
Oracle8 i

Enterprise JavaBeans and CORBA Developer’s Guide

Release 8.1.5

February 1999

Part No. A64683-01

Enterprise JavaBeans and CORBA Developer’s Guide, Release 8.1.5

Part No. A64683-01

Release 8.1.5

Copyright © 1998, 1999, Oracle Corporation. All rights reserved.

Primary Authors: Tim Smith, Bill Courington

Contributors: Ellen Barnes, Matthieu Devin, Steve Harris, Hal Hildebrand, Susan Kraft, Thomas
Kurian, Wendy Liau, Angie Long, Sastry Malladi, John O’Duinn, Jeff Schafer

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright, patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are "restricted computer software" and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Oracle products mentioned herein are trademarks or registered
trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface .. i

Who Should Read This Guide?.. i
How This Guide Is Organized ... i
Notational Conventions... iii
Suggested Reading .. iv

Online Sources ... iv
Related Publications .. iv
Your Comments Are Welcome ... v

1 Overview

Prerequisite Reading .. 1-2
About Enterprise JavaBeans ... 1-3

Stateful and Stateless Session Beans .. 1-4
Deployment Descriptor ... 1-4

About CORBA ... 1-6
Common Features ... 1-7

IIOP... 1-9
Tools... 1-10
Caffeine... 1-11
Example Code .. 1-12
Words About Acronyms .. 1-13
i

2 Enterprise JavaBeans

Defining Enterprise JavaBeans .. 2-2
EJB Development Roles ... 2-2
EJBs as Distributed Components ... 2-3

What is an Enterprise JavaBean? ... 2-3
Kinds of EJBs ... 2-4
Session Beans... 2-5

Implementing an EJB ... 2-6
The EJB Architecture .. 2-7

Basic Concepts... 2-8
The Home Interface.. 2-10
The Remote Interface ... 2-10
Accessing the Bean Methods .. 2-11

Parameter Passing ... 2-12
A First EJB Application.. 2-12

The Interfaces .. 2-13
The Bean Implementation ... 2-14
A Parameter Object .. 2-16
The Deployment Descriptor.. 2-16
The Client Code .. 2-17

Deploying an EJB.. 2-22
Write the Deployment Descriptor.. 2-22
Create a JAR File ... 2-26
Publish the Home Interface... 2-26
Dropping an EJB ... 2-26
Handling Transactions... 2-26
TransactionAttribute .. 2-27
Access Control... 2-27
Transaction Isolation Level ... 2-28
Session Synchronization .. 2-28
Deployment Steps... 2-28

Programming Techniques ... 2-29
Using SQLJ... 2-29
Setting a Session Timeout.. 2-30
Saving an EJB Handle .. 2-31
ii

EJB as Client .. 2-32
Programming Restrictions .. 2-32
For More Information .. 2-33

3 Developing CORBA Applications

Terminology ... 3-2
About CORBA ... 3-4

CORBA Features... 3-4
About the ORB .. 3-6
The Interface Description Language (IDL) ... 3-6
Using IDL... 3-7
IDL Types .. 3-11
Exceptions.. 3-15
Getting by Without IDL... 3-16

A First CORBA Application ... 3-17
Writing the IDL Code .. 3-18
Generate Stubs and Skeletons... 3-18
Write the Server Object Implementation... 3-19
Write the Client Code .. 3-20
Compiling the Java Source .. 3-21
Load the Classes into the Database.. 3-22
Publish the Object Name ... 3-23
Run the Example... 3-24

Locating Objects.. 3-25
The Name Space ... 3-25
Looking Up an Object .. 3-27

Activating ORBs and Server Objects .. 3-28
Client Side.. 3-28
Server Side ... 3-28
About Object Activation .. 3-28

Using SQLJ... 3-29
Running the SQLJ Translator.. 3-30
A Complete SQLJ Example ... 3-30

CORBA Callbacks .. 3-31
IDL .. 3-31
iii

Client Code .. 3-32
Callback Server Implementation .. 3-32
Callback Client-Server Implementation .. 3-33
Printback Example.. 3-33

Using the CORBA Tie Mechanism .. 3-33
Debugging Techniques .. 3-35
For More Information .. 3-36

Books... 3-36
URLs ... 3-36

4 Connections and Security

Connection Basics ... 4-2
Services ... 4-4
About JNDI .. 4-6

The JNDI Context Interface ... 4-6
Connecting Using JNDI ... 4-7

Context Methods... 4-8
The JNDI InitialContext Class... 4-8

Services and Sessions... 4-10
About the Session IIOP Protocol .. 4-10
Configuration for IIOP ... 4-11
Database Listeners and Dispatchers .. 4-12
URL Syntax .. 4-13
URL Components and Classes.. 4-14
The Service Context Class.. 4-14
The Session Context Class ... 4-17

Session Management ... 4-18
Starting a New Session... 4-18
Starting a Named Session From a Client... 4-19
Example: Activating Services and Sessions .. 4-20
Starting a New Session From a Server Object .. 4-25
Controlling Session Duration.. 4-25
Ending a Session ... 4-26

Authentication ... 4-27
Basic Client Authentication Techniques.. 4-27
iv

The Login Protocol ... 4-28
Credentials... 4-29

Access Rights to Database Objects.. 4-30
Published Objects ... 4-30
Other Server Objects .. 4-31
Reauthentication ... 4-31

Using the Secure Socket Layer ... 4-32
SSL Protocol Version Numbers .. 4-32
Using SSL on the Client Side... 4-32
Determining SSL Certificate Information ... 4-33
Using SSL on the Server Side.. 4-34

Non-JNDI Clients ... 4-35
For More Information .. 4-37

5 Transaction Handling

Transaction Overview .. 5-2
Limitations... 5-2
Transaction Demarcation .. 5-3
Transaction Context ... 5-4

Transaction Service Interfaces .. 5-4
TransactionService.. 5-5
Using The Java Transaction Service... 5-6

CORBA Examples ... 5-10
Client-Side Demarcation.. 5-10
Server-Side JTS.. 5-11
Transactions in Multiple Sessions .. 5-11

Transaction Management for EJBs .. 5-12
Declarative Transactions ... 5-12
session Synchronization .. 5-16
JDBC ... 5-17
AuroraUserTransaction ... 5-17
Session Synchronization .. 5-19

EJB Transaction Examples ... 5-20
Client-Side Demarcated... 5-20
Transaction Management in an EJB... 5-20
v

JDBC .. 5-22
For More Information .. 5-23

6 Tools

Schema Object Tools .. 6-1
What and When to Load.. 6-2
Resolution .. 6-2
Digest Table ... 6-4
Compilation ... 6-5
loadjava .. 6-7
dropjava ... 6-15

Session Namespace Tools .. 6-17
publish.. 6-19
remove.. 6-21
sess_sh .. 6-23

Enterprise JavaBean Tools ... 6-36
deployejb.. 6-36
ejbdescriptor .. 6-39

VisiBroker™ for Java Tools ... 6-40
Miscellaneous Tools ... 6-41

java2rmi_iiop... 6-41
modifyprops .. 6-42

A Example Code: CORBA

Basic Examples .. A-1
helloworld.. A-3
sqljimpl ... A-8
jdbcimpl.. A-13
factory... A-18
lookup... A-23
callback ... A-30
printback .. A-36
tieimpl... A-45
bank... A-48
pureCorba .. A-53
vi

Session Examples.. A-60
explicit .. A-62
clientserverserver.. A-67
timeout ... A-71
sharedsession .. A-79
twosessions .. A-86
twosessionsbyname.. A-91

Transaction Examples... A-95
clientside .. A-95
serversideJDBC ... A-101
serversideJTS ... A-106
serversideLogging .. A-113
multiSessions... A-120

RMI Examples ... A-128
helloworld.. A-128
callouts ... A-132
callback... A-135

Applet Examples ... A-141
innetscape .. A-141
inappletviewer .. A-144

JNDI Example .. A-147
lister .. A-147

B Example Code: EJB

Basic Examples .. B-1
helloworld.. B-1
saveHandle .. B-7
sqljimpl... B-18
jdbcimpl ... B-24
callback... B-30
beanInheritance... B-37

Transaction Examples... B-45
clientside .. B-45
multiSessions... B-49
serversideJTS ... B-56
vii

serversideLogging .. B-60
Session Examples .. B-67

timeout ... B-67
clientserverserver.. B-77

C Comparing the Oracle8 i JServer and VisiBroker™ VBJ ORBs

Object References Have Session Lifetimes ... C-2
The Database Server is the Implementation Mainline ... C-3
Server Object Implementations are Deployed by Loading and Publishing C-3
Implementation by Inheritance is Nearly Identical... C-3
Implementation by Delegation is Different .. C-3
Clients Look Up Object Names with JNDI ... C-5
No Interface or Implementation Repository ... C-5
The Bank Example in Aurora and VBJ ... C-5

The Bank IDL Module.. C-6
Aurora Client... C-6
VBJ Client ... C-7
Aurora Account Implementation ... C-8
VBJ Account Implementation ... C-8
Aurora Account Manager Implementation .. C-8
VBJ Account Manager Implementation ... C-10
VBJ Server Mainline .. C-10

D Abbreviations and Acronyms

Index
viii

Send Us Your Comments

Enterprise JavaBeans and CORBA Developer’s Guide, Release 8.1.5

Part No. A64683-01

Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this publication. Your input is an important part of the information
used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please
indicate the chapter, section, and page number (if available). You can send
comments to us in the following ways:

■ n Electronic mail — jpgcomnt@us.oracle.com

■ n FAX - 650-506-7225. Attn: Java Products Group, Information Development
Manager

■ n Postal service:

Oracle Corporation
Information Development Manager
500 Oracle Parkway, Mailstop 4op978
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number
below.

ix

x

Preface

This guide gets you started building Enterprise JavaBeans and CORBA applications
for Oracle8i. It includes many code examples to help you develop your application.

Who Should Read This Guide?
Anyone developing server-side Enterprise JavaBeans or CORBA applications for
Oracle8i will benefit from reading this guide. Written especially for programmers, it
will also be of value to architects, systems analysts, project managers, and others
interested in network-centric database applications. To use this guide effectively,
you must have a working knowledge of Java and Oracle8i. If you are developing
CORBA applications, this guide assumes that you have some familiarity with
CORBA. If you are developing EJB applications, reading the EJB 1.0 specification to
supplement this Guide will be of great help. See Suggested Reading on page iv.

How This Guide Is Organized
This guide consists of six chapters and four appendices:

Chapter 1, "Overview", presents a brief overview of the EJB and CORBA
development models from an Oracle8i perspective.

Chapter 2, "Enterprise JavaBeans", discusses EJB development for the Oracle8i
server. Although not a tutorial on EJBs, this chapter discusses some of the basic EJB
concepts covered in the Sun Microsystems specification.

Chapter 3, "Developing CORBA Applications", describes techniques for developing
CORBA server objects that run in the Oracle8i data server.
i

Chapter 4, "Connections and Security", covers more advanced information than that
in Chapters 2 and 3, including session management and alternative
authentication procedures.

Chapter 5, "Transaction Handling", documents the transaction interfaces that you
can use when developing both EJB and CORBA applications.

Chapter 6, "Tools", documents the command-line tools that you need to develop
your CORBA or EJB application.

Appendix A, "Example Code: CORBA", includes Java and IDL source code for
the examples.

Appendix B, "Example Code: EJB", contains Java source code for the EJB examples.

Appendix C, "Comparing the Oracle8i JServer and VisiBroker™ VBJ ORBs",
discusses some of the fundamental differences between developing CORBA
applications for VisiBroker and the Oracle8i JServer.

Appendix D, "Abbreviations and Acronyms", provides a handy list of acronyms.
ii

Notational Conventions
This guide follows these conventions:

Java code examples follow these conventions:

Italic Italic font denotes terms being defined for the first time,
words being emphasized, error messages, and book titles.

Courier Courier font denotes Java program names, file names, path
names, and Internet addresses.

{ } Braces enclose a block of statements.

// A double slash begins a single-line comment, which extends
to the end of a line.

/* */ A slash-asterisk and an asterisk-slash delimit a multi-line
comment, which can span multiple lines.

... An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

lower case Lower case is used for keywords and for one-word names of
variables, methods, and packages.

UPPER CASE Upper case is used for names of constants (static final
variables) and for names of supplied classes that map to
built-in SQL datatypes.

Mixed Case Mixed case is used for names of classes and interfaces and for
multi-word names of variables, methods, and packages. The
names of classes and interfaces begin with an upper-case
letter. In all multi-word names, the second and succeeding
words begin with an upper-case letter.
iii

Suggested Reading
Programming with VisiBroker, by D. Pedrick et al. (John Wiley and Sons, 1998)
provides a good introduction to CORBA development from the VisiBroker point
of view.

Core Java by Cornell & Horstmann, second edition, Volume II (Prentice-Hall, 1997)
has good presentations of several Java concepts that are relevant to EJBs. For
example, the Remote Method Invocation (RMI) interface is discussed in detail in
this book.

Online Sources
There are many useful online sources of information about Java. For example, you
can view or download guides and tutorials from Sun Microsystems home page on
the Web:

http://www.sun.com

Another popular Java Web site is:

http://www.gamelan.com

For Java API documentation, see:

http://www.javasoft.com

Related Publications
Occasionally, this guide refers you to the following Oracle publications for
more information:

Oracle8i Application Developer’s Guide - Fundamentals

Oracle8i Java Developer’s Guide

Oracle8i JDBC Developer’s Guide and Reference

Oracle8i SQL Reference

Oracle8i SQLJ Developer’s Guide and Reference
iv

Your Comments Are Welcome
We appreciate your comments and suggestions. In fact, your opinions are the most
important feedback we receive. We encourage you to use the Reader’s Comment
Form at the front of this book. You can also send comments to the
following address:

Documentation Manager, Java Products Group
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
USA
v

vi

Ove
1

Overview

This chapter gives you a general picture of distributed object development in the
Oracle8i JServer. Like the more specific chapters that follow, it focuses on the
aspects of Enterprise JavaBeans and CORBA development that are particular to
JServer, giving a brief general description of these standard development models.

This chapter also serves as a guide to the remainder of this Guide, pointing out
where you can find more specific information.

This chapter covers the following topics:

■ Prerequisite Reading

■ About Enterprise JavaBeans

■ About CORBA

■ Common Features

■ Tools

■ Caffeine

■ Example Code

■ Words About Acronyms
rview 1-1

Prerequisite Reading
Prerequisite Reading
Before consulting this Guide, you should read the Oracle8i Java Developer’s Guide.
This technical manual gives you the background information necessary to
understand what Java in the database server really means. As well as discussing in
depth the advantages of the JServer implementation for enterprise application
development, it also provides a fundamental discussion of the JServer Java virtual
machine and gives a technical overview of the tools that are provided with JServer.

In addition, the Oracle8i Java Developer’s Guide discusses the strategic advantages of
the distributed component development model that is implemented by both EJBs
and CORBA.

The Oracle8i Java Developer’s Guide is available in both HTML and PDF formats on
the distribution Compact Disc and is also available on the JServer web site. For the
most up-to-date information about the location of the developer’s guide, see the
README that accompanies this product.
1-2 Enterprise JavaBeans and CORBA Developer’s Guide

About Enterprise JavaBeans
About Enterprise JavaBeans
Enterprise JavaBeans (EJB) is an architecture for developing transactional
applications as distributed components in Java. EJB is a powerful development
methodology for distributed application development. By developing with
enterprise beans, neither the bean developer nor the client application programmer
needs to be concerned with details such as transaction support, security, remote
object access and many other complicated and error-prone issues. These are
provided transparently for the developer by the EJB server and container.

Additionally, EJB applications are developed entirely in Java. It is not necessary for
developers to learn a new language such as IDL.

Because of this simplicity, you can quickly develop applications that use EJBs;
furthermore, EJBs offer portability. A bean that is developed on one EJB server
should run on other EJB servers that meet the EJB specification. Portability has not
currently been tested for most servers, but it is a promise for the future.

The Oracle8i JServer implements the EJB version 1.0 specification, providing a
server and a container that hosts 1.0-compatible enterprise beans. The current
release of JServer supports session beans only, as required by the specification.
Entity beans will be supported in a future release.
Overview 1-3

About Enterprise JavaBeans
EJB specifies Java Remote Method Invocation (RMI) as the transport protocol.
Oracle8i JServer implements RMI over IIOP. Since the CORBA Internet Inter-ORB
Protocol (IIOP) is the transport protocol for CORBA and for a coming version of
RMI, Oracle8i effectively enables direct object-oriented access to an exploding array
of open systems.

Stateful and Stateless Session Beans
The EJB specification calls for two types of session bean: stateless and stateful beans.
Stateless beans—which do not share state or identity between method
invocations—find use mainly in middle tier application servers that provide a pool
of beans to handle frequent but brief requests, such as those involved in an OLTP
application. Stateful beans are intended for longer-duration sessions, in which it is
necessary to maintain state, such as instance variable values or transactional state,
between method invocations. Because the Oracle8i ORB and Java VM run under the
multi-threaded server (MTS), the distinction between stateless and stateful session
beans is not important for JServer. Both kinds of bean are activated on demand in a
new session. Stateful beans can offer the same performance as stateless beans, while
preserving the advantages of stateful beans (their "conversational state").

Deployment Descriptor
Deployment of EJBs in JServer is simplified by the use of a text form deployment
descriptor, and by a tool that verifies the bean interfaces, generates and compiles the
required infrastructure classes for the bean, and loads these classes into the
database. The deploy tool then publishes the bean home interface in the database so
that the client applications can access it.

Oracle8i JServer complies with the EJB 1.0 specification and provides a highly
scalable and high-performance execution environment for EJBs. The Oracle8i EJB
implementation is able to leverage the Oracle database server and offers the
following features:

■ A simple-to-use way of locating and activating beans, using a JNDI interface to
an underlying OMG CosNaming service.

■ A session name space that uses the database as a name server, with its
performance advantages, such as fast access to indexed tables.

■ Secure socket layer (SSL) connections for added security.

■ Standard Oracle database authentication and multi-layer access control to
objects.
1-4 Enterprise JavaBeans and CORBA Developer’s Guide

About Enterprise JavaBeans
■ An implementation of the Java Transaction Service (JTS) for client-side
transaction demarcation.

■ A UserTransaction interface for bean-managed transactions.

■ Tools that assist you in developing deployment descriptors, and deploying your
EJB application.
Overview 1-5

About CORBA
About CORBA
CORBA, the Common Object Request Broker Architecture model, offers a
well-supported international standard for cross-platform, cross-language
development. CORBA supports cross-language development by specifying a
neutral language, Interface Definition Language (IDL), in which you develop
specifications for the interfaces that the application objects expose.

CORBA 2.0 supports cross-platform development by specifying a transport
mechanism, IIOP, that allows different operating systems running on very different
hardware to interoperate. IIOP supplies a common "software" bus that, together
with an ORB running on each system, makes data and request transfer transparent
to the application developer.

Although the CORBA standard was developed and promulgated just before the
advent of Java, and is a standard focused on component development in a
heterogeneous application development environment, incorporating systems and
languages of varying age and sophistication, it is perfectly possible to develop
CORBA applications solely in Java. CORBA and Java are a good match.

For CORBA developers, JServer offers the following services and tools:

■ A Java Transaction Service (JTS) interface to the OMG Object Transaction
Service (OTS).

■ A CosNaming implementation for publishing objects to an Oracle8i database,
and for retrieving and activating them.

■ A version of the IIOP protocol that supports the JServer session-based ORB.
This session IIOP protocol is completely compatible with standard IIOP.

■ A wide range of tools that assist in developing CORBA applications. There are
tools that:

■ load Java classes and resource files to the database

■ drop loaded classes

■ publish objects to the CosNaming service

■ manage the session name space
1-6 Enterprise JavaBeans and CORBA Developer’s Guide

Common Features
Common Features
CORBA and EJB have different strengths. CORBA was designed to support a
heterogeneous application development environment, incorporating systems and
languages of varying age and sophistication. The EJB specification was designed to
bring Java within the realm of enterprise application development and to automate
the most error-prone features of large-scale development.

Although they represent different development models, you will find that
developing for either CORBA or EJB within the Oracle8i JServer framework offers a
large degree of conceptual similarity.

Both EJB and CORBA leverage the capabilities of the Oracle8i database server, in
particular the multi-threaded server. The threading model offered by the server
simplifies not only the implementation of the ORB but the user’s view of it.

With both EJB and CORBA applications, access to server-side objects is similar.
Objects are published in the Oracle database using the OMG CosNaming service
and can be accessed using Oracle’s JNDI interface to CosNaming. (CORBA
developers have the option of using the pure CosNaming approach, while EJB
developers follow the EJB specification and use the much simpler JNDI
access style.)
Overview 1-7

Common Features
Figure 1–1 shows, in a schematic way, how applications access remote objects
published in the database using JNDI.

Figure 1–1 Remote Object Access

The organization of this Guide reflects the partial similarity between EJB and
CORBA. Chapter 2 covers EJB development, and Chapter 3 discusses CORBA.
However, the important issues of session management, security, and client-side
transaction control are not covered independently for EJBs and CORBA because
there are many similar aspects to them. Chapter 4 discusses the connection and
authentication aspects of EJB and CORBA development, and Chapter 5 covers
transactions.

Client

Oracle8i

Session

Activated ObjectObject Reference

JNDI

Published
Objects

name, class, helper
name, class, helper
1-8 Enterprise JavaBeans and CORBA Developer’s Guide

Common Features
IIOP
Oracle8i provides a Java interpreter for the IIOP protocol. This is done by
embedding a pure Java ORB of a major CORBA vendor (VisiBroker for Java version
3.2 by Inprise) and repackaging their Java IIOP interpreter for running in the
database. Because Oracle8i is a highly scalable server, only the essential components
of the Visigenic IIOP interpreter are required—namely, a set of Java classes that:

■ decode the IIOP protocol

■ find or activate the relevant Java object

■ invoke the method the IIOP message specifies

■ write the IIOP reply back to the client

Oracle8i does not use the ORB scheduling facilities. The Oracle multi-threaded
server does the dispatching, enabling the server to handle IIOP messages efficiently
and in a highly scalable manner.

On top of this infrastructure, Oracle8i implements the EJB and CORBA
programming models.
Overview 1-9

Tools
Tools
Oracle8i JServer comes with a complete set of tools for use in developing EJB and
CORBA applications. These are command-line tools that you run from a UNIX shell
or at a Windows NT DOS prompt. The tools allow you to compile IDL
specifications, load Java classes or source files into the Oracle database, publish
objects in the session name space, and display and manipulate published object
names.

Chapter 6 of this Guide covers the tools.

In addition to the command-line tools provided with JServer, you can use Oracle’s
JDeveloper tool suite to develop your distributed object applications.
1-10 Enterprise JavaBeans and CORBA Developer’s Guide

Caffeine
Caffeine
JServer incorporates the Inprise (Visigenic) Caffeine tools that allow you to code
object interfaces directly in Java, and generate the infrastructure necessary to
support distributed object invocation. These tools include:

■ java2rmi_iiop , which generates the infrastructure required for EJBs to call
other remote objects. java2rmi_iiop is an extension [[modification??]] of the
Inprise java2iiop tool.

■ java2idl , which compiles Java interfaces to IDL code, for cases where IDL is
required.

Chapter 6 describes these tools.
Overview 1-11

Example Code
Example Code
JServer comes with approximately forty EJB and CORBA sample programs. These
brief examples demonstrate all the major features of the product, including:

■ database access using both SQLJ and JDBC

■ security

■ session management

■ transaction control

The examples come complete and ready to run, including a UNIX makefile and
Windows NT batch file to compile and run each example. All you need is a
Java-enabled Oracle8i database with the standard EMP and DEPT demo tables for
some of the examples, and you can run the examples right out of the box.

The emphasis in these short examples is on demonstrating features of the ORB,
EJBs, and CORBA, not on elaborate Java coding techniques. Even Java novices will
be able to understand these examples with only brief study.

In addition to these sample programs, there are longer demos that show more
complete examples, including a sample Web-based application (World-o-Books) and
an example (acctMgmt) that uses several objects and is implemented using both
EJBs and CORBA, so that you can contrast the two models.

The example and demo code is available on the distribution Compact Disc. See the
README file that comes with JServer for the location and name of the archive file
that contains the examples. Most of the examples include a README file that tell
you what files the example contains, what the example does, and how to compile
and run the example.
1-12 Enterprise JavaBeans and CORBA Developer’s Guide

Words About Acronyms
Words About Acronyms
When network computing started in full force, in the 1980s, the information systems
community was suddenly deluged with acronyms—TCP, SNA, IP, and so on
became everyday words. The development of distributed computing in the 1990s,
and especially the advent and popularity of Java in the late 1990s, have added to
what has become a veritable "acronym overload". Some of these acronyms become
quite clear and explanatory when expanded—JNDI and IDE are two examples.
Other acronyms are puzzling to newcomers, even when expanded; CORBA is a
good example.

This guide is, inevitably, filled with acronyms. The acronyms are expanded when
first used in a chapter and are defined as required, but this is often of little help to
those who do not read serially, especially to those accessing this Guide on-line.

For this reason, this Guide supplies an appendix ("Abbreviations and Acronyms")
that lists the acronyms used in this guide—CORBA, EJB, JNDI, JTS, and so on—as
well as many others that are in common use in the computer literature, such as
ASCII, DCE, DDL, and GUI.
Overview 1-13

Words About Acronyms
1-14 Enterprise JavaBeans and CORBA Developer’s Guide

Enterprise JavaB
2

Enterprise JavaBeans

This chapter describes the development and deployment of Enterprise JavaBeans in
the Oracle8i server environment. It is not a complete tutorial on EJBs and the EJB
architecture, but it is intended to give you enough information to start developing
reasonably complicated EJB applications.

This chapter covers the following topics:

■ Defining Enterprise JavaBeans

■ What is an Enterprise JavaBean?

■ Implementing an EJB

■ The EJB Architecture

■ Parameter Passing

■ A First EJB Application

■ Deploying an EJB

■ Programming Techniques

■ Programming Restrictions

■ For More Information
eans 2-1

Defining Enterprise JavaBeans
Defining Enterprise JavaBeans
Enterprise JavaBeans is an architecture for transactional, component-based
distributed computing. The specification for EJBs lays out not just the format of a
bean itself, but also a set of services that must be provided by the container in which
the bean runs. This makes EJBs a powerful development methodology for
distributed application development. Neither the bean developer nor the client
application programmer needs to be concerned with service details such as
transaction support, security, remote object access, and many other complicated and
error-prone issues. These are provided transparently for the developers by the EJB
server and container.

The effect of the EJB architecture is to make server-side development much easier
for the Java application programmer. Since the implementation details are hidden
from the developer, and since services such as transaction support and security are
provided in an easy-to-use manner, EJBs can be developed relatively quickly.
Furthermore, EJBs offer portability. A bean that is developed on one EJB server
should run on other EJB servers that meet the EJB specification. Portability has not
been tested yet for most servers, but it is a bright promise for the future.

EJB Development Roles
The EJB specification describes enterprise bean development in terms of five roles:

■ The EJB developer writes the code that implements individual EJBs. This code is
the business logic of the application, usually involving database access.

The EJB developer is a Java applications programmer, and is familiar with both
SQL and with database access using SQLJ or JDBC.

■ The EJB deployer installs and publishes the EJBs. This involves interaction with
the EJB developer, so that the transactional nature of the EJBs are understood.
The EJB deployer writes the deployment descriptor files that specify the properties
of each bean to be deployed. See "Deploying an EJB" on page 2-22 for specific
information about this phase of development.

The EJB deployer must be familiar with the runtime environment of the EJBs,
including database-specific matters such as network ports, database roles
required, and other schema-specific requirements. For the Oracle8i server, the
EJB deployer is responsible for publishing the EJB home interfaces in a
database, and communicating this information to the client-side
application developer.
2-2 Enterprise JavaBeans and CORBA Developer’s Guide

What is an Enterprise JavaBean?
■ The EJB server vendor implements the framework in which the EJB containers
run. For Oracle, the Oracle8i data server is the framework that supports the
EJB containers.

■ The EJB container vendor supplies the services that support the EJB at runtime.
For example, when a client expects the bean to handle transaction support
automatically, the container framework together with the data resource
supports this.

■ The application developer writes the client-side code that calls methods on
server EJBs.

The roles of the EJB server and EJB container developers are not clearly
distinguished. There is, for example, no standardized API between the container
and the server. For this reason, initial implementations of EJB servers and containers
are likely to be done by the same vendor. This is the case for Oracle8i.

EJBs as Distributed Components
While the EJB specification is based on concepts developed for the Remote Method
Invocation interface (RMI), EJB server vendors are not required to use the RMI
transport. Oracle8i uses the Internet Inter-ORB Protocol (IIOP). Using IIOP means
that a server can support EJBs whose methods can be invoked by other IIOP clients.

Enterprise beans can also call out to CORBA objects. See Figure on page 2-8.

What is an Enterprise JavaBean?
An EJB is a software component that runs in a server. This runtime environment is
one factor that distinguishes an enterprise bean from a JavaBean. The JavaBean
usually runs on a client system, such as a network computer, a PC, or a workstation,
and it typically performs presentation tasks, such as implementing GUI widgets.
Enterprise JavaBeans 2-3

What is an Enterprise JavaBean?
Kinds of EJBs
There are two kinds of EJB: session beans and entity beans. An easy way to think of
the difference is that a session bean implements one or more business tasks, while
an entity bean implements a business entity. A session bean might contain methods
that query and update data in a relational table, while an entity bean represents
business data directly. For example, an entity bean can represent a row in a
relational table.

Session beans are often used to implement services. For example, an application
developer might implement one or several session beans that retrieve and update
inventory data in a database. You can use session beans to replace stored
procedures in the database server, and gain the scalability inherent in the Oracle8i
Java server.

Persistence
Session beans are not inherently persistent. Be careful about this word. Persistence
can refer either to a characteristic of the bean—entity beans are persistent, session
beans are not inherently persistent—or it can refer to data that a bean might save, so
that the data can be retrieved in a future instantiation. Persistent data is saved in
the database.

So, a session bean saves its state in an Oracle8i database, if required, but it does not
directly represent business data. Entity beans persist the business data either
automatically (in a container-managed entity bean) or by way of methods that use
JDBC or SQLJ, and are coded into the bean (bean-managed).

Implementing the synchronization interface can make data storage and retrieval
automatic for session beans. See "Session Synchronization" on page 2-28.

EJB Support in Oracle8 i
The version 1.0 of the EJB specification requires that the EJB server support session
beans. Entity bean support is optional. In this release the Oracle8i EJB server does
not support entity beans. Entity beans will be supported in a future release.
2-4 Enterprise JavaBeans and CORBA Developer’s Guide

What is an Enterprise JavaBean?
Session Beans
A session bean is created by a client, and is usually specific to that client. In Oracle8i
more than one client can share a session bean.

Session beans are transient, in the sense that they do not survive a server crash, or a
network failure. When a session bean is re-instantiated, state of previous instances
is not automatically restored.

Stateful Session Beans
A stateful session bean maintains state between method calls. For example, a single
instance of a session bean might open a JDBC database connection, and use the
connection to retrieve some initial data from the database. For example, a
shopping-cart application bean could load a customer profile from the database as
soon as it’s activated, then that profile would be available for any method in the
bean to use.

A typical stateful session EJB is a relatively coarse-grained object. A single bean
almost always contains more than one method, and the methods provide a unified,
logical service. For example, the session EJB that implements the server side of a
shopping cart on-line application, would have methods to return a list of objects
that are available for purchase, place items in the customer’s cart, place an order,
change a customer’s profile, and so on.

The state that a session bean maintains is called the "conversational state" of the
bean, as the bean is maintaining a connection with a single client, much like a
telephone conversation.

It is important to keep in mind that the state of a bean is still transient data, with
respect to the bean itself. If the connection from the client to the bean is broken, the
state can be lost. This of course depends on whether the client is unable to reconnect
before timeout.

Stateless Session Beans
In most EJB implementations, a stateless session bean is used for short transactions
with a client. In these implementations, the major difference between stateful and
stateless session beans is that a stateless bean can change identity between method
calls, while a stateful bean maintains identity. If the client calls Method A in a
stateless bean, then calls Method B in the same stateless bean class, the second
method might be called on a separate instance of the bean.

In the Oracle8i implementation, stateless and stateful beans are the same. The
inherent multi-threaded nature of the Oracle8i MTS data server makes stateful
Enterprise JavaBeans 2-5

Implementing an EJB
session beans functionally identical to stateless beans. There is no difference
between the two for Oracle8i.

For example, a typical use of stateless session beans is a server maintaining a pool of
beans ready to serve clients that are performing short OLTP-like transactions. But
this is not required in the Oracle8i architecture for performance. Stateful beans can
serve just as well in this situation.

Implementing an EJB
There are four major components that you must create to develop a complete EJB:

■ the home interface

■ the remote interface

■ the implementation of the remote interface—the actual bean class

■ a deployment descriptor for each EJB

The home interface is an interface to an object that the container itself implements:
the home object. The home interface has create() methods that specify how a bean
is created. The home interface with the home object actually serves as a factory
object for EJBs.

The remote interface specifies the methods that you implement in the bean. These
methods perform the business logic of the bean. The bean must also implement
additional service methods that are called by the EJB container at various times in
the life cycle of a bean. See Basic Concepts on page 2-8 for more information about
these service methods.

The client application itself does not access the bean directly. Rather, the container
generates a server-side object called the EJBObject that serves as a server-side proxy
for the bean. The EJBObject receives the messages from the client, and thus the
container can interpose its own processing before the messages are sent to the
bean implementation.

Why is this level of indirection necessary? Remember that the container provides
services transparently for the bean. For example, if the bean is deployed with a
transaction attribute that declares that the bean must run in its own transaction
context, the container can start up the transaction before the message is passed to
the bean, and can do a commit or rollback, as required, before return messages or
data is sent back to the client.

Figure 2–1 on page 2-7 shows the interaction among these components.
2-6 Enterprise JavaBeans and CORBA Developer’s Guide

The EJB Architecture
Figure 2–1 Basic EJB Component Relationships

The bean implementation contains the Java code that implements the remote
interface and the required container methods.

The deployment descriptor is an object that specifies attributes of the bean. For
example, the deployment descriptor declares the transactional properties of the
bean. At deployment time, the EJB deployer together with the application
developer can decide whether the container should manage transaction support, or
have the client do it.

The EJB Architecture
EJBs are based conceptually on the Java Remote Method Invocation (RMI) model.
For example, remote object access and parameter passing for EJBs follow the
RMI specification.

Oracle8i
Database

Client

Server

HOME

Bean

create()

methods()

ejbCreate()

setXXX(p1, p2)

r3 = getXXX()

r3 = getXXX()

setXXX(42, "hiya")

xBean x = home.create();
Enterprise JavaBeans 2-7

The EJB Architecture
The EJB specification does not prescribe that the transport mechanism has to be
pure RMI. The Oracle8i EJB server uses RMI over IIOP for its transport protocol, a
practice that is becoming common among server vendors.

Figure shows the basic EJB architecture.

Figure 2–2 EJB Architecture

Basic Concepts
Before going into details about implementing EJBs, some basic concepts must be
clarified. First of all, recall that a bean runs in a container. The container, which is
part of the EJB server, provides a number of services to the bean. These include
transaction services, synchronization services, and security.

To provide these services, the bean container must be able to intercept calls to bean
methods. For example, a client application calls a bean method that has a
2-8 Enterprise JavaBeans and CORBA Developer’s Guide

The EJB Architecture
transaction attribute that requires the bean to create a new transaction context. The
bean container must be able to interpose code to start a new transaction before the
method call, and to commit the transaction, if possible, when the method completes,
and before any values are returned to the client.

For this reason and others, a client application does not call the remote bean
methods directly. Instead, the client invokes the bean method through a two-step
process, mediated by the ORB and by the container.

First, the client actually calls a local proxy stub for the remote method. The stub
marshalls any parameter data, and then calls a remote skeleton on the server. The
skeleton unmarshalls the data, and upcalls to the bean container. This step is
required because of the remote nature of the call. Note that this step is completely
transparent both to the client application developer as well as to the bean developer.
It is a detail that you do not need to know about to write your application code,
either on the client or the server. Nevertheless, it is useful to know what is going on,
especially when it comes to understanding what happens during bean deployment.

In the second step, the bean container gets the skeleton upcall, then interposes
whatever services are required by the context. These can include:

■ authenticating the client, on the first method call

■ performing transaction management

■ calling synchronization methods in the bean itself (see Session Synchronization
on page 2-28)

■ identity checks and switch

The container then delegates the method call to the bean. The bean method
executes. When it returns, the thread of control returns to the bean container, which
interposes whatever services are required by the context. For example, if the
method is running in a transaction context, the bean container performs a commit
operation, if possible. This depends on the transaction attributes in the
bean descriptor.

Then the bean container calls the skeleton, which marshalls return data, and returns
it to the client stub.

These steps are completely invisible to client-side and server-side application
developers. One of the major advantages of the EJB development model is that it
hides the complexity of transaction and identity management from developers.
Enterprise JavaBeans 2-9

The EJB Architecture
The Home Interface
When a client needs to create a bean instance, it does so through the home interface.
The home interface specifies one or more create() methods. A create()
method can takes parameters, that are passed in from the client when the bean
is created.

For each create method in the home interface, there must be a corresponding
method called ejbCreate() specified in the remote interface, with the same
signature. The only difference is that create() is specified to return the bean type,
while ejbCreate() is a void method. When a client invokes create() on the
home, the container interposes whatever services are required at that point, and
then calls the corresponding ejbCreate() method in the bean itself.

A reference to the home object is what gets published in the database by the
deployejb tool. See "deployejb" on page 6-36. This is the object that the client
looks up to create instances of the bean.

The Remote Interface
The bean developer writes a remote interface for each EJB in the application. The
remote interface specifies the business methods that the bean contains. Each method
in the bean that the client is to have access to must be specified in the remote
interface. Private methods in the bean are not specified in the remote interface.

The signature for each method in the remote interface must match the signature in
the bean implementation.

(PL/SQL developers will recognize that the remote interface is much like a package
spec, and the remote interface implementation is akin to the package body.
However, the remote interface does not declare public variables. It declares only the
methods that are implemented by the bean.)

The remote interface must be public, and it must subclass
javax.ejb.EJBObject . For example, you could write a remote interface for an
employeeManagement bean as follows:

public interface employeeManagement extends javax.ejb.EJBObject {

public void hire(int empNumber, String startDate, double salary)
throws java.rmi.RemoteException;

public double getCommission(int empNumber) throws java.rmi.RemoteException;
// empRecord is a class that is defined separately as part of the bean
public empRecord getEmpInfo(int empNumber) throws java.rmi.RemoteException;
...
2-10 Enterprise JavaBeans and CORBA Developer’s Guide

The EJB Architecture
}

All methods in the remote interface are declared as throwing RemoteException .
This is the usual mechanism for notifying the client of runtime errors in the bean.
However, the bean container can throw other exceptions, such as SQLException .
Any exception can be thrown to the client, as long as it is serializable.

Runtime exceptions are transferred back to the client as a remote runtime exception.
These contain the stack trace of the remote exception.

See "Remote Interface" on page 2-10 for information about implementing the
remote interface.

Accessing the Bean Methods
You get access to a bean so that you can invoke its methods in a two-step process.
First, you look up the bean home interface, which is published in the Oracle8i
database as part of the bean deployment process. You use the Java Naming and
Directory Interface (JNDI) to look up the home interface. Then, using the home
interface, you create instances of the bean in the server. For those who know
CORBA, the bean home interface is acting very much like a CORBA factory object,
able to produce new CORBA objects on demand.

Once you have the home interface, and then the bean reference returned by the
home interface create() method, you call the bean methods using the normal
Java syntax: bean.method() .

These steps are completely illustrated by example in A First EJB Application on
page 2-12.

As a quick first example, suppose that myBeanHome is a reference that you have
obtained to the home interface of a bean called myBean. myBean must have at least
one create() method, that lets you instantiate the bean. So you create a new
instance of the bean on the remote server by coding:

myBean home =
(myBean) initialContext.lookup(URL); // get the home interface using JNDI

myBean tester = home.create(); // create a new bean of type myBean

and then call myBean’s methods using the usual syntax

tester.method1(p1, p2);
Enterprise JavaBeans 2-11

Parameter Passing
Parameter Passing
When you implement an EJB, or write the client code that calls EJB methods, you
have to be aware of the parameter-passing conventions used with EJBs.

A parameter that you pass to a bean method, or a return value from a bean method,
can be any Java type that is serializable. Java primitive types (int, double) are
serializable. Any non-remote object that implements the java.io.Serializable
interface can also be passed.

A non-remote object passed as a parameter to a bean, or returned from a bean, is
passed by copy, not by reference. So, for example, if you call a bean method
as follows:

public class theNumber {
int x;

}
...
bean.method1(theNumber);

then method1() in the bean gets a copy of theNumber . If the bean changes the
value of theNumber object on the server, this change is not reflected back to the
client, because of the pass-by-copy semantics.

If the non-remote object is complex, for example a class containing several fields,
only the non-static and non-transient fields are copied.

When passing a remote object as a parameter, the stub for the remote object is
passed. A remote object passed as a parameter must extend remote interfaces.

The next section demonstrates parameter passing to a bean and remote objects as
return values.

A First EJB Application
This section demonstrates a complete example application, including:

■ home and remote interface code

■ the bean implementation code

■ the deployment descriptor

■ client-side code

This example has a single EJB, which queries an Oracle8i database to get name and
salary information about an employee. The example is exactly the same in
2-12 Enterprise JavaBeans and CORBA Developer’s Guide

A First EJB Application
functionality as the first CORBA example presented in Chapter 3, "Developing
CORBA Applications".

In this example, the client code is an application running on a client system. To see
how to do an applet example, see the EJBClubMed example under the basic EJB
examples that are shipped with this product.

The Interfaces
The first task of the bean provider is to design and code the home and remote
interfaces. The home interface specifies how the server will create the bean, using
the EJBCreate() method of the bean implementation. This example creates a
stateful session bean that takes no parameters, because there is no initial state for
the bean.

(How is it known that the bean is stateful? While this is a design property of the
bean, the statefulness of the bean is declared in the deployment descriptor. See
"Deployment Steps" on page 2-28 for more information.)

The remote interface specifies the methods of the bean. In this example, there is a
single method, getEmployee() , that takes an int as its single parameter, and that
returns an EmpRecord class.

Home Interface
As required by the EJB specification, you must declare that any home interface
create() method throws the javax.ejb.CreateException and
java.rmi.RemoteException exceptions. When you try to deploy the bean, the
deployejb verifier will exit with an error if this is not the case.

package employee;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface EmployeeHome extends EJBHome {
public Employee create()

throws CreateException, RemoteException;
}

Remote Interface
The remote interface declares that the bean can throw a RemoteException
(required by the specification), and a java.sql.SQLException , which is
Enterprise JavaBeans 2-13

A First EJB Application
particular to this bean. Note that exceptions, such as SQLException , that are
thrown to the bean by JDBC or other methods that it calls are propagated back to
client, if the remote interface declares that the bean throws them.

Here is the code for the remote interface for this example EJB:

package employee;

import employee.EmpRecord;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Employee extends EJBObject {
public EmpRecord getEmployee (int empNumber)

throws java.sql.SQLException, RemoteException;
}

The Bean Implementation
The bean implementation simply fills in the Java code, including appropriate JDBC
methods, to perform the work of the getEmployee() method. Note that the JDBC
code opens a default connection, which is the standard way that JDBC code that
runs on the Oracle8i server opens a server-side connection. (It is in fact the only way
that a JDBC connection can be opened in server-side JDBC code.)

A JDBC prepared statement is used to prepare the query, which has a WHERE
clause. Then the setInt() method is used to associate the empNumber input
parameter for the getEmployee() method with the ’?’ placeholder in the prepared
statement query. This is no different from the JDBC code that you would write in a
client application.

package employeeServer;

import java.sql.*;
import java.rmi.RemoteException;
import javax.ejb.*;

public class EmployeeBean implements SessionBean {
SessionContext ctx;
public EmpRecord getEmployee (int empNumber)

throws SQLException, RemoteException {

EmpRecord empRec = new EmpRecord();

Connection conn =
2-14 Enterprise JavaBeans and CORBA Developer’s Guide

A First EJB Application
new oracle.jdbc.driver.OracleDriver().defaultConnection();
PreparedStatement ps =

conn.prepareStatement("select ename, sal from emp where empno = ?");
ps.setInt(1, empNumber);
ResultSet rset = ps.executeQuery();
if (!rset.next())

throw new RemoteException("no employee with ID " + empNumber);
empRec.ename = rset.getString(1);
empRec.sal = rset.getFloat(2);
empRec.empno = empNumber;
ps.close();
return empRec;

}

public void ejbCreate() throws CreateException, RemoteException {
}
public void ejbActivate() {
}
public void ejbPassivate() {
}
public void ejbRemove() {
}
public void setSessionContext(SessionContext ctx) {

this.ctx = ctx;
}

}

This remote interface implementation shows the minimum methods required for an
EJB implementation. At a minimum, an EJB must implement the following
methods, as specified in the javax.ejb.SessionBean interface:

ejbActivate() Implement this as a null method, as it is never called in
this release of the EJB server.

ejbPassivate() Implement this as a null method, as it is never called in
this release of the server.

ejbRemove() A container invokes this method before it ends the life of
the session object. This method to perform any required
clean-up, for example closing external resources such as
file handles.
Enterprise JavaBeans 2-15

A First EJB Application
A Parameter Object
The EmployeeBean getEmployee() method returns an EmpRecord object, so
this object must be defined somewhere in the application. In this example, an
EmpRecord class is included in the same package as the EJB implementation.

The class is declared as public, and must implement the java.io.Serializable
interface, so that it can be passed back to the client by value, as a serialized remote
object. The declaration is as follows:

package employee;

public class EmpRecord implements java.io.Serializable {
public String ename;
public int empno;
public double sal;

}

Note: the java.io.Serializable interface specifies no methods, it just
indicates that the class is serializable. So there is no need to implement extra
methods in the EmpRecord class.

The Deployment Descriptor
The most convenient way to implement the deployment descriptor for a bean is to
write a descriptor file in text form. The EJB deployment tool can read the text form
descriptor, parse it, signal parse errors, and then verify that the descriptor itself, and
the interface and bean implementation declarations meet the standard. For example,
bean implementations and interface specifications must be declared as throwing
certain specified exceptions. If they do not, the deployment tool (see deployejb on
page 6-36) lists the error(s) and exits.

The text form deployment descriptor is usually stored in a file with a .ejb
extension, though this naming convention is not required. In the EJB examples that
are shipped with this product, the deployment descriptors are in the base directory

setSessionContext
(SessionContext
ctx)

Set the associated session context. The container calls this
method after the bean creation. The enterprise bean can
store the reference to the context object in an instance
variable, for use in transaction management. Beans that
manage their own transactions can use the session context
to get the transaction context.
2-16 Enterprise JavaBeans and CORBA Developer’s Guide

A First EJB Application
of the example, along with the client application implementations and the Makefile
and Windows NT batch files.

Here is the deployment descriptor for this example. For a complete description of
the deployment descriptor attributes, see "The Deployment Descriptor" on
page 2-16.

SessionBean employeeServer.EmployeeBean {
BeanHomeName = "test/employeeJDBCBean";
RemoteInterfaceClassName = employee.Employee;
HomeInterfaceClassName = employee.EmployeeHome;

AllowedIdentities = {SCOTT};
StateManagementType = STATEFUL_SESSION;
RunAsMode = CLIENT_IDENTITY;
TransactionAttribute = TX_REQUIRED;

}

The Client Code
This section shows the client code that can be used to send messages to the example
bean described above, and get and print results from it. This client code
demonstrates how a client:

■ locates a remote object such as the bean home interface

■ authenticates itself to the server

■ activates an instance of the bean

■ invokes a method on the bean

Locating Remote Objects
The first step with any remote object implementation, whether it’s pure RMI, or
EJBs, or CORBA, is to find out how to locate a remote object. To get a remote object
reference you have to know:

■ the name of the object

■ where the name server is located

With EJBs, the initial object name is the name of an EJB home interface, and you
locate it using the Java Naming and Directory Interface (JNDI). The EJB specification
requires that EJB implementations expose a JNDI interface as the means of locating
a remote bean.
Enterprise JavaBeans 2-17

A First EJB Application
About JNDI
JNDI is an interface to a naming and directory service. For example, JNDI can be
used as an interface to a file system, that you can use to look up directories and the
files that they contain. Or, JNDI can be used as an interface to a naming or directory
service, for example a directory protocol such as LDAP.

This section presents a short description of JNDI. The EJB specification requires that
JNDI be used to provide the interface for locating remote objects by name.

This section of the manual describes only those parts of JNDI that you need to know
to write EJB applications for Oracle8i. To obtain the complete JNDI API (and SPI)
specifications, see the URLs in "For More Information" on page 2-33.

JNDI is supplied by Sun in the packages in javax.naming , so you must import
these packages in your client code:

import javax.naming.*;

For the Oracle8i EJB server, JNDI serves as an interface (SPI driver) to the OMG
CosNaming service. But you do not have to know all about CosNaming, or even all
about JNDI, to write and deploy EJBs for the Oracle8i server. In fact, to start off all
you really need to know is how to use the JNDI methods that are used to get access
to permanently-stored home interface objects, and how to set up the environment
for the JNDI Context object.

The remainder of this JNDI section describes the data structures and methods of the
javax.naming package that you will need to access EJB objects.

Getting the Initial Context
The very first JNDI call to code is the one that gets a Context object. The first
Context object that you get is bound to the root naming context of the Oracle8i
publishing context. EJB home interfaces are published in the database, arranged in a
file system-like hierarchy. See "publish" on page 6-19 for more details about
publishing EJB home interfaces, and about the Oracle8i published object
directory structure.

You get the root naming context by creating a new JNDI InitialContext , as
follows:

Context initialContext = new InitialContext(environment);

The environment parameter is a Java hashtable. There are six properties that you
can set in the hashtable, that are passed to the javax.naming.Context . The
properties are shown in Table 2–1 on page 2-19.
2-18 Enterprise JavaBeans and CORBA Developer’s Guide

A First EJB Application
See Chapter 4, "Connections and Security", for more information about JNDI and
connecting to an Oracle8i instance.

Getting the Home Interface Object
Once you have the "initial references" context, you can invoke its methods to get a
reference to an EJB home interface. To do this, you must know the published full
pathname of the object, the host system where the object is located, the IIOP port for
the listener on that system, and the database system identifier (SID). When you get
this information, for example from the EJB deployer, you construct a URL using the
following syntax:

<service_name>://<hostname>:<iiop_listener_port>:<SID>/<published_obj_name>

For example, to get a reference to the home interface for a bean that has been
published as /test/myEmployee , on the system whose TCP/IP hostname is

Table 2–1 Context Properties

Property Purpose

javax.naming.Context.
URL_PKG_PREFIXES

The environment property that specifies the list of
package prefixes to use when loading in URL context
factories. You must use the value
"oracle.aurora.jndi" for this property.

javax.naming.Context.
SECURITY_AUTHENTICATION

The type of security for the database connection. The
three possible values are:
oracle.aurora.sess_iiop.ServiceCtx.
NON_SSL_LOGIN
oracle.aurora.sess_iiop.ServiceCtx.
SSL__CREDENTIAL
oracle.aurora.sess_iiop.ServiceCtx.
SSL_LOGIN

javax.naming.Context.
SECURITY__PRINCIPAL

The Oracle8i username, for example "SCOTT".

javax.naming.Context.
SECURITY_CREDENTIALS

The password for username, for example "TIGER".

oracle.aurora.sess_iiop.
ServiceCtx.SECURITY_ROLE

An optional property that establishes a database role for
the connection. For example, use the string "SYSDBA" to
connect with the SYSDBA role.

oracle.aurora.sess_iiop.
ServiceCtx.SSL_VERSION

The client-side SSL version number.
Enterprise JavaBeans 2-19

A First EJB Application
myHost , the listener IIOP port is 2481, and the system identifier (SID) is ORCL, you
construct the URL as follows:

sess_iiop://myHost:2481:ORCL/test/myEmployee

The listener port for IIOP requests is configured in the listener.ora file. The default
for Oracle8i is 2481. See the Net8 Administrator’s Guide for more information about
IIOP configuration information. See also Chapter 4, "Connections and Security" for
more information about IIOP connections.

You get the home interface using the lookup() method on the initial context,
passing the URL as the parameter. For example, if the home interface published
name is /test/myEmployee , you would code:

...
String ejbURL = "sess_iiop://localhost:2481:ORCL/test/myEmployee";
Hashtable env = new Hashtable();
env.put(javax.naming.Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
// Tell sess_iiop who the user is
env.put(Context.SECURITY_PRINCIPAL, "SCOTT");
// Tell sess_iiop what the password is
env.put(Context.SECURITY_CREDENTIALS, "TIGER");
// Tell sess_iiop to use non-SSL login authentication
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
// Lookup the URL
EmployeeHome home = null;
Context ic = new InitialContext(env);
home = (EmployeeHome) ic.lookup(ejbURL);
...

Invoking EJB Methods
Once you have the home interface for the bean, you can invoke one of the bean’s
create() methods to instantiate a bean. For example:

Employee testBean = home.create();

Then you can invoke the EJB’s methods in the normal way:

int empNumber = 7499;
EmpRecord empRec = testBean.getEmployee(empNumber);

Here is the complete code for the client application:

import employee.Employee;
2-20 Enterprise JavaBeans and CORBA Developer’s Guide

A First EJB Application
import employee.EmployeeHome;
import employee.EmpRecord;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client {

public static void main (String [] args) throws Exception {

String serviceURL = "sess_iiop://localhost:2481:ORCL";
String objectName = "/test/myEmployee";
int empNumber = 7499; // ALLEN
Hashtable env = new Hashtable();

env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);

Context ic = new InitialContext(env);

EmployeeHome home =
(EmployeeHome) ic.lookup(serviceURL + objectName); // lookup the bean

Employee testBean = home.create(); // create a bean instance
EmpRecord empRec = new EmpRecord(); // create a slot for the incoming data
empRec = testBean.getEmployee(empNumber); // get the data and print it
System.out.println("Employee name is " + empRec.ename);
System.out.println("Employee sal is " + empRec.sal);

}
}

Enterprise JavaBeans 2-21

Deploying an EJB
Deploying an EJB
The EJB deployment process consists of the following steps:

■ Get the beans from the EJB developer. In the typical case the beans and their
accompanying classes, including the home and remote interfaces and any
classes dependent on the bean, have been compiled and put into a JAR
file—one JAR file for each bean.

■ Develop a deployment descriptor for each bean.

■ Run the deployejb tool, which

■ reads the deployment descriptor and the bean JAR file

■ loads the bean classes into the Oracle8i database

■ publishes the bean home interface

■ Make sure that the application developer has the information he or she needs
about the bean remote interface and the name of the published beans.

Write the Deployment Descriptor
The enterprise bean deployer supplies a deployment descriptor for each EJB in
the application.

To make it simpler to compose the deployment descriptor, there is a text form of the
descriptor, which is described in this section. You can also use the Oracle8i JServer
ejbdescriptor command-line tool to convert a text form deployment descriptor
to the serialized class, or to convert back from the serialized object to a text file. The
ejbdescriptor is documented in "ejbdescriptor" on page 6-39.

Text Format
The text form of the session bean descriptor follows the conventions of Java code—
the descriptor has the syntax of a Java class. It always begins with a SessionBean
keyword, which is followed by the fully-qualified class name of the bean. The body
of the declaration contains a list of descriptor attributes and their values.
For example:

Note: You can only use 7-bit ASCII characters in the deployment
descriptor. Do not use ISO Latin-1 or other non-ASCII characters.
2-22 Enterprise JavaBeans and CORBA Developer’s Guide

Deploying an EJB
SessionBean ejb.test.server.ExampleBeanImpl
{

<attribute>=<value>
...

}

In this example, ejb.test.server is the name of the package that contains the
implementation of the bean class ExampleBean .

There are three different kinds of bean attributes:

■ Attributes of the bean itself, such as

■ its published name

■ the names of its home and remote interfaces

■ miscellaneous attributes that can apply only to the bean as a whole, such as
SessionTimeout

■ Each method can have a specific set of attributes of its own. Attributes specific
to a bean method deal with security and transaction support. For example, you
can specify that a method of a bean should run with a different identity (user or
schema name) from other methods in the same bean. Or, you can set transaction
properties on a method so that it runs with different transaction properties from
the rest of the bean.

Note that the transaction and security properties can apply to the bean as a
whole, or can be specified on a method-by-method basis.

■ Any environment properties to be passed to the bean.

The attributes of a session bean descriptor correspond to the attributes of the class
javax.ejb.deployment.SessionDescriptor and its super class
javax.ejb.deployment.DeploymentDescriptor.

Table 2–2 on page 2-24 lists the attributes that can be used in the
deployment descriptor.

Note: Bean deployment will change significantly for the next
release of the EJB specification. The preliminary version of that
specification calls for the bean deployment information to be
specified using XML.
Enterprise JavaBeans 2-23

Deploying an EJB
Table 2–2 Deployment Descriptor Attributes

Attribute Name Values Required?

BeanHomeName A Java String that represents the published
name of the bean.

Yes

HomeInterfaceClassName The fully-qualified name of the bean home
interface class.

Yes

RemoteInterfaceClassName The fully-qualified name of the bean remote
interface class.

Yes

Reentrant The literal "true" or "false". For entity beans. No

SessionTimeout In seconds from the time that the last bean
client disconnects. The default value is 0,
which means that the session terminates when
the last connection has terminated.

No

StateManagementType STATEFUL_SESSION
| STATELESS_SESSION
Determines whether a session bean is stateful
or stateless. Not relevant for the Oracle8i
implementation. The default is
STATEFUL_SESSION, which should always
be used.

No

TransactionAttribute TX_BEAN_MANAGED
| TX_MANDATORY
| TX_NOT_SUPPORTED
| TX_REQUIRED
| TX_REQUIRES_NEW
| TX_SUPPORTS (the default)
See Transaction Management for EJBs on
page 5-12 for the semantics of the transaction
attributes.

No

IsolationLevel TRANSACTION_READ_COMMITTED |
TRANSACTION_READ_UNCOMMITTED |
TRANSACTION_REPEATABLE_READ |
TRANSACTION_SERIALIZABLE
This is not supported in the Oracle8i EJB
server.

No

RunAsMode CLIENT_IDENTITY |
SPECIFIED_IDENTITY |
SYSTEM_IDENTITY

No
2-24 Enterprise JavaBeans and CORBA Developer’s Guide

Deploying an EJB
The example below shows a more complete deployment descriptor than in the
example earlier in this chapter:

SessionBean ejb.test.server.DatabaseWorkImpl
{

BeanHomeName = "test/dbwork"; // this is the published name of the bean
RemoteInterfaceClassName = ejb.test.DatabaseWork;
HomeInterfaceClassName = ejb.test.DatabaseWorkHome;

AllowedIdentities = {SCOTT};

SessionTimeout = 30; // in seconds
StateManagementType = STATEFUL_SESSION;

RunAsMode = CLIENT_IDENTITY;

TransactionAttribute = TX_REQUIRES_NEW;

// Add any environment properties that the bean requires
EnvironmentProperties {

prop1 = value1;
prop2 = "value two";

}

public ejb.test.EmpRecord getEmployee(int e) throws TestException{
RunAsMode = CLIENT_IDENTITY;
AllowedIdentities = { SCOTT };

}

public void update(int e, double s) throws TestException{
RunAsMode = SPECIFIED_IDENTITY;
AllowedIdentities = { OTTO };

}

RunAsIdentity A username in the database. Cannot be a role. Yes, if
RunAs
Mode
is used.

AllowedIdentities A list of usernames or roles in the database,
enclosed in braces. Example: {SCOTT,
WENDY, OTTO}.

No

Table 2–2 Deployment Descriptor Attributes (Cont.)

Attribute Name Values Required?
Enterprise JavaBeans 2-25

Deploying an EJB
}

Create a JAR File
The deployejb command-line tool creates a JAR file to use on the client side to
access the bean.

Publish the Home Interface
One of the requirements that a bean provider must meet is to make the bean’s home
interface available for JNDI lookup, so that clients can find and activate the bean. In
JServer, this is done by publishing the bean home interface in an Oracle8i database.
The deployejb command-line tool takes care of this you. It publishes the bean in
the instance CosNaming namespace under the name that you specify in the
BeanHomeName attribute of the deployment descriptor.

Dropping an EJB
Drop an EJB from the database by following these steps:

■ Using the bean JAR file that contains the class files for the bean, run the
dropjava tool to delete those classes from the database.

■ Use the session shell tool to remove the bean home interface name from the
published object name space.

See Chapter 6, "Tools" for documentation of the dropjava and session shell tools.

Handling Transactions
Enterprise JavaBeans are inherently transactional. In the normal, easiest-to-code
cases, transaction support is handled for the bean by the EJB container. This way,
you do not need to code explicit transaction methods in the bean, or call transaction
services from the client.

EJBs have declarative transaction support. This means that the bean deployer can
specify, in the deployment descriptor, the transaction attributes for a bean, or even
for an individual method in a bean. For example, if the deployment descriptor for a
bean declares that the bean has the transaction attribute TX_REQUIRES_NEW, then
the bean container starts a transaction before each method call to the bean, and
attempts to commit the transaction when the method ends.
2-26 Enterprise JavaBeans and CORBA Developer’s Guide

Deploying an EJB
TransactionAttribute
The bean deployer declares the transaction handling characteristics of a bean in the
deployment descriptor. This is specified in the transaction attribute, which has six
possible values:

■ TX_NOT_SUPPORTED

■ TX_REQUIRED

■ TX_SUPPORTS

■ TX_REQUIRES_NEW

■ TX_MANADATORY

■ TX_BEAN_MANAGED

"Transaction Management for EJBs" on page 5-12 describes the semantics of these
attribute values.

Access Control
The EJB deployment descriptor allows you to specify access control lists. Access
control can be specified either on the entire bean, or on individual methods of
the bean.

In the text form of the deployment descriptor, specify the AllowedIdentities
attribute with a list containing usernames, roles, or a mixture of the two. Only users
or users with the roles specified in the AllowedIdentities attribute can access
the bean, or the methods that are restricted by the attribute. For example:

AllowedIdentities = {SCOTT}; // only SCOTT can access the bean
AllowedIdentities = {PUBLIC}; // all users can access the bean

public int Rmethod (int p1, double p2) throws TestException{
RunAsMode = CLIENT_IDENTITY;
AllowedIdentities = { ROGERS }; // only ROGERS can invoke this method

}

When you specify method access control, the method must be a public business
method of the bean, or the ejbCreate() method.
Enterprise JavaBeans 2-27

Deploying an EJB
Transaction Isolation Level
The transaction isolation level attribute is not supported in this release. On the basis
of recent informal communication from Sun Microsystems, it is likely that this
attribute will not be supported in future EJB specifications, as part of the
EJB descriptor.

Session Synchronization
An EJB can optionally implement the session synchronization interface, to be
notified by the container of the transactional state of the bean. Use this interface to
save the bean state in the database at transaction boundaries. "session
Synchronization" on page 5-16 describes this interface.

Deployment Steps
The format used to package EJBs is defined by the EJB specification. The format is
adaptable—you can use it to distribute a single EJB or to distribute a complete
server-side application made up of tens or even hundreds of beans. This section
describes the steps that the EJB developer and the EJB deployer take to compile,
package, and deploy an EJB. Oracle8i supplies a deployment tool, deployejb , that
automatically performs most of the steps required to deploy an EJB. This tool is
described in "deployejb" on page 6-36. Deployejb deploys only one bean at a time.

To deploy an EJB, follow these four steps:

1. Compile the code for the bean. This includes:

■ the home interface

■ the remote interface

■ the bean implementation

■ all Java source files dependent on the bean implementation class (this
dependency is normally taken care of by the Java compiler)

Use the standard client-side Java compiler to compile the bean source files.
A bean typically consists of one or more Java source files, and might have
associated resource files.

Oracle8i supports the Sun Java Developer’s Kit version 1.1.6 compiler. You
might be able to use another JCK-tested Java compiler to create EJBs to run
in the Oracle8i server, but Oracle only supports JDK 1.1.6.
2-28 Enterprise JavaBeans and CORBA Developer’s Guide

Programming Techniques
2. Write a deployment descriptor for the EJB. See Programming Restrictions on
page 2-32 for specific information about creating deployment descriptors.

3. Create a JAR file consisting of the interface and implementation class files for
the bean: the home interface, the remote interface, and the bean
implementation. If there are many other dependent classes and resource files, it
is better to create a separate JAR file for these. This JAR file is used as an input
file by deployejb .

4. Call the deployejb tool (see "deployejb" on page 6-36) to load and publish the
JAR’d bean.

Programming Techniques
This section describes some of the programming techniques you can use when
developing EJB session beans. The Oracle8i JServer environment offers a very rich
development environment for session beans, since you can use all the capabilities
provided by the Oracle8i multi-threaded server to manage multiple sessions, use
SQLJ to simplify data acquisition and update, and use the UserTransaction interface
to manage transactions.

Using SQLJ
The bean developer can use the Oracle8i SQLJ translator to simplify EJBs that access
the database using static SQL statements. For example, consider the bean that was
implemented in the example earlier in this chapter, in "The Bean Implementation"
on page 2-14. That implementation required about seven JDBC calls. Here is the
same bean, implemented using SQLJ, which requires only two major
SQLJ statements:

package employeeServer;

import java.sql.*;
import java.rmi.RemoteException;
import javax.ejb.*;

package employeeServer;

import employee.EmpRecord;

import java.sql.*;
import java.rmi.RemoteException;
import javax.ejb.*;
Enterprise JavaBeans 2-29

Programming Techniques
public class EmployeeBean implements SessionBean {
SessionContext ctx;

public void ejbCreate() throws CreateException, RemoteException {
}

public void ejbActivate() {
}

public void ejbPassivate() {
}

public void ejbRemove() {
}

public void setSessionContext(SessionContext ctx) {
this.ctx = ctx;

}

public EmpRecord query (int empNumber) throws SQLException, RemoteException
{

String ename;
double sal;

#sql { select ename, sal into :ename, :sal from emp
where empno = :empNumber };

return new EmpRecord (ename, empNumber, sal);
}

}

The complete example is available on the distribution CD in the demo.tar file, as
sqljimpl in the examples/ejb/basic directory.

Setting a Session Timeout
The session timeout value in the deployment descriptor determines how long a
session stays active after the last bean client disconnects. It can be important to keep
a session alive in at least two cases:

■ If the connection might be interrupted, and the client has an expectation of
being able to reconnect and resume processing.
2-30 Enterprise JavaBeans and CORBA Developer’s Guide

Programming Techniques
■ If a second client might need to connect to the session and access its EJBs after
the originating client has exited.

EJB deployer can set a session timeout value using the SessionTimeout attribute in
the bean deployment descriptor (see "The Deployment Descriptor" on page 2-16).

Saving an EJB Handle
Using the Oracle8i EJB server, it is possible for a client to connect to a session that
was started by another client, and to access a bean in that session. This holds true as
long as the second client can authenticate as a valid user of the database.

But to access a session established by another user, the client must have access to a
handle for a bean in that session. A client can provide such a handle to another
client using the getHandle() method, which returns a bean object reference.

The following code demonstrates one way to get a bean handle, and save it to a file
using an output stream. You can also use Java streams to write the bean handle to
another reader object.

First, get a reference to a bean in the usual way:

saveHandleHome home =
(saveHandleHome) ic.lookup("sess_iiop://localhost:2481:ORCL/test/myEmployee");

saveHandle testBean = home.create();

Next, create an object output stream from a file stream:

FileOutputStream fostream = new FileOutputStream(handlefile);
ObjectOutputStream ostream = new ObjectOutputStream(fostream);

Then get the bean handle using getHandle(), and write it to the output stream:

ostream.writeObject(testBean.getHandle());

Finally, clean up the streams:

ostream.flush();
fostream.close();

See the complete example in examples/ejb/basic/saveHandle in the
demo.tar file on the distribution CD.
Enterprise JavaBeans 2-31

Programming Restrictions
EJB as Client
It is possible for an EJB to serve as a client to another EJB. In this case, the client EJB
simply looks up the other EJB in the same way the a Java non-EJB client would.

See the example in the examples /ejb/session/clientserverserver
directory in the demo file (demo.tar).

Programming Restrictions
The specification lists the following programming restrictions, which you must
follow when implementing the methods of an EJB class:

■ The EJB is not allowed to start new threads or attempt to terminate the
running thread.

■ The EJB specification states that "an EJB is not allowed to use read/write static
fields. Using read-only static fields is allowed. Therefore, all static fields must
be declared as final." This is not a restriction for Oracle8i.

■ The EJB is not allowed to use thread synchronization primitives.

■ An EJB is not allowed to use the calls to an underlying transaction manager
directly. The only exception are enterprise Beans with the
TX_BEAN_MANAGED transaction attribute. These beans can use the
javax.jts.UserTransaction interface to demarcate transactions.

■ An EJB is not allowed to change its java.security.Identity . Any attempt
to do so results in the java.security.SecurityException being thrown.

■ EJBs are not allowed to use JDBC commit and rollback methods, nor to issue
direct SQL commit or rollback commands using SQLJ or JDBC.
2-32 Enterprise JavaBeans and CORBA Developer’s Guide

For More Information
For More Information
Here are some references to specifications and other material that provides more
information about EJBs and related services.

EJBs
The current 1.0 EJB specification is available at:

 http://java.sun.com/products/ejb/docs.html.

A white paper by Anne Thomas of the Patricia Seybold group (paper sponsored by
Sun Microsystems) is available at:

http://java.sun.com/products/ejb/white_paper.html

The Developer’s Guide to Understanding Enterprise JavaBeans, an overview of EJBs, is
available at http://www.Nova-Labs.com.

Core Java: Volume II—Advanced Features by Horstmann and Cornell, Sunsoft Press,
has a chapter on RMI. Because RMI provides much of the conceptual foundation for
the EJB architecture, this is a valuable chapter to read.
Enterprise JavaBeans 2-33

For More Information
2-34 Enterprise JavaBeans and CORBA Developer’s Guide

Developing CORBA Applic
3

Developing CORBA Applications

This chapter tells you how to develop CORBA applications for Oracle8i. CORBA is
a very powerful distributed application development architecture. Although a
powerful tool, you can start to develop useful applications very quickly with
Oracle8i CORBA.

The emphasis in this chapter is practical, not conceptual. The first few sections of
this chapter do present the conceptual basis for CORBA application development.
But they do not try to overwhelm you with acronyms and buzzwords. These
sections explain the concepts, define the acronyms, and avoid the buzzwords.

Most of all, this chapter is based on examples. It will show you how to use Oracle8i
CORBA by developing examples, from the simple to the slightly more complex. The
basics of CORBA development for the Oracle8i server can be demonstrated with
quite simple examples. You can expand these starting examples into full-fledged
applications that your enterprise can use.

This chapter covers the following topics:

■ About CORBA

■ A First CORBA Application

■ Locating Objects

■ Activating ORBs and Server Objects

■ Using SQLJ

■ Using SQLJ

■ CORBA Callbacks

■ Debugging Techniques
ations 3-1

Terminology
Terminology
This section defines some of the basic terms that are used in this chapter. See also
Appendix D, "Abbreviations and Acronyms" for a list of common acronyms used in
Java and distributed object computing.

client
A client is an object, an application, or an applet that makes a request of a server
object. It is important to remember that a client need not be a Java application
running on a workstation or a network computer. Nor an applet downloaded by a
web browser. A server object can be a client of another server object. "Client" refers
to a role in a requestor/server relationship, not to a physical location or a kind of
computer system.

marshalling
In distributed object computing, marshalling refers to the process by which the ORB
passes requests and data between clients and server objects.

object adapter
Each CORBA ORB implements an object adapter (OA), which the interface between
the ORB and the message-passing objects. CORBA 2.0 specifies that a basic object
adapter (BOA) must exist, but most of the details of its interface are left up to
individual CORBA vendors. Future CORBA standards will require a vendor-neutral
portable object adapter (POA). Oracle intends to support a POA in a future release.

request
A request is a method invocation. Other words and phrases that are sometimes
used in its stead are method call and message.

server object
A CORBA server object is a Java object that is activated by the server, typically on a
first request from a client.

session
A session always means a database session. It is conceptually the same kind of
session as that established when a tool such as SQL*Plus connects to Oracle. The
differences in the CORBA case are:
3-2 Enterprise JavaBeans and CORBA Developer’s Guide

Terminology
■ The database session is established using the IIOP protocol, while a SQL*Plus
session is established using the Net8 TTC protocol.

■ An IIOP session is handled by a Java virtual machine (JVM) that runs in the
database server.

Important Note: To use CORBA with Oracle8i, the database must be configured so
that the listener can recognize incoming IIOP requests, in addition to TTC requests.
DBAs and system administrators should see the Net8 Administrator’s Guide for
information on setting up the database and the listener to accept incoming IIOP
requests.

See Chapter 4, "Connections and Security", for more information about sessions.
Developing CORBA Applications 3-3

About CORBA
About CORBA
This section provides a short introduction to CORBA, and should give you some
idea of how CORBA is typically used in the Oracle8i server environment. Providing
a complete introduction to CORBA is beyond the scope of this Guide. See the
references in "For More Information" on page 3-36 for suggested further reading.
This first section gives a very high-level overview of CORBA itself.

CORBA stands for Common Object Request Broker Architecture, and it is an acronym
that is not self-explanatory. (See "Acronyms" on page 1-5.) What is common about
CORBA is that it integrates ideas from several of the original proposers. CORBA
did not just follow the lead of a single large corporation, and it is very deliberately
vendor neutral. The CORBA architecture specifies a software component, a broker,
that mediates and directs requests to objects that are distributed across a network (or
several networks), that might have been written in a different language from that of
the requestor, and that might (and in fact, usually are) running on a completely
different hardware architecture from that of the requestor.

You can begin to get an idea of the tremendous advantages of CORBA from the
preceding paragraph. CORBA allows your application to tie together components
from various sources. Also, and unlike a typical client/server application, a CORBA
application is not inherently synchronous. It is not necessarily typical that a CORBA
requestor (a client) invokes a method on a server component, and waits for a result.
Using asynchronous method invocations, event interfaces, and callbacks from
server object to the client ORB, you can construct elaborate applications that link
together many interacting objects, and that access one or many data sources and
other resources under transactional control. CORBA allows you go beyond the
bounds of the traditional client/server application in many imaginative ways.

CORBA is specified and advanced by the Object Management Group (OMG), which
is a non-profit and vendor-neutral organization. See "For More Information" on
page 3-36 to see how to learn more about the OMG.

CORBA Features
CORBA achieves its flexibility in several ways:

■ It specifies an interface description language (IDL), that allows you to specify the
interfaces to objects. IDL object interfaces describe, among other things:

■ The data that the object makes public.
3-4 Enterprise JavaBeans and CORBA Developer’s Guide

About CORBA
■ The operations that the object can respond to, including the complete
signature of the operation. CORBA operations are mapped to Java methods,
and the IDL operation parameter types map to Java datatypes.

■ Exceptions that the object can throw. IDL exceptions are also mapped to
Java exceptions, and the mapping is very direct.

CORBA provides bindings for many languages, including both non-object
languages such as COBOL and C and object-oriented languages such as
Smalltalk and Java.

■ All CORBA implementations provide an object request broker (ORB), that handles
the routing of object requests in a way that is largely transparent to the
application developer. For example, requests (method invocations) on remote
objects that appear in the client code look just like local method invocations.
The remote call functionality, including marshalling of parameter and return
data, is taken care of for the programmer by the ORB.

■ CORBA specifies a network protocol, the Internet Inter-ORB Protocol (IIOP), that
provides for transmission of ORB requests and data over a widely-available
transport protocol: TCP/IP, the Internet standard.

■ There is a set of fully-specified services that ease the burden of application
development by making it unnecessary for the developer to constantly reinvent
the wheel. Among these services are:

■ Naming. One or more services that let you resolve names that are bound to
CORBA server objects.

■ Transactions. Services that let you manage transaction control of data
resources in a flexible and portable way.

■ Events.

CORBA specifies over 12 services. Most of these are not yet implemented by
CORBA ORB vendors.

The remainder of this section introduces some of the essential building blocks of an
Oracle8i JServer CORBA application. These include:

■ the ORB—how to talk to remote objects

■ IDL—how to write a portable interface

■ the naming service (and JNDI)—how to locate a persistent object

■ object adapters—how to register a transient object
Developing CORBA Applications 3-5

About CORBA
About the ORB
The object request broker, or ORB, is the fundamental part of a CORBA
implementation. It is the ORB that makes it possible for a client to send messages to
a server, and the server to returns values to the client. The ORB handles all
communication between a client and a server object.

The JServer ORB is based on code from Inprise’s VisiBroker for Java. The ORB that
executes on the server side has been slightly modified from the VisiBroker code, to
accommodate the different Oracle8i object location and activation model. The
client-side ORB has been changed very little.

In some CORBA implementations, the application programmer and the server
object developer must be aware of the details of how the ORB is activated on the
client and the server, and include code in their objects to start up the ORBs and
activate objects. The Oracle8i ORB, on the other hand, makes these details largely
transparent to the application developer. As you will see from the Java code
examples later in this chapter, and in Appendix A, it is only in certain circumstances
that the developer needs to control the ORB directly. These occur, for example,
when coding callback mechanisms, or when there is a need to register transient
objects with the basic object adapter.

The Interface Description Language (IDL)
One of the key factors in the success of CORBA is language independence. CORBA
objects written in one language can send requests to objects that were implemented
in a different language. Objects implemented in an object-oriented language like
Java or Smalltalk can talk to objects that were written in C or COBOL, and
vice-versa.

Note: The Java code examples used in this chapter are available on
line. You can study the complete examples (see Appendix A,
"Example Code: CORBA"), compile and run them, and then modify
them for your own use. You can of course cut and paste the code
from the on-line or PDF files, but it is more convenient to access the
examples on disk. If you do not know the location where the
example code has been installed from the CD, ask your DBA or
system administrator.
3-6 Enterprise JavaBeans and CORBA Developer’s Guide

About CORBA
Language independence is achieved through the use of a specification
meta-language that defines the interfaces that an object (or a piece of legacy code
that is wrappered to look like an object) presents to the outside world. As in any
object-oriented system, a CORBA object can have its own private data and its own
private methods. The specification of the public data and methods is the interface
that the object presents to the outside world.

IDL is the language that CORBA uses to specify its objects. You do not write
procedural code in IDL—its only use is to specify data, methods, and exceptions.

Each CORBA vendor supplies a compiler that translates IDL specifications into
language code. Oracle8i JServer uses the idl2java compiler from Inprise (see
"Miscellaneous Tools" on page 6-41). idl2java translates your IDL interface
specifications into Java classes, that are then compiled by the Java compiler into
byte codes that are loaded into the Oracle8i database for execution.

Using IDL
Here is an example of a short IDL file. It is the IDL for the HelloWorld example
(see "helloworld" on page A-3 for the complete example):

module hello {
interface Hello {

wstring helloWorld();
};

};

The IDL consists of a module, which contains a group of usually related object
interfaces. By default, the module name is used by the IDL compiler to name a
directory where the IDL compiler puts the Java classes that it generates, and this
maps to a Java package.

This module has only a single interface: Hello . The Hello interface defines a
single operation: helloWorld . helloWorld takes no parameters, and returns a
wstring (a wide string, which is mapped to a Java String).

Note: The idl2java compiler accepts only ASCII characters. Do not
use ISO Latin-1 or other non-ASCII characters in IDL files.
Developing CORBA Applications 3-7

About CORBA
The module and interface names must be valid Java identifiers, and also valid file
names for your operating system. When naming interfaces and modules, remember
that both Java and CORBA objects are portable, and that some operating systems
are case sensitive, and some are not, so be sure to keep names distinct in
your project.

Nested Modules
Modules can be nested. For example, an IDL file that specifies

module org {
module omg {

module CORBA {
...

};
...

};
...

};

would map to the Java package hierarchy package org.omg.CORBA .

Running the IDL Compiler
Assume that the HelloWorld IDL is saved in a file called hello.idl . When you
run idl2java to compile the hello module eight Java class files are generated,
and are put in a subdirectory named hello in the same directory as the IDL file:

% idl2java hello.idl
Traversing hello.idl
Creating: hello/Hello.java
Creating: hello/HelloHolder.java
Creating: hello/HelloHelper.java
Creating: hello/_st_Hello.java
Creating: hello/_HelloImplBase.java

Note: IDL data and exception types, such the wstring shown
above, are not specified in this guide. Although some of the IDL to
Java bindings are listed in this guide (for example see "IDL Types"
on page 3-11), CORBA developers should have access to the OMG
specifications for complete information about IDL and IDL types.
See "For More Information" on page 3-36.
3-8 Enterprise JavaBeans and CORBA Developer’s Guide

About CORBA
Creating: hello/HelloOperations.java
Creating: hello/_tie_Hello.java
Creating: hello/_example_Hello.java

These eight Java classes are used by the ORB to invoke a remote object, pass and
return parameters, and do various other things supported by the ORB. Note that
you can control to some extent the files that get generated, where they are put, and
other aspects of IDL compiling (such as whether the IDL compiler generates
comments in the Java files). See the complete description of the idl2java compiler
in Chapter 6, "Tools".

Each of the eight files generated by the compiler is described briefly below.

Hello This is the interface file, that specifies in Java what the
interface to a Hello object looks like. In this case, the
interface is:

package hello;
public interface Hello extends org.omg.CORBA.Object {

public java.lang.String helloWorld();
}

Note that since the file is put in a hello directory, it takes the
package spec from that name. All CORBA basic interface
classes subclass, directly or indirectly,
org.omg.CORBA.Object .

The server object developer must implement the methods in
the interface. It is typical of the examples in this guide that the
implementation class for an interface named hello.java
would be names helloImpl , but this naming convention is
not a requirement.

HelloHolder The holder class is used by the application when parameters
in the interface operation are of types out or inout . Since
Java parameters are passed by value, special holder classes are
required to provide for parameter return values.
Developing CORBA Applications 3-9

About CORBA
HelloHelper The helper classes contain methods that read and write the
object to a stream, and cast the object to and from the type of
the base class. For example, the helper class has a narrow()
method that is used to cast an object to the appropriate type,
as in the following code:

LoginServer lserver = LoginServerHelper.narrow
(orb.string_to_object (loginIOR));

(Note that when you get an object reference using the JNDI
InitialContext lookup() method, you do not have to
call the helper narrow() method. This is done for you
automatically by the ORB.)

_st_Hello The generated files that have _st_ prefixed to the interface
name are the stub files, or client proxy objects. (_st_ is a
VisiBroker-specific prefix.)

These classes are installed on the client that calls the remote
object (the hello object, in this example). In effect, when a
client calls a method on the remote object, it is really calling
into the stub, which then performs the operations necessary to
perform a remote method invocation. For example, it must
marshall parameter data for transport to the remote host.

_HelloImplBase Generated source files of the form
_<interfaceName>ImplBase are the skeleton files. A
skeleton file is installed on the server, and communicates with
the stub file on the client, in the sense that it receives the
message on the ORB from the client, and upcalls to the server.
The skeleton file also returns parameters and return values to
the client.

In earlier CORBA implementations, the skeleton files were
named _sk_<interfaceName> , but this is now deprecated.

HelloOperations
_tie_Hello

These two classes are used by the server for Tie
implementations of server objects. See "Using the CORBA Tie
Mechanism" on page 3-33 for information about Tie classes.
3-10 Enterprise JavaBeans and CORBA Developer’s Guide

About CORBA
IDL Interface Body
An IDL interface body contains the following kinds of declarations:

IDL Types
This section gives a very brief description of IDL datatypes, and their mapping to
Java datatypes. For more information and for information about IDL types not
covered here, see the CORBA specifications and the books cited in "For More
Information" on page 3-36.

Basic Types
Mapping between IDL basic types and Java primitive types is very straightforward.
The mappings are shown in Table . Possible CORBA exceptions that can be raised
on conversion are also shown in the table.

_example_Hello The _example_<interfaceName> class gives you an
example of how you should implement the interface on the
server. It provides the framework for the implementation
code, leaving just the method implementation body blank.

You can copy the example code to the directory where you
will implement the Hello server object, rename it following
your naming conventions (HelloImpl.java is used in the
examples in this Guide), and just add the Java code to
implement the methods.

constants The constant values that the interface exports.

types Type definitions.

exceptions Exception structures that the interface exports.

attributes Any associated attributes exported by the interface.

operations Operations are the methods that the interface supports.

Table 3–1 IDL to Java Datatype Mappings

CORBA IDL Datatype Java Datatype Exception

boolean boolean

char char CORBA::DATA_CONVERSION
Developing CORBA Applications 3-11

About CORBA
The IDL character type char is an 8-bit type, representing an ISO Latin-1 character.
It is mapped to the Java char type, which is a 16-bit unsigned element representing
a Unicode character. On parameter marshalling, if a Java char cannot be mapped to
an IDL char , a CORBA DATA_CONVERSION exception is thrown.

The IDL string type contains IDL chars. On conversion between Java String ,
and IDL string , a CORBA DATA_CONVERSION can be thrown. Conversions
between Java strings and bounded IDL string and wstring can throw a CORBA
MARSHALS exception if the Java String is too large to fit in the IDL string.

Constructed Types
Perhaps the most useful IDL constructed (aggregate) type for the Java developer is
the struct. The IDL compiler converts IDL structs to Java classes. For example, the
IDL specification:

module employee {
struct EmployeeInfo {

long empno;
wstring ename;
double sal;

wchar char

octet byte

string java.lang.String CORBA::MARSHAL

CORBA::DATA_CONVERSION

wstring java.lang.String CORBA::MARSHAL

short short

unsigned short short

long int

unsigned long int

long long long

unsigned long long long

float float

double double

Table 3–1 IDL to Java Datatype Mappings (Cont.)

CORBA IDL Datatype Java Datatype Exception
3-12 Enterprise JavaBeans and CORBA Developer’s Guide

About CORBA
};
...

causes the IDL compiler to generate a separate Java source file for an
EmployeeInfo class. It looks like this:

package employee;
final public class EmployeeInfo {

public int empno;
public java.lang.String ename;
public double sal;
public EmployeeInfo() {
}
public EmployeeInfo(

int empno,
java.lang.String ename,
double sal

) {
this.empno = empno;
this.ename = ename;
this.sal = sal;

}
...

The class contains a public constructor with parameters for each of the fields in the
struct. The field values are saved in instance variables when the object is
constructed. Typically, these are passed by value to CORBA objects.

Collections
There are two kinds of ordered collections in CORBA: sequences and arrays. An IDL
sequence maps to a Java array with the same name. An IDL array is a
multidimensional aggregate whose size in each dimension must be established at
compile time.

The ORB will throws a CORBA MARSHAL exception at runtime if sequence or
array bounds are exceeded when Java data is converted to sequences or arrays.

IDL also generates a holder class for a sequence. The holder class name is the
sequence’s mapped Java class name with Holder appended to it.

The following IDL code shows how you can use a sequence of structs to represent
information about employees within a department:
Developing CORBA Applications 3-13

About CORBA
module employee {
struct EmployeeInfo {

long empno;
wstring ename;
double sal;

};

typedef sequence <EmployeeInfo> employeeInfos;

struct DepartmentInfo {
long deptno;
wstring dname;
wstring loc;
EmployeeInfos employees;

};

The Java class code that the IDL compiler generates for the DepartmentInfo class
is:

package employee;
final public class DepartmentInfo {

public int deptno;
public java.lang.String dname;
public java.lang.String loc;
public employee.EmployeeInfo[] employees;
public DepartmentInfo() {
}
public DepartmentInfo(

int deptno,
java.lang.String dname,
java.lang.String loc,
employee.EmployeeInfo[] employees

) {
this.deptno = deptno;
this.dname = dname;
this.loc = loc;
this.employees = employees;

}

Notice that the sequence employeeInfos is generated as a Java array
EmployeeInfo[] .

Specify an array in IDL as follows:

const long ArrayBound = 12;
typedef long larray[ArrayBound];
3-14 Enterprise JavaBeans and CORBA Developer’s Guide

About CORBA
The IDL compiler generates this as:

public int[] larray;

When you use IDL constructed and aggregate types in your application, you must
make sure to compile the generated .java files, and to load them into the Oracle8i
database when the class is a server object. You should scan the generated .java
files, and make sure that each of them that is required is compiled and loaded.
Study the Makefile (UNIX) or the makeit.bat batch file (Windows NT) of
CORBA examples that define these types to see how the set of IDL-generated
classes is compiled and loaded into the data server. A good example is "lookup" on
page A-23.

Exceptions
You can create new user exception classes in IDL with the exception key word.
For example:

exception SQLError {
wstring message;

};

The IDL can declare that operations raise user-defined exceptions. For example:

interface employee {
attribute name;
exception invalidID {

wstring reason;
};
...
wstring getEmp(long ID)

raises(invalidID);
};

};
Developing CORBA Applications 3-15

About CORBA
CORBA System Exceptions
Mapping between OMG CORBA system exceptions and their Java form is also quite
straightforward. These mappings are shown in Table 3–2.

Getting by Without IDL
The Oracle8i Java VM development environment offers the Visigenic (Inprise)
Caffeine tools, that let you develop pure Java distributed applications that follow
the CORBA model. You can write your interface specifications in Java, and use the
java2iiop tool to generate CORBA-compatible Java stubs and skeletons.

Developers can also use the java2idl tool to code in pure Java, but still have IDL
available that can be shipped to customers who are using a CORBA server that does
not support Java. This tool generates IDL from Java interface specifications. See
Chapter 6, "Tools", for more information about java2iiop and java2idl .

Table 3–2 CORBA and Java Exceptions

OMG CORBA Exception Java Exception

CORBA::PERSIST_STORE org.omg.CORBA.PERSIST_STORE

CORBA::BAD_INV_ORDER org.omg.CORBA.BAD_INV_ORDER

CORBA::TRANSIENT org.omg.CORBA.TRANSIENT

CORBA::FREE_MEM org.omg.CORBA.FREE_MEM

CORBA::INV_IDENT org.omg.CORBA.INV_IDENT

CORBA::INV_FLAG org.omg.CORBA.INV_FLAG

CORBA::INTF_REPOS org.omg.CORBA.INTF_REPOS

CORBA::BAD_CONTEXT org.omg.CORBA.BAD_CONTEXT

CORBA::OBJ_ADAPTER org.omg.CORBA.OBJ_ADAPTER

CORBA::DATA_CONVERSION org.omg.CORBA.DATA_CONVERSION

CORBA::OBJECT_NOT_EXIST org.omg.CORBA.OBJECT_NOT_EXIST

CORBA::TRANSACTIONREQUIRED org.omg.CORBA.TRANSACTIONREQUIRED

CORBA::TRANSACTIONROLLEDBACK org.omg.CORBA.TRANSACTIONROLLEDBACK

CORBA::INVALIDTRANSACTION org.omg.CORBA.INVALIDTRANSACTION
3-16 Enterprise JavaBeans and CORBA Developer’s Guide

A First CORBA Application
A First CORBA Application
This section introduces the JServer CORBA application development process. It tells
you how to write a simple but useful program that runs on a client system, connects
to Oracle using IIOP, and invokes a method on a CORBA server object that is
activated and runs inside an Oracle8i Java VM.

This section addresses only the purely mechanical aspects of the development
process. Application developers know that for large-scale applications the design is
a crucially important step. See "For More Information" on page 3-36 for references to
documents on CORBA design.

The CORBA application development process has seven phases:

1. Design and write the object interfaces.

2. Generate stubs and skeletons, and other required support classes.

3. Write the server object implementations.

4. Use the client-side Java compiler to compile both the Java code that you have
written, and the Java classes that were generated by the IDL compiler. Generate
a JAR file to contain the classes and any other resource files that are needed.

5. Publish a name for the directly-accessible objects with the CosNaming service,
so you can access them from the client program.

6. Write the client side of the application. This is the code that will run outside of
the Oracle8i data server, on a workstation or PC.

7. Compile the client code using the JDK Java compiler.

8. Load the compiled classes into the Oracle8i database, using the loadjava tool
and specifying the JAR file as its argument. Make sure to include all generated
classes, such as stubs and skeletons. (Stubs are required in the server when the
server object acts as a client to another CORBA object.)

The remainder of this section describes these steps in more detail, with IDL and
Java code examples to illustrate the coding steps.

The first sample application simply asks the user for an employee number in the
famous EMP table, and returns the employee’s last name and current salary, or
throws an exception if there is no employee in the database with that ID number.
Developing CORBA Applications 3-17

A First CORBA Application
Writing the IDL Code
From the description above, it is apparent that the application requires only a single
server-side object: some code that takes an ID number and queries the database for
the other information about the employee.

So the interface requires three things:

■ an operation to query the database and return the information

■ a data structure to hold the name and salary information

■ an exception to be thrown back to the client if the employee is not found

The example defines an operation called query to get the information, uses an IDL
struct to return the information, and defines an exception called SQLError to
signal that no employee was found. Here is the IDL code:

module employee {

struct EmployeeInfo {
wstring name;
long number;
double salary;

};

exception SQLError {
wstring message;

};

interface Employee {
EmployeeInfo getEmployee (in long ID) raises (SQLError);

};
};

This code specifies the three things listed above: a struct, EmployeeInfo , an
operation or method, getEmployee() , and the exception, SQLError .

Generate Stubs and Skeletons
Use the idl2java compiler to compile the interface description. Since there is no
use of the Tie mechanism in this example, you can invoke the compiler with the
-no_tie option. This means that two fewer classes are generated. The compiler
does generate interface, helper, and holder classes for the three objects in the IDL
file, as well as a stub and skeleton class for the Employee interface. (The 12th class
3-18 Enterprise JavaBeans and CORBA Developer’s Guide

A First CORBA Application
is the example for the interface. See "Using IDL" on page 3-7 for more information
about these classes.)

Compile the IDL as follows:

% idl2java -no_tie -no_comments employee.idl

Write the Server Object Implementation
For this example, you must implement the Employee interface. The
_example_Employee.java file that the IDL compiler generates can provide a
basis for the implementation. Here is the complete code that implements
the interface:

package employeeServer;

import employee.*;
import java.sql.*;

public class EmployeeImpl extends _EmployeeImplBase {

public EmployeeImpl() {
}

public EmployeeInfo getEmployee (int ID) throws SQLError {
try {

Connection conn =
new oracle.jdbc.driver.OracleDriver().defaultConnection ();

PreparedStatement ps =
conn.prepareStatement ("select ename, sal from emp where empno = ?");

try {
ps.setInt (1, ID);
ResultSet rset = ps.executeQuery ();

Note: In this section, separate commands are shown for each step
of the process. Since developing a CORBA application involves
many compilation, loading, and publishing steps, Oracle
recommends that if you are working in a command-line oriented
environment, you always use a makefile or a batch file to control
the process. Or, you can use IDE products such as Oracle’s
JDeveloper to control the process.

Study the make or batch files that come with the CORBA programs
on the CD for good examples.
Developing CORBA Applications 3-19

A First CORBA Application
if (!rset.next ())
throw new SQLError ("no employee with ID " + ID);

return new EmployeeInfo (rset.getString (1), ID, rset.getFloat (2));
} finally {

ps.close ();
}

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

}

This code uses the JDBC API to perform the query. Notice the use of a prepared
statement to accommodate the variable in the WHERE clause of the query. See the
for more about Oracle8i JDBC. Also notice that when a JDBC SQLException is
caught, the IDL-defined SQLError is thrown back to the client.

Write the Client Code
To access the server object you must be able to refer to it by name. In step 7 of this
process, you will publish the server object in the Oracle8i database. The client code
looks up the published name, and activates the server object as a by-product of the
look up. There are a number of other operations that go on when code such as that
listed below looks up a published object. For example, the ORB on the server side is
started, and the client is authenticated using the environment properties supplied
when the initial context object is created. See "Authentication" on page 4-27.

After getting parameters such as the name of the object to look up, an IIOP service
name, and some authentication information like the database username and
password, the client code performs the following four steps:

1. Instantiates and populates a JNDI InitialContext object with the required
connect properties. See "About JNDI" on page 4-6.

2. Invokes the lookup() method on the initial context, with a URL as a
parameter that specifies the service name and the name of the object to be
found. lookup() returns an object reference to the Employee CORBA server
object. See "Looking Up an Object" on page 3-27 for more information.

3. Using the object reference returned by the lookup() method, invokes the
getEmployee() method on the object in the server. This method returns an
EmployeeInfo class (derived from the IDL EmployeeInfo struct). For
simplicity an employee ID number is hard-coded as a parameter of this
method invocation.
3-20 Enterprise JavaBeans and CORBA Developer’s Guide

A First CORBA Application
4. Prints the values returned by getEmployee() in the EmployeeInfo class.

import employee.*;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client {
public static void main (String[] args) throws Exception {

String serviceURL = "sess_iiop://localhost:2481:ORCL";
String objectName = "/test/myEmployee";

// Step 1:
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, "SCOTT");
env.put (Context.SECURITY_CREDENTIALS, "TIGER");
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

// Step 2:
Employee employee = (Employee)ic.lookup (serviceURL + objectName);

// Step 3 (using SCOTT’s employee ID number):
EmployeeInfo info = employee.getEmployee (7788);

// Step 4:
System.out.println (info.name + " " + info.number + " " + info.salary);

}
}

When the client code runs, it should print the line

SCOTT 7788 3000.0

on the client system console.

Compiling the Java Source
You run the client-side Java byte code compiler to compile all the Java source that
you have created, including the client and server object implementation that you
wrote as well as the Java sources for the classes that were generated by the
IDL compiler.
Developing CORBA Applications 3-21

A First CORBA Application
For the example shown above, you must compile the following files:

■ employee/Employee.java

■ employee/EmployeeHolder.java

■ employee/EmployeeInfoHolder.java

■ employee/EmployeeHelper.java

■ employee/SQLErrorHolder.java

■ employee/_EmployeeImplBase.java

■ EmployeeImpl.java

■ Client.java

Other generated Java files are compiled following the dependencies that the Java
compiler uses.

Oracle8i JServer supports the Java JDK compiler, release 1.1.6. You might be able to
use other Java compilers, such as a compiler incorporated in an IDE, but only JDK
1.1.6 is supported for this release.

Load the Classes into the Database
CORBA server objects, such as the EmployeeImpl object that has been created for
this example, execute inside the Oracle8i database server. You must load them into
the server, so that they can be activated by the ORB as required. You must also load
all dependent classes, such as IDL-generated Holder and Helper classes, and classes
used by the server object, such as the EmployeeInfo class of this example.

Use the loadjava tool to load each of the server classes into the Oracle8i database.
For the example in this section, issue the loadjava command in the
following way:

% loadjava -oracleresolver -resolve -user scott/tiger
employee/Employee.class employee/EmployeeHolder.class
employee/EmployeeHelper.class employee/EmployeeInfo.class
employee/EmployeeInfoHolder.class employee/EmployeeInfoHelper.class
employee/SQLError.class employee/SQLErrorHolder.class
employee/SQLErrorHelper.class employee/_st_Employee.class
employee/_EmployeeImplBase.class employeeServer/EmployeeImpl.class

Of course you do not load any client implementation classes, or any other classes
that are not used on the server side.
3-22 Enterprise JavaBeans and CORBA Developer’s Guide

A First CORBA Application
It is sometimes more convenient to combine the server classes into a JAR file, and
simply use that file as the argument to the loadjava command. In this example,
you could issue the command:

% jar -cf0 myJar.jar employee/Employee.class employee/EmployeeHolder.class \
employee/EmployeeHelper.class employee/EmployeeInfo.class \
employee/EmployeeInfoHolder.class employee/EmployeeInfoHelper.class \
employee/SQLError.class employee/SQLErrorHolder.class \
employee/SQLErrorHelper.class employee/_st_Employee.class \
employee/_EmployeeImplBase.class employeeServer/EmployeeImpl.class

and then give the loadjava command as simply:

% loadjava -oracleresolver -resolve -user scott/tiger myJar.jar

Publish the Object Name
The final step in preparing the application is to publish the name of the CORBA
server object implementation in the Oracle8i database. See "The Name Space" on
page 3-25 for information about publishing and published objects.

For the example in this section, you can publish the server object using the
publish command as follows:

% publish -republish -user scott -password tiger -schema scott
-service sess_iiop://localhost:2481:ORCL
/test/myEmployee employeeServer.EmployeeImpl employee.EmployeeHelper

This command specifies the following:

■ publish —run the publish command

■ -republish —overwrite any published object of the same name

■ -user scott —scott is the username for the schema doing the publishing

■ -password tiger —Scott’s password

■ -schema scott —the name of the schema in which to resolve classes

■ -service sess_iiop://localhost:2481:ORCL —establishes the service
name (see also "The Service Context Class" on page 4-14)

■ /test/myEmployee —the name for the published object

■ employeeServer.EmployeeImpl —the name of the class, loaded in the
database, that implements the server object

■ employee.EmployeeHelper —the name of the helper class
Developing CORBA Applications 3-23

A First CORBA Application
See "publish" on page 6-19 for more information about the publish command and
its arguments.

Run the Example
To run this example, simply execute the client class using the client-side Java VM.
For this example, you must set the CLASSPATH for the java command to include

■ the standard Java library archive (classes.zip)

■ any class files used by the client ORB, such as those in VisiBroker for Java
vbjapp.jar and vbjorb.jar

■ the Oracle8i-supplied JAR file aurora_client.jar

These libraries are located in the lib directory under the Oracle home location in
your installation.

The following invocation of the JDK java command runs this example. Note that
the UNIX shell variable ORACLE_HOME might be represented as
%ORACLE_HOME% on Windows NT, and that JDK_HOME is the installation
location of the Java Development Kit (JDK), version 1.1.6:

% java -classpath
.:$(ORACLE_HOME)/lib/aurora_client.jar:$(ORACLE_HOME)/jdbc/lib/classes111.zip:
$(ORACLE_HOME)/sqlj/lib/translator.zip:$(ORACLE_HOME)/lib/vbjorb.jar:
$(ORACLE_HOME)/lib/vbjapp.jar:$(JDK_HOME)/lib/classes.zip Client
sess_iiop://localhost:2481:ORCL /test/myEmployee scott tiger

This example assumes that the client is invoked with four arguments on the
command line:

■ service name

■ name of the published object to activate

■ username

■ password

From the java command you can see why it is almost always better to use a
makefile or a batch file to build CORBA applications.
3-24 Enterprise JavaBeans and CORBA Developer’s Guide

Locating Objects
Locating Objects
One of the fundamental tasks that a CORBA programmer faces is discovering how
to get a reference to a server object. The CORBA specifications permit a great deal of
freedom to the implementer in this area.

As you saw in the example in the previous section, the Oracle8i solution is to
publish non-transient objects in a Oracle8i database instance, using a CORBA
CosNaming service. JServer provides a URL-based JNDI interface to CosNaming, to
make it easy for clients written in Java to locate and activate published objects.

The Name Space
The name space in the database looks just like a typical file system. You can
examine and manipulate objects in the publishing name space using the session
shell tool. (See "sess_sh" on page 6-23 for information about the session shell.) There
is a root directory, indicated by a forward slash (’/’). The root directory is built to
contain three other directories: bin , etc , and test . The /test directory is the
place where most objects are published for the example programs in this guide. You
can also create new directories under root to hold objects for separate projects,
however you must have access as database user SYS to create new directories under
the root.

There is no effective limit to the depth that you can nest directories.

Note: The initial values in the publishing name space are set up when the JServer
product for Oracle8i is installed.

The /etc contains objects that are used by the ORB. Do not delete objects in the
/etc directory. They are owned by SYS, so you would have to be connected in the
session shell as SYS to delete them. The objects is /etc are:

deployejb execute loadjava login transactionFactory

The entries in the name space are actually represented by objects that are instances
of the classes oracle.aurora.AuroraServices.PublishingContext and
oracle.aurora.AuroraServices.PublishedObject . A publishing context
represents a class that can contain other objects (a directory), and the
PublishedObject class is used for the leafs of the tree, that is the object names
themselves. These classes are documented in the JavaDoc that you can find on the
product CD.

Published names for objects are stored in a database table. Each published object
also has a set of associated permissions, maintained in a separate table in the system
Developing CORBA Applications 3-25

Locating Objects
tablespace. Each class or resource file can have a combination (union) of the
following permissions:

read The holder of read permission can list the class, or the attributes of the class,
such as its name, its helper class, and its owner.

write For a context, the holder of write permission for a context can bind new object
names into a context. For an object (a leaf node of the tree), write permission allows
the holder to republish the object under a different name.

execute Execute permission is required to resolve and activate an object represented
by a context or published object name.

These permissions are set when the objects are loaded into the database. You can
use the session shell tool to view and change object permissions. See "sess_sh" on
page 6-23 for information about this tool.

Publishing means registering the object name in the database name service. The
steps involved are:

■ inserting the name in the session namespace

■ associating the name with the implementation class that was loaded

■ providing the name of a helper class for the object

■ assigning permissions to the published name that determine who can modify,
access, and execute the object
3-26 Enterprise JavaBeans and CORBA Developer’s Guide

Locating Objects
Looking Up an Object
The JNDI lookup() method is the normal way that a client looks up an object
whose name is published in the name space. When you invoke the lookup()
method, you normally pass it a String parameter that specifies a URL containing

■ the service name

■ the path name of the published object to look up

Service Name
The service name specifies a service handled by an IIOP presentation, and
represents a database instance. This Oracle8i release provides two services: session
IIOP and standard IIOP. The format of the service URL is explained in "URL Syntax"
on page 4-13. Briefly, the service name specifies

■ a service

■ the name of the host that handles the service presentation

■ the port number of the listener for the target database instance on that host

■ the system identifier (SID) for the database instance on the host

A typical example of a service name is sess_iiop://localhost:2481:ORCL ,
where sess_iiop is the service, localhost defaults to the host of the local
database, 2481 is the default listener port for IIOP connections, and ORCL is the SID.

For more information about the service name, see "URL Syntax" on page 4-13.

Object name
The object name specifies the complete path name of the published object that you
want to look up. For example: /test/myServer .

See "The JNDI InitialContext Class" on page 4-8 for further information about the
lookup() method.
Developing CORBA Applications 3-27

Activating ORBs and Server Objects
Activating ORBs and Server Objects
A CORBA application requires that an ORB be active on both the client system and
the system running the server. In looking at the examples shown so far in this
chapter, it is not obvious how the ORB is activated, either on the client or the server.
This section presents more information about that topic.

Client Side
The client-side ORB is normally initialized as part of the processing that goes on
when the client invokes the lookup() method on the JNDI InitialContext
object that it instantiates.

If you need to get a reference to the client ORB, use the init() method on the ORB
pseudo-object to get it, as shown in this statement:

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init ();

The init() method invoked on the client with no parameters always returns a
reference to the existing client ORB.

Server Side
The ORB on the server is started by the presentation that handles IIOP requests.
This is done, lazily, when the session is created.

About Object Activation
Objects are activated on demand. When a client looks up an object the ORB loads
the object into memory and caches it. To activate the object, the ORB looks up the
class by the fully-qualified class name under which the object was published. The
class name is resolved in the schema defined at publication time, rather than the
caller’s schema. See the description of the command-line tool "publish" on page 6-19
for more information.

When the class is located, the ORB creates a new instance of it, using
newInstance() . This is the reason that the no-argument constructor of a
persistent object class must be public. If the class implements the
oracle.aurora.AuroraServices.ActivatableObject interface (as
determined by reflection), then the _initializeAuroraObject() message is
sent to the instance. (See "Using the CORBA Tie Mechanism" on page 3-33 for an
example that requires _initializeAuroraObject()) .
3-28 Enterprise JavaBeans and CORBA Developer’s Guide

Using SQLJ
There is no need for the server implementation to register persistent objects with the
object adapter using a boa.obj_is_ready() call—the JServer ORB does
that automatically.

Transient objects that are generated by other objects, such as persistent published
objects, must be registered with the BOA using obj_is_ready() . For a good
example of this, see the factory demo in the
examples/corba/basic/factory directory of the product CD.

Using SQLJ
You can often simplify the implementation of a CORBA server object by using
Oracle8i SQLJ to perform static SQL operations. Using SQLJ statements results in
less code than the equivalent JDBC calls, and makes the implementation easier to
understand and debug. This section shows a version of the example first shown in
"A First CORBA Application" on page 3-17, but uses SQLJ rather than JDBC for the
database access. Refer to the Oracle8i SQLJ Developer’s Guide and Reference for
complete information about SQLJ.

The only code that changes for this SQLJ implementation is in the
EmployeeImpl.java file, that implements the Employee object. The SQLJ
implementation, which can be called EmployeeImpl.sqlj , is listed below. You
can contrast that with the JDBC implementation of the same object in "Write the
Server Object Implementation" on page 3-19.

package employeeServer;

import employee.*;
import java.sql.*;

public class EmployeeImpl extends _EmployeeImplBase {
public EmployeeInfo getEmployee (int ID) throws SQLError {

try {
String name = null;
double salary = 0.0;
#sql { select ename, sal into :name, :salary from emp

where empno = :ID };
return new EmployeeInfo (name, empno, (float)salary);

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

}

Developing CORBA Applications 3-29

Using SQLJ
The SQLJ version of this implementation is considerably shorter than the JDBC
version. In general, Oracle recommends that you use SQLJ where you have static
SQL commands to process, and use JDBC, or a combination of JDBC and SQLJ, in
applications where dynamic SQL statements are required.

Running the SQLJ Translator
To compile the EmployeeImpl.sqlj file, you issue the following SQLJ command:

% sqlj -J-classpath
.:$(ORACLE_HOME)/lib/aurora_client.jar:$(ORACLE_HOME)/jdbc/lib/classes111.zip:
$(ORACLE_HOME)/sqlj/lib/translator.zip:$(ORACLE_HOME)/lib/vbjorb.jar:
$(ORACLE_HOME)/lib/vbjapp.jar:$(JDK_HOME)/lib/classes.zip -ser2class

employeeServer/EmployeeImpl.sqlj

This command does the following:

■ translates the SQLJ code into a pure Java file

■ compiles the resulting .java source to get a .class file

■ the -ser2class option translates SER files to .class files

The SQLJ translation generates two additional class files:

employeeServer/EmployeeImpl_SJProfile0
employeeServer/EmployeeImpl_SJProfileKeys

which you must also load into the database when you execute the
loadjava command.

A Complete SQLJ Example
This example is available in complete form in the examples/corba/basic example
directory, complete with a Makefile or Windows NT batch file so you can see how
the example is compiled and loaded. See also "sqljimpl" on page A-8.
3-30 Enterprise JavaBeans and CORBA Developer’s Guide

CORBA Callbacks
CORBA Callbacks
This section describes how a CORBA server object can call back to a client. The basic
technique that is shown in this example is the following:

■ Write a client object, that runs on the client side, and contains the methods the
called-back-to object performs.

■ Implement a server object that has a method that takes a reference to the client
callback object as a parameter.

■ In the client code:

■ instantiate the client callback object

■ register it with the BOA

■ pass its reference to the server object that calls it

■ In the server object implementation, perform the callback to the client.

IDL
The IDL for this example is shown below. There are two separate IDL files:
client.idl and server.idl :

/* client.idl */
module client {

interface Client {
wstring helloBack ();

};
};

/* server.idl */
#include <client.idl>

module server {
interface Server {

wstring hello (in client::Client object);
};

};

Note that the server interface includes the interface defined in client.idl .
Developing CORBA Applications 3-31

CORBA Callbacks
Client Code
The client code for this example must instantiate the client-side callback object, and
register it with the BOA, so that it can be accessed by the server. The code performs
the following steps to do this:

■ Invokes the init() method, with no parameters, on the ORB pseudo-object.
This returns a reference to the existing client-side ORB.

■ Uses the ORB reference to initialize the BOA.

■ Instantiates a new client object.

■ Registers the client object with the client-side BOA.

The code to do these steps is:

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init ();
org.omg.CORBA.BOA boa = orb.BOA_init ();
ClientImpl client = new ClientImpl ();
boa.obj_is_ready (client);

Finally, the client code calls the server object, passes it a reference to the registered
client-side callback object, and prints its return value, as follows:

System.out.println (server.hello (client));

Callback Server Implementation
The implementation of the server-side object is very simple:

package serverServer;

import server.*;
import client.*;

public class ServerImpl extends _ServerImplBase {
public String hello (Client client) {

return "I Called back and got: " + client.helloBack ();
}

}

The server simply returns a string that includes the string return value from
the callback.
3-32 Enterprise JavaBeans and CORBA Developer’s Guide

Using the CORBA Tie Mechanism
Callback Client-Server Implementation
The client-side callback server is implemented like this:

package clientServer;

import client.*;

public class ClientImpl extends _ClientImplBase {
public String helloBack () {

return "Hello Client World!";
}

}

The client-side object is just like any other server object. But in this callback example
it is running in the client ORB, which can be running on a client system, not
necessarily running inside an Oracle8i database server.

Printback Example
Among the CORBA examples shipped on the CD there is a very interesting variant
of the callback example called printback . This example shows how a server object
can call back to a client to print strings from the server on the client’s console. You
can use code like this for debugging a running server object.

Using the CORBA Tie Mechanism
There is only one special consideration when you use the CORBA Tie, or delegation,
mechanism rather than the inheritance mechanism for server object
implementations. In the Tie case, you must implement the
oracle.aurora.AuroraServices.ActivatableObject interface. This
interface has a single method: _initializeAuroraObject().

(Note that earlier releases of the Oracle8i ORB required you to implement this
method for all server objects. For 8.1.5, its implementation is only required for
Tie objects.)

The implementation of _initializeAuroraObject() for a tie class is typically:

import oracle.aurora.AuroraServices.ActivatableObject;
...
public org.omg.CORBA.Object _initializeAuroraObject () {

return new _tie_Hello (this);
...
Developing CORBA Applications 3-33

Using the CORBA Tie Mechanism
where _tie_<interface_name> is the tie class generated by the IDL compiler.

You must also always include a public, parameterless constructor for the
implementation object.

See the tieimpl example in the CORBA examples set for a complete example that
shows how to use the Tie mechanism. See also "tieimpl" on page A-45 for the code.
3-34 Enterprise JavaBeans and CORBA Developer’s Guide

Debugging Techniques
Debugging Techniques
Until Java IDEs and JVMs support remote debugging, you can adopt several
techniques for debugging your CORBA client and server code.

1. Do standalone ORB debugging using one machine and ORB tracing.

Debug in a single address space, on a client system. Use of an IDE for client or
server debugging is optional, though highly desirable.

2. Use Oracle8i trace files.

The output of System.out.println() in the Oracle8i ORB goes to the
server trace files. The directory for trace files is a parameter specified in the
INITSID.ORA file. Assuming a default install of the product into a directory
symbolically named ORACLE_HOME, then the trace file would appear as

${ORACLE_HOME}/admin/<SID>/bdump/ORCL_s000x_xxx.trc

where ORCL is the SID, and x_xxx represents a process ID number. Do not
delete trace files after the Oracle instance has been started, or no output is
written to a trace file. If you do delete trace files, stop and then restart
the server.

3. Use a single Oracle MTS server.

For debugging only, set the MTS_SERVERS parameter in your INITSID.ORA
file to MTS_SERVERS = 1, and set the MTS_MAX_SERVERS to 1. Having
multiple MTS servers active means that a trace file is opened for each server
process, and thus the messages get spread out over several trace files, as objects
get activated in more than one session.

4. Use "printback" to redirect System.out.

You can use the technique demonstrated in the example program "printback" on
page A-36 to redirect System.out and System.err println ’s to the client
system console.

Perhaps the best way to develop and debug Java/CORBA code is to use either the
second or third technique described above, then deploy into the Oracle8i ORB.
Developing CORBA Applications 3-35

For More Information
For More Information
This section lists some resources that you can access to get more information about
CORBA, and about CORBA application development using Java.

Books
The ORB and some of the CORBA services that are supplied with Oracle8i JServer
are based on VisiBroker for Java code licensed from Inprise. Programming with
VisiBroker, by D. Pedrick et al. (John Wiley and Sons, 1998), provides both an
introduction to CORBA development from the VisiBroker point of view and an
in-depth look at the VisiBroker CORBA environment.

Client/Server Programming with Java and CORBA, by R. Orfali and D. Harkey (John
Wiley and Sons, 1998), covers CORBA development in Java. This book also uses the
VisiBroker implementation for its examples.

You should be aware that the examples published in both of these books require
some modification to run in the Oracle8i ORB. It is better to start off using the
examples in the Appendices to this Guide. They are more extensive than the
examples in the books cited, and demonstrate all the features of Oracle8i CORBA.
See also Appendix C, "Comparing the Oracle8i JServer and VisiBroker™ VBJ ORBs"
for a discussion of the major differences between VisiBroker for Java and the
Oracle8i implementation.

URLs
You can download specifications for CORBA 2.0 and for CORBA services from links
available at the following web site:

http://www.omg.org/library/downinst.html

Documentation on Inprise’s VisiBroker for Java product is available at:

http://www.inprise.com/techpubs/books/vbj/vbj32/pdf_index.html
3-36 Enterprise JavaBeans and CORBA Developer’s Guide

Connections and Se
4

Connections and Security

This chapter describes in detail how both CORBA and EJB clients connect to an
Oracle8i server session, and how they authenticate themselves to the server. The
term client as used in this chapter includes client applications and applets running
on a networked PC or a workstation, as well as distributed objects such as EJBs and
CORBA server objects that are calling other distributed server objects, and thus
acting as clients to these objects.

In addition to authentication, this chapter also discusses security in the sense of
access control to objects in the database. A published object in the data server has a
set of permissions that determine who can access and modify the object. Also,
classes that are loaded in the data server are loaded into a particular schema, and
the person who deploys the classes can control who can use them.

This chapter covers the following topics:

■ Connection Basics

■ Services

■ About JNDI

■ Connecting Using JNDI

■ Services and Sessions

■ Session Management

■ Authentication

■ Access Rights to Database Objects

■ Using the Secure Socket Layer

■ Non-JNDI Clients

■ For More Information
curity 4-1

Connection Basics
Connection Basics
The examples in Chapter 3, "Developing CORBA Applications" and Chapter 2,
"Enterprise JavaBeans" showed how to connect to Oracle, start a database server
session, and activate a CORBA server object or an EJB, using a single URL
specification. In the client examples, connection and object look up was done
as follows:

1. Hashtable env = new Hashtable();
2. env.put(javax.naming.Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
3. env.put(javax.naming.Context.SECURITY_PRINCIPAL, username);
4. env.put(javax.naming.Context.SECURITY_CREDENTIALS, password);
5. env.put(javax.naming.Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
6. Context ic = new InitialContext(env);
7. myHello hello =

(myHello) ic.lookup("sess_iiop://localhost:2481:ORCL/test/myHello");
8. System.out.println(hello.helloWorld());

In this example there are four basic operations:

■ Lines 1-5 set up an environment for the JNDI initial context.

■ Line 6 creates the JNDI initial context.

■ Line 7 looks up a published object. (See "URL Syntax" on page 4-13 for a
discussion of the URL syntax.)

■ Line 8 invokes a method on the object.

In line 7 above, when a client looks up an object, the client and server are doing a lot
of things automatically:

■ On the lookup() invocation, a session IIOP connection is made to the ORCL
instance of the localhost database.

■ The server establishes a database session.

■ The client is authenticated, using the NON_SSL_LOGIN protocol, with the
username and password specified in the environment context.

■ Using the CosNaming service, the client locates the published object
/test/myHelloServer in the session namespace.

■ On a client method invocation, the server activates the object and registers it
with the basic object adapter (BOA).

■ The client-side ORB narrows the object to the correct type, using the helper class
that was published along with /test/myHello .
4-2 Enterprise JavaBeans and CORBA Developer’s Guide

Connection Basics
When the object reference is returned, the client can invoke a method such as
helloWorld() on the activated, narrowed object, as in line 8 above. This example
shows a CORBA server object being looked up and activated, but a similar set of
steps, including the narrowing, occurs when an EJB is activated through its
home interface.

In the remainder of this chapter the connection, service and session context
establishment, and authentication steps are broken out and described separately.
There are many code examples to show you how to control session invocation in a
much finer-grained way than in the basic example above.

This chapter also describes various kinds of client authentication in addition to the
NON_SSL_LOGIN method that the basic examples use. This chapter also discusses
other aspects of security.
Connections and Security 4-3

Services
Services
In networking terms the presentation layer is responsible for making sure that data is
represented in a format that the application and session layers can accommodate. In
Oracle presentation can refer to a service protocol that accepts incoming network
requests, and activates routines in the database kernel layer or in the Java VM to
handle the requests.

In earlier versions of the Oracle database server there was a single service—the
two-task common (TTC) layer. This is the service that handles incoming Net8
requests for database SQL services from Oracle tools (such as SQL*Plus), and
customer-written applications (using Forms, Pro*C, or the OCI).

In addition to TTC support, Oracle8i JServer supplies two IIOP services:

■ session IIOP service, implemented by the class
oracle.aurora.server.sGiopServer

■ standard IIOP service, implemented by the class
oracle.aurora.server.GiopServer

These services handle TCP/IP requests that are routed to the service entrypoint by
the listener and dispatcher. These IIOP services are capable of starting, controlling,
and terminating Oracle8i database sessions, in the same way that an incoming TTC
request from a tool such as SQL*Plus is capable of starting and terminating a
database session.

When using the Oracle8i JServer tools, especially when doing EJB and CORBA
development, it is very important to distinguish the two service types: TTC
and IIOP.

Tools such as publish , deployejb , and the session shell access CORBA objects,
and so must connect using an IIOP port. Also, EJB and CORBA clients, or
distributed objects acting in a client role, must use an IIOP port when sending
requests to Oracle.

On the other hand, tools such as loadjava and dropjava connect using a
TTC port.
4-4 Enterprise JavaBeans and CORBA Developer’s Guide

Services
Figure 4–1 TTC and IIOP Services

Figure 4–1 shows which tools and requests use TTC and which use IIOP database
ports. 1521 is the default port number for TTC, and 2481 is the default for IIOP.

The two IIOP services differ in only one major respect: the session IIOP service
embeds a session identifier in object references. This allows a single client to access
multiple sessions, which would be impossible if there were no concept of a session
identifier in object references.

The session IIOP service uses the foundation provided by the Oracle8i
multi-threaded server to provide very high application scalability. See the Oracle8i
Java Developer’s Guide for introductory information about application design and
scalability. Both the session and the plain IIOP protocols are discussed in greater
detail in "About the Session IIOP Protocol" on page 4-10.

Note: This guide does not discuss configuring the database server
to handle incoming IIOP requests. See the Net8 Administrator’s
Guide for listener and dispatcher configuration information.
Connections and Security 4-5

About JNDI
About JNDI
Clients use the Java Naming and Directory Interface (JNDI) interface to look up
published objects in the session namespace. JNDI is an interface supplied by Sun
Microsystems that gives the Java application developer a way to access name and
directory services. In addition to the API used by the application developer, some of
whose classes and methods are described in this section, there is also a JNDI Service
Provider Interface (SPI). Oracle8i JServer has implemented a SPI to the OMG
CosNaming service, which provides the access to the published object namespace.

This section discusses only those parts of the JNDI API that are needed to look up
and activate published objects. To obtain a complete set of documentation for JNDI,
see the web site URL that is listed in "For More Information" on page 4-37.

When you use JNDI in your client or server object implementations, be sure to
include the following import statements:

import javax.naming.Context; // the JNDI Context interface
import javax.naming.InitialContext;
import oracle.aurora.jndi.sess_iiop.ServiceCtx; // JNDI property constants
import java.util.Hashtable; // hashtable for the initial context environment

in each source file.

It is also possible to access the session namespace without using JNDI. See
"Non-JNDI Clients" on page 4-35 for a Java example that does not use JNDI.

The JNDI Context Interface
Context is an interface in the javax.naming package. All Oracle8i EJB and
CORBA clients that use JNDI methods to lookup and activate server objects must
import this interface.

The javax.naming.Context interface forms the basis for the JNDI operations
that you use to manage services and sessions in the Oracle8i ORB. This class is fully
documented in the standard JNDI JavaDoc from Sun Microsystems. See "For More
Information" on page 4-37 for information on how to obtain this documentation.

This section documents only the Context variables and methods that are most
frequently used in Oracle8i CORBA and EJB application development.
4-6 Enterprise JavaBeans and CORBA Developer’s Guide

Connecting Using JNDI
Connecting Using JNDI
Before you can use JNDI to connect your client program to an Oracle8i server, you
must set up an environment for the JNDI context. You can use a hash table or a
properties list for the environment. The examples in this guide always use a Java
Hashtable, as follows:

Hashtable environment = new Hashtable();

Next, you set up properties in the hash table. You must always set the Context
URL_PKG_PREFIXES property. The remaining properties that you can set are for
authentication. They are:

■ javax.naming.Context.SECURITY_PRINCIPAL

■ javax.naming.Context.SECURITY_CREDENTIALS

■ javax.naming.Context.SECURITY_ROLE

■ javax.naming.Context.SECURITY_AUTHENTICATION

These properties are described in the following sections.

URL_PKG_PREFIXES
Context.URL_PKG_PREFIXES holds the name of the environment property for
specifying the list of package prefixes to use when loading in URL context factories.
The value of the property should be a colon-separated list of package prefixes for
the class name of the factory class that will create a URL context factory.

In the current implementation, this property must always be supplied in the
Context environment, and it must be set to the String "oracle.aurora.jndi".

SECURITY_PRINCIPAL
Context.SECURITY_PRINCIPAL holds the database username.

SECURITY_CREDENTIALS
Context.SECURITY_CREDENTIAL holds the clear-text password. This is the
Oracle database password for the SECURITY_PRINCIPAL (the database user). In all
of the three authentication methods mentioned in SECURITY_AUTHENTICATION
below, the password is encrypted when it is transmitted to the server.
Connections and Security 4-7

Connecting Using JNDI
SECURITY_ROLE
Context.SECURITY_ROLE holds the Oracle8i database role with which the user is
connecting. For example, "CLERK" or "MANAGER".

SECURITY_AUTHENTICATION
Context.SECURITY_AUTHENTICATION holds the name of the environment
property that specifies the type of authentication to use. Values for this property
provide for the authentication types supported by Oracle8i. There are three possible
values. These values are defined in the ServiceCtx class, and are:

■ ServiceCtx.NON_SSL_LOGIN : Authenticate using the Login protocol over a
standard TCP/IP connection (not a secure socket layer connection). The Login
protocol provides for encryption of the password as it is transmitted from the
client to the server. See "The Login Protocol" on page 4-28 for more information
about this protocol.

■ ServiceCtx.SSL_CREDENTIAL : Authenticate using the credential protocol
over a secure socket layer (SSL) connection. Encryption of the password is
provided by the secure socket layer.

■ SSL_LOGIN: Authenticate using the Login protocol over an SSL connection.
The extra encryption provided by the Login protocol is redundant in this case,
and use of SSL_CREDENTIAL might be slightly more time efficient.

Note: To use an SSL connection, you must be able to access a listener that has an
SSL port configured, and the listener must be able to redirect requests to an
SSL-enabled dispatcher IIOP port. You must also include the library
vbj30ssl.jar when you compile and build your application. See the Net8
Administrator’s Guide for more information about configuration, and see EJB
README file for information about the location of the vbj30ssl.jar file.

Context Methods
The Context interface contains a number of methods that the CORBA and EJB
application developer will use. The methods required have been implemented in
the ServiceCtx and SessionCtx classes that implement methods in the
Context interface.

The JNDI InitialContext Class
InitialContext is a class in the javax.naming package that implements the
Context interface. All naming operations are relative to a context. The initial
4-8 Enterprise JavaBeans and CORBA Developer’s Guide

Connecting Using JNDI
context implements the Context interface and provides the starting point for
resolution of names.

Constructor
You construct a new initial context using the constructor:

public InitialContext(Hashtable environment)

passing it a hashtable that has the environment information described in
"Connecting Using JNDI" above. The following code fragment sets up an
environment for a typical client, and creates a new initial context:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext(env);

Method
The most common initial context class method that the CORBA or EJB application
developer will use is

public Object lookup(String URL)

You use lookup() to create a new service context, specifying in the URL the
service identifier. The return result must be cast to ServiceCtx when a new
service context is being created. For example, if initContext is a JNDI initial
context, the following statement creates a new service context:

ServiceCtx service =
(ServiceCtx) initContext.lookup("sess_iiop://localhost:2481:ORCL");
Connections and Security 4-9

Services and Sessions
Services and Sessions
This section describes the Oracle8i IIOP services, session IIOP and standard IIOP,
and the use of the Oracle8i session for EJB and CORBA applications.

About the Session IIOP Protocol
Standard CORBA does not support the concept of sessions, but the session concept
is fundamental to the Oracle8i database and the JServer ORB. In a "standard"
CORBA server and ORB, the server and ORB are always running, and when an
object is activated it is registered with the ORB, and is available while the server is
running. In Oracle8i JServer, objects are activated on demand from a client, in a
database session. Each session has its own "virtual" Java VM, and the ORB is
activated to run in that VM. The Oracle8i Java Developer’s Guide explains why this
activation model is efficient in terms of memory usage, and why it scales well.

Because objects are activated in a session, the ORB and the database need a means
to be able to distinguish objects within the same server process based on the
sessions in which they are activated.

In standard IIOP, a connection is identified by its host and port number. The host
and port number is also encoded into object references (IORs). However with
session IIOP, a client can connect to multiple sessions within a service, not just to
multiple services.

The fundamental point is that the session IIOP service provides a way for
applications and server objects to distinguish among sessions as well as services.

This service introduces a new component tag, SessionIIOP , inside the IIOP profile
(TAG_INTERNET_IOP—the OMG component tag for Oracle session IIOP is
0x4f524100). The session IIOP component tag has information that uniquely
identifies the session in which the object was activated. This information is used by
the client ORB runtime to send requests to the right objects in the right session.

While the Oracle8i session IIOP service provides an enhancement of the standard
IIOP protocol, in the sense that it includes session ID information, it does not differ
at all from standard IIOP in its on-the-wire data transfer protocol.

Client Requirements
Clients must have an ORB implementation that supports session IIOP to be able to
access objects in different sessions simultaneously, from within the same program,
and to be able to disconnect from and reconnect to the same session. The version of
4-10 Enterprise JavaBeans and CORBA Developer’s Guide

Services and Sessions
the Visigenic ORB that ships with Oracle8i has been extended to support this, and
discussions are underway to have this supported by other ORB vendors as well.

Session Routing
When a client makes an IIOP connection to the database, the server code must
decide if a new session should be started to handle the request, or if the request
should be routed to an existing session. If the client is doing a new request for a
connection (using the InitialContext .lookup() method), and no session is
active for that connection, then a new session is automatically started.

For session routing to work, standard IIOP is sufficient. Session IIOP is needed only
if the same client requires access to objects residing in multiple sessions. With
session IIOP the server is able to decide, on the basis of the object being activated,
whether to activate a new session or rout to an existing session, depending on the
absence or presence of a session ID component tag inside the IIOP profile.

Configuration for IIOP
To access oracle servers, client programs do not really need to do anything special.
It is only necessary to have a listener configured to accept IIOP requests, and be able
to redirect the requests to a dispatcher port that accepts session IIOP. See the
Oracle8i Net8 Administrator’s Guide for information about configuring the
INITSID.ORA file for the IIOP protocols.

A session is a specific connection of a client to a service. For example, when a tool
such as SQL*Plus makes a connection through Net8 to a listener TTC port, Oracle8i
establishes a new database session to handle the connection and provide SQL
support. Similarly, when an incoming IIOP request from a CORBA or EJB client
program is handled, a new session is also established by Oracle8i.

In the case of a session IIOP request the new session that is established has,
independent Java VM, complete with the session’s own ORB. The memory footprint
for a new Java VM session with an ORB is quite low, being only about 150 kB.

See "Session Management" on page 4-18 for information about activating services
and sessions using JNDI. See "Services and Sessions" on page 4-10 for a discussion
of why Oracle supports the session IIOP service.
Connections and Security 4-11

Services and Sessions
Database Listeners and Dispatchers
When the listener receives a request for an IIOP connection from a client, it assigns
an IIOP dispatcher to the client request, and sends an IIOP reply to ask the client to
reconnect to the dispatcher. Figure 4–2 shows the interaction between the listener
and the dispatchers, and also illustrates how an Oracle8i ORB session is activated.

Figure 4–2 Listener/Dispatcher Interaction

When a shared server services a new IIOP connection, it first creates a new database
session for it and activates the ORB in the session. This session is very similar to the
database sessions created for incoming Net8 connections. In the session the ORB
takes care of reading the incoming IIOP messages, authenticating the client, finding
and activating the corresponding server-side objects, and sending IIOP messages as
needed to reply to the client that connected.

Further IIOP messages from the same client are routed directly to the existing
session and handled similarly by the ORB.

When you configure a listener to accept both Net8 and IIOP connections, there is no
need to distinguish between session IIOP and "standard" IIOP. The listener handles
both on the same port. However, you do need a separate port for secure socket layer
(SSL) connections. See "Using the Secure Socket Layer" on page 4-32 for more
information about connecting using IIOP and SSL.
4-12 Enterprise JavaBeans and CORBA Developer’s Guide

Services and Sessions
URL Syntax
Oracle8i provides universal resource locator (URL) syntax to access services and
sessions. The URL lets you use JNDI requests to start up services and sessions, and
also to access components published in the database instance. An example service
URL is shown in Figure 4–3.

Figure 4–3 Service URL

The service URL is composed of four pieces:

1. The service name followed by a colon and two slashes: sess_iiop:// for a session
IIOP request.

2. The system name (the hostname). For example: myPC-1. You can also use
localhost , or the numeric form of the IP address for the host.

3. The listener port number for IIOP services. The default is 2481.

4. The system identifier or SID, for example: ORCL.

Colons are always used to separate the hostname, port, and SID.

If you specify a dispatcher port instead of a listener port, and you specify a SID, an
ObjectNotFound exception is thrown by the server. (If you specify a dispatcher
port, you cannot specify a SID. Since applications that connect directly to dispatcher
ports do not scale well, Oracle does not recommend direct connection
to dispatchers.)
Connections and Security 4-13

Services and Sessions
URL Components and Classes
When you make a connection to Oracle and look up a published object using JNDI,
you use a URL that specifies the service (service name, host, port, and SID), as well
as the name of a published object to look up and activate. For example, a complete
URL could look like:

sess_iiop://localhost:2481:ORCL/:default/projectAurora/Plans816/getPlans

where sess_iiop://localhost:2481:ORCL specifies the service name,
:default indicates the default session (when a session has already been
established), /projectAurora/Plans816 specifies a directory path in the
namespace, and getPlans is the name of a published object to look up.

Each component of the URL represents a Java class. For example, the service name
is represented by a ServiceCtx class instance, the session by a SessionCtx
instance. (See the ORB JavaDoc on the distribution CD for detailed documentation
of these classes. The most relevant methods and variables are also described below.)

The Service Context Class
Oracle provides a service context class that extends the JNDI Context class.

Variables
The ServiceCtx class defines a number of final public static variables that you can
use to define environment properties and other variables. Table shows these.

Note: You do not specify the session name when no session has
been established for that connection. That is, on the first lookup
there is no session active, hence :default as a session name has
no meaning.

Table 4-1 ServiceCtx Public Variables

String Name Value

DEFAULT_SESSION ":default"

NON_SSL_CREDENTIAL "Credential"

NON_SSL_LOGIN "Login"

SSL_CREDENTIAL "SecureCredential"

SSL_LOGIN "SecureLogin"
4-14 Enterprise JavaBeans and CORBA Developer’s Guide

Services and Sessions
Methods
The public methods in this class that can be used by CORBA and EJB application
developers are documented in this section.

public Context createSubcontext(String name)

This method takes a Java String as the parameter, and returns a JNDI Context
object representing a session in the database. The method creates a new named
session. The parameter is the name of the session to be created, which must start
with a colon (:).

The return result should be cast to a SessionCtx object.

Throws
javax.naming.NamingException .

public Context createSubcontext(Name name)

(Each of the methods that takes a String parameter has a corresponding method
that takes a Name parameter. The functionality is the same.)

public static org.omg.CORBA.ORB init(String username,
String password,
String role,
boolean ssl,
java.util.Properties props)

SSL_30 "30"

SSL_20 "20"

SSL_30_WITH_20_HELLO "30_WITH_20_HELLO"

THIS_SERVER ":thisServer"

THIS_SESSION ":thisSession"

Integer Name Integer Constructor

SESS_IIOP new Integer(2)

IIOP new Integer(1)

Table 4-1 ServiceCtx Public Variables (Cont.)

String Name Value
Connections and Security 4-15

Services and Sessions
Gets access to the ORB created when you do a look up. Set the ssl parameter true
for SSL authentication. This method should be used by clients that do not use JNDI
to access server objects.

See "sharedsession" on page A-79 for a usage example.

public synchronized SessionCtx login()

login() authenticates the caller using the properties in the initial context
environment, and then activates a new session and returns the session context. The
returned object is narrowed to the appropriate type.

Throws javax.naming.NamingException .

public Object lookup(String string)

lookup() looks up a published object in the database instance associated with the
service context, and either returns an activated instance of the object, or throws
javax.naming.NamingException.

public Object _lookup(String string)

_lookup() looks up a published object in the database instance associated with
the service context, and either returns the object, or throws
javax.naming.NamingException. Unlike with lookup() , the object is
not activated.
4-16 Enterprise JavaBeans and CORBA Developer’s Guide

Services and Sessions
The Session Context Class
Oracle provides a session context class, SessionCtx , that extends the JNDI
Context class. Session contexts represent sessions, and contain methods that let
you perform session operations such as authenticating the client to the session or
activating objects.

Methods
The session context methods that a client uses are the following:

public synchronized boolean login()

login() authenticates the client using the initial context environment properties
that were passed in the InitialContext constructor: username, password, and role.

public synchronized boolean login(String username,
String password,

String role)

login() authenticates the client using the username, password, and optional
database role supplied as parameters.

public Object activate(String name)

Looks up and activates a published object having the name name.
Connections and Security 4-17

Session Management
Session Management
In the simple cases, a client starts a new server session implicitly when it activates a
server object, such as an EJB or a CORBA server object. But Oracle8i also gives you
the ability to control session start-up explicitly, either from the client or from a
server object.

Starting a New Session
In general, when you lookup a published object using the URL notation, and you
specify a hostname and port, then the object is activated in a new session. For
example when an activated CORBA server object or an EJB looks up a second server
object, using the same series of statements as the first client would use:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext(env);
SomeObject myObj =

(SomeObject) ic.lookup("sess_iiop://localhost:5521:ORCL/test/someobject");

then the object myObj is activated in a separate session from the session in which
the server object that did the lookup is running.

Using thisServer
If the server object must lookup and activate a new published object in the same
session in which it is running, then the server object should use the
thisServer/:thisSession notation in place of the hostname:port:SID in the URL. For
example, to lookup and activate an object in the same session, do the following:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext(env);
SomeObject myObj =

(SomeObject)
ic.lookup("sess_iiop://thisSession/:thisSession/test/someobject");

In this case, myObj is activated in the same session in which the invoking object is
running. Note that there is no need to supply login authentication information, as
the client (a server object in this case) is already authenticated to Oracle8i.
4-18 Enterprise JavaBeans and CORBA Developer’s Guide

Session Management
It is important to realize that objects are not authenticated. Rather, clients must be
authenticated to a session.

But when a separate session is to be started, then some form of authentication must
be done (either login or SSL credential authentication).

Starting a Named Session From a Client
In the simple case, you let the JNDI initial context lookup() method also start the
session and authenticate the client. The session then becomes the default session
(and has the name :default).

If you then create additional objects in the client, and activate them, the new objects
run in the same session. Even if you create a new JNDI initial context, and look up
the same or a new object using that context, the object is instantiated in the same
session as the first object.

There are cases, however, when a client needs to activate an object in a separate
session from any current objects. Do this as follows:

■ Create a new service context. For example:

ServiceCtx service = (ServiceCtx) ic.lookup(
"sess_iiop://localhost:2481:ORCL");

■ Create a new session context by invoking createSubcontext() on the
service context.

SessionCtx new_session = (SessionCtx) service.createSubcontext(
":session1");

Name the new session in the parameter to createSubcontext() , for example
":session1". The name must start with a colon (’:’), and cannot contain a slash
(’/’).

■ Authenticate the client by invoking the login() method on the new session:

new_session.login("scott", "tiger", null);

The following is a more complete code example that demonstrates this technique.
There is a complete example that shows this in "twosessions" on page A-86.

Note: The thisServer notation can only be used on the server side,
that is, from server objects. It cannot be used in a client program.
Connections and Security 4-19

Session Management
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// Get a SessionCtx that represents a database instance
ServiceCtx service = (ServiceCtx) ic.lookup ("sess_iiop://localhost:2481:ORCL");

// Create and authenticate a first session in the instance.
SessionCtx session1 = (SessionCtx) service.createSubcontext (":session1");

// Authenticate
session1.login("scott", "tiger", null);

// Create and authenticate a second session in the instance.
SessionCtx session2 = (SessionCtx) service.createSubcontext (":session2");

// Authenticate using a login object (not required, just shown for example).
LoginServer login_server2 = (LoginServer)session2.activate ("etc/login");
Login login2 = new Login (login_server2);
login2.authenticate ("scott", "tiger", null);

// Activate one Hello object in each session
Hello hello1 = (Hello)session1.activate (objectName);
Hello hello2 = (Hello)session2.activate (objectName);

// Verify that the objects are indeed different
hello1.setMessage ("Hello from Session1");
hello2.setMessage ("Hello from Session2");

System.out.println (hello1.helloWorld ());
System.out.println (hello2.helloWorld ());

Example: Activating Services and Sessions
This section describes in greater detail how you can explicitly activate a session
IIOP service, and then activate one or more Oracle8i sessions in the context of the
service. The simplest way to activate services and sessions is to use the JNDI
methods provided in the ServiceCtx and SessionCtx classes.

This section demonstrates service and session activation, as well as explicit login
authentication, by way of a useful example: lister.java . This program
4-20 Enterprise JavaBeans and CORBA Developer’s Guide

Session Management
recursively lists the names of all published objects in the session namespace, along
with the creation dates and owners.

Unlike most of the other example programs in this guide, the lister program does
not start by activating a published object. In the other example programs, the
service and session are usually started automatically, as a by-product of the
published object look up. In this example the service and session must be
specifically activated by the client program.

The example starts by instantiating a new hashtable for the environment properties
to be passed to the server:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");

Note that only the URL_PKG_PREFIXES Context variable is filled in—the other
information will be provided in the login.authenticate() method parameters.

Next, create a new JNDI Context. This is the necessary first step in all programs that
will use JNDI methods. Pass in the hashtable, as usual.

Context ic = new InitialContext(env);

Then use the JNDI lookup() method on the initial context, passing in the service
URL, to establish a service context. This example uses a service URL with the
service prefix, hostname, listener port, and SID:

ServiceCtx service =
(ServiceCtx) ic.lookup("sess_iiop://localhost:2481:ORCL");

The next step is to initiate a session. Do this by invoking the
createSubcontext() method on the service context object, as follows:

SessionCtx session = (SessionCtx) service.createSubcontext(":session1");

Note that you must name a new session when you create it. The session name must
start with a colon (:), and cannot contain a slash (’/’), but is not otherwise restricted.

The final step before you can access the published object tables is to authenticate the
client program to the database. Do this by calling the login() method on the
session context object:

session.login("scott", "tiger", null); // role is null

Finally, the example starts listing by calling the listOneDirectory() static
method, which recursively lists all directories (PublishingContext s) and leafs
(PublishedObject s) in the published names hierarchy:
Connections and Security 4-21

Session Management
listOneDirectory ("/", session);

The complete code for the example is reproduced in the following section. The code
includes some minimal formatting to align the printed output. Follow the same
procedures as for the sample applications in Appendix A, "Example Code: CORBA"
to compile and run this example.

Lister.java
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingEnumeration;
import javax.naming.Binding;
import javax.naming.NamingException;
import javax.naming.CommunicationException;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jndi.sess_iiop.SessionCtx;
import oracle.aurora.jndi.sess_iiop.ActivationException;
import oracle.aurora.AuroraServices.PublishedObject;
import oracle.aurora.AuroraServices.objAttribsHolder;
import oracle.aurora.AuroraServices.objAttribs;
import oracle.aurora.AuroraServices.ctxAttribs;
import oracle.aurora.jts.client.AuroraTransactionService;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.client.Login;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Lister {

public static void main (String[] args) throws Exception {
if (args.length != 3) {

System.out.println("usage: Lister serviceURL user password");
System.exit(1);

}
String serviceURL = args [0];
String username = args [1];
String password = args [2];

// Prepare a simplified Initial Context as we are going to do
// everything by hand.
Hashtable env = new Hashtable();
4-22 Enterprise JavaBeans and CORBA Developer’s Guide

Session Management
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext(env);

// Get a SessionCtx that represents a database instance.
ServiceCtx service = (ServiceCtx) ic.lookup(serviceURL);

// Create a session in the instance.
// The session name must start with a colon(:).
SessionCtx session = (SessionCtx) service.createSubcontext(":session1");
session.login(username, password, null);

// Print a header line.
System.out.println

("\n\nName Create Date Owner");
listOneDirectory ("/", session);

}

public static void listOneDirectory (String name, SessionCtx ctx)
throws Exception {

System.out.print(name);
for (int i = name.length(); i < 30; i++)

System.out.print(" ");
ctxAttribs attribs = null;
try {

attribs = ctx.getAttributes();
} catch (org.omg.CORBA.NO_PERMISSION e) {

return;
}

System.out.print(attribs.creation_ts);
for (int i = 30 + attribs.creation_ts.length(); i < 55; i++)

System.out.print(" ");
System.out.print(attribs.owner);

/*
* You could also add output for the access permissions:
* attribs.read
* attribs.write
* attribs.execute
*/

System.out.println();

// Show the sub entries
Connections and Security 4-23

Session Management
listEntries(ctx, name);
}

public static void listEntries (Context context, String prefix)
throws Exception {

NamingEnumeration bindings = context.list("");
while (bindings.hasMore()){

Binding binding = (Binding) bindings.next();
String name = binding.getName();
Object object = context.lookup(name);
if (object instanceof SessionCtx)

listOneDirectory(prefix + name + "/", (SessionCtx) object);
else if (object instanceof PublishedObject)

listOneObject(prefix + name, (PublishedObject) object);
else

// We should never get here.
System.out.println(prefix + name + ": " + object.getClass());

}
}

public static void listOneObject (String name, PublishedObject obj)
throws Exception {

objAttribsHolder holder = new objAttribsHolder();
try {

obj.get_attributes(holder);
} catch (org.omg.CORBA.NO_PERMISSION e) {

return;
}

objAttribs attribs = holder.value;
System.out.print(name);
for (int i = name.length(); i < 30; i++)

System.out.print(" ");

System.out.print(attribs.creation_ts);
for (int i = 30 + attribs.creation_ts.length(); i < 55; i++)

System.out.print(" ");
System.out.print(attribs.owner);

/*
* You could also add output for:
* attribs.class_name
* attribs.schema
* attribs.helper
4-24 Enterprise JavaBeans and CORBA Developer’s Guide

Session Management
* and the access permissions:
* attribs.read
* attribs.write
* attribs.execute
*/

System.out.println();
}

}

Starting a New Session From a Server Object
Starting a new session from a CORBA server object, or from an EJB, is exactly like
starting a session from an application client. You can start the session implicitly by
using lookup() on an initial context to look up and activate another published
object, or you can start a new service context, and from that a new session, just as
shown in "Starting a Named Session From a Client" on page 4-19.

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);
employee =

(Employee)ic.lookup ("sess_iiop://thisServer/test/myEmployee");

Any new session connection must always authenticate itself to the database server.
See "clientserverserver" on page A-67 for an example that starts a new session from
a CORBA server object.

If you need to activate a new object in the same session from another server object,
you use the thisServer indicator. See "Using thisServer" on page 4-18 for
more information.

Controlling Session Duration
A session normally ends when the last client connection terminates. However, a
server object can control the session duration by using the
oracle.aurora.net.Presentation.sessionTimeout() method. The
method takes one parameter, the session timeout value in seconds. The session
timeout clock starts ticking when the last client request completes. For example:

int timeoutValue = 30;
...
// set the timeout to 30 seconds
oracle.aurora.net.Presentation.sessionTimeout(timeoutValue);
Connections and Security 4-25

Session Management
...
// set the timeout to a very long time
oracle.aurora.net.Presentation.sessionTimout(Integer.MAX_INT);

See the example "timeout" on page A-71 for an example that sets session timeout on
the server side.

Note: When you use the sessionTimeout() method, you must add
$(ORACLE_HOME)/lib/aurora.zip to your CLASSPATH.

Ending a Session
To terminate a database session, use the exitSession() method. For example,

oracle.aurora.vm.OracleRuntime.exitSession(1);

The int parameter for exitSession(int x) is an exit value, similar to the value
supplied for System.exit() ;

Note: System.exit() does not terminate a database session.
4-26 Enterprise JavaBeans and CORBA Developer’s Guide

Authentication
Authentication
The Oracle data server is a secure server; a client application cannot access data
stored in the database without first being authenticated by the database server.
Oracle8i CORBA server objects and Enterprise JavaBeans execute in the database
server. For a client to activate such an object, and invoke methods on it, three
conditions must be satisfied:

1. The client must be able to authenticate itself to the server, by passing a valid
database username and the correct password for that username. (A database
role can also be passed to the server along with the username and password.)

2. The client must have access rights to any object that it activates. This means that
a published object must have been published so that it can be executed either by
PUBLIC, or by the client user(name) activating it. It also means that the classes
that implement the published object must have been loaded into the database
with the appropriate access rights.

3. In some cases, the client must have execute privileges on the method itself. For
example, an EJB deployment descriptor can be written to establish access rights
on a method-by-method basis.

This section describes client authentication techniques, because it is the client that
must authenticate itself to the database when a new session is started. When a
CORBA server object or an EJB starts a new session, it is acting just like a client for
authentication purposes.

It is important to remember that each new connection must be authenticated by the
server. A typical example where this is required is when a client passes an object
reference (a CORBA IOR or an EJB bean handle) to a second client. The second
client then tries to connect to the session specified in the object reference. The
second client must also authenticate itself to the server. This can be done in several
ways, using either credentials over SSL or the login protocol. See the examples
"sharedsession" on page A-79, or "saveHandle" on page B-7.

Basic Client Authentication Techniques
There are three ways that a client can authenticate itself to the server:

1. Use the Oracle8i login protocol over a standard (not secure socket layer)
TCP/IP transport connection.

2. Use the login protocol over a secure socket layer connection.

3. Use credential-based authentication over a secure socket layer (SSL) connection.
Connections and Security 4-27

Authentication
Each of these authentication techniques is secure. In the first case, the Oracle8i login
protocol makes sure that the password is passed from the client to the server in
encrypted form, even if the remainder of the client-server communication is passed
in the clear. In the second and third cases the password is encrypted by the
SSL transport.

The authentication technique that the client uses is determined by the value that is
set in the javax.naming.Context.SECURITY_AUTHENTICATION attribute
when the JNDI initial context is established. There are four possibilities:

■ ServiceCtx.NON_SSL_LOGIN establishes use of the Oracle8i login protocol
when the transport is not SSL.

■ ServiceCtx.SSL_LOGIN specifies use of the login protocol over an
SSL connection.

■ ServiceCtx.SSL_CREDENTIAL specifies use of the credential protocol over
an SSL transport. In this protocol the password is not encrypted above and
beyond the encryption provided by SSL, and it so might be slightly more
efficient than SSL_LOGIN, in which the added encryption is redundant.

■ Nothing is specified. In this case, it is necessary for the client to activate the
login protocol directly before it can activate and invoke methods on a
server-side object.

This case is frequently used when a client needs to connect to an existing
session, and invoke methods on an existing object. See "sharedsession" on
page A-79 for an example.

In this case, it is also not necessary to specify the username and password in the
initial context environment, as they will be passed as parameters to the login
object’s authenticate() method.

The Login Protocol
A client can use the login protocol to authenticate itself to the Oracle8i data server.
You can use the login protocol either with or without SSL encryption, since a secure
handshaking encryption protocol is built in to the Oracle8i ORB login protocol.

Establishing the Login Protocol
If your application requires an SSL connection for client-server-client data security,
then specify the SSL_LOGIN service context value for the
SECURITY_AUTHENTICATION property that is passed when the JNDI initial
context is obtained. For example:
4-28 Enterprise JavaBeans and CORBA Developer’s Guide

Authentication
Hashtable env = new Hashtable();
env.put(javax.naming.Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(javax.naming.Context.SECURITY_PRINCIPAL, username);
env.put(javax.naming.Context.SECURITY_CREDENTIALS, password);
env.put(javax.naming.Context.SECURITY_AUTHENTICATION, ServiceCtx.SSL_LOGIN);
Context ic = new InitialContext(env);
...

See "Using the Secure Socket Layer" on page 4-32 for more information about SSL
connections.

If your application does not use an SSL connection, then specify NON_SSL_LOGIN
as follows:

...
env.put(javax.naming.Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);

...

In this case, the login handshaking is secured by encryption, but the remainder of
the client-server interaction might be less secure.

When you specify values for all four JNDI Context variables (URL_PKG_PREFIXES,
SECURITY_PRINCIPAL, SECURITY_CREDENTIALS, and
SECURITY_AUTHENTICATION), then the first invocation of the
Context.lookup() method performs a login automatically.

The Login protocol requires two components: a client component and a server
component. The client component, Login , serves as an implementation of the client
side of the login handshaking protocol and as a proxy object for calling the server
login object. The client component is packaged in the aurora_client.jar file.
Oracle8i ORB applications must always import this library.

Credentials
Using the ServiceCtx.SSL_CREDENTIAL authentication type means that the
username, password, and role (if specified) are passed to the server on the first
request (method invocation).

Because this information is passed over an SSL connection, the password is
effectively encrypted by the transfer protocol, and there is no need for the
handshaking that the Login protocol uses. For that reason, the credential protocol is
slightly more efficient, and is recommended for SSL connections.
Connections and Security 4-29

Access Rights to Database Objects
Access Rights to Database Objects
In addition to authentication and privacy, Oracle8i also supports controlled access
to the classes that make up CORBA and EJB objects. Only users or roles that have
been granted EXECUTE rights to the Java class of an object stored in the database
can activate the object and invoke methods on it.

You can control execute rights on Java classes at class load time with the -grant
argument to loadjava . See "loadjava" on page 6-7 for more information about
loadjava . See the Oracle8i Java Developer’s Guide for more information about access
rights on Java classes in the database.

You use the SQL DDL GRANT EXECUTE command to grant execute permission on
a Java class loaded in the database. For example, if SCOTT has loaded a class Hello,
then SCOTT (or SYS) can grant execute privileges on that class to another user, say
OTTO, by issuing the SQL command:

SQL> GRANT EXECUTE ON "Hello" TO OTTO;

Use the SQL command REVOKE EXECUTE to remove execute rights for a user
from a loaded Java class.

Published Objects
Published objects are not restricted to a specific schema; they are potentially
available to all users in the instance. You can control permissions on a published
object in two ways:

■ using the -grant option with the publish tool

■ using the chmod and chown commands within the Session Shell

Note that you have to be connected to the Session Shell as the user SYS to use the
chown command.

Use the ls -l command in the session shell to view the permissions (EXECUTE,
READ, and WRITE) and the owner of a published object.

See the descriptions of these tools in Chapter 6 for more information.

Published objects have permissions that can differ from those of the underlying
classes. For example, if user SCOTT has execute permission on a published object
name, but does not have execute permission on the class that the published object
"represents", then SCOTT will not be able to activate the object.
4-30 Enterprise JavaBeans and CORBA Developer’s Guide

Access Rights to Database Objects
Other Server Objects
There are three "built-in" server objects that a client can access without being
authenticated. They are:

■ the Name Service

■ the InitialReferences object (the boot service)

■ the Login object

These objects can be activated using servicectx.lookup() without
authentication. See "explicit" on page A-62 for an example that access the Login
object explicitly.

Reauthentication
When a client receives an IOR from another client, the first time it tries to send a
message to the object it must be authenticated by the server, and the server must
verify that the authenticated client has access rights to the object.
Connections and Security 4-31

Using the Secure Socket Layer
Using the Secure Socket Layer
The Secure Socket Layer (SSL) is a secure networking protocol, originally defined by
Netscape Communications Inc.

Oracle8i JServer supports SSL communications over the IIOP protocol used for the
ORB. In the current JServer release only server-side SSL authentication is supported.
There is no means in this release for a server to authenticate a client.

SSL Protocol Version Numbers
The default SSL version number in a VisiBroker client ORB is “Undetermined”.
Table 4–2 shows the combinations that are expected to work. ✸ indicates cases in
which the handshake will fail.

The server side (dispatcher) default is "Undetermined", so that it will work with all
client versions and also with "out of the box" Visigenics clients. However, you can
set a specific server version number in the SQLNET.ORA file, using the
SSL_VERSION parameter. For example, SSL_VERSION = 3.0.

To set the SSL client version number in the JNDI ServiceCtx object on the client
side, set the environment property as follows:

environment.put("CLIENT_SSL_VERSION", ServiceCtx.SSL_30);

Using SSL on the Client Side
When you use an SSL-based connection in client code, you must set the service
context to SSL_CREDENTIAL (or SSL_LOGIN, if you are using login authentication
rather than credential-based authentication). You do this as follows:

// Tell sess_iiop to use credential authentication

Table 4–2 SSL Version Numbers

Server Setting

Client Setting
Undetermined 3.0 W/2.0

Hello
3.0 2.0 (not

supported)

Undetermined
or not set

3.0 3.0 ✸ N/A

3.0 W/2.0 Hello 3.0 3.0 ✸ N/A

3.0 3.0 3.0 3.0 N/A

2.0 2.0 ✸ ✸ N/A
4-32 Enterprise JavaBeans and CORBA Developer’s Guide

Using the Secure Socket Layer
environment.put(InitialContext.SECURITY_AUTHENTICATION,
ServiceCtx.SECURE_CREDENTIAL);

Then, after initializing the ORB:

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();

Determining SSL Certificate Information
It is up to the client to verify that the certificate chain is correct. The following is a
client-side code example that shows how to get the information from the server.
This example simply prints the information, but client code can use the return
values as needed.

First you must look up an object on the server. This example uses the manager
object from the bank example (see "bank" on page A-48) as the base server object to
get the protocol version and the negotiated cipher.

import java.util.Hashtable;
import javax.naming.*;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.AuroraServices.*;
import com.visigenic.vbroker.ssl.*;

// Set up the environment for the JNDI initial context:
Context ic = new InitialContext(environment);
AccountManager manager =

(AccountManager) ic.lookup("sess_iiop://localhost:2481:ORCL/test/myBank");

// initialize the ORB
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();

// get the SSLCertificateManager pseudo-object
CertificateManager certificateManager =

CertificateManagerHelper.narrow(
orb.resolve_initial_references("SSLCertificateManager"));

// Get the SSL current
Current current = CurrentHelper.narrow

(orb.resolve_initial_references("SSLCurrent"));

// Check the cipher
System.out.println("Negotiated Cipher: " +

CipherSuite.toString(current.getNegotiatedCipher(manager)));
Connections and Security 4-33

Using the Secure Socket Layer
// Check the protocol version
System.out.println("Protocol Version: " +

current.getProtocolVersion(manager));

// Check the peer's distinguished name
System.out.println("The server's distingushed name: " +

current.getPeerCertificateChain(manager).distinguishedName());

// Check the peer's certificate
System.out.println("The server's certificate: " +

current.getPeerCertificateChain(manager));

Using SSL on the Server Side
The object implementation does not need any special code to use SSL. However, be
aware that listeners need to be configured to listen on IIOP SSL ports. Also, the
LISTENER.ORA and SQLNET.ORA files must be configured to specify a wallet
location. For example, these files must have entries such as:

oss.source.my_wallet=
(SOURCE=(METHOD=FILE)(METHOD_DATA=

(DIRECTORY=/private/scott/oss)))

where /private/scott/oss is a directory specifying the location of an SSO
wallet. The directory name is arbitrary.

The following are not supported for SSL in this release of Oracle8i JServer:

■ Callouts. An object implementation running inside the VM cannot make
callouts to another object, either back to the client or to another server, using an
SSL connection.

■ Client-side authentication using SSL certificates is not supported.
4-34 Enterprise JavaBeans and CORBA Developer’s Guide

Non-JNDI Clients
Non-JNDI Clients
It is possible for a client to access server objects without using the JNDI classes
shown in the other sections of this chapter. Such clients can connect to an Oracle
server by using straight CosNaming methods. The following example shows how to
do this.

import org.omg.CORBA.Object;
import org.omg.CosNaming.*;
import oracle.aurora.AuroraServices.*;
import oracle.aurora.client.Login;

public class Client {

public static void main(String args[]) throws Exception {
// Parse the args
if (args.length != 4) {

System.out.println("Must supply host/port, username/ password");
System.exit(1);

}
String host = "sess_iiop://localhost:2481:ORCL";
String port = "2481";
String username = "scott";
String password = "tiger";

// access the Aurora Names Service

Bank.Account account = null;
Bank.AccountManager manager = null;

try {

// Get the Name service Object reference (Only ORB specific thing)
PublishingContext rootCtx = null;
// See the README file with this demo for more about VisiAurora.
rootCtx = VisiAurora.getNameService(host, Integer.parseInt(port));

// Get the pre-published login object reference
PublishedObject loginObj = null;
LoginServer serv = null;
NameComponent[] name = new NameComponent[2];
name[0] = new NameComponent("etc", "");
name[1] = new NameComponent("login", "");

// Lookup this object in the name service
Connections and Security 4-35

Non-JNDI Clients
Object lo = rootCtx.resolve(name);

// Make sure it is a published object
loginObj = PublishedObjectHelper.narrow(lo);

// create and activate this object (non- standard call)
lo = loginObj.activate_no_helper();
serv = LoginServerHelper.narrow(lo);

// Create a client login proxy object and authenticate to the DB
Login login = new Login(serv);
login.authenticate(username, password, null);

// Now create and get the bank object reference
PublishedObject bankObj = null;
name[0] = new NameComponent("test", "");
name[1] = new NameComponent("bank", "");

// Lookup this object in the name service
Object bo = rootCtx.resolve(name);

// Make sure it is a published object
bankObj = PublishedObjectHelper.narrow(bo);

// create and activate this object (non- standard call)
bo = bankObj.activate_no_helper();
manager = Bank.AccountManagerHelper.narrow(bo);

account = manager.open("Jack.B.Quick");

float balance = account.balance();
System.out.println

("The balance in Jack.B.Quick's account is $" + balance);
} catch (org.omg.CORBA.SystemException ex) {

System.out.println("Caught System Ex: " + ex);
ex.printStackTrace();

} catch(java.lang.Exception ex) {
System.out.println("Caught Unknown Ex: " + ex);
ex.printStackTrace();

}
}

}

4-36 Enterprise JavaBeans and CORBA Developer’s Guide

For More Information
For More Information
You can obtain documentation and other collateral information about JNDI from the
following web site:

http://java.sun.com/products/jndi/index.html
Connections and Security 4-37

For More Information
4-38 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Ha
5

Transaction Handling

This chapter covers transaction management for both CORBA and EJB applications.
Transaction handling in the two distributed component development models has
some fundamental similarities, but there are also some differences. For example, the
application developer who is using EJBs can elect to have the EJB container manage
all transactions in a way that is transparent to the client application and to the bean
developer. The developer does not have to write any transaction code at all—the
transactional properties of the application can be declared at bean deployment time.
In this sense, EJBs are said to have declarative transactional capability.

The CORBA developer, on the other hand, must use the transactional APIs
provided—usually a mapping of a subset of the OMG Object Transaction Service
(OTS) API, such as the Java Transaction Service (JTS) that is supplied with Oracle8i
JServer. The CORBA developer must code calls to a transaction service to enable
transactional properties for distributed objects, where this is required.

But the EJB developer might require finer-grained control of the application’s
transactional properties than that offered by the declarative transactional
capabilities built-in to the EJB container. In this case, the developer can use explicit
calls to transaction API methods, either on the client side or in the bean
implementations themselves.

This chapter discusses the following topics:

■ Transaction Overview

■ Transaction Service Interfaces

■ CORBA Examples

■ Transaction Management for EJBs

■ EJB Transaction Examples

■ For More Information
ndling 5-1

Transaction Overview
Transaction Overview
A transaction is a unit of work, usually associated with a database management
system. Transactions are described in terms of the so-called ACID properties. A
transaction is:

■ Atomic: all changes to the database made in a transaction are rolled back if any
change fails.

■ Consistent: the effects of a transaction take the database from one consistent
state to another consistent state.

■ Isolated: the intermediate steps in a transaction are not visible to other users of
the database.

■ Durable: when a transaction is completed (committed or rolled back), its effects
persist in the database.

Most of the transactional features that are part of the Oracle8i database server are
available to the CORBA or EJB distributed application developer.

Oracle8i JServer supports two transaction APIs for use in CORBA and EJB
applications:

■ the Java Transaction Service (JTS) API

■ the UserTransaction interface

The JTS is a Java binding to the OMG Object Transaction Service (OTS). It is used
for client-side demarcated transactions, and for transaction management in CORBA
server objects.

The UserTransaction interface is used in EJBs, where the bean is running using the
transaction attribute TX_BEAN_MANAGED.

Limitations
The implementations of JTS that is supplied for this Oracle8i release is intended
mostly to support client-side transaction demarcation. As such it has some
limitations that you should be aware of when designing your application.

No Distributed Transactions
This implementation of JTS does not manage distributed transactions. Transaction
control distributed among multiple database servers, with support for the required
two-phase commit protocol, will be available in an upcoming release of
Oracle8i JServer.
5-2 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Overview
Resources
The JTS transaction API supplied with Oracle8i JServer manages only one resource:
an Oracle8i database session. A transaction cannot span multiple servers or
multiple database sessions in a single service.

Transaction contexts are never propagated outside a server. If a server object calls
out to another server, the transaction context is not carried along.

However, a transaction can involve one or many objects. The transaction can
encompass one or many methods of these objects. The scope of a transaction is
defined by a transaction context that is shared by the participating objects.

Nested Transactions
Nested transactions are not supported in this release. If you attempt to begin a new
transaction before committing or rolling back any existing transaction, the
transaction service throws a SubtransactionsUnavailable exception.

Timeouts
Methods of the JST that support transaction timeout, such as setTimeout() , do
not work in this release. You can invoke them from your code, and no exception is
thrown, but they have no effect.

Interoperability
The transaction services supplied with this release do not interoperate with other
OTS implementations.

Transaction Demarcation
A transaction is said to be demarcated. This simply means that it has a definite
beginning and definite end point. For example, in an interactive tool such as
SQL*Plus, each SQL DML statement implicitly begins a new transaction, if it is not
already part of a transaction. A transaction ends when a SQL COMMIT or
ROLLBACK statement is issued.

In a distributed object application, transactions are often described as client-side
demarcated (or sometimes just client demarcated), or server-side demarcated
(equivalently server demarcated).

In client-side demarcation, a transactional client explicitly encloses one or more
method invocations on a server object with demarcation methods that begin and
end transactions. The begin and end demarcaters are method calls on the client-side
Transaction Handling 5-3

Transaction Service Interfaces
transaction service. See "Client-Side Demarcation" on page 5-10 for
specific examples.

Server-side transaction demarcation implies that the server-side object begins and
either commits or rolls back a transaction. Note that a transaction can span several
objects, any one of which can suspend, resume, or end the transaction.

Transaction Context
The transaction context is a pseudo-object that is passed to the server object from the
client, or from one server object to another, in the case where one server object is
invoking methods on another, and hence acting as its client. The transaction context
carries the state of the transaction.

After a client-side transaction service is initialized, and a begin transaction method
is invoked, the transaction service implicitly creates a transaction context, and
assigns a transaction ID number to the context. The client transaction service then
propagates the transaction context to each participant in the transaction, that is, to
each object that the client calls.

Propagation of the transaction context on each method invocation is normally
transparent to the client program. The transaction context is maintained by the
transaction service for each client. Transaction contexts are propagated
transparently from the transaction initiator to the server object. On the client side,
an interceptor is engaged to submit the transaction context on any method call to a
server object. A server-side interceptor extracts the transaction context information,
and makes it available to the server object.

As stated in "Limitations" on page 5-2, a transaction context cannot span multiple
sessions. Each new session connection requires a new transaction context.

Transaction Service Interfaces
Oracle8i supports a version of the JTS. The JTS is a Java mapping of the OMG Object
Transaction Service (OTS). There are two classes that the application developer
can use:

■ TransactionService

■ UserTransaction , implemented by
oracle.aurora.jts.client.AuroraTransactionService
5-4 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Service Interfaces
The section below describes the TransactionService interface. Because it is
used with EJBs, the UserTransaction class is described in
"AuroraUserTransaction" on page 5-17.

TransactionService
Use the TransactionService to initialize a transaction context on the client.
Include the AuroraTransactionService package in your Java client source with
the following import statements:

import oracle.aurora.jts.client.AuroraTransactionService;
import javax.jts.*;
import oracle.aurora.jts.util.*;

These classes are included in the library file aurora_client.jar , which must be
in the classpath when compiling and executing all source files that use the JTS.

There is only one method in this package that you can call:

public synchronized static void initialize(Context initialContext,
String serviceName)

This method initializes the transaction context on a client. The parameters are:

An example of using initialize() is:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context initialContext = new InitialContext(env);
AuroraTransactionService.initialize

(initialContext, "sess_iiop://localhost:2481:ORCL");

See also the complete example in "clientside" on page A-95.

initialContext The context object returned by a JNDI Context constructor.

serviceName The complete service name. For example
sess_iiop://localhost:2481:ORCL
Transaction Handling 5-5

Transaction Service Interfaces
Using The Java Transaction Service
The JTS package itself contains methods that a client-side or server-side object uses
to begin transactions, commit or roll back a transaction, and perform utility
functions such as setting the transaction timeout. The JTS methods should be used
in CORBA or EJB clients, or in CORBA server objects. Developers implementing
EJBs, and who need fine-grained transaction control within beans should use the
UserTransaction interface in a bean-managed state. See "Transaction
Management for EJBs" on page 5-12 for more information.

To use the JTS methods, code the following import statements in your source:

import oracle.aurora.jts.util.TS;
import javax.jts.util.*;
import org.omg.CosTransactions.*;

The oracle.aurora.jts.util package is included in the library file
aurora_client.jar , which must be in the classpath for all Java sources that use
the JTS.

You use the static methods in the TS class to get the transaction service.

Java Transaction Service Methods
The JTS includes the following methods:

public static synchronized TransactionService getTS()

getTS() returns a transaction service object. Once a transaction service has been
obtained, you can invoke the static method getCurrent() on it to return a
Current pseudo-object, the transaction context. Then you can invoke methods to
begin, suspend, resume, commit, or roll back the current transaction on the
Current pseudo-object.

Here is an example that begins a new transaction on a client, starting with getting
the JNDI initial context:

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jts.client.AuroraTransactionService;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
...
Context ic = new InitialContext(env);
...
AuroraTransactionService.initialize(ic, serviceURL);
5-6 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Service Interfaces
...
Employee employee = (Employee)ic.lookup (serviceURL + objectName);
EmployeeInfo info;
oracle.aurora.jts.util.TS.getTS().getCurrent().begin();

If there is no transaction service available, then getTS() throws a
NoTransactionService exception.

Current Transaction Methods
The methods that you can call to control transactions on the current transaction
context are the following:

public void begin()

Begins a new transaction.

Can throw these exceptions:

■ NoTransactionService —if you have not initialized a transaction context.

■ SubtransactionsUnavailable —if you invoke a begin() before the
current transaction has been committed or rolled back.

See the section "TransactionService" on page 5-5 for information
about initialization.

public Control suspend()

Suspends the current transaction in the session. Returns a Control transaction
context pseudo-object. You must save this object reference for use in any subsequent
resume() invocations. Invoke suspend() in this way:

org.omg.CosTransactions.Control c =
oracle.aurora.jts.util.TS.getTS().getCurrent().suspend();

suspend() can throw these exceptions:

■ NoTransactionService —if you have not initialized a transaction context.

■ TransactionDoesNotExist —if not in an active transaction context. This can
occur if a suspend() follows a previous suspend() , with no
intervening resume() .

If suspend() is invoked outside of a transaction context, then a
NoTransactionService exception is thrown. If suspend() is invoked before
begin() has been invoked, or after a suspend() , the a exception is thrown.
Transaction Handling 5-7

Transaction Service Interfaces
public void resume(Control which)

Resumes a suspended transaction. Invoke this method after a suspend() , in order
to resume the specified transaction context. The which parameter must be the
transaction Control object that was returned by the previous matching
suspend() invocation in the same session. For example:

org.omg.CosTransactions.Control c =
oracle.aurora.jts.util.TS.getTS().getCurrent().suspend();

... // do some non-transactional work
oracle.aurora.jts.util.TS.getTS().getCurrent().resume(c);

resume() can throw:

■ InvalidControl —if the which parameter is not valid, or is null.

public void commit(boolean report_heuristics)

Commits the current transaction. Set the report_heuristics parameter to
false .

(The report_heuristics parameter is set to true for extra information on
two-phase commits. Because this release of JServer does not support the two-phase
commit protocol for distributed objects, use of the report_heuristics
parameter is not meaningful. It is included for compatibility with future releases.)

commit() can throw:

■ HeuristicMixe d—if report_heuristics was set true, and a two-phase
commit is in progress.

■ HeuristicHazard —if report_heuristics was set true, and a two-phase
commit is in progress.

The HeuristicMixe d and HeuristicHazard exceptions are documented in the
OTS specification. See "For More Information" on page 5-23 for the location of the
OTS specification.

If there is no active transaction, commit() throws a NoTransaction exception.

public void rollback()

Rolls back the effects of the current transaction.
5-8 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Service Interfaces
Invoking rollback() has the effect of ending the transaction, so invoking any JTS
method except begin() after a rollback() throws a NoTransaction exception.

If not in a transaction context, rollback() throws the NoTransaction exception.

public void rollback_only() throws NoTransaction {

rollback_only() modifies the transaction associated with the current thread so
that the only possible outcome is to roll back the transaction. If not in a transaction
context, rollback_only() throws the NoTransaction exception.

public void set_timeout(int seconds)

This method is not supported, and has no effect if invoked. The default timeout
value is 60 seconds in all cases.

public Status get_status()

You can call get_status() at any time to discover the status of the current
transaction. Possible return values are:

■ javax.transaction.Status.StatusActive

■ javax.transaction.Status.StatusMarkedRollback

■ javax.transaction.Status.StatusNoTransaction

The complete set of status ints is defined in javax.transaction.Status .

public String get_transaction_name() {

Invoke get_transaction_name() to see the name of the transaction, returned as
a String. If this method is invoked before a begin() , after a rollback() , or
outside of a transaction context, it returns a null string.
Transaction Handling 5-9

CORBA Examples
CORBA Examples
This section shows some examples that use the JTS interface for CORBA client code
and CORBA server objects. See "Transaction Examples" on page A-95 for a set of
complete examples that you can run and modify.

Client-Side Demarcation
Follow these steps to use JTS methods in your CORBA client code:

■ Import the following packages:

■ oracle.aurora.jts.client.AuroraTransactionService

■ oracle.aurora.jts.util.TS

■ org.omg.CosTransactions

■ Invoke AuroraTransactionService.initialize() , passing to it the
service URL for the application (for example,
sess_iiop://localhost:2481:ORCL) and the JNDI initial context.

■ Begin a transaction by invoking
oracle.aurora.jts.util. TS.getTS().getCurrent().begin() .

For example:

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jts.client.AuroraTransactionService;
import oracle.aurora.jts.util.TS;
import org.omg.CosTransactions.*;
// Include normal startup code...
// Initialize a transaction context...
AuroraTransactionService.initialize(ic, serviceURL);

// Begin a transaction...
oracle.aurora.jts.util.TS.getTS().getCurrent().begin();

// Call methods that involve SQL DML...
employee.updateEmployee(info);
...
// Commit (or roll back) the SQL statements...
oracle.aurora.jts.util.TS.getTS().getCurrent().commit(false);

For a complete example that uses these techniques for client-side transaction
demarcation, see "clientside" on page A-95.
5-10 Enterprise JavaBeans and CORBA Developer’s Guide

CORBA Examples
Server-Side JTS
Follow these steps to use JTS methods in your CORBA server object code:

■ Import the following packages:

■ oracle.aurora.jts.util.TS

■ org.omg.CosTransactions

■ You do not need to invoke AuroraTransactionService.initialize()
on the server, as the server does this for you.

■ Begin a transaction by invoking TS.getTS().getCurrent().begin() . You
can do this in a separate method, or as part of a method that does the first SQL
DML using JDBC or SQLJ. A transaction spans methods—its scope is within the
session where it is begun.

■ End a transaction by invoking
TS.getTS().getCurrent().commit(false), or
TS.getTS().getCurrent().rollback().

You can also invoke other JTS methods, such as set_timeout() , from within a
server object.

See the complete example at "serversideJTS" on page A-106 for a demonstration of
CORBA server-side transaction demarcation.

Transactions in Multiple Sessions
See the complete example at "multiSessions" on page A-120 for an example that
establishes multiple server sessions, each with its own transaction context.
Transaction Handling 5-11

Transaction Management for EJBs
Transaction Management for EJBs
The previous sections focused on general aspects of transaction management for
distributed objects, and on transaction management for CORBA applications using
the JTS.

An EJB application can also use JTS—on the client side only—to manage transactions.
More typically an EJB application uses declarative transaction management, letting
the EJB container provide the transaction control. You do this by specifying the
appropriate value for the TransactionAttribute of the EJB deployment descriptor,
either for the whole EJB, or on a method-by-method basis, where applicable.

For example, if the deployment descriptor for a bean declares that the bean has the
transaction attribute TX_REQUIRES_NEW, then the bean container starts a
transaction before each invocation of bean method, and attempts to commit the
transaction when the method completes.

The following sections describe the values that you can set for the EJB
transaction attribute.

Declarative Transactions
The bean deployer declares the transaction handling characteristics of a bean in the
deployment descriptor. This is specified in the transaction attribute, which has six
possible values:

■ TX_NOT_SUPPORTED

■ TX_REQUIRED

■ TX_SUPPORTS

■ TX_REQUIRES_NEW

■ TX_MANADATORY

■ TX_BEAN_MANAGED

The semantics of these attribute values are described in this section. See
"Programming Restrictions" on page 2-32 for more information about the EJB
deployment descriptor itself.

TX_NOT_SUPPORTED
When TX_NOT_SUPPORTED is declared for the bean itself, it means that Oracle8i
does not invoke transaction support for the bean methods. However, a method
declaration in the deployment descriptor can over-ride this declaration. If the client
5-12 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Management for EJBs
is in a transaction (has established an active transaction context), then the bean
container suspends transaction support during delegation of method calls on the
bean, and resumes the transaction context when the method call completes.

The suspended transaction context is not propagated to other objects that are
invoked from within the bean code.

A bean that is running under TX_NOT_SUPPORTED cannot perform any SQL
operations. An exception is thrown by the EJB server if this is attempted.

TX_REQUIRED
If the client invokes a bean method with the TX_REQUIRED attribute, there are two
possibilities:

The transaction context is passed to other Enterprise JavaBean objects that are
invoked from the enterprise Bean object, as long as they are in the same session.

TX_SUPPORTS
If the client has established a transaction context, then the bean container uses that
context. If the client has no established transaction context, then the EJB methods
are invoked with no transaction support.

TX_REQUIRES_NEW
The container always invokes the bean methods with a new transaction. The
container commits the transaction, if possible, before sending the method results to
the client.

The client had not
started a transaction

If the client has not established a transaction context, the bean
starts a new transaction for each method call. The transaction
is committed, if possible, after each call completes. The
commit protocol is completed before the bean results are sent
to the client.

Oracle8i sends the transaction context for the transaction that
it has established to other resources or EJBs that are invoked
from the current bean.

The client had
started a transaction

The bean container delegates calls to the bean methods using
the client transaction context.
Transaction Handling 5-13

Transaction Management for EJBs
If the client has established a transaction content, the client transaction is suspended
before the bean transaction is started, and is resumed when the bean transaction
completes (at the end of each method call).

If the client has established a transaction context, the association is suspended
before the new transaction is started and is resumed when the new transaction
has completed.

The container-managed transaction context is passed to the resources or other EJB
objects that the bean invokes.

An enterprise Bean that has the TX_REQUIRES_NEW transaction attribute is
always invoked in the scope of a new transaction. The container starts a new
transaction before delegating a method call to the enterprise Bean object, and
attempts to commit the transaction when the method call on the enterprise Bean
object has completed. The container performs the commit protocol before the
method result is sent to the client.

The new transaction context is passed to the resources or other enterprise Bean
objects that are invoked from the enterprise Bean object.

TX_MANDATORY
If an EJB method is invoked with the TX_MANADATORY attribute, the client
transaction context is always used. If the client has not established a transaction
context, the container throws the TransactionRequired exception to the client.

The client transaction context is propagated to the resources or other enterprise
Bean objects that are invoked from the enterprise Bean object.

TX_BEAN_MANAGED
The bean-managed attribute value is the one that lets the bean get access to the
transaction service on its own behalf. Session beans get access to the transaction
service through the session context that is supplied to the bean at initialization, as a
parameter in the setSessionContext() call. The SessionContext interface
subclasses EJBContext.

The bean implementation must use the javax.jts.UserTransaction interface
methods to manage transactions on its own. See "Using The Java Transaction
Service" on page 5-6 for a description of these methods.

The TX_BEAN_MANAGED attribute value cannot be mixed with other transaction
attribute values. For example, if the bean-level descriptor, or one of the
method-level descriptors, specifies TX_BEAN_MANAGED, then all method-level
descriptors present must specify TX_BEAN_MANAGED. When using
5-14 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Management for EJBs
bean-managed transactions, the transaction boundaries span bean methods. You
can begin a transaction in one method, and the transaction can be rolled back or
committed in a separate method, called later.

The container makes the javax.jts.UserTransaction interface available to
the enterprise Bean though the EJBContext.getUserTransaction() method,
as illustrated in the following example.

import javax.jts.UserTransaction;
...
EJBContext ic = ...;
...
UserTransaction tx = ic.getUserTransaction();
tx.begin();
... // do work
tx.commit();

The container must manage transactions on a TX_BEAN_MANAGED Bean
as follows.

When a client invokes a stateful TX_BEAN_MANAGED Bean, the container
suspends any incoming transaction. The container allows the session instance to
initiate a transaction using the javax.jts.UserTransaction interface. The
instance becomes associated with the transaction and remains associated until the
transaction terminates.

When a Bean-initiated transaction is associated with the instance, methods on the
instances run under that transaction.

It is possible that a business method that initiated the transaction completes without
committing or rolling back the transaction. The container must retain the
association between the transaction and the instance across multiple client calls
until the transaction terminates.
Transaction Handling 5-15

Transaction Management for EJBs
session Synchronization
An EJB can optionally implement the session synchronization interface, to be
notified by the container of the transactional state of the bean. The following
methods are specified in the javax.ejb.SessionSynchronization interface:

afterBegin
public abstract void afterBegin() throws RemoteException

The afterBegin() method notifies a session Bean instance that a new transaction
has started, and that the subsequent methods on the instance are invoked in the
context of the transaction.

A bean can use this method to read data from a database and cache the data in the
bean’s fields.

This method executes in the proper transaction context.

beforeCompletion
public abstract void beforeCompletion() throws RemoteException

Table 5–1 Effect of declarative transaction attribute

Transaction Attribute
Value Client Transaction

Transaction of EJB
Method

TX_NOT_SUPPORTED none none

T1 none

TX_REQUIRED none new transaction - T2

T1 T1

TX_SUPPORTS none none

T1 T1

TX_REQUIRES_NEW none new transaction - T2

T1 T2

TX_MANDATORY none TransactionRequired
exception thrown

T1 T1
5-16 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Management for EJBs
The container calls the beforeCompletion() method to notify a session bean that
a transaction is about to be committed. You can implement this method to, for
example, write any cached data to the database.

afterCompletion
public abstract void afterCompletion(boolean committed) throws RemoteException

The container calls afterCompletion() to notify a session bean that a transaction
commit protocol has completed. The parameter tells the bean whether the
transaction has been committed or rolled back.

This method executes with no transaction context.

JDBC
If you are using JDBC calls in your bean to update a database, you should not also
use JDBC to perform transaction services, by calling methods on the JDBC
connection. Do not code JDBC calls on a connection, for example:

Connection conn = ...
...
conn.commit(); // DO NOT DO THIS!!

You also avoid doing direct SQL commits or rollbacks through JDBC. Code the bean
to either handle transactions directly using the javax.jts.UserTransactions
interface (if the TransactionAttribute value is TX_BEAN_MANAGED), or let
the bean container manage the bean transactions.

AuroraUserTransaction
You use the UserTransaction interface to manage transactions in Enterprise
JavaBeans. The UserTransaction interface is a higher-level interface than the raw
JTS, although its functionality is almost identical. However, EJB developers must
use the UserTransaction interface for EJB bean-managed transaction support.
The UserTransaction interface is used only for bean-managed EJBs.

See "serversideJTS" on page B-56 for a complete example of bean-managed
transaction control.

To incorporate UserTransaction methods in your bean implementation code,
follow these steps:

■ Import the javax.jts.UserTransaction package.
Transaction Handling 5-17

Transaction Management for EJBs
■ Be sure to get the session context, using the setSessionContext()
SessionBean method. See the example.

■ Invoke the UserTransaction methods on the transaction context. See the
example.

Methods

public void begin()

begin() creates a new transaction and associates it with the current bean.

Throws IllegalStateException if you attempt to invoke it in the context of an
existing transaction.

public void commit()

commit() commits the transaction results, and completes the transaction
associated with the current bean. When the commit() method completes, the bean
is no longer associated with a transaction.

commit() can throw any of the following exceptions:

■ TransactionRolledbackException

■ HeuristicMixedException

■ HeuristicRollbackException

■ SecurityException

■ IllegalStateException

public int getStatus()

Returns the status of the current transaction. See "Java Transaction Service Methods"
on page 5-6 for more information about the status values that can be returned.

public void resume()

Resumes a suspended transaction.

public void rollback()

Rolls back the effects of the current transaction.

rollback() can throw the following exceptions:

■ IllegalStateException
5-18 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Management for EJBs
■ SecurityException

public void setRollbackOnly()

The effect of a setRollbackOnly() invocation is that the only possible
conclusion to the current transaction is a roll back operation. Any attempt to
perform a commit() after setRollbackOnly() is invoked results in a exception.

setRollBackOnly() throws an IllegalStateException , if not in a
transaction.

public void setTransactionTimeout(int arg1)

This method is implemented, but has no effect in this release. The timeout value is
always 60 seconds.

Session Synchronization
An EJB can optionally implement the session synchronization interface, to be
notified by the server of the state of the transaction. The following methods are
specified in the javax.ejb.SessionSynchronization interface:

afterBegin
public abstract void afterBegin() throws RemoteException

The afterBegin() method notifies a session Bean instance that a new transaction
has started, and that the subsequent methods on the instance are invoked in the
context of the transaction.

A bean can use this method to read data from a database and cache the data in the
bean’s fields.

This method executes in the proper transaction context.

beforeCompletion
public abstract void beforeCompletion() throws RemoteException

The container calls the beforeCompletion() method to notify a session bean that
a transaction is about to be committed. You can implement this method to, for
example, write any cached data to the database.
Transaction Handling 5-19

EJB Transaction Examples
afterCompletion
public abstract void afterCompletion(boolean committed) throws RemoteException

The container calls afterCompletion() to notify a session bean that a transaction
commit protocol has completed. The parameter tells the bean whether the
transaction has been committed or rolled back.

This method executes with no transaction context.

EJB Transaction Examples
This section shows a few abbreviated examples of transaction management for EJB
applications. For a set of complete programs, see "Transaction Examples" on
page B-45.

Client-Side Demarcated
If your EJB application requires client-side transaction demarcation, you use the JTS
interface, as explained in "Using The Java Transaction Service" on page 5-6. See the
section "clientside" on page B-45 for a complete example of EJB client-side
transaction demarcation.

Transaction Management in an EJB
Use the UserTransaction interface to set up a transaction context within an EJB.
In the bean implementation, make sure to import the
javax.jts.UserTransaction package. Unlike the TransactionService
when used on the client side, you do not need to initialize the UserTransaction
interface from within an EJB. The container does that for you.

Getting the Session Context
In the EJB, use the setSessionContext() session bean method to obtain the
session context, and save it in an instance variable. For example, code this
implementation of the setSessionContext() method:

public class XBean implements SessionBean {
SessionCtx ctx;
...
public void setSessionContext(SessionContext ctx) {

this.ctx = ctx;
}

5-20 Enterprise JavaBeans and CORBA Developer’s Guide

EJB Transaction Examples
You can then use the session context ctx to invoke UserTransaction methods.

Beginning a Transaction
Invoke the begin() method as follows:

ctx.getUserTransaction.begin();

to start a transaction.

Committing a Transaction
Invoke the commit() method as follows:

ctx.getUserTransaction().commit();

to end the transaction with a commit.

Other UserTransaction Methods
Invoke other methods of the UserTransaction interface in the same way that you
do a begin() or a commit() —invoke them on a UserTransaction object of the
session context.

See the section "serversideJTS" on page B-56 for a complete example that uses the
UserTransaction interface in an EJB.
Transaction Handling 5-21

JDBC
JDBC
If you are using JDBC calls in your CORBA server object or EJB to update a
database, and you have an active transaction context, you should not also use JDBC
to perform transaction services, by calling methods on the JDBC connection. Do not
code JDBC transaction management methods. For example:

Connection conn = ...
...
conn.commit(); // DO NOT DO THIS!!

Doing so will cause a SQL exception to be thrown.

You must also avoid doing direct SQL commits or rollbacks through JDBC. Code
the bean to either handle transactions directly using the
javax.jts.UserTransactions interface (if the TransactionAttribute
value is TX_BEAN_MANAGED), or let the bean container manage the
bean transactions.
5-22 Enterprise JavaBeans and CORBA Developer’s Guide

For More Information
For More Information
Information on the Java Transaction Service is available at:

http://java.sun.com:/products/jts/index.html

The Sun JTA specification is available at:

http://java.sun.com/products/jts/index.html

The OTS specification is part of the CORBA services specification. Chapter 10
(individually downloadable) contains the OTS specification. Get it at:

http://www.omg.org/library/csindx.html
Transaction Handling 5-23

For More Information
5-24 Enterprise JavaBeans and CORBA Developer’s Guide

6

Tools

This chapter describes the tools you use to deploy CORBA implementations and
Enterprise JavaBeans in the Oracle8i Java environment. You run these tools from a
Unix shell or the Windows NT DOS prompt.

The tools described in this chapter fall into these groups:

■ Schema Object Tools

■ Session Namespace Tools

■ Enterprise JavaBean Tools

■ VisiBroker™ for Java Tools

■ Miscellaneous Tools

Schema Object Tools
Unlike a conventional Java VM, which compiles and loads Java files, the Oracle8 i
JVM compiles and loads schema objects. The three kinds of Java schema objects are:

■ Java class schema objects, which correspond to Java class files.

■ Java source schema objects, which correspond to Java source files.

■ Java resource schema objects, which correspond to Java resource files.

To make a class file runnable by the Oracle8 i JVM, you use the loadjava tool to
create a Java class schema object from the class file or the source file and load it into
a schema. To make a resource file accessible to the JVM, you use loadjava to
create and load a Java resource schema object from the resource file.

The dropjava tool does the reverse of the loadjava tool; it deletes schema objects
that correspond to Java files. You should always use dropjava to delete a Java
Tools 6-1

Schema Object Tools
schema object that was created with loadjava ; dropping by means of SQL DDL
commands will not update auxiliary data maintained by loadjava and dropjava
(see "Digest Table" on page 6-4).

What and When to Load
You must load resource files with loadjava . If you create .class files outside the
database with a conventional compiler, then you must load them with loadjava .
The alternative to loading class files is to load source files and let the Oracle8 i
system compile and manage the resulting class schema objects. In the current
Oracle8 i release, most developers will find that compiling and debugging most of
their code outside the database and then loading .class files to debug those files
which must be tested inside the database, is the most productive approach. For a
particular Java class, you can load either its .class file or its .java file, but not
both.

loadjava accepts JAR files that contain either source and resource files or class
and resource files (recall that you can load a class’s source or its class file but not
both). When you pass loadjava a JAR file or a ZIP file, loadjava opens the
archive and loads its members individually; there is no JAR or ZIP schema object. A
file whose content has not changed since the last time it was loaded is not re-loaded
(see "Digest Table" on page 6-4), therefore there is little performance penalty for
loading JARs. Loading JAR files is the simplest and most foolproof way to use
loadjava .

It is illegal for two schema objects in the same schema to define the same class. For
example, suppose a.java defines class x and you want to move the definition of x
to b.java . If a.java has already been loaded, then loadjava will reject an
attempt to load b.java (which also defines x). Instead, do either of the following:

■ Drop (see "dropjava" on page 6-15) a.java , load b.java (which defines x),
then load the new a.java (which does not define x).

■ Load the new a.java (which does not define x), then load b.java (which
defines x).

Resolution
Many Java classes contain references to other classes. A conventional JVM searches
for classes in the directories, ZIP files, and JARs named in the CLASSPATH. The
Oracle8 i JVM, by contrast, searches schemas for class schema objects. Each Oracle8i
class has a resolver spec, which is the Oracle8 i counterpart to the CLASSPATH. For a
hypothetical class alpha , its resolver spec is a list of schemas to search for classes
6-2 Enterprise JavaBeans and CORBA Developer’s Guide

Schema Object Tools
alpha uses. Notice that resolver specs are per-class, whereas in a classic JVM,
CLASSPATH is global to all classes.

In addition to a resolver spec, each class schema object has a list of interclass
reference bindings. Each reference list item contains a reference to another class, and
one of the following:

■ the name of the class schema object to invoke when class uses the reference

■ a code indicating that the reference is unsatisfied; in other words, the referent
schema object is not known

An Oracle8 i facility called the resolver maintains reference lists. For each interclass
reference in a class, the resolver searches the schemas specified by the class’s
resolver spec for a valid class schema object that satisfies the reference. If all
references are resolved, the resolver marks the class valid. A class that has never
been resolved, or has been resolved unsuccessfully, is marked invalid. A class that
depends on a schema object that becomes invalid is also marked invalid at the same
time; in other words, invalidation cascades upward from a class to the classes that
use it and the classes that use them, and so on. When resolving a class that depends
on an invalid class, the resolver first tries to resolve the dependency because it may
be marked invalid only because it has never been resolved. The resolver does not
re-resolve classes that are marked valid.

A class developer can direct loadjava to resolve classes, or can defer resolution
until run time. (The resolver runs automatically when a class tries to load a class
that is marked invalid.) It is best to resolve before run time to learn of missing
classes early; unsuccessful resolution at run time produces a “class not found”
exception. Furthermore, run-time resolution can fail for lack of database resources if
the tree of classes is very large.

loadjava has two resolution modes (in addition to “defer resolution”):

1. Load-then-resolve (-resolve option): Loads all classes you specify on the
command line, marks them invalid, and then resolves them. Use this mode
when initially loading classes that refer to each other, and in general when
reloading isolated classes as well. By loading all classes and then resolving
them, this mode avoids the error message that occurs if a class refers to a class
that will be loaded later in the execution of the command.

2. Load-and-resolve (-andresolve option): Resolves each class as it is loaded. In
general, this mode is not recommended, especially in combination with a
resolver spec that leaves unresolved classes marked valid. For example, suppose
you are loading A followed by B, and A refers to B, and you use the following
Tools 6-3

Schema Object Tools
loadjava arguments (resolver spec notation is described in "resolver" on
page 6-13):

-andresolve -resolver "((* definer's_schema) (* public) (* -))"

A will be resolved before B is loaded; although B is not present, A will be marked
valid because the third element of the resolver spec says to mark A valid even
though a class it refers to (B) cannot be found. After A, B will be loaded, resolved,
and marked valid (assuming its dependencies are satisfied). If you then execute A,
it will not be re-resolved because it is marked valid. But if A calls B, you may get an
unpredictable exception because A has not been successfully resolved with respect
to B.

If you can, it is best to defer resolution until all classes have been loaded; this
technique avoids the situation in which the resolver marks a class invalid because a
class it uses has not yet been loaded.

Digest Table
The schema object digest table is an optimization that is usually invisible to
developers. The digest table enables loadjava to skip files that have not changed
since they were last loaded. This feature improves the performance of makefiles and
scripts that invoke loadjava for collections of files, only some of which need to be
re-loaded. A re-loaded archive file might also contain some files that have changed
since they were last loaded and some that have not.

The loadjava tool detects unchanged files by maintaining a digest table in each
schema. The digest table relates a file name to a digest, which is a shorthand
representation of the file’s content (a hash). Comparing digests computed for the
same file at different times is a fast way to detect a change in the file’s
content—much faster than comparing every byte in the file. For each file it
processes, loadjava computes a digest of the file’s content and then looks up the
file name in the digest table. If the digest table contains an entry for the file name
that has the identical digest, then loadjava does not load the file because a
corresponding schema object exists and is up to date. If you invoke loadjava with
the -verbose option, then it will show you the results of its digest table lookups.

Note: Like a Java compiler, loadjava resolves references to
classes but not to resources; be sure to correctly load the resource
files your classes need.
6-4 Enterprise JavaBeans and CORBA Developer’s Guide

Schema Object Tools
Normally, the digest table is invisible to developers because loadjava and
dropjava keep it synchronized with schema object additions, changes, and
deletions. For this reason, always use dropjava to delete a schema object that was
created with loadjava , even if you know how to drop a schema object with DDL.
If the digest table becomes corrupted (loadjava does not update a schema object
whose file has changed), use loadjava ’s -force option to bypass the digest table
lookup.

Compilation
Loading a source file creates or updates a Java source schema object and invalidates
the class schema object(s) previously derived from the source. (If the class schema
objects don’t exist, loadjava creates them.) loadjava invalidates the old class
schema objects because they were not compiled from the newly loaded source.
Compilation of a newly loaded source, called for instance A, is automatically
triggered by any of the following conditions:

■ The resolver, working on class B, finds that it refers to class A but class A is
invalid.

■ The compiler, compiling source B, finds that it refers to class A but A is invalid.

■ The class loader, trying to load class A for execution, finds that it is invalid.

To force compilation when you load a source file, use the loadjava -resolve or
-andresolve option.

The compiler writes error messages to the predefined USER_ERRORS view;
loadjava retrieves and displays the messages produced by its compiler
invocations. See the Oracle8i Reference for a description of this table.

The compiler recognizes two options which are described in this section, encoding
and online . There are two ways to specify options to the compiler. If you run
loadjava with one of the resolve options (which may trigger compilation), then
you can specify compiler options on the command line.

You can additionally specify persistent compiler options in a per-schema database
table called JAVA$OPTIONS which you create as described shortly. You can use the
Tools 6-5

Schema Object Tools
JAVA$OPTIONS table for default compiler options, which you can override
selectively with a loadjava command-line option.

A JAVA$OPTIONS row contains the names of source schema objects to which an
option setting applies; you can use multiple rows to set the options differently for
different source schema objects. The compiler looks up options in the
JAVA$OPTIONS table when it has been invoked without a command line (that is, by
the class loader), or when the command line does not specify an option. When
compiling a source schema object for which there is neither a JAVA$OPTIONS entry
nor a command line value for an option, the compiler assumes a default value as
follows:

■ encoding = latin1 : see Table 6–2 on page 6-8 for a description of this option.

■ online = true : see the Oracle8i SQLJ Developer’s Guide and Reference for a
description of this option, which only applies to Java sources that contain SQLJ
constructs.

You can set JAVA$OPTIONS entries by means of the following functions and
procedures, which are defined in the database package DBMS_JAVA:

■ PROCEDURE set_compiler_option(name VARCHAR2, option
VARCHAR2, value VARCHAR2);

■ FUNCTION get_compiler_option(name VARCHAR2, option
VARCHAR2) RETURNS VARCHAR2;

■ PROCEDURE reset_compiler_option(name VARCHAR2, option
VARCHAR2);

The name parameter is a Java package name, or a fully qualified class name, or the
empty string. When the compiler searches the JAVA$OPTIONS table for the options
to use for compiling a Java source schema object, it uses the row whose name most
closely matches the schema object’s fully qualified class name. For examples, see
Table 6–1 on page 6-7. A name whose value is the empty string matches any
schema object name.

The option parameter is either 'online' or 'encoding' . For the value s you
can specify for these options, see Table 6–2 on page 6-8 and the Oracle8i SQLJ
Developer’s Guide and Reference , respectively.

Note: A command-line option both overrides and clears the
matching entry in the JAVA$OPTIONS table.
6-6 Enterprise JavaBeans and CORBA Developer’s Guide

Schema Object Tools
A schema does not initially have a JAVA$OPTIONS table. To create a
JAVA$OPTIONS table, use the DBMS_JAVA package’s
java.set_compiler_option procedure to set a value; the procedure will create
the table if it does not exist. Specify parameters in single quotes. For example:

SQL> execute dbms_java.set_compiler_option('x.y', 'online', 'false');

Table 6–1 represents a hypothetical JAVA$OPTIONS database table. Because the
table has no entry for the encoding option, the compiler will use the default or the
value specified on the command line. The online options shown in the table match
schema object names as follows:

■ The name a.b.c.d matches class and package names beginning with
a.b.c.d ; they will be compiled with online = true .

■ The name a.b matches class and package names beginning with a.b but not
a.b.c.d ; they will be compiled with online = false .

■ All other packages and classes will match the empty string entry and will be
compiled with online = true .

loadjava
The loadjava tool creates schema objects from files and loads them into a schema.
Schema objects can be created from Java source files, class files, and resource files,
and the same kinds of files in uncompressed ZIP and Java archives (JARs).
loadjava can also create schema objects from SQLJ files; the Oracle8i SQLJ
Developer’s Guide and Reference describes how to use loadjava with SQLJ. You
must have the CREATE PROCEDURE privilege to load into your schema, and the
CREATE ANY PROCEDURE privilege to load into another schema.

Syntax
loadjava {-user | -u} <user>/<password>[@<database>] [options]
<file>.java | <file>.class | <file>.jar | <file>.zip |

Table 6–1 Example JAVA$OPTIONS Table and Matching Examples

JAVA$OPTIONS Entries
Match Examples

Name Option Value

a.b.c.d online true a.b.c.d, a.b.c.d.e

a.b online false a.b, a.b.c.x

(empty string) online true a.c, x.y
Tools 6-7

Schema Object Tools
<file>.sqlj | <resourcefile>} ...
[{-a | -andresolve}]
[-debug]
[{-d | -definer}]
[{-e | -encoding} <encoding_scheme>]
[{-f | -force}]
[{-g | -grant} {<user> | <role>}[,{<user> | <role>}]...]
[{-o | -oci8}]
[-oracleresolver]
[{-r | -resolve}]
[{-R | -resolver} "resolver_spec"]
[{-S | -schema} <schema>]
[{-s | -synonym}]
[{-t | -thin}]
[{-v | -verbose}]

Argument Summary
Table 6–2 summarizes the loadjava arguments. If you execute loadjava multiple
times specifying the same files and different options, the options specified in the
most recent invocation hold. There are two exceptions:

1. If loadjava does not load a file because it matches a digest table entry, most
options on the command line have no effect on the schema object. The
exceptions are -grant , -resolve , and -andresolve , which are always
obeyed. Use the -force option to direct loadjava to skip the digest table
lookup.

2. The -grant option is cumulative; every user or role specified in every
loadjava invocation for a given class in a given schema has the EXECUTE
privilege.

Table 6–2 loadjava Argument Summary

Argument Description

<filenames> You can specify any number and combination of .java ,
.class , .sqlj , .jar .zip , and resource file name
arguments in any order. JAR and ZIP files must be
uncompressed. See "File Names" on page 6-10 for caveats on
file names.

-andresolve Directs loadjava to compile sources if they have been loaded
and to resolve external references in each class as it is loaded.
-andresolve and -resolve are mutually exclusive; if
neither is specified, then loadjava loads source or class files
but does not compile or resolve them.
6-8 Enterprise JavaBeans and CORBA Developer’s Guide

Schema Object Tools
-debug Directs the Java compiler to generate debug information;
equivalent to javac -g .

-definer By default, class schema objects run with the privileges of their
invoker. This option confers definer (the developer who
invokes loadjava) privileges upon classes instead. (This
option is conceptually similar to the Unix setuid facility.)

-encoding Identifies the source file encoding for the compiler, overriding
the matching value, if any, in the JAVA$OPTIONS table. Values
are the same as for the javac -encoding option. If you do
not specify an encoding on the command line or in a
JAVA$OPTIONS table, the encoding is assumed to be latin1 .
The -encoding option is relevant only when loading a source
file.

-force Forces files to be loaded even if they match digest table entries.

-grant Grants the EXECUTE privilege on loaded classes to the listed
users and/or roles. (To call the methods of a class, users must
have the EXECUTE privilege.) Any number and combination
of user and role names can be specified, separated by commas
but not spaces (-grant Bob,Betty not
-grant Bob, Betty). Note: -grant is a “cumulative”
option; users and roles are added to the list of those with the
EXECUTE privilege. To remove privileges, either drop and
reload the schema object with the desired privileges or change
the privileges with the SQL REVOKE command.

To grant the EXECUTE privilege on an object in someone else’s
schema requires that the original CREATE PROCEDURE
privilege was granted with WITH GRANT options.

-oci8 Directs loadjava to communicate with the database using the
OCI JDBC driver. -oci8 and -thin are mutually exclusive; if
neither is specified -oci8 is used by default. Choosing -oci8
implies the syntax of the -user value; see "user" on page 6-14
for details.

-oracleresolver Shorthand for:

-resolver ’((* definer's_schema) (* public))’

-oracleresolver is the default and is mutually exclusive
with -resolver . -oracleresolver detects missing classes
immediately. Use -oracleresolver (or do not specify
-resolver) except when you want to test a class regardless of
its unresolved references. See "resolver" on page 6-13 for
details.

Table 6–2 loadjava Argument Summary (Cont.)

Argument Description
Tools 6-9

Schema Object Tools
Argument Details
This section describes the details of loadjava arguments whose behavior is more
complex than the summary descriptions contained in Table 6–2.

File Names
You can specify as many .class , .java , .sqlj ,.jar , .zip , and resource files as
you like, in any order. If you specify a JAR or ZIP file, then loadjava processes the

-resolve Compiles (if necessary) and resolves external references in
classes after all classes on the command line have been loaded.
-andresolve and -resolve are mutually exclusive; if
neither is specified, then loadjava loads files but does not
compile or resolve them.

-resolver Specifies an explicit resolver spec, which is bound to the newly
loaded classes. -resolver is mutually exclusive with
-oracleresolver . See "resolver" in this section for details.

-schema Designates the schema where schema objects are created. If not
specified, the logon schema is used. To create a schema object
in a schema that is not your own, you must have the CREATE
PROCEDURE or CREATE ANY PROCEDURE privilege.

-synonym Creates a PUBLIC synonym for loaded classes making them
accessible outside the schema into which they are loaded. To
specify this option, you must have the CREATE PUBLIC
SYNONYM privilege. If -synonym is specified for source files,
classes compiled from the source files are treated as if they had
been loaded with -synonym .

-thin Directs loadjava to communicate with the database using the
thin JDBC driver. -oci8 and -thin are mutually exclusive; if
neither is specified, then -oci8 is used by default. Choosing
-thin implies the syntax of the -user value. See "user" on
page 6-14 for details.

-user Specifies a user, password, and database connect string; the
files will be loaded into this database instance. The argument
has the form <username>/<password>[@<database>] ;
see "user" on page 6-14 for details.

-verbose Directs loadjava to emit detailed status messages while
running. Use -verbose to learn when loadjava does not
load a file because it matches a digest table entry.

Table 6–2 loadjava Argument Summary (Cont.)

Argument Description
6-10 Enterprise JavaBeans and CORBA Developer’s Guide

Schema Object Tools
files in the JAR or ZIP; there is no JAR or ZIP schema object. If a JAR or ZIP contains
a JAR or ZIP, loadjava does not process them.

The best way to load files is to put them in a JAR or ZIP and then load the archive.
Loading archives avoids the resource schema object naming complications
described later in this section. If you have a JAR or ZIP that works with the JDK,
then you can be sure that loading it with loadjava will also work, without having
to learn anything about resource schema object naming.

Schema object names are slightly different from file names, and loadjava names
different types of schema objects differently. Because class files are self-identifying
(they contain their names), loadjava ’s mapping of class file names to schema
object names is invisible to developers. Source file name mapping is also invisible to
developers; loadjava gives the schema object the fully qualified name of the first
class defined in the file. JAR and ZIP files also contain the names of their files;
however, resource files are not self identifying. loadjava generates Java resource
schema object names from the literal names you supply as arguments (or the literal
names in a JAR or ZIP file). Because running classes use resource schema objects, it
is important that you specify resource file names correctly on the command line,
and the correct specification is not always intuitive. The surefire way to load
individual resource files correctly is:

Run loadjava from the top of the package tree and specify resource file names relative to
that directory. (The “top of the package tree” is the directory you would name in a Java
CLASSPATH list.)

If you do not want to follow this rule, observe the details of resource file naming
that follow. When you load a resource file, loadjava generates the resource
schema object name from the resource file name as literally specified on the command
line. Suppose, for example you type:

% cd /home/scott/javastuff
% loadjava options alpha/beta/x.properties
% loadjava options /home/scott/javastuff/alpha/beta/x.properties

Although you have specified the same file with a relative and an absolute path
name, loadjava creates two schema objects, one called
alpha/beta/x.properties , the other
ROOT/home/scott/javastuff/alpha/beta/x.properties . (loadjava
prepends ROOT because schema object names cannot begin with the “/ ” character;
however, that is an implementation detail that is unimportant to developers.) The
important point is that a resource schema object’s name is generated from the file
name as entered.
Tools 6-11

Schema Object Tools
Classes can refer to resource files relatively (for example, b.properties) or
absolutely (for example, /a/b.properties). To ensure that loadjava and the
class loader use the same name for a schema object, follow this rule when loading
resource files:

Enter the name on the command line that the class passes to getResource() or
getResourceAsString() .

Instead of remembering whether classes use relative or absolute resource names
and changing directories so that you can enter the correct name on the command
line, you can load resource files in a JAR as follows:

% cd /home/scott/javastuff
% jar -cf alpharesources.jar alpha/*.properties
% loadjava options alpharesources.jar

Or, to simplify further, put both the class and resource files in a JAR, which makes
the following invocations equivalent:

% loadjava options alpha.jar
% loadjava options /home/scott/javastuff/alpha.jar

The two loadjava commands in this example make the point that you can use any
pathname to load the contents of a JAR file. Note as well that even if you did
execute the redundant commands shown above, loadjava would realize from the
digest table that it did not need to load the files twice. That means that re-loading
JAR files is not as time-consuming as it might seem even when few files have
changed between loadjava invocations.

definer
{-definer | -d}
The -definer option is identical to definer’s rights in stored procedures and is
conceptually similar to the Unix setuid facility; however, whereas setuid applies
to a complete program, you can apply -definer class by class. Moreover, different
definers may have different privileges. Because an application may consist of many
classes, you must apply -definer with care to achieve the results desired, namely
classes that run with the privileges they need but no more. For more information on
definer’s rights, see the Oracle8i Java Stored Procedures Developer’s Guide.

resolve
{-resolve | -r}

Use -resolve to force loadjava to compile (if necessary) and resolve a class that
has previously been loaded. It is not necessary to specify -force because
6-12 Enterprise JavaBeans and CORBA Developer’s Guide

Schema Object Tools
resolution is performed after, and independently of, loading; however, note that
-andresolve does not resolve previously loaded classes.

resolver
{-resolver | -R} "resolver spec"
This option associates an explicit resolver spec with the class schema objects that
loadjava creates or replaces.

A resolver spec consists of one or more items, each of which consists of a name spec
and a schema spec expressed in the following syntax:

"((name_spec schema_spec) [(name_spec schema_spec)] ...)"

■ A name spec is similar to a name in a Java import statement. It can be a fully
qualified Java class name, or a package name whose final element is the
wildcard character “* ”, or (unlike an imported package name) simply the
wildcard character “* ”; however, the elements of a name spec must be
separated by “/ ” characters, not periods. For example, the name spec a/b/*
matches all classes whose names begin with a.b. . The special name spec *
matches all class names.

■ A schema spec can be a schema name or the wildcard character “-” . The
wildcard does not identify a schema but directs the resolve operation to not
mark a class invalid because a reference to a matching name cannot be resolved.
(Without a “-” wildcard in a resolver spec, an unresolved reference in the class
makes the class invalid and produces an error message.) Use a “-” wildcard
when you must test a class that refers to a class you cannot or do not want to
load; for example, GUI classes that a class refers to but does not call because
when run in the server there is no GUI.

The resolution operation interprets a resolver spec item as follows:

When looking for a schema object whose name matches the name spec, look in the schema
named by the partner schema spec.

The resolution operation searches schemas in the order in which the resolver spec
lists them. For example,

-resolver ’((* SCOTT) (* PUBLIC))’

means

Search for any reference first in SCOTT and then in PUBLIC. If a reference is not resolved,
then mark the referring class invalid and display an error message; in other words, call
attention to missing classes.
Tools 6-13

Schema Object Tools
For a developer named Scott, this resolver spec is equivalent to the
-oracleresolver spec.

The following example:

-resolver "((* SCOTT) (* PUBLIC) (my/gui/* -))"

means

Search for any reference first in SCOTT and then in PUBLIC. If the reference is not found,
and is to a class in the package my.gui then mark the referring class valid, and do not
display an error; in other words, ignore missing classes in this package. If the reference is not
found and is not to a class in my.gui , then mark the referring class invalid and produce an
error message.

user
{-user | -u} <user>/<password>[@<database>]

The permissible forms of @<database> depend on whether you specify -oci8 or
-thin ; -oci8 is the default.

■ -oci8 : @<database> is optional; if you do not specify, then loadjava uses
the user’s default database. If specified, <database> can be a TNS name or a
Net8 name-value list.

■ -thin : @<database> is required. The format is <host>:<lport>:<SID> .

– <host> is the name of the machine running the database.

– <lport> is the listener port that has been configured to listen for Net8
connections; in a default installation, it is 5521.

– <SID> is the database instance identifier; in a default installation it is ORCL.

Here are examples of loadjava commands:

■ Connect to the default database with the default oci8 driver, load the files in a
JAR into the TEST schema, then resolve them.

loadjava -u scott/tiger -resolve -schema TEST ServerObjects.jar

■ Connect with the thin driver, then load a class and a resource file, resolving
each as it is loaded:

loadjava -thin -u scott/tiger@dbhost:5521:orcl \
-andresolve alpha.class beta.props

■ Add Betty and Bob to the users who can execute alpha.class :

loadjava -thin -schema test -u scott/tiger@localhost:5521:orcl \
6-14 Enterprise JavaBeans and CORBA Developer’s Guide

Schema Object Tools
-grant Betty,Bob alpha.class

dropjava
The dropjava tool is the converse of loadjava . It transforms command-line file
names and uncompressed JAR or ZIP file contents to schema object names, then
drops the schema objects and deletes their corresponding digest table rows. You can
enter .java , .class , .sqlj , .zip , .jar , and resource file names on the
command line in any order. The Oracle8i SQLJ Developer’s Guide and Reference
describes how to use loadjava and dropjava with SQLJ.

Dropping a class invalidates classes that depend on it, recursively cascading
upwards. Dropping a source drops classes derived from it.

Syntax
dropjava {-u | -user} <user>/<password>[@<database>] [options]
{<file>.java | <file>.class | file.sqlj |
<file>.jar | <file.zip> | <resourcefile>} ...

[{-o | -oci8}]
[{-S | -schema} <schema>]
[{-t | -thin}]
[{-v | -verbose}]

Argument Summary
Table 6–3 summarizes the dropjava arguments.

Table 6–3 dropjava Argument Summary

Argument Description

-user Specifies a user, password, and optional database connect
string; the files will be dropped from this database instance.
See "user" on page 6-16 for details.

<filenames> You can specify any number and combination of .java ,
.class , .sqlj , .jar , .zip , and resource file names in any
order. JAR and ZIP files must be uncompressed.

-oci8 Directs dropjava to connect with the database using the oci8
JDBC driver. -oci8 and -thin are mutually exclusive; if
neither is specified, then -oci8 is used by default. Choosing
-oci8 implies the form of the -user value. See "user" on
page 6-16 for details.
Tools 6-15

Schema Object Tools
Argument Details

File Names
dropjava interprets most file names as loadjava does:

■ .class files: dropjava finds the class name in the file and drops the
corresponding schema object.

■ .java and .sqlj files: dropjava finds the first class name in the file and
drops the corresponding schema object.

■ .jar and .zip files: dropjava processes the archived file names as if they
had been entered on the command line.

If a file name has another extension or no extension, then dropjava interprets the
file name as a schema object name and drops all source, class, and resource objects
that match the name. For example, the hypothetical file name alpha drops
whichever of the following exists: the source schema object named alpha , the class
schema object named alpha , and the resource schema object named alpha . If the
file name begins with the “/ ” character, then dropjava prepends ROOT to the
schema object name.

If dropjava encounters a file name that does not match a schema object, it displays
a message and processes the remaining file names.

user
{-user | -u} <user>/<password>[@<database>]

The permissible forms of @<database> depend on whether you specify -oci8 or
-thin ; -oci8 is the default.

-schema Designates the schema from which schema objects are
dropped. If not specified, the logon schema is used. To drop a
schema object from a schema that is not your own, you need
the DROP ANY PROCEDURE system privilege.

-thin Directs dropjava to communicate with the database using the
thin JDBC driver. -oci8 and -thin are mutually exclusive; if
neither is specified, then -oci8 is used by default. Choosing
-thin implies the form of the -user value.See "user" on
page 6-16 for details.

-verbose Directs dropjava to emit detailed status messages while
running.

Table 6–3 dropjava Argument Summary (Cont.)

Argument Description
6-16 Enterprise JavaBeans and CORBA Developer’s Guide

Session Namespace Tools
■ -oci8 : @<database> is optional; if you do not specify, then dropjava uses
the user’s default database. If specified, then <database> can be a TNS name
or a Net8 name-value list.

■ -thin : @<database> is required. The format is <host>:<lport>:<SID> .

– <host> is the name of the machine running the database.

– <lport> is the listener port that has been configured to listen for Net8
connections; in a default installation, it is 5521.

– <SID> is the database instance identifier; in a default installation, it is
ORCL.

Here are some dropjava examples.

■ Drop all schema objects in schema TEST in the default database that were
loaded from ServerObjects.jar :

dropjava -u scott/tiger -schema TEST ServerObjects.jar

■ Connect with the thin driver, then drop a class and a resource file from the
user’s schema:

dropjava -thin -u scott/tiger@dbhost:5521:orcl alpha.class beta.props

Session Namespace Tools
Each database instance running the Oracle8 i JServer software has a session
namespace, which the Oracle8 i ORB uses to activate CORBA and EJB objects. A
session namespace is a hierarchical collection of objects known as PublishedObjects
and PublishingContexts. PublishedObjects are the leaves of the hierarchy and
PublishingContexts are the nodes, analogous to Unix file system files and
directories. Each PublishedObject is associated with a class schema object that
represents a CORBA or EJB implementation. To activate a CORBA or EJB object, a
client refers to a PublishedObject’s name. From the PublishedObject, the Oracle8 i
ORB obtains the information necessary to find and launch the corresponding class
schema object.

Creating a PublishedObject is known as publishing and can be done with the
command-line publish tool or the interactive session shell, both of which this
section describes. CORBA server developers create PublishedObjects explicitly after
loading the implementation of an object with loadjava . EJB developers do not
explicitly load or publish their implementations; the deployejb tool (see
"deployejb" on page 6-36) implicitly does both.
Tools 6-17

Session Namespace Tools
A PublishedObject has the following attributes:

■ Schema Object Name: the name of the Java class schema object associated with
the PublishedObject

■ Schema: the name of the schema containing the corresponding class schema
object

■ Helper Schema Object Name: the name of the helper class the Oracle8 i ORB
uses to automatically narrow a reference to an instance of the CORBA object or
EJB.

PublishedObjects and PublishingContexts, like their file and directory counterparts,
have owners and rights (privileges). An owner can be a user name or a role name;
only the owner can change the ownership or rights of a PublishedObject or
PublishingContext. Table 6–4 describes session namespace rights.

Oracle8 i creates a session namespace automatically when the Oracle8i ORB is
configured. The PublishingContexts contained in Table 6–5 are present in all session
namespaces:

Table 6–4 PublishingContext and PublishedObject Rights

Right Meaning for PublishingContext Meaning for PublishedObject

read List contents and attributes (type,
rights and creation time).

List object attributes (type, schema object,
schema, helper, rights, and creation
time).

write Create a PublishedObject or
PublishingContext in the
PublishingContext.

Republish object.

execute Use contents to resolve a name. Activate associated class.

Table 6–5 Initial PublishingContexts and Rights

Name Owner Read Write Execute

/ SYS PUBLIC SYS PUBLIC

/bin SYS PUBLIC SYS PUBLIC

/etc SYS PUBLIC SYS PUBLIC

/test SYS PUBLIC PUBLIC PUBLIC
6-18 Enterprise JavaBeans and CORBA Developer’s Guide

Session Namespace Tools
Because by default only /test is writable by PUBLIC, you will normally create
PublishingContexts and PublishedObjects subordinate to /test .

publish
The publish tool creates or replaces (republishes) a PublishedObject in a
PublishingContext. It is not necessary to republish when you update a Java class
schema object; republishing is required only to change a PublishedObject’s
attributes. To publish, you must have write permission (the write right) for the
destination PublishingContext; by default only the PublishingContext /test is
writable by PUBLIC. To republish you must additionally have the write right for the
PublishedObject.

Syntax
publish <name> <class> [<helper>] -user <username> -password <password>
-service <serviceURL> [options]

[-describe]
[{-g | -grant} {<user> | <role>}[,{<user> | <role>}]...]
[{-h | -help}]
[-iiop]
[-role <role>]
[-republish]
[-schema <schema>]
[-ssl]
[-version]

Argument Summary
Table 6–6 summarizes the publish tool arguments.

Table 6–6 publish Tool Argument Summary

Option Description

<name> Name of the PublishedObject being created or republished;
PublishingContexts are created if necessary.

<class> Name of the class schema object that corresponds to <name>.

<helper> Name of the Java class schema object that implements the
narrow() method for <class> .

-user Specifies identity with which to log into the database instance
named in -service .
Tools 6-19

Session Namespace Tools
-password Specifies authenticating password for the username specified
with -user .

-service URL identifying database whose session namespace is to be
“opened” by sess_sh . The serviceURL has the form:

sess_iiop://< host>:<lport>:<sid> .

<host> is the computer that hosts the target database;
<lport> is the listener port that has been configured to listen
for session IIOP; <sid> is the database instance identifier.
Example:

sess_iiop://localhost:2481:orcl

which matches the default installation on the invoker’s
machine.

-describe Summarizes the tool’s operation, then exits.

-grant After creating or republishing the PublishedObject, grants read
and execute rights to the sequence of <user> and <role>
names. When republishing, replace the existing users/roles
that have read/execute rights with the <user> and <role>
names. To selectively change the rights of a PublishedObject,
use the sess_sh ’s chmod command. Note that to activate a
CORBA object or EJB, a user must have the execute right for
both the PublishedObject and the corresponding class schema
object.

-help Summarizes the tool’s syntax, then exits.

-iiop Connects to the target database with IIOP instead of the default
session IIOP. Use this option when publishing to a database
server that has been configured without session IIOP.

-role Role to assume for the publish; no default.

-republish Directs publish to replace an existing PublishedObject;
without this option, the publish tool rejects an attempt to
publish an existing name. If the PublishedObject does not exist,
publish creates it. Republishing deletes non-owner rights;
use the -grant option to add read/execute rights when
republishing.

-schema The schema containing the Java <class> schema object. If you
do not specify, the publish tool uses the invoker’s schema.

-ssl Connects to the database with SSL server authentication. You
must have configured the database for SSL to use this option,
and you must specify an SSL listener port in -service .

Table 6–6 publish Tool Argument Summary (Cont.)

Option Description
6-20 Enterprise JavaBeans and CORBA Developer’s Guide

Session Namespace Tools
Here is a publish example.

Publish the CORBA server implementation
vbjBankTestbank.AccountManagerImpl and its helper class as
/test/bankMgr in the tool invoker’s schema:

publish /test/bankMgr vbjBankTestServer.AccountManagerImpl \
vbjBankTestServer.AccountManagerHelper \
-user SCOTT -password TIGER \
-service sess_iiop://dlsun164:2481:orcl

remove
The remove tool removes a PublishedObject or PublishingContext from a session
namespace. It does not remove the Java class schema object associated with a
PublishedObject; use dropjava to do that.

Syntax
remove <name> -user <username> -password <password> -service <serviceURL>
[options]

[{-d | -describe}]
[{-h | -help}]
[-iiop]
[{-r | -recurse}]
[-role role]
[-ssl]
[-version]

Argument Summary
Table 6–7 describes the remove arguments.

-version Shows the tool’s version, then exist.

Table 6–7 remove Argument Summary

Option Description

<name> Name of PublishingContext or PublishedObject to be removed.

Table 6–6 publish Tool Argument Summary (Cont.)

Option Description
Tools 6-21

Session Namespace Tools
Here are examples of remove tool usage.

■ Remove a PublishedObject named /test/testhello :

remove /test/testhello -user SCOTT -password TIGER \
-service sess_iiop://dlsun164:2481:orcl

■ Remove a PublishingContext named /test/etrader :

remove -r /test/etrader -user SCOTT -password TIGER \
-service sess_iiop://dlsun164:2481:orcl

-user Specifies identity with which to log into the instance named in
-service .

-password Specifies authenticating password for the <username> you
specified with -user .

-service URL identifying database whose session namespace is to be
“opened” by sess_sh . The serviceURL has the form:

sess_iiop:// <host> : <lport> : <sid> .

<host> is the computer that hosts the target database;
<lport> is the listener port that has been configured to listen
for session IIOP; <sid> is the database instance identifier.
Example:

sess_iiop://localhost:2481:orcl

which matches the default installation on the invoker’s
machine.

-describe Summarizes the tool’s operation, then exits.

-help Summarizes the tool’s syntax, then exits.

-iiop Connects to the target database with IIOP instead of the default
session IIOP. Use this option when removing from a database
server that has been configured without session IIOP.

-recurse Recursively removes <name> and all subordinate
PublishingContexts; required to remove a PublishingContext.

-role Role to assume for the remove; no default.

-ssl Connects to the database with SSL server authentication. You
must have configured the database for SSL to use this option.

-version Shows the tool’s version, then exits.

Table 6–7 remove Argument Summary (Cont.)

Option Description
6-22 Enterprise JavaBeans and CORBA Developer’s Guide

Session Namespace Tools
sess_sh
The sess_sh (session shell) tool is an interactive interface to a database instance’s
session namespace. You specify database connection arguments when you start
sess_sh . It then presents you with a prompt to indicate that it is ready for
commands.

The sess_sh gives a session namespace much of the “look and feel” of a Unix file
system you access through a shell, such as the C shell. For example, the session shell
command:

ls /alpha/beta/gamma

means “List the PublishedObjects and PublishingContexts in the PublishingContext
known as /alpha/beta/gamma ”. (NT users note: /alpha/beta/gamma , not
\alpha\beta\gamma .) Indeed, many session shell command names that operate
on PublishingContexts have the same names as their Unix shell counterparts that
operate on directories. For example: mkdir (create a PublishingContext) and cd
(change the working PublishingContext).

In addition to Unix-style manipulation of PublishingContexts and
PublishedObjects, the session shell can launch an executable, which is analogous to a
Java standalone application, that is, a class with a static main() method.
Executables must have been loaded with loadjava , but not published—publishing
is for CORBA and EJB objects only.

Syntax
sess_sh [options] -user <user> -password <password> -service <serviceURL>

[-d | -describe]
[-h | -help]
[-iiop]
[-role <rolename>]
[-ssl]
[-version]

Argument Summary
Table 6–8 summarizes the sess_sh arguments.

Table 6–8 sess_sh Argument Summary

Option Description

-user Specifies user’s name for connecting to the database.
Tools 6-23

Session Namespace Tools
Here is a sess_sh example.

Open a session shell on the session namespace of the database orcl on listener port
2481 on host dbserver .

sess_sh -user scott -password tiger -service sess_iiop://dbserver:2481:orcl

cd Command
The cd command is analogous to a Unix shell’s cd command; it changes the
working PublishingContext.

Syntax

cd [path]

Here is an example.

-password Specifies user’s password for connecting to the database.

-service URL identifying database whose session namespace is to be
“opened” by sess_sh . The serviceURL has the form:

sess_iiop://< host>:<lport>:<sid> .

<host> is the computer that hosts the target database;
<lport> is the listener port configured to listen for session
IIOP; <sid> is the database instance identifier. Example:

sess_iiop://localhost:2481:orcl

which matches the default database installation on the
invoker’s machine.

-describe Summarizes the tool’s operation, then exits.

-help Summarizes the tool’s syntax, then exits.

-iiop Connects to the target database with plain IIOP instead of the
default session IIOP. Use this option for a database server
configured without session IIOP.

-role Role to pass to database; there is no default.

-ssl Connect to the database with SSL server authentication. You
must have configured the database for SSL to use this option.

-version Shows the command’s version, then exits.

Table 6–8 sess_sh Argument Summary (Cont.)

Option Description
6-24 Enterprise JavaBeans and CORBA Developer’s Guide

Session Namespace Tools
Change to root PublishingContext:

$ cd /

chmod Command
The chmod command is analogous to a Unix shell’s chmod command; it changes the
users or roles that have rights for a PublishingContext or PublishedObject. See
Table 6–4 on page 6-18 for descriptions of the read, write, and execute rights. Only
the object’s owner can change its rights.

Syntax

chmod [options] {+|-}{r|w|e} {<user> | <role>} [, {<user> | <role>} ...] \
<objectname>

[-h | -help]
[-version]

Argument Summary

 Table 6–9 summarizes the chmod arguments.

Here are some chmod examples.

■ Give execute rights for /alpha/beta/gamma to Scott and Nancy:

$ chmod +x scott nancy /alpha/beta/gamma

■ Remove Scott’s write rights for the same object:

$ chmod -w scott /alpha/beta/gamma

Table 6–9 chmod Argument Summary

Option Description

+/-rwe Specifies the right (read, write, or execute) to be added (+) or
removed (-) for <user> or <role> .

<user> | <role> Specifies the user or role whose rights are to be increased or
decreased.

<objectname> Specifies the name of the PublishingContext or
PublishedObject whose rights are to be changed.

-help Summarizes the command’s syntax, then exits.

-version Shows the command’s version, then exits.
Tools 6-25

Session Namespace Tools
chown Command
The chown command is analogous to the Unix chown command; it changes the
ownership of a PublishingContext or PublishedObject. The owner of a newly
created PublishingContext or PublishedObject is the user who publishes it. To
change a PublishingContext’s or PublishedObject’s ownership you must be SYS.

Syntax

chown [options] {<user> | <role>} <objectname>
[-h | -help]
[-version]

Argument Summary

 Table 6–10 summarizes the chown arguments.

Here is a chown example.

Make Scott the owner of /alpha/beta/gamma :

$ chown scott /alpha/beta/gamma

exit Command
The exit command terminates sess_sh .

Syntax

exit

Here is an example:

Leave the session shell:

$ exit

Table 6–10 chown Argument Summary

Option Description

<user> | <role> Specifies the user or role to be the new owner.

<objectname> Specifies the name of the PublishingContext or
PublishedObject whose owner is to be changed.

-help Summarizes the command’s syntax, then exits.

-version Shows the command’s version, then exits.
6-26 Enterprise JavaBeans and CORBA Developer’s Guide

Session Namespace Tools
%

help Command
The help command summarizes the syntax of the session shell commands.

Syntax

help

Here is a help example.

$ help
Commands are of the format <command> [arg1, ar2...]
Intrinsic Commands:

exit exit the shell
help prints this message
version print version inforamtion
pwd print working directory
cd change working directory
ls list directory
ln link name
chmod change read, write or execute permissions on an object
chown change an objects owner
mkdir create a directory
mv move an object or directory to another location
rm remove an object or directory
lls list directory on local file system
lpwd print local file system working directory
lcd change the local file systems working directory
loadjar load java classes, source, resources from jar files into the server
loadfile load java classes, source, resources from files into the server
publish publish an object
republish republish an object
java execute the "main" method on a java class

java Command
The java command is analogous to the JDK java command; it invokes a class’s
static main() method. The class must have been loaded with loadjava (see
"loadjava" on page 6-7). (There is no point to publishing a class that will be invoked
with the java command.) The java command provides a convenient way to test
Java code that runs in the database. In particular, the command catches exceptions
and redirects the class’s standard output and standard error to the session shell,
Tools 6-27

Session Namespace Tools
which displays them as with any other command output. (The usual destination of
standard out and standard error for Java classes executed in the database is one or
more database server process trace files, which are inconvenient and may require
DBA priviliges to read.)

Syntax

java class [arg1 ... argn] [options]
[{-h | -help}]
[-schema <schema>]
[-version]

Argument Summary

Table 6–11 summarizes the java arguments.

Here is a java command example.

Say hello and display arguments:

package hello;
public class World {

public World() {
super();

}
public static void main(String[] argv) {

System.out.println("Hello from the JServer/ORB");
if (argv.length != 0)

System.out.println("You supplied " + argv.length + " arguments: ");
for (int i = 0; i < argv.length; i++)

System.out.println(" arg[" + i + "] : " + argv[i]);
}

}

Table 6–11 java Argument Summary

Option Description

class Names the Java class schema object that is to be executed.

arg1 ... argn Arguments to the class’s main() method.

-help Summarizes the command’s syntax, then exits.

-schema Names the schema containing the class to be executed; the
default is the invoker’s schema.

-version Shows the command’s version, then exits.
6-28 Enterprise JavaBeans and CORBA Developer’s Guide

Session Namespace Tools
Compile, load, publish, and run the executable as follows, substituting your userid,
host, and port information as appropriate:

% javac hello/World.java
% loadjava -r -user scott/tiger@localhost:2481:orcl hello/World.class
% sess_sh -user scott -password tiger -service sess_iiop://localhost:2481:orcl
$ java testhello alpha beta
Hello from the JServer/ORB
You supplied 2 arguments:
arg[0] : alpha
arg[1] : beta
$

lcd Command
The lcd (local cd) command changes the local working directory just as executing
cd outside of the session shell would.

Syntax

lcd [path]

Here is an example of the lcd command.

Change the file system directory to alpha/beta :

$ lcd alpha/beta

lls Command
The lls (local ls) command lists the contents of the working directory, just as
executing ls outside of the session shell would.

Syntax

lls
[-l]
[<path>]

Argument Summary

Table 6–12 summarizes the lls command’s arguments.
Tools 6-29

Session Namespace Tools
Here is an lls command example.

List the working file system directory in long format:

$ lls -l

ln Command
The ln (link) command is analogous to the Unix ln command. A link is a synonym
for a PublishingContext or PublishedObject. A link can prevent a reference to a
PublishingContext or PublishedObject from becoming invalid when you move a
PublishingContext or PublishedObject (see "mv Command" on page 6-33); creating
a link with the old name makes the object accessible by both its old and new names.

Syntax

ln <object> <link>

Argument Summary

Table 6–13 summarizes the ln arguments.

Here is an ln command example.

Preserve access via old although the object’s name is changed to new:

$ mv old new
$ ln new old

Table 6–12 lls Argument Summary

Option Description

-l Lists the directory in long format.

<path> Lists the directory named in <path> .

Table 6–13 ln Argument Summary

Option Description

<object> The name of the PublishingContext or PublishedObject for
which a link is to be created.

<link> The synonym by which <object> is also to be known.
6-30 Enterprise JavaBeans and CORBA Developer’s Guide

Session Namespace Tools
lpwd Command
The lpwd (local print working directory) command displays the name of the
working directory, just as executing pwd outside of the session shell would.

Syntax

lpwd

Here is an example of the lpwd command that shows the working directory:

$ lpwd
/home/usr/billc

ls Command
The ls (list) command shows the contents of PublishingContexts as the Unix ls
command shows the contents of directories.

Syntax

ls [options] [{<pubcon> | <pubobj} [{<pubcon> | <pubobj}] ...]
[-dir]
[-h | -help]
[-l]
[-ld | ldir]
[-R]
[-version]

Argument Summary

Table 6–14 describes the ls arguments.

Table 6–14 ls Argument Summary

Option Description

<pubcon> | <pubobj> Name of PublishingContext(s) and/or PublishingObject(s) to
be listed; the default is the working PublishingContext.

-dir Shows only PublishingContexts; analogous to the Unix ls -d
command.

-help Summarizes the command’s syntax, then exits.

-l Shows contents in long (detailed) format. The long format
includes name, creation time, owner, and rights. For
PublishedObjects, the option also shows class, schema, and
helper.
Tools 6-31

Session Namespace Tools
Here are examples of the ls command.

Show contents of the root PublishingContext in short format:

$ ls /
bin/
etc/
test/

Show contents of the root PublishingContext in long format:

$ ls -l /
Read Write Exec Owner Date Time Name Schema Class Helper
PUBLIC SYS PUBLIC SYS Dec 14 14:59 bin/
PUBLIC SYS PUBLIC SYS Dec 14 14:59 etc/
PUBLIC PUBLIC PUBLIC SYS Dec 14 14:59 test/

Show contents of the /test PublishingContext in long format:

$ ls -l test
Read Write Exec Owner Date Time Name Schema Class Helper
SCOTT SCOTT SCOTT SCOTT Dec 14 16:32 bank SCOTT Bank.AccountManagerImpl Bank.AccountManagerHelper

mkdir Command
The mkdir command is analogous to the Unix shell mkdir command; it creates a
PublishingContext. You must have the write right for the target PublishingContext
to use mkdir in it.

Syntax

mkdir [options] <name>
[-path]

Argument Summary

Table 6–15 describes the mkdir arguments.

-ldir Lists PublishingContexts in long format, ignoring
PublishingObjects; analogous to Unix ls -ld command.

-R Lists recursively.

-version Shows the command’s version, then exits.

Table 6–14 ls Argument Summary (Cont.)

Option Description
6-32 Enterprise JavaBeans and CORBA Developer’s Guide

Session Namespace Tools

Here are examples of the mkdir command.

Create a PublishingContext called /test/alpha (/test exists):

mkdir /test/alpha

Create a PublishingContext called /test/alpha/beta/gamma
(/test/alpha/beta does not exist):

$ mkdir -path /test/alpha/beta/gamma

mv Command
The mv command is analogous to the Unix shell mv command.

Syntax

mv <old> <new>

Here is an example of the mv command.

Change the name of /test/foo to /test/bar :

$ mv /test/foo /test/bar

publish Command
The publish command creates or replaces (republishes) a PublishedObject in a
PublishingContext. It is not necessary to republish when you update a Java class
schema object that has been published; republish only to change a
PublishedObject’s attributes. To publish, you must have the write right for the
destination PublishingContext; to republish you must also have the write right for
the PublishedObject.

Syntax

publish <name> <class> <helper> [options]
[{-e | -executable}]
[{-g | -grant} {<user> | <role>}[,{<user> | <role>} ...]]

Table 6–15 mkdir Argument Summary

Option Description

<name> Name of PublishingContext to create.

-path Creates intermediate PublishingContexts if they do not exist.
Tools 6-33

Session Namespace Tools
[{-h | -help}]
[-republish]
[-schema <schema>]
[-version]

Argument Summary

Table 6–16 summarizes the publish command arguments.

Here is an example of the publish command.

Publish the CORBA server implementation Bank.AccountManagerImpl and its
helper class as /test/bank in the command invoker’s schema:

$ ls -l /test

Table 6–16 publish Command Argument Summary

Option Description

<name> Name of the PublishedObject being created or republished;
PublishingContexts are created if necessary.

<class> Name of the class schema object that corresponds to <name>.

<helper> Name of the Java class schema object that implements the
narrow() method for <class> .

-grant After creating or republishing the PublishedObject, grants read
and execute rights to the sequence of <user> and <role>
names. When republishing, replaces the existing users/roles
that have read/execute rights with the <user> and <role>
names. To selectively change the rights of a PublishedObject,
use the session shell’s chmod command. Note that to activate
a CORBA object or EJB, a user must have the execute right for
both the PublishedObject and the corresponding class schema
object.

-help Summarizes the command’s syntax, then exits.

-republish Directs publish to replace an existing PublishedObject;
without this option, the publish command rejects an attempt
to publish an existing name. If the PublishedObject does not
exist, it is created. Republishing deletes non-owner rights; use
the -grant option to add read/execute rights when
republishing.

-schema The schema containing the Java <class> schema object; if you
do not specify, the command uses the invoker’s schema.

-version Shows the command’s version, then exits.
6-34 Enterprise JavaBeans and CORBA Developer’s Guide

Session Namespace Tools
$ publish /test/bank Bank.AccountManagerImpl Bank.AccountManagerHelper
$ ls -l /test
Read Write Exec Owner Date Time Name Schema Class Helper
SCOTT SCOTT SCOTT SCOTT Dec 14 16:32 bank SCOTT Bank.AccountManagerImpl Bank.AccountManagerHelper

pwd Command
The pwd command displays the name of the current working PublishingContext. It
is analogous to the Unix pwd command.

Syntax

pwd

Here is an example of the pwd command.

$ pwd
/test/alpha

rm Command
The rm (remove) command is analogous to the rm -r Unix shell commands; it
removes a PublishedObject or a PublishingContext, including its contents. To
remove an object, you must have the write right for the containing
PublishingContext.

Syntax

rm [options] <object> ... <object>
[{-h | -help}]
[-r]
[-version]

Argument Summary

Table 6–17 describes the rm arguments.

Table 6–17 rm Argument Summary

Option Description

<object> Name of PublishedObject or PublishingContext to be removed.

-help Summarizes the command’s syntax, then exits.

-r Interprets <object> as a PublishingContext; removes it and
its contents recursively.
Tools 6-35

Enterprise JavaBean Tools
Here is an example of the rm command.

Remove the PublishedObject /test/bank :

rm /test/bank

Remove the PublishingContext /test/release3 and everything it contains:

rm -r /test/release3

version Command
The version command shows the version of the sess_sh tool.

Syntax

version

Here is an example of the version command.

Display the session shell’s version:

$ version
1.0

Enterprise JavaBean Tools
Instead of loadjava and publish , Enterprise JavaBean developers use the
deployejb tool, which does equivalent operations, as well as generating and
compiling infrastructure code for the EJB. The ejbdescriptor tool is a utility for
translating between the text and serialized object forms of EJB deployment
descriptors.

deployejb
From a deployment descriptor and a JAR containing interfaces and classes, the
deployejb tool makes an EJB implementation ready for test or production clients
to invoke. deployejb converts the text descriptor to a serialized object, generates
and compiles classes that effect client-bean communication, loads compiled classes
into the database, and publishes the bean’s home interface name in the session

-version Shows the command’s version, then exits.

Table 6–17 rm Argument Summary (Cont.)

Option Description
6-36 Enterprise JavaBeans and CORBA Developer’s Guide

Enterprise JavaBean Tools
namespace so clients can look it up with JNDI. The BeanHomeName must refer to a
PublishingContext for which the deployejb invoker has the write right; see
"publish" on page 6-19 for the rights required to publish.

To invoke a deployed bean, the client’s CLASSPATH must include the remote and
home interface files and the JAR generated by deployejb .

Syntax
deployejb -user <username> -password <password> -service <serviceURL>
-descriptor <file> -temp <dir> <beanjar>

[-addclasspath <dirlist>]
[-describe]
[-generated <clientjar>]
[-help]
[-iiop]
[-keep]
[-republish]
[-role <role>]
[-ssl]
[-verbose]
[-version]

Argument Summary
Table 6–18 summarizes the deployejb arguments.

Table 6–18 deployejb Argument Summary

Argument Description and Values

-user Specifies the schema into which the EJB classes will be loaded.

-password Specifies the password for <username> .

-service URL identifying database in whose session namespace the EJB is
to be published. The serviceURL has the form:

sess_iiop://< host>:<lport>:<sid>

<host> is the computer that hosts the target database; <lport>
is the listener port configured to listen for session IIOP; <sid> is
the database instance identifier. Example:

sess_iiop://localhost:2481:orcl

which matches the default installation on the invoker’s machine.

-descriptor Specifies the text file containing the EJB deployment descriptor.
Tools 6-37

Enterprise JavaBean Tools
-temp Specifies a temporary directory to hold intermediate files
deployejb creates. Unless you specify -keep , deployejb
removes the files and the directory when it completes.

<beanjar> Specifies the name of the JAR containing the bean interface and
implementation files.

-addclasspath Specifies directories containing interface and/or implementation
dependency classes not contained in <beanjar> . Format of
<dirlist> is the same as javac ’s CLASSPATH argument.
Required for -beanonly .

-beanonly Skips generation of interface files. This is useful if you change
only the bean implementation.

-describe Summarizes the tool’s operation, then exits.

-generated Specifies the name of the output (generated) JAR file, which
contains communication files bean clients need. If you do not
specify, the output JAR file has the name of the input JAR file with
_generated appended.

-help Summarizes the tool’s syntax, then exits.

-iiop Connects to the target database with IIOP instead of the default
session IIOP. Use this option when deploying to a database server
that has been configured without session IIOP.

-keep Do not remove the temporary files generated by the tool. This
option may be useful for debugging because it provides access to
the source files deployejb generates.

-republish Replaces the published BeanHomeName attributes if the
BeanHomeName has already been published, otherwise publishes
it.

-role Specifies role to assume when connecting to the database; no
default.

-ssl Connects to the database with SSL authentication and encryption.

-verbose Emits detailed status information while running.

-version Shows the tool’s version, then exits.

Table 6–18 deployejb Argument Summary (Cont.)

Argument Description and Values
6-38 Enterprise JavaBeans and CORBA Developer’s Guide

Enterprise JavaBean Tools
Argument Details

addclasspath
deployejb needs the classes the home and remote interfaces depend on and the
classes the bean implementation depends on. These dependency classes can either
be included in the <beanjar> file or directories containing them or can be
specified in the -addclasspath argument. The first approach is less prone to
error, the second can substantially reduce deployejb ’s run time. If you use
-addclasspath , then you must ensure that the classes have been loaded before
you run a client that activates the EJB.

Here is a deployejb example.

Basic invocation specifying the name of the generated client JAR file:

deployejb -user scott -password tiger -service sess_iiop://dbserver:2481:orcl \
-descriptor myBeanDescriptor.txt -temp /tmp/ejb \
-generated myBeanClient.jar myBean.jar

ejbdescriptor
Each EJB implementation includes a serialized Java object known as a deployment
descriptor. The values in a deployment descriptor are not readable by people, yet
people must create them and may sometimes have to read them. The
ejbdescriptor tool transforms a serialized deployment descriptor to text and
vice versa. Developers are most likely to use ejbdescriptor to extract the
deployment descriptor data from an EJB developed for a non-Oracle environment.
The deployejb tool calls ejbdescriptor to build a deployment descriptor from
the text file you specify in the -descriptor argument.

Syntax
ejbdescriptor

{-parse | -dump}
<infile> <outfile>

Argument Summary
Table 6–19 describes the ejbdescriptor arguments.
Tools 6-39

VisiBroker™ for Java Tools
Here are examples of the ejbdescriptor tool.

Create a text file representation of a descriptor:

ejbdescriptor -dump beandescriptor.ser beandescriptor.ejb

Create a serialized deployment descriptor from a text file:

ejbdescriptor -parse beandescriptor.ejb beandescriptor.ser

Display the contents of a deployment descriptor:

ejbdescriptor -dump beandescriptor.ser

VisiBroker™ for Java Tools
The idl2java , java2idl , and java2iiop tools developed by Inprise for their
VisiBroker for Java product (release 3.2) are distributed with Oracle8 i. The Oracle8 i
JServer CD contains the documentation for these tools; the documentation can also
be viewed or downloaded from http://www.inprise.com . Because the Oracle8 i
run-time environment differs somewhat from the VisiBroker environment, some
VisiBroker tool options may not work in Oracle8 i JServer as they are described in
the VisiBroker documentation. In particular, do not specify the -portable option
to idl2java or java2iiop because because the current Oracle8 i ORB does not
support DII.

Table 6–19 ejbdescriptor Argument Summary

Option Description

-parse Creates serialized deployment descriptor <outfile> from
<infile> .

-dump Creates text file <outfile> from serialized deployment
descriptor <infile> .

infile Name of text file (-parse) or serialized deployment descriptor
(-dump) to read. The default is standard in. The conventional
suffix for a descriptor text file is .ejb ; for a serialized
descriptor it is .ser .

outfile Name of text file (-dump) or serialized deployment descriptor
(-parse) to write. The default is standard out. The
conventional suffix for a descriptor text file is .ejb ; for a
serialized descriptor it is .ser .
6-40 Enterprise JavaBeans and CORBA Developer’s Guide

Miscellaneous Tools
Miscellaneous Tools
This section describes special-purpose tools.

java2rmi_iiop
In the current JServer Enterprise JavaBeans implementation, EJBs communicate
with clients by RMI-over-IIOP. This presents a difficulty for a CORBA client that
wants to pass an object to an EJB for the EJB to invoke (call back) because the
CORBA transport is IIOP, not RMI-over-IIOP. The CORBA client needs to pass the
EJB an object the EJB can invoke with RMI-over-IIOP. The java2rmi_iiop tool
generates the stubs, skeletons, and other classes a client or server needs to make an
object that is remotely invocable by an EJB. (java2rmi_iiop is the analog of the
VisiBroker for Java java2iiop tool, except that it expects interfaces that extend
java.rmi.Remote rather than org.omg.CORBA.Object)

The Java interface definitions must follow the RMI spec:

■ Interfaces must extend java.rmi.Remote

■ All remote methods must throw at least java.rmi.RemoteException

■ All arguments and return values of the remote methods must be valid RMI
types.

Syntax
java2rmi_iiop [options] <file>.java ...

[-no_bind]
[-no_comments]
[-no_examples]
[-no_tie]
[-root_dir <directory>]
[-verbose]
[-version]
[-W <number>]
[-wide]

Argument Summary
Table 6–20 summarizes the java2rmi_iiop arguments.
Tools 6-41

Miscellaneous Tools

Example
Generate RMI-over-IIOP class files for an RMI interface:

java2rmi_iiop Dictionary.java

modifyprops
Some aspects of the Oracle8i ORB are governed by properties it reads when a new
session running the ORB starts. You can change these properties with the
modifyprops tool. Developers should change ORB properties only when Oracle
technical support provides instructions to do so.

Syntax
modifyprops {-u | -user} <user/password@<database> [options]
{<key> <value> [,<key> <value>] ... | <key> -delete}

[{-o | -oci8}]
[{-t | -thin}]

Argument Summary
Table 6–21 summarizes the modifyprops arguments.

Table 6–20 java2rmi_iiop Argument Summary

Argument Description

-nobind Suppresses the generation of bind() methods.

-no_comments Suppresses comments in generated code.

-no_examples Suppresses the generation of example code.

-no_tie Suppresses the generation of tie code.

-root_dir Places all generated files in the specified directory instead of in
the current directory.

-verbose Emits extra messages.

-version Displays the version of VisiBroker for Java that you are
currently running.

-W Setting this option to 0 (zero) suppresses all warnings from the
compiler.

-wide Maps Java String /char to IDL wstring /wchar .
6-42 Enterprise JavaBeans and CORBA Developer’s Guide

Miscellaneous Tools

Argument Details

user
{-user | -u} <user>/<password>[@<database>]

The permissible forms of @<database> depend on whether you specify -oci8 or
-thin ; -oci8 is the default.

■ -oci8 : @<database> is optional. If you do not specify, then modifyprops
uses the user’s default database. If specified, then <database> can be a TNS
name or a Net8 name-value list.

■ -thin : @<database> is required. The format is <host>:<lport>:<SID> .

– <host> is the name of the machine running the database.

– <lport> is the listener port that has been configured to listen for Net8
connections. In a default installation, it is 5521.

– <SID> is the database instance identifier. In a default installation it is ORCL.

Table 6–21 modifyprops Argument Summary

Argument Description

-user Specifies a user, password, and optional database connect
string. See "user" on page 6-43 for details.

-oci8 Directs modifyprops to connect with the database using the
oci8 JDBC driver. -oci8 and -thin are mutually exclusive; if
neither is specified, then -oci8 is used by default. Choosing
-oci8 implies the form of the database connect string. See
"user" on page 6-43 for details.

-thin Directs modifyprops to communicate with the database
using the thin JDBC driver. -oci8 and -thin are mutually
exclusive; if neither is specified, then -oci8 is used by default.
Choosing -thin implies the form of database connect string
See "user" on page 6-43 for details.

<key> <value> Oracle technical support will advise you of the values to enter
for <key> and <value> .
Tools 6-43

Miscellaneous Tools
6-44 Enterprise JavaBeans and CORBA Developer’s Guide

Example Code: CO
A

Example Code: CORBA

This chapter contains all of the CORBA example code that is shipped on the
product CD. See the EJB/CORBA README for the locations of the examples.

Basic Examples
Here is the README for the basic examples:

The examples in the basic/ directories demonstrate various CORBA
programming techniques that you can use to write CORBA server
objects, as well as the client code that calls the server object.

The examples are short, and each example shows just one or two aspects
of Oracle8i CORBA programming. The examples come with either a
standard Makefile (UNIX) or a batch file (Windows NT) that will
perform all the steps required to compile, load, and run the example.

To run an example, you must have access to an Oracle8i database
server that hosts the Oracle8i server-side Java VM, and that has
the standard SCOTT demo schema installed. Some of the examples
use the EMP and DEPT demo tables in the SCOTT schema.

The SCOTT schema must also have write access to the CORBA name space
starting at the 'test' directory, which is true of the install database.
The tables that support the publishing directories are established when
your Oracle8i system with the Java option is built. You can use the
Session Shell to verify the presence of the test directory. See the
Oracle8i EJB and CORBA Developer's Guide for information about the
Session Shell.

You must also have the INIT.ORA, tnsnames.ora, and listener.ora files
configured properly to accept both standard listener and IIOP incoming
RBA A-1

Basic Examples
connections which is done for you in the install database. See the
Oracle8i Net8 Administrator's Guide for information about setting up
these files.

Each example publishes one or more objects in the database. To lookup
and activate the published object, the client uses the Oracle8i JNDI
interface to the CosNaming implementation. The examples all connect
using the SCOTT as the username, TIGER as the password, and for
simplicity, NON_SSL_LOGIN as the connection protocol.

The makefiles/batch files provided with the examples expect that you
have the java and javac programs from the Sun JDK 1.1.3 (beta) or JDK
1.1.6 (production) in your PATH. They also expect that your CLASSPATH
contains the Java runtime classes (classes.zip) corresponding to your
java interpreter. The UNIX makefiles abd NT batch files take care of
adding the ORACLE specific jar and zip files to your CLASSPATH.

For your reference here is a list of jar and zip files that the
makefiles/batch files use:

ORACLE_HOME/lib/aurora_client.jar # Oracle 8i ORB runtime
ORACLE_HOME/lib/aurora.jar # Oracle 8i in-the-database runtime
ORACLE_HOME/jdbc/lib/classes111.zip # for JDBC examples
ORACLE_HOME/sqlj/lib/translator.zip # for SQLJ examples
ORACLE_HOME/lib/vbjapp.jar # Inprise VisiBroker library
ORACLE_HOME/lib/vbjorb.jar # VisiBroker library
ORACLE_HOME/lib/vbj30ssl.jar # required if you modify any

client code to use SSL

The example programs are:

helloworld - The CORBA version of {printf("Hello world!");}. Look at
this example first

bank - an Oracle8i-compatible version of the VisiBroker Bank
example.

sqljimpl - Uses server-side JDBC to retrieve data from a database
server. Uses the SQLJ preprocessor. Demonstrates CORBA
structs, sequences and exceptions.

jdbcimpl - Like sqljimpl, but uses the more verbose JDBC syntax to retrieve
the data.
A-2 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
factory - Oracle8i implementation of the factory design pattern.

lookup - Demonstrates one CORBA server object activating and
calling an other CORBA object in its own session.
Also demonstrates CORBA structs and sequences.

callback - Shows how to call a client from a server object.

printback - Shows how to print data from a server object
on the client console or screen.

tieimpl - Demonstrates using the CORBA TIE (delegation) method
instead of inheritance to code a CORBA object. This
is the helloworld example done with TIE rather than
inheritance.

The code in the examples is not always commented, but each of the
examples has its own readme file. The readme explains what the code
does, and points out any special features used in the example.

Each of these examples has been tested on Solaris 2.6 and Windows
NT 4.0. If you have problems compiling or running the examples on
these or on another supported platform, please inform your Oracle
support representative.

helloworld

readme.txt
Overview
========

This is a very simple CORBA example. The helloWorld server object merely
returns a greeting plus the Java VM version number to the client.

The purpose of the example is to show the minimum code needed to
lookup a published object, activate it by invoking a method on it, and
use the value that the method returns on the client side.

Note that the name of the object as published in the database is 'myHello',
and not the class name 'HelloImpl'. The name of the published object is
completely independent of its class name. In this and other examples, the only
Example Code: CORBA A-3

Basic Examples
place that the published object name is visible is in the Makefile or the
runit.bat batch file, in the publish and run targets.

Note also that the publish command passes in the name of the CORBA helper
class. The ORB on the server side uses the helper object to narrow the object
that it looks up to the appropriate type.

Source files
============

hello.idl

The CORBA IDL for the example. Defines a single interface Hello with a single
method helloWorld(). The interface is defined in the Module named 'hello',
which determines the name of the directory in which the idl2java compiler
places the generated files.

The helloWorld() method returns a CORBA wstring, which maps to a Java String
type:

module hello
interface Hello

wstring helloWorld()

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222 /test/myHello scott
tiger

where LIBs is the classpath that must include
A-4 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

(Note: for NT users, the environment variables would be %ORACLE_HOME% and
%JAVA_HOME%.)

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published CORBA server object to find and activate it
- invokes the helloWorld() method on the hello object and prints the results

The printed output is:

Hello client, your javavm version is 8.1.5.

helloServer/HelloImpl.java

Implements the IDL-specified Hello interface. The interface has one
method, helloWorld(), that returns a String to the caller.

helloWorld() invokes System.getProperty("oracle.server.version") to get the
version number of the Java VM.

This object performs no database access.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.
Example Code: CORBA A-5

Basic Examples
Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

hello.idl
module hello {

interface Hello {
wstring helloWorld ();

};
};
A-6 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
Client.java
import hello.Hello;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println("usage: Client serviceURL objectName user password");
System.exit(1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, user);
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext(env);

Hello hello = (Hello) ic.lookup(serviceURL + objectName);
System.out.println(hello.helloWorld());

}
}

helloServer/HelloImpl.java
package helloServer;

import hello.*;

public class HelloImpl extends _HelloImplBase {
public String helloWorld() {

String v = System.getProperty("oracle.server.version");
return "Hello client, your javavm version is " + v + ".";

}

Example Code: CORBA A-7

Basic Examples
}

sqljimpl

readme.txt
Overview
========

The example shows:

- how to use the SQLJ translator on the server side to query data from the
EMP table.

- returning complex data to the client using an IDL struct/Java class

This example is a SQLJ version of the jdbcimpl example. It is useful to
compare the two examples.

Source files
============

employee.idl

See the employee.idl description in ../jdbcimpl/readme.txt.

Client.java

Invoke the client program from a command prompt, and pass it four arguments,
the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222 /test/myHello scott
tiger
A-8 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published Employee CORBA server object to find and activate it
- invokes the getEmployee() method, with the parameter "SCOTT", to

return Scott's employee ID and salary
- prints the result
- tries to use getEmployee("bogus") to return information about

employee named bogus. This will fail, and return the SQLError
exception, which is printed.

The printed output is:

SCOTT 7788 3000.0
Error retrieving employee "bogus": no rows found for select into statement

employeeServer/EmployeeImpl.java

This class implements the Employee interface. The getEmployee() method
simply declares two variables to hold the empno and sal information
from the EMP table. The method then defines and calls a SQLJ statement
that selects information about the employee named in the input
parameter into the variables, constructs a new EmployeeInfo object
using the query information, and returns it to the invoker.

It is instructive to contrast this example with the jdbcimpl example,
which uses JDBC rather than SQLJ to query the database.

You can also contrast this example with the lookup example, which uses a SQLJ
iterator to retrieve a multi-row result set from the database.

Compiling and Running the Example
Example Code: CORBA A-9

Basic Examples
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

employee.idl
module employee {
A-10 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
struct EmployeeInfo {
wstring name;
long number;
double salary;

};

exception SQLError {
wstring message;

};

interface Employee {
EmployeeInfo getEmployee (in wstring name) raises (SQLError);

};
};

Client.java
import employee.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);
Example Code: CORBA A-11

Basic Examples
try {
Employee employee = (Employee)ic.lookup (serviceURL + objectName);
EmployeeInfo info = employee.getEmployee ("SCOTT");
System.out.println (info.name + " " + info.number + " " + info.salary);
// This one will fail and raise a SQLError exception
EmployeeInfo info2 = employee.getEmployee ("bogus");
System.out.println (info.name + " " + info.number + " " + info.salary);

} catch (SQLError e) {
System.out.println ("Error retrieving employee \"bogus\": " + e.message);

}
}

}

employeeServer/employeeImpl.sqlj
package employeeServer;

import employee.*;
import oracle.aurora.AuroraServices.ActivatableObject;
import java.sql.*;

public class EmployeeImpl
extends _EmployeeImplBase
implements ActivatableObject

{
public EmployeeInfo getEmployee (String name) throws SQLError {

try {
int empno = 0;
double salary = 0.0;
#sql { select empno, sal into :empno, :salary from emp

where ename = :name };
return new EmployeeInfo (name, empno, (float)salary);

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

A-12 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
jdbcimpl

readme.txt
Overview
========

This example demonstrates:

- how to use JDBC calls on the server side to query
data from the EMP table

- how to return complex data to the client using an IDL struct/Java class.
- handling SQLException exceptions on the server side and returning

them as CORBA exceptions.

Source files
============

employee.idl

The CORBA IDL for this example defines a struct, an exception, and one
interface.

module employee
struct EmployeeInfo

wstring name
long number
double salary

exception SQLError
wstring message

interface Employee
EmployeeInfo getEmployee (in wstring name) raises (SQLError)

The EmployeeInfo struct is defined to consist of a string for the
employee name, and two numerics for employee number and salary.

The SQLError exception returns SQL exceptions to the client
invoker.

The Employee interface defines a method that returns an EmployeeInfo
struct, and takes an employee name as its input parameter.
Example Code: CORBA A-13

Basic Examples
Client.java

Invoke the client program from a command prompt, and pass it four arguments,
the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222 /test/myHello scott
tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published Employee CORBA server object to find and activate it
- invokes the getEmployee() method, with the parameter "SCOTT", to

return Scott's employee ID and salary
- prints the result
- tries to use getEmployee("bogus") to return information about

employee named bogus. This will fail, and return the SQLError
exception, which is printed.

The printed output is:

employeeServer/EmployeeImpl.java

A-14 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
This class implements the Employee interface. The getEmployee() method
gets access to the defatul server-side JDBC connection, then uses a
PreparedStatement to construct a query for EMPNO and SAL on the EMP
table. The query WHERE clause is constructed from the in parameter
ENAME.

The prepared statement is executed, and the information for the
(first) employee of that name is extracted from the result set, and
inserted into a new EmployeeInfo object, which is then returned to the
invoker.

Note the use of the finally {} clause to close the prepared statement,
which also closes the result set.

Client application output
=========================

The client application prints:

SCOTT 7788 3000.0
Error retrieving employee "bogus": no employee named bogus

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.
Example Code: CORBA A-15

Basic Examples
Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

employee.idl
module employee {

struct EmployeeInfo {
wstring name;
long number;
double salary;

};

exception SQLError {
wstring message;

};

interface Employee {
EmployeeInfo getEmployee (in wstring name) raises (SQLError);

};
};
A-16 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
Client.java
import employee.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

try {
Employee employee = (Employee)ic.lookup (serviceURL + objectName);
EmployeeInfo info = employee.getEmployee ("SCOTT");
System.out.println (info.name + " " + info.number + " " + info.salary);
// This one will fail and raise a SQLError exception
EmployeeInfo info2 = employee.getEmployee ("bogus");

} catch (SQLError e) {
System.out.println ("Error retrieving employee \"bogus\": " + e.message);

}
}

}

employeeServer/EmployeeImpl.java
package employeeServer;

import employee.*;
Example Code: CORBA A-17

Basic Examples
import oracle.aurora.AuroraServices.ActivatableObject;
import java.sql.*;

public class EmployeeImpl
extends _EmployeeImplBase
implements ActivatableObject

{
public EmployeeInfo getEmployee (String name) throws SQLError {

try {
Connection conn =

new oracle.jdbc.driver.OracleDriver().defaultConnection ();
PreparedStatement ps =

conn.prepareStatement ("select empno, sal from emp where ename = ?");
try {

ps.setString (1, name);
ResultSet rset = ps.executeQuery ();
if (!rset.next ())

throw new SQLError ("no employee named " + name);
return new EmployeeInfo (name, rset.getInt (1), rset.getFloat (2));

} finally {
ps.close ();

}
} catch (SQLException e) {

throw new SQLError (e.getMessage ());
}

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

factory

readme.txt
Overview
========

This example demonstrates a CORBA factory design pattern for a simple object.
It uses the orb.connect() method to register the transient (i.e. unnamed)
object created by the factory.
A-18 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
Source files
============

factory.idl

The CORBA IDL that defines the server-side objects. It defines two interfaces:

interface Hello
wstring helloWorld ()

interface HelloFactory {
Hello create (in wstring message)

HelloFactory is used to create new Hello objects. The Hello object is
just the simple object, as in the helloworld example in this set, that
returns a greeting String to the client invoker. In this example, the
factory creates the object with a specified content.

Client.java

Invoke the client program from a command prompt, and pass it four arguments,
the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222 /test/myHello scott
tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip
Example Code: CORBA A-19

Basic Examples
The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published HelloFactory CORBA server object to find and

activate it
- invokes the factory create() method twice to create two separate objects

in the session. The create() method sets the greeting that is returned
- on each object, invokes the helloWorld() method
- prints the result

The printed output is:

Hello World!
Goodbye World!

factoryServer/HelloFactoryImpl.java

This class implements the HelloFactory interface. It creates a new
Hello object (compare the Hello interface), and registers the new
object with the server-side Basic Object Adapter (BOA) using the
connect() method. connect() is the portable version of obj_is_ready().

The created object reference is then returned to the invoker.

factoryServer/HelloImpl.java

This class implements the Hello interface. It contains a public
constructor that saves the message, and one method, helloWorld(),
that returns the message passed in the constructor to the invoker.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
A-20 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

factory.idl
module factory {

interface Hello {
wstring helloWorld ();

};
interface HelloFactory {

Hello create (in wstring message);
};
Example Code: CORBA A-21

Basic Examples
};

Client.java
import factory.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

HelloFactory factory = (HelloFactory)ic.lookup (serviceURL + objectName);
Hello hello = factory.create ("Hello World!");
Hello hello2 = factory.create ("Goodbye World!");
System.out.println (hello.helloWorld ());
System.out.println (hello2.helloWorld ());

}
}

factoryServer/HelloImpl.java
package factoryServer;
A-22 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
import factory.*;

public class HelloImpl extends _HelloImplBase
{

String message;

public HelloImpl (String message) {
this.message = message;

}

public String helloWorld () {
return message;

}
}

factoryServer/HelloFactoryImpl.java
package factoryServer;

import factory.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloFactoryImpl
extends _HelloFactoryImplBase
implements ActivatableObject

{
public Hello create (String message) {

HelloImpl hello = new HelloImpl (message);
_orb().connect (hello);
return hello;

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

lookup

readme.txt
Overview
Example Code: CORBA A-23

Basic Examples
========

This example demonstrates:

- using CORBA structs and sequences
- one CORBA object invoking and calling another in the same session,

using 'thisSession' in the URL.
- using the SQLJ translator for ease in implementing static SQL DML

statements.
- exception handling.

Source files
============

employee.idl

The CORBA IDL for the example. Defines:

EmployeeInfo struct
sequence of EmployeeInfo
DepartmentInfo struct, containing the sequence
SQLError CORBA exception
Employee interface

getEmployees()
Department interface

getDepartment()

The SQLError exception is used so that SQLException messages can
be passed back to the client.

Client.java

Invoke the client program from a command prompt, and pass it four arguments,
the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
A-24 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
% java -classpath LIBs Client sess_iiop://localhost:2222 /test/myHello scott
tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published Employee CORBA server object to find and activate it
- looks up the published Department CORBA server object to find and activate

it
- invokes the getDepartment() method on it, passing in a department

number. This method returns a DepartmentInfo struct (class), which
contains information about the department plus a Java vector of
employee names, ID numbers, and salaries for each employee in
the specified department.

- prints the returned information in a for(;;) loop, one iteration
for each employee in the department

For the standard demo EMP and DEPT tables, the client prints:

RESEARCH 20 DALLAS
SMITH 800.0
JONES 2975.0
SCOTT 3000.0
ADAMS 1100.0
FORD 3000.0

employeeServer/DepartmentImpl.sqlj

Implements the IDL-specified Department interface. The interface
has one method, getDepartment(), that returns the information
about the department and each of the employees in it. The most
interesting thing to note about this method is that it looks up
and activates a second CORBA server object, that was published in
Example Code: CORBA A-25

Basic Examples
the database as /test/myEmployee, and calls a method on it.

Note that the employee object is activated *in the same session*
through the use of the thisServer literal in the URL.

This method returns a DepartmentInfo struct.

employeeServer/EmployeeImpl.sqlj

Implements the Employee interface. There is one method --
getEmployees(). This method queries the EMP table, using a
SQLJ named iterator, and returns an array of EmployeeInfo structs.
The caller (getDepartment()) combines the array returned by
getEmployees() with the results of its own query for the
department attributes, and returns all the information to the
client program.

If the SQLJ code throws a SQLException, it is caught, and a
CORBA-defined SQLError is thrown. This in turn would be
propagated back to the client, where it is handled.

Compiling and Running the Example
=================================

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
A-26 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

employee.idl
module employee {

struct EmployeeInfo {
long empno;
wstring ename;
double sal;

};

typedef sequence <EmployeeInfo> employeeInfos;

struct DepartmentInfo {
long deptno;
wstring dname;
wstring loc;
EmployeeInfos employees;

};

exception SQLError {
wstring message;

};

interface Employee {
EmployeeInfos getEmployees (in long deptno) raises (SQLError);

};
Example Code: CORBA A-27

Basic Examples
interface Department {
DepartmentInfo getDepartment (in long deptno) raises (SQLError);

};
};

Client.java
import employee.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

Department department = (Department) ic.lookup (serviceURL + objectName);
DepartmentInfo info = department.getDepartment (20);
System.out.println (info.dname + " " + info.deptno + " " + info.loc);

EmployeeInfo[] infos = info.employees;
int i;
for (i = 0; i < infos.length; i++)

System.out.println (" " + infos[i].ename + " " + infos[i].sal);
}

A-28 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
}

employeeServer/DepartmentImpl.sqlj
package employeeServer;

import employee.*;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.AuroraServices.ActivatableObject;
import javax.naming.*;
import java.sql.*;
import java.util.*;

public class DepartmentImpl
extends _DepartmentImplBase
implements ActivatableObject

{
Employee employee = null;

public DepartmentInfo getDepartment (int deptno) throws SQLError {
try {

if (employee == null) {
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);
employee =

(Employee)ic.lookup ("sess_iiop://thisServer/test/myEmployee");
}

EmployeeInfo[] employees = employee.getEmployees (deptno);
String dname;
String loc;
#sql { select dname, loc into :dname, :loc from dept

where deptno = :deptno };

return new DepartmentInfo (deptno, dname, loc, employees);
} catch (SQLException e) {

throw new SQLError (e.getMessage ());
} catch (NamingException e) {

throw new SQLError ("Naming Exception: " + e.getMessage ());
}

}

public org.omg.CORBA.Object _initializeAuroraObject () {
Example Code: CORBA A-29

Basic Examples
return this;
}

}

employeeServer/EmployeeImpl.sqlj
package employeeServer;

import employee.*;
import oracle.aurora.AuroraServices.ActivatableObject;
import java.sql.*;
import java.util.Vector;

#sql iterator EmpIterator (int empno, String ename, double sal);

public class EmployeeImpl extends _EmployeeImplBase {
public EmployeeInfo[] getEmployees (int deptno) throws SQLError {

try {
Vector vector = new Vector ();
EmpIterator empit;
#sql empit = { select empno, ename, sal from emp

where deptno = :deptno };
while (empit.next ())

vector.addElement (new EmployeeInfo (empit.empno(), empit.ename(),
empit.sal()));

empit.close ();
EmployeeInfo[] result = new EmployeeInfo[vector.size ()];
vector.copyInto (result);
return result;

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

}

callback

readme.txt
Overview
========
A-30 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
callback shows a CORBA server object that calls back to the client-side
object. It works by activating a new object in the client-side ORB, using the
Basic Object Adapter (BOA), and boa.obj_is_ready(), and sending a reference to
that object to the CORBA server object.

Source files
============

client.idl

The CORBA IDL that defines the client-side object, that will be called
from the server.

interface Client
wstring helloBack()

server.idl

The CORBA IDL that defines the server-side object, that will be called
from the client, and that will in turn call back to the client.

interface Server
wstring hello (in client::Client object)

Since the object is registered on the client side, and is not
published in the database, to perform a callback the server object
must have a reference to the client-side object. In this example, the
server is called with a reference to the object that has been
registered with the client-side Basic Object Adapter (BOA) as a
parameter.

Client.java

Invoke the client program from a command prompt, and pass it four arguments,
the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
Example Code: CORBA A-31

Basic Examples
- username
- password that authenticates the client to the Oracle8i database server

For example:

% java -classpath LIBs Client sess_iiop://localhost:2222 \
/test/myHello scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published CORBA 'Server' object to find and activate it
- starts up the ORB on the client system (ORB.init())
- gets the basic object adapter object (BOA)
- instantiates a new client callback object (new ClientImpl()), and

registers it with the object adapater (boa.obj_is_ready(client))
- invokes the hello() method on the server object, passing it the

reference to the client callback object

It is important to do the lookup() before initializing the ORB on the Client
side: The lookup call initializes the ORB in a way that's compatible with
Oracle 8i. The following org.omg.CORBA.ORB.init() call does not initialize a
new ORB instance but just returns the orb that was initialized by the lookup
call.

The client prints:

I Called back and got: Hello Client World!

which is the concatenation of the strings returned by the server
object, and the called-back client-side object.

serverServer/ServerImpl.java

A-32 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
This class implements the server interface. The code has one method, hello(),
which returns its own String ("I called back and got: ") plus the
String that it gets as the return from the callback to the client.

clientServer/ClientImpl.java

This class implements the client interface. It has a public constructor, which
is required, and a single method, helloBack(), which simply returns the String
"Hello Client World!" to the client that called it (the server object 'server'
in this case).

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Example Code: CORBA A-33

Basic Examples
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

client.idl
module client {

interface Client {
wstring helloBack ();

};
};

Client.java
import server.*;
import client.*;
import clientServer.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
A-34 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

// Get the server object before preparing the client object
// You have to do it in that order to get the ORB initialized correctly
Server server = (Server)ic.lookup (serviceURL + objectName);

// Create the client object and publish it to the orb in the client
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init ();
org.omg.CORBA.BOA boa = orb.BOA_init ();
ClientImpl client = new ClientImpl ();
boa.obj_is_ready (client);

// Pass the client to the server that will call us back
System.out.println (server.hello (client));

}
}

server.idl
#include <client.idl>

module server {
interface Server {

wstring hello (in client::Client object);
};

};

clientServer/ClientImpl.java
package clientServer;

import client.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class ClientImpl extends _ClientImplBase implements ActivatableObject
{

Example Code: CORBA A-35

Basic Examples
public String helloBack () {
return "Hello Client World!";

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

serverServer/ServerImpl.java
package serverServer;

import server.*;
import client.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class ServerImpl extends _ServerImplBase implements ActivatableObject
{

public String hello (Client client) {
return "I Called back and got: " + client.helloBack ();

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

printback

readme.txt
Overview
========

This example demonstrates how to write output to a file descriptor on the
client side from a CORBA server object.

This is a very handy technique for making output from a server object appear
on the console of the client. You can use it for debugging as well as other
informational purposes.
A-36 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
Source files
============

printer.idl

The IDL defines a byteArray as a sequence of octets, and one
interface, ByteStream, with write(), flush(), and close() methods.

interface ByteStream
oneway void write(in byteArray bytes)
oneway void flush()
oneway void close()

Note that the methods are oneway, that is non-blocking.

hello.idl

IDL to define the Hello interface.

interface Hello
oneway void setup (in printer::ByteStream stream)
void helloWorld ();

Client.java

The client code looks up and activates the CORBA server object
(hello), then initializes the client-side ORB and BOA, and registers a
new ByteStreamImpl object with the BOA.

The parameter for the ByteStreamImpl constructor is a FileOutputStream
object, with the out handle as its target.

The client then invokes the hello.setup() method, with the
BOA-registered ByteStream object as the parameter. This essentially
resets 'out' to point to the RemoteOutputStream class, which overrides
the write() and close() methods of the standard PrintStream that is
normally attached to 'out'. Now, when the a server object writes to
'out', the output is redirected to the client-side ByteStream object,
Example Code: CORBA A-37

Basic Examples
where it can be printed on the client console.

To test this, the client then invokes hello.helloWorld(), which prints
back to the client-side ByteStream.

printerServer/ByteStreamImpl.java

This class implements the client-side printer service. It implements
write() method that gets invoked by the server-side CORBA object, and
writes to the client console.

helloServer/HelloImpl.java

This class implements the methods directly called by the client:
setup() and helloWorld().

printerClient/RemoteOutputStream.java

This class implements methods that override the standard PrintStream
write(), flush(), and close() methods, for use by the
HelloImpl.setup() method.

Client application output
=========================

The client application prints:

Hello World!
counting 0
counting 1
counting 2
counting 3
counting 4
counting 5
counting 6
counting 7
counting 8
counting 9
A-38 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
counting 10
counting 11
counting 12
counting 13
counting 14
counting 15
counting 16
counting 17
counting 18
counting 19

...(repeated 3 times, once for each client call to hello.helloWorld().

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
Example Code: CORBA A-39

Basic Examples
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

printer.idl
module printer {

typedef sequence<octet> byteArray;
interface ByteStream {

oneway void write (in byteArray bytes);
oneway void flush ();
oneway void close ();

};
};

hello.idl
#include <printer.idl>

module hello {
interface Hello {

oneway void setup (in printer::ByteStream stream);
void helloWorld ();

};
};

Client.java
import hello.*;
import printerServer.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
A-40 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
import java.util.Hashtable;
import java.io.*;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

// Get the server object before preparing the client object
// You have to do it in that order to get the ORB initialized correctly
Hello hello = (Hello)ic.lookup (serviceURL + objectName);

// Create the client object and publish it to the orb in the client
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init ();
org.omg.CORBA.BOA boa = orb.BOA_init ();
ByteStreamImpl byte_stream =

new ByteStreamImpl (new FileOutputStream (FileDescriptor.out));
boa.obj_is_ready (byte_stream);

// Pass the client to the server that will call us back
hello.setup (byte_stream);
hello.helloWorld ();
hello.helloWorld ();
hello.helloWorld ();

}
}

printerClient/RemoteOutputStream.java
package printerClient;
Example Code: CORBA A-41

Basic Examples
import printer.ByteStream;

import java.io.OutputStream;
import java.io.PrintStream;
import java.io.IOException;

public class RemoteOutputStream extends OutputStream
{

ByteStream remote;

// Static entrypoint to make System.out and System.err use the
// remote stream.
public static void setStreams (ByteStream remote) {

OutputStream os = new RemoteOutputStream (remote);
PrintStream p = new PrintStream (os, true);
System.setOut (p);
System.setErr (p);

}

public RemoteOutputStream (ByteStream remote) {
this.remote = remote;

}

public void write (int b) {
byte[] buf = { (byte)b };
write (buf);

}

public void write (byte b[]) {
remote.write (b);

}

public void write (byte buf[], int off, int count) {
if (off == 0 && count == buf.length)

write (buf);
else if (off >= 0 && off < buf.length && count > 0) {

byte[] temp = new byte [count];
System.arraycopy (buf, off, temp, 0, count);
write (temp);

}
}

public void flush () {
// remote.flush ();
A-42 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
}

public void close () {
remote.close ();

}
}

helloServer/HelloImpl.java
package helloServer;

import hello.*;
import printer.*;
import printerClient.*;
import java.io.PrintStream;

import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{

PrintStream out;
ByteStream remote;

public HelloImpl () {
super ();
out = null;

}

public void setup (ByteStream remote) {
this.remote = remote;
out = new PrintStream (new RemoteOutputStream (remote));

}

public void helloWorld () {
if (out != null){

out.println ("Hello World!");
int i;
for (i = 0; i < 20; i++)

out.println ("counting " + i);
}

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;
Example Code: CORBA A-43

Basic Examples
}
}

printerServer/ByteStreamImpl.java
package printerServer;

import java.io.OutputStream;
import java.io.IOException;

public class ByteStreamImpl extends printer._ByteStreamImplBase
{

OutputStream stream;

public ByteStreamImpl (OutputStream stream) {
super ();
this.stream = stream;

}

public void write (byte[] bytes) {
try {

stream.write (bytes);
} catch (IOException e) {}

}

public void flush () {
try {

stream.flush ();
} catch (IOException e) {}

}

public void close () {
try {

stream.close ();
} catch (IOException e) {}

}
}

A-44 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
tieimpl

readme.txt
Overview
========

This is a CORBA TIE (delegation) implementation of the helloworld example. See
the readme for that example for more information. It uses the
_initializeAuroraObject() method to return a class delegate, rather than the
object itself.

Source files
============

hello.idl

(See the helloworld example readme file.)

Client.java

(See the helloworld example readme file.)

helloServer/HelloImpl.java

Implements the IDL-specified Hello interface. The interface has one
method, helloWorld(), that returns a String to the caller.

Note that the class definition *implements* the IDL-generated
HelloOperations interface, rather than extending _HelloImplBase, as in
the helloworld example.

The class also implements the Aurora ActivateableObject
interface. ActivatableObject has only one method:
_initializeAuroraObject(), which returns the class to be activated by
the BOA.

This class performs no database access.
Example Code: CORBA A-45

Basic Examples
Client-side output
==================

The client prints the returned String "Hello World!" and then exits
immediately.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
A-46 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

hello.idl
module hello {

interface Hello {
wstring helloWorld ();

};
};

Client.java
import hello.Hello;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);
Example Code: CORBA A-47

Basic Examples
Hello hello = (Hello)ic.lookup (serviceURL + objectName);
System.out.println (hello.helloWorld ());

}
}

helloServer/HelloImpl.java
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl implements HelloOperations, ActivatableObject
{

public String helloWorld () {
return "Hello World!";

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return new _tie_Hello (this);

}
}

bank

readme.txt
bank demonstrates:

This is an Oracle8i-compatible version of the VisiBroker Bank
example. The major differences from the Vb example are:

(1) There is no server main loop. For Oracle8i the
"wait-for-activation" loop is part of the IIOP presentation (MTS
server).

(2) _boa.connect(object) is used instead of the less portable
_boa_obj_is_ready(object) in the server object implementation to

register the new Account objects.

(3) The client program contains the code necessary to lookup the
AccountManager object (published under /test/myBank) and activate it,
A-48 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
and to authenticate the client to the server. (Note that object
activation and authentication, via NON_SSL_LOGIN, happen "under the
covers" so to speak on the lookup() method invocation.)

(4) There is also a tie implementation of this example, with the
server being AccountManagerImplTie.java.

Bank.idl
// Bank.idl

module Bank {
interface Account {

float balance();
};
interface AccountManager {

Account open(in string name);
};

};

Client.java
// Client.java

import bankServer.*;
import Bank.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 5) {

System.out.println("usage: Client serviceURL objectName user password "
+ "accountName");

System.exit(1);
}
String serviceURL = args [0];
Example Code: CORBA A-49

Basic Examples
String objectName = args [1];
String user = args [2];
String password = args [3];
String name = args [4];

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, user);
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);

Context ic = new InitialContext(env);

AccountManager manager =
(AccountManager)ic.lookup (serviceURL + objectName);

// Request the account manager to open a named account.
Bank.Account account = manager.open(name);

// Get the balance of the account.
float balance = account.balance();

// Print out the balance.
System.out.println

("The balance in " + name + "'s account is $" + balance);
}

}

bankServer/AccountImpl.java
// AccountImpl.java
package bankServer;

public class AccountImpl extends Bank._AccountImplBase {
public AccountImpl(float balance) {

_balance = balance;
}
public float balance() {

return _balance;
}
private float _balance;

}

A-50 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
bankServer/AccountManagerImpl.java
package bankServer;

import java.util.*;

public class AccountManagerImpl
extends Bank._AccountManagerImplBase {

public synchronized Bank.Account open(String name) {

// Lookup the account in the account dictionary.
Bank.Account account = (Bank.Account) _accounts.get(name);

// If there was no account in the dictionary, create one.
if(account == null) {

// Make up the account's balance, between 0 and 1000 dollars.
float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

// Create the account implementation, given the balance.
account = new AccountImpl(balance);

_orb().connect(account);

// Print out the new account.
// This just goes to the system trace file for Oracle 8i.
System.out.println("Created " + name + "'s account: " + account);

// Save the account in the account dictionary.
_accounts.put(name, account);

}
// Return the account.
return account;

}

private Dictionary _accounts = new Hashtable();
private Random _random = new Random();

}

bankServer/AccountManagerImplTie.java
package bankServer;
Example Code: CORBA A-51

Basic Examples
import java.util.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class AccountManagerImplTie
implements Bank.AccountManagerOperations,
ActivatableObject {

public synchronized Bank.Account open(String name) {

// Lookup the account in the account dictionary.
Bank.Account account = (Bank.Account) _accounts.get(name);

// If there was no account in the dictionary, create one.
if(account == null) {

// Make up the account's balance, between 0 and 1000 dollars.
float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

// Create the account implementation, given the balance.
account = new AccountImpl(balance);

org.omg.CORBA.ORB.init().BOA_init().obj_is_ready(account);

// Print out the new account.
// This just goes to the system trace file for Oracle 8i.
System.out.println("Created " + name + "'s account: " + account);

// Save the account in the account dictionary.
_accounts.put(name, account);

}
// Return the account.
return account;

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return new Bank._tie_AccountManager(this);

}

private Dictionary _accounts = new Hashtable();
private Random _random = new Random();

}

A-52 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
pureCorba

Bank.idl
// Bank.idl

module Bank {
interface Account { float balance(); };
interface AccountManager { Account open(in string name); };

};

Client.java
import java.lang.Exception;

import org.omg.CORBA.Object;
import org.omg.CORBA.SystemException;
import org.omg.CosNaming.NameComponent;

import oracle.aurora.client.Login;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.AuroraServices.LoginServerHelper;
import oracle.aurora.AuroraServices.PublishedObject;
import oracle.aurora.AuroraServices.PublishingContext;
import oracle.aurora.AuroraServices.PublishedObjectHelper;

import Bank.Account;
import Bank.AccountManager;
import Bank.AccountManagerHelper;

public class Client {
public static void main(String args[]) throws Exception {

// Parse the args
if (args.length != 5) {

System.out.println ("usage: Client host port sid username password");
System.exit(1);

}
String host = args[0];
int port = Integer.parseInt (args[1]);
String sid = args[2];
String username = args[3];
String password = args[4];
Example Code: CORBA A-53

Basic Examples
// Declarations for an account and manager
Account account = null;
AccountManager manager = null;

// access the Aurora Names Service
try {

// Get the Name service Object reference (Only ORB specific thing)
PublishingContext rootCtx = null;
rootCtx = VisiAurora.getNameService (host, port, sid);

// Get the pre-published login object reference
PublishedObject loginPubObj = null;
LoginServer serv = null;
NameComponent[] nameComponent = new NameComponent[2];
nameComponent[0] = new NameComponent ("etc", "");
nameComponent[1] = new NameComponent ("login", "");

// Lookup this object in the Name service
Object loginCorbaObj = rootCtx.resolve (nameComponent);

// Make sure it is a published object
loginPubObj = PublishedObjectHelper.narrow (loginCorbaObj);

// create and activate this object (non-standard call)
loginCorbaObj = loginPubObj.activate_no_helper ();
serv = LoginServerHelper.narrow (loginCorbaObj);

// Create a client login proxy object and authenticate to the DB
Login login = new Login (serv);
login.authenticate (username, password, null);

// Now create and get the bank object reference
PublishedObject bankPubObj = null;
nameComponent[0] = new NameComponent ("test", "");
nameComponent[1] = new NameComponent ("bank", "");

// Lookup this object in the name service
Object bankCorbaObj = rootCtx.resolve (nameComponent);

// Make sure it is a published object
bankPubObj = PublishedObjectHelper.narrow (bankCorbaObj);

// create and activate this object (non-standard call)
bankCorbaObj = bankPubObj.activate_no_helper ();
manager = AccountManagerHelper.narrow (bankCorbaObj);
A-54 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
account = manager.open ("Jack.B.Quick");

float balance = account.balance ();
System.out.println ("The balance in Jack.B.Quick's account is $"

+ balance);
} catch (SystemException e) {

System.out.println ("Caught System Exception: " + e);
e.printStackTrace ();

} catch (Exception e) {
System.out.println ("Caught Unknown Exception: " + e);
e.printStackTrace ();

}
}

}

VisiAurora.java
import java.lang.Exception;
import java.net.UnknownHostException;
import java.net.InetAddress;
import java.util.Properties;

// CORBA specific imports
import org.omg.CORBA.Object;
import org.omg.CORBA.InitialReferences;
import org.omg.CORBA.InitialReferencesHelper;
import org.omg.CORBA.SystemException;

// Visigenic specific imports
import com.visigenic.vbroker.orb.ORB;
import com.visigenic.vbroker.orb.GiopOutputStream;
import com.visigenic.vbroker.GIOP.Version;
import com.visigenic.vbroker.IOP.IOR;
import com.visigenic.vbroker.IOP.TaggedComponent;
import com.visigenic.vbroker.IOP.TaggedProfile;
import com.visigenic.vbroker.IOP.TAG_INTERNET_IOP;
import com.visigenic.vbroker.IIOP_1_1.ProfileBody;
import com.visigenic.vbroker.IIOP_1_1.ProfileBodyHelper;

// Oracle specific imports
import oracle.aurora.AuroraServices.PublishingContext;
import oracle.aurora.AuroraServices.PublishingContextHelper;
import oracle.aurora.sess_iiop.orb_dep.TAG_SESSION_IOP;
Example Code: CORBA A-55

Basic Examples
import oracle.aurora.sess_iiop.orb_dep.ComponentBody;
import oracle.aurora.sess_iiop.orb_dep.ComponentBodyHelper;

public class VisiAurora {
public static PublishingContext getNameService (String host, int port,

String sid)
{

PublishingContext nameServiceCtx = null;
try {

// Get the Boot service object reference
Object initRefObj = getBootIOR (host, port, sid);
InitialReferences initRef = InitialReferencesHelper.narrow (initRefObj);

// get the oracle CosName service reference
Object nsObj = initRef.get ("NameService");
nameServiceCtx = PublishingContextHelper.narrow (nsObj);

} catch (SystemException e) {
System.out.println ("Caught System Exception: " + e);
e.printStackTrace ();

} catch (Exception e) {
System.out.println ("Caught Unknown Exception: " + e);
e.printStackTrace ();

}
return nameServiceCtx;

}

public static Object getBootIOR (String host, int port, String sid)
throws UnknownHostException

{
// NOTE: 1. if you wish to use sess_iiop then comment-out pt.#2,
// and #4 below and initialize the ORB using the following:
Properties props = new Properties ();
props.put ("ORBServices", "oracle.aurora.sess_iiop.orb_dep");
ORB visiORB = (ORB) org.omg.CORBA.ORB.init ((String[]) null, props);

// NOTE: 2. if you wish to use iiop then comment-out pt.#1 and #3
// and initialize the ORB using the following line:
// ORB visiORB = (ORB) org.omg.CORBA.ORB.init ();

// common to both (sess_iiop and iiop)
String ipAddr = InetAddress.getByName (host).getHostAddress ();
Version version = new Version ((byte)1, (byte)1);

ComponentBody sessionBody =
new ComponentBody ("ORCL", 0, visiORB.getLocalHost (),
A-56 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
new byte[] {});
GiopOutputStream output = visiORB.newGiopOutputStream ();

output.byteOrder (visiORB.JAVA_ENDIAN);
output.write_boolean (visiORB.JAVA_ENDIAN);
ComponentBodyHelper.write (output, sessionBody);

TaggedComponent component =
new TaggedComponent (TAG_SESSION_IOP.value, output.toByteArray ());

TaggedComponent[] taggedComponents = { component };

byte[] objectKey = getObjectKey (sid);

ProfileBody profileBody = new
ProfileBody (version, ipAddr, (short)port, objectKey,

taggedComponents);

output.offset (0);
output.byteOrder (visiORB.JAVA_ENDIAN);
output.write_boolean (visiORB.JAVA_ENDIAN);

ProfileBodyHelper.write (output, profileBody);
byte[] profileData = output.toByteArray ();
TaggedProfile profile =

new TaggedProfile (TAG_INTERNET_IOP.value, profileData);
TaggedProfile[] taggedProfiles = { profile };

return visiORB.iorToObject (new IOR ("IDL:CORBA/InitialReferences:1.0",
taggedProfiles));

}

public static byte [] getObjectKey (String sid)
{

String preSID = new String ("ORCL(CONNECT_DATA=(SID=");

// NOTE: 3. if you wish to use sess_iiop then comment out pt.#1
// and #4, and use the following postSID:
String postSID = new String (")(SESSION_ID=0))");
// NOTE: 4. if you wish to use iiop then comment out pt.#1 and #3
// above and use the following postSID:
// String postSID = new String ("))");

// common to both (sess_iiop and iiop)
String preINIT = new String (preSID + sid + postSID);
Example Code: CORBA A-57

Basic Examples
byte[] b1 = new byte [preINIT.length () + 1];

System.arraycopy (preINIT.getBytes (), 0, b1, 0, preINIT.length ());
b1 [preINIT.length ()] = 0;

String initString = new String ("INIT");
byte[] objectKey = new byte [b1.length + initString.length ()];
System.arraycopy (b1, 0, objectKey, 0, b1.length);
System.arraycopy (initString.getBytes (), 0, objectKey, b1.length,

initString.length ());

return objectKey;
}

}

bankServer/AccountImpl.java
package bankServer;

import Bank.*;

public class AccountImpl extends _AccountImplBase {
private float _balance;

public AccountImpl () { _balance = (float) 100000.00; }
public AccountImpl (float balance) { _balance = balance; }
public float balance () { return _balance; }

}

bankServer/AccountManagerImpl.java
package bankServer;

// import the idl-generated classes
import Bank.*;

import java.util.Dictionary;
import java.util.Random;
import java.util.Hashtable;

// Corba specific imports
import org.omg.CORBA.Object;
A-58 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
// Aurora-orb specific imports
import oracle.aurora.AuroraServices.ActivatableObject;

public class AccountManagerImpl
extends _AccountManagerImplBase
implements ActivatableObject

{
private Dictionary _accounts = new Hashtable ();
private Random _random = new Random ();

// Constructors
public AccountManagerImpl () { super (); }
public AccountManagerImpl (String name) { super (name); }

public Object _initializeAuroraObject () {
return new AccountManagerImpl ("BankManager");

}

public synchronized Account open (String name) {
// Lookup the account in the account dictionary.
Account account = (Account) _accounts.get (name);

// If there was no account in the dictionary, create one.
if (account == null) {

// Make up the account's balance, between 0 and 1000 dollars.
float balance = Math.abs (_random.nextInt ()) % 100000 / 100f;

// Create the account implementation, given the balance.
account = new AccountImpl (balance);

// Make the object available to the ORB.
_orb ().connect (account);

// Print out the new account.
System.out.println ("Created " + name + "'s account: " + account);

// Save the account in the account dictionary.
_accounts.put (name, account);

}

// Return the account.
return account;

}
}

Example Code: CORBA A-59

Session Examples
Session Examples
Here is the README file for the session examples:

The examples in the session/ directories demonstrate various CORBA
programming techniques that you can use to create and manage sessions
in Oracle8i.

The examples are short, and each example shows just one, or at the
most a few aspects of Oracle8i CORBA session handling. The examples
are mostly slight variants on the basic helloworld example. None of
these examples do any database access.

You should first study the 'explicit' example. This example shows you
how to use JNDI to connect and activate a CORBA object by doing each
step of the process explicitly. In the other, basic/ examples, things
such as authentication are done automatically for you, for example
when you specify NON_SSL_LOGIN as the authentication method in the
Initial Context.

Running the Examples
====================

To run the examples, you must have access to an Oracle8i database
server that hosts the Oracle8i server-side Java VM.

The SCOTT schema must have write access to the CORBA name space
starting at the 'test' directory, which is true of the install
database. The tables that support the publishing directories are
established when your Oracle8i system with the Java server option is
built. You can use the Session Shell to verify the presence of the
test directory. See the Oracle8i EJB and CORBA Developer's Guide for
information about the Session Shell.

You must also have the INIT.ORA, tnsnames.ora, and listener.ora files
configured properly to accept both standard TTC as well as IIOP
incoming connections. This is done for you in the install test
database. See the Net8 Administrator's Guide for information about
setting up these files.

For simplicity. most of these examples connect directly to the
A-60 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
dispatcher port. Your production code should use the listener for
better scalability.

Each example publishes one or more objects in the database. To
lookup and activate the published object, the client uses the
Oracle8i JNDI interface to the CosNaming implementation.

The Makefiles or batch files provided with the examples expect that you
have the java and javac commands from the Sun JDK 1.1.x (with x >= 3)
in your PATH. They also expect that your CLASSPATH contains the Java
runtime classes (classes.zip) corresponding to your java interpreter.
The makefiles/batch files take care of adding the ORACLE specific jar
and zip files to your CLASSPATH.

For reference here is a list of jar and zip files that the
makefiles/batch files use:

ORACLE_HOME/lib/aurora_client.jar # Oracle 8i ORB runtime
ORACLE_HOME/lib/aurora.jar # Oracle 8i in-the-database runtime
ORACLE_HOME/jdbc/lib/classes111.zip # for JDBC examples
ORACLE_HOME/sqlj/lib/translator.zip # for SQLJ examples
ORACLE_HOME/lib/vbjapp.jar # Inprise VisiBroker library
ORACLE_HOME/lib/vbjorb.jar # VisiBroker library
ORACLE_HOME/lib/vbj30ssl.jar # required if you modify any

client code to use SSL

The example programs are:

explicit - shows how to get the JNDI initial context, authenticate
the client explicitly using a login server objct and a
client proxy login object (and stub), create a session
"by hand", and so on. Study this example carefully.

clientserverserver - create a new session from within a server
object.

timeout - client sets the session timeout value from the server object.

sharedsession - client writes an object reference to a file, and a
second client reads the ref, and uses it to invoke a
method on the object in the session started by the first
client.

twosessions - client creates two separate sessions explicitly, and
Example Code: CORBA A-61

Session Examples
invokes a method on an object in each session.

twosessionsbyname - client creates two separate named sessions, and
activates a separate object in each session. This example
uses the SessionCtx login method to authenticate the client,
rather than the fully explicit login object activation used
in the twosessions example.

The code in the examples is not always commented, but each of the
examples has its own readme file. The readme explains what the code
does, and points out any special features used in the example.

Each of these examples has been tested on Solaris 2.6 and Windows
NT 4.0. If you have problems compiling or running the examples on
these or on another supported platform, please inform your Oracle
support representative.

explicit

readme.txt
Overview
========

Demonstrates how a client can activate a CORBA server object
explicitly, and the use of the login object for client authentication.

Compare this example to the ../examples/corba/basic/helloworld case.
In the basic example, only three client-side call are made to lookup and
activate a server object, and then invoke one of its methods:

Context ic = new InitialContext(env);

Hello hello = (Hello) ic.lookup(serviceURL + objectName);
System.out.println(hello.helloWorld ());

This example makes explicit much that is handled "under the covers" in
the simple helloworld example.

You should study this example before going on to the other examples in
A-62 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
this CORBA sessions directory.

Source files
============

hello.idl

The CORBA IDL for the example. The IDL for the Hello interface simply
defines one method:

interface Hello
wstring helloWorld()

which must be implemented by the helloServer.HelloImpl.java code.

Client.java

You invoke the client program from a command line prompt, and pass it
four arguments, the

- service URL (service ID, hostname, and port)
- name of the published object to lookup and instantiate
- username
- password that authenticate the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2481:ORCL \

/test/myHello scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets a JNDI Context (InitialContext())
Example Code: CORBA A-63

Session Examples
- looks up the service URL to get a ServiceCtx (service context) object
- creates a session context. This activates a new session in the server.
- activates a login server object
- creates a new client-side login object
- authenticates the client (login.authenticate())
- activates a Hello object
- invokes the helloWorld() method on the Hello object, and print the results

The printed output is:

Hello World!

helloServer/HelloImpl.java

This file implements the method specified in the hello.idl
file: helloWorld(). It simple returns the greeting to the client.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.
A-64 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

hello.idl
module hello {

interface Hello {
wstring helloWorld ();

};
};

Client.java
import hello.Hello;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jndi.sess_iiop.SessionCtx;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.client.Login;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
Example Code: CORBA A-65

Session Examples
System.exit (1);
}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

// Prepare a simplified Initial Context as we are going to do
// everything by hand
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// Get a SessionCtx that represents a database instance
ServiceCtx service = (ServiceCtx)ic.lookup (serviceURL);

// Create a session in the instance. The session name must start by a :
SessionCtx session = (SessionCtx)service.createSubcontext (":session1");

// Activate the LoginServer object at the well known name etc/login
LoginServer login_server = (LoginServer)session.activate ("etc/login");

// Create the login client and authenticate with the login protocol
Login login = new Login(login_server);
login.authenticate (user, password, null);

// Activate the Hello object and call its helloWorld method
Hello hello = (Hello)session.activate (objectName);
System.out.println (hello.helloWorld ());

}
}

helloServer/HelloImpl.java
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{

public String helloWorld () {
return "Hello World!";

}

A-66 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

clientserverserver

readme.txt
clientserverserver demonstrates:

(1) A CORBA server object that instantiates a second session in the
same server, and calls methods on it.

The basic structure of this example is a client program that
instantiates a server object, then invokes a method on it that sets a
String to "Hello World!". The client then invokes the getOtherHello()
method on the server object. This method takes the authentication and
service identifier information from the client, and creates a second
server object *in a different session*.

Source files
============

hello.idl

The CORBA IDL for the example. Defines an interface, Hello, with 4
methods:

interface Hello
wstring helloWorld();
void setMessage (

in wstring message);
void getOtherHello (

in wstring user,
in wstring password,
in wstring objectURL) raises (AccessError);

wstring otherHelloWorld()

and one exception: AccessError.
Example Code: CORBA A-67

Session Examples
Client.java

The client looks up and instantiates a Hello CORBA server object.
The client then invokes setMessage() on this object to set its message
variable. Next the client invokes getOtherHello(), to have the first
CORBA server object create a second Hello object. The first server
Hello object will set a different message in the message instance
variable. The client finally calls otherHelloWorld() on the first
object, which indirectly returns the message set in the second object.

The result of all this is that client prints:

Hello World!
Hello from the Other Hello Object

on its console.

helloServer/HelloImpl.java

This server class implements the four methods specified in hello.idl:

setMessage() simply sets the class variable message to the
input parameter.

helloWorld() returns to the client whatever String setMessage
set.

getOtherHello() takes three parameters: a username, password, and a
service URL (e.g. "sess_iiop://<hostname>:<dispatcher_port>"). It then
instantiates a second Hello server object, and sets its message
variable to "Hello from the Other Hello Object".

otherHelloWorld() invokes the helloWorld() method on the second
object, and returns its message string to the client.

Compiling and Running the Example
=================================

On UNIX, enter the command 'make all' or just simply 'make' in the
A-68 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
shell to compile, load, and publish the objects, and run the
client program. Other targets are 'make compile', 'make load',
'make publish', and 'make run'.

On Windows NT, use the batch file to compile, load, publish and
run.

hello.idl
module hello {

exception AccessError {
wstring message;

};

interface Hello {
wstring helloWorld ();
void setMessage (in wstring message);
void getOtherHello (in wstring user, in wstring password,

in wstring objectURL)
raises (AccessError);

wstring otherHelloWorld ();
};

};

Client.java
import hello.Hello;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
Example Code: CORBA A-69

Session Examples
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

// Activate a Hello in the 8i server
// This creates a first session in the server
Hello hello = (Hello)ic.lookup (serviceURL + objectName);
hello.setMessage ("Hello World!");
System.out.println (hello.helloWorld ());

// Ask the first Hello to activate another Hello in the same server
// This creates another session used by the first session
hello.getOtherHello (user, password, serviceURL + objectName);
System.out.println (hello.otherHelloWorld ());

}
}

helloServer/HelloImpl.java
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.AuroraServices.ActivatableObject;
import javax.naming.*;
import java.util.*;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{

String message;
Hello otherHello;

public String helloWorld () {
return message;

}

public void setMessage (String message) {
A-70 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
this.message = message;
}

public void getOtherHello (String user, String password, String URL)
throws AccessError

{
try {

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

otherHello = (Hello)ic.lookup (URL);
otherHello.setMessage ("Hello from the Other Hello Object");

} catch (Exception e) {
e.printStackTrace ();
throw new AccessError (e.toString ());

}
}

public String otherHelloWorld () {
if (otherHello != null)

return otherHello.helloWorld ();
else

return "otherHello not accessed yet";
}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

timeout

readme.txt
Overview
========

Timeout shows you how to set the session timeout from a server object.
For testing the timeout, a second client is provided. The second client
Example Code: CORBA A-71

Session Examples
is authenticated using a login IOR that the first client writes to a file..

The basic structure of this example is a client program that
instantiates two server objects in separate sessions.

Compare this example with the ..corba/session/clientserverserver
example, in which the client instantiates a server object, and that
server object then instantiates a second server object in a different
session.

Source files
============

hello.idl

The CORBA IDL

interface Hello
wstring helloWorld ()
void setMessage (in wstring message)
void setTimeOut (in long seconds)

Client.java

You invoke the client program from a command line prompt, and pass it
seven arguments:

- the service URL (service ID, hostname, and port)
- the name of the published object to lookup and instantiate
- a username
- a password that authenticates the client to the Oracle8i database
- the name of a file that the client writes the hello IOR into
- the name of a file that the client writes the login IOR into
- the session timeout value in seconds

For example: % java -classpath LIBs Client sess_iiop://localhost:2222
scott tiger hello.ior login.ior 30

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
A-72 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

This first client gets a reference to a Hello object, and sets its
message instance variable to "As created by Client1.java". It then sets
the session timeout to the number of seconds passed as the sixth parameter.

Next, the client writes the stringified hello IOR and login IOR to the
file named in the fifth and sixth parameter, then exits. The session remains
alive, on account of the timeout parameter.

This client program prints

Client1: As created by Client1
Set session timeout to 30 seconds
Client1: wrote the login IOR
Client1: exiting...

on its console.

Client2.java

The Client2 program reads the IOR for the hello object, and the IOR
for the login object. These were written to files by Client1.

The login IOR is required because the client uses NON_SSL_LOGIN as the
authentication mechanism. This requires that the client2 program get a
reference to a login server object, and then instantiate a client-side
proxy object to communicate with the server-side login object, in
order to authenticate.

helloServer/HelloImpl.java

Implements the methods specified in hello.idl:

String helloWorld()
void setMessage(String message)
void setTimeOut(int seconds)
Example Code: CORBA A-73

Session Examples
Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.
A-74 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
hello.idl
module hello {

interface Hello {
wstring helloWorld ();
void setMessage (in wstring message);
void setTimeOut (in long seconds);

};
};

Client1.java
import hello.Hello;

import java.io.*;
import javax.naming.*;
import java.util.Hashtable;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.client.*;
import oracle.aurora.AuroraServices.*;

public class Client1
{

public static void main (String[] args) throws Exception {
if (args.length != 7) {

System.out.println
("usage: Client serviceURL objectName user password iorfile loginfile

timeout");
System.exit(1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];
String iorfile = args [4];
String loginfile = args [5];
int timeout = Integer.parseInt(args [6]);

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, user);
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext(env);
Example Code: CORBA A-75

Session Examples
Hello hello = (Hello) ic.lookup(serviceURL + objectName);
hello.setMessage("As created by Client1");
System.out.println("Client1: " + hello.helloWorld());

// Make the session survive timeout seconds after its last connection
// is dropped.

hello.setTimeOut(timeout);
System.out.println("Set session timeout to " + timeout + " seconds");
// Write the IOR to a file for Client2.java to access our session
OutputStream os = new FileOutputStream(iorfile);
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();
String ior = orb.object_to_string(hello);
os.write(ior.getBytes());
os.close();

// create an ior for login object
LoginServer lserver =

(LoginServer) (ic.lookup(serviceURL + "/etc/login"));
String loginior = orb.object_to_string(lserver);
OutputStream ls = new FileOutputStream(loginfile);
ls.write(loginior.getBytes());
ls.close();
System.out.println("Client1: wrote the login IOR");

System.out.println("Client1: exiting...");
}

}

Client2.java
import hello.Hello;
import hello.HelloHelper;

import java.io.*;
import javax.naming.*;
import java.util.Hashtable;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.client.*;
import oracle.aurora.AuroraServices.*;
A-76 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
public class Client2
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println("usage: Client2 user password iorfile loginfile");
System.exit(1);

}
String user = args [0];
String password = args [1];
String iorfile = args [2];
String loginfile = args [3];

// Initialize the ORB for accessing objects in 8i
// You have to initialize the ORB that way.
// You will be authenticated using the login IOR read
// from the file.
org.omg.CORBA.ORB orb =

ServiceCtx.init(null, null, null, false, null);

// Read the ior from iorfile
InputStream is = new FileInputStream(iorfile);
byte[] iorbytes = new byte [is.available()];
is.read(iorbytes);
is.close();
String ior = new String(iorbytes);
System.out.println("Client2: Got the hello IOR");

// Read the login IOR from the loginfile.
FileInputStream ls = new FileInputStream(loginfile);
byte[] loginbytes = new byte [ls.available()];
ls.read(loginbytes);
ls.close();
String loginior = new String(loginbytes);
System.out.println("Client2: got the login IOR.");

// Try to authenticate
try {

org.omg.CORBA.Object lobj = orb.string_to_object(loginior);
LoginServer lserver = LoginServerHelper.narrow(lobj);
org.omg.CORBA.BindOptions lbo = new org.omg.CORBA.BindOptions(

false, false);
lserver._bind_options(lbo);

Login login = new Login(lserver);
boolean result = login.authenticate(user, password, null);
Example Code: CORBA A-77

Session Examples
} catch (Exception e) {
System.out.println("Login failed: " + e.getMessage());
System.exit(1);

}
System.out.println("Client2: authenticated.");

// Access the object from the ior and print its message
Hello hello = HelloHelper.narrow(orb.string_to_object(ior));
System.out.println("Client2: " + hello.helloWorld());

// Disconnect from the object by exiting
System.out.println("Client2: exiting...");

}
}

helloServer/HelloImpl.java
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;
import oracle.aurora.net.Presentation;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{

String message;

public String helloWorld () {
return message;

}

public void setMessage (String message) {
this.message = message;

}

public void setTimeOut (int seconds) {
Presentation.sessionTimeout (seconds);

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

A-78 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
sharedsession

readme.txt
Overview
========

Sharedsession client1 writes an object reference out to a file. The second
client reads the IOR, and uses it to access an object in the same session
started by the first client.

Sources
=======

hello.idl

The CORBA IDL for the example. Specifies one interface with two
methods:

interface Hello
wstring helloWorld()
void setMessage(in wstring message)

Client1.java

There are two client programs in this example. You invoke the first
client program (Client1.class) from a command line prompt, and pass it
six arguments:

- the service URL (service ID, hostname, and port)
- the name of a published object to lookup and instantiate
- a username (e.g. SCOTT)
- a password (e.g. TIGER)
- a filename in which to save the hello IOR from this client
- a filename in which to save the login IOR

This client should be run in the background. Use & in a UNIX shell, or
START in NT.

For example:
Example Code: CORBA A-79

Session Examples
% java -classpath LIBs Client sess_iiop://localhost:2222 scott tiger
hello.ior login.ior &

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client looks up and activates a Hello object, then sets its
message instance variable to "As created by Client1". The client
then writes the stringified IOR to the file specified on the command
line. (Note that a client-side ORB has to be specifically activated (
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();) to get access to
the object_to_string() ORB method.)

Then the client loops invoking helloWorld() on its Hello object. At
some point, the second client will have changed the message in the
object, and that will be visible in the first client's output.

The first client then sleeps for 20 seconds, before exiting.

Client2.java

You invoke the second client program (Client2.class) from a command
line prompt, and pass it four arguments:

- a username (e.g. SCOTT)
- a password (e.g. TIGER)
- a filename from which to read the hello IOR from client1
- a filename from which to read the login IOR from client1

This client sleeps for 5 seconds, then tries to read the hello IOR
from the file written by client1. When read, client2 then reads the
login IOR, and authenticates itself to the session.

The client then sets the message instance variable to "Client2 was
here and modified the message". The first client, still running, will
print this new message out.
A-80 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
helloServer/HelloImpl.java

This source file implements the two methods specified in the hello.idl
file: setMessage() to set the instance variable message, and
helloWorld() to return the value set in message.

Compiling and Running the Example
=================================

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.
Example Code: CORBA A-81

Session Examples
You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

hello.idl
module hello {

interface Hello {
wstring helloWorld ();
void setMessage (in wstring message);

};
};

Client1.java
import hello.Hello;

import java.io.*;
import javax.naming.*;
import java.util.Hashtable;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.client.*;
import oracle.aurora.AuroraServices.*;

public class Client1
{

public static void main (String[] args) throws Exception {
if (args.length != 6) {

System.out.println
("usage: Client serviceURL objectName user password " +

"loginfile iorfile");
System.exit(1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];
String loginIORFile = args [4];
String helloIORFile = args [5];

Hashtable env = new Hashtable();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);
A-82 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
LoginServer lserver = (LoginServer)ic.lookup (serviceURL + "/etc/login");
new Login (lserver).authenticate (user, password, null);

Hello hello = (Hello)ic.lookup (serviceURL + objectName);
hello.setMessage ("As created by Client1");

writeIOR (lserver, loginIORFile);
writeIOR (hello, helloIORFile);

int i;
for (i = 0; i < 10; i++) {

System.out.println ("Client1: " + i + ": " + hello.helloWorld ());
Thread.sleep (4000);

}

System.out.println("Client1: exiting...");
}

static public void writeIOR (org.omg.CORBA.Object object, String iorFile)
throws Exception

{
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init ();
String ior = orb.object_to_string (object);
OutputStream os = new FileOutputStream (iorFile);
os.write (ior.getBytes ());
os.close ();

}
}

Client2.java
import hello.Hello;
import hello.HelloHelper;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.*;
import java.util.Hashtable;

import java.io.*;

import oracle.aurora.client.*;
import oracle.aurora.AuroraServices.*;
Example Code: CORBA A-83

Session Examples
public class Client2 {
public static void main (String[] args) throws Exception {

if (args.length != 4) {
System.out.println("usage: Client2 user password loginfile hellofile");
System.exit(1);

}
String user = args [0];
String password = args [1];
String loginIORfile = args [2];
String helloIORfile = args [3];

// Initialize the ORB for accessing objects in 8i
// You have to initialize the ORB that way.
// You will be authenticated using the login object IOR retrieved
// from the loginfile, so the parameters are null.
org.omg.CORBA.ORB orb = ServiceCtx.init (null, null, null, false, null);

// Read the IORs from the IOR files
String loginIOR = getIOR (loginIORfile);
String helloIOR = getIOR (helloIORfile);

// Authenticate with the login Object
LoginServer lserver =

LoginServerHelper.narrow (orb.string_to_object (loginIOR));
lserver._bind_options (new org.omg.CORBA.BindOptions (false, false));

Login login = new Login (lserver);
login.authenticate (user, password, null);
System.out.println("Client2: authenticated.");

// Access the Hello object from its ior and change its message
Hello hello = HelloHelper.narrow (orb.string_to_object (helloIOR));
hello.setMessage ("Client2 was here and modified the message");

System.out.println ("Client2: " + hello.helloWorld());

System.out.println("Client2: exiting...");
}

// Read an IOR from an IOR file.
static String getIOR (String iorFile)

throws Exception
{

A-84 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
// Loop until the ior file is available
InputStream is = null;
int i;
for (i = 0; i < 10; i++) {

try {
is = new FileInputStream(iorFile);

} catch (FileNotFoundException e) {}
Thread.sleep(1000);

}

if (is == null){
System.out.println("Client2 timed out before finding " + iorFile);
System.exit(1);

}

byte[] iorbytes = new byte [is.available ()];
is.read (iorbytes);
is.close ();
String ior = new String (iorbytes);
System.out.println("Client2: got the IOR from " + iorFile);
return ior;

}
}

helloServer/HelloImpl.java
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{

String message;

public String helloWorld () {
return message;

}

public void setMessage (String message) {
this.message = message;

}

public org.omg.CORBA.Object _initializeAuroraObject () {
Example Code: CORBA A-85

Session Examples
return this;
}

}

twosessions

readme.txt
Overview
========

Twosessions demostrates a client that instantiates two separate sessions in
the server, and calls methods on objects in each session. It also demos use of
the login object for client authentication.

Compare this example to the ../examples/corba/session/clientserverserver
example, in which the client instantiates a server object, and that server
object then instantiates a second server object in a different session.

Source files
============

hello.idl

The CORBA IDL for the example. The IDL for the Hello object simply
defines two methods:

interface Hello
wstring helloWorld ();
void setMessage (in wstring message);

which must be implemented by the helloServer.HelloImpl.java code.

Client.java

You invoke the client program from a command line prompt, and pass it
four arguments: the service URL (service ID, hostname, and port), the
name of the published object to lookup and instantiate, and a username
A-86 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
and password that authenticate the client to the Oracle8i database
server.

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222 scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client first obtains a service context in the normal way, by
getting a JNDI Context object, and looking up the service context on
it, using the service URL (e.g., sess_iiop://localhost:2222).
The service context is then used to create new named sessions,
:session1 and :session2. On each session, a login server object is
instantiated, then a login client is obtained, and the authenticate()
method on the login client is used to authenticate the client.

Note that this form of authentication is what happens automatically
when a server object is instantiated, and the JNDI context is obtained
by passing in the username, password, optional database role, and the
value NON_SSL_LOGIN in the environmentg hashtable.

In this example, because the sessions are instantiated overtly, it is
necessary to also do the authentication overtly.

After session instantiation and authentication, a Hello object is
instantiated in each session, the helloWorld() method is invoked
on each, and the returned String is printed on the console.

The printed output is:

Hello from Session1
Hello from Session2

helloServer/HelloImpl.java

Example Code: CORBA A-87

Session Examples
This source file implements the two methods specified in the hello.idl
file: setMessage() to set the instance variable message, and
helloWorld() to return the value set in message.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
A-88 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

hello.idl
module hello {

interface Hello {
wstring helloWorld ();
void setMessage (in wstring message);

};
};

Client.java
import hello.Hello;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jndi.sess_iiop.SessionCtx;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.client.Login;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

// Prepare a simplified Initial Context as we are going to do
// everything by hand
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// Get a SessionCtx that represents a database instance
Example Code: CORBA A-89

Session Examples
ServiceCtx service = (ServiceCtx)ic.lookup (serviceURL);

// Create and authenticate a first session in the instance.
SessionCtx session1 = (SessionCtx)service.createSubcontext (":session1");
LoginServer login_server1 = (LoginServer)session1.activate ("etc/login");
Login login1 = new Login (login_server1);
login1.authenticate (user, password, null);

// Create and authenticate a second session in the instance.
SessionCtx session2 = (SessionCtx)service.createSubcontext (":session2");
LoginServer login_server2 = (LoginServer)session2.activate ("etc/login");
Login login2 = new Login (login_server2);
login2.authenticate (user, password, null);

// Activate one Hello object in each session
Hello hello1 = (Hello)session1.activate (objectName);
Hello hello2 = (Hello)session2.activate (objectName);

// Verify that the objects are indeed different
hello1.setMessage ("Hello from Session1");
hello2.setMessage ("Hello from Session2");

System.out.println (hello1.helloWorld ());
System.out.println (hello2.helloWorld ());

}
}

helloServer/HelloImpl.java
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{

String message;

public String helloWorld () {
return message;

}

public void setMessage (String message) {
this.message = message;
A-90 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

twosessionsbyname

readme.txt
Overview
========

Twosessionbyname shows a client that creates two separate server sessions by
name, and then does a JNDI lookup() on the sessions, using the names.

Compare this example to ../examples/corba/session/twosessions/*. In the
twosessionsbyname example, the session name is used to do a short-hand lookup
and instantiation of server object by using the session name in the URL
parameter of the lookup() method. In the twosessions example, two sessions are
created by name, but the names are not used.

Sources
=======

Client.java

You invoke the client program from a command line prompt, and pass it
four arguments: the service URL (service ID, hostname, and port), the
name of the published object to lookup and instantiate, and a username
and password that authenticate the client to the Oracle8i database
server.

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222 scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
Example Code: CORBA A-91

Session Examples
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client instantiates two sessions by name, then two Hello objects,
one in each session, then verifies that the object are different by
setting the message instance variable in each object to a different
value, and calling helloWorld() on each object, and printing the
result.

The output of the client program is:

Hello from Session1
Hello from Session2

helloServer/HelloImpl.java

This source file implements the two methods specified in the hello.idl
file: setMessage() to set the instance variable message, and
helloWorld() to return the value set in message.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

A-92 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

hello.idl
module hello {

interface Hello {
wstring helloWorld ();
void setMessage (in wstring message);

};
};

Client.java
import hello.Hello;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jndi.sess_iiop.SessionCtx;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.client.Login;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
Example Code: CORBA A-93

Session Examples
public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

// Prepare a simplified Initial Context as we are going to do
// everything by hand
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// Get a SessionCtx that represents a database instance
ServiceCtx service = (ServiceCtx)ic.lookup (serviceURL);

// Create the 2 sessions
SessionCtx session1 = (SessionCtx)service.createSubcontext (":session1");
SessionCtx session2 = (SessionCtx)service.createSubcontext (":session2");

// Login the sessions using the shortcut login method
session1.login (user, password, null);
session2.login (user, password, null);

// Activate the objects by usign the fully specified URL that contains
// the session name
Hello hello1 = (Hello)ic.lookup (serviceURL + "/:session1" + objectName);
Hello hello2 = (Hello)ic.lookup (serviceURL + "/:session2" + objectName);

// Verify that the objects are indeed different
hello1.setMessage ("Hello from Session1");
hello2.setMessage ("Hello from Session2");

System.out.println (hello1.helloWorld ());
System.out.println (hello2.helloWorld ());

}
}

A-94 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
helloServer/HelloImpl.java
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{

String message;

public String helloWorld () {
return message;

}

public void setMessage (String message) {
this.message = message;

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

Transaction Examples

clientside

readme.txt
Overview
========

The clientside example shows how to do transaction management for
CORBA server objects from the client application, using the XA JTS
methods.

This example also shows a server object that uses SQLJ in its methods.
Example Code: CORBA A-95

Transaction Examples
Source files
============

employee.idl

The CORBA IDL for the example. Defines:

An EmployeeInfo struct
A SQLError exception
An Employee interface, with

EmployeeInfo getEmployee ()
void updateEmployee ()

The SQLError exception is used so that SQLException messages can
be passed back to the client.

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published server object to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2481:ORCL \

/test/myEmployee scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

(Note: for NT users, the environment variables would be %ORACLE_HOME% and
%JAVA_HOME%.)
A-96 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- initializes the Aurora transaction service
- looks up the myEmployee CORBA published object on the server

(this step also authenticates the client using NON_SSL_LOGIN and
activates the server object)

- starts a new transaction: TS.getTS().getCurrent().begin();
- gets and prints information about the employee SCOTT
- increases SCOTT's salary by 10%
- updates the EMP table with the new salary by calling the updateEmployee()

method on the employee object
- gets and prints the new information
- commits the update: TS.getTS().getCurrent().commit(false);

The printed output is:

SCOTT 7788 3000.0
SCOTT 7788 3300.0

employeeServer/EmployeeImpl.sqlj

Implements the Employee interface. This file implements the two
methods specified in the IDL: getEmployee() and updateEmployee(),
using SQLJ for ease of DML coding.

If the SQLJ code throws a SQLException, it is caught, and a
CORBA-defined SQLError is thrown. This in turn would be
propagated back to the client, where it is handled.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.
Example Code: CORBA A-97

Transaction Examples
Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

employee.idl
module employee {

struct EmployeeInfo {
wstring name;
long number;
double salary;

};

exception SQLError {
wstring message;
A-98 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
};

interface Employee {
EmployeeInfo getEmployee (in wstring name) raises (SQLError);
void updateEmployee (in EmployeeInfo name) raises (SQLError);

};
};

Client.java
import employee.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import oracle.aurora.jts.client.AuroraTransactionService;

import oracle.aurora.jts.util.*;

import javax.naming.Context;
import javax.naming.InitialContext;

import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

AuroraTransactionService.initialize (ic, serviceURL);
Example Code: CORBA A-99

Transaction Examples
Employee employee = (Employee)ic.lookup (serviceURL + objectName);
EmployeeInfo info;

TS.getTS ().getCurrent ().begin ();

info = employee.getEmployee ("SCOTT");
System.out.println (info.name + " " + info.number + " " + info.salary);
info.salary += (info.salary * 10) / 100;
employee.updateEmployee (info);
info = employee.getEmployee ("SCOTT");
System.out.println (info.name + " " + info.number + " " + info.salary);

TS.getTS ().getCurrent ().commit (true);
}

}

employeeServer/EmployeeImpl.sqlj
package employeeServer;

import employee.*;
import java.sql.*;

public class EmployeeImpl
extends _EmployeeImplBase {

public EmployeeInfo getEmployee (String name) throws SQLError {
try {

int empno = 0;
double salary = 0.0;
#sql { select empno, sal into :empno, :salary from emp

where ename = :name };
return new EmployeeInfo (name, empno, (float)salary);

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

public void updateEmployee (EmployeeInfo employee) throws SQLError {
try {

#sql { update emp set ename = :(employee.name), sal = :(employee.salary)
where empno = :(employee.number) };

} catch (SQLException e) {
throw new SQLError (e.getMessage ());
A-100 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
}
}

}

serversideJDBC

readme.txt
Overview
========

The serversideJDBC example shows how to do transaction management for
CORBA server objects from objects themselves, using SQL transaction
control statements in the JDBC calls.

Source files
============

employee.idl

The CORBA IDL for the example. Defines:

An EmployeeInfo struct
A SQLError exception
An Employee interface, with

EmployeeInfo getEmployee (in wstring name)
void updateEmployee (in EmployeeInfo name)
void commit()

The SQLError exception is used so that SQLException messages can
be passed back to the client.

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published server object to lookup and instantiate
Example Code: CORBA A-101

Transaction Examples
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2481:ORCL \

/test/myEmployee scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the myEmployee CORBA published object on the server

(this step also authenticates the client using NON_SSL_LOGIN and
activates the server object)

- gets and prints information about the employee SCOTT
- increases SCOTT's salary by 10%
- updates the EMP table with the new salary by calling the updateEmployee()

method on the employee object
- commits the update by invoking employee.commit()

In other words, this client does everything that the ../clientside/Client.java
program did, but does the transaction handling (a commit only) on the server.

The printed output is:

Beginning salary = 3000.0
Final Salary = 3300.0

employeeServer/EmployeeImpl.sqlj

Implements the Employee interface. This file implements the two
methods specified in the IDL: getEmployee() and updateEmployee(),
using SQLJ for ease of DML coding.
A-102 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
EmployeeImpl.sqlj also implements a commit() method, that uses JDBC to issue a
SQL COMMIT statement.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.
Example Code: CORBA A-103

Transaction Examples
You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

employee.idl
module employee {

struct EmployeeInfo {
wstring name;
long number;
double salary;

};

exception SQLError {
wstring message;

};

interface Employee {
EmployeeInfo getEmployee (in wstring name) raises (SQLError);
void updateEmployee (in EmployeeInfo name) raises (SQLError);
void commit () raises (SQLError);

};
};

Client.java
import employee.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
A-104 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
String password = args [3];

// get the handle to the InitialContext
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

// This is using Server-side TX services, specifically, JDBC TX:

// Now, get the handle to the object and it's info
Employee employee = (Employee)ic.lookup (serviceURL + objectName);
EmployeeInfo info = employee.getEmployee ("SCOTT");
System.out.println ("Beginning salary = " + info.salary);

// do work on the object or it's info
info.salary += (info.salary * 10) / 100;

// call update on the server-side
employee.updateEmployee (info);

// call commit on the server-side
employee.commit ();

System.out.println ("Final Salary = " + info.salary);
}

}

employeeServer/EmployeeImpl.sqlj
package employeeServer;

import employee.*;
import java.sql.*;

import oracle.aurora.jts.util.*;
import org.omg.CosTransactions.*;

public class EmployeeImpl
extends _EmployeeImplBase

{

Example Code: CORBA A-105

Transaction Examples
public EmployeeInfo getEmployee (String name) throws SQLError {
try {

int empno = 0;
double salary = 0.0;
#sql { select empno, sal into :empno, :salary from emp

where ename = :name };
return new EmployeeInfo (name, empno, (float)salary);

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

public void updateEmployee (EmployeeInfo employee) throws SQLError {
try {

#sql { update emp set ename = :(employee.name), sal = :(employee.salary)
where empno = :(employee.number) };

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

public void commit () throws SQLError {
try {

#sql { commit };
} catch (SQLException e) {

throw new SQLError (e.getMessage ());
}

}
}

serversideJTS

readme.txt
Overview
========

The serversideJTS example shows how to do transaction management for
CORBA server objects from the server object, using the XA JTS
methods.

Compare this example with the clientside example, in which all
transaction management is done on the client.
A-106 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
This example also shows a server object that uses SQLJ in its methods.

Source files
============

employee.idl

The CORBA IDL for the example. Defines:

An EmployeeInfo struct
A SQLError exception
An Employee interface, with

EmployeeInfo getEmployee(in wstring name)
EmployeeInfo getEmployeeForUpdate(in wstring name)
void updateEmployee(in EmployeeInfo name)

The SQLError exception is used so that SQLException messages can
be passed back to the client.

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published server object to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2481:ORCL \

/test/myEmployee scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
Example Code: CORBA A-107

Transaction Examples
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code is almost exactly the same as the code in
../clientside/Client.java, but without the JTS transaction calls.

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- initializes the Aurora transaction service
- looks up the myEmployee CORBA published object on the server

(this step also authenticates the client using NON_SSL_LOGIN and
activates the server object)

- gets and prints information about the employee SCOTT
- decreases SCOTT's salary by 10%
- updates the EMP table with the new salary by calling the updateEmployee()

method on the employee object
- gets and prints the new information

The printed output is:

Beginning salary = 3000.0
Final Salary = 2700.0

employeeServer/EmployeeImpl.sqlj

Implements the Employee interface. This file implements the three
methods specified in the IDL: getEmployee(), getEmployeeForUpdate(),
and updateEmployee(), using SQLJ for ease of DML coding.

EmployeeImpl also adds two private methods, commitTrans() and
startTrans(), that perform XA JTS transaction management from the
server.

Note that on the server there is no need to call
AuroraTransactionService.initialize() to initialize the transaction
manager. This is done automatically by the server ORB.

If the SQLJ code throws a SQLException, it is caught, and a
CORBA-defined SQLError is thrown. This in turn would be
A-108 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
propagated back to the client, where it is handled.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
Example Code: CORBA A-109

Transaction Examples
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

employee.idl
module employee {

struct EmployeeInfo {
wstring name;
long number;
double salary;

};

exception SQLError {
wstring message;

};

interface Employee {
EmployeeInfo getEmployee (in wstring name) raises (SQLError);
EmployeeInfo getEmployeeForUpdate (in wstring name) raises (SQLError);
void updateEmployee (in EmployeeInfo name) raises (SQLError);

};
};

Client.java
import employee.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];
A-110 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
// get the handle to the InitialContext
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

// This is using Server-side TX services, specifically, JTS/XA TX:

// get handle to the object and it's info
Employee employee = (Employee)ic.lookup (serviceURL + objectName);

// get the info about a specific employee
EmployeeInfo info = employee.getEmployee ("SCOTT");
System.out.println ("Beginning salary = " + info.salary);

// do work on the object or it's info
info.salary -= (info.salary * 10) / 100;

// call update on the server-side
employee.updateEmployee (info);

System.out.println ("Final Salary = " + info.salary);
}

}

employeeServer/EmployeeImpl.sqlj
package employeeServer;

import employee.*;
import java.sql.*;

import oracle.aurora.jts.util.*;
import org.omg.CosTransactions.*;

public class EmployeeImpl extends _EmployeeImplBase
{

private void startTrans () throws SQLError {
try {

TS.getTS ().getCurrent ().begin ();
} catch (Exception e) {
Example Code: CORBA A-111

Transaction Examples
throw new SQLError ("begin failed:" + e);
}

}

private void commitTrans () throws SQLError {
try {

TS.getTS ().getCurrent ().commit (true);
} catch (Exception e) {

throw new SQLError ("commit failed:" + e);
}

}

public EmployeeInfo getEmployee (String name) throws SQLError {
try {

startTrans ();

int empno = 0;
double salary = 0.0;
#sql { select empno, sal into :empno, :salary from emp

where ename = :name };
return new EmployeeInfo (name, empno, (float)salary);

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

public EmployeeInfo getEmployeeForUpdate (String name) throws SQLError {
try {

startTrans ();

int empno = 0;
double salary = 0.0;
#sql { select empno, sal into :empno, :salary from emp

where ename = :name for update };
return new EmployeeInfo (name, empno, (float)salary);

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

public void updateEmployee (EmployeeInfo employee) throws SQLError {
try {

#sql { update emp set ename = :(employee.name), sal = :(employee.salary)
where empno = :(employee.number) };
A-112 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
commitTrans ();
} catch (SQLException e) {

throw new SQLError (e.getMessage ());
}

}
}

serversideLogging

readme.txt
Overview
========

The serversideLoggin example shows how to do transaction management
for CORBA server objects both directly from the client application, as
in the clientside example, but also adds a method in the server object
that suspends the current transaction, starts a new transaction, and
writes some data out to a table. The second transaction is then
committed and the first transaction is resumed.

Finally, in the original transaction context on the client the update
that happened in a server object method is committed, to end the
transaction.

Source files
============

employee.idl

The CORBA IDL for the example. Defines:

An EmployeeInfo struct
A SQLError exception
An Employee interface, with

EmployeeInfo getEmployee(in wstring name)
EmployeeInfo getEmployeeForUpdate(in wstring name)
void updateEmployee(in EmployeeInfo name)

The SQLError exception is used so that SQLException messages can
be passed back to the client.
Example Code: CORBA A-113

Transaction Examples
Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published server object to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2481:ORCL \

/test/myEmployee scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- initializes the Aurora transaction service
- looks up the myEmployee CORBA published object on the server

(this step also authenticates the client using NON_SSL_LOGIN and
activates the server object)

- starts a new transaction: TS.getTS().getCurrent().begin();
- gets and prints information about the employee SCOTT
- increases SCOTT's salary by 10%
- updates the EMP table with the new salary by calling the updateEmployee()

method on the employee object
- gets and prints the new information
- commits the update: TS.getTS().getCurrent().commit(false);

The client application prints:
A-114 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
Beginning salary = 3000.0
End salary = 3300.0

log.sql

This SQL script creates the log_table table that is used by the
EmployeeImpl class to log database updates.

employeeServer/EmployeeImpl.sqlj

Implements the Employee interface. This file implements the three
methods specified in the IDL: getEmployee(), getEmployeeForUpdate(),
and updateEmployee() These methods use SQLJ for ease of DML coding.

The class also implements a private method, log(), that is invoked by
the getEmployee() and getEmployeeForUpdate() methods. The log() method
suspends the current transaction, begins a new transaction, and
updates the log_table with information on who did what.

If the SQLJ code throws a SQLException, it is caught, and a
CORBA-defined SQLError is thrown. This in turn is propagated back to
the client, where it is handled.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
Example Code: CORBA A-115

Transaction Examples
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

employee.idl
module employee {

struct EmployeeInfo {
wstring name;
long number;
double salary;

};

exception SQLError {
wstring message;

};

interface Employee {
EmployeeInfo getEmployee (in wstring name) raises (SQLError);
EmployeeInfo getEmployeeForUpdate (in wstring name) raises (SQLError);
A-116 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
void updateEmployee (in EmployeeInfo name) raises (SQLError);
};

};

Client.java
import employee.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import oracle.aurora.jts.client.AuroraTransactionService;
import oracle.aurora.jts.util.TS;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

// get an handle to the InitialContext
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

// get handle to the TX-Factory
AuroraTransactionService.initialize (ic, serviceURL);

// create an instance of an object to be modified in the TX
Employee employee = (Employee)ic.lookup (serviceURL + objectName);
EmployeeInfo info;
Example Code: CORBA A-117

Transaction Examples
// start the TX
TS.getTS ().getCurrent ().begin ();

// get employee-info filled up in the TX from the server
info = employee.getEmployeeForUpdate ("SCOTT");
System.out.println ("Beginning salary = " + info.salary);

// do work on the object in the TX; e.g. change the info
info.salary += (info.salary * 10) / 100;

// update the info in the TX
employee.updateEmployee (info);

// get and print the employee and it's info
info = employee.getEmployee ("SCOTT");
System.out.println ("End salary = " + info.salary);

// commit the TX
TS.getTS ().getCurrent ().commit (true);

}
}

log.sql
create table log_table (when date, which number, who number,
what varchar2(2000));
exit

employeeServer/EmployeeImpl.sqlj
package employeeServer;

import employee.*;
import oracle.aurora.AuroraServices.ActivatableObject;
import java.sql.*;

import oracle.aurora.rdbms.DbmsJava;
import oracle.aurora.rdbms.Schema;

import oracle.aurora.jts.util.*;
import org.omg.CosTransactions.*;

public class EmployeeImpl
A-118 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
extends _EmployeeImplBase
implements ActivatableObject

{
public EmployeeInfo getEmployee (String name) throws SQLError {

try {
int empno = 0;
double salary = 0.0;
log ("getEmployee (" + name + ")");
#sql { select empno, sal into :empno, :salary from emp

where ename = :name };
return new EmployeeInfo (name, empno, (float)salary);

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

public EmployeeInfo getEmployeeForUpdate (String name) throws SQLError {
try {

int empno = 0;
double salary = 0.0;
log ("getEmployeeForUpdate (" + name + ")");
#sql { select empno, sal into :empno, :salary from emp

where ename = :name for update };
return new EmployeeInfo (name, empno, (float)salary);

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

public void updateEmployee (EmployeeInfo employee) throws SQLError {
log ("updateEmployee (" + employee + ")");
try {

#sql { update emp set ename = :(employee.name), sal = :(employee.salary)
where empno = :(employee.number) };

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

private void log (String message) throws SQLError {
try {

// Get the current TX and suspendTxn it
Control c = TS.getTS ().getCurrent ().suspend ();

// Start a new transaction
Example Code: CORBA A-119

Transaction Examples
TS.getTS ().getCurrent ().begin ();

// Get the current user name
int ownerNumber = Schema.currentSchema ().ownerNumber ();

// Get the session-id
int sessID = DbmsJava.sessionID (DbmsJava.USER_SESSION);

// Insert the information in the log table
#sql { insert into log_table (who, which, when, what)

values (:ownerNumber, :sessID, sysdate, :message) };

// Commit the TX started for logging the info
TS.getTS ().getCurrent ().commit (true);

// Resume the suspended TX
TS.getTS ().getCurrent ().resume (c);

} catch (Exception e) {
throw new SQLError (e.toString ());

}
}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

multiSessions

readme.txt
Overview
========

Source files
============

employee.idl

Client.java
A-120 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples

You invoke the client program from a command prompt, and pass it five
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published server object to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server
- number of new threads/sessions to create

For example:
% java -classpath LIBs Client sess_iiop://localhost:2481:ORCL \

/test/myEmployee scott tiger 3

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- in a for-loop, creates different sessions using the ClientThread

class, and prints out information about the session ID

The printed output from Client should be something like this:

Starting ClientThread (:session0)
Starting ClientThread (:session1)
Beginning salary = 3630.0 in :session0
10% Increase:session0
End salary = 3993.0 in :session0
Starting ClientThread (:session2)
Beginning salary = 3993.0 in :session2
30% Decrease:session2
End salary = 2795.10009765625 in :session2
Beginning salary = 2795.10009765625 in :session1
20% Increase:session1
End salary = 3354.1201171875 in :session1
Example Code: CORBA A-121

Transaction Examples
The actual output will differ depending on the state of the EMP table
when the example is run.

ClientThread.java

The ClientThread constructor creates a new named session in the server, and
authenticates the client with NON_SSL_LOGIN, using the Context, service URL,
published object name, username, and password passed as parameters.
(NON_SSL_LOGIN is specified in the Context passed from Client.java.)

The implementation of run() first yields to any other running threads. When
run, it then initializes its transaction context, activates an Employee object
in its session, and starts a new transaction.

It then selects for update the SCOTT row in the EMP table, by calling a method
on the employee object, and updates SCOTT's salary in a way dependent on the
name of the session (this is a Dilbert world).

Finally, it prints the new salary information, and commits the update (thus
unlocking the EMP table row).

employeeServer/EmployeeImpl.sqlj

Implements the Employee interface. This file implements the two methods
specified in the IDL: getEmployee(), getEmployeeForUpdate(), and
updateEmployee(), using SQLJ for ease of DML coding.

See the description of this file in ../clientside/employeeServer for more
information.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
A-122 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

employee.idl
module employee {

struct EmployeeInfo {
wstring name;
long number;
double salary;

};

exception SQLError {
Example Code: CORBA A-123

Transaction Examples
wstring message;
};

interface Employee {
EmployeeInfo getEmployee (in wstring name) raises (SQLError);
EmployeeInfo getEmployeeForUpdate (in wstring name) raises (SQLError);
void updateEmployee (in EmployeeInfo name) raises (SQLError);

};
};

Client.java
import employee.*;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 5) {

System.out.println ("usage: Client serviceURL objectName user password "
+ "sessionsCount");

System.exit (1);
}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];
int sessionCount = Integer.parseInt (args[4]);

// get the handle to InitialContext
// Note: authentication is done per session in ClientThread
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// invoke different sessions using ClientThread
for (int i = 0; i < sessionCount; i++) {

String sessionName = new String (":session" + i);
ClientThread ct =

new ClientThread (ic, serviceURL, objectName, sessionName,
user, password);
A-124 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
System.out.println ("Starting ClientThread (" + sessionName + ")");
ct.start ();

}
}

}

ClientThread.java
import employee.*;

import oracle.aurora.jts.client.AuroraTransactionService;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jndi.sess_iiop.SessionCtx;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.client.Login;
import oracle.aurora.jts.util.TS;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class ClientThread extends Thread
{

private Context ic = null;
private String serviceURL = null;
private String objectName = null;
private String sessionName = null;
private SessionCtx session = null;

public ClientThread () {}

public ClientThread (Context ic, String serviceURL, String objectName,
String sessionName, String user, String password)

{
try {

this.ic = ic;
ServiceCtx service = (ServiceCtx)ic.lookup (serviceURL);
this.session = (SessionCtx)service.createSubcontext (sessionName);

LoginServer login_server = (LoginServer)session.activate ("etc/login");
Login login = new Login (login_server);
login.authenticate (user, password, null);

this.serviceURL = serviceURL;
Example Code: CORBA A-125

Transaction Examples
this.sessionName = sessionName;
this.objectName = objectName;

} catch (Exception e) {
e.printStackTrace ();

}
}

public void run () {
try {

this.yield ();

// Get handle to the TX-Factory
AuroraTransactionService.initialize (ic, serviceURL + "/" + sessionName);

// create an instance of an employee object in the session
Employee employee = (Employee)session.activate (objectName);
EmployeeInfo info;

// start the transaction
TS.getTS ().getCurrent ().begin ();

// Get the info about an employee
// Note: lock is set on the row using 'for update' clause
// while select operation
info = employee.getEmployeeForUpdate ("SCOTT");
System.out.println ("Beginning salary = " + info.salary +

" in " + sessionName);

// arbitrarily change the value of the salary,
// e.g. depending on sessionName
if (sessionName.endsWith("0")) {

System.out.println ("10% Increase" + sessionName);
info.salary += (info.salary * 10) / 100;

} else if (sessionName.endsWith("1")) {
System.out.println ("20% Increase" + sessionName);
info.salary += (info.salary * 20) / 100;

} else {
System.out.println ("30% Decrease" + sessionName);
info.salary -= (info.salary * 30) / 100;

}

// Try sleeping this thread for a while before updating the info
// Note: the other threads MUST wait
// (since selected with 'for update' clause)
this.sleep (2000);
A-126 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
// update the infomation in the transaction
employee.updateEmployee (info);

// Get and print the info in the transaction
// Note: do NOT use 'for update' here
info = employee.getEmployee ("SCOTT");
System.out.println ("End salary = " + info.salary + " in " +

sessionName);

// commit the changes
TS.getTS ().getCurrent ().commit (true);

} catch (Exception e) {
e.printStackTrace ();

}
}

}

employeeServer/EmployeeImpl.sqlj
package employeeServer;

import employee.*;
import oracle.aurora.AuroraServices.ActivatableObject;
import java.sql.*;

import oracle.aurora.jts.util.*;
import org.omg.CosTransactions.*;

public class EmployeeImpl
extends _EmployeeImplBase
implements ActivatableObject

{
public EmployeeInfo getEmployee (String name) throws SQLError {

try {
int empno = 0;
double salary = 0.0;
#sql { select empno, sal into :empno, :salary from emp

where ename = :name };
return new EmployeeInfo (name, empno, (float)salary);

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}

Example Code: CORBA A-127

RMI Examples
}

public EmployeeInfo getEmployeeForUpdate (String name) throws SQLError {
try {

int empno = 0;
double salary = 0.0;
#sql { select empno, sal into :empno, :salary from emp

where ename = :name for update };
return new EmployeeInfo (name, empno, (float)salary);

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

public void updateEmployee (EmployeeInfo employee) throws SQLError {
try {

#sql { update emp set ename = :(employee.name), sal = :(employee.salary)
where empno = :(employee.number) };

} catch (SQLException e) {
throw new SQLError (e.getMessage ());

}
}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

RMI Examples

helloworld

readme.txt
Overview
========

The CORBA/RMI helloworld example is the basic example that shows you how
to do RMI calls using the Oracle8i IIOP/RMI transport.

The hello directory contains the interface file Hello.java. This file is
compiled by the java2rmi_iiop compiler to produce the stub and helper files
A-128 Enterprise JavaBeans and CORBA Developer’s Guide

RMI Examples
that are needed to access the remote object that is defined in:
helloServer/HelloImpl.java

Note that hello/Hello.java imports both java.rmi.Remote and
java.rmi.RemoteException, which is required for RMI interfaces.

This example uses the java2rmi_iiop command line tool to generate the required
support classes for the remore object. See the "Tools" chapter of the Oracle8i
EJB and CORBA Developer's Guide for information about this tool.

Source files
============

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2481:ORCL \

/test/myHello scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published CORBA server object to find and activate it
- invokes the hello() method on the server object
- prints the return from hello()
Example Code: CORBA A-129

RMI Examples
The printed output is the unsurprising:

Hello World!

helloServer/HelloImpl.java

HelloImpl.java defines the hello() method.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.
A-130 Enterprise JavaBeans and CORBA Developer’s Guide

RMI Examples
See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

Client.java
import hello.Hello;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

Hello hello = (Hello)ic.lookup (serviceURL + objectName);
System.out.println (hello.helloWorld ());

}
}

Example Code: CORBA A-131

RMI Examples
hello/Hello.java
package hello;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Hello extends Remote {
public String helloWorld () throws RemoteException;

}

helloServer/HelloImpl.java
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{

public String helloWorld () throws java.rmi.RemoteException {
return "Hello World!";

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

callouts

Client.java
import hello.Hello;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

A-132 Enterprise JavaBeans and CORBA Developer’s Guide

RMI Examples
public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

Hello hello = (Hello)ic.lookup (serviceURL + objectName);
System.out.println (hello.helloWorld ());

}
}

HelloRMIClient.java
import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;

public class HelloRMIClient
{

static public void main (String args[]) throws Exception {
Hello hello = (Hello) Naming.lookup ("rmi://localhost/subHello");
System.out.println (hello.helloWorld ());

}
}

HelloRMIServer.java
import hello.Hello;
import helloServer.HelloRMIImpl;
Example Code: CORBA A-133

RMI Examples
import java.rmi.*;
import java.rmi.server.*;

public class HelloRMIServer {
public static void main (String args[]) throws Exception {

// System.setSecurityManager (new RMISecurityManager ());
HelloRMIImpl hello = new HelloRMIImpl ();
System.out.println("Hello RMI Server ready.");

}
}

hello/Hello.java
package hello;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Hello extends Remote {
public String helloWorld () throws RemoteException;

}

helloServer/HelloImpl.java
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{

public String helloWorld () throws RemoteException {
try {

Hello hello = (Hello) Naming.lookup ("rmi://localhost/subHello");
return hello.helloWorld ();

} catch (Exception e) {
return (e.toString ());

}
}

A-134 Enterprise JavaBeans and CORBA Developer’s Guide

RMI Examples
public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

helloServer/HelloRMIImpl.java
package helloServer;
import hello.*;

import java.util.*;
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class HelloRMIImpl extends UnicastRemoteObject implements Hello
{

public HelloRMIImpl () throws RemoteException {
super ();
try {

Naming.rebind ("subHello", this);
} catch (Exception e) {

System.out.println("Caught exception: " + e.getMessage());
e.printStackTrace();

}
}

public String helloWorld () throws java.rmi.RemoteException {
return "Hello from the RMI server!";

}
}

callback

readme.txt
Overview
========

The CORBA/RMI callback example shows how you can do a callback from a CORBA
server object to a client system using RMI for the callback. There is no IDL
for this example. Rather, the sources server/Server.java and
Example Code: CORBA A-135

RMI Examples
client/Client.java are used by the java2rmi_iiop compiler to generate the
required stub and helper classes.

Compare this example with the corba/basic/callback example, which uses CORBA
IDL, and CORBA callback mechanisms on the client.

Source files
============

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222 /test/myHello scott
tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published CORBA server object to find and activate it
- instantiates a Client callback object
- invokes the hello() method on the server object, passing it the callback

object reference (clientImpl)
- prints the return from hello(clientImpl)

The printed output is:
A-136 Enterprise JavaBeans and CORBA Developer’s Guide

RMI Examples
I Called back and got: Hello Client World!

server/Server.java

Server.java defines the hello() method.

serverServer/ServerImpl.java

Implements the hello() method defined in server/Server.java.

client/Client.java

Defines the helloback() method.

clientServer/ClientImpl.java

Implements the helloback() method.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.
Example Code: CORBA A-137

RMI Examples
Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

Client.java
import server.Server;
import clientServer.ClientImpl;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}

A-138 Enterprise JavaBeans and CORBA Developer’s Guide

RMI Examples
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

ClientImpl clientImpl = new ClientImpl ();
Server server = (Server)ic.lookup (serviceURL + objectName);
System.out.println (server.hello (clientImpl));

}
}

client/Client.java
package client;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Client extends Remote {
public String helloBack () throws RemoteException;

}

clientServer/ClientImpl.java
package clientServer;

import client.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class ClientImpl extends _ClientImplBase implements ActivatableObject
{

public String helloBack () throws java.rmi.RemoteException {
return "Hello Client World!";

}

public org.omg.CORBA.Object _initializeAuroraObject () {
Example Code: CORBA A-139

RMI Examples
return this;
}

}

server/Server.java
package server;

import client.Client;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Server extends Remote {
public String hello (Client client) throws RemoteException;

}

serverServer/ServerImpl.java
package serverServer;

import server.*;
import client.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class ServerImpl extends _ServerImplBase implements ActivatableObject
{

public String hello (Client client) throws java.rmi.RemoteException {
return "I Called back and got: " + client.helloBack ();

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

A-140 Enterprise JavaBeans and CORBA Developer’s Guide

Applet Examples
Applet Examples

innetscape

hello.idl
module hello {

interface Hello {
wstring helloWorld ();
void setMessage (in wstring message);

};
};

ClientApplet.htm
<!-- /* Adapted from Visigenic's ClientApplet example */ -->
<h1>Oracle 8i ORB Client Applet</h1>
<hr>
<center>

<applet codebase="." code="ClientApplet" archive="applet.jar"
width=200 height=80>

<param name="serviceURL" value="sess_iiop://dlsun57:2481:javavm5">
<param name="objectName" value="/test/myHello">
<param name="user" value="scott">
<param name="password" value="tiger">

<h2>You are probably not running a Java enabled browser.
Please use a Java enabled browser (or enable your browser for Java)
to view this applet...</h2>

</applet>
</center>
<hr>

ClientApplet.java
/* Adapted from Visigenic's ClientApplet example */
import hello.Hello;
import hello.HelloHelper;

import netscape.security.PrivilegeManager;
Example Code: CORBA A-141

Applet Examples
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jndi.sess_iiop.SessionCtx;
import oracle.aurora.client.Login;
import oracle.aurora.AuroraServices.PublishedObject;
import oracle.aurora.AuroraServices.PublishedObjectHelper;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.AuroraServices.LoginServerHelper;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
import java.awt.*;

public class ClientApplet extends java.applet.Applet
{

private TextField _messageField;
private TextField _outputField;
private Button _helloButton;

private Hello hello;

public boolean action (Event ev, Object arg) {
if (ev.target == _helloButton) {

if (hello != null) {

// We need these privileges again as the ORB may connect
PrivilegeManager.enablePrivilege ("UniversalConnect");
PrivilegeManager.enablePrivilege ("UniversalPropertyRead");
PrivilegeManager.enablePrivilege ("UniversalPropertyWrite");

hello.setMessage (_messageField.getText ());
_outputField.setText (hello.helloWorld ());

}
return true;

}
return false;

}

public void init() {
// This GUI uses a 2 by 2 grid of widgets.
setLayout(new GridLayout(2, 2, 5, 5));
// Add the four widgets.
add(new Label("Message"));
add(_messageField = new TextField ("Hello World!"));
add(_helloButton = new Button ("Hello"));
A-142 Enterprise JavaBeans and CORBA Developer’s Guide

Applet Examples
add(_outputField = new TextField ());
_outputField.setEditable (false);

String serviceURL = getParameter ("serviceURL");
String objectName = getParameter ("objectName");
String user = getParameter ("user");
String password = getParameter ("password");

try {
PrivilegeManager.enablePrivilege ("UniversalConnect");
PrivilegeManager.enablePrivilege ("UniversalPropertyRead");
PrivilegeManager.enablePrivilege ("UniversalPropertyWrite");

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

ServiceCtx service = (ServiceCtx)ic.lookup(serviceURL);
SessionCtx session1 = (SessionCtx)service.createSubcontext (":session1");

// Because the Netscape security mechanism prevents usage
// of the reflection apis deep down in the JNDI runtime
// we have to activate the objects by hand.

// Manually activate the login object
PublishedObject po1 =

PublishedObjectHelper.narrow ((org.omg.CORBA.Object)
(session1.lookup ("/etc/login")));
LoginServer login_server =

LoginServerHelper.narrow (po1.activate_no_helper ());

// Log in the database
Login login1 = new Login (login_server);
login1.authenticate (user, password, null);

// Manually activate the hello object
PublishedObject po2 =

PublishedObjectHelper.narrow ((org.omg.CORBA.Object)
(session1.lookup (objectName)));
hello = HelloHelper.narrow (po2.activate_no_helper ());

} catch (Exception e) {
_outputField.setText (e.toString ());
hello = null;
Example Code: CORBA A-143

Applet Examples
}
}

}

helloServer/HelloImpl.java
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{

String message;

public String helloWorld () {
return message;

}

public void setMessage (String message) {
this.message = message;

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

inappletviewer

hello.idl
module hello {

interface Hello {
wstring helloWorld ();
void setMessage (in wstring message);

};
};

Clientapplet.htm
<!-- /* Adapted from Visigenic's ClientApplet example */ -->
A-144 Enterprise JavaBeans and CORBA Developer’s Guide

Applet Examples
<h1>Oracle 8i ORB Client Applet</h1>
<hr>
<center>

<applet code=ClientApplet.class width=200 height=80>
<param name="service" value="sess_iiop://localhost:2481:javavm5">
<param name="objectName" value="/test/myHello">
<param name="user" value="scott">
<param name="password" value="tiger">

<h2>You are probably not running a Java enabled browser.
Please use a Java enabled browser (or enable your browser for Java)
to view this applet...</h2>

</applet>
</center>
<hr>

ClientApplet.java
/* Adapted from Visigenic's ClientApplet example */
import hello.Hello;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
import java.awt.*;

public class ClientApplet extends java.applet.Applet
{

private TextField _messageField;
private TextField _outputField;
private Button _helloButton;

private Hello hello;

public boolean action (Event ev, Object arg) {
if (ev.target == _helloButton) {

if (hello != null) {
hello.setMessage (_messageField.getText ());
_outputField.setText (hello.helloWorld ());

}
return true;
Example Code: CORBA A-145

Applet Examples
}
return false;

}

public void init() {
// This GUI uses a 2 by 2 grid of widgets.
setLayout(new GridLayout(2, 2, 5, 5));
// Add the four widgets.
add(new Label("Message"));
add(_messageField = new TextField ("Hello World!"));
add(_helloButton = new Button ("Hello"));
add(_outputField = new TextField ());
_outputField.setEditable (false);

String serviceURL = getParameter ("service");
String objectName = getParameter ("objectName");
String user = getParameter ("user");
String password = getParameter ("password");

try {
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

hello = (Hello)ic.lookup (serviceURL + objectName);
} catch (Exception e) {

_outputField.setText (e.toString ());
hello = null;

}
}

}

helloServer/HelloImpl.java
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{

A-146 Enterprise JavaBeans and CORBA Developer’s Guide

JNDI Example
String message;

public String helloWorld () {
return message;

}

public void setMessage (String message) {
this.message = message;

}

public org.omg.CORBA.Object _initializeAuroraObject () {
return this;

}
}

JNDI Example

lister

readme.txt
Lister demonstrates

(1) Using Service Context createSubcontext() method to create a new
session.

(2) Authentication using the session context login() method.

(3) Recursively listing the instance published object tree.

Source files
============

Lister.java

Invoke the Lister client program from the command line by doing:

% Lister serviceURL username password
Example Code: CORBA A-147

JNDI Example
where the serviceURL is a session IIOP service, such as

sess_iiop://<hostname>:<dispatcher_port>

for example:

% Lister sess_iiop://localhost:2222 scott tiger

The lister client first gets a JNDI Initial Context object, ic. Note
that environment passed to the InitialContext() method has only the
Context.URL_PKG_PREFIXES value ("oracle.aurora.jndi"), and not the
username, password, and authentication type, as do many of the other
examples. This is because Lister will authenticate by getting a server
login object, after first instantiating a new session.

The next call in Lister is look up the service on the Context object,
passing in the service identifier string.

Once the service is obtained, a new named session is created. Note
that the session name must start with a colon (:).

The session context is then used to activate the login server at the
standard published location /etc/login. This server object is
preconfigured for you when the database is built. If it is not there,
see your DBA or system administrator.

The Lister client then creates a login client, and invokes its
authenticate() method, passing in the username and password (with a null
role).

The client then uses the SessionCtx object to walk the published
object directory hierarchy, starting from the root ("/"). The name of
the file, its creation date, and the file owner are printed as each
object is encountered.

This example could be expanded to list other attributes of each
published object, such as the access permissions. See the Session
Shell examples for a complete listing (ls -l) of all published object
attributes and associated files.

Compiling and Running the Example
=================================

On UNIX, enter the command 'make' in the shell to compile and run
A-148 Enterprise JavaBeans and CORBA Developer’s Guide

JNDI Example
the Lister client program.

On Windows NT, use the batch file to compile and run.

Lister.java
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingEnumeration;
import javax.naming.Binding;
import javax.naming.NamingException;
import javax.naming.CommunicationException;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jndi.sess_iiop.SessionCtx;
import oracle.aurora.jndi.sess_iiop.ActivationException;
import oracle.aurora.AuroraServices.PublishedObject;
import oracle.aurora.AuroraServices.objAttribsHolder;
import oracle.aurora.AuroraServices.objAttribs;
import oracle.aurora.AuroraServices.ctxAttribs;
import oracle.aurora.jts.client.AuroraTransactionService;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.client.Login;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

import java.util.Hashtable;

public class Lister {

public static void main (String[] args) throws Exception {
if (args.length != 3) {

System.out.println("usage: Lister serviceURL user password");
System.exit(1);

}
String serviceURL = args [0];
String username = args [1];
String password = args [2];

// Prepare a simplified Initial Context as we are going to do
Example Code: CORBA A-149

JNDI Example
// everything by hand.
Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext(env);

// Get a SessionCtx that represents a database instance.
ServiceCtx service = (ServiceCtx) ic.lookup(serviceURL);

// Create a session in the instance.
// The session name must start with a colon(:).
SessionCtx session = (SessionCtx) service.createSubcontext(":session1");
session.login(username, password, null);

// Print a header line.
System.out.println

("\n\nName Create Date Owner");
listOneDirectory ("/", session);

}

public static void listOneDirectory (String name, SessionCtx ctx)
throws Exception {

System.out.print(name);
for (int i = name.length(); i < 30; i++)

System.out.print(" ");
ctxAttribs attribs = null;
try {

attribs = ctx.getAttributes();
} catch (org.omg.CORBA.NO_PERMISSION e) {

return;
}

System.out.print(attribs.creation_ts);
for (int i = 30 + attribs.creation_ts.length(); i < 55; i++)

System.out.print(" ");
System.out.print(attribs.owner);

/*
* You could also add output for the access permissions:
* attribs.read
* attribs.write
* attribs.execute
*/

System.out.println();
A-150 Enterprise JavaBeans and CORBA Developer’s Guide

JNDI Example
// Show the sub entries
listEntries(ctx, name);

}

public static void listEntries (Context context, String prefix)
throws Exception {

NamingEnumeration bindings = context.list("");
while (bindings.hasMore()){

Binding binding = (Binding) bindings.next();
String name = binding.getName();
Object object = context.lookup(name);
if (object instanceof SessionCtx)

listOneDirectory(prefix + name + "/", (SessionCtx) object);
else if (object instanceof PublishedObject)

listOneObject(prefix + name, (PublishedObject) object);
else

// We should never get here.
System.out.println(prefix + name + ": " + object.getClass());

}
}

public static void listOneObject (String name, PublishedObject obj)
throws Exception {

objAttribsHolder holder = new objAttribsHolder();
try {

obj.get_attributes(holder);
} catch (org.omg.CORBA.NO_PERMISSION e) {

return;
}

objAttribs attribs = holder.value;
System.out.print(name);
for (int i = name.length(); i < 30; i++)

System.out.print(" ");

System.out.print(attribs.creation_ts);
for (int i = 30 + attribs.creation_ts.length(); i < 55; i++)

System.out.print(" ");
System.out.print(attribs.owner);

/*
* You could also add output for:
* attribs.class_name
Example Code: CORBA A-151

JNDI Example
* attribs.schema
* attribs.helper
* and the access permissions:
* attribs.read
* attribs.write
* attribs.execute
*/

System.out.println();
}

}

A-152 Enterprise JavaBeans and CORBA Developer’s Guide

Example Code
B

Example Code: EJB

This chapter contains all of the EJB example code that is shipped on the product CD.
See the EJB/CORBA README for the locations of the examples.

Basic Examples

helloworld

readme.txt
Overview
========

This is the most basic program that you can create for the Orcale8i
EJB server. One bean, HelloBean, is implemented. The bean and
associated classes are loaded into the database, and the bean home
interface is published as /test/myHello, as specified in the bean
deployment descriptor hello.ejb.

The bean contains a single method: helloWorld, which simply returns a
String containing the JavaVM version number to the client that invokes
it.

This example shows the minimum number of files that you must provide
to implement an EJB application: five. The five are:

(1) the bean implementation: helloServer/HelloBean.java in this example
(2) the bean remote interface: hello/Hello.java
(3) the bean home interface: hello/HelloHome.java
(4) the deployment descriptor: hello.ejb
(5) a client app or applet: Client.java is the application in this example
: EJB B-1

Basic Examples
Source Files
============

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222 /test/myHello scott
tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

(Note: for NT users, the environment variables would be %ORACLE_HOME% and
%JAVA_HOME%.)

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published bean to find and activate its home interface
- using the home interface, instantiates through its create()

method a new bean object, hello
- invokes the helloWorld() method on the hello object and prints the results

The printed output is:

Hello client, your javavm version is 8.1.5.
B-2 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
hello.ejb

The bean deployment descriptor. This source file does the following:

- shows the class name of the bean implementation in the deployment name:
helloServer.HelloBean

- names the published bean "/test/myHello"
- declares the remote interface implementation: hello.Hello
- declares the home interface: hello.HelloHome
- sets RunAsMode to the client's identity (SCOTT in this case)
- allows all members of the group PUBLIC to run the bean
- sets the transaction attribute to TX_SUPPORTS

The deployement descriptor is read by the deployejb tool, which uses
it to load the required classes, and publish the bean home
interface. (Deployejb does much else also. See the Tools chapter in
the Oracle8i EJB and CORBA Developer's Guide for more information.)

helloServer/HelloBean.java

This is the EJB implementation. Note that the bean class is public,
and that it implements the SessionBean interface, as required by the
EJB specification.

The bean implements the one method specified in the remote interface:
helloWorld(). This method gets the system property associated with
"oracle.server.version" as a String, and returns a greeting plus the
version number as a String to the invoking client.

The bean implementation also implements ejbCreate() with no parameters,
following the specification of the create() method in hello/HelloHome.java.

Finally, the methods ejbRemove(), setSessionContext(), ejbActivate(), and
ejbPassivate() are implemented as required by the SessionBean interface. In
this simple case, the methods are implemented with null bodies.

(Note that ejbActivate() and ejbPassivate() are never called in the
8.1.5 release of the EJB server, but they must be implemented as
required by the interface.)
Example Code: EJB B-3

Basic Examples
hello/Hello.java

This is the bean remote interface. In this example, it specifies only
one method: helloWorld(), which returns a String object. Note the two
import statements, which are required, and that the helloWorld()
method must be declared as throwing RemoteException. All bean methods
must be capable of throwing this exception. If you omit the
declaration, the deployejb tool will catch it and error when you try
to deploy the bean.

hello/HelloHome.java

This is the bean home interface. In this example, a single create()
method is declared. It returns a Hello object, as you saw in the
Client.java code.

Note especially that the create() method must be declared as able to
throw RemoteException and CreateException. These are required. If you
do not declare these, the deployejb tool will catch it and error when
you try to deploy the bean.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.
B-4 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

hello.ejb
SessionBean helloServer.HelloBean
{

BeanHomeName = "test/myHello";
RemoteInterfaceClassName = hello.Hello;
HomeInterfaceClassName = hello.HelloHome;

AllowedIdentities = { PUBLIC };
RunAsMode = CLIENT_IDENTITY;

// TransactionAttribute = TX_SUPPORTS;
}

Client.java
import hello.Hello;
import hello.HelloHome;
Example Code: EJB B-5

Basic Examples
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

HelloHome hello_home = (HelloHome)ic.lookup (serviceURL + objectName);
Hello hello = hello_home.create ();
System.out.println (hello.helloWorld ());

}
}

helloServer/HelloBean.java
package helloServer;

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
import java.rmi.RemoteException;

public class HelloBean implements SessionBean
{

// Methods of the Hello interface
public String helloWorld () throws RemoteException {
B-6 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
String v = System.getProperty("oracle.server.version");
return "Hello client, your javavm version is " + v + ".";

}

// Methods of the SessionBean
public void ejbCreate () throws RemoteException, CreateException {}
public void ejbRemove() {}
public void setSessionContext (SessionContext ctx) {}
public void ejbActivate () {}
public void ejbPassivate () {}

}

hello/Hello.java
package hello;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Hello extends EJBObject
{

public String helloWorld () throws RemoteException;
}

hello/HelloHome.java
package hello;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface HelloHome extends EJBHome
{

public Hello create () throws RemoteException, CreateException;
}

saveHandle

readme.txt
Overview
Example Code: EJB B-7

Basic Examples
========

This example shows how a client program can get a bean handle, using
getHandle(), and write it out to a file. A second client then reads the bean
handle, and accesses the first client's bean.

For simplicity, the example simply writes the bean handle out to a file. In a
'real' program, you would use some other less kludgy but more complicated
means to pass the bean handle.

This example uses SSL_CREDENTIAL authentication for both clients, so the
Oracle server must have access to a cwallet.sso SSL credential for the example
to run.

Also, the session that the first client creates) must still be alive when
Client2 runs, so you have 60 seconds to run Client2 after Client1 prints its
message. (60 seconds is the timeout value set in the deployment descriptor.)

(See the timeout example in the ejb session directory for a way to keep a
session alive programmatically after the client terminates. You can also set a
high value in the SessionTimeout attribute in the deployment descriptor.)

Source Files
============

Client1.java

You invoke the first client program from a command prompt, and pass it five
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
- database username
- password that authenticates the client to the Oracle8i database server
- the name of a file to hold the bean handle

For example:
% java -classpath LIBs Client1 sess_iiop://localhost:2481:ORCL \

/test/saveHandle scott tiger handlefile.dat

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
B-8 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$ORACLE_HOME/lib/vbj30ssl.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published bean to find and activate its home interface
- using the home interface, instantiates through its create()

method a new bean object, testBean
- sets up an object output stream, using the file name supplied
- writes the bean handle to the output as an object
- invokes the query method on the test bean, and prints the results
- updates the employee's salary

The printed output from Client1 is:

Client1: 7499 (ALLEN) has salary 2600.0

Client2.java

Client2 is called with four arguments. They are:

- the service URL
- the username
- the password
- the name of the file from which to read the bean handle

Client2 reads the bean handle from the file, and invokes the query() method on
the bean that that gets.

The printed output from Client2 is:

Client2: read the bean handle from the file.
Client2: 7499 (ALLEN) now has salary 3100.0

saveHandle.ejb

Example Code: EJB B-9

Basic Examples
The deployment descriptor for the bean. If the SessionTimeout attribute is
commented out, that is a work-around for an 8.1.4 bug.

save/saveHandle.java

The bean remote interface. Specifies the query() and update() methods that are
implemented in saveHandleServer/saveHandleBean.java.

save/saveHandleHome.java

The bean home interface. Specifies the query() and update() methods that are
implemented in saveHandleServer/saveHandleBean.java.

saveHandleServer/saveHandleBean.sqlj

The bean implementation.

saveHandleServer/EmpRecord.java

The class that the update() method of the bean returns.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile, load,
and deploy the objects, and run the client program. Other targets are 'run'
and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to point to the
home location of the Oracle installation. This is operating system dependent,
so see the Installation documentation that came with your system for the
B-10 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
location. Also, review the README file for the Oracle database, and the README
file for the CORBA/EJB server (the Oracle8i ORB), for additional up-to-date
information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt to
compile, load, and deploy the objects. Run the batch file runit.bat to run the
client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%, and
%SERVICE% are set appropriately for the DOS command window. You can set these
as either user or system environment variables from the Control Panel. Double
click on System in the Control Panel then on the Environment tab to set these
variables. Start a new DOS window after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

saveHandle.ejb
// saveHandle EJB deployment descriptor.

SessionBean saveHandleServer.saveHandleBean {
BeanHomeName = "test/saveHandle";
RemoteInterfaceClassName = save.saveHandle;
HomeInterfaceClassName = save.saveHandleHome;

AllowedIdentities = {SCOTT};

SessionTimeout = 60;
StateManagementType = STATEFUL_SESSION;

RunAsMode = CLIENT_IDENTITY;
Example Code: EJB B-11

Basic Examples
public save.EmpRecord query (int e) throws SQLException {
TransactionAttribute = TX_REQUIRED;
RunAsMode = CLIENT_IDENTITY;
AllowedIdentities = { SCOTT };

}

public void update (int e, double s) throws SQLException {
TransactionAttribute = TX_REQUIRED;
RunAsMode = CLIENT_IDENTITY;
AllowedIdentities = { SCOTT };

}

public String getMessage() throws RemoteException {
RunAsMode = CLIENT_IDENTITY;
AllowedIdentities = { SCOTT };

}

public void setMessage(String message) throws RemoteException {
RunAsMode = CLIENT_IDENTITY;
AllowedIdentities = { SCOTT };

}
}

Client1.java
import save.saveHandle;
import save.saveHandleHome;
import save.EmpRecord;

import java.io.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
import java.sql.SQLException;

public class Client1 {
public static void main (String [] args) throws Exception {

int empNumber = 7499; // ALLEN
B-12 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
if (args.length != 5) {
System.out.println("usage: Client serviceURL objectName user password"

+ " handlefile");
System.exit(1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];
String handlefile = args [4];

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, user);
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.SSL_CREDENTIAL);
Context ic = new InitialContext(env);

// Access the Bean
saveHandleHome home = (saveHandleHome)ic.lookup (serviceURL + objectName);
saveHandle testBean = home.create ();

// Save the bean handle to a file.
FileOutputStream fostream = new FileOutputStream (handlefile);
ObjectOutputStream ostream = new ObjectOutputStream (fostream);
ostream.writeObject (testBean.getHandle ());
ostream.flush ();
fostream.close ();

// Get name and current salary.
EmpRecord empRec = testBean.query(empNumber);
System.out.print("Client1: ");
System.out.println(empRec.empno + " (" + empRec.ename

+ ") has salary " + empRec.sal);

// Increase ALLEN's salary.
testBean.update (empNumber, empRec.sal + 500.00);
testBean.setMessage("Client1 updated 7499's salary/");
// Sleep 30 seconds to let Client2 connect to the SessionBean
// Thread.sleep (30000);

}
}

Example Code: EJB B-13

Basic Examples
Client2.java
import java.io.FileInputStream;
import java.io.ObjectInputStream;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

import save.saveHandle;
import save.saveHandleHome;
import save.EmpRecord;

public class Client2 {
public static void main (String [] args) throws Exception {

int empNumber = 7499; // ALLEN

if (args.length != 4) {
System.out.println("usage: Client serviceURL username password"

+ " handlefile");
System.exit(1);

}
String serviceURL = args [0];
String username = args [1];
String password = args [2];
String handlefile = args [3];

Hashtable env = new Hashtable();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);
ServiceCtx service = (ServiceCtx)ic.lookup (serviceURL);

// Initialize the service context to authenticate. Role and props
// are null. Use SSL credential authentication.
service.init (username, password, null, true, null);

// Get a ref to the bean, by reading the file.
FileInputStream finstream = new FileInputStream (handlefile);
ObjectInputStream istream = new ObjectInputStream (finstream);
javax.ejb.Handle handle = (javax.ejb.Handle)istream.readObject ();
finstream.close ();
saveHandle bean = (saveHandle)handle.getEJBObject ();
System.out.println ("Client2: read the bean handle from the file.");
B-14 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
// Run the query on the bean handle.
EmpRecord empRec = bean.query (empNumber);
System.out.println("Client2: " + bean.getMessage());
System.out.println("Client2: " +

empRec.empno + " (" + empRec.ename +
") now has salary " + empRec.sal);

}
}

save/saveHandle.java
package save;

import saveHandleServer.EmpRecord;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface saveHandle extends EJBObject {

public EmpRecord query (int empNumber)
throws java.sql.SQLException, RemoteException;

public void update (int empNumber, double newSalary)
throws java.sql.SQLException, RemoteException;

}

save/saveHandleHome.java
package save;

import javax.ejb.*;
import java.rmi.RemoteException;

public interface saveHandleHome extends EJBHome {
public saveHandle create()

throws CreateException, RemoteException;
}

Example Code: EJB B-15

Basic Examples
save/EmpRecord.java
package save;

import java.rmi.*;

public class EmpRecord implements java.io.Serializable {
public String ename;
public int empno;
public double sal;

public EmpRecord (String ename, int empno, double sal) {
this.ename = ename;
this.empno = empno;
this.sal = sal;

}
}

save/saveHandle.java
package save;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface saveHandle extends EJBObject {

public EmpRecord query (int empNumber)
throws java.sql.SQLException, RemoteException;

public void update (int empNumber, double newSalary)
throws java.sql.SQLException, RemoteException;

public String getMessage()
throws RemoteException;

public void setMessage(String message)
throws RemoteException;

}

saveHandleServer/saveHandleBean.sqlj
package saveHandleServer;
B-16 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
import save.EmpRecord;

import java.sql.*;
import java.rmi.RemoteException;
import javax.ejb.*;

#sql iterator EmpIter (int empno, String ename, double sal);

public class saveHandleBean implements SessionBean {
String message = "No message";
SessionContext ctx;

public void update(int empNumber, double newSalary)
throws SQLException, RemoteException

{
#sql {update emp set sal = :newSalary where empno = :empNumber};

}

public EmpRecord query (int empNumber) throws SQLException, RemoteException
{

String ename;
double sal;

#sql { select ename, sal into :ename, :sal from emp
where empno = :empNumber };

return new EmpRecord (ename, empNumber, sal);
}

public String getMessage() throws RemoteException {
return message;

}

public void setMessage(String message) throws RemoteException {
this.message = message;

}

public void ejbCreate() throws CreateException, RemoteException {
}

public void ejbActivate() {
}

public void ejbPassivate() {
Example Code: EJB B-17

Basic Examples
}

public void ejbRemove() {
}

public void setSessionContext(SessionContext ctx) {
this.ctx = ctx;

}

}

sqljimpl

readme.txt
Overview
========

This example demonstrates doing a database query using SQLJ. pay
attention to the makefile (UNIX) or the makeit.bat batch file (Windows
NT), and note that the files that SQLJ generates (SER files converted
to class files) must be loaded into the database with deployejb also.

Compare this example with the jdbcimpl basic EJB example, which uses
JDBC instead of SQLJ to perform exactly the same query.

Source files
============

Client.java

Invoke the client program from the command line, passing it four
arguments:

- the name of the service URL, e.g. sess_iiop://localhost:2222
- the path and name of the published bean, e.g. /test/employeeBean
- the username for db authentication
- the password (you wouldn't do this in a production program, of course)

For example

% java Client -classpath LIBs sess_iiop://localhost:2222 /test/employeeBean
B-18 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
scott tiger

The client looks up and activates the bean, then invokes the query() method on
the bean. query() returns an EmpRecord structure with the salary and the name
of the employee whose ID number was passed to query().

There is no error checking in this code. See the User's Guide for more
information about the appropriate kinds of error checking in this kind of
client code.

The client prints:

Emp name is ALLEN
Emp sal is 3100.0

employeeServer/employeeBean.sqlj

This class is the bean implementation. A SQLJ named iterator is declared to
hold the results of the query. The myIter.next(); statement is used as is to
keep the code simple: after all the parameter passed in is a known valid
primary key for the EMP table. (See what happens if you try an empno that is
not in the table.)

The EmpIter getter methods are used to retrieve the query results into the
EmpRecord object, which is then returned *by value*, as a serialized object,
to the client.

employeeServer/EmpRecord.java

A class that is in essence a struct to contain the employee name and salary,
as well as the ID number.

Note that the class *must* be defined as implementing the java.rmi.Serializable
interface, to make it a valid serializable RMI object that can be passed from
server to the client.

employee/employee.java

The bean remote interface.
Example Code: EJB B-19

Basic Examples
employee/employeeHome.java

The bean home interface.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
B-20 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

employee.ejb
// sqljimpl EJB deployment descriptor.

SessionBean employeeServer.EmployeeBean {
BeanHomeName = "test/employeeBean";
RemoteInterfaceClassName = employee.Employee;
HomeInterfaceClassName = employee.EmployeeHome;

AllowedIdentities = {SCOTT};

// SessionTimeout = 20;
StateManagementType = STATEFUL_SESSION;

RunAsMode = CLIENT_IDENTITY;

TransactionAttribute = TX_REQUIRED;
}

Client.java
import employee.Employee;
import employee.EmployeeHome;
import employee.EmpRecord;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client {
public static void main (String [] args) throws Exception {

if (args.length != 4) {
System.out.println("usage: Client serviceURL objectName user password");
System.exit(1);

}
String serviceURL = args [0];
Example Code: EJB B-21

Basic Examples
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, user);
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

EmployeeHome home = (EmployeeHome)ic.lookup (serviceURL + objectName);
Employee testBean = home.create();
EmpRecord empRec = empRec = testBean.query (7499);
System.out.println ("Emp name is " + empRec.ename);
System.out.println ("Emp sal is " + empRec.sal);

}
}

employee/Employee.java
package employee;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Employee extends EJBObject {
public EmpRecord query (int empNumber)

throws java.sql.SQLException, RemoteException;
}

employee/EmployeeHome.java
package employee;

import javax.ejb.*;
import java.rmi.RemoteException;

public interface EmployeeHome extends EJBHome {
public Employee create()

throws CreateException, RemoteException;
}

B-22 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
employee/EmpRecord.java
package employee;

public class EmpRecord implements java.io.Serializable {
public String ename;
public int empno;
public double sal;

public EmpRecord (String ename, int empno, double sal) {
this.ename = ename;
this.empno = empno;
this.sal = sal;

}
}

employeeServer/EmployeeBean.sqlj
package employeeServer;

import employee.EmpRecord;

import java.sql.*;
import java.rmi.RemoteException;
import javax.ejb.*;

public class EmployeeBean implements SessionBean {
SessionContext ctx;

public void ejbCreate() throws CreateException, RemoteException {
}

public void ejbActivate() {
}

public void ejbPassivate() {
}

public void ejbRemove() {
}

public void setSessionContext(SessionContext ctx) {
this.ctx = ctx;

}

Example Code: EJB B-23

Basic Examples
public EmpRecord query (int empNumber) throws SQLException, RemoteException
{

String ename;
double sal;

#sql { select ename, sal into :ename, :sal from emp
where empno = :empNumber };

return new EmpRecord (ename, empNumber, sal);
}

}

jdbcimpl

readme.txt
Overview
========

This example demonstrates using JDBC in an EJB to do a database query.
This example does a simple query of the database EMP table, using JDBC
methods.

Compare this example with the sqljimpl basic EJB example, which uses
SQLJ instead of JDBC to perform exactly the same query.

Source files
============

Client.java

Invoke the client program from the command line, passing it four
arguments:

- the name of the service URL, e.g. sess_iiop://localhost:2222
- the path and name of the published bean, e.g. /test/employeeBean
- the username for db authentication
- the password (you wouldn't do this in a production program, of course)

For example

% java Client -classpath LIBs sess_iiop://localhost:2481:ORCL \
B-24 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
/test/employeeBean scott tiger

The client looks up and activates the bean, then invokes the query() method on
the bean. query() returns an EmpRecord structure with the salary and the name
of the employee whose ID number was passed to query().

There is no error checking in this code. See the User's Guide for more
information about the appropriate kinds of error checking in this kind of
client code.

The client prints:

Employee name is KING
Employee sal is 5000.0

employeeServer/employeeBean.java

This class is the bean implementation. A JDBC prepared statement is used
to formulate the query, which contains a WHERE clause.

The result set getter methods are used to retrieve the query results into the
EmpRecord object, which is then returned *by value*, as a serialized object,
to the client.

employeeServer/EmpRecord.java

A class that is in essence a struct to contain the employee name and salary,
as well as the ID number.

Note that the class *must* be defined as implementing the java.rmi.Serializable
interface, to make it a valid serializable RMI object that can be passed from
server to the client.

employee/employee.java

The bean remote interface.

employee/employeeHome.java

Example Code: EJB B-25

Basic Examples
The bean home interface.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.
B-26 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
employee.ejb
// jdbcimpl EJB deployment descriptor

SessionBean employeeServer.EmployeeBean {
BeanHomeName = "test/employeeJDBCBean";
RemoteInterfaceClassName = employee.Employee;
HomeInterfaceClassName = employee.EmployeeHome;

AllowedIdentities = {SCOTT};

SessionTimeout = 20;
StateManagementType = STATEFUL_SESSION;

RunAsMode = CLIENT_IDENTITY;

TransactionAttribute = TX_REQUIRED;
}

Client.java
import employee.Employee;
import employee.EmployeeHome;
import employee.EmpRecord;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client {

public static void main (String [] args) throws Exception {

if (args.length != 4) {
System.out.println("usage: Client serviceURL objectName user password");
System.exit(1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
Example Code: EJB B-27

Basic Examples
String password = args [3];

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, user);
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);

Context ic = new InitialContext(env);

EmployeeHome home = (EmployeeHome)ic.lookup (serviceURL + objectName);
Employee testBean = home.create ();
EmpRecord empRec = testBean.query (7839);
System.out.println ("Employee name is " + empRec.ename);
System.out.println ("Employee sal is " + empRec.sal);

}
}

employee/Employee.java
package employee;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Employee extends EJBObject {
public EmpRecord query (int empNumber)

throws java.sql.SQLException, RemoteException;
}

employee/Employeehome.java
package employee;

import javax.ejb.*;
import java.rmi.RemoteException;

public interface EmployeeHome extends EJBHome {
public Employee create()

throws CreateException, RemoteException;
}

B-28 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
employee/EmpRecord.java
package employee;

public class EmpRecord implements java.io.Serializable {
public String ename;
public int empno;
public double sal;

public EmpRecord (String ename, int empno, double sal) {
this.ename = ename;
this.empno = empno;
this.sal = sal;

}
}

employeeServer/EmployeeBean.java
package employeeServer;

import employee.EmpRecord;

import java.sql.*;
import java.rmi.RemoteException;
import javax.ejb.*;

public class EmployeeBean implements SessionBean {
SessionContext ctx;

public void ejbCreate() throws CreateException, RemoteException {
}

public void ejbActivate() {
}

public void ejbPassivate() {
}

public void ejbRemove() {
}

public void setSessionContext(SessionContext ctx) {
this.ctx = ctx;

}

Example Code: EJB B-29

Basic Examples
public EmpRecord query (int empNumber) throws SQLException, RemoteException
{

Connection conn =
new oracle.jdbc.driver.OracleDriver().defaultConnection ();

PreparedStatement ps =
conn.prepareStatement ("select ename, sal from emp where empno = ?");

try {
ps.setInt (1, empNumber);
ResultSet rset = ps.executeQuery ();
if (!rset.next ())

throw new RemoteException ("no employee with ID " + empNumber);
return new EmpRecord (rset.getString (1), empNumber, rset.getFloat (2));

} finally {
ps.close();

}
// return null;

}
}

callback

readme.txt
Overview
========

This example shows how an EJB can do callbacks to the client system. The
callback mechanism uses RMI over IIOP, and the Caffeine tool java2rmi_iiop is
used to generate the required classes for the RMI mechanisms.

The EJB is called with a reference to a client-side callback object
(clientImpl), and the bean itself returns a message plus the message that it
gets when it calls back to the client.

That is, the EJB returns "I called back and got: " plus the return value that
it gets when it invokes the client-side callback object method helloBack(),
which in this example is "Hello Client World!".

The UNIX makefile or the makeit.bat NT batch file shows how to invoke
the java2rmi_iiop compiler to generate the required stub and other classes for
the RMI callback mechanism.
B-30 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
Source Files
============

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2481:ORCL \

/test/myServerBean scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published bean to find and activate its home interface
- using the home interface, instantiates through its create()

method a new bean object, server
- invokes the hello() method on the server object, passing it the

client-side callback object (clientImpl), and prints the results

The printed output from the client is:

I Called back and got: Hello Client World!

server.ejb

Example Code: EJB B-31

Basic Examples
The ServerBean deployment descriptor.

server/ServerHome.java

The ServerBean home interface.

server/Server.java

The ServerBean remote interface.

serverServer/ServerBean.java

The ServerBean implementation. It calls the client-side callback object.

client/Client.java

The remote interface for the client callback class.

clientServer/ClientImpl.java

The implementation of the client callback class. Note the use of
ActivatableObject in this class.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make' in the shell to compile, load, and deploy the
objects, and run the client program. Other targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
B-32 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

client.java
import server.Server;
import server.ServerHome;
import clientServer.ClientImpl;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
Example Code: EJB B-33

Basic Examples
{
public static void main (String[] args) throws Exception {

if (args.length != 4) {
System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

// now, create the ClientBean.
ClientImpl clientImpl = new ClientImpl ();

// now, create the Server Bean object
ServerHome server_home = (ServerHome)ic.lookup (serviceURL + objectName);
Server server = server_home.create ();
System.out.println (server.hello (clientImpl));

}
}

server.ejb
// This the generic database work bean template

SessionBean serverServer.ServerBean
{

BeanHomeName = "test/myServerBean";
RemoteInterfaceClassName = server.Server;
HomeInterfaceClassName = server.ServerHome;

AllowedIdentities = { PUBLIC };

// SessionTimeout = 0;
// StateManagementType = STATEFUL_SESSION;

RunAsMode = CLIENT_IDENTITY;
B-34 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
TransactionAttribute = TX_NOT_SUPPORTED;
}

client/Client.java
package client;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Client extends Remote {
public String helloBack () throws RemoteException;

}

clientServer/ClientImpl.java
package clientServer;

import client.Client;

import java.rmi.RemoteException;
import org.omg.CORBA.Object;

import oracle.aurora.AuroraServices.ActivatableObject;

public class ClientImpl extends client._ClientImplBase implements
ActivatableObject
{

public String helloBack () throws RemoteException {
return "Hello Client World!";

}

public Object _initializeAuroraObject () {
return this;

}
}

server/Server.java
package server;
Example Code: EJB B-35

Basic Examples
import client.Client;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Server extends EJBObject
{

public String hello (Client client) throws RemoteException;
}

server/ServerHome.java
package server;

import javax.ejb.EJBHome;
import java.rmi.RemoteException;
import javax.ejb.CreateException;

public interface ServerHome extends EJBHome
{

public Server create () throws RemoteException, CreateException;
}

serverServer/ServerBean.java
package serverServer;

import server.Server;
import server.ServerHome;
import client.Client;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public class ServerBean implements SessionBean
{

// Methods of the Hello interface
public String hello (Client client) throws RemoteException
{

return "I Called back and got: " + client.helloBack ();
}

B-36 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
// Methods of the SessionBean
public void ejbCreate () throws RemoteException, CreateException {}
public void ejbRemove() {}
public void setSessionContext (SessionContext ctx) {}
public void ejbActivate () {}
public void ejbPassivate () {}

}

beanInheritance

readme.txt
Overview
========

This example show two beans: Foo and Bar. In the example, the Bar bean
inherits from the Foo bean. The required coding and the effects of
this bean inheritance are demonstrated in this example.

Source Files
============

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222 /test/myHello scott
tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
Example Code: EJB B-37

Basic Examples
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

(Note: for NT users, the environment variables would be %ORACLE_HOME% and
%JAVA_HOME%.)

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published bean to find and activate its home interface
- using the home interface, instantiates through its create()

method a new bean object, hello
- invokes the helloWorld() method on the hello object and prints the results

The printed output is:

Hello World
Hello World from bar
Hello World 2 from bar
Hello World from bar

foo.ejb

The Foo bean deployment descriptor. See ../helloworld/readme.txt for a
more complete description of a typical example deployment descriptor.

bar.ejb

The bar bean deployment descriptor.

inheritance/FooHome.java

The Foo bean home interface. Specifies a single no-parameter create() method.

inheritance/Foo.java
B-38 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples

The Foo remote interface. Note that only a single method, hello(), is
specified.

inheritance/BarHome.java

The Bar bean home interface. Specifies a single no-parameter create() method.

inheritance/Bar.java

The Bar remote interface. Note that only a single method, hello2(), is
specified.

inheritanceServer/FooBean.java

The Foo bean implementation. Implements the hello() method of
inheritance/Foo.java, returning a String greeting.

inheritanceServer/BarBean.java

The Bar bean implementation. Implements both the hello() method inherited from
FooBean, as well as the hello2() method specified in inheritance/Bar.java.

Note that this bean extends FooBean, so it does not implement SessionBean or
any of its methods, such as ejbRemove(0, ejbActivate(), and so on, which is
normally a requirement of a session bean. This is because BarBeam inherits the
implementation of these from FooBean.

Compiling and Running the Example
=================================

UNIX

Example Code: EJB B-39

Basic Examples
Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

client.java
import inheritanceServer.*;
import inheritance.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
B-40 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main(String[] args) throws Exception {
if (args.length != 5) {

System.out.println("usage: Client serviceURL fooBeanName "
+ "barBeanName username password");

System.exit(1);
}

String serviceURL = args [0];
String fooBeanName = args [1];
String barBeanName = args[2];
String username = args[3];
String password = args[4];

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, username);
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext(env);

// Get a foo object from a foo published bean
FooHome home = (FooHome) ic.lookup(serviceURL + fooBeanName);
Foo foo = home.create();
System.out.println(foo.hello());

// Get a bar object from a bar published bean
BarHome barHome = (BarHome) ic.lookup(serviceURL + barBeanName);
Bar bar = barHome.create();
System.out.println(bar.hello());
System.out.println(bar.hello2());

// Get a foo object from a bar published bean
BarHome fooBarHome = (BarHome)ic.lookup(serviceURL + barBeanName);
Foo fooBar = (Foo) fooBarHome.create();
System.out.println(fooBar.hello());

}
}

Example Code: EJB B-41

Basic Examples
foo.ejb
SessionBean inheritanceServer.FooBean
{

BeanHomeName = "/test/foo";
RemoteInterfaceClassName = inheritance.Foo;
HomeInterfaceClassName = inheritance.FooHome;

AllowedIdentities = { PUBLIC };
RunAsMode = CLIENT_IDENTITY;

}

bar.ejb
SessionBean inheritanceServer.BarBean
{

BeanHomeName = "/test/bar";
RemoteInterfaceClassName = inheritance.Bar;
HomeInterfaceClassName = inheritance.BarHome;

AllowedIdentities = { PUBLIC };
RunAsMode = CLIENT_IDENTITY;

}

inheritance/Foo.java
package inheritance;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Foo extends EJBObject
{

public String hello () throws RemoteException;
}

inheritance/FooHome.java
package inheritance;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;
B-42 Enterprise JavaBeans and CORBA Developer’s Guide

Basic Examples
public interface FooHome extends EJBHome
{

public Foo create () throws RemoteException, CreateException;
}

inheritance/Bar.java
package inheritance;

import java.rmi.RemoteException;

public interface Bar extends inheritance.Foo
{

public String hello2 () throws RemoteException;
}

inheritance/BarHome.java
package inheritance;

import java.rmi.RemoteException;
import javax.ejb.EJBHome;
import javax.ejb.CreateException;

public interface BarHome extends EJBHome {
public Bar create () throws RemoteException, CreateException;

}

inheritanceServer/FooBean.java
package inheritanceServer;

import java.rmi.RemoteException;
import javax.ejb.*;
import oracle.aurora.jndi.sess_iiop.*;

public class FooBean implements SessionBean
{

// Methods of the interface
public String hello () throws RemoteException {

return "Hello World";
Example Code: EJB B-43

Basic Examples
}

// Methods of the SessionBean
public void ejbCreate () throws RemoteException, CreateException {
}

public void ejbRemove() {
}

public void setSessionContext (SessionContext ctx) {
}

public void ejbActivate () {
}

public void ejbPassivate () {
}

}

inheritanceServer/BarBean.java
package inheritanceServer;

import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.ejb.CreateException;

public class BarBean extends FooBean
{

// Methods of the SessionBean are all from ancestor
public void ejbCreate () throws RemoteException, CreateException {

super.ejbCreate();
}

public String hello () throws RemoteException {
return "Hello World from bar";

}

public String hello2 () throws RemoteException {
return "Hello World 2 from bar";

}
}

B-44 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
Transaction Examples

clientside
employee.ejb

SessionBean employeeServer.EmployeeBean
{

BeanHomeName = "test/myEmployee";
RemoteInterfaceClassName = employee.Employee;
HomeInterfaceClassName = employee.EmployeeHome;

AllowedIdentities = { PUBLIC };
RunAsMode = CLIENT_IDENTITY;
TransactionAttribute = TX_SUPPORTS;

}

Client.java
import employee.Employee;
import employee.EmployeeHome;
import employee.EmployeeInfo;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import oracle.aurora.jts.client.AuroraTransactionService;
import oracle.aurora.jts.util.TS;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
Example Code: EJB B-45

Transaction Examples
String user = args [2];
String password = args [3];

// create InitialContext
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

System.out.println ("Initial Context set up");
// System.out.println ("begin ATS.init (" + ic + " " + serviceURL + ")");

// initialize the transaction service
AuroraTransactionService.initialize (ic, serviceURL);

System.out.println ("begin ic.lookup (" + serviceURL + objectName + ")");

// get handle to the employee object
EmployeeHome employee_home = (EmployeeHome)ic.lookup (serviceURL +

objectName);
System.out.println ("begin employee_home.create ()");

Employee employee = employee_home.create ();

// System.out.println ("begin TS.getTS ().getCurrent ().begin ()");

// get Control to the transaction
TS.getTS ().getCurrent ().begin ();

EmployeeInfo info = employee.getEmployee ("SCOTT");
// System.out.println ("Beginning salary = " + info.getSalary ());
System.out.println ("Beginning salary = " + info.salary);

// do work on the info-object
info.salary += (info.salary * 10) / 100;
// info.giveRaise (10);

// call update on the server-side
employee.updateEmployee (info);

System.out.println ("End salary = " + info.salary);

TS.getTS ().getCurrent ().commit (true);
B-46 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
}
}

employee/EmployeeInfo.java
package employee;

import java.rmi.*;

public class EmployeeInfo implements java.io.Serializable {
public String name = null;
public int number = 0;
public double salary = 0;
}
/*
public EmployeeInfo () { }

public EmployeeInfo (String name, int number, double salary) {
this.name = name;
this.number = number;
this.salary = salary;
}

public String getName () { return name;}

public int getEmpNumber () { return number;}

public double getSalary () { return salary;}

public void giveRaise (int percent) {
salary += salary * percent/100;
}
}
*/

employee/Employee.java
package employee;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

import java.sql.*;
Example Code: EJB B-47

Transaction Examples
public interface Employee extends EJBObject
{

public EmployeeInfo getEmployee (String name) throws RemoteException;

public void updateEmployee (EmployeeInfo employee) throws RemoteException;
}

employee/EmployeeHome.java
package employee;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface EmployeeHome extends EJBHome
{

public Employee create () throws RemoteException, CreateException;
}

employeeServer/EmployeeBean.sqlj
package employeeServer;

import employee.*;

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
import java.rmi.RemoteException;

import java.sql.*;

public class EmployeeBean implements SessionBean
{

// Methods of the Employee interface
public EmployeeInfo getEmployee (String name) throws RemoteException {

try {
int empno = 0;
double salary = 0.0;
#sql { select empno, sal into :empno, :salary from emp
where ename = :name };
B-48 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
EmployeeInfo info = new EmployeeInfo ();
info.name = name;
info.salary = salary;
info.number = empno;
return info;

} catch (SQLException e) {
// throw new SQLError (e.getMessage ());

}
return null;

}

public void updateEmployee (EmployeeInfo employee) throws RemoteException {
try {

#sql { update emp set ename = :(employee.name),
sal = :(employee.salary) where empno = :(employee.number) };

} catch (SQLException e) {
// throw new SQLError (e.getMessage ());

}
return;

}

// Methods of the SessionBean
public void ejbCreate () throws RemoteException, CreateException {}
public void ejbRemove() {}
public void setSessionContext (SessionContext ctx) {}
public void ejbActivate () {}
public void ejbPassivate () {}

}

multiSessions

employee.ejb
SessionBean employeeServer.EmployeeBean
{

BeanHomeName = "test/myEmployee";
RemoteInterfaceClassName = employee.Employee;
HomeInterfaceClassName = employee.EmployeeHome;

AllowedIdentities = { PUBLIC };
RunAsMode = CLIENT_IDENTITY;
TransactionAttribute = TX_SUPPORTS;
Example Code: EJB B-49

Transaction Examples
}

Client.java
import employee.*;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 5) {

System.out.println ("usage: Client serviceURL objectName user password
sessionsCount");

System.exit (1);
}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];
int sessionCount = Integer.parseInt (args[4]);

// create InitialContext
// Note: authentication is done per session in ClientThread
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// invoke different sessions using ClientThread
for (int i = 0; i < sessionCount; i++) {

String sessionName = new String (":session" + i);
ClientThread ct = new ClientThread (ic, serviceURL, objectName,

sessionName, user, password);
System.out.println ("Starting ClientThread (" + sessionName + ")");
ct.start ();

}
}

}

B-50 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
ClientThread.java
import employee.*;

import oracle.aurora.jts.client.AuroraTransactionService;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jndi.sess_iiop.SessionCtx;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.client.Login;
import oracle.aurora.jts.util.TS;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class ClientThread extends Thread
{

private Context ic = null;
private String serviceURL = null;
private String objectName = null;
private String sessionName = null;
private SessionCtx session = null;

public ClientThread () {}

public ClientThread (Context ic, String serviceURL, String objectName, String
sessionName, String user, String password) {

try {
this.ic = ic;
ServiceCtx service = (ServiceCtx)ic.lookup (serviceURL);
this.session = (SessionCtx)service.createSubcontext (sessionName);
System.out.println ("activating the " + sessionName + " in " +

serviceURL);

LoginServer login_server = (LoginServer)session.activate ("etc/login");
Login login = new Login (login_server);
login.authenticate (user, password, null);

this.serviceURL = serviceURL;
this.sessionName = sessionName;
this.objectName = objectName;

} catch (Exception e) {
e.printStackTrace ();

}
}

Example Code: EJB B-51

Transaction Examples
public void run () {
try {

this.yield ();

// Get handle to the TX-Factory
AuroraTransactionService.initialize (ic, serviceURL + "/" + sessionName);

// create an instance of an employee object in the session
EmployeeHome employee_home = (EmployeeHome)ic.lookup (serviceURL + "/" +

sessionName + objectName);

Employee employee = employee_home.create ();

System.out.println ("employee_home.create () DONE in " + sessionName);

EmployeeInfo info = null;

// start the transaction
TS.getTS ().getCurrent ().begin ();

// get the info about an employee
// Note: lock is set on the row using 'for update' clause while select

operation
info = employee.getEmployeeForUpdate ("SCOTT");
System.out.println ("Beginning salary = " + info.salary + " in " +

sessionName);

// arbitrarily change the value of the salary, e.g. depending on
sessionName

if (sessionName.endsWith ("0")) {
System.out.println ("10% Increase" + sessionName);
info.salary += (info.salary * 10) / 100;

} else if (sessionName.endsWith ("1")) {
System.out.println ("20% Increase" + sessionName);
info.salary += (info.salary * 20) / 100;

} else {
System.out.println ("30% Decrease" + sessionName);
info.salary -= (info.salary * 30) / 100;

}

// try sleeping this-thread for a while before updating the info
// Note: the other threads MUST wait (since selected with 'for update'

clause)
this.sleep (2000);
B-52 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
// update the infomation in the transaction
employee.updateEmployee (info);

// get and print the info in the transaction
// Note: doNOT use 'for update' here
info = employee.getEmployee ("SCOTT");
System.out.println ("End salary = " + info.salary + " in " +

sessionName);

// commit the changes
TS.getTS ().getCurrent ().commit (true);

} catch (Exception e) {
e.printStackTrace ();

}
}

}

employee/Employee.java
package employee;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

import java.sql.*;

public interface Employee extends EJBObject
{

public EmployeeInfo getEmployee (String name) throws RemoteException;
public EmployeeInfo getEmployeeForUpdate (String name) throws RemoteException;

public void updateEmployee (EmployeeInfo employee) throws RemoteException;
}

employee/EmployeeHome.java
package employee;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;
Example Code: EJB B-53

Transaction Examples
public interface EmployeeHome extends EJBHome
{

public Employee create () throws RemoteException, CreateException;
}

employee/EmployeeInfo.java
package employee;

import java.rmi.*;

public class EmployeeInfo implements java.io.Serializable {
public String name = null;
public int number = 0;
public double salary = 0;
}

employeeServer/EmployeeBean.sqlj
package employeeServer;

import employee.*;

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
import java.rmi.RemoteException;

import java.sql.*;

public class EmployeeBean implements SessionBean
{

// Methods of the Employee interface
public EmployeeInfo getEmployee (String name) throws RemoteException {

try {
int empno = 0;
double salary = 0.0;
#sql { select empno, sal into :empno, :salary from emp

where ename = :name };

EmployeeInfo info = new EmployeeInfo ();
info.name = name;
info.salary = salary;
B-54 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
info.number = empno;
return info;

} catch (SQLException e) {
// throw new SQLError (e.getMessage ());

}
return null;

}

public EmployeeInfo getEmployeeForUpdate (String name) throws RemoteException
{

try {
int empno = 0;
double salary = 0.0;
#sql { select empno, sal into :empno, :salary from emp

where ename = :name for update };

EmployeeInfo info = new EmployeeInfo ();
info.name = name;
info.salary = salary;
info.number = empno;
System.out.println ("name = " + name + " salary = " + salary);
return info;

} catch (SQLException e) {
// throw new SQLError (e.getMessage ());

}
return null;

}

public void updateEmployee (EmployeeInfo employee) throws RemoteException {
try {

#sql { update emp set ename = :(employee.name), sal = :(employee.salary)
where empno = :(employee.number) };

} catch (SQLException e) {
// throw new SQLError (e.getMessage ());

}
return;
}

// Methods of the SessionBean
public void ejbCreate () throws RemoteException, CreateException {}
public void ejbRemove() {}
public void setSessionContext (SessionContext ctx) {}
public void ejbActivate () {}
public void ejbPassivate () {}

}

Example Code: EJB B-55

Transaction Examples
serversideJTS

Client.java
import employee.Employee;
import employee.EmployeeHome;
import employee.EmployeeInfo;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

// create InitialContext
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

System.out.println ("Initial Context set up");

// get handle to the employee object
System.out.println ("begin ic.lookup (" + serviceURL + objectName + ")");
EmployeeHome employee_home = (EmployeeHome)ic.lookup (serviceURL +

objectName);

System.out.println ("begin employee_home.create ()");
B-56 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
Employee employee = employee_home.create ();

EmployeeInfo info = employee.getEmployee ("SCOTT");
System.out.println ("Beginning salary = " + info.salary);

// do work on the info-object
info.salary += (info.salary * 10) / 100;

// call update on the server-side
employee.updateEmployee (info);

System.out.println ("End salary = " + info.salary);
}

}

employee.ejb
SessionBean employeeServer.EmployeeBean
{

BeanHomeName = "test/myEmployee";
RemoteInterfaceClassName = employee.Employee;
HomeInterfaceClassName = employee.EmployeeHome;

AllowedIdentities = { PUBLIC };
RunAsMode = CLIENT_IDENTITY;
TransactionAttribute = TX_BEAN_MANAGED;

}

employee/Employee.java
package employee;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

import java.sql.*;

public interface Employee extends EJBObject
{

public EmployeeInfo getEmployee (String name)
throws RemoteException, SQLException;

public void updateEmployee (EmployeeInfo employee)
Example Code: EJB B-57

Transaction Examples
throws RemoteException, SQLException;
}

employee/EmployeeHome.java
package employee;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface EmployeeHome extends EJBHome
{

public Employee create () throws RemoteException, CreateException;
}

employee/EmployeeInfo.java
package employee;

import java.rmi.*;

public class EmployeeInfo implements java.io.Serializable {
public String name = null;
public int number = 0;
public double salary = 0;

public EmployeeInfo (String name, int number, double salary) {
this.name = name;
this.number = number;
this.salary = salary;

}
}

employeeServer/EmployeeBean.sqlj
package employeeServer;

import employee.*;

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
B-58 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
import javax.jts.UserTransaction;

import java.rmi.RemoteException;
import java.sql.*;

public class EmployeeBean implements SessionBean
{

SessionContext ctx;

// Methods of the Employee interface
public EmployeeInfo getEmployee (String name)

throws RemoteException, SQLException
{

ctx.getUserTransaction ().begin ();

int empno = 0;
double salary = 0.0;
#sql { select empno, sal into :empno, :salary from emp

where ename = :name };
return new EmployeeInfo (name, empno, salary);

}

public void updateEmployee (EmployeeInfo employee)
throws RemoteException, SQLException

{
#sql { update emp set ename = :(employee.name), sal = :(employee.salary)

where empno = :(employee.number) };

ctx.getUserTransaction ().commit ();
}

// Methods of the SessionBean
public void ejbCreate () throws RemoteException, CreateException {}
public void ejbRemove() {}
public void setSessionContext (SessionContext ctx) {

this.ctx = ctx;
}
public void ejbActivate () {}
public void ejbPassivate () {}

}

Example Code: EJB B-59

Transaction Examples
serversideLogging

client.java
import employee.Employee;
import employee.EmployeeHome;
import employee.EmployeeInfo;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client {
public static void main (String[] args) throws Exception {

if (args.length != 4) {
System.out.println

("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

// create InitialContext
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

// get handle to the employee object
System.out.println ("begin ic.lookup (" + serviceURL + objectName + ")");
EmployeeHome employee_home = (EmployeeHome)ic.lookup

(serviceURL + objectName);

System.out.println ("begin employee_home.create ()");
Employee employee = employee_home.create ();

EmployeeInfo info = employee.getEmployeeForUpdate ("SCOTT");
System.out.println ("Beginning salary = " + info.salary);
B-60 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
// do work on the info-object
info.salary += (info.salary * 10) / 100;

// call update on the server-side
employee.updateEmployee (info);

// re-query for the info object
EmployeeInfo newInfo = employee.getEmployee ("SCOTT");
System.out.println ("End salary = " + newInfo.salary);

}
}

employee.ejb
// This the generic database work bean template

SessionBean employeeServer.EmployeeBean {
BeanHomeName = "test/myEmployee";
RemoteInterfaceClassName = employee.Employee;
HomeInterfaceClassName = employee.EmployeeHome;

AllowedIdentities = { PUBLIC };
RunAsMode = CLIENT_IDENTITY;
TransactionAttribute = TX_BEAN_MANAGED;

/*
SessionTimeout = 10;
StateManagementType = STATEFUL_SESSION;

EnvironmentProperties {
prop1 = value1;
prop2 = "value two";

}

public java.lang.String getEmployee ()
throws RemoteException, SQLException

{
TransactionAttribute = TX_BEAN_MANAGED;
RunAsMode = CLIENT_IDENTITY;
AllowedIdentities = { PUBLIC };

}

public java.lang.String updateEmployee ()
throws RemoteException, SQLException
Example Code: EJB B-61

Transaction Examples
{
TransactionAttribute = TX_BEAN_MANAGED;
RunAsMode = CLIENT_IDENTITY;
AllowedIdentities = { PUBLIC };

}
*/

}

log.sql
drop table log_table cascade constraints;

create table log_table (when date, which number, who number, what
varchar2(2000));
exit

employee/Employee.java
package employee;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

import java.sql.*;

public interface Employee extends EJBObject
{

public EmployeeInfo getEmployee (String name)
throws RemoteException, SQLException;

public EmployeeInfo getEmployeeForUpdate (String name)
throws RemoteException, SQLException;

public void updateEmployee (EmployeeInfo employee)
throws RemoteException, SQLException;

}

employee/EmployeeHome.java
package employee;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
B-62 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
import java.rmi.RemoteException;

public interface EmployeeHome extends EJBHome
{

public Employee create () throws RemoteException, CreateException;
}

employee/EmployeeInfo.java
package employee;

import java.rmi.*;

public class EmployeeInfo implements java.io.Serializable {
public String name = null;
public int number = 0;
public double salary = 0;

public EmployeeInfo (String name, int number, double salary) {
this.name = name;
this.number = number;
this.salary = salary;

}
}

employeeServer/EmployeeBean.sqlj
package employeeServer;

import employee.*;
import loggingServer.Logging;
import loggingServer.LoggingHome;

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
import javax.jts.UserTransaction;

import java.rmi.RemoteException;
import java.sql.*;

import javax.naming.Context;
import javax.naming.InitialContext;
Example Code: EJB B-63

Transaction Examples
import javax.naming.NamingException;
import java.util.Hashtable;

public class EmployeeBean implements SessionBean
{

SessionContext ctx;
Logging logServer = null;

// Methods of the Employee interface
public EmployeeInfo getEmployee (String name)

throws RemoteException, SQLException
{

ctx.getUserTransaction ().begin ();

int empno = 0;
double salary = 0.0;
#sql { select empno, sal into :empno, :salary from emp

where ename = :name };

ctx.getUserTransaction ().commit ();

return new EmployeeInfo (name, empno, salary);
}

public EmployeeInfo getEmployeeForUpdate (String name)
throws RemoteException, SQLException

{
ctx.getUserTransaction ().begin ();

int empno = 0;
double salary = 0.0;
logServer.log ("EJB: getEmployeeForUpdate (" + name + ")");
#sql { select empno, sal into :empno, :salary from emp

where ename = :name for update };
return new EmployeeInfo (name, empno, salary);

}

public void updateEmployee (EmployeeInfo employee)
throws RemoteException, SQLException

{
logServer.log ("EJB: updateEmployee (" + employee.name + ")");
#sql { update emp set ename = :(employee.name), sal = :(employee.salary)

where empno = :(employee.number) };

ctx.getUserTransaction ().commit ();
B-64 Enterprise JavaBeans and CORBA Developer’s Guide

Transaction Examples
}

// Methods of the SessionBean
public void ejbCreate () throws RemoteException, CreateException
{

try {
// create InitialContext
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// Now, to create the loggingBean
String objectName = new String ("/test/loggingService");
LoggingHome logBean_home =

(LoggingHome)ic.lookup ("sess_iiop://thisServer" + objectName);

logServer = logBean_home.create ();
} catch (NamingException e) {

e.printStackTrace ();
}

try {
logServer.log ("EJB: Create Employee");

} catch (SQLException e) {
e.printStackTrace ();

}
}
public void ejbRemove () {}
public void setSessionContext (SessionContext ctx) {

this.ctx = ctx;
}
public void ejbActivate () {}
public void ejbPassivate () {}

}

loggingServer/Logging.java
package loggingServer;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

import java.sql.*;
Example Code: EJB B-65

Transaction Examples
public interface Logging extends EJBObject {
public void log (String message) throws RemoteException, SQLException;

}

loggingServer/LoggingBean.sqlj
package loggingServer;

import javax.ejb.*;
import java.rmi.RemoteException;

import java.sql.*;

import oracle.aurora.rdbms.DbmsJava;
import oracle.aurora.rdbms.Schema;

public class LoggingBean implements SessionBean {
SessionContext ctx;

public void log (String message) throws RemoteException, SQLException {
int ownerNumber = Schema.currentSchema ().ownerNumber ();
// System.out.println ("ownerNumber = " + ownerNumber);

// get the session-id
int sessID = DbmsJava.sessionID (DbmsJava.USER_SESSION);

#sql { insert into log_table (who, which, when, what) values
(:ownerNumber, :sessID, sysdate, :message) };

}

public void ejbCreate () throws RemoteException, CreateException {}
public void ejbRemove () {}
public void setSessionContext (SessionContext ctxArg) {

ctx = ctxArg;
}
public void ejbActivate () {}
public void ejbPassivate () {}

}

loggingServer/LoggingHome.Java
package loggingServer;
B-66 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
import javax.ejb.*;
import java.rmi.RemoteException;

public interface LoggingHome extends EJBHome {
public Logging create () throws RemoteException, CreateException;

}

loggingServer/LogBean.ejb
// This the generic database work bean template

SessionBean loggingServer.LoggingBean {
BeanHomeName = "test/loggingService";
RemoteInterfaceClassName = loggingServer.Logging;
HomeInterfaceClassName = loggingServer.LoggingHome;

TransactionAttribute = TX_REQUIRES_NEW;
RunAsMode = CLIENT_IDENTITY;
AllowedIdentities = { PUBLIC };

EnvironmentProperties {
prop1 = value1;
prop2 = "value two";

}
}

Session Examples

timeout

readme.txt
Overview
========

The timeout example shows how you can control session timeout from an EJB. A
first client program invokes a bean method to set the session timeout value,
and a second client program tests the timeout, by first calling a method on
the bean in the session within the timeout interval, and then after the
timeout has expired. In the second case, the method invocation should fail.
Example Code: EJB B-67

Session Examples
In order for the second client to be able to invoke a method on the same bean
in the same session, the first client saves both the bean handle and a login
object reference to disk, to be read by the scond client.

Source Files
============

Client1.java

You invoke the first client program from a command prompt, and pass it seven
arguments, which are the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean home interface
- username
- password that authenticates the client to the Oracle8i database server
- a file name to which to write the login IOR
- a file name to which to write the object handle
- a time out value in seconds

For example:
% java -classpath LIBs Client1 sess_iiop://localhost:2481:ORCL \

/test/myHello scott tiger login.dat handle.dat 30

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- gets a login server and authenticates the client
- looks up and activates a Hello object
- sets the object's message to "As created by Client1"
- prints "Client1: " plus the massage, the

message got by invoking helloWorld() on the Hello object
B-68 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
- sets the session timeout by invoking setTimeout() on hello
- writes the login IOR and the bean handle to files

The printed output is:

Client2.java

You invoke the second client program from a command prompt, and pass it four
arguments, the

- username
- password
- a file name from which to read the login IOR, which must be the

same as passed to Client1
- a file name from which to read the object handle, the same as that

passed to Client1

For example:
% java -classpath LIBs Client2 sess_iiop://localhost:2481:ORCL \

scott tiger login.dat handle.dat

The client code performs the following steps:

- reads the login object from the disk
- reads the bean handle from disk
-

hello.ejb

The bean deployment descriptor.

helloServer/HelloBean.java

The bean implementation. Implements the methods helloWorld(), setMessage(),
and setTimeout(). Note that the call to Presentation.sessionTimeout() requires
Example Code: EJB B-69

Session Examples
that following import statement:

import oracle.aurora.net.Presentation;

hello/Hello.java

The bean remote interface.

hello/HelloHome.java

The bean's home interface.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
B-70 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

hello.ejb
SessionBean helloServer.HelloBean
{

BeanHomeName = "test/myHello";
RemoteInterfaceClassName = hello.Hello;
HomeInterfaceClassName = hello.HelloHome;

SessionTimeout = 30;

AllowedIdentities = { PUBLIC };
RunAsMode = CLIENT_IDENTITY;
TransactionAttribute = TX_NOT_SUPPORTED;
// TransactionAttribute = TX_REQIRES_NEW;
// TransactionAttribute = TX_BEAN_SUPPORTED;

}

client1.java
import hello.Hello;
import hello.HelloHome;

import java.io.FileOutputStream;
import java.io.ObjectOutputStream;
import java.io.OutputStream;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.ejb.Handle;
Example Code: EJB B-71

Session Examples
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.client.*;
import oracle.aurora.AuroraServices.LoginServer;

public class Client1
{

public static void main (String[] args) throws Exception {
if (args.length != 6) {

System.out.println
("usage: Client serviceURL objectName username password " +

"loginIORfile objHandlefile");
System.exit(1);

}
String serviceURL = args [0];
String objectName = args [1];
String username = args [2];
String password = args [3];
String loginIORfile = args [4];
String objHandlefile = args [5];
// int timeout = Integer.parseInt(args [6]);

Hashtable env = new Hashtable();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

LoginServer lserver = (LoginServer)ic.lookup (serviceURL + "/etc/login");
new Login (lserver).authenticate (username, password, null);

// Activate a Hello in the 8i server
// This creates a first session in the server
HelloHome hello_home = (HelloHome)ic.lookup (serviceURL + objectName);
Hello hello = hello_home.create ();
hello.setMessage ("As created by Client1");
System.out.println ("Client1: " + hello.helloWorld ());

// Make the session survive timeout seconds after its last connection
// is dropped.
// hello.setTimeout (timeout);
// System.out.println ("Set session timeout to " + timeout + " seconds");

writeIOR (lserver, loginIORfile);
// writeIOR (hello, objHandleFile);

// Save the bean handle to a file for Client2 to access our session
B-72 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
FileOutputStream fostream = new FileOutputStream (objHandlefile);
ObjectOutputStream ostream = new ObjectOutputStream (fostream);
ostream.writeObject (hello.getHandle ());
ostream.flush ();
fostream.close ();

System.out.println ("Client1: exiting...");
}

static public void writeIOR (org.omg.CORBA.Object object, String iorFile)
throws Exception

{
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init ();
String ior = orb.object_to_string (object);
OutputStream os = new FileOutputStream (iorFile);
os.write (ior.getBytes ());
os.close ();

}
}

client2.java
import hello.Hello;
import hello.HelloHome;

import java.io.InputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.ObjectInputStream;

import javax.ejb.Handle;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.client.Login;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.AuroraServices.LoginServerHelper;

public class Client2
{

public static void main (String[] args) throws Exception {
boolean ssl = true;

if (args.length != 4) {
System.out.println
Example Code: EJB B-73

Session Examples
("usage: Client2 username password loginIORfile objHandlefile");
System.exit (1);

}
String username = args [0];
String password = args [1];
String loginIORfile = args [2];
String objHandlefile = args [3];

// Initialize the ORB for accessing objects in 8i
// You have to initialize the ORB that way.
// You will be authenticated using the login IOR read
// from the file.
org.omg.CORBA.ORB orb =

ServiceCtx.init (null, null, null, false, null);

// Read the IORs from the IOR files
String loginIOR = getIOR (loginIORfile);
// String helloIOR = getIOR (objHandlefile);

// Get a ref to the bean, by reading the file.
FileInputStream finstream = new FileInputStream (objHandlefile);
ObjectInputStream istream = new ObjectInputStream (finstream);
Handle helloHandle = (Handle)istream.readObject ();
finstream.close ();
Hello hello = (Hello)helloHandle.getEJBObject ();
System.out.println ("Client2: read the bean handle from " + objHandlefile);

// Authenticate with the login Object
LoginServer lserver =

LoginServerHelper.narrow (orb.string_to_object (loginIOR));
lserver._bind_options (new org.omg.CORBA.BindOptions (false, false));

Login login = new Login (lserver);
login.authenticate (username, password, null);
System.out.println("Client2: authenticated.");

// Access the object from the ior and print its message
System.out.println ("Client2: " + hello.helloWorld ());

// Disconnect from the object by exiting
System.out.println ("Client2: exiting...");

}

// Read an IOR from an IOR file.
static String getIOR (String iorFile) throws Exception
B-74 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
{
// Loop until the ior file is available
InputStream is = null;
int i;
for (i = 0; i < 10; i++) {

try {
is = new FileInputStream (iorFile);

} catch (FileNotFoundException e) {}
Thread.sleep (1000);

}

if (is == null){
System.out.println ("Client2 timed out before finding " + iorFile);
System.exit (1);

}

byte[] iorbytes = new byte [is.available ()];
is.read (iorbytes);
is.close ();
String ior = new String (iorbytes);
System.out.println ("Client2: got the IOR from " + iorFile);
return ior;

}
}

hello/Hello.java
package hello;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import javax.ejb.CreateException;

public interface Hello extends EJBObject
{

public String helloWorld () throws RemoteException;

public void setMessage (String message) throws RemoteException;

public void setTimeout (int seconds) throws RemoteException;
}

Example Code: EJB B-75

Session Examples
hello/HelloHome.java
package hello;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface HelloHome extends EJBHome
{

public Hello create () throws RemoteException, CreateException;
}

helloServer/HelloBean.java
package helloServer;

import hello.*;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

import oracle.aurora.net.Presentation;

public class HelloBean implements SessionBean
{

String message;

// Methods of the Hello interface
public String helloWorld () throws RemoteException {

return message;
}

public void setMessage (String message) throws RemoteException {
this.message = message;

}

public void setTimeout (int seconds) throws RemoteException {
Presentation.sessionTimeout (seconds);

}

// Methods of the SessionBean
public void ejbCreate () throws RemoteException, CreateException {}
B-76 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
public void ejbRemove () {}
public void setSessionContext (SessionContext ctx) {}
public void ejbActivate () {}
public void ejbPassivate () {}

}

clientserverserver

readme.txt
Overview
========

This EJB example shows how you can create a second EJB in
the same server, but in a different session. The same username and
password are used to create the second object, and it accesses the
same published EJB.

Source Files
============

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

- service URL (service ID, hostname, port, and SID if port is a listener)
- name of the published bean to lookup and instantiate
- username
- password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2481:ORCL |

/test/myHello scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
Example Code: EJB B-77

Session Examples
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

- gets the arguments passed on the command line
- creates a new JNDI Context (InitialContext())
- looks up the published bean to find and activate its home interface
- using the home interface, instantiates through its create()

method a new bean object, hello
- sets the hello bean's message to "Hello World!"
- asks the first hello bean to create another bean, by invoking the

getOtherHello() method, passing it the authentication, service URL,
and bean name parameters

- invokes otherHelloWorld() on the first bean, and printing its
return value, which is derived from the second created bean

The printed output is:

Hello World!
xxxx

hello.ejb

The bean deployment descriptor.

helloServer/HelloBean.java

The EJB implementation.

hello/Hello.java

The bean remote interface.

hello/HelloHome.java

The bean's home interface.
B-78 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.
Example Code: EJB B-79

Session Examples
client.java
import hello.Hello;
import hello.HelloHome;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {
if (args.length != 4) {

System.out.println ("usage: Client serviceURL objectName user password");
System.exit (1);

}
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

// Activate a Hello in the 8i server
// This creates a first session in the server
HelloHome hello_home = (HelloHome)ic.lookup (serviceURL + objectName);
Hello hello = hello_home.create ();
hello.setMessage ("Hello World!");
System.out.println (hello.helloWorld ());

// Ask the first Hello to activate another Hello in the same server
// This creates Another SESSION used by the first session
hello.getOtherHello (user, password, serviceURL + objectName);
System.out.println (hello.otherHelloWorld ());

}
}

B-80 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
hello.ejb
SessionBean helloServer.HelloBean
{

BeanHomeName = "test/myHello";
RemoteInterfaceClassName = hello.Hello;
HomeInterfaceClassName = hello.HelloHome;

AllowedIdentities = { PUBLIC };
RunAsMode = CLIENT_IDENTITY;
TransactionAttribute = TX_NOT_SUPPORTED;
// TransactionAttribute = TX_REQIRES_NEW;
// TransactionAttribute = TX_BEAN_SUPPORTED;

}

hello/Hello.java
package hello;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import javax.ejb.CreateException;

public interface Hello extends EJBObject
{

public String helloWorld () throws RemoteException;

public void setMessage (String message) throws RemoteException;

public void getOtherHello (String user, String password, String otherBeanURL)
throws RemoteException, CreateException;

public String otherHelloWorld () throws RemoteException;
}

hello/HelloHome.java
package hello;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface HelloHome extends EJBHome
Example Code: EJB B-81

Session Examples
{
public Hello create () throws RemoteException, CreateException;

}

helloServer/HelloBean.java
package helloServer;

import hello.*;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

import javax.ejb.CreateException;
import java.rmi.RemoteException;
import javax.naming.NamingException;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class HelloBean implements SessionBean
{

String message;
Hello otherHello;

// Methods of the Hello interface
public String helloWorld () throws RemoteException {

return message;
}

public void setMessage (String message) throws RemoteException {
this.message = message;

}

public void getOtherHello (String user, String password, String otherBeanURL)
throws RemoteException, CreateException

{
try {

// start a new session
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
B-82 Enterprise JavaBeans and CORBA Developer’s Guide

Session Examples
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

// create the other Bean instance
HelloHome other_HelloHome = (HelloHome)ic.lookup (otherBeanURL);
otherHello = other_HelloHome.create ();
otherHello.setMessage ("Hello from the Other HelloBean Object");

} catch (NamingException e) {
e.printStackTrace ();

}
}

public String otherHelloWorld () throws RemoteException {
if (otherHello != null)

return otherHello.helloWorld ();
else

return "otherBean is not accessed yet";
}

// Methods of the SessionBean
public void ejbCreate () throws RemoteException, CreateException {}
public void ejbRemove () {}
public void setSessionContext (SessionContext ctx) {}
public void ejbActivate () {}
public void ejbPassivate () {}

}

Example Code: EJB B-83

Session Examples
B-84 Enterprise JavaBeans and CORBA Developer’s Guide

Comparing the Oracle8i JServer and VisiBroker™ VBJ O
C

Comparing the Oracle8 i JServer and

VisiBroker™ VBJ ORBs

This appendix, which is for developers who are familiar with the VisiBroker VBJ
ORB, summarizes the main differences between that ORB and the current version of
the Oracle8i JServer ORB. Each ORB supports multiple styles of usage, but this
appendix compares only the most commonly used styles. In particular, it assumes
that VBJ clients use the helper bind() method to find objects by name, whereas
Oracle8 i clients use the JNDI lookup() method for the same purpose. It also
assumes that Oracle8i clients use Oracle’s session IIOP to communicate with server
objects, though the JServer ORB also supports the standard IIOP used by the
VBJ ORB.

The differences in the ORBs are summarized in these sections:

■ "Object References Have Session Lifetimes"

■ "The Database Server is the Implementation Mainline"

■ "Server Object Implementations are Deployed by Loading and Publishing"

■ "Implementation by Inheritance is Nearly Identical"

■ "Implementation by Delegation is Different"

■ "Clients Look Up Object Names with JNDI"

■ "No Interface or Implementation Repository"

At the end of the appendix, equivalent client and server implementations of the
same IDL for the VBJ and Aurora ORBs are provided for comparison.
RBs C-1

Object References Have Session Lifetimes
Object References Have Session Lifetimes
The Aurora ORB creates object instances in database sessions. When a session
disappears, references to objects created in that session become invalid; attempts to
use them incur the “object does not exist” exception. A session disappears when the
last client connection to the session is closed or the session’s timeout value is
reached. An object in a session can set the session timeout value with
oracle.aurora.net.Presentation.sessionTimeout()
optionally providing a client interface to this method, which a client can call if it
wants an object to persist after client connections to the session are closed.

The life of a typical Oracle8 i CORBA object proceeds as follows:

■ A client looks up an object implementation’s name with JNDI specifying the
database where the implementation has been published.

■ The Oracle ORB responds by instantiating an object of the type, and returning a
reference to the client.

■ The client calls methods on the object, and may pass the reference to other
clients who may then call methods on the object.

■ The object ceases to exist when its session is destroyed.
C-2 Enterprise JavaBeans and CORBA Developer’s Guide

Implementation by Delegation is Different
The Database Server is the Implementation Mainline
An Oracle8 i server object implementation consists of a single class. Developers do
not write a mainline server because the database server is the mainline. If the
database is running, all implementations published in that database are available to
clients. The database server dynamically assigns MTS threads to implementations.
An implementation may multithread its own execution with Java threads.

Server Object Implementations are Deployed by Loading and Publishing
Loading an object implementation into a database with the loadjava tool makes
that implementation accessible to the ORB running in that database. Publishing an
loaded implementation’s name to a database’s session name space with the
publish tool makes the implementation accessible to clients by name. Every
CORBA object implementation must be loaded but only those whose names will be
looked up by clients need to be published.

Implementation by Inheritance is Nearly Identical
To implement the hypothetical interface Alpha in Oracle8 i, you write a class called
AlphaImpl which extends AlphaImplBase and defines the Java methods that
implement the IDL operations. You may also provide instance initialization code in
an _initializeAuroraObject() method which the Oracle ORB will call when
it creates a new instance.

Implementation by Delegation is Different
For an Oracle8 i implementation by delegation (tie), the class you write extends a
class you have defined and implements two Oracle-defined interfaces. The first
interface, whose name is the IDL interface name concatenated with Operations ,
defines the methods corresponding to the IDL operations. The second interface,
called ActivatableObject , defines a single method called
_initializeAuroraObject () . To implement this method, create and return an
instance. Here is a minimal example:

// IDL
module hello {

interface Hello {
wstring helloWorld ();

};
};
Comparing the Oracle8i JServer and VisiBroker™ VBJ ORBs C-3

Implementation by Delegation is Different
// Aurora tie implementation
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl implements HelloOperations, ActivatableObject
//, extends <YourClass>
{

public String helloWorld () {
return "Hello World!";

}

public org.omg.CORBA.Object _initializeAuroraObject () {
// create and initialize an instance and return it, for example ...
return new _tie_Hello (this);

}
}

C-4 Enterprise JavaBeans and CORBA Developer’s Guide

The Bank Example in Aurora and VBJ
Clients Look Up Object Names with JNDI
An Oracle8 i client can look up a published object by name with CORBA
COSNaming or with the simpler JNDI (Java Naming and Directory Interface) which
interacts with COSNaming in the client’s behalf.

A client creates an initial JNDI context for a particular database with a Java
constructor, for example:

Context ic = new InitialContext(env);

The env parameter specifies user name and password under which the client is
logging in. Because object implementations run in database servers, CORBA object
users (via their clients) must identify and authenticate themselves to the database as
they would for any database operation.

To obtain an instance of a published implementation, the client calls the JNDI
context’s lookup() method, passing a URL that names the target database and the
published name of the desired object implementation. The lookup() call returns a
reference to an instance in the target database. A client may pass the reference
(perhaps in stringified form) to other clients, and the reference will remain valid as
long as the session in which the associated object was created survives. Clients that
use copies of the same object reference share the object’s database session.

If a client executes lookup() twice in succession with the same parameters, the
second object reference is identical to the first, that is, it refers to the instance created
by the first lookup() call. However, if a client creates a second session and does
the second lookup() in that session, a different instance is created and its
reference returned.

No Interface or Implementation Repository
The current version of the Oracle8 i ORB does not include an interface repository or
an implementation repository.

The Bank Example in Aurora and VBJ
The following sections compare implementations of the bank example widely used
in VBJ documentation. Both client and server are shown as they would be
implemented in Oracle8 i and VBJ. All implementations use inheritance.
Comparing the Oracle8i JServer and VisiBroker™ VBJ ORBs C-5

The Bank Example in Aurora and VBJ
The Bank IDL Module

// Bank.idl

module Bank {
interface Account {

float balance();
};
interface AccountManager {

Account open(in string name);
};

};

Aurora Client

// Client.java

import bankServer.*;
import Bank.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

public static void main (String[] args) throws Exception {

String serviceURL = "sess_iiop://localhost:2222";
String objectName = "/test/myBank";
String username = "scott";
String password = "tiger";

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, username);
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
C-6 Enterprise JavaBeans and CORBA Developer’s Guide

The Bank Example in Aurora and VBJ
Context ic = new InitialContext(env);

AccountManager manager =
(AccountManager) ic.lookup(serviceURL + objectName);

// use args[0] as the account name, or a default.
String name = args.length == 1 ? args[0] : "Jack B. Quick";

// Request the account manager to open a named account.
Bank.Account account = manager.open(name);

// Get the balance of the account.
float balance = account.balance();

// Print out the balance.
System.out.println

("The balance in " + name + "‘s account is $" + balance);
}

}

VBJ Client
// Client.java

public class Client {

public static void main(String[] args) {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Locate an account manager.
Bank.AccountManager manager =

Bank.AccountManagerHelper.bind(orb, "BankManager");
// use args[0] as the account name, or a default.
String name = args.length > 0 ? args[0] : "Jack B. Quick";
// Request the account manager to open a named account.
Bank.Account account = manager.open(name);

// Get the balance of the account.
float balance = account.balance();
// Print out the balance.
System.out.println

("The balance in " + name + "‘s account is $" + balance);
}

Comparing the Oracle8i JServer and VisiBroker™ VBJ ORBs C-7

The Bank Example in Aurora and VBJ
}

Aurora Account Implementation

// AccountImpl.java
package bankServer;

public class AccountImpl extends Bank._AccountImplBase {
public AccountImpl(float balance) {

_balance = balance;
}
public float balance() {

return _balance;
}
private float _balance;

}

VBJ Account Implementation

// AccountImpl.java

public class AccountImpl extends Bank._AccountImplBase {
public AccountImpl(float balance) {

_balance = balance;
}
public float balance() {

return _balance;
}
private float _balance;

}

Aurora Account Manager Implementation

// AccountManagerImpl.java
package bankServer;
C-8 Enterprise JavaBeans and CORBA Developer’s Guide

The Bank Example in Aurora and VBJ
import java.util.*;

public class AccountManagerImpl extends Bank._AccountManagerImplBase {

public AccountManagerImpl() {
super();

}

public AccountManagerImpl(String name) {
super(name);

}

public synchronized Bank.Account open(String name) {
// Lookup the account in the account dictionary.
Bank.Account account = (Bank.Account) _accounts.get(name);
// If there was no account in the dictionary, create one.
if(account == null) {

// Make up the account’s balance, between 0 and 1000 dollars.
float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

// Create the account implementation, given the balance.
account = new AccountImpl(balance);

_orb().connect (account);

// Print out the new account.
// This just goes to the system trace file for Aurora.
System.out.println("Created " + name + "‘s account: " + account);

// Save the account in the account dictionary.
_accounts.put(name, account);

}
// Return the account.
return account;

}

private Dictionary _accounts = new Hashtable();
private Random _random = new Random();

}

Comparing the Oracle8i JServer and VisiBroker™ VBJ ORBs C-9

The Bank Example in Aurora and VBJ
VBJ Account Manager Implementation

// AccountManagerImpl.java

import java.util.*;

public class AccountManagerImpl extends Bank._AccountManagerImplBase {
public AccountManagerImpl(String name) {

super(name);
}
public synchronized Bank.Account open(String name) {

// Lookup the account in the account dictionary.
Bank.Account account = (Bank.Account) _accounts.get(name);
// If there was no account in the dictionary, create one.
if(account == null) {

// Make up the account’s balance, between 0 and 1000 dollars.
float balance = Math.abs(_random.nextInt()) % 100000 / 100f;
// Create the account implementation, given the balance.
account = new AccountImpl(balance);
// Make the object available to the ORB.
_boa().obj_is_ready(account);
// Print out the new account.
System.out.println("Created " + name + "‘s account: " + account);
// Save the account in the account dictionary.
_accounts.put(name, account);

}
// Return the account.
return account;

}
private Dictionary _accounts = new Hashtable();
private Random _random = new Random();

}

VBJ Server Mainline

// Server.java

public class Server {

public static void main(String[] args) {
C-10 Enterprise JavaBeans and CORBA Developer’s Guide

The Bank Example in Aurora and VBJ
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Initialize the BOA.
org.omg.CORBA.BOA boa = orb.BOA_init();
// Create the account manager object.
Bank.AccountManager manager =

new AccountManagerImpl("BankManager");
// Export the newly created object.
boa.obj_is_ready(manager);
System.out.println(manager + " is ready.");
// Wait for incoming requests
boa.impl_is_ready();

}

}

Comparing the Oracle8i JServer and VisiBroker™ VBJ ORBs C-11

The Bank Example in Aurora and VBJ
C-12 Enterprise JavaBeans and CORBA Developer’s Guide

Abbreviations and Acro
D

Abbreviations and Acronyms

This appendix lists some of the most common acronyms that you will find in the
areas of networks, distributed object development, and Java. In cases where an
acronym refers to a product or a concept that is associated with a specific group,
company or product, the group, company, or product is indicated in brackets
following the acronym expansion. For example: CORBA ... [OMG].

This acronym list is intended as a helpful guide only. There are no guarantees that it
is complete or even completely accurate.
nyms D-1

3GL third generation language

4GL fourth generation language

ACID atomicity, consistency, isolation, durability

ACL access control list

ADT abstract datatype

AFC application foundation classes [Microsoft]

ANSI American National Standards Institute

API application program interface

AQ advanced queuing [Oracle8]

ASCII American standard code for information interchange

AWT abstract windowing toolkit [Java]

BDK beans developer kit [Java]

BLOB binary large object

BOA basic object adapter [CORBA]

BSD Berkeley system distribution [UNIX]

C/S client/server

CGI common gateway interface

CICS customer information control system [IBM]

CLI call level interface [SAG]

CLOB character large object

COM common object model [Microsoft]

CORBA common object request broker architecture [OMG]

DB database

DBA database administrator, database administration

DBMS database management system

DCE distributed computing environment [OSF]

DCOM distributed common object model [Microsoft]

DDCF distributed document component facility
D-2 Enterprise JavaBeans and CORBA Developer’s Guide

DDE dynamic data exchange [Microsoft]

DDL data definition language [SQL]

DLL dynamic link library [Microsoft]

DLM distributed lock manager [Oracle8]

DML data manipulation language [SQL]

DOS disk operating system

DSOM distributed system object model [IBM]

DSS decision support system

DTP distributed transaction processing

EBCDIC extended binary-coded decimal interchange code [IBM]

EJB Enterprise JavaBean

ERP enterprise resource planning

ESIOP environment-specific inter-orb protocol

FTP file transfer protocol

GB gigabyte

GIF graphics interchange format

GIOP general inter-orb protocol

GUI graphical user interface

GUID globally-unique identifier

HTML hypertext markup language

HTTP hypertext transfer protocol

IDE integrated development environment, interactive
development environment

IDL interface definition language

IEEE Institute of Electrical and Electronics Engineers

IIOP internet inter-ORB protocol

IP internet protocol

IPC interprocess communication

IS information services
Abbreviations and Acronyms D-3

ISAM indexed sequential access method

ISO international standards organization (translation)

ISP internet service provider

ISQL interactive SQL [Interbase]

ISV independent software vendor

IT information technology

JAR Java archive (on analogy with tar, q.v.)

JCK Java compatibility kit [Sun]

JDBC "Java database connectivity"

JDK Java developer kit

JFC Java foundation classes

JIT just in time

JNDI Java naming and directory interface

JNI Java native interface

JOB Java Objects for Business [Sun]

JPEG joint photographic experts group

JSP Java server pages [Sun]

JTA Java transaction API

JTS Java transaction service

KB kilobyte

LAN local area network

LDAP lightweight directory access protocol

LDIF LDPA data interchange format

LOB large object

MB megabyte

MIS management information services

MOM message-oriented middleware

MPEG motion picture experts group

NCLOB national character large object
D-4 Enterprise JavaBeans and CORBA Developer’s Guide

NIC network information center [internet]

NNTP net news transfer protocol

NSP network service provider

NT New Technology [Microsoft]

OCI Oracle call interface

OCX OLE common control [Microsoft]

ODBC open database connectivity [Microsoft]

ODBMS object database management system

ODL object definition language [Microsoft]

ODMG Object Database Management Group

OEM original equipment manufacturer

OID object identifier

OLE object linking and embedding

OLTP on line transaction processing

OMA object management architecture [OMG]

OMG Object Management Group

OO object-oriented, object orientation

OODBMS object-oriented database management system

OQL object query language

ORB object request broker

ORDBMS object relational database management system

OS operating system

OSF Open System Foundation

OSI open systems interconnect

OSQL object SQL

OTM object transaction monitor

OTS object transaction service

OWS Oracle Web Server

PB petabyte
Abbreviations and Acronyms D-5

PDF portable document format [Adobe]

PGP pretty good privacy

PL/SQL procedural language/SQL [Oracle]

POA portable object adapter [CORBA]

RAM random access memory

RAS remote access service [Microsoft NT]

RCS revision control system

RDBMS relational database management system

RFC request for comments

RFP request for proposal

RMI remote method invocation [Sun]

ROM read only memory

RPC remote procedure call

RTF rich text file

SAG SQL Access Group

SCSI small computer system interface

SDK software developer kit

SET secure electronic transaction

SGML standard generalized markup language

SID system identifier [Oracle]

SLAPD standalone LDAP daemon

SMP symmetric multiprocessing

SMTP simple mail transfer protocol

SPI service provider interface

SQL structured query language

SQLJ SQL for Java

SRAM static (or synchronous) random access memory

SSL secure socket layer

TB terabyte
D-6 Enterprise JavaBeans and CORBA Developer’s Guide

TCPS TCP for SSL

TCP/IP transmission control protocol/internet protocol

TP transaction processing

TPC Transaction Processing Council

TPCW TPC Web benchmark

TPF transaction processing facility

TPM transaction processing monitor

UCS universal character set [ISO 10646]

UDP user Titograd protocol

UI user interface

UML unified modeling language [Rational]

URL universal resource locator

VAR value-added reseller

VRML virtual reality modeling language

WAN wide area network

WIPS web interactions per second [TPCW]

WWW world wide web

XA extended architecture [X/Open]

XML extended markup language

jdb Java debugger [Sun]

tar tape archive, tape archiver [UNIX]

tps transactions per second
Abbreviations and Acronyms D-7

D-8 Enterprise JavaBeans and CORBA Developer’s Guide

Index

A
ACID properties, 5-2
acronyms, 1-13, D-1
addclasspath

deployejb option, 6-38
addclasspath deployejb option, 6-39
afterBegin()

session synchonization interface, 5-16
afterCompletion()

session synchonization interface method, 5-17
andresolve loadjava option, 6-3, 6-8
AuroraTransactionService

initialize() method, 5-5

B
basic object adapter, 4-2
beanonly

deployejb option, 6-38
beforeCompletion()

session synchonization interface method, 5-16
begin()

Java Transaction Service method, 5-7, 5-10
UserTransaction package method, 5-18

BOA. See basic object adapter

C
Caffeine tools, 1-11
callbacks, 3-31
cd sess_sh command, 6-24
chmod sess_sh command, 6-25
chown sess_sh command, 6-26

class, 6-1
collections

in IDL, 3-13
command-line tools, 1-10
commit()

Java Transaction Service method, 5-8
UserTransaction package method, 5-18

compiler error messages, 6-5
compiler options, 6-5
compiling source schema objects, 6-5
Context

Java Naming and Directory Interface
object, 2-18, 4-6

CORBA
callbacks, 3-31
debugging techniques, 3-35
locating server objects, 3-25
overview of, 1-6
skeletons, 3-18
stubs, 3-18
system exceptions, 3-16
tie mechanism, 3-33
web sites for documentation, 3-36

CosNaming, 3-25, 4-35
CosNaming service, 4-2

D
debug loadjava option, 6-9
definer loadjava option, 6-9, 6-10, 6-12
deployejb, 6-36
deployment descriptor, 6-37, 6-39
describe

deployejb option, 6-38
Index-1

publish option, 6-20
remove option, 6-22
sess_sh option, 6-24

descriptor deployejb option, 6-37
digest table

and dropjava, 6-5
and loadjava, 6-4

dropjava, 6-15
dump ejbdescriptor option, 6-40

E
EJB. See Enterprise JavaBeans.
ejbActivate(), 2-15
ejbdescriptor, 6-36
ejbdescriptor tool, 6-39
ejbPassivate(), 2-15
ejbRemove(), 2-15
encoding

compiler option, 6-6
loadjava option, 6-9

Enterprise JavaBeans
application developer role in, 2-3
architecture of, 2-7
basic concepts, 2-8
container vendor role in, 2-3
deployer role in, 2-2
deployment descriptor, 1-4, 2-6, 2-16, 5-12
deployment descriptor file, 2-2
described, 1-3
developer role in, 2-2
entity bean, 2-4
home interface, 2-6, 2-10
parameter passing, 2-12
programming restrictions, 2-32
programming techniques, 2-29
remote interface, 2-6, 2-10
saving a bean handle, 2-31
security in, 2-2
server vendor role in, 2-3
session bean, 2-4
setting session timeout, 2-30
transaction examples, 5-20
transaction management for, 5-12
white papers, 2-33

example code, 1-12
CORBA, A-1
EJB, B-1

exceptions
in IDL, 3-15

executable, 6-23
exit sess_sh command, 6-26

F
file names

dropjava, 6-16
loadjava, 6-10

force loadjava option, 6-9

G
generated

deployejb option, 6-38
get_compiler_option() function, 6-6
get_status()

Java Transaction Service method, 5-9
get_transaction_name()

Java Transaction Service method, 5-9
getCurrent(), 5-10
getStatus()

UserTransaction package method, 5-18
getTS(), 5-10

Java Transaction Service method, 5-6
grant

loadjava option, 6-8, 6-9
grant loadjava option, 6-9

H
help

deployejb option, 6-38
publish option, 6-20
remove option, 6-22
sess_sh option, 6-24

help sess_sh command, 6-27

I
IDL. See Interface Description Language
Index-2

idl2java, 3-18
idl2java tool, 6-40
IIOP, 1-4, 1-9, 2-3, 4-4

profile, 4-10
iiop

deployejb option, 6-38
publish option, 6-20
remove option, 6-22
sess_sh option, 6-24

infile ejbdescriptor option, 6-40
InitialContext

Java Naming and Directory Interface
constructor, 4-9

initialize()
method of AuroraTransactionService, 5-5

INITSID.ORA, 4-11
Inprise, 3-36
Interface Description Language, 1-6
Internet Inter-ORB Protocol. See IIOP

J
Java Developer’s Guide, 1-2
Java Naming and Directory Interface, 2-18

Context object, 4-6
initial context, 4-2
InitialContext constructor, 4-9
looking up published objects using, 4-6
lookup() method, 3-27, 4-9
web site URL, 4-37

java sess_sh command, 6-27
Java Transaction Service, 5-1

begin() method, 5-7, 5-10
commit() method, 5-8
get_status() method, 5-9
get_transaction_name(), 5-9
resume() method, 5-8
rollback() method, 5-8
rollback_only() method, 5-9
suspend() method, 5-7

JAVA$OPTIONS table, 6-5
java2idl, 1-11, 3-16
java2idl tool, 6-40
java2iiop, 3-16
java2iiop tool, 6-40, 6-41

java2rmi_iiop, 1-11
java2rmi_iiop tool, 6-41
JDBC

not used with transaction interfaces, 5-17
JNDI. See Java Naming and Directory Interface
JTS. See Java Transaction Service
JTS.See Java Transaction Service

K
keep

deployejb option, 6-38

L
lcd sess_sh command, 6-29
lIOP

configuration for, 4-11
listener, 4-12
lls sess_sh command, 6-29
ln sess_sh command, 6-30
loadjava, 3-22
loadjava tool, 6-1 to 6-2
Login object, 4-31
lookup()

Java Naming and Directory Interface
method, 3-27, 4-9

lpwd sess_sh command, 6-31
ls sess_sh command, 6-31

M
mkdir sess_sh command, 6-32
modifyprops tool, 6-42
mv sess_sh command, 6-33

N
name space, 3-25
no_comments java2rmi_iiop option, 6-42
no_examples java2rmi_iiop option, 6-42
no_tie java2rmi_iiop option, 6-42
nobind java2rmi_iiop option, 6-42
NON_SSL_LOGIN, 2-19, 4-2, 4-8
Index-3

O
object activation, 3-28
Object Transaction Service, 5-2
oci8

dropjava option, 6-15
loadjava option, 6-9
modifyprops option, 6-43

OLTP. See Online Transaction Processing
online compiler option, 6-6
Online Transaction Processing, 2-6
oracle.aurora.jts.util

package, 5-6
oracleresolver loadjava option, 6-9
OTS. See Object Transaction Service
outfile ejbdescriptor option, 6-40

P
parameter passing

by value, 3-13
parse ejbdescriptor option, 6-40
password

deployejb option, 6-37
publish option, 6-20
remove option, 6-22
sess_sh option, 6-24

presentation layer, 4-4
presentations, 4-4
publish, 3-23, 6-17, 6-19
publish sess_sh command, 6-33
published object

permissions, 4-30
PublishedObject, 6-17
PublishedObject attributes, 6-18
PublishingContext, 6-17
pwd sess_sh command, 6-35

R
recurse remove option, 6-22
remote object access, 2-2
remove, 6-21
republish

deployejb option, 6-38
publish option, 6-20

reset_compiler_option() procedure, 6-6
resolve loadjava option, 6-3, 6-10, 6-12
resolver, 6-3

loadjava option, 6-10, 6-13
spec, 6-2

resource, 6-1
resume()

Java Transaction Service method, 5-8
UserTransaction package method, 5-18

rm sess_sh command, 6-35
RMI, 6-41
role

deployejb option, 6-38
publish option, 6-20
remove option, 6-22
sess_sh option, 6-24

rollback()
Java Transaction Service method, 5-8
UserTransaction package method, 5-18

rollback_only()
Java Transaction Service method, 5-9

root_dir java2rmi_iiop option, 6-42

S
schema

dropjava option, 6-16
loadjava option, 6-10
publish option, 6-20

schema object, 6-1
Secure Socket Layer, 1-4

protocol version numbers, 4-32
server-side use of, 4-34

SECURITY_AUTHENTICATION, 2-19, 4-8
SECURITY_CREDENTIALS, 2-19, 4-7
SECURITY_PRINCIPAL, 2-19, 4-7
SECURITY_ROLE, 4-8
service

deployejb option, 6-37
publish option, 6-20
remove option, 6-22
sess_sh option, 6-24

service name, 3-27, 4-13
services, 4-4
sess_sh tool, 6-23
Index-4

session bean
stateless, 2-5

session namespace, 6-17, 6-23
default PublishingContexts, 6-18
rights, 6-18, 6-25

session routing, 4-11
session synchonization interface

afterBegin() method, 5-16
afterCompletion() method, 5-17
beforeCompletion() method, 5-16

Session synchronization, 5-16
session timeout, 2-30
set_compiler_option() procedure, 6-6
setRollbackOnly()

UserTransaction package method, 5-19
setSessionContext(), 2-16
setTransactionTimeout()

UserTransaction package method, 5-19
SID. See system identifier
source, 6-1
SQLJ

using with CORBA, 3-29
using with EJBs, 2-29

ssl
deployejb option, 6-38
publish option, 6-20
remove option, 6-22
sess_sh option, 6-24

SSL. See Secure Socket Layer
SSL_CREDENTIAL, 2-19, 4-8
SSL_LOGIN, 2-19, 4-8
SSL_VERSION, 2-19
suspend()

Java Transaction Service method, 5-7
synonym loadjava option, 6-10
system exceptions

CORBA, 3-16
system identifier, 4-13

T
TCP/IP, 4-4
temp

deployejb option, 6-38
thin

dropjava option, 6-16
loadjava option, 6-10
modifyprops option, 6-43

TIE, 3-33
tools, 1-10
trace files, 3-35
transaction context, 5-4
transaction demarcation, 5-3
transactions

declarative, 5-12
limitations on, 5-2
server-side, 5-11
support for in Enterprise JavaBeans, 2-2

TransactionService class, 5-5
TTC, 4-4
two-task common, 4-4
TX_BEAN_MANAGED, 5-14
TX_MANDATORY, 5-14
TX_NOT_SUPPORTED, 5-12
TX_REQUIRED, 5-13
TX_REQUIRES_NEW, 5-12, 5-13
TX_SUPPORTS, 5-13

U
URL

syntax for, 4-13
URL_PKG_PREFIXES, 4-7
user

deployejb option, 6-37
dropjava option, 6-15, 6-16
loadjava option, 6-10, 6-14
modifyprops option, 6-43
publish option, 6-19
remove option, 6-22
sess_sh option, 6-23

UserTransaction, 5-4
UserTransaction interface, 5-2
UserTransaction package, 5-17

begin() method, 5-18
commit() method, 5-18
getStatus() method, 5-18
resume() method, 5-18
setRollbackOnly() method, 5-19
setTransactionTimeout() method, 5-19
Index-5

V
valid and invalid class schema objects, 6-3
verbose

deployejb option, 6-38
dropjava option, 6-16
java2rmi_iiop option, 6-42

version
deployejb option, 6-38
java2rmi_iiop option, 6-42
publish option, 6-21
remove option, 6-22
sess_sh option, 6-24

VisiBroker for Java, 3-36, C-1
VisiBroker for Java Tools, 6-40

W
W java2rmi_iiop option, 6-42
web sites

CORBA, 3-36
for EJB documentation, 2-33
Java Naming and Directory Interface

documentation, 4-37
wide java2rmi_iiop option, 6-42
Index-6

	PDF Directory
	Send Us Your Comments
	Preface
	1 Overview
	Prerequisite Reading
	About Enterprise JavaBeans
	Stateful and Stateless Session Beans
	Deployment Descriptor

	About CORBA
	Common Features
	IIOP

	Tools
	Caffeine
	Example Code
	Words About Acronyms

	2 Enterprise JavaBeans
	Defining Enterprise JavaBeans
	EJB Development Roles
	EJBs as Distributed Components

	What is an Enterprise JavaBean?
	Kinds of EJBs
	Persistence
	EJB Support in Oracle8i

	Session Beans
	Stateful Session Beans
	Stateless Session Beans

	Implementing an EJB
	The EJB Architecture
	Basic Concepts
	The Home Interface
	The Remote Interface
	Accessing the Bean Methods

	Parameter Passing
	A First EJB Application
	The Interfaces
	Home Interface
	Remote Interface

	The Bean Implementation
	A Parameter Object
	The Deployment Descriptor
	The Client Code
	Locating Remote Objects
	About JNDI
	Getting the Initial Context
	Getting the Home Interface Object
	Invoking EJB Methods

	Deploying an EJB
	Write the Deployment Descriptor
	Text Format

	Create a JAR File
	Publish the Home Interface
	Dropping an EJB
	Handling Transactions
	TransactionAttribute
	Access Control
	Transaction Isolation Level
	Session Synchronization
	Deployment Steps

	Programming Techniques
	Using SQLJ
	Setting a Session Timeout
	Saving an EJB Handle
	EJB as Client

	Programming Restrictions
	For More Information
	EJBs

	3 Developing CORBA Applications
	Terminology
	client
	marshalling
	object adapter
	request
	server object
	session

	About CORBA
	CORBA Features
	About the ORB
	The Interface Description Language (IDL)
	Using IDL
	Nested Modules
	Running the IDL Compiler
	IDL Interface Body

	IDL Types
	Basic Types
	Constructed Types
	Collections

	Exceptions
	CORBA System Exceptions

	Getting by Without IDL

	A First CORBA Application
	Writing the IDL Code
	Generate Stubs and Skeletons
	Write the Server Object Implementation
	Write the Client Code
	Compiling the Java Source
	Load the Classes into the Database
	Publish the Object Name
	Run the Example

	Locating Objects
	The Name Space
	Looking Up an Object
	Service Name
	Object name

	Activating ORBs and Server Objects
	Client Side
	Server Side
	About Object Activation

	Using SQLJ
	Running the SQLJ Translator
	A Complete SQLJ Example

	CORBA Callbacks
	IDL
	Client Code
	Callback Server Implementation
	Callback Client-Server Implementation
	Printback Example

	Using the CORBA Tie Mechanism
	Debugging Techniques
	For More Information
	Books
	URLs

	4 Connections and Security
	Connection Basics
	Services
	About JNDI
	The JNDI Context Interface

	Connecting Using JNDI
	URL_PKG_PREFIXES
	SECURITY_PRINCIPAL
	SECURITY_CREDENTIALS
	SECURITY_ROLE
	SECURITY_AUTHENTICATION
	Context Methods
	The JNDI InitialContext Class
	Constructor
	Method

	Services and Sessions
	About the Session IIOP Protocol
	Client Requirements
	Session Routing

	Configuration for IIOP
	Database Listeners and Dispatchers
	URL Syntax
	URL Components and Classes
	The Service Context Class
	Variables
	Methods

	The Session Context Class
	Methods

	Session Management
	Starting a New Session
	Using thisServer

	Starting a Named Session From a Client
	Example: Activating Services and Sessions
	Lister.java

	Starting a New Session From a Server Object
	Controlling Session Duration
	Ending a Session

	Authentication
	Basic Client Authentication Techniques
	The Login Protocol
	Establishing the Login Protocol

	Credentials

	Access Rights to Database Objects
	Published Objects
	Other Server Objects
	Reauthentication

	Using the Secure Socket Layer
	SSL Protocol Version Numbers
	Using SSL on the Client Side
	Determining SSL Certificate Information
	Using SSL on the Server Side

	Non-JNDI Clients
	For More Information

	5 Transaction Handling
	Transaction Overview
	Limitations
	No Distributed Transactions
	Resources
	Nested Transactions
	Timeouts
	Interoperability

	Transaction Demarcation
	Transaction Context

	Transaction Service Interfaces
	TransactionService
	Using The Java Transaction Service
	Java Transaction Service Methods
	Current Transaction Methods

	CORBA Examples
	Client-Side Demarcation
	Server-Side JTS
	Transactions in Multiple Sessions

	Transaction Management for EJBs
	Declarative Transactions
	TX_NOT_SUPPORTED
	TX_REQUIRED
	TX_SUPPORTS
	TX_REQUIRES_NEW
	TX_MANDATORY
	TX_BEAN_MANAGED

	session Synchronization
	afterBegin
	beforeCompletion
	afterCompletion

	JDBC
	AuroraUserTransaction
	Methods

	Session Synchronization
	afterBegin
	beforeCompletion
	afterCompletion

	EJB Transaction Examples
	Client-Side Demarcated
	Transaction Management in an EJB
	Getting the Session Context
	Beginning a Transaction
	Committing a Transaction
	Other UserTransaction Methods

	JDBC
	For More Information

	6 Tools
	Schema Object Tools
	What and When to Load
	Resolution
	Digest Table
	Compilation
	loadjava
	Syntax
	Argument Summary
	Argument Details

	dropjava
	Syntax
	Argument Summary
	Argument Details

	Session Namespace Tools
	publish
	Syntax
	Argument Summary

	remove
	Syntax
	Argument Summary

	sess_sh
	Syntax
	Argument Summary
	cd Command
	chmod Command
	chown Command
	exit Command
	help Command
	java Command
	lcd Command
	lls Command
	ln Command
	lpwd Command
	ls Command
	mkdir Command
	mv Command
	publish Command
	pwd Command
	rm Command
	version Command

	Enterprise JavaBean Tools
	deployejb
	Syntax
	Argument Summary
	Argument Details

	ejbdescriptor
	Syntax
	Argument Summary

	VisiBroker™ for Java Tools
	Miscellaneous Tools
	java2rmi_iiop
	Syntax
	Argument Summary
	Example

	modifyprops
	Syntax
	Argument Summary
	Argument Details

	A Example Code: CORBA
	Basic Examples
	helloworld
	readme.txt
	hello.idl
	Client.java
	helloServer/HelloImpl.java

	sqljimpl
	readme.txt
	employee.idl
	Client.java
	employeeServer/employeeImpl.sqlj

	jdbcimpl
	readme.txt
	employee.idl
	Client.java
	employeeServer/EmployeeImpl.java

	factory
	readme.txt
	factory.idl
	Client.java
	factoryServer/HelloImpl.java
	factoryServer/HelloFactoryImpl.java

	lookup
	readme.txt
	employee.idl
	Client.java
	employeeServer/DepartmentImpl.sqlj
	employeeServer/EmployeeImpl.sqlj

	callback
	readme.txt
	client.idl
	Client.java
	server.idl
	clientServer/ClientImpl.java
	serverServer/ServerImpl.java

	printback
	readme.txt
	printer.idl
	hello.idl
	Client.java
	printerClient/RemoteOutputStream.java
	helloServer/HelloImpl.java
	printerServer/ByteStreamImpl.java

	tieimpl
	readme.txt
	hello.idl
	Client.java
	helloServer/HelloImpl.java

	bank
	readme.txt
	Bank.idl
	Client.java
	bankServer/AccountImpl.java
	bankServer/AccountManagerImpl.java
	bankServer/AccountManagerImplTie.java

	pureCorba
	Bank.idl
	Client.java
	VisiAurora.java
	bankServer/AccountImpl.java
	bankServer/AccountManagerImpl.java

	Session Examples
	explicit
	readme.txt
	hello.idl
	Client.java
	helloServer/HelloImpl.java

	clientserverserver
	readme.txt
	hello.idl
	Client.java
	helloServer/HelloImpl.java

	timeout
	readme.txt
	hello.idl
	Client1.java
	Client2.java
	helloServer/HelloImpl.java

	sharedsession
	readme.txt
	hello.idl
	Client1.java
	Client2.java
	helloServer/HelloImpl.java

	twosessions
	readme.txt
	hello.idl
	Client.java
	helloServer/HelloImpl.java

	twosessionsbyname
	readme.txt
	hello.idl
	Client.java
	helloServer/HelloImpl.java

	Transaction Examples
	clientside
	readme.txt
	employee.idl
	Client.java
	employeeServer/EmployeeImpl.sqlj

	serversideJDBC
	readme.txt
	employee.idl
	Client.java
	employeeServer/EmployeeImpl.sqlj

	serversideJTS
	readme.txt
	employee.idl
	Client.java
	employeeServer/EmployeeImpl.sqlj

	serversideLogging
	readme.txt
	employee.idl
	Client.java
	log.sql
	employeeServer/EmployeeImpl.sqlj

	multiSessions
	readme.txt
	employee.idl
	Client.java
	ClientThread.java
	employeeServer/EmployeeImpl.sqlj

	RMI Examples
	helloworld
	readme.txt
	Client.java
	hello/Hello.java
	helloServer/HelloImpl.java

	callouts
	Client.java
	HelloRMIClient.java
	HelloRMIServer.java
	hello/Hello.java
	helloServer/HelloImpl.java
	helloServer/HelloRMIImpl.java

	callback
	readme.txt
	Client.java
	client/Client.java
	clientServer/ClientImpl.java
	server/Server.java
	serverServer/ServerImpl.java

	Applet Examples
	innetscape
	hello.idl
	ClientApplet.htm
	ClientApplet.java
	helloServer/HelloImpl.java

	inappletviewer
	hello.idl
	Clientapplet.htm
	ClientApplet.java
	helloServer/HelloImpl.java

	JNDI Example
	lister
	readme.txt
	Lister.java

	B Example Code: EJB
	Basic Examples
	helloworld
	readme.txt
	hello.ejb
	Client.java
	helloServer/HelloBean.java
	hello/Hello.java
	hello/HelloHome.java

	saveHandle
	readme.txt
	saveHandle.ejb
	Client1.java
	Client2.java
	save/saveHandle.java
	save/saveHandleHome.java
	save/EmpRecord.java
	save/saveHandle.java
	saveHandleServer/saveHandleBean.sqlj

	sqljimpl
	readme.txt
	employee.ejb
	Client.java
	employee/Employee.java
	employee/EmployeeHome.java
	employee/EmpRecord.java
	employeeServer/EmployeeBean.sqlj

	jdbcimpl
	readme.txt
	employee.ejb
	Client.java
	employee/Employee.java
	employee/Employeehome.java
	employee/EmpRecord.java
	employeeServer/EmployeeBean.java

	callback
	readme.txt
	client.java
	server.ejb
	client/Client.java
	clientServer/ClientImpl.java
	server/Server.java
	server/ServerHome.java
	serverServer/ServerBean.java

	beanInheritance
	readme.txt
	client.java
	foo.ejb
	bar.ejb
	inheritance/Foo.java
	inheritance/FooHome.java
	inheritance/Bar.java
	inheritance/BarHome.java
	inheritanceServer/FooBean.java
	inheritanceServer/BarBean.java

	Transaction Examples
	clientside
	Client.java
	employee/EmployeeInfo.java
	employee/Employee.java
	employee/EmployeeHome.java
	employeeServer/EmployeeBean.sqlj

	multiSessions
	employee.ejb
	Client.java
	ClientThread.java
	employee/Employee.java
	employee/EmployeeHome.java
	employee/EmployeeInfo.java
	employeeServer/EmployeeBean.sqlj

	serversideJTS
	Client.java
	employee.ejb
	employee/Employee.java
	employee/EmployeeHome.java
	employee/EmployeeInfo.java
	employeeServer/EmployeeBean.sqlj

	serversideLogging
	client.java
	employee.ejb
	log.sql
	employee/Employee.java
	employee/EmployeeHome.java
	employee/EmployeeInfo.java
	employeeServer/EmployeeBean.sqlj
	loggingServer/Logging.java
	loggingServer/LoggingBean.sqlj
	loggingServer/LoggingHome.Java
	loggingServer/LogBean.ejb

	Session Examples
	timeout
	readme.txt
	hello.ejb
	client1.java
	client2.java
	hello/Hello.java
	hello/HelloHome.java
	helloServer/HelloBean.java

	clientserverserver
	readme.txt
	client.java
	hello.ejb
	hello/Hello.java
	hello/HelloHome.java
	helloServer/HelloBean.java

	C Comparing the Oracle8i JServer and VisiBroker™ VBJ ORBs
	Object References Have Session Lifetimes
	The Database Server is the Implementation Mainline
	Server Object Implementations are Deployed by Loading and Publishing
	Implementation by Inheritance is Nearly Identical
	Implementation by Delegation is Different
	Clients Look Up Object Names with JNDI
	No Interface or Implementation Repository
	The Bank Example in Aurora and VBJ
	The Bank IDL Module
	Aurora Client
	VBJ Client
	Aurora Account Implementation
	VBJ Account Implementation
	Aurora Account Manager Implementation
	VBJ Account Manager Implementation
	VBJ Server Mainline

	D Abbreviations and Acronyms
	Index

