
Oracle8i

Oracle8i JDBC Developer’s Guide and Reference

Release 8.1.5

February 1999

Part No. A64685-01

Oracle8i JDBC Developer’s Guide and Reference, Release 8.1.5

Part No. A64685-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Thomas Pfaeffle

Contributors: Prabha Krishna, Bernie Harris, Ana Hernandez, Anthony Lau, Paul Lo, Jack Melnick,
Janice Wong, Brian Wright, Joyce Yang

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright, patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are "restricted computer software" and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and PL/SQL, JDeveloper, Net8, Oracle Objects, Oracle8i, Oracle8, and
other Oracle products mentioned herein are trademarks or registered trademarks of Oracle Corporation.
All other company or product names mentioned are used for identification purposes only and may be
trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface.. xi

Intended Audience .. xi
Manual Structure ... xi
Related Documentation ... xii
Conventions Used in this Manual .. xv

1 Overview

What is JDBC? ... 1-2
JDBC versus SQLJ .. 1-2

Advantages of SQLJ over JDBC for Static SQL .. 1-3
General Guidelines for using JDBC and SQLJ ... 1-3

Basic Driver Architecture .. 1-4
JDBC Thin Client-Side Driver Architecture.. 1-5
JDBC OCI Client-Side Driver Architecture... 1-5
JDBC Server Driver Architecture ... 1-6

Oracle Extensions to the JDBC Standard ... 1-6
Supported JDK and JDBC Versions .. 1-6
JDBC and the Oracle Application Server... 1-6
JDBC and IDEs .. 1-7

2 Getting Started

Oracle JDBC Drivers .. 2-2
iii

Introducing the Oracle JDBC Drivers .. 2-2
Choosing the Appropriate Driver .. 2-4

Requirements and Compatibilities for Oracle JDBC Drivers.. 2-5
Verifying a JDBC Client Installation .. 2-6

Check Installed Directories and Files... 2-6
Check the Environment Variables.. 2-7
Make Sure You Can Compile and Run Java ... 2-7
Determining the Version of the JDBC Driver ... 2-8
Testing JDBC and the Database Connection: JdbcCheckup... 2-8

3 Basic Features

First Steps in JDBC ... 3-2
Importing Packages .. 3-2
Registering the JDBC Drivers.. 3-3
Opening a Connection to a Database... 3-3
Creating a Statement Object .. 3-8
Executing a Query and Returning a Result Set Object .. 3-8
Processing the Result Set ... 3-9
Closing the Result Set and Statement Objects .. 3-9
Closing the Connection.. 3-10

Sample: Connecting, Querying, and Processing the Results ... 3-10
Datatype Mappings .. 3-11

Oracle JDBC Extension Types... 3-12
Using Java Streams in JDBC ... 3-14

Streaming LONG or LONG RAW Columns... 3-14
Streaming CHAR, VARCHAR, or RAW Columns.. 3-19
Data Streaming and Multiple Columns .. 3-20
Streaming and Row Prefetching... 3-23
Closing a Stream ... 3-23
Streaming LOBs and External Files.. 3-23

Using Stored Procedures in JDBC Programs ... 3-24
PL/SQL Stored Procedures... 3-24
Java Stored Procedures .. 3-25

Error Messages and JDBC ... 3-25
Server-Side Basics ... 3-26
iv

Session and Transaction Context ... 3-26
Connecting to the Database .. 3-26

Application Basics versus Applet Basics ... 3-27
Application Basics .. 3-27
Applet Basics ... 3-27

4 Oracle Extensions

Introduction to Oracle Extensions ... 4-2
Oracle JDBC Packages and Classes... 4-6

Classes of the oracle.jdbc2 Package ... 4-6
Classes of the oracle.sql Package.. 4-7
Classes of the oracle.jdbc.driver Package.. 4-22

Data Access and Manipulation: Oracle Types vs. Java Types .. 4-32
Data Conversion Considerations ... 4-32
Using Result Set and Statement Extensions ... 4-33
Comparing get and set Methods for oracle.sql.* Format with Java Format 4-34
Using Result Set Meta Data Extensions... 4-44

Working with LOBs.. 4-45
Getting BLOB and CLOB Locators... 4-46
Passing BLOB and CLOB Locators .. 4-47
Reading and Writing BLOB and CLOB Data ... 4-48
Creating and Populating a BLOB or CLOB Column... 4-52
Accessing and Manipulating BLOB and CLOB Data.. 4-54
Getting BFILE Locators.. 4-55
Passing BFILE Locators ... 4-56
Reading BFILE Data ... 4-57
Creating and Populating a BFILE Column ... 4-58
Accessing and Manipulating BFILE Data ... 4-60

Working with Oracle Object Types ... 4-62
Using Default Java Classes for Oracle Objects ... 4-62
Creating Custom Java Classes for Oracle Objects.. 4-65
Using JPublisher with JDBC ... 4-82

Working with Oracle Object References.. 4-83
Retrieving an Object Reference... 4-84
Passing an Object Reference to a Callable Statement .. 4-85
v

Accessing and Updating Object Values through an Object Reference 4-85
Passing an Object Reference to a Prepared Statement .. 4-86

Working with Arrays .. 4-87
Retrieving an Array and its Elements.. 4-88
Passing an Array to a Prepared Statement ... 4-93
Passing an Array to a Callable Statement ... 4-94
Using a Type Map to Map Array Elements .. 4-94

Additional Oracle Extensions... 4-97
Performance Extensions... 4-97
Additional Type Extensions.. 4-111

Oracle JDBC Notes and Limitations ... 4-115

5 Advanced Topics

Using NLS .. 5-2
How JDBC Drivers Perform NLS Conversions.. 5-2
NLS Restrictions.. 5-5

Working with Applets.. 5-7
Coding Applets ... 5-7
Connecting an Applet to a Database.. 5-9
Using Applets with Firewalls ... 5-14
Packaging Applets .. 5-17
Specifying an Applet in an HTML Page.. 5-19
Browser Security and JDK Version Considerations .. 5-20

JDBC on the Server: the Server Driver ... 5-22
Connecting to the Database with the Server Driver .. 5-22
Session and Transaction Context for the Server Driver .. 5-23
Testing JDBC on the Server ... 5-24
Server Driver Support for NLS... 5-25

Embedded SQL92 Syntax .. 5-26
Time and Date Literals... 5-26
Scalar Functions .. 5-28
LIKE Escape Characters ... 5-29
Outer Joins ... 5-29
Function Call Syntax .. 5-30
SQL92 to SQL Syntax Example... 5-30
vi

6 Coding Tips and Troubleshooting

JDBC and Multi-Threading .. 6-2
Performance Optimization.. 6-5

Disabling Auto-Commit Mode... 6-5
Prefetching Rows.. 6-6
Batching Updates.. 6-6

Common Problems ... 6-6
Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables 6-7
Memory Leaks and Running Out of Cursors ... 6-7
Boolean Parameters in PL/SQL Stored Procedures .. 6-7
Opening More Than 16 OCI Connections for a Process ... 6-8

Basic Debugging Procedures .. 6-9
Trapping Exceptions .. 6-9
Logging JDBC Calls.. 6-10
Net8 Tracing to Trap Network Events .. 6-10
Using Third Party Tools .. 6-13

Transaction Isolation Levels and the Oracle Server... 6-13

7 Sample Applications

Sample Applications for Basic JDBC Features ... 7-2
Streaming Data.. 7-2

Sample Applications for JDBC 2.0-Compliant Oracle Extensions.. 7-4
LOB Sample ... 7-4
BFILE Sample .. 7-10

Sample Applications for Other Oracle Extensions .. 7-14
REF CURSOR Sample .. 7-14
Array Sample .. 7-16

 Creating Customized Java Classes for Oracle Objects ... 7-20
SQLData Sample... 7-20
CustomDatum Sample... 7-26

Creating Signed Applets ... 7-31
JDBC versus SQLJ Sample Code ... 7-38

SQL Program to Create Tables and Objects.. 7-39
JDBC Version of the Sample Code ... 7-41
SQLJ Version of the Sample Code.. 7-44
vii

8 Reference Information

Valid SQL-JDBC Datatype Mappings .. 8-2
Supported SQL and PL/SQL Datatypes ... 8-4
NLS Character Set Support ... 8-8
Related Information ... 8-8

Oracle JDBC Drivers and SQLJ ... 8-8
Java Technology.. 8-8
Signed Applets .. 8-9

A JDBC Error Messages
viii

Send Us Your Comments

JDBC Developer’s Guide and Reference, Release 8.1.5

Part No. A64685-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail — jpgcomnt@us.oracle.com
■ FAX - 650-506-7225. Attn: Java Products Group, Information Development Manager
■ Postal service:

Oracle Corporation
Information Development Manager
500 Oracle Parkway, Mailstop 4op978
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle World Wide Support Center.
ix

x

Preface

This preface contains these sections:

■ Intended Audience

■ Manual Structure

■ Related Documentation

■ Conventions Used in this Manual

Intended Audience
This manual assumes that you are an experienced programmer and that you
understand Oracle databases, the SQL and Java programming languages, and the
principles of JDBC.

Manual Structure
The JDBC Developers Guide and Reference contains eight chapters and one appendix:

Chapter 1, "Overview" This chapter provides an overview of the Oracle
implementation of JDBC and the Oracle JDBC
driver architecture.

Chapter 2, "Getting Started" This chapter introduces the Oracle JDBC drivers
and some scenarios of how you can use them.
This chapter also guides you through the basics
of testing your installation and configuration.
xi

Related Documentation
This manual contains references to the following Oracle publications:

■ Oracle8i JPublisher User’s Guide

This book describes how to use the JPublisher utility to translate object types
and other user-defined types to Java classes. If you are developing SQLJ or
JDBC applications that use object types, varray types, nested table types, or
REF types, then you are required to have Java classes that correspond to these
types. JPublisher helps you do this by creating the mapping between object
types and Java classes, and between object attribute types and their
corresponding Java types.

Chapter 3, "Basic Features" This chapter covers the basic steps in creating
any JDBC application. It also discusses
additional basic features of Java and JDBC
supported by the Oracle JDBC drivers.

Chapter 4, "Oracle Extensions" This chapter describes JDBC extensions
provided by Oracle: packages, classes, and
datatypes. It also describes the support for
LOBs, objects, and collections provided by the
extensions.

Chapter 5, "Advanced Topics" This chapter describes advanced JDBC topics
such as using NLS, working with applets, the
server-side driver, and embedded SQL92 syntax.

Chapter 6, "Coding Tips and
Troubleshooting"

This chapter includes coding tips and general
guidelines for troubleshooting your JDBC
applications.

Chapter 7, "Sample
Applications"

This chapter presents sample applications that
highlight advanced JDBC features and Oracle
extensions.

Chapter 8, "Reference
Information"

This chapter contains detailed JDBC reference
information.

Appendix A, "JDBC Error
Messages"

This appendix lists errors that can be thrown by
the JDBC drivers.
xii

■ Oracle8i SQLJ Developer’s Guide and Reference

This book describes the use of SQLJ to embed static SQL operations directly into
Java code. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

■ Oracle8i Java Stored Procedures Developer’s Guide

This book describes Java stored procedures, which lets Java programmers
access the Oracle RDBMS. With stored procedures (functions, procedures,
database triggers, and SQL methods), Java developers can implement business
logic at the server level, thereby improving application performance, scalability,
and security.

■ Oracle8i Enterprise JavaBeans and CORBA Developer’s Guide

This manual describes the Oracle extensions to the JavaBeans and CORBA
specifications.

■ Net8 Administrator’s Guide

Refer to this manual for more information about ANO (Advanced Network
Option), the Oracle8 Connection Manager, and about Net8 network
administration in general.

■ Oracle8i Error Messages

Refer to this document set for more information on error messages that can be
passed by the Oracle Database and the Oracle JDBC drivers.

■ Oracle8i National Language Support Guide

Refer to this manual for more information on NLS environment variables,
character sets, territories, and locale data. In addition, it contains an overview of
common NLS issues, some typical scenarios, and some NLS considerations for
OCI and SQL programmers.

■ Oracle8i Application Developer’s Guide - Large Objects (LOBs) and the Oracle8i
Application Developer’s Reference - Packages

These books describe how to access and manipulate large objects (LOBs) using
PL/SQL code and the DBMS_LOB package.

■ Oracle8i SQL Reference

This reference contains a complete description of the content and syntax of the
Structured Query Language (SQL) used to manage information in an Oracle
database.
xiii

■ PL/SQL User’s Guide and Reference

PL/SQL is Oracle’s procedural extension to SQL. An advanced
fourth-generation programming language (4GL), PL/SQL offers seamless SQL
access, tight integration with the Oracle server and tools, portability, security,
and modern software engineering features such as data encapsulation,
overloading, exception handling, and information hiding. This guide explains
all the concepts behind PL/SQL and illustrates every facet of the language.

■ Oracle8i Application Server documentation

Refer to this documentation for more information on how the Oracle8i
Application Server supports JDBC.

■ Oracle8 JDeveloper Suite documentation

Refer to this documentation for more information on how Oracle8 JDeveloper
Suite supports JDBC.
xiv

Conventions Used in this Manual
Solaris syntax is used in this book, but file names and directory names for Windows
NT are the same unless otherwise noted.

The term [ORACLE_HOME] is used to indicate the full path of the Oracle home
directory.

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.
xv

xvi

Ove
1

Overview

This chapter provides an overview of the Oracle implementation of JDBC and
contains these topics:

■ What is JDBC?

■ JDBC versus SQLJ

■ Basic Driver Architecture

■ Oracle Extensions to the JDBC Standard

■ Supported JDK and JDBC Versions

■ JDBC and the Oracle Application Server

■ JDBC and IDEs
rview 1-1

What is JDBC?
What is JDBC?
JDBC (Java Database Connectivity) is a standard Java interface for connecting to
relational databases from Java. The JDBC standard was defined by Sun
Microsystems, allowing individual providers to implement and extend the standard
with their own JDBC drivers.

JDBC is based on the X/Open SQL Call Level Interface, and complies with the
SQL92 Entry Level standard.

In addition to the standard JDBC API, Oracle drivers have extensions to properties,
types, and performance.

JDBC versus SQLJ
This section has the following subsections:

■ Advantages of SQLJ over JDBC for Static SQL

■ General Guidelines for using JDBC and SQLJ

Developers who are familiar with the Oracle Call Interface (OCI) layer of client-side
C code will recognize that JDBC provides the power and flexibility for the Java
programmer that OCI does for the C or C++ programmer. Just as with OCI, you can
use JDBC to query and update tables where, for example, the number and types of
the columns are not known until runtime. This capability is called dynamic SQL.
Therefore, JDBC is a way to use dynamic SQL statements in Java programs. Using
JDBC, a calling program can construct SQL statements at runtime. Your JDBC
program is compiled and run like any other Java program. No analysis or checking
of the SQL statements is performed. Any errors that are made in your SQL code
raise runtime errors. JDBC is designed as an API for dynamic SQL.

However, many applications do not need to construct SQL statements dynamically
because the SQL statements they use are fixed or static. In this case, you can use
SQLJ to embed static SQL in Java programs. In static SQL, all of the SQL statements
are complete or "textually evident" in the Java program. That is, details of the
database object, such as the column names, number of columns in the table, and
table name, are known before runtime. SQLJ provides advantages for these
applications because it permits error checking at precompile time.

The precompile step of a SQLJ program performs syntax-checking of the embedded
SQL, type checking against the database to assure that the data exchanged between
Java and SQL have compatible types and proper type conversions, and schema
checking to assure congruence between SQL constructs and the database schema.
The result of the precompilation is Java source code with SQL runtime code which,
1-2 JDBC Developer’s Guide and Reference

JDBC versus SQLJ
in turn, can use JDBC calls. The generated Java code compiles and runs like any
other Java program.

Although SQLJ provides direct support for static SQL operations that are known at
the time the program is written, it can also inter-operate with dynamic SQL through
JDBC. SQLJ allows you to create JDBC objects when they are needed for dynamic
SQL operations. In this way, SQLJ and JDBC can co-exist in the same program.
Convenient conversions are supported between JDBC connections and SQLJ
connection contexts, as well as between JDBC result sets and SQLJ iterators. For
more information on this, see the Oracle8i SQLJ Developer’s Guide and Reference.

The syntax and semantics of SQLJ and JDBC do not depend on the configuration
under which they are running, thus enabling implementation on the client or
database side or in the middle tier.

Advantages of SQLJ over JDBC for Static SQL
While JDBC provides a complete dynamic SQL interface from Java to relational
databases, SQLJ fills a complementary role for static SQL.

Although you can use static SQL statements in your JDBC programs, they can be
represented more conveniently in SQLJ. Some advantages you gain in using SQLJ
over JDBC for static SQL statements are:

■ SQLJ source programs are smaller than equivalent JDBC programs because
SQLJ provides a shorter syntax.

■ SQLJ uses database connections to type-check static SQL code. JDBC, being a
completely dynamic API, does not do any type checking until run-time.

■ SQLJ programs allow direct embedding of Java bind expressions within SQL
statements. JDBC requires separate get and/or set call statements for each bind
variable and specifies the binding by position number.

■ SQLJ provides strong typing of query outputs and return parameters and
allows type-checking on calls. JDBC passes values to and from SQL without
compile-time type checking.

■ SQLJ provides simplified rules for calling SQL stored procedures and functions.

General Guidelines for using JDBC and SQLJ
Use SQLJ to write your program when:

■ you want to be able to check your program for errors at translation-time rather
than at run-time.
Overview 1-3

Basic Driver Architecture
■ you want to write an application that you can deploy to another database.
Using SQLJ, you can customize the static SQL for that database at
deployment-time.

■ you are working with a database that contains compiled SQL. You will want to
use SQLJ because you cannot compile SQL statements in a JDBC program.

Use JDBC to write your program when:

■ your program uses dynamic SQL. For example, you have a program that builds
queries on-the-fly or has an interactive component.

■ you do not want to have a SQLJ layer during deployment or development. For
example, you might want to download only the JDBC Thin driver and not the
SQLJ runtime libraries to minimize download time over a slow link.

Basic Driver Architecture
This section has the following subsections:

■ JDBC Thin Client-Side Driver Architecture

■ JDBC OCI Client-Side Driver Architecture

■ JDBC Server Driver Architecture

Figure 1–1 illustrates the driver-database architecture for the JDBC Thin, OCI, and
Server drivers.
1-4 JDBC Developer’s Guide and Reference

Basic Driver Architecture
Figure 1–1 Driver-Database Architecture

JDBC Thin Client-Side Driver Architecture
The Oracle JDBC Thin driver is a Type IV driver that is targeted to applet
developers. This driver is written in 100% Pure Java and complies with the JDBC
1.22 standard.

For communicating with the database, the driver includes an equivalent
implementation of Oracle’s TTC presentation protocol and Net8 session protocol in
Java. Both of these protocols are lightweight implementation versions of their
counterparts on the server. The Net8 protocol runs over TCP/IP only. To use this
driver, it is not necessary to install any Oracle-specific software on the client.

The HTTP protocol is stateless but the Thin driver is not. The initial HTTP request
to download the applet and the Thin driver is stateless. Once the Thin driver
establishes the database connection, the communication between the browser and
the database is stateful and in a two-tier configuration.

JDBC OCI Client-Side Driver Architecture
The JDBC OCI driver is a Type II driver that is targeted to client-server Java
applications programmers and Java-based middle-tier developers. The JDBC OCI
driver converts JDBC invocations to calls to the Oracle Call Interface (OCI). These
calls are then sent over Net8 to the Oracle database server.

Oracle 8.1.5

Java Engine
JDBC Server Driver

KPRB C Library
SQL Engine

PL/SQL Engine

JDBC OCI Driver

OCI C Library

JDBC Thin Driver

Java Sockets
Overview 1-5

Oracle Extensions to the JDBC Standard
The JDBC OCI driver is written in a combination of Java and C because it must
make calls to the OCI libraries. The driver requires the presence of the OCI libraries,
Net8, CORE libraries, and other necessary files on each client machine or
middle-tier application server on which it is installed.

JDBC Server Driver Architecture
The JDBC Server driver allows Java programs that use the Oracle 8.1.5 Java Virtual
Machine (VM) and run inside the database to communicate with the SQL engine.
The Server driver, the Java VM, the database, the KPRB (server-side) C library, and
the SQL engine all run within the same address space. There are no network
round-trips involved. The programs access the SQL engine by using function calls.

Oracle Extensions to the JDBC Standard
The Oracle JDBC drivers support many of the features described in the JDBC 2.0
standard. This support is provided in the form of Oracle-defined extensions for
Oracle datatypes, object types, and their mappings to Java. For more information on
these extensions, see Chapter 4, "Oracle Extensions".

Supported JDK and JDBC Versions
Oracle’s JDBC drivers, release 8.1.5, support the JDK versions 1.0.2 and 1.1.x. They
also comply with JDBC version 1.22 and, in addition, implement most of the
features of JDBC version 2.0.

JDBC and the Oracle Application Server
Oracle Application Server is a collection of middleware services and tools that
provide a scalable, robust, secure, and extensible platform for distributed,
object-oriented applications. Oracle Application Server supports access to
applications from both Web clients (browsers) using the Hypertext Transfer Protocol
(HTTP), and CORBA clients, which use the Common Object Request Broker
Architecture (CORBA) and the Internet Inter-ORB Protocol (IIOP).

Note: There are special considerations for using the Thin driver
with JDK 1.0.2 and 1.1.1 in the context of applets. See "Working
with Applets" on page 5-7 for more information on this topic.
1-6 JDBC Developer’s Guide and Reference

JDBC and IDEs
You can use the JDBC OCI drivers on a middle tier in conjunction with Oracle Web
Application Server versions 3.0 and higher. The Oracle Web Application Server
bundles JDBC with its distribution. For more information on the use of JDBC and
the Oracle Web Application Server, see your Oracle Web Application Server
documentation.

JDBC and IDEs
The Oracle JDeveloper Suite provides developers with a single, integrated set of
products to build, debug and deploy component-based database applications for
the Oracle Internet platform. The Oracle JDeveloper environment contains
integrated support for JDBC, including 100% Pure Java and native Oracle8 drivers.
The database component of Oracle JDeveloper uses the JDBC drivers to manage the
connection between the application running on the client and the server. See your
Oracle JDeveloper documentation for more information.
Overview 1-7

JDBC and IDEs
1-8 JDBC Developer’s Guide and Reference

Getting S
2

Getting Started

This chapter guides you through the basics of testing your installation and
configuration and running a simple application. The following topics are discussed:

■ Oracle JDBC Drivers

■ Requirements and Compatibilities for Oracle JDBC Drivers

■ Verifying a JDBC Client Installation
tarted 2-1

Oracle JDBC Drivers
Oracle JDBC Drivers
This section has the following subsections:

■ Introducing the Oracle JDBC Drivers

■ Choosing the Appropriate Driver

Oracle offers two different drivers for client-side use (one of which can also be used
in a middle tier) and one for server-side use. Most of the information in the
following chapters focuses on the client-side drivers. The server-side driver is
described in detail in "JDBC on the Server: the Server Driver" on page 5-22.

Introducing the Oracle JDBC Drivers
This section describes the Oracle JDBC drivers and provides scenarios for how you
would use them. Oracle produces JDBC drivers for use in clients and in the server.
The client-side drivers can be used in Java applications or Java applets that run
either on the client or in the middle tier of a three-tier configuration. The server-side
driver provides server-side JDBC support which allows the Java VM to
communicate with the SQL engine.

Common Features of Oracle JDBC Drivers
The server-side and client-side Oracle JDBC drivers provide the same functionality.
They all support the following standards and features:

■ JDBC 1.22

■ most of the JDBC 2.0 features

■ the same syntax and APIs

■ the same Oracle extensions

■ full support for multi-threaded applications

The only differences between the drivers are in how they connect to the database
and how they transfer data.

JDBC Thin Driver
The Oracle JDBC Thin driver is a 100% Pure Java implementation that complies
with the JDBC 1.22 standard. The JDBC Thin driver uses Java Sockets to connect
directly to the Oracle Server and is typically used for Java applets in either a
two-tier or three-tier configuration, though it can also be used for Java applications.
The JDBC Thin driver provides its own implementation of a TCP/IP version of
2-2 JDBC Developer’s Guide and Reference

Oracle JDBC Drivers
Oracle’s Net8. Because it is written entirely in Java, this driver is
platform-independent. When the JDBC Thin driver is used with an applet, the client
browser must have the capability to support Java sockets.

The JDBC Thin driver does not require Oracle software on the client side; it can be
downloaded into a browser simultaneously with the Java applet being run. From
the client (usually a browser), you select a URL from an HTML page that contains a
Java applet tag. The web server downloads the Java applet and the JDBC Thin
driver to the client. The JDBC Thin driver then establishes a direct connection to the
database server using Java Sockets.

The JDBC Thin driver connects to any Oracle database of version 7.2.3 and higher.
The JDBC Thin driver allows a direct connection to the database by emulating Net8
and TTC (the wire protocol used by OCI) on top of Java sockets. The driver
supports only TCP/IP protocol and requires a TNS listener to be listening on
TCP/IP sockets from the database server.

For a discussion of relevant firewall, browser, and security issues, see "Working
with Applets" on page 5-7.

JDBC OCI Driver
The JDBC OCI driver provides an implementation of the JDBC interfaces using the
Oracle Call Interface (OCI). The OCI driver makes use of the OCI cache, C entry
points to OCI, and the OCI library. The use of native methods to call C entry points
makes the driver platform-specific. The JDBC OCI driver also requires an Oracle
client installation including Net8.

The JDBC OCI driver is compatible with all Oracle versions because it interfaces to
Oracle databases through OCI. The driver also supports all installed Net8 adapters,
including IPC, named pipes, TCP/IP, and IPX/SPX.

Because the JDBC OCI driver contains C code, it is not suitable for use in applets.
However, it is an excellent choice for Java applications or Java middle tiers such as
the Oracle Web Application Server. You can use the JDBC OCI driver in these
configurations:

■ with a Java application running on a client machine in a two-tier configuration

■ with a Java application running on a middle tier in a three-tier configuration

■ with a Java servlet running on a middle tier in a three-tier configuration
Getting Started 2-3

Oracle JDBC Drivers
JDBC Server Driver
Oracle’s JDBC Server driver is for server-side use only. The Server driver provides
server-side JDBC support for any Java program used in the database, Java stored
procedure, Enterprise Java Beans (EJB) and for communication with SQL and
PL/SQL programs. The Server driver is fully consistent with, and supports the
same features and extensions as the client-side drivers. For more information on the
server-side driver, see "JDBC on the Server: the Server Driver" on page 5-22.

Choosing the Appropriate Driver
Four main considerations that you must bear in mind when choosing which JDBC
driver to use for your application or applet are:

■ If you are writing an applet, you must use the JDBC Thin driver. JDBC
OCI-based driver classes cannot be downloaded to a Web browser, because they
call native (C language) methods.

■ If you desire maximum portability, then choose the JDBC Thin driver. You can
connect to an Oracle8 data server from either an application or an applet using
the JDBC Thin driver.

■ If you are writing an application and need maximum performance, then choose
the JDBC OCI driver.

■ If you are running in the Oracle database server using the Oracle 8.1.5 Java VM,
then choose the JDBC Server driver.

Notes:

■ JDBC Thin drivers use a subset of the Net8 protocol, written
entirely in Java, and connect using the TCP/IP protocol.

■ There are other restrictions on applets besides your choice of
JDBC driver. For information on these restrictions, see "Browser
Security and JDK Version Considerations" on page 5-20.
2-4 JDBC Developer’s Guide and Reference

Requirements and Compatibilities for Oracle JDBC Drivers
Requirements and Compatibilities for Oracle JDBC Drivers
Table 2–1 lists the compatibilities between versions of the Oracle database and the
JDBC drivers.

Table 2–1 JDBC Driver-Database Compatibility

Database Version Driver Version Remarks

8.1.5 JDBC Thin Driver

JDBC OCI Driver

JDBC Server Driver

Both client- and server-side
drivers offer full object support
when run against an 8.1.5
database.

8.1.4 JDBC Thin Driver

JDBC OCI Driver

JDBC Server Driver

Both client- and server-side
drivers offer full object support
when run against an 8.1.4
database.

8.0.x JDBC Thin Driver

JDBC OCI Driver

Note: the JDBC Server driver is not
available for version 8.0.x

The JDBC OCI and Thin drivers
do not support objects when run
against an 8.0.x database. This is
because JDBC depends on
PL/SQL functions that did not
exist in 8.0.x.

7.x JDBC Thin Driver

JDBC OCI Driver

Note: the JDBC Server driver is not
available for version 7.x

The JDBC OCI and Thin drivers
do not support objects when run
against a 7.x database. This is
because JDBC depends on
PL/SQL functions that did not
exist in 7.x

The JDBC OCI driver does not
support LOBs.
Getting Started 2-5

Verifying a JDBC Client Installation
Verifying a JDBC Client Installation
This section has the following subsections:

■ Check Installed Directories and Files

■ Check the Environment Variables

■ Make Sure You Can Compile and Run Java

■ Testing JDBC and the Database Connection: JdbcCheckup

Installation of an Oracle JDBC driver is platform-specific. Follow the installation
instructions for the driver you want to install in your platform-specific
documentation.

This section describes the steps of verifying an Oracle client installation of the JDBC
drivers. It assumes that you have already installed the driver of your choice.

If you have installed the JDBC Thin driver, no further installation on the client
machine is necessary (the JDBC Thin driver requires a TCP/IP listener to be
running on the database machine).

If you have installed the JDBC OCI driver, you must also install the Oracle client
software. This includes Net8 and the OCI libraries.

Check Installed Directories and Files
This section assumes that you have already installed the Sun Microsystems Java
Developer’s Kit (JDK) on your system. The Oracle JDBC drivers are compatible with
JDK versions 1.0.2 and 1.1.x. The Oracle JDBC drivers for version 8.1.5 do not
support the JDK 1.2.

Directories for JDBC
Installing the Oracle Java server products creates, among other things, a jdbc
directory under [ORACLE_HOME], containing these subdirectories and files:

■ demo/samples: The samples directory contains sample programs, including
examples of how to use SQL92 and Oracle SQL syntax, PL/SQL blocks,
streams, and the Oracle JDBC type and performance extensions. The demo
directory contains only the samples subdirectory.

■ doc: The doc directory contains documentation about the JDBC drivers.

■ lib: The lib directory contains.zip files with required Java classes:
classes111.zip for JDK 1.1.1 and classes102.zip for JDK 1.0.2.
2-6 JDBC Developer’s Guide and Reference

Verifying a JDBC Client Installation
■ readme.txt: The readme.txt file contains up to the minute facts about the
drivers that might not be in the manual.

Check that all these directories have been created and populated.

Check the Environment Variables
This section describes the environment variables that must be set for the JDBC OCI
driver and the JDBC Thin driver.

Solaris and Windows NT Platforms
You must set the CLASSPATH for your installed JDBC OCI or Thin driver.
Depending on whether you are using the JDK version 1.0.2 or version 1.1.1, you
must set one of these values for the CLASSPATH:

■ [Oracle Home]/jdbc/lib/classes102.zip

OR

■ [Oracle Home]/jdbc/lib/classes111.zip

JDBC OCI Drivers: If you are installing the JDBC OCI driver, you must also set the
following value for the library path environment variable (this will be
LD_LIBRARY_PATH on Solaris or PATH on Windows NT).

■ [Oracle Home]/lib

On Solaris, this directory contains the shared object library libocijdbc8.so.

JDBC Thin Drivers: If you are installing the JDBC Thin driver, you do not have to set
any other environment variables.

Make Sure You Can Compile and Run Java
To further ensure that Java is set up properly on your client system, go to the
samples directory (for example, C:\oracle\ora81\jdbc\demo\samples if
you are using the JDBC driver on a Windows NT machine), then see if javac (the
Java compiler) and java (the Java interpreter) will run without error. Enter:

javac

then enter:

java

Each should give you a list of options and parameters and then exit.
Getting Started 2-7

Verifying a JDBC Client Installation
Determining the Version of the JDBC Driver
If at any time you need to determine the version of the JDBC driver that you
installed, you can invoke the getDriverVersion() method of the
OracleDatabaseMetaData class.

Here is sample code showing how to do it:

import java.sql.*;
import oracle.jdbc.driver.*;

class JDBCVersion
{
public static void main (String args [])
throws SQLException
{
// Load the Oracle JDBC driver
DriverManager.registerDriver
(new oracle.jdbc.driver.OracleDriver());
Connection conn = DriverManager.getConnection
("jdbc:oracle:thin:@host:port:sid","scott","tiger");

// Create Oracle DatabaseMetaData object
DatabaseMetaData meta = conn.getMetaData ();

// gets driver info:
System.out.println("JDBC driver version is " + meta.getDriverVersion());
}
}

Testing JDBC and the Database Connection: JdbcCheckup
The samples directory contains sample programs for a particular Oracle JDBC
driver. One of the programs, JdbcCheckup.java, is designed to test JDBC and the
database connection. The program queries you for your user name, password, and
the name of a database to which you want to connect. The program connects to the
database, queries for the string "Hello World", and prints it to the screen.

Go to the samples directory and compile and run JdbcCheckup.java. If the
results of the query print without error, then your Java and JDBC installations are
correct.

Although JdbcCheckup.java is a simple program, it illustrates several important
functions:

■ imports the necessary Java classes, including JDBC classes
2-8 JDBC Developer’s Guide and Reference

Verifying a JDBC Client Installation
■ registers the JDBC driver

■ connects to the database

■ executes a simple query

■ outputs the query results to your screen

"First Steps in JDBC" on page 3-2, describes these functions in greater detail. A
listing of JdbcCheckup.java for the JDBC OCI driver appears below.

/*
 * This sample can be used to check the JDBC installation.
 * Just run it and provide the connect information. It will select
 * "Hello World" from the database.
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;

// We import java.io to be able to read from the command line
import java.io.*;

class JdbcCheckup
{

public static void main (String args [])
 throws SQLException, IOException
{

// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

// Prompt the user for connect information
System.out.println ("Please enter information to test connection to
 the database");
String user;
String password;
String database;

user = readEntry ("user: ");
int slash_index = user.indexOf (’/’);
if (slash_index != -1)
{
 password = user.substring (slash_index + 1);
 user = user.substring (0, slash_index);
}
else
 password = readEntry ("password: ");
Getting Started 2-9

Verifying a JDBC Client Installation
database = readEntry ("database (a TNSNAME entry): ");

System.out.print ("Connecting to the database...");
System.out.flush ();

System.out.println ("Connecting...");
Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@" + database,
 user, password);

System.out.println ("connected.");

// Create a statement
Statement stmt = conn.createStatement ();

// Do the SQL "Hello World" thing
ResultSet rset = stmt.executeQuery ("select ’Hello World’
 from dual");

while (rset.next ())
 System.out.println (rset.getString (1));
// close the result set, the statement and connect
rset.close();
stmt.close();
conn.close();
System.out.println ("Your JDBC installation is correct.");

}

// Utility function to read a line from standard input
static String readEntry (String prompt)
{

try
{

StringBuffer buffer = new StringBuffer ();
System.out.print (prompt);
System.out.flush ();
int c = System.in.read ();
while (c != ’\n’ && c != -1)
{
 buffer.append ((char)c);
 c = System.in.read ();
}
return buffer.toString ().trim ();

}
catch (IOException e)
2-10 JDBC Developer’s Guide and Reference

Verifying a JDBC Client Installation
{
return "";

}
}

}

Getting Started 2-11

Verifying a JDBC Client Installation
2-12 JDBC Developer’s Guide and Reference

Basic Fe
3

Basic Features

This chapter covers the most basic steps taken in any JDBC application. It also
describes additional basic features of Java and JDBC supported by the Oracle JDBC
drivers. It includes the following topics:

■ First Steps in JDBC

■ Sample: Connecting, Querying, and Processing the Results

■ Datatype Mappings

■ Using Java Streams in JDBC

■ Using Stored Procedures in JDBC Programs

■ Error Messages and JDBC

■ Server-Side Basics

■ Application Basics versus Applet Basics
atures 3-1

First Steps in JDBC
First Steps in JDBC
This section describes how to get up and running with the Oracle JDBC drivers.
When using the Oracle JDBC drivers, you must include certain driver-specific
information in your programs. This section describes, in the form of a tutorial,
where and how to add the information. The tutorial guides you through creating
code to connect to and query a database from the client.

To connect to and query a database from the client, you must provide code for these
tasks:

1. Importing Packages

2. Registering the JDBC Drivers

3. Opening a Connection to a Database

4. Creating a Statement Object

5. Executing a Query and Returning a Result Set Object

6. Processing the Result Set

7. Closing the Result Set and Statement Objects

8. Closing the Connection

You must supply Oracle driver-specific information for the first three tasks, which
allow your program to use the JDBC API to access a database. For the other tasks,
you can use standard JDBC Java code as you would for any Java application.

Importing Packages
Regardless of which Oracle JDBC driver you use, you must include the following
import statements at the beginning of your program.

You will need to add the following Oracle packages to your program when you
want to access the extended functionality provided by the Oracle drivers. However,
they are not required for the example presented in this section:

import java.sql.* JDBC packages.

import java.math.* Java math packages; for example, these are required
for the BigDecimal classes.
3-2 JDBC Developer’s Guide and Reference

First Steps in JDBC
Registering the JDBC Drivers
You must provide the code to register your installed driver with your program. You
do this with the static registerDriver() method of the JDBC DriverManager
class. This class provides a basic service for managing a set of JDBC drivers.

Because you are using one of Oracle’s JDBC drivers, you declare a specific driver
name string to registerDriver(). You register the driver only once in your Java
application.

DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

Opening a Connection to a Database
You open a connection to the database with the static getConnection() method
of the JDBC DriverManager class. This method returns an object of the JDBC
Connection class which needs as input a userid, password, connect string that
identifies the JDBC driver to use, and the name of the database to which you want
to connect.

Connecting to a database is a step where you must enter Oracle JDBC
driver-specific information in the getConnection() method. If you are not

oracle.jdbc.driver.*
and oracle.sql.*

Add these packages if you use any Oracle-specific
extensions to JDBC in your program. For more
information on Oracle extensions, see Chapter 4,
"Oracle Extensions".

Note: Alternatively, you can use the forName() method of the
java.lang.Class class to load the JDBC drivers directly. For
example:

Class.forName ("oracle.jdbc.driver.OracleDriver");

However, this method is valid only for JDK-compliant Java virtual
machines. It is not valid for Microsoft Java virtual machines.

Note: If you are registering a Thin driver in an applet, you must
enter a driver string that is different from the one used in these
examples. For more information on registering a Thin driver for an
applet, see "Coding Applets" on page 5-7.
Basic Features 3-3

First Steps in JDBC
familiar with this method, continue reading the "Understanding the Forms of
getConnection()" section below.

If you are already familiar with the getConnection() method, you can skip
ahead to either of these sections, depending on the driver you installed:

■ "Opening a Connection for the JDBC OCI Driver" on page 3-6

■ "Opening a Connection for the JDBC Thin Driver" on page 3-7

Understanding the Forms of getConnection()
The getConnection() method is an overloaded method that you declare by the
techniques described in these sections:

■ "Specifying a Database URL, Userid, and Password" on page 3-4

■ "Specifying a Database URL That Includes Userid and Password" on page 3-5

■ "Specifying a Database URL and Properties Object" on page 3-6

If you want to specify a database name in the connection, it must be in one of the
following formats:

■ a Net8 keyword-value pair

■ a string of the form <host_name>:<port_number>:<sid> (Thin driver only)

■ a TNSNAMES entry (OCI driver only)

For information on how to specify a keyword-value pair or a TNSNAMES entry, see
your Net8 Administrator’s Guide.

Specifying a Database URL, Userid, and Password
getConnection(String URL, String user, String password);

Note: The instructions in this section are specific to the client-side
drivers only. To find out how to open a database connection using
the server-side driver, see "Server-Side Basics" on page 3-26.

Note: You do not have to specify the database name if there is a
default connection. For more information about default
connections, see "Connecting to the Database with the Server
Driver" on page 5-22.
3-4 JDBC Developer’s Guide and Reference

First Steps in JDBC
where the URL is of the form:

jdbc:oracle:<drivertype>:@<database>

The following example connects user scott with password tiger to a database
with SID orcl through port 1521 of host myhost, using the Thin driver.

Connection conn =
 DriverManager.getConnection ("jdbc:oracle:thin:@myhost:1521:orcl",
 "scott", "tiger");

If you want to use the default connection for an OCI driver, specify either:

Connection conn = DriverManager.getConnection
("jdbc:oracle:oci8:scott/tiger@");

OR

Connection conn =
DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

For all JDBC drivers you can also specify the database with a Net8 keyword-value
pair. The Net8 keyword-value pair substitutes for the TNSNAMES entry. The following
example uses the same parameters as the preceding example, but in the
keyword-value format:

Connection conn =
DriverManager.getConnection
(jdbc:oracle:oci8:@MyHostString","scott","tiger");

OR

Connection conn =
DriverManager.getConnection("jdbc:oracle:oci8:@(description=(address=(host=
myhost)(protocol=tcp)(port=1521))(connect_data=(sid=orcl)))",
"scott", "tiger");

Specifying a Database URL That Includes Userid and Password
getConnection(String URL);

where the URL is of the form:

jdbc:oracle:<drivertype>:<user>/<password>@<database>
Basic Features 3-5

First Steps in JDBC
The following example connects user scott with password tiger to a database
using the OCI driver. In this case, however, the URL includes the userid and
password, and is the only input parameter.

Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:scott/tiger@myhost);

Specifying a Database URL and Properties Object
getConnection(String URL, Properties info);

where the URL is of the form:

jdbc:oracle:<drivertype>:@<database>

In addition to the URL, use an object of the standard Java Properties class as
input. For example:

java.util.Properties info = new java.util.Properties();
info.put ("user", "scott");
info.put ("password","tiger");
info.put ("defaultRowPrefetch","15");
getConnection ("jdbc:oracle:oci8:@",info);

Oracle Extensions to Connection Properties Object Oracle has defined several extensions
to the connection properties that Oracle JDBC drivers support. For more
information on this form of the getConnection() method and the Oracle
extensions to the Properties object, see "Oracle Extensions for Connection
Properties" on page 4-109.

Opening a Connection for the JDBC OCI Driver
For the JDBC OCI driver, you can specify the database by a TNSNAMES entry. You
can find the available TNSNAMES entries listed in the file tnsnames.ora on the
client computer from which you are connecting. On Windows NT this file is located
in [ORACLE_HOME]\NETWORK\ADMIN. On UNIX systems, you can find it in
/var/opt/oracle.

For example, if you want to connect to the database on host myhost as user scott
with password tiger that has a TNSNAMES entry of MyHostString, enter:

Connection conn =
DriverManager.getConnection ("jdbc:oracle:oci8:@MyHostString",

"scott", "tiger");

Note that both the ":" and "@" characters are necessary.
3-6 JDBC Developer’s Guide and Reference

First Steps in JDBC
For the JDBC OCI driver (as with the Thin driver), you can also specify the database
with a Net8 keyword-value pair. This is less readable than a TNSNAMES entry but
does not depend on the accuracy of the TNSNAMES.ORA file. The Net8 keyword-value
pair also works with other JDBC drivers.

For example, if you want to connect to the database on host myhost that has a
TCP/IP listener up on port 1521, and the SID (system identifier) is orcl, use a
statement such as:

Connection conn =
DriverManager.getConnection("jdbc:oracle:oci8:@(description=(address=(host=
myhost)(protocol=tcp)(port=1521))(connect_data=(sid=orcl)))",

"scott", "tiger");

Opening a Connection for the JDBC Thin Driver
Because you can use the JDBC Thin driver in applets that do not depend on an
Oracle client installation, you cannot use a TNSNAMES entry to identify the database
to which you want to connect. You have to either:

■ explicitly list the host name, TCP/IP port and Oracle SID of the database to
which you want to connect

OR

■ use a keyword-value pair list

For example, use this string if you want to connect to the database on host myhost
that has a TCP/IP listener on port 1521 for the database SID (system identifier)
orcl. You can logon as user scott, with password tiger:

Connection conn =
DriverManager.getConnection
("jdbc:oracle:thin:@myhost:1521:orcl", "scott", "tiger");

You can also specify the database with a Net8 keyword-value pair. This is less
readable than the first version, but also works with the other JDBC drivers.

Connection conn =
 DriverManager.getConnection

 ("jdbc:oracle:thin:@(description=(address=(host=myhost)(protocol=tcp)
(port=1521))(connect_data=(sid=orcl)))", "scott", "tiger");

Note: The JDBC Thin driver supports only the TCP/IP protocol.
Basic Features 3-7

First Steps in JDBC

Creating a Statement Object
Once you connect to the database and, in the process, create your Connection
object, the next step is to create a Statement object. The createStatement()
method of your JDBC Connection object returns an object of the JDBC
Statement class. To continue the example from the previous section where the
Connection object conn was created, here is an example of how to create the
Statement object:

Statement stmt = conn.createStatement();

Note that there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Executing a Query and Returning a Result Set Object
To query the database, use the executeQuery() method of your Statement
object. This method takes a SQL statement as input and returns an object of the
JDBC ResultSet class.

To continue the example, once you create the Statement object stmt, the next step
is to execute a query that populates a ResultSet object with the contents of the
ENAME (employee name) column of a table of employees that is named EMP:

ResultSet rset = stmt.executeQuery ("SELECT ename FROM emp");

Again, there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Note: If you are writing a connection statement for an applet, you
must enter a connect string that is different from the one used in
these examples. For more information on connecting to a database
with an applet, see "Coding Applets" on page 5-7.
3-8 JDBC Developer’s Guide and Reference

First Steps in JDBC
Processing the Result Set
Once you execute your query, use the next() method of your ResultSet object to
iterate through the results. This method loops through the result set row by row,
detecting the end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the various getXXX()
methods of the ResultSet object, where XXX corresponds to a Java datatype.

For example, the following code will iterate through the ResultSet object rset
from the previous section, and will retrieve and print each employee name:

while (rset.next())
System.out.println (rset.getString(1));

Once again, this is standard JDBC syntax. The next() method returns false when it
reaches the end of the result set. The employee names are materialized as Java
Strings.

Closing the Result Set and Statement Objects
You must explicitly close the ResultSet and Statement objects after you finish
using them. This applies to all ResultSet and Statement objects you create
when using the Oracle JDBC drivers. The drivers do not have finalizer methods;
cleanup routines are performed by the close() method of the ResultSet and
Statement classes. If you do not explicitly close your ResultSet and
Statement objects, serious memory leaks could occur. You could also run out of
cursors in the database. Closing a result set or statement releases the corresponding
cursor in the database.

For example, if your ResultSet object is rset and your Statement object is
stmt, close the result set and statement with these lines:

rset.close()
stmt.close();

Note: The JDBC drivers actually return an OracleResultSet
object, but into a standard ResultSet output variable. If you want
to use Oracle extensions to process the result set, then you must
cast the output to OracleResultSet. This is further discussed in
"Classes of the oracle.jdbc.driver Package" on page 4-22.
Basic Features 3-9

Sample: Connecting, Querying, and Processing the Results
When you close a Statement object that a given Connection object creates, the
connection itself remains open.

Closing the Connection
You must close your connection to the database once you finish your work. Use the
close() method of the Connection class to do this. For example, if your
Connection object is conn, close the connection with this statement:

conn.close();

Sample: Connecting, Querying, and Processing the Results
The steps in the preceding sections are illustrated in the following example, which
registers an Oracle JDBC Thin driver, connects to the database, creates a
Statement object, executes a query, and processes the result set.

Note that the code for creating the Statement object, executing the query,
returning and processing the ResultSet object, and closing the statement and
connection all follow standard JDBC syntax.

import java.sql.*;
import java.math.*;
import java.io.*;
import java.awt.*;

class JdbcTest {
public static void main (String args []) throws SQLException {
 // Load Oracle driver
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

 // Connect to the local database
 Connection conn =

 DriverManager.getConnection ("jdbc:oracle:thin:@myhost:1521:ORCL",
 "scott", "tiger");

 // Query the employee names
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("SELECT ename FROM emp");

 // Print the name out
 while (rset.next ())

 System.out.println (rset.getString (1));

3-10 JDBC Developer’s Guide and Reference

Datatype Mappings
 //close the result set, statement, and the connection
 rset.close();
 stmt.close();
 conn.close();
}

}

If you want to adapt the code for the OCI driver, replace the Connection
statement with the following:

Connection conn = DriverManager.getConnection ("jdbc:oracle:oci8:@MyHostString",
"scott", "tiger");

where MyHostString is an entry in the TNSNAMES.ORA file.

Datatype Mappings
The Oracle JDBC drivers support the SQL datatypes required by JDBC 1.22. In
addition, the Oracle JDBC drivers support the Oracle-specific ROWID datatype and
user-defined types of the REF CURSOR category.

For reference, the following table shows the default mappings between JDBC
datatypes, native Java datatypes, SQL datatypes, and the corresponding Java
datatypes defined by Oracle extensions.

The Standard JDBC Datatypes column lists the datatypes supported by the JDBC
1.22 standard. All of these dataypes are defined in the java.sql.Types class.

The Java Native Datatypes column lists the datatypes defined by the Java language.

The SQL Datatypes column lists the SQL datatypes that exist in the database.

The Oracle Extensions—Java Classes that Represent SQL Datatypes column lists the
oracle.sql.* Java types that correspond to each SQL datatype in the database.
These are Oracle extensions that let you retrieve all SQL data in the form of a
oracle.sql.* Java type. Mapping SQL datatypes into the oracle.sql
datatypes lets you store and retrieve data without losing information. Refer to
"Classes of the oracle.sql Package" on page 4-7 for more information on the
oracle.sql.* package.

Note: If you are creating code for an applet, the
getConnection() and registerDriver() strings will be
different. For more information, see "Coding Applets" on page 5-7.
Basic Features 3-11

Datatype Mappings
For a list of all of the Java datatypes to which you can validly map a SQL datatype,
see "Valid SQL-JDBC Datatype Mappings" on page 8-2.

Oracle JDBC Extension Types
In addition, the following JDBC extensions for SQL datatypes (most of which
comply with the JDBC 2.0 standard) are supported. They are not described until
Chapter 4, "Oracle Extensions", but are summarized here for reference. Table 3–2
shows their mappings to Oracle datatypes.

The SQL Datatype column lists the SQL datatypes that exist in the database.

Table 3–1 Mapping Between JDBC, Java Native, and Oracle Datatypes

Standard JDBC
Datatypes

Java Native
Datatypes SQL Datatypes

Oracle Extensions—Java Classes
that Represent SQL Datatypes

java.sql.Types.CHAR java.lang.String CHAR oracle.sql.CHAR

java.sql.Types.VARCHAR java.lang.String VARCHAR2 oracle.sql.CHAR

java.sql.Types.LONGVARCHAR java.lang.String LONG oracle.sql.CHAR

java.sql.Types.NUMERIC java.math.BigDecimal NUMBER oracle.sql.NUMBER

java.sql.Types.DECIMAL java.math.BigDecimal NUMBER oracle.sql.NUMBER

java.sql.Types.BIT boolean NUMBER oracle.sql.NUMBER

java.sql.Types.TINYINT byte NUMBER oracle.sql.NUMBER

java.sql.Types.SMALLINT short NUMBER oracle.sql.NUMBER

java.sql.Types.INTEGER int NUMBER oracle.sql.NUMBER

java.sql.Types.BIGINT long NUMBER oracle.sql.NUMBER

java.sql.Types.REAL float NUMBER oracle.sql.NUMBER

java.sql.Types.FLOAT double NUMBER oracle.sql.NUMBER

java.sql.Types.DOUBLE double NUMBER oracle.sql.NUMBER

java.sql.Types.BINARY byte[] NUMBER oracle.sql.NUMBER

java.sql.Types.VARBINARY byte[] RAW oracle.sql.RAW

java.sql.Types.LONGVARBINARY byte[] LONGRAW oracle.sql.NUMBER

java.sql.Types.DATE java.sql.Date DATE oracle.sql.DATE

java.sql.Types.TIME java.sql.Time DATE oracle.sql.DATE

java.sql.Types.TIMESTAMP javal.sql.Timestamp DATE oracle.sql.DATE
3-12 JDBC Developer’s Guide and Reference

Datatype Mappings
The JDBC Extensions for SQL Datatypes column lists the types into which Oracle
datatypes should map according to the JDBC 2.0 standard. The class
oracle.jdbc.driver.OracleTypes.* includes the definitions of
Oracle-specific types that do not exist in the JDBC standard and is a superset of
oracle.sql.*.

The Oracle Extensions—Java Classes that Represent SQL Datatypes column lists the
oracle.sql.* Java types that correspond to each SQL datatype in the database.
These are Oracle extensions that let you retrieve all SQL data in the form of a
oracle.sql.* Java type. Refer to "Classes of the oracle.sql Package" on page 4-7
for more information on the oracle.sql.* package.

For a list of all of the Java datatypes to which you can validly map a SQL datatype,
see "Valid SQL-JDBC Datatype Mappings" on page 8-2.

See Chapter 4, "Oracle Extensions", for more information on type mappings. In
Chapter 4 you can also find more information on:

■ packages oracle.sql, oracle.jdbc.driver, and oracle.jdbc2

■ type extensions for the Oracle ROWID datatype and user-defined types of the
REF CURSOR category

■ how to use type maps with object values and collections

Table 3–2 Mapping Oracle Extension JDBC Types to Oracle Datatypes

SQL Datatype JDBC Extensions
for SQL Datatypes

Oracle Extensions—Java Classes
that Represent SQL Datatypes

ROWID oracle.jdbc.driver.OracleTypes.ROWID oracle.sql.ROWID

user-defined types of
the REF CURSOR
category

oracle.jdbc.driver.OracleTypes.CURSOR java.sql.ResultSet

BLOB oracle.jdbc.driver.OracleTypes.BLOB oracle.sql.BLOB

CLOB oracle.jdbc.driver.OracleTypes.CLOB oracle.sql.CLOB

BFILE oracle.jdbc.driver.OracleTypes.BFILE oracle.sql.BFILE

Object Value oracle.jdbc.driver.OracleTypes.STRUCT If there is no entry for the object value in the type map:

■ oracle.sql.STRUCT

If there is an entry for the object value in the type map:

■ customized Java class

Object Reference oracle.jdbc.driver.OracleTypes.REF class that extends oracle.sql.REF

Collections (varrays
and nested tables)

oracle.jdbc.driver.OracleTypes.ARRAY oracle.sql.ARRAY
Basic Features 3-13

Using Java Streams in JDBC
Using Java Streams in JDBC
This section has the following subsections:

■ Streaming LONG or LONG RAW Columns

■ Streaming CHAR, VARCHAR, or RAW Columns

■ Data Streaming and Multiple Columns

■ Streaming and Row Prefetching

■ Closing a Stream

■ Streaming LOBs and External Files

This section describes how the Oracle JDBC drivers handle Java streams for several
datatypes. Data streams allow you to read LONG column data of up to 2 gigabytes.
Methods associated with streams let you read the data incrementally.

Oracle JDBC drivers support the manipulation of data streams in either direction
between server and client. The drivers support all stream conversions: binary,
ASCII, and Unicode. Following is a brief description of each type of stream:

■ binary stream: returns the RAW bytes of the data. This corresponds to the
getBinaryStream() method.

■ ASCII stream: returns ASCII bytes in ISO-Latin-1 encoding. This corresponds to
the getAsciiStream() method.

■ Unicode stream: returns Unicode bytes with the UCS-2 encoding. This
corresponds to the getUnicodeStream() method.

The methods getBinaryStream(), getAsciiStream(), and
getUnicodeStream(), return the bytes of data in an InputStream object. These
methods are described in greater detail in Chapter 4, "Oracle Extensions".

Streaming LONG or LONG RAW Columns
When a query selects one or more LONG or LONG RAW columns, the JDBC driver
transfers these columns to the client in streaming mode. After a call to
executeQuery() or next(), the data of the LONG column is waiting to be read.

To access the data in a LONG column, you can get the column as a Java
InputStream and use the read() method of the InputStream object. As an
alternative, you can get the data as a string or byte array, in which case the driver
will do the streaming for you.
3-14 JDBC Developer’s Guide and Reference

Using Java Streams in JDBC
You can get LONG and LONG RAW data with any of the three stream types. The driver
performs NLS conversions for you depending on the character set of your database
and the driver. For more information about NLS, see "Using NLS" on page 5-2.

LONG RAW Data Conversions
A call to getBinaryStream() returns RAW data "as-is". A call to
getAsciiStream() converts the RAW data to hexadecimal and returns the ASCII
representation. A call to getUnicodeStream() converts the RAW data to
hexadecimal and returns the Unicode bytes.

For example, if your LONG RAW column contains the bytes 20 21 22, you receive the
following bytes:

For example, the LONG RAW value 20 is represented in hexadecimal as 14 or "1" "4".
In ASCII, 1 is represented by "49" and "4" is represented by "52". In Unicode, a
padding of zeros is used to separate individual values. So, the hexadecimal value 14
is represented as 0 "1" 0 "4". The Unicode representation is 0 "49" 0 "52".

LONG Data Conversions
When you get LONG data with getAsciiStream(), the drivers assume that the
underlying data in the database uses an US7ASCII or WE8ISO8859P1 character
set. If the assumption is true, the drivers return bytes corresponding to ASCII
characters. If the database is not using an US7ASCII or WE8ISO8859P1 character
set, a call to getAsciiStream() returns gibberish.

When you get LONG data with getUnicodeStream(), you get a stream of
Unicode characters in the UCS-2 encoding. This applies to all underlying database
character sets that Oracle supports.

When you get LONG data with getBinaryStream(), there are two possible cases:

■ If the driver is JDBC OCI and the client character set is not US7ASCII or
WE8ISO8859P1, then a call to getBinaryStream() returns UTF-8. If the
client character set is US7ASCII or WE8ISO8859P1 then the call returns a
US7ASCII stream of bytes.

LONG RAW BinaryStream ASCIIStream UnicodeStream

20 21 22 20 21 22 49 52 49 53 49 54

which is also

’1’ ’4’ ’1’ ’5’ ’1’ ’6’

 0049 0052 0049 0053 0049 0054

which is also:

’1’ ’4’ ’1’ ’5’ ’1’ ’6’
Basic Features 3-15

Using Java Streams in JDBC
■ If the driver is JDBC Thin and the database character set is not US7ASCII or
WE8ISO8859P1, then a call to getBinaryStream() returns UTF-8. If the
server-side character set is US7ASCII or WE8ISO8859P1 then the call returns a
US7ASCII stream of bytes.

For more information on how the drivers return data based on character set, see
"Using NLS" on page 5-2.

Table 3–3 summarizes LONG and LONG RAW data conversions for each stream type.

Streaming Example for LONG RAW Data
One of the features of a getXXXStream() method is that it allows you to fetch data
incrementally. In contrast, getBytes() fetches all of the data in one call. This
section contains two examples of getting a stream of binary data. The first version
uses the getBinaryStream() method to obtain LONG RAW data; the second
version uses the getBytes() method.

Note: Receiving LONG or LONG RAW columns as a stream (the
default case) requires you to pay special attention to the order in
which you receive data from the database. For more information,
see "Data Streaming and Multiple Columns" on page 3-20.

Table 3–3 LONG and LONG RAW Data Conversions

Datatype BinaryStream AsciiStream UnicodeStream

LONG bytes representing characters in
Unicode UTF-8. The bytes can
represent characters in US7ASCII or
WE8ISO8859P1 if:

■ the value of NLS_LANG on the
client is US7ASCII or
WE8ISO8859P1.

OR

■ the database character set is
US7ASCII or WE8ISO8859P1.

bytes representing
characters in ISO-Latin-1
(WE8ISO8859P1) encoding

bytes representing
characters in Unicode
UCS-2 encoding

LONG RAW as-is ASCII representation of
hexadecimal bytes

Unicode representation
of hexadecimal bytes
3-16 JDBC Developer’s Guide and Reference

Using Java Streams in JDBC
Getting a LONG RAW Data Column with getBinaryStream() This Java example writes the
contents of a LONG RAW column to a file on the local file system. In this case, the
driver fetches the data incrementally.

The following code creates the table that stores a column of LONG RAW data
associated with the name LESLIE:

-- SQL code:
create table streamexample (NAME varchar2 (256), GIFDATA long raw);
insert into streamexample values (’LESLIE’, ’00010203040506070809’);

The following Java code snippet writes the data from the LESLIE LONG RAW column
into a file called leslie.gif:

ResultSet rset = stmt.executeQuery ("select GIFDATA from streamexample where
NAME=’LESLIE’");

// get first row
if (rset.next())
{
 // Get the GIF data as a stream from Oracle to the client
 InputStream gif_data = rset.getBinaryStream (1);

try
{

FileOutputStream file = null;
file = new FileOutputStream ("leslie.gif");
int chunk;
while ((chunk = gif_data.read()) != -1)
file.write(chunk);

}
catch (Exception e)
{

String err = e.toString();
System.out.println(err);

}
finally
{

if file != null()
file.close();

}
}

In this example the contents of the GIFDATA column are transferred incrementally
in chunk-sized pieces between the database and the client. The InputStream
Basic Features 3-17

Using Java Streams in JDBC
object returned by the call to getBinaryStream() reads the data directly from the
database connection.

Getting a LONG RAW Data Column with getBytes() This version of the example gets the
content of the GIFDATA column with getBytes() instead of
getBinaryStream(). In this case, the driver fetches all of the data in one call and
stores it in a byte array. The previous code snippet can be rewritten as:

ResultSet rset2 = stmt.executeQuery ("select GIFDATA from streamexample where
NAME=’LESLIE’");

// get first row
if (rset2.next())
{

// Get the GIF data as a stream from Oracle to the client
byte[] bytes = rset2.getBytes(1);
try
{

FileOutputStream file = null;
file = new FileOutputStream ("leslie2.gif");
file.write(bytes);

}
catch (Exception e)
{

String err = e.toString();
System.out.println(err);

}
finally
{

if file != null()
file.close();

}
}

Because a LONG RAW column can contain up to 2 gigabytes of data, the getBytes()
example will probably use much more memory than the getBinaryStream()
example. Use streams if you do not know the maximum size of the data in your
LONG or LONG RAW columns.

Avoiding Streaming for LONG or LONG RAW
The JDBC driver automatically streams any LONG and LONG RAW columns.
However, there may be situations where you want to avoid data streaming. For
3-18 JDBC Developer’s Guide and Reference

Using Java Streams in JDBC
example, if you have a very small LONG column, you might want to avoid returning
the data incrementally and instead, return the data in one call.

To avoid streaming, use the defineColumnType() method to redefine the type of
the LONG column. For example, if you redefine the LONG or LONG RAW column as
type VARCHAR or VARBINARY, then the driver will not automatically stream the
data.

If you redefine column types with defineColumnType(), you must declare the
types of all columns in the query. If you do not, executeQuery() will fail. In
addition, you must cast the Statement object to the type
oracle.jdbc.driver.OracleStatement.

As an added benefit, using defineColumnType() saves the driver two round
trips to the database when executing the query. Without defineColumnType(),
the JDBC driver has to request the datatypes of the column types.

Using the example from the previous section, the Statement object stmt is cast to
the OracleStatement and the column containing LONG RAW data is redefined to
be of the type VARBINARAY. The data is not streamed; instead, data is returned by
writing it to a byte array.

//cast the statement stmt to an OracleStatement
oracle.jdbc.driver.OracleStatement ostmt =
 (oracle.jdbc.driver.OracleStatement)stmt;

//redefine the LONG column at index position 1 to VARBINARY
ostmt.defineColumnType(1, Types.VARBINARY);

// Do a query to get the images named ’LESLIE’
ResultSet rset = ostmt.executeQuery
 ("select GIFDATA from streamexample where NAME=’LESLIE’");

// The data is not streamed here
rset.next();
byte [] bytes = rset.getBytes(1);

Streaming CHAR, VARCHAR, or RAW Columns
If you use the defineColumnType() Oracle extension to redefine a CHAR,
VARCHAR, or RAW column as a LONGVARCHAR or LONGVARBINARY, then you can get
the column as a stream. The program will behave as if the column were actually of
type LONG or LONG RAW. Note that there is not much point to this, because these
columns are usually short.
Basic Features 3-19

Using Java Streams in JDBC
If you try to get a CHAR, VARCHAR, or RAW column as a data stream without
redefining the column type, the JDBC driver will return a Java InputStream, but
no real streaming occurs. In the case of these datatypes, the JDBC driver fully
fetches the data into an in-memory buffer during a call to executeQuery() or
next(). The getXXXStream() entry points return a stream that reads data from
this buffer.

Data Streaming and Multiple Columns
If your query selects multiple columns and one of the columns contains a data
stream, then the contents of the columns following the stream column are usually
not available until the stream has been read. This is because the database sends each
row as a set of bytes representing the columns in the SELECT order: the data after a
streaming column can be read only after the stream has been read.

For example, consider the following query:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{

//get the date data
java.sql.Date date = rset.getDate(1);

// get the streaming data
InputStream is = rset.getAsciiStream(2);

// Open a file to store the gif data
FileOutputStream file = new FileOutputStream ("ascii.dat");

// Loop, reading from the ascii stream and
// write to the file
int chunk;
while ((chunk = is.read ()) != -1)

file.write(chunk);
// Close the file
file.close();

//get the number column data
int n = rset.getInt(3);

}

Note: In version 8.1.5, the setXXXStream() methods are not
available for CHAR, VARCHAR, and RAW datatypes.
3-20 JDBC Developer’s Guide and Reference

Using Java Streams in JDBC
The incoming data for each row has the following shape:

<a date><the characters of the long column><a number>

When you call rset.next(), the JDBC driver stops reading the row data just
before the first character of the LONG column. Then the driver uses
rset.getAsciiStream() to read the characters of the LONG column directly out
of the database connection as a Java stream. The driver reads the NUMBER data from
the third column only after it reads the last byte of the data from the stream.

An exception to this behavior is LOB data, which is also transferred between server
and client as a Java stream. For more information on how the driver treats LOB
data, see "Streaming LOBs and External Files" on page 3-23.

Bypassing Streaming Data Columns
There might be situations where you want to avoid reading a column that contains
streaming data. If you do not want to read the data for the streaming column, then
call the close() method of the stream object. This method discards the stream data
and allows the driver to continue reading data for all the non-streaming columns
that follow the stream. Even though you are intentionally discarding the stream, it
is good programming practice to call the columns in SELECT list order.

In the following example, the stream data in the LONG column is discarded and the
data from only the DATE and NUMBER column is recovered:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()

{
//get the date
java.sql.Date date = rset.getDate(1);

//access the stream data and discard it with close()
InputStream is = rset.getAsciiStream(2);
 is.close();

//get the number column data
int n = rset.getInt(3);

}

Basic Features 3-21

Using Java Streams in JDBC
Streaming Data Precautions
This section describes some of the precautions you must take to ensure that you do
not accidentally discard or lose your stream data. The drivers automatically discard
stream data if you perform any JDBC operation that communicates with the
database, other than reading the current stream. Two common precautions are
described in the following sections:

■ Use the Stream Data after You Access It

■ Call the Stream Column in SELECT List Order

Use the Stream Data after You Access It To recover the data from a column containing a
data stream, it is not enough to get the column; you must read and store its
contents. Otherwise, the contents will be discarded when you get the next column.

Call the Stream Column in SELECT List Order If your query selects multiple columns, the
database sends each row as a set of bytes representing the columns in the SELECT
order. If one of the columns contains stream data, the database sends the entire data
stream before proceeding to the next column.

If you do not use the SELECT list order to access data, then you can lose the stream
data. That is, if you bypass the stream data column and access data in a column that
follows it, the stream data will be lost. For example, if you try to access the data for
the NUMBER column before reading the data from the stream data column, the JDBC
driver first reads then discards the streaming data automatically. This can be very
inefficient if the LONG column contains a large amount of data.

If you try to access the LONG column later in the program, the data will not be
available and the driver will return a "Stream Closed" error. This is illustrated in
the following example:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{

int n = rset.getInt(3); // This discards the streaming data
InputStream is = rset.getAsciiStream(2);
 // Raises an error: stream closed.

}

If you get the stream but do not use it before you get the NUMBER column, the stream
still closes automatically:

ResultSet rset = stmt.executeQuery
("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
3-22 JDBC Developer’s Guide and Reference

Using Java Streams in JDBC
while rset.next()
{

InputStream is = rset.getAsciiStream(2); // Get the stream
int n = rset.getInt(3);
// Discards streaming data and closes the stream

}
int c = is.read(); // c is -1: no more characters to read-stream closed

Streaming and Row Prefetching
If the JDBC driver encounters a column containing a data stream, row prefetching is
set back to 1.

Closing a Stream
You can discard the data from a stream at any time by calling the stream’s close()
method. You can also close and discard the stream by closing its result set or
connection object. You can find more information about the close() method for
data streams in "Bypassing Streaming Data Columns" on page 3-21. For information
on how to avoid closing a stream and discarding its data by accident, see
"Streaming Data Precautions" on page 3-22.

Streaming LOBs and External Files
The term large object (LOB) refers to a data item that is too large to be stored directly
in a database table. Instead, a locator is stored in the database table and points to
the location of the actual data. The JDBC drivers provide support for three types of
LOBs: BLOBs (unstructured binary data), CLOBs (single-byte character data) and
BFILEs (external files). The Oracle JDBC drivers support the streaming of CLOB,
BLOB, and BFILE data.

LOBs behave differently from the other types of streaming data described in this
chapter. The driver transfers LOB data between server and client as a Java stream.
However, unlike most Java streams, a locator representing the LOB data is stored in
the table. Thus, you can access the LOB data at any time during the life of the
connection.

Streaming BLOBs and CLOBs When a query selects one or more CLOB or BLOB
columns, the JDBC driver transfers to the client the data pointed to by the locator.
The driver performs the transfer as a Java stream. To manipulate CLOB or BLOB data
from JDBC, use methods in the Oracle extension classes oracle.sql.BLOB and
oracle.sql.CLOB. These classes provide functionality such as reading from the
Basic Features 3-23

Using Stored Procedures in JDBC Programs
CLOB or BLOB into an input stream, writing from an output stream into a CLOB or
BLOB, determining the length of a CLOB or BLOB, and closing a CLOB or BLOB.

For a complete discussion of how to use streaming CLOB and BLOB data, see
"Reading and Writing BLOB and CLOB Data" on page 4-48.

Streaming BFILEs An external file, or BFILE, is used to store a locator to a file that is
outside the database, stored somewhere on the filesystem of the data server. The
locator points to the actual location of the file.

When a query selects one or more BFILE columns, the JDBC driver transfers to the
client the file pointed to by the locator. The transfer is performed in a Java stream.
To manipulate BFILE data from JDBC, use methods in the Oracle extension classes
oracle.sql.BFILE. These classes provide functionality such as reading from the
BFILE into an input stream, writing from an output stream into a BFILE
determining the length of a BFILE, and closing a BFILE.

For a complete discussion of how to use streaming BFILE data, see "Reading BFILE
Data" on page 4-57.

Using Stored Procedures in JDBC Programs
This section describes how the Oracle JDBC drivers support stored procedures and
includes these subsections:

■ PL/SQL Stored Procedures

■ Java Stored Procedures

PL/SQL Stored Procedures
Oracle JDBC drivers support execution of PL/SQL stored procedures and
anonymous blocks. They support both SQL92 escape syntax and Oracle escape
syntax. The following PL/SQL calls are all available from any Oracle JDBC driver:

// SQL92 Syntax
CallableStatement cs1 = conn.prepareCall

 ("{call proc (?,?)}") ;
CallableStatement cs2 = conn.prepareCall

 ("{? = call func (?,?)}") ;
// Oracle Syntax
CallableStatement cs3 = conn.prepareCall

 ("begin proc (:1, :2); end;") ;
CallableStatement cs4 = conn.prepareCall

 ("begin :1 := func(:2,:3); end;") ;
3-24 JDBC Developer’s Guide and Reference

Error Messages and JDBC
As an example of using Oracle syntax, here is a PL/SQL code snippet that creates a
stored function. The PL/SQL function gets a character and concatenates a suffix to
it:

create or replace function foo (val1 char)
return char as
begin

return val1 || ’suffix’;
end;

Your invocation call in your JDBC program should look like:

Connection conn = DriverManager.getConnection
("jdbc:oracle:oci8:@<hoststring>", "scott", "tiger");

CallableStatement cs =
conn.prepareCall ("begin ? := foo(?); end;");

cs.registerOutParameter(1,Types.CHAR);
cs.setString(2, "aa");
cs.executeUpdate();
String result = proc.getString(1);

Java Stored Procedures
You can use JDBC to invoke Java stored procedures through the SQL and PL/SQL
engines. The syntax for calling Java stored procedures is the same as the syntax for
calling PL/SQL stored procedures. See the Oracle8i Java Stored Procedures Developer’s
Guide for more information on using Java stored procedures.

Error Messages and JDBC
To handle exceptions, the Oracle JDBC drivers throw a
java.sql.SQLException(). Two types of errors can be returned. The first type,
Oracle database errors, are returned from the Oracle database itself and consist of
an error number and a text message describing the error. These errors are
documented in the publication Oracle8i Error Messages.

The second type of error is returned by the JDBC driver itself. These messages
consist of a text message, but do not have an error number. These messages describe
the error and identify the method that threw the error.

You can return errors with these methods:
Basic Features 3-25

Server-Side Basics
■ getMessage(): returns the error message associated with the object that threw
the exception

■ printStackTrace(): prints this object name and its stacktrace to the
specified print stream

This example uses both getMessage() and printStackTrace() to return
errors.

catch(SQLException e);
{

System.out.println("exception: " + e.getMessage());
e.printStackTrace();

}

The text of all error messages has been internationalized. That is, they are available
in all of the languages and character sets supported by Oracle. These error messages
are listed in Appendix A, "JDBC Error Messages".

Server-Side Basics
This section has the following subsections:

■ Session and Transaction Context

■ Connecting to the Database

The tutorial presented in "First Steps in JDBC" on page 3-2, describes connecting to
and querying a database using the client-side driver. The following sections
describe some of the basic differences if you run the tutorial using the server-side
driver. For a complete discussion of the server-side driver, see "JDBC on the Server:
the Server Driver" on page 5-22.

Session and Transaction Context
The server-side driver operates within a default session and default transaction
context. For more information on default session and transaction context for the
server-side driver, see "Session and Transaction Context for the Server Driver" on
page 5-23.

Connecting to the Database
The Server driver uses a default connection to the database. You can connect to the
database with either the DriverManager.getConnection() method or the
3-26 JDBC Developer’s Guide and Reference

Application Basics versus Applet Basics
Oracle-specific API defaultConnection() method. For more information on
connecting to the database with the server-side driver, see "Connecting to the
Database with the Server Driver" on page 5-22.

Application Basics versus Applet Basics
This section has the following subsections:

■ Application Basics

■ Applet Basics

Application Basics
You can use either the Oracle JDBC Thin driver or the JDBC OCI driver to create an
application. Because the JDBC OCI driver uses native methods, there can be
significant performance advantages in using this driver for your applications.

An application that can run on a client can run on the server by using the JDBC
Server driver.

If you are using a JDBC OCI driver in an application, then the application will
require an Oracle installation on its clients. For example, the application will require
the installation of Net8 and client libraries.

Applications and Encryption
For applications that use the Oracle OCI driver, you can encrypt data by using Net8
ANO (Advanced Networking Option). For more information on ANO, please refer
to the Net8 Administrator’s Guide.

Applet Basics
This section describes the issues you should take into consideration if you are
writing an applet that uses the JDBC Thin driver.

Applets and Security
An applet cannot open network connections except to the host machine from which
it was downloaded. Therefore, an applet can connect to databases only on the
originating machine. If you want to connect to a database running on a different
machine, either:
Basic Features 3-27

Application Basics versus Applet Basics
■ Use Oracle8 Connection Manager on the host machine. The applet can connect
to Oracle8 Connection Manager, which in turn connects to a database on
another machine.

■ Use signed applets. If your browser supports JDK 1.1.x, then you can use signed
applets. Signed applets can request socket connection privileges to other
machines.

Both of these topics are described in greater detail in "Connecting an Applet to a
Database" on page 5-9.

Applets and Firewalls
An applet that uses the JDBC Thin driver can connect to a database through a
firewall. See "Using Applets with Firewalls" on page 5-14 for more information on
configuring the firewall and on writing connect strings for the applet.

Applets and Encryption
Applets that use the JDBC Thin driver do not support data encryption.

Packaging and Deploying Applets
To package and deploy an applet, you must place the JDBC Thin driver classes and
the applet classes in the same zip file. This is described in detail in "Packaging
Applets" on page 5-17.
3-28 JDBC Developer’s Guide and Reference

Oracle Exten
4

Oracle Extensions

This chapter describes Oracle extensions to standard JDBC, including the following
topics:

■ Introduction to Oracle Extensions

■ Oracle JDBC Packages and Classes

■ Data Access and Manipulation: Oracle Types vs. Java Types

■ Working with LOBs

■ Working with Oracle Object Types

■ Working with Oracle Object References

■ Working with Arrays

■ Additional Oracle Extensions

■ Oracle JDBC Notes and Limitations
sions 4-1

Introduction to Oracle Extensions
Introduction to Oracle Extensions
Oracle’s implementation of JDBC supports versions 1.0.2 and 1.1.x of the Sun
Microsystems JDK and complies with JDBC 1.22, included with these JDK versions.
This chapter describes Oracle extensions to JDBC 1.22, organized into two
categories:

■ type extensions to comply with a subset of JDBC 2.0, which is a part of JDK 1.2

■ additional Oracle-specific type extensions and performance extensions

This section describes how Oracle JDBC supports these extensions, including the
Java packages created and the datatype support issues that must be considered.

Packages Oracle release 8.1.5 does not support JDK 1.2. The JDBC 2.0 interfaces are
part of the java.sql package that is included with the JDK 1.2. Therefore, to
support JDBC 2.0 types, as well as additional Oracle extensions, the Oracle JDBC
distribution includes the following Java packages:

■ oracle.jdbc2 (a subset of the standard JDBC 2.0 interfaces)

■ oracle.sql (classes to support all Oracle type extensions)

■ oracle.jdbc.driver (classes to support database access and updates in
Oracle type formats)

"Oracle JDBC Packages and Classes" on page 4-6 further describes these packages
and their classes.

Oracle Datatype Support A key feature of the Oracle JDBC extensions is the type
support in the oracle.sql.* package. This package includes classes that map to
all of the Oracle SQL datatypes, acting as wrappers for raw SQL data. This
functionality provides two significant advantages in manipulating SQL data:

■ Accessing data directly in SQL format is more efficient than first converting it to
Java format.

■ Performing mathematical manipulations of the data directly in SQL format
avoids the loss of precision that occurs in converting between SQL and Java
formats.

Note: The JDBC OCI, Thin, and Server drivers support the same
functionality, and all of the Oracle extensions.
4-2 JDBC Developer’s Guide and Reference

Introduction to Oracle Extensions
Once manipulations are complete and it is time to output the information, each of
the oracle.sql.* type support classes has all of the necessary methods to
convert data to appropriate Java formats.

For a more detailed description of these general issues, see "Classes of the oracle.sql
Package" on page 4-7.

Specific information relating to particular oracle.sql.* datatype classes is
discussed in the sections "Working with LOBs" on page 4-45 and "Additional Type
Extensions" on page 4-111.

Oracle Object Support Perhaps the most noteworthy Oracle8 type is Oracle objects.
Oracle8 supports the use of structured objects in the database, where an object
datatype is a user-defined type with nested attributes. For example, a user
application could define an Employee object type, where each Employee object
has a firstname attribute (a character string), a lastname attribute (another
character string), and an employeenumber attribute (integer).

Oracle’s JDBC implementation supports Oracle object datatypes. When you work
with Oracle object datatypes in a Java application you must consider the following:

■ how to map between Oracle object datatypes and Java classes

■ how to store Oracle object attributes in corresponding Java objects (they can be
stored in Java format or in oracle.sql.* format)

■ how to convert attribute data between SQL and Java formats

■ how to access data

To manually create Java classes to correspond to your Oracle objects, Oracle
recommends that you use the Oracle8i JPublisher utility to create the classes. To do
this, you must define attributes according to how you want to store the data.
JPublisher handles this task seamlessly with command-line options.

A type map defines the correspondence between Oracle object datatypes and Java
classes. Type maps are objects of a special Java class that specify which Java class
corresponds to each Oracle object datatype. Oracle JDBC uses these type maps to
determine which Java class to instantiate and populate when it retrieves Oracle
object data from a result set.

Each Java class created to correspond to an Oracle object datatype must implement
one of two supported interfaces: the JDBC-standard SQLData interface or the
Oracle CustomDatum interface. Each of these interfaces specifies methods to
convert data between SQL and Java. Currently, JPublisher supports only the
CustomDatum interface.
Oracle Extensions 4-3

Introduction to Oracle Extensions
JPublisher automatically defines get methods of the Java classes, which retrieve
data into your Java application. For more information on the JPublisher utility, see
the Oracle8i JPublisher User’s Guide.

"Working with Oracle Object Types" on page 4-62 describes Oracle JDBC support for
Oracle objects.

Support for Schema Naming Oracle JDBC classes have the ability to accept and return
fully qualified schema names. A fully qualified schema name has this syntax:

{[schema_name].}[sql_type_name]

where schema_name is the name of the schema and sql_type_name is the SQL
type name of the object. Notice that the schema_name and the sql_type_name is
separated by a dot (".").

To specify an object type in JDBC, you use its fully qualified name (that is, a schema
name and SQL type name). It is not necessary to enter a schema name if the type
name is in current naming space (that is, the current schema). Schema naming
follows these rules:

■ Both the schema name and the type name may or may not be quoted. However,
if the SQL type name has a dot in it, such as CORPORATE.EMPLOYEE, the type
name must be quoted.

■ The JDBC driver looks for the first unquoted dot in the object’s name and uses
the string before the dot as the schema name and the string following the dot as
the type name. If no dot is found, the JDBC driver takes the current schema as
default. That is, you can specify only the type name (without indicating a
schema) instead of specifying the fully qualified name if the object type name
belongs to the current schema. This also explains why you must quote the type
name if the type name has a dot in it.

For example, assume that user Scott creates a type called person.address
and then wants to use it in his session. Scott might want to skip the schema
name and pass in person.address to the JDBC driver. In this case, if
person.address is not quoted, then the dot will be detected, and the JDBC
driver will mistakenly interpret person as the schema name and address as
the type name.

■ JDBC passes the object type name string to the database unchanged. That is, the
JDBC driver will not change the character case even if it is quoted.

For example, if ScOtT.PersonType is passed to the JDBC driver as an object
type name, the JDBC driver will pass the string to the database unchanged. As
4-4 JDBC Developer’s Guide and Reference

Introduction to Oracle Extensions
another example, if there is white space between characters in the type name
string, then the JDBC driver will not remove the white space.

■ The JDBC driver assumes that schema names do not contain dots (".").

■ The JDBC driver does not allow double quotes (") as part of the schema name or
the type name.
Oracle Extensions 4-5

Oracle JDBC Packages and Classes
Oracle JDBC Packages and Classes
This section discusses the Java packages that support the Oracle JDBC extensions
and the key classes that are included in these packages. This section has the
following subsections:

■ Classes of the oracle.jdbc2 Package

■ Classes of the oracle.sql Package

■ Classes of the oracle.jdbc.driver Package

You can refer to the Javadoc for more information about all of the classes mentioned
in this section.

Classes of the oracle.jdbc2 Package
The oracle.jdbc2 package contains the Oracle implementation of the standard
JDBC 2.0 interfaces. The JDBC 2.0 interfaces are part of the java.sql package
included in the JDK 1.2. However, since the drivers do not currently support JDK
1.2, these interfaces have been made available to the Oracle 1.0.2 and 1.1.x drivers as
the oracle.jdbc2 package. This package contains the JDBC 2.0 features of the
JDK 1.2 java.sql package that the Oracle drivers support.

The following interfaces are implemented by oracle.sql.* type classes for JDBC
2.0-compliant Oracle type extensions. These interfaces are equivalent to the
interfaces published by Sun Microsystems; the oracle.jdbc2 versions add no
new features.

■ oracle.jdbc2.Array is implemented by oracle.sql.ARRAY

■ oracle.jdbc2.Struct is implemented by oracle.sql.STRUCT

■ oracle.jdbc2.Ref is implemented by oracle.sql.REF

■ oracle.jdbc2.Clob is implemented by oracle.sql.CLOB

■ oracle.jdbc2.Blob is implemented by oracle.sql.BLOB

In addition, Oracle includes the following standard JDBC 2.0 interfaces for users
employing the JDBC-standard SQLData interface to create Java classes that map to
Oracle objects:

■ oracle.jdbc2.SQLData implemented by classes that map to Oracle objects;
users must provide this implementation

■ oracle.jdbc2.SQLInput implemented by classes that read object data;
Oracle provides a SQLInput class that the JDBC drivers use
4-6 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
■ oracle.jdbc2.SQLOutput implemented by classes that write object data;
Oracle provides a SQLOutput class that the JDBC drivers use

The SQLData interface is one of the two features you can use to support Oracle
objects in Java. The other feature is the Oracle CustomDatum interface, contained in
the oracle.sql package. See "Understanding the SQLData Interface" on page 4-69
for more information about SQLData, SQLInput, and SQLOutput.

Classes of the oracle.sql Package
The oracle.sql package supports direct access to data in SQL format and consists
primarily of classes that map to the Oracle SQL datatypes.

These classes provide Java mappings for the Oracle SQL types and are wrapper
classes for the raw SQL data. Because data in an oracle.sql.* object remains in
SQL format, no information is lost. For SQL primitive types, these classes simply
wrap the SQL data. For SQL structured types (objects and arrays), they provide
additional information such as conversion methods and details of structure.

Each of the Oracle datatype classes extends oracle.sql.Datum, a superclass that
encapsulates functionality common to all of the datatypes. Some of the classes are
for JDBC 2.0-compliant datatypes. These classes, as Table 4–1 indicates, implement
standard JDBC 2.0 interfaces in the oracle.jdbc2 package, as well as extending
oracle.sql.Datum.

Table 4–1 lists the oracle.sql datatype classes and their corresponding Oracle
SQL types.

Note: Oracle recommends using the CustomDatum interface
instead of the SQLData interface. CustomDatum works more easily
in conjunction with other features of the Oracle Java product
offerings, such as the JPublisher utility (which can automatically
generate CustomDatum classes corresponding to Oracle objects)
and SQLJ.

Table 4–1 Oracle Datatype Classes

Java Class Oracle SQL Type (and Description)
and Interface Implemented if for JDBC 2.0

oracle.sql.STRUCT STRUCT (objects)
JDBC 2.0, implements oracle.jdbc2.Struct
Oracle Extensions 4-7

Oracle JDBC Packages and Classes
The following sections describe each class listed in Table 4–1. Additional details
about use of the Oracle extended types (STRUCT, REF, ARRAY, BLOB, CLOB, BFILE,
and ROWID) are described in "Working with LOBs" on page 4-45, "Working with
Oracle Object References" on page 4-83, "Working with Arrays" on page 4-87, and
"Additional Type Extensions" on page 4-111.

oracle.sql.REF REF (object references)
JDBC 2.0, implements oracle.jdbc2.Ref

oracle.sql.ARRAY varray or nested table (collections)
JDBC 2.0, implements oracle.jdbc2.Array

oracle.sql.BLOB BLOB (large binary objects)
JDBC 2.0, implements oracle.jdbc2.Blob

oracle.sql.CLOB CLOB (large character objects)
JDBC 2.0, implements oracle.jdbc2.Clob

oracle.sql.BFILE BFILE (external files)

oracle.sql.CHAR CHAR, VARCHAR2

oracle.sql.DATE DATE

oracle.sql.NUMBER NUMBER

oracle.sql.RAW RAW

oracle.sql.ROWID ROWID (row identifiers)

Table 4–1 Oracle Datatype Classes (Cont.)

Java Class Oracle SQL Type (and Description)
and Interface Implemented if for JDBC 2.0
4-8 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
In addition to the datatype classes, the oracle.sql package includes these
support classes and interfaces:

■ oracle.sql.ArrayDescriptor class: used in constructing
oracle.sql.ARRAY objects; describes the SQL type of the array. See "Class
oracle.sql.ARRAY" on page 4-14 for more information.

■ oracle.sql.StructDescriptor class: used in constructing
oracle.sql.STRUCT objects, which you can use as a default mapping to
Oracle objects in the database. See "Class oracle.sql.STRUCT" on page 4-10 for
more information.

■ oracle.sql.CharacterSet and oracle.sql.CharacterSetFactory
classes: used in constructing character set objects, which in turn are used in
constructing oracle.sql.CHAR objects. See "Class oracle.sql.CHAR" on
page 4-19 for more information.

■ oracle.sql.CustomDatum and oracle.sql.CustomDatumFactory
interfaces: used in Java classes implementing the Oracle CustomDatum scenario
of Oracle object support. (The other possible scenario is the JDBC-standard
SQLData implementation. See "Understanding the CustomDatum Interface" on
page 4-75 for more information on CustomDatum.)

Notes:

■ Beware of possible confusion between the STRUCT class, used
for objects only, and the general term structured objects, which
often indicates either objects or collections. The ARRAY class
supports collections, which can be either varrays or nested
tables.

■ For information about retrieving data from a result set or
callable statement object into oracle.sql.* types as opposed
to Java types, see "Data Access and Manipulation: Oracle Types
vs. Java Types" on page 4-32.

■ The LONG, LONG RAW, or REF CURSOR SQL types have no
oracle.sql.* classes. Use standard JDBC functionality for
these types. For example, retrieve LONG or LONG RAW data as
input streams using the standard JDBC methods
getAsciStream(), getBinaryStream(), and
getUnicodeStream(). Use getCursor() for REF CURSOR
types.
Oracle Extensions 4-9

Oracle JDBC Packages and Classes
Refer to the Javadoc for additional information about these classes. The rest of this
section further describes the oracle.sql.* classes.

General oracle.sql Datatype Support
Each of the Oracle datatype classes provides, among other things, the following:

■ one or more constructors, typically with a constructor that uses raw bytes as
input and a constructor that takes a Java type as input

■ data storage as Java byte arrays for SQL data

■ a getBytes() method, which returns the SQL data as a byte array

■ a toJdbc() method that converts the data into an object of a corresponding
Java class as defined in the JDBC specification

The JDBC driver does not convert Oracle-specific datatypes that are not part of
the JDBC specification, such as ROWID; the driver returns the object in the
corresponding oracle.sql.* format. For example, it returns an Oracle ROWID
as an oracle.sql.ROWID.

■ a stringValue() or intValue() method, where appropriate, to convert the
SQL data to a String or an int

■ additional conversion, get, and set methods as appropriate for the
functionality of the datatype (such as methods in the LOB classes that get the
data as a stream, and methods in the REF class that get and set object data
through the object reference)

Refer to the Javadoc for additional information about these classes.

Class oracle.sql.STRUCT
For any given Oracle object type, if you do not specify a mapping to a Java class in
your connection’s type map, data from the object type will be materialized in Java
in an instance of the oracle.sql.STRUCT class.

The STRUCT class implements the standard JDBC 2.0 oracle.jdbc2.Struct
class and extends oracle.sql.Datum.

In the database, Oracle stores the raw bytes of object data in a linearized form. A
STRUCT object is a wrapper for the raw bytes of an Oracle object and contains a
"values" array of oracle.sql.Datum objects holding the attribute values in SQL
format. The STRUCT object also contains the SQL type name of the Oracle object.

In most cases you will probably want to create a custom Java type definition class to
map to your Oracle object, although using the STRUCT class may suffice in some
4-10 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
cases (see "Using STRUCT Objects" on page 4-63). The attributes of a STRUCT can be
materialized as java.lang.Object[] objects if you use the getAttributes()
method, or as oracle.sql.Datum[] objects if you use the
getOracleAttributes() method. The oracle.sql.* format gives you the
same advantages as using oracle.sql.* datatype classes in general:

■ The STRUCT class completely preserves data, because it maintains the data in
SQL format. This is useful if you want to manipulate data but not necessarily
display it.

■ It allows complete flexibility in how your Java application unpacks data.

In some cases you might want to manually create a STRUCT object to pass it to a
prepared statement or callable statement. To do this, you must also create a
StructDescriptor object. For more information on creating a STRUCT object, see
"Creating STRUCT Objects and Descriptors" on page 4-13.

The STRUCT class includes the following methods:

■ getAttributes(): retrieves the values from the values array, using the type
map (if one has been defined) to determine which Java classes to use in
materializing the data. Conceptually, getAttributes() returns a Java array
containing the attribute values. The types of the attribute values are those that a
call to getObject() on the same underlying types will return. That is, they are
the "default" JDBC types for the corresponding underlying types.

For example, assume that you have defined a SQL type PERSON with a name
attribute of type CHAR and an age attribute of type NUMBER. If you use
getAttributes() to get the object attributes of PERSON, then it will return
the name as a Java String type and the age as a Java BigDecimal type.

Notes:

■ Elements of the values array, although of the generic Datum
type, would actually contain data associated with the relevant
oracle.sql.* type appropriate for the given attribute, such
as oracle.sql.CHAR in the case of CHAR data. You can cast
an element as the appropriate oracle.sql.* type as desired.

■ The JDBC driver materializes nested objects in the values array
of a STRUCT object as instances of STRUCT themselves.

■ Refer to the Javadoc for more information about particular
features and methods of the oracle.sql.STRUCT class.
Oracle Extensions 4-11

Oracle JDBC Packages and Classes
If you are calling getAttributes() on a nested object, then you can
optionally specify a type map (java.util.Map object) if you do not want to
use your connection’s default type map.

■ getOracleAttributes(): retrieves the values of the values array as
oracle.sql.* objects

■ getSQLTypeName(): returns the fully qualified type name
(schema.sql_type_name) of the Oracle object that this STRUCT represents

■ getDescriptor(): returns the StructDescriptor object for this STRUCT
object (see "Creating STRUCT Objects and Descriptors" on page 4-13 for
information about the StructDescriptor class)

■ getConnection(): returns the current connection

■ getDescriptor(): returns the OracleType that identifies the Oracle object
type

■ getMap(): returns the current type map

■ isConvertibleTo(Class): determines if a datum object can be converted to
a particular class

■ makeJdbcArray(int): returns a JDBC array representation of the datum

■ setDatumArray(Datum[]): sets the Datum array.

■ setDescriptor(StructDescriptor): sets the descriptor

■ stringValue(): converts to a String representation of the datum object

■ toBytes(): packs the bytes representing the attributes into the format that is
actually used in the database

■ toClass(Class): applies the normal algorithms for converting a SQL
structured type to a specific Java class

■ toJdbc(): consults the current map to determine what class to convert to, and
then uses toClass()

■ toJdbc(Dictionary): consults the map to determine what class to convert
to, and then uses toClass()

■ toSTRUCT(Object, OracleConnection): returns the corresponding
STRUCT object from the input Java object
4-12 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
Creating STRUCT Objects and Descriptors To create an oracle.sql.STRUCT object, a
STRUCT descriptor must first exist for the given Oracle object type. This descriptor is
an object of the oracle.sql.StructDescriptor class.

A StructDescriptor describes a type of SQL structured object (Oracle object).
Only one StructDescriptor is necessary for each Oracle object type.

The driver caches STRUCT descriptor objects to avoid recreating them if the type has
already been encountered. The Oracle JDBC extensions provide a static
createDescriptor() method that will either construct a new
StructDescriptor object or return an existing one.

To create a StructDescriptor object, pass in a Java string parameter with the
SQL type name of the Oracle object type and a connection object to the
StructDescriptor.createDescriptor() method:

StructDescriptor structdesc = StructDescriptor.createDescriptor(sql_type_name,
connection);

where sql_type_name is a Java string containing the name of the Oracle object
type (such as EMPLOYEE) and connection is your connection object.

You can also call the StructDescriptor object if you need to create a new
STRUCT object. To construct a new StructDescriptor object, pass in a Java string
parameter with the SQL type name of the Oracle object type and your connection
object:

StructDescriptor structdesc = new StructDescriptor(sql_type_name, connection);

To construct a STRUCT object, pass in the StructDescriptor, your connection
object, and an array of Java objects containing the attributes you want the STRUCT
to contain.

STRUCT struct = new STRUCT(structdesc, connection, attributes);

where structdesc is the StructDescriptor created previously, connection
is your connection object, and attributes is an array of type
java.lang.Object[].

Using StructDescriptor get Methods A STRUCT descriptor can be referred to as a "type
object." This means that it contains information about the type code and type name
of the object type and how to convert to and from the given type. Remember, there
should be only one StructDescriptor object for any one Oracle object type. You
can then use that descriptor to create as many STRUCT objects as you need for that
type.
Oracle Extensions 4-13

Oracle JDBC Packages and Classes
The StructDescriptor class includes the getName() method to return the fully
qualified SQL type name of the Oracle object (that is, in schema.sql_type_name
format. For example, CORPORATE.EMPLOYEE)

Embedded Objects The JDBC driver seamlessly handles embedded objects (STRUCT
objects that are attributes of STRUCT objects) in the same way that it normally
handles objects. When the JDBC driver retrieves an attribute that is an object, it
follows the same rules of conversion, using the type map if it is available, or else
using default mapping.

Class oracle.sql.REF
The oracle.sql.REF class is the generic class that supports Oracle object
references. This class, as with all of the oracle.sql.* datatype classes, is a
subclass of oracle.sql.Datum. It implements the standard JDBC 2.0
oracle.jdbc2.Ref interface.

Selecting a REF retrieves only a pointer to an object; it does not materialize the
object. However, there are methods to accomplish this.

The oracle.sql.REF class includes the following methods:

■ getValue(): retrieves object attributes (using your type map as necessary)

■ setValue(): sets object attributes (using your type map as necessary)

■ getBaseTypeName(): retrieves the fully-qualified SQL structured type name
of the referenced item

The setREF() and setRef() methods of the OraclePreparedStatement and
OracleCallableStatement classes support passing a REF object as an input
parameter to a prepared statement. Similarly, the getREF() and getRef()
methods of the OracleCallableStatement and OracleResultSet support
passing a REF object as an output parameter.

You cannot create REF objects using JDBC.

For more information on how to use REF objects, see "Working with Oracle Object
References" on page 4-83.

Class oracle.sql.ARRAY
The oracle.sql.ARRAY class supports Oracle collections, either varrays or
nested tables. If you select either a varray or nested table from the database, then
the JDBC driver materializes it as an object of the ARRAY class; the structure of the
data is equivalent in either case. The oracle.sql.ARRAY class extends
4-14 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
oracle.sql.Datum (as do all of the oracle.sql.* classes) and implements
oracle.jdbc2.Array, a standard JDBC 2.0 array interface.

You might want to manually create an ARRAY object to pass it to a prepared
statement or callable statement, perhaps to insert into the database. This involves
the use of ArrayDescriptor objects, which "Creating ARRAY Objects and
Descriptors" on page 4-15 describes.

The ARRAY class includes the following methods:

■ getArray(): retrieves the contents of the array in "default" JDBC types. If it
retrieves an array of objects, then getArray() uses the type map to determine
the types

■ getOracleArray(): identical to getArray(), but retrieves the elements in
oracle.sql.* format

■ getArrayDescriptor(): returns the ArrayDescriptor object that pertains
to this array (see "Creating ARRAY Objects and Descriptors" on page 4-15 for
information about the ArrayDescriptor class)

■ getBaseType(): returns the SQL type code for the array elements (see "Class
oracle.jdbc.driver.OracleTypes" on page 4-28 for information about type codes)

■ getSQLTypeName(): returns the SQL type name of the array elements

■ getBaseTypeName(): for named types (such as Oracle objects), returns the
particular type name (for example, EMPLOYEE)

■ getResultSet(): materializes an array as a result set

Creating ARRAY Objects and Descriptors The setARRAY() method of the
OraclePreparedStatement or OracleCallableStatement class supports
passing an array as an input parameter to a prepared statement. You must first
construct an array descriptor, which is an oracle.sql.ArrayDescriptor object,
and then you must construct the oracle.sql.ARRAY object for the array you want
to pass.

An ArrayDescriptor object describes the SQL type of an array; however, you
need only one array descriptor for any one SQL type. You can reuse the same
descriptor object to create multiple instances of an oracle.sql.Array object for
the same array type.

Collections are strongly typed. Oracle supports only "named arrays", that is, an
array given a SQL type name. For example, when you create an array with the
CREATE TYPE statement:
Oracle Extensions 4-15

Oracle JDBC Packages and Classes
CREATE TYPE num_varray AS varray(22) OF NUMBER(5,2);

the SQL type name for the collection type is num_varray.

To construct an ArrayDescriptor object, pass the SQL type name of the
collection type and your Connection object (which JDBC uses to go to the
database to gather meta data) to the constructor.

ArrayDescriptor arraydesc = ArrayDescriptor.createDescriptor(sql_type_name,
connection);

where sql_type_name is the type name of the array and connection is your
Connection object.

To construct an ARRAY object, pass in the array descriptor, your connection object,
and a Java object containing the individual elements you want the array to contain.

ARRAY array = new ARRAY(arraydesc, connection, elements);

where arraydesc is the array descriptor created previously, connection is your
connection object, and elements is a Java array of objects. The two possibilities for
the contents of elements are:

■ an array of Java primitives. For example, int[].

■ an array of Java objects. (For example, xxx[] where xxx represents the name of
a Java object type.) For example, Integer[].

Note: The name of the collection type has nothing to do with the
type name of the elements. For example:

CREATE TYPE person AS object (c1 NUMBER(5), c2
VARCHAR2(30));

CREATE TYPE array_of_persons AS varray(10) OF
person;

in the preceding statements, the SQL type name of the collection
type is array_of_persons. The SQL type name of the elements
of the collection is person.
4-16 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
Using ArrayDescriptor get Methods An array descriptor can be referred to as a type
object, meaning it has information about the array’s SQL type name, the type code of
the array’s elements and, if the array is a STRUCT, the type name of the elements.
The array descriptor also contains the information on how to convert to and from
the given type. You need only one array descriptor object for any one type, then you
can use that descriptor to create as many arrays of that type as you want.

The ArrayDescriptor class has the following methods for retrieving an element’s
type code and type name:

■ getBaseType(): returns the integer type code associated with this array
descriptor (according to integer constants defined in the OracleTypes class,
which "Classes of the oracle.jdbc.driver Package" on page 4-22 describes)

■ getBaseName(): returns a string with the type name associated with this
array element if it is a STRUCT, REF or collection

Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE
BLOBs, CLOBs, and BFILEs, all referred to as LOBs, are for data items that are too
large to store directly in the database table. Instead, the database table stores a
locator that points to the location of the actual data.

The oracle.sql package supports LOBs in several ways:

■ BLOBs point to large unstructured binary data items and are supported by the
oracle.sql.BLOB class.

Notes:

■ The setARRAY(), setArray(), and setObject() methods
of the OraclePreparedStatement class take an object of the
type oracle.sql.ARRAY as an argument, not an array of
objects.

■ Refer to the Javadoc for more information about the features of
the ARRAY and ArrayDescriptor classes.

Note: The elements of an array cannot be of type ARRAY.
Collections cannot have elements of type collection. But Oracle
objects and STRUCTS can have attributes of Java type ARRAY (SQL
type collection).
Oracle Extensions 4-17

Oracle JDBC Packages and Classes
■ CLOBs point to large fixed-width character data items (that is, characters that
require a fixed number of bytes per character) and are supported by the
oracle.sql.CLOB class.

■ BFILEs point to the content of external files (operating system files) and are
supported by the oracle.sql.BFILE class.

You can select a BLOB, CLOB, or BFILE locator from the database using a standard
SELECT statement, but bear in mind that you are receiving only the locator, not the
data itself. Additional steps are necessary to retrieve the data. This is described in
"Working with LOBs" on page 4-45.

The oracle.sql.BLOB class includes the following methods:

■ getBinaryOutputStream(): returns the BLOB data

■ getBinaryStream(): returns the BLOB designated by this Blob instance as a
stream of bytes

■ getBytes(): reads from the BLOB data, starting at a specified point, into a
supplied buffer

■ length(): returns the length of the BLOB in bytes

■ position(): determines the byte position in the BLOB where a given pattern
begins

■ putBytes(): writes BLOB data, starting at a specified point, from a supplied
buffer

The oracle.sql.CLOB class includes the following methods:

■ getAsciiOutputStream(): writes CLOB data from an ASCII stream

■ getAsciiStream(): returns the CLOB value designated by the Clob object as
a stream of Ascii bytes

■ getCharacterOutputStream(): writes CLOB data from a Unicode stream

■ getCharacterStream(): returns the CLOB data as a stream of Unicode
characters

■ getChars(): retrieves characters from a specified point in the CLOB data into a
character array

Note: The oracle.sql.CLOB class supports all character sets
that the Oracle data server supports for CLOB types.
4-18 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
■ length(): returns the length of the CLOB in characters

■ position(): determines the character position in the CLOB at which a given
substring begins

■ putChars(): writes characters from a character array to a specified point in
the CLOB data

■ getSubString(): retrieves a substring from a specified point in the CLOB data

■ putString(): writes a string to a specified point in the CLOB data

The oracle.sql.BFILE class includes the following methods:

■ openFile(): opens the external file

■ closeFile(): closes the external file

■ getBinaryStream(): returns the contents of the external file as a stream of
bytes

■ getBytes(): reads from the external file, starting at a specified point, into a
supplied buffer

■ getName(): gets the name of the external file

■ getDirAlias(): gets the directory alias of the external file

■ length(): returns the length of the BFILE in bytes

■ position(): determines the byte position at which the given byte pattern
begins

Class oracle.sql.CHAR
The CHAR class has special functionality for NLS conversion of character data. A key
attribute of the CHAR class, and a parameter always passed in when a CHAR object is
constructed, is the NLS character set used in presenting the character data. Without
the character set being known, the bytes of data in the CHAR object are meaningless.

CHAR objects that the driver constructs and returns can be in the database character
set, UTF-8, or ISO-Latin-1 (WE8ISO8859P1). CHAR objects which are Oracle8
objects, are returned in the database character set.

Note: You cannot write to a BFILE; you can only read from it.
Oracle Extensions 4-19

Oracle JDBC Packages and Classes
JDBC constructs and populates CHAR objects once character data has been read from
the database. Additionally, you might want to construct a CHAR object yourself (to
pass in to a prepared statement, for example).

When you construct a CHAR object, you must provide character set information to
the CHAR object by way of an instance of the oracle.sql.CharacterSet class.
Each instance of the CharacterSet class represents one of the NLS character sets
that Oracle supports. A CharacterSet instance encapsulates methods and
attributes of the character set, mainly involving functionality to convert to or from
other character sets. You can find a complete list of the character sets that Oracle
supports in the Oracle8i National Language Support Guide.

If you use a CHAR object based on a character set that Oracle does not support, then
the JDBC driver will not be able to perform character set conversions with it. For
example, you will not be able to use the CHAR object in an
OraclePreparedStatement.setOracleObject() call.

Follow these general steps to construct a CHAR object:

1. Create a CharacterSet instance by calling the static CharacterSet.make()
method. This method is a factory for the character set class. It takes as input an
integer OracleId, which corresponds to a character set that Oracle supports.
For example:

int oracleId = CharacterSet.JA16SJIS_CHARSET; // this is character set 832
...
CharacterSet mycharset = CharacterSet.make(OracleId);

Each character set that Oracle supports has a unique predefined OracleId. If
you enter an invalid OracleId, an exception will not be thrown. Instead, when
you try to use the character set, you will receive unpredictable results. For more
information on character sets and character set IDs, see the Oracle8i National
Language Support Guide.

2. Construct a CHAR object. Pass to the constructor a string (or the bytes that
represent the string) and the CharacterSet object that indicates how to
interpret the bytes based on the character set. For example:

String mystring = "teststring";
...
CHAR mychar = new CHAR(teststring, mycharset);

The CHAR class has multiple constructors: they can take a string, a byte array, or
an object as input along with the CharacterSet object. In the case of a string,
4-20 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
the string is converted to the character set indicated by the CharacterSet
object before being placed into the CHAR object.

Refer to the CHAR class Javadoc for more information.

The CHAR class provides these methods for translating character data to strings:

■ getString(): converts the sequence of characters represented by the CHAR
object to a string, returning a Java String object. If the character set is not
recognized (that is, if you entered an invalid OracleID), then getString()
throws a SQLException.

■ toString(): identical to getString(), but if the character set is not
recognized (that is, if you entered an invalid OracleID), then toString()
returns a hexadecimal representation of the CHAR data and does not throw a
SQLException.

■ getStringWithReplacement(): identical to getString(), except a default
replacement character replaces characters that have no Unicode representation
in the character set of this CHAR object. This default character varies from
character set to character set, but is often a question mark.

The server (database) and the client (or application running on the client) can use
different character sets. When you use the methods of this class to transfer data
between the server and the client, the JDBC drivers must convert the data from the
server character set to the client character set (or vice versa). To convert the data, the
drivers use Oracle’s National Language Support (NLS). For more information on
how the JDBC drivers convert between character sets, see "Using NLS" on page 5-2.
For more information on NLS, see the Oracle8i National Language Support Guide.

Notes:

■ The CharacterSet object cannot be null.

■ The CharacterSet class is an abstract class, therefore it has
no constructor. The only way to create instances is through use
of the make() method.

■ The server recognizes the special value
CharacterSet.DEFAULT_CHARSET as the database character
set. For the client, this value is not meaningful.

■ Oracle does not intend or recommend that users extend the
CharacterSet class.
Oracle Extensions 4-21

Oracle JDBC Packages and Classes
Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW
These classes map to primitive SQL datatypes, which are a part of standard JDBC.
These classes provide conversions to and from their corresponding JDBC Java
types. For more information, see the Javadoc.

Class oracle.sql.ROWID
This class supports Oracle ROWIDs, which are unique identifiers for rows in
database tables. You can select a ROWID as you would select any column of data
from the table. Note, however, that you cannot manually update ROWIDs; the Oracle
database updates them automatically as appropriate.

The oracle.sql.ROWID class does not implement any noteworthy functionality
beyond what is in the oracle.sql.Datum superclass. However, ROWID does
provide a stringValue() method that overrides the stringValue() method in
the oracle.sql.Datum class and returns the hexadecimal representation of the
ROWID bytes.

For information about accessing ROWID data, see "Additional Oracle Extensions" on
page 4-97.

Classes of the oracle.jdbc.driver Package
The oracle.jdbc.driver package includes classes that add extended features to
enable data access in oracle.sql format. In addition, these classes provide
Oracle-specific extensions to allow access to raw SQL format data by using
oracle.sql.* objects.

Table 4–2 lists key classes for connections, statements, and result sets in this
package.

Table 4–2 Connection, Statement, and Result Set Classes

Class Key Functionality

OracleDriver implements java.sql.Driver

OracleConnection methods to return Oracle statement objects; methods
to set Oracle performance extensions for any
statement executed in the current connection
(implements java.sql.Connection)
4-22 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
The oracle.jdbc.driver package additionally includes:

■ stream classes

■ the OracleTypes class

The stream classes extend standard Java stream classes and read and write Oracle
LOB, LONG, and LONG RAW data.

OracleTypes defines integer constants, which identify SQL types. For standard
types, it uses the same values as the standard java.sql.Types. In addition, it
adds constants for Oracle extended types.

The remainder of this section describes the classes of the oracle.jdbc.driver
package. For more information about using these classes to access Oracle type
extensions, see "Data Access and Manipulation: Oracle Types vs. Java Types" on
page 4-32.

OracleStatement methods to set Oracle performance extensions for
individual statement; superclass of
OraclePreparedStatement and
OracleCallableStatement (implements
java.sql.Statement)

OraclePreparedStatement set methods to bind oracle.sql.* types into a
prepared statement (implements
java.sql.PreparedStatement; extends
OracleStatement)

OracleCallableStatement get methods to retrieve data in oracle.sql
format; set methods to bind oracle.sql.* types
into a callable statement (inherited from
OraclePreparedStatement) (implements
java.sql.CallableStatement; extends
PreparedStatement)

OracleResultSet get methods to retrieve data in oracle.sql
format (implements java.sql.ResultSet)

OracleResultSetMetaData methods to get information about Oracle result sets
(implements java.sql.ResultSetMetaData)

Table 4–2 Connection, Statement, and Result Set Classes (Cont.)

Class Key Functionality
Oracle Extensions 4-23

Oracle JDBC Packages and Classes
Class oracle.jdbc.driver.OracleDriver
Use this class to register the Oracle JDBC drivers for use by your application. You
can input a new instance of this class to the static registerDriver() method of
the java.sql.DriverManager class so that your application can access and use
the Oracle drivers. The registerDriver() method takes as input a "driver" class;
that is, a class that implements the java.sql.Driver interface, as is the case with
OracleDriver.

Once you register the Oracle JDBC drivers, you can create your connection using
the DriverManager class. For more information on registering drivers and writing
a connection string, see "First Steps in JDBC" on page 3-2.

Class oracle.jdbc.driver.OracleConnection
This class extends standard JDBC connection functionality to create and return
Oracle statement objects, set flags and options for Oracle performance extensions,
and support type maps for Oracle objects.

"Performance Extensions" on page 4-97 describes the performance extensions,
including row prefetching, update batching, and metadata TABLE_REMARKS
reporting.

Key methods include:

■ createStatement(): allocates a new OracleStatement object

■ prepareStatement(): allocates a new OraclePreparedStatement object

■ prepareCall(): allocates a new OracleCallableStatement object

■ getTransactionIsolation(): gets this connection’s current isolation mode

■ setTransactionIsolation(): changes the transaction isolation level using
one of the TRANSACTION_* values

These oracle.jdbc.driver.OracleConnection methods are Oracle-defined
extensions:

■ getDefaultExecuteBatch(): retrieves the default update-batching value
for this connection

■ setDefaultExecuteBatch(): sets the default update-batching value for this
connection

■ getDefaultRowPrefetch(): retrieves the default row-prefetch value for this
connection
4-24 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
■ setDefaultRowPrefetch(): sets the default row-prefetch value for this
connection

■ getRemarksReporting(): returns true if TABLE_REMARKS reporting is
enabled

■ setRemarksReporting(): enables or disables TABLE_REMARKS reporting

■ getTypeMap(): retrieves the type map for this connection (for use in mapping
Oracle object types to Java classes)

■ setTypeMap(): initializes or updates the type map for this connection (for use
in mapping Oracle object types to Java classes)

Class oracle.jdbc.driver.OracleStatement
This class extends standard JDBC statement functionality and is the superclass of
the OraclePreparedStatement and OracleCallableStatement classes.
Extended functionality includes support for setting flags and options for Oracle
performance extensions on a statement-by-statement basis, as opposed to the
OracleConnection class that sets these on a connection-wide basis.

"Performance Extensions" on page 4-97 describes the performance extensions,
including row prefetching and column type definitions.

Key methods include:

■ executeQuery(): executes a database query and returns an
OracleResultSet object

■ getResultSet(): retrieves an OracleResultSet object

■ close(): closes the current statement

These oracle.jdbc.driver.OracleStatement methods are Oracle-defined
extensions:

■ defineColumnType(): defines the type you will use to retrieve data from a
particular database table column

■ getRowPrefetch(): retrieves the row-prefetch value for this statement

■ setRowPrefetch(): sets the row-prefetch value for this statement

Class oracle.jdbc.driver.OraclePreparedStatement
This class extends standard JDBC prepared statement functionality, is a subclass of
the OracleStatement class, and is the superclass of the
Oracle Extensions 4-25

Oracle JDBC Packages and Classes
OracleCallableStatement class. Extended functionality consists of set
methods for binding oracle.sql.* types and objects into prepared statements,
and methods to support Oracle performance extensions on a
statement-by-statement basis.

"Performance Extensions" on page 4-97 describes the performance extensions,
including database update batching.

Key methods include:

■ getExecuteBatch(): retrieves the update-batching value for this statement

■ setExecuteBatch(): sets the update-batching value for this statement

■ setOracleObject(): a generic set method for binding oracle.sql.* data
into a prepared statement as an oracle.sql.Datum object

■ setXXX(): set methods, such setBLOB(), for binding specific
oracle.sql.* types into prepared statements. For more information on all of
the setXXX() methods available for oracle.sql.* types, see the Javadoc.

■ setCustomDatum(): binds a CustomDatum object (for use in mapping Oracle
object types to Java) into a prepared statement

■ setNull(): sets the value of the object specified by its SQL type name to
NULL. For setNull(param_index, type_code, sql_type_name), if
type_code is REF, ARRAY, or STRUCT, then sql_type_name is the fully
qualified name (schema.sql_type_name) of the SQL type.

■ close(): closes the current statement

Class oracle.jdbc.driver.OracleCallableStatement
This class extends standard JDBC callable statement functionality and is a subclass
of the OracleStatement and OraclePreparedStatement classes. Extended
functionality includes set methods for binding structured objects and
oracle.sql.* objects into prepared statements, and get methods for retrieving
data into oracle.sql.* objects.

Key methods include:

■ getOracleObject(): a generic get method for retrieving data into an
oracle.sql.Datum object. It can be cast to the specific oracle.sql.* type
as necessary.

■ getXXX(): get methods, such as getCLOB(), for retrieving data into specific
oracle.sql.* objects. For more information on all of the getXXX() methods
available for oracle.sql.* types, see the Javadoc.
4-26 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
■ setOracleObject(): a generic set method for binding oracle.sql.* data
into a callable statement as an oracle.sql.Datum object

■ setXXX(): set methods inherited from OraclePreparedStatement, such
as setBLOB(), for binding specific oracle.sql.* objects into callable
statements. For more information on all of the setXXX() methods available for
oracle.sql.* types, see the Javadoc.

■ setNull(): sets the value of the object specified by its SQL type name to
NULL. For setNull(param_index, type_code, sql_type_name), if
type_code is REF, ARRAY, or STRUCT, then sql_type_name is the fully
qualified (schema.type) name of the SQL type.

■ registerOutParameter(): registers the SQL type code of the statement’s
output parameter. JDBC requires this for any callable statement with an OUT
parameter. It takes an integer parameter index (the position of the output
variable in the statement, relative to the other parameters) and an integer SQL
type (the type constant defined in oracle.jdbc.driver.OracleTypes).

This is an overloaded method. There is a version of this method that you use for
named types only; that is, when the SQL type code is OracleTypes.REF,
STRUCT, or ARRAY. In this case, in addition to a parameter index and SQL type,
the method also takes a String SQL type name (the name of the Oracle object
type in the database, such as EMPLOYEE).

■ close(): closes the current result set, if any, and the current statement

Class oracle.jdbc.driver.OracleResultSet
This class extends standard JDBC result set functionality, implementing get
methods for retrieving data into oracle.sql.* objects.

Key methods include:

■ getOracleObject(): a generic get method for retrieving data into an
oracle.sql.Datum object. It can be cast to the specific oracle.sql.* type
as necessary.

■ getXXX(): get methods, such as getCLOB(), for retrieving data into
oracle.sql.* objects

■ next(): advances to the next row of the result set
Oracle Extensions 4-27

Oracle JDBC Packages and Classes
Class oracle.jdbc.driver.OracleResultSetMetaData
This class extends standard JDBC result set metadata functionality to retrieve
information about Oracle result set objects.

Key methods include the following:

■ getColumnCount(): returns the number of columns in an Oracle result set

■ getColumnName(): returns the name of a specified column in an Oracle result
set

■ getColumnType(): returns the SQL type of a specified column in an Oracle
result set. If the column stores an Oracle object or collection, then this method
returns OracleTypes.STRUCT or OracleTypes.ARRAY respectively.

■ getColumnTypeName(): returns the SQL type name of the data stored in the
column. If the column stores an array or collection, then this method returns its
SQL type name. If the column stores REF data, then this method returns the
SQL type name of the objects to which the REF points.

■ getTableName(): returns the name of the table from which an Oracle result
set column was selected

Oracle Stream Classes
Oracle uses many stream classes that extend standard Java stream classes to provide
special functionality, such as writing directly to an Oracle database. The JDBC
drivers use these classes which are in the oracle.jdbc.driver package but does
not intend them for use by Java applications programmers. For more information
on Java streams, see "Using Java Streams in JDBC" on page 3-14.

Class oracle.jdbc.driver.OracleTypes
The OracleTypes class defines constants that JDBC uses to identify SQL types.
Each variable in this class has a constant integer value. The
oracle.jdbc.driver.OracleTypes class contains a copy of the standard Java
java.sql.Types class and contains these additional Oracle type extensions:

■ OracleTypes.STRUCT

■ OracleTypes.REF

■ OracleTypes.ARRAY

■ OracleTypes.BLOB

■ OracleTypes.CLOB
4-28 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
■ OracleTypes.BFILE

■ OracleTypes.ROWID

As in java.sql.Types, all of the variable names are in all-caps.

JDBC uses the SQL types identified by the elements of the OracleTypes class in
two main areas: registering output parameters and in the setNull() method of
the PreparedStatement class.

OracleTypes and Registering Output Parameters The SQL types in the OracleTypes
class identify the SQL type of the output parameters in the
registerOutParameter() method of the java.sql.CallableStatement
and oracle.jdbc.driver.OracleCallableStatement classes.

These are the forms that registerOutputParameter() can take for
CallableStatement and OracleCallableStatement:

CallableStatement.registerOutParameter(int index, int sqlType)

CallableStatement.registerOutParameter(int index, int sqlType, int scale)

OracleCallableStatement.registerOutParameter(int index, int sqlType, String
sql_name)

In these prototypes, index represents the parameter index, sqlType represents the
SQL datatype (one of the OracleTypes, in this case), sql_name represents the
name given to the datatype (that is, the "named type"), and scale represents the
number of digits to the right of the decimal point when sqlType is a NUMERIC or
DECIMAL datatype.

Any output parameter datatype except STRUCT, ARRAY, or REF can use the two
forms of CallableStatement.registerOutParameter().

The OracleCallableStatement form of registerOutParameter() can be
used only when the output parameter is of type STRUCT, ARRAY, or REF and
requires you to provide the name of the named type.

The following example uses a CallableStatement to call a procedure named
procout, which returns a CHAR datatype. Note the use of the OracleTypes.CHAR
SQL name in the registerOutParameter() method.

CallableStatement procout = conn.prepareCall ("BEGIN procout (?); END;");
 procout.registerOutParameter (1, OracleTypes.CHAR);
 procout.execute ();
 System.out.println ("Out argument is: " + procout.getString (1));
Oracle Extensions 4-29

Oracle JDBC Packages and Classes
The next example uses a CallableStatement to call procout, which returns a
STRUCT datatype. The form of registerOutParameter() requires you to specify
the name of the SQL type, OracleTypes.STRUCT, as well as the SQL type name
(that is, the name of the named type) EMPLOYEE.

The example assumes that no type mapping has been declared for the EMPLOYEE
type, so it is retrieved into a STRUCT datatype. To retrieve the value of EMPLOYEE
into the default STRUCT datatype, the statement object procout is cast to an
OracleCallableStatement and the getSTRUCT() is applied.

CallableStatement procout = conn.prepareCall ("BEGIN procout (?); END;");
procout.registerOutParameter (1, OracleTypes.STRUCT, "EMPLOYEE");
procout.execute ();

// get the value into a STRUCT because it
// is assumed that no type map has been defined
STRUCT emp = ((OracleCallableStatement)procout).getSTRUCT (1);

OracleTypes and the setNull() Method The SQL types in the OracleTypes class
identify the object, which the setNull() method sets to NULL. The setNull()
method can be found in the java.sql.PreparedStatement and
oracle.jdbc.driver.OraclePreparedStatement classes.

These are the forms that setNull() can take for PreparedStatement and
OraclePreparedStatement classes:

PreparedStatement.setNull(int index, int sqlType)

OraclePreparedStatement.setNull(int index, int sqlType, String sql_name)

In these prototypes, index represents the parameter index, sqlType represents the
SQL datatype (one of the OracleTypes, in this case), and sql_name represents
the name given to the datatype (that is, the name of the "named type"). If you enter
an invalid sqlType, a "Parameter Type Conflict" error is thrown.

You can use the PreparedStatement form of setNull() to set to NULL the
value of an object of any datatype, except STRUCT, ARRAY, or REF.

You can use the OraclePreparedStatement form of setNull() only when you
set to NULL the value of an object of datatype STRUCT, ARRAY, or REF.

The following example uses a PreparedStatement to insert a NULL numeric
value into the database. Note the use of OracleTypes.NUMERIC to identify the
numeric object that is set to NULL.

PreparedStatement pstmt =
4-30 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
 conn.prepareStatement ("INSERT INTO num_table VALUES (?)");

pstmt.setNull (1, OracleTypes.NUMERIC);
pstmt.execute ();

In this example, the prepared statement inserts a NULL STRUCT object of type
EMPLOYEE into the database. Note that an OraclePreparedStatement is
required to set a STRUCT object to NULL. Thus, the prepared statement pstmt must
be cast to OraclePreparedStatement.

PreparedStatement pstmt =
conn.prepareStatement ("INSERT INTO employee_table VALUES (?)");

((OraclePreparedStatement)pstmt).setNull(1, OracleTypes.STRUCT, "EMPLOYEE");
pstmt.execute ();
Oracle Extensions 4-31

Data Access and Manipulation: Oracle Types vs. Java Types
Data Access and Manipulation: Oracle Types vs. Java Types
This section contains the following subsections:

■ Data Conversion Considerations

■ Using Result Set and Statement Extensions

■ Comparing get and set Methods for oracle.sql.* Format with Java Format

■ Using Result Set Meta Data Extensions

This section describes data access in oracle.sql.* formats as opposed to Java
formats. As discussed in the introduction to this chapter, the oracle.sql.*
formats are a key factor of the Oracle JDBC extensions, offering significant
advantages in efficiency and precision in manipulating SQL data.

Using oracle.sql.* formats involves casting your result sets and statements to
OracleResultSet, OracleStatement, OraclePreparedStatement, and
OracleCallableStatement objects as appropriate, and using the
getOracleObject(), setOracleObject(), getXXX(), and setXXX() (where
XXX corresponds to the types in the oracle.sql package) methods of these
classes. Refer to the Javadoc for additional information about these classes and
methods.

Data Conversion Considerations
When JDBC programs retrieve SQL data into Java variables, the SQL data is
converted to the Java datatypes of those variables. The Java datatypes can be
represented as members of the oracle.sql package instead of as members of the
java.lang or java.sql.Types packages. In processing speed and effort, the
oracle.sql.* classes provide the most efficient way of representing SQL data.
These classes store the usual representations of SQL data as byte arrays. They do
not reformat the data or perform any character-set conversions (aside from the
usual network conversions) on it. The data remains in SQL format; therefore, no
information is lost. For SQL primitive types (such as NUMBER, and CHAR), the
oracle.sql.* classes simply wrap the SQL data. For SQL structured types (such
as objects and arrays), the classes provide additional information such as
conversion methods and structure details.

If you are moving data within the database, then you will probably want to keep
your data in oracle.sql.* format. If you are displaying the data, or performing
calculations on it in a Java application running outside of the database, then you
will probably want to represent the data as a member of java.sql.Types.* or
java.lang.*. Similarly, if you are using a parser that expects the data to be in Java
4-32 JDBC Developer’s Guide and Reference

Data Access and Manipulation: Oracle Types vs. Java Types
format, you must represent the data in one of the Java formats instead of as an
oracle.sql.*.

Converting SQL NULL Data
Java represents a SQL NULL datum by the Java value null. Java datatypes fall into
two categories: the fixed set of scalar types (such as byte, int, float) and object
types (such as objects and arrays). The Java scalar types cannot represent null.
Instead, they store the null as the value zero (as defined by the JDBC specification).
This can lead to ambiguity when you try to interpret your results.

In contrast, Java object types can represent null. The Java language defines an
object wrapper type corresponding to every scalar type (for example, Integer for
int, Float for float) that can represent null. The object wrapper types must be
used as the targets for SQL data to detect SQL NULL without ambiguity.

Using Result Set and Statement Extensions
The JDBC Statement object returns an OracleResultSet object, typed as a
java.sql.ResultSet. If you want to apply only standard JDBC methods to the
object, keep it as a ResultSet type. However, if you want to use the Oracle
extensions on the object, you must cast it to an OracleResultSet type. The object
is unchanged. The type by which the Java compiler will identify the object is
changed.

When you execute a SELECT statement in a Java application using a standard JDBC
Statement object, Oracle’s JDBC drivers return a java.sql.ResultSet object.
You can use this standard ResultSet object if all you need are standard JDBC
ResultSet methods, but to use Oracle extensions you must cast the result set to an
OracleResultSet object.

For example, assuming you have a standard Statement object stmt, do the
following if you want to use only standard JDBC ResultSet methods:

ResultSet rs = stmt.executeQuery("SELECT * FROM emp");

If you need the extended functionality provided by the Oracle extensions to JDBC,
you can select the results into a standard ResultSet object, as above, and then cast
that object into an OracleResultSet object later.

Similarly, when you want to execute a stored procedure using a callable statement,
the JDBC drivers will return an OracleCallableStatement object typed as a
java.sql.CallableStatement. If you want to apply only standard JDBC
methods to the object, then keep it as a CallableStatement type. However, if
Oracle Extensions 4-33

Data Access and Manipulation: Oracle Types vs. Java Types
you want to use the Oracle extensions on the object, you must cast it to an
OracleCallableStatement type. The object is unchanged. The type by which
the Java compiler identifies the object is changed.

You use the standard JDBC java.sql.Connection.prepareStatement()
method to create a PreparedStatement object. If you want to apply only
standard JDBC methods to the object, keep it as a PreparedStatement type.
However, if you want to use the Oracle extensions on the object, you must cast it to
an OraclePreparedStatement type. The object is unchanged. The type by
which the Java compiler identifies the object is changed.

Key extensions to the result set and statement classes include
getOracleObject() and setOracleObject() methods that you can use to
access and manipulate data in oracle.sql.* formats instead of standard Java
formats. For more information see the next section: "Comparing get and set
Methods for oracle.sql.* Format with Java Format".

Comparing get and set Methods for oracle.sql.* Format with Java Format
This section describes get and set methods, particularly the JDBC standard
getObject() and setObject() methods and the Oracle-specific
getOracleObject() and setOracleObject() methods, and how to access
data in oracle.sql.* format compared with Java format.

Although there are specific getXXX() methods for all of the Oracle SQL types (as
described in "Other getXXX() Methods" on page 4-37), you can use the general get
methods for convenience or simplicity, or if you are not certain in advance what
type of data you will receive.

Standard getObject() Method
The standard JDBC getObject() method of a result set or callable statement
returns data into a java.lang.Object object. The format of the data returned is
based on its original type, as follows:

■ For SQL datatypes that are not Oracle-specific, getObject() returns the
default Java type corresponding to the column’s SQL type, following the
mapping specified in the JDBC specification.

■ For Oracle-specific datatypes (such as ROWID, discussed in "Additional Type
Extensions" on page 4-111), getObject() returns an object of the appropriate
oracle.sql.* class (such as oracle.sql.ROWID).

■ For Oracle objects, getObject() returns an object of the Java class specified in
your type map. (Type maps specify the correlation between Java classes and
4-34 JDBC Developer’s Guide and Reference

Data Access and Manipulation: Oracle Types vs. Java Types
database SQL types and are discussed in "Understanding Type Maps" on
page 4-66.) The getObject(parameter_index) method uses the
connection’s default type map. The getObject(parameter_index, map)
enables you to pass in a type map. If the type map does not provide a mapping
for a particular Oracle object, then getObject() returns an
oracle.sql.STRUCT object.

For more information on getObject() return types, see Table 4–3, "Summary of
getObject() and getOracleObject() Return Types" on page 4-36.

Oracle getOracleObject() Method
If you want to retrieve data from a result set or callable statement into an
oracle.sql.* object, then cast your result set to an OracleResultSet type or
your callable statement to an OracleCallableStatement type and use the
getOracleObject() method.

When you use getOracleObject(), the data will be of the appropriate
oracle.sql.* type and is returned into an Datum object. The prototype for the
method is:

public oracle.sql.Datum getOracleObject(int parameter_index)

When you have retrieved data into a Datum object, you can use the standard Java
instanceOf() operator to determine which oracle.sql.* type it really is.

For more information on getOracleObject() return types, see Table 4–3,
"Summary of getObject() and getOracleObject() Return Types" on page 4-36.

Example: Using getOracleObject() with a ResultSet The following example creates a table
that contains a column of character data (in this case, a row number) and a column
containing a BFILE locator. A SELECT statement gets the contents of the table into a
result set. The getOracleObject() then retrieves the CHAR data into the
char_datum variable and the BFILE locator into the bfile_datum variable. Note
that because getOracleObject() returns a Datum object, the results must be cast
to CHAR and BFILE respectively.

stmt.execute ("CREATE TABLE bfile_table (x varchar2 (30), b bfile)");
stmt.execute ("INSERT INTO bfile_table VALUES (’one’, bfilename (’TEST_DIR’,
’file1’))");

ResultSet rset = stmt.executeQuery ("SELECT * FROM string_table");
 while (rset.next ())
 {
 CHAR char_datum = (CHAR) ((OracleResultSet)rset).getOracleObject (1);
Oracle Extensions 4-35

Data Access and Manipulation: Oracle Types vs. Java Types
 BFILE bfile_datum = (BFILE) ((OracleResultSet)rset).getOracleObject (2);
 ...
 }

Example: Using getOracleObject() in a Callable Statement The following example prepares
a call to the procedure myGetDate(), which associates a character string (in this
case a name) with a date. The program passes the string SCOTT to the prepared call,
and registers the DATE type as an output parameter. After the call is executed,
getOracleObject() retrieves the date associated with the name SCOTT. Note
that since getOracleObject() returns a Datum object, the results are cast to a
DATE object.

OracleCallableStatement cstmt =
(OracleCallableStatement)conn.prepareCall ("begin myGetDate (?, ?); end;");

cstmt.setString (1, "SCOTT");
cstmt.registerOutParameter (2, Types.DATE);
cstmt.execute ();

DATE date = (DATE) ((OracleCallableStatement)cstmt).getOracleObject (2);
...

Summary of getObject() and getOracleObject() Return Types
Table 4–3 summarizes the information in the preceding sections, "Standard
getObject() Method" on page 4-34 and "Oracle getOracleObject() Method" on
page 4-35.

This table lists the underlying return types for each method for each Oracle SQL
type, but keep in mind the signatures of the methods when you write your code:

■ getObject() always returns data into a java.lang.Object

■ getOracleObject() always returns data into an oracle.sql.Datum

You must cast the returned object to use any special functionality (see "Casting Your
get Method Return Values" on page 4-39).

Table 4–3 Summary of getObject() and getOracleObject() Return Types

Oracle SQL Type
getObject()
Underlying Return Type

getOracleObject()
Underlying Return Type

CHAR String oracle.sql.CHAR

VARCHAR2 String oracle.sql.CHAR
4-36 JDBC Developer’s Guide and Reference

Data Access and Manipulation: Oracle Types vs. Java Types
For information on type compatibility between all SQL and Java types, see
Table 8–1, "Valid SQL Datatype-Java Class Mappings" on page 8-2.

Other getXXX() Methods
Standard JDBC provides a getXXX() for each standard Java type, such as
getByte(), getInt(), getFloat(), and so on. Each of these returns exactly
what the method name implies (a byte, an int, a float, and so on).

In addition, the OracleResultSet and OracleCallableStatement classes
provide a full complement of getXXX() methods corresponding to all of the
oracle.sql.* types. Each getXXX() method returns an oracle.sql.XXX. For
example, getROWID() returns an oracle.sql.ROWID.

LONG String oracle.sql.CHAR

NUMBER java.math.BigDecimal oracle.sql.NUMBER

RAW byte[] oracle.sql.RAW

LONGRAW byte[] oracle.sql.RAW

DATE java.sql.Timestamp oracle.sql.DATE

ROWID oracle.sql.ROWID oracle.sql.ROWID

REF CURSOR java.sql.ResultSet (not supported)

BLOB oracle.sql.BLOB oracle.sql.BLOB

CLOB oracle.sql.CLOB oracle.sql.CLOB

BFILE oracle.sql.BFILE oracle.sql.BFILE

Oracle object class specified in type map

OR

oracle.sql.STRUCT
(if no type map entry)

oracle.sql.STRUCT

Oracle object reference oracle.sql.REF oracle.sql.REF

collection (varray or
nested table)

oracle.sql.ARRAY oracle.sql.ARRAY

Table 4–3 Summary of getObject() and getOracleObject() Return Types (Cont.)

Oracle SQL Type
getObject()
Underlying Return Type

getOracleObject()
Underlying Return Type
Oracle Extensions 4-37

Data Access and Manipulation: Oracle Types vs. Java Types
Some of these extensions are taken from the JDBC 2.0 specification. They return
objects of type oracle.jdbc2.* instead of oracle.sql.*. For example,
compare the prototypes:

oracle.jdbc2.Blob getBlob(int parameter_index)

which returns an oracle.jdbc2 type for BLOBs, in contrast to:

oracle.sql.BLOB getBLOB(int parameter_index)

which returns an oracle.sql type for BLOBs.

Although there is no particular performance advantage in using the specific
getXXX() methods, they can save you the trouble of casting because they return
specific object types.

Table 4–4 summarizes the underlying return types and the signature types for each
getXXX() method. You must cast to an OracleResultSet or
OracleCallableStatement to use methods that are Oracle-specific.

Table 4–4 Summary of getXXX() Return Types

Method Underlying Return Type Signature Type
Oracle
Specific?

getArray() oracle.sql.ARRAY oracle.jdbc2.Array Yes

getARRAY() oracle.sql.ARRAY oracle.sql.ARRAY Yes

getBfile() oracle.sql.BFILE oracle.sql.BFILE Yes

getBFILE() oracle.sql.BFILE oracle.sql.BFILE Yes

getBigDecimal() BigDecimal BigDecimal No

getBlob() oracle.sql.BLOB oracle.jdbc2.Blob Yes

getBLOB oracle.sql.BLOB oracle.sql.BLOB Yes

getBoolean() boolean boolean No

getByte() byte byte No

getBytes() byte[] byte[] No

getCHAR() oracle.sql.CHAR oracle.sql.CHAR Yes

getClob() oracle.sql.CLOB oracle.jdbc2.Clob Yes

getCLOB() oracle.sql.CLOB oracle.sql.CLOB Yes

getDate() java.sql.Date java.sql.Date No
4-38 JDBC Developer’s Guide and Reference

Data Access and Manipulation: Oracle Types vs. Java Types
Casting Your get Method Return Values
As described in "Standard getObject() Method" on page 4-34, Oracle’s
implementation of getObject() always returns a java.lang.Object and
getOracleObject() always returns an oracle.sql.Datum. Usually, you
would cast the returned object to the appropriate class so that you could use
particular methods and functionality of that class.

In addition, you have the option of using a specific getXXX() method instead of
the generic getObject() or getOracleObject() methods. The getXXX()
methods enable you to avoid casting because the return type of getXXX()
corresponds to the type of object returned. For example, getCLOB() returns an
oracle.sql.CLOB as opposed to a java.lang.Object.

Example: Casting Return Values This example assumes that you have fetched data of
type CHAR into a result set (where it is in column 1). Because you want to

getDATE() oracle.sql.DATE oracle.sql.DATE Yes

getDouble() double double No

getFloat() float float No

getInt() int int No

getLong() long long No

getNUMBER() oracle.sql.NUMBER oracle.sql.NUMBER Yes

getRAW() oracle.sql.RAW oracle.sql.RAW Yes

getRef() oracle.sql.REF oracle.jdbc2.Ref Yes

getREF() oracle.sql.REF oracle.sql.REF Yes

getROWID() oracle.sql.ROWID oracle.sql.ROWID Yes

getShort() short short No

getString() String String No

getSTRUCT() oracle.sql.STRUCT. oracle.sql.STRUCT Yes

getTime() java.sql.Time java.sql.Time No

getTimestamp java.sql.Timestamp java.sql.Timestamp No

Table 4–4 Summary of getXXX() Return Types (Cont.)

Method Underlying Return Type Signature Type
Oracle
Specific?
Oracle Extensions 4-39

Data Access and Manipulation: Oracle Types vs. Java Types
manipulate the CHAR data without losing precision, cast your result set to an
OracleResultSet ors and use getOracleObject() to return the CHAR data.
(If you do not cast your result set, you have to use getObject(), which returns
your character data into a Java String and loses some of the precision of your SQL
data.) By casting the result set, you can use getOracleObject() and return data
in oracle.sql.* format.

The getOracleObject() method returns an oracle.sql.CHAR object into an
oracle.sql.Datum return variable unless you cast the output. Cast the
getOracleObject() output to oracle.sql.CHAR if you want to use a CHAR
return variable and later use any special functionality of that class (such as the
getCharacterSet() method that returns the character set used to represent the
characters).

CHAR char = (CHAR)ors.getOracleObject(1);
CharacterSet cs = char.getCharacterSet();

Alternatively, return into a generic oracle.sql.Datum return variable and cast
this object later whenever you must use the CHAR getCharacterSet() method.

Datum rawdatum = ors.getOracleObject(1);
...
CharacterSet cs = ((CHAR)rawdatum).getCharacterSet();

This uses the getCharacterSet() method of oracle.sql.CHAR. The
getCharacterSet() method is not defined on oracle.sql.Datum and would
not be reachable without the cast.

Standard setObject() and Oracle setOracleObject() Methods
Just as there is a standard getObject() and Oracle-specific
getOracleObject() in result sets and callable statements for retrieving data,
there is also a standard setObject() and an Oracle-specific
setOracleObject() in Oracle prepared statements and callable statements for
updating data. The setOracleObject() methods take oracle.sql.* input
parameters.

You can use the setObject() method to bind standard Java types to a prepared
statement or callable statement; it takes a java.lang.Object as input. You can
use the setOracleObject() method to bind oracle.sql.* types; it takes an
oracle.sql.Datum (or any subclass) as input. The setObject() method
supports some oracle.sql.* types—see note below. For other oracle.sql.*
types, you must use setOracleObject().
4-40 JDBC Developer’s Guide and Reference

Data Access and Manipulation: Oracle Types vs. Java Types
To use setOracleObject(), you must cast your prepared statement or callable
statement to an OraclePreparedStatement or OracleCallableStatement
object.

Example: Using setObject() and setOracleObject() in a Prepared Statement This example
assumes that you have fetched character data into a standard result set (where it is
in column 1), and you want to cast the results to an OracleResultSet so that you
can use Oracle-specific formats and methods. Since you want to use the data as
oracle.sql.CHAR format, cast the results of the getOracleObject() (which
returns type oracle.sql.Datum) to CHAR. Similarly, since you want to
manipulate the data in column 2 as strings, cast the data to a Java String type
(since getObject() returns data of type Object). In this example, rs represents
the result set, charVal represents the data from column 1 in oracle.sql.CHAR
format, and strVal represents the data from column 2 in Java String format.

CHAR charVal=(CHAR)((OracleResultSet)rs).getOracleObject(1);
String strVal=(String)rs.getObject(2);
...

For some prepared statement ps, the setOracleObject() method binds the
oracle.sql.CHAR data represented by the charVal variable to the prepared
statement. To bind the oracle.sql.* data, the prepared statement must be cast to
an OraclePreparedStatement. Similarly, the setObject() method binds the
Java String data represented by the variable strVal.

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
((OraclePreparedStatement)ps).setOracleObject(1,charVal);
ps.setObject(2,strVal);

Other setXXX() Methods
As with getXXX() methods, there are several specific setXXX() methods.
Standard setXXX() methods are provided for binding standard Java types, and
Oracle-specific setXXX() methods are provided for binding Oracle-specific types.

In addition, for compatibility with the JDBC 2.0 standard,
OraclePreparedStatement and OracleCallableStatement classes provide
setXXX() methods that take oracle.jdbc2 input parameters for BLOBs, CLOBs,

Note: The setObject() method has been implemented so that
you can also input instances of the oracle.sql.* classes that
correspond to JDBC 2.0-compliant Oracle extensions: BLOB, CLOB,
BFILE, STRUCT, REF, and ARRAY.
Oracle Extensions 4-41

Data Access and Manipulation: Oracle Types vs. Java Types
object references, and arrays. For example, there is a setBlob() method that takes
an oracle.jdbc2.Blob input parameter, and a setBLOB() method that takes an
oracle.sql.BLOB input parameter.

Similarly, there are two forms of the setNull() method:

■ void setNull(int parameterIndex, int sqlType)

behaves in a similar way to the standard Java
java.sql.PreparedStatement.setNull(). This method takes a
parameter index and a SQL type code defined by java.sql.Types. You use
this method to set an object (except for REFs, ARRAYs, or STRUCTs) to NULL.

■ void setNull(int parameterIndex, int sqlType, String sql_type_name)

takes a SQL type name in addition to a parameter index and a SQL type code.
You use this method only when the SQL type code is REF, ARRAY, or STRUCT.

Similarly, the OracleCallableStatement.registerOutParameter() method
also has an overloaded method that you use when working with REFs, ARRAYs, or
STRUCTs.

void registerOutParameter(int parameterIndex, int sqlType, String
sql_type_name)

There is no particular performance advantage in using the specific setXXX()
methods for binding Oracle-specific types over the methods for binding standard
Java types.

Table 4–5 summarizes the input types for all of the setXXX() methods. To use
methods that are Oracle-specific, you must cast your statement to an
OraclePreparedStatement or OracleCallableStatement.

Table 4–5 Summary of setXXX() Input Parameter Types

Method Input Parameter Type Oracle Specific?

setArray() oracle.jdbc2.Array Yes

setARRAY() oracle.sql.ARRAY Yes

setBfile() oracle.sql.BFILE Yes

setBFILE() oracle.sql.BFILE Yes

setBigDecimal() BigDecimal No

setBlob() oracle.jdbc2.Blob Yes

setBLOB() oracle.sql.BLOB Yes
4-42 JDBC Developer’s Guide and Reference

Data Access and Manipulation: Oracle Types vs. Java Types
For information on type compatibility between all SQL and Java types, see
Table 8–1, "Valid SQL Datatype-Java Class Mappings" on page 8-2.

setBoolean() boolean No

setByte() byte No

setBytes() byte[] No

setCHAR() oracle.sql.CHAR Yes

setClob() oracle.jdbc2.Clob Yes

setCLOB() oracle.sql.CLOB Yes

setDate() java.sql.Date No

setDATE() oracle.sql.DATE Yes

setDouble() double No

setFloat() float No

setInt() int No

setLong() long No

setNUMBER() oracle.sql.NUMBER Yes

setRAW() oracle.sql.RAW Yes

setRef() oracle.jdbc2.Ref Yes

setREF() oracle.sql.REF Yes

setROWID() oracle.sql.ROWID Yes

setShort() short No

setString() String No

setSTRUCT() oracle.sql.STRUCT Yes

setTime() java.sql.Time No

setTimestamp() java.sql.Timestamp No

Table 4–5 Summary of setXXX() Input Parameter Types (Cont.)

Method Input Parameter Type Oracle Specific?
Oracle Extensions 4-43

Data Access and Manipulation: Oracle Types vs. Java Types
Using Result Set Meta Data Extensions
Although the oracle.jdbc.driver.OracleResultSetMetaData class does
not implement the full JDBC 2.0 API for retrieving result set meta data, it does
provide many methods to retrieve information about an Oracle result set.

The getColumnTypeName() method takes a column number and returns the SQL
type name for columns of type REF, STRUCT, or ARRAY. In contrast, the
getColumnType() method takes a column number and returns the SQL type. If
the column stores an Oracle object or collection, then it returns an
OracleTypes.STRUCT or an OracleTypes.ARRAY. For a list of the key methods
provided by OracleResultSetMetadata, see "Class
oracle.jdbc.driver.OracleResultSetMetaData" on page 4-28.

The following example uses several of the methods in the
OracleResultSetMetadata class to retrieve the number of columns from the
EMP table, and each column’s numerical type and SQL type name.

DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rset = dbmd.getTables("", "SCOTT", "EMP", null);

 while (rset.next())
 {
 OracleResultSetMetaData orsmd = ((OracleResultSet)rset).getMetaData();
 int numColumns = orsmd.getColumnCount();
 System.out.println("Num of columns = " + numColumns);

 for (int i=0; i<numColumns; i++)
 {
 System.out.print ("Column Name=" + orsmd.getColumnName (i+1));
 System.out.print (" Type=" + orsmd.getColumnType (i + 1));
 System.out.println (" Type Name=" + orsmd.getColumnTypeName (i + 1));
 }
}

The program returns the following output:

Num of columns = 5
Column Name=TABLE_CAT Type=12 Type Name=VARCHAR2
Column Name=TABLE_SCHEM Type=12 Type Name=VARCHAR2
Column Name=TABLE_NAME Type=12 Type Name=VARCHAR2
Column Name=TABLE_TYPE Type=12 Type Name=VARCHAR2
Column Name=TABLE_REMARKS Type=12 Type Name=VARCHAR2
4-44 JDBC Developer’s Guide and Reference

Working with LOBs
Working with LOBs
This section has these subsections:

■ Getting BLOB and CLOB Locators

■ Passing BLOB and CLOB Locators

■ Reading and Writing BLOB and CLOB Data

■ Creating and Populating a BLOB or CLOB Column

■ Accessing and Manipulating BLOB and CLOB Data

■ Getting BFILE Locators

■ Passing BFILE Locators

■ Reading BFILE Data

■ Creating and Populating a BFILE Column

■ Accessing and Manipulating BFILE Data

LOBs can be either internal or external. Internal LOBs, as their name suggests, are
stored inside database tablespaces in a way that optimizes space and provides
efficient access. The JDBC drivers provide support for two types of internal LOBs:
BLOBs (unstructured binary data) and CLOBs (single-byte character data). BLOB and
CLOB data is accessed and referenced by using a locator which is stored in the
database table and points to the BLOB or CLOB data.

External LOBs (BFILES) are large binary data objects stored in operating system
files outside of database tablespaces. These files use reference semantics. They may
also be located on tertiary storage devices such as hard disks, CD-ROMs, PhotoCDs
and DVDs. Like BLOBs and CLOBs, a BFILE is accessed and referenced by a locator
which is stored in the database table and points to the BFILE data.

This section describes how you use JDBC and the oracle.sql.* classes to work
with LOBs. To work with LOB data, you must first obtain its locator from the table.
Then, you can read data from or write data to the LOB and perform various types of
data manipulation. This section also describes how to create and populate a LOB
column in a table.

The JDBC drivers support these oracle.sql.* classes for BLOBs, CLOBs, and
BFILEs:

■ oracle.sql.BLOB

■ oracle.sql.CLOB
Oracle Extensions 4-45

Working with LOBs
■ oracle.sql.BFILE

The oracle.sql.BLOB and CLOB classes implement the oracle.jdbc2.Blob
and Clob interfaces, respectively. In contrast, BFILEs have no oracle.jdbc2
interface.

Instances of these classes contain only the locators for these datatypes, not the data.
After accessing the locators, you must perform some additional steps to access the
data. These steps are described in "Reading and Writing BLOB and CLOB Data" on
page 4-48 and "Reading BFILE Data" on page 4-57.

Getting BLOB and CLOB Locators
Given a standard JDBC result set or callable statement object that includes BLOB or
CLOB locators, you can access the locators by using the standard
ResultSet.getObject() method. This method returns an oracle.sql.BLOB
object or oracle.sql.CLOB object, as applicable (but note that it returns the BLOB
or CLOB into a variable of type oracle.jdbc2.Blob or oracle.jdbc2.Clob).

You can also access the locators by casting your result set to OracleResultSet or
your callable statement to OracleCallableStatement and using the
getOracleObject(), getBLOB(), or getCLOB() method, as appropriate.

In the OracleResultSet and OracleCallableStatement classes, getBlob()
returns oracle.jdbc2.Blob, and getBLOB() returns oracle.sql.BLOB.
Similarly, getCLOB() returns oracle.jdbc2.CLOB and getClob() returns
oracle.sql.Clob.

Example: Getting BLOB and CLOB Locators from a Result Set Assume the database has a
table called lob_table with a column for a BLOB locator, blob_col, and a
column for a CLOB locator, clob_col. This example assumes that you have already
created the Statement object, stmt.

Notes:

■ If using getObject() or getOracleObject(), then
remember to cast the output as necessary. For more
information, see "Casting Your get Method Return Values" on
page 4-39.

■ Refer the Javadoc for more information about specific features
of the oracle.sql.BLOB and oracle.sql.CLOB classes.
4-46 JDBC Developer’s Guide and Reference

Working with LOBs
First, select the LOB locators into a standard result set, then get the LOB data into
appropriate Java classes:

// Select LOB locator into standard result set.
ResultSet rs =
 stmt.executeQuery ("SELECT blob_col, clob_col FROM lob_table");
while (rs.next())
{
 // Get LOB locators into Java wrapper classes.
 oracle.jdbc2.Blob blob = (oracle.jdbc2.Blob)rs.getObject(1);
 oracle.jdbc2.Clob clob = (oracle.jdbc2.Clob)rs.getObject(2);
 [...process...]
}

The output is cast to oracle.jdbc2.Blob and Clob. As an alternative, you can
cast the output to oracle.sql.BLOB and CLOB to take advantage of extended
functionality offered by the oracle.sql.* classes. For example, you can rewrite
the above code to get the LOB locators as:

 // Get LOB locators into Java wrapper classes.
 oracle.sql.BLOB blob = (BLOB)rs.getObject(1);
 oracle.sql.CLOB clob = (CLOB)rs.getObject(2);
 [...process...]

Example: Getting a CLOB Locator from a Callable Statement The callable statement
methods for retrieving LOBs are identical to the result set methods. In the case of a
callable statement, register the output parameter as OracleTypes.BLOB or
OracleTypes.CLOB.

For example, if you have an OracleCallableStatement ocs that calls a
function func that has a CLOB output parameter, then set up the callable statement
as follows:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}")
ocs.registerOutParameter(1, OracleTypes.CLOB);
ocs.executeQuery()
oracle.sql.CLOB clob = ocs.getCLOB(1);

Passing BLOB and CLOB Locators
To pass a LOB locator to a prepared statement or callable statement (to update a
LOB locator in the database, for example), you can use the generic setObject()
method, or you can cast the statement to OraclePreparedStatement or
OracleCallableStatement and use the setOracleObject(), setBLOB(), or
Oracle Extensions 4-47

Working with LOBs
setCLOB() method, as appropriate. These methods take the parameter index and a
BLOB object or CLOB object as input.

Example: Passing a BLOB Locator to a Prepared Statement If you have an
OraclePreparedStatement ops where its first parameter is a BLOB named
my_blob, then input the BLOB to the prepared statement as follows:

OraclePreparedStatement ops = (OraclePreparedStatement)conn.prepareStatement
("INSERT INTO blob_table VALUES(?)");

ops.setBLOB(1, my_blob);
ops.execute();

Example: Passing a CLOB Locator to a Callable Statement If you have an
OracleCallableStatement ocs where its first parameter is a CLOB, then input
the CLOB to the callable statement as follows:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? := call func()}")
ocs.setClob(1, my_clob)
ocs.execute();

Reading and Writing BLOB and CLOB Data
The SQL SELECT statement queries for LOB locators. Once you have the locator,
you can read and write the LOB data from JDBC. LOB data is materialized as a Java
stream. However, unlike most Java streams, a locator representing the LOB data is
stored in the table. Thus, you can access the LOB data at any time during the life of
the connection.

To read and write the LOB data, use the methods in the oracle.sql.BLOB or
oracle.sql.CLOB class, as appropriate. These classes provide functionality such
as reading from the LOB into an input stream, writing from an output stream into a
LOB, determining the length of a LOB, and closing a LOB.
4-48 JDBC Developer’s Guide and Reference

Working with LOBs
To read and write LOB data, you can use these methods:

■ To read from a BLOB, use the getBinaryStream() method of an
oracle.sql.BLOB object to retrieve the entire BLOB as an input stream. This
returns a java.io.InputStream object.

As with any InputStream object, use one of the overloaded read() methods
to read the LOB data and use the close() method when you finish.

■ To write to a BLOB, use the getBinaryOutputStream() method of an
oracle.sql.BLOB object to retrieve the BLOB as an output stream. This
returns a java.io.OutputStream object to be written back to the BLOB.

As with any OutputStream object, use one of the overloaded write()
methods to update the LOB data and use the close() method when you finish.

■ To read from a CLOB, use the getAsciiStream() or
getCharacterStream() method of an oracle.sql.CLOB object to retrieve
the entire CLOB as an input stream. The getAsciiStream() method returns
an ASCII input stream in a java.io.InputStream object; the
getCharacterStream() method returns a Unicode input stream in a
java.io.Reader object.

As with any InputStream or Reader object, use one of the overloaded
read() methods to read the LOB data and use the close() method when you
finish.

Notes:

■ The implementation of the data access API uses direct native
calls in the JDBC OCI and Server drivers, thereby providing
better performance. You can use the same API on the LOB
classes in all Oracle 8.1.5 JDBC drivers.

■ In the case of the JDBC Thin driver only, the implementation of
the data access API uses the DBMS_LOB package internally. You
never have to use DBMS_LOB directly. This is in contrast to the
8.0.x drivers. For more information on the DBMS_LOB package,
see the Oracle8i Application Developer’s Guide - Large Objects
(LOBs) and the Oracle8i Application Developer’s Reference -
Packages.
Oracle Extensions 4-49

Working with LOBs
You can also use the getSubString() method of oracle.sql.CLOB object
to retrieve a subset of the CLOB as a character string of type
java.lang.String.

■ To write to a CLOB, use the getAsciiOutputStream() or
getCharacterOutputStream() method of an oracle.sql.CLOB object to
retrieve the CLOB as an output stream to be written back to the CLOB. The
getAsciiOutputStream() method returns an ASCII output stream in a
java.io.OutputStream object; the getCharacterOutputStream()
method returns a Unicode output stream in a java.io.Writer object.

As with any OutputStream or Writer object, use one of the overloaded
write() methods to update the LOB data and use the close() method when
you finish.

Example: Reading BLOB Data Use the getBinaryStream() method of the
oracle.sql.BLOB class to read BLOB data. The getBinaryStream() method
reads the BLOB data into a binary stream.

The following example uses the getBinaryStream() method to read BLOB data
into a byte stream and then reads the byte stream into a byte array (returning the
number of bytes read as well).

// Read BLOB data from BLOB locator.
InputStream byte_stream = my_blob.getBinaryStream();
byte [] byte_array = new byte [10];
int bytes_read = byte_stream.read(byte_array);
...

Example: Reading CLOB Data The following example uses the
getCharacterStream() method to read CLOB data into a Unicode character
stream. It then reads the character stream into a character array (returning the
number of characters read as well).

Notes:

■ The stream "write" methods described in this section write
directly to the database when you write to the output stream.
You do not need to execute an UPDATE/COMMIT to write the
data.

■ When writing to or reading from a CLOB, the JDBC drivers
handle all character set conversions for you.
4-50 JDBC Developer’s Guide and Reference

Working with LOBs
// Read CLOB data from CLOB locator into Reader char stream.
Reader char_stream = my_clob.getCharacterStream();
char [] char_array = new char [10];
int chars_read = char_stream.read (char_array, 0, 10);
...

The next example uses the getAsciiStream() method of the oracle.sql.CLOB
class to read CLOB data into an ASCII character stream. It then reads the ASCII
stream into a byte array (returning the number of bytes read as well).

// Read CLOB data from CLOB locator into Input ASCII character stream
Inputstream asciiChar_stream = my_clob.getAsciiStream();
 byte[] asciiChar_array = new byte[10];
 int asciiChar_read = asciiChar_stream.read(asciiChar_array,0,10);

Example: Writing BLOB Data Use the getBinaryOutputStream() method of an
oracle.sql.BLOB object to write BLOB data.

The following example reads a vector of data into a byte array, then uses the
getBinaryOutputStream() method to write an array of character data to a
BLOB.

java.io.OutputStream outstream;

// read data into a byte array
byte[] data = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

// write the array of binary data to a BLOB
outstream = ((BLOB)my_blob).getBinaryOutputStream();
outstream.write(data);
...

Example: Writing CLOB Data Use the getCharacterOutputStream() method or
the getAsciiOutputStream() method to write data to a CLOB. The
getCharacterOutputStream() method returns a Unicode output stream; the
getAsciiOutputStream() method returns an ASCII output stream.

The following example reads a vector of data into a character array, then uses the
getCharacterOutputStream() method to write the array of character data to a
CLOB. The getCharacterOutputStream() method returns a java.io.Writer
object in an oracle.sql.CLOB, not an oracle.jdbc2.Clob.

java.io.Writer writer

// read data into a character array
Oracle Extensions 4-51

Working with LOBs
char[] data = {’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’};

// write the array of character data to a CLOB
writer = ((CLOB)my_clob).getCharacterOutputStream();
writer.write(data);
writer.flush();
writer.close();
...

The next example reads a vector of data into a byte array, then uses the
getAsciiOutputStream() method to write the array of ASCII data to a CLOB.
Because getAsciiOutputStream() returns an ASCII output stream, you must
cast the output to a oracle.sql.CLOB datatype.

java.io.OutputStream out

// read data into a byte array
byte[] data = {’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’};

// write the array of ascii data to a CLOB
out = ((CLOB)clob).getAsciiOutputStream();
out.write(data);
out.flush();
out.close();

Creating and Populating a BLOB or CLOB Column
You create and populate a BLOB or CLOB column in a table by using SQL
statements.

You create a BLOB or CLOB column in a table with the SQL CREATE TABLE
statement. Then, you populate the LOB. This includes creating the LOB entry in the
table, obtaining the LOB locator, creating a file handler for the data (if you are
reading the data from a file), and then copying the data into the LOB.

Creating a BLOB or CLOB Column in a New Table
To create a BLOB or CLOB column in a new table, execute the SQL CREATE TABLE
statement. The following example code creates a BLOB column in a new table. This

Note: To create a BLOB or CLOB column in a table, you must use
SQL statements. Using the Java new, such as "new BLOB" or "new
CLOB" will not work.
4-52 JDBC Developer’s Guide and Reference

Working with LOBs
example assumes that you have already created your Connection object conn and
Statement object stmt:

String cmd = "CREATE TABLE my_blob_table (x varchar2 (30), c blob)";
stmt.execute (cmd);

In this example, the VARCHAR2 column designates a row number, such as one or
two, and the blob column stores the locator of the BLOB data.

Populating a BLOB or CLOB Column in a New Table
This example demonstrates how to populate a BLOB or CLOB column by reading
data from a stream. These steps assume that you have already created your
Connection object conn and Statement object stmt. The table my_blob_table
is the table that was created in the previous section.

The following example writes the GIF file john.gif to a BLOB.

1. Begin by using SQL statements to create the BLOB entry in the table. Use the
empty_blob syntax to create the BLOB locator.

stmt.execute ("insert into my_blob_table values (’row1’, empty_blob()");

2. Get the BLOB locator from the table.

BLOB blob;
cmd = "SELECT * FROM my_blob_table WHERE X=’row1’";
ResultSet rest = stmt.executeQuery(cmd);
BLOB blob = ((OracleResultSet)rset).getBLOB(2);

3. Declare a file handler for the john.gif file, then print the length of the file.
This value will be used later to ensure that the entire file is read into the BLOB.
Next, create a FileInputStream object to read the contents of the GIF file,
and an OutputStream object to retrieve the BLOB as a stream.

File binaryFile = new File("john.gif");
System.out.println("john.gif length = " + binaryFile.length());
 FileInputStream instream = new FileInputStream(binaryFile);
 OutputStream outstream = blob.getBinaryOutputStream();

4. Call getChunkSize() to determine the ideal chunk size to write to the BLOB,
then create the buffer byte array.

 int chunk = blob.getChunkSize();
 byte[] buffer = new byte[chunk];
 int length = -1;
Oracle Extensions 4-53

Working with LOBs
5. Use the read() method to read the GIF file to the byte array buffer, then use
the write() method to write it to the BLOB. When you finish, close the input
and output streams.

 while ((length = instream.read(buffer)) != -1)
 outstream.write(buffer, 0, length);
 instream.close();
 outstream.close();

Once your data is in the BLOB or CLOB, you can manipulate the data. This is
described in the following section, "Accessing and Manipulating BLOB and CLOB
Data".

Accessing and Manipulating BLOB and CLOB Data
Once you have your BLOB or CLOB locator in a table, you can access and
manipulate the data to which it points. To access and manipulate the data, you first
must select their locators from a result set or from a callable statement. "Getting
BLOB and CLOB Locators" on page 4-46 describes these techniques in detail.

After you select the locators, you can get the BLOB or CLOB data. You will usually
want to cast the result set to the OracleResultSet datatype so that you can
retrieve the data in oracle.sql.* format. After getting the BLOB or CLOB data,
you can manipulate it however you want.

This example is a continuation of the example in the previous section. It uses the
SQL SELECT statement to select the BLOB locator from the table my_blob_table
into a result set. The result of the data manipulation is to print the length of the
BLOB in bytes.

// Select the blob - what we are really doing here
// is getting the blob locator into a result set
BLOB blob;
cmd = "SELECT * FROM my_blob_table";
ResultSet rset = stmt.executeQuery (cmd)

// Get the blob data - cast to OracleResult set to
// retrieve the data in oracle.sql format
String index = ((OracleResultSet)rset).getString(1);
blob = ((OracleResultSet)rset).getBLOB(2);

// get the length of the blob
int length = blob.getlength();

// print the length of the blob
4-54 JDBC Developer’s Guide and Reference

Working with LOBs
System.out.println("blob length" + length);

// read the blob into a byte array
// then print the blob from the array
byte bytes[] = blob.getBytes(0, length);
printBytes(bytes, length);

Getting BFILE Locators
Given a standard JDBC result set or callable statement object that includes BFILE
locators, you can access the locators by using the standard
ResultSet.getObject() method. This method returns an oracle.sql.BFILE
object.

You can also access the locators by casting your result set to OracleResultSet or
your callable statement to OracleCallableStatement and using the
getOracleObject() or getBFILE() method.

Example: Getting a BFILE locator from a Result Set Assume that the database has a table
called bfile_table with a single column for the BFILE locator bfile_col. This
example assumes that you have already created your Statement object stmt.

Select the BFILE locator into a standard result set. If you cast the result set to an
OracleResultSet, you can use getBFILE() to get the BFILE data:

// Select the BFILE locator into a result set
ResultSet rs = stmt.executeQuery("SELECT bfile_col FROM bfile_table");
 while (rs.next())
 {
 oracle.sql.BFILE my_bfile = ((OracleResultSet)rs).getBFILE(1);
 };

Notes:

■ In the OracleResultSet and OracleCallableStatement
classes, getBFILE() and getBfile() both return
oracle.sql.BFILE. There is no oracle.jdbc2 class for
BFILE.

■ If using getObject() or getOracleObject(), remember to
cast the output, as necessary. For more information, see
"Casting Your get Method Return Values" on page 4-39.
Oracle Extensions 4-55

Working with LOBs
Note that as an alternative, you can use getObject() to return the BFILE locator.
In this case, since getObject() returns a java.lang.Object, cast the results to
BFILE. For example:

 oracle.sql.BFILE my_bfile = (BFILE)rs.getObject(1);

Example: Getting a BFILE Locator from a Callable Statement Assume you have an
OracleCallableStatement ocs that calls a function func that has a BFILE
output parameter. The following code example sets up the callable statement,
registers the output parameter as OracleTypes.BFILE, executes the statement,
and retrieves the BFILE locator:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}")
ocs.registerOutParameter(1, OracleTypes.BFILE);
ocs.execute();
oracle.sql.BFILE bfile = ocs.getBFILE(1);

Passing BFILE Locators
To pass a BFILE locator to a prepared statement or callable statement (to update a
BFILE locator, for example), you can use the generic setObject() method or you
can cast the statement to OraclePreparedStatement or
OracleCallableStatement and use the setOracleObject() or setBFILE()
method. These methods take the parameter index and an oracle.sql.BFILE
object as input.

Example: Passing a BFILE Locator to a Prepared Statement You want to insert a BFILE
locator into a table. Assume that you have an OraclePreparedStatement ops
where the first parameter is a string (to designate a row number), its second
parameter is a BFILE, and you have a valid oracle.sql.BFILE object (bfile).
Input the BFILE to the prepared statement as follows:

OraclePreparedStatement ops =
(OraclePreparedStatement)conn.prepareStatement

("INSERT INTO my_bfile_table VALUES (?,?)");
ops.setString(1,"one");
ops.setBFILE(2, bfile);
ops.execute();

Example: Passing a BFILE Locator to a Callable Statement Passing a BFILE locator to a
callable statement is similar to passing it to a prepared statement. In this case, the
BFILE locator is passed to the myGetFileLength() procedure, which returns the
BFILE length as a numeric value.
4-56 JDBC Developer’s Guide and Reference

Working with LOBs
OracleCallableStatement cstmt =
 (OracleCallableStatement)
 conn.prepareCall ("begin ? := myGetFileLength (?); end;");
 try
 {
 cstmt.registerOutParameter (1, Types.NUMERIC);
 cstmt.setBFILE (2, bfile);
 cstmt.execute ();
 return cstmt.getLong (1);
 }
 finally
 {
 cstmt.close ();
 }
 }

Reading BFILE Data
To read BFILE data, you must first get the BFILE locator. You can get the locator
from either a callable statement or a result set. "Getting BFILE Locators" on
page 4-55 describes this.

Once you obtain the locator, there are a number of methods that you can perform on
the BFILE without opening it. For example, you can use the oracle.sql.BFILE
methods fileExists() and isFileOpen() to determine whether the BFILE
exists and if it is open. However, if you want to read and manipulate the data, you
must open the BFILE. BFILE data is materialized as a Java stream. Operate on
BFILEs from JDBC as follows:

■ To read from a BFILE, use the getBinaryStream() method of an
oracle.sql.BFILE object to retrieve the entire file as an input stream. This
returns a java.io.InputStream class.

As with any InputStream object, use one of the overloaded read() methods
to read the file data and use the close() method when you finish.
Oracle Extensions 4-57

Working with LOBs
Example: Reading BFILE Data The following example uses the getBinaryStream()
method of an oracle.sql.BFILE object to read BFILE data into a byte stream
and then read the byte stream into a byte array. The example assumes that the
BFILE has already been opened.

// Read BFILE data from a BFILE locator
Inputstream in = bfile.getBinaryStream();
byte[] byte_array = new byte{10};
int byte_read = in.read(byte_array);

Creating and Populating a BFILE Column
You create a BFILE column in a table with SQL statements and specify the location
where the BFILE resides. The examples below assume that you have already
created your Connection object conn and Statement object stmt.

Creating a BFILE Column in a New Table
To work with BFILE data, create a BFILE column in a table and specify the location
of the BFILE. To specify the location of the BFILE, use the SQL CREATE
DIRECTORY...AS statement to specify an alias for the directory where the BFILE
resides. Then execute the statement. In this example, the directory alias is
test_dir and the location where the BFILE resides is /home/work.

String cmd;
cmd = "CREATE DIRECTORY test_dir AS ’/home/work’";
stmt.execute (cmd);

Use the SQL CREATE TABLE statement to create a table containing a BFILE column,
then execute the statement. In this example, the name of the table is
my_bfile_table.

// Create a table containing a BFILE field
cmd = "CREATE TABLE my_bfile_table (x varchar2 (30), b bfile)";
stmt.execute (cmd);

Notes:

■ BFILEs are read-only. You cannot insert data or otherwise write
to a BFILE.

■ You cannot use JDBC to create a new BFILE.
4-58 JDBC Developer’s Guide and Reference

Working with LOBs
In this example, the VARCHAR2 column designates a row number and the bfile
column stores the locator of the BFILE data.

Populating a BFILE Column
Use the SQL INSERT INTO...VALUES statement to populate the VARCHAR2 and
bfile fields, then execute the statement. The bfile column is populated with the
locator to the BFILE data. To populate the BFILE column, use the bfilename
keyword to specify the directory alias and the name of the BFILE file.

cmd ="INSERT INTO my_bfile_table VALUES (’one’, bfilename(test_dir,
 ’file1.data’))";
stmt.execute (cmd);
cmd ="INSERT INTO my_bfile_table VALUES (’two’, bfilename(test_dir,
 ’jdbcTest.data’))";
stmt.execute (cmd);

In this example, the name of the directory alias is test_dir. The locator of the
BFILE file1.data is loaded into the bfile column on row one, and the locator
of the BFILE jdbcTest.data is loaded into the bfile column on row two.

As an alternative, you might want to create the row for the row number and BFILE
locator now, but wait until later to insert the locator. In this case, insert the row
number into the table, and null as a place holder for the BFILE locator.

cmd ="INSERT INTO my_bfile_table VALUES (’three’, null)";
stmt.execute(cmd);

Here, three is inserted into the row number column and null is inserted as the
place holder. Later in your program, insert the BFILE locator into the table by using
a prepared statement.

First get a valid BFILE locator into the bfile object:

rs = stmt.executeQuery("SELECT b FROM my_bfile_table WHERE x=’two’");
 rs.next()
 oracle.sql.BFILE bfile = ((OracleResultSet)rs).getBFILE(2);

Then, create your prepared statement. Note that because this example uses the
setBFILE() method to identify the BFILE, the prepared statement must be cast to
an OraclePreparedStatement:

OraclePreparedStatement ops =
(OraclePreparedStatement)conn.prepareStatement(INSERT ? INTO my_bfile_table)
 WHERE (x = ’three’);
ops.setBFILE(2, bfile);
Oracle Extensions 4-59

Working with LOBs
ops.execute();

Now row two and row three contain the same BFILE.

Once you have the BFILE locators available in a table, you can access and
manipulate the BFILE data. The next section, "Accessing and Manipulating BFILE
Data", describes this.

Accessing and Manipulating BFILE Data
Once you have the BFILE locator in a table, you can access and manipulate the data
to which it points. To access and manipulate the data, you must first select its
locator from a result set or a callable statement.

The following example gets the locator of the BFILE from row two of a table into a
result set. The result set is cast to an OracleResultSet so that oracle.sql.*
methods can be used on it. Several of the methods applied to the BFILE, such as
getDirAlias() and getName(), do not require you to open the BFILE. Methods
that manipulate the BFILE data, such as reading, getting the length, and displaying,
do require you to open the BFILE.

When you finish manipulating the BFILE data, you must close the BFILE. For a
complete BFILE example, see "BFILE Sample" on page 7-10.

// select the bfile locator
cmd = "SELECT * FROM my_bfile_table WHERE x = ’two’";
rset = stmt.executeQuery (cmd);

if (rset.next ())
 {
BFILE bfile = ((OracleResultSet)rset).getBFILE (2);

// for these methods, you do not have to open the bfile
println("getDirAlias() = " + bfile.getDirAlias());
println("getName() = " + bfile.getName());
println("fileExists() = " + bfile.fileExists());
println("isFileOpen() = " + bfile.isFileOpen());

// now open the bfile to get the data
bfile.openFile();

// get the BFILE data as a binary stream
InputStream in = bfile.getBinaryStream();
int length ;
4-60 JDBC Developer’s Guide and Reference

Working with LOBs
// read the bfile data in 6-byte chunks
byte[] buf = new byte[6];

while ((length = in.read(buf)) != -1)
{

 // append and display the bfile data in 6-byte chunks
 StringBuffer sb = new StringBuffer(length);
 for (int i=0; i<length; i++)
 sb.append((char)buf[i]);
 println(sb.toString());
}

// we are done working with the input stream. Close it.
in.close();

// we are done working with the BFILE. Close it.
bfile.closeFile();
Oracle Extensions 4-61

Working with Oracle Object Types
Working with Oracle Object Types
This section contains these subsections:

■ Using Default Java Classes for Oracle Objects

■ Creating Custom Java Classes for Oracle Objects

■ Using JPublisher with JDBC

Oracle object types provide support for composite data structures in the database.
For example, you could define a type Person that has attributes such as name (type
CHAR), address (type CHAR), phone number (type CHAR), and employee number
(type NUMBER).

Oracle provides tight integration between its Oracle object features and its JDBC
functionality. You can customize how SQL types map to Java classes by creating
custom Java type definition classes; Oracle offers considerable flexibility in how this
mapping is done. In this book, Java classes created as classes to map to Oracle
objects will be referred to as custom Java classes.

JDBC materializes Oracle objects as instances of particular Java classes. Two main
steps in using JDBC to access Oracle objects are: creating the Java classes for the
Oracle objects and populating these classes. You have the option of:

■ letting JDBC materialize the object as a STRUCT. This is described in "Using
Default Java Classes for Oracle Objects" on page 4-62.

OR

■ explicitly specifying the mappings between Oracle objects and Java classes. This
includes customizing your Java classes for object data. The driver then must be
able to populate the custom Java classes that you specify. This imposes a set of
constraints on the Java classes. To satisfy these constraints, you can define your
classes according to either the SQLData interface or the CustomDatum
interface. "Creating Custom Java Classes for Oracle Objects" on page 4-65
describes this.

Using Default Java Classes for Oracle Objects
If you choose not to provide a type map to explicitly specify a Java class for an
Oracle object, you can let Oracle JDBC materialize the object as a Struct.

You would typically want to use Struct objects instead of custom Java objects in
situations where you are manipulating data. For example, your Java application
might be a tool to manipulate data as opposed to being an end-user application.
4-62 JDBC Developer’s Guide and Reference

Working with Oracle Object Types
You can select data from the database into Struct objects and create Struct
objects for inserting data into the database. As described in "Class
oracle.sql.STRUCT" on page 4-10, STRUCTs completely preserve data because they
maintain the data in SQL format. Using Struct objects is more efficient and more
precise in these situations where the information does not need to be in a
user-friendly format.

If your code must fully comply with JDBC 2.0, use the functionality in the
oracle.jdbc2.Struct interface:

■ getAttributes(map): retrieves the values from the values array as
java.lang.Object objects; uses entries in the type map (if they have been
defined) to determine the Java classes to use in materializing the data.

■ getAttributes(): retrieves the values of the values array as
java.lang.Object objects

■ getSQLTypeName(): returns a Java String that represents the fully qualified
type name (schema.sql_type_name) of the Oracle object that this Struct
represents

If it is not necessary to comply with JDBC 2.0 and you want to take advantage of the
extended functionality offered by Oracle-defined methods, then cast the output to
oracle.sql.STRUCT.

The oracle.sql.STRUCT class implements the oracle.jdbc2.Struct
interface and provides extended functionality beyond the JDBC 2.0 standard.
Compare the list of methods above with the methods provided for
oracle.sql.STRUCT in "Class oracle.sql.STRUCT" on page 4-10.

Using STRUCT Objects
You can use standard JDBC functionality such as getObject() to retrieve Oracle
objects from the database as an instance of oracle.jdbc2.Struct. Because
getObject() returns a java.lang.Object, you must cast the output of the
method to a Struct. For example:

oracle.jdbc2.Struct myStruct = (oracle.jdbc2.Struct)rs.getObject(1);

As described in the preceding section, the oracle.jdbc2.Struct class is
implemented by oracle.sql.STRUCT. If you want to use the extended
functionality offered by Oracle, you can then cast the Struct object to a STRUCT.
For example, to use the getOracleAttributes() method to return the attributes
of the Struct, cast myStruct to oracle.sql.STRUCT:

oracle.sql.STRUCT STRUCTattribute=s
Oracle Extensions 4-63

Working with Oracle Object Types
((oracle.sql.STRUCT)myStruct).getOracleAttributes()

The getOracleAttributes() method returns the attributes of myStruct in
oracle.sql.* format.

You can also retrieve the object directly into an oracle.sql.STRUCT. For example,
getObject() is used to get a NUMBER object from column 1 (col1) of the table
struct_table. Because getObject() returns an Object type, the result is cast
to an oracle.sql.STRUCT. This example assumes that the Statement object
stmt has already been created.

String cmd;
cmd = "CREATE TYPE type_struct AS object (field1 NUMBER,field2 DATE)";
stmt.execute(cmd);

cmd = "CREATE TABLE struct_table (col1 type_struct)";
stmt.execute(cmd);

cmd = "INSERT INTO struct_table VALUES (type_struct(10,’01-apr-01’))";
stmt.execute(cmd);

cmd = "INSERT INTO struct_table VALUES (type_struct(20,’02-may-02’))";
stmt.execute(cmd);

ResultSet rs= stmt.executeQuery("SELECT * FROM test_Struct");
oracle.sql.STRUCT struct_obj=(oracle.sql.STRUCT) rs.getObject(1);

To use an oracle.sql.STRUCT object to access, manipulate, or update data, you
can bind the object to a prepared statement or callable statement by using the
setOracleObject() method. This requires casting your prepared statement or
callable statement to an OraclePreparedStatement object or
OracleCallableStatement object.

PreparedStatement ps= conn.prepareStatement(" text_of_prepared_statement");
STRUCT mySTRUCT = new STRUCT (...)
((OraclePreparedStatement)ps).setOracleObject(1, mySTRUCT);

Similarly, to get data from the database, the OracleCallableStatement and
OracleResultSet classes have a getSTRUCT() method that returns an Oracle
object as an oracle.sql.STRUCT. For example:

ResultSet rset = stmt.executeQuery (...);
oracle.sql.STRUCT mySTRUCT = ((OracleResultSet)rs).getSTRUCT();
4-64 JDBC Developer’s Guide and Reference

Working with Oracle Object Types
Creating Custom Java Classes for Oracle Objects
If you want to define custom Java classes for your Oracle objects, then you must
define a type map that specifies the custom Java classes that the drivers will
generate for the corresponding Oracle objects.

You must also provide a way to create and populate the custom Java class from the
Oracle object and its attribute data. The driver must be able to read from a Java
custom class and populate it. In addition, the custom Java class can provide get
and set methods corresponding to the Oracle object’s attributes, although this is
not necessary. To create and populate the custom classes, and provide these
read/write capabilities, you can choose between these two interfaces:

■ SQLData interface provided by JDBC

■ CustomDatum interface provided by Oracle

The custom Java class you create must implement one of these interfaces.

For example, assume you have an Oracle object type, EMPLOYEE, in the database
that consists of two attributes: Name (which is type CHAR) and EmpNum (employee
number, which is type NUMBER). You use the type map to specify that the
EMPLOYEE object should map to a custom Java class that you call JEmployee. You
can use either the SQLData or CustomDatum interface to be implemented by the
JEmployee class.

The most convenient way to create the custom Java class is to employ the JPublisher
utility to create it for you. However, JPublisher supports only the CustomDatum
implementation. You can also create the custom Java class yourself, and in fact must
do so if you want to implement the SQLData interface.

The following section describes the relative advantages of using CustomDatum and
SQLData.

Relative Advantages of CustomDatum vs. SQLData In deciding which of these two
interface implementations to use, consider the following:

Advantages of CustomDatum:

■ It has awareness of Oracle extensions.

■ You can construct a CustomDatum from an oracle.sql.STRUCT. This is
more efficient because it avoids unnecessary conversions to native Java types.

■ You can obtain the corresponding Datum object (which is in oracle.sql
format) from the CustomDatum object using the toDatum() method.
Oracle Extensions 4-65

Working with Oracle Object Types
■ It does not require a type map.

■ It provides better performance: CustomDatum works directly with Datum
types, which is the internal format used by the driver to hold Oracle objects.

■ JPublisher supports it. Custom Java classes created by JPublisher use the
CustomDatum implementation. As of the 8.1.5 release, SQLData is not
supported by JPublisher.

■ Oracle SQLJ supports it. As of the 8.1.5 release, SQLData is not supported by
Oracle’s implementation of SQLJ.

Advantages of SQLData:

■ It is a JDBC standard, making your code more portable.

The SQLData interface only lets you populate a Java object from a SQL object—the
CustomDatum interface is far more powerful. In addition to enabling you to
populate Java objects, CustomDatum enables you to materialize objects from SQL
types that are not necessarily objects. Therefore, you can create a CustomDatum
object from any datatype found in an Oracle database. This is particularly useful in
the case of RAW data that can be a serialized object.

Understanding Type Maps
If you use the SQLData interface to create Java custom classes, then you must create
a type map that specifies the Java custom class that corresponds to the Oracle object
in the database. For a description of how to create these custom Java classes with
SQLData, see "Creating Custom Java Classes for Oracle Objects" on page 4-65.

If you do not include an object and its mapping in the type map, then the object will
map to the oracle.sql.STRUCT class by default. See "Class oracle.sql.STRUCT"
on page 4-10 for more information about this class.

The type map relates a Java class to the SQL type name of an Oracle object. This is a
one-to-one mapping that is stored in a hash table as a key-value pair. When you read
data from an Oracle object, the JDBC driver considers the type map to determine
which Java class to use to materialize the data from the SQL object type. When you
write data to an Oracle object, the JDBC driver gets the SQL type name from the
Java class by calling the getSQLTypeName() method of the SQLData interface.
The actual conversion between SQL and Java is handled by the driver.

The attributes of the Java class that corresponds to an Oracle object can use either
Java native types or Oracle native types (instances of the oracle.sql.* classes) to
store attributes.
4-66 JDBC Developer’s Guide and Reference

Working with Oracle Object Types
Creating a Type Map Class
The Java application programmer is responsible for providing a type map class that
implements java.util.Dictionary. For example, java.util.Hashtable
implements Dictionary.

The type map class must implement a put() method used to enter each mapping
entry that relates a Java class to an Oracle object type. The put() method must be
implemented to accept a keyword-value pair, where the key is an Oracle SQL type
name and the value is the Java class object.

Creating a Type Map Object and Defining Mappings
Each connection object has an attribute for an associated type map object. Cast your
connection to an OracleConnection object to use type map functionality.

You can create a type map by either of the methods described in the following
sections:

■ Adding Entries to an Existing Type Map

■ Creating a New Type Map

Adding Entries to an Existing Type Map Follow these general steps to add entries to an
existing type map.

1. Use the getTypeMap() method of your OracleConnection object to return
the connection’s Map object. The getTypeMap() method returns a
java.util.Dictionary object. For example:

java.util.Dictionary myMap = oraconn.getTypeMap();

In this example, the getMapType() method on the OracleConnection
object oraconn returns the myMap Dictionary object.

2. Use the Dictionary object’s put() method to add entries to the map. The
put() method takes two arguments: a SQL type name string and the name of
the Java class object to which you want to map it.

myMap.put(sqlTypeName, classObject);

Note: If the type map in the OracleConnection object has not
been initialized, then the first call to getTypeMap() returns null.
Oracle Extensions 4-67

Working with Oracle Object Types
The sqlTypeName is a string that represents the fully qualified name of the
SQL type in the database. The classObject is the Java class object to which
you want to map the SQL type. Get the class object with the
class.forName() method. You can rewrite the put() method as:

myMap.put(sqlTypeName, class.forName(className));

For example, if you have a PERSON SQL datatype defined in the CORPORATE
database schema, then map it to a Person Java class defined as Person with
this statement:

myMap.put("CORPORATE.PERSON", class.forName("Person"));

The map has an entry that maps the PERSON SQL datatype in the CORPORATE
database to the Person Java class.

3. When you finish adding entries to the map, use the OracleConnection
object’s setTypeMap() method to overwrite the connection’s existing type
map. For example:

oraconn.setTypeMap(myMap);

In this example, setTypeMap() overwrites the oraconn connection’s original
map with myMap.

Creating a New Type Map Follow these general steps to create a new type map.

1. Create an empty map object. An empty map object can be anything that
implements the java.util.Dictionary class. For example, the
java.util.Hashtable class implements the Dictionary class.

2. Use the Map object’s put() method to add entries to the map. For more
information on the put() method, see Step 2 in the preceding section. For
example, if you have an EMPLOYEE SQL type defined in the CORPORATE
database, then you can map it to an Employee class object defined by
Employee.java with this statement:

newMap.put("CORPORATE.EMPLOYEE", class.forName("Employee"));

3. When you finish adding entries to the map, use the OracleConnection
object’s setTypeMap() method to overwrite the connection’s existing type
map. For example:

oraconn.setTypeMap(newMap);
4-68 JDBC Developer’s Guide and Reference

Working with Oracle Object Types
In this example, setTypeMap() overwrites the oraconn connections’s
original map with newMap.

STRUCTS and the Type Map If you do not specify a particular SQL object type in the
type map, then the driver will materialize it as an instance of the
oracle.jdbc2.Struct class. If the SQL object type contains embedded objects,
and they are not present in the type map, the driver will materialize the embedded
objects as instances of oracle.sql.Struct. If the embedded objects are present
in the type map, a call to the getAttributes() method will return embedded
objects as instances of the specified Java classes from the type map.

Understanding the SQLData Interface
To make an Oracle object and its attribute data available to Java applications, you
can create a custom Java class for the object that implements the SQLData interface.
Note that if you use this interface, you must supply a type map that specifies the
Oracle objects in the database and the name of the corresponding custom Java
classes that you will create for them.

The SQLData interface defines methods that translate between SQL and Java for
Oracle database objects. Standard JDBC provides a SQLData interface and
companion SQLInput and SQLOutput interfaces in the oracle.jdbc2 package.

If you create a custom Java class that implements SQLData, you must provide a
readSQL() method and a writeSQL() method as defined by the SQLData
interface.

Notes:

■ You can explicitly provide type map objects in some getXXX()
and setXXX() methods to override the custom or default
mapping of your connection.

■ If the type map does not specify a Java class mapping for an
Oracle object type, then it defaults to data from the object type
materialized in Java in an instance of the
oracle.sql.STRUCT class. For more information about this
class, see "Class oracle.sql.STRUCT" on page 4-10.

■ Do not use the type map for inserting custom objects into the
database.
Oracle Extensions 4-69

Working with Oracle Object Types
The JDBC driver calls your readSQL() method to read a stream of data values
from the database and populate an instance of your custom Java class. Typically, the
driver would use this method as part of an OracleResultSet.getObject() call.

Similarly, the JDBC driver calls your writeSQL() method to write a sequence of
data values from an instance of your custom Java class to a stream that can be
written to the database. Typically, the driver would use this method as part of an
OraclePreparedStatement setObject() call.

Understanding the SQLInput and SQLOutput Interfaces The JDBC driver includes classes
that implement the SQLInput and SQLOutput interfaces. It is not necessary to
implement the SQLOutput or SQLInput objects. The JDBC drivers will do this for
you.

The SQLInput implementation is an input stream class, an instance of which must
be passed in to readSQL(). SQLInput includes a readXXX() method for every
possible Java type that attributes of an Oracle object might be converted to, such as
readObject(), readInt(), readLong(), readFloat(), readBlob(), and so
on. Each readXXX() method converts SQL data to Java data and returns it into an
output parameter of the corresponding Java type. For example, readInt() returns
an integer.

The SQLOutput implementation is an output stream class, an instance of which
must be passed in to writeSQL(). SQLOutput includes a writeXXX() method
for each of these Java types. Each writeXXX() method converts Java data to SQL
data, taking as input a parameter of the relevant Java type. For example,
writeString() would take as input a string attribute from your Java class.

Implementing readSQL() and writeSQL() Methods When you create your custom Java
class that implements SQLData, you must also implement the readSQL() and
writeSQL() methods.

You must implement readSQL() as follows:

public void readSQL(SQLInput stream, String sql_type_name) throws SQLException

■ readSQL() must take as input a SQLInput stream and a string that indicates
the SQL type name of the data (in other words, the name of the Oracle object
type, such as EMPLOYEE).

When your Java application calls getObject(), the JDBC driver creates a
SQLInput stream object and populates it with data from the database. The
driver can also determine the SQL type name of the data when it reads it from
the database. When the driver calls readSQL(), it passes in these parameters.
4-70 JDBC Developer’s Guide and Reference

Working with Oracle Object Types
■ For each Java datatype that maps to an attribute of the Oracle object,
readSQL() must call the appropriate readXXX() method of the SQLInput
stream that is passed in.

For example, if you are reading EMPLOYEE objects that have an employee name
as a CHAR variable and an employee number as a NUMBER variable, you must
have a readString() call and a readInt() call in your readSQL() method.
JDBC calls these methods according to the order in which the attributes appear
in the SQL definition of the Oracle object type.

■ readSQL() assigns the data that the readXXX() methods read and convert to
the appropriate fields or elements of your custom Java class.

You must implement writeSQL() as follows:

public void writeSQL(SQLOutput stream) throws SQLException

■ writeSQL() must take as input a SQLOutput stream.

When your Java application calls setObject(), the JDBC driver creates a
SQLOutput stream object and populates it with data from your custom Java
class. When the driver calls writeSQL(), it passes in this stream parameter.

■ For each Java datatype that maps to an attribute of the Oracle object,
writeSQL() must call the appropriate writeXXX() method of the
SQLOutput stream that is passed in.

For example, if you are writing to EMPLOYEE objects that have an employee
name as a CHAR variable and an employee number as a NUMBER variable, then
you must have a writeString() call and a writeInt() call in your
writeSQL() method. These methods must be called according to the order in
which attributes appear in the SQL definition of the Oracle object type.

■ writeSQL() must then write the data converted by the writeXXX() methods
to the SQLOutput stream so it can be written to the database once you execute
the prepared statement.

"Creating Customized Java Classes for Oracle Objects" on page 7-20 contains an
example implementation of the SQLData interface for a given SQL definition of an
Oracle object.

Note: Refer to the Javadoc for more information about the
SQLData, SQLInput, and SQLOutput interfaces.
Oracle Extensions 4-71

Working with Oracle Object Types
Reading and Writing Data with a SQLData Class
This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements SQLData.

Reading Data from an Oracle Object Using a SQLData Interface This section summarizes
the steps to read data from an Oracle object into your Java application when you
choose the SQLData implementation for your custom Java class.

These steps assume you have already defined the Oracle object type, created the
corresponding custom Java class, updated the type map to define the mapping
between the Oracle object and the Java class, and defined a statement object stmt.

1. Query the database to read the Oracle object into a JDBC result set.

ResultSet rs = stmt.executeQuery("SELECT Emp_col FROM PERSONNEL");
rs.next();

The PERSONNEL table contains one column, Emp_col, of SQL type
Emp_object. This SQL type is defined in the type map to map to the Java class
Employee.

2. Use the getObject() method of your result set to populate an instance of
your custom Java class with data from one row of the result set. The
getObject() method returns the user-defined SQLData object because the
type map contains an entry for Employee.

Employee emp = (Employee)rs.getObject(1);

Note that if the type map did not have an entry for the object, getObject()
would return an oracle.sql.STRUCT object. In this case you must cast the
output to an oracle.sql.STRUCT.

Struct empstruct = (oracle.sql.STRUCT)rs.getObject(1);
...

The getObject() call triggers readSQL() and readXXX() calls as described
above.
4-72 JDBC Developer’s Guide and Reference

Working with Oracle Object Types
3. If you have get methods in your custom Java class, then use them to read data
from your object attributes. For example, if EMPLOYEE has an EmpName
(employee name) of type CHAR and EmpNum (employee number) of type
NUMBER, provide a getEmpName() method that returns a Java String and a
getEmpNum() method that returns an integer (int). Then invoke them in your
Java application as follows:

String empname = emp.getName();
int empnumber = emp.getEmpNum();

Passing SQLData Objects to a Callable Statement as an OUT Parameter Suppose you have
an OracleCallableStatement ocs that calls a PL/SQL function
getEmployee(?). The program passes an employee number (empnumber) to the
function; the function returns the corresponding Employee object.

1. Prepare an OracleCallableStatement to call the getEmployee(?)
function.

OracleCallableStatement ocs =
 (OracleCallableStatement) conn.prepareCall("{ ? = call getEmployee(?)
}");

2. Declare the empnumber as the input parameter to getEmployee(?). Register
the SQLData object as the OUT parameter. The SQL type of the Employee
object is OracleTypes.STRUCT. Then, execute the statement.

ocs.setInt(2,empnumber);
ocs.registerOutParameter(1, OracleTypes.STRUCT, "EMP_OBJECT");
ocs.execute();

3. Use the getObject() method to retrieve the employee object. Because the
object is returned as a STRUCT, cast the output of getObject() to an
Employee object.

Note: To avoid the need for the type map, use the getSTRUCT()
method. This method always returns a STRUCT object even if there
is a mapping entry in the type map.

Note: Alternatively, fetch data by using a callable statement
object, which also has a getObject() method.
Oracle Extensions 4-73

Working with Oracle Object Types
Employee emp = (Employee) ocs.getObject(1);

Passing SQLData Objects to a Callable Statement as an IN Parameter Suppose you have a
PL/SQL function addEmployee(?) that takes an Employee object as an IN
parameter and adds it to the PERSONNEL table. In this example, emp is a valid
Employee object.

1. Prepare an OracleCallableStatement to call the addEmployee(?)
function.

OracleCallableStatement ocs =
 (OracleCallableStatement) conn.prepareCall("{ call addEmployee(?) }");

2. Use setObject() to pass the emp object as an IN parameter to the callable
statement. Then, execute the statement.

ocs.setObject(1, emp);
ocs.execute();

Writing Data to an Oracle Object Using a SQLData Interface This section describes the
steps in writing data to an Oracle object from your Java application when you
choose the SQLData implementation for your custom Java class.

This description assumes you have already defined the Oracle object type, created
the corresponding Java class, and updated the type map to define the mapping
between the Oracle object and the Java class.

1. If you have set methods in your custom Java class, then use them to write data
from Java variables in your application to attributes of your Java datatype
object.

emp.setEmpName(empname);
emp.setEmpNum(empnumber);

This statement uses the emp object and the empname and empnumber variables
defined in "Reading Data from an Oracle Object Using a SQLData Interface" on
page 4-72.

2. Prepare a statement that updates an Oracle object in a row of a database table,
as appropriate, using the data provided in your Java datatype object.

PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO PERSONNEL VALUES (?)");

This assumes conn is your connection object.
4-74 JDBC Developer’s Guide and Reference

Working with Oracle Object Types
3. Use the setObject() method of the prepared statement to bind your Java
datatype object to the prepared statement.

pstmt.setObject(1, emp);

4. Execute the statement, which updates the database.

pstmt.executeUpdate();

Understanding the CustomDatum Interface
To make an Oracle object and its attribute data available to Java applications, you
can create a custom Java class for the object that implements the
oracle.sql.CustomDatum and oracle.sql.CustomDatumFactory
interfaces. The CustomDatum and CustomDatumFactory interfaces are supplied
by Oracle and are not a part of the JDBC standard.

The CustomDatum interface has these additional advantages:

■ recognizes Oracle extensions to the JDBC; CustomDatum uses
oracle.sql.Datum types directly

■ does not require a type map to specify the names of the Java custom classes you
want to create

■ provides better performance: CustomDatum works directly with Datum types,
the internal format the driver uses to hold Oracle objects

The CustomDatum and CustomDatumFactory interfaces do the following:

■ The toDatum() method of the CustomDatum class transforms the data into an
oracle.sql.* representation.

■ CustomDatumFactory specifies a create() method equivalent to a
constructor for your custom Java class. It creates and returns a CustomDatum
instance. The JDBC driver uses the create() method to return an instance of

Note: You can use your Java datatype objects as either IN or OUT
bind variables.

Note: The JPublisher utility supports the generation of classes that
implement the CustomDatum and CustomDatumFactory
interfaces.
Oracle Extensions 4-75

Working with Oracle Object Types
the custom Java class to your Java application or applet. It takes as input an
oracle.sql.Datum object and an integer indicating the corresponding SQL
type code as specified in the OracleTypes class.

CustomDatum and CustomDatumFactory have the following definitions:

public interface CustomDatum
{
 Datum toDatum (OracleConnection conn) throws SQLException;
}

public interface CustomDatumFactory
{
 CustomDatum create (Datum d, int sql_Type_Code) throws SQLException;
}

where conn represents the Connection object, d represents an object of type
oracle.sql.Datum and sql_Type_Code represents the SQL type code of the
Datum object.

The JDBC drivers provide the following methods to retrieve and insert object data
as instances of CustomDatum.

To retrieve object data:

■ Use the Oracle extension OracleResultSet.getCustomDatum () method:

OracleResultSet.getCustomDatum (int col_index, CustomDatumFactory factory)

This method takes as input the column index of the data in your result set, and
a CustomDatumFactory instance. For example, you can implement a
getFactory() method of your custom Java class to produce the
CustomDatumFactory instance to input to getCustomDatum(). The type
map is not required when using Java classes that implement CustomDatum.

OR

■ Use the standard ResultSet.getObject(index, map) method to retrieve
data as instances of CustomDatum. In this case, you must have an entry in the
type map that identifies the factory class to be used for the given object type,
and its corresponding SQL type name.

Note: It is up to the developer to decide how to handle a situation
where the SQL type code contradicts the type of the Datum object.
4-76 JDBC Developer’s Guide and Reference

Working with Oracle Object Types
To insert object data:

■ Use the Oracle extension OraclePreparedStatement.setCustomDatum
() method:

OraclePreparedStatement.setCustomDatum (int bind_index, CustomDatum
custom_obj)

This method takes as input the parameter index of the bind variable and the
name of the object containing the variable.

OR

■ Use the standard JDBC PreparedStatement.setObject() method. You
can also use this method, in its various forms, to insert CustomDatum instances
without requiring a type map.

The following sections describe the getCustomDatum() and setCustomDatum()
methods.

To continue the example of an Oracle object EMPLOYEE, you might have something
like the following in your Java application:

CustomDatum datum = ors.getCustomDatum(1, Employee.getFactory());

In this example, ors is an Oracle result set, getCustomDatum() is a method in the
OracleResultSet class used to retrieve a CustomDatum object, and the
EMPLOYEE is in column 1 of the result set. The Employee.getFactory() call will
return a CustomDatumFactory to the JDBC driver. The JDBC driver will call
create() from this object, returning to your Java application an instance of the
Employee class that is populated with data from the result set.
Oracle Extensions 4-77

Working with Oracle Object Types
CustomDatum versus SQLData: Comparison for Serializable Objects
The CustomDatum interface provides far more flexibility than the SQLData
interface. The SQLData interface is designed to only let you customize the mapping
of SQL object types (that is, Oracle8 object types) to Java types of your choice.
Implementing the SQLData interface lets the JDBC driver populate the fields of the
customized Java class from the original SQL object data and vice-versa, after
performing the appropriate conversions between Java and SQL types.

The CustomDatum interface goes beyond simply supporting the customization of
SQL object types to Java types. It lets you provide a mapping between Java object
types and any SQL type supported by the oracle.sql package.

For example, use CustomDatum to store instances of Java objects that do not
correspond to a particular SQL Oracle8 object type in the database in columns of
SQL type RAW. The create() method in CustomDatumFactory would have to
implement a conversion from an object of type oracle.sql.RAW to the desired
Java object. The toDatum() method in CustomDatum would have to implement a
conversion from the Java object to an oracle.sql.RAW. This can be done, for
example, by using Java serialization.

Upon retrieval, the JDBC driver transparently retrieves the raw bytes of data in the
form of an oracle.sql.RAW and calls the CustomDatumFactory’s create()
method to convert the oracle.sql.RAW object to the desired Java class.

When you insert the Java object into the database, you can simply bind it to a
column of type RAW to store it. The driver transparently calls the
CustomDatum.toDatum() method to convert the Java object to an

Notes:

■ CustomDatum and CustomDatumFactory are defined as
separate interfaces so that different Java classes can implement
them if you wish (such as an Employee class and an
EmployeeFactory class).

■ Your custom Java classes must import oracle.sql.* (or at
least CustomDatum, CustomDatumFactory, and Datum),
oracle.jdbc.driver.* (or at least OracleConnection
and OracleTypes), and java.sql.SQLException.

■ Refer to the Javadoc for more information about the
CustomDatum and CustomDatumFactory classes.
4-78 JDBC Developer’s Guide and Reference

Working with Oracle Object Types
oracle.sql.RAW object. This object is then stored in a column of type RAW in the
database.

Support for the CustomDatum interfaces is also highly efficient because the
conversions are designed to work using oracle.sql.* formats, which happen to
be the internal formats used by the JDBC drivers. Moreover, the type map, which is
necessary for the SQLData interface, is not required when using Java classes that
implement CustomDatum. For more information on why classes that implement
CustomDatum do not need a type map, see "Understanding the CustomDatum
Interface" on page 4-75.

Reading and Writing Data with a CustomDatum Interface
This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements CustomDatum.

Reading Data from an Oracle Object Using the CustomDatum Interface This section
summarizes the steps in reading data from an Oracle object into your Java
application. These steps apply whether you implement CustomDatum manually or
use JPublisher to produce your custom Java classes.

These steps assume you have already defined the Oracle object type, created the
corresponding custom Java class or had JPublisher create it for you, and defined a
statement object stmt.

1. Query the database to read the Oracle object into a result set, casting to an
Oracle result set.

OracleResultSet ors = (OracleResultSet)stmt.executeQuery
 ("SELECT Emp_col FROM PERSONNEL");
ors.next();

where PERSONNEL is a one-column table. The column name is Emp_col of type
Employee_object.

2. Use the getCustomDatum() method of your Oracle result set to populate an
instance of your custom Java class with data from one row of the result set. The
getCustomDatum() method returns an oracle.sql.CustomDatum object,
which you can cast to your specific custom Java class.

Employee emp = (Employee)ors.getCustomDatum(1, Employee.getFactory());

OR

CustomDatum datum = ors.getCustomDatum(1, Employee.getFactory());
Oracle Extensions 4-79

Working with Oracle Object Types
This example assumes that Employee is the name of your custom Java class
and ors is the name of your OracleResultSet object.

If you do not want to use getCustomDatum(), the JDBC drivers let you use
the standard JDBC ResultSet.getObject() method to retrieve
CustomDatum data. However, you must have an entry in the type map that
identifies the factory class to be used for the given object type, and its
corresponding SQL type name.

For example, if the SQL type name for your object is EMPLOYEE, then the
corresponding Java class is Employee, which will implement CustomDatum.
The corresponding Factory class is EmployeeFactory, which will implement
CustomDatumFactory.

Use this statement to declare the EmployeeFactory entry for your type map:

map.put ("EMPLOYEE", Class.forName ("EmployeeFactory"));

Then use the form of getObject() where you specify the map object:

Employee emp = (Employee) rs.getObject (1, map);

If the connection’s default type map already has an entry that identifies the
factory class to be used for the given object type, and its corresponding SQL
type name, then you can use this form of getObject():

Employee emp = (Employee) rs.getObject (1);

3. If you have get methods in your custom Java class, use them to read data from
your object attributes into Java variables in your application. For example, if
EMPLOYEE has Name of type CHAR and EmpNum (employee number) of type
NUMBER, provide a getName() method that returns a Java string and a
getEmpNum() method that returns an integer. Then invoke them in your Java
application as follows:

String empname = emp.getName();
int empnumber = emp.getEmpNum();

Writing Data to an Oracle Object Using the CustomDatum Interface This section
summarizes the steps in writing data to an Oracle object from your Java application

Note: Alternatively, you can fetch data into a callable statement
object. The OracleCallableStatement class also has a
getCustomDatum() method.
4-80 JDBC Developer’s Guide and Reference

Working with Oracle Object Types
when you use JPublisher to produce your custom Java class or otherwise choose the
CustomDatum implementation.

These steps assume you have already defined the Oracle object type, created the
corresponding custom Java class or had JPublisher create it for you.

1. If you have set methods in your custom Java class, then use them to write data
from Java variables in your application to attributes of your Java datatype
object.

emp.setName(empname);
emp.setEmpNum(empnumber);

This statement uses the emp object and the empname and empnumber variables
defined in "Reading Data from an Oracle Object Using the CustomDatum
Interface" on page 4-79.

2. Write an Oracle prepared statement that updates an Oracle object in a row of a
database table, as appropriate, using the data provided in your Java datatype
object.

OraclePreparedStatement opstmt = conn.prepareStatement
 ("UPDATE PERSONNEL SET Employee = ? WHERE Employee.EmpNum = 28959);

This assumes conn is your Connection object.

3. Use the setCustomDatum() method of the Oracle prepared statement to bind
your Java datatype object to the prepared statement.

opstmt.setCustomDatum(1, emp);

The setCustomDatum() method calls the toDatum() method of your custom
Java class to retrieve an oracle.sql.STRUCT object that can be written to the
database.

In this step you could also use the setObject() method to bind the Java
datatype. For example:

opstmt.setObject(1,emp);

Note: The type map is not used when you are performing
database INSERTs and UPDATEs.
Oracle Extensions 4-81

Working with Oracle Object Types
Using JPublisher with JDBC
JPublisher is an Oracle utility for creating Java classes that map to Oracle objects. It
generates a full class definition for a custom Java class, which you can instantiate to
hold the data from an Oracle object. JPublisher-generated classes include methods
to convert data from SQL to Java and from Java to SQL, as well as getter and setter
methods for the attributes of the class.

If you want additional functionality you can create a subclass and add features as
desired. JPublisher has features that will create references to the code you write if
you need to regenerate the original class. The alternative, editing the generated
class by adding methods to it, is not recommended if you anticipate running
JPublisher at some future time to regenerate the class. If you run JPublisher to
regenerate a class that you have modified in this way, your changes (that is, the
methods you have added) will be overwritten. Even if you direct JPublisher output
to a separate file, you will still need to merge your changes into the file.

You do not have to use JPublisher to create your custom Java classes, but it is
usually very convenient. For more information on JPublisher, see the Oracle8i
JPublisher User’s Guide.

JPublisher Mapping Options
If you use JPublisher to implement your custom Java class, then you can choose
among three mappings for attributes:

■ Oracle mapping

■ JDBC mapping

■ Object JDBC mapping

JPublisher has a command-line option that enables you to choose among these three
mapping options. For more information on the mapping options, see the Oracle8i
JPublisher User’s Guide.

Note: You can use your Java datatype objects as either IN or OUT
bind variables.
4-82 JDBC Developer’s Guide and Reference

Working with Oracle Object References
Working with Oracle Object References
This section has these subsections:

■ Retrieving an Object Reference

■ Passing an Object Reference to a Callable Statement

■ Accessing and Updating Object Values through an Object Reference

■ Passing an Object Reference to a Prepared Statement

You can define an Oracle object reference to an object stored in an object table. In
contrast, you cannot define an object reference for an object value that is stored in a
table column.

In SQL, object references (REFs) are strongly typed. For example, a reference to an
EMPLOYEE object would be defined as an EMPLOYEE REF, not just a REF.

When you select an object reference in Oracle JDBC, it is materialized as an instance
of the oracle.sql.REF class and is not strongly typed. So, if you select an
EMPLOYEE REF, an oracle.sql.REF object is returned. To find out what kind of
REF it really is, use the object’s getBaseTypeName() method. This method returns
the object’s SQL type, which in this case would be EMPLOYEE.

An object reference is a primitive SQL type. The steps to access and manipulate
object references are similar to the steps you employ for any other primitive SQL
type.

JDBC provides support for REFs as any of the following:

■ columns in a SELECT list

■ IN or OUT bind variables

■ attributes in an Oracle8 object

■ elements in a collection (array) type object

If you use JPublisher to generate custom Java classes, then it also generates
reference classes. These reference classes are extensions of oracle.sql.REF and,
unlike the oracle.sql.REF class, are strongly typed. For example, if you define
an Oracle object EMPLOYEE, then JPublisher generates an Employee class and an
EmployeeRef class.

Note: You cannot have a reference to an array, even though arrays,
like objects, are structured types.
Oracle Extensions 4-83

Working with Oracle Object References
Retrieving an Object Reference
To demonstrate how to retrieve REFs, the following example first defines an Oracle
object type ADDRESS:

create type ADDRESS as object
 (street_name VARCHAR2(30),
 house_no NUMBER);

create table PEOPLE
 (col1 VARCHAR2(30),
 col2 NUMBER,
 col3 REF ADDRESS);

The ADDRESS object type has two attributes: a street name and a house number. The
PEOPLE table has three columns: a column for character data, a column for numeric
data, and a column containing a reference to an ADDRESS object.

To retrieve an object reference, follow these general steps:

1. Use a standard SQL SELECT statement to retrieve the reference from a database
table REF column.

2. Use getREF() to get the address reference from the result set into a REF object.

3. Let Address be the Java custom class corresponding to the SQL object type
ADDRESS.

4. Add the correspondence between the Java class Address and the SQL type
ADDRESS to your type map.

5. Use the getValue() method to retrieve the contents of the Address reference.
Cast the output to a Java Address object.

Here is the code for these three steps, where stmt is a previously defined statement
object. The PEOPLE database table is defined earlier in this section:

ResultSet rs = stmt.executeQuery("SELECT col3 FROM PEOPLE");
rs.next();
REF ref = rs.getREF(1);
Address a = (Address)(ref.getValue());

As with other SQL types, you could retrieve the reference with the getObject()
method of your result set. Note that this would require you to cast the output. For
example:

REF ref = (REF)rs.getObject(1);
4-84 JDBC Developer’s Guide and Reference

Working with Oracle Object References
There is no advantage or disadvantage in using getObject() instead of
getREF().

Passing an Object Reference to a Callable Statement
To retrieve an object reference as an OUT parameter in PL/SQL blocks, do the
following to register the bind type for your OUT parameter.

1. Cast your callable statement to an OracleCallableStatement:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}")

2. Register the OUT parameter with this form of the registerOutParameter()
method:

ocs.registerOutParameter(int param_index, int sql_type, string
sql_type_name);

where param_index is the parameter index and sql_type is the SQL type
code (in this case, OracleTypes.REF). The sql_type_name is the name of
the STRUCT to which this object reference points. For example, if the OUT
parameter is a REF to an ADDRESS object (as in the previous section), then
ADDRESS is the sql_type_name that should be passed in.

3. Execute the call:

ocs.execute()

Accessing and Updating Object Values through an Object Reference
You could then create a Java Address object and update a database ADDRESS object
through the reference as follows (omitting whatever would be required for the
constructor of the Address class). This example assumes that you have already
retrieved a valid REF object:

Address addr = new Address(...);
ref.setValue(addr);

Here, the setValue() method updates the database ADDRESS object.
Oracle Extensions 4-85

Working with Oracle Object References
Passing an Object Reference to a Prepared Statement
Pass an object reference to a prepared statement in the same way as you would pass
any other SQL type. Use either the setObject() method or the setREF()
method of a prepared statement object.

Continuing the preceding example, use a prepared statement to update an address
reference based on ROWID, as follows:

PreparedStatement pstmt =
 conn.prepareStatement ("update PEOPLE set ADDR_REF = ? where ROWID = ?");
pstmt.setREF (1, addr_ref);
pstmt.setROWID (2, rowid);
4-86 JDBC Developer’s Guide and Reference

Working with Arrays
Working with Arrays
This section has these subsections:

■ Retrieving an Array and its Elements

■ Passing an Array to a Prepared Statement

■ Passing an Array to a Callable Statement

■ Using a Type Map to Map Array Elements

The oracle.sql.ARRAY class enables you to access and manipulate arrays and
their data within a JDBC program. The oracle.sql.ARRAY class implements the
oracle.jdbc2.Array interface.

JDBC provides support for arrays as any of the following:

■ columns in a SELECT list

■ IN or OUT bind variables

■ attributes in an Oracle object

Arrays include varrays (variable-length arrays) and nested tables. The methods in
the oracle.sql.ARRAY class enable you to access and manipulate the array and
its data even if it is a varray or nested table. That is, you do not have to add any
special code when you are accessing a varray or nested table. The methods can
determine if they are being applied to a varray or nested table, and respond by
taking the appropriate actions.

Oracle supports only named arrays, where you specify a SQL type name to describe
a type of array. The SQL type name is assigned to the array when you create it, as in
the following SQL syntax:

CREATE TYPE <sql_type_name> AS <datatype>

The array can be either a nested table or a varray.

A varray is an array of varying size, thus the name "varray". A varray has an
ordered set of data elements. All elements of a given varray are of the same
datatype. Each element has an index, which is a number corresponding to the
element’s position in the varray. The number of elements in a varray is the size of

Note: The term arrays in JDBC 2.0 is equivalent to collections in
Oracle terminology.
Oracle Extensions 4-87

Working with Arrays
the varray. You must specify a maximum size when you declare the array type.
For example:

CREATE TYPE myNumType AS VARRAY(10) OF NUMBER;

This statement defines myNumType as a SQL type name that describes a varray of
NUMBERs that can contain no more than 10-elements.

A nested table is an unordered set of data elements, all of the same datatype. It has
a single column, and the type of that column is a built-in type or an object type. If
the table is an object type, it can also be viewed as a multi-column table, with a
column for each attribute of the object type. Create a nested table with this SQL
syntax:

CREATE TYPE myNumList AS TABLE OF integer;

This statement identifies myNumList as a SQL type name that defines the table type
used for the nested tables of the type integer.

The remainder of this section describes how to access and update array data. For
general information about the oracle.sql.ARRAY class, including how to
manually create array objects, see "Class oracle.sql.ARRAY" on page 4-14. For a
complete code example of creating a table with an array column, then manipulating
and printing the contents, see "Array Sample" on page 7-16.

Retrieving an Array and its Elements
When you retrieve an array you get an oracle.sql.ARRAY object where each
array element can be returned as a materialized Java array object or as a result set
object.

You can retrieve a SQL array that has been selected into a result set by casting the
result set to an OracleResultSet object and using the getARRAY() method,
which returns an oracle.sql.ARRAY object. If you want to avoid casting the
result set, you can get the data with the getObject() method of the
oracle.sql.ResultSet class, then cast the output to oracle.sql.ARRAY.

Once you have the array in an ARRAY object, you can retrieve the data using one of
these three overloaded methods of the oracle.sql.ARRAY class:

■ getArray()

■ getOracleArray()

■ getResultSet()
4-88 JDBC Developer’s Guide and Reference

Working with Arrays
Oracle provides versions of these methods that enable you to specify a type map so
you can choose how you want your SQL datatypes to map to Java datatypes. Oracle
also provides methods that enable you to retrieve all of an array’s elements or a
subset of the array (but note, there is no performance advantage in retrieving a
subset of an array as opposed to retrieving the entire array).

getArray() Method: The getArray() method retrieves the element values of the
array into a java.lang.Object[] array. The elements are converted to the Java
types corresponding to the SQL type of the data in the original array.

The getArray() materializes the data as an array of oracle.sql.* objects and
does not use a type map. Oracle also provides a getArray(map) method to let you
specify a type map and a getArray(index,count) method to retrieve a subset
of the array.

getOracleArray() Method: The getOracleArray() method retrieves the element
values of the array into a Datum[] array. The elements are converted to the
oracle.sql.* datatype corresponding to the SQL type of the data in the original
array.

The getOracleArray() method materializes the data as an array of
oracle.sql.* objects and does not use the type map. Oracle also provides the
getOracleArray(index,count).

getResultSet() Method: The getResultSet() method returns a result set that
contains elements of the array designated by the ARRAY object. The result set
contains one row for each array element, with two columns in each row. The first
column stores the index into the array for that element and the second column
stores the element value. In the case of varrays, the index represents the position
of the element in the array. In the case of nested tables, which are by definition
unordered, the index reflects only the return order of the elements in the particular
query.

Note: Beginning in release 8.1.5, arrays are indexed from 1. In
previous releases, arrays were indexed from 0.

Note: The getOracleArray() method is an Oracle-specific
extension and does not belong to the oracle.jdbc2.ARRAY JDBC
2.0 interface.
Oracle Extensions 4-89

Working with Arrays
Oracle recommends that you use getResultSet() when getting data from nested
tables. Nested tables can have an unlimited number of elements. The ResultSet
object returned by the method initially points at the first row of data. You get the
contents of the nested table by using the next() method and the appropriate
getXXX() method. In contrast, getArray() returns the entire contents of the
nested table at one time.

The getResultSet() method uses the connection’s default type map to
determine the mapping between the SQL type of the Oracle object and its
corresponding Java datatype. If you do not want to use the connection’s default
type map, another version of the method, getResultSet(map), enables you to
specify an alternate type map.

Oracle also provides the getResultSet(index,count) and
getResultSet(index,count,map) methods to retrieve a subset of the array.

Retrieving All of an Array’s Elements
If you use getArray() to retrieve an array of primitive datatypes, then a
java.lang.Object that contains the element values is returned. The elements of
this array are of the Java type corresponding to the SQL type of the elements. For
example,

BigDecimal[] values=(BigDecimal[]) intArray.getArray();

where intArray is an oracle.sql.ARRAY, corresponding to a varray of type
NUMBER. The values array contains an array of elements of type
java.math.BigDecimal because the SQL NUMBER datatype maps to Java
BigDecimal by default according to the Oracle JDBC drivers.

Similarly, if you use getResultSet() to return an array of primitive datatypes,
then the JDBC drivers return a ResultSet object that contains, for each element,
the index into the array for the element and the element value. For example:

ResultSet rset= intArray.getResultSet();

In this case, the result set contains one row for each array element, with two
columns in each row. The first column stores the index into the array; the second
column stores the BigDecimal element value.

Retrieving Array Elements According to a Type Map
By default, if you use getArray() or getResultSet(), then the Oracle objects in
the array will be mapped to their corresponding Java datatypes according to the
4-90 JDBC Developer’s Guide and Reference

Working with Arrays
default mapping. This is because these methods use the connection’s default type
map to determine the mapping.

However, if you do not want default behavior, then you can use the
getArray(map) or getResultSet(map) method to specify a type map that
contains alternate mappings. If there are entries in the type map corresponding to
the Oracle objects in the array, then each object in the array is mapped to the
corresponding Java type specified in the type map. For example:

Object[] object = (Object[])objArray.getArray(map);

where objArray is an oracle.sql.ARRAY object and map is a java.util.Map
object.

If the type map does not contain an entry for a particular Oracle object, then the
element is returned as an oracle.sql.STRUCT.

The getResultSet(map) method behaves in a similar manner to
getArray(map).

For more information on using type maps with arrays, see "Using a Type Map to
Map Array Elements" on page 4-94.

Retrieving a Subset of an Array’s Elements
To retrieve a subset of the array, you can pass in an index and a count to indicate
where in the array you want to start and how many elements you want to retrieve.
As described above, you can specify a type map or use the default type map for
your connection to convert to Java types. For example:

Object object = arr.getArray(index, count, map);
Object object = arr.getArray(index, count);

Similar examples using getResultSet() are:

ResultSet rset = arr.getResultSet(index, count, map);
ResultSet rset= arr.getResultSet(index, count);

A similar example using getOracleArray() is:

Datum arr = arr.getOracleArray(index, count);

where arr is an oracle.sql.ARRAY object, index is type long, count is type
int, and map is a java.util.Map object.
Oracle Extensions 4-91

Working with Arrays
Retrieving an Array as an oracle.sql.Datum
Use getOracleArray() to return an oracle.sql.Datum[] array. The elements
of the returned array will be of the oracle.sql.* type that correspond to the SQL
datatype of the SQL array elements. For example,

Datum arraydata[] = arr.getOracleArray();

where arr is an oracle.sql.ARRAY object. For an example of retrieving an array
and its contents, see "Array Sample" on page 7-16.

Example: Getting and Printing an Array of Primitive Datatypes from a Result Set The
following example assumes that a connection object conn and a statement object
stmt have already been created. In the example, an array with the SQL type name
num_array is created to store a varray of NUMBER data. The num_array is in turn
stored in a table varray_table.

A query selects the contents of the varray_table. The result set is cast to an
OracleResultSet object; getARRAY() is applied to it to retrieve the array data
into my_array, which is an object of type oracle.sql.ARRAY.

Because my_array is of type oracle.sql.ARRAY, you can apply the methods
getSQLTypeName() and getBaseType() to it to return the name of the SQL type
of each element in the array and its integer code.

The program then prints the contents of the array. Because the contents of
my_array are of the SQL datatype NUMBER, it must first be cast to the BigDecimal
datatype. In the for loop, the individual values of the array are cast to
BigDecimal and printed to standard output.

stmt.execute ("CREATE TYPE num_varray AS VARRAY(10) OF NUMBER(12, 2)");
stmt.execute ("CREATE TABLE varray_table (col1 num_varray)");
stmt.execute ("INSERT INTO varray_table VALUES (num_varray(100, 200))");

ResultSet rs = stmt.executeQuery("SELECT * FROM varray_table");
ARRAY my_array = ((OracleResultSet)rs).getARRAY(1);

// return the SQL type names, integer codes,
// and lengths of the columns
System.out.println ("Array is of type " + array.getSQLTypeName());
System.out.println ("Array element is of type code " + array.getBaseType());
System.out.println ("Array is of length " + array.length());

// get Array elements
 BigDecimal[] values = (BigDecimal[]) my_array.getArray();
4-92 JDBC Developer’s Guide and Reference

Working with Arrays
 for (int i=0; i<values.length; i++)
 {
 BigDecimal out_value = (BigDecimal) values[i];
 System.out.println(">> index " + i + " = " + out_value.intValue());
 {

Note that if you use getResultSet() to obtain the array, you would first get the
result set object, then use the next() method to iterate through it. Notice the use of
the parameter indexes in the getInt() method to retrieve the element index and
the element value.

ResultSet rset = my_array.getResultSet();
while (rset.next())
{
 // The first column contains the element index and the
 // second column contains the element value
 System.out.println(">> index " + rset.getInt(1)+" = " + rset.getInt(2));
};

Passing an Array to a Prepared Statement
Pass an array to a prepared statement as follows (use similar steps to pass an array
to a callable statement):

1. Construct an ArrayDescriptor object for the SQL type that the array will
contain (unless one has already been created for this SQL type). See "Class
oracle.sql.ARRAY" on page 4-14 for information about creating
ArrayDescriptor objects.

ArrayDescriptor descriptor = ArrayDescriptor.createDescriptor(sql_type_name,
connection);

where sql_type_name is a Java string specifying the user-defined SQL type
name of the array, and connection is your Connection object. See "Working
with Arrays" on page 4-87 for information about SQL typenames.

2. Define the array that you want to pass to the prepared statement as an
oracle.sql.ARRAY object.

ARRAY array = new ARRAY(descriptor, elements);

where descriptor is the ArrayDescriptor object previously constructed
and elements is a java.lang.Object containing a Java array of the
elements. These objects are converted to raw bytes of the appropriate SQL type.
Oracle Extensions 4-93

Working with Arrays
3. Create a java.sql.PreparedStatement object containing the SQL
statement to execute.

4. Cast your prepared statement to an OraclePreparedStatement and use the
setARRAY() method of the OraclePreparedStatement object to pass the
array to the prepared statement.

(OraclePreparedStatement)stmt.setARRAY(parameterIndex, array);

where parameterIndex is the parameter index, and array is the
oracle.sql.ARRAY object you constructed previously.

5. Execute the prepared statement.

Passing an Array to a Callable Statement
To retrieve a collection as an OUT parameter in PL/SQL blocks, do the following to
register the bind type for your OUT parameter.

1. Cast your callable statement to an OracleCallableStatement:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}")

2. Register the OUT parameter with this form of the regsiterOutParameter()
method:

ocs.registerOutParameter(int param_index, int sql_type, string
sql_type_name);

where param_index is the parameter index, sql_type is the SQL type code,
and sql_type_name is the name of the array type. In this case, the sql_type
is OracleTypes.ARRAY.

3. Execute the query:

ocs.executeQuery()

Using a Type Map to Map Array Elements
If your array contains Oracle objects, then you can use a type map to associate each
object in the array with its corresponding Java class. If you do not specify a type

Note: You can use arrays as either IN or OUT bind variables.
4-94 JDBC Developer’s Guide and Reference

Working with Arrays
map or if the type map does not contain an entry for a particular Oracle object, then
the element is returned as an oracle.sql.STRUCT.

If you want the type map to determine the mapping between the Oracle objects in
the array and their associated Java classes, then you must add them to the type map
if they are not already there. For instructions on how to add entries to an existing
type map or how to create a new type map, see "Understanding Type Maps" on
page 4-66.

The following example illustrates how you can use a type map to map the elements
of an array to a custom Java object class. In this case, the array is a nested table. The
example begins by defining an EMPLOYEE object that has a name attribute and
employee number attribute. EMPLOYEE_LIST is a nested table type of EMPLOYEE
objects. Then an EMPLOYEE_TABLE is created to store the names of departments
within a corporation and the employees associated with each department. In the
EMPLOYEE_TABLE, the employees are stored in the form of EMPLOYEE_LIST
tables.

stmt.execute("CREATE TYPE EMPLOYEE AS OBJECT(EmpName VARCHAR2(50),EmpNo
INTEGER))");

stmt.execute("CREATE TYPE EMPLOYEE_LIST AS TABLE OF EMPLOYEE");

stmt.execute("CREATE TABLE EMPLOYEE_TABLE (DeptName VARCHAR2(20), Employees
EMPLOYEE_LIST) NESTED TABLE Employees STORE AS ntable1");

stmt.execute("INSERT INTO EMPLOYEE_TABLE VALUES ("SALES",
EMPLOYEE_LIST(EMPLOYEE(’Susan Smith’, 123), EMPLOYEE(’Scott Tiger’, 124)))");

If you want to select all of the employees belonging to the SALES department as the
custom Java object EmployeeObj, then you must create a mapping in the type map
between the EMPLOYEE SQL type and the EmployeeObj custom Java object class.

To do this, first create your statement and result set objects, then select the
EMPLOYEE_LIST associated with the SALES department into the result set. Cast the
result set to OracleResultSet so that the getARRAY() method can retrieve the
EMPLOYEE_LIST object into the employeeArray object.
Oracle Extensions 4-95

Working with Arrays
Statement s = conn.createStatement();
OracleResultSet rs = (OracleResultSet)
 s.executeQuery("SELECT Employees FROM employee_table
 WHERE DeptName = ’SALES’");

// get the array object
ARRAY employeeArray = ((OracleResultSet)rs).getARRAY(1);

Now that you have the EMPLOYEE_LIST object, get the existing type map and add
an entry that maps the EMPLOYEE SQL type to the EmployeeObj Java type.

// add type map entry to map SQL type
// "EMPLOYEE" to Java type "EmployeeObj"
Dictionary map = conn.getTypeMap();
map.put("EMPLOYEE", Class.forName("EmployeeObj"));

Retrieve the SQL EMPLOYEE objects from the EMPLOYEE_LIST. To do this, apply
the getArray() method of the oracle.jdbc2.Array class to employeeArray.
This method returns an array of objects. The getArray() method returns the
EMPLOYEE objects into the employees object array.

// Retrieve array elements
Object[] employees = (Object[]) employeeArray.getArray();

Finally, create a loop to assign each of the EMPLOYEE SQL objects to the
EmployeeObj Java object emp.

// Each array element is mapped to EmployeeObj object.
for (int i=0; i<employees.length; i++)
 {
 EmployeeObj emp = (EmployeeObj) employees[i];
 ...
 }

Note: The EmployeeObj custom Java object type in this example
implements the SQLData interface. "Creating the Custom Java
Class" on page 7-21 contains the code that creates the
EmployeeObj type.
4-96 JDBC Developer’s Guide and Reference

Additional Oracle Extensions
Additional Oracle Extensions
This section has the following subsections:

■ Performance Extensions

■ Additional Type Extensions

This section describes Oracle extensions not related to datatypes in the JDBC 2.0
specification. This consists of additional datatype extensions as well as performance
extensions.

Performance Extensions
Oracle JDBC drivers support these extensions that improve performance by
reducing round trips to the database:

■ Prefetching rows reduces round trips to the database by fetching multiple rows
of data each time data is fetched; the extra data is stored in client-side buffers
for later access by the client. The number of rows to prefetch can be set as
desired.

■ Batching updates also reduces round trips to the database, saving on the client
side a number of updates that are to be made, and then going to the database
once to execute all the updates.

■ Specifying column types gets around an inefficiency in the usual JDBC protocol
for performing and returning the results of queries.

■ Suppressing database metadata TABLE_REMARKS columns avoids an expensive
outer join operation.

Oracle supports several extensions to connection properties objects to support these
performance extensions. The properties object extensions enable you to set the
remarksReporting flag and default values for prefetching and update-batching.
For more information, see "Oracle Extensions for Connection Properties" on
page 4-109.

Note: The prefetching and batch update extensions were designed
prior to the announcement of the JDBC 2.0 standard. They do not
match JDBC 2.0.
Oracle Extensions 4-97

Additional Oracle Extensions
Row Prefetching
Oracle JDBC drivers allow you to set the number of rows to prefetch into the client
while a result set is being populated during a query. This feature reduces the
number of round trips to the server.

Standard JDBC receives the result set one row at a time, and each row requires a
round trip to the database. The row prefetching feature associates an integer
row-prefetch setting with a given statement object. JDBC fetches that number of
rows at a time from the database during the query. That is, JDBC will fetch N rows
that match the query criteria and bring them all back to the client at once, where N
is the prefetch setting. Then, once your next() calls have run through those N
rows, JDBC will go back to fetch the next N rows that match the criteria.

You can set the number of rows to prefetch for a particular Oracle statement (any
type of statement). You can also reset the default number of rows that will be
prefetched for all statements in your connection. The default number of rows to
prefetch to the client is 10.

Set the number of rows to prefetch for a particular statement as follows:

1. Cast your statement object to an OracleStatement,
OraclePreparedStatement, or OracleCallableStatement object, as
applicable, if it is not already one of these.

2. Use the setRowPrefetch() method of the statement object to specify the
number of rows to prefetch, passing in the number as an integer. If you want to
check the current prefetch number, use the getRowPrefetch() method of the
Statement object, which returns an integer.

Set the default number of rows to prefetch for all statements in a connection as
follows:

1. Cast your Connection object to an OracleConnection object.

2. Use the setDefaultRowPrefetch() method of your OracleConnection
object to set the default number of rows to prefetch, passing in an integer that
specifies the desired default. If you want to check the current setting of the
default, then use the getDefaultRowPrefetch() method of the
OracleConnection object. This method returns an integer.

Row Prefetching Limitations There is no maximum prefetch setting, but empirical
evidence suggests that 10 is effective. Oracle does not recommend exceeding this
value in most situations. If you do not set the default row prefetch number for a
connection, 10 is the default.
4-98 JDBC Developer’s Guide and Reference

Additional Oracle Extensions
A statement object receives the default row prefetch setting from the associated
connection at the time the statement object is created. Subsequent changes to the
connection’s default row prefetch setting have no effect on the statement’s row
prefetch setting.

If a column of a result set is of datatype LONG or LONG RAW (that is, the streaming
types), JDBC changes the statement’s row prefetch setting to 1, even if you never
actually read a value of either of those types.

If you use the form of the DriverManager class getConnection() method that
takes a Properties object as an argument, then you can set the connection’s
default row prefetch value that way. See "Specifying a Database URL and Properties
Object" on page 3-6 and "Oracle Extensions for Connection Properties" on
page 4-109 for more information about the Properties object and connection
properties.

Example: Row Prefetching The following example illustrates the row prefetching
feature. It assumes you have imported the oracle.jdbc.driver.* classes.

 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:","scott","tiger");

 //Set the default row prefetch setting for this connection
 ((OracleConnection)conn).setDefaultRowPrefetch(7);

 /* The following statement gets the default row prefetch value for
 the connection, that is, 7.
 */
 Statement stmt = conn.createStatement();

 /* Subsequent statements look the same, regardless of the row
 prefetch value. Only execution time changes.
 */
 ResultSet rset = stmt.executeQuery("SELECT ename FROM emp");
 System.out.println(rset.next ());

 while(rset.next ())
 System.out.println(rset.getString (1));

 //Override the default row prefetch setting for this statement
 ((OracleStatement)stmt).setRowPrefetch (2);

 ResultSet rset = stmt.executeQuery("SELECT ename FROM emp");
 System.out.println(rset.next ());

Oracle Extensions 4-99

Additional Oracle Extensions
 while(rset.next())
 System.out.println(rset.getString (1));

 stmt.close();

Database Update Batching
Oracle JDBC drivers allow you to accumulate inserts and updates of prepared
statements at the client and send them to the server in batches, reducing round trips
to the server. You might want to do this when you are repeating the same statement
with different bind variables.

Normally JDBC makes a round trip to the database to execute a prepared statement
whenever the statement’s executeUpdate() method is called. The Oracle
update-batching feature, however, associates a batch value with each prepared
statement object. Oracle JDBC accumulates execution requests for the prepared
statement, then automatically passes them all to the database for execution once the
batch value is reached.

Update Batching Limitations You can use update batching with
CallableStatements except when the CallableStatement has OUT
parameters. In this case, the driver automatically overrides any previous batch
value and resets it to 1.

Do not use the addBatch() and executeBatch() methods of the JDBC 2.0
PreparedStatement interface. These methods are not consistent with the
functionality offered by the methods associated with the
OraclePreparedStatement.

Regardless of the batch value of an Oracle prepared statement, if any of the bind
variables of the statement is (or becomes) a streaming type, then JDBC sets the batch
value to 1 and sends any queued requests to the database for execution.

JDBC automatically executes the statement’s sendBatch() method whenever the
connection receives a commit request, the statement receives a close request, or the
connection receives a close request.

If you use the form of the DriverManager.getConnection() method that takes
a Properties object as an argument, then you can set the connection’s default
batch value in the object. See "Oracle Extensions for Connection Properties" on
page 4-109 for more information about Properties objects.

The default batch update value is 1.
4-100 JDBC Developer’s Guide and Reference

Additional Oracle Extensions
Setting Update Batch Value for Individual Statements You can set the batch value for any
individual Oracle prepared statement by applying it to the
OraclePreparedStatement object. The batch value that you set for an
individual statement overrides the value set for the connection. You can also set a
default batch value that will apply to any Oracle prepared statement in your Oracle
connection by applying it to the OracleConnection object.

Follow these steps to apply the Oracle batch value feature for a particular prepared
statement:

1. Write your prepared statement and specify input values for the first row:

PreparedStatement ps = conn.prepareStatement ("INSERT INTO dept VALUES
(?,?,?)");
ps.setInt (1,12);
ps.setString (2,"Oracle");
ps.setString (3,"USA");

2. Cast your prepared statement to an OraclePreparedStatement object and
apply the setDefaultExecuteBatch() method. In this example, the default
batch size of the statement is set to 2.

((OraclePreparedStatement)ps).setDefaultExecuteBatch(2);

If you wish, insert the getExecuteBatch() method at any point in the
program to check the default batch value for the statement:

System.outPrintln (" Statement Execute Batch Value " +
((OraclePreperedStatement)ps).getExecuteBatch());

3. If you send an execute update statement to the database at this point, then no
data will be sent to the database. Instead, a call to executeUpdate() will
return 0.

// No data is sent to the database by this call to executeUpdate
 System.out.println ("Number of rows updated so far: "

 + ps.executeUpdate ());

4. If you enter a set of input values for a second row and an execute update, then
the number of batch calls to executeUpdate() will be equal to the batch
value of 2. The data will be sent to the database and both rows will be inserted
in a single round trip.

ps.setInt (1, 11);
ps.setString (2, "Applications");
ps.setString (3, "Indonesia");
Oracle Extensions 4-101

Additional Oracle Extensions
int rows = ps.executeUpdate ();
System.out.println ("Number of rows updated now: " + rows);

ps.close ();

Overriding the Default Batch Update Value If you want to execute accumulated
statements before the batch value is reached, then use the sendBatch() method of
the OraclePreparedStatement object. For example:

1. Cast your connection to an OracleConnection object and apply the
setDefaultExecuteBatch() method for the connection. This example sets
the default batch for all statements in the connection to 50.

((OracleConnection)conn).setDefaultExecuteBatch (50);

2. Write your prepared statement and specify input values for the first row as
usual, then execute the statement:

PreparedStatement ps =
 conn.prepareStatement ("insert into dept values (?, ?, ?)");

ps.setInt (1, 32);
ps.setString (2, "Oracle");
ps.setString (3, "USA");

System.out.println (ps.executeUpdate ());

The execute update does not happen at this point. The ps.executeUpdate()
method returns "0".

3. If you enter a set of input values for a second row and an executeUpdate(),
the data will still not be sent to the database since the batch default value for the
statement is the same as for the connection: 50.

ps.setInt (1, 33);
ps.setString (2, "Applications");
ps.setString (3, "Indonesia");

// this execute does not actually happen at this point
int rows = ps.executeUpdate ();

System.out.println ("Number of rows updated before calling sendBatch: "
 + rows);

Note that the value of rows in the println statement is "0".
4-102 JDBC Developer’s Guide and Reference

Additional Oracle Extensions
4. If you apply the sendBatch() method at this point, then the two previously
batched executes will be sent to the database in a single round trip. The
sendBatch() method also returns the number of updated rows. This property
of sendBatch() is used by println to print the number of updated rows.

// Execution of both previously batched executes will happen
// at this point. The number of rows updated will be
// returned by sendBatch.
rows = ((OraclePreparedStatement)ps).sendBatch ();

System.out.println ("Number of rows updated by calling sendBatch: "
 + rows);

 ps.close ();

Setting Update Batch Value for the Connection You can specify a default batch value for
any Oracle prepared statement in your Oracle connection. To do this, set the
setDefaultExecute() method on the OracleConnection object. For example,
the following statement sets the default batch value for all prepared statements
belonging to the conn connection object to 20:

((OracleConnection)conn).setDefaultExecuteBatch(20);

Even though this sets the default batch value for all of the prepared statements
belonging to the connection, you can override it by calling setDefaultBatch()
on individual statements.

Checking Batch Value The getExecuteBatch() method enables you to check the
current setting of the default batch value for a specific Oracle prepared statement
object or for all of the prepared statements that belong to the Oracle connection. For
example:

Integer batch_val = ((OraclePreparedStatement)ps).getExecuteBatch();

OR

Integer batch_val = ((OracleConnection)conn).getDefaultExecuteBatch();

Example: Update Batching The following example illustrates how you use the Oracle
update batching feature. It assumes you have imported the
oracle.jdbc.driver.* classes.

Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:","scott","tiger");

Oracle Extensions 4-103

Additional Oracle Extensions
PreparedStatement ps =
 conn.prepareStatement("insert into dept values (?, ?, ?)");

//Change batch size for this statement to 3
((OraclePreparedStatement)ps).setExecuteBatch (3);

ps.setInt(1, 23);
ps.setString(2, "Sales");
ps.setString(3, "USA");
ps.executeUpdate(); //JDBC queues this for later execution

ps.setInt(1, 24);
ps.setString(2, "Blue Sky");
ps.setString(3, "Montana");
ps.executeUpdate(); //JDBC queues this for later execution

ps.setInt(1, 25);
ps.setString(2, "Applications");
ps.setString(3, "India");
ps.executeUpdate(); //The queue size equals the batch value of 3
 //JDBC sends the requests to the database

ps.setInt(1, 26);
ps.setString(2, "HR");
ps.setString(3, "Mongolia");
ps.executeUpdate(); //JDBC queues this for later execution

((OraclePreparedStatement)ps).sendBatch();
 //JDBC sends the queued request
ps.close();
4-104 JDBC Developer’s Guide and Reference

Additional Oracle Extensions
Redefining Column Types
Oracle JDBC drivers enable you to inform the driver of the types of the columns in
an upcoming query, saving a round trip to the database that would otherwise be
necessary to describe the table.

When standard JDBC performs a query, it first uses a round trip to the database to
determine the types that it should use for the columns of the result set. Then, when
JDBC receives data from the query, it converts the data, as necessary, as it populates
the result set.

When you specify column types for a query, you avoid the first round trip to the
database. The server, which is optimized to do so, performs any necessary type
conversions.

Redefining Column Types Limitations To use this feature, you must specify a datatype
for each column of the expected result set. If the number of columns for which you
specify types does not match the number of columns in the result set, the process
fails with a SQLException.

You cannot define column types for objects or object references.

Redefining Column Types for a Query Following these general steps to redefine column
types for a query:

1. Cast your statement object to an OracleStatement,
OraclePreparedStatement, or OracleCallableStatement object, as
applicable, if it is not already one of these.

2. If necessary, use the clearDefines() method of your Statement object to
clear any previous column definitions for this Statement object.

Notes:

■ Each statement has its own batch count. Only executes on a
particular statement add to the batch count.

■ Updates deferred through batching can affect the results of
other queries. In the following example, if the first query is
deferred due to batching, then the second will return
unexpected results:

UPDATE emp SET name = "Sue" WHERE name = "Bob";
SELECT name FROM emp WHERE name = "Sue";
Oracle Extensions 4-105

Additional Oracle Extensions
3. Determine the following for each column of the expected result set:

■ column index (position)

■ code for the type of the expected return data (which can differ from the
column type)

This is according to oracle.jdbc.driver.OracleTypes for
Oracle-specific types, and according to either java.sql.Types or
OracleTypes for standard types (constants for standard types have the
same value in Types and OracleTypes).

4. For each column of the expected result set, invoke the defineColumnType(),
method of your Statement object, passing it these parameters:

■ column index (integer)

■ type code (integer)

Use the static constants of the java.sql.Types class or, for
Oracle-specific types, the static constants of the
oracle.jdbc.driver.OracleTypes class (such as Types.INTEGER,
Types.FLOAT, Types.VARCHAR, OracleTypes.VARCHAR, and
OracleTypes.ROWID.).

■ (optionally) maximum field size (integer)

For example, assuming stmt is an Oracle statement, use this syntax:

stmt.defineColumnType(column_index, type);

OR

stmt.defineColumnType(column_index, type, max_size);

Set maximum field size if you do not want to receive the full default length of
the data. Less data than this maximum size will be returned if the maximum
field size is set to a smaller value using the setMaxFieldSize() method of
the standard JDBC Statement class, or if the natural maximum size of the
datatype is smaller. Specifically, the size of the data returned will be the
minimum of:

– the maximum field size set in defineColumnType() or

– the maximum field size set in setMaxFieldSize() or

– the natural maximum size of the datatype
4-106 JDBC Developer’s Guide and Reference

Additional Oracle Extensions
Once you complete these steps, use the statement’s executeQuery() method to
perform the query.

Example: Defining Column Types The following example illustrates the use of this
feature. It assumes you have imported the oracle.jdbc.driver.* classes.

Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:","scott","tiger");

Statement stmt = conn.createStatement();

/*Ask for the column as a string:
 *Avoid a round trip to get the column type.
 *Convert from number to string on the server.
 */
((OracleStatement)stmt).defineColumnType(1, Types.VARCHAR);

ResultSet rset = stmt.executeQuery("select empno from emp");

while (rset.next())
 System.out.println(rset.getString(1));

stmt.close();

As this example shows, you must cast the statement (stmt) to type
OracleStatement in the invocation of the defineColumnType() method. The
connection’s createStatement() method returns an object of type
java.sql.Statement, which does not have the defineColumnType() and
clearDefines() methods. These methods are provided only in the
OracleStatement implementation.

The define-extensions use JDBC types to specify the desired types. The allowed
define types for columns depend on the internal Oracle type of the column.

All columns can be defined to their "natural" JDBC types; in most cases, they can be
defined to Types.CHAR or Types.VARCHAR.

Table 4–6 lists the valid column definition arguments you can use in the
defineColumnType() method.
Oracle Extensions 4-107

Additional Oracle Extensions
DatabaseMetaData TABLE_REMARKS Reporting
The getColumns(), getProcedureColumns(), getProcedures(), and
getTables() methods of the database metadata classes are slow if they must
report TABLE_REMARKS columns, because this necessitates an expensive outer join.
For this reason, the JDBC driver does not report TABLE_REMARKS columns by
default.

You can enable TABLE_REMARKS reporting by passing a TRUE argument to the
setRemarksReporting() method of an OracleConnection object.

If you are using a standard java.sql.Connection object, you must cast it to
OracleConnection to use setRemarksReporting().

Example: TABLE_REMARKS Reporting Assuming conn is the name of your standard
Connection object, the following statement enables TABLE_REMARKS reporting.

((oracle.jdbc.driver.OracleConnection)conn).setRemarksReporting(true);

Considerations for getProcedures() and getProcedureColumns() Methods According to
JDBC versions 1.1 and 1.2, the methods getProcedures() and
getProcedureColumns() treat the catalog, schemaPattern,
columnNamePattern and procedureNamePattern parameters in the same way.
In the Oracle definition of these methods, the parameters are treated differently:

■ catalog: Oracle does not have multiple catalogs, but it does have packages.
Consequently, the catalog parameter is treated as the package name. This

Table 4–6 Valid Column Type Specifications

If the column has Oracle
SQL type:

You can use defineColumnType()
to redefine it as:

NUMBER, VARNUM BIGINT, TINYINT, SMALLINT, INTEGER, FLOAT, REAL,
DOUBLE, NUMERIC, DECIMAL, CHAR, VARCHAR

CHAR, VARCHAR2 CHAR, VARCHAR

LONG CHAR, VARCHAR, LONGVARCHAR

LONGRAW LONGVARBINARY, VARBINARY, BINARY

RAW VARBINARY, BINARY

DATE DATE, TIME, TIMESTAMP, CHAR, VARCHAR

ROWID ROWID
4-108 JDBC Developer’s Guide and Reference

Additional Oracle Extensions
applies both on input (the catalog parameter) and output (the catalog
column in the returned ResultSet). On input, the construct " " (the empty
string) retrieves procedures and arguments without a package, that is,
stand-alone objects. A null value means to drop from the selection criteria, that
is, return information about both stand-alone and packaged objects (same as
passing in "%"). Otherwise the catalog parameter should be a package name
pattern (with SQL wild cards, if desired).

■ schemaPattern: All objects within Oracle must have a schema, so it does not
make sense to return information for those objects without one. Thus, the
construct " " (the empty string) is interpreted on input to mean the objects in
the current schema (that is, the one to which you are currently connected). To be
consistent with the behavior of the catalog parameter, null is interpreted to
drop the schema from the selection criteria (same as passing in "%"). It can also
be used as a pattern with SQL wild cards.

■ procedureNamePattern and columnNamePattern: The empty string (" ")
does not make sense for either parameter, because all procedures and
arguments must have names. Thus, the construct " " will raise an exception. To
be consistent with the behavior of other parameters, null has the same effect as
passing in "%".

Oracle Extensions for Connection Properties
One of the forms of the DriverManager.getConnection() method enables you
to specify a URL and a properties object:

getConnection(String URL, Properties info);

where the URL is of the form:

jdbc:oracle:<drivertype>:@<database>

In addition to the URL, you use an object of the standard Java Properties class as
input. For example:

java.util.Properties info = new java.util.Properties();
info.put ("user", "scott");
info.put ("password","tiger");
getConnection ("jdbc:oracle:oci8:",info);

Table 4–7 lists the connection properties that Oracle JDBC drivers support,
including the Oracle extensions for defaultRowPrefetch, remarksReporting,
and defaultBatchValue.
Oracle Extensions 4-109

Additional Oracle Extensions
The following example shows how to use the java.util.Properties.put()
method to set performance extension options before connection to the database.

//import packages and register the driver
import java.sql.*;
import java.math.*;
DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

//specify the properties object
java.util.Properties info = new java.util.Properties();
info.put("user", "scott");
info.put ("password", "tiger");
info.put ("defaultRowProfetch","20");
info.put ("defaultBatchValue", 5);

//specify the connection object
Connection conn = DriverManager.getConnection
("jdbc:oracle:thin:@database",info);

Table 4–7 Connection Properties Recognized by Oracle JDBC Drivers

Name
Short
Name Type Description

user N/A String the user name for logging into the
database

password N/A String the password for logging into the database

database server String the connect string for the database;
equivalent to using
setDefaultRowPrefetch()

defaultRowPrefetch prefetch Integer the default number of rows to prefetch
from the server. The default value is 10.

remarksReporting remarks Boolean true if getTables() and
getColumns() should report
TABLE_REMARKS; equivalent to using
setRemarksReporting(). The
default value is false.

defaultBatchValue batchvalue Integer the default batch value that triggers an
execution request. The default value is 10.
4-110 JDBC Developer’s Guide and Reference

Additional Oracle Extensions
Additional Type Extensions
Oracle JDBC drivers support the Oracle-specific datatypes ROWID and REF CURSOR,
which were introduced in Oracle7 and are not part of the standard JDBC
specification.

ROWID is supported as a Java string and REF CURSOR as a JDBC result set.

Oracle ROWID Type
A ROWID is an identification tag that is unique for each row of an Oracle database
table. ROWID can be thought of as a virtual column, containing the ID for each row.

The oracle.sql.ROWID class is supplied as a wrapper for ROWID SQL data.

ROWIDs provide functionality similar to the
java.sql.ResultSet.getCursorName() and
java.sql.Statement.setCursorName() JDBC methods, which are not
supported by the Oracle implementation.

If you include the ROWID pseudo-column in a query, then you can retrieve the
ROWIDs with the ResultSet.getString() method (passing in either the column
index or the column name). You can also bind a ROWID to a PreparedStatement
parameter with the setString() method. This allows in-place updates, as in the
example that immediately follows.

Example: ROWID The following example shows how to access and manipulate ROWID
data.

Statement stmt = conn.createStatement();

// Query the employee names with "FOR UPDATE" to lock the rows.
// Select the ROWID to identify the rows to be updated.

ResultSet rset =
 stmt.executeQuery ("SELECT ename, rowid FROM emp FOR UPDATE");

Notes:

■ The oracle.sql.ROWID class replaces
oracle.jdbc.driver.ROWID, which was used in previous
releases of Oracle JDBC.

■ Refer to the Javadoc for information about features of the
ROWID class.
Oracle Extensions 4-111

Additional Oracle Extensions
// Prepare a statement to update the ENAME column at a given ROWID

PreparedStatement pstmt =
 conn.prepareStatement ("UPDATE emp SET ename = ? WHERE rowid = ?");

// Loop through the results of the query
while (rset.next ())
{
 String ename = rset.getString (1);
 oracle.sql.ROWID rowid = rset.getROWID (2); // Get the ROWID as a String
 pstmt.setString (1, ename.toLowerCase ());
 pstmt.setROWID (2, rowid); // Pass ROWID to the update statement
 pstmt.executeUpdate (); // Do the update
}

Oracle REF CURSOR Type Category
A cursor variable holds the memory location (address) of a query work area rather
than the contents of the area. So, declaring a cursor variable creates a pointer. In
SQL, a pointer has the datatype REF x where REF is short for REFERENCE and x
represents the entity that is being referenced. "REF CURSOR", then, identifies a
reference to a cursor variable. Since many cursor variables might exist to point to
many work areas, REF CURSOR can be thought of as a category or "datatype
specifier" that identifies many different cursor variables.

To create a cursor variable, begin by identifying a user-defined type that belongs to
the REF CURSOR category. For example:

DECLARE TYPE DeptCursorTyp IS REF CURSOR

Then create the cursor variable by declaring it to be of the user-defined type
DeptCursorTyp:

dept_cv DeptCursorTyp - - declare cursor variable
...

A REF CURSOR, then, is a category of datatype rather than a datatype.

Stored procedures can return user-defined types, or cursor variables, of the REF
CURSOR category. This output is equivalent to a database cursor or a JDBC result
set. A REF CURSOR essentially encapsulates the results of a query.

In JDBC, REF CURSORs are materialized as ResultSet objects and can be accessed
like this:
4-112 JDBC Developer’s Guide and Reference

Additional Oracle Extensions
1. Use a JDBC callable statement to call a stored procedure (it must be a callable
statement as opposed to a prepared statement because there is an output
parameter).

2. The stored procedure returns a REF CURSOR.

3. The Java application casts the callable statement to an Oracle callable statement
and uses the getCursor() method of the OracleCallableStatement class
to materialize the REF CURSOR as a JDBC ResultSet object.

4. The result set is processed as requested.

Example: Accessing REF CURSOR Data This example shows how to access REF
CURSOR data.

import oracle.jdbc.driver.*;
...
CallableStatement cstmt;
ResultSet cursor;

// Use a PL/SQL block to open the cursor
cstmt = conn.prepareCall
 ("begin open ? for select ename from emp; end;");

cstmt.registerOutParameter(1, OracleTypes.CURSOR);
cstmt.execute();
cursor = ((OracleCallableStatement)cstmt).getCursor(1);

// Use the cursor like a normal ResultSet
while (cursor.next ())
 {System.out.println (cursor.getString(1));}

In the preceding example:

■ A CallableStatement object is created by using the prepareCall()
method of the connection class.

■ The callable statement implements a PL/SQL procedure which returns a REF
CURSOR.

■ As always, the output parameter of the callable statement must be registered to
define its type. The Oracle type code to use for a REF CURSOR is
OracleTypes.CURSOR.

■ The callable statement is executed, returning the REF CURSOR.
Oracle Extensions 4-113

Additional Oracle Extensions
■ The CallableStatement object is cast to an OracleCallableStatement
object to use the getCursor() method, which is an Oracle extension to the
standard JDBC API, and returns the REF CURSOR into a ResultSet object.

For a full sample application using a REF CURSOR, see "REF CURSOR Sample" on
page 7-14.
4-114 JDBC Developer’s Guide and Reference

Oracle JDBC Notes and Limitations
Oracle JDBC Notes and Limitations
The following limitations exist in the Oracle JDBC implementation, but all are either
insignificant or have easy work-arounds.

CursorName
Oracle JDBC drivers do not support the getCursorName() and
setCursorName() methods because there is no convenient way to map them to
Oracle constructs. Oracle recommends using ROWID instead. For more information
on how to use and manipulate ROWIDs, see "Oracle ROWID Type" on page 4-111.

SQL92 Outer Join Escapes
Oracle JDBC drivers do not support SQL92 outer join escapes. Use Oracle SQL
syntax with "(+)" instead. For more information on SQL92 syntax, see "Embedded
SQL92 Syntax" on page 5-26.

PL/SQL TABLE, BOOLEAN and RECORD Types
Oracle JDBC drivers do not support calling arguments or return values of the
PL/SQL TABLE, BOOLEAN, or RECORD types. This is a restriction of the OCI layer.

As a work-around for booleans, you can define an additional PL/SQL stored
procedure that accepts the BOOLEAN argument as a CHAR or NUMBER and passes it
as a BOOLEAN to the original stored procedure. For more information on this topic,
see "Boolean Parameters in PL/SQL Stored Procedures" on page 6-7.

IEEE 754 Floating Point Compliance
The arithmetic for the Oracle NUMBER type does not comply with the IEEE 754
standard for floating-point arithmetic. Therefore there can be small disagreements
between the results of computations performed by Oracle and the same
computations performed by Java.

Oracle stores numbers in a format compatible with decimal arithmetic and
guarantees 38 decimal digits of precision. It represents zero, minus infinity, and plus
infinity exactly. For each positive number it represents, it represents a negative
number of the same absolute value.

It represents every positive number between 10-30 and (1 – 10-38) * 10126 to full
38-digit precision.
Oracle Extensions 4-115

Oracle JDBC Notes and Limitations
Read-Only Connection
The read-only connection is not supported. There is no Oracle equivalent to the
read-only connection.

Catalog Arguments to DatabaseMetaData Calls
Certain DatabaseMetaData methods define a catalog parameter. This
parameter is one of the selection criteria for the method. Oracle does not have
multiple catalogs, but it does have packages. For more information on how the
Oracle JDBC drivers treat the catalog argument, see "DatabaseMetaData
TABLE_REMARKS Reporting" on page 4-108.

SQLWarning Class
The java.sql.SQLWarning class provides information on a database access
warning. Warnings typically contain a description of the warning and a code that
identifies the warning. Warnings are silently chained to the object whose method
caused it to be reported. The Oracle JDBC drivers do not support SQLWarning.

For information on how the Oracle JDBC drivers handle errors, see "Error Messages
and JDBC" on page 3-25.

Bind by Name
Bind by name is not supported. Under certain circumstances previous versions of
the Oracle JDBC drivers have allowed binding statement variables by name. In the
following statement, the named variable EmpId would be bound to the integer
314159.

PreparedStatement p = conn.prepareStatement("SELECT name FROM EMP
 WHERE id = :EmpId");
 p.setInt(1, 314159);

The capability is not part of the JDBC specification, either 1.0 or 2.0, and Oracle does
not support it. The JDBC drivers can throw a SQLException or produce
unexpected results.

Prior releases of the Oracle JDBC drivers did not retain bound values from one call
of execute to the next as specified in JDBC 1.0. Bound values are now retained. For
example:

PreparedStatement p = conn.prepareStatement("SELECT name FROM EMP
 WHERE id = :? AND dept = :?");
 p.setInt(1, 314159);
 p.setString(2, "SALES");
4-116 JDBC Developer’s Guide and Reference

Oracle JDBC Notes and Limitations
 ResultSet r1 = p.execute();
 p.setInt(1, 425260);
 ResultSet r2 = p.execute();

Previously a SQLException would be thrown by the second execute since no
value was bound to the second argument. In this release, the second execute will
return the correct value, retaining the binding of the second argument to the string
"SALES".

If the retained bound value is a stream, then the Oracle JDBC drivers will not reset
the stream. Unless the application code resets, repositions, or otherwise modifies
the stream, the subsequent execute calls will send NULL as the value of the
argument.
Oracle Extensions 4-117

Oracle JDBC Notes and Limitations
4-118 JDBC Developer’s Guide and Reference

Advanced T
5

Advanced Topics

This chapter describes advanced JDBC topics, including the following:

■ Using NLS

■ Working with Applets

■ JDBC on the Server: the Server Driver

■ Embedded SQL92 Syntax
opics 5-1

Using NLS
Using NLS
This section contains these subsections:

■ How JDBC Drivers Perform NLS Conversions

■ NLS Restrictions

Oracle’s JDBC drivers support NLS (National Language Support). NLS lets you
retrieve data or insert data into a database in any character set that Oracle supports.
If the clients and the server use different character sets, the driver provides the
support to perform the conversions between the database character set and the
client character set.

For more information on NLS, NLS environment variables, and the character sets
that Oracle supports, see the Oracle8i National Language Support Guide. See the
Oracle8i Reference for more information on the database character set and how it is
created.

Here are a few examples of commonly used Java methods for JDBC that rely heavily
on NLS character set conversion:

■ java.sql.ResultSet methods getString() and getUnicodeStream()
return values from the database as Java strings and as a stream of Unicode
characters, respectively.

■ oracle.sql.CLOB method getCharacterStream() returns the contents of
a CLOB as a Unicode stream.

■ oracle.sql.CHAR methods getString(), toString(), and
getStringWithReplacement() convert the following data to strings:

– getString(): converts the sequence of characters represented by the
CHAR object to a string and returns a Java String object.

– toString(): identical to getString(), but if the character set is not
recognized, toString() returns a hexadecimal representation of the CHAR
data.

– getStringWithReplacement(): identical to getString(), except
characters that have no Unicode representation in the character set of this
CHAR object are replaced by a default replacement character.

How JDBC Drivers Perform NLS Conversions
The techniques that Oracle’s drivers use to perform character set conversion for
Java applications depend on the character set the database uses. The simplest case is
5-2 JDBC Developer’s Guide and Reference

Using NLS
where the database uses the US7ASCII or WE8ISO8859P1 character set. In this
case, the driver converts the data directly from the database character set to UCS-2
which is used in Java applications.

If you are working with databases that employ a non-US7ASCII or
non-WE8ISO8859P1 character set (for example, Japanese or Korean), then the
driver converts the data, first to UTF-8, then to UCS-2. For example, the driver
always converts CHAR and VARCHAR2 data in a non-US7ASCII,
non-WE8ISO8859P1 character set. It does not convert RAW data.

JDBC OCI Driver and NLS
In the case of a JDBC OCI driver installation, note that there is a client-side character
set as well as a database character set. The client character set is determined at
client-installation time by the value of the NLS_LANG environment variable. The
database character set is determined at database creation. The character set used by
the client can be different from the character set used by the database on the server.
So, when performing character set conversion, the JDBC OCI driver has to take
three factors into consideration:

■ database character set and language

■ client character set and language

■ Java applications character set: UCS-2

The JDBC OCI driver transfers the data from the server to the client in the character
set of the database. Depending on the value of the NLS_LANG environment variable,
the driver handles character set conversions in one of two ways.

■ If the value of NLS_LANG is not specified, or if it is set to the US7ASCII or
WE8ISO8859P1 character set, then the JDBC OCI driver uses Java to convert
the character set from US7ASCII or WE8ISO8859P1 directly to UCS-2.

■ If the value of NLS_LANG is set to a non-US7ASCII or non-WE8ISO8859P1
character set, then the driver changes the value of the NLS_LANG parameter on
the client to UTF-8. This happens automatically and does not require any
user-intervention. OCI uses the value of NLS_LANG to convert the data from the
database character set to UTF-8; the JDBC driver then converts the UTF-8 data
to UCS-2.

Note: The JDBC drivers perform all character set conversions
transparently. No user intervention is necessary for the conversions
to occur.
Advanced Topics 5-3

Using NLS
JDBC Thin Driver and NLS
If your applications or applets use the JDBC Thin driver, then there will not be an
Oracle client installation. Because of this, the OCI client conversion routines in C
will not be available. In this case, the client conversion routines are different from
the JDBC OCI driver.

If the database character set is US7ASCII or WE8ISO8859P1, then the data is
transferred to the client without any conversion. The driver then converts the
character set to UCS-2 in Java.

If the database character set is something other than US7ASCII or WE8ISO8859P1,
then the server first translates the data to UTF-8 before transferring it to the client.
On the client, the JDBC Thin driver converts the data to UCS-2 in Java.

Server Driver and NLS
If your JDBC code running in the server accesses the database, then the JDBC Server
driver performs a character set conversion based on the database character set. The
target character set of all Java programs is UCS-2.

The JDBC Server driver supports the ASCII (US7ASCII) and ISO-Latin-1
(WE8ISO8859P1) character sets only.

Notes:

■ The driver sets the value of NLS_LANG to UTF-8 to minimize
the number of conversions it performs in Java. It performs the
conversion from database character set to UTF-8 in C.

■ The change to UTF-8 is for the JDBC application process only.

■ For more information on the NLS_LANG parameter, see the
Oracle8i National Language Support Guide.

Note: The OCI and Thin drivers both provide the same
transparent support for NLS.
5-4 JDBC Developer’s Guide and Reference

Using NLS
NLS Restrictions

Data Size Restriction for NLS Conversions
There is a limit to the maximum sizes for CHAR and VARCHAR2 datatypes when
used in bind calls. This limitation is necessary to avoid data corruption. This
problem happens only with binds (not for defines) and it affects only CHAR and
VARCHAR2 datatypes if you are connected to a multi-byte character set database.

The maximum bind lengths are limited in the following way:

CHARs and VARCHAR2s experience character set conversions that could result in an
increase in the length of the data in bytes. The ratio between data sizes before and
after a conversion is called the NLS Ratio. After conversion, the bind values should
not be greater than 4 Kbytes (in Oracle8), or 2 Kbytes (in Oracle7).

For example, when connecting to an Oracle8 server, you cannot bind more than:

■ min (2000, 4000 / NLS_RATIO) for CHAR types

OR

■ 4000 / NLS_RATIO for VARCHAR2 types

Table 5–2 contains examples of the NLS Ratio and maximum bind values for some
common server character sets.

Note: The Java VM supports only the English (US7ASCII) and
ISO-Latin1 (WE8ISO8859P1) character sets.

Table 5–1 New Restricted Maximum Bind Length for Client-Side Drivers

Driver
Server
Version Datatype

Old Max Bind
Length (bytes) New Restricted Max Bind Length (bytes)

Thin and OCI V8 CHAR 2000 min(2000,4000 / NLS_Ratio)

VARCHAR2 4000 (4000 / NLS_Ratio)

Table 5–2 NLS Ratio and Size Limits for Common Server Character Sets

Server Character Set NLS Ratio
Maximum Bind Value on
Oracle8 Server (in bytes)

WE8DEC 1 4000
Advanced Topics 5-5

Using NLS
US7ASCII 1 4000

 ISO 8859-1 through 10 1 4000

JA16SJIS 2 2000

JA16EUC 3 1333

Table 5–2 NLS Ratio and Size Limits for Common Server Character Sets (Cont.)

Server Character Set NLS Ratio
Maximum Bind Value on
Oracle8 Server (in bytes)
5-6 JDBC Developer’s Guide and Reference

Working with Applets
Working with Applets
This section describes some of the basics about working with applets that use the
JDBC Thin driver. It begins with a simple example of coding a JDBC applet, it then
describes what you must do to allow the applet to connect to a database. This
includes how to use the Oracle8 Connection Manager or signed applets if you are
connecting to a database that is not running on the same host as the web server. It
also describes how your applet can connect to a database through a firewall. The
section concludes with how to package and deploy the applet.

■ Coding Applets

■ Connecting an Applet to a Database

■ Using Applets with Firewalls

■ Packaging Applets

■ Specifying an Applet in an HTML Page

■ Browser Security and JDK Version Considerations

Coding Applets
Except for importing the JDBC interfaces to access JDBC entry points, you write a
JDBC applet like any other Java applet. Depending on whether you are coding your
applet for a JDK 1.1.1 browser or a JDK 1.0.2 browser, there are slight differences in
the code that you use. In both cases, your applet must use the JDBC Thin driver,
which connects to the database with TCP/IP protocol.

If you are targeting a JDK 1.1.1 browser (such as Netscape 4.x or Internet Explorer
4.x), then you must:

■ import the java.sql package into your program. The java.sql package
contains the standard JDBC 1.22 interfaces and is part of the standard JDK 1.1.1
class library.

■ register the driver with the oracle.jdbc.driver.OracleDriver() class
and specify the driver name in the connect string as thin.

If you are targeting a JDK 1.0.2 browser (such as Netscape 3.x or Internet Explorer
3.x), then you must:

■ import the jdbc.sql package into your program.

The jdbc.sql package is not a part of the standard JDK 1.0.2 class library. It is
a separate library that you download as part of the JDBC distribution. The
Advanced Topics 5-7

Working with Applets
jdbc.sql package was created because JDK 1.0.2 browsers do not allow
packages starting with the string "java" to be downloaded. As a work-around,
the java.sql package has been renamed to jdbc.sql. This renamed package
is shipped with the Oracle JDBC product.

■ register the driver with the oracle.jdbc.dnlddriver.OracleDriver()
class and specify the driver name in the connect string as dnldthin.

The following sections illustrate the differences in coding an applet for a JDK 1.1.1
browser compared with a JDK 1.0.2 browser.

■ Coding Applets for a JDK 1.1.1 Browser

■ Coding Applets for a JDK 1.0.2 Browser

Coding Applets for a JDK 1.1.1 Browser
If you are coding an applet for a JDK 1.1.1 browser, then import the JDBC interfaces
from the java.sql package and load the Oracle JDBC Thin driver.

import java.sql.*;
public class JdbcApplet extends java.applet.Applet
{
 Connection conn; // Hold the connection to the database
 public void init()
 {
 // Register the driver.
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());
 // Connect to the database.
 conn = DriverManager.getConnection
 ("jdbc:oracle:thin:scott/tiger@www-aurora.us.oracle.com:1521:orcl");
 ...
 }
}

In this example, the connect string contains the username and password, but you
can also pass them as arguments to getConnection() after obtaining them from
the user. For more information on connecting to the database, see "Opening a
Connection to a Database" on page 3-3.

Coding Applets for a JDK 1.0.2 Browser
If you are coding an applet for a JDK 1.0.2 browser, then import the JDBC interfaces
from the jdbc.sql package, load the driver from the
oracle.jdbc.dnlddriver.OracleDriver() class, and use the dnldthin
sub-protocol in your connect string:
5-8 JDBC Developer’s Guide and Reference

Working with Applets
import jdbc.sql.*;
public class JdbcApplet extends java.applet.Applet
{
 Connection conn; // Hold the connection to the database
 public void init ()
 {
 // Register the driver
 DriverManager.registerDriver (new oracle.jdbc.dnlddriver.OracleDriver());
 // Connect to the database
 conn = DriverManager.getConnection
 ("jdbc:oracle:dnldthin:scott/tiger@www-aurora.us.oracle.com:1521:orcl");
 ...
 }
}

Connecting an Applet to a Database
This section includes the following subsections:

■ Connecting to a Database on the Same Host as the Web Server

■ Connecting to a Database on a Different Host

■ Using the Oracle8 Connection Manager

■ Using Signed Applets

The most common task of an applet using the JDBC driver is to connect to and
query a database. Because of applet security restrictions, an applet can open TCP/IP
sockets only to the host from which it was downloaded (this is the host on which
the web server is running). This means that your applet can connect only to a
database that is running on the same host as the web server. In this case, the applet
can connect to the database directly; no additional steps are required.

However, a web server and an Oracle database server both require many resources;
you seldom find both servers running on the same machine. Usually, your applet
connects to a database on a host other than the one on which the web server runs.
There are two possible ways in which you can work around the security restriction:

■ You can connect to the database by using the Oracle8 Connection Manager.

OR

■ If your web browser supports JDK 1.1.x, then you can use a signed applet to
connect to the database directly.
Advanced Topics 5-9

Working with Applets
This section begins with describing the most simple case, connecting to a database
on the same host from which the applet was downloaded (that is, the same host as
the web server). It then describes the two different ways in which you can connect
to a database running on a different host.

Connecting to a Database on the Same Host as the Web Server
If your database is running on the same host from which the applet was
downloaded, then you can connect to the database by specifying it in your applet.
You specify the database in the connect string of the getConnection() method in
the DriverManager class.

There are two ways in which you can specify the connection information to the
driver. You can provide it in the form of host:port:sid or in the form of a TNS
keyword-value syntax.

For example, if the database to which you want to connect resides on host
prodHost, at port 1521, and SID ORCL, and you want to connect with username
scott with password tiger, then use either of the two following connect strings:

using host:port:sid syntax:

String connString="jdbc:oracle:thin:@prodHost:1521:ORCL";
conn = DriverManager.getConnection(connString, "scott", "tiger");

using TNS keyword-value syntax:

String connString = "jdbc:oracle:thin:@(description=(address_list=
(address=(protocol=tcp)(port=1521)(host=prodHost)))
(connect_data=(sid=ORCL)))"

conn = DriverManager.getConnection(connString, "scott", "tiger");

If you use the TNS keyword-value pair to specify the connection information to the
JDBC Thin driver, then you must declare the protocol as TCP.

Connecting to a Database on a Different Host
If you are connecting to a database on a host other than the one on which the web
server is running, then you must overcome the applet’s security restrictions. You
can do this by using either the Oracle8 Connection Manager or signed applets.

Using the Oracle8 Connection Manager
Oracle8 Connection Manager is a lightweight, highly-scalable program that can
receive Net8 packets and re-transmit them to a different server. To a client running
Net8, the Connection Manager looks exactly like a database server. An applet that
5-10 JDBC Developer’s Guide and Reference

Working with Applets
uses the JDBC Thin driver can connect to a Connection Manager running on the
web server host and have the Connection Manager redirect the Net8 packets to an
Oracle server running on a different host.

Figure 5–1 illustrates the relationship between the applet, the Oracle8 Connection
Manager, and the database.

Figure 5–1 Applet, Connection Manager, and Database Relationship

Using the Oracle8 Connection Manager requires two steps that are described in
these sections:

■ Installing and Running the Oracle8 Connection Manager

■ Writing the Connect String that Targets the Oracle8 Connection Manager

Installing and Running the Oracle8 Connection Manager You must install the Connection
Manager on the web server host. You install it from the Oracle8 distribution media.
Please refer to the Net8 Administrator’s Guide if you need more help to install the
Connection Manager.

On the web server host you must create a CMAN.ORA file in the
[ORACLE_HOME]/NET8/ADMIN directory. The options you can declare in a
CMAN.ORA file include firewall and connection pooling support. Please refer to the
Net8 Administrator’s Guide for more information on the options you can enter in a
CMAN.ORA file.

Here is an example of a very simple CMAN.ORA file. Replace <web-server-host> with
the name of your web server host. The fourth line in the file indicates that the
connection manager is listening on port 1610. You must use this port number in
your connect string for JDBC.

applet
in browser

oraHostwebHost

any Net8
protocolTCP/IP

(only)

Net8 Listener
CMAN

web server
Advanced Topics 5-11

Working with Applets
cman = (ADDRESS_LIST =
(ADDRESS = (PROTOCOL=TCP)
(HOST=<web-server-host>)
(PORT=1610)))

cman_profile = (parameter_list =
(MAXIMUM_RELAYS=512)
(LOG_LEVEL=1)

(TRACING=YES)
(RELAY_STATISTICS=YES)
(SHOW_TNS_INFO=YES)
(USE_ASYNC_CALL=YES)
(AUTHENTICATION_LEVEL=0)
)

Note that the Java Net8 version inside the JDBC Thin driver does not have
authentication service support. This means that the AUTHENTICATION_LEVEL
configuration parameter in the CMAN.ORA file must be set to 0.

You can find a description of the options listed in the CMAN.ORA file in the Net8
Administrator’s Guide.

After you create the file, start the Oracle8 Connection Manager at the operating
system prompt with this command:

cmctl start

To use your applet, you must now write the connect string for it.

Writing the Connect String that Targets the Oracle8 Connection Manager This section
describes how to write the connect string in your applet so that the applet connects
to the Connection Manager, and the Connection Manager connects with the
database. In the connect string, you specify an address list that lists the protocol,
port, and name of the web server host on which the Connection Manager is
running, followed by the protocol, port, and name of the host on which the
database is running.

The following example describes the situation illustrated in Figure 5–1. The web
sever on which the Connection Manager is running is on host webHost and is
listening on port 1610. The database to which you want to connect is running on
host oraHost, listening on port 1521, and SID ORCL. You write the connect string
in TNS keyword-value format:

Connection conn =
DriverManager.getConnection ("jdbc:oracle:thin:" +
5-12 JDBC Developer’s Guide and Reference

Working with Applets
"@(description=(address_list=" +
"(address=(protocol=tcp)(host=webHost)(port=1610))" +
"(address=(protocol=tcp)(host=oraHost)(port=1521)))" +
"(source_route=yes)" +
"(connect_data=(sid=orcl)))", "scott", "tiger");

The first element in the address_list entry represents the connection to the
Connection Manager. The second element represents the database to which you
want to connect. The order in which you list the addresses is important.

Notice that you can also write the same connect string in this format:

String connString =
"jdbc:oracle:thin:@(description=(address_list=
(address=(protocol=tcp)(port=1610)(host=webHost))
(address=(protocol=tcp)(port=1521)(host=oraHost)))
(connect_data=(sid=orcl))
(source_route=yes))";

Connection conn = DriverManager.getConnection(connString, "scott", "tiger");

When your applet uses a connect string such as the one above, it will behave exactly
as if it were connected directly to the database on the host oraHost.

For more information on the parameters that you specify in the connect string, see
the Net8 Administrator’s Guide.

Connecting through Multiple Connection Managers Your applet can reach its target
database even if it first has to go through multiple Connection Managers (for
example, if the Connection Managers form a "proxy chain"). To do this, add the
addresses of the Connection Managers to the address list, in the order that you plan
to access them. The database listener should be the last address on this list. See the
Net8 Administrator’s Guide for more information about source_route addressing.

Using Signed Applets
If your browser supports JDK 1.1.x, (for example, Netscape 4.0), then you can use
signed applets. Signed applets can request socket connection privileges to other
machines. To set this up, you must:

1. Sign the applet. For information on the steps you must follow to sign an applet,
see Sun Microsystem’s Signed Applet Example at:

http://java.sun.com/security/signExample/index.html
Advanced Topics 5-13

Working with Applets
2. Include applet code that asks for appropriate permission before opening a
socket.

If you are using Netscape, then your code would include a statement like this:

netscape.security.PrivilegeManager.enablePrivilege("UniversalConnect");
Connection conn = DriverManager.getConnection(...);

For more information on writing applet code that asks for permissions, see
Netscape’s Introduction to Capabilities Classes at:

http://developer.netscape.com/docs/manuals/signedobj/capabilities/contents.htm

3. You must obtain an object-signing certificate. See Netscape’s Object-Signing
Resources page at:

http://developer.netscape.com/software/signedobj/index.html

for information on obtaining and installing a certificate.

For a complete example of a signed applet that uses the Netscape Capabilities
classes, see "Creating Signed Applets" on page 7-31.

Using Applets with Firewalls
Under normal circumstances, an applet that uses the JDBC Thin Driver cannot
access the database through a firewall. In general, the purpose of a firewall is to
prevent requests from unauthorized clients from reaching the server. In the case of
applets trying to connect to the database, the firewall prevents the opening of a
TCP/IP socket to the database.

You can solve this problem by using a Net8-compliant firewall and connect strings
that comply with the firewall configuration. Net8-compliant firewalls are available
from many leading vendors; a more detailed discussion of these firewalls is beyond
the scope of this manual.

An unsigned applet can access only the same host from which it was downloaded.
In this case, the Net8-compliant firewall must be installed on that host. In contrast, a
signed applet can connect to any host. In this case, the firewall on the target host
controls the access.

The following sections describe these topics:

■ How Firewalls Work

■ Configuring a Firewall for Applets that use the JDBC Thin Driver
5-14 JDBC Developer’s Guide and Reference

Working with Applets
■ Writing a Connect String to Connect through a Firewall

How Firewalls Work
Firewalls are rule-based. They have a list of rules that define which clients can
connect, and which cannot. Firewalls compare the client’s hostname with the rules,
and based on this comparison, either grant the client connect access or not. If the
hostname lookup fails, the firewall tries again. This time, the firewall extracts the IP
address of the client and compares it to the rules. The firewall is designed to do this
so that users can specify rules that include hostnames as well as IP addresses.

Connecting through a firewall requires two steps that are described in the following
sections:

■ Configuring a Firewall for Applets that use the JDBC Thin Driver

■ Writing a Connect String to Connect through a Firewall

Configuring a Firewall for Applets that use the JDBC Thin Driver
The instructions in this section assume that you are running a Net8-compliant
firewall.

Java applets do not have access to the local system (that is, they cannot get the
hostname locally or environment variables) because of security limitations. As a
result, the JDBC Thin driver cannot access the hostname on which it is running. The
firewall cannot be provided with the hostname. To allow requests from JDBC Thin
clients to go through the firewall, you must do the following two things to the
firewall’s list of rules:

■ Add the IP address (not the hostname) of the host on which the JDBC applet is
running.

■ Ensure that the hostname "__jdbc__" never appears in the firewall’s rules.
This hostname has been hard-coded as a bogus hostname inside the driver to
force an IP address lookup. If you do enter this hostname in the list of rules,
then every applet using Oracle's JDBC Thin driver will be able to go through
your firewall.

By not including the Thin driver’s hostname, the firewall is forced to do an IP
address lookup and base its access decision on the IP address and not on the
hostname.
Advanced Topics 5-15

Working with Applets
Writing a Connect String to Connect through a Firewall
To write a connect string that allows you to connect through a firewall, you must
specify the name of the firewall host and the name of the database host to which
you want to connect.

For example, if you want to connect to a database on host oraHost, listening on
port 1521 and SID ORCL, and you are going though a firewall on host
fireWallHost, listening on port 1610, then use the following connect string:

Connection conn =
DriverManager.getConnection ("jdbc:oracle:thin:" +
"@(description=(address_list=" +
(address=(protocol=tcp)(host=<firewall-host>)(port=1610))" +
"(address=(protocol=tcp)(host=oraHost)(port=1521)))" +
"(source_route=yes)" +
"(connect_data=(sid=orcl)))", "scott", "tiger");

The first element in the address_list represents the connection to the firewall.
The second element represents the database to which you want to connect. Note
that the order in which you specify the addresses is important.

Notice that you can also write the preceding connect string in this format:

String connString =
"jdbc:oracle:thin:@(description=(address_list=
(address=(protocol=tcp)(port=1600)(host=fireWallHost))
(address=(protocol=tcp)(port=1521)(host=oraHost)))
(connect_data=(sid=orcl))
(source_route=yes))";

Connection conn = DriverManager.getConnection(connString, "scott", "tiger");

Note: To connect through a firewall, you cannot specify the
connection string in host:port:sid syntax. For example, a
connection string specified as:

String connString =
"jdbc:oracle:thin:@ixta.us.oracle.com:1521:orcl";

conn =DriverManager.getConnection (connString,
"scott", "tiger");

will not work.
5-16 JDBC Developer’s Guide and Reference

Working with Applets
When your applet uses a connect string similar to the one above, it will behave as if
it were connected to the database on host oraHost.

For more information on the parameters used in the above example, see the Net8
Administrator’s Guide. For more information on how to configure a firewall, please
see your firewall’s documentation or contact your firewall vendor.

Packaging Applets
After you have coded your applet, you must package it and make it available to
users. To package an applet you need your applet classes files and the JDBC driver
classes file (this will be either classes111.zip if you are targeting the applet to a
browser running JDK 1.1.1, or classes102.zip if you are targeting the applet to a
browser running JDK 1.0.2).

Follow these steps:

1. Move the JDBC driver classes file classes111.zip (or classes102.zip) to
an empty directory.

2. Unzip the driver classes zip file.

If you are targeting a browser running the JDK 1.0.2, then DELETE the
packages listed in the left-hand column of the following table. Next, ensure that
the packages listed in the right-hand column are present. All of the packages
listed in the table are included in the JDBC distribution.

Note: All of the parameters shown in the preceding example are
required. In the address_list, the firewall address must precede
the database server address.

DELETE these packages: Ensure that these packages are present:

java.sql jdbc.sql

java.math jdbc.math

oracle.jdbc.driver oracle.jdbc.dnlddriver

oracle.jdbc.dbaccess oracle.jdbc.dnlddbaccess

oracle.jdbc.oracore oracle.jdbc.dnldoracore

oracle.jdbc.util oracle.jdbc.dnldutil
Advanced Topics 5-17

Working with Applets
3. Add your applet classes files to the directory, and any other files the applet
might require.

4. Zip the applet classes and driver classes together into a single zip (or .jar) file.

To target a browser running the JDK 1.1.1, the single zip file should contain:

■ the files from classes111.zip

■ your applet classes

■ If you are using DatabaseMetaData entry points in your applet, include the
oracle/jdbc/driver/OracleDatabaseMetaData.class file. Note
that this file is very large and might have a negative impact on
performance. If you do not use DatabaseMetadata entry points, omit this
file.

To target a browser running the JDK 1.0.2, the single zip file should contain:

■ the files from classes102.zip (minus the files you deleted in Step 2)

■ your applet classes

■ the jdbc interface files from the jdbc.sql package in the
classes/jdbc/sql directory of the JDBC distribution

5. Ensure that the zip (or .jar) file is not compressed.

You can now make the applet available to users. One way to do this is to add the
APPLET tag to the HTML page from which the applet will be run. For example:

oracle.jdbc.ttc7 oracle.jdbc.dnldttc7

oracle.sql oracle.sdnldql

oracle.jdbc2 oracle.dnldjdbc2

java.io.Reader jdbc.io.Reader

java.io.Writer jdbc.io.Writer

Note: If you are targeting your applet at a browser running the
JDK 1.0.2, then you must package the applet in a zip file. Browsers
running the JDK 1.0.2 do not support .jar files.

DELETE these packages: Ensure that these packages are present:
5-18 JDBC Developer’s Guide and Reference

Working with Applets
<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet ARCHIVE=JdbcApplet.zip
CODEBASE=Applet_Samples

</APPLET>

You can find a description of the APPLET, CODE, ARCHIVE, CODEBASE, WIDTH, and
HEIGHT parameters in the next section.

Specifying an Applet in an HTML Page
The APPLET tag specifies an applet that runs in the context of an HTML page. The
APPLET tag can have these parameters: CODE, ARCHIVE, CODEBASE, WIDTH, and
HEIGHT to specify the name of the applet and its location, and the height and width
of the applet display area. These parameters are described in the following sections.

CODE, HEIGHT, and WIDTH
The HTML page that runs the applet must have an APPLET tag with an initial
width and height to specify the size of the applet display area. You use the HEIGHT
and WIDTH parameters to specify the size, measured in pixels. This size should not
count any windows or dialogs that the applet opens.

The APPLET tag must also specify the name of the file that contains the applet’s
compiled Applet subclass. You specify the file name with the CODE parameter. Any
path must be relative to the base URL of the applet. The path cannot be absolute.

In the following example, JdbcApplet.class is the name of the Applet’s
compiled applet subclass:

<APPLET CODE="JdbcApplet" WIDTH=500 HEIGHT=200>
</APPLET>

If you use this form of the CODE tag, then the classes for the applet and the classes
for the JDBC Thin driver must be in the same directory as the HTML page.

Notice that in the CODE specification, you do not include the file name extension
".class".

CODEBASE
The CODEBASE parameter is optional and specifies the base URL of the applet; that
is, the name of the directory that contains the applet’s code. If it is not specified,
then the document’s URL is used. This means that the classes for the applet and the
JDBC Thin driver must be in the same directory as the HTML page. For example, if
the current directory is my_Dir:
Advanced Topics 5-19

Working with Applets
<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet CODEBASE="."
</APPLET>

The entry CODEBASE="." indicates that the applet resides in the current directory
(my_Dir). If the value of codebase was set to Applet_Samples, for example:

CODEBASE="Applet_Samples"

then this would indicate that the applet resides in the my_Dir/Applet_Samples
directory.

ARCHIVE
The ARCHIVE parameter is optional and specifies the name of the archive file (either
a .zip or .jar file) that contains the applet classes and resources the applet needs.
Oracle recommends the use of a .zip file, which saves many extra roundtrips to
the server.

The .zip (or .jar) file will be preloaded. If you have more than one archive in the
list, separate them with commas. In the following example, the class files are stored
in the archive file JdbcApplet.zip:

<APPLET CODE="JdbcApplet" ARCHIVE="JdbcApplet.zip" WIDTH=500 HEIGHT=200>
</APPLET>

Browser Security and JDK Version Considerations
The communication between an applet that uses the JDBC Thin driver and the
Oracle database happens on top of Java TCP/IP sockets.

In a JDK 1.0.2-based web browser, such as Netscape 3.0, an applet can open sockets
only to the host from which it was downloaded. For Oracle8 this means that the
applet can only connect to a database running on the same host as the web server. If
you want to connect to a database running on a different host, then you must
connect through the Oracle8 Connection Manager. For more information, see "Using
the Oracle8 Connection Manager" on page 5-10.

In a JDK 1.1.1-based web browser, such as Netscape 4.0, an applet can request
socket connection privileges and connect to a database running on a different host
from the web server host. In Netscape 4.0 you perform this by signing your applet
(that is, writing a signed applet), then opening your connection as follows:

Note: Version 3.0 browsers do not support the ARCHIVE
parameter.
5-20 JDBC Developer’s Guide and Reference

Working with Applets
netscape.security.PrivilegeManager.enablePrivilege
("UniversalConnect");

connection = DriverManager.getConnection
("jdbc:oracle:thin:scott/tiger@dlsun511:1721:orcl");

Please refer to your browser documentation for more information on how to work
with signed applets. You can also refer to "Using Signed Applets" on page 5-13.
Advanced Topics 5-21

JDBC on the Server: the Server Driver
JDBC on the Server: the Server Driver
This section has the following subsections:

■ Connecting to the Database with the Server Driver

■ Session and Transaction Context for the Server Driver

■ Testing JDBC on the Server

■ Server Driver Support for NLS

Any Java program, Enterprise JavaBean (EJB), or Java stored procedure that runs in
the database, can use the Server driver to access the SQL engine.

The Server driver is intrinsically tied to the 8.1 database and to the Java VM. The
driver runs as part of the same process as the database. It also runs within the
default session: this is the same session in which the Java VM was invoked.

The Server driver is optimized to run within the database server and provide direct
access to SQL data and PL/SQL subprograms on the local database. The entire Java
VM operates in the same address space as the database and the SQL engine. Access
to the SQL engine is a function call; there is no network. This enhances the
performance of your JDBC programs and is much faster than executing a remote
Net8 call to access the SQL engine.

The server-side driver supports the same features, APIs, and Oracle extensions as
the client-side drivers. This makes application partitioning very straight forward.
For example, if you have a Java application that is data-intensive, you can easily
move it into the database server for better performance, without having to modify
the application-specific calls.

Connecting to the Database with the Server Driver
As described in the preceding section, the Server driver runs within a default
session. You are already "connected". You can use either the Oracle-specific API
defaultConnection() method or the standard Java
DriverManager.getConnection() method to access the default connection.

Connecting with defaultConnection()
The defaultConnection() method of the
oracle.jdbc.driver.OracleServerDriver class is an Oracle extension and
always returns the same connection object. You do not need to include a connect
string with the statement. For example:

import java.sql.*;
5-22 JDBC Developer’s Guide and Reference

JDBC on the Server: the Server Driver
import oracle.jdbc.driver.*;

class JDBCConnection {
 public static Connection connect() throws SQLException {
 Connection conn = null;
 try {
 // connect with the Server driver
 OracleDriver ora = new OracleDriver();
 conn = ora.defaultConnection();
 }

 } catch (SQLException e)
 return conn;
 }
}

Note that there is no conn.close statement. You cannot close a default connection
made by the Server driver. Calling close() on the connection is just a no-op.

Connecting with DriverManager.getConnection()
The DriverManager.getConnection() method returns a new Java
Connection object every time you call it. Note that although the method is not
creating a new connection, it is returning a new object.

The fact that DriverManager.getConnection() returns a new connection
object every time you call it is significant if you are working with object maps (or
"type maps"). A type map is associated with a specific Connection object and with
any state that is part of the object. If you want to use multiple type maps as part of
your program, then you can call getConnection() to create a new Connection
object for each type map.

If you connect to the database with the DriverManager.getConnection()
method, then use the connect string jdbc:oracle:kprb:. For example:

DriverManager.getConnection("jdbc:oracle:kprb:");

Note that you could include a user name and password in the string, but because
you are connecting from the server, they would be ignored.

Session and Transaction Context for the Server Driver
The server-side driver operates within a default session and default transaction
context. The default session is the session in which the Java VM was invoked. In
effect, you are already connected to the database on the server. This is different from
Advanced Topics 5-23

JDBC on the Server: the Server Driver
the client side where there is no default session: you must explicitly connect to the
database.

If you run Java application code in the server, then you can manage the transaction
(COMMITs and ROLLBACKs) explicitly.

Testing JDBC on the Server
Almost any JDBC program that can run on a client can also run on the server. All of
the programs in the samples directory can be run on the server with only minor
modifications. Usually, these modifications concern only the connection statement.

For example, consider the test program JdbcCheckup.java described in "Testing
JDBC and the Database Connection: JdbcCheckup" on page 2-8. If you want to run
this program on the server and connect with the
DriverManager.getConnection() method, then open the file in your favorite
text editor and change the driver name in the connection string from "oci8" to
"kprb". For example:

Connection conn =
DriverManager.getConnection ("jdbc:oracle:kprb:@" +
 database, user, password);

The advantage of using this method is that you need to change only a short string in
your original program. The disadvantage is that you still must provide the user,
password, and database information even though the driver will discard it. In
addition, if you issue the getConnection() method again, the driver will create
another new (and unnecessary) connection object.

However, if you connect with defaultConnection(), the preferred method of
connecting to the database from the Server driver, you do not have to enter any
user, password, or database information. You can delete these statements from your
program.

For the connection statement, use:

Connection conn = new oracle.jdbc.driver.OracleDriver ().defaultConnection ();

The following example is a rewrite of the JdbcCheckup.java program which
uses the defaultConnection() connection statement. The connection statement
is printed in bold. The unnecessary user, password, and database information
statements, along with the utility function to read from standard input, have been
deleted.
5-24 JDBC Developer’s Guide and Reference

JDBC on the Server: the Server Driver
/*
 * This sample can be used to check the JDBC installation.
 * Just run it and provide the connect information. It will select
 * "Hello World" from the database.
 */
// You need to import the java.sql package to use JDBC
import java.sql.*;
// We import java.io to be able to read from the command line
import java.io.*;

class JdbcCheckup
{

public static void main (String args [])
 throws SQLException, IOException
{

Connection conn = new oracle.jdbc.driver.OracleDriver
().defaultConnection ();

// Create a statement
Statement stmt = conn.createStatement ();

// Do the SQL "Hello World" thing
ResultSet rset = stmt.executeQuery ("SELECT ’Hello World’
 FROM dual");

while (rset.next ())
 System.out.println (rset.getString (1));
System.out.println ("Your JDBC installation is correct.");

}
}

Server Driver Support for NLS
For a description of how the Server driver handles database character set
conversions for Java programs, see "Server Driver and NLS" on page 5-4.

Character Set Conversion of oracle.sql.CHAR Data
The Server driver performs character set conversions for oracle.sql.CHAR in C;
this is a different implementation than for the client-side drivers. The client-side
drivers perform character set conversions for oracle.sql.CHAR in Java. For more
information on the oracle.sql.CHAR class, see "Class oracle.sql.CHAR" on
page 4-19.
Advanced Topics 5-25

Embedded SQL92 Syntax
Embedded SQL92 Syntax
Oracle’s JDBC drivers support some embedded SQL92 syntax. This is the syntax
that you specify between curly braces. The current support is basic. This section
describes the support offered by the drivers for the following SQL92 constructs:

■ Time and Date Literals

■ Scalar Functions

■ LIKE Escape Characters

■ Outer Joins

■ Function Call Syntax

Where driver support is limited, these sections also describe possible work-arounds.

Disabling Escape Processing Escape processing for SQL92 syntax is enabled by
default. The JDBC drivers perform escape substitution before sending the SQL code
to the database. If you want the driver to use regular Oracle SQL syntax instead of
SQL92 syntax, then use this statement:

stmt.setEscapeProcessing(false)

Time and Date Literals
Databases differ in the syntax they use for date, time, and timestamp literals. JDBC
supports dates and times written only in a specific format. This section describes the
formats you must use for date, time, and timestamp literals in SQL statements.

Date Literals
The JDBC drivers support date literals in SQL statements written in the format:

{d ’yyyy-mm-dd’}

where yyyy-mm-dd represents the year, month, and day; for example,
{d ’1998-10-22’} . The JDBC drivers will replace this escape clause with the
equivalent Oracle representation: "22 OCT 1998".

This code snippet contains an example of using a date literal in a SQL statement.

Note: Since prepared statements have usually been parsed prior
to making a call to setEscapeProcessing() , disabling escape
processing for prepared statements will probably have no affect.
5-26 JDBC Developer’s Guide and Reference

Embedded SQL92 Syntax
// Connect to the database
// You can put a database name after the @ sign in the connection URL.
Connection conn =

DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

// Create a Statement
Statement stmt = conn.createStatement ();

// Select the ename column from the emp table where the hiredate is Jan-23-1982
ResultSet rset = stmt.executeQuery

("SELECT ename FROM emp WHERE hiredate = {d ’1982-01-23’}");

// Iterate through the result and print the employee names
while (rset.next ())

System.out.println (rset.getString (1));

Time Literals
The JDBC drivers support time literals in SQL statements written in the format:

{t ’hh:mm:ss’}

where hh:mm:ss represents the hours, minutes, and seconds; for example,
{t ’05:10:45’} . The JDBC drivers will replace this escape clause with the
equivalent Oracle representation: "05:10:45". If the time is specified as
{t ’14:20:50’} , then the equivalent Oracle representation would be "14:20:50",
assuming the server is using a 24-hour clock.

This code snippet contains an example of using a time literal in a SQL statement.

ResultSet rset = stmt.executeQuery
("SELECT ename FROM emp WHERE hiredate = {t ’12:00:00’}");

Timestamp Literals
The JDBC drivers support timestamp literals in SQL statements written in the
format:

{ts ’yyyy-mm-dd hh:mm:ss.f...’}

where yyyy-mm-dd hh:mm:ss.f... represents the year, month, day, hours,
minutes, and seconds. The fractional seconds portion (".f...") is optional and can be
omitted. For example: {ts ’1997-11-01 13:22:45’} represents, in Oracle
format, NOV 01 1997 13:22:45.
Advanced Topics 5-27

Embedded SQL92 Syntax
This code snippet contains an example of using a timestamp literal in a SQL
statement.

ResultSet rset = stmt.executeQuery
("SELECT ename FROM emp WHERE hiredate = {ts ’1982-01-23 12:00:00’}");

Scalar Functions
The Oracle JDBC drivers do not support all scalar functions. To find out which
functions the drivers support, use the following methods which are supported by
the Oracle-specific oracle.jdbc.driver.OracleDatabaseMetaData and the
standard Java java.sql.DatabaseMetadata interfaces:

■ getNumericFunctions(): returns a comma-separated list of math functions
supported by the driver. For example, ABS(number), COS(float), SQRT(float).

■ getStringFunctions(): returns a comma-separated list of string functions
supported by the driver. For example, ASCII(string), LOCATE(string1, string2,
start).

■ getSystemFunctions(): returns a comma-separated list of system functions
supported by the driver. For example, DATABASE(), IFNULL(expression, value),
USER().

■ getTimeDateFunctions(): returns a comma-separated list of time and date
functions supported by the driver. For example, CURDATE(), DAYOFYEAR(date),
HOUR(time).

Oracle’s JDBC drivers do not support the function keyword, ’fn’. If you try to use
this keyword, for example:

{fn concat ("Oracle", "8i") }

you will get the error "Non supported SQL92 token at position xx: fn"
when you run your Java application. The work-around is to use Oracle SQL syntax.

For example, instead of using the fn keyword in embedded SQL92 syntax:

Statement stmt = conn.createStatement ();
stmt.executeUpdate("UPDATE emp SET ename = {fn CONCAT(’My’, ’Name’)}");

use Oracle SQL syntax:

stmt.executeUpdate("UPDATE emp SET ename = CONCAT(’My’, ’Name’)");
5-28 JDBC Developer’s Guide and Reference

Embedded SQL92 Syntax
LIKE Escape Characters
The characters "%" and "_" have special meaning in SQL LIKE clauses (you use "%"
to match zero or more characters, "_" to match exactly one character). If you want to
interpret these characters literally in strings, you precede them with a special escape
character. For example, if you want to use the ampersand "&" as the escape
character, you identify it in the SQL statement as {escape ’&’}:

Statement stmt = conn.createStatement ();

// Select the empno column from the emp table where the ename starts with ’_’
ResultSet rset = stmt.executeQuery("SELECT empno FROM emp WHERE ename LIKE ’&_%’
{ESCAPE ’&’}");

// Iterate through the result and print the employee numbers
while (rset.next ())

System.out.println (rset.getString (1));

Outer Joins
Oracle’s JDBC drivers do not support outer join syntax: {oj outer-join}. The
work-around is to use Oracle outer join syntax:

Instead of:

Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery

("SELECT ename, dname
 FROM {OJ dept LEFT OUTER JOIN emp ON dept.deptno = emp.deptno}
 ORDER BY ename");

Use Oracle SQL syntax:

Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery

("SELECT ename, dname
 FROM emp a, dept b WHERE a.deptno = b.deptno(+)
 ORDER BY ename");

Note: If you want to use the back slash character (\) as an escape
character, you must enter it twice (that is, \\). For example:

ResultSet rset = stmt.executeQuery("SELECT empno FROM emp WHERE
ename LIKE ’_%’ {escape ’\\’}");
Advanced Topics 5-29

Embedded SQL92 Syntax
Function Call Syntax
Oracle’s JDBC drivers support the function call syntax shown below:

Calls without a return value:

{ call procedure_name (argument1, argument2,...) }

Calls with a return value:

{ ? = call procedure_name (argument1, argument2,...) }

SQL92 to SQL Syntax Example
You can write a simple program to translate SQL92 syntax to standard SQL syntax.
The following program prints the comparable SQL syntax for SQL92 statements for
function calls, date literals, time literals, and timestamp literals. In the program, the
oracle.jdbc.driver.OracleSql.parse() method performs the conversions.

import oracle.jdbc.driver.OracleSql;

public class Foo
{

public static void main (String args[]) throws Exception {
show ("{call foo(?, ?)}");
show ("{? = call bar (?, ?)}");
show ("{d ’1998-10-22’}");
show ("{t ’16:22:34’}");
show ("{ts ’1998-10-22 16:22:34’}");
}

public static void show (String s) throws Exception {

System.out.println (s + " => " + new OracleSql().parse (s));
 }

}

The following code is the output which prints the comparable SQL syntax.

{call foo(?, ?)} => BEGIN foo(:1, :2); END;
{? = call bar (?, ?)} => BEGIN :1 := bar (:2, :3); END;
{d ’1998-10-22’} => TO_DATE (’1998-10-22’, ’YYYY-MM-DD’)
{t ’16:22:34’} => TO_DATE (’16:22:34’, ’HH24:MI:SS’)
{ts ’1998-10-22 16:22:34’} => TO_DATE (’1998-10-22 16:22:34’, ’YYYY-MM-DD
HH24:MI:SS’)
5-30 JDBC Developer’s Guide and Reference

Coding Tips and Troublesho
6

Coding Tips and Troubleshooting

This chapter describes how to optimize and troubleshoot a JDBC application or
applet, including the following topics:

■ JDBC and Multi-Threading

■ Performance Optimization

■ Common Problems

■ Basic Debugging Procedures

■ Transaction Isolation Levels and the Oracle Server
oting 6-1

JDBC and Multi-Threading
JDBC and Multi-Threading
The Oracle JDBC drivers provide full support for programs that use multiple
threads. The following example program uses the default Oracle employee database
emp. The program creates a number of threads. Each thread opens a connection and
sends a query to the database for the contents of the emp table. The program then
displays the thread and the employee name and employee ID associated with it.

Execute the program by entering:

java JdbcMTSample [number_of_threads]

on the command line where number_of_threads is the number of threads that
you want to create. If you do not specify the number of threads, then the program
creates 10 by default.

import java.sql.*;
import oracle.jdbc.driver.OracleStatement;

public class JdbcMTSample extends Thread
{
 // Set default number of threads to 10
 private static int NUM_OF_THREADS = 10;

 int m_myId;

 static int c_nextId = 1;
 static Connection s_conn = null;

 synchronized static int getNextId()
 {
 return c_nextId++;
 }

 public static void main (String args [])
 {
 try
 {
 // Load the JDBC driver //
 DriverManager.registerDriver
 (new oracle.jdbc.driver.OracleDriver());

 // If NoOfThreads is specified, then read it
 if (args.length > 1) {
 System.out.println("Error: Invalid Syntax. ");
 System.out.println("java JdbcMTSample [NoOfThreads]");
6-2 JDBC Developer’s Guide and Reference

JDBC and Multi-Threading
 System.exit(0);
 }
 else if (args.length == 1)
 NUM_OF_THREADS = Integer.parseInt (args[0]);

 // Create the threads
 Thread[] threadList = new Thread[NUM_OF_THREADS];

 // spawn threads
 for (int i = 0; i < NUM_OF_THREADS; i++)
 {
 threadList[i] = new JdbcMTSample();
 threadList[i].start();
 }

 // wait for all threads to end
 for (int i = 0; i < NUM_OF_THREADS; i++)
 {
 threadList[i].join();
 }

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
 }
 public JdbcMTSample()
 {
 super();
 // Assign an ID to the thread
 m_myId = getNextId();
 }

 public void run()
 {
 Connection conn = null;
 ResultSet rs = null;
 Statement stmt = null;

 try
 {
 // Get the connection
 conn = DriverManager.getConnection("jdbc:oracle:oci8:@",
Coding Tips and Troubleshooting 6-3

JDBC and Multi-Threading
 "scott","tiger");

 // Create a Statement
 stmt = conn.createStatement ();

 // Execute the Query
 rs = stmt.executeQuery ("SELECT * FROM emp");

 // Loop through the results
 while (rs.next())
 System.out.println("Thread " + m_myId +
 " Employee Id : " + rs.getInt(1) +
 " Name : " + rs.getString(2));

 // Close all the resources
 rs.close();
 stmt.close();
 if (conn != null)
 conn.close();
 System.out.println("Thread " + m_myId + " is finished. ");
 }
 catch (Exception e)
 {
 System.out.println("Thread " + m_myId + " got Exception: " + e);
 e.printStackTrace();
 return;
 }
 }

}

6-4 JDBC Developer’s Guide and Reference

Performance Optimization
Performance Optimization
You can significantly enhance the performance of your JDBC programs by using
any of these features:

■ Disabling Auto-Commit Mode

■ Prefetching Rows

■ Batching Updates

Disabling Auto-Commit Mode
Auto-commit mode indicates to the database whether to issue an execute and
commit after every SQL statement. Being in auto-commit mode can be expensive in
terms of time and processing effort if, for example, you are repeating the same
statement with different bind variables.

By default, new connection objects are in auto-commit mode. However, you can
disable auto-commit mode with the setAutoCommit() method of the connection
object (either java.sql.Conection or oracle.jdbc.OracleConnection).

In auto-commit mode, the commit occurs either when the statement completes or
the next execute occurs, whichever comes first. In the case of statements returning a
ResultSet, the statement completes when the last row of the ResultSet has
been retrieved or when the ResultSet has been closed. In more complex cases, a
single statement can return multiple results as well as output parameter values.
Here, the commit occurs when all results and output parameter values have been
retrieved.

If you disable auto-commit mode (setAutoCommit(false)), then the JDBC
driver groups the connection’s SQL statements into transactions that it terminates
by either a commit() or rollback() statement.

Example: Disabling AutoCommit The following example illustrates loading the driver
and connecting to the database. Since new connections are in auto-commit mode by
default, this example shows how to disable auto-commit. In the example, conn
represents the Connection object and stmt represents the Statement object.

// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database hostname after the @ sign in the connection URL.
 Connection conn =
Coding Tips and Troubleshooting 6-5

Common Problems
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // It’s faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();
 ...

Prefetching Rows
Oracle JDBC drivers allow you to set the number of rows to prefetch into the client
while the result set is being populated during a query. The default number of rows
to prefetch is 10. Prefetching row data into the client reduces the number of round
trips to the server. In contrast, standard JDBC fetches the result set one row at a
time, where each row requires a round trip to the database.

You can set the row prefetching value for an individual statement or for all
statements in your connection. For a description of row prefetching and how to
enable it, see "Row Prefetching" on page 4-98.

Batching Updates
The Oracle JDBC drivers allow you to accumulate inserts and updates of prepared
statements at the client and send them to the server in batches once it reaches a
specified batch value. This feature reduces round trips to the server. The default
batch value is one.

You can set the batch value for any individual Oracle prepared statement or for all
Oracle prepared statements in your Oracle connection. For a description of update
batching and how to enable it, see "Database Update Batching" on page 4-100.

Common Problems
This section describes some common problems that you might encounter while
using the Oracle JDBC drivers. These problems include:

■ Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables

■ Memory Leaks and Running Out of Cursors

■ Boolean Parameters in PL/SQL Stored Procedures

■ Opening More Than 16 OCI Connections for a Process
6-6 JDBC Developer’s Guide and Reference

Common Problems
Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables
In PL/SQL, CHAR columns defined as OUT or IN/OUT variables are returned to a
length of 32767 bytes, padded with spaces as needed. Note that VARCHAR2 columns
do not exhibit this behavior.

To avoid this problem, use the setMaxFieldSize() method on the Statement
object to set a maximum limit on the length of the data that can be returned for any
column. The length of the data will be the value you specify for
setMaxFieldSize() padded with spaces as needed. You must select the value for
setMaxFieldSize() carefully because this method is statement-specific and
affects the length of all CHAR, RAW, LONG, LONG RAW, and VARCHAR2 columns.

To be effective, you must invoke the setMaxFieldSize() method before you
register your OUT variables.

Memory Leaks and Running Out of Cursors
If you receive messages that you are running out of cursors or that you are running
out of memory, make sure that all of your Statement and ResultSet objects are
explicitly closed. The Oracle JDBC drivers do not have finalizer methods; they
perform cleanup routines by using the close() method of the ResultSet and
Statement classes. If you do not explicitly close your result set and statement
objects, serious memory leaks could occur. You could also run out of cursors in the
database. Closing a result set or statement releases the corresponding cursor in the
database.

Similarly, you must explicitly close Connection objects to avoid leaks and running
out of cursors on the server side. When you close the connection, the JDBC driver
closes any open statement objects associated with it, thus releasing the cursor
objects on the servers side.

Boolean Parameters in PL/SQL Stored Procedures
Due to a restriction in the OCI layer, the JDBC drivers do not support the passing of
Boolean parameters to PL/SQL stored procedures. If a PL/SQL procedure contains
Booleans, you can work around the restriction by wrapping the PL/SQL procedure
with a second PL/SQL procedure that accepts the argument as an int and passes it
to the first stored procedure. When the second procedure is called, the server
performs the conversion from int to boolean.

The following is an example of a stored procedure, boolProc, that attempts to pass
a Boolean parameter, and a second procedure, boolWrap, that performs the
substitution of an integer value for the Boolean.
Coding Tips and Troubleshooting 6-7

Common Problems
CREATE OR REPLACE PROCEDURE boolProc(x boolean)
AS
BEGIN
[...]
END;

CREATE OR REPLACE PROCEDURE boolWrap(x int)
AS
BEGIN
IF (x=1) THEN
 boolProc(TRUE);
ELSE
 boolProc(FALSE);
END IF;
END;

// Create the database connection
Connection conn = DriverManager.getConnection
("jdbc:oracle:oci8:@<hoststring>", "scott", "tiger");
CallableStatement cs =
conn.prepareCall ("begin boolWrap(?); end;");
cs.setInt(1, 1);
cs.execute ();

Opening More Than 16 OCI Connections for a Process
You might find that you are not able to open more than approximately 16 JDBC-OCI
connections for a process at any given time. The most likely reasons for this would
be either the number of processes on the server exceeded the limit specified in the
initialization file or the per-process file descriptors limit was exceeded. It is
important to note that one JDBC-OCI connection can use more than one file
descriptor (it might use anywhere between 3 and 4 file descriptors).

If the server allows more than 16 processes, then the problem could be with the
per-process file descriptor limit. The possible solution would be to increase it.
6-8 JDBC Developer’s Guide and Reference

Basic Debugging Procedures
Basic Debugging Procedures
This section describes four strategies for debugging a JDBC program.

■ Trapping Exceptions

■ Logging JDBC Calls

■ Net8 Tracing to Trap Network Events

■ Using Third Party Tools

Trapping Exceptions
Most errors that occur in JDBC programs are handled as exceptions. Java provides
the try...catch statement to catch the exception and the printStackTrace()
method to print the stack trace.

The following code fragment illustrates how you can catch SQL exceptions and
print the stack trace.

 try { <some code> }
 catch(SQLException e){ e.printStackTrace (); }

To illustrate how the JDBC drivers handle errors, the following incorrect code was
intentionally added to the Employee.java sample:

// Iterate through the result and print the employee names
// of the code

try {
 while (rset.next ())
System.out.println (rset.getString (5)); } // incorrect column index
 catch(SQLException e){ e.printStackTrace (); }

Notice an error was intentionally introduced by changing the column index to 5.
When you execute the program you get the following error text:

java.sql.SQLException: Invalid column index
at oracle.jdbc.dbaccess.DBError.check_error(DBError.java:235)
at oracle.jdbc.driver.OracleStatement.prepare_for_new_get(OracleStatemen
t.java:1560)
at oracle.jdbc.driver.OracleStatement.getStringValue(OracleStatement.jav
a:1653)
at oracle.jdbc.driver.OracleResultSet.getString(OracleResultSet.java:175
)
at Employee.main(Employee.java:41)
Coding Tips and Troubleshooting 6-9

Basic Debugging Procedures
For more information on how the JDBC drivers handle errors, and the
SQLException() and the printStackTrace() methods, see "Error Messages
and JDBC" on page 3-25.

Logging JDBC Calls
You can use the java.io.PrintStream.DriverManager.setLogStream()
method to log JDBC calls. This method sets the logging/tracing PrintStream used
by the DriverManager and all drivers. Insert the following line at the location in
your code where you want to start logging JDBC calls:

DriverManager.setLogStream(System.out);

Net8 Tracing to Trap Network Events
You can enable client and server Net8 trace to trap the packets sent over Net8. You
can use client-side tracing only for the JDBC OCI driver; it is not supported for the
JDBC Thin driver. You can find more information on tracing and reading trace files
in the Net8 Administrator’s Guide.

The trace facility produces a detailed sequence of statements that describe network
events as they execute. "Tracing" an operation lets you obtain more information on
the internal operations of the event. This information is output to a readable file that
identifies the events that led to the error. Several Net8 parameters in the
SQLNET.ORA file control the gathering of trace information. After setting the
parameters in SQLNET.ORA, you must make a new connection for tracing to be
performed. You can find more information on these parameters in the Net8
Administrator’s Guide.

The higher the trace level, the more detail is captured in the trace file. Because the
trace file can be hard to understand, start with a trace level of 4 when enabling
tracing. The first part of the trace file contains connection handshake information,
so look beyond this for the SQL statements and error messages related to your JDBC
program.

Note: The trace facility uses a large amount of disk space and
might have significant impact upon system performance. Therefore,
enable tracing only when necessary.
6-10 JDBC Developer’s Guide and Reference

Basic Debugging Procedures
Client-Side Tracing
 Set the following parameters in the SQLNET.ORA file on the client system.

TRACE_LEVEL_CLIENT

TRACE_DIRECTORY_CLIENT

TRACE_FILE_CLIENT

Purpose: Turns tracing on/off to a certain specified level

Default Value: 0 or OFF

Available
Values:

■ 0 or OFF - No trace output

■ 4 or USER - User trace information

■ 10 or ADMIN - Administration trace information

■ 16 or SUPPORT - WorldWide Customer Support trace information

Example: TRACE_LEVEL_CLIENT=10

Purpose: Specifies the destination directory of the trace file

Default Value: $ORACLE_HOME/network/trace

Example: on UNIX: TRACE_DIRECTORY_CLIENT=/oracle/traces

on Windows NT: TRACE_DIRECTORY_CLIENT=C:\ORACLE\TRACES

Purpose: Specifies the name of the client trace file

Default Value: SQLNET.TRC

Example: TRACE_FILE_CLIENT=cli_Connection1.trc

Note: Ensure that the name you choose for the
TRACE_FILE_CLIENT file is different from the name you choose
for the TRACE_FILE_SERVER file.
Coding Tips and Troubleshooting 6-11

Basic Debugging Procedures
TRACE_UNIQUE_CLIENT

Server-Side Tracing
Set the following parameters in the SQLNET.ORA file on the server system. Each
connection will generate a separate file with a unique file name.

TRACE_LEVEL_SERVER

TRACE_DIRECTORY_SERVER

Purpose: Gives each client-side trace a unique name to prevent each trace file from
being overwritten with the next occurrence of a client trace. The PID is
attached to the end of the file name.

Default Value: OFF

Example: TRACE_UNIQUE_CLIENT = ON

Purpose: Turns tracing on/off to a certain specified level

Default Value: 0 or OFF

Available
Values:

■ 0 or OFF - No trace output

■ 4 or USER - User trace information

■ 10 or ADMIN - Administration trace information

■ 16 or SUPPORT - WorldWide Customer Support trace information

Example: TRACE_LEVEL_SERVER=10

Purpose: Specifies the destination directory of the trace file

Default Value: $ORACLE_HOME/network/trace

Example: TRACE_DIRECTORY_SERVER=/oracle/traces
6-12 JDBC Developer’s Guide and Reference

Transaction Isolation Levels and the Oracle Server
TRACE_FILE_SERVER

Using Third Party Tools
You can use tools such as JDBCSpy and JDBCTest from Intersolv to troubleshoot at
the JDBC API level. These tools are similar to ODBCSpy and ODBCTest.

Transaction Isolation Levels and the Oracle Server
The Oracle Server supports only the TRANSACTION_READ_COMMITTED and
TRANSACTION_SERIALIZABLE transaction isolation levels. The default is
TRANSACTION_READ_COMMITTED. Use the following methods of the
oracle.jdbc.driver.OracleConnection class to get and set the level:

■ getTransactionIsolation(): gets this connection’s current transaction
isolation level.

■ setTransactionIsolation(): changes the transaction isolation level using
one of the TRANSACTION_* values.

Purpose: Specifies the name of the server trace file

Default Value: SERVER.TRC

Example: TRACE_FILE_SERVER= svr_Connection1.trc

Note: Ensure that the name you choose for the
TRACE_FILE_SERVER file is different from the name you choose
for the TRACE_FILE_CLIENT file.
Coding Tips and Troubleshooting 6-13

Transaction Isolation Levels and the Oracle Server
6-14 JDBC Developer’s Guide and Reference

Sample Applic
7

Sample Applications

This chapter presents sample applications that highlight advanced JDBC features
and Oracle extensions, including the following topics:

■ Sample Applications for Basic JDBC Features

■ Sample Applications for JDBC 2.0-Compliant Oracle Extensions

■ Sample Applications for Other Oracle Extensions

■ Creating Customized Java Classes for Oracle Objects

■ Creating Signed Applets

■ JDBC versus SQLJ Sample Code
ations 7-1

Sample Applications for Basic JDBC Features
Sample Applications for Basic JDBC Features
This section contains code samples that demonstrate basic JDBC features.

Streaming Data
The JDBC drivers support the manipulation of data streams in both directions
between client and server. The code sample in this section demonstrates this by
using the JDBC OCI driver for connecting to a database, and inserting and fetching
LONG data using Java streams.

import java.sql.*; // line 1
import java.io.*;

class StreamExample
{
 public static void main (String args [])
 throws SQLException, IOException
 {
 // Load the driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // It’s faster when you don’t commit automatically
 conn.setAutoCommit (false); // line 18

 // Create a Statement
 Statement stmt = conn.createStatement ();

 // Create the example table
 try
 {
 stmt.execute ("drop table streamexample");
 }
 catch (SQLException e)
 {
 // An exception would be raised if the table did not exist
 // We just ignore it
 }

 // Create the table // line 34
7-2 JDBC Developer’s Guide and Reference

Sample Applications for Basic JDBC Features
 stmt.execute ("create table streamexample (NAME varchar2 (256),
 DATA long)");

 File file = new File ("StreamExample.java"); // line 37
 InputStream is = new FileInputStream ("StreamExample.java");
 PreparedStatement pstmt =
 conn.prepareStatement ("insert into streamexample (name, data)
 values (?, ?)");
 pstmt.setString (1, "StreamExample");
 pstmt.setAsciiStream (2, is, (int)file.length ());
 pstmt.execute (); // line 44

 // Do a query to get the row with NAME ’StreamExample’
 ResultSet rset =
 stmt.executeQuery ("select DATA from streamexample where
 NAME=’StreamExample’");

 // Get the first row // line 51
 if (rset.next ())
 {
 // Get the data as a Stream from Oracle to the client
 InputStream gif_data = rset.getAsciiStream (1);

 // Open a file to store the gif data
 FileOutputStream os = new FileOutputStream ("example.out");

 // Loop, reading from the gif stream and writing to the file
 int c;
 while ((c = gif_data.read ()) != -1)
 os.write (c);

 // Close the file
 os.close (); // line 66
 }
 }
}

Lines 1-18: Import the necessary classes. Load the JDBC OCI driver with the
DriverManager.registerDriver() method. Connect to the database with the
getConnection(), as user scott with password tiger. Use the database URL
jdbc:oracle:oci8:@. You can optionally enter a database name after the @
symbol. Disable AUTOCOMMIT to enhance performance. If you do not, the driver
will issue execute and commit commands after every SQL statement.
Sample Applications 7-3

Sample Applications for JDBC 2.0-Compliant Oracle Extensions
Line 34: Create a table STREAMEXAMPLE with a NAME column of type VARCHAR and
a DATA column of type LONG.

Lines 37-44: Insert the contents of the StreamExample.java into the table. To do
this, create an input stream object for the Java file. Then, prepare a statement to
insert character data into the NAME column and the stream data into the DATA
column. Insert the NAME data with the setString(); insert the stream data with
setAsciiStream().

Line 46: Query the table to get the contents of the DATA column into a result set.

Line 51-66: Get the data from the first row of the result set into the InputStream
object gif_data. Create a FileOutputStream to write to the specified file object.
Then, read the contents of the gif stream and write it to the file example.out.

Sample Applications for JDBC 2.0-Compliant Oracle Extensions
This section contains sample code for the following Oracle extensions:

■ LOB Sample

■ BFILE Sample

LOB Sample
This sample demonstrates basic support for LOBs in the OCI 8 driver. It illustrates
how to create a table containing LOB columns, and includes utility programs to
read from a LOB, write to a LOB, and dump the LOB contents. For more
information on LOBs, see "Working with LOBs" on page 4-45.

Except for some changes to the comments, the following sample is similar to the
LobExample.java program in the Demo/samples/oci8/object-samples
directory.

import java.sql.*; // line 1
import java.io.*;
import java.util.*;

// Importing the Oracle Jdbc driver package
// makes the code more readable
import oracle.jdbc.driver.*;

// Import this to get CLOB and BLOB classes
import oracle.sql.*;
7-4 JDBC Developer’s Guide and Reference

Sample Applications for JDBC 2.0-Compliant Oracle Extensions

public class NewLobExample1
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database. You can put a database
 // name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // It’s faster when auto commit is off
 conn.setAutoCommit (false); // line 26

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("DROP TABLE basic_lob_table");
 }
 catch (SQLException e)
 {
 // An exception could be raised here if the table did
 // not exist already but we gleefully ignore it
 } // line 38

 // Create a table containing a BLOB and a CLOB line 40
 stmt.execute ("CREATE TABLE basic_lob_table (x varchar2 (30),
 b blob, c clob)");

 // Populate the table
 stmt.execute ("INSERT INTO basic_lob_table VALUES (’one’,
 ’010101010101010101010101010101’, ’onetwothreefour’)");
 stmt.execute ("INSERT INTO basic_lob_table VALUES (’two’,
 ’0202020202020202020202020202’, ’twothreefourfivesix’)");
 // line 49
 System.out.println ("Dumping lobs");

 // Select the lobs
 ResultSet rset = stmt.executeQuery ("SELECT * FROM basic_lob_table");
 while (rset.next ())
Sample Applications 7-5

Sample Applications for JDBC 2.0-Compliant Oracle Extensions
 {
 // Get the lobs
 BLOB blob = ((OracleResultSet)rset).getBLOB (2);
 CLOB clob = ((OracleResultSet)rset).getCLOB (3);

 // Print the lob contents
 dumpBlob (conn, blob);
 dumpClob (conn, clob);

 // Change the lob contents
 fillClob (conn, clob, 2000);
 fillBlob (conn, blob, 4000);
 }
 // line 68
 System.out.println ("Dumping lobs again");

 rset = stmt.executeQuery ("SELECT * FROM basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = ((OracleResultSet)rset).getBLOB (2);
 CLOB clob = ((OracleResultSet)rset).getCLOB (3);

 // Print the lobs contents
 dumpBlob (conn, blob);
 dumpClob (conn, clob);
 }
 } // line 82

 // Utility function to dump Clob contents
 static void dumpClob (Connection conn, CLOB clob)
 throws Exception
 {
 // get character stream to retrieve clob data
 Reader instream = clob.getCharacterStream();

 // create temporary buffer for read line 91
 char[] buffer = new char[10];

 // length of characters read
 int length = 0;

 // fetch data line 98
 while ((length = instream.read(buffer)) != -1)
 {
7-6 JDBC Developer’s Guide and Reference

Sample Applications for JDBC 2.0-Compliant Oracle Extensions
 System.out.print("Read " + length + " chars: ");

 for (int i=0; i<length; i++)
 System.out.print(buffer[i]);
 System.out.println();
 }

 // Close input stream
 instream.close();
 } // line 108

 // Utility function to dump Blob contents
 static void dumpBlob (Connection conn, BLOB blob)
 throws Exception
 {
 // Get binary output stream to retrieve blob data
 InputStream instream = blob.getBinaryStream();

 // Create temporary buffer for read
 byte[] buffer = new byte[10];

 // length of bytes read line 120
 int length = 0;

 // Fetch data
 while ((length = instream.read(buffer)) != -1)
 {
 System.out.print("Read " + length + " bytes: ");

 for (int i=0; i<length; i++)
 System.out.print(buffer[i] + " ");
 System.out.println();
 }

 // Close input stream
 instream.close();
 }
 // line 135
 // Utility function to put data in a Clob
 static void fillClob (Connection conn, CLOB clob, long length)
 throws Exception
 {
 Writer outstream = clob.getCharacterOutputStream();

 int i = 0;
Sample Applications 7-7

Sample Applications for JDBC 2.0-Compliant Oracle Extensions
 int chunk = 10;

 while (i < length)
 {
 outstream.write(i + "hello world", 0, chunk); // line 147

 i += chunk;
 if (length - i < chunk)
 chunk = (int) length - i;
 }
 outstream.close();
 } // line 154

 // Utility function to write data to a Blob
 static void fillBlob (Connection conn, BLOB blob, long length)
 throws Exception
 {
 OutputStream outstream = blob.getBinaryOutputStream();

 int i = 0;

 byte [] data = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; // line 165
 int chunk = data.length;

 while (i < length)
 {
 data [0] = (byte)i;
 outstream.write(data, 0, chunk);

 i += chunk;
 if (length - i < chunk)
 chunk = (int) length - i;
 }
 outstream.close();
 }
} // line 175

Lines 1-26: Import the necessary java.* and oracle.* classes. Register the driver
with the DriverManager.registerDriver() method and connect to the
database with DriverManager.getConnection(). Use the database URL
jdbc:oracle:oci8:@ and connect as user scott with password tiger. You can
optionally enter a database name following the @ symbol.
7-8 JDBC Developer’s Guide and Reference

Sample Applications for JDBC 2.0-Compliant Oracle Extensions
Use setAutoCommit(false) to disable the AUTOCOMMIT feature and enhance
performance. If you do not, the driver will issue execute and commit commands
after every SQL statement.

Lines 27-38: Create a statement object. Drop any pre-existing table named
basic_lob_table. Then, create a new basic_lob_table directory to store the
LOBs in-line.

Lines 40-49: Use SQL statements to create a table with three columns: a column to
store the row number as a VARCHAR2, a BLOB column, and a CLOB column. Then
insert data into two rows of the table.

Lines 50-68: SELECT the contents of the table into a result set.

Retrieve the LOBs. The getBLOB() and getCLOB() methods return locators to the
LOB data; to retrieve the LOB contents, you must write additional code (which is
defined later in this program). To use the getBLOB() and getCLOB() methods,
cast the result set to an OracleResultSet object. Then call the "dump" functions to
display the contents of the LOBs, and the "fill" functions to change the contents of
the LOBs. The dump and fill functions are defined later in this program.

Lines 69-82: Display the LOBs again, after their contents have been changed.
SELECT the contents of the table into a result set, and then apply the dump
functions. The dump functions are defined later in this program.

Lines 84-108: Define the utility function dumpClob to display the contents of a CLOB.
Read the CLOB contents as a character stream. Use the getCharacterStream()
method to get a READER stream object. Set up the temporary character array to read
the character data in 10-character chunks.

Set up a loop to read and display the contents of the CLOB. The length of the CLOB is
displayed as well. Close the input stream when you are done.

Lines 110-135: Define the utility function dumpBlob to display the contents of a
BLOB. Read the BLOB contents as a binary stream. Use the getBinaryStream()
method to get an InputStream stream object. Set up the temporary byte array to
read the binary data in 10-byte chunks.

Set up a loop to read and display the contents of the BLOB. The length of the BLOB is
displayed as well. Close the input stream when you are done.

Lines 136-154: Define the utility function fillClob to write data to a CLOB. The
fillClob function needs the CLOB locator and the length of the CLOB. To write to
Sample Applications 7-9

Sample Applications for JDBC 2.0-Compliant Oracle Extensions
the CLOB, use the getCharacterOutputStream() method to get a WRITER
object.

Set up a loop to write an index value and part of the string Hello World to the
CLOB. Close the WRITER stream when you are done.

Lines 156-175: Define the utility function fillBlob to write data to a BLOB. The
fillBlob function needs the BLOB locator and the length of the BLOB. To write to
the BLOB, use the getBinaryOutputStream() method to get an OutputStream
object.

Define the byte array of data that you want to write to the BLOB. The while loop
causes a variation of the data to be written to the BLOB. Close the OutputStream
object when you are done.

BFILE Sample
This sample demonstrates basic BFILE support in the OCI 8 driver. It illustrates
filling a table with BFILEs and includes a utility for dumping the contents of a
BFILE. For more information on BFILEs, see "Working with LOBs" on page 4-45.

Except for some changes to the comments, the following sample is similar to the
FileExample.java program in the Demo/samples/oci8/object-samples
directory.

import java.sql.*; // line 1
import java.io.*;
import java.util.*;

//including this import makes the code easier to read
import oracle.jdbc.driver.*;

// needed for new BFILE class
import oracle.sql.*;
 // line 10
public class NewFileExample1
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver line 16
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
7-10 JDBC Developer’s Guide and Reference

Sample Applications for JDBC 2.0-Compliant Oracle Extensions
 //
 // The example creates a DIRECTORY and you have to be connected as
 // "system" to be able to run the test.
 // If you can’t connect as "system" have your system manager
 // create the directory for you, grant you the rights to it, and
 // remove the portion of this program that drops and creates the directory.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "system", "manager");

 // It’s faster when auto commit is off
 conn.setAutoCommit (false);
 // line 32
 // Create a Statement
 Statement stmt = conn.createStatement ();

 try // line 36
 {
 stmt.execute ("DROP DIRECTORY TEST_DIR");
 }
 catch (SQLException e)
 {
 // An error is raised if the directory does not exist. Just ignore it.
 } // line 43
 stmt.execute ("CREATE DIRECTORY TEST_DIR AS ’/temp/filetest’");

 try // line 46
 {
 stmt.execute ("drop table test_dir_table");
 }
 catch (SQLException e)
 {
 // An error is raised if the table does not exist. Just ignore it.
 }
 // line 54
 // Create and populate a table with files
 // The files file1 and file2 must exist in the directory TEST_DIR created
 // above as symbolic name for /private/local/filetest.
 stmt.execute ("CREATE TABLE test_dir_table (x varchar2 (30), b bfile)");
 stmt.execute ("INSERT INTO test_dir_table VALUES (’one’, bfilename
 (’TEST_DIR’, ’file1’))");
 stmt.execute ("INSERT INTO test_dir_table VALUES (’two’, bfilename
 (’TEST_DIR’, ’file2’))");

 // Select the file from the table // line 64
 ResultSet rset = stmt.executeQuery ("SELECT * FROM test_dir_table");
Sample Applications 7-11

Sample Applications for JDBC 2.0-Compliant Oracle Extensions
 while (rset.next ())
 {
 String x = rset.getString (1);
 BFILE bfile = ((OracleResultSet)rset).getBFILE (2);
 System.out.println (x + " " + bfile);

 // Dump the file contents
 dumpBfile (conn, bfile);
 }
 } //line 75

 // Utility function to dump the contents of a Bfile line 77
 static void dumpBfile (Connection conn, BFILE bfile)
 throws Exception
 { // line 80
 System.out.println ("Dumping file " + bfile.getName());
 System.out.println ("File exists: " + bfile.fileExists());
 System.out.println ("File open: " + bfile.isFileOpen());

 System.out.println ("Opening File: "); // line 84

 bfile.openFile();

 System.out.println ("File open: " + bfile.isFileOpen());

 long length = bfile.length();
 System.out.println ("File length: " + length);

 int chunk = 10;

 InputStream instream = bfile.getBinaryStream();

 // Create temporary buffer for read
 byte[] buffer = new byte[chunk];

 // Fetch data
 while ((length = instream.read(buffer)) != -1)
 {
 System.out.print("Read " + length + " bytes: ");

 for (int i=0; i<length; i++)
 System.out.print(buffer[i] + " ");
 System.out.println();
 } // line 108

7-12 JDBC Developer’s Guide and Reference

Sample Applications for JDBC 2.0-Compliant Oracle Extensions
 // Close input stream
 instream.close();

 // close file handler
 bfile.closeFile();
 } // line 115
}

Lines 1-32: Import the necessary java.* and oracle.* classes. Register the driver
with the DriverManager.registerDriver() method and connect to the
database with the getConnection() method. Use the database URL
jdbc:oracle:oci8:@ and connect as user system with password manager. You
can optionally enter a database name following the @ symbol.

Use setAutoCommit(false) to disable the AUTOCOMMIT feature and enhance
performance. If you do not, the driver will issue execute and commit commands
after every SQL statement.

Lines 33-44: Create a statement object. Drop any pre-existing directory named
TEST_DIR. Then, create a new TEST_DIR directory to store the BFILE. You or your
System Administrator can use whatever file name you wish.

Lines 46-53: Drop any pre-existing table named test_dir_table.

Lines 55-63: Create and populate a table with files. Use SQL statements to create a
table, test_dir_table, with two columns: one column to indicate the row
number as a VARCHAR2 (for example, "one" or "two"), and one column to hold the
BFILE locator.

Use SQL statements to insert some data into the table. For the first row, insert a row
number in the first column, and use the BFILENAME keyword to insert a BFILE,
file1, located in TEST_DIR, in the second column. Do the same thing for the
second row.

Lines 64-75: SELECT the contents of the table into a result set. Set up a loop to
retrieve the contents of the table. Use getString() to retrieve the row number
data, and use getBFILE() to retrieve the BFILE locator. Since BFILE is an
Oracle-specific datatype, and getBFILE() is an Oracle extension, cast the result set
object to an OracleResultSet object.

Use the dumpBfile() method (defined later in the program) to display the BFILE
contents and various statistics about the BFILE.
Sample Applications 7-13

Sample Applications for Other Oracle Extensions
Line 77: Define the dumpBfile() method to display the BFILE contents and
various statistics about the BFILE. The dumpBfile() method takes the BFILE
locator as input.

Lines 80-83: Use the getName(), fileExists(), and isFileOpen() methods to
return the name of the BFILE, and whether the BFILE exists and is open. Note that
the BFILE does not have to be open to apply these methods to it.

Lines 84-108: Read and display the BFILE contents. First open the BFILE. You can
read the BFILE contents as a binary stream. Use the getBinaryStream() method
to get an input stream object. Determine the size of the "chunk" in which the stream
will read the BFILE data, and set up the temporary byte array to store the data.

Set up a loop to read and display the contents of the BFILE. The length of the
BFILE is displayed as well.

Lines 110-115: When you are finished, close the input stream and the BFILE.

Sample Applications for Other Oracle Extensions
This section contains sample code for these Oracle extensions:

■ REF CURSOR Sample

■ Array Sample

REF CURSOR Sample
Following is a complete sample program that uses JDBC to create a stored package
in the data server and uses a get on the REF CURSOR type category to obtain the
results of a query. For more information on REF CURSORs, see "Oracle REF CURSOR
Type Category" on page 4-112.

Except for some changes to the comments, the following sample is similar to the
RefCursorExample.java program in the
Demo/samples/oci8/object-samples directory.

import java.sql.*; // line 1
import java.io.*;
import oracle.jdbc.driver.*;

class RefCursorExample
{
 public static void main(String args[]) throws SQLException
7-14 JDBC Developer’s Guide and Reference

Sample Applications for Other Oracle Extensions
 {
 //Load the driver.
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database.
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@", "scott", "tiger");
 // line 16
 // Create the stored procedure.
 init(conn);

 // Prepare a PL/SQL call. line 20
 CallableStatement call =
 conn.prepareCall("{ ? = call java_refcursor.job_listing (?) }");

 // Find out who all the sales people are. line 24
 call.registerOutParameter(1, OracleTypes.CURSOR);
 call.setString(2, "SALESMAN");
 call.execute();
 ResultSet rset = (ResultSet)call.getObject(1);

 // Output the information in the cursor. line 30
 while (rset.next())
 System.out.println(rset.getString("ENAME"));
 }

// Utility function to create the stored procedure
 // line 36
 static void init(Connection conn) throws SQLException
 {
 Statement stmt = conn.createStatement();
 // line 40
 stmt.execute("CREATE OR REPLACE PACKAGE java_refcursor AS " +
 " type myrctype is ref cursor return EMP%ROWTYPE; " +
 " function job_listing(j varchar2) return myrctype; " +
 "end java_refcursor;");
 // line 45
 stmt.execute("CREATE OR REPLACE PACKAGE BODY java_refcursor AS " +
 " function job_listing(j varchar2) return myrctype is " +
 " rc myrctype; " +
 " begin " +
 " open rc for select * from emp where job = j; " +
 " return rc; " +
 " end; " +
Sample Applications 7-15

Sample Applications for Other Oracle Extensions
 "end java_cursor;"); // line 53
 }
}

Lines 1-16: Import the necessary java.* and oracle.* classes. Register the driver
with the DriverManager.registerDriver() method and connect to the
database with the getConnection() method. Use the database URL
jdbc:oracle:oci8:@ and connect as user scott with password tiger. You can
optionally enter a database name following the @ symbol.

Lines 18-29: Prepare a callable statement to the job_listing function of the
java_refcursor PL/SQL procedure. The callable statement returns a cursor to
the rows of information where job=SALESMAN. Register OracleTypes.CURSOR
as the output parameter. The setObject() method passes the value SALESMAN to
the callable statement. After the callable statement is executed, the result set
contains a cursor to the rows of the table where job=SALESMAN.

Lines 30-33: Iterate through the result set and print the employee name part of the
employee object.

Lines 40-45: Define the package header for the java_refcursor package. The
package header defines the return types and function signatures.

Lines 46-53: Define the package body for the java_refcursor package. The
package body defines the implementation which selects rows based on the value for
job.

Array Sample
Following is a complete sample program that uses JDBC to create a table with a
VARRAY. It inserts a new array object into the table, then prints the contents of the
table. For more information on arrays, see "Working with Arrays" on page 4-87.

Except for some changes to the comments, the following sample is similar to the
ArrayExample.java program in the Demo/samples/oci8/object-samples
directory.

import java.sql.*; // line 1
import oracle.sql.*;
import oracle.jdbc.oracore.Util;
import oracle.jdbc.driver.*;
import java.math.BigDecimal;
7-16 JDBC Developer’s Guide and Reference

Sample Applications for Other Oracle Extensions
public class ArrayExample
{
 public static void main (String args[])
 throws Exception
 {
 // Register the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You need to put your database name after the @ symbol in
 // the connection URL.
 //
 // The sample retrieves an varray of type "NUM_VARRAY" and
 // materializes the object as an object of type ARRAY.
 // A new ARRAY is then inserted into the database.

 // Please replace hostname, port_number and sid_name with
 // the appropriate values

 Connection conn =
 DriverManager.getConnection
("jdbc:oracle:oci8:@(description=(address=(host=hostname)(protocol=tcp)(port=por
t_number))(connect_data=(sid=sid_name)))", "scott", "tiger");

 // It’s faster when auto commit is off
 conn.setLines (false); // line 32

 // Create a Statement
 Statement stmt = conn.createStatement (); // line 35

 try
 {
 stmt.execute ("DROP TABLE varray_table");
 stmt.execute ("DROP TYPE num_varray");
 }
 catch (SQLException e)
 {
 // the above drop statements will throw exceptions
 // if the types and tables did not exist before
 } // line 47

 stmt.execute ("CREATE TYPE num_varray AS VARRAY(10) OF NUMBER(12, 2)");
 stmt.execute ("CREATE TABLE varray_table (col1 num_varray)");
 stmt.execute ("INSERT INTO varray_table VALUES (num_varray(100, 200))");
Sample Applications 7-17

Sample Applications for Other Oracle Extensions
 ResultSet rs = stmt.executeQuery("SELECT * FROM varray_table");
 showResultSet (rs); // line 54

 //now insert a new row

 // create a new ARRAY object
 int elements[] = { 300, 400, 500, 600 }; // line 59
 ArrayDescriptor desc = ArrayDescriptor.createDescriptor("NUM_VARRAY", conn);
 ARRAY newArray = new ARRAY(desc, conn, elements);
 // line 62
 PreparedStatement ps =
 conn.prepareStatement ("INSERT INTO varray_table VALUES (?)");
 ((OraclePreparedStatement)ps).setARRAY (1, newArray);

 ps.execute ();

 rs = stmt.executeQuery("SELECT * FROM varray_table");
 showResultSet (rs);
 } // line 70

 public static void showResultSet (ResultSet rs) // line 72
 throws SQLException
 {
 int line = 0;
 while (rs.next())
 {
 line++;
 System.out.println("Row " + line + " : ");
 ARRAY array = ((OracleResultSet)rs).getARRAY (1);

 System.out.println ("Array is of type " + array.getSQLTypeName());
 System.out.println ("Array element is of type code
 " + array.getBaseType());
 System.out.println ("Array is of length " + array.length());
 // line 86
 // get Array elements
 BigDecimal[] values = (BigDecimal[]) array.getArray();

 for (int i=0; i<values.length; i++)
 {
 BigDecimal value = values[i];
 System.out.println(">> index " + i + " = " + value.intValue());
 }
 }
 }
7-18 JDBC Developer’s Guide and Reference

Sample Applications for Other Oracle Extensions
} // line 97

Lines 1-32: Import the necessary java.* and oracle.* classes. Register the driver
with the DriverManager.registerDriver() method and connect to the
database with the getConnection() method. This example of
getConnection() uses Net8 name-value pairs to specify the host as hostname,
protocol as tcp, port as 1521, sid as orcl, user as scott and password as
tiger.

Use setAutoCommit(false) to disable the AUTOCOMMIT feature and enhance
performance. If you do not, the driver will issue execute and commit commands
after every SQL statement.

Lines 35-47: Create a Statement object and delete any previously defined tables or
types named varray_table or num_varray.

Lines 49-54: Create the type num_varray as a varray containing NUMBER data.
Create a 1-column table, varray_table, to contain the num_varray type data.
Insert into the table two rows of data. The values 100 and 200 are both of type
num_varray. Use the showResultSet() method (defined later in the program) to
display information about the arrays contained in the table.

Lines 59-61: First, define an array of integer elements to insert into the
varray_table. Next, create an array descriptor object that will be used to create
new ARRAY objects. To create an array descriptor object, pass the SQL type name of
the array type (NUM_ARRAY) and the connection object to the
createDescriptor() method. Then create the new array object by passing to it
the array descriptor, the connection object, and the array of integer elements.

Lines 63-70: Prepare a statement to insert the new array object into varray_table.
Cast the prepared statement object to an OraclePreparedStatement object to
take advantage of the setARRAY() method.

To retrieve the array contents of the table, write and execute a SQL SELECT
statement. Again, use the showResultSet method (defined later in the program)
to display information about the arrays contained in the table.

Lines 72-85: Define the showResultSet() method. This method loops through a
result set and returns information about the arrays it contains. This method uses the
result set getARRAY() method to return an array into an oracle.sql.ARRAY
object. To do this, cast the result set to an OracleResultSet object. Once you have
the ARRAY object, you can apply Oracle extensions getSQLTypeName(),
Sample Applications 7-19

Creating Customized Java Classes for Oracle Objects
getBaseType(), as well as length(), to return and display the SQL type name
of the array, the SQL type code of the array elements, and the array length.

Lines 87-97: You can access the varray elements by using the ARRAY object’s
getArray() method. Since the varray contains SQL numbers, cast the result of
getArray() to a java.math.BigDecimal array. Then, iterate through the value
array and pull out individual elements.

 Creating Customized Java Classes for Oracle Objects
This section contains the following subsections:

■ SQLData Sample

■ CustomDatum Sample

This section contains examples of the code you must provide to create custom Java
classes for Oracle objects. You create the custom classes by implementing either the
SQLData or CustomDatum interface. These interfaces provide a way to create and
populate the custom Java class for the Oracle object and its attributes.

Although both SQLData and CustomDatum both populate a Java object from a
SQL object, the CustomDatum interface is far more powerful. In addition to letting
you populate Java objects, CustomDatum lets you materialize objects from SQL
types that are not necessarily objects. Thus, you can create a CustomDatum object
from any datatype found in an Oracle database. This is particularly useful in the
case of RAW data that can be a serialized object.

The SQLData interface is a JDBC standard. For more information on this interface,
see "Understanding the SQLData Interface" on page 4-69.

The CustomDatum interface is provided by Oracle. You can write your own code to
create custom Java classes that implement this interface, but you will find it easier
to let the Oracle utility JPublisher create the custom classes for you. The custom
classes created by JPublisher implement the CustomDatum interface.

For more information on the CustomDatum interface, see "Understanding the
CustomDatum Interface" on page 4-75. See the Oracle8i JPublisher User’s Guide for
more information on the JPublisher utility.

SQLData Sample
This section contains a code sample that illustrates how you can create a custom
Java type to correspond to a given SQL type. It then demonstrates how you can use
7-20 JDBC Developer’s Guide and Reference

Creating Customized Java Classes for Oracle Objects
the custom Java class in the context of a sample program. The sample also contains
the code to map the SQL type to the custom Java type.

Creating the SQL Object Definition
Following is the SQL definition of an EMPLOYEE object. The object has two
attributes: a string EmpName (employee name) attribute and an integer EmpNo
(employee number) attribute.

 -- SQL definition
CREATE TYPE EMPLOYEE AS OBJECT
(
 EmpName VARCHAR2(50),
 EmpNo INTEGER,
);

Creating the Custom Java Class
The following program implements the custom Java class EmployeeObj to
correspond to the SQL type EMPLOYEE. Notice that the implementation of
EmployeeObj contains a string EmpName (employee name) attribute and an integer
EmpNo (employee number) attribute. Also notice that the Java definition of the
EmployeeObj custom Java class implements the SQLData interface and includes
the implementations of a get method and the required readSQL() and
writeSQL() methods.

import java.sql.*;
import oracle.jdbc2.*;

public class EmployeeObj implements SQLData
 {
 private String sql_type;

 public String empName;
 public int empNo;

 public EmployeeObj()
 {
 }
 // line 14
public EmployeeObj (String sql_type, String empName, int empNo)
 {
 this.sql_type = sql_type;
 this.empName = empName;
 this.empNo = empNo;
Sample Applications 7-21

Creating Customized Java Classes for Oracle Objects
 } // line 20

 ////// implements SQLData //////

 // define a get method to return the SQL type of the object line 24
 public String getSQLTypeName() throws SQLException
 {
 return sql_type;
 } // line 28

 // define the required readSQL() method line 30
 public void readSQL(SQLInput stream, String typeName)
 throws SQLException
 {
 sql_type = typeName;

 empName = stream.readString();
 empNo = stream.readInt();
 }
 // define the required writeSQL() method line 39
 public void writeSQL(SQLOutput stream)
 throws SQLException
 {
 stream.writeString(empName);
 stream.writeInt(empNo);
 }
}

Lines 1-14: Import the needed java.* and oracle.* packages. Define the custom
Java class EmployeeObj to implement the SQLData interface. EmployeeObj is the
class to which you will later map your EMPLOYEE SQL object type. The
EmployeeObj object has three attributes: a SQL type name, an employee name,
and an employee number. The SQL type name is a Java string that represents the
fully qualified SQL type name (schema.sql_type_name) of the Oracle object that the
custom Java class represents.

Lines 24-28: Define a getSqlType() method to return the SQL type of the custom
Java object.

Lines 30-38: Define a readSQL() method as required by the definition of the
SQLData interface. The readSQL() method takes a stream SQLInput object and
the SQL type name of the object data that it is reading.
7-22 JDBC Developer’s Guide and Reference

Creating Customized Java Classes for Oracle Objects
Lines 39-45: Define a writeSQL() method as required by the definition of the
SQLData interface. The writeSQL() method takes a stream SQLOutput object
and the SQL type name of the object data that it is reading.

Using the Custom Java Class
After you create your EmployeeObj Java class, you can use it in a program. The
following program creates a table that stores employee name and number data. The
program uses the EmployeeObj object to create a new employee object and insert it
in the table. It then applies a SELECT statement to get the contents of the table and
prints its contents.

Except for some changes to the comments, the following sample is similar to the
SQLDataExample.java program in the
Demo/samples/oci8/object-samples directory.

import java.sql.*; // line 1
import oracle.jdbc.driver.*;
import oracle.sql.*;
import java.math.BigDecimal;
import java.util.Dictionary;

public class SQLDataExample
{
 public static void main(String args []) throws Exception
 {

 // Connect to the database
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver ());
 OracleConnection conn = (OracleConnection)
 DriverManager.getConnection("jdbc:oracle:oci8:@",
 "scott", "tiger"); // line 16

 // in the type map, add the mapping of EMPLOYEE SQL // line 18
 // type to the EmployeeObj custom Java type
 Dictionary map = conn.getTypeMap();
 map.put("EMPLOYEE", Class.forName("EmployeeObj")); // line 21

 // Create a Statement line 23
 Statement stmt = conn.createStatement ();
 try
 {
 stmt.execute ("drop table EMPLOYEE_TABLE");
 stmt.execute ("drop type EMPLOYEE");
 }
Sample Applications 7-23

Creating Customized Java Classes for Oracle Objects
 catch (SQLException e)
 {
 // An error is raised if the table/type does not exist. Just ignore it.
 }

 // Create and populate tables // line 35
 stmt.execute ("CREATE TYPE EMPLOYEE AS OBJECT(EmpName VARCHAR2(50),
 EmpNo INTEGER)");
 stmt.execute ("CREATE TABLE EMPLOYEE_TABLE (ATTR1 EMPLOYEE)");
 stmt.execute ("INSERT INTO EMPLOYEE_TABLE VALUES (EMPLOYEE(’Susan Smith’,
 123))"); // line 40

 // Create a SQLData object EmployeeObj in the SCOTT schema
 EmployeeObj e = new EmployeeObj("SCOTT.EMPLOYEE", "George Jones", 456);

 // Insert the SQLData object into the database // line 45
 PreparedStatement pstmt
 = conn.prepareStatement ("INSERT INTO employee_table VALUES (?)");

 pstmt.setObject(1, e, OracleTypes.STRUCT);
 pstmt.executeQuery();
 System.out.println("insert done");
 pstmt.close(); // line 52

 // Select the contents of the employee_table // line 54
 Statement s = conn.createStatement();
 OracleResultSet rs = (OracleResultSet)
 s.executeQuery("SELECT * FROM employee_table"); // line 57

 // print the contents of the table // line 59
 while(rs.next())
 {
 EmployeeObj ee = (EmployeeObj) rs.getObject(1);
 System.out.println("EmpName: " + ee.empName + " EmpNo: " + ee.empNo);
 } // line 64

 // close the result set, statement, and connection // line 66
 rs.close();
 s.close();

 if (conn != null)
 {
 conn.close(); // line 72
 }
 }
7-24 JDBC Developer’s Guide and Reference

Creating Customized Java Classes for Oracle Objects
}

Lines 1-16: Import needed java.* and oracle.* packages. Register the driver
with the DriverManager.registerDriver() method and connect to the
database with the getConnection() method. Use the database URL
jdbc:oracle:oci8:@ and connect as user scott with password tiger. You can
optionally enter a database name following the @ symbol.

Lines 18-21: Use the getTypeMap() method to get the type map associated with
this connection. Use the map object’s put() method to add the mapping of the SQL
EMPLOYEE object to the EmployeeObj custom Java type.

Lines 23-33: Create a statement object and drop any pre-existing tables and types
named EMPLOYEE_TABLE and EMPLOYEE.

Lines 35-40: Use SQL statements to:

■ create an EMPLOYEE object with employee name and employee number
attributes

■ create a table of employee objects (EMPLOYEE_TABLE) having a single
EMPLOYEE column

■ insert initial data values into the table

Lines 42, 43: Create a new EmployeeObj object (which is a SQLData object).
Identify the schema name (SCOTT), SQL type name (EMPLOYEE), an employee name
(George Jones) and an employee number (456). Note that the schema name is the
same as the user name in the getConnection() call. If you change the user name,
you must also change the schema name.

Lines 45-52: Prepare a statement to insert the new EMPLOYEE object into the
employee table. The setObject() method indicates that the object will be inserted
into the first index position and that the underlying type of the EMPLOYEE object is
oracle.sql.STRUCT.

Lines 54-57: Select the contents of the EMPLOYEE_TABLE. Cast the results to an
OracleResultSet so that you can retrieve the custom Java object data from it.

Lines 59-62: Iterate through the result set, getting the contents of the EMPLOYEE
objects and printing the employee names and employee numbers.

Lines 66-72: Close the result set, statement, and connection objects.
Sample Applications 7-25

Creating Customized Java Classes for Oracle Objects
CustomDatum Sample
This section describes a Java class, written by a user, that implements the
CustomDatum and CustomDatumFactory interfaces. The custom Java class of
type CustomDatum has a static getFactory() method that returns a
CustomDatumFactory object. The JDBC driver uses the CustomDatumFactory
object’s create() method to return a CustomDatum instance. Note that instead of
writing the custom Java class yourself, you can use the JPublisher utility to generate
class definitions that implement the CustomDatum and CustomDatumFactory
interfaces.

The following example illustrates a Java class definition that can be written by a
user, given the SQL definition of an EMPLOYEE object.

SQL Definition of EMPLOYEE Object
The following SQL code defines the EMPLOYEE object. The EMPLOYEE object
consists of the employee’s name (EmpName) and the employee’s associated number
(EmpNo).

create type EMPLOYEE as object
 (
 EmpName VARCHAR2(50),
 EmpNo INTEGER
);

Java Class Definitions for a Custom Java Object
Below are the contents of the Employee.java file.

import java.math.BigDecimal;
import java.sql.SQLException;
import oracle.jdbc.driver.OracleConnection;
import oracle.sql.CustomDatum;
import oracle.sql.CustomDatumFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.sql.StructDescriptor;

public class Employee implements CustomDatum, CustomDatumFactory // line 10
{

 static final Employee _employeeFactory = new Employee(null, null); //line 13

 public static CustomDatumFactory getFactory()
 {
7-26 JDBC Developer’s Guide and Reference

Creating Customized Java Classes for Oracle Objects
 return _employeeFactory;
 } // line 18

 /* constructor */ // line 20
 public Employee(String empName, BigDecimal empNo)
 {
 this.empName = empName;
 this.empNo = empNo;
 } // line 25

 /* CustomDatum interface */ // line 27
 public Datum toDatum(OracleConnection c) throws SQLException
 {
 StructDescriptor sd =
 StructDescriptor.createDescriptor("SCOTT.EMPLOYEE", c);

 Object [] attributes = { empName, empNo };

 return new STRUCT(sd, c, attributes);
 } // line 36

 /* CustomDatumFactory interface */ // line 38
 public CustomDatum create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;

 System.out.println(d);

 Object [] attributes = ((STRUCT) d).getAttributes();

 return new Employee((String) attributes[0],
 (BigDecimal) attributes[1]);
 } // line 49

 /* fields */
 public String empName;
 public BigDecimal empNo;
}

Line 10: As required, the Employee class implements the CustomDatum and
CustomDatumFactory interfaces.

Lines 13-18: JPublisher defines a _employeeFactory object of class Employee,
which will be returned by the getFactory() method and used to create new
Sample Applications 7-27

Creating Customized Java Classes for Oracle Objects
Employee objects. The getFactory() method returns an empty Employee object
that you can use to create new Employee objects.

Lines 20-25: JPublisher defines the Employee Java class to correspond to the SQL
EMPLOYEE object. JPublisher creates the Employee class with two attributes: an
employee name of type java.lang.String and an employee number of type
java.math.BigDecimal.

Lines 27-36: The toDatum() method of the CustomDatum interface transforms the
EMPLOYEE SQL data into oracle.sql.* representation. To do this, toDatum()
uses:

■ a STRUCT descriptor that takes the schema name, the SQL object or "type"
name, and the connection object as arguments

■ an object array that stores the values of the object’s employee name and
employee number attributes

The toDatum() returns a STRUCT containing the STRUCT descriptor, the
connection object and the object attributes into an oracle.sql.Datum.

Lines 38-49: The CustomDatumFactory interface specifies a create() method
that is analogous to the constructor of your Employee custom Java class. The
create() method takes the Datum object and the SQL type code of the Datum
object and returns a CustomDatum instance.

According to the definition, the create() method returns null if the value of the
Datum object is null. Otherwise, it returns an instance of the Employee object with
the employee name and employee number attributes.

Custom Java Class Usage Example
This code snippet presents a simple example of how you can use the Employee
class that you created with JPublisher. The sample code creates a new Employee
object, fills it with data, then inserts it into the database. The sample code then
retrieves the Employee data from the database.

Except for some changes to the comments, the following sample is similar to the
CustomDatumExample.java program in the
Demo/samples/oci8/object-samples directory.

import java.sql.*; // line 1
import oracle.jdbc.driver.*;
import oracle.sql.*;
import java.math.BigDecimal;
7-28 JDBC Developer’s Guide and Reference

Creating Customized Java Classes for Oracle Objects
public class CustomDatumExample
{
 public static void main(String args []) throws Exception
 {

 // Connect
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver ());
 OracleConnection conn = (OracleConnection)
 DriverManager.getConnection("jdbc:oracle:oci8:@",
 "scott", "tiger");

 // Create a Statement // line 18
 Statement stmt = conn.createStatement ();
 try
 {
 stmt.execute ("drop table EMPLOYEE_TABLE");
 stmt.execute ("drop type EMPLOYEE");
 }
 catch (SQLException e)
 {
 // An error is raised if the table/type does not exist. Just ignore it.
 } // line 28

 // Create and populate tables // line 30
 stmt.execute ("CREATE TYPE EMPLOYEE AS " +
 " OBJECT(EmpName VARCHAR2(50),EmpNo INTEGER)");
 stmt.execute ("CREATE TABLE EMPLOYEE_TABLE (ATTR1 EMPLOYEE)");
 stmt.execute ("INSERT INTO EMPLOYEE_TABLE " +
 " VALUES (EMPLOYEE(’Susan Smith’, 123))"); // line 35

 // Create a CustomDatum object // line 37
 Employee e = new Employee("George Jones", new BigDecimal("456"));

 // Insert the CustomDatum object // line 40
 PreparedStatement pstmt
 = conn.prepareStatement ("INSERT INTO employee_table VALUES (?)");

 pstmt.setObject(1, e, OracleTypes.STRUCT);
 pstmt.executeQuery();
 System.out.println("insert done");
 pstmt.close(); // line 47

 // Select now // line 49
Sample Applications 7-29

Creating Customized Java Classes for Oracle Objects
 Statement s = conn.createStatement();
 OracleResultSet rs = (OracleResultSet)
 s.executeQuery("SELECT * FROM employee_table");

 while(rs.next()) // line 54
 {
 Employee ee = (Employee) rs.getCustomDatum(1, Employee.getFactory());
 System.out.println("EmpName: " + ee.empName + " EmpNo: " + ee.empNo);
 } // line 58
 rs.close();
 s.close();

 if (conn != null)
 {
 conn.close();
 }
 }
}

Lines 1-16: Import needed java.* and oracle.* packages. Register the driver
with the DriverManager.registerDriver() method and connect to the
database with the getConnection() method. Use the database URL
jdbc:oracle:oci8:@ and connect as user system with password manager. You
can optionally enter a database name following the @ symbol.

Lines 18-28: Create a statement object and drop any pre-existing tables and types
named EMPLOYEE_TABLE and EMPLOYEE.

Lines 30-35: Use SQL statements to:

■ create an Employee object with employee name and employee number
attributes

■ create a table of employee objects having a single EMPLOYEE column

■ insert initial data values into the table

Lines 37, 38: Create a new Employee object (which is a CustomDatum object) and
define an employee name and employee number for it.

Lines 40-47: Prepare a statement to insert the new Employee object into the
database. The setObject() method indicates that the object will be inserted into
the first index position and that the underlying type of the Employee object is
oracle.sql.STRUCT.
7-30 JDBC Developer’s Guide and Reference

Creating Signed Applets
Lines 49-54: Select the contents of the employee_table. Cast the results to an
OracleResultSet so that the getCustomDatum() method can be used on it.

Lines 54-58: Iterate through the result set, getting the contents of the Employee
objects and printing the employee names and employee numbers.

Lines 58-62: Close the result set, statement, and connection objects.

Creating Signed Applets
This section presents an example of a signed applet which uses the JDBC Thin
driver to connect to and query a database. The code used in the applet was created
with Oracle JDeveloper and complies with JDK 1.1.2 and JDBC 1.22. Signed applets
are also browser-specific; the applet defined in this section works with the Netscape
4.x browser.

The applet displays a user interface that lets you connect to a local or a remote
database, depending on whether you press the "Local" or "Remote" button. The
applet queries the selected database for the contents of a specified row and displays
the results.

If you want to try this example on your own system, you must provide this
information:

■ Obtain a copy of the Capabilities classes from Netscape and an object-signing
certificate. You can find instructions for this at:

http://developer.netscape.com/docs/manuals/signedobj/capabilities/contents.htm

Follow the instructions for obtaining a certificate and downloading the classes.
The example in this section requires the Capabilities classes
Principle.class, Privilege.class, PrivilegeManager.class, and
PrivilegeTable.class.

In the applet code, replace the following strings:

■ Replace <local database connect string> with the connect string for
the local database. For example:

"jdbc:oracle:thin:@myServer.us.oracle.com:1521:orcl", "scott","tiger"

■ Replace <select on row of local table> with a SQL SELECT statement
on a row in a table in the local database. For example:

SELECT * FROM EMP WHERE ENAME = ’Mary’
Sample Applications 7-31

Creating Signed Applets
■ Replace <remote database connect string> with the connect string for
the remote database. For example:

"jdbc:oracle:thin:@yourServer.us.oracle.com:1521:orcl", "scott","tiger"

■ Replace <select on row of remote table> with a SQL SELECT
statement on a table in the remote database. For example:

SELECT * FROM EMP WHERE ENAME = ’Bob’

This applet uses only the Java AWT components and JDBC.

// Title: JDBC Test Applet // line 1
// Description:Sample JDK 1.1 Applet using the
// ORACLE JDBC Thin Driver
package JDBCApplet;

import java.awt.*; // line 6
import java.awt.event.*;
import java.applet.*;
import java.sql.*;
import borland.jbcl.control.*;
import netscape.security.*;
 // line 12
public class MainApplet extends Applet {
 boolean isStandalone = false;
 BorderLayout borderLayout1 = new BorderLayout();
 Panel panel1 = new Panel();
 Label labelTitle = new Label();
 Panel panel2 = new Panel();
 BorderLayout borderLayout2 = new BorderLayout();
 TextArea txtArResults = new TextArea();
 Button button1 = new Button();
 BorderLayout borderLayout3 = new BorderLayout();
 Panel panel3 = new Panel();
 BorderLayout borderLayout4 = new BorderLayout();
 Label statusBar1 = new Label();
 Button button2 = new Button();

 // Get a parameter value // line 28
 public String getParameter(String key, String def) {
 return isStandalone ? System.getProperty(key, def) :
 (getParameter(key) != null ? getParameter(key) : def);
 } // line 32

 // Construct the applet
7-32 JDBC Developer’s Guide and Reference

Creating Signed Applets
 public MainApplet() {
 }

 // Initialize the applet line 37
 public void init() {
 try { jbInit(); } catch (Exception e) { e.printStackTrace(); }
 try {
 PrivilegeManager.enablePrivilege("UniversalConnect");
 PrivilegeManager.enablePrivilege("UniversalListen");
 PrivilegeManager.enablePrivilege("UniversalAccept");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 // Component initialization line 49
 public void jbInit() throws Exception{
 this.setBounds(new Rectangle(0, 0, 400, 400));
 panel1.setBackground(Color.lightGray);
 panel1.setLayout(borderLayout3);
 this.setSize(new Dimension(372, 373));
 labelTitle.setBackground(Color.lightGray);
 labelTitle.setFont(new Font("Dialog", 0, 12));
 labelTitle.setAlignment(1);
 labelTitle.setText("Oracle Thin JDBC Driver Sample Applet");
 button1.setLabel("Local");
 panel3.setBackground(Color.lightGray);
 statusBar1.setBackground(Color.lightGray);
 statusBar1.setText("Ready");
 button2.setLabel("Remote");
 button2.addActionListener(new MainApplet_button2_actionAdapter(this));
 panel3.setLayout(borderLayout4);
 button1.addActionListener(new MainApplet_button1_actionAdapter(this));
 panel2.setLayout(borderLayout2);
 this.setLayout(borderLayout1);
 this.add(panel1, BorderLayout.NORTH);
 panel1.add(button1, BorderLayout.WEST);
 panel1.add(labelTitle, BorderLayout.CENTER);
 panel1.add(button2, BorderLayout.EAST);
 this.add(panel2, BorderLayout.CENTER);
 panel2.add(txtArResults, BorderLayout.CENTER);
 this.add(panel3, BorderLayout.SOUTH);
 panel3.add(statusBar1, BorderLayout.NORTH);
 }
Sample Applications 7-33

Creating Signed Applets
 //Start the applet line 79
 public void start() {
 }

 //Stop the applet
 public void stop() {
 }

 //Destroy the applet
 public void destroy() {
 }

 //Get Applet information
 public String getAppletInfo() {
 return "Applet Information";
 }

 //Get parameter info
 public String[][] getParameterInfo() {
 return null;
 }

 //Main method
 static public void main(String[] args) {
 MainApplet applet = new MainApplet();
 applet.isStandalone = true;
 Frame frame = new Frame();
 frame.setTitle("Applet Frame");
 frame.add(applet, BorderLayout.CENTER);
 applet.init();
 applet.start();
 frame.pack();
 Dimension d = Toolkit.getDefaultToolkit().getScreenSize();
 frame.setLocation((d.width - frame.getSize().width) / 2, (d.height -
frame.getSize().height) / 2);
 frame.setVisible(true);
 }

 void button1_actionPerformed(ActionEvent e) {
 //
 // Handler for "Local" Button.
 //
 // Here is where we connect to local database line 121

 StringBuffer b = new StringBuffer ();
7-34 JDBC Developer’s Guide and Reference

Creating Signed Applets
 try {
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());
 b.append ("DriverManager.registerDriver\r\n");
 } catch (SQLException oe) {
 statusBar1.setText("registerDriver: Caught SQLException");
 } catch (ClassNotFoundException oe) {
 statusBar1.setText("registerDriver: Caught ClassNotFoundException");
 }

 int numRows = 0;
 try {
 statusBar1.setText("Executing Query on Local Database ...");
 Connection conn = DriverManager.getConnection (
 "jdbc:oracle:thin:<local database connect string>");

 b.append ("[DriverManager.getConnection] \r\n");
 Statement stmt = conn.createStatement ();
 b.append ("[conn.createStatement] \r\n");
 ResultSet rset = stmt.executeQuery ("<select on row of
 local table>");
 b.append ("[stmt.executeQuery] \r\n");
 b.append("SQL> <select on row of local table>\r\n\n");
 b.append("DSCr\n--------------------------------------\r\n");

 while (rset.next ()) {
 String ename = rset.getString (1);
 b.append (ename);
 b.append ("\r\n");
 numRows++;
 } // [end while rset.next() loop]
 statusBar1.setText("Query Done.");
 } catch (SQLException SQLE) {
 statusBar1.setText ("Caught SQLException!");
 SQLE.printStackTrace();
 } finally {
 b.append("\r\n");
 b.append(String.valueOf(numRows) + " rows selected.\r\n");
 txtArResults.setText(b.toString ());
 }

 // End JDBC Code line 165
 }

 void button2_actionPerformed(ActionEvent e) {
Sample Applications 7-35

Creating Signed Applets
 //
 // Handler for the "Remote" Button line 170
 //
 StringBuffer b = new StringBuffer ();

 try {
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());
 b.append ("DriverManager.registerDriver\r\n");
 } catch (SQLException oe) {
 statusBar1.setText("registerDriver: Caught SQLException");
 } catch (ClassNotFoundException oe) {
 statusBar1.setText("registerDriver: Caught ClassNotFoundException");
 }

 int numRows = 0; // line 183
 try {
 statusBar1.setText("Executing Query on Remote Database ...");
 try {
 PrivilegeManager.enablePrivilege("UniversalConnect");
 b.append ("enablePrivilege(UniversalConnect)\r\n");
 PrivilegeManager.enablePrivilege("UniversalListen");
 b.append ("enablePrivilege(UniversalListen)\r\n");
 PrivilegeManager.enablePrivilege("UniversalAccept");
 b.append ("enablePrivilege(UniversalAccept)\r\n");

 Connection conn = DriverManager.getConnection (
 "jdbc:oracle:thin:<remote database connect string>"
);
 b.append ("DriverManager.getConnection\r\n");

 Statement stmt = conn.createStatement ();
 b.append ("conn.createStatement\r\n");
 ResultSet rset = stmt.executeQuery ("<select on row
 of remote table>");
 b.append ("stmt.executeQuery\r\n");
 b.append("SQL> <select on row of remote table>\r\n\n");
 b.append("ENAME\r\n----------\r\n");

 while (rset.next ()) {
 String ename = rset.getString (1);
 b.append (ename);
 b.append ("\r\n");
 numRows++;
 } // [end while rset.next() loop]
 statusBar1.setText("Query Done.");
7-36 JDBC Developer’s Guide and Reference

Creating Signed Applets
 } catch (Exception oe) {
 oe.printStackTrace();
 }
 } catch (SQLException SQLE) {
 statusBar1.setText("Caught SQLException!");
 SQLE.printStackTrace();
 } finally {
 b.append("\r\n");
 b.append(String.valueOf(numRows) + " rows selected.\r\n");
 txtArResults.setText(b.toString ());
 }

 // End JDBC Code for Button2 line 256

 }
}
 // line 260
class MainApplet_button1_actionAdapter implements java.awt.event.ActionListener
{
 MainApplet adaptee;

 MainApplet_button1_actionAdapter(MainApplet adaptee) {
 this.adaptee = adaptee;
 }

 public void actionPerformed(ActionEvent e) {
 adaptee.button1_actionPerformed(e);
 }
}
 // line 273
class MainApplet_button2_actionAdapter implements java.awt.event.ActionListener
{
 MainApplet adaptee;

 MainApplet_button2_actionAdapter(MainApplet adaptee) {
 this.adaptee = adaptee;
 }

 public void actionPerformed(ActionEvent e) {
 adaptee.button2_actionPerformed(e);
 }
}

Lines 6-11: Import the needed files.
Sample Applications 7-37

JDBC versus SQLJ Sample Code
Lines 13-26: Set up the graphics for the GUI which will include two buttons and a
text area to display the output.

Lines 37-48: Request privileges to connect to the host other than the one from which
the applet was downloaded.

Lines 49-77: Initialize the components of the applet. These components include the
format and layout of the GUI and the GUI buttons and text area.

Lines 121-165: Connect to the local database. To do this, register the driver with the
DriverManager.registerDriver() method and connect to the database with
DriverManager.getConnection(). Connect with the server URL, port number,
SID, user name, and password.

Lines 170-183: Connect to the remote database.

Lines 183-256: Test that the applet has privileges on the remote database. If it does,
then connect to the database and execute SQL statements.

Lines 260-283: Code to set up events and callbacks for the buttons.

JDBC versus SQLJ Sample Code
This section contains a side-by-side comparison of two versions of the same sample
code: one version is written in JDBC and the other in SQLJ. The objective of this
section is to point out the differences in coding requirements between SQLJ and
JDBC.

In the sample, two methods are defined: getEmployeeAddress() which SELECTs
into a table and returns an employee’s address based on the employee’s number,
and updateAddress() which takes the retrieved address, calls a stored
procedure, and returns the updated address to the database.

In both versions of the sample code, these assumptions have been made:

■ The ObjectDemo.sql SQL script (described below) has been run to create the
schema in the database and populate the tables.

■ A PL/SQL stored function UPDATE_ADDRESS, which updates a given address,
exists.

■ The Connection object (for JDBC) and Default Connection Context (for SQLJ)
have previously been created by the caller.
7-38 JDBC Developer’s Guide and Reference

JDBC versus SQLJ Sample Code
■ Exceptions are handled by the caller.

■ The value of the address argument (addr) passed to the updateAddress
method can be null.

Both versions of the sample code reference objects and tables created by the
ObjectDemo.sql script.

SQL Program to Create Tables and Objects
Following is a listing of the ObjectDemo.sql script that creates the tables and
objects referenced by the two versions of the sample code. The ObjectDemo.sql
script creates a person object, an address object, a typed table (persons) of
person objects, and a relational table (employees) for employee data.

/*** Using objects in SQLJ ***/
SET ECHO ON;
/**

/*** Clean up ***/
DROP TABLE EMPLOYEES
/
DROP TABLE PERSONS
/
DROP TYPE PERSON FORCE
/
DROP TYPE ADDRESS FORCE
/

/*** Create an address object ***/
CREATE TYPE address AS OBJECT
(
 street VARCHAR(60),
 city VARCHAR(30),
 state CHAR(2),
 zip_code CHAR(5)
)
/

/*** Create a person object containing an embedded Address object ***/
CREATE TYPE person AS OBJECT

Note: The JDBC and SQLJ versions of the sample code are only
code snippets. They cannot be run independently.
Sample Applications 7-39

JDBC versus SQLJ Sample Code
(
 name VARCHAR(30),
 ssn NUMBER,
 addr address
)
/

/*** Create a typed table for person objects ***/
CREATE TABLE persons OF person
/

/*** Create a relational table with two columns that are REFs
 to person objects, as well as a column which is an Address object.***/

CREATE TABLE employees
(empnumber INTEGER PRIMARY KEY,
 person_data REF person,
 manager REF person,
 office_addr address,
 salary NUMBER
)

/
/*** insert code for UPDATE_ADDRESS stored procedure here
/

/*** Now let’s put in some sample data
 Insert 2 objects into the persons typed table ***/

INSERT INTO persons VALUES (
 person(’Wolfgang Amadeus Mozart’, 123456,
 address(’Am Berg 100’, ’Salzburg’, ’AU’,’10424’)))
/
INSERT INTO persons VALUES (
 person(’Ludwig van Beethoven’, 234567,
 address(’Rheinallee’, ’Bonn’, ’DE’, ’69234’)))
/

/** Put a row in the employees table **/

INSERT INTO employees (empnumber, office_addr, salary) " +
 " VALUES (1001, address(’500 Oracle Parkway’, " +
 " ’Redwood City’, ’CA’, ’94065’), 50000)
/

7-40 JDBC Developer’s Guide and Reference

JDBC versus SQLJ Sample Code
/** Set the manager and person REFs for the employee **/

UPDATE employees
 SET manager =
 (SELECT REF(p) FROM persons p WHERE p.name = ’Wolfgang Amadeus Mozart’)
/

UPDATE employees
 SET person_data =
 (SELECT REF(p) FROM persons p WHERE p.name = ’Ludwig van Beethoven’)
/

COMMIT
/
QUIT

JDBC Version of the Sample Code
Following is the JDBC version of the sample code, which defines methods to
retrieve an employee’s address from the database, update the address, and return it
to the database. Note, the "TO DOs" in the comment lines indicate where you might
want to add additional code to enhance the usefulness of the code sample.

import java.sql.*;
import oracle.jdbc.driver.*;

/**
 This is what we have to do in JDBC
 **/
public class SimpleDemoJDBC // line 7
{

//TO DO: make a main that calls this

 public Address getEmployeeAddress(int empno, Connection conn)
 throws SQLException // line 13
 {
 Address addr;
 PreparedStatement pstmt = // line 16
 conn.prepareStatement("SELECT office_addr FROM employees" +
 " WHERE empnumber = ?");
 pstmt.setInt(1, empno);
 OracleResultSet rs = (OracleResultSet)pstmt.executeQuery();
 rs.next(); // line 21
 //TO DO: what if false (result set contains no data)?
Sample Applications 7-41

JDBC versus SQLJ Sample Code
 addr = (Address)rs.getCustomDatum(1, Address.getFactory());
 //TO DO: what if additional rows?
 rs.close(); // line 25
 pstmt.close();
 return addr; // line 27

 }

 public Address updateAddress(Address addr, Connection conn)
 throws SQLException // line 30

 {
 OracleCallableStatement cstmt = (OracleCallableStatement)
 conn.prepareCall("{ ? = call UPDATE_ADDRESS(?) }"); //line 34
 cstmt.registerOutParameter(1, Address._SQL_TYPECODE, Address._SQL_NAME);
 // line 36
 if (addr == null) {
 cstmt.setNull(2, Address._SQL_TYPECODE, Address._SQL_NAME);
 } else {
 cstmt.setCustomDatum(2, addr);
 }

 cstmt.executeUpdate(); // line 43
 addr = (Address)cstmt.getCustomDatum(1, Address.getFactory());
 cstmt.close(); // line 45
 return addr;
 }
}

Line 12: In the getEmployeeAddress() method definition, you must pass the
connection object to the method definition explicitly.

Lines 16-20: Prepare a statement that selects an employee’s address from the
employees table on the basis of the employee number. The employee number is
represented by a marker variable, which is set with the setInt() method. Note
that because the prepared statement does not recognize the "INTO" syntax used in
"SQL Program to Create Tables and Objects" on page 7-39, you must provide your
own code to populate the address (addr) variable. Since the prepared statement is
returning a custom object, cast the output to an Oracle result set.

Lines 21-23: Because the Oracle result set contains a custom object of type Address,
use the getCustomDatum() method to retrieve it (the Address object could be
created by JPublisher). The getCustomDatum() method requires you to use the
factory method Address.getFactory() to materialize an instance of an
7-42 JDBC Developer’s Guide and Reference

JDBC versus SQLJ Sample Code
Address object. Since getCustomDatum() returns a Datum, cast the output to an
Address object.

Note that the routine assumes a one-row result set. The "TO DOs" in the comment
statements indicate that you must write additional code for the cases where the
result set contains either no rows or more than one row.

Lines 25-27: Close the result set and prepared statement objects, then return the
addr variable.

Line 29: In the updateAddress() definition, you must pass the connection object
and the Address object explicitly.

The updateAddress() method passes an address to the database for update and
fetches it back. The actual updating of the address is performed by the
UPDATE_ADDRESS stored procedure (the code for this procedure is not illustrated
in this example).

Line 33-43: Prepare an Oracle callable statement that takes an address object
(Address) and passes it to the UPDATE_ADDRESS stored procedure. To register an
object as an output parameter, you must know the object’s SQL type code and SQL
type name.

Before passing the address object (addr) as an input parameter, the program must
determine whether addr has a value or is null. Depending on the value of addr, the
program calls different set methods. If addr is null, the program calls setNull(),
if it has a value, the program calls setCustomDatum().

Line 44: Fetch the return result addr. Since the Oracle callable statement returns a
custom object of type Address, use the getCustomDatum() method to retrieve it
(the Address object could be created by JPublisher). The getCustomDatum()
method requires you to use the factory method Address.getFactory to
materialize an instance of an Address object. Because getCustomDatum() returns
a Datum, cast the output to an Address object.

Lines 45, 46: Close the Oracle callable statement, then return the addr variable.

Coding Requirements of the JDBC Version
Note the following coding requirements for the JDBC version of the sample code:

■ The getEmployeeAddress() and updateAddress() definitions must
explicitly include the connection object.
Sample Applications 7-43

JDBC versus SQLJ Sample Code
■ Long SQL strings must be concatenated with the SQL concatenation character
("+").

■ You must explicitly manage resources (for example, close result set and
statement objects).

■ You must cast datatypes as needed.

■ You must know the _SQL_TYPECODE and _SQL_NAME of the factory objects
that you are registering as output parameters.

■ Null data must be explicitly handled.

■ Host variables must be represented by parameter markers in callable and
prepared statements.

Maintaining JDBC Programs
JDBC programs have the potential of being expensive in terms of maintenance. For
example, in the above code sample, if you add another WHERE clause, then you
must change the SELECT string. If you append another host variable, then you must
increment the index of the other host variables by one. A simple change to one line
in a JDBC program might require changes in several other areas of the program.

SQLJ Version of the Sample Code
Following is the SQLJ version of the sample code that defines methods to retrieve
an employee’s address from the database, update the address, and return it to the
database.

import java.sql.*;

/**
 This is what we have to do in SQLJ
 **/
public class SimpleDemoSQLJ // line 6
{
 //TO DO: make a main that calls this?

 public Address getEmployeeAddress(int empno) // line 10
 throws SQLException
 {
 Address addr; // line 13
 #sql { SELECT office_addr INTO :addr FROM employees
 WHERE empnumber = :empno };
 return addr;
7-44 JDBC Developer’s Guide and Reference

JDBC versus SQLJ Sample Code
 }
 // line 18
 public Address updateAddress(Address addr)
 throws SQLException
 {
 #sql addr = { VALUES(UPDATE_ADDRESS(:addr)) }; // line 23
 return addr;
 }
}

Line 10: The getEmployeeAddress() method does not require a connection
object. SQLJ uses a default connection context instance, which would have been
defined previously somewhere in your application.

Lines 13-15: The getEmployeeAddress() method retrieves an employee address
according to employee number. Use standard SQLJ SELECT INTO syntax to select
an employee’s address from the employee table if their employee number matches
the one (empno) passed in to getEmployeeAddress(). This requires a declaration
of the Address object (addr) that will receive the data. The empno and addr
variables are used as input host variables. (Host variables are sometimes also
referred to as bind variables.)

Line 16: The getEmployeeAddress() method returns the addr object.

Line 19: The updateAddress() method also uses the default connection context
instance.

Lines 19-23: The address is passed to the updateAddress() method, which passes
it to the database. The database updates it and passes it back. The actual updating
of the address is performed by the UPDATE_ADDRESS stored function (the code for
this function is not shown here). Use standard SQLJ function-call syntax to receive
the address object (addr) output by UPDATE_ADDRESS.

Line 24: The updateAddress() method returns the addr object.

Coding Requirements of the SQLJ Version
Note the following coding requirements for the SQLJ version of the sample code:

■ An explicit connection is not required; SQLJ assumes that a default connection
context has been defined previously in your application.

■ No datatype casting is required.
Sample Applications 7-45

JDBC versus SQLJ Sample Code
■ SQLJ does not require knowledge of _SQL_TYPECODE, _SQL_NAME, or
factories.

■ Null data is handled implicitly.

■ No explicit code for resource management (for closing statements or result sets,
for example) is required.

■ SQLJ embeds host variables in contrast to JDBC which uses parameter markers.

■ String concatenation for long SQL statements is not required.

■ You do not have to register out-parameters.

■ SQLJ syntax is simpler; for example, SELECT...INTO is supported and
OBDC-style escapes are not used.
7-46 JDBC Developer’s Guide and Reference

Reference Info
8

Reference Information

This chapter contains detailed JDBC reference information, including the following
topics:

■ Valid SQL-JDBC Datatype Mappings

■ Supported SQL and PL/SQL Datatypes

■ NLS Character Set Support

■ Related Information
rmation 8-1

Valid SQL-JDBC Datatype Mappings
Valid SQL-JDBC Datatype Mappings
Table 3–1 and Table 3–2 in Chapter 3 describe the default mappings between Java
classes and SQL datatypes that are supported by the Oracle JDBC drivers. Compare
the contents of the Standard JDBC Datatypes, Java Native Datatypes and Oracle SQL
Datatypes columns in Table 3–1 and Table 3–2 with the contents of Table 8–1 below.

Table 8–1 lists all of the possible Java classes to which a given SQL datatype can be
validly mapped. The Oracle JDBC drivers will support these "non-default"
mappings. For example, to materialize SQL CHAR data as an oracle.sql.CHAR,
use getCHAR(). To materialize it as a java.math.BigDecimal, use
getBigDecimal().

Table 8–1 Valid SQL Datatype-Java Class Mappings

This SQL datatype: Can be materialized as these Java classes:

CHAR, NCHAR,VARCHAR2, oracle.sql.CHAR

NVARCHAR2, LONG java.lang.String

 java.sql.Date

 java.sql.Time

 java.sql.Timestamp

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

byte, short, int, long, float, double

DATE oracle.sql.DATE

java.sql.Date

java.sql.Time

java.sql.Timestamp

java.lang.String
8-2 JDBC Developer’s Guide and Reference

Valid SQL-JDBC Datatype Mappings
NUMBER oracle.sql.NUMBER

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

byte, short, int, long, float, double

RAW, LONG RAW oracle.sql.RAW

 byte[]

ROWID oracle.sql.CHAR

oracle.sql.ROWID

java.lang.String

BFILE oracle.sql.BFILE

BLOB oracle.sql.BLOB

oracle.jdbc2.Blob

CLOB, NCLOB oracle.sql.CLOB

 oracle.jdbc2.Clob

OBJECT oracle.sql.STRUCT

oracle.SqljData

oracle.jdbc2.Struct

REF oracle.sql.REF

oracle.jdbc2.Ref

TABLE (nested), VARRAY oracle.sql.ARRAY

 oracle.jdbc2.Array

any of the above SQL types oracle.sql.CustomDatum or oracle.sql.Datum

Table 8–1 Valid SQL Datatype-Java Class Mappings (Cont.)

This SQL datatype: Can be materialized as these Java classes:
Reference Information 8-3

Supported SQL and PL/SQL Datatypes
Supported SQL and PL/SQL Datatypes
The tables in this section list SQL and PL/SQL datatypes, and whether the Oracle
JDBC drivers and SQLJ support them. Table 8–2 describes Oracle JDBC driver and
SQLJ support for SQL datatypes.

Notes:

■ The type UROWID is not supported.

■ oracle.sql.Datum is an abstract class. The value passed to a
parameter of type oracle.sql.Datum must be of the Java
type corresponding to the SQL type. Likewise, the value
returned by a method with return type oracle.sql.Datum
must be of the Java type corresponding to the SQL type.

■ The mappings to oracle.sql classes are optimal if no
conversion from SQL format to Java format is necessary.

Table 8–2 Support for SQL Datatypes

SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

BFILE yes yes

BLOB yes yes

CHAR yes yes

CLOB yes yes

DATE yes yes

NCHAR no no

NCHAR VARYING no no

NUMBER yes yes

NVARCHAR2 no no

RAW yes yes

REF yes yes

ROWID yes yes

UROWID no no

VARCHAR2 yes yes
8-4 JDBC Developer’s Guide and Reference

Supported SQL and PL/SQL Datatypes
Table 8–3 describes Oracle JDBC driver and SQLJ support for the ANSI-supported
SQL datatypes.

Table 8–4 describes Oracle JDBC driver and SQLJ support for PL/SQL datatypes.
Note that PL/SQL datatypes include these categories:

■ scalar types

■ scalar character types (includes boolean and date datatypes)

■ composite types

■ reference types

■ LOB types

Table 8–3 Support for ANSI-Supported SQL Datatypes

ANSI-Supported SQL Datatypes Supported by JDBC Drivers? Supported by SQLJ?

CHARACTER yes yes

DEC yes yes

DECIMAL yes yes

DOUBLE PRECISION yes yes

FLOAT yes yes

INT yes yes

INTEGER yes yes

NATIONAL CHARACTER no no

NATIONAL CHARACTER
VARYING

no no

NATIONAL CHAR no no

NATIONAL CHAR VARYING no no

NCHAR no no

NCHAR VARYING no no

NUMERIC yes yes

REAL yes yes

SMALLINT yes yes

VARCHAR yes yes
Reference Information 8-5

Supported SQL and PL/SQL Datatypes
Table 8–4 Support for PL/SQL Datatypes

PL/SQL Datatypes Supported by JDBC Drivers? Supported by SQLJ?

Scalar Types:

binary integer yes yes

dec yes yes

decimal yes yes

double precision yes yes

float yes yes

int yes yes

integer yes yes

natural yes yes

naturaln no no

number yes yes

numeric yes yes

pls_integer yes yes

positive yes yes

positiven no no

real yes yes

signtype yes yes

smallint yes yes

Scalar Character Types:

char yes yes

character yes yes

long yes yes

long raw yes yes

nchar no no

nvarchar2 no no

raw yes yes

rowid yes yes
8-6 JDBC Developer’s Guide and Reference

Supported SQL and PL/SQL Datatypes
string yes yes

urowid no no

varchar yes yes

varchar2 yes yes

boolean yes yes

date yes yes

Composite Types:

record no no

table no no

varray yes yes

Reference Types:

REF CURSOR yes yes

REF object type yes yes

LOB Types:

BFILE yes yes

BLOB yes yes

CLOB yes yes

NCLOB no no

Notes:

■ The types natural, naturaln, positive, positiven, and signtype
are subtypes of binary integer.

■ The types dec, decimal, double precision, float, int, integer,
numeric, real, and smallint, are subtypes of number.

Table 8–4 Support for PL/SQL Datatypes (Cont.)

PL/SQL Datatypes Supported by JDBC Drivers? Supported by SQLJ?
Reference Information 8-7

NLS Character Set Support
NLS Character Set Support
On the client, the Oracle JDBC OCI and Thin drivers support all Oracle NLS
character sets. On the server, the Oracle JDBC Server driver supports only two
Oracle NLS character sets: US7ASCII (ASCII 7-bit American) and WE8ISO8859P1
(ISO 8859-1 West European or "ISO-Latin 1").

Related Information
This section lists web sites that contain useful information for JDBC programmers.
Many of the sites are referenced in other sections of this manual. In this list you can
find references to the Oracle JDBC drivers and SQLJ, Java technology, the Java
Developer’s Kit APIs (for versions 1.2 and 2.0), and resources to help you write
applets.

Oracle JDBC Drivers and SQLJ
Oracle JDBC Driver Home Page (Oracle Corporation)

http://www.oracle.com/st/products/jdbc/

Oracle JDBC Driver Download Page (Oracle Corporation)

http://www.oracle.com/products/free_software/index.html#jdbc8

Oracle SQLJ Home Page (Oracle Corporation)

http://www.oracle.com/st/products/jdbc/sqlj/index.html

Java Technology
Java Technology Home Page (Sun Microsystems, Inc.):

http://www.javasoft.com/

Java Development Kit 1.1 (JDK1.1) (Sun Microsystems, Inc.):

http://java.sun.com/products/jdk/1.1/

Java Platform JDK1.1 Core API Specification (Sun Microsystems, Inc.):

http://www.javasoft.com/products/jdk/1.1/docs/api/packages.html

Java Development Kit 1.2 (JDK1.2) (Sun Microsystems, Inc.):

http://java.sun.com:80/products/jdk/1.2/index.html
8-8 JDBC Developer’s Guide and Reference

Related Information
Java Platform JDK1.2 Core API Specification (Sun Microsystems, Inc.):

http://www.javasoft.com/products/jdk/1.2/docs/api/index.html

Signed Applets
Introduction to Capabilities Classes (Netscape Communications Corp.):

http://developer.netscape.com/docs/manuals/signedobj/capabilities/contents.htm

Object-Signing Resources (Netscape Communications Corp.):

http://developer.netscape.com/software/signedobj/index.html

Signed Applet Example (Sun Microsystems, Inc.):

http://java.sun.com/security/signExample/index.html
Reference Information 8-9

Related Information
8-10 JDBC Developer’s Guide and Reference

JDBC Error Mess
A

JDBC Error Messages

This appendix lists the error messages that the Oracle JDBC drivers can return.

"Cause" and "Action" information for each message will be provided in a later
release.

byte array not long enough

can only describe a query

cannot do new defines until the current result set is closed

cannot set row prefetch to zero

char array not long enough

character set not supported

closed connection

closed LOB

closed resultset

closed statement

cursor already initialized
ages A-1

error in defines.isNull ()

error in type descriptor parse

exception in OracleNumber

exhausted resultset

fail to construct descriptor

fail to convert between UTF8 and UCS2

fail to convert to internal representation

inconsistent Java and SQL object types

Internal error: attempt to access bind values beyond the batch value

Internal error: data array not allocated

Internal error: invalid index for data access

Internal error: invalid NLS Conversion ratio

invalid batch value

invalid character encountered in

invalid column name

invalid column type

invalid cursor

invalid dynamic column
A-2 JDBC Developer’s Guide and Reference

invalid row prefetch

invalid stream maximum size

malformed SQL92 string at position

missing defines

missing defines at index

missing descriptor

missing IN or OUT parameter at index:

no data read

no such element in vector

non supported character set

non-supported SQL92 token at position

numeric overflow

only one RPA message is expected

only one RXH message is expected

parameter type conflict

protocol violation

received more RXDs than expected
JDBC Error Messages A-3

REF cursor is invalid

resultSet.next was not called

setAutoClose: only support auto close mode on

setReadOnly: read-only connections not supported

setTransactionIsolation: only supports TRANSACTION_READ_
UNCOMMITTED

statement timed out

statement was cancelled

stream has already been closed

sub protocol must be specified in connection URL

the LOB locator is not valid

the size is not valid

This API cannot be be used for non-UDT types

this ref is not valid

undefined type

unsupported column type

unsupported feature
A-4 JDBC Developer’s Guide and Reference

Index

A
addBatch() method, restrictions on, 4-100
ANO (Advanced Networking Option), 3-27
APPLET HTML tag, 5-19
applets

coding, 5-7
for JDK 1.0.2 browser, 5-8
for JDK 1.1.1 browser, 5-8

connecting to a database, 5-9
deploying in an HTML page, 5-19
packages needed, 5-7
packaging, 5-17

for JDK 1.0.2 browser, 5-17
for JDK 1.1.1 browser, 5-18

packaging and deploying, 3-28
signed applets

browser security, 5-20
example program, 7-31
object-signing certificate, 5-14
using, 5-13

using with firewalls, 5-14
working with, 5-7

ARCHIVE, parameter for APPLET tag, 5-20
ARRAY

class, 4-14
descriptors, 4-15
objects, creating, 4-15, 4-16

array descriptor
creating, 4-93

ArrayDescriptor object, 4-15, 4-93
creating, 4-16
get methods, 4-17

arrays

defined, 4-87
example program, 7-16
getting, 4-92
named, 4-87
passing to callable statement, 4-94
retrieving from a result set, 4-88
retrieving partial arrays, 4-91
using type maps, 4-94
working with, 4-87

AUTHENTICATION_LEVEL parameter, 5-12
auto-commit mode

disabling, 6-5
result set behavior, 6-5

B
batching values, 4-97, 6-6

and streaming data, 4-100
connection-wide, 4-103
default batch size, 4-100
not supported by

OracleCallableStatement, 4-100
overriding default value, 4-102
restrictions on, 4-100
setting batch value, 4-101

BFILE
accessing data, 4-60
class, 4-17
creating and populating columns, 4-58
defined, 3-24
example program, 7-10
locators, 4-55

getting from a result set, 4-55
getting from callable statement, 4-56
Index-1

passing to callable statements, 4-56
passing to prepared statements, 4-56

manipulating data, 4-60
reading data, 4-57
working with, 4-45

BFILE locator, selecting, 4-18
BLOB, 4-48

class, 4-17
creating and populating, 4-52
creating columns, 4-52
getting locators, 4-46
locators

getting from result set, 4-46
selecting, 4-18

manipulating data, 4-54
populating columns, 4-53
reading data, 4-48, 4-50
working with, 4-45
writing data, 4-51

Boolean parameters, restrictions, 6-7
browser security, 5-20

C
callable statement

getting a BFILE locator, 4-56
getting LOB locators, 4-47
passing BFILE locator, 4-56
passing LOB locators, 4-48
using getOracleObject() method, 4-36

casting return values, 4-39
catalog arguments (DatabaseMetaData), 4-116
CHAR

object, creating, 4-20
CHAR class, 4-19

conversions with KPRB driver, 5-25
CHAR columns

space padding, 6-7
character sets, 4-21

conversions with KPRB driver, 5-25
Class.forName method, 3-3
CLASSPATH, specifying, 2-7
clearDefines() method, 4-105
client installation, 3-27
CLOB

class, 4-17
creating and populating, 4-52
creating columns, 4-52
locators, 4-46

getting from result set, 4-46
passing to callable statements, 4-48
passing to prepared statement, 4-48

locators, selecting, 4-18
manipulating data, 4-54
populating columns, 4-53
reading data, 4-48, 4-50
working with, 4-45
writing data, 4-51

close() method, 4-25, 4-26, 4-27, 6-7
for database connection, 5-23

closeFile() method, 4-19
CMAN.ORA file, creating, 5-11
CODE, parameter for APPLET tag, 5-19
CODEBASE, parameter for APPLET tag, 5-19
collections, 4-87
collections (nested tables and arrays), 4-15
column types

redefining, 4-97, 4-105
restrictions on, 4-105

COMMIT operation, 5-24
connect string

for KPRB driver, 5-23
for the Oracle8 Connection Manager, 5-12

connection
closing, 3-10
from KPRB driver, 3-26
opening, 3-3
opening for JDBC OCI driver, 3-6
opening for JDBC Thin driver, 3-7
Properties object, 3-6

Connection Manager, 3-28, 5-9, 5-10
browser security, 5-20
installing, 5-11
starting, 5-12
using multiple managers, 5-13
writing the connect string, 5-12

connection properties, 4-109
database, 4-110
defaultBatchValue, 4-110
defaultRowPrefetch, 4-110
Index-2

password, 4-110
put() method, 4-110
remarksReporting, 4-110
user, 4-110

connections
read-only, 4-116

constants for SQL types, 4-28
CREATE DIRECTORY statement

for BFILEs, 4-58
CREATE TABLE statement

to create BFILE columns, 4-58
to create BLOB, CLOB columns, 4-52

create() method
for CustomDatumFactory interface, 4-75

createDescriptor() method, 4-13
createStatement() method, 4-24
CursorName

limitations, 4-115
cursors, 6-7
custom Java classes

defining, 4-65
custom Java types

creating, 7-20, 7-26
CustomDatum interface, 4-3

advantages, 4-65
example program, 7-26
reading data, 4-79
writing data, 4-80

D
data conversions, 4-32

LONG, 3-15
LONG RAW, 3-15

data streaming
avoiding, 3-18
example program, 7-2

database
connecting

from an applet, 5-10
through multiple Connection Managers, 5-13
with KPRB, 5-22

connection testing, 2-8
database connection

connection property, 4-110

database URL
including userid and password, 3-5

database URL, specifying, 3-4
DatabaseMetaData calls, 4-116
DatabaseMetaData class, 5-28

entry points for applets, 5-18
datatype classes, 4-7
datatype mappings, 3-11
datatypes

Java, 3-11, 3-12
Java native, 3-11, 3-12
JDBC, 3-11, 3-12
JDBC extensions for Oracle SQL datatypes, 3-12
Oracle SQL, 3-11, 3-12

DATE class, 4-22
DBMS_LOB package, 4-49
debugging JDBC programs, 6-9
DEFAULT_CHARSET character set value, 4-21
defaultBatchValue connection property, 4-110
defaultConnection() method, 5-22
defaultRowPrefetch connection property, 4-110
defineColumnType() method, 3-19, 4-25, 4-106
dnldthin sub-protocol, 5-8
DriverManager class, 3-3
dynamic SQL, 1-2

E
encryption

applets, 3-28
applications, 3-27

environment variables
specifying, 2-7

error handling and messages, 3-25
exception trapping, 6-9
executeBatch() method

restrictions on, 4-100
executeQuery() method, 4-25
executeUpdate() method, 4-101
extensions to JDBC, Oracle, 4-1
external file

defined, 3-24
Index-3

F
finalizer methods, 6-7
firewalls

configuring for applets, 5-15
connect string, 5-16
described, 5-15
required rule list items, 5-15
using with applets, 3-28, 5-14

floating-point compliance, 4-115
function call syntax, SQL92 syntax, 5-30

G
getARRAY() method, 4-88
getArray() method, 4-15, 4-88

using type maps, 4-90
getArrayDescriptor() method, 4-15
getAsciiOutputStream() method, 4-18

for writing CLOB data, 4-50
getAsciiStream() method, 4-18

for reading CLOB data, 4-49
getAttributes() method, 4-11, 4-63

used by Structs, 4-69
getBaseName() method, 4-17
getBaseType() method, 4-15, 4-17, 4-92
getBaseTypeName() method, 4-14, 4-15

used with object references, 4-83
getBinaryOutputStream() method, 4-18

for writing BLOB data, 4-49
getBinaryStream() method, 3-17, 4-18, 4-19

for reading BFILE data, 4-57
for reading BLOB data, 4-49

getBLOB() method, 4-46
getBytes() method, 3-18, 4-10, 4-18, 4-19
getCharacterOutputStream() method, 4-18

for writing CLOB data, 4-50
getCharacterStream() method, 4-18

for reading CLOB data, 4-49
getChars() method, 4-18
getChunkSize() method, 4-53
getCLOB() method, 4-46
getColumnCount() method, 4-28
getColumnName() method, 4-28
getColumns() method, 4-108

getColumnType() method, 4-28, 4-44
getColumnTypeName() method, 4-28, 4-44
getConnection() method, 3-4, 4-12, 5-22

connection properties, 4-109
for applets, 5-8

getCursor() method, 4-113, 4-114
getCursorName() method, 4-111

limitations, 4-115
getCustomDatum() method, 4-76, 4-79
getDefaultExecuteBatch() method, 4-24
getDefaultRowPrefetch() method, 4-24, 4-98
getDescriptor() method, 4-12
getDirAlias() method, 4-19, 4-60
getExecuteBatch() method, 4-26, 4-101

returning current batch value, 4-103
getMap() method, 4-12
getName() method, 4-19, 4-60
getNumericFunctions() method, 5-28
getObject() method

casting return values, 4-39
for BLOBs and CLOBs, 4-46
for CustomDatum objects, 4-76
for object references, 4-84
for SQLInput streams, 4-70
for SQLOutput streams, 4-71
for Struct objects, 4-64
return types, 4-34, 4-36
to get BFILE locators, 4-55
to get Oracle objects, 4-63
used with CustomDatum interface, 4-80

getOracleArray() method, 4-15, 4-88, 4-92
getOracleAttributes() method, 4-12, 4-64
getOracleObject() method, 4-26, 4-27

casting return values, 4-39
for BLOBs and CLOBs, 4-46
return types, 4-35, 4-36
using in callable statement, 4-36
using in result set, 4-35

getProcedureColumns() method, 4-108
getProcedures() method, 4-108
getREF() method, 4-85
getRemarksReporting() method, 4-25
getResultSet() method, 4-15, 4-25
getRowPrefetch() method, 4-25, 4-98
getSQLTypeName() method, 4-12, 4-15, 4-63, 4-92
Index-4

getString() method, 4-21
to get ROWIDs, 4-111

getStringFunctions() method, 5-28
getStringWithReplacement() method, 4-21
getSTRUCT() method, 4-64
getSubString() method, 4-19

for reading CLOB data, 4-50
getSystemFunctions() method, 5-28
getTableName() method, 4-28
getTimeDateFunctions() method, 5-28
getTransactionIsolation() method, 4-24, 6-13
getTypeMap() method, 4-25, 4-67
getValue() method, 4-14

for object references, 4-84
getXXX() methods

casting return values, 4-39
for specific datatypes, 4-37

H
HEIGHT, parameter for APPLET tag, 5-19
HTML tags, to deploy applets, 5-19
HTTP protocol, 1-5

I
IEEE 754 floating-point compliance, 4-115
INSERT INTO statement

for creating BFILE columns, 4-59
inserts to database, accumulating, 6-6
installation

client, 3-27
directories and files, 2-6
verifying on the client, 2-6

instanceOf() method, 4-35
intValue() method, 4-10
isConvertableTo() method, 4-12

J
Java

compiling and running, 2-7
datatypes, 3-11, 3-12
native datatypes, 3-11, 3-12
stored procedures, 3-25

stream data, 3-14
Java Sockets, 2-2
java.math, Java math packages, 3-2
java.sql, JDBC packages, 3-2
java.sql.SQLException() method, 3-25
java.sql.Types class, 4-106
java.util.Dictionary class

used by type maps, 4-67
java.util.Hashtable class

used by type maps, 4-67
java.util.Map class, 4-91
JDBC

and IDEs, 1-7
and Oracle Application Server, 1-6
basic program, 3-2
datatypes, 3-11, 3-12
defined, 1-2
error handling and messages, 3-25
guidelines for using, 1-3
importing packages, 3-2
limitations of Oracle extensions, 4-115
Oracle extensions, 1-6
sample files, 2-7
testing, 2-8
versions supported, 1-6

JDBC calls, logging, 6-10
JDBC drivers

and NLS, 5-2
applets, 3-27
applications, 3-27
basic architecture, 1-4
choosing a driver for your needs, 2-4
common features, 2-2
common problems, 6-6
compatibilities, 2-5
determining driver version, 2-8
registering, 3-3
registering for an applet, 5-7
requirements, 2-5
restrictions, 6-7
SQL92 syntax, 5-26

JDBC KPRB driver
architecture, 1-6
described, 2-4

JDBC mapping (for attributes), 4-82
Index-5

JDBC OCI driver
applications, 3-27
architecture, 1-5
described, 2-3
NLS considerations, 5-3

JDBC Thin driver
applets, 3-27, 5-7
applications, 3-27
architecture, 1-5
described, 2-2
NLS considerations, 5-4

JdbcCheckup program, 2-8
JDeveloper, 1-7
JDK

version considerations, 5-20
versions supported, 1-6

JPublisher utility, 4-3, 4-65
data mapping options, 4-82
using with JDBC, 4-82

K
KPRB driver

connection string for, 5-23
connection to database, 5-22
described, 5-22
NLS considerations, 5-4
relation to the SQL engine, 5-22
session context, 5-23
support for NLS, 5-25
testing, 5-24
transaction context, 5-23

L
LD_LIBRARY_PATH variable, specifying, 2-7
length() method, 4-18, 4-19
LIKE escape characters, SQL92 syntax, 5-29
limitations, 4-116
LOB

defined, 3-23
locators, 4-45
reading data, 4-48
working with, 4-45

LOB locators

getting from callable statements, 4-47
passing, 4-47

LOBs
example program, 7-4

locators
getting for BFILEs, 4-55
getting for BLOBs, 4-46
getting for CLOBs, 4-46
LOB, 4-45
passing to callable statements, 4-48
passing to prepared statement, 4-48

LONG
data conversions, 3-15

LONG RAW
data conversions, 3-15

M
makeDatumArray() method, 4-12
memory leaks, 6-7
multi-threaded applications

on the client, 6-2

N
named arrays, 4-87

defined, 4-15
National Language Support (NLS), 4-21
Net8

name-value pair, 3-4
protocol, 1-5

network events, trapping, 6-10
next() method, 4-27
NLS

and JDBC drivers, 5-2
conversions, 5-2

data size restrictions, 5-5
for JDBC OCI drivers, 5-3
for JDBC Thin drivers, 5-4
for KPRB driver, 5-4

Java methods that employ, 5-2
using, 5-2

NLS Ratio, 5-5
NLS_LANG environment variable, 5-3
NULL data
Index-6

converting, 4-33
NUMBER class, 4-22

O
Object JDBC mapping (for attributes), 4-82
object references

accessing object values, 4-84, 4-85
defined, 4-83
passing to callable statement, 4-85
passing to prepared statements, 4-86
redefining columns containing, 4-105
updating object values, 4-84, 4-85
working with, 4-83

openFile() method, 4-19
optimization, performance, 6-5
Oracle Application Server, 1-6
Oracle datatypes

using, 4-32
Oracle extensions

datatype support, 4-2
limitations, 4-115

catalog arguments to DatabaseMetaData
calls, 4-116

CursorName, 4-115
IEEE 754 floating-point compliance, 4-115
PL/SQL TABLE, BOOLEAN, RECORD

types, 4-115
read-only connection, 4-116
SQL92 outer join escapes, 4-115
SQLWarning class, 4-116

object support, 4-3
packages, 4-2
performance extensions, 4-97
result sets, 4-33
schema naming support, 4-4
statements, 4-33
to JDBC, 4-1

Oracle mapping (for attributes), 4-82
Oracle objects

and JDBC, 4-62
converting with CustomDatum interface, 4-75
converting with SQLData interface, 4-69
defining with Java classes, 4-65
getting with getObject() method, 4-63

Java classes which support, 4-62
reading data by using SQLData interface, 4-72
working with, 4-62
writing data by using SQLData interface, 4-74

Oracle SQL datatypes, 3-11, 3-12
Oracle8 Connection Manager, 5-9
OracleCallableStatement class, 4-26

getXXX() methods, 4-37
registerOutParameter() method, 4-42

OracleConnection class, 4-24
OracleDatabaseMetaData class, 5-28

and applets, 5-18
OracleDriver class, 4-24
oracle.jdbc2 package, described, 4-6
oracle.jdbc2.Struct class, 4-10, 4-63

getAttributes() method, 4-63
getSQLTypeName() method, 4-63

oracle.jdbc.driver package, 4-22
stream classes, 4-28

oracle.jdbc.driver, Oracle JDBC extensions, 3-3
oracle.jdbc.driver.OracleCallableStatement

class, 4-26
close() method, 4-27
getOracleObject() method, 4-26
getXXX() methods, 4-26
registerOutParameter() method, 4-27
setNull() method, 4-27
setOracleObject() methods, 4-27
setXXX() methods, 4-27

oracle.jdbc.driver.OracleConnection class, 4-24
createStatement() method, 4-24
getDefaultExecuteBatch() method, 4-24
getDefaultRowPrefetch() method, 4-24
getRemarksReporting() method, 4-25
getTransactionIsolation() method, 4-24, 6-13
getTypeMap() method, 4-25
prepareCall() method, 4-24
prepareStatement() method, 4-24
setDefaultExecuteBatch() method, 4-24
setDefaultRowPrefetch() method, 4-25
setRemarksReporting() method, 4-25
setTransactionIsolation() method, 4-24, 6-13
setTypeMap() method, 4-25

oracle.jdbc.driver.OracleDriver class, 4-24, 5-7
oracle.jdbc.driver.OraclePreparedStatement
Index-7

class, 4-25
close() method, 4-26
getExecuteBatch() method, 4-26
setCustomDatum() method, 4-26
setExecuteBatch() method, 4-26
setNull() method, 4-26
setOracleObject() method, 4-26
setXXX() methods, 4-26

oracle.jdbc.driver.OracleResultSet class, 4-27
getOracleObject() method, 4-27
getXXX() methods, 4-27
next() method, 4-27

oracle.jdbc.driver.OracleResultSetMetaData
class, 4-28, 4-44

getColumnCount() method, 4-28
getColumnName() method, 4-28
getColumnType() method, 4-28
getColumnTypeName() method, 4-28
getTableName() method, 4-28
using, 4-44

oracle.jdbc.driver.OracleStatement class, 4-25
close() method, 4-25
defineColumnType(), 4-25
executeQuery() method, 4-25
getResultSet() method, 4-25
getRowPrefetch() method, 4-25
setRowPrefetch() method, 4-25

oracle.jdbc.driver.OracleTypes class, 4-28, 4-106
OraclePreparedStatement class, 4-25
OracleResultSet class, 4-27

getXXX() methods, 4-37
OracleResultSet object, 3-9
OracleResultSetMetaData class, 4-28
OracleServerDriver class

defaultConnection() method, 5-22
oracle.sql datatype classes, 4-7
oracle.sql package

data conversions, 4-32
described, 4-7

oracle.sql.ARRAY class, 4-87
and nested tables, 4-14
and VARRAYs, 4-14
getArray() method, 4-15
getArrayDescriptor() method, 4-15
getBaseType() method, 4-15

getBaseTypeName() method, 4-15
getOracleArray() method, 4-15
getResultSet() method, 4-15
getSQLTypeName() method, 4-15

oracle.sql.ArrayDescriptor class
getBaseName() method, 4-17
getBaseType() method, 4-17

oracle.sql.BFILE class, 4-17
closeFile() method, 4-19
getBinaryStream() method, 4-19
getBytes() method, 4-19
getDirAlias() method, 4-19
getName() method, 4-19
length() method, 4-19
openFile() method, 4-19
position() method, 4-19

oracle.sql.BLOB class, 4-17
getBinaryOutputStream() method, 4-18
getBinaryStream() method, 4-18
getBytes() method, 4-18
length() method, 4-18
position() method, 4-18
putBytes() method, 4-18

oracle.sql.CHAR class, 4-19, 5-25
getString() method, 4-21
getStringWithReplacement() method, 4-21
toString() method, 4-21

oracle.sql.CharacterSet class, 4-20
oracle.sql.CLOB class, 4-17

getAsciiOutputStream() method, 4-18
getAsciiStream() method, 4-18
getCharacterOutputStream() method, 4-18
getCharacterStream() method, 4-18
getChars() method, 4-18
getSubString() method, 4-19
length() method, 4-19
position() method, 4-19
putChars() method, 4-19
putString() method, 4-19
supported character sets, 4-18

oracle.sql.CustomDatum interface, 4-75
oracle.sql.CustomDatumFactory interface, 4-75
oracle.sql.datatypes

support, 4-10
oracle.sql.DATE class, 4-22
Index-8

oracle.sql.Datum class, described, 4-7
oracle.sql.NUMBER class, 4-22
OracleSql.parse() method, 5-30
oracle.sql.RAW class, 4-22
oracle.sql.REF class, 4-14, 4-83

getBaseTypeName() method, 4-14
getValue() method, 4-14
setValue() method, 4-14

oracle.sql.REFCURSOR class, 4-112
oracle.sql.ROWID class, 4-10, 4-22, 4-111
oracle.sql.STRUCT class, 4-10, 4-63

getConnection() method, 4-12
getDescriptor() method, 4-12
getMap() method, 4-12
getOracleAttributes() method, 4-12
getSQLTypeName() method, 4-12
isConvertibleTo() method, 4-12
makeJdbcArray() method, 4-12
methods, 4-11

getAttributes() method, 4-11
setDatumArray() method, 4-12
setDescriptor() method, 4-12
stringValue() method, 4-12
toBytes() method, 4-12
toClass() method, 4-12
toJDBC() method, 4-12
toSTRUCT() method, 4-12

oracle.sql.StructDescriptor class, 4-13
createDescriptor() method, 4-13

OracleStatement class, 4-25
OracleTypes class, 4-28
OracleTypes.ARRAY class, 4-28, 4-44
OracleTypes.BFILE class, 4-29
OracleTypes.BLOB class, 4-28
OracleTypes.CLOB class, 4-28
OracleTypes.CURSOR variable, 4-113
OracleTypes.REF class, 4-28
OracleTypes.ROWID class, 4-29
OracleTypes.STRUCT class, 4-28, 4-44
outer joins, SQL92 syntax, 5-29

P
password connection property, 4-110
password, specifying, 3-4

PATH variable, specifying, 2-7
performance extensions

batching updates, 4-100
connection properties, 4-109
prefetching rows, 4-98
redefining column types, 4-105
TABLE_REMARKS reporting, 4-108
to JDBC, 4-97

performance optimization, 6-5
batching values, 6-6
prefetching rows, 6-6

PL/SQL
restrictions, 6-7
space padding, 6-7
stored procedures, 3-24

PL/SQL stored procedures, 3-24
PL/SQL types

limitations, 4-115
position() method, 4-18, 4-19
prefetching rows, 4-97, 4-98, 6-6

suggested default, 4-98
prepareCall() method, 4-24
prepared statement

passing BFILE locator, 4-56
passing LOB locators, 4-48
using setObject() method, 4-41
using setOracleObject() method, 4-41

prepareStatement() method, 4-24
printStackTrace() method, 6-9
put() method

for Properties object, 4-110
for type maps, 4-67

putBytes() method, 4-18
putChars() method, 4-19
putString() method, 4-19

Q
query, executing, 3-8

R
RAW class, 4-22
readSQL() method, 4-69, 4-70

implementing, 4-70
Index-9

REF class, 4-14
REFCURSORs, 4-112

example program, 7-14
materialized as result set objects, 4-112

reference classes, and JPublisher, 4-83
registerDriver() method, 4-24
registering Oracle JDBC drivers, class for, 4-24
registerOutParameter() method, 4-27, 4-42
remarksReporting connection property, 4-110
remarksReporting flag, 4-97
result set

auto-commit mode, 6-5
getting BFILE locators, 4-55
getting LOB locators, 4-46
metadata, 4-28
Oracle extensions, 4-33
using getOracleObject() method, 4-35

result set object
closing, 3-9

result set, processing, 3-9
ResultSet class, 3-8
return types

for getXXX() methods, 4-38
getObject() method, 4-36
getOracleObject() method, 4-36

return values
casting, 4-39

ROLLBACK operation, 5-24
row prefetching, 4-98

and data streams, 3-23
ROWID class, 4-22

CursorName methods, 4-115
defined, 4-111

S
scalar functions, SQL92 syntax, 5-28
schema naming conventions, 4-4
security, for browsers, 5-20
SELECT statement

to retrieve object references, 4-84
to select LOB locator, 4-54

sendBatch() method, 4-102
session context, 3-26

for KPRB driver, 5-23

setAutoCommit() method, 6-5
setBFILE() method, 4-56
setBLOB() method, 4-47
setCLOB() method, 4-48
setCursorName() method, 4-111, 4-115
setCustomDatum() method, 4-26, 4-77, 4-81
setDatumArray() method, 4-12
setDefaultExecuteBatch() method, 4-24
setDefaultRowPrefetch() method, 4-25, 4-98
setDescriptor() method, 4-12
setEscapeProcessing() method, 5-26
setExecuteBatch() method, 4-26
setLogStream() method, for logging JDBC

calls, 6-10
setMaxFieldSize() method, 4-106, 6-7
setNull() method, 4-26, 4-27, 4-42
setObejct() method, 4-40
setObject() method

for BFILES, 4-56
for BLOBs and CLOBs, 4-47
for CustomDatum objects, 4-77
for object references, 4-86
to write object data, 4-81
using in prepared statements, 4-41

setOracleObject() method, 4-26, 4-27, 4-40
for BFILES, 4-56
for BLOBs and CLOBs, 4-47
for Struct objects, 4-64
using in prepared statements, 4-41

setREF() method, 4-86
setRemarksReporting() method, 4-25, 4-108
setRowPrefetch() method, 4-25, 4-98
setString() method

to bind ROWIDs, 4-111
setTransactionIsolation() method, 4-24, 6-13
setTypeMap() method, 4-25, 4-68
setValue() method, 4-14
setXXX() methods, for specific datatypes, 4-41
signed applets, 3-28
SQL

data converting to Java datatypes, 4-32
primitive types, 4-7
structured types, 4-7
types, constants for, 4-28

SQL engine
Index-10

relation to the KPRB driver, 5-22
SQL syntax (Oracle), 5-26
SQL92 syntax, 5-26

function call syntax, 5-30
LIKE escape characters, 5-29
outer joins, 5-29
scalar functions, 5-28
time and date literals, 5-26
translating to SQL example, 5-30

SQLData interface, 4-3
advantages, 4-66
described, 4-69
example program, 7-20
Oracle implementation, 4-6
reading data from Oracle objects, 4-72
using with type map, 4-69
writing data from Oracle objects, 4-74

SQLException() method, 6-9
SQLInput interface, 4-69

described, 4-70
SQLInput streams, 4-70
SQLJ

advantages over JDBC, 1-3
guidelines for using, 1-3

SQLNET.ORA
parameters for tracing, 6-10

SQLOutput interface, 4-69
described, 4-70

SQLOutput streams, 4-71
SQLWarning class, limitations, 4-116
Statement object

closing, 3-9
creating, 3-8

statements
Oracle extensions, 4-33

static SQL, 1-2
stored procedures

Java, 3-25
PL/SQL, 3-24

stream classes, 4-28
stream data, 3-14, 4-48

CHAR columns, 3-19
closing, 3-23
example, 3-16
external files, 3-23

LOBs, 3-23
LONG columns, 3-14
LONG RAW columns, 3-14
multiple columns, 3-20
RAW columns, 3-19
row prefetching, 3-23
UPDATE/COMMIT statements, 4-50
VARCHAR columns, 3-19

stream data column
bypassing, 3-21

stringValue() method, 4-10, 4-12
STRUCT class, 4-10
STRUCT descriptor, 4-13
STRUCT object, 4-10

attributes, 4-11
casting, 4-63
creating, 4-13
embedded object, 4-14
nested objects, 4-11
using, 4-63

StructDescriptor object
creating, 4-13
get methods, 4-13

structured objects, 4-9
class for binding, 4-26

T
TABLE_REMARKS columns, 4-97
TABLE_REMARKS reporting

restrictions on, 4-108
TCP/IP protocol, 1-5, 3-7
time and date literals, SQL92 syntax, 5-26
TNSNAMES entries, 3-4
toBytes() method, 4-12
toClass() method, 4-12
toDatum() method

applied to CustomDatum objects, 4-65, 4-75
called by setCustomDatum() method, 4-81

toJDBC() method, 4-12
toJdbc() method, 4-10
toString() method, 4-21
toSTRUCT() method, 4-12
trace facility, 6-10
trace parameters
Index-11

client-side, 6-11
server-side, 6-12

transaction context, 3-26
for KPRB driver, 5-23

TTC protocol, 1-5
type map, 4-3, 4-34, 4-65

adding entries, 4-67
and STRUCTs, 4-69
creating a new map, 4-68
defining mappings, 4-67
described, 4-66
used with arrays, 4-91
used with SQLData interface, 4-69
using with arrays, 4-94

type maps
relationship to database connection, 5-23

U
updates to database, accumulating, 6-6
user connection property, 4-110
userid, specifying, 3-4
using, 5-10

V
VARCHAR2 columns, 6-7
varrays

example program, 7-16

W
WIDTH, parameter for APPLET tag, 5-19
writeSQL() method, 4-69, 4-71

implementing, 4-70
Index-12

	PDF Directory
	Send Us Your Comments
	Preface
	1 Overview
	What is JDBC?
	JDBC versus SQLJ
	Advantages of SQLJ over JDBC for Static SQL
	General Guidelines for using JDBC and SQLJ

	Basic Driver Architecture
	JDBC Thin Client-Side Driver Architecture
	JDBC OCI Client-Side Driver Architecture
	JDBC Server Driver Architecture

	Oracle Extensions to the JDBC Standard
	Supported JDK and JDBC Versions
	JDBC and the Oracle Application Server
	JDBC and IDEs

	2 Getting Started
	Oracle JDBC Drivers
	Introducing the Oracle JDBC Drivers
	Common Features of Oracle JDBC Drivers
	JDBC Thin Driver
	JDBC OCI Driver
	JDBC Server Driver

	Choosing the Appropriate Driver

	Requirements and Compatibilities for Oracle JDBC Drivers
	Verifying a JDBC Client Installation
	Check Installed Directories and Files
	Directories for JDBC

	Check the Environment Variables
	Solaris and Windows NT Platforms
	JDBC OCI Drivers:
	JDBC Thin Drivers:

	Make Sure You Can Compile and Run Java
	Determining the Version of the JDBC Driver
	Testing JDBC and the Database Connection: JdbcCheckup

	3 Basic Features
	First Steps in JDBC
	Importing Packages
	Registering the JDBC Drivers
	Opening a Connection to a Database
	Understanding the Forms of getConnection()
	Specifying a Database URL, Userid, and Password
	Specifying a Database URL That Includes Userid and Password
	Specifying a Database URL and Properties Object
	Oracle Extensions to Connection Properties Object

	Opening a Connection for the JDBC OCI Driver
	Opening a Connection for the JDBC Thin Driver

	Creating a Statement Object
	Executing a Query and Returning a Result Set Object
	Processing the Result Set
	Closing the Result Set and Statement Objects
	Closing the Connection

	Sample: Connecting, Querying, and Processing the Results
	Datatype Mappings
	Oracle JDBC Extension Types

	Using Java Streams in JDBC
	Streaming LONG or LONG RAW Columns
	LONG RAW Data Conversions
	LONG Data Conversions
	Streaming Example for LONG RAW Data
	Getting a LONG RAW Data Column with getBinaryStream()
	Getting a LONG RAW Data Column with getBytes()

	Avoiding Streaming for LONG or LONG RAW

	Streaming CHAR, VARCHAR, or RAW Columns
	Data Streaming and Multiple Columns
	Bypassing Streaming Data Columns
	Streaming Data Precautions
	Use the Stream Data after You Access It
	Call the Stream Column in SELECT List Order

	Streaming and Row Prefetching
	Closing a Stream
	Streaming LOBs and External Files
	Streaming BLOBs and CLOBs
	Streaming BFILEs

	Using Stored Procedures in JDBC Programs
	PL/SQL Stored Procedures
	Java Stored Procedures

	Error Messages and JDBC
	Server-Side Basics
	Session and Transaction Context
	Connecting to the Database

	Application Basics versus Applet Basics
	Application Basics
	Applications and Encryption

	Applet Basics
	Applets and Security
	Applets and Firewalls
	Applets and Encryption
	Packaging and Deploying Applets

	4 Oracle Extensions
	Introduction to Oracle Extensions
	Packages
	Oracle Datatype Support
	Oracle Object Support
	Support for Schema Naming

	Oracle JDBC Packages and Classes
	Classes of the oracle.jdbc2 Package
	Classes of the oracle.sql Package
	General oracle.sql Datatype Support
	Class oracle.sql.STRUCT
	Creating STRUCT Objects and Descriptors
	Using StructDescriptor get Methods
	Embedded Objects

	Class oracle.sql.REF
	Class oracle.sql.ARRAY
	Creating ARRAY Objects and Descriptors
	Using ArrayDescriptor get Methods

	Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE
	Class oracle.sql.CHAR
	Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW
	Class oracle.sql.ROWID

	Classes of the oracle.jdbc.driver Package
	Class oracle.jdbc.driver.OracleDriver
	Class oracle.jdbc.driver.OracleConnection
	Class oracle.jdbc.driver.OracleStatement
	Class oracle.jdbc.driver.OraclePreparedStatement
	Class oracle.jdbc.driver.OracleCallableStatement
	Class oracle.jdbc.driver.OracleResultSet
	Class oracle.jdbc.driver.OracleResultSetMetaData
	Oracle Stream Classes
	Class oracle.jdbc.driver.OracleTypes
	OracleTypes and Registering Output Parameters
	OracleTypes and the setNull() Method

	Data Access and Manipulation: Oracle Types vs. Java Types
	Data Conversion Considerations
	Converting SQL NULL Data

	Using Result Set and Statement Extensions
	Comparing get and set Methods for oracle.sql.* Format with Java Format
	Standard getObject() Method
	Oracle getOracleObject() Method
	Example: Using getOracleObject() with a ResultSet
	Example: Using getOracleObject() in a Callable Statement

	Summary of getObject() and getOracleObject() Return Types
	Other getXXX() Methods
	Casting Your get Method Return Values
	Example: Casting Return Values

	Standard setObject() and Oracle setOracleObject() Methods
	Example: Using setObject() and setOracleObject() in a Prepared Statement

	Other setXXX() Methods

	Using Result Set Meta Data Extensions

	Working with LOBs
	Getting BLOB and CLOB Locators
	Example: Getting BLOB and CLOB Locators from a Result Set
	Example: Getting a CLOB Locator from a Callable Statement

	Passing BLOB and CLOB Locators
	Example: Passing a BLOB Locator to a Prepared Statement
	Example: Passing a CLOB Locator to a Callable Statement

	Reading and Writing BLOB and CLOB Data
	Example: Reading BLOB Data
	Example: Reading CLOB Data
	Example: Writing BLOB Data
	Example: Writing CLOB Data

	Creating and Populating a BLOB or CLOB Column
	Creating a BLOB or CLOB Column in a New Table
	Populating a BLOB or CLOB Column in a New Table

	Accessing and Manipulating BLOB and CLOB Data
	Getting BFILE Locators
	Example: Getting a BFILE locator from a Result Set
	Example: Getting a BFILE Locator from a Callable Statement

	Passing BFILE Locators
	Example: Passing a BFILE Locator to a Prepared Statement
	Example: Passing a BFILE Locator to a Callable Statement

	Reading BFILE Data
	Example: Reading BFILE Data

	Creating and Populating a BFILE Column
	Creating a BFILE Column in a New Table
	Populating a BFILE Column

	Accessing and Manipulating BFILE Data

	Working with Oracle Object Types
	Using Default Java Classes for Oracle Objects
	Using STRUCT Objects

	Creating Custom Java Classes for Oracle Objects
	Relative Advantages of CustomDatum vs. SQLData
	Understanding Type Maps
	Creating a Type Map Class
	Creating a Type Map Object and Defining Mappings
	Adding Entries to an Existing Type Map
	Creating a New Type Map
	STRUCTS and the Type Map

	Understanding the SQLData Interface
	Understanding the SQLInput and SQLOutput Interfaces
	Implementing readSQL() and writeSQL() Methods

	Reading and Writing Data with a SQLData Class
	Reading Data from an Oracle Object Using a SQLData Interface
	Passing SQLData Objects to a Callable Statement as an OUT Parameter
	Passing SQLData Objects to a Callable Statement as an IN Parameter
	Writing Data to an Oracle Object Using a SQLData Interface

	Understanding the CustomDatum Interface
	CustomDatum versus SQLData: Comparison for Serializable Objects
	Reading and Writing Data with a CustomDatum Interface
	Reading Data from an Oracle Object Using the CustomDatum Interface
	Writing Data to an Oracle Object Using the CustomDatum Interface

	Using JPublisher with JDBC
	JPublisher Mapping Options

	Working with Oracle Object References
	Retrieving an Object Reference
	Passing an Object Reference to a Callable Statement
	Accessing and Updating Object Values through an Object Reference
	Passing an Object Reference to a Prepared Statement

	Working with Arrays
	Retrieving an Array and its Elements
	getArray() Method:
	getOracleArray() Method:
	getResultSet() Method:
	Retrieving All of an Array’s Elements
	Retrieving Array Elements According to a Type Map
	Retrieving a Subset of an Array’s Elements
	Retrieving an Array as an oracle.sql.Datum
	Example: Getting and Printing an Array of Primitive Datatypes from a Result Set

	Passing an Array to a Prepared Statement
	Passing an Array to a Callable Statement
	Using a Type Map to Map Array Elements

	Additional Oracle Extensions
	Performance Extensions
	Row Prefetching
	Row Prefetching Limitations
	Example: Row Prefetching

	Database Update Batching
	Update Batching Limitations
	Setting Update Batch Value for Individual Statements
	Overriding the Default Batch Update Value
	Setting Update Batch Value for the Connection
	Checking Batch Value
	Example: Update Batching

	Redefining Column Types
	Redefining Column Types Limitations
	Redefining Column Types for a Query
	Example: Defining Column Types

	DatabaseMetaData TABLE_REMARKS Reporting
	Example: TABLE_REMARKS Reporting
	Considerations for getProcedures() and getProcedureColumns() Methods

	Oracle Extensions for Connection Properties

	Additional Type Extensions
	Oracle ROWID Type
	Example: ROWID

	Oracle REF CURSOR Type Category
	Example: Accessing REF CURSOR Data

	Oracle JDBC Notes and Limitations
	CursorName
	SQL92 Outer Join Escapes
	PL/SQL TABLE, BOOLEAN and RECORD Types
	IEEE 754 Floating Point Compliance
	Read-Only Connection
	Catalog Arguments to DatabaseMetaData Calls
	SQLWarning Class
	Bind by Name

	5 Advanced Topics
	Using NLS
	How JDBC Drivers Perform NLS Conversions
	JDBC OCI Driver and NLS
	JDBC Thin Driver and NLS
	Server Driver and NLS

	NLS Restrictions
	Data Size Restriction for NLS Conversions

	Working with Applets
	Coding Applets
	Coding Applets for a JDK 1.1.1 Browser
	Coding Applets for a JDK 1.0.2 Browser

	Connecting an Applet to a Database
	Connecting to a Database on the Same Host as the Web Server
	Connecting to a Database on a Different Host
	Using the Oracle8 Connection Manager
	Installing and Running the Oracle8 Connection Manager
	Writing the Connect String that Targets the Oracle8 Connection Manager
	Connecting through Multiple Connection Managers

	Using Signed Applets

	Using Applets with Firewalls
	How Firewalls Work
	Configuring a Firewall for Applets that use the JDBC Thin Driver
	Writing a Connect String to Connect through a Firewall

	Packaging Applets
	Specifying an Applet in an HTML Page
	CODE, HEIGHT, and WIDTH
	CODEBASE
	ARCHIVE

	Browser Security and JDK Version Considerations

	JDBC on the Server: the Server Driver
	Connecting to the Database with the Server Driver
	Connecting with defaultConnection()
	Connecting with DriverManager.getConnection()

	Session and Transaction Context for the Server Driver
	Testing JDBC on the Server
	Server Driver Support for NLS
	Character Set Conversion of oracle.sql.CHAR Data

	Embedded SQL92 Syntax
	Disabling Escape Processing
	Time and Date Literals
	Date Literals
	Time Literals
	Timestamp Literals

	Scalar Functions
	LIKE Escape Characters
	Outer Joins
	Function Call Syntax
	SQL92 to SQL Syntax Example

	6 Coding Tips and Troubleshooting
	JDBC and Multi-Threading
	Performance Optimization
	Disabling Auto-Commit Mode
	Example: Disabling AutoCommit

	Prefetching Rows
	Batching Updates

	Common Problems
	Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables
	Memory Leaks and Running Out of Cursors
	Boolean Parameters in PL/SQL Stored Procedures
	Opening More Than 16 OCI Connections for a Process

	Basic Debugging Procedures
	Trapping Exceptions
	Logging JDBC Calls
	Net8 Tracing to Trap Network Events
	Client-Side Tracing
	TRACE_LEVEL_CLIENT
	TRACE_DIRECTORY_CLIENT
	TRACE_FILE_CLIENT
	TRACE_UNIQUE_CLIENT

	Server-Side Tracing
	TRACE_LEVEL_SERVER
	TRACE_DIRECTORY_SERVER
	TRACE_FILE_SERVER

	Using Third Party Tools

	Transaction Isolation Levels and the Oracle Server

	7 Sample Applications
	Sample Applications for Basic JDBC Features
	Streaming Data
	Lines 1-18:
	Line 34:
	Lines 37-44:
	Line 46:
	Line 51-66:

	Sample Applications for JDBC 2.0-Compliant Oracle Extensions
	LOB Sample
	Lines 1-26:
	Lines 27-38:
	Lines 40-49:
	Lines 50-68:
	Lines 69-82:
	Lines 84-108:
	Lines 110-135:
	Lines 136-154:
	Lines 156-175:

	BFILE Sample
	Lines 1-32:
	Lines 33-44:
	Lines 46-53:
	Lines 55-63:
	Lines 64-75:
	Line 77:
	Lines 80-83:
	Lines 84-108:
	Lines 110-115:

	Sample Applications for Other Oracle Extensions
	REF CURSOR Sample
	Lines 1-16:
	Lines 18-29:
	Lines 30-33:
	Lines 40-45:
	Lines 46-53:

	Array Sample
	Lines 1-32:
	Lines 35-47:
	Lines 49-54:
	Lines 59-61:
	Lines 63-70:
	Lines 72-85:
	Lines 87-97:

	Creating Customized Java Classes for Oracle Objects
	SQLData Sample
	Creating the SQL Object Definition
	Creating the Custom Java Class
	Lines 1-14:
	Lines 24-28:
	Lines 30-38:
	Lines 39-45:

	Using the Custom Java Class
	Lines 1-16:
	Lines 18-21:
	Lines 23-33:
	Lines 35-40:
	Lines 42, 43:
	Lines 45-52:
	Lines 54-57:
	Lines 59-62:
	Lines 66-72:

	CustomDatum Sample
	SQL Definition of EMPLOYEE Object
	Java Class Definitions for a Custom Java Object
	Line 10:
	Lines 13-18:
	Lines 20-25:
	Lines 27-36:
	Lines 38-49:

	Custom Java Class Usage Example
	Lines 1-16:
	Lines 18-28:
	Lines 30-35:
	Lines 37, 38:
	Lines 40-47:
	Lines 49-54:
	Lines 54-58:
	Lines 58-62:

	Creating Signed Applets
	Lines 6-11:
	Lines 13-26:
	Lines 37-48:
	Lines 49-77:
	Lines 121-165:
	Lines 170-183:
	Lines 183-256:
	Lines 260-283:

	JDBC versus SQLJ Sample Code
	SQL Program to Create Tables and Objects
	JDBC Version of the Sample Code
	Line 12:
	Lines 16-20:
	Lines 21-23:
	Lines 25-27:
	Line 29:
	Line 33-43:
	Line 44:
	Lines 45, 46:
	Coding Requirements of the JDBC Version
	Maintaining JDBC Programs

	SQLJ Version of the Sample Code
	Line 10:
	Lines 13-15:
	Line 16:
	Line 19:
	Lines 19-23:
	Line 24:
	Coding Requirements of the SQLJ Version

	8 Reference Information
	Valid SQL-JDBC Datatype Mappings
	Supported SQL and PL/SQL Datatypes
	NLS Character Set Support
	Related Information
	Oracle JDBC Drivers and SQLJ
	Java Technology
	Signed Applets

	A JDBC Error Messages
	Index

