYPE Type=12 Type Nane=VARCHAR2
Gl unn Nane=TABLE_REMARKS Type=12 Type Nane=VARCHAR2

4-44 JDBC Developer’'s Guide and Reference



Working with LOBs

Working with LOBs
This section has these subsections:
« Getting BLOB and CLOB Locators
« Passing BLOB and CLOB Locators
« Reading and Writing BLOB and CLOB Data
« Creating and Populating a BLOB or CLOB Column
« Accessing and Manipulating BLOB and CLOB Data
« Getting BFILE Locators
« Passing BFILE Locators
« Reading BFILE Data
« Creating and Populating a BFILE Column
« Accessing and Manipulating BFILE Data

LOBs can be either internal or external. Internal LOBs, as their name suggests, are
stored inside database tablespaces in a way that optimizes space and provides
efficient access. The JDBC drivers provide support for two types of internal LOBs:
BLOBs (unstructured binary data) and CLOBs (single-byte character data). BLOB and
CLOB data is accessed and referenced by using a locator which is stored in the
database table and points to the BLOB or CLOB data.

External LOBs (BFI LES) are large binary data objects stored in operating system
files outside of database tablespaces. These files use reference semantics. They may
also be located on tertiary storage devices such as hard disks, CD-ROMs, PhotoCDs
and DVDs. Like BLOBs and CLOBs, a BFI LE is accessed and referenced by a locator
which is stored in the database table and points to the BFI LE data.

This section describes how you use JDBC and the or acl e. sql . * classes to work
with LOBs. To work with LOB data, you must first obtain its locator from the table.
Then, you can read data from or write data to the LOB and perform various types of
data manipulation. This section also describes how to create and populate a LOB
column in a table.

The JDBC drivers support these or acl e. sql . * classes for BLOBs, CLOBs, and
BFI LEs:

« oracle.sql.BLOB
« oracle.sql.CLOB

Oracle Extensions 4-45



Working with LOBs

« oracle.sql.BFILE

The or acl e. sql . BLOB and CLOB classes implement the or acl e. j dbc2. Bl ob
and Cl ob interfaces, respectively. In contrast, BFlI LEs have no or acl e. j dbc2
interface.

Instances of these classes contain only the locators for these datatypes, not the data.
After accessing the locators, you must perform some additional steps to access the
data. These steps are described in "Reading and Writing BLOB and CLOB Data" on
page 4-48 and "Reading BFILE Data" on page 4-57.

Getting BLOB and CLOB Locators

Given a standard JDBC result set or callable statement object that includes BLOB or
CLOB locators, you can access the locators by using the standard

Resul t Set .get Obj ect () method. This method returns an or acl e. sql . BLOB
object or or acl e. sql . CLOB object, as applicable (but note that it returns the BLOB
or CLOB into a variable of type or acl e. j dbc2. Bl ob or or acl e. j dbc2. C ob).

You can also access the locators by casting your result set to Or acl eResul t Set or
your callable statement to Or acl eCal | abl eSt at enent and using the
get Oracl eObj ect (),get BLOB(), or get CLOB() method, as appropriate.

Inthe Or acl eResul t Set and Or acl eCal | abl eSt at enent classes, get Bl ob()
returns or acl e. j dbc2. Bl ob, and get BLOB() returns or acl e. sqgl . BLOB.
Similarly, get CLOB() returnsor acl e. j dbc2. CLOBand get C ob() returns
oracl e. sqgl . d ob.

Notes:

« Ifusingget Obj ect () orget Oracl eObj ect (), then
remember to cast the output as necessary. For more
information, see "Casting Your get Method Return Values" on
page 4-39.

« Refer the Javadoc for more information about specific features
of the or acl e. sql . BLOBand or acl e. sql . CLOB classes.

Example: Getting BLOB and CLOB Locators from a Result Set Assume the database has a
table called | ob_t abl e with a column for a BLOB locator, bl ob_col ,and a
column for a CLOB locator, cl ob_col . This example assumes that you have already
created the St at ement object, st nt .

4-46 JDBC Developer’'s Guide and Reference



Working with LOBs

First, select the LOB locators into a standard result set, then get the LOB data into
appropriate Java classes:

/l Select LGB locator into standard result set.
ResultSet rs =

stnt. execut eQuery ("SELECT bl ob_col, clob col FROMIob table");
vhile (rs.next())

{

/] Gt LAB locators into Java w apper classes.

oracl e.jdbc2. B ob bl ob = (oracl e.jdbc2. B ob)rs. get (j ect (1);
oracle.jdbc2.dob clob = (oracl e.jdbc2. d ob)rs. get (oj ect (2);
[...process...]

}

The output is cast to or acl e. j dbc2. Bl ob and Cl ob. As an alternative, you can
cast the output to or acl e. sql . BLOB and CLOB to take advantage of extended
functionality offered by the or acl e. sql . * classes. For example, you can rewrite
the above code to get the LOB locators as:

/] Gt LAB locators into Java w apper classes.
oracle.sqgl . BLCB blob = (BLAB)rs. get (hj ect (1);
oracle.sgl.A.B clob = (A.MB)rs. get (hj ect (2);
[...process...]

Example: Getting a CLOB Locator from a Callable Statement The callable statement
methods for retrieving LOBs are identical to the result set methods. In the case of a
callable statement, register the output parameter as Or acl eTypes. BLOBor

O acl eTypes. CLOB.

For example, if you have an Or acl eCal | abl eSt at erent ocs that calls a
function f unc that has a CLOB output parameter, then set up the callable statement
as follows:

G acl eCal | abl et atenent ocs =
(Qacl eCal | abl et at enent ) conn. prepareCal | ("{? = call func()}")
ocs. regi sterQut Paraneter (1, Q acl eTypes. A.CB);
ocs. execut eQuery()
oracle.sqgl.A.B clob = ocs. get ACB(1);

Passing BLOB and CLOB Locators

To pass a LOB locator to a prepared statement or callable statement (to update a
LOB locator in the database, for example), you can use the generic set Obj ect ()
method, or you can cast the statement to Or acl ePr epar edSt at enent or

O acl eCal | abl eSt at enent and use the set Or acl eObj ect (), set BLOB(), or

Oracle Extensions 4-47



Working with LOBs

set CLOB() method, as appropriate. These methods take the parameter index and a
BL OB object or CLOB object as input.

Example: Passing a BLOB Locator to a Prepared Statement If you have an
O acl ePr epar edSt at enent ops where its first parameter is a BLOB named
my_bl ob, then input the BLOB to the prepared statement as follows:

Q acl ePreparedS at enent ops = (O acl ePr epar edS at enent ) conn. pr epar e at enent
("1 NSERT I NTO bl ob_tabl e VALUES(?)");

ops. set BLAB(1, ny_bl ob);

ops. execute() ;

Example: Passing a CLOB Locator to a Callable Statement If you have an
O acl eCal | abl eSt at emrent ocs where its first parameter is a CLOB, then input
the CLOB to the callable statement as follows:

G acl eCal | abl et atenent ocs =

(O acl eCl | abl et at enent ) conn. prepareCal | ("{? := call func()}")
ocs.setd ob(1, ny_cl ob)
ocs. execute() ;

Reading and Writing BLOB and CLOB Data

The SQL SELECT statement queries for LOB locators. Once you have the locator,
you can read and write the LOB data from JDBC. LOB data is materialized as a Java
stream. However, unlike most Java streams, a locator representing the LOB data is
stored in the table. Thus, you can access the LOB data at any time during the life of
the connection.

To read and write the LOB data, use the methods in the or acl e. sql . BLOB or
oracl e. sqgl . CLOB class, as appropriate. These classes provide functionality such
as reading from the LOB into an input stream, writing from an output stream into a
LOB, determining the length of a LOB, and closing a LOB.

4-48 JDBC Developer’'s Guide and Reference



Working with LOBs

Notes:

« The implementation of the data access API uses direct native
calls in the JDBC OCI and Server drivers, thereby providing
better performance. You can use the same API on the LOB
classes in all Oracle 8.1.5 JDBC drivers.

= Inthe case of the JDBC Thin driver only, the implementation of
the data access API uses the DBMS_L OB package internally. You
never have to use DBVS_LOB directly. This is in contrast to the
8.0.x drivers. For more information on the DBMS_L OB package,
see the Oracle8i Application Developer’s Guide - Large Objects
(LOBs) and the Oracle8i Application Developer’s Reference -
Packages.

To read and write LOB data, you can use these methods:

To read from a BLOB, use the get Bi nar ySt r eam() method of an
oracl e. sqgl . BLOB object to retrieve the entire BLOB as an input stream. This
returnsaj ava. i o. | nput St r eamobject.

As with any | nput St r eamobject, use one of the overloaded r ead() methods
to read the LOB data and use the cl ose() method when you finish.

To write to a BLOB, use the get Bi nar yQut put St r eam() method of an
oracl e. sqgl . BLOB object to retrieve the BLOB as an output stream. This
returnsaj ava. i 0. Qut put St r eamobject to be written back to the BLOB.

As with any Qut put St r eamobject, use one of the overloaded wri t e()
methods to update the LOB data and use the cl ose() method when you finish.

To read from a CLOB, use the get Asci i Streamn() or

get Char act er St rean() method of an or acl e. sql . CLOB object to retrieve
the entire CLOB as an input stream. The get Asci i St ream() method returns
an ASClIl input stream inaj ava. i 0. | nput St r eamobject; the

get Char act er St r ean() method returns a Unicode input stream in a

j ava. i 0. Reader object.

As with any | nput St r eamor Reader object, use one of the overloaded
r ead() methods to read the LOB data and use the cl ose() method when you
finish.

Oracle Extensions 4-49



Working with LOBs

You can also use the get SubSt ri ng() method of or acl e. sql . CLOB object
to retrieve a subset of the CLOB as a character string of type
java.l ang. Stri ng.

« Towrite to a CLOB, use the get Asci i Qut put Strean{) or
get Char act er Qut put St rean{) method of an or acl e. sql . CLOB object to
retrieve the CLOB as an output stream to be written back to the CLOB. The
get Asci i Qut put St rean() method returns an ASCII output stream in a
j ava. i o. Qut put St r eamobject; the get Char act er Qut put St r ean()
method returns a Unicode output stream inaj ava. i 0. Wi t er object.

As with any Qut put St r eamor Wi t er object, use one of the overloaded
writ e() methods to update the LOB data and use the cl ose() method when
you finish.

Notes:

= The stream "write" methods described in this section write
directly to the database when you write to the output stream.
You do not need to execute an UPDATE/COMM T to write the
data.

= When writing to or reading from a CLOB, the JDBC drivers
handle all character set conversions for you.

Example: Reading BLOB Data Use the get Bi nar ySt r eam() method of the
oracl e. sqgl . BLOB class to read BLOB data. The get Bi nar ySt r ean{) method
reads the BLOB data into a binary stream.

The following example uses the get Bi nar ySt r ean() method to read BLOB data
into a byte stream and then reads the byte stream into a byte array (returning the
number of bytes read as well).

/] Read BL(B data fromBLOB | ocat or.

I nput St ream byt e_stream = ny_bl ob. get B naryStreang) ;
byte [] byte_array = new byte [10];

int bytes read = byte _streamread(byte_array);

Example: Reading CLOB Data The following example uses the

get Char act er St r ean{) method to read CLOB data into a Unicode character
stream. It then reads the character stream into a character array (returning the
number of characters read as well).

4-50 JDBC Developer’s Guide and Reference



Working with LOBs

/!l Read OB data fromCL(B | ocator into Reader char stream
Reader char_stream = ny_cl ob. get Char act er S reant) ;

char [] char_array = new char [10];

int chars_read = char_streamread (char_array, 0, 10);

The next example uses the get Asci i Strean() method of the or acl e. sql . CLOB
class to read CLOB data into an ASCII character stream. It then reads the ASCII
stream into a byte array (returning the number of bytes read as well).

/]l Read LB data fromQ.B locator into Input ASA| character stream
I nput stream asci i Char_stream = ny_cl ob. get Ascii Sreant);

byte[] asciiChar_array = new byte[ 10];

int asciiChar_read = ascii Char_streamread(ascii Char_array, 0, 10) ;

Example: Writing BLOB Data Use the get Bi nar yQut put St r ean() method of an
oracl e. sqgl . BLOB object to write BLOB data.

The following example reads a vector of data into a byte array, then uses the
get Bi nar yQut put St r ean() method to write an array of character data to a
BLOB.

java.io. Qut put S ream out stream

/] read data into a byte array
byte[] data = {0, 1, 2, 3, 4, 5 6, 7, 8, 9};

/!l wite the array of binary data to a BL(B
out st ream = ((BLCB) ny_bl ob) . get B nar yQut put Streant) ;
outstreamw ite(data);

Example: Writing CLOB Data Use the get Char act er Qut put St r ean() method or
the get Asci i Qut put St r eam() method to write data to a CLOB. The
get Char act er Qut put St r ean() method returns a Unicode output stream; the
get Asci i Qut put St rean() method returns an ASCII output stream.

The following example reads a vector of data into a character array, then uses the
get Char act er Qut put St r ean{) method to write the array of character data to a
CLOB. The get Char act er Qut put St ream() method returnsaj ava.io. Witer
objectinan oracl e. sql . CLOB, notan or acl e. j dbc2. C ob.

java.io.Witer witer

/! read data into a character array

Oracle Extensions 4-51



Working with LOBs

Chal’[] data:{’07,’1‘,’2,,‘3,,,4‘,,5‘,‘6,,‘7‘,’8‘,'9'};

/Il wite the array of character data to a O.CB
witer = ((QLCB) ny_cl ob). get Charact er Qut put S rean() ;
witer.wite(data);

witer.flush();

witer.close();

The next example reads a vector of data into a byte array, then uses the

get Asci i Qut put St rean() method to write the array of ASCII data to a CLOB.
Because get Asci i Qut put St rean{() returns an ASCII output stream, you must
cast the output to a or acl e. sql . CLOB datatype.

java.io. Qut put S ream out

/] read data into a byte array
byte[] data:{707’111’121’131’141’151’161’171’181’797};

I/l wite the array of ascii data to a A.CB
out = ((QLCB)clob). get Ascii Qut put SXrean);
out.wite(data);

out. flush();

out. cl ose();

Creating and Populating a BLOB or CLOB Column

You create and populate a BLOB or CLOB column in a table by using SQL
statements.

Note: To create a BLOB or CLOB column in a table, you must use
SQL statements. Using the Java new such as "new BLOB" or "new
CLOB" will not work.

You create a BLOB or CLOB column in a table with the SQL CREATE TABLE
statement. Then, you populate the LOB. This includes creating the LOB entry in the
table, obtaining the LOB locator, creating a file handler for the data (if you are
reading the data from a file), and then copying the data into the LOB.

Creating a BLOB or CLOB Column in a New Table

To create a BLOB or CLOB column in a new table, execute the SQL CREATE TABLE
statement. The following example code creates a BLOB column in a new table. This

4-52 JDBC Developer’s Guide and Reference



Working with LOBs

example assumes that you have already created your Connect i on object conn and
St at enent object st nt :

Sring cmd = "CREATE TABLE ny_bl ob_tabl e (x varchar2 (30), c blob)";
stnt. execute (cnd);

In this example, the VARCHAR2 column designates a row number, such as one or
t wo, and the bl ob column stores the locator of the BLOB data.

Populating a BLOB or CLOB Column in a New Table

This example demonstrates how to populate a BLOB or CLOB column by reading
data from a stream. These steps assume that you have already created your
Connect i on object conn and St at enent object st nt . The table ny_bl ob_t abl e
is the table that was created in the previous section.

The following example writes the G F file j ohn. gi f to a BLOB.

1. Begin by using SQL statements to create the BLOB entry in the table. Use the
enpt y_bl ob syntax to create the BLOB locator.

stmt.execute (insertinto my_blob_table values (rowl’, empty _blob()");

2. Get the BLOB locator from the table.

BLOB blob;

cmd ="SELECT * FROM my_blob_table WHERE X=row1";
ResultSet rest = stmt.executeQuery(cmd);

BLOB blob = ((OracleResultSet)rset).getBLOB(2);

3. Declare a file handler for the j ohn. gi f file, then print the length of the file.
This value will be used later to ensure that the entire file is read into the BLOB.
Next, create a Fi | el nput St r eamobiject to read the contents of the G F file,
and an Qut put St r eamobject to retrieve the BLOB as a stream.

File binaryFile = new File(john.gif’);

System.out printin(‘john.gif length =" + binaryFile length());
FilelnputStream instream = new FilelnputStream(binaryFie);
OutputStream outstream = blob.getBinaryOutputStream();

4. Call get ChunkSi ze() to determine the ideal chunk size to write to the BLOB,
then create the buf f er byte array.

int chunk = blob.getChunkSize();
byte[] buffer = new byte[chunk];
intlength =-1;

Oracle Extensions 4-53



Working with LOBs

5. Usetheread() method to read the G F file to the byte array buf f er, then use
thewri t e() method to write it to the BLOB. When you finish, close the input
and output streams.

vwhile ((length = instreamread(buffer)) !=-1)
outstreamwite(buffer, 0, length);
i nstreamcl ose();
out streamcl ose();

Once your data is in the BLOB or CLOB, you can manipulate the data. This is
described in the following section, "Accessing and Manipulating BLOB and CLOB
Data".

Accessing and Manipulating BLOB and CLOB Data

Once you have your BLOB or CLOB locator in a table, you can access and
manipulate the data to which it points. To access and manipulate the data, you first
must select their locators from a result set or from a callable statement. "Getting
BLOB and CLOB Locators" on page 4-46 describes these techniques in detail.

After you select the locators, you can get the BLOB or CLOB data. You will usually
want to cast the result set to the Or acl eResul t Set datatype so that you can
retrieve the data in or acl e. sql . * format. After getting the BLOB or CLOB data,
you can manipulate it however you want.

This example is a continuation of the example in the previous section. It uses the
SQL SELECT statement to select the BLOB locator from the table my_bl ob_t abl e
into a result set. The result of the data manipulation is to print the length of the
BLOB in bytes.

/] Select the blob - what we are really doing here
/] is getting the blob locator into a result set
BLCB bl ob;

cnd = "SELECT * FROMny_bl ob_tabl e";

Resul t Set rset = stm. executeQuery (cnd)

/]l Get the blob data - cast to GacleResult set to
/] retrieve the data in oracle.sql format

Sring index = ((Qacl eResul t Set)rset).getSring(l);
blob = ((Oacl eResul t Set) rset) . get BLAB(2) ;

/1 get the length of the blob
int length = bl ob. getlength();

[l print the length of the bl ob

4-54 JDBC Developer’s Guide and Reference



Working with LOBs

Systemout. println("blob | ength" + | ength);

/] read the blob into a byte array

[l then print the blob fromthe array
byte bytes[] = bl ob. getBytes(0, |ength);
printBytes(bytes, |ength);

Getting BFILE Locators

Given a standard JDBC result set or callable statement object that includes BFI LE
locators, you can access the locators by using the standard

Resul t Set . get Obj ect () method. This method returns an or acl e. sql . BFI LE
object.

You can also access the locators by casting your result set to Or acl eResul t Set or
your callable statement to Or acl eCal | abl eSt at enent and using the
get Oracl eObj ect () orget BFI LE() method.

Notes:

« Inthe O acl eResul t Set and Or acl eCal | abl eSt at enent
classes, get BFI LE() and get Bf i | e() both return
oracl e. sqgl . BFI LE. There isno or acl e. j dbc2 class for
BFI LE.

« Ifusing get Obj ect () orget Or acl eCbj ect (), remember to
cast the output, as necessary. For more information, see
"Casting Your get Method Return Values" on page 4-39.

Example: Getting a BFILE locator from a Result Set Assume that the database has a table
called bf i | e_t abl e with a single column for the BFI LE locator bf i | e_col . This
example assumes that you have already created your St at enent object st nt .

Select the BFI LE locator into a standard result set. If you cast the result set to an
O acl eResul t Set , you can use get BFI LE() to get the BFI LE data:

/] Select the BFILE |locator into a result set
Resul t Set rs = stnt. execut eQuery("SELECT bfile_col FROMbfile_tabl e");
while (rs.next())

{
oracle.sql.BFILE ny_bfile = ((Oacl eResul t Set) rs) . get BFl LE( 1) ;
b

Oracle Extensions 4-55



Working with LOBs

Note that as an alternative, you can use get Cbj ect () to return the BFI LE locator.
In this case, since get Obj ect () returnsaj ava. | ang. Qbj ect, cast the results to
BFI LE. For example:

oracle.sql.BFILE ny_bfile = (BFILE)rs. get (hj ect(1);

Example: Getting a BFILE Locator from a Callable Statement Assume you have an

O acl eCal | abl eSt at enent ocs that calls a function f unc that has a BFI LE
output parameter. The following code example sets up the callable statement,
registers the output parameter as Or acl eTypes. BFI LE, executes the statement,
and retrieves the BFI LE locator:

Q acl eCGal | abl eS atenent ocs =
(Qacl eCal | abl et at enent ) conn. prepareCal | ("{? = call func()}")
ocs. regi sterQut Paraneter (1, QO acl eTypes. BFI LE) ;
ocs. execute() ;
oracl e.sqgl . BFILE bfile = ocs. get BH LK 1);

Passing BFILE Locators

To pass a BFI LE locator to a prepared statement or callable statement (to update a
BFI LE locator, for example), you can use the generic set Qbj ect () method or you
can cast the statement to Or acl ePr epar edSt at ement or

O acl eCal | abl eSt at enent and use the set Oracl eCbj ect () or set BFI LE()
method. These methods take the parameter index and an or acl e. sql . BFI LE
object as input.

Example: Passing a BFILE Locator to a Prepared Statement You want to insert a BFI LE
locator into a table. Assume that you have an Or acl ePr epar edSt at emrent ops
where the first parameter is a string (to designate a row number), its second
parameter is a BFI LE, and you have a valid or acl e. sql . BFI LE object (bf i | e).
Input the BFI LE to the prepared statement as follows:

Q acl ePreparedS at enent ops =

(O acl ePr epar edSt at enent ) conn. pr epar et at enent
("INSERT INTO ny_bfile_table VALUES (?,?)");

ops.setString(1,"one");

ops. setBFILE2, bfile);

ops. execut e() ;

Example: Passing a BFILE Locator to a Callable Statement Passing a BFI LE locator to a
callable statement is similar to passing it to a prepared statement. In this case, the
BFI LE locator is passed to the myGet Fi | eLengt h() procedure, which returns the
BFI LE length as a numeric value.

4-56 JDBC Developer’s Guide and Reference



Working with LOBs

Qacl eCal | abl et atenent cstnt =
(QacleCl | abl eSt at enent )
conn. prepareCal | ("begin ? := nyGetF lelLength (?); end;");
try
{
cstm.registerQit Paraneter (1, Types. NMER O);
cstm.setBFILE (2, bfile);
cstm. execute ();
return cstnt.getlong (1);

}
finally

{

cstm.close ();

}
}

Reading BFILE Data

To read BFI LE data, you must first get the BFI LE locator. You can get the locator
from either a callable statement or a result set. "Getting BFILE Locators" on
page 4-55 describes this.

Once you obtain the locator, there are a number of methods that you can perform on
the BFI LE without opening it. For example, you can use the or acl e. sql . BFI LE
methods fi | eExi sts() andi sFi |l eOpen() to determine whether the BFI LE
exists and if it is open. However, if you want to read and manipulate the data, you
must open the BFI LE. BFI LE data is materialized as a Java stream. Operate on

BFI LEs from JDBC as follows:

« Toread from a BFI LE, use the get Bi nar ySt r ean{) method of an
or acl e. sqgl . BFI LE object to retrieve the entire file as an input stream. This
returnsaj ava. i o. | nput St r eamclass.

As with any | nput St r eamobject, use one of the overloaded r ead() methods
to read the file data and use the cl ose() method when you finish.

Oracle Extensions 4-57



Working with LOBs

Notes:

« BFI LEs are read-only. You cannot insert data or otherwise write
to a BFI LE.

« You cannot use JDBC to create a new BFI LE.

Example: Reading BFILE Data The following example uses the get Bi nar ySt r eam()
method of an or acl e. sqgl . BFI LE object to read BFI LE data into a byte stream
and then read the byte stream into a byte array. The example assumes that the

BFI LE has already been opened.

/] Read BF LE data froma BF LE | ocator
Inputstreamin = bfile.getBi naryStreant);
byte[] byte array = new byt e{10};

int byte read = in.read(byte_array);

Creating and Populating a BFILE Column

You create a BFI LE column in a table with SQL statements and specify the location
where the BFI LE resides. The examples below assume that you have already
created your Connect i on object conn and St at erent object st nt .

Creating a BFILE Column in a New Table

To work with BFI LE data, create a BFI LE column in a table and specify the location
of the BFI LE. To specify the location of the BFI LE, use the SQL CREATE

DI RECTORY...AS statement to specify an alias for the directory where the BFI LE
resides. Then execute the statement. In this example, the directory alias is

t est _di r and the location where the BFI LE resides is/ hone/ wor k.

Sring cnd,
cnd = "CREATE D RECTCRY test _dir AS ' /hone/work'";
stni. execute (cn);

Use the SQL CREATE TABLE statement to create a table containing a BFI LE column,
then execute the statement. In this example, the name of the table is
my_bfile_table.

/] Geate a table containing a BFILE field
cnd = "CREATE TABLE ny_bfile table (x varchar2 (30), b bfile)";
stnt. execute (cnd);

4-58 JDBC Developer’s Guide and Reference



Working with LOBs

In this example, the VARCHAR2 column designates a row number and the bfi |l e
column stores the locator of the BFI LE data.

Populating a BFILE Column

Use the SQL | NSERT | NTO...VALUES statement to populate the VARCHAR2 and

bf i | e fields, then execute the statement. The bf i | e column is populated with the
locator to the BFI LE data. To populate the BFI LE column, use the bf i | enane
keyword to specify the directory alias and the name of the BFI LE file.

cnd ="INSERT INTO ny_bfile tabl e VALUES (' one’, bfilenane(test_dir,
"filel.data' ))";

stm. execute (cnd);

cmd ="INSERT INTO ny_bfile_table VALUES ("two’, bfilename(test_dir,
"jdbcTest.data’))";

stn. execute (cnd);

In this example, the name of the directory alias ist est _di r. The locator of the
BFI LEfil el. dat a isloaded into the bf i | e column on row one, and the locator
of the BFI LEj dbcTest . dat a is loaded into the bf i | e column on row t wo.

As an alternative, you might want to create the row for the row number and BFI LE
locator now, but wait until later to insert the locator. In this case, insert the row
number into the table, and nul | as a place holder for the BFI LE locator.

cnd ="INSERT INTO ny_bfile table VALLES ("three’, null)";
st nt . execut e(cnd) ;

Here, t hr ee is inserted into the row number column and nul | is inserted as the
place holder. Later in your program, insert the BFI LE locator into the table by using
a prepared statement.

First get a valid BFI LE locator into the bf i | e object:

rs = stmt.executeQuery('SELECT b FROM my_bfile_table WHERE x=two");
rs.next()
oracle.sql.BFILE bfile = ((OracleResultSet)rs).getBFILE(2);

Then, create your prepared statement. Note that because this example uses the
set BFI LE() method to identify the BFI LE, the prepared statement must be cast to
an Or acl ePr epar edSt at enent :

OraclePreparedStatement ops =

(OraclePreparedStatement)conn.prepareStatement(INSERT ? INTO my_bfile_table)
WHERE (x = three);

ops.setBFILE(2, biile);

Oracle Extensions 4-59



Working with LOBs

ops. execute() ;

Now row t wo and row t hr ee contain the same BFI LE.

Once you have the BFI LE locators available in a table, you can access and
manipulate the BFI LE data. The next section, "Accessing and Manipulating BFILE
Data", describes this.

Accessing and Manipulating BFILE Data

Once you have the BFI LE locator in a table, you can access and manipulate the data
to which it points. To access and manipulate the data, you must first select its
locator from a result set or a callable statement.

The following example gets the locator of the BFI LE from row t wo of a table into a
result set. The result set is cast to an Or acl eResul t Set so thator acl e. sql . *
methods can be used on it. Several of the methods applied to the BFI LE, such as
getDi rAli as() and get Nane() , do not require you to open the BFI LE. Methods
that manipulate the BFI LE data, such as reading, getting the length, and displaying,
do require you to open the BFI LE.

When you finish manipulating the BFI LE data, you must close the BFI LE. For a
complete BFI LE example, see "BFILE Sample" on page 7-10.

/1 select the bfile |ocator
cnd = "SEHLECT * FROMny_bfile table WHERE x = "two' ";
rset = stn.executeQuery (cnd);

if (rset.next ())

{
BFILE bfile = ((Qacl eResul t Set)rset). get BFI LE (2);

/1 for these nethods, you do not have to open the bfile
printin("getDrAias() =" + bfile.getDrAias());
printin("getNane() =" + bfile.getNane());
printin("fileExists() =" + bfile.fileExists());
printin("isFleCen() =" + bfile.isHle(en());

/1 now open the bfile to get the data
bfile.openFile();

/] get the BFILE data as a binary stream

Input Streamin = bfile. getBi naryStrean);
int length ;

4-60 JDBC Developer’s Guide and Reference



Working with LOBs

/] read the bfile data in 6-byte chunks
byte[] buf = new byte[6];

vwhile ((length = in.read(buf)) !'=-1)

/1 append and display the bfile data i n 6-byte chunks
SringBuffer sb = new SringBuffer(length);
for (int i=0; i<length; i++)
sb. append( (char)buf[i] );
println(sb.toSring());
}

/] we are done working with the input stream Qose it.
in.close();

/1l we are done working with the BFILE Qose it.
bfile.closer | e();

Oracle Extensions 4-61



Working with Oracle Object Types

Working with Oracle Object Types
This section contains these subsections:
« Using Default Java Classes for Oracle Objects
« Creating Custom Java Classes for Oracle Objects
« Using JPublisher with JDBC

Oracle object types provide support for composite data structures in the database.
For example, you could define a type Per son that has attributes such as name (type
CHAR), address (type CHAR), phone number (type CHAR), and employee number
(type NUVBER).

Oracle provides tight integration between its Oracle object features and its JDBC
functionality. You can customize how SQL types map to Java classes by creating
custom Java type definition classes; Oracle offers considerable flexibility in how this
mapping is done. In this book, Java classes created as classes to map to Oracle
objects will be referred to as custom Java classes.

JDBC materializes Oracle objects as instances of particular Java classes. Two main
steps in using JDBC to access Oracle objects are: creating the Java classes for the
Oracle objects and populating these classes. You have the option of:

« letting JDBC materialize the object as a STRUCT. This is described in "Using
Default Java Classes for Oracle Objects" on page 4-62.

OR

« explicitly specifying the mappings between Oracle objects and Java classes. This
includes customizing your Java classes for object data. The driver then must be
able to populate the custom Java classes that you specify. This imposes a set of
constraints on the Java classes. To satisfy these constraints, you can define your
classes according to either the SQLDat a interface or the Cust onDat um
interface. "Creating Custom Java Classes for Oracle Objects" on page 4-65
describes this.

Using Default Java Classes for Oracle Objects

If you choose not to provide a type map to explicitly specify a Java class for an
Oracle object, you can let Oracle JDBC materialize the object asa St r uct .

You would typically want to use St r uct objects instead of custom Java objects in
situations where you are manipulating data. For example, your Java application
might be a tool to manipulate data as opposed to being an end-user application.

4-62 JDBC Developer’s Guide and Reference



Working with Oracle Object Types

You can select data from the database into St r uct objects and create St r uct
objects for inserting data into the database. As described in "Class
oracle.sql.STRUCT" on page 4-10, STRUCTs completely preserve data because they
maintain the data in SQL format. Using St r uct objects is more efficient and more
precise in these situations where the information does not need to be in a
user-friendly format.

If your code must fully comply with JDBC 2.0, use the functionality in the
oracl e.jdbc2. Struct interface:

« getAttributes(nmap):retrieves the values from the values array as
j ava. | ang. Obj ect objects; uses entries in the type map (if they have been
defined) to determine the Java classes to use in materializing the data.

« getAttributes():retrieves the values of the values array as
j ava. | ang. Obj ect objects

« get SQLTypeNane() : returns aJava St r i ng that represents the fully qualified
type name (schema.sql_type _name) of the Oracle object that this St r uct
represents

If it is not necessary to comply with JDBC 2.0 and you want to take advantage of the
extended functionality offered by Oracle-defined methods, then cast the output to
oracl e. sqgl . STRUCT.

The or acl e. sql . STRUCT class implements the or acl e. j dbc2. St r uct
interface and provides extended functionality beyond the JDBC 2.0 standard.
Compare the list of methods above with the methods provided for

oracl e. sql . STRUCT in "Class oracle.sql.STRUCT" on page 4-10.

Using STRUCT Objects

You can use standard JDBC functionality such as get Obj ect () to retrieve Oracle
objects from the database as an instance of or acl e. j dbc2. St r uct . Because

get Obj ect () returnsaj ava. | ang. Cbj ect, you must cast the output of the
method to a St r uct . For example:

oracle.jdbc2. Sruct nyStruct = (oracle.jdbc2. Sruct)rs. getject(1);

As described in the preceding section, the or acl e. j dbc2. St ruct class is
implemented by or acl e. sql . STRUCT. If you want to use the extended
functionality offered by Oracle, you can then cast the St r uct object to a STRUCT.

For example, to use the get Or acl eAttri but es() method to return the attributes
of the St ruct, cast mySt r uct toor acl e. sql . STRUCT:

oracl e. sgl . STRUCT STRICTattri bute=s

Oracle Extensions 4-63



Working with Oracle Object Types

((oracle.sql. STRICT) nySruct).getQacl eAtributes()

The get Oracl eAttri but es() method returns the attributes of mySt r uct in
oracl e. sqgl . * format.

You can also retrieve the object directly into an or acl e. sql . STRUCT. For example,
get Obj ect () is used to get a NUMBER object from column 1 (col 1) of the table
struct _t abl e. Because get Obj ect () returns an Obj ect type, the result is cast
toan or acl e. sql . STRUCT. This example assumes that the St at enent object

st nt has already been created.

Sring cnd,
cnd = "CREATE TYPE type_struct AS object (fieldl NUMBER fiel d2 DATE)";
stnt . execut e(cna) ;

cnd = "CREATE TABLE struct _tabl e (coll type struct)";
st ni. execut e( cnul) ;

cnd = "I NSERT INTO struct _tabl e VALUES (type_struct(10,01-apr-01))";
stmt.execute(cmd);

cmd="INSERTINTO  struct _tabl e VALUES (type_struct(20,02-may-02))";
stmt.execute(cmd);

ResultSet rs= simt.executeQuery("SELECT * FROM test_Struct');
oracle.sql.STRUCT struct_obj=(oracle.sgl.STRUCT) rs.getObject(1);

To use an or acl e. sgl . STRUCT object to access, manipulate, or update data, you
can bind the object to a prepared statement or callable statement by using the

set Oracl eObj ect () method. This requires casting your prepared statement or
callable statement to an Or acl ePr epar edSt at erent object or

O acl eCal | abl eSt at erent object.

PreparedStatement ps= conn.prepareStatement(” text_of_prepared_st at enent"),
STRUCT mySTRUCT =new STRUCT (...)
((OraclePreparedStatement)ps).setOracleObject(1, mySTRUCT);

Similarly, to get data from the database, the Or acl eCal | abl eSt at enent and
O acl eResul t Set classes have aget STRUCT() method that returns an Oracle
object as an or acl e. sgl . STRUCT. For example:

ResultSet rset = stmt.executeQuery (...);
oracde.sgl.STRUCT mySTRUCT = ((OracleResultSet)rs).getSTRUCT();

4-64 JDBC Developer’s Guide and Reference



Working with Oracle Object Types

Creating Custom Java Classes for Oracle Objects

If you want to define custom Java classes for your Oracle objects, then you must
define a type map that specifies the custom Java classes that the drivers will
generate for the corresponding Oracle objects.

You must also provide a way to create and populate the custom Java class from the
Oracle object and its attribute data. The driver must be able to read from a Java
custom class and populate it. In addition, the custom Java class can provide get
and set methods corresponding to the Oracle object’s attributes, although this is
not necessary. To create and populate the custom classes, and provide these
read/write capabilities, you can choose between these two interfaces:

« SQ.Dat a interface provided by JDBC
« Cust onmDat uminterface provided by Oracle
The custom Java class you create must implement one of these interfaces.

For example, assume you have an Oracle object type, EMPLOYEE, in the database
that consists of two attributes: Nane (which is type CHAR) and EnpNum(employee
number, which is type NUMBER). You use the type map to specify that the
EMPLOYEE object should map to a custom Java class that you call JEnpl oyee. You
can use either the SQLDat a or Cust onDat uminterface to be implemented by the
JEnpl oyee class.

The most convenient way to create the custom Java class is to employ the JPublisher
utility to create it for you. However, JPublisher supports only the Cust onDat um
implementation. You can also create the custom Java class yourself, and in fact must
do so if you want to implement the SQLDat a interface.

The following section describes the relative advantages of using Cust onDat umand
SQ.Dat a.

Relative Advantages of CustomDatum vs. SQLData In deciding which of these two
interface implementations to use, consider the following:

Advantages of Cust onDat um

» It has awareness of Oracle extensions.

= You can construct a Cust onDat umfrom an or acl e. sql . STRUCT. This is
more efficient because it avoids unnecessary conversions to native Java types.

= You can obtain the corresponding Dat umobject (which is in or acl e. sql
format) from the Cust onDat umobject using the t oDat un{) method.

Oracle Extensions 4-65



Working with Oracle Object Types

« It does not require a type map.

« It provides better performance: Cust onDat umworks directly with Dat um
types, which is the internal format used by the driver to hold Oracle objects.

« JPublisher supports it. Custom Java classes created by JPublisher use the
Cust onDat umimplementation. As of the 8.1.5 release, SQLDat a is not
supported by JPublisher.

« Oracle SQLJ supports it. As of the 8.1.5 release, SQLDat a is hot supported by
Oracle’s implementation of SQLJ.

Advantages of SQ.Dat a:
« ItisaJDBC standard, making your code more portable.

The SQLDat a interface only lets you populate a Java object from a SQL object—the
Cust onDat uminterface is far more powerful. In addition to enabling you to
populate Java objects, Cust onDat umenables you to materialize objects from SQL
types that are not necessarily objects. Therefore, you can create a Cust onDat um
object from any datatype found in an Oracle database. This is particularly useful in
the case of RAWdata that can be a serialized object.

Understanding Type Maps

If you use the SQLDat a interface to create Java custom classes, then you must create
a type map that specifies the Java custom class that corresponds to the Oracle object
in the database. For a description of how to create these custom Java classes with
SQLDat a, see "Creating Custom Java Classes for Oracle Objects" on page 4-65.

If you do not include an object and its mapping in the type map, then the object will
map to the or acl e. sql . STRUCT class by default. See "Class oracle.sql.STRUCT"
on page 4-10 for more information about this class.

The type map relates a Java class to the SQL type name of an Oracle object. This is a
one-to-one mapping that is stored in a hash table as a key-value pair. When you read
data from an Oracle object, the JDBC driver considers the type map to determine
which Java class to use to materialize the data from the SQL object type. When you
write data to an Oracle object, the JDBC driver gets the SQL type name from the
Java class by calling the get SQLTypeNane() method of the SQLDat a interface.
The actual conversion between SQL and Java is handled by the driver.

The attributes of the Java class that corresponds to an Oracle object can use either
Java native types or Oracle native types (instances of the or acl e. sql . * classes) to
store attributes.

4-66 JDBC Developer’'s Guide and Reference



Working with Oracle Object Types

Creating a Type Map Class

The Java application programmer is responsible for providing a type map class that
implementsj ava. util.Di ctionary. Forexample,j ava. util . Hasht abl e
implements Di cti onary.

The type map class must implement a put () method used to enter each mapping
entry that relates a Java class to an Oracle object type. The put () method must be
implemented to accept a keyword-value pair, where the key is an Oracle SQL type
name and the value is the Java class object.

Creating a Type Map Object and Defining Mappings
Each connection object has an attribute for an associated type map object. Cast your
connection to an Or acl eConnect i on object to use type map functionality.

You can create a type map by either of the methods described in the following
sections:

« Adding Entries to an Existing Type Map

« Creating a New Type Map

Adding Entries to an Existing Type Map Follow these general steps to add entries to an
existing type map.

1. Use the get TypeMap() method of your Or acl eConnect i on object to return
the connection’s Map object. The get TypeMap() method returns a
java. util.Dictionary object. For example:

java. util.Dctionary nyMap = oraconn. get TypeMap() ;

In this example, the get MapType() method on the Or acl eConnecti on
object or aconn returns the nyMap Di ct i onary object.

Note: If the type map in the Or acl eConnect i on object has not
been initialized, then the first call to get TypeMap() returns nul | .

2. Usethe Di cti onary object’s put () method to add entries to the map. The
put () method takes two arguments: a SQL type name string and the name of
the Java class object to which you want to map it.

nyMap. put (sqgl TypeNare, cl assChj ect);

Oracle Extensions 4-67



Working with Oracle Object Types

The sqgl TypeNane is a string that represents the fully qualified name of the
SQL type in the database. The cl assObj ect is the Java class object to which
you want to map the SQL type. Get the class object with the

cl ass. f or Name() method. You can rewrite the put () method as:

nyMap. put (sqgl TypeNare, cl ass. f or Nane( ¢l asshNane) ) ;
For example, if you have a PERSON SQL datatype defined in the CORPORATE

database schema, then map it to a Per son Java class defined as Per son with
this statement:

nyMap. put (" CCRPCRATE. PERSCN', cl ass. f or Nane(" Person"));

The map has an entry that maps the PERSON SQL datatype in the CORPORATE
database to the Per son Java class.

3. When you finish adding entries to the map, use the Or acl eConnecti on
object’s set TypeMap() method to overwrite the connection’s existing type
map. For example:

or aconn. set TypeMap( nyMap) ;
In this example, set TypeMap() overwrites the or aconn connection’s original
map with my Map.

Creating a New Type Map Follow these general steps to create a new type map.

1. Create an empty map object. An empty map object can be anything that
implements thej ava. uti | . Di cti onary class. For example, the
java. util . Hasht abl e class implements the Di cti onary class.

2. Use the Map object’s put () method to add entries to the map. For more
information on the put () method, see Step 2 in the preceding section. For
example, if you have an EMPLOYEE SQL type defined in the CORPORATE
database, then you can map it to an Enpl oyee class object defined by
Enpl oyee. j ava with this statement:

newhNap. put (" CORPCRATE. EMPLOYEE", cl ass. f or Nanme( " Enpl oyee™));
3. When you finish adding entries to the map, use the Or acl eConnecti on

object’s set TypeMap() method to overwrite the connection’s existing type
map. For example:

or aconn. set TypeNap( newMap) ;

4-68 JDBC Developer’s Guide and Reference



Working with Oracle Object Types

In this example, set TypeMap() overwrites the or aconn connections’s
original map with newivap.

Notes:

= You can explicitly provide type map objects in some get XXX()
and set XXX() methods to override the custom or default
mapping of your connection.

« If the type map does not specify a Java class mapping for an
Oracle object type, then it defaults to data from the object type
materialized in Java in an instance of the
oracl e. sgl . STRUCT class. For more information about this
class, see "Class oracle.sql.STRUCT" on page 4-10.

« Do not use the type map for inserting custom objects into the
database.

STRUCTS and the Type Map If you do not specify a particular SQL object type in the
type map, then the driver will materialize it as an instance of the

oracl e.jdbc2. Struct class. If the SQL object type contains embedded objects,
and they are not present in the type map, the driver will materialize the embedded
objects as instances of or acl e. sqgl . Struct . If the embedded objects are present
in the type map, a call to the get Att ri but es() method will return embedded
objects as instances of the specified Java classes from the type map.

Understanding the SQLData Interface

To make an Oracle object and its attribute data available to Java applications, you
can create a custom Java class for the object that implements the SQLDat a interface.
Note that if you use this interface, you must supply a type map that specifies the
Oracle objects in the database and the name of the corresponding custom Java
classes that you will create for them.

The SQLDat a interface defines methods that translate between SQL and Java for
Oracle database objects. Standard JDBC provides a SQLDat a interface and
companion SQLI nput and SQLCut put interfaces in the or acl e. j dbc2 package.

If you create a custom Java class that implements SQLDat a, you must provide a
readSQ.() method andawriteSQ. () method as defined by the SQL.Dat a
interface.

Oracle Extensions 4-69



Working with Oracle Object Types

The JDBC driver calls your r eadSQL() method to read a stream of data values
from the database and populate an instance of your custom Java class. Typically, the
driver would use this method as part of an Or acl eResul t Set .get Ohj ect () call.

Similarly, the JDBC driver calls your wr i t eSQL() method to write a sequence of
data values from an instance of your custom Java class to a stream that can be
written to the database. Typically, the driver would use this method as part of an
O acl ePrepar edSt at enent set Obj ect () call.

Understanding the SQLInput and SQLOutput Interfaces The JDBC driver includes classes
that implement the SQLI nput and SQLCut put interfaces. It is not necessary to
implement the SQLQut put or SQLI nput objects. The JDBC drivers will do this for
you.

The SQLI nput implementation is an input stream class, an instance of which must
be passed intoreadSQL() . SQLI nput includes a r eadXXX() method for every
possible Java type that attributes of an Oracle object might be converted to, such as
readCbj ect (),readl nt(),readLong(),readFl oat (), readBl ob(), and so
on. Each r eadXXX() method converts SQL data to Java data and returns it into an
output parameter of the corresponding Java type. For example, r eadl nt () returns
an integer.

The SQLQut put implementation is an output stream class, an instance of which
must be passed intowri t eSQL() . SQLQut put includesawr it eXXX() method
for each of these Java types. Each wr i t eXXX() method converts Java data to SQL
data, taking as input a parameter of the relevant Java type. For example,
writeString() would take as input a string attribute from your Java class.

Implementing readSQL() and writeSQL() Methods When you create your custom Java
class that implements SQ.Dat a, you must also implement the r eadSQ.() and
writeSQ () methods.

You must implement r eadSQL() as follows:
public void readSQ(SQLI nput stream String sql _type nane) throws SQException
« readSQL() musttake as inputa SQLI nput stream and a string that indicates

the SQL type name of the data (in other words, the name of the Oracle object
type, such as EMPLOYEE).

When your Java application calls get Qbj ect (), the JDBC driver creates a
SQLI nput stream object and populates it with data from the database. The
driver can also determine the SQL type name of the data when it reads it from
the database. When the driver callsr eadSQL( ) , it passes in these parameters.

4-70 JDBC Developer’s Guide and Reference



Working with Oracle Object Types

« Foreach Java datatype that maps to an attribute of the Oracle object,
readSQ.() must call the appropriate r eadXXX() method of the SQLI nput
stream that is passed in.

For example, if you are reading EMPLOYEE objects that have an employee name
as a CHAR variable and an employee number as a NUMBER variable, you must
haveareadString() callandareadl nt () call inyourreadSQ.() method.
JDBC calls these methods according to the order in which the attributes appear
in the SQL definition of the Oracle object type.

« readSQL() assigns the data that the r eadXXX() methods read and convert to
the appropriate fields or elements of your custom Java class.

You must implementwr i t eSQL() as follows:
public void witeSQ(SQQutput stream throws SQException

«  WiteSQ.() musttake as input a SQLOut put stream.

When your Java application calls set Qbj ect (), the JDBC driver creates a
SQLCut put stream object and populates it with data from your custom Java
class. When the driver callswri t eSQL(), it passes in this stream parameter.

« For each Java datatype that maps to an attribute of the Oracle object,
writ eSQL() must call the appropriate wri t eXXX() method of the
SQLCut put stream that is passed in.

For example, if you are writing to EMPLOYEE objects that have an employee
name as a CHAR variable and an employee number as a NUMBER variable, then
you must haveawriteString() callandawritelnt() callinyour

writ eSQL() method. These methods must be called according to the order in
which attributes appear in the SQL definition of the Oracle object type.

«  WiteSQ.() mustthen write the data converted by the wri t eXXX() methods
to the SQLQut put stream so it can be written to the database once you execute
the prepared statement.

Note: Refer to the Javadoc for more information about the
SQLDat a, SQLI nput , and SQLCut put interfaces.

"Creating Customized Java Classes for Oracle Objects" on page 7-20 contains an
example implementation of the SQLDat a interface for a given SQL definition of an
Oracle object.

Oracle Extensions 4-71



Working with Oracle Object Types

Reading and Writing Data with a SQLData Class

This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements SQLDat a.

Reading Data from an Oracle Object Using a SQLData Interface This section summarizes
the steps to read data from an Oracle object into your Java application when you
choose the SQLDat a implementation for your custom Java class.

These steps assume you have already defined the Oracle object type, created the
corresponding custom Java class, updated the type map to define the mapping
between the Oracle object and the Java class, and defined a statement object st nt .

1. Query the database to read the Oracle object into a JDBC result set.
Resul t Set rs = stnt. execut eQuery(" SELECT Enp_col FROM PERSONNEL");
rs.next();

The PERSONNEL table contains one column, Enp_col , of SQL type
Enp_obj ect . This SQL type is defined in the type map to map to the Java class
Enpl oyee.

2. Usethe get Obj ect () method of your result set to populate an instance of
your custom Java class with data from one row of the result set. The
get Obj ect () method returns the user-defined SQLDat a object because the
type map contains an entry for Enpl oyee.

Enpl oyee enp = (Enpl oyee)rs. get (j ect (1);

Note that if the type map did not have an entry for the object, get Obj ect ()
would return an or acl e. sql . STRUCT object. In this case you must cast the
output to an or acl e. sql . STRUCT.

Sruct enpstruct = (oracle.sql.STRUII)rs. get yj ect (1);

The get Obj ect () call triggersreadSQL() and readXXX() calls as described
above.

4-72 JDBC Developer’s Guide and Reference



Working with Oracle Object Types

3.

Note: To avoid the need for the type map, use the get STRUCT( )
method. This method always returns a STRUCT object even if there
is a mapping entry in the type map.

If you have get methods in your custom Java class, then use them to read data
from your object attributes. For example, if EMPLOYEE has an EnpNane
(employee name) of type CHAR and EnpNum(employee number) of type
NUMBER, provide a get EnpNane() method that returnsalJava Stri ng and a
get EnpNum() method that returns an integer (i nt ). Then invoke them in your
Java application as follows:

Sring enpnane = enp. get Nane();
i nt enpnunber = enp. get EnpNung) ;

Note: Alternatively, fetch data by using a callable statement
object, which also has a get Obj ect () method.

Passing SQLData Objects to a Callable Statement as an OUT Parameter Suppose you have
an Or acl eCal | abl eSt at enent ocs that calls a PL/SQL function

get Enpl oyee( ?) . The program passes an employee number (enpnunber ) to the
function; the function returns the corresponding Enpl oyee object.

1.

Prepare an Or acl eCal | abl eSt at enent to call the get Enpl oyee( ?)
function.

Qacl eCal | abl e atenent ocs =
(Oacl eCal | abl esatenent) conn. prepareCall ("{ ? = call get Enpl oyee(?)

)

Declare the enpnunber as the input parameter to get Enpl oyee( ?) . Register
the SQLDat a object as the QUT parameter. The SQL type of the Enpl oyee
object is Or acl eTypes. STRUCT. Then, execute the statement.

ocs. set | nt (2, enpnunber) ;
ocs. regi sterQut Paraneter (1, Q acl eTypes. STRCT, "BEW_BIECT');
ocs. execute() ;

Use the get Obj ect () method to retrieve the employee object. Because the
object is returned as a STRUCT, cast the output of get Cbj ect () toan
Enpl oyee object.

Oracle Extensions 4-73



Working with Oracle Object Types

Enpl oyee enp = (Enpl oyee) ocs. get (hj ect (1);

Passing SQLData Objects to a Callable Statement as an IN Parameter Suppose you have a
PL/SQL function addEnpl oyee( ?) that takes an Enpl oyee objectasan | N
parameter and adds it to the PERSONNEL table. In this example, enp is a valid
Enpl oyee object.

1. Prepare an Oracl eCal | abl eSt at ement to call the addEnpl oyee( ?)
function.

Qacl eCal | abl e atenent ocs =
(O acl eCal | abl e atenent) conn. prepareCal | ("{ call addEnpl oyee(?) }");

2. Useset nj ect () to pass the enp object as an | N parameter to the callable
statement. Then, execute the statement.

ocs. set (hj ect (1, enp);
ocs. execute() ;

Writing Data to an Oracle Object Using a SQLData Interface This section describes the
steps in writing data to an Oracle object from your Java application when you
choose the SQLDat a implementation for your custom Java class.

This description assumes you have already defined the Oracle object type, created
the corresponding Java class, and updated the type map to define the mapping
between the Oracle object and the Java class.

1. Ifyou have set methods in your custom Java class, then use them to write data
from Java variables in your application to attributes of your Java datatype
object.

enp. set EnpNane( enpnane) ;
enp. set EnpNung enpnunber ) ;

This statement uses the enp object and the enpnane and enpnunber variables
defined in "Reading Data from an Oracle Object Using a SQLData Interface" on
page 4-72.

2. Prepare a statement that updates an Oracle object in a row of a database table,
as appropriate, using the data provided in your Java datatype object.

PreparedS at enent pstnt = conn. pr epar eSt at enent
("I'NSERT | NTO PERSONNEL VALUES (?)");

This assumes conn is your connection object.

4-74 JDBC Developer’'s Guide and Reference



Working with Oracle Object Types

3. Usethe set Obj ect () method of the prepared statement to bind your Java
datatype object to the prepared statement.

pstm . set (j ect (1, enp);

4. Execute the statement, which updates the database.

pst nt . execut elpdat e();

Note: You can use your Java datatype objects as either | Nor QUT
bind variables.

Understanding the CustomDatum Interface

To make an Oracle object and its attribute data available to Java applications, you
can create a custom Java class for the object that implements the

oracl e. sqgl . Cust onmDat umand or acl e. sql . Cust onDat unfact ory
interfaces. The Cust onDat umand Cust onDat unfact or y interfaces are supplied
by Oracle and are not a part of the JDBC standard.

Note: The JPublisher utility supports the generation of classes that
implement the Cust onDat umand Cust onDat unfact ory
interfaces.

The Cust onDat uminterface has these additional advantages:

= recognizes Oracle extensions to the JDBC; Cust onDat umuses
oracl e. sqgl . Dat umtypes directly

« does not require a type map to specify the names of the Java custom classes you
want to create

« provides better performance: Cust omDat umworks directly with Dat umtypes,
the internal format the driver uses to hold Oracle objects

The Cust onDat umand Cust onDat unfact or y interfaces do the following:

« ThetoDat um() method of the Cust onDat umclass transforms the data into an
oracl e. sqgl . * representation.

« Cust onDat unfact ory specifies a cr eat e() method equivalent to a
constructor for your custom Java class. It creates and returns a Cust onrDat um
instance. The JDBC driver uses the cr eat e() method to return an instance of

Oracle Extensions 4-75



Working with Oracle Object Types

the custom Java class to your Java application or applet. It takes as input an
oracl e. sqgl . Dat umobject and an integer indicating the corresponding SQL
type code as specified in the Or acl eTypes class.

Cust onDat umand Cust onDat unfact or y have the following definitions:

public interface Qustonbatum

{
Dat um t oDat um (O acl eGonnecti on conn) throws SQException;
}
public interface Qustonbatuntact ory
{
Qustonbat umcreate (Datumd, int sql_Type Code) throws SQException;
}

where conn represents the Connection object, d represents an object of type
oracl e. sqgl . Dat umand sql _Type_Code represents the SQL type code of the
Dat umobject.

Note: Itis up to the developer to decide how to handle a situation
where the SQL type code contradicts the type of the Dat umobiject.

The JDBC drivers provide the following methods to retrieve and insert object data
as instances of Cust onDat um

To retrieve object data:

« Use the Oracle extension Or acl eResul t Set . get Cust onDat um () method:
Q acl eResul t Set . get Qust onat um (i nt col _i ndex, Qustonbat unfFactory factory)
This method takes as input the column index of the data in your result set, and
a Cust onDat unfact or y instance. For example, you can implement a
get Fact or y() method of your custom Java class to produce the

Cust onDat unfact or y instance to input to get Cust onDat un{() . The type
map is not required when using Java classes that implement Cust onDat um

OR

« Use the standard Resul t Set . get Obj ect (i ndex, map) method to retrieve
data as instances of Cust onDat um In this case, you must have an entry in the
type map that identifies the factory class to be used for the given object type,
and its corresponding SQL type name.

4-76 JDBC Developer’s Guide and Reference



Working with Oracle Object Types

To insert object data:

« Use the Oracle extension Or acl ePr epar edSt at enrent . set Cust onDat um
() method:

Q acl ePr epar edSt at enent . set Qust onbat um (i nt bi nd_i ndex, Qust onbat um
cust omobj )

This method takes as input the parameter index of the bind variable and the
name of the object containing the variable.

OR

« Use the standard JDBC Pr epar edSt at ement . set (bj ect () method. You
can also use this method, in its various forms, to insert Cust onDat uminstances
without requiring a type map.

The following sections describe the get Cust onDat uni() and set Cust onDat un()
methods.

To continue the example of an Oracle object EMPLOYEE, you might have something
like the following in your Java application:

Qust onat um dat um = or s. get Qust onbat un{1, Enpl oyee. get Factory());

In this example, or s is an Oracle result set, get Cust onDat un() is a method in the
O acl eResul t Set class used to retrieve a Cust onDat umobject, and the
EMPLOYEE is in column 1 of the result set. The Enpl oyee. get Fact ory() call will
return a Cust onDat unfact or y to the JDBC driver. The JDBC driver will call

cr eat e() from this object, returning to your Java application an instance of the
Enpl oyee class that is populated with data from the result set.

Oracle Extensions 4-77



Working with Oracle Object Types

Notes:

« Cust onmDat umand Cust onDat unfact ory are defined as
separate interfaces so that different Java classes can implement
them if you wish (such as an Enpl oyee class and an
Enpl oyeeFact ory class).

= Your custom Java classes must import or acl e. sqgl . * (or at
least Cust onDat um Cust onDat unfact or y, and Dat unj,
oracl e.jdbc. driver.* (oratleast Or acl eConnecti on
and Or acl eTypes),andj ava. sql . SQLExcept i on.

= Refer to the Javadoc for more information about the
Cust omDat umand Cust onDat unfact or y classes.

CustomDatum versus SQLData: Comparison for Serializable Objects

The Cust onDat uminterface provides far more flexibility than the SQLDat a
interface. The SQLDat a interface is designed to only let you customize the mapping
of SQL object types (that is, Oracle8 object types) to Java types of your choice.
Implementing the SQLDat a interface lets the JDBC driver populate the fields of the
customized Java class from the original SQL object data and vice-versa, after
performing the appropriate conversions between Java and SQL types.

The Cust onDat uminterface goes beyond simply supporting the customization of
SQL object types to Java types. It lets you provide a mapping between Java object
types and any SQL type supported by the or acl e. sql package.

For example, use Cust onDat umto store instances of Java objects that do not
correspond to a particular SQL Oracle8 object type in the database in columns of
SQL type RAWThe cr eat e() method in Cust onDat unfact or y would have to
implement a conversion from an object of type or acl e. sql . RAWto the desired
Java object. The t oDat un{) method in Cust onDat umwould have to implement a
conversion from the Java object to an or acl e. sql . RAWThis can be done, for
example, by using Java serialization.

Upon retrieval, the JDBC driver transparently retrieves the raw bytes of data in the
form of an or acl e. sqgl . RAWand calls the Cust onDat unfact ory’screat e()
method to convert the or acl e. sql . RAWOobject to the desired Java class.

When you insert the Java object into the database, you can simply bind it to a
column of type RAWto store it. The driver transparently calls the
Cust onDat umt oDat un() method to convert the Java object to an

4-78 JDBC Developer’'s Guide and Reference



Working with Oracle Object Types

oracl e. sqgl . RAWobject. This object is then stored in a column of type RAWiInN the
database.

Support for the Cust onDat uminterfaces is also highly efficient because the
conversions are designed to work using or acl e. sql . * formats, which happen to
be the internal formats used by the JDBC drivers. Moreover, the type map, which is
necessary for the SQLDat a interface, is not required when using Java classes that
implement Cust onDat um For more information on why classes that implement
Cust onDat umdo not need a type map, see "Understanding the CustomDatum
Interface” on page 4-75.

Reading and Writing Data with a CustomDatum Interface

This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements Cust onDat um

Reading Data from an Oracle Object Using the CustomDatum Interface This section
summarizes the steps in reading data from an Oracle object into your Java
application. These steps apply whether you implement Cust onDat ummanually or
use JPublisher to produce your custom Java classes.

These steps assume you have already defined the Oracle object type, created the
corresponding custom Java class or had JPublisher create it for you, and defined a
statement object st nt .

1. Query the database to read the Oracle object into a result set, casting to an
Oracle result set.

Qacl eResul t Set ors = (O acl eResul t Set) st m . execut eQuery
(" SELECT Enp_col FROM PERSONNEL");
ors.next();

where PERSONNEL is a one-column table. The column name is Enp_col of type
Enpl oyee_obj ect.

2. Use the get Cust oDat un() method of your Oracle result set to populate an
instance of your custom Java class with data from one row of the result set. The
get Cust onmDat um() method returns an or acl e. sql . Cust onDat umobiject,
which you can cast to your specific custom Java class.

Enpl oyee enp = (Enpl oyee) ors. get Qust onat un{1, Enpl oyee. get Factory());

OR
Qust onat um dat um = or s. get Qust onbat un{1, Enpl oyee. get Factory());

Oracle Extensions 4-79



Working with Oracle Object Types

This example assumes that Enpl oyee is the name of your custom Java class
and or s is the name of your Or acl eResul t Set object.

If you do not want to use get Cust onDat un( ) , the JDBC drivers let you use
the standard JDBC Resul t Set . get Obj ect () method to retrieve

Cust onDat umdata. However, you must have an entry in the type map that
identifies the factory class to be used for the given object type, and its
corresponding SQL type name.

For example, if the SQL type name for your object is EMPLOYEE, then the
corresponding Java class is Enpl oyee, which will implement Cust onDat um
The corresponding Factory class is Enpl oyeeFact or y, which will implement
Cust onDat unfact ory.

Use this statement to declare the Enpl oyeeFact or y entry for your type map:

nmap. put ("BEMPLOYEE', d ass. forName ("Enpl oyeeFactory"));

Then use the form of get Obj ect () where you specify the map object:
Enpl oyee enp = (Enpl oyee) rs.getject (1, nap);

If the connection’s default type map already has an entry that identifies the
factory class to be used for the given object type, and its corresponding SQL
type name, then you can use this form of get Obj ect () :

Enpl oyee enp = (Enpl oyee) rs.getMject (1);

3. Ifyou have get methods in your custom Java class, use them to read data from
your object attributes into Java variables in your application. For example, if
EMPLOYEE has Nane of type CHAR and EnpNum(employee number) of type
NUMBER, provide a get Nane() method that returns a Java string and a
get EnpNum() method that returns an integer. Then invoke them in your Java
application as follows:

Sring enpnane = enp. get Nane();
i nt enpnunber = enp. get EnpNung) ;

Note: Alternatively, you can fetch data into a callable statement
object. The Or acl eCal | abl eSt at errent class also has a
get Cust onDat un() method.

Writing Data to an Oracle Object Using the CustomDatum Interface This section
summarizes the steps in writing data to an Oracle object from your Java application

4-80 JDBC Developer’s Guide and Reference



Working with Oracle Object Types

when you use JPublisher to produce your custom Java class or otherwise choose the
Cust onDat umimplementation.

These steps assume you have already defined the Oracle object type, created the
corresponding custom Java class or had JPublisher create it for you.

Note: The type map is not used when you are performing
database | NSERTs and UPDATEs.

1. Ifyou have set methods in your custom Java class, then use them to write data
from Java variables in your application to attributes of your Java datatype
object.

enp. set Nane( enpnane) ;
enp. set EnpNun{ enpnunber ) ;

This statement uses the enp object and the enpnane and enpnunber variables
defined in "Reading Data from an Oracle Object Using the CustomDatum
Interface" on page 4-79.

2. Write an Oracle prepared statement that updates an Oracle object in a row of a
database table, as appropriate, using the data provided in your Java datatype
object.

Q acl ePreparedS at enent opstmt = conn. prepar eS at enent
(" UPDATE PERSONNEL SET Enpl oyee = ? WHERE Enpl oyee. EnpNum = 28959) ;
This assumes conn is your Connect i on object.

3. Usethe set Cust onDat un() method of the Oracle prepared statement to bind
your Java datatype object to the prepared statement.

opst nt. set Qust onbat un{1, enp);
The set Cust onDat un{) method calls the t oDat um() method of your custom

Java class to retrieve an or acl e. sql . STRUCT object that can be written to the
database.

In this step you could also use the set Cbj ect () method to bind the Java
datatype. For example:

opstnt . set (oj ect (1, enp) ;

Oracle Extensions 4-81



Working with Oracle Object Types

Note: You can use your Java datatype objects as either | Nor QUT
bind variables.

Using JPublisher with JDBC

JPublisher is an Oracle utility for creating Java classes that map to Oracle objects. It
generates a full class definition for a custom Java class, which you can instantiate to
hold the data from an Oracle object. JPublisher-generated classes include methods
to convert data from SQL to Java and from Java to SQL, as well as getter and setter
methods for the attributes of the class.

If you want additional functionality you can create a subclass and add features as
desired. JPublisher has features that will create references to the code you write if
you need to regenerate the original class. The alternative, editing the generated
class by adding methods to it, is not recommended if you anticipate running
JPublisher at some future time to regenerate the class. If you run JPublisher to
regenerate a class that you have modified in this way, your changes (that is, the
methods you have added) will be overwritten. Even if you direct JPublisher output
to a separate file, you will still need to merge your changes into the file.

You do not have to use JPublisher to create your custom Java classes, but it is
usually very convenient. For more information on JPublisher, see the Oracle8i
JPublisher User’s Guide.

JPublisher Mapping Options

If you use JPublisher to implement your custom Java class, then you can choose
among three mappings for attributes:

« Oracle mapping
« JDBC mapping
« Object JIDBC mapping

JPublisher has a command-line option that enables you to choose among these three
mapping options. For more information on the mapping options, see the Oracle8i
JPublisher User’s Guide.

4-82 JDBC Developer’s Guide and Reference



Working with Oracle Object References

Working with Oracle Object References

This section has these subsections:

« Retrieving an Object Reference

« Passing an Object Reference to a Callable Statement

« Accessing and Updating Object Values through an Object Reference
« Passing an Object Reference to a Prepared Statement

You can define an Oracle object reference to an object stored in an object table. In
contrast, you cannot define an object reference for an object value that is stored in a
table column.

In SQL, object references (REFs) are strongly typed. For example, a reference to an
EMPLOYEE object would be defined as an EMPLOYEE REF, not just a REF.

When you select an object reference in Oracle JDBC, it is materialized as an instance
of the or acl e. sql . REF class and is not strongly typed. So, if you select an
EMPLOYEE REF, an or acl e. sql . REF object is returned. To find out what kind of
REF it really is, use the object’s get BaseTypeNane() method. This method returns
the object’s SQL type, which in this case would be EMPLOYEE.

An object reference is a primitive SQL type. The steps to access and manipulate
object references are similar to the steps you employ for any other primitive SQL

type.

Note: You cannot have a reference to an array, even though arrays,
like objects, are structured types.

JDBC provides support for REFs as any of the following:
= columnsina SELECT list

= | Nor QUT bind variables

« attributes in an Oracle8 object

« elements in acollection (array) type object

If you use JPublisher to generate custom Java classes, then it also generates
reference classes. These reference classes are extensions of or acl e. sql . REF and,
unlike the or acl e. sql . REF class, are strongly typed. For example, if you define
an Oracle object EMPLOYEE, then JPublisher generates an Enpl oyee class and an
Enpl oyeeRef class.

Oracle Extensions 4-83



Working with Oracle Object References

Retrieving an Object Reference

To demonstrate how to retrieve REFs, the following example first defines an Oracle
object type ADDRESS:

create type ADDRESS as obj ect
(street_nane VARCHAR2( 30),

house_ no NMBER;

create tabl e PECPLE
(col 1 VARCHARZ(30),
col 2 NUMBER
col 3 REF ADDRESS);

The ADDRESS object type has two attributes: a street name and a house number. The
PEOPLE table has three columns: a column for character data, a column for numeric
data, and a column containing a reference to an ADDRESS object.

To retrieve an object reference, follow these general steps:

1. Use astandard SQL SELECT statement to retrieve the reference from a database
table REF column.

2. Use get REF() to get the address reference from the result set into a REF object.

3. Let Addr ess be the Java custom class corresponding to the SQL object type
ADDRESS.

4. Add the correspondence between the Java class Addr ess and the SQL type
ADDRESS to your type map.

5. Usethe get Val ue() method to retrieve the contents of the Addr ess reference.
Cast the output to a Java Addr ess object.

Here is the code for these three steps, where st nt is a previously defined statement
object. The PEOPLE database table is defined earlier in this section;

Resul t Set rs = stnt. execut eQuery(" SELECT col 3 FRCM PECPLE');
rs.next();

REF ref =rs.get REH(1);

Address a = (Address)(ref.getVal ue());

As with other SQL types, you could retrieve the reference with the get Obj ect ()
method of your result set. Note that this would require you to cast the output. For
example:

REF ref = (REF)rs.getject(l);

4-84 JDBC Developer’'s Guide and Reference



Working with Oracle Object References

There is no advantage or disadvantage in using get Qbj ect () instead of
get REF() .

Passing an Object Reference to a Callable Statement

To retrieve an object reference as an OUT parameter in PL/SQL blocks, do the
following to register the bind type for your QUT parameter.

1. Castyour callable statement to an Or acl eCal | abl eSt at enent :
Q acl eCGal | abl eS atenent ocs =
(Qacl eCal | abl et at enent ) conn. prepareCal | ("{? = call func()}")
2. Register the QUT parameter with this form of the r egi st er Qut Par anet er ()
method:
ocs. regi sterQut Paraneter (i nt paramindex, int sql _type, string

sql _type_nane);

where par am_ i ndex is the parameter index and sql _t ype is the SQL type
code (in this case, Or acl eTypes. REF). The sql _t ype_nane is the name of
the STRUCT to which this object reference points. For example, if the OUT
parameter is a REF to an ADDRESS object (as in the previous section), then
ADDRESS is the sql _t ype nane that should be passed in.

3. Execute the call:

ocs. execut e()

Accessing and Updating Object Values through an Object Reference

You could then create a Java Addr ess object and update a database ADDRESS object
through the reference as follows (omitting whatever would be required for the
constructor of the Addr ess class). This example assumes that you have already
retrieved a valid REF object:

Address addr = new Address(...);
ref. setVal ue(addr);

Here, the set Val ue() method updates the database ADDRESS object.

Oracle Extensions 4-85



Working with Oracle Object References

Passing an Object Reference to a Prepared Statement

Pass an object reference to a prepared statement in the same way as you would pass
any other SQL type. Use either the set Obj ect () method or the set REF()
method of a prepared statement object.

Continuing the preceding example, use a prepared statement to update an address
reference based on ROW D, as follows:

PreparedStatenent pstm =

conn. prepareSt at enent ("update PECPLE set ADDR REF = ? where ROND = ?");
pstnt.set REF (1, addr_ref);
pstnt.set ROND (2, row d);

4-86 JDBC Developer’'s Guide and Reference



Working with Arrays

Working with Arrays
This section has these subsections:
« Retrieving an Array and its Elements
« Passing an Array to a Prepared Statement
« Passing an Array to a Callable Statement
« Using a Type Map to Map Array Elements

The or acl e. sqgl . ARRAY class enables you to access and manipulate arrays and
their data within a JDBC program. The or acl e. sql . ARRAY class implements the
oracl e. jdbc2. Arr ay interface.

JDBC provides support for arrays as any of the following:
« columnsin a SELECT list
« | Nor QUT bind variables

« attributes in an Oracle object

Note: The term arrays in JDBC 2.0 is equivalent to collections in
Oracle terminology.

Arrays include var r ays (variable-length arrays) and nested tables. The methods in
the or acl e. sql . ARRAY class enable you to access and manipulate the array and
its data even if it is a var r ay or nested table. That is, you do not have to add any
special code when you are accessing a var r ay or nested table. The methods can
determine if they are being applied to a var r ay or nested table, and respond by
taking the appropriate actions.

Oracle supports only named arrays, where you specify a SQL type name to describe
a type of array. The SQL type name is assigned to the array when you create it, as in
the following SQL syntax:

CREATE TYPE <sql _type_nane> AS <dat at ype>

The array can be either a nested table or avar r ay.

A varray is an array of varying size, thus the name "var r ay". Avarr ay has an
ordered set of data elements. All elements of a given var r ay are of the same
datatype. Each element has an index, which is a number corresponding to the
element’s position in the var r ay. The number of elements in avar r ay is the size of

Oracle Extensions 4-87



Working with Arrays

the var r ay. You must specify a maximum size when you declare the array type.
For example:

CREATE TYPE nyNunType AS VARRAY(10) CF NUVBER

This statement defines nyNuniTy pe as a SQL type name that describes a var r ay of
NUMBERs that can contain no more than 10-elements.

A nested table is an unordered set of data elements, all of the same datatype. It has
a single column, and the type of that column is a built-in type or an object type. If
the table is an object type, it can also be viewed as a multi-column table, with a
column for each attribute of the object type. Create a nested table with this SQL
syntax:

CREATE TYPE nyNunii st AS TABLE CF integer;

This statement identifies myNumLi st as a SQL type name that defines the table type
used for the nested tables of the type i nt eger.

The remainder of this section describes how to access and update array data. For
general information about the or acl e. sql . ARRAY class, including how to
manually create array objects, see "Class oracle.sql. ARRAY" on page 4-14. For a
complete code example of creating a table with an array column, then manipulating
and printing the contents, see "Array Sample" on page 7-16.

Retrieving an Array and its Elements

When you retrieve an array you get an or acl e. sql . ARRAY object where each
array element can be returned as a materialized Java array object or as a result set
object.

You can retrieve a SQL array that has been selected into a result set by casting the
result set to an Or acl eResul t Set object and using the get ARRAY() method,
which returns an or acl e. sgl . ARRAY object. If you want to avoid casting the
result set, you can get the data with the get Obj ect () method of the

oracl e. sqgl . Resul t Set class, then cast the output to or acl e. sql . ARRAY.

Once you have the array in an ARRAY object, you can retrieve the data using one of
these three overloaded methods of the or acl e. sgl . ARRAY class:

« getArray()
« getOracl eArray()
« getResultSet()

4-88 JDBC Developer’'s Guide and Reference



Working with Arrays

Oracle provides versions of these methods that enable you to specify a type map so
you can choose how you want your SQL datatypes to map to Java datatypes. Oracle
also provides methods that enable you to retrieve all of an array’s elements or a
subset of the array (but note, there is no performance advantage in retrieving a
subset of an array as opposed to retrieving the entire array).

Note: Beginning in release 8.1.5, arrays are indexed from 1. In
previous releases, arrays were indexed from 0.

getArray() Method: The get Array() method retrieves the element values of the
array intoaj ava. | ang. Qbj ect[] array. The elements are converted to the Java
types corresponding to the SQL type of the data in the original array.

The get Array() materializes the data as an array of or acl e. sql . * objects and
does not use a type map. Oracle also provides aget Arr ay( map) method to let you
specify a type map and a get Array(i ndex, count) method to retrieve a subset
of the array.

getOracleArray() Method: The get Or acl eArray() method retrieves the element
values of the array into a Dat uni ] array. The elements are converted to the

oracl e. sqgl . * datatype corresponding to the SQL type of the data in the original
array.

Note: Theget Oracl eArray() method is an Oracle-specific
extension and does not belong to the or acl e. j dbc2. ARRAY JDBC
2.0 interface.

The get Or acl eArray() method materializes the data as an array of
oracl e. sqgl . * objects and does not use the type map. Oracle also provides the
get Oracl eArray(i ndex, count).

getResultSet() Method: The get Resul t Set () method returns a result set that
contains elements of the array designated by the ARRAY object. The result set
contains one row for each array element, with two columns in each row. The first
column stores the index into the array for that element and the second column
stores the element value. In the case of var r ays, the index represents the position
of the element in the array. In the case of nested tables, which are by definition
unordered, the index reflects only the return order of the elements in the particular

query.

Oracle Extensions 4-89



Working with Arrays

Oracle recommends that you use get Resul t Set () when getting data from nested
tables. Nested tables can have an unlimited number of elements. The Resul t Set
object returned by the method initially points at the first row of data. You get the
contents of the nested table by using the next () method and the appropriate

get XXX() method. In contrast, get Array() returns the entire contents of the
nested table at one time.

The get Resul t Set () method uses the connection’s default type map to
determine the mapping between the SQL type of the Oracle object and its
corresponding Java datatype. If you do not want to use the connection’s default
type map, another version of the method, get Resul t Set ( map) , enables you to
specify an alternate type map.

Oracle also provides the get Resul t Set (i ndex, count) and
get Resul t Set (i ndex, count, map) methods to retrieve a subset of the array.

Retrieving All of an Array’s Elements

If you use get Array() to retrieve an array of primitive datatypes, then a

j ava. |l ang. Qbj ect that contains the element values is returned. The elements of
this array are of the Java type corresponding to the SQL type of the elements. For
example,

B glecinal [] val ues=(BigDecinal []) intAray.getArray();

where i nt Array isan or acl e. sql . ARRAY, corresponding to avarr ay of type
NUVBER. The val ues array contains an array of elements of type

j ava. mat h. Bi gDeci nmal because the SQL NUMBER datatype maps to Java

Bi gDeci mal by default according to the Oracle JDBC drivers.

Similarly, if you use get Resul t Set () to return an array of primitive datatypes,
then the JDBC drivers return a Resul t Set object that contains, for each element,
the index into the array for the element and the element value. For example:

Result Set rset= intArray. get Resul t Set();
In this case, the result set contains one row for each array element, with two

columns in each row. The first column stores the index into the array; the second
column stores the Bi gDeci mal element value.

Retrieving Array Elements According to a Type Map

By default, if you use get Array() orget Resul t Set (), then the Oracle objects in
the array will be mapped to their corresponding Java datatypes according to the

4-90 JDBC Developer’s Guide and Reference



Working with Arrays

default mapping. This is because these methods use the connection’s default type
map to determine the mapping.

However, if you do not want default behavior, then you can use the

get Array(map) or get Resul t Set (map) method to specify a type map that
contains alternate mappings. If there are entries in the type map corresponding to
the Oracle objects in the array, then each object in the array is mapped to the
corresponding Java type specified in the type map. For example:

(pj ect[] object = ((oj ect[])obj Array. get Array(nap);

where obj Array isan or acl e. sql . ARRAY objectand map isaj ava. util. Map
object.

If the type map does not contain an entry for a particular Oracle object, then the
element is returned as an or acl e. sql . STRUCT.

The get Resul t Set ( nap) method behaves in a similar manner to
get Array(nap) .

For more information on using type maps with arrays, see "Using a Type Map to
Map Array Elements" on page 4-94.

Retrieving a Subset of an Array’s Elements

To retrieve a subset of the array, you can pass in an index and a count to indicate
where in the array you want to start and how many elements you want to retrieve.
As described above, you can specify a type map or use the default type map for
your connection to convert to Java types. For example:

(bj ect obj ect
(bj ect obj ect

arr.get Array(i ndex, count, nap);
arr.get Array(i ndex, count);

Similar examples using get Resul t Set () are:

Result Set rset = arr.get Resul t Set (i ndex, count, nap);
Resul t Set rset= arr.get Resul t Set (i ndex, count);

A similar example using get Or acl eArray() is:

Datumarr = arr.get Oacl eAray(index, count);

where arr isan or acl e. sql . ARRAY object, i ndex is type | ong, count is type
int,andmapisaj ava. util . Map object.

Oracle Extensions 4-91



Working with Arrays

Retrieving an Array as an oracle.sql.Datum

Use get Oracl eArray() toreturnanoracl e. sql . Dat un] array. The elements
of the returned array will be of the or acl e. sql . * type that correspond to the SQL
datatype of the SQL array elements. For example,

Datumarraydata]] = arr.getQacl eAray();

where arr isan or acl e. sql . ARRAY object. For an example of retrieving an array
and its contents, see "Array Sample" on page 7-16.

Example: Getting and Printing an Array of Primitive Datatypes from a Result Set The
following example assumes that a connection object conn and a statement object

st nt have already been created. In the example, an array with the SQL type name
num ar r ay is created to store a var r ay of NUMBER data. The num_ ar r ay is in turn
stored in atable varray_t abl e.

A query selects the contents of the var r ay_t abl e. The result set is cast to an
O acl eResul t Set object; get ARRAY( ) is applied to it to retrieve the array data
into my_ar r ay, which is an object of type or acl e. sql . ARRAY.

Because my_ar r ay is of type or acl e. sql . ARRAY, you can apply the methods
get SQLTypeNane() and get BaseType() to it to return the name of the SQL type
of each element in the array and its integer code.

The program then prints the contents of the array. Because the contents of

my_arr ay are of the SQL datatype NUMBER, it must first be cast to the Bi gDeci nmal
datatype. In the f or loop, the individual values of the array are cast to

Bi gDeci mal and printed to standard output.

stnt. execute ("CREATE TYPE numvarray AS VARRAY(10) CF NNMBER(12, 2)");
st . execute ("CREATE TABLE varray_table (col 1 numvarray)");
stm.execute ("I NSERT INTOvarray_tabl e VALUES (numvarray(100, 200))");

Resul t Set rs = stnt. execut eQuery(" SELECT * FROMvarray_tabl e");
ARRAY ny_array = ((Qacl eResul t Set)rs). get ARRAY(1) ;

/] return the SQL type nanes, integer codes,

/1 and lengths of the col ums

Systemout.printin ("Array is of type " + array.get SQLTypeNane());
Systemout.printin ("Array elenent is of type code " + array. get BaseType());
Systemout.printin ("Array is of length " + array.length());

/] get Array elenents
BigDecinal [] val ues = (BigDecinal []) ny_array.getArray();

4-92 JDBC Developer’s Guide and Reference



Working with Arrays

for (int i=0; i<values.length; i++)

{
Bi gDeci mal out _val ue = (BigbDeci nal ) val ues[i];
Systemout.printIn(">>index " +i +" =" + out_val ue.intVal ue());

{

Note that if you use get Resul t Set () to obtain the array, you would first get the
result set object, then use the next () method to iterate through it. Notice the use of
the parameter indexes in the get | nt () method to retrieve the element index and
the element value.

Result Set rset = ny array. get Resul t Set ();
vhile (rset.next())

{

/!l The first colum contains the el enent i ndex and the

/1 second col um contai ns the el enent val ue

Systemout.printIn(">> index " + rset.getlnt(1)+" =" + rset.getlnt(2));
h

Passing an Array to a Prepared Statement

Pass an array to a prepared statement as follows (use similar steps to pass an array
to a callable statement):

1. Constructan ArrayDescri pt or object for the SQL type that the array will
contain (unless one has already been created for this SQL type). See "Class
oracle.sql. ARRAY" on page 4-14 for information about creating
ArrayDescri pt or objects.

ArrayDescriptor descriptor = ArrayDescri ptor. creat eDescri ptor (sgl _t ype_nane,
connection);

where sql _t ype_nane is a Java string specifying the user-defined SQL type
name of the array, and connect i on is your Connect i on object. See "Working
with Arrays" on page 4-87 for information about SQL typenames.

2. Define the array that you want to pass to the prepared statement as an
oracl e. sqgl . ARRAY object.

ARRAY array = new ARRAY(descriptor, el enents);

where descri pt or isthe ArrayDescri pt or object previously constructed
and el ement s isaj ava. | ang. Obj ect containing a Java array of the
elements. These objects are converted to raw bytes of the appropriate SQL type.

Oracle Extensions 4-93



Working with Arrays

3. Createaj ava. sql . Prepar edSt at ement object containing the SQL
statement to execute.

4. Cast your prepared statement to an Or acl ePr epar edSt at enent and use the
set ARRAY() method of the Or acl ePr epar edSt at enent object to pass the
array to the prepared statement.

(O acl ePrepar edSt at enent ) st mi . set ARRAY( par anet er | ndex, array);

where par anet er | ndex is the parameter index, and ar r ay is the
oracl e. sqgl . ARRAY object you constructed previously.

5. Execute the prepared statement.

Note: You can use arrays as either | Nor OUT bind variables.

Passing an Array to a Callable Statement

To retrieve a collection as an OUT parameter in PL/SQL blocks, do the following to
register the bind type for your OUT parameter.

1. Castyour callable statement to an Or acl eCal | abl eSt at enent :

Q acl eCal | abl eS atenent ocs =
(O acl eCl | abl et at enent ) conn. prepareCal | ("{? = call func()}")

2. Register the QUT parameter with this form of the r egsi t er Qut Par anet er ()
method:

ocs. regi sterQut Paraneter (i nt paramindex, int sql _type, string
sql _type_nane);

where par am i ndex is the parameter index, sgl _t ype is the SQL type code,
and sqgl _t ype_nane is the name of the array type. In this case, the sql _t ype
isOracl eTypes. ARRAY.

3. Execute the query:

ocs. execut eQuery()
Using a Type Map to Map Array Elements

If your array contains Oracle objects, then you can use a type map to associate each
object in the array with its corresponding Java class. If you do not specify a type

4-94 JDBC Developer’s Guide and Reference



Working with Arrays

map or if the type map does not contain an entry for a particular Oracle object, then
the element is returned as an or acl e. sql . STRUCT.

If you want the type map to determine the mapping between the Oracle objects in
the array and their associated Java classes, then you must add them to the type map
if they are not already there. For instructions on how to add entries to an existing
type map or how to create a new type map, see "Understanding Type Maps" on
page 4-66.

The following example illustrates how you can use a type map to map the elements
of an array to a custom Java object class. In this case, the array is a nested table. The
example begins by defining an EMPLOYEE object that has a name attribute and
employee number attribute. EMPLOYEE LI ST is a nested table type of EMPLOYEE
objects. Then an EMPLOYEE_TABLE is created to store the names of departments
within a corporation and the employees associated with each department. In the
EMPLOYEE_TABLE, the employees are stored in the form of EMPLOYEE_LI ST
tables.

st . execut e(" CREATE TYPE EMPLOYEE AS CRIECT( EnpNane VARCHARZ(50), Enphb
INTEER)");

st . execut e(" CREATE TYPE EMPLOYEE LI ST AS TABLE OF EMPLOYEE');

st . execut e(" CREATE TABLE EMPLOYEE TABLE ( Dept Nanme VARCHAR2(20), Enpl oyees
BEMPLOYEE LI ST) NESTED TABLE Enpl oyees STCRE AS ntabl el");

stnt. execut ("1 NSERT | NTO EMPLOYEE TABLE VALLES ("SALES',
EMPLOYEE._LIST(EMPLOYEE(Susan Smith, 123), EMPLOYEE(Scott Tiger, 124)))'):

If you want to select all of the employees belonging to the SALES department as the
custom Java object Enpl oyeebj , then you must create a mapping in the type map
between the EMPLOYEE SQL type and the Enpl oyeeObj custom Java object class.

To do this, first create your statement and result set objects, then select the
EMPLOYEE_LI ST associated with the SALES department into the result set. Cast the
result set to Or acl eResul t Set so that the get ARRAY() method can retrieve the
EMPLOYEE_LI ST object into the enpl oyeeAr r ay object.

Oracle Extensions 4-95



Working with Arrays

Note: The Enpl oyeeObj custom Java object type in this example
implements the SQLDat a interface. "Creating the Custom Java
Class" on page 7-21 contains the code that creates the

Enpl oyeeObj type.

Satenment s = conn. createSatenent();
QacleResultSet rs = (O acl eResul t Set)
s. execut eQuery(" SELECT Enpl oyees FROM enpl oyee_tabl e
WHERE DeptName ="SALES"),

Il getthe aray object
ARRAY employeeArray = ((OracleResultSet)rs).getARRAY(L);

Now that you have the EMPLOYEE LI ST object, get the existing type map and add
an entry that maps the EMPLOYEE SQL type to the Enpl oyeeCbj Java type.

Il add type map entry to map SQL type

/"EMPLOYEE" o Java type "EmployeeObj"

Dictionary map = conn.getTypeMap();
map.put('EMPLOYEE", Class forName("EmployeeOhj");

Retrieve the SQL EMPLOYEE objects from the EMPLOYEE LI ST. To do this, apply
the get Array() method of the or acl e. j dbc2. Arr ay class to enpl oyeeArr ay.
This method returns an array of objects. The get Array() method returns the
EMPLOYEE objects into the enpl oyees object array.

Il Retrieve array elements

Object]] employees = (Object]]) employeeArray.getArray();

Finally, create a loop to assign each of the EMPLOYEE SQL objects to the
Enpl oyeeObj Java object enp.

I Each array element is mapped to EmployeeOhbj object.
for (int i=0; ikemployees.length; i++)
{
EmployeeObj emp = (EmployeeObj) employees]ij;

}

4-96 JDBC Developer’s Guide and Reference



Additional Oracle Extensions

Additional Oracle Extensions
This section has the following subsections:
« Performance Extensions
« Additional Type Extensions

This section describes Oracle extensions not related to datatypes in the JDBC 2.0
specification. This consists of additional datatype extensions as well as performance
extensions.

Performance Extensions

Oracle JDBC drivers support these extensions that improve performance by
reducing round trips to the database:

« Prefetching rows reduces round trips to the database by fetching multiple rows
of data each time data is fetched; the extra data is stored in client-side buffers
for later access by the client. The number of rows to prefetch can be set as
desired.

« Batching updates also reduces round trips to the database, saving on the client
side a number of updates that are to be made, and then going to the database
once to execute all the updates.

« Specifying column types gets around an inefficiency in the usual JDBC protocol
for performing and returning the results of queries.

= Suppressing database metadata TABLE REMARKS columns avoids an expensive
outer join operation.

Oracle supports several extensions to connection properties objects to support these
performance extensions. The properties object extensions enable you to set the

r emar ksReporti ng flag and default values for prefetching and update-batching.
For more information, see "Oracle Extensions for Connection Properties" on

page 4-109.

Note: The prefetching and batch update extensions were designed
prior to the announcement of the JDBC 2.0 standard. They do not
match JDBC 2.0.

Oracle Extensions 4-97



Additional Oracle Extensions

Row Prefetching

Oracle JDBC drivers allow you to set the number of rows to prefetch into the client
while a result set is being populated during a query. This feature reduces the
number of round trips to the server.

Standard JDBC receives the result set one row at a time, and each row requires a
round trip to the database. The row prefetching feature associates an integer
row-prefetch setting with a given statement object. JDBC fetches that number of
rows at a time from the database during the query. That is, JDBC will fetch N rows
that match the query criteria and bring them all back to the client at once, where N
is the prefetch setting. Then, once your next () calls have run through those N
rows, JDBC will go back to fetch the next N rows that match the criteria.

You can set the number of rows to prefetch for a particular Oracle statement (any
type of statement). You can also reset the default number of rows that will be
prefetched for all statements in your connection. The default number of rows to
prefetch to the client is 10.

Set the number of rows to prefetch for a particular statement as follows:

1. Cast your statement object to an Or acl eSt at enent
O acl ePreparedSt at enent, or O acl eCal | abl eSt at erent object, as
applicable, if it is not already one of these.

2. Use the set RowPr ef et ch() method of the statement object to specify the
number of rows to prefetch, passing in the number as an integer. If you want to
check the current prefetch number, use the get RowPr ef et ch() method of the
Statement object, which returns an integer.

Set the default number of rows to prefetch for all statements in a connection as
follows:

1. Castyour Connect i on object toan Or acl eConnect i on object.

2. Use the set Def aul t RowPr ef et ch() method of your Or acl eConnecti on
object to set the default number of rows to prefetch, passing in an integer that
specifies the desired default. If you want to check the current setting of the
default, then use the get Def aul t RowPr ef et ch() method of the
O acl eConnect i on object. This method returns an integer.

Row Prefetching Limitations There is no maximum prefetch setting, but empirical
evidence suggests that 10 is effective. Oracle does not recommend exceeding this
value in most situations. If you do not set the default row prefetch number for a
connection, 10 is the default.

4-98 JDBC Developer’s Guide and Reference



Additional Oracle Extensions

A statement object receives the default row prefetch setting from the associated
connection at the time the statement object is created. Subsequent changes to the
connection’s default row prefetch setting have no effect on the statement’s row
prefetch setting.

If a column of a result set is of datatype LONGor LONG RAW(that is, the streaming
types), JDBC changes the statement’s row prefetch setting to 1, even if you never
actually read a value of either of those types.

If you use the form of the Dri ver Manager class get Connect i on() method that
takes a Pr opert i es object as an argument, then you can set the connection’s
default row prefetch value that way. See "Specifying a Database URL and Properties
Object" on page 3-6 and "Oracle Extensions for Connection Properties" on

page 4-109 for more information about the Properties object and connection
properties.

Example: Row Prefetching The following example illustrates the row prefetching
feature. It assumes you have imported the or acl e. j dbc. dri ver. * classes.

Gonnection conn =
Dri ver Manager . get Gonnecti on("j dbc: oracl e: oci 8: ", "scott", "tiger");

/1Set the default row prefetch setting for this connection
(( QO acl eConnect i on) conn) . set Def aul t RowPr ef et ch(7) ;

/* The follow ng statement gets the default row prefetch val ue for
the connection, that is, 7.

*/

Satenent stmt = conn.createStatenent();

/* Subsequent statenents | ook the sane, regardl ess of the row
prefetch value. Only execution tine changes.

*/

Resul t Set rset = stm. execut eQuiery(" SELECT enane FROM enp");

Systemout. printin( rset.next () );

while( rset.next () )
Systemout. printin( rset.getSring (1) );

[/ Querride the default row prefetch setting for this statenent
( (QacleSatenent)stnm ).set RowPrefetch (2);

Resul t Set rset = stm.executeQiery("SELECT enane FROM enp");
Systemout. printIn( rset.next () );

Oracle Extensions 4-99



Additional Oracle Extensions

whil e( rset.next() )
Systemout. printin( rset.getSring (1) );

stnt. close();

Database Update Batching

Oracle JDBC drivers allow you to accumulate inserts and updates of prepared
statements at the client and send them to the server in batches, reducing round trips
to the server. You might want to do this when you are repeating the same statement
with different bind variables.

Normally JDBC makes a round trip to the database to execute a prepared statement
whenever the statement’s execut eUpdat e() method is called. The Oracle
update-batching feature, however, associates a batch value with each prepared
statement object. Oracle JDBC accumulates execution requests for the prepared
statement, then automatically passes them all to the database for execution once the
batch value is reached.

Update Batching Limitations You can use update batching with

Cal | abl eSt at enment s except when the Cal | abl eSt at enent has OQUT
parameters. In this case, the driver automatically overrides any previous batch
value and resets it to 1.

Do not use the addBat ch() and execut eBat ch() methods of the JDBC 2.0
Pr epar edSt at enent interface. These methods are not consistent with the
functionality offered by the methods associated with the

O acl ePrepar edSt at enent .

Regardless of the batch value of an Oracle prepared statement, if any of the bind
variables of the statement is (or becomes) a streaming type, then JDBC sets the batch
value to 1 and sends any queued requests to the database for execution.

JDBC automatically executes the statement’s sendBat ch() method whenever the
connection receives a commit request, the statement receives a close request, or the
connection receives a close request.

If you use the form of the Dri ver Manager .get Connect i on() method that takes
aProperti es object as an argument, then you can set the connection’s default
batch value in the object. See "Oracle Extensions for Connection Properties" on
page 4-109 for more information about Pr operti es objects.

The default batch update value is 1.

4-100 JDBC Developer’s Guide and Reference



Additional Oracle Extensions

Setting Update Batch Value for Individual Statements You can set the batch value for any
individual Oracle prepared statement by applying it to the

O acl ePr epar edSt at enent object. The batch value that you set for an
individual statement overrides the value set for the connection. You can also set a
default batch value that will apply to any Oracle prepared statement in your Oracle
connection by applying it to the Or acl eConnect i on object.

Follow these steps to apply the Oracle batch value feature for a particular prepared
statement:

1.

Write your prepared statement and specify input values for the first row:

PreparedStat enent ps = conn. prepareStat enent ("1 NSERT | NTO dept  VALUES
(2.2,7)");

ps.setint (1,12);

ps.setSring (2,"Qacle");

ps.setSring (3,"UA");

Cast your prepared statement to an Or acl ePr epar edSt at enent object and
apply the set Def aul t Execut eBat ch() method. In this example, the default
batch size of the statement is set to 2.

((QO acl ePrepar edSt at enent ) ps) . set Def aul t Execut eBat ch( 2) ;

If you wish, insert the get Execut eBat ch() method at any point in the
program to check the default batch value for the statement:

SystemoutPrintln (" Satenment Execute Batch Value " +
((C acl ePreper edSt at enent ) ps) . get Execut eBat ch() ) ;

If you send an execute update statement to the database at this point, then no
data will be sent to the database. Instead, a call to execut eUpdat e() will
return 0.

/l No data is sent to the database by this call to executelpdate
Systemout. println ("Nurber of rows updated so far: "
+ ps. execut elpdate ());

If you enter a set of input values for a second row and an execute update, then
the number of batch calls to execut eUpdat e() will be equal to the batch
value of 2. The data will be sent to the database and both rows will be inserted
in a single round trip.

ps.setint (1, 11);
ps.setSXring (2, "Applications");
ps.setSring (3, "lndonesia");

Oracle Extensions 4-101



Additional Oracle Extensions

int rows = ps. executelpdate ();
Systemout. println ("Nunber of rows updated now " + rows);

ps. close ();

Overriding the Default Batch Update Value If you want to execute accumulated
statements before the batch value is reached, then use the sendBat ch() method of
the Or acl ePr epar edSt at enent object. For example:

1.

Cast your connection to an Or acl eConnect i on object and apply the
set Def aul t Execut eBat ch() method for the connection. This example sets
the default batch for all statements in the connection to 50.

((Q acl eConnect i on) conn) . set Def aul t Execut eBat ch (50) ;

Write your prepared statement and specify input values for the first row as
usual, then execute the statement:

PreparedStatenent ps =

conn. prepareStatenent ("insert into dept values (?, ?, ?");

ps.setint (1, 32);
ps.setSring (2, "Qacle");
ps.setSring (3, "UWSA");

Systemout. println (ps. executelpdate ());
The execute update does not happen at this point. The ps. execut eUpdat e()
method returns "0".

If you enter a set of input values for a second row and an execut eUpdat e( ),
the data will still not be sent to the database since the batch default value for the
statement is the same as for the connection: 50.

ps.setint (1, 33);
ps.setSring (2, "Applications");
ps.setSring (3, "lndonesia");

/] this execute does not actually happen at this point
int rows = ps. executelbdate ();

Systemout. println ("Nunber of rows updated before calling sendBatch: "
+ rows);

Note that the value of r ows in the pri nt | n statement is "0".

4-102 JDBC Developer’s Guide and Reference



Additional Oracle Extensions

4. If you apply the sendBat ch() method at this point, then the two previously
batched executes will be sent to the database in a single round trip. The
sendBat ch() method also returns the number of updated rows. This property
of sendBat ch() is used by pri nt | n to print the number of updated rows.

/1 Execution of both previously batched executes w |l happen
[l at this point. The nunber of rows updated wll be

/1 returned by sendBatch.

rows = (( O acl ePreparedSt at enent ) ps) . sendBat ch () ;

Systemout. println ("Nunber of rows updated by calling sendBatch: "
+ rows);

ps.close ();

Setting Update Batch Value for the Connection You can specify a default batch value for
any Oracle prepared statement in your Oracle connection. To do this, set the

set Def aul t Execut e() method on the Or acl eConnect i on object. For example,
the following statement sets the default batch value for all prepared statements
belonging to the conn connection object to 20:

(( QG acl eConnect i on) conn) . set Def aul t Execut eBat ch( 20) ;
Even though this sets the default batch value for all of the prepared statements

belonging to the connection, you can override it by calling set Def aul t Bat ch()
on individual statements.

Checking Batch Value The get Execut eBat ch() method enables you to check the
current setting of the default batch value for a specific Oracle prepared statement
object or for all of the prepared statements that belong to the Oracle connection. For
example:

Integer batch_val = ((Q acl ePrepared at enent ) ps) . get Execut eBat ch() ;

OR
Integer batch_val = ((Q acl ennection)conn). get Def aul t Execut eBat ch() ;
Example: Update Batching The following example illustrates how you use the Oracle

update batching feature. It assumes you have imported the
oracl e.jdbc.driver.* classes.

Gonnecti on conn =
Dri ver Manager . get Connecti on("j dbc: oracl e: oci 8: ", "scott", "tiger");

Oracle Extensions 4-103



Additional Oracle Extensions

PreparedStatenent ps =
conn. prepareStatenent ("insert into dept values (?, 2, ?)");

/] Change batch size for this statenent to 3
((QO acl ePrepar edSt at enent ) ps) . set Execut eBatch (3);

ps.setint(1, 23);

ps.setSring(2, "Sales");

ps.setXring(3, "UA");

ps. execut elpdat e(); //JDBC queues this for later execution

ps.setint(1l, 24);

ps.setSring(2, "B ue Sky");

ps.set Sring(3, "Mntana");

ps. execut elpdat e(); //JDBC queues this for later execution

ps.setint(1, 25);

ps.setSring(2, "Applications");

ps.setSring(3, "India");

ps. execut elpdat e(); //The queue size equal s the batch val ue of 3
/1 JDBC sends the requests to the database

ps.setint(1, 26);

ps.setSring(2, "HR');

ps.set Sring(3, "Mngolia");

ps. execut elpdat e(); //JDBC queues this for later execution

((QO acl ePrepar edSt at enent ) ps) . sendBat ch() ;

/1 JDBC sends t he queued request
ps. cl ose();

4-104 JDBC Developer’s Guide and Reference



Additional Oracle Extensions

Notes:

« Each statement has its own batch count. Only executes on a
particular statement add to the batch count.

« Updates deferred through batching can affect the results of
other queries. In the following example, if the first query is
deferred due to batching, then the second will return
unexpected results:

UPDATE enp SET nane = "Sue" WHERE nane = "Bob";
SH ECT nane FRCM enp WHERE nane = " Sue";

Redefining Column Types

Oracle JDBC drivers enable you to inform the driver of the types of the columns in
an upcoming query, saving a round trip to the database that would otherwise be
necessary to describe the table.

When standard JDBC performs a query, it first uses a round trip to the database to
determine the types that it should use for the columns of the result set. Then, when
JDBC receives data from the query, it converts the data, as necessary, as it populates
the result set.

When you specify column types for a query, you avoid the first round trip to the
database. The server, which is optimized to do so, performs any necessary type
conversions.

Redefining Column Types Limitations To use this feature, you must specify a datatype
for each column of the expected result set. If the number of columns for which you
specify types does not match the number of columns in the result set, the process
fails with a SQLExcept i on.

You cannot define column types for objects or object references.
Redefining Column Types for a Query Following these general steps to redefine column
types for a query:

1. Castyour statement object to an Or acl eSt at enent ,
O acl ePrepar edSt at enent, or O acl eCal | abl eSt at erent object, as
applicable, if it is not already one of these.

2. If necessary, use the cl ear Def i nes() method of your St at enent object to
clear any previous column definitions for this St at enment object.

Oracle Extensions 4-105



Additional Oracle Extensions

3. Determine the following for each column of the expected result set:
« column index (position)

= code for the type of the expected return data (which can differ from the
column type)

This is according to or acl e. j dbc. dri ver. Oracl eTypes for
Oracle-specific types, and according to either j ava. sql . Types or

O acl eTypes for standard types (constants for standard types have the
same value in Types and O acl eTypes).

4. For each column of the expected result set, invoke the def i neCol umType(),
method of your St at enent object, passing it these parameters:

« column index (integer)
= type code (integer)

Use the static constants of the j ava. sql . Types class or, for
Oracle-specific types, the static constants of the

oracl e.jdbc.driver. Oracl eTypes class (such as Types. | NTEGER,
Types. FLOAT, Types. VARCHAR Or acl eTypes. VARCHAR, and

O acl eTypes. RON D.).

« (optionally) maximum field size (integer)
For example, assuming st m is an Oracle statement, use this syntax:

st . def i neGol umType( col um_i ndex, type);

OR

st nt. def i neCol umType( col um_i ndex, type, nax_size);

Set maximum field size if you do not want to receive the full default length of
the data. Less data than this maximum size will be returned if the maximum
field size is set to a smaller value using the set MaxFi el dSi ze() method of
the standard JDBC St at enent class, or if the natural maximum size of the
datatype is smaller. Specifically, the size of the data returned will be the
minimum of:

— the maximum field size set in def i neCol umType() or
— the maximum field size set in set MaxFi el dSi ze() or

— the natural maximum size of the datatype

4-106 JDBC Developer’s Guide and Reference



Additional Oracle Extensions

Once you complete these steps, use the statement’s execut eQuer y() method to
perform the query.

Example: Defining Column Types The following example illustrates the use of this
feature. It assumes you have imported the or acl e. j dbc. dri ver. * classes.

Gonnecti on conn =
Dri ver Manager . get Gonnecti on("j dbc: oracl e: oci 8: ", "scott", "tiger");

Satenent stnt = conn.createSatenent();

[*Ask for the colum as a string:

*Avoid a round trip to get the colum type.

*Convert fromnunber to string on the server.

*/

((Cacletatenent)stnt). defi neCol umType(1, Types. VARCHAR) ;

Resul t Set rset = stm. execut eQuery("sel ect enpno fromenp");

vhile (rset.next() )
Systemout. println(rset.getSring(l));

stnt.close();

As this example shows, you must cast the statement (st nt ) to type

O acl eSt at erent in the invocation of the def i neCol utmType() method. The
connection’s cr eat eSt at enent () method returns an object of type

j ava. sql . St at enent, which does not have the def i neCol umType() and

cl ear Def i nes() methods. These methods are provided only in the

O acl eSt at enrent implementation.

The define-extensions use JDBC types to specify the desired types. The allowed
define types for columns depend on the internal Oracle type of the column.

All columns can be defined to their "natural” JDBC types; in most cases, they can be
defined to Types. CHARor Types. VARCHAR

Table 4-6 lists the valid column definition arguments you can use in the
defi neCol umType() method.

Oracle Extensions 4-107



Additional Oracle Extensions

Table 4—-6 Valid Column Type Specifications

If the column has Oracle You can use defineColumnType()

SQL type: to redefine it as:

NUMBER, VARNUM BIGINT, TINYINT, SMALLINT, INTEGER, FLOAT, REAL,
DOUBLE, NUMERIC, DECIMAL, CHAR, VARCHAR

CHAR, VARCHAR?2 CHAR, VARCHAR

LONG CHAR, VARCHAR, LONGVARCHAR

LONGRAW LONGVARBINARY, VARBINARY, BINARY

RAW VARBINARY, BINARY

DATE DATE, TIME, TIMESTAMP, CHAR, VARCHAR

ROWID ROWID

DatabaseMetaData TABLE_REMARKS Reporting

The get Col ums(), get Procedur eCol umms( ), get Procedur es(), and

get Tabl es() methods of the database metadata classes are slow if they must
report TABLE _REMARKS columns, because this necessitates an expensive outer join.
For this reason, the JDBC driver does not report TABLE REMARKS columns by
default.

You can enable TABLE REMARKS reporting by passing a TRUE argument to the
set Remar ksReporti ng() method of an Or acl eConnect i on object.

If you are using a standard j ava. sql . Connect i on object, you must cast it to
O acl eConnecti on to use set Remar ksReporti ng() .

Example: TABLE_REMARKS Reporting Assuming conn is the name of your standard
Connect i on object, the following statement enables TABLE REMARKS reporting.

( (oracle.jdbc.driver.Qacl eGnnection)conn ). set Renar ksReporting(true);

Considerations for getProcedures() and getProcedureColumns() Methods According to
JDBC versions 1.1 and 1.2, the methods get Pr ocedur es() and

get Procedur eCol utms() treat the cat al og, schenaPat t er n,

col unmNanePat t er n and pr ocedur eNanePat t er n parameters in the same way.
In the Oracle definition of these methods, the parameters are treated differently:

« cat al og: Oracle does not have multiple catalogs, but it does have packages.
Consequently, the cat al og parameter is treated as the package name. This

4-108 JDBC Developer’s Guide and Reference



Additional Oracle Extensions

applies both on input (the cat al og parameter) and output (the cat al og
column in the returned Resul t Set ). On input, the construct" " (the empty
string) retrieves procedures and arguments without a package, that is,
stand-alone objects. A nul | value means to drop from the selection criteria, that
is, return information about both stand-alone and packaged objects (same as
passing in "%). Otherwise the cat al og parameter should be a package name
pattern (with SQL wild cards, if desired).

« schenmaPat t er n: All objects within Oracle must have a schema, so it does not
make sense to return information for those objects without one. Thus, the
construct" " (the empty string) is interpreted on input to mean the objects in
the current schema (that is, the one to which you are currently connected). To be
consistent with the behavior of the cat al og parameter, nul | is interpreted to
drop the schema from the selection criteria (same as passing in "%). It can also
be used as a pattern with SQL wild cards.

« procedur eNanePatt er n and col unmNanePat t er n: The empty string (" ")
does not make sense for either parameter, because all procedures and
arguments must have names. Thus, the construct" " will raise an exception. To
be consistent with the behavior of other parameters, nul | has the same effect as
passing in "%.

Oracle Extensions for Connection Properties
One of the forms of the Dr i ver Manager . get Connect i on() method enables you
to specify a URL and a properties object:

get Gonnection(String UR., Properties info);

where the URL is of the form:

j dbc: or acl e: <dri vert ype>. @dat abase>

In addition to the URL, you use an object of the standard Java Pr operti es class as
input. For example:

java.util.Properties info = newjava. util.Properties();
info.put ("user", "scott");

info.put ("password","tiger");
get Gonnecti on ("j dbc: oracl e:oci 8:",info);

Table 4-7 lists the connection properties that Oracle JDBC drivers support,

including the Oracle extensions for def aul t RowPr ef et ch, r emar ksReporti ng,
and def aul t Bat chVal ue.

Oracle Extensions 4-109



Additional Oracle Extensions

Table 4-7 Connection Properties Recognized by Oracle JDBC Drivers

Short

Name Name Type Description

user N/A String the user name for logging into the
database

password N/A String the password for logging into the database

database server String the connect string for the database;
equivalent to using
set Def aul t RowPr ef et ch()

defaultRowPrefetch prefetch Integer  the default number of rows to prefetch
from the server. The default value is 10.

remarksReporting remarks Boolean trueif get Tabl es() and
get Col ums() should report
TABLE_REMARKS; equivalent to using
set Remar ksReporting().The
default value is false.

defaultBatchValue batchvalue Integer  the default batch value that triggers an

execution request. The default value is 10.

The following example shows how to use thej ava. uti |l . Properties. put ()
method to set performance extension options before connection to the database.

/linport packages and register the driver

inport java.sql.*;

inport java.math. *;

Dri ver Manager . regi sterDriver (new oracle.jdbc.driver.Oaclelxiver());

/Il specify the properties object

java.util.Properties info = newjava. util.Properties();
i nfo.put("user", "scott");

i nfo.put ("password', "tiger");

i nfo.put ("defaul t RowProfetch”,"20");

i nfo.put ("defaul tBatchval ue", 5);

//specify the connection obj ect

Gonnecti on conn = Dri ver Manager . get GConnect i on
("]j dbc: oracl e: t hi n: @at abase", i nfo);

4-110 JDBC Developer’s Guide and Reference



Additional Oracle Extensions

Additional Type Extensions

Oracle JDBC drivers support the Oracle-specific datatypes ROA D and REF CURSOR,
which were introduced in Oracle7 and are not part of the standard JDBC
specification.

ROW Dis supported as a Java string and REF CURSCR as a JDBC result set.

Oracle ROWID Type

A ROW Dis an identification tag that is unique for each row of an Oracle database
table. ROW D can be thought of as a virtual column, containing the ID for each row.

The or acl e. sql . ROW Dclass is supplied as a wrapper for ROA D SQL data.

ROW Ds provide functionality similar to the

j ava. sql . Resul t Set . get Cur sor Nane() and

j ava. sql . St at enent . set Cur sor Nane() JDBC methods, which are not
supported by the Oracle implementation.

If you include the RON D pseudo-column in a query, then you can retrieve the

ROW Ds with the Resul t Set . get Stri ng() method (passing in either the column
index or the column name). You can also bind a RON Dto a Pr epar edSt at enent
parameter with the set St ri ng() method. This allows in-place updates, as in the
example that immediately follows.

Notes:

« Theoracle. sql. RON Dclass replaces
oracl e. jdbc. dri ver. RON D, which was used in previous
releases of Oracle JDBC.

« Refer to the Javadoc for information about features of the
ROW Dclass.

Example: ROWID The following example shows how to access and manipulate RON D
data.

Satenent stnt = conn.createSatenent();

/1 Query the enpl oyee nanes with "FCR UPDATE' to | ock the rows.
/] Select the RONDto identify the rows to be updat ed.

Resul t Set rset =
stnt. execut eQuery ("SELECT enange, rowid FROM enp FCR WPDATE') ;

Oracle Extensions 4-111



Additional Oracle Extensions

/] Prepare a statenment to update the ENAME colum at a gi ven ROND

PreparedStatenent pstnm =
conn. prepareStat enent (" UPDATE enp SET enane = ? WERE rowid = ?");

/1 Loop through the results of the query
vhile (rset.next ())

{
Sring enane = rset.getSring (1);
oracle.sql .RONDrowid =rset.get ROND (2); // Get the ROND as a Sring
pstm.setSring (1, enane.tolLowerCase ());
pstm.setROND (2, rowd); // Pass ROND to the update statenent
pst m . execut elpdat e (); /1 Do the update
}

Oracle REF CURSOR Type Category

A cursor variable holds the memory location (address) of a query work area rather
than the contents of the area. So, declaring a cursor variable creates a pointer. In
SQL, a pointer has the datatype REF x where REF is short for REFERENCE and x
represents the entity that is being referenced. "REF CURSOR", then, identifies a
reference to a cursor variable. Since many cursor variables might exist to point to
many work areas, REF CURSOR can be thought of as a category or "datatype
specifier" that identifies many different cursor variables.

To create a cursor variable, begin by identifying a user-defined type that belongs to
the REF CURSOR category. For example:

DEQLARE TYPE Dept Qursor Typ | S REF ORSCR
Then create the cursor variable by declaring it to be of the user-defined type
Dept Cur sor Typ:

dept _cv DeptQursorTyp - - declare cursor variable

A REF CURSOR, then, is a category of datatype rather than a datatype.

Stored procedures can return user-defined types, or cursor variables, of the REF
CURSOR category. This output is equivalent to a database cursor or a JDBC result
set. A REF CURSOR essentially encapsulates the results of a query.

In JDBC, REF CURSCRs are materialized as Resul t Set objects and can be accessed
like this:

4-112 JDBC Developer’s Guide and Reference



Additional Oracle Extensions

1. Use a JDBC callable statement to call a stored procedure (it must be a callable
statement as opposed to a prepared statement because there is an output
parameter).

2. The stored procedure returns a REF CURSOR

3. TheJava application casts the callable statement to an Oracle callable statement
and uses the get Cur sor () method of the Or acl eCal | abl eSt at enent class
to materialize the REF CURSOR as a JDBC Resul t Set object.

4. The result set is processed as requested.
Example: Accessing REF CURSOR Data This example shows how to access REF
CURSOR data.

inport oracle.jdbc.driver.*;

Call abl eSatenent cstm;
Resul t Set cursor;

/] We a PL/SQ block to open the cursor
cstm = conn. prepareCal |
("begin open ? for select enane fromenp; end;");

cstm.registerQut Paraneter (1, Oacl eTypes. ORSR;
cstm. execute();
cursor = ((OacleCallableSatenent)cstm).getQirsor(l);

/1 Wse the cursor like a normal Resul t Set
whil e (cursor.next ())
{Systemout.printin (cursor.getSring(1));}

In the preceding example:

« AZCallabl eSt at ement object is created by using the pr epar eCal | ()
method of the connection class.

= The callable statement implements a PL/SQL procedure which returns a REF
CURSOR

« Asalways, the output parameter of the callable statement must be registered to
define its type. The Oracle type code to use for a REF CURSCR is
O acl eTypes. CURSOR

« The callable statement is executed, returning the REF CURSOR.

Oracle Extensions 4-113



Additional Oracle Extensions

« TheCal | abl eSt at enent object is cast to an Or acl eCal | abl eSt at enent
object to use the get Cur sor () method, which is an Oracle extension to the
standard JDBC API, and returns the REF CURSOR into a Resul t Set object.

For a full sample application using a REF CURSCR, see "REF CURSOR Sample" on
page 7-14.

4-114 JDBC Developer’s Guide and Reference



Oracle JDBC Notes and Limitations

Oracle JDBC Notes and Limitations

The following limitations exist in the Oracle JDBC implementation, but all are either
insignificant or have easy work-arounds.

CursorName

Oracle JDBC drivers do not support the get Cur sor Nane() and

set Cur sor Narme() methods because there is no convenient way to map them to

Oracle constructs. Oracle recommends using ROW D instead. For more information
on how to use and manipulate ROWIDs, see "Oracle ROWID Type" on page 4-111.

SQL92 Outer Join Escapes

Oracle JDBC drivers do not support SQL92 outer join escapes. Use Oracle SQL
syntax with "(+)" instead. For more information on SQL92 syntax, see "Embedded
SQL92 Syntax" on page 5-26.

PL/SQL TABLE, BOOLEAN and RECORD Types

Oracle JDBC drivers do not support calling arguments or return values of the
PL/SQL TABLE, BOOLEAN, or RECORD types. This is a restriction of the OCI layer.

As a work-around for booleans, you can define an additional PL/SQL stored
procedure that accepts the BOOLEAN argument as a CHAR or NUMBER and passes it
as a BOOLEAN to the original stored procedure. For more information on this topic,
see "Boolean Parameters in PL/SQL Stored Procedures" on page 6-7.

IEEE 754 Floating Point Compliance

The arithmetic for the Oracle NUVBER type does not comply with the IEEE 754
standard for floating-point arithmetic. Therefore there can be small disagreements
between the results of computations performed by Oracle and the same
computations performed by Java.

Oracle stores numbers in a format compatible with decimal arithmetic and
guarantees 38 decimal digits of precision. It represents zero, minus infinity, and plus
infinity exactly. For each positive number it represents, it represents a negative
number of the same absolute value.

It represents every positive number between 10 and (1 - 10-%) * 10'% to full
38-digit precision.

Oracle Extensions 4-115



Oracle JDBC Notes and Limitations

Read-Only Connection

The read-only connection is not supported. There is no Oracle equivalent to the
read-only connection.

Catalog Arguments to DatabaseMetaData Calls

Certain Dat abaseMet aDat a methods define a cat al og parameter. This
parameter is one of the selection criteria for the method. Oracle does not have
multiple catalogs, but it does have packages. For more information on how the
Oracle JDBC drivers treat the cat al og argument, see "DatabaseMetaData
TABLE_REMARKS Reporting" on page 4-108.

SQLWarning Class

Thej ava. sqgl . SQLWar ni ng class provides information on a database access
warning. Warnings typically contain a description of the warning and a code that
identifies the warning. Warnings are silently chained to the object whose method
caused it to be reported. The Oracle JDBC drivers do not support SQLWar ni ng.

For information on how the Oracle JDBC drivers handle errors, see "Error Messages
and JDBC" on page 3-25.

Bind by Name

Bind by name is not supported. Under certain circumstances previous versions of
the Oracle JDBC drivers have allowed binding statement variables by name. In the
following statement, the named variable Enpl d would be bound to the integer
314159.

PreparedStatenent p = conn. prepar e at enent (" SELECT name FROM EVP
WERE id = : Enpld");
p.setint(1, 314159);

The capability is not part of the JDBC specification, either 1.0 or 2.0, and Oracle does
not support it. The JDBC drivers can throw a SQLExcept i on or produce
unexpected results.

Prior releases of the Oracle JDBC drivers did not retain bound values from one call
of execute to the next as specified in JDBC 1.0. Bound values are now retained. For
example:
PreparedStatenent p = conn. prepar e at enent (" SELECT name FROM EVP
WERE id =:? ANDdept =:?");
p.setint(1, 314159);
p.setSring(2, "SALES');

4-116 JDBC Developer’s Guide and Reference



Oracle JDBC Notes and Limitations

ResultSet r1 = p. execute();
p.setint(1, 425260);
Result Set r2 = p. execute();

Previously a SQLExcept i on would be thrown by the second execute since no
value was bound to the second argument. In this release, the second execute will
return the correct value, retaining the binding of the second argument to the string
"SALES".

If the retained bound value is a stream, then the Oracle JDBC drivers will not reset
the stream. Unless the application code resets, repositions, or otherwise modifies
the stream, the subsequent execute calls will send NULL as the value of the
argument.

Oracle Extensions 4-117



Oracle JDBC Notes and Limitations

4-118 JDBC Developer’s Guide and Reference



D

Advanced Topics

This chapter describes advanced JDBC topics, including the following:
« Using NLS

«  Working with Applets

« JDBC on the Server: the Server Driver

« Embedded SQL92 Syntax

Advanced Topics 5-1



Using NLS

Using NLS

This section contains these subsections:
« How JDBC Drivers Perform NLS Conversions
= NLS Restrictions

Oracle’s JDBC drivers support NLS (National Language Support). NLS lets you
retrieve data or insert data into a database in any character set that Oracle supports.
If the clients and the server use different character sets, the driver provides the
support to perform the conversions between the database character set and the
client character set.

For more information on NLS, NLS environment variables, and the character sets
that Oracle supports, see the Oracle8i National Language Support Guide. See the
Oracle8i Reference for more information on the database character set and how it is
created.

Here are a few examples of commonly used Java methods for JDBC that rely heavily
on NLS character set conversion:

« java.sql.ResultSet methodsgetString() and get Uni codeStrean)
return values from the database as Java strings and as a stream of Unicode
characters, respectively.

« oracle.sql.CLOBmethod get Char act er St r ean() returns the contents of
a CLOB as a Unicode stream.

« oracle.sql.CHARmethodsget String(),toString(),and
get Stri ngW t hRepl acenent () convert the following data to strings:

— get String():converts the sequence of characters represented by the
CHAR object to a string and returns a Java St ri ng object.

— toString():identical toget String(), butif the character set is not
recognized, t oSt ri ng() returns a hexadecimal representation of the CHAR
data.

— getStringWthRepl acenent () :identical toget Stri ng(), except
characters that have no Unicode representation in the character set of this
CHAR object are replaced by a default replacement character.

How JDBC Drivers Perform NLS Conversions

The techniques that Oracle’s drivers use to perform character set conversion for
Java applications depend on the character set the database uses. The simplest case is

5-2 JDBC Developer’s Guide and Reference



Using NLS

where the database uses the US7ASCI | or WE8I SG8859P1 character set. In this
case, the driver converts the data directly from the database character set to UCS- 2
which is used in Java applications.

If you are working with databases that employ a non-US7ASCI | or

non-VE8I SOB859P1 character set (for example, Japanese or Korean), then the
driver converts the data, first to UTF- 8, then to UCS- 2. For example, the driver
always converts CHAR and VARCHAR2 data in a non-US7ASCI |,

non-WE8| SCB859P1 character set. It does not convert RAWdata.

Note: The JDBC drivers perform all character set conversions
transparently. No user intervention is necessary for the conversions
to occur.

JDBC OCI Driver and NLS

In the case of a JDBC OCI driver installation, note that there is a client-side character
set as well as a database character set. The client character set is determined at
client-installation time by the value of the NLS_LANGenvironment variable. The
database character set is determined at database creation. The character set used by
the client can be different from the character set used by the database on the server.
So, when performing character set conversion, the JDBC OCI driver has to take
three factors into consideration:

« database character set and language
« client character set and language
« Java applications character set: UCS- 2

The JDBC OCI driver transfers the data from the server to the client in the character
set of the database. Depending on the value of the NLS_LANGenvironment variable,
the driver handles character set conversions in one of two ways.

« Ifthe value of NLS_LANGi s not specified, or if it is set to the US7TASCI | or
VE8I SOB859P1 character set, then the JDBC OCI driver uses Java to convert
the character set from US7ASCI | or WE8I SCB8859P1 directly to UCS- 2.

« Ifthe value of NLS_LANGis set to a non-US7ASCI | or non-WE8I SO8859P1
character set, then the driver changes the value of the NLS_LANG parameter on
the client to UTF- 8. This happens automatically and does not require any
user-intervention. OCI uses the value of NLS_LANGto convert the data from the
database character set to UTF- 8; the JDBC driver then converts the UTF- 8 data
to UCS- 2.

Advanced Topics 5-3



Using NLS

Notes:

« Thedriver sets the value of NLS LANGto UTF- 8 to minimize
the number of conversions it performs in Java. It performs the
conversion from database character set to UTF- 8 in C.

« The change to UTF- 8 is for the JDBC application process only.

« For more information on the NLS_L ANG parameter, see the
Oracle8i National Language Support Guide.

JDBC Thin Driver and NLS

If your applications or applets use the JDBC Thin driver, then there will not be an
Oracle client installation. Because of this, the OCI client conversion routines in C
will not be available. In this case, the client conversion routines are different from
the JDBC OCI driver.

If the database character set is US7ASCI | or WVE8I SOB859P1, then the data is
transferred to the client without any conversion. The driver then converts the
character set to UCS- 2 in Java.

If the database character set is something other than US7ASCI | or VE8I SOB859P1,
then the server first translates the data to UTF- 8 before transferring it to the client.
On the client, the JDBC Thin driver converts the data to UCS- 2 in Java.

Note: The OCI and Thin drivers both provide the same
transparent support for NLS.

Server Driver and NLS

If your JDBC code running in the server accesses the database, then the JDBC Server
driver performs a character set conversion based on the database character set. The
target character set of all Java programs is UCS- 2.

The JDBC Server driver supports the ASCII (US7ASCI | ) and ISO-Latin-1
(WE8I SOB8859P1) character sets only.

5-4 JDBC Developer’s Guide and Reference



Using NLS

Note: The Java VM supports only the English (US7ASCI | ) and
ISO-Latinl (WE8I SOB859P1) character sets.

NLS Restrictions

Data Size Restriction for NLS Conversions

There is a limit to the maximum sizes for CHAR and VARCHARZ datatypes when
used in bind calls. This limitation is necessary to avoid data corruption. This
problem happens only with binds (not for defines) and it affects only CHAR and
VARCHAR?2 datatypes if you are connected to a multi-byte character set database.

The maximum bind lengths are limited in the following way:

CHARs and VARCHARZs experience character set conversions that could result in an
increase in the length of the data in bytes. The ratio between data sizes before and
after a conversion is called the NLS Ratio. After conversion, the bind values should
not be greater than 4 Kbytes (in Oracle8), or 2 Kbytes (in Oracle7).

Table 5—-1 New Restricted Maximum Bind Length for Client-Side Drivers

Server Old Max Bind
Driver Version Datatype Length (bytes) New Restricted Max Bind Length (bytes)
Thinand OCI V8 CHAR 2000 m n( 2000, 4000 / NLS Rati o)
VARCHAR2 4000 (4000 / NLS Ratio)

For example, when connecting to an Oracle8 server, you cannot bind more than:
« mn (2000, 4000 / NLS RATI O for CHARtypes

OR

« 4000 / NLS_RATI Ofor VARCHAR? types

Table 5-2 contains examples of the NLS Ratio and maximum bind values for some
common server character sets.

Table 5-2 NLS Ratio and Size Limits for Common Server Character Sets

Maximum Bind Value on
Server Character Set NLS Ratio Oracle8 Server (in bytes)

WESDEC 1 4000

Advanced Topics 5-5



Using NLS

Table 5-2 NLS Ratio and Size Limits for Common Server Character Sets (Cont.)

Maximum Bind Value on

Server Character Set NLS Ratio Oracle8 Server (in bytes)
US7ASCII 1 4000
1SO 8859-1 through 10 1 4000
JA16SJIS 2 2000
JA16EUC 3 1333

5-6 JDBC Developer’s Guide and Reference



Working with Applets

Working with Applets

This section describes some of the basics about working with applets that use the
JDBC Thin driver. It begins with a simple example of coding a JDBC applet, it then
describes what you must do to allow the applet to connect to a database. This
includes how to use the Oracle8 Connection Manager or signed applets if you are
connecting to a database that is not running on the same host as the web server. It
also describes how your applet can connect to a database through a firewall. The
section concludes with how to package and deploy the applet.

« Coding Applets

« Connecting an Applet to a Database

« Using Applets with Firewalls

« Packaging Applets

« Specifying an Applet in an HTML Page

« Browser Security and JDK Version Considerations

Coding Applets

Except for importing the JDBC interfaces to access JDBC entry points, you write a
JDBC applet like any other Java applet. Depending on whether you are coding your
applet for a JDK 1.1.1 browser or a JDK 1.0.2 browser, there are slight differences in
the code that you use. In both cases, your applet must use the JDBC Thin driver,
which connects to the database with TCP/IP protocol.

If you are targeting a JDK 1.1.1 browser (such as Netscape 4.x or Internet Explorer
4.X), then you must:

« importthej ava. sql package into your program. The j ava. sql package
contains the standard JDBC 1.22 interfaces and is part of the standard JDK 1.1.1
class library.

= register the driver with the or acl e. j dbc. dri ver. Oracl eDri ver () class
and specify the driver name in the connect string as t hi n.

If you are targeting a JDK 1.0.2 browser (such as Netscape 3.x or Internet Explorer
3.x), then you must:

« importthej dbc. sql package into your program.

The j dbc. sgl package is not a part of the standard JDK 1.0.2 class library. It is
a separate library that you download as part of the JDBC distribution. The

Advanced Topics 5-7



Working with Applets

j dbc. sql package was created because JDK 1.0.2 browsers do not allow
packages starting with the string "j ava" to be downloaded. As a work-around,
the j ava. sgl package has been renamed to j dbc. sql . This renamed package
is shipped with the Oracle JDBC product.

« register the driver with the or acl e. j dbc. dnl ddri ver. Oracl eDri ver ()
class and specify the driver name in the connect string as dnl dt hi n.

The following sections illustrate the differences in coding an applet for a JDK 1.1.1
browser compared with a JDK 1.0.2 browser.

« Coding Applets for a JDK 1.1.1 Browser
« Coding Applets for a JDK 1.0.2 Browser

Coding Applets for a JDK 1.1.1 Browser

If you are coding an applet for a JDK 1.1.1 browser, then import the JDBC interfaces
from the j ava. sql package and load the Oracle JDBC Thin driver.

inport java.sql.*;

public class JdbcAppl et extends java. appl et. Appl et
{

Gonnection conn; // Hold the connection to the database

public void init()

{

/1 Register the driver.

Driver Manager . regi sterDriver (new oracle.jdbc.driver.Qaclelriver());
/1 Gonnect to the database.

conn = Dri ver Manager . get Gonnecti on

("jdbc: oracl e:thin:scott/tiger @www auror a. us. oracl e. com 1521: orcl ") ;

}

In this example, the connect string contains the username and password, but you
can also pass them as arguments to get Connect i on() after obtaining them from
the user. For more information on connecting to the database, see "Opening a
Connection to a Database" on page 3-3.

Coding Applets for a JDK 1.0.2 Browser

If you are coding an applet for a JDK 1.0.2 browser, then import the JDBC interfaces
from the j dbc. sql package, load the driver from the

oracl e.jdbc.dnl ddriver. O acl eDriver () class, and use thednl dt hi n
sub-protocol in your connect string:

5-8 JDBC Developer’s Guide and Reference



Working with Applets

inport jdbc.sql.*;
public class JdbcAppl et extends java. appl et. Appl et
{

Gonnection conn; // Hold the connection to the database
public void init ()

{
/] Register the driver

Driver Manager . regi sterDriver (new oracle.jdbc. dnl ddriver. QacleDiver());
/1 QGonnect to the dat abase

conn = Dri ver Manager . get Gonnecti on

("j dbc: oracl e: dnl dt hi n: scott/ti ger @ww aur or a. us. or acl e. com 1521: orcl ");

}

Connecting an Applet to a Database
This section includes the following subsections:

« Connecting to a Database on the Same Host as the Web Server
« Connecting to a Database on a Different Host

= Using the Oracle8 Connection Manager

« Using Signed Applets

The most common task of an applet using the JDBC driver is to connect to and
query a database. Because of applet security restrictions, an applet can open TCP/IP
sockets only to the host from which it was downloaded (this is the host on which
the web server is running). This means that your applet can connect only to a
database that is running on the same host as the web server. In this case, the applet
can connect to the database directly; no additional steps are required.

However, a web server and an Oracle database server both require many resources;
you seldom find both servers running on the same machine. Usually, your applet
connects to a database on a host other than the one on which the web server runs.
There are two possible ways in which you can work around the security restriction:

= You can connect to the database by using the Oracle8 Connection Manager.
OR

« If your web browser supports JDK 1.1.x, then you can use a signed applet to
connect to the database directly.

Advanced Topics 5-9



Working with Applets

This section begins with describing the most simple case, connecting to a database
on the same host from which the applet was downloaded (that is, the same host as
the web server). It then describes the two different ways in which you can connect
to a database running on a different host.

Connecting to a Database on the Same Host as the Web Server

If your database is running on the same host from which the applet was
downloaded, then you can connect to the database by specifying it in your applet.
You specify the database in the connect string of the get Connect i on() method in
the Dri ver Manager class.

There are two ways in which you can specify the connection information to the
driver. You can provide it in the form of host : port : si d or in the form of a TNS
keyword-value syntax.

For example, if the database to which you want to connect resides on host
pr odHost , at port 1521, and SID ORCL, and you want to connect with username
scot t with password ti ger, then use either of the two following connect strings:

using host : port : si d syntax:

Sring conn&ring="j dbc: oracl e: t hi n: @rodHost : 1521: CROL";
conn = Driver Manager . get Connecti on(conn&tring, "scott", "tiger");

using TNS keyword-value syntax:

Sring conndring = "jdbc: oracl e:thin: @descripti on=(address_|ist=
(addr ess=( pr ot ocol =t cp) (port=1521) ( host =pr odHost ) ))
(connect _dat a=(si d=CR)))"

conn = Driver Manager . get Gonnecti on(conn&tring, "scott", "tiger");

If you use the TNS keyword-value pair to specify the connection information to the
JDBC Thin driver, then you must declare the protocol as TCP.

Connecting to a Database on a Different Host

If you are connecting to a database on a host other than the one on which the web
server is running, then you must overcome the applet’s security restrictions. You
can do this by using either the Oracle8 Connection Manager or signed applets.

Using the Oracle8 Connection Manager

Oracle8 Connection Manager is a lightweight, highly-scalable program that can
receive Net8 packets and re-transmit them to a different server. To a client running
Net8, the Connection Manager looks exactly like a database server. An applet that

5-10 JDBC Developer’s Guide and Reference



Working with Applets

uses the JDBC Thin driver can connect to a Connection Manager running on the
web server host and have the Connection Manager redirect the Net8 packets to an
Oracle server running on a different host.

Figure 5-1 illustrates the relationship between the applet, the Oracle8 Connection
Manager, and the database.

Figure 5-1 Applet, Connection Manager, and Database Relationship

Net8 Listener

CMAN

applet W/
in browser
TCP/IP web server
(only)

any Net8
protocol

/_\

webHost oraHost

Using the Oracle8 Connection Manager requires two steps that are described in
these sections:

« Installing and Running the Oracle8 Connection Manager

«  Writing the Connect String that Targets the Oracle8 Connection Manager

Installing and Running the Oracle8 Connection Manager You must install the Connection
Manager on the web server host. You install it from the Oracle8 distribution media.
Please refer to the Net8 Administrator’s Guide if you need more help to install the
Connection Manager.

On the web server host you must create a CMAN. ORA file in the

[ ORACLE_HQOVE] / NET8/ ADM N directory. The options you can declare in a

CMAN. ORA file include firewall and connection pooling support. Please refer to the
Net8 Administrator’s Guide for more information on the options you can enter in a
CMAN. ORAfile.

Here is an example of a very simple CMAN. ORA file. Replace <web-server-host> with
the name of your web server host. The fourth line in the file indicates that the
connection manager is listening on port 1610. You must use this port number in
your connect string for JDBC.

Advanced Topics 5-11



Working with Applets

cman = (ADDRESS LI ST =
(ADDRESS = (PROTQOCL=TCP)
( HOST=<web- ser ver - host >)
(PCRT=1610)))

cnman_profile = (paraneter_list =
(MAX MM RELAYS=512)
(LGG LEVEL=D)

(TRAG NGYES)

( RELAY_STATI STl CS=YES)
(SHONTNS | NFG=YES)
(USE_ASYNC CALL=YES)
( AUTHENTI CATI ON_LEVEL=0)
)

Note that the Java Net8 version inside the JDBC Thin driver does not have
authentication service support. This means that the AUTHENTI CATI ON_LEVEL
configuration parameter in the CMAN. ORA file must be set to 0.

You can find a description of the options listed in the CMAN. ORA file in the Net8
Administrator’s Guide.

After you create the file, start the Oracle8 Connection Manager at the operating
system prompt with this command:

cnet| start
To use your applet, you must now write the connect string for it.

Writing the Connect String that Targets the Oracle8 Connection Manager This section
describes how to write the connect string in your applet so that the applet connects
to the Connection Manager, and the Connection Manager connects with the
database. In the connect string, you specify an address list that lists the protocol,
port, and name of the web server host on which the Connection Manager is
running, followed by the protocol, port, and name of the host on which the
database is running.

The following example describes the situation illustrated in Figure 5-1. The web
sever on which the Connection Manager is running is on host webHost and is
listening on port 1610. The database to which you want to connect is running on
host or aHost , listening on port 1521, and SID ORCL. You write the connect string
in TNS keyword-value format:

Gonnecti on conn =
Dri ver Manager . get Gonnection ("jdbc:oracle:thin:" +

5-12 JDBC Developer’s Guide and Reference



Working with Applets

"@description=(address_|ist=" +

"(addr ess=(pr ot ocol =t cp) (host =webHost ) (port=1610))" +
"(addr ess=(pr ot ocol =t cp) ( host =or aHost ) (port=1521)))" +
"(source_rout e=yes)" +

"(connect _dat a=(sid=orcl)))", "scott", "tiger");

The first element in the addr ess_| i st entry represents the connection to the
Connection Manager. The second element represents the database to which you
want to connect. The order in which you list the addresses is important.

Notice that you can also write the same connect string in this format:

Sring conmnSring =
"jdbc: oracl e:thi n: @descripti on=(address_list=
(addr ess=( pr ot ocol =t cp) (port =1610) (host =webHost ) )
(addr ess=( pr ot ocol =t cp) (port=1521) (host =or aHost ) ))
(connect _dat a=(si d=orcl))
(source_route=yes))";
Gonnecti on conn = Dxi ver Manager . get GConnecti on(conn&tring, "scott", "tiger");

When your applet uses a connect string such as the one above, it will behave exactly
as if it were connected directly to the database on the host or aHost .

For more information on the parameters that you specify in the connect string, see
the Net8 Administrator’s Guide.

Connecting through Multiple Connection Managers Your applet can reach its target
database even if it first has to go through multiple Connection Managers (for
example, if the Connection Managers form a "proxy chain"). To do this, add the
addresses of the Connection Managers to the address list, in the order that you plan
to access them. The database listener should be the last address on this list. See the
Net8 Administrator’s Guide for more information about sour ce_r out e addressing.

Using Signed Applets

If your browser supports JDK 1.1.x, (for example, Netscape 4.0), then you can use
signed applets. Signed applets can request socket connection privileges to other
machines. To set this up, you must:

1. Sign the applet. For information on the steps you must follow to sign an applet,
see Sun Microsystem’s Signed Applet Example at:

http://j ava. sun. cond securi ty/ si gnExanpl e/ i ndex. ht n

Advanced Topics 5-13



Working with Applets

2. Include applet code that asks for appropriate permission before opening a
socket.

If you are using Netscape, then your code would include a statement like this:

net scape. security. Privil egeManager . enabl ePri vi | ege(" Uhi ver sal Gonnect ") ;
Gonnecti on conn = Dri ver Manager . get Gonnection(...);

For more information on writing applet code that asks for permissions, see
Netscape’s Introduction to Capabilities Classes at:

ht t p: / / devel oper . net scape. cond docs/ manual s/ si gnedobj / capabi | ities/contents. ht m

3. You must obtain an object-signing certificate. See Netscape’s Object-Signing
Resources page at:

ht t p: / / devel oper . net scape. cond sof t war e/ si gnedobj / i ndex. ht m

for information on obtaining and installing a certificate.

For a complete example of a signed applet that uses the Netscape Capabilities
classes, see "Creating Signed Applets" on page 7-31.

Using Applets with Firewalls

Under normal circumstances, an applet that uses the JDBC Thin Driver cannot
access the database through a firewall. In general, the purpose of a firewall is to
prevent requests from unauthorized clients from reaching the server. In the case of
applets trying to connect to the database, the firewall prevents the opening of a
TCP/IP socket to the database.

You can solve this problem by using a Net8-compliant firewall and connect strings
that comply with the firewall configuration. Net8-compliant firewalls are available
from many leading vendors; a more detailed discussion of these firewalls is beyond
the scope of this manual.

An unsigned applet can access only the same host from which it was downloaded.
In this case, the Net8-compliant firewall must be installed on that host. In contrast, a
signed applet can connect to any host. In this case, the firewall on the target host
controls the access.

The following sections describe these topics:
« How Firewalls Work

« Configuring a Firewall for Applets that use the JDBC Thin Driver

5-14 JDBC Developer’s Guide and Reference



Working with Applets

= Writing a Connect String to Connect through a Firewall

How Firewalls Work

Firewalls are rule-based. They have a list of rules that define which clients can
connect, and which cannot. Firewalls compare the client’s hostname with the rules,
and based on this comparison, either grant the client connect access or not. If the
hostname lookup fails, the firewall tries again. This time, the firewall extracts the IP
address of the client and compares it to the rules. The firewall is designed to do this
so that users can specify rules that include hostnames as well as IP addresses.

Connecting through a firewall requires two steps that are described in the following
sections:

« Configuring a Firewall for Applets that use the JDBC Thin Driver

= Writing a Connect String to Connect through a Firewall

Configuring a Firewall for Applets that use the JDBC Thin Driver

The instructions in this section assume that you are running a Net8-compliant
firewall.

Java applets do not have access to the local system (that is, they cannot get the
hostname locally or environment variables) because of security limitations. As a
result, the JDBC Thin driver cannot access the hostname on which it is running. The
firewall cannot be provided with the hostname. To allow requests from JDBC Thin
clients to go through the firewall, you must do the following two things to the
firewall’s list of rules:

= Add the IP address (not the hostname) of the host on which the JDBC applet is
running.

« Ensure that the hostname "__j dbc__" never appears in the firewall’s rules.
This hostname has been hard-coded as a bogus hostname inside the driver to
force an IP address lookup. If you do enter this hostname in the list of rules,
then every applet using Oracle's JDBC Thin driver will be able to go through
your firewall.

By not including the Thin driver’s hostname, the firewall is forced to do an IP
address lookup and base its access decision on the IP address and not on the
hostname.

Advanced Topics 5-15



Working with Applets

Writing a Connect String to Connect through a Firewall

To write a connect string that allows you to connect through a firewall, you must
specify the name of the firewall host and the name of the database host to which
you want to connect.

For example, if you want to connect to a database on host or aHost , listening on
port 1521 and SID ORCL, and you are going though a firewall on host
fireWval | Host, listening on port 1610, then use the following connect string:

Gonnecti on conn =
Ori ver Manager . get Gonnection ("jdbc:oracle:thin:" +
"@description=(address_|ist=" +
(addr ess=( pr ot ocol =t cp) (host =<f i rewal | - host >) (port =1610))" +
" (addr ess=(pr ot ocol =t cp) ( host =or aHbst ) (port=1521)))" +
"(source_rout e=yes)" +
"(connect _data=(sid=orcl)))", "scott", "tiger");

Note: To connect through a firewall, you cannot specify the
connection string in host : port: si d syntax. For example, a
connection string specified as:

String connString =
"jdbc:oracle:thin: @xta.us.oracle.com 1521: orcl";

conn =Driver Manager. get Connecti on (connStri ng,
"scott", "tiger");

will not work.

The first element in the addr ess_I i st represents the connection to the firewall.
The second element represents the database to which you want to connect. Note
that the order in which you specify the addresses is important.

Notice that you can also write the preceding connect string in this format:

Sring conndring =
"jdbc: oracl e:thi n: @descripti on=(address_list=
(addr ess=( pr ot ocol =t cp) (port =1600) (host =f i reVél | Host))
(addr ess=( pr ot ocol =t cp) (port =1521) (host =or aHbost ) ))
(connect _dat a=(si d=orcl))
(source_route=yes))";
Gonnecti on conn = Dxi ver Manager . get Connecti on(connString, "scott", "tiger");

5-16 JDBC Developer’s Guide and Reference



Working with Applets

When your applet uses a connect string similar to the one above, it will behave as if
it were connected to the database on host or aHost .

Note: All of the parameters shown in the preceding example are
required. In the addr ess_1i st , the firewall address must precede
the database server address.

For more information on the parameters used in the above example, see the Net8
Administrator’s Guide. For more information on how to configure a firewall, please
see your firewall’s documentation or contact your firewall vendor.

Packaging Applets

After you have coded your applet, you must package it and make it available to
users. To package an applet you need your applet classes files and the JDBC driver
classes file (this will be either cl asses111. zi p if you are targeting the applet to a
browser running JDK 1.1.1, or cl asses102. zi p if you are targeting the applet to a
browser running JDK 1.0.2).

Follow these steps:

1. Move the JDBC driver classes file cl asses111. zi p (or cl asses102. zi p) to
an empty directory.

2. Unzip the driver classes zip file.

If you are targeting a browser running the JDK 1.0.2, then DELETE the
packages listed in the left-hand column of the following table. Next, ensure that
the packages listed in the right-hand column are present. All of the packages
listed in the table are included in the JDBC distribution.

DELETE these packages: Ensure that these packages are present:
java.sql jdbce.sql

java.math jdbc.math

oracle.jdbc.driver oracle.jdbc.dnlddriver
oracle.jdbc.dbaccess oracle.jdbc.dnlddbaccess
oracle.jdbc.oracore oracle.jdbc.dnldoracore

oracle.jdbc.util oracle.jdbc.dnldutil

Advanced Topics 5-17



Working with Applets

DELETE these packages:

Ensure that these packages are present:

oracle.jdbc.ttc7
oracle.sql
oracle.jdbc2
java.io.Reader

java.io.Writer

oracle.jdbc.dnldttc7
oracle.sdnldql
oracle.dnldjdbc2
jdbc.io.Reader
jdbc.io.Writer

3. Add your applet classes files to the directory, and any other files the applet

might require.

4. Zip the applet classes and driver classes together into a single zip (or . j ar) file.

To target a browser running the JDK 1.1.1, the single zip file should contain:

« thefiles fromcl asses111l. zi p

« your applet classes

« If you are using DatabaseMetaData entry points in your applet, include the
oracl e/ jdbc/driver/ O acl eDat abaseMet aDat a. cl ass file. Note
that this file is very large and might have a negative impact on
performance. If you do not use DatabaseMetadata entry points, omit this

file.

To target a browser running the JDK 1.0.2, the single zip file should contain:

« thefiles from cl asses102. zi p (minus the files you deleted in Step 2)

« your applet classes

« thej dbc interface files from the j dbc. sql package in the
cl asses/j dbc/ sql directory of the JDBC distribution

Note: If you are targeting your applet at a browser running the
JDK 1.0.2, then you must package the applet in a zip file. Browsers
running the JDK 1.0.2 do not support . j ar files.

5. Ensure that the zip (or . j ar) file is not compressed.

You can now make the applet available to users. One way to do this is to add the
APPLET tag to the HTML page from which the applet will be run. For example:

5-18 JDBC Developer’s Guide and Reference



Working with Applets

<APPLET WDTH=500 HEl GHT=200 OCDE=JdbcAppl et ARCH VE=JdbcAppl et . zi p
QCDEBASE=Appl et _Sanpl es
</ APPLET>

You can find a description of the APPLET, CODE, ARCHI VE, CODEBASE, W DTH, and
HEI GHT parameters in the next section.

Specifying an Applet in an HTML Page

The APPLET tag specifies an applet that runs in the context of an HTML page. The
APPLET tag can have these parameters: CODE, ARCHI VE, CODEBASE, W DTH, and
HEI GHT to specify the name of the applet and its location, and the height and width
of the applet display area. These parameters are described in the following sections.

CODE, HEIGHT, and WIDTH

The HTML page that runs the applet must have an APPLET tag with an initial
width and height to specify the size of the applet display area. You use the HEl GHT
and W DTH parameters to specify the size, measured in pixels. This size should not
count any windows or dialogs that the applet opens.

The APPLET tag must also specify the name of the file that contains the applet’s
compiled Applet subclass. You specify the file name with the CODE parameter. Any
path must be relative to the base URL of the applet. The path cannot be absolute.

In the following example, JdbcAppl et . cl ass is the name of the Applet’s
compiled applet subclass:

<APPLET QE="JdbcAppl et" WDIH=500 HEl GHT=200>
</ APPLET>

If you use this form of the CODE tag, then the classes for the applet and the classes
for the JDBC Thin driver must be in the same directory as the HTML page.

Notice that in the CODE specification, you do not include the file name extension
". cl ass".

CODEBASE

The CODEBASE parameter is optional and specifies the base URL of the applet; that
is, the name of the directory that contains the applet’s code. If it is not specified,
then the document’s URL is used. This means that the classes for the applet and the
JDBC Thin driver must be in the same directory as the HTML page. For example, if
the current directory isnmy_Di r:

Advanced Topics 5-19



Working with Applets

<APPLET WDIH=500 HE GHI=200 OCCDE=JdbcAppl et OCDEBASE="."
</ APPLET>

The entry QDEBASE=". " indicates that the applet resides in the current directory
(ny_Di r). If the value of codebase was set to Appl et _Sanpl es, for example:

QCDEBASE=" Appl et _Sanpl es"

then this would indicate that the applet resides in the my_Di r /Appl et _Sanpl es
directory.

ARCHIVE

The ARCHI VE parameter is optional and specifies the name of the archive file (either
a.zipor.jar file) that contains the applet classes and resources the applet needs.
Oracle recommends the use of a . zi p file, which saves many extra roundtrips to
the server.

The . zi p (or. j ar) file will be preloaded. If you have more than one archive in the
list, separate them with commas. In the following example, the class files are stored
in the archive file JdbcAppl et . zi p:

<APPLET QDE="JdbcAppl et” ARCH VE="JdbcAppl et . zi p" WDTH-500 HE GHT=200>
</ APPLET>

Note: Version 3.0 browsers do not support the ARCHI VE
parameter.

Browser Security and JDK Version Considerations

The communication between an applet that uses the JDBC Thin driver and the
Oracle database happens on top of Java TCP/IP sockets.

In a JDK 1.0.2-based web browser, such as Netscape 3.0, an applet can open sockets
only to the host from which it was downloaded. For Oracle8 this means that the
applet can only connect to a database running on the same host as the web server. If
you want to connect to a database running on a different host, then you must
connect through the Oracle8 Connection Manager. For more information, see "Using
the Oracle8 Connection Manager" on page 5-10.

In a JDK 1.1.1-based web browser, such as Netscape 4.0, an applet can request
socket connection privileges and connect to a database running on a different host
from the web server host. In Netscape 4.0 you perform this by signing your applet
(that is, writing a signed applet), then opening your connection as follows:

5-20 JDBC Developer’s Guide and Reference



Working with Applets

net scape. security. Privi | egeManager . enabl ePri vi | ege
(" Uni ver sal Gonnect");
connecti on = Dri ver Manager . get Connect i on
("jdbc:oracl e:thin:scott/tiger @l sun511: 1721: orcl ");

Please refer to your browser documentation for more information on how to work
with signed applets. You can also refer to "Using Signed Applets" on page 5-13.

Advanced Topics 5-21



JDBC on the Server: the Server Driver

JDBC on the Server: the Server Driver
This section has the following subsections:
« Connecting to the Database with the Server Driver
« Session and Transaction Context for the Server Driver
« Testing JDBC on the Server
« Server Driver Support for NLS

Any Java program, Enterprise JavaBean (EJB), or Java stored procedure that runs in
the database, can use the Server driver to access the SQL engine.

The Server driver is intrinsically tied to the 8.1 database and to the Java VM. The
driver runs as part of the same process as the database. It also runs within the
default session: this is the same session in which the Java VM was invoked.

The Server driver is optimized to run within the database server and provide direct
access to SQL data and PL/SQL subprograms on the local database. The entire Java
VM operates in the same address space as the database and the SQL engine. Access
to the SQL engine is a function call; there is no network. This enhances the
performance of your JDBC programs and is much faster than executing a remote
Net8 call to access the SQL engine.

The server-side driver supports the same features, APIs, and Oracle extensions as
the client-side drivers. This makes application partitioning very straight forward.
For example, if you have a Java application that is data-intensive, you can easily
move it into the database server for better performance, without having to modify
the application-specific calls.

Connecting to the Database with the Server Driver

As described in the preceding section, the Server driver runs within a default
session. You are already "connected". You can use either the Oracle-specific API
def aul t Connecti on() method or the standard Java

Dri ver Manager . get Connecti on() method to access the default connection.

Connecting with defaultConnection()

The def aul t Connect i on() method of the

oracle.jdbc.driver. Oacl eServerDriver class is an Oracle extension and
always returns the same connection object. You do not need to include a connect
string with the statement. For example:

inport java.sql.*;

5-22 JDBC Developer’s Guide and Reference



JDBC on the Server: the Server Driver

inport oracle.jdbc.driver.*;

cl ass JDBODonnection {
public static Connection connect() throws SQException {
Connection conn = nul | ;

try {
/1 connect with the Server driver

QacleDriver ora = new Qacl eDriver();
conn = ora. def aul t Connecti on();

}

} catch (SQException e)
return conn;

}
}

Note that there is no conn. cl ose statement. You cannot close a default connection
made by the Server driver. Calling cl ose() on the connection is just a no-op.

Connecting with DriverManager.getConnection()

The Dri ver Manager . get Connecti on() method returns a new Java
Connect i on object every time you call it. Note that although the method is not
creating a new connection, it is returning a new object.

The fact that Dri ver Manager . get Connect i on() returns a new connection
object every time you call it is significant if you are working with object maps (or
"type maps"). A type map is associated with a specific Connect i on object and with
any state that is part of the object. If you want to use multiple type maps as part of
your program, then you can call get Connect i on() to create a new Connecti on
object for each type map.

If you connect to the database with the Dri ver Manager . get Connecti on()
method, then use the connect string j dbc: or acl e: kpr b: . For example:

Dri ver Manager . get Gonnect i on("j dbc: or acl e: kprb:");

Note that you could include a user name and password in the string, but because
you are connecting from the server, they would be ignored.

Session and Transaction Context for the Server Driver

The server-side driver operates within a default session and default transaction
context. The default session is the session in which the Java VM was invoked. In
effect, you are already connected to the database on the server. This is different from

Advanced Topics 5-23



JDBC on the Server: the Server Driver

the client side where there is no default session: you must explicitly connect to the
database.

If you run Java application code in the server, then you can manage the transaction
(COWM Ts and ROLLBACKS) explicitly.

Testing JDBC on the Server

Almost any JDBC program that can run on a client can also run on the server. All of
the programs in the sanpl es directory can be run on the server with only minor
modifications. Usually, these modifications concern only the connection statement.

For example, consider the test program JdbcCheckup. j ava described in "Testing
JDBC and the Database Connection: JdbcCheckup" on page 2-8. If you want to run
this program on the server and connect with the

Dri ver Manager . get Connecti on() method, then open the file in your favorite
text editor and change the driver name in the connection string from "oci 8" to
"kpr b". For example:

Gonnecti on conn =
Ori ver Manager . get Gonnection ("j dbc: oracl e: kprb: @ +
dat abase, user, password);

The advantage of using this method is that you need to change only a short string in
your original program. The disadvantage is that you still must provide the user,
password, and database information even though the driver will discard it. In
addition, if you issue the get Connect i on() method again, the driver will create
another new (and unnecessary) connection object.

However, if you connect with def aul t Connect i on(), the preferred method of
connecting to the database from the Server driver, you do not have to enter any
user, password, or database information. You can delete these statements from your
program.

For the connection statement, use:

Qonnection conn = new oracl e.jdbc.driver. Gacl eDxiver ().defaul tGnnection ();
The following example is a rewrite of the JdbcCheckup. j ava program which
uses the def aul t Connecti on() connection statement. The connection statement
is printed in bold. The unnecessary user, password, and database information

statements, along with the utility function to read from standard input, have been
deleted.

5-24 JDBC Developer’s Guide and Reference



JDBC on the Server: the Server Driver

/*

* This sanpl e can be used to check the JDBC installation.

* Just run it and provide the connect information. It wll select
* "Hello Wirld' fromthe dat abase.

*/

/1 You need to inport the java.sgl package to use JDBC

inport java.sql.*;

/]l V& inport java.io to be able to read fromthe comand |ine
inport java.io.*;

cl ass JdbcCheckup

{
public static void main (String args [])
throws SQException, |CException
{
Gonnection conn = new oracl e. jdbc. driver. Oacl elxiver
(). defaul t Gonnection ();
/Il Geate a statenent
Satenment stnt = conn.createStatenent ();
/] Do the SQ "Hello Wrld" thing
Resul t Set rset = stm.executeQuery ("SELECT 'Hello Verl d
FROM dual ") ;
while (rset.next ())
Systemout.printin (rset.getSring (1));
Systemout. printin ("Your JDBCinstallationis correct.");
}
}

Server Driver Support for NLS

For a description of how the Server driver handles database character set
conversions for Java programs, see "Server Driver and NLS" on page 5-4.

Character Set Conversion of oracle.sql.CHAR Data

The Server driver performs character set conversions for or acl e. sql . CHARin C;
this is a different implementation than for the client-side drivers. The client-side
drivers perform character set conversions for or acl e. sql . CHAR in Java. For more
information on the or acl e. sql . CHAR class, see "Class oracle.sql. CHAR" on

page 4-19.

Advanced Topics 5-25



Embedded SQL92 Syntax

Embedded SQL92 Syntax

Oracle’s JDBC drivers support some embedded SQL92 syntax. This is the syntax
that you specify between curly braces. The current support is basic. This section
describes the support offered by the drivers for the following SQL92 constructs:

« Time and Date Literals

« Scalar Functions

« LIKE Escape Characters

= Outer Joins

« Function Call Syntax

Where driver support is limited, these sections also describe possible work-arounds.
Disabling Escape Processing Escape processing for SQL92 syntax is enabled by
default. The JDBC drivers perform escape substitution before sending the SQL code

to the database. If you want the driver to use regular Oracle SQL syntax instead of
SQL92 syntax, then use this statement:

st nt . set EscapePr ocessi ng(f al se)

Note: Since prepared statements have usually been parsed prior
to making a call to setEscapeProcessing() , disabling escape
processing for prepared statements will probably have no affect.

Time and Date Literals

Databases differ in the syntax they use for date, time, and timestamp literals. JDBC
supports dates and times written only in a specific format. This section describes the
formats you must use for date, time, and timestamp literals in SQL statements.

Date Literals
The JDBC drivers support date literals in SQL statements written in the format:

{d yyyy-mm-dd}

where yyyy- nm dd represents the year, month, and day; for example,
{d '1998-10-22"} . The JDBC drivers will replace this escape clause with the
equivalent Oracle representation: "22 OCT 1998".

This code snippet contains an example of using a date literal in a SQL statement.

5-26 JDBC Developer’s Guide and Reference



Embedded SQL92 Syntax

/1 Gonnect to the database
/] You can put a database nane after the @sign in the connection UR..
Gonnecti on conn =

Dri ver Manager . get Gonnection ("j dbc: oracl e: oci 8: @, "scott", "tiger");

Il Qeate a Statenent
Satenment stnt = conn.createStatenent ();

/1 Select the enane columm fromthe enp tabl e where the hiredate i s Jan-23-1982
Resul t Set rset = stnm. execut eQuery
("SELECT ename FROM enp WHERE hiredate = {d ' 1982-01-23'}");

/] Iterate through the result and print the enpl oyee nanes
vhile (rset.next ())
Systemout.printin (rset.getSring (1));

Time Literals
The JDBC drivers support time literals in SQL statements written in the format:

{t hhmm:ss}

where hh: nm ss represents the hours, minutes, and seconds; for example,

{t'05:10:45"} . The JDBC drivers will replace this escape clause with the
equivalent Oracle representation: "05:10:45". If the time is specified as
{t'14:20:50} , then the equivalent Oracle representation would be "14:20:50",

assuming the server is using a 24-hour clock.
This code snippet contains an example of using a time literal in a SQL statement.

Resul t Set rset = stm. execut eQiery
("SELECT enane FROM enp WHERE hiredate = {t ' 12:00:00'}");

Timestamp Literals
The JDBC drivers support timestamp literals in SQL statements written in the
format:

{ts "yyyy-mmdd hh:mss.f..."}
where yyyy-mm-dd hh:mm:ss.f... represents the year, month, day, hours,
minutes, and seconds. The fractional seconds portion (".f...") is optional and can be

omitted. For example: {ts '1997-11-01 13:22:45'} represents, in Oracle
format, NOV 01 1997 13:22:45.

Advanced Topics 5-27



Embedded SQL92 Syntax

This code snippet contains an example of using a timestamp literal in a SQL
statement.

Resul t Set rset = stm. execut eQuiery

Scalar Functions
The

("SELECT enane FROM enp WHERE hiredate = {ts ' 1982-01-23 12: 00: 00’ }");

Oracle JDBC drivers do not support all scalar functions. To find out which

functions the drivers support, use the following methods which are supported by
the Oracle-specific or acl e. j dbc. dri ver. Or acl eDat abaseMet aDat a and the
standard Javaj ava. sql . Dat abaseMet adat a interfaces:

get Nuneri cFuncti ons() : returns a comma-separated list of math functions
supported by the driver. For example, ABS(number), COS(float), SQRT (float).

get Stri ngFuncti ons() : returns a comma-separated list of string functions
supported by the driver. For example, ASCI | (string), LOCATE(stringl, string2,
start).

get Syst enfFuncti ons() : returns a comma-separated list of system functions
supported by the driver. For example, DATABASE(), | FNULL (expression, value),
USER().

get Ti neDat eFunct i ons() : returns a comma-separated list of time and date
functions supported by the driver. For example, CURDATE(), DAYOFYEAR(date),
HOUR(time).

Oracle’s JDBC drivers do not support the function keyword, f n’. If you try to use

this
{fn

you

keyword, for example:

concat ("Cracle", "8i") }

will get the error "Non supported SQ.92 token at position xx: fn"

when you run your Java application. The work-around is to use Oracle SQL syntax.

For example, instead of using the f n keyword in embedded SQL92 syntax:

Sat
st

use

stnt

5-28 JDBC Developer’

enent stm = conn.createStatenent ();
. execut elUpdat e(" UPDATE enp SET enane

{fn GCONCAT(' M/, "Nane’)}");

Oracle SQL syntax:

. execut elUpdat e(" UPDATE enp SET enane = CONCAT(' M/, 'Nare’' )");

s Guide and Reference



Embedded SQL92 Syntax

LIKE Escape Characters

QOuter Joins

The characters "% and "_" have special meaning in SQL LI KE clauses (you use "%
to match zero or more characters, " _" to match exactly one character). If you want to
interpret these characters literally in strings, you precede them with a special escape
character. For example, if you want to use the ampersand "&" as the escape
character, you identify it in the SQL statement as {escape '&%}:

Satenment stnt = conn.createStatenent ();

/] Select the enpno colum fromthe enp tabl e where the enane starts with '’
Resul t Set rset = stnt. execut eQuer y(" SELECT enpno FROM enp WHERE enane LIKE ' & %
{ESCAPE "' & }");

/] Iterate through the result and print the enpl oyee nunbers
vhile (rset.next ())
Systemout.printin (rset.getSring (1));

Note: If you want to use the back slash character (\) as an escape
character, you must enter it twice (that is, \\). For example:

Resul t Set rset = stm. execut eQuery(" SELECT enpno FROM enp WHERE
enane LIKE '\\_% {escape "\\'}");

Oracle’s JDBC drivers do not support outer join syntax: {oj outer-join}. The
work-around is to use Oracle outer join syntax:

Instead of:

Satenent stnt = conn.createSatenent ();

Resul t Set rset = stm. execut eQiery
("SELECT enane, dnane
FROM { Q) dept LEFT QUTER JA N enp ON dept. dept no = enp. dept no}
CRCER BY enane”) ;

Use Oracle SQL syntax:

Satenent stnt = conn.createSatenent ();

Resul t Set rset = stm. execut eQuiery
("SELECT enane, dnane
FROMenp a, dept b WHERE a. deptno = b. dept no(+)
CRCER BY enane") ;

Advanced Topics 5-29



Embedded SQL92 Syntax

Function Call Syntax
Oracle’s JDBC drivers support the function call syntax shown below:

Calls without a return value:

{ call procedure name (argurent1, argunent2 ...) }

Calls with a return value:

{ ? = call procedure nane (argunentl1, argunent2,...) }

SQL92 to SQL Syntax Example

You can write a simple program to translate SQL92 syntax to standard SQL syntax.

The following program prints the comparable SQL syntax for SQL92 statements for
function calls, date literals, time literals, and timestamp literals. In the program, the
oracle.jdbc.driver. O acl eSql. parse() method performs the conversions.

inport oracle.jdbc.driver.QacleXq;

public class Foo

{
public static void main (String args[]) throws Exception {
show ("{call foo(?, ?)}");
show ("{? = call bar (?, ?2}");
show ("{d ' 1998-10-22'}");
show ("{t ' 16:22:34'}");
show ("{ts ' 1998-10-22 16:22:34'}");
}
public static void show (Sring s) throws Exception {
Systemout.println (s +" =" + new Qacl el (). parse (s));
}
}

The following code is the output which prints the comparable SQL syntax.

{call foo(?, ?)} = BEANTfoo(:1, :2); BND

{? =cal bar (?, 2} = BEAN:1:=bhar (:2, :3); ENO

{d "1998-10-22'} => TO DATE (’ 1998-10-22', ' YYYY-MMDD)

{t "16:22:34'} => TODATE (' 16:22:34', 'HP4: M:SS)

{ts '1998-10-22 16:22:34'} => TO DATE (’1998-10-22 16:22:34’, ' YYYY-MM DD
HP4:M:SS)

5-30 JDBC Developer’s Guide and Reference



S

Coding Tips and Troubleshooting

This chapter describes how to optimize and troubleshoot a JDBC application or
applet, including the following topics:

« JDBC and Multi-Threading
« Performance Optimization

=« Common Problems

« Basic Debugging Procedures

= Transaction Isolation Levels and the Oracle Server

Coding Tips and Troubleshooting 6-1



JDBC and Multi-Threading

JDBC and Multi-Threading

The Oracle JDBC drivers provide full support for programs that use multiple
threads. The following example program uses the default Oracle employee database
enp. The program creates a number of threads. Each thread opens a connection and
sends a query to the database for the contents of the enp table. The program then
displays the thread and the employee name and employee ID associated with it.

Execute the program by entering:
java JdbcM'Sanpl e [ nunber_of _t hr eads]
on the command line where nunmber _of _t hr eads is the number of threads that

you want to create. If you do not specify the number of threads, then the program
creates 10 by default.

inport java.sql.*;
inport oracle.jdbc.driver.Qacl eXat enent ;

public class JdbcMSanpl e extends Thread
{

/1 Set default nunber of threads to 10
private static int NUM O THREADS = 10;
int mnyld;

static int c nextld = 1;
static Gonnection s_conn = null;

synchroni zed static int getNextld()

{ return c_nextl|d++
}
public static void main (String args [])
{
try
{

/1 Load the JDBC driver //
Dri ver Manager . regi sterDri ver
(new oracl e. jdbc. driver. Oaclebriver());

/1 1f NodThreads is specified, then read it

if (args.length > 1) {
Systemout.printin("Eror: Invalid Syntax. ");
Systemout. println("java JdbcMSanpl e [ NoCf Threads] ") ;

6-2 JDBC Developer’s Guide and Reference



JDBC and Multi-Threading

}

Systemexit(0);
}
else if (args.length = 1)
NUM CF THREADS = I nteger. parselnt (args[0]);

/1l Geate the threads
Thread[] threadLi st = new Thread] NOM OF THREADS ;

/1 spawn threads
for (int i =0; i < NMGO_THEADS, i++)
{
threadList[i] = new JdbcMSanpl e();
threadList[i].start();

}

// wait for all threads to end
for (int i =0; i < NMGO _THEADS, i++)

{
threadList[i].join();
}
}
catch (Exception e)
{
e.print SackTrace();
}
}
publ i ¢ JdbcMrSanpl e()
{
super () ;
/] Assign an IDto the thread
mnyld = getNext1d();
}

public void run()

{

onnection conn = nul | ;
Resul t Set rs =null;
Satenent stnm = null;

try
{

// Get the connection
conn = Dri ver Manager . get Gnnect i on("j dbc: or acl e: oci 8: @,

Coding Tips and Troubleshooting 6-3



JDBC and Multi-Threading

"scott","tiger");

/I Geate a Satenent
stnmt = conn.createSatenent ();

/] Execute the Qiery
rs = stm. execut eQery ("SELECT * FROMenp");

/1 Loop through the results
while (rs.next())
Systemout. printin("Thread " + mnyld +
" BEployee Id : " +rs.getint(l) +
" Nane @ " +rs.getSring(2));

/1 Aose all the resources
rs.close();
stn.close();
if (conn!=null)
conn. cl ose();
Systemout.printin("Thread " + mnyld + " is finished. ");

}

catch (Exception €)

{
Systemout. printin("Thread " + mnyld + " got Exception: " + e);
e.print SackTrace();
return;

}

6-4 JDBC Developer’s Guide and Reference



Performance Optimization

Performance Optimization

You can significantly enhance the performance of your JDBC programs by using
any of these features:

« Disabling Auto-Commit Mode
« Prefetching Rows

« Batching Updates

Disabling Auto-Commit Mode

Auto-commit mode indicates to the database whether to issue an execute and
commit after every SQL statement. Being in auto-commit mode can be expensive in
terms of time and processing effort if, for example, you are repeating the same
statement with different bind variables.

By default, new connection objects are in auto-commit mode. However, you can
disable auto-commit mode with the set Aut oConmi t () method of the connection
object (either j ava. sql . Conecti on ororacl e. j dbc. Oracl eConnecti on).

In auto-commit mode, the commit occurs either when the statement completes or
the next execute occurs, whichever comes first. In the case of statements returning a
Resul t Set , the statement completes when the last row of the Resul t Set has
been retrieved or when the Resul t Set has been closed. In more complex cases, a
single statement can return multiple results as well as output parameter values.
Here, the commit occurs when all results and output parameter values have been
retrieved.

If you disable auto-commit mode ( set Aut oConmi t (f al se) ), then the JDBC
driver groups the connection’s SQL statements into transactions that it terminates
by eitheraconmi t () orrol | back() statement.

Example: Disabling AutoCommit The following example illustrates loading the driver
and connecting to the database. Since new connections are in auto-commit mode by
default, this example shows how to disable auto-commit. In the example, conn
represents the Connect i on object and st nt represents the St at ement object.

/1 Load the Gracle JDBC dri ver
Dri ver Manager . regi sterDri ver (new oracl e. j dbc. driver. Oracl eDriver());

/1 QGonnect to the database
/1 You can put a database hostnane after the @sign in the connection URL.
Gonnecti on conn =

Coding Tips and Troubleshooting 6-5



Common Problems

Dri ver Manager . get Connect i on (" dbc: oracl e:oci 8: @, "scott", "tiger");

/1l 1t's faster when auto coomt is off
conn. set AutoCormit (fal se);

Il Oeate a Satenent
Satenment stmt = conn.createStatenent ();

Prefetching Rows

Oracle JDBC drivers allow you to set the number of rows to prefetch into the client
while the result set is being populated during a query. The default number of rows
to prefetch is 10. Prefetching row data into the client reduces the number of round
trips to the server. In contrast, standard JDBC fetches the result set one row at a
time, where each row requires a round trip to the database.

You can set the row prefetching value for an individual statement or for all
statements in your connection. For a description of row prefetching and how to
enable it, see "Row Prefetching" on page 4-98.

Batching Updates

The Oracle JDBC drivers allow you to accumulate inserts and updates of prepared
statements at the client and send them to the server in batches once it reaches a
specified batch value. This feature reduces round trips to the server. The default
batch value is one.

You can set the batch value for any individual Oracle prepared statement or for all
Oracle prepared statements in your Oracle connection. For a description of update
batching and how to enable it, see "Database Update Batching" on page 4-100.

Common Problems

This section describes some common problems that you might encounter while
using the Oracle JDBC drivers. These problems include:

« Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables
« Memory Leaks and Running Out of Cursors
« Boolean Parameters in PL/SQL Stored Procedures

= Opening More Than 16 OCI Connections for a Process

6-6 JDBC Developer’s Guide and Reference



Common Problems

Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables

In PL/SQL, CHAR columns defined as OUT or | N/OUT variables are returned to a
length of 32767 bytes, padded with spaces as needed. Note that VARCHAR2 columns
do not exhibit this behavior.

To avoid this problem, use the set MaxFi el dSi ze() method on the St at enent
object to set a maximum limit on the length of the data that can be returned for any
column. The length of the data will be the value you specify for

set MaxFi el dSi ze() padded with spaces as needed. You must select the value for
set MaxFi el dSi ze() carefully because this method is statement-specific and
affects the length of all CHAR, RAWLONG LONG RAWand VARCHAR2 columns.

To be effective, you must invoke the set MaxFi el dSi ze() method before you
register your QUT variables.

Memory Leaks and Running Out of Cursors

If you receive messages that you are running out of cursors or that you are running
out of memory, make sure that all of your St at enent and Resul t Set objects are
explicitly closed. The Oracle JDBC drivers do not have finalizer methods; they
perform cleanup routines by using the cl ose() method of the Resul t Set and
St at enent classes. If you do not explicitly close your result set and statement
objects, serious memory leaks could occur. You could also run out of cursors in the
database. Closing a result set or statement releases the corresponding cursor in the
database.

Similarly, you must explicitly close Connect i on objects to avoid leaks and running
out of cursors on the server side. When you close the connection, the JDBC driver
closes any open statement objects associated with it, thus releasing the cursor
objects on the servers side.

Boolean Parameters in PL/SQL Stored Procedures

Due to a restriction in the OCI layer, the JDBC drivers do not support the passing of
Boolean parameters to PL/SQL stored procedures. If a PL/SQL procedure contains
Booleans, you can work around the restriction by wrapping the PL/SQL procedure
with a second PL/SQL procedure that accepts the argument as an i nt and passes it
to the first stored procedure. When the second procedure is called, the server
performs the conversion from i nt to bool ean.

The following is an example of a stored procedure, bool Pr oc, that attempts to pass
a Boolean parameter, and a second procedure, bool W ap, that performs the
substitution of an integer value for the Boolean.

Coding Tips and Troubleshooting 6-7



Common Problems

CREATE (R REPLACE PROCEDURE bool Proc(x bool ean)
AS
BEG N

[...]
BND,

CREATE (R REPLACE PROCEDURE bool Wap(x int)
AS
BEG N
IF (x=1) THEN
bool Proc(TRE) ;
BHSE
bool Proc(FALSE) ;
BEND I F;
END,

Il Create the dat abase connection

Gonnecti on conn = Dri ver Manager . get GConnect i on
("jdbc:oracl e: oci 8: @hoststring>", "scott", "tiger");
Gl | abl e atenent cs =

conn. prepareCal | ("begi n bool Wap(?); end;");
cs.setint(1, 1);

cs. execute ();

Opening More Than 16 OCI Connections for a Process

You might find that you are not able to open more than approximately 16 JDBC-OCI
connections for a process at any given time. The most likely reasons for this would
be either the number of processes on the server exceeded the limit specified in the
initialization file or the per-process file descriptors limit was exceeded. It is
important to note that one JDBC-OCI connection can use more than one file
descriptor (it might use anywhere between 3 and 4 file descriptors).

If the server allows more than 16 processes, then the problem could be with the
per-process file descriptor limit. The possible solution would be to increase it.

6-8 JDBC Developer’s Guide and Reference



Basic Debugging Procedures

Basic Debugging Procedures

This section describes four strategies for debugging a JDBC program.
« Trapping Exceptions

« Logging JDBC Calls

« Net8 Tracing to Trap Network Events

« Using Third Party Tools

Trapping Exceptions
Most errors that occur in JDBC programs are handled as exceptions. Java provides

the t ry...cat ch statement to catch the exception and the pri nt St ackTr ace()
method to print the stack trace.

The following code fragment illustrates how you can catch SQL exceptions and
print the stack trace.

try { <sone code> }
cat ch(SQException e){ e.printSackTrace (); }

To illustrate how the JDBC drivers handle errors, the following incorrect code was
intentionally added to the Enpl oyee. j ava sample:

/] Iterate through the result and print the enpl oyee nanes
/1 of the code

try {
while (rset.next ())

Systemout. printin (rset.getSring (5)); } // incorrect colum index
cat ch( SQLException e){ e.printSackTrace (); }

Notice an error was intentionally introduced by changing the column index to 5.
When you execute the program you get the following error text:

java. sgl . SQLException: Invalid col um i ndex

at oracl e.jdbc. dbaccess. DBE ror. check_error (DBEror. j ava: 235)

at oracle.jdbc.driver.Oacl eXatenent. prepare_for_new get (Q acl eX at erren
t.j ava: 1560)

at oracle.jdbc.driver.Oacl exatenent. get SringVal ue(Q acl e at enent . j av
a: 1653)

at oracle.jdbc.driver.Oacl eResul t Set. get Sring(Qacl eResul t Set . j ava: 175

)
at Enpl oyee. nai n( Enpl oyee. j ava: 41)

Coding Tips and Troubleshooting 6-9



Basic Debugging Procedures

For more information on how the JDBC drivers handle errors, and the
SQLEXxception() andthe pri nt St ackTrace() methods, see "Error Messages
and JDBC" on page 3-25.

Logging JDBC Calls

You canusethejava.io.PrintStream Dri ver Manager . set LogSt r ean()
method to log JDBC calls. This method sets the logging/tracing PrintStream used
by the DriverManager and all drivers. Insert the following line at the location in
your code where you want to start logging JDBC calls:

Dri ver Manager . set LogSt rean{ System out ) ;

Net8 Tracing to Trap Network Events

You can enable client and server Net8 trace to trap the packets sent over Net8. You
can use client-side tracing only for the JDBC OCI driver; it is not supported for the
JDBC Thin driver. You can find more information on tracing and reading trace files
in the Net8 Administrator’s Guide.

The trace facility produces a detailed sequence of statements that describe network
events as they execute. "Tracing" an operation lets you obtain more information on
the internal operations of the event. This information is output to a readable file that
identifies the events that led to the error. Several Net8 parameters in the

SQLNET. ORA file control the gathering of trace information. After setting the
parameters in SQLNET. ORA, you must make a new connection for tracing to be
performed. You can find more information on these parameters in the Net8
Administrator’s Guide.

The higher the trace level, the more detail is captured in the trace file. Because the
trace file can be hard to understand, start with a trace level of 4 when enabling
tracing. The first part of the trace file contains connection handshake information,
so look beyond this for the SQL statements and error messages related to your JDBC
program.

Note: The trace facility uses a large amount of disk space and
might have significant impact upon system performance. Therefore,
enable tracing only when necessary.

6-10 JDBC Developer’s Guide and Reference



Basic Debugging Procedures

Client-Side Tracing
Set the following parameters in the SQLNET. ORA file on the client system.

TRACE_LEVEL_CLIENT

Purpose: Turns tracing on/off to a certain specified level
Default Value: 0 or OFF
Available « 0or OFF - No trace output
Values: . .
«  4o0rUSER - User trace information
« 10 or ADMIN - Administration trace information
« 16 or SUPPORT - WorldWide Customer Support trace information

Example: TRACE_LEVEL_CLIENT=10

TRACE_DIRECTORY_CLIENT

Purpose: Specifies the destination directory of the trace file
Default Value: $ORACLE_HOME/network/trace
Example: on UNIX: TRACE_DIRECTORY_CLIENT=/oracle/traces

on Windows NT: TRACE_DIRECTORY_CLIENT=C:\ORACLE\TRACES

TRACE_FILE_CLIENT

Purpose: Specifies the name of the client trace file
Default Value: SQLNET.TRC
Example: TRACE_FILE_CLIENT=cli_Connectionl.trc

Note: Ensure that the name you choose for the
TRACE_FI LE_CLI ENT file is different from the name you choose
for the TRACE_FI LE_SERVERfile.

Coding Tips and Troubleshooting 6-11



Basic Debugging Procedures

TRACE_UNIQUE_CLIENT

Purpose: Gives each client-side trace a unique name to prevent each trace file from
being overwritten with the next occurrence of a client trace. The PID is
attached to the end of the file name.

Default Value: OFF
Example: TRACE_UNIQUE_CLIENT = ON

Server-Side Tracing

Set the following parameters in the SQLNET. ORA file on the server system. Each
connection will generate a separate file with a unique file name.

TRACE_LEVEL_SERVER

Purpose: Turns tracing on/off to a certain specified level
Default Value: 0 or OFF
Available « 0or OFF - No trace output
Values: . .
« 4 o0rUSER - User trace information
« 10 or ADMIN - Administration trace information
« 16 or SUPPORT - WorldWide Customer Support trace information

Example: TRACE_LEVEL_SERVER=10

TRACE_DIRECTORY_SERVER

Purpose: Specifies the destination directory of the trace file
Default Value: $ORACLE_HOME/network/trace
Example: TRACE_DIRECTORY _SERVER=/oracle/traces

6-12 JDBC Developer’s Guide and Reference



Transaction Isolation Levels and the Oracle Server

TRACE_FILE_SERVER

Purpose: Specifies the name of the server trace file
Default Value: SERVER.TRC
Example: TRACE_FILE_SERVER= svr_Connectionl.trc

Note: Ensure that the name you choose for the
TRACE_FI LE_SERVERfile is different from the name you choose
for the TRACE_FI LE_CLI ENT file.

Using Third Party Tools

You can use tools such as JDBCSpy and JDBCTest from Intersolv to troubleshoot at
the JDBC API level. These tools are similar to ODBCSpy and ODBCTest.

Transaction Isolation Levels and the Oracle Server

The Oracle Server supports only the TRANSACTI ON_ READ_COWM TTEDand
TRANSACTI ON_SERI ALl ZABLE transaction isolation levels. The default is
TRANSACTI ON_READ COWM TTED. Use the following methods of the
oracl e.jdbc.driver. O acl eConnecti on class to get and set the level:

« getTransactionl sol ati on() : gets this connection’s current transaction
isolation level.

« setTransactionl sol ati on() : changes the transaction isolation level using
one of the TRANSACTI ON_* values.

Coding Tips and Troubleshooting 6-13



Transaction Isolation Levels and the Oracle Server

6-14 JDBC Developer’s Guide and Reference



v

Sample Applications

This chapter presents sample applications that highlight advanced JDBC features
and Oracle extensions, including the following topics:

« Sample Applications for Basic JDBC Features

« Sample Applications for JDBC 2.0-Compliant Oracle Extensions
« Sample Applications for Other Oracle Extensions

« Creating Customized Java Classes for Oracle Objects

« Creating Signed Applets

« JDBC versus SQLJ Sample Code

Sample Applications 7-1



Sample Applications for Basic JDBC Features

Sample Applications for Basic JDBC Features

This section contains code samples that demonstrate basic JDBC features.

Streaming Data

The JDBC drivers support the manipulation of data streams in both directions
between client and server. The code sample in this section demonstrates this by
using the JDBC OCI driver for connecting to a database, and inserting and fetching
LONGdata using Java streams.

inport java.sql.*; /Il line 1
inport java.io.*;

cl ass S reantxanpl e

{

public static void main (Sring args [])

{

throws SQException, |CException

/1 Load the driver
Dri ver Manager . regi st er Dri ver (new oracl e. j dbc. dri ver. O acl eDriver());

/1 QGonnect to the database
/1 You can put a database nane after the @sign in the connecti on UR.
Gonnecti on conn =

Dri ver Manager . get Gonnect i on (" dbc: oracl e: oci 8: @, "scott", "tiger");

/] 1t’s faster when you don't comrmit autonatically
conn. set AutoCormit (fal se); /1 line 18

/] Oeate a Satenent
Satenment stmt = conn.createStatenent ();

/]l Ceate the exanpl e tabl e

try

{
stnt.execute ("drop tabl e streamexanpl €");

}

catch (SQLException e)

{
/1 An exception would be raised if the table did not exist
/] V¢ just ignore it

}

/] Ceate the table /] line 34

7-2 JDBC Developer’s Guide and Reference



Sample Applications for Basic JDBC Features

stm.execute ("create tabl e streanmexanpl e (NAME varchar2 (256),
DATA long)");

File file = newF le ("StreankExanpl e.java"); /1 line 37
Input Sreamis = new F | el nput S ream (" Streankxanpl e. j ava");
Preparedtatenent pstm =

conn. prepareStatenent ("insert into streamexanpl e (nane, data)

values (?, ?2");

pstnmi.setSring (1, "SreankExanpl €");

pstni.setAscii Stream (2, is, (int)file.length ());

pstni. execute (); /1 line 44

/] Do aquery to get the roww th NAMVE ' S reaniExanpl e
Resul t Set rset =
stnt. execut eQuery ("sel ect DATA from streanexanpl e where
NAME=' S reaniExanpl €' ") ;

/] Get the first row /]l line 51
if (rset.next ())

{

I/l Get the data as a SreamfromQacle to the client
InputSreamgif_data = rset.getAscii Sream(1);

I/l pen a file to store the gif data
F | eQut put Streamos = new Fi | eQut put S ream (" exanpl e. out");

/1 Loop, reading fromthe gif streamand witing to the file
int c;
vwhile ((c =gif_data.read ()) !'=-1)

os.wite (c);

/1 Qose the file
os.close (); /1 line 66

}
}
}

Lines 1-18: Import the necessary classes. Load the JDBC OCI driver with the

Dri ver Manager . regi st erDri ver () method. Connect to the database with the
get Connecti on(),asuserscott with passwordt i ger. Use the database URL
j dbc: oracl e: oci 8: @ You can optionally enter a database name after the @
symbol. Disable AUTOCOWM T to enhance performance. If you do not, the driver
will issue execute and commit commands after every SQL statement.

Sample Applications 7-3



Sample Applications for JDBC 2.0-Compliant Oracle Extensions

Line 34; Create a table STREAMEXAMPLE with a NAMVE column of type VARCHAR and
a DATA column of type LONG

Lines 37-44: Insert the contents of the St r eanExanpl e. j ava into the table. To do
this, create an input stream object for the Java file. Then, prepare a statement to
insert character data into the NAME column and the stream data into the DATA
column. Insert the NAME data with the set St ri ng() ; insert the stream data with
set Ascii Stream().

Line 46: Query the table to get the contents of the DATA column into a result set.
Line 51-66: Get the data from the first row of the result set into the | nput St r eam

object gi f _dat a. Create a Fi | eQut put St r eamto write to the specified file object.
Then, read the contents of the gi f stream and write it to the file exanpl e. out .

Sample Applications for JDBC 2.0-Compliant Oracle Extensions

LOB Sample

This section contains sample code for the following Oracle extensions:
« LOB Sample
«  BFILE Sample

This sample demonstrates basic support for LOBs in the OCI 8 driver. It illustrates
how to create a table containing LOB columns, and includes utility programs to
read from a LOB, write to a LOB, and dump the LOB contents. For more
information on LOBs, see "Working with LOBs" on page 4-45.

Except for some changes to the comments, the following sample is similar to the
LobExanpl e. j ava program in the Deno/ sanpl es/ oci 8/ obj ect - sanpl es
directory.

inport java.sql.*; /Il line 1
inport java.io.*;
inport java.util.*;

/] Inporting the Oracle Jdbc driver package
/1 nakes the code nore readabl e
inport oracle.jdbc.driver.*;

/] Inport this to get (LB and BLCB cl asses
inport oracle.sql.*;

7-4 JDBC Developer’s Guide and Reference



Sample Applications for JDBC 2.0-Compliant Oracle Extensions

public class New.obExanpl el

{

public static void main (Sring args [])

{

throws Exception

/1 Load the Qracl e JDBC dri ver
Driver Manager . regi sterDriver(new oracl e. jdbc. driver. Qacl eDriver());

/1 Connect to the database. You can put a dat abase
/1 nane after the @sign in the connection UR..
Gonnection conn =

Dri ver Manager . get Connect i on ("] dbc: oracl e: oci 8: @, "scott", "tiger");

/1l 1t's faster when auto conmt is off
conn. set AutoCormit (fal se); /1 line 26

Il Geate a Satenent
Satenment stmt = conn.createStatenent ();

try
{
stnt. execute ("DRCP TABLE basic_| ob_table");
}
catch (SQLException e)
{
/1 An exception could be raised here if the table did
/1 not exist already but we gleefully ignore it
} /1 line 38

/] Ceate a table containing a BLAB and a A.CB line 40
st . execute ("CREATE TABLE basic_| ob_table (x varchar2 (30),
b blob, c clob)");

/1 Populate the table
st . execute ("1 NSERT | NTO basic_| ob_tabl e VALUES (’ one’,

' 010101010101010101010101010101’ , "’ onet wot hreefour’)");
stm.execute ("I NSERT INTO basic_| ob_tabl e VALUES ("two',

' 0202020202020202020202020202" , ' twot hr eef our fi vesi x')");

/1 line 49
Systemout . println ("Dunpi ng | obs");

/] Select the | obs

Resul t Set rset = stm.executeQuery ("SHECT * FROMbasic_| ob_tabl e");

while (rset.next ())

Sample Applications 7-5



Sample Applications for JDBC 2.0-Compliant Oracle Extensions

/1l Get the | obs
BLCB bl ob = ((Qacl eResul t Set)rset). get BLAB (2);
A@Bclob = ((Oacl eResul t Set)rset) . get A.B (3);

I/ Print the [ob contents
dunpBl ob (conn, bl ob);
dunpd ob (conn, clob);

/1 Change the | ob contents
fillQob (conn, clob, 2000);
fillBlob (conn, blob, 4000);
}
/1 line 68
Systemout. println ("Dunpi ng | obs agai n");

rset = stnt.executeQuery ("SELECT * FROM basic_| ob_tabl e");
while (rset.next ())
{
/l Get the | obs
BLCB bl ob = ((Qacl eResul t Set)rset). get BLAB (2);
A@Bclob = ((Oacl eResul t Set)rset) . get B (3);

Il Print the | obs contents
dunpBl ob (conn, bl ob);
dunpd ob (conn, clob);

}
} /1l line 82

/1l Wility function to dunp A ob contents

static void dunpd ob (CGonnection conn, CLCB cl ob)
throws Exception

{
/1 get character streamto retrieve clob data
Reader instream= cl ob. get Character Streant);

/] create tenporary buffer for read line 91
char[] buffer = new char[10];

/1 length of characters read
int length = 0;

/1 fetch data line 98
while ((length = instreamread(buffer)) !'=-1)

7-6 JDBC Developer’s Guide and Reference



Sample Applications for JDBC 2.0-Compliant Oracle Extensions

Systemout . print("Read " + length + " chars: ");

for (int i=0; i<length; i++)
Systemout. print(buffer[i]);
Systemout . println();

}

[/l Aose input stream
i nstreamcl ose();
} /1 line 108

/1l Wility function to dunp B ob contents

static void dunpB ob (CGonnection conn, BLCB bl ob)
throws Exception

{
/] Get binary output streamto retrieve blob data
I nput S reami nst ream = bl ob. get B narySt reant) ;

[/l Ceate tenporary buffer for read
byte[] buffer = new byt e[ 10];

/1 length of bytes read line 120
int length = 0;

/1 Fetch data
while ((length = instreamread(buffer)) !'=-1)

Systemout.print("Read " + length + " bytes: ");

for (int i=0; i<length; i++)
Systemout. print(buffer[i] +" ");
Systemout . println();
}

/1l Aose input stream
i nstreamcl ose();
}
/1 line 135
/1 Uility function to put data in a Qob
static void filldob (Gonnection conn, CLCB clob, | ong I ength)
throws Exception

{
Witer outstream= cl ob. get Charact er Qut put Streant);

int i =0

Sample Applications 7-7



Sample Applications for JDBC 2.0-Compliant Oracle Extensions

int chunk = 10;

while (i < length)

{
outstreamwite(i + "hello world", 0, chunk); Il line 147
i += chunk;
if (length - i < chunk)
chunk = (int) length - i;
}
out st reamcl ose();
} /1 line 154

/I Wility function to wite data to a B ob
static void fillB ob (Gonnection conn, BLGB bl ob, | ong I ength)
throws Exception

{
Qut put St ream out st ream = bl ob. get Bi nar yQut put Streant) ;

int i =0;

byte [] data={ 1, 2, 3, 4, 5 6, 7, 8 9, 10}; /1 line 165
int chunk = data.length;

while (i < length)

data [0] = (byte)i;
outstreamwite(data, 0, chunk);

i += chunk;
if (length - i < chunk)
chunk = (int) length - i;
}

out stream cl ose() ;

}
} /1 line 175

Lines 1-26: Import the necessary j ava. * and or acl e. * classes. Register the driver
with the Dr i ver Manager . regi st er Dri ver () method and connect to the
database with Dr i ver Manager . get Connect i on() . Use the database URL

j dbc: oracl e: oci 8: @and connect as user scot t with password ti ger. You can
optionally enter a database name following the @symbol.

7-8 JDBC Developer’s Guide and Reference



Sample Applications for JDBC 2.0-Compliant Oracle Extensions

Use set Aut oCommi t (f al se) to disable the AUTOCOVWM T feature and enhance
performance. If you do not, the driver will issue execute and commit commands
after every SQL statement.

Lines 27-38: Create a statement object. Drop any pre-existing table named
basi c_| ob_t abl e. Then, create a new basi c_| ob_t abl e directory to store the
LOBs in-line.

Lines 40-49: Use SQL statements to create a table with three columns: a column to
store the row number as a VARCHAR2, a BLOB column, and a CLOB column. Then
insert data into two rows of the table.

Lines 50-68: SELECT the contents of the table into a result set.

Retrieve the LOBs. The get BLOB() and get CLOB() methods return locators to the
LOB data; to retrieve the LOB contents, you must write additional code (which is
defined later in this program). To use the get BLOB() and get CLOB() methods,
cast the result set to an Or acl eResul t Set object. Then call the "dunp" functions to
display the contents of the LOBs, and the "f i | | " functions to change the contents of
the LOBs. The dunp and fi | | functions are defined later in this program.

Lines 69-82: Display the LOBs again, after their contents have been changed.
SELECT the contents of the table into a result set, and then apply the dump
functions. The dunp functions are defined later in this program.

Lines 84-108: Define the utility function dunpd ob to display the contents of a CLOB.
Read the CLOB contents as a character stream. Use the get Char act er St r ean()
method to get a READER stream object. Set up the temporary character array to read
the character data in 10-character chunks.

Set up a loop to read and display the contents of the CLOB. The length of the CLOB is
displayed as well. Close the input stream when you are done.

Lines 110-135; Define the utility function dunpBIl ob to display the contents of a
BLOB. Read the BLOB contents as a binary stream. Use the get Bi narySt r ean()
method to get an | nput St r eamstream object. Set up the temporary byte array to
read the binary data in 10-byte chunks.

Set up a loop to read and display the contents of the BLOB. The length of the BLOB is
displayed as well. Close the input stream when you are done.

Lines 136-154: Define the utility functionfi | | Cl ob to write data to a CLOB. The
fill d ob function needs the CLOB locator and the length of the CLOB. To write to

Sample Applications 7-9



Sample Applications for JDBC 2.0-Compliant Oracle Extensions

the CLOB, use the get Char act er Qut put St r eam() method to get a WRI TER
object.

Set up a loop to write an index value and part of the string Hel | o Wor | d to the
CLOB. Close the WRI TER stream when you are done.

Lines 156-175. Define the utility function fi | | Bl ob to write data to a BLOB. The
fill Bl ob function needs the BLOB locator and the length of the BLOB. To write to
the BLOB, use the get Bi nar yQut put St r ean() method to get an Qut put St r eam
object.

Define the byte array of data that you want to write to the BLOB. The whi | e loop
causes a variation of the data to be written to the BLOB. Close the Qut put St r eam
object when you are done.

BFILE Sample

This sample demonstrates basic BFI LE support in the OCI 8 driver. It illustrates
filling a table with BFI LEs and includes a utility for dumping the contents of a
BFI LE. For more information on BFI LEs, see "Working with LOBs" on page 4-45.

Except for some changes to the comments, the following sample is similar to the
Fi | eExanpl e. j ava program in the Deno/ sanpl es/ oci 8/ obj ect - sanpl es
directory.

inport java.sql.*; /]l line 1
inport java.io.*;
inport java.util.*;

/lincluding this inport nakes the code easier to read
inport oracle.jdbc.driver.*;

/1 needed for new BFI LE cl ass
inport oracle.sql.*;

/1 line 10
public class NewFi | eExanpl el
{
public static void nain (Sring args [])
throws Exception
{
/'l Load the QOracle JDBC dri ver line 16

Driver Manager . regi sterDriver(new oracl e. jdbc. driver. Qacl eDriver());

/1 Gonnect to the database
/] You can put a database nane after the @sign in the connecti on URL.

7-10 JDBC Developer’s Guide and Reference



Sample Applications for JDBC 2.0-Compliant Oracle Extensions

I
/] The exanpl e creates a D RECTCRY and you have to be connected as
/] "systemi to be able to run the test.
/1 1f you can’t connect as "systeni have your system nanager
/] create the directory for you, grant you the rights to it, and
/1 renove the portion of this programthat drops and creates the directory.
Gonnecti on conn =
Ori ver Manager . get Connection ("jdbc: oracl e: oci 8: @, "systeni, "manager");

/1l 1t's faster when auto conmt is off
conn. set AutoCormit (fal se);

/1 line 32

/] Geate a Satenent
Statenment stmt = conn.createStatenent ();
try /1 line 36
{

stn. execute ("DRCP O RECTCRY TEST_D R');
}
catch (SQLException e)
{

Il Anerror israised if the directory does not exist. Just ignoreit.
} /1 line 43
st . execute ("CREATE D RECTCRY TEST_ DR AS ' /tenp/filetest’");
try /1 line 46
{

stn.execute ("drop table test _dir_table");
}
catch (SQLException e)
{

/I Anerror israised if the table does not exist. Just ignore it.
}
/1 line 54
I/l Oeate and populate a table with files
/] The files filel and file2 nust exist in the directory TEST DR creat ed
/] above as synbolic nane for /private/local /filetest.
st . execute ("CREATE TABLE test _dir_table (x varchar2 (30), b bfile)");
stnt.execute ("INSERT INTOtest_dir_table VALUES ('one’, bfilenane
(CTEST.OR, 'filel))");
stnt.execute ("INSERT INTOtest_dir_table VALUES ('two’, bfilenane
(' TEST. DR, 'file2))");

/1l Select the file fromthe table /1 line 64
Resul tSet rset = stm.executeQuery ("SELECT * FROMtest_dir_table");

Sample Applications 7-11



Sample Applications for JDBC 2.0-Compliant Oracle Extensions

while (rset.next ())

{
Sring x =rset.getSring (1);
BFILE bfile = ((Qacl eResul t Set)rset). get BFI LE (2);
Systemout.println (x +" " + bfile);

/] Dunp the file contents
dunpBfile (conn, bfile);
}
} /lline 75

/1 Wility function to dunp the contents of a Bfile line 77

static void dunpBfile (Gonnection conn, BFILE bfile)
throws Exception

{ /1 line 80
Systemout.println ("Dunping file " + bfile. getNange());
Systemout.println ("File exists: " + bfile.fileExists());
Systemout.println ("Fle open: " + bfile.isFleQen());
Systemout.println ("Qpening File: "); /1 line 84
bfile.openFle();
Systemout.println ("Fle open: " + bfile.isF|eQen());

long length = bfile.length();
Systemout.println ("File length: " + length);

int chunk = 10;
I nput Sreaminstream= bfile.getB narySreant);

[/l Create tenporary buffer for read
byte[] buffer = new byt e[ chunk];

/1 Fetch data
while ((length = instreamread(buffer)) !'=-1)

Systemout.print("Read " + length + " bytes: ");
for (int i=0; i<length; i+
Systemout. print (buffer[i] +" ");

Systemout. println();
} /1 line 108

7-12 JDBC Developer’s Guide and Reference



Sample Applications for JDBC 2.0-Compliant Oracle Extensions

/] Aose input stream
i nstreamcl ose();

/1 close file handl er
bfile.closeFle();
} /1 line 115
}

Lines 1-32: Import the necessary j ava. * and or acl e. * classes. Register the driver
with the Dri ver Manager . regi st er Dri ver () method and connect to the
database with the get Connect i on() method. Use the database URL

j dbc: oracl e: oci 8: @and connect as user syst emwith password nmanager. You
can optionally enter a database name following the @symbol.

Use set Aut oCommi t (f al se) to disable the AUTOCOVM T feature and enhance
performance. If you do not, the driver will issue execute and commit commands
after every SQL statement.

Lines 33-44: Create a statement object. Drop any pre-existing directory named
TEST_DI R Then, create a new TEST_DI Rdirectory to store the BFI LE. You or your
System Administrator can use whatever file name you wish.

Lines 46-53: Drop any pre-existing table named t est _dir _tabl e.

Lines 55-63: Create and populate a table with files. Use SQL statements to create a
table, t est _di r _t abl e, with two columns: one column to indicate the row
number as a VARCHAR2 (for example, "one" or "t wo"), and one column to hold the
BFI LE locator.

Use SQL statements to insert some data into the table. For the first row, insert a row
number in the first column, and use the BFI LENAME keyword to insert a BFI LE,
filel,located in TEST_DI R, in the second column. Do the same thing for the
second row.

Lines 64-75: SELECT the contents of the table into a result set. Set up a loop to
retrieve the contents of the table. Use get St ri ng() to retrieve the row number
data, and use get BFI LE() to retrieve the BFI LE locator. Since BFI LE is an
Oracle-specific datatype, and get BFI LE() is an Oracle extension, cast the result set
object to an Or acl eResul t Set object.

Use the dunmpBf i | e() method (defined later in the program) to display the BFI LE
contents and various statistics about the BFI LE.

Sample Applications 7-13



Sample Applications for Other Oracle Extensions

Line 77; Define the dunpBfi | e() method to display the BFI LE contents and
various statistics about the BFI LE. The dunpBf i | e() method takes the BFI LE
locator as input.

Lines 80-83: Use the get Nane(),fil eExi sts(),andi sFi |l eQpen() methods to
return the name of the BFI LE, and whether the BFI LE exists and is open. Note that
the BFI LE does not have to be open to apply these methods to it.

Lines 84-108: Read and display the BFI LE contents. First open the BFI LE. You can
read the BFI LE contents as a binary stream. Use the get Bi nar ySt r ean() method
to get an input stream object. Determine the size of the "chunk” in which the stream
will read the BFI LE data, and set up the temporary byte array to store the data.

Set up a loop to read and display the contents of the BFI LE. The length of the
BFI LE is displayed as well.

Lines 110-115: When you are finished, close the input stream and the BFI LE.

Sample Applications for Other Oracle Extensions
This section contains sample code for these Oracle extensions:
« REF CURSOR Sample
« Array Sample

REF CURSOR Sample

Following is a complete sample program that uses JDBC to create a stored package
in the data server and uses a get on the REF CURSOR type category to obtain the
results of a query. For more information on REF CURSORSs, see "Oracle REF CURSOR
Type Category" on page 4-112.

Except for some changes to the comments, the following sample is similar to the
Ref Cur sor Exanpl e. j ava program in the
Deno/ sanpl es/ oci 8/ obj ect - sanpl es directory.

inport java.sql.*; /Il line 1
inport java.io.*;
inport oracle.jdbc.driver.*;

cl ass Ref Qur sor Exanpl e

{
public static void min(Sring args[]) throws SQException

7-14 JDBC Developer’s Guide and Reference



Sample Applications for Other Oracle Extensions

{
//Load the driver.
Dri ver Manager . regi sterDri ver (new oracl e. jdbc. driver. Qacl eDriver());
/] Gonnect to the database.
/] You can put a database nane after the @sign in the connection URL.
Gonnecti on conn =
Ori ver Manager . get Connect i on("j dbc: oracl e: oci 8: @, "scott", "tiger");
/1 line 16
/]l Geate the stored procedure.
i nit(conn);
/] Prepare a PL/SQ call. line 20
Gl labl e atenent call =
conn. prepareCal I ("{ ? = call java refcursor.job_listing (?) }");
/! Find out who all the sal es peopl e are. line 24
call.registerQutParaneter (1, O acl eTypes. ORSR);
call.setSring(2, "SALESVAN');
cal | . execute();
Resul tSet rset = (ResultSet)call.get(hject(1);
/1 Qutput the information in the cursor. line 30
wvhile (rset.next())
Systemout. println(rset.getSring("BENAME'));
}
/1 Wility function to create the stored procedure
/1 line 36
static void init(Qnnection conn) throws SQException
{
Satenment stnt = conn.createStatenent();
/1 line 40

st nt. execut (" CREATE (R REPLACE PACKACE java refcursor AS " +
" type nyrctype is ref cursor return BEMYA0ONYPE " +
" function job_listing(j varchar2) return nyrctype; " +
"end java_refcursor;");
/1 line 45
st nt . execut e(" CREATE (R REPLACE PACKACE BQDY java refcursor AS " +
" function job_listing(j varchar2) return nyrctype is " +
" rc nyrctype;, " +

" begin " +

" open rc for select * fromenp where job =j; " +
" return rc; " +

" end, " +

Sample Applications 7-15



Sample Applications for Other Oracle Extensions

Array Sample

"end java_cursor;"); /] line 53

}
}

Lines 1-16: Import the necessary j ava. * and or acl e. * classes. Register the driver
with the Dri ver Manager . regi st er Dri ver () method and connect to the
database with the get Connect i on() method. Use the database URL

j dbc: oracl e: oci 8: @and connect as user scot t with password ti ger. You can
optionally enter a database name following the @symbol.

Lines 18-29: Prepare a callable statement to thej ob_I i sti ng function of the

j ava_ref cursor PL/SQL procedure. The callable statement returns a cursor to
the rows of information where j ob=SALESMAN. Register Or acl eTypes. CURSOR
as the output parameter. The set Cbj ect () method passes the value SALESMAN to
the callable statement. After the callable statement is executed, the result set
contains a cursor to the rows of the table where j ob=SALESMAN.

Lines 30-33: Iterate through the result set and print the employee name part of the
employee object.

Lines 40-45: Define the package header for the j ava_r ef cur sor package. The
package header defines the return types and function signatures.

Lines 46-53: Define the package body for the j ava_r ef cur sor package. The
package body defines the implementation which selects rows based on the value for
j ob.

Following is a complete sample program that uses JDBC to create a table with a
VARRAY. It inserts a new array object into the table, then prints the contents of the
table. For more information on arrays, see "Working with Arrays" on page 4-87.

Except for some changes to the comments, the following sample is similar to the
ArrayExanpl e. j ava program in the Deno/ sanpl es/ oci 8/ obj ect - sanpl es
directory.

inport java.sql.*; /Il line 1
inport oracle.sql.*;

inport oracle.jdbc.oracore. Wil;

inport oracle.jdbc.driver.*;

i nport java. nmat h. B gDeci nal ;

7-16 JDBC Developer’s Guide and Reference



Sample Applications for Other Oracle Extensions

public class ArrayExanpl e
{
public static void main (Sring args[])
throws Exception
{
/] Register the Oacle JDBC driver
Dri ver Manager . regi ster Dri ver (new oracl e. j dbc. dri ver. O acl eDriver());

/1 QGonnect to the database

/1 You need to put your database nane after the @synbol in
/1 the connection URL.

1

/] The sanple retrieves an varray of type "NJM VARRAY' and
/] nmaterializes the object as an object of type ARRAY.

/1 A new ARRAY is then inserted into the database.

/1 P ease replace hostnane, port_nunber and sid nane with
/1 the appropriate val ues

Gonnection conn =
Ori ver Manager . get Connect i on
("j dbc: oracl e: oci 8: @descri pti on=(addr ess=( host =host nan®) ( pr ot ocol =t cp) (por t =por
t _nunber)) (connect _dat a=(si d=sid nane)))", "scott", "tiger");

I't's faster when auto commit is off
conn.setLines (false); Nine 32

Il Create a Statement
Statement stmt = conn.createStatement (); Iline 35

fry

{
stmtexecute ('DROP TABLE varray_table");

stmtexecute ('DROP TYPE num_varray");

}

catch (SQLException €)

{
I/ the above drop statements will throw exceptions
Iifthe types and tables did not exist before

} Iline 47

stmtexecute ('CREATE TYPE num_varray AS VARRAY(10) OF NUMBER(12, 2)");

stmtexecute ('CREATE TABLE varray_table (coll num_varray)");
stmtexecute ('INSERT INTO varray _table VALUES (hum_varray(100, 200))");

Sample Applications 7-17



Sample Applications for Other Oracle Extensions

Resul tSet rs = stnt. execut eQuery("SEHLECT * FROMvarray_tabl e");
showResul t Set (rs); /1 line 54

/I now insert a new row

/] create a new ARRAY obj ect
int elenents[] = { 300, 400, 500, 600 }; /] line 59
ArrayDescriptor desc = ArrayDescri ptor. createDescri ptor (" NJV VARRAY', conn);
ARRAY newArray = new ARRAY(desc, conn, el enents);

/1 line 62
PreparedSt atenent ps =

conn. prepareStatenent ("I NSERT | NTO varray_table VALUES (?)");

((QO acl ePrepar edS at enent ) ps) . set ARRAY (1, newArray);

ps. execute ();

rs = stnt. execut eQuery("SELECT * FROMvarray_tabl e");
showResul t Set (rs);

} /1 line 70

public static void showResul t Set (ResultSet rs) [l line 72
throws SQException

{

int line =0;
while (rs.next())
{
I'i net++;
Systemout.printin("Row" + line +" : ");
ARRAY array = ((Gacl eResul t Set)rs). get ARRAY (1);

Systemout.printin ("Array is of type " + array. get SQLTypeNane());
Systemout.printin ("Array elenent is of type code
" + array. get BaseType());
Systemout.printin ("Array is of length " + array.length());
/1 line 86
/] get Array el enents
Biglecinal [] val ues = (BigDecinal []) array.getArray();

for (int i=0; i<values.length; i++)
{
Bi gDeci mal val ue = val ues[i];
Systemout. printIn(">>index " +i +" =" + value.intValue());
}
}
}

7-18 JDBC Developer’s Guide and Reference



Sample Applications for Other Oracle Extensions

} /1 line 97

Lines 1-32: Import the necessary j ava. * and or acl e. * classes. Register the driver
with the Dri ver Manager . regi st er Dri ver () method and connect to the
database with the get Connect i on() method. This example of

get Connecti on() uses Net8 name-value pairs to specify the host as host nane,
protocol astcp,port as1521,sidasorcl,user asscott and password as
tiger.

Use set Aut oCommi t (f al se) to disable the AUTOCOVWM T feature and enhance
performance. If you do not, the driver will issue execute and commit commands
after every SQL statement.

Lines 35-47: Create a Statement object and delete any previously defined tables or
types named varray_t abl e or num varr ay.

Lines 49-54: Create the type num varr ay as avar r ay containing NUVBER data.
Create a 1-column table, varr ay_t abl e, to contain the num var r ay type data.
Insert into the table two rows of data. The values 100 and 200 are both of type

num var r ay. Use the showResul t Set () method (defined later in the program) to
display information about the arrays contained in the table.

Lines 59-61: First, define an array of integer elements to insert into the

varray_t abl e. Next, create an array descriptor object that will be used to create
new ARRAY objects. To create an array descriptor object, pass the SQL type name of
the array type (NUM_ARRAY) and the connection object to the

creat eDescri pt or () method. Then create the new array object by passing to it
the array descriptor, the connection object, and the array of integer elements.

Lines 63-70: Prepare a statement to insert the new array object into varray_t abl e.
Cast the prepared statement object to an Or acl ePr epar edSt at enent object to
take advantage of the set ARRAY() method.

To retrieve the array contents of the table, write and execute a SQL SELECT
statement. Again, use the showResul t Set method (defined later in the program)
to display information about the arrays contained in the table.

Lines 72-85: Define the showResul t Set () method. This method loops through a
result set and returns information about the arrays it contains. This method uses the
result set get ARRAY() method to return an array into an or acl e. sql . ARRAY
object. To do this, cast the result set to an Or acl eResul t Set object. Once you have
the ARRAY object, you can apply Oracle extensions get SQLTypeNane(),

Sample Applications 7-19



Creating Customized Java Classes for Oracle Objects

get BaseType(),aswell as| engt h(), to return and display the SQL type name
of the array, the SQL type code of the array elements, and the array length.

Lines 87-97: You can access the var r ay elements by using the ARRAY object’s

get Array() method. Since the var r ay contains SQL numbers, cast the result of
get Array() toaj ava. mat h. Bi gDeci nal array. Then, iterate through the value
array and pull out individual elements.

Creating Customized Java Classes for Oracle Objects
This section contains the following subsections:
« SQLData Sample
«  CustomDatum Sample

This section contains examples of the code you must provide to create custom Java
classes for Oracle objects. You create the custom classes by implementing either the
SQLDat a or Cust onDat uminterface. These interfaces provide a way to create and
populate the custom Java class for the Oracle object and its attributes.

Although both SQLDat a and Cust onDat umboth populate a Java object from a
SQL object, the Cust onDat uminterface is far more powerful. In addition to letting
you populate Java objects, Cust onDat umlets you materialize objects from SQL
types that are not necessarily objects. Thus, you can create a Cust onDat umobject
from any datatype found in an Oracle database. This is particularly useful in the
case of RAWdata that can be a serialized object.

The SQLDat a interface is a JDBC standard. For more information on this interface,
see "Understanding the SQLData Interface" on page 4-69.

The Cust onDat uminterface is provided by Oracle. You can write your own code to
create custom Java classes that implement this interface, but you will find it easier
to let the Oracle utility JPublisher create the custom classes for you. The custom
classes created by JPublisher implement the Cust onDat uminterface.

For more information on the Cust onDat uminterface, see "Understanding the
CustomDatum Interface" on page 4-75. See the Oracle8i JPublisher User’s Guide for
more information on the JPublisher utility.

SQLData Sample

This section contains a code sample that illustrates how you can create a custom
Java type to correspond to a given SQL type. It then demonstrates how you can use

7-20 JDBC Developer’s Guide and Reference



Creating Customized Java Classes for Oracle Objects

the custom Java class in the context of a sample program. The sample also contains
the code to map the SQL type to the custom Java type.

Creating the SQL Object Definition

Following is the SQL definition of an EMPLOYEE object. The object has two
attributes: a string EnpNare (employee name) attribute and an integer EnpNo
(employee number) attribute.

-- SQ definition
CREATE TYPE BEMPLOYEE AS CBIECT

(
EnpNare VARCHARR( 50) ,

EnpNo | NTEGER
)

Creating the Custom Java Class

The following program implements the custom Java class Enpl oyeeQbj to
correspond to the SQL type EMPLOYEE. Notice that the implementation of

Enpl oyeeObj contains a string EmpNane (employee name) attribute and an integer
EnpNo (employee number) attribute. Also notice that the Java definition of the

Enpl oyeeObj custom Java class implements the SQLDat a interface and includes
the implementations of a get method and the required r eadSQ_() and
writeSQ. () methods.

inport java.sql.*;
i nport oracle.jdbc2. *;

public class Enpl oyeeChj inplenents SQData

{
private Sring sql _type;

public Sring enpNane;
public int enpNb;

publ i ¢ Enpl oyee(j ()
{

}
/] line 14

public Enpl oyeeChj (String sqgl _type, Sring enpNane, int enpNb)
this.sql _type = sql _type;

thi s. enpNane = enpNang;
this.enpNb = enpNb;

Sample Applications 7-21



Creating Customized Java Classes for Oracle Objects

} /1 line 20
11111 inplements SQData //////

/1 define a get nethod to return the SQL type of the object line 24
public Sring get SQTypeNane() throws SQAException

{

return sql _type;
} /!l line 28
/1 define the required readSQ() nethod line 30

public void readSQ(SQLInput stream String typeNane)
throws SQLException

{
sql _type = typeNang;

enpNane = streamreadString();
enpNo = streamreadint();

/] define the required witeSQ() nethod line 39
public void witeSQ(SQQutput strean)
throws SQException

{

streamw iteSring(enpNane);
streamwritel nt (enpNbd);

}
}

Lines 1-14: Import the needed j ava. * and or acl e. * packages. Define the custom
Java class Enpl oyeeObj to implement the SQLDat a interface. Enpl oyeeQbj is the
class to which you will later map your EMPLOYEE SQL object type. The

Enpl oyeeObj object has three attributes: a SQL type name, an employee name,
and an employee number. The SQL type name is a Java string that represents the
fully qualified SQL type name (schema.sgl_type_name) of the Oracle object that the
custom Java class represents.

Lines 24-28: Define a get Sql Type() method to return the SQL type of the custom
Java object.

Lines 30-38: Define ar eadSQ.() method as required by the definition of the

SQLDat a interface. The r eadSQ.() method takes a stream SQLI nput object and
the SQL type name of the object data that it is reading.

7-22 JDBC Developer’s Guide and Reference



Creating Customized Java Classes for Oracle Objects

Lines 39-45: DefineawriteSQL.() method as required by the definition of the
SQLDat a interface. The wri t eSQL() method takes a stream SQLQut put object
and the SQL type name of the object data that it is reading.

Using the Custom Java Class

After you create your Enpl oyeeObj Java class, you can use it in a program. The
following program creates a table that stores employee name and number data. The
program uses the Enpl oyeeObj object to create a new employee object and insert it
in the table. It then applies a SELECT statement to get the contents of the table and
prints its contents.

Except for some changes to the comments, the following sample is similar to the
SQLDat aExanpl e. j ava program in the
Deno/ sanpl es/ oci 8/ obj ect - sanpl es directory.

inport java.sql.*; /]l line 1
inport oracle.jdbc.driver.*;

import oracle.sql.*;

i nport java. mat h. B gDeci nal ;

inport java.util.D ctionary;

public class SQDat aExanpl e

{
public static void main(Sring args []) throws Exception

{

/1 Connect to the database
Dri ver Manager . regi sterDri ver(new oracl e.jdbc. driver. Qacl eDriver ());
Q acl eConnection conn = (O acl eConnect i on)
Ori ver Manager . get Connect i on("j dbc: or acl e: oci 8: @,
"scott", "tiger"); /1 line 16

/] in the type map, add the mappi ng of EMPLOYEE SQL /1 line 18
/] type to the Enpl oyee(hj custom Java type
D ctionary map = conn. get TypeMap() ;

nap. put ("EMPLOYEE', d ass. f or Nane( " Enpl oyee(hj ")) ; /1 line 21
Il Geate a Satenent line 23
Satenment stmt = conn.createStatenent ();

try

{

stnt.execute ("drop tabl e EMPLOYEE TABLE');
stnt. execute ("drop type BEMPLOYEE');

}

Sample Applications 7-23



Creating Customized Java Classes for Oracle Objects

catch (SQLException e)

{
Il Anerror israised if the tabl e/type does not exist. Just ignore it.
}
/]l Oeate and popul ate tabl es /1 line 35
stni. execute (" CREATE TYPE BMPLOYEE AS (BIECT( EhpNane VARCHAR?(50),

EnpNo I NTEGER) ") ;

stm . execute ("CREATE TABLE EMPLOYEE TABLE (ATTRL EMPLOYED)");

stnt. execute ("1 NSERT | NTO EMPLOYEE TABLE VALUES (BEMPLOYEE' Susan Snith',
123))"); /1 line 40

/] Geate a SQData obj ect Enpl oyee(hj in the SAOIT schema
Enpl oyeeChj e = new Enpl oyeeChj (" SCOIT. EMPLOYEE', "George Jones", 456);

/1 Insert the SQ.Data object into the database /1 line 45
Prepar edSt at enent  pst nt
= conn. prepareSt atenent ("1 NSERT | NTO enpl oyee_table VALUES (?)");

pstm.set j ect (1, e, Oacl eTypes. STRLT);

pst i . execut eQuery();

Systemout. println("insert done");

pstni. close(); /1 line 52

/] Select the contents of the enpl oyee table /1 line 54
Satenent s = conn.createStatenent();
QacleResultSet rs = (O acl eResul t Set)

s. execut eQuer y(" SELECT * FROM enpl oyee_t abl ") ; /1 line 57
/] print the contents of the table // line 59
whil e(rs. next())
{
Enpl oyee(hj ee = (Ewpl oyee(hj) rs. get (yj ect (1);
Systemout . printl n("EnpNane: " + ee.enpNane + " EnpNo: " + ee. enpNb);
} /1 line 64
I/l close the result set, statenent, and connecti on /] line 66
rs.close();
s.close();

if (conn!=null)

{

conn. cl ose(); [l line 72

}
}

7-24 JDBC Developer’s Guide and Reference



Creating Customized Java Classes for Oracle Objects

}

Lines 1-16: Import needed j ava. * and or acl e. * packages. Register the driver
with the Dri ver Manager . regi st er Dri ver () method and connect to the
database with the get Connect i on() method. Use the database URL

j dbc: oracl e: oci 8: @and connect as user scot t with password ti ger. You can
optionally enter a database name following the @symbol.

Lines 18-21: Use the get TypeMap() method to get the type map associated with
this connection. Use the map object’s put () method to add the mapping of the SQL
EMPLOYEE object to the Enpl oyeeChj custom Java type.

Lines 23-33: Create a statement object and drop any pre-existing tables and types
named EMPLOYEE_TABLE and EMPLOYEE.

Lines 35-40: Use SQL statements to:

« create an EMPLOYEE object with employee hame and employee number
attributes

« Create a table of employee objects (EMPLOYEE_TABLE) having a single
EMPLOYEE column

« insert initial data values into the table

Lines 42, 43: Create a new Enpl oyeeQhj object (which is a SQLDat a object).
Identify the schema name (SCOTT), SQL type name (EMPLOYEE), an employee name
(Geor ge Jones) and an employee number (456). Note that the schema name is the
same as the user name in the get Connecti on() call. If you change the user name,
you must also change the schema name.

Lines 45-52: Prepare a statement to insert the new EMPLOYEE object into the
employee table. The set Qbj ect () method indicates that the object will be inserted
into the first index position and that the underlying type of the EMPLOYEE object is
oracl e. sqgl . STRUCT.

Lines 54-57: Select the contents of the EMPLOYEE_TABLE. Cast the results to an
O acl eResul t Set so that you can retrieve the custom Java object data from it.

Lines 59-62: Iterate through the result set, getting the contents of the EMPLOYEE
objects and printing the employee names and employee numbers.

Lines 66-72: Close the result set, statement, and connection objects.

Sample Applications 7-25



Creating Customized Java Classes for Oracle Objects

CustomDatum Sample

This section describes a Java class, written by a user, that implements the

Cust omDat umand Cust onDat unfact or y interfaces. The custom Java class of
type Cust onDat umhas a static get Fact or y() method that returns a

Cust onDat unfact or y object. The JDBC driver uses the Cust onDat unfact ory
object’s cr eat e() method to return a Cust onDat uminstance. Note that instead of
writing the custom Java class yourself, you can use the JPublisher utility to generate
class definitions that implement the Cust onDat umand Cust onDat unfact ory
interfaces.

The following example illustrates a Java class definition that can be written by a
user, given the SQL definition of an EMPLOYEE object.

SQL Definition of EMPLOYEE Object

The following SQL code defines the EMPLOYEE object. The EMPLOYEE object
consists of the employee’s name (EnpNane) and the employee’s associated number

(EnpNo).
create type BEMPLOYEE as obj ect

(
EnpNare VARCHARR( 50) ,
EnpNo | NTEGER

Java Class Definitions for a Custom Java Object
Below are the contents of the Enpl oyee. j ava file.

i nport java. mat h. B gDeci nal ;

i nport java. sql . SQLExcept i on;

inport oracle.jdbc. driver.Qacl eConnecti on;
i nport oracl e. sql . Qust onbat um

i nport oracl e. sql . Qust onbat unfact ory;

i nport oracle.sql .Datum

i nport oracl e. sql . STRCT;

inport oracle.sql.SructDescriptor;

public class Enpl oyee inpl enents Qust onbatum Qust onbat unfactory // |ine 10
{

static final Enpl oyee _enpl oyeeFactory = new Epl oyee(null, null); //line 13

public static Qustonbatunact ory get Fact ory()
{

7-26 JDBC Developer’s Guide and Reference



Creating Customized Java Classes for Oracle Objects

return _enpl oyeeFact ory;

} /1l line 18
/* constructor */ /1 line 20
publ i c Enpl oyee(Sring enpNane, B gDeci mal enpNb)

{

thi s. enpNane = enphane;
this.enpNo = enpNb;
} /!l line 25

/* Qustonbatuminterface */ /1 line 27
publ i ¢ Dat umt olat un{ QO acl eConnection c) throws SQException

{
S ructDescriptor sd =

S ruct Descri ptor. createDescri ptor ("SCOIT. EMPLOYEE', ¢);
hject [] attributes = { enpNange, enpNb };

return new STRUICT(sd, c, attributes);
} /1 line 36

/* Qustonbatunfactory interface */ /! line 38
public Qustonbatumcreate(Datumd, int sql Type) throws SQException

{

if (d=null) return null;

Systemout . println(d);

hject [] attributes = ((STRUCT) d).getAttributes();

return new Enpl oyee((String) attributes[(],

(BgDlecimal) attributes[1]);

} /1 line 49
/* fields */
public Sring enpNane;

public Bi gleci mal enpNb;
}

Line 10; As required, the Enpl oyee class implements the Cust onDat umand
Cust onDat unfact ory interfaces.

Lines 13-18: JPublisher defines a _enpl oyeeFact or y object of class Enpl oyee,
which will be returned by the get Fact or y() method and used to create new

Sample Applications 7-27



Creating Customized Java Classes for Oracle Objects

Enpl oyee objects. The get Fact or y() method returns an empty Enpl oyee object
that you can use to create new Enpl oyee objects.

Lines 20-25: JPublisher defines the Enpl oyee Java class to correspond to the SQL
EMPLOYEE object. JPublisher creates the Enpl oyee class with two attributes: an
employee name of type j ava. | ang. St ri ng and an employee number of type

j ava. mat h. Bi gDeci mal .

Lines 27-36: The t oDat um() method of the Cust onDat uminterface transforms the
EMPLOYEE SQL data into or acl e. sql . * representation. To do this, t oDat un()
uses:

= a STRUCT descriptor that takes the schema name, the SQL object or "type"
name, and the connection object as arguments

= an object array that stores the values of the object’s employee name and
employee number attributes

Thet oDat un() returns a STRUCT containing the STRUCT descriptor, the
connection object and the object attributes into an or acl e. sql . Dat um

Lines 38-49: The Cust onDat unfact or y interface specifies acr eat e() method
that is analogous to the constructor of your Enpl oyee custom Java class. The
cr eat e() method takes the Dat umobject and the SQL type code of the Dat um
object and returns a Cust onDat uminstance.

According to the definition, the cr eat e() method returns null if the value of the
Dat umobject is null. Otherwise, it returns an instance of the Enpl oyee object with
the employee name and employee number attributes.

Custom Java Class Usage Example

This code snippet presents a simple example of how you can use the Enpl oyee
class that you created with JPublisher. The sample code creates a new Enpl oyee
object, fills it with data, then inserts it into the database. The sample code then
retrieves the Enpl oyee data from the database.

Except for some changes to the comments, the following sample is similar to the
Cust onDat unkExanpl e. j ava program in the
Denmo/ sanpl es/ oci 8/ obj ect - sanpl es directory.

inport java.sql.*; /]l line 1
inport oracle.jdbc.driver.*;

inport oracle.sql.*;

i nport java. mat h. B gDeci nal ;

7-28 JDBC Developer’s Guide and Reference



Creating Customized Java Classes for Oracle Objects

public class Qustonbat unExanpl e
{

public static void main(String args []) throws Exception

{

/1 Gonnect
Dri ver Manager . regi sterDri ver (new oracl e. j dbc. dri ver. Oacl exiver ());
Q acl eConnection conn = (O acl eConnecti on)
Ori ver Manager . get Connect i on("j dbc: or acl e: oci 8: @,
"scott", "tiger");

/] Ceate a Satenent /l line 18
Satenent stmt = conn.createStatenent ();
try
{
stm.execute ("drop tabl e EMPLOYEE TABLE');
stm. execute ("drop type BEMPLOYEE');
}
catch (SQException e)
{
Il Anerror is raised if the tabl e/type does not exist. Just ignore it.
} /1l line 28

/]l Ceate and popul ate tabl es /1 line 30
stnt. execute ("CREATE TYPE BEMPLOYEE AS " +
' CBIECT( EnpNarre VARCHAR2(50) , EnpNo | NTEGER) ") ;
stm . execute ("CREATE TABLE BEMPLOYEE TABLE (ATTRL EMPLOYER) ");
st .execute ("I NSERT | NTO BEMPLOYEE TABLE " +
"VALUES (EMPLOYEE(Susan Smith', 123))"); Nine 35

/l Create a CustomDatum object Iline 37
Employee e = new Employee('George Jones', new BigDecimal(“456"));

Ilnsert the CustomDatum object Nine 40
PreparedStatement pstmt
=conn.prepareStatement (INSERT INTO employee_table VALUES (?)");

pstmt.setObject(1, e, OracleTypes. STRUCT);

pstmt.executeQuery();

System.out printin('insert done';
pstmt.close(); Iline 47
I/ Select now Nine 49

Sample Applications 7-29



Creating Customized Java Classes for Oracle Objects

Satenent s = conn.createStatenent();
QacleResultSet rs = (O acl eResul t Set)
s. execut eQuer y(" SELECT * FROM enpl oyee_t abl ") ;

whi | e(rs. next()) /1 line 54

Enpl oyee ee = (Enpl oyee) rs. get Qust onbat un{1, Enpl oyee. get Factory());
Systemout . printl n("EnpNane: " + ee.enpNane + " EnpNo: " + ee. enpNb);

} /1 line 58
rs.close();
s.close();

if (conn!=null)

{

conn. cl ose();

}
}
}

Lines 1-16: Import needed j ava. * and or acl e. * packages. Register the driver
with the Dri ver Manager . regi st er Dri ver () method and connect to the
database with the get Connect i on() method. Use the database URL

j dbc: oracl e: oci 8: @and connect as user syst emwith password nmanager. You
can optionally enter a database name following the @symbol.

Lines 18-28: Create a statement object and drop any pre-existing tables and types
named EMPLOYEE_TABLE and EMPLOYEE.
Lines 30-35: Use SQL statements to:

= create an Enpl oyee object with employee nhame and employee number
attributes

= Ccreate a table of employee objects having a single EMPLOYEE column
« insertinitial data values into the table

Lines 37, 38: Create a new Enpl oyee object (which is a Cust onDat umobject) and
define an employee name and employee number for it.

Lines 40-47: Prepare a statement to insert the new Enpl oyee object into the
database. The set Cbj ect () method indicates that the object will be inserted into
the first index position and that the underlying type of the Enpl oyee object is
oracl e. sgl . STRUCT.

7-30 JDBC Developer’s Guide and Reference



Creating Signed Applets

Lines 49-54: Select the contents of the enpl oyee_t abl e. Cast the results to an
O acl eResul t Set so that the get Cust onDat un() method can be used on it.

Lines 54-58: Iterate through the result set, getting the contents of the Enpl oyee
objects and printing the employee names and employee numbers.

Lines 58-62: Close the result set, statement, and connection objects.

Creating Signed Applets

This section presents an example of a signed applet which uses the JDBC Thin
driver to connect to and query a database. The code used in the applet was created
with Oracle JDeveloper and complies with JDK 1.1.2 and JDBC 1.22. Signed applets
are also browser-specific; the applet defined in this section works with the Netscape
4.x browser.

The applet displays a user interface that lets you connect to a local or a remote
database, depending on whether you press the "Local" or "Remote" button. The
applet queries the selected database for the contents of a specified row and displays
the results.

If you want to try this example on your own system, you must provide this
information:

« Obtain a copy of the Capabilities classes from Netscape and an object-signing
certificate. You can find instructions for this at:

ht t p: / / devel oper . net scape. cond docs/ manual s/ si gnedobj / capabi | ities/contents. ht m
Follow the instructions for obtaining a certificate and downloading the classes.
The example in this section requires the Capabilities classes

Principle.class,Privilege.class,Privil egeManager. cl ass, and
Privil egeTabl e. cl ass.

In the applet code, replace the following strings:

« Replace </ ocal database connect string>withthe connect string for
the local database. For example:

"j dbc: oracl e: thi n: @yServer. us. oracl e.com 1521: orcl ", "scott","tiger"

« Replace<sel ect on row of [ ocal table>withaSQL SELECT statement
on a row in a table in the local database. For example:

SELECT * FROM EMP WHERE ENAME ="Mary’

Sample Applications 7-31



Creating Signed Applets

« Replace <renpt e dat abase connect stri ng> with the connect string for
the remote database. For example:

"j dbc: oracl e: t hi n: @our Server. us. oracl e.com1521: orcl ", "scott","tiger"

-« Replace <sel ect on row of renote table>withaSQL SELECT
statement on a table in the remote database. For example:

SELECT * FROM EMP WHERE ENAME ="Bob’

This applet uses only the Java AWI components and JDBC.

/I Tide:  JDBC Test Applet lline 1
I/ Description:Sample JDK 1.1 Applet using the
Il ORACLE JDBC Thin Driver

package JDBCApplet;

import java.awt; lline 6
import java.awtevent;
import java.applet*;
importjava.sql.*;
import borland jbcl.control.*;
import netscape.security.*;
Nine 12
public class MainApplet extends Applet {
boolean isStandalone = false;
BorderLayout borderL_ayout1 = new BorderLayout();
Panel panell = new Panel();
Label labelTitle = new Label();
Panel panel2 = new Panel();
BorderLayout borderl_ayout2 = new BorderLayout();
TextArea txtArResults = new TextArea();
Button button1 = new Button();
BorderLayout borderL_ayout3 = new BorderLayout();
Panel panel3 = new Panel();
BorderLayout borderl_ayout4 = new BorderLayout();
Label statusBarl = new Label();
Button button2 = new Button();

/] Get a parameter value Nine 28
public String getParameter(String key, String def) {
retum isStandalone ? System.getProperty(key, def) :
(getParameter(key) = null ? getParameter(key) : def);
} Iline 32

/I Construct the applet

7-32 JDBC Developer’s Guide and Reference



Creating Signed Applets

publ i c MainAppl et () {
}

/1 Initialize the appl et line 37
public void init() {
try { jbinit(); } catch (Exception e) { e.printSackTrace(); }
try {
Pri vi | egeManager . enabl ePri vi | ege(" Lhi ver sal Connect ") ;
Pri vi | egeManager . enabl ePri vi | ege(" Lhi versal Li sten");
Pri vi | egeManager . enabl ePri vi | ege(" Lhi ver sal Accept");
} catch (Exception e) {
e. print StackTrace();
}
}

/1 Conponent initialization line 49
public void jbinit() throws Exception{
thi s. set Bounds(new Rect angl e(0, 0, 400, 400));
panel 1. set Backgr ound(Col or. | i ght G ay) ;
panel 1. set Layout ( bor der Layout 3) ;
this. setS ze(new D nensi on(372, 373));
| abel Ti tl e. set Backgr ound( ol or. | i ght G ay) ;
| abel Titl e.setFont (new Font ("D al og", 0, 12));
| abel Titl e.set Alignrent (1);
label Title.setText ("Gracle Thin JOBC Driver Sanple Applet");
but t onl. set Label (" Local ");
panel 3. set Background(Gol or. | i ght G ay);
st at usBar 1. set Background(Gol or. | i ght Gray) ;
st at usBar 1. set Text (" Ready") ;
but t on2. set Label (" Renote") ;
but t on2. addAct i onLi st ener (new Mai nAppl et _butt on2_act i onAdapt er (t hi s));
panel 3. set Layout ( bor der Layout 4) ;
but t onl. addAct i onLi st ener (new Mai nAppl et _buttonl_acti onAdapter (this));
panel 2. set Layout ( bor der Layout 2) ;
t hi s. set Layout (bor der Layout 1) ;
thi s. add( panel 1, Bor der Layout . NCRTH);
panel 1. add(buttonl, BorderLayout.\¥EST);
panel 1. add(! abel Titl e, BorderLayout . CENTER);
panel 1. add(button2, BorderLayout.EAST);
thi s. add( panel 2, Bor der Layout . CENTER) ;
panel 2. add(txt Ar Resul ts, Border Layout . CENTER ;
thi s. add( panel 3, BorderLayout. SOJTH);
panel 3. add(st at usBar 1, Bor der Layout . NCRTH);

Sample Applications 7-33



Creating Signed Applets

/IS art the appl et line 79
public void start() {
}

/1S op the appl et
public void stop() {

}

/1 Destroy the appl et
public void destroy() {
}

/1 Get Applet infornation
public Sring get Appletinfo() {
return "Applet Infornation";

}

/] Get paraneter info
public Sring[][] getParaneterinfo() {
return nul |;

}

/1 Mai n net hod
static public void nain(Sring[] args) {
Mai nAppl et appl et = new Mai nAppl et () ;
appl et.i sStandal one = true;
Frane frane = new Frane();
frane.setTitl e("Appl et Frane");
frane. add(appl et, Border Layout. CENTER ;
applet.init();
appl et.start();
frane. pack();
D nension d = Tool ki t. get Def aul t Tool kit (). get ScreenS ze();
frane. setLocati on((d.width - frane.getS ze().width) / 2, (d.height -
frane.getS ze(). height) / 2);
frane. setMisible(true);

}
voi d buttonl_acti onPerfornmed(Acti onEvent e) {
;; Handl er for "Local " Button.
;; Here is where we connect to | ocal database line 121

SringBuffer b = new SringBuffer ();

7-34 JDBC Developer’s Guide and Reference



Creating Signed Applets

try {
Dri ver Manager. regi sterDriver ( new oracl e.jdbc. driver. QacleDriver ());

b. append ("Driver Manager.regi sterDriver\r\n");
} catch (SQLException oe) {
statusBar 1. set Text ("regi sterDriver: Caught SQException");
} catch (Q assNot FoundException oe) {
statusBar 1. set Text ("regi sterDriver: Caught d assNot FoundException");

}

int nunRows = O;
try {
stat usBar 1. set Text (" Executing Qery on Local Database ...");
Gonnection conn = Dri ver Manager . get Connect i on (
"jdbc:oracl e:thin:</ ocal database connect string>");

b. append ("[Driver Manager . get Connection] \r\n");
Statenment stnt = conn.createStatenent ();
b. append ("[conn.createStatenent] \r\n");
Resul t Set rset = stnt.executeQiery ("<sel ect on row of
| ocal table>");
b. append ("[stm.executeQuery] \r\n");
b. append("SQ> <sel ect on row of |ocal table>\r\n\n");
b. append(" DS\ N---------m e \r\n");

while (rset.next ()) {
Sring enane = rset.getSring (1);
b. append (enane);
b. append ("\r\n");
nunmRdows++;
} /1 [end while rset.next() |oop]
stat usBar 1. set Text (" Query Done.");
} catch (SQException SQE) {
statusBar 1. set Text ("Caught SQ.Exception!");
SQE print StackTrace();
} finally {
b. append("\r\n");
b. append( St ri ng. val uedd (nunmRows) + " rows sel ected.\r\n");
txt AResults.setText( b.toString ());

}

/1 End JDBC Code line 165
}

voi d button2_acti onPerfornmed(Acti onEvent e) {

Sample Applications 7-35



Creating Signed Applets

/1

// Handler for the "Renote" Button line 170
/1

SringBuffer b = new SringBuffer ();

try {
Dri ver Manager . regi sterDriver ( new oracl e.jdbc. driver.acleDriver ());

b. append ("Driver Manager.regi sterDriver\r\n");
} catch (SQ.Exception oe) {
statusBar 1. set Text ("regi sterDriver: Caught SQ.Exception");
} catch (Q assNot FoundException oe) {
statusBar 1. set Text ("regi sterDriver: Caught O assNot FoundException");

}
int nunRows = O; /1 line 183
try {
stat usBar 1. set Text ("Executing Query on Renote Database ...");
try {

Pri vi | egeManager . enabl ePri vi | ege( " Lhi ver sal Connect ") ;
b. append ("enabl ePri vi | ege( Lhi ver sal Gonnect)\r\n");
Pri vi | egeManager . enabl ePri vi | ege(" Uhi versal Li sten");
b. append ("enabl ePri vi | ege( Lhi versal Li sten)\r\n");
Pri vi | egeManager . enabl ePri vi | ege(" Uhi ver sal Accept");
b. append ("enabl ePri vi | ege( Lhi ver sal Accept)\r\n");

Gonnecti on conn = Dri ver Manager . get Connect i on (

"jdbc: oracl e:thin:<renot e dat abase connect string>"
)

b. append ("Dri ver Manager . get Gonnecti on\r\n");

Statenment stnmt = conn.createStatenent ();
b. append ("conn.createSatenment\r\n");
Resul t Set rset = stm.executeQuery ("<sel ect on row
of renote table>");
b. append ("stnt.executeQuery\r\n");
b. append("SQ> <sel ect on row of renpte table>\r\n\n");
b. append("ENAMR r\N---------- \r\n");

while (rset.next ()) {
Sring enane = rset.getXring (1);
b. append (enane);
b. append ("\r\n");
nuMdWs++;
} /1 [end while rset.next() |oop]
st at usBar 1. set Text (" Query Done.");

7-36 JDBC Developer’s Guide and Reference



Creating Signed Applets

} catch (Exception oe) {
oe. printSackTrace();
}

} catch (SQException SQE) {
st at usBar 1. set Text (" Caught SQ.Exception!");
SQE print SackTrace();
} finally {
b. append("\r\n");
b. append( St ri ng. val ue (nuniRows) + " rows sel ected.\r\n");
txt AResults.setText( b.toString ());

}
/1 End JDBC Code for Button2 line 256
}
}
/1 1ine 260
cl ass M nAppl et _buttonl_actionAdapter inpl enents java. aw . event. Acti onLi st ener
{
Mai nAppl et adapt ee;
Mai nAppl et _but t onl_act i onAdapt er (Mai nAppl et adapt ee) {
thi s. adapt ee = adapt ee;
}
public void actionPerforned(Acti onEBvent e) {
adapt ee. butt onl_acti onPerforned(e);
}
}
/1 line 273
cl ass Mai nAppl et _button2_actionAdapt er inpl enents java. aw . event. Acti onLi st ener
{

Mai nAppl et adapt ee;

Mai nAppl et _but t on2_act i onAdapt er (Mai nAppl et adapt ee) {
thi s. adapt ee = adapt ee;

}

public void actionPerforned(Acti onBvent e) {
adapt ee. butt on2_act i onPer f or ned(e) ;

}
}

Lines 6-11: Import the needed files.

Sample Applications 7-37



JDBC versus SQLJ Sample Code

Lines 13-26: Set up the graphics for the GUI which will include two buttons and a
text area to display the output.

Lines 37-48: Request privileges to connect to the host other than the one from which
the applet was downloaded.

Lines 49-77: Initialize the components of the applet. These components include the
format and layout of the GUI and the GUI buttons and text area.

Lines 121-165: Connect to the local database. To do this, register the driver with the
Dri ver Manager . regi st erDri ver () method and connect to the database with
Dri ver Manager . get Connect i on() . Connect with the server URL, port number,
SID, user name, and password.

Lines 170-183: Connect to the remote database.

Lines 183-256: Test that the applet has privileges on the remote database. If it does,
then connect to the database and execute SQL statements.

Lines 260-283: Code to set up events and callbacks for the buttons.

JDBC versus SQLJ Sample Code

This section contains a side-by-side comparison of two versions of the same sample
code: one version is written in JDBC and the other in SQLJ. The objective of this
section is to point out the differences in coding requirements between SQLJ and
JDBC.

In the sample, two methods are defined: get Enpl oyeeAddr ess() which SELECTs
into a table and returns an employee’s address based on the employee’s number,
and updat eAddr ess() which takes the retrieved address, calls a stored
procedure, and returns the updated address to the database.

In both versions of the sample code, these assumptions have been made:

« The Obj ect Denp. sql SQL script (described below) has been run to create the
schema in the database and populate the tables.

« APL/SQL stored function UPDATE_ADDRESS, which updates a given address,
exists.

= The Connection object (for JDBC) and Default Connection Context (for SQLJ)
have previously been created by the caller.

7-38 JDBC Developer’s Guide and Reference



JDBC versus SQLJ Sample Code

« Exceptions are handled by the caller.

« The value of the address argument (addr ) passed to the updat eAddr ess
method can be null.

Both versions of the sample code reference objects and tables created by the
hj ect Deno. sql script.

Note: The JDBC and SQLJ versions of the sample code are only
code snippets. They cannot be run independently.

SQL Program to Create Tables and Objects

Following is a listing of the Obj ect Denp. sql script that creates the tables and
objects referenced by the two versions of the sample code. The Obj ect Deno. sql
script creates a per son object, an addr ess object, a typed table (per sons) of
per son objects, and a relational table (enpl oyees) for employee data.

[*** sing objects in SQJ ***/
SET EGHO O\

/**

[*** dean up ***/
DRCP TABLE EMPLOYEES
{IRCPTABLEPERSCNS
{:R(PTYPEPEFSO\JF(RE
:]?(PTYPEADPESSFCKE
/

[*** (reate an address object ***/
CREATE TYPE address AS CBIECT

(

street VARCHAR 60) ,
city VARCHAR 30) ,
state HAR 2),

Zi p_code CHAR(5)

)
/

[*** (reate a person obj ect containing an enbedded Address object ***/
CREATE TYPE person AS (BJIECT

Sample Applications 7-39



JDBC versus SQLJ Sample Code

(

nane VARCHAR 30) ,
ssn NUMBER
addr addr ess

)
/

[*** (reate a typed table for person objects ***/
CREATE TABLE persons CF person
/

[*** (reate a relational table with two columns that are REFs
to person objects, as well as a colunn which is an Address obj ect. ***/

CREATE TABLE enpl oyees

(' enpnunber | NTEGER PR MARY KEY,
per son_dat a REF person,
nanager REF person,
of fi ce_addr addr ess,
sal ary NUMBER
)

/
[*** insert code for UPDATE ADDRESS stored procedure here
/

F=*Now let's putin some sample data
Insert 2 objects into the persons typed table **/

INSERT INTO persons VALUES (
person(\Wolfgang Amadeus Mozart, 123456,

address(Am Berg 100, 'Salzburg',’AU’,10424)))

/

INSERT INTO persons VALUES (
person(Ludwig van Beethoven', 234567,
address(Rheinallee’, 'Bonn','DE’, '69234)))

/

P Put arow in the employees table */
INSERT INTO employees (empnumber, office_addr, salary) " +

"ALUES (1001, address(500 Oracle Parkway’, " +
"'Redwood City’, 'CA’, '94065), 50000)

7-40 JDBC Developer’s Guide and Reference



JDBC versus SQLJ Sample Code

[** Set the manager and person REFs for the enpl oyee **/

UPDATE enpl oyees
SET manager =
(SELECT REF({p) FROM persons p WHERE p.name ="Wolfgang Amadeus Mozart)
/

UPDATE employees
SET person_data=
(SELECT REF({p) FROM persons p WHERE p.name =Ludwig van Beethoven)
/

COMMIT
/
QuIT

JDBC Version of the Sample Code

Following is the JDBC version of the sample code, which defines methods to
retrieve an employee’s address from the database, update the address, and return it
to the database. Note, the "TODCs" in the comment lines indicate where you might
want to add additional code to enhance the usefulness of the code sample.

inport java.sql.*;
inport oracle.jdbc.driver.*;

/**

This is what we have to do in JDBC

**/
public class S npl eDenoJDBC /Il line 7
{

//TODQ nake a main that calls this

publ i ¢ Address get Enpl oyeeAddress(int enpno, (onnecti on conn)

throws SQException /1 line 13
{

Address addr;

Preparedtatenent pstm = /1 line 16

conn. prepar et at enent (" SELECT of fi ce_addr FROM enpl oyees" +

" WHERE enpnunber = ?");
pstni.setint(1, enpno);
QacleResultSet rs = (O acl eResul t Set) pst mt . execut eQuery();
rs.next(); /1 line 21
//TODQ what if false (result set contains no data)?

Sample Applications 7-41



JDBC versus SQLJ Sample Code

addr = (Address)rs. get Qust onbat un{l, Address.getFactory());
//TODQ what if additional rows?

rs.close(); /1 line 25
pstni. close();
return addr; [l line 27

}

publ i ¢ Address updat eAddr ess(Address addr, Gonnection conn)
throws SQException /1 line 30

QacleCl labl eStatenent cstnm = (Qacl eCal | abl eSt at enent )
conn. prepareCal | ("{ ? = call UPDATE ADDRESS(?) }"); //line 34
cstm.registerQut Paraneter (1, Address. SQ. TYPEQDE, Address. SQ._NAME);
/1 line 36
if (addr == null) {
cstm.setNul | (2, Address. SQ TYPEQDE, Address. _SQ._NAME);

} else {

cstm . set Qust onbat un{2, addr);
}
cstm . execut elpdat e() ; /1 line 43
addr = (Address)cstnt.get Qustonbat unf1, Address. getFactory());
cstm.close(); /1 line 45
return addr;

}
}

Line 12: In the get Enpl oyeeAddr ess() method definition, you must pass the
connection object to the method definition explicitly.

Lines 16-20: Prepare a statement that selects an employee’s address from the

enpl oyees table on the basis of the employee number. The employee number is
represented by a marker variable, which is set with the set | nt () method. Note
that because the prepared statement does not recognize the "I NTO' syntax used in
"SQL Program to Create Tables and Objects" on page 7-39, you must provide your
own code to populate the address (addr ) variable. Since the prepared statement is
returning a custom object, cast the output to an Oracle result set.

Lines 21-23: Because the Oracle result set contains a custom object of type Addr ess,
use the get Cust onDat um() method to retrieve it (the Addr ess object could be
created by JPublisher). The get Cust onDat um() method requires you to use the
factory method Addr ess. get Fact or y() to materialize an instance of an

7-42 JDBC Developer’s Guide and Reference



JDBC versus SQLJ Sample Code

Addr ess object. Since get Cust onDat un{) returns a Dat um cast the output to an
Addr ess object.

Note that the routine assumes a one-row result set. The "TO DGs" in the comment
statements indicate that you must write additional code for the cases where the
result set contains either no rows or more than one row.

Lines 25-27: Close the result set and prepared statement objects, then return the
addr variable.

Line 29: In the updat eAddr ess() definition, you must pass the connection object
and the Addr ess object explicitly.

The updat eAddr ess() method passes an address to the database for update and
fetches it back. The actual updating of the address is performed by the
UPDATE_ADDRESS stored procedure (the code for this procedure is not illustrated
in this example).

Line 33-43: Prepare an Oracle callable statement that takes an address object

(Addr ess) and passes it to the UPDATE_ADDRESS stored procedure. To register an
object as an output parameter, you must know the object’s SQL type code and SQL
type name.

Before passing the address object (addr ) as an input parameter, the program must
determine whether addr has a value or is null. Depending on the value of addr, the
program calls different set methods. If addr is null, the program calls set Nul | (),
if it has a value, the program calls set Cust onDat un() .

Line 44: Fetch the return result addr . Since the Oracle callable statement returns a
custom object of type Addr ess, use the get Cust onDat un{) method to retrieve it
(the Addr ess object could be created by JPublisher). The get Cust onDat un)
method requires you to use the factory method Addr ess. get Fact ory to
materialize an instance of an Addr ess object. Because get Cust onDat un{) returns
a Dat um cast the output to an Addr ess object.

Lines 45, 46: Close the Oracle callable statement, then return the addr variable.

Coding Requirements of the JDBC Version
Note the following coding requirements for the JDBC version of the sample code:

« Theget Enpl oyeeAddr ess() and updat eAddr ess() definitions must
explicitly include the connection object.

Sample Applications 7-43



JDBC versus SQLJ Sample Code

« Long SQL strings must be concatenated with the SQL concatenation character
(II+II .

= You must explicitly manage resources (for example, close result set and
statement objects).

= You must cast datatypes as needed.

= You must know the _SQL_TYPECODE and _SQL_ NAME of the factory objects
that you are registering as output parameters.

= Null data must be explicitly handled.

« Host variables must be represented by parameter markers in callable and
prepared statements.

Maintaining JDBC Programs

JDBC programs have the potential of being expensive in terms of maintenance. For
example, in the above code sample, if you add another WHERE clause, then you
must change the SELECT string. If you append another host variable, then you must
increment the index of the other host variables by one. A simple change to one line
in a JDBC program might require changes in several other areas of the program.

SQLJ Version of the Sample Code

Following is the SQLJ version of the sample code that defines methods to retrieve
an employee’s address from the database, update the address, and return it to the
database.

inport java.sql.*;

/**
This is what we have to do in SQJ
* %
/
public class S npl eCenoSQJ /!l line 6

{
//TODQ nake a main that calls this?

publ i ¢ Address get Enpl oyeeAddress(i nt enpno) /1 line 10
throws SQException

{
Address addr; /!l line 13
#sgl { SELECT office_addr INTO:addr FROM enpl oyees
WHERE enpnunber = : enpno };
return addr;

7-44 JDBC Developer’s Guide and Reference



JDBC versus SQLJ Sample Code

}
/1 line 18
publ i ¢ Address updat eAddr ess( Address addr)
throws SQException
{
#sgl addr = { VALUES(UPDATE ACCRESS(: addr)) }; /1 line 23
return addr;
}
}

Line 10: The get Enpl oyeeAddr ess() method does not require a connection
object. SQLJ uses a default connection context instance, which would have been
defined previously somewhere in your application.

Lines 13-15: The get Enpl oyeeAddr ess() method retrieves an employee address
according to employee number. Use standard SQLJ SELECT | NTOsyntax to select
an employee’s address from the employee table if their employee number matches
the one (enpno) passed in to get Enpl oyeeAddr ess() . This requires a declaration
of the Address object (addr ) that will receive the data. The enpno and addr
variables are used as input host variables. (Host variables are sometimes also
referred to as bind variables.)

Line 16: The get Enpl oyeeAddr ess() method returns the addr object.

Line 19: The updat eAddr ess() method also uses the default connection context
instance.

Lines 19-23: The address is passed to the updat eAddr ess() method, which passes
it to the database. The database updates it and passes it back. The actual updating
of the address is performed by the UPDATE_ADDRESS stored function (the code for
this function is not shown here). Use standard SQLJ function-call syntax to receive
the address object (addr ) output by UPDATE_ADDRESS.

Line 24: The updat eAddr ess() method returns the addr object.

Coding Requirements of the SQLJ Version
Note the following coding requirements for the SQLJ version of the sample code;

« An explicit connection is not required; SQLJ assumes that a default connection
context has been defined previously in your application.

« No datatype casting is required.

Sample Applications 7-45



JDBC versus SQLJ Sample Code

« SQLJdoes not require knowledge of _SQ._TYPECODE, SQL_NAME, or
factories.

« Null data is handled implicitly.

= No explicit code for resource management (for closing statements or result sets,
for example) is required.

« SQLJembeds host variables in contrast to JDBC which uses parameter markers.
= String concatenation for long SQL statements is not required.
= You do not have to register out-parameters.

« SQLJsyntax is simpler; for example, SELECT...I NTOis supported and
OBDC-style escapes are not used.

7-46 JDBC Developer’s Guide and Reference



8

Reference Information

This chapter contains detailed JDBC reference information, including the following
topics:

« Valid SQL-JDBC Datatype Mappings
= Supported SQL and PL/SQL Datatypes
« NLS Character Set Support

= Related Information

Reference Information 8-1



Valid SQL-JDBC Datatype Mappings

Valid SQL-JDBC Datatype Mappings

Table 3-1 and Table 3-2 in Chapter 3 describe the default mappings between Java
classes and SQL datatypes that are supported by the Oracle JDBC drivers. Compare
the contents of the Standard JDBC Datatypes, Java Native Datatypes and Oracle SQL
Datatypes columns in Table 3-1 and Table 3-2 with the contents of Table 8-1 below.

Table 8-1 lists all of the possible Java classes to which a given SQL datatype can be
validly mapped. The Oracle JDBC drivers will support these "non-default"
mappings. For example, to materialize SQL CHAR data as an or acl e. sql . CHAR,
use get CHAR() . To materialize itasaj ava. mat h. Bi gDeci mal , use

get Bi gDeci mal () .

Table 8—1 Valid SQL Datatype-Java Class Mappings

This SQL datatype: Can be materialized as these Java classes:

CHAR, NCHAR,VARCHAR?2, oracle.sql.CHAR

NVARCHAR2, LONG java.lang.String
java.sql.Date
java.sql.Time
java.sql.Timestamp
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal

byte, short, int, long, float, double

DATE oracle.sql.DATE
java.sql.Date
java.sql.Time
java.sql.Timestamp

java.lang.String

8-2 JDBC Developer’s Guide and Reference



Valid SQL-JDBC Datatype Mappings

Table 8—1 Valid SQL Datatype-Java Class Mappings (Cont.)

This SQL datatype: Can be materialized as these Java classes:

NUMBER oracle.sq. NUMBER

java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal

byte, short, int, long, float, double

RAW, LONG RAW oracle.sql.RAW
byte[]
ROWID oracle.sql.CHAR

oracle.sql.ROWID

java.lang.String
BFILE oracle.sql.BFILE
BLOB oracle.sql.BLOB

oracle.jdbc2.Blob

CLOB, NCLOB oracle.sql.CLOB
oracle.jdbc2.Clob
OBJECT oracle.sql.STRUCT

oracle.SqgljData

oracle.jdbc2.Struct
REF oracle.sql.REF

oracle.jdbc2.Ref
TABLE (nested), VARRAY oracle.sql. ARRAY

oracle.jdbc2.Array

any of the above SQL types oracle.sql.CustomDatum or oracle.sql.Datum

Reference Information 8-3



Supported SQL and PL/SQL Datatypes

Notes:
« The type UROW Dis not supported.

« oracl e. sql . Dat umis an abstract class. The value passed to a
parameter of type or acl e. sql . Dat ummust be of the Java
type corresponding to the SQL type. Likewise, the value
returned by a method with return type or acl e. sql . Dat um
must be of the Java type corresponding to the SQL type.

« The mappings to or acl e. sql classes are optimal if no
conversion from SQL format to Java format is necessary.

Supported SQL and PL/SQL Datatypes

The tables in this section list SQL and PL/SQL datatypes, and whether the Oracle
JDBC drivers and SQLJ support them. Table 8-2 describes Oracle JDBC driver and
SQLJ support for SQL datatypes.

Table 8-2 Support for SQL Datatypes

SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?
BFILE yes yes
BLOB yes yes
CHAR yes yes
CLOB yes yes
DATE yes yes
NCHAR no no
NCHAR VARYING no no
NUMBER yes yes
NVARCHAR2 no no
RAW yes yes
REF yes yes
ROWID yes yes
UROWID no no
VARCHAR2 yes yes

8-4 JDBC Developer’s Guide and Reference



Supported SQL and PL/SQL Datatypes

Table 8-3 describes Oracle JDBC driver and SQLJ support for the ANSI-supported
SQL datatypes.

Table 8-3 Support for ANSI-Supported SQL Datatypes
ANSI-Supported SQL Datatypes Supported by JDBC Drivers? Supported by SQLJ?

CHARACTER yes yes
DEC yes yes
DECIMAL yes yes
DOUBLE PRECISION yes yes
FLOAT yes yes
INT yes yes
INTEGER yes yes
NATIONAL CHARACTER no no
NATIONAL CHARACTER no no
VARYING

NATIONAL CHAR no no
NATIONAL CHAR VARYING no no
NCHAR no no
NCHAR VARYING no no
NUMERIC yes yes
REAL yes yes
SMALLINT yes yes
VARCHAR yes yes

Table 8-4 describes Oracle JDBC driver and SQLJ support for PL/SQL datatypes.
Note that PL/SQL datatypes include these categories:

« scalar types

« scalar character types (includes boolean and date datatypes)
= composite types

= reference types

« LOB types

Reference Information 8-5



Supported SQL and PL/SQL Datatypes

Table 8—4 Support for PL/SQL Datatypes

PL/SQL Datatypes Supported by JDBC Drivers? Supported by SQLJ?
Scalar Types:

binary integer yes yes
dec yes yes
decimal yes yes
double precision yes yes
float yes yes
int yes yes
integer yes yes
natural yes yes
naturaln no no
number yes yes
numeric yes yes
pls_integer yes yes
positive yes yes
positiven no no
real yes yes
signtype yes yes
smallint yes yes

Scalar Character Types:

char yes yes
character yes yes
long yes yes
long raw yes yes
nchar no no
nvarchar2 no no
raw yes yes
rowid yes yes

8-6 JDBC Developer’s Guide and Reference



Supported SQL and PL/SQL Datatypes

Table 8—4 Support for PL/SQL Datatypes (Cont.)

PL/SQL Datatypes Supported by JDBC Drivers? Supported by SQLJ?
string yes yes
urowid no no
varchar yes yes
varchar2 yes yes
boolean yes yes
date yes yes
Composite Types:
record no no
table no no
varray yes yes
Reference Types:
REF CURSOR yes yes
REF object type yes yes
L OB Types.
BFILE yes yes
BLOB yes yes
CLOB yes yes
NCLOB no no
Notes:

= The types natural, naturaln, positive, positiven, and signtype
are subtypes of binary integer.

« The types dec, decimal, double precision, float, int, integer,
numeric, real, and smallint, are subtypes of number.

Reference Information 8-7



NLS Character Set Support

NLS Character Set Support

On the client, the Oracle JDBC OCI and Thin drivers support all Oracle NLS
character sets. On the server, the Oracle JDBC Server driver supports only two
Oracle NLS character sets: US7ASCI | (ASCII 7-bit American) and WE8I SC8859P1
(1SO 8859-1 West European or "ISO-Latin 1").

Related Information

This section lists web sites that contain useful information for JDBC programmers.
Many of the sites are referenced in other sections of this manual. In this list you can
find references to the Oracle JDBC drivers and SQLJ, Java technology, the Java
Developer’s Kit APIs (for versions 1.2 and 2.0), and resources to help you write
applets.

Oracle JDBC Drivers and SQLJ
Oracle JDBC Driver Home Page (Oracle Corporation)
htt p: // waw or acl e. cond st/ product s/ j dbc/

Oracle JDBC Driver Download Page (Oracle Corporation)

htt p: // waw or acl e. comt product s/ f ree_sof t war e/ i ndex. ht ni #j dbc8

Oracle SQLJ Home Page (Oracle Corporation)
htt p: // waw or acl e. coni st/ product s/ j dbc/ sql j /i ndex. ht m

Java Technology
Java Technology Home Page (Sun Microsystems, Inc.):

http://ww j avasof t . cont

Java Development Kit 1.1 (JDK1.1) (Sun Microsystems, Inc.):
http://j ava. sun. con product s/j dk/ 1. 1/

Java Platform JDK1.1 Core API Specification (Sun Microsystems, Inc.):
http: //ww j avasof t. cond product s/ j dk/ 1. 1/ docs/ api / packages. ht ni

Java Development Kit 1.2 (JDK1.2) (Sun Microsystems, Inc.):
http://j ava. sun. com 80/ product s/ j dk/ 1. 2/ i ndex. ht n

8-8 JDBC Developer’s Guide and Reference



Related Information

Java Platform JDK1.2 Core API Specification (Sun Microsystems, Inc.):

http://ww j avasof t. cond product s/ j dk/ 1. 2/ docs/ api / i ndex. ht

Signed Applets

Introduction to Capabilities Classes (Netscape Communications Corp.):

ht t p: / / devel oper . net scape. cond docs/ manual s/ si gnedobj / capabi | ities/contents. ht m

Object-Signing Resources (Netscape Communications Corp.):

ht t p: / / devel oper . net scape. cond sof t war e/ si gnedobj / i ndex. ht m

Signed Applet Example (Sun Microsystems, Inc.):
http://j ava. sun. coni securi ty/ si gnExanpl e/ i ndex. ht m

Reference Information 8-9



Related Information

8-10 JDBC Developer’s Guide and Reference



A

JDBC Error Messages

This appendix lists the error messages that the Oracle JDBC drivers can return.

"Cause" and "Action" information for each message will be provided in a later
release.

byte array not long enough

can only describe a query

cannot do new defines until the current result set is closed
cannot set row prefetch to zero

char array not long enough

character set not supported

closed connection

closed LOB

closed resultset

closed statement

cursor already initialized

JDBC Error Messages A-1



error in defines.isNull ()

error in type descriptor parse

exception in OracleNumber

exhausted resultset

fail to construct descriptor

fail to convert between UTF8 and UCS2

fail to convert to internal representation
inconsistent Java and SQL object types
Internal error: attempt to access bind values beyond the batch value
Internal error: data array not allocated
Internal error: invalid index for data access
Internal error: invalid NLS Conversion ratio
invalid batch value

invalid character encountered in

invalid column name

invalid column type

invalid cursor

invalid dynamic column

A-2 JDBC Developer’s Guide and Reference



invalid row prefetch

invalid stream maximum size
malformed SQL92 string at position
missing defines

missing defines at index

missing descriptor

missing IN or OUT parameter at index:
no data read

no such element in vector

non supported character set
non-supported SQL92 token at position
numeric overflow

only one RPA message is expected
only one RXH message is expected
parameter type conflict

protocol violation

received more RXDs than expected

JDBC Error Messages A-3



REF cursor is invalid

resultSet.next was not called

setAutoClose: only support auto close mode on
setReadOnly: read-only connections not supported

setTransactionlsolation: only supports TRANSACTION_READ _
UNCOMMITTED

statement timed out

statement was cancelled

stream has already been closed

sub protocol must be specified in connection URL
the LOB locator is not valid

the size is not valid

This API cannot be be used for non-UDT types
this ref is not valid

undefined type

unsupported column type

unsupported feature

A-4 JDBC Developer's Guide and Reference



A

addBatch() method, restrictions on, 4-100
ANO (Advanced Networking Option), 3-27
APPLET HTML tag, 5-19
applets
coding, 5-7
for JDK 1.0.2 browser, 5-8
for JIDK 1.1.1 browser, 5-8
connecting to a database, 5-9
deploying in an HTML page, 5-19
packages needed, 5-7
packaging, 5-17
for JDK 1.0.2 browser, 5-17
for IDK 1.1.1 browser, 5-18
packaging and deploying, 3-28
signed applets
browser security, 5-20
example program, 7-31
object-signing certificate, 5-14
using, 5-13
using with firewalls, 5-14
working with, 5-7
ARCHIVE, parameter for APPLET tag, 5-20
ARRAY
class, 4-14
descriptors, 4-15
objects, creating, 4-15, 4-16
array descriptor
creating, 4-93
ArrayDescriptor object, 4-15, 4-93
creating, 4-16
get methods, 4-17
arrays

Index

defined, 4-87

example program, 7-16

getting, 4-92

named, 4-87

passing to callable statement, 4-94

retrieving from a result set, 4-88

retrieving partial arrays, 4-91

using type maps, 4-94

working with, 4-87
AUTHENTICATION_LEVEL parameter, 5-12
auto-commit mode

disabling, 6-5

result set behavior, 6-5

B

batching values, 4-97, 6-6
and streaming data, 4-100
connection-wide, 4-103
default batch size, 4-100
not supported by

OracleCallableStatement, 4-100

overriding default value, 4-102
restrictions on, 4-100
setting batch value, 4-101

BFILE
accessing data, 4-60
class, 4-17

creating and populating columns, 4-58
defined, 3-24
example program, 7-10
locators, 4-55
getting from a result set, 4-55
getting from callable statement, 4-56

Index-1



passing to callable statements, 4-56
passing to prepared statements, 4-56
manipulating data, 4-60
reading data, 4-57
working with, 4-45
BFILE locator, selecting, 4-18
BLOB, 4-48
class, 4-17
creating and populating, 4-52
creating columns, 4-52
getting locators, 4-46
locators
getting from result set, 4-46
selecting, 4-18
manipulating data, 4-54
populating columns, 4-53
reading data, 4-48, 4-50
working with, 4-45
writing data, 4-51
Boolean parameters, restrictions, 6-7
browser security, 5-20

C

callable statement

getting a BFILE locator, 4-56

getting LOB locators, 4-47

passing BFILE locator, 4-56

passing LOB locators, 4-48

using getOracleObject() method, 4-36
casting return values, 4-39
catalog arguments (DatabaseMetaData), 4-116
CHAR

object, creating, 4-20
CHAR class, 4-19

conversions with KPRB driver, 5-25
CHAR columns

space padding, 6-7
character sets, 4-21

conversions with KPRB driver, 5-25
Class.forName method, 3-3
CLASSPATH, specifying, 2-7
clearDefines() method, 4-105
client installation, 3-27
CLOB

Index-2

class, 4-17
creating and populating, 4-52
creating columns, 4-52
locators, 4-46
getting from result set, 4-46
passing to callable statements, 4-48
passing to prepared statement, 4-48
locators, selecting, 4-18
manipulating data, 4-54
populating columns, 4-53
reading data, 4-48, 4-50
working with, 4-45
writing data, 4-51
close() method, 4-25, 4-26, 4-27, 6-7
for database connection, 5-23
closeFile() method, 4-19
CMAN.ORA file, creating, 5-11
CODE, parameter for APPLET tag, 5-19
CODEBASE, parameter for APPLET tag, 5-19
collections, 4-87
collections (nested tables and arrays), 4-15
column types
redefining, 4-97, 4-105
restrictions on, 4-105
COMMIT operation, 5-24
connect string
for KPRB driver, 5-23
for the Oracle8 Connection Manager, 5-12
connection
closing, 3-10
from KPRB driver, 3-26
opening, 3-3
opening for JDBC OCl driver, 3-6
opening for JDBC Thin driver, 3-7
Properties object, 3-6
Connection Manager, 3-28, 5-9, 5-10
browser security, 5-20
installing, 5-11
starting, 5-12
using multiple managers, 5-13
writing the connect string, 5-12
connection properties, 4-109
database, 4-110
defaultBatchValue, 4-110
defaultRowPrefetch, 4-110



password, 4-110
put() method, 4-110
remarksReporting, 4-110
user, 4-110
connections
read-only, 4-116
constants for SQL types, 4-28
CREATE DIRECTORY statement
for BFILEs, 4-58
CREATE TABLE statement
to create BFILE columns, 4-58
to create BLOB, CLOB columns, 4-52
create() method
for CustomDatumFactory interface, 4-75
createDescriptor() method, 4-13
createStatement() method, 4-24
CursorName
limitations, 4-115
cursors, 6-7
custom Java classes
defining, 4-65
custom Java types
creating, 7-20, 7-26
CustomDatum interface, 4-3
advantages, 4-65
example program, 7-26
reading data, 4-79
writing data, 4-80

D

data conversions, 4-32
LONG, 3-15
LONG RAW, 3-15
data streaming
avoiding, 3-18
example program, 7-2
database
connecting
from an applet, 5-10
through multiple Connection Managers,
with KPRB, 5-22
connection testing, 2-8
database connection
connection property, 4-110

database URL

including userid and password, 3-5
database URL, specifying, 3-4
DatabaseMetaData calls, 4-116
DatabaseMetaData class, 5-28

entry points for applets, 5-18
datatype classes, 4-7
datatype mappings, 3-11
datatypes

Java, 3-11, 3-12

Java native, 3-11, 3-12

JDBC, 3-11, 3-12

JDBC extensions for Oracle SQL datatypes, 3-12

Oracle SQL, 3-11, 3-12
DATE class, 4-22
DBMS_LOB package, 4-49
debugging JDBC programs, 6-9
DEFAULT_CHARSET character set value, 4-21
defaultBatchValue connection property, 4-110
defaultConnection() method, 5-22
defaultRowPrefetch connection property, 4-110
defineColumnType() method, 3-19, 4-25, 4-106
dnldthin sub-protocol, 5-8
DriverManager class, 3-3
dynamic SQL, 1-2

E

encryption

applets, 3-28

applications, 3-27
environment variables

specifying, 2-7
error handling and messages, 3-25
exception trapping, 6-9
executeBatch() method

restrictions on, 4-100
executeQuery() method, 4-25
executeUpdate() method, 4-101
extensions to JDBC, Oracle, 4-1
external file

defined, 3-24

Index-3



F

finalizer methods, 6-7
firewalls

configuring for applets, 5-15

connect string, 5-16

described, 5-15

required rule list items, 5-15

using with applets, 3-28,5-14
floating-point compliance, 4-115
function call syntax, SQL92 syntax, 5-30

G

getARRAY() method, 4-88
getArray() method, 4-15, 4-88

using type maps, 4-90
getArrayDescriptor() method, 4-15
getAsciiOutputStream() method, 4-18

for writing CLOB data, 4-50
getAsciiStream() method, 4-18

for reading CLOB data, 4-49
getAttributes() method, 4-11, 4-63

used by Structs, 4-69
getBaseName() method, 4-17
getBaseType() method, 4-15, 4-17, 4-92
getBaseTypeName() method, 4-14, 4-15

used with object references, 4-83
getBinaryOutputStream() method, 4-18

for writing BLOB data, 4-49
getBinaryStream() method, 3-17, 4-18, 4-19

for reading BFILE data, 4-57

for reading BLOB data, 4-49
getBLOB() method, 4-46
getBytes() method, 3-18, 4-10, 4-18, 4-19
getCharacterOutputStream() method, 4-18

for writing CLOB data, 4-50
getCharacterStream() method, 4-18

for reading CLOB data, 4-49
getChars() method, 4-18
getChunkSize() method, 4-53
getCLOB() method, 4-46
getColumnCount() method, 4-28
getColumnName() method, 4-28
getColumns() method, 4-108

Index-4

getColumnType() method, 4-28, 4-44
getColumnTypeName() method, 4-28, 4-44
getConnection() method, 3-4,4-12, 5-22

connection properties, 4-109

for applets, 5-8
getCursor() method, 4-113, 4-114
getCursorName() method, 4-111

limitations, 4-115
getCustomDatum() method, 4-76, 4-79
getDefaultExecuteBatch() method, 4-24
getDefaultRowPrefetch() method, 4-24, 4-98
getDescriptor() method, 4-12
getDirAlias() method, 4-19, 4-60
getExecuteBatch() method, 4-26, 4-101

returning current batch value, 4-103
getMap() method, 4-12
getName() method, 4-19, 4-60
getNumericFunctions() method, 5-28
getObject() method

casting return values, 4-39

for BLOBs and CLOBs, 4-46

for CustomDatum objects, 4-76

for object references, 4-84

for SQLInput streams, 4-70

for SQLOutput streams, 4-71

for Struct objects, 4-64

return types, 4-34, 4-36

to get BFILE locators, 4-55

to get Oracle objects, 4-63

used with CustomDatum interface, 4-80
getOracleArray() method, 4-15, 4-88, 4-92
getOracleAttributes() method, 4-12, 4-64
getOracleObject() method, 4-26, 4-27

casting return values, 4-39

for BLOBs and CLOBs, 4-46

return types, 4-35, 4-36

using in callable statement, 4-36

using in result set, 4-35
getProcedureColumns() method, 4-108
getProcedures() method, 4-108
getREF() method, 4-85
getRemarksReporting() method, 4-25
getResultSet() method, 4-15, 4-25
getRowPrefetch() method, 4-25, 4-98

getSQLTypeName() method, 4-12, 4-15, 4-63, 4-92



getString() method, 4-21

to get ROWIDs, 4-111
getStringFunctions() method, 5-28
getStringWithReplacement() method, 4-21
getSTRUCT() method, 4-64
getSubString() method, 4-19

for reading CLOB data, 4-50
getSystemFunctions() method, 5-28
getTableName() method, 4-28
getTimeDateFunctions() method, 5-28
getTransactionlsolation() method, 4-24, 6-13
getTypeMap() method, 4-25, 4-67
getValue() method, 4-14

for object references, 4-84
getXXX() methods

casting return values, 4-39

for specific datatypes, 4-37

H

HEIGHT, parameter for APPLET tag, 5-19
HTML tags, to deploy applets, 5-19
HTTP protocol, 1-5

IEEE 754 floating-point compliance, 4-115
INSERT INTO statement

for creating BFILE columns, 4-59
inserts to database, accumulating, 6-6
installation

client, 3-27

directories and files, 2-6

verifying on the client, 2-6
instanceOf() method, 4-35
intValue() method, 4-10
isConvertableTo() method, 4-12

J

Java
compiling and running, 2-7
datatypes, 3-11, 3-12
native datatypes, 3-11, 3-12
stored procedures, 3-25

stream data, 3-14
Java Sockets, 2-2
java.math, Java math packages, 3-2
java.sgl, JDBC packages, 3-2
java.sql.SQLException() method, 3-25
java.sql.Types class, 4-106
java.util.Dictionary class
used by type maps, 4-67
java.util.Hashtable class
used by type maps, 4-67
java.util.Map class, 4-91
JDBC
and IDEs, 1-7
and Oracle Application Server, 1-6
basic program, 3-2
datatypes, 3-11, 3-12
defined, 1-2
error handling and messages, 3-25
guidelines for using, 1-3
importing packages, 3-2
limitations of Oracle extensions, 4-115
Oracle extensions, 1-6
sample files, 2-7
testing, 2-8
versions supported, 1-6
JDBC calls, logging, 6-10

JDBC drivers
and NLS, 5-2
applets, 3-27

applications, 3-27
basic architecture, 1-4
choosing a driver for your needs, 2-4
common features, 2-2
common problems, 6-6
compatibilities, 2-5
determining driver version, 2-8
registering, 3-3
registering for an applet, 5-7
requirements, 2-5
restrictions, 6-7
SQL92 syntax, 5-26
JDBC KPRB driver
architecture, 1-6
described, 2-4
JDBC mapping (for attributes), 4-82

Index-5



JDBC OCI driver
applications, 3-27
architecture, 1-5
described, 2-3
NLS considerations, 5-3
JDBC Thin driver
applets, 3-27,5-7
applications, 3-27
architecture, 1-5
described, 2-2
NLS considerations, 5-4
JdbcCheckup program, 2-8
JDeveloper, 1-7
JDK
version considerations, 5-20
versions supported, 1-6
JPublisher utility, 4-3, 4-65
data mapping options, 4-82
using with JDBC, 4-82

K

KPRB driver
connection string for, 5-23
connection to database, 5-22
described, 5-22
NLS considerations, 5-4
relation to the SQL engine, 5-22
session context, 5-23
support for NLS, 5-25
testing, 5-24
transaction context, 5-23

L

LD_LIBRARY_PATH variable, specifying, 2-7
length() method, 4-18, 4-19
LIKE escape characters, SQL92 syntax, 5-29
limitations, 4-116
LOB

defined, 3-23

locators, 4-45

reading data, 4-48

working with, 4-45
LOB locators

Index-6

getting from callable statements, 4-47

passing, 4-47
LOBs

example program, 7-4
locators

getting for BFILEs, 4-55

getting for BLOBs, 4-46

getting for CLOBs, 4-46

LOB, 4-45

passing to callable statements, 4-48

passing to prepared statement, 4-48
LONG

data conversions, 3-15
LONG RAW

data conversions, 3-15

M

makeDatumArray() method, 4-12
memory leaks, 6-7
multi-threaded applications

on the client, 6-2

N

named arrays, 4-87
defined, 4-15
National Language Support (NLS), 4-21
Net8
name-value pair, 3-4
protocol, 1-5
network events, trapping, 6-10
next() method, 4-27
NLS
and JDBC drivers, 5-2
conversions, 5-2
data size restrictions, 5-5
for JDBC OCl drivers, 5-3
for JDBC Thin drivers, 5-4
for KPRB driver, 5-4
Java methods that employ, 5-2
using, 5-2
NLS Ratio, 5-5
NLS_LANG environment variable, 5-3
NULL data



converting, 4-33
NUMBER class, 4-22

O

Object JDBC mapping (for attributes), 4-82
object references
accessing object values, 4-84, 4-85
defined, 4-83
passing to callable statement, 4-85
passing to prepared statements, 4-86
redefining columns containing, 4-105
updating object values, 4-84, 4-85
working with, 4-83
openFile() method, 4-19
optimization, performance, 6-5
Oracle Application Server, 1-6
Oracle datatypes
using, 4-32
Oracle extensions
datatype support, 4-2
limitations, 4-115
catalog arguments to DatabaseMetaData
calls, 4-116
CursorName, 4-115
IEEE 754 floating-point compliance, 4-115
PL/SQL TABLE, BOOLEAN, RECORD
types, 4-115
read-only connection, 4-116
SQL92 outer join escapes, 4-115
SQLWarning class, 4-116
object support, 4-3
packages, 4-2
performance extensions, 4-97
result sets, 4-33
schema naming support, 4-4
statements, 4-33
toJDBC, 4-1
Oracle mapping (for attributes), 4-82
Oracle objects
and JDBC, 4-62

converting with CustomDatum interface, 4-75

converting with SQLData interface, 4-69
defining with Java classes, 4-65
getting with getObject() method, 4-63

Java classes which support, 4-62
reading data by using SQLData interface, 4-72
working with, 4-62
writing data by using SQLData interface, 4-74
Oracle SQL datatypes, 3-11, 3-12
Oracle8 Connection Manager, 5-9
OracleCallableStatement class, 4-26
getXXX() methods, 4-37
registerOutParameter() method, 4-42
OracleConnection class, 4-24
OracleDatabaseMetaData class, 5-28
and applets, 5-18
OracleDriver class, 4-24
oracle.jdbc2 package, described, 4-6
oracle.jdbc2.Struct class, 4-10, 4-63
getAttributes() method, 4-63
getSQLTypeName() method, 4-63
oracle.jdbc.driver package, 4-22
stream classes, 4-28
oracle.jdbc.driver, Oracle JDBC extensions, 3-3
oracle.jdbc.driver.OracleCallableStatement
class, 4-26
close() method, 4-27
getOracleObject() method, 4-26
getXXX() methods, 4-26
registerOutParameter() method, 4-27
setNull() method, 4-27
setOracleObject() methods, 4-27
setXXX() methods, 4-27
oracle.jdbc.driver.OracleConnection class, 4-24
createStatement() method, 4-24
getDefaultExecuteBatch() method, 4-24
getDefaultRowPrefetch() method, 4-24
getRemarksReporting() method, 4-25
getTransactionlsolation() method, 4-24, 6-13
getTypeMap() method, 4-25
prepareCall() method, 4-24
prepareStatement() method, 4-24
setDefaultExecuteBatch() method, 4-24
setDefaultRowPrefetch() method, 4-25
setRemarksReporting() method, 4-25
setTransactionlsolation() method, 4-24, 6-13
setTypeMap() method, 4-25
oracle.jdbc.driver.OracleDriver class, 4-24,5-7
oracle.jdbc.driver.OraclePreparedStatement

Index-7



class, 4-25
close() method, 4-26
getExecuteBatch() method, 4-26
setCustomDatum() method, 4-26
setExecuteBatch() method, 4-26
setNull() method, 4-26
setOracleObject() method, 4-26
setXXX() methods, 4-26
oracle.jdbc.driver.OracleResultSet class, 4-27
getOracleObject() method, 4-27
getXXX() methods, 4-27
next() method, 4-27
oracle.jdbc.driver.OracleResultSetMetaData
class, 4-28,4-44
getColumnCount() method, 4-28
getColumnName() method, 4-28
getColumnType() method, 4-28
getColumnTypeName() method, 4-28
getTableName() method, 4-28
using, 4-44
oracle.jdbc.driver.OracleStatement class, 4-25
close() method, 4-25
defineColumnType(), 4-25
executeQuery() method, 4-25
getResultSet() method, 4-25
getRowPrefetch() method, 4-25
setRowPrefetch() method, 4-25

oracle.jdbc.driver.OracleTypes class, 4-28, 4-106

OraclePreparedStatement class, 4-25
OracleResultSet class, 4-27
getXXX() methods, 4-37
OracleResultSet object, 3-9
OracleResultSetMetaData class, 4-28
OracleServerDriver class
defaultConnection() method, 5-22
oracle.sql datatype classes, 4-7
oracle.sql package
data conversions, 4-32
described, 4-7
oracle.sql. ARRAY class, 4-87
and nested tables, 4-14
and VARRAYs, 4-14
getArray() method, 4-15
getArrayDescriptor() method, 4-15
getBaseType() method, 4-15

Index-8

getBaseTypeName() method, 4-15

getOracleArray() method, 4-15

getResultSet() method, 4-15

getSQLTypeName() method, 4-15
oracle.sql.ArrayDescriptor class

getBaseName() method, 4-17

getBaseType() method, 4-17
oracle.sql.BFILE class, 4-17

closeFile() method, 4-19

getBinaryStream() method, 4-19

getBytes() method, 4-19

getDirAlias() method, 4-19

getName() method, 4-19

length() method, 4-19

openFile() method, 4-19

position() method, 4-19
oracle.sql.BLOB class, 4-17

getBinaryOutputStream() method, 4-18

getBinaryStream() method, 4-18

getBytes() method, 4-18

length() method, 4-18

position() method, 4-18

putBytes() method, 4-18
oracle.sql.CHAR class, 4-19, 5-25

getString() method, 4-21

getStringWithReplacement() method, 4-21

toString() method, 4-21
oracle.sql.CharacterSet class, 4-20
oracle.sql.CLOB class, 4-17

getAsciiOutputStream() method, 4-18

getAsciiStream() method, 4-18

getCharacterOutputStream() method, 4-18

getCharacterStream() method, 4-18

getChars() method, 4-18

getSubString() method, 4-19

length() method, 4-19

position() method, 4-19

putChars() method, 4-19

putString() method, 4-19

supported character sets, 4-18
oracle.sql.CustomDatum interface, 4-75
oracle.sql.CustomDatumFactory interface, 4-75
oracle.sql.datatypes

support, 4-10
oracle.sql.DATE class, 4-22



oracle.sql.Datum class, described, 4-7
oracle.sql. NUMBER class, 4-22
OracleSql.parse() method, 5-30
oracle.sql.RAW class, 4-22
oracle.sql.REF class, 4-14, 4-83
getBaseTypeName() method, 4-14
getValue() method, 4-14
setValue() method, 4-14
oracle.sql.REFCURSOR class, 4-112
oracle.sql.ROWID class, 4-10, 4-22, 4-111
oracle.sql.STRUCT class, 4-10, 4-63
getConnection() method, 4-12
getDescriptor() method, 4-12
getMap() method, 4-12
getOracleAttributes() method, 4-12
getSQLTypeName() method, 4-12
isConvertibleTo() method, 4-12
makeldbcArray() method, 4-12
methods, 4-11
getAttributes() method, 4-11
setDatumArray() method, 4-12
setDescriptor() method, 4-12
stringValue() method, 4-12
toBytes() method, 4-12
toClass() method, 4-12
toJDBC() method, 4-12
toSTRUCT() method, 4-12
oracle.sql.StructDescriptor class, 4-13
createDescriptor() method, 4-13
OracleStatement class, 4-25
OracleTypes class, 4-28
OracleTypes.ARRAY class, 4-28,4-44
OracleTypes.BFILE class, 4-29
OracleTypes.BLOB class, 4-28
OracleTypes.CLOB class, 4-28
OracleTypes.CURSOR variable, 4-113
OracleTypes.REF class, 4-28
OracleTypes.ROWID class, 4-29
OracleTypes.STRUCT class, 4-28, 4-44
outer joins, SQL92 syntax, 5-29

P

password connection property, 4-110
password, specifying, 3-4

PATH variable, specifying, 2-7
performance extensions

batching updates, 4-100

connection properties, 4-109

prefetching rows, 4-98

redefining column types, 4-105

TABLE_REMARKS reporting, 4-108

to JDBC, 4-97
performance optimization, 6-5

batching values, 6-6

prefetching rows, 6-6
PL/SQL

restrictions, 6-7

space padding, 6-7

stored procedures, 3-24
PL/SQL stored procedures, 3-24
PL/SQL types

limitations, 4-115
position() method, 4-18, 4-19
prefetching rows, 4-97, 4-98, 6-6

suggested default, 4-98
prepareCall() method, 4-24
prepared statement

passing BFILE locator, 4-56

passing LOB locators, 4-48

using setObject() method, 4-41

using setOracleObject() method, 4-41
prepareStatement() method, 4-24
printStackTrace() method, 6-9
put() method

for Properties object, 4-110

for type maps, 4-67
putBytes() method, 4-18
putChars() method, 4-19
putString() method, 4-19

Q

query, executing, 3-8

R

RAW class, 4-22
readSQL() method, 4-69, 4-70
implementing, 4-70

Index-9



REF class, 4-14
REFCURSORs, 4-112
example program, 7-14
materialized as result set objects, 4-112
reference classes, and JPublisher, 4-83
registerDriver() method, 4-24
registering Oracle JDBC drivers, class for, 4-24
registerOutParameter() method, 4-27, 4-42
remarksReporting connection property, 4-110
remarksReporting flag, 4-97
result set
auto-commit mode, 6-5
getting BFILE locators, 4-55
getting LOB locators, 4-46
metadata, 4-28
Oracle extensions, 4-33
using getOracleObject() method, 4-35
result set object
closing, 3-9
result set, processing, 3-9
ResultSet class, 3-8
return types
for getXXX() methods, 4-38
getObject() method, 4-36
getOracleObject() method, 4-36
return values
casting, 4-39
ROLLBACK operation, 5-24
row prefetching, 4-98
and data streams, 3-23
ROWID class, 4-22
CursorName methods, 4-115
defined, 4-111

S

scalar functions, SQL92 syntax, 5-28
schema naming conventions, 4-4
security, for browsers, 5-20
SELECT statement

to retrieve object references, 4-84

to select LOB locator, 4-54
sendBatch() method, 4-102
session context, 3-26

for KPRB driver, 5-23

Index-10

setAutoCommit() method, 6-5
setBFILE() method, 4-56
setBLOB() method, 4-47
setCLOB() method, 4-48
setCursorName() method, 4-111, 4-115
setCustombDatum() method, 4-26, 4-77, 4-81
setDatumArray() method, 4-12
setDefaultExecuteBatch() method, 4-24
setDefaultRowPrefetch() method, 4-25, 4-98
setDescriptor() method, 4-12
setEscapeProcessing() method, 5-26
setExecuteBatch() method, 4-26
setLogStream() method, for logging JDBC

calls, 6-10
setMaxFieldSize() method, 4-106, 6-7
setNull() method, 4-26, 4-27, 4-42
setObejct() method, 4-40
setObject() method

for BFILES, 4-56

for BLOBs and CLOBs, 4-47

for CustomDatum objects, 4-77

for object references, 4-86

to write object data, 4-81

using in prepared statements, 4-41
setOracleObject() method, 4-26, 4-27, 4-40

for BFILES, 4-56

for BLOBs and CLOBs, 4-47

for Struct objects, 4-64

using in prepared statements, 4-41
setREF() method, 4-86
setRemarksReporting() method, 4-25, 4-108
setRowPrefetch() method, 4-25, 4-98
setString() method

to bind ROWIDs, 4-111
setTransactionlsolation() method, 4-24, 6-13
setTypeMap() method, 4-25, 4-68
setVValue() method, 4-14
setXXX() methods, for specific datatypes, 4-41
signed applets, 3-28
SQL

data converting to Java datatypes, 4-32

primitive types, 4-7

structured types, 4-7

types, constants for, 4-28
SQL engine



relation to the KPRB driver, 5-22
SQL syntax (Oracle), 5-26
SQL92 syntax, 5-26
function call syntax, 5-30
LIKE escape characters, 5-29
outer joins, 5-29
scalar functions, 5-28
time and date literals, 5-26
translating to SQL example, 5-30
SQLData interface, 4-3
advantages, 4-66
described, 4-69
example program, 7-20
Oracle implementation, 4-6
reading data from Oracle objects, 4-72
using with type map, 4-69
writing data from Oracle objects, 4-74
SQLException() method, 6-9
SQLInput interface, 4-69
described, 4-70
SQLInput streams, 4-70
SQLJ
advantages over JDBC, 1-3
guidelines for using, 1-3
SQLNET.ORA
parameters for tracing, 6-10
SQLOutput interface, 4-69
described, 4-70
SQLOutput streams, 4-71
SQLWarning class, limitations, 4-116
Statement object

closing, 3-9
creating, 3-8
statements

Oracle extensions, 4-33
static SQL, 1-2
stored procedures
Java, 3-25
PL/SQL, 3-24
stream classes, 4-28
stream data, 3-14, 4-48
CHAR columns, 3-19
closing, 3-23
example, 3-16
external files, 3-23

LOBs, 3-23

LONG columns, 3-14

LONG RAW columns, 3-14

multiple columns, 3-20

RAW columns, 3-19

row prefetching, 3-23

UPDATE/COMMIT statements, 4-50

VARCHAR columns, 3-19
stream data column

bypassing, 3-21
stringValue() method, 4-10, 4-12
STRUCT class, 4-10
STRUCT descriptor, 4-13
STRUCT object, 4-10

attributes, 4-11

casting, 4-63

creating, 4-13

embedded object, 4-14

nested objects, 4-11

using, 4-63
StructDescriptor object

creating, 4-13

get methods, 4-13
structured objects, 4-9

class for binding, 4-26

T

TABLE_REMARKS columns, 4-97
TABLE_REMARKS reporting
restrictions on, 4-108
TCP/IP protocol, 1-5, 3-7
time and date literals, SQL92 syntax, 5-26
TNSNAMES entries, 3-4
toBytes() method, 4-12
toClass() method, 4-12
toDatum() method
applied to CustomDatum objects, 4-65, 4-75
called by setCustomDatum() method, 4-81
toJDBC() method, 4-12
toJdbc() method, 4-10
toString() method, 4-21
toSTRUCT() method, 4-12
trace facility, 6-10
trace parameters

Index-11



client-side, 6-11
server-side, 6-12
transaction context, 3-26
for KPRB driver, 5-23
TTC protocol, 1-5
type map, 4-3,4-34,4-65
adding entries, 4-67
and STRUCTs, 4-69
creating a new map, 4-68
defining mappings, 4-67
described, 4-66
used with arrays, 4-91
used with SQLData interface, 4-69
using with arrays, 4-94
type maps
relationship to database connection, 5-23

U

updates to database, accumulating, 6-6
user connection property, 4-110
userid, specifying, 3-4

using, 5-10

\Y,

VARCHAR2 columns, 6-7
varrays
example program, 7-16

w

WIDTH, parameter for APPLET tag, 5-19
writeSQL() method, 4-69, 4-71
implementing, 4-70

Index-12



	PDF Directory
	Send Us Your Comments
	Preface
	1 Overview
	What is JDBC?
	JDBC versus SQLJ
	Advantages of SQLJ over JDBC for Static SQL
	General Guidelines for using JDBC and SQLJ

	Basic Driver Architecture
	JDBC Thin Client-Side Driver Architecture
	JDBC OCI Client-Side Driver Architecture
	JDBC Server Driver Architecture

	Oracle Extensions to the JDBC Standard
	Supported JDK and JDBC Versions
	JDBC and the Oracle Application Server
	JDBC and IDEs

	2 Getting Started
	Oracle JDBC Drivers
	Introducing the Oracle JDBC Drivers
	Common Features of Oracle JDBC Drivers
	JDBC Thin Driver
	JDBC OCI Driver
	JDBC Server Driver

	Choosing the Appropriate Driver

	Requirements and Compatibilities for Oracle JDBC Drivers
	Verifying a JDBC Client Installation
	Check Installed Directories and Files
	Directories for JDBC

	Check the Environment Variables
	Solaris and Windows NT Platforms
	JDBC OCI Drivers:
	JDBC Thin Drivers:


	Make Sure You Can Compile and Run Java
	Determining the Version of the JDBC Driver
	Testing JDBC and the Database Connection: JdbcCheckup


	3 Basic Features
	First Steps in JDBC
	Importing Packages
	Registering the JDBC Drivers
	Opening a Connection to a Database
	Understanding the Forms of getConnection()
	Specifying a Database URL, Userid, and Password
	Specifying a Database URL That Includes Userid and Password
	Specifying a Database URL and Properties Object
	Oracle Extensions to Connection Properties Object

	Opening a Connection for the JDBC OCI Driver
	Opening a Connection for the JDBC Thin Driver

	Creating a Statement Object
	Executing a Query and Returning a Result Set Object
	Processing the Result Set
	Closing the Result Set and Statement Objects
	Closing the Connection

	Sample: Connecting, Querying, and Processing the Results
	Datatype Mappings
	Oracle JDBC Extension Types

	Using Java Streams in JDBC
	Streaming LONG or LONG RAW Columns
	LONG RAW Data Conversions
	LONG Data Conversions
	Streaming Example for LONG RAW Data
	Getting a LONG RAW Data Column with getBinaryStream()
	Getting a LONG RAW Data Column with getBytes()

	Avoiding Streaming for LONG or LONG RAW

	Streaming CHAR, VARCHAR, or RAW Columns
	Data Streaming and Multiple Columns
	Bypassing Streaming Data Columns
	Streaming Data Precautions
	Use the Stream Data after You Access It
	Call the Stream Column in SELECT List Order


	Streaming and Row Prefetching
	Closing a Stream
	Streaming LOBs and External Files
	Streaming BLOBs and CLOBs
	Streaming BFILEs


	Using Stored Procedures in JDBC Programs
	PL/SQL Stored Procedures
	Java Stored Procedures

	Error Messages and JDBC
	Server-Side Basics
	Session and Transaction Context
	Connecting to the Database

	Application Basics versus Applet Basics
	Application Basics
	Applications and Encryption

	Applet Basics
	Applets and Security
	Applets and Firewalls
	Applets and Encryption
	Packaging and Deploying Applets



	4 Oracle Extensions
	Introduction to Oracle Extensions
	Packages
	Oracle Datatype Support
	Oracle Object Support
	Support for Schema Naming

	Oracle JDBC Packages and Classes
	Classes of the oracle.jdbc2 Package
	Classes of the oracle.sql Package
	General oracle.sql Datatype Support
	Class oracle.sql.STRUCT
	Creating STRUCT Objects and Descriptors
	Using StructDescriptor get Methods
	Embedded Objects

	Class oracle.sql.REF
	Class oracle.sql.ARRAY
	Creating ARRAY Objects and Descriptors
	Using ArrayDescriptor get Methods

	Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE
	Class oracle.sql.CHAR
	Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW
	Class oracle.sql.ROWID

	Classes of the oracle.jdbc.driver Package
	Class oracle.jdbc.driver.OracleDriver
	Class oracle.jdbc.driver.OracleConnection
	Class oracle.jdbc.driver.OracleStatement
	Class oracle.jdbc.driver.OraclePreparedStatement
	Class oracle.jdbc.driver.OracleCallableStatement
	Class oracle.jdbc.driver.OracleResultSet
	Class oracle.jdbc.driver.OracleResultSetMetaData
	Oracle Stream Classes
	Class oracle.jdbc.driver.OracleTypes
	OracleTypes and Registering Output Parameters
	OracleTypes and the setNull() Method



	Data Access and Manipulation: Oracle Types vs. Java Types
	Data Conversion Considerations
	Converting SQL NULL Data

	Using Result Set and Statement Extensions
	Comparing get and set Methods for oracle.sql.* Format with Java Format
	Standard getObject() Method
	Oracle getOracleObject() Method
	Example: Using getOracleObject() with a ResultSet
	Example: Using getOracleObject() in a Callable Statement

	Summary of getObject() and getOracleObject() Return Types
	Other getXXX() Methods
	Casting Your get Method Return Values
	Example: Casting Return Values

	Standard setObject() and Oracle setOracleObject() Methods
	Example: Using setObject() and setOracleObject() in a Prepared Statement

	Other setXXX() Methods

	Using Result Set Meta Data Extensions

	Working with LOBs
	Getting BLOB and CLOB Locators
	Example: Getting BLOB and CLOB Locators from a Result Set
	Example: Getting a CLOB Locator from a Callable Statement

	Passing BLOB and CLOB Locators
	Example: Passing a BLOB Locator to a Prepared Statement
	Example: Passing a CLOB Locator to a Callable Statement

	Reading and Writing BLOB and CLOB Data
	Example: Reading BLOB Data
	Example: Reading CLOB Data
	Example: Writing BLOB Data
	Example: Writing CLOB Data

	Creating and Populating a BLOB or CLOB Column
	Creating a BLOB or CLOB Column in a New Table
	Populating a BLOB or CLOB Column in a New Table

	Accessing and Manipulating BLOB and CLOB Data
	Getting BFILE Locators
	Example: Getting a BFILE locator from a Result Set
	Example: Getting a BFILE Locator from a Callable Statement

	Passing BFILE Locators
	Example: Passing a BFILE Locator to a Prepared Statement
	Example: Passing a BFILE Locator to a Callable Statement

	Reading BFILE Data
	Example: Reading BFILE Data

	Creating and Populating a BFILE Column
	Creating a BFILE Column in a New Table
	Populating a BFILE Column

	Accessing and Manipulating BFILE Data

	Working with Oracle Object Types
	Using Default Java Classes for Oracle Objects
	Using STRUCT Objects

	Creating Custom Java Classes for Oracle Objects
	Relative Advantages of CustomDatum vs. SQLData
	Understanding Type Maps
	Creating a Type Map Class
	Creating a Type Map Object and Defining Mappings
	Adding Entries to an Existing Type Map
	Creating a New Type Map
	STRUCTS and the Type Map

	Understanding the SQLData Interface
	Understanding the SQLInput and SQLOutput Interfaces
	Implementing readSQL() and writeSQL() Methods

	Reading and Writing Data with a SQLData Class
	Reading Data from an Oracle Object Using a SQLData Interface
	Passing SQLData Objects to a Callable Statement as an OUT Parameter
	Passing SQLData Objects to a Callable Statement as an IN Parameter
	Writing Data to an Oracle Object Using a SQLData Interface

	Understanding the CustomDatum Interface
	CustomDatum versus SQLData: Comparison for Serializable Objects
	Reading and Writing Data with a CustomDatum Interface
	Reading Data from an Oracle Object Using the CustomDatum Interface
	Writing Data to an Oracle Object Using the CustomDatum Interface


	Using JPublisher with JDBC
	JPublisher Mapping Options


	Working with Oracle Object References
	Retrieving an Object Reference
	Passing an Object Reference to a Callable Statement
	Accessing and Updating Object Values through an Object Reference
	Passing an Object Reference to a Prepared Statement

	Working with Arrays
	Retrieving an Array and its Elements
	getArray() Method:
	getOracleArray() Method:
	getResultSet() Method:
	Retrieving All of an Array’s Elements
	Retrieving Array Elements According to a Type Map
	Retrieving a Subset of an Array’s Elements
	Retrieving an Array as an oracle.sql.Datum
	Example: Getting and Printing an Array of Primitive Datatypes from a Result Set


	Passing an Array to a Prepared Statement
	Passing an Array to a Callable Statement
	Using a Type Map to Map Array Elements

	Additional Oracle Extensions
	Performance Extensions
	Row Prefetching
	Row Prefetching Limitations
	Example: Row Prefetching

	Database Update Batching
	Update Batching Limitations
	Setting Update Batch Value for Individual Statements
	Overriding the Default Batch Update Value
	Setting Update Batch Value for the Connection
	Checking Batch Value
	Example: Update Batching

	Redefining Column Types
	Redefining Column Types Limitations
	Redefining Column Types for a Query
	Example: Defining Column Types

	DatabaseMetaData TABLE_REMARKS Reporting
	Example: TABLE_REMARKS Reporting
	Considerations for getProcedures() and getProcedureColumns() Methods

	Oracle Extensions for Connection Properties

	Additional Type Extensions
	Oracle ROWID Type
	Example: ROWID

	Oracle REF CURSOR Type Category
	Example: Accessing REF CURSOR Data



	Oracle JDBC Notes and Limitations
	CursorName
	SQL92 Outer Join Escapes
	PL/SQL TABLE, BOOLEAN and RECORD Types
	IEEE 754 Floating Point Compliance
	Read-Only Connection
	Catalog Arguments to DatabaseMetaData Calls
	SQLWarning Class
	Bind by Name


	5 Advanced Topics
	Using NLS
	How JDBC Drivers Perform NLS Conversions
	JDBC OCI Driver and NLS
	JDBC Thin Driver and NLS
	Server Driver and NLS

	NLS Restrictions
	Data Size Restriction for NLS Conversions


	Working with Applets
	Coding Applets
	Coding Applets for a JDK 1.1.1 Browser
	Coding Applets for a JDK 1.0.2 Browser

	Connecting an Applet to a Database
	Connecting to a Database on the Same Host as the Web Server
	Connecting to a Database on a Different Host
	Using the Oracle8 Connection Manager
	Installing and Running the Oracle8 Connection Manager
	Writing the Connect String that Targets the Oracle8 Connection Manager
	Connecting through Multiple Connection Managers

	Using Signed Applets

	Using Applets with Firewalls
	How Firewalls Work
	Configuring a Firewall for Applets that use the JDBC Thin Driver
	Writing a Connect String to Connect through a Firewall

	Packaging Applets
	Specifying an Applet in an HTML Page
	CODE, HEIGHT, and WIDTH
	CODEBASE
	ARCHIVE

	Browser Security and JDK Version Considerations

	JDBC on the Server: the Server Driver
	Connecting to the Database with the Server Driver
	Connecting with defaultConnection()
	Connecting with DriverManager.getConnection()

	Session and Transaction Context for the Server Driver
	Testing JDBC on the Server
	Server Driver Support for NLS
	Character Set Conversion of oracle.sql.CHAR Data


	Embedded SQL92 Syntax
	Disabling Escape Processing
	Time and Date Literals
	Date Literals
	Time Literals
	Timestamp Literals

	Scalar Functions
	LIKE Escape Characters
	Outer Joins
	Function Call Syntax
	SQL92 to SQL Syntax Example


	6 Coding Tips and Troubleshooting
	JDBC and Multi-Threading
	Performance Optimization
	Disabling Auto-Commit Mode
	Example: Disabling AutoCommit

	Prefetching Rows
	Batching Updates

	Common Problems
	Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables
	Memory Leaks and Running Out of Cursors
	Boolean Parameters in PL/SQL Stored Procedures
	Opening More Than 16 OCI Connections for a Process

	Basic Debugging Procedures
	Trapping Exceptions
	Logging JDBC Calls
	Net8 Tracing to Trap Network Events
	Client-Side Tracing
	TRACE_LEVEL_CLIENT
	TRACE_DIRECTORY_CLIENT
	TRACE_FILE_CLIENT
	TRACE_UNIQUE_CLIENT

	Server-Side Tracing
	TRACE_LEVEL_SERVER
	TRACE_DIRECTORY_SERVER
	TRACE_FILE_SERVER


	Using Third Party Tools

	Transaction Isolation Levels and the Oracle Server

	7 Sample Applications
	Sample Applications for Basic JDBC Features
	Streaming Data
	Lines 1-18:
	Line 34:
	Lines 37-44:
	Line 46:
	Line 51-66:


	Sample Applications for JDBC 2.0-Compliant Oracle Extensions
	LOB Sample
	Lines 1-26:
	Lines 27-38:
	Lines 40-49:
	Lines 50-68:
	Lines 69-82:
	Lines 84-108:
	Lines 110-135:
	Lines 136-154:
	Lines 156-175:

	BFILE Sample
	Lines 1-32:
	Lines 33-44:
	Lines 46-53:
	Lines 55-63:
	Lines 64-75:
	Line 77:
	Lines 80-83:
	Lines 84-108:
	Lines 110-115:


	Sample Applications for Other Oracle Extensions
	REF CURSOR Sample
	Lines 1-16:
	Lines 18-29:
	Lines 30-33:
	Lines 40-45:
	Lines 46-53:

	Array Sample
	Lines 1-32:
	Lines 35-47:
	Lines 49-54:
	Lines 59-61:
	Lines 63-70:
	Lines 72-85:
	Lines 87-97:


	Creating Customized Java Classes for Oracle Objects
	SQLData Sample
	Creating the SQL Object Definition
	Creating the Custom Java Class
	Lines 1-14:
	Lines 24-28:
	Lines 30-38:
	Lines 39-45:

	Using the Custom Java Class
	Lines 1-16:
	Lines 18-21:
	Lines 23-33:
	Lines 35-40:
	Lines 42, 43:
	Lines 45-52:
	Lines 54-57:
	Lines 59-62:
	Lines 66-72:


	CustomDatum Sample
	SQL Definition of EMPLOYEE Object
	Java Class Definitions for a Custom Java Object
	Line 10:
	Lines 13-18:
	Lines 20-25:
	Lines 27-36:
	Lines 38-49:

	Custom Java Class Usage Example
	Lines 1-16:
	Lines 18-28:
	Lines 30-35:
	Lines 37, 38:
	Lines 40-47:
	Lines 49-54:
	Lines 54-58:
	Lines 58-62:



	Creating Signed Applets
	Lines 6-11:
	Lines 13-26:
	Lines 37-48:
	Lines 49-77:
	Lines 121-165:
	Lines 170-183:
	Lines 183-256:
	Lines 260-283:

	JDBC versus SQLJ Sample Code
	SQL Program to Create Tables and Objects
	JDBC Version of the Sample Code
	Line 12:
	Lines 16-20:
	Lines 21-23:
	Lines 25-27:
	Line 29:
	Line 33-43:
	Line 44:
	Lines 45, 46:
	Coding Requirements of the JDBC Version
	Maintaining JDBC Programs

	SQLJ Version of the Sample Code
	Line 10:
	Lines 13-15:
	Line 16:
	Line 19:
	Lines 19-23:
	Line 24:
	Coding Requirements of the SQLJ Version



	8 Reference Information
	Valid SQL-JDBC Datatype Mappings
	Supported SQL and PL/SQL Datatypes
	NLS Character Set Support
	Related Information
	Oracle JDBC Drivers and SQLJ
	Java Technology
	Signed Applets


	A JDBC Error Messages
	Index

