
Oracle8 i Spatial

User’s Guide and Reference

Release 8.1.5

February 1999

Part No. A67295-01

Oracle8i Spatial User’s Guide and Reference

Part No. A67295-01

Release 8.1.5

Copyright © 1999, Oracle Corporation. All rights reserved.

Primary Author: Jeff Hebert

Contributing Author: Anna Logan

Contributors: Frank Wang, Siva Ravada, Ran Wei, Jayant Sharma, and Dan Geringer

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee's responsibility to take all appropriate
fail-safe, back up, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by such
use of the Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright, patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. No part of this document may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Oracle Corporation

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject
to the Federal Acquisition Regulations are "restricted computer software" and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Loader, SQL*Net, and SQL*Plus are registered trademarks, and Oracle7 and Oracle8i are
trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments .. xv

Preface ... xvii

1 Spatial Concepts

1.1 What Is the Spatial Product?.. 1-1
1.2 Introduction to Spatial Data... 1-2
1.3 Geometric Types for Relational and Object-Relational Models 1-3
1.4 Data Model ... 1-4
1.4.1 Element .. 1-5
1.4.2 Geometry ... 1-5
1.4.3 Layer... 1-6
1.5 Query Model .. 1-6
1.6 Indexing Methods ... 1-7
1.6.1 Tessellation of a Layer During Indexing .. 1-9
1.6.2 Fixed Indexing .. 1-9
1.6.3 Hybrid Indexing... 1-14
1.7 Spatial Relations and Filtering .. 1-17
1.8 Partitioned Point Data .. 1-20

Part I Object-Relational Model

2 The Object-Relational Schema

2.1 Object-Relational Data Structures... 2-1
2.2 Geometry Examples Using the Object-Relational Model.. 2-6
 iii

2.3 Geometry Metadata Structure ... 2-9
2.4 Spatial Index-Related Structure... 2-11
2.4.1 Spatial Index Tables ... 2-11
2.4.2 Spatial Index Data Dictionary View .. 2-12
2.5 Usage Notes.. 2-13

3 Loading and Indexing Spatial Object Types

3.1 Load Process... 3-1
3.1.1 Bulk Loading... 3-1
3.1.1.1 Bulk Loading the SDO_GEOMETRY Object... 3-2
3.1.1.2 Bulk Loading Point-Only Data in the SDO_GEOMETRY Object 3-3
3.1.2 Transactional Insert Using SQL.. 3-3
3.1.2.1 Polygon with Hole .. 3-4
3.1.2.2 Compound Line String... 3-5
3.1.2.3 Compound Polygon.. 3-6
3.1.2.4 Compound Polygon with Holes ... 3-7
3.1.2.5 Transactional Insert of Point-Only Data .. 3-9
3.2 Index Creation.. 3-9
3.2.1 Determining Index Creation Behavior .. 3-10
3.2.2 Spatial Indexing with Fixed-Size Tiles .. 3-10
3.2.3 Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles 3-13

4 Querying Spatial Data

4.1 Query Model .. 4-1
4.2 Spatial Query.. 4-1
4.2.1 Primary Filter .. 4-4
4.2.2 Primary and Secondary Filter... 4-5
4.2.3 Within Distance Operator ... 4-7
4.3 Spatial Join .. 4-8

5 Indexing Statements for Object Relational Model

ALTER INDEX ... 5-2

ALTER INDEX REBUILD... 5-5

ALTER INDEX RENAME TO.. 5-8
iv

CREATE INDEX .. 5-9

DROP INDEX... 5-13

6 Tuning Functions and Procedures for Object-Relational Model

SDO_TUNE.AVERAGE_MBR... 6-2

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE ... 6-3

SDO_TUNE.ESTIMATE_TILING_LEVEL .. 6-5

SDO_TUNE.ESTIMATE_TILING_TIME ... 6-7

SDO_TUNE.EXTENT_OF .. 6-8

SDO_TUNE.HISTOGRAM_ANALYSIS .. 6-9

SDO_TUNE.MIX_INFO ... 6-11

7 Geometry Functions for Object-Relational Model

SDO_GEOM.AREA... 7-2

SDO_GEOM.LENGTH ... 7-3

SDO_GEOM.RELATE... 7-4

SDO_GEOM.SDO_BUFFER... 7-6

SDO_GEOM.SDO_POLY_DIFFERENCE .. 7-7

SDO_GEOM.SDO_POLY_INTERSECTION ... 7-8

SDO_GEOM.SDO_POLY_UNION... 7-9

SDO_GEOM.SDO_POLY_XOR... 7-10

SDO_GEOM.VALIDATE_GEOMETRY... 7-11

SDO_GEOM.VALIDATE_LAYER.. 7-13

SDO_GEOM.WITHIN_DISTANCE.. 7-15

8 Migration Procedures

SDO_MIGRATE.TO_734 .. 8-2

SDO_MIGRATE.TO_81X ... 8-3

SDO_MIGRATE.OGIS_METADATA_FROM... 8-5

SDO_MIGRATE.OGIS_METADATA_TO... 8-6
v

9 Spatial Operators

SDO_FILTER .. 9-2

SDO_RELATE .. 9-4

SDO_WITHIN_DISTANCE ... 9-7

Part II Relational Model

10 The Relational Schema

10.1 Database Structures for the Relational Implementation.. 10-1

11 Loading Spatial Data

11.1 Load Model... 11-1
11.2 Load Process... 11-2
11.2.1 Bulk Loading... 11-2
11.2.2 Transactional Insert Using SQL.. 11-4
11.3 Index Creation.. 11-6
11.3.1 Choosing a Tessellation Algorithm ... 11-6
11.3.2 Spatial Indexing with Fixed-Size Tiles .. 11-7
11.3.3 Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles 11-10

12 Querying Spatial Data

12.1 Query Model .. 12-1
12.2 Spatial Index Data Structures .. 12-1
12.3 Spatial Query.. 12-4
12.3.1 Dynamic Query Window .. 12-5
12.3.2 Primary Filter Query.. 12-6
12.3.3 Secondary Filter Query... 12-7
12.4 Spatial Join .. 12-8

13 Administrative Functions and Procedures

SDO_ADMIN.POPULATE_INDEX.. 13-3

SDO_ADMIN.POPULATE_INDEX_FIXED.. 13-5

SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS ... 13-8
vi

SDO_ADMIN.SDO_CODE_SIZE ... 13-10

SDO_ADMIN.SDO_VERSION.. 13-11

SDO_ADMIN.UPDATE_INDEX .. 13-12

SDO_ADMIN.UPDATE_INDEX_FIXED... 13-14

SDO_ADMIN.VERIFY_LAYER .. 13-16

14 Tuning Functions and Procedures

SDO_TUNE.AVERAGE_MBR... 14-2

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE ... 14-3

SDO_TUNE.ESTIMATE_TILING_LEVEL .. 14-5

SDO_TUNE.ESTIMATE_TILING_TIME ... 14-8

SDO_TUNE.EXTENT_OF .. 14-9

SDO_TUNE.HISTOGRAM_ANALYSIS .. 14-10

SDO_TUNE.MIX_INFO ... 14-12

15 Geometry Functions and Procedures

SDO_GEOM.RELATE... 15-2

SDO_GEOM.VALIDATE_GEOM... 15-5

SDO_GEOM.VALIDATE_LAYER.. 15-7

16 Window Functions and Procedures

SDO_WINDOW.BUILD_WINDOW .. 16-2

SDO_WINDOW.BUILD_WINDOW_FIXED... 16-4

SDO_WINDOW.CLEAN_WINDOW... 16-6

SDO_WINDOW.CLEANUP_GID .. 16-7

SDO_WINDOW.CREATE_WINDOW_LAYER ... 16-8

A Tuning Tips and Sample SQL Scripts

A.1 Selecting a Spatial Model ... A-1
A.1.1 Benefits of the Object-Relational Model.. A-1
A.1.2 Benefits of the Relational Model .. A-1
vii

A.2 Tuning Tips .. A-2
A.2.1 Data Modeling .. A-2
A.2.2 Understanding the Tiling Level ... A-2
A.2.3 Database Sizing... A-3
A.2.4 Visualizing the Spatial Index (Drawing Tiles) ... A-4
A.2.4.1 Drawing Tiles from the Object-Relational Model .. A-5
A.2.4.2 Drawing Tiles from the Relational Model ... A-6
A.2.5 Performing Secondary Filter Queries and the Redo Log.. A-8
A.2.6 Tuning Point Data with the Relational Model ... A-8
A.2.6.1 Efficient Queries for Relational Point Data ... A-8
A.2.6.2 Efficient Schema for Relational Point Layers .. A-9
A.2.6.3 Script for Using Table Partitioning with Relational Point Data A-10
A.2.7 Tuning Spatial Join Queries Using the Relational Model...................................... A-10
A.2.7.1 Using the NO_MERGE, INDEX, and USE_NL Hints..................................... A-10
A.2.7.2 Spatial Join Queries with Point Layers ... A-11
A.2.8 Using Customized Geometry Types in the Relational Model A-13
A.2.9 Partitioning Spatial Data Using the Relational Model... A-13
A.2.10 Parallel Loading and Indexing of Spatial Data Using the Relational Model...... A-14
A.3 Scripts for Spatial Indexing Using the Relational Model.. A-15
A.3.1 cr_spatial_index.sql Script ... A-15
A.3.2 crlayer.sql Script .. A-16
A.4 Tools and Related Products .. A-16
A.4.1 Oracle8i interMedia Locator.. A-16
A.4.1.1 Geocoding Support .. A-16
A.4.1.2 Compatibility with Spatial Objects.. A-17
A.4.1.3 Sample Locator Code.. A-17
A.4.2 Spatial Viewer on UNIX/Motif for Relational Model ... A-18
A.4.2.1 Installation and Setup.. A-18
A.4.2.2 Connecting to a Database and Viewing Geometries....................................... A-18
A.4.2.3 Using the Sample Viewer.. A-19
A.4.3 Spatial Visualizer on Windows NT for the Object-Relational Model.................. A-19
A.4.3.1 Compiling and Running the Sample Program .. A-20
A.4.3.2 Usage Notes .. A-20
viii

B Installation, Compatibility, and Migration Issues

B.1 Introduction... B-1
B.2 Installation Details... B-2
B.2.1 Changing from 8.1 to 8.0 Compatibility Mode .. B-2
B.3 Compatibility Details .. B-3
B.4 Data Migration Issues ... B-4

C Partitioning Legacy Point Data

C.1 Overview .. C-1
C.2 Partitioning Process .. C-2
C.3 Scripts for the Deprecated Partitioned Point Data Model... C-3
C.3.1 altpart.sql Script.. C-3
C.3.2 drppart.sql Script.. C-3
C.3.3 sdogrant.sql Script.. C-4
C.4 Administrative Functions for the Deprecated Model .. C-4

SDO_ADMIN.ALTER_HIGH_WATER_MARK... C-5

SDO_ADMIN.DROP_PARTITION_INFO .. C-6

SDO_ADMIN.PARTITION.. C-7

SDO_ADMIN.PROPAGATE_GRANTS .. C-9

SDO_ADMIN.REGISTER_PARTITION_INFO ... C-10

SDO_ADMIN.REPARTITION.. C-11

SDO_ADMIN.VERIFY_PARTITIONS .. C-12
C.5 Data Functions .. C-13

SDO_BVALUETODIM .. C-14

SDO_COMPARE .. C-15

SDO_DATETODIM.. C-17

SDO_DECODE.. C-19

SDO_ENCODE ... C-20

SDO_TO_BVALUE... C-21

SDO_TO_DATE.. C-22
C.6 Data Dictionary... C-23
C.7 Messages and Codes .. C-33
ix

Glossary
x

xi

List of Examples

3–1 Control File for a Bulk Load .. 3-2
3–2 Control File for a Bulk Load of Point-Only Data... 3-3
3–3 Create a Fixed Index ... 3-13
4–1 Primary Filter with a Temporary Query Window ... 4-4
4–2 Primary Filter with a Transient Instance of the Query Window.................................... 4-5
4–3 Primary Filter with a Stored Query Window.. 4-5
4–4 Secondary Filter Using a Temporary Query Window... 4-6
4–5 Secondary Filter Using a Stored Query Window ... 4-6
11–1 Raw Data Format... 11-2
11–2 Control File to Load Data into the Geometry Table... 11-3
11–3 Raw Data Format... 11-3
11–4 Control File to Load from a Single Flat File... 11-4
11–5 Transactional Insert... 11-4
11–6 Transactional Insert for a Large Geometry.. 11-5
13–1 Populate an Index.. 13-4
13–2 Populate an Index with Fixed-Size Tiles.. 13-7
13–3 Populate an Index with Fixed-Size Tiles Based on Point Data 13-9
13–4 Update an Index .. 13-13
13–5 Update an Index with Fixed-Size Tiles .. 13-15
13–6 Verify a Layer... 13-16
14–1 Recommended Tile Level for One-Degree Lat/Lon Cells .. 14-6
14–2 Recommended Tile Level Based on the GIDs of All Geometries................................. 14-6
14–3 Recommended Tile Level Based on Average Extent of All Geometries 14-7
A–1 View Fixed-Size Tiles for All Geometries .. A-5
A–2 View Variable-Sized Tiles for All Geometries... A-5
A–3 View Fixed-Size Tiles for One Geometry... A-6
A–4 View Variable-Sized Tiles for One Geometry ... A-6
A–5 View Fixed-Sized Tiles for All Geometries Using the Relational Model A-7
A–6 View Fixed-Size Tiles for a Specific Geometry Using the Relational Model A-8

xii

List of Figures

1–1 Geometric Primitive Types .. 1-3
1–2 New Geometry Types Using the Object-Relational Model ... 1-4
1–3 Query Model .. 1-7
1–4 Quadtree Decomposition and Morton Codes ... 1-9
1–5 Fixed-Size Tiling with Many Small Tiles ... 1-11
1–6 Fixed-Size Tiling with Fewer Large Tiles... 1-12
1–7 Tessellated Figure.. 1-13
1–8 Variable-Sized Tile Spatial Indexing... 1-15
1–9 Decomposition of the Geometry ... 1-16
1–10 The 9-Intersection Model.. 1-18
1–11 Distance Buffers for Points, Lines, and Polygons ... 1-20
2–1 Geometry with a Hole... 2-7
2–2 Compound Element .. 2-8
2–3 Compound Polygon .. 2-9
3–1 Example Geometry OBJ_1 .. 3-4
3–2 Line String Consisting of Arcs and Straight Line Segments ... 3-6
3–3 Compound Polygon .. 3-7
3–4 Compound Polygon with a Hole .. 3-9
3–5 Sample Domain.. 3-11
3–6 Fixed-Size Tiling at Level 1 .. 3-12
3–7 Fixed-Size Tiling at Level 2 .. 3-12
4–1 Tessellated Layer with Multiple Objects.. 4-2
4–2 Tessellated Layer with a Query Window .. 4-3
10–1 Complex Polygon .. 10-5
11–1 Sample GIS Domain .. 11-8
11–2 Fixed-Size Tiling at Level 1 .. 11-8
11–3 Fixed-Size Tiling at Level 2 .. 11-9
12–1 Tessellated Layer with Multiple Objects.. 12-2
12–2 Tessellated Layer with a Query Window .. 12-5
12–3 Spatial Join of Two Layers.. 12-8

xiii

List of Tables

1–1 SDOINDEX Table Using Fixed-Size Tiles.. 1-13
1–2 Section of the SDOINDEX Table ... 1-17
2–1 Valid SDO_GTYPE Values... 2-2
2–2 Values and Semantics in SDO_ELEM_INFO .. 2-4
2–3 Columns in an SDO_INDEX_METADATA View.. 2-11
2–4 Columns in a Spatial Index Data Table.. 2-12
5–1 Spatial Index Creation and Usage Statements .. 5-1
5–2 SDO_LEVEL and SDO_NUMTILE Combinations ... 5-11
6–1 Tuning Functions and Procedures.. 6-1
7–1 Geometric Functions for the Object-Relational Model .. 7-1
8–1 Migration Procedures ... 8-1
9–1 Spatial Usage Operators ... 9-1
10–1 <layername>_SDOLAYER... 10-1
10–2 <layername>_SDODIM Table or View .. 10-1
10–3 <layername>_SDOGEOM Table or View.. 10-2
10–4 <layername>_SDOINDEX Table .. 10-2
11–1 <layername>_SDOLAYER Table .. 11-1
11–2 <layername>_SDODIM Table or View .. 11-1
11–3 <layername>_SDOGEOM Table or View.. 11-2
11–4 <layername>_SDOINDEX Table .. 11-2
11–5 Choosing a Tessellation Algorithm .. 11-7
12–1 <layername>_SDOLAYER... 12-3
12–2 <layername>_SDOGEOM.. 12-3
12–3 <layername>_SDOINDEX ... 12-4
13–1 Administrative Procedures for Spatially Indexed Data... 13-1
14–1 Tuning Functions and Procedures.. 14-1
15–1 Geometric Functions and Procedures .. 15-1
16–1 Window Functions and Procedures ... 16-1
C–1 Administrative Procedures for Partitioned Point Data ... C-4
C–2 Partitioned Point Data Functions... C-13

xiv

Send Us Your Comments

Oracle8 i Spatial User’s Guide and Reference, Release 8.1.5

Part No. A67295-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available).

You can send comments to us in the following ways

■ e-mail: nedc_doc@us.oracle.com
■ FAX: 603.897.3316 Attn: Spatial Documentation
■ postal service:

Oracle Corporation
Oracle8i Spatial Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you would like a reply, please include your name, address, and telephone number.
xv

xvi

Preface

The Oracle8i Spatial User’s Guide and Reference provides user and reference
information for the Spatial product, and extensions to Oracle8i Enterprise Edition.

Spatial requires Oracle8i Enterprise Edition. Oracle8i and Oracle8i Enterprise
Edition have the same basic features. However, several advanced features, such as
extended data types, are available only with the Enterprise Edition, and some of
these features are optional. For example, to use Oracle8i table partitioning, you
must have the Enterprise Edition and the Partitioning Option.

For information about the differences between Oracle8i and Oracle8i Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8i.

Intended Audience
This guide is intended for anyone who needs to store spatial data in an Oracle
database.

Structure
This guide is divided into two parts. Part I deals with the new object-relational
storage model, and Part II describes the relational storage model. The following
table lists the elements in this book:

Chapter 1 Introduces spatial data concepts.

Part I The following chapters describe the object-relational spatial model:

Chapter 2 Explains the object-relational schema.
xvii

Chapter 3 Explains loading and indexing spatial data.

Chapter 4 Explains methods for querying a spatial database.

Chapter 5 Provides the syntax and semantics for the indexing functions.

Chapter 6 Provides the syntax and semantics for the tuning functions and
procedures.

Chapter 7 Provides the syntax and semantics for the geometric functions and
procedures.

Chapter 8 Provides the syntax and semantics for the migration functions.

Chapter 9 Provides the syntax and semantics for operators used with the
spatial object data type.

Part II The following chapters describe the relational spatial model:

Chapter 10 Explains the relational schema.

Chapter 11 Explains spatial data loading.

Chapter 12 Explains methods for querying a spatial database.

Chapter 13 Provides the syntax and semantics for the administrative functions
and procedures.

Chapter 14 Provides the syntax and semantics for the tuning functions and
procedures.

Chapter 15 Provides the syntax and semantics for the geometric functions and
procedures.

Chapter 16 Provides the syntax and semantics for the window functions and
procedures.

Appendix A Describes sample SQL scripts and tuning tips.

Appendix B Describes installation, compatibility, and migration issues.

Appendix C Describes how to use partitioned point data.

Glossary Provides definitions of terms used in this guide.
xviii

Related Documents
For more information, see the following manuals:

■ Oracle8i interMedia Locator User’s Guide and Reference

■ Getting to Know Oracle8i

■ Oracle8i Administrator’s Guide

■ Oracle8i Error Messages - Spatial messages are in the range of 13000 to 13499

■ Oracle8i Concepts

■ Oracle8i Tuning

■ Oracle8i Utilities

For additional information about the Spatial option, including a demonstration
program, several white papers, and other assorted collateral, visit the official
Spatial Web site: http://www.oracle.com/st/cartridges/spatial/

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are used in this guide:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information
not directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean
that parts of the statement or command not directly related to
the example have been omitted

boldface text Boldface text indicates a term defined in the text, the glossary,
or in both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose
one or none.

% The percent sign represents the system prompt on a UNIX
system.
xix

xx

Spatial Con
1

Spatial Concepts

Oracle8i Spatial is an integrated set of functions and procedures that enables spatial
data to be stored, accessed, and analyzed quickly and efficiently in an Oracle8i
database.

Spatial data represents the essential location characteristics of real or conceptual
objects as those objects relate to the real or conceptual space in which they exist.

1.1 What Is the Spatial Product?
Oracle8i Spatial, often referred to as Spatial, provides a standard SQL schema and
functions that facilitate the storage, retrieval, update, and query of collections of
spatial features in an Oracle8i database. It consists of four components:

1. A schema that prescribes the storage, syntax, and semantics of supported
geometric data types

2. A spatial indexing mechanism

3. A set of operators and functions for performing area-of-interest and spatial join
queries

4. Administrative utilities

The spatial attribute of a spatial feature is the geometric description of its shape in
some coordinate space. This is referred to as its geometry.

This release of Spatial supports two mechanisms for representing geometry. The
first, an object-relational scheme, uses a table with single column of type
MDSYS.SDO_GEOMETRY and a single row per geometry instance. The second, a
relational scheme, uses a table with a predefined set of columns of type NUMBER
and one or more rows for each geometry instance. These mechanisms roughly
correspond to two alternatives described in the OpenGIS ODBC/SQL specification
cepts 1-1

Introduction to Spatial Data
for geospatial features. The first corresponds to a “SQL with Geometry Types”
implementation of spatial feature tables, and the second an implementation of
spatial feature tables using numeric SQL types for geometry storage.

Implementation-specific details are described in Part I "Object-Relational Model"
and Part II "Relational Model" of this guide. The remainder of this chapter
describes Spatial concepts and features, without reference to their implementation
wherever possible.

1.2 Introduction to Spatial Data
The Spatial option is designed to make spatial data management easier and more
natural to users or applications such as a Geographic Information System (GIS).
Once this data is stored in an Oracle database, it can be easily manipulated,
retrieved, and related to all the other data stored in the database.

A common example of spatial data can be seen in a road map. A road map is a
two-dimensional object that contains points, lines, and polygons that can represent
cities, roads, and political boundaries such as states or provinces. A road map is a
visualization of geographic information. The location of cities, roads, and political
boundaries that exist on the surface of the Earth are projected onto a
two-dimensional display or piece of paper, preserving the relative positions and
relative distances of the rendered objects.

The data that indicates the Earth location (latitude and longitude, or height and
depth) of these rendered objects is the spatial data. When the map is rendered, this
spatial data is used to project the locations of the objects on a two-dimensional
piece of paper. A GIS is often used to store, retrieve, and render this Earth-relative
spatial data.

Other types of spatial data that can be stored using the Spatial option besides GIS
data include data from computer-aided design (CAD) and computer-aided
manufacturing (CAM) systems. Instead of operating on objects on a geographic
scale, CAD/CAM systems work on a smaller scale such as for an automobile
engine or printed circuit boards.

The differences among these three systems are only in the scale of the data, not its
complexity. They might all actually involve the same number of data points. On a
geographic scale, the location of a bridge can vary by a few tenths of an inch
without causing any noticeable problems to the road builders. Whereas, if the
diameter of an engine’s pistons are off by a few tenths of an inch, the engine will
not run. A printed circuit board is likely to have many thousands of objects etched
1-2 Oracle8i Spatial User’s Guide and Reference

Geometric Types for Relational and Object-Relational Models
on its surface that are no bigger than the smallest detail shown on a road builder’s
blueprints.

These applications all store, retrieve, update, or query some collection of features
that have both nonspatial and spatial attributes. Examples of nonspatial attributes
are name, soil_type, landuse_classification, and part_number. The spatial attribute
is a coordinate geometry, or vector-based representation of the shape of the feature.
The spatial attribute, referred to as the geometry, is an ordered sequence of vertices
that are connected by straight line segments or circular arcs. The semantics of the
geometry are determined by its type, which may be one of point, line string, or
polygon.

1.3 Geometric Types for Relational and Object-Relational Models
The relational model of the Spatial option supports three geometric primitive types
and geometries composed of collections of these types. The three primitive types
are as follows:

■ 2-D Point and Point Cluster

■ 2-D Line Strings

■ 2-D N-Point Polygons

2-D points are elements composed of two ordinates, X and Y, often corresponding
to longitude and latitude. Line strings are composed of one or more pairs of points
that define line segments. Polygons are composed of connected line strings that
form a closed ring and the interior of the polygon is implied. Figure 1–1 illustrates
the supported geometric primitive types.

Figure 1–1 Geometric Primitive Types

Self-crossing polygons are not supported although self-crossing line strings are. If a
line string crosses itself, it does not become a polygon. A self-crossing line string
does not have any implied interior.

 Point
 . . .

. .
.

.

. .

.Line String Polygon
Spatial Concepts 1-3

Data Model
The object-relational implementation supports the types listed in Figure 1–1, as
well as the types shown in Figure 1–2.

The object-relational model adds the following types to those previously listed:

■ 2-D Arc Line Strings (All arcs are generated as circular arcs.)

■ 2-D Arc Polygons

■ 2-D Compound Polygons

■ 2-D Compound Line Strings

■ 2-D Circles

■ 2-D Optimized Rectangles

Figure 1–2 New Geometry Types Using the Object-Relational Model

1.4 Data Model
The Spatial data model is a hierarchical structure consisting of elements,
geometries, and layers, which correspond to representations of spatial data.
Layers are composed of geometries which in turn are made up of elements.

.
.

.
.

. .

.
. . .

.
.

.

. .

.
.

.

Arc Line String

.
. .

.

.
Arc Polygon

.

.
Compound Line String

Compound Polygon

Circle Rectangle
1-4 Oracle8i Spatial User’s Guide and Reference

Data Model
For example, a point might represent a building location, a line string might be a
road or flight path, and a polygon could be a state, city, zoning district, or city block.

1.4.1 Element
An element is the basic building block of a geometry. The supported spatial
element types are points, line strings, and polygons. For example, elements might
model star constellations (point clusters), roads (line strings), and county
boundaries (polygons). Each coordinate in an element is stored as an X,Y pair. The
exterior ring and the interior ring of a polygon with holes are considered as two
distinct elements that together make up a complex polygon.

Point data1 consists of one coordinate. Line data consists of two coordinates
representing a line segment of the element. Polygon data consists of coordinate
pair values, one vertex pair for each line segment of the polygon. Coordinates are
defined in either a clockwise or counter-clockwise order around the polygon.

1.4.2 Geometry
A geometry is the representation of a user’s spatial feature, modeled as an ordered
set of primitive elements. In the relational model, each geometry is required to be
uniquely identified by a geometry identifier (GID) associating it with the other
attributes of the feature. This is not required in the object-relational model.

A geometry can consist of a single element, which is an instance of one of the
supported primitive types, or a homogeneous or heterogeneous collection of
elements. A multipolygon, such as one used to represent a set of islands is a
homogeneous collection. A heterogeneous collection is one in which the elements
are of different types.

In the relational model, a complex geometry such as a polygon with holes would
be stored as a sequence of polygon elements. All subelements of a multielement
polygon are wholly contained within the outermost element. This is not required
using the object-relational model.

An example of a geometry might describe the buildable land in a town. This could
be represented as a polygon with holes where water or zoning prevents
construction.

1 Point data can also be stored in a partitioned table. See Appendix C, "Partitioning Legacy
Point Data" for details.
Spatial Concepts 1-5

Query Model
1.4.3 Layer
A layer is a heterogeneous collection of geometries having the same attribute set.
For example, one layer in a GIS might include topographical features, while
another describes population density, and a third describes the network of roads
and bridges in the area (lines and points). Each layer’s geometries and their
associated spatial index are stored in the database in standard tables.

1.5 Query Model
Spatial uses a two-tier query model to resolve spatial queries and spatial joins. The
term is used to indicate that two distinct operations are performed in order to
resolve queries. The output of both operations yields the exact result set.

The two operations are referred to as primary and secondary filter operations.

■ The primary filter permits fast selection of candidate records to pass along to
the secondary filter. The primary filter compares geometry approximations to
reduce computation complexity and is considered a lower cost filter. Because
the primary filter compares geometric approximations, it returns a superset of
the result set.

■ The secondary filter applies exact computations to geometries that result from
the primary filter. The secondary filter yields an accurate answer to a spatial
query. The secondary filter operation is computationally expensive, but it is
only applied to the primary filter results, not the entire data set.

Figure 1–3 illustrates the relationship between the primary and secondary filters.
1-6 Oracle8i Spatial User’s Guide and Reference

Indexing Methods
Figure 1–3 Query Model

Spatial uses a linear quadtree-based spatial index to implement the primary filter.
This is described in detail in following sections.

The function SDO_GEOM.RELATE() is used as a secondary filter. It evaluates the
topological relationship-- such as whether two given geometries are touching,
covering each other, or have any interaction.

Spatial does not require the use of both the primary and secondary filters. In some
cases, just using the primary filter is sufficient. For example, a zoom feature in a
mapping application queries for data that overlaps a rectangle representing visible
boundaries. The primary filter very quickly returns a superset of the query. The
mapping application can then apply clipping routines to display the target area.

The purpose of the primary filter is to quickly create a subset of the data and
reduce the processing burden on the secondary filter. The primary filter therefore
should be as efficient, that is selective yet fast, as possible. This is determined by
the characteristics of the spatial index on the data.

1.6 Indexing Methods
The introduction of spatial indexing capabilities into the Oracle database engine is
a key feature of the Spatial product. A spatial index, like any other index, provides
a mechanism to limit searches within tables (or data spaces) based on spatial
criteria such as intersection, and containment. A spatial index is required to:

Large
Input

Data
Set

SECONDARY
FILTER

PRIMARY
FILTER

Smaller
Candidate

Set

Exact
Result

Set

This candidate set
contains at least
the exact result
set and may contain
more records.
Spatial Concepts 1-7

Indexing Methods
■ Find objects within an indexed data space that overlap a given point or
area-of-interest (window query)

■ Find pairs of objects from within two indexed data spaces that spatially interact
with each other (spatial join)

A spatial index is considered a logical index. The entries in the spatial index are
dependent on the location of the geometries in a coordinate space, but the index
values are in a different domain. Index entries take on values from a linearly
ordered integer domain while the coordinates for a geometry may be pairs of
integer, floating-point, or double-precision numbers. Spatial uses a linear
quadtree-based indexing scheme, also known as z-ordering, which works as
described in the following paragraphs.

The coordinate space (for the layer where all geometric objects are located) is
subjected to a process called tessellation, which defines exclusive and exhaustive
cover tiles for every stored geometry. Tessellation is done by decomposing the
coordinate space in a regular hierarchical manner. The range of coordinates, the
coordinate space, is viewed as a rectangle. At the first level of decomposition, the
rectangle is divided into halves along each coordinate dimension generating four
tiles. Each tile that interacts with the geometry being tessellated is further
decomposed into four tiles. This process continues until some termination criteria,
such as size of the tiles or the maximum number of tiles to cover the geometry, is
met.

Spatial can use either fixed-size or variable-sized tiles to cover a geometry.
Fixed-size tiles are controlled by tile resolution. Variable-sized tiling is controlled
by the value supplied for the maximum number of tiles. If the resolution is the sole
controlling factor, then tessellation terminates when the coordinate space has been
decomposed a specific number of times. Therefore, each tile is of a fixed size and
shape. If the number of tiles per geometry, N, is the sole controlling factor, the
tessellation terminates when N tiles have been used to cover the given geometry.

Fixed-size tile resolution and the number of variable-sized tiles used to cover a
geometry are user-selectable parameters called SDO_LEVEL and SDO_NUMTILES
respectively. Smaller fixed-size tiles or more variable-sized tiles provides better
geometry approximations. The fewer the number of tiles or the larger the tiles, the
coarser the approximations.

Spatial supports two valid combinations of SDO_LEVEL and SDO_NUMTILES.
The first, with a non-null SDO_LEVEL and a null SDO_NUMTILES value, results
in fixed-sized tiles (called fixed indexing in this guide.) The second, with a non-null
SDO_LEVEL and a non-null SDO_NUMTILES, results in hybrid indexing. Hybrid
1-8 Oracle8i Spatial User’s Guide and Reference

Indexing Methods
indexing generates two sets of tiles per geometry. One set contains fixed-size tiles
and the other set contains variable-sized tiles.

1.6.1 Tessellation of a Layer During Indexing
The process of determining which tiles cover a given geometry is called
tessellation. The tessellation process is a quadtree decomposition, where the
two-dimensional coordinate space is broken down into four equal-sized covering
tiles. Successive tessellations divide those tiles that interact with the geometry
down into smaller tiles, and this process continues until the desired level or
number of tiles has been achieved. The results of the tessellation process on a
geometry are stored in a table, referred to as the SDOINDEX table.

The tiles at a particular level can be linearly sorted by systematically visiting tiles in
an order determined by a space-filling curve as shown in Figure 1–4. The tiles can
also be assigned unique numeric identifiers, known as Morton codes or z-values.
The terms tile and tile code will be used interchangeably in this and other sections
related to spatial indexing.

Figure 1–4 Quadtree Decomposition and Morton Codes

1.6.2 Fixed Indexing
Fixed-size tile spatial indexing is the preferred indexing method for the relational
model. This method uses cover tiles of equal size to cover a geometry. Because all
the tiles are the same size, they all have codes of the same length, and the standard
SQL equality operator (=) can be used to compare tiles during a join operation. This
results in excellent performance characteristics.

0 1

2 3

00 01 10 11

02 03 12 13

20 21 30 31

22 23 32 33
Spatial Concepts 1-9

Indexing Methods
Two geometries are likely to interact, and hence pass the primary filter stage, if
they share one or more tiles. The SQL statement for the primary filter stage is:

SELECT DISTINCT <select_list for geometry identifiers>
 FROM table1_sdoindex A, table2_sdoindex B
 WHERE A.sdo_code = B.sdo_code

The effectiveness and efficiency of this indexing method depends on the tiling level
and the variation in size of the geometries in the layer. If you select a small
fixed-size tile to cover small geometries and then try to use the same size tile to
cover a very large geometry, a large number of tiles would be required. However, if
the chosen tile size is large, so that fewer tiles are generated in the case of a large
geometry, then the index selectivity suffers because the large tiles do not
approximate the small geometries very well. Figure 1–5 and Figure 1–6 illustrate
the relationships between tile size, selectivity, and the number of cover tiles.

Using a small fixed-size tile as shown in Figure 1–5, selectivity is good, but a large
number of tiles is needed to cover large geometries. A window query would easily
identify geometries A and B, but would reject C.
1-10 Oracle8i Spatial User’s Guide and Reference

Indexing Methods
Figure 1–5 Fixed-Size Tiling with Many Small Tiles

A

B

query window

C

Spatial Concepts 1-11

Indexing Methods
Using a large fixed-size tile as shown in Figure 1–6, fewer tiles are needed to cover
the geometries, but the selectivity is not as good. A window query would likely
pick up all three geometries. Any object that shares tile T1 or T2 would identify
object C as a candidate, even though the objects may be far apart, such as objects B
and C are in this figure.

The SDO_TUNEpackage has anESTIMATE_TILING_LEVEL() function that helps
determine an appropriate tiling level for your data set.

Figure 1–6 Fixed-Size Tiling with Fewer Large Tiles

Figure 1–7 illustrates geometry 1013 tessellated to three fixed-sized tiles at level 1.
The codes for these cover tiles are then stored in an SDOINDEX table.

A

B

C

T1

T2

query window
1-12 Oracle8i Spatial User’s Guide and Reference

Indexing Methods
Figure 1–7 Tessellated Figure

Only three of the four tiles generated by the first tessellation interact with the
geometry. Only those tiles that interact with the geometry are stored in the
SDOINDEX table, as shown in Table 1–1. In this example, three fixed-size tiles are
used. The table structure is shown for illustrative purposes only. The column
names of this table differ depending on which implementation method, relational
or object-relational, is in use. In the relational model, you have to directly access the
index tables. In the object-relational model, this is both unnecessary and not
recommended.

Table 1–1 SDOINDEX Table Using Fixed-Size Tiles

SDO_GID
<number>

SDO_CODE
<raw>

1013 T0

1013 T2

G2 G3

G4G1

P3 P4

P5

P6

P7P8

P1

P2

T2 T3

T0

Geometry 1013:
Element 0

Element 1 (Hole)

 T1
Spatial Concepts 1-13

Indexing Methods
All elements in a geometry are tessellated. In a multielement geometry like 1013,
Element 1 is already covered by tile T2 from the tessellation of Element 0. If,
however, the specified tiling resolution were such that tile T2 were further
subdivided and one of these smaller tiles were completely contained in Element 1
then that tile would be excluded because it would not interact with the geometry.

1.6.3 Hybrid Indexing
Hybrid indexing is the preferred method for indexing the object-relational model.
Hybrid indexing uses a combination of fixed- and variable-sized tiles for spatially
indexing a layer. Variable-sized tile spatial indexing uses tiles of different sizes to
approximate a geometry. For each geometry, you will have a set of fixed-size tiles
that fully cover the geometry, and a set of variable-sized tiles that fully cover the
geometry.

In Figure 1–8, the variable-sized cover tiles closely approximate each geometry.
This results in good selectivity. The number of variable tiles needed to cover a
geometry is controlled using the SDO_NUMTILES parameter.

1013 T3

Table 1–1 SDOINDEX Table Using Fixed-Size Tiles(Cont.)

SDO_GID
<number>

SDO_CODE
<raw>
1-14 Oracle8i Spatial User’s Guide and Reference

Indexing Methods
Figure 1–8 Variable-Sized Tile Spatial Indexing

A variable tile is subdivided if it interacts with the geometry, and subdivision will
not result in tiles that are smaller than a predetermined size. This size, or tiling
resolution, is determined by a default SDO_MAXLEVEL parameter. A user may
modify this parameter, but it is not recommended.

Figure 1–9 illustrates how geometry OBJ_1, represented using the object-relational
implementation, is approximated with hybrid indexing (SDO_LEVEL = 1 and
SDO_NUMTILES = 4). These are not recommended values for SDO_LEVEL and
SDO_NUMTILES; they were chosen to simplify this example. The cover tiles are
stored in the SDOINDEX table as shown in Table 1–2. Note that the tiles have been
numbered for simplicity and do not reflect the format used in Spatial.

A

B

C

Spatial Concepts 1-15

Indexing Methods
Figure 1–9 Decomposition of the Geometry

In Figure 1–9, note which fixed-size tiles are associated with geometry OBJ_1. Only
three (T0, T2, T3) of the four large tiles (T0, T1, T2, T3) generated by the tessellation
actually interact with the geometry. Only those are stored in the SDOINDEX table.
In examining which variable sized tiles are used, tile T0 shows a further tessellation
to four smaller tiles, two of which (T02, T03) are used to cover a portion of the
geometry. The variable-sized tiles are stored in the SDO_CODE column in the
Spatial index table. The fixed-size tiles are stored in the SDO_GROUPCODE
column. The spatial index structure is discussed in Section 2.4.

G4 G3

G2G1

P7 P6

P5

P4

P3P2

P1

P8

T2 T3

T0

Geometry OBJ_1:
Element 0

Element 1 (Hole)

T2_UR T3_UR

T0_UR

T0_LL

T2_LL

T3_LL

T00 T01

T02 T03

T1
1-16 Oracle8i Spatial User’s Guide and Reference

Spatial Relations and Filtering
Table 1–2 Section of the SDOINDEX Table

As with the fixed-size tile model, all elements in a geometry are tessellated in one
step. In a multielement geometry like OBJ_1, Element 1 is covered by a redundant
tile from the tessellation of Element 0 but the tile, T2, is stored only once.

The SDO_TUNE package has some functions that help determine appropriate
SDO_LEVEL and SDO_NUMTILES values. Appendix A contains suggestions on
when hybrid indexing may be beneficial, and how to select values for the two
required parameters.

1.7 Spatial Relations and Filtering
Spatial uses filter methods to determine the spatial relationship between entities in
the database. The spatial relation is based on geometry locations. The most
common spatial relations are based on topology and distance. For example, the
boundary of an area consists of a set of curves that separate the area from the rest
of the coordinate space. The interior of an area consists of all points in the area that
are not on its boundary. Given this, two areas are said to be adjacent if they share
part of a boundary but no points in their interior. Next, the distance between two
spatial objects is the minimum distance between any points in them. Two objects
are said to be within a given distance of one another if their distance is less than the
given distance.

Spatial has two secondary filter methods. One method evaluates topological
criteria and a second method determines if two spatial objects are within a
Euclidean distance of each other. The secondary filter that evaluates topological
criteria is called RELATE. The syntax is given in subsequent chapters that describe
geometry functions and operators. RELATE implements a 9-intersection model for
categorizing binary topological relations between points, lines, and polygons.

SDO_
ROWID
<RAW>

SDO_CODE
<RAW>

SDO_
MAXCODE
<RAW>

SDO_
GROUPCODE
<RAW>

SDO_META
<RAW>

GID_OBJ_1 T02 <binary data> T0 <binary data>

GID_OBJ_1 T03 <binary data> T0 <binary data>

GID_OBJ_1 T2 <binary data> T2 <binary data>

GID_OBJ_1 T3 <binary data> T3 <binary data>
Spatial Concepts 1-17

Spatial Relations and Filtering
Each spatial object has an interior, a boundary, and an exterior. The boundary
consists of points or lines that separate the interior from the exterior. The boundary
of a line consists of its end-points. The boundary of a polygon is the line that
describes its perimeter. The interior consists of points that are in the object but not
on its boundary and the exterior consists of those points that are not in the object.

Given that an object A has three components -- a boundary Ab, an interior Ai, and
an exterior Ae, any pair of objects will have nine possible interactions between their
components. Pairs of components will have an empty (0), or a non-empty (1) set
intersection. The set of interactions between two geometries is represented by a
9-intersection matrix that specifies which pairs of components intersect and which
do not. Figure 1–10 shows the 9-intersection matrix for two polygons that are
adjacent to one another. This matrix yields the following bit mask, generated in
row-major form: “101001111”.

Figure 1–10 The 9-Intersection Model

Some of the topological relationships identified in the seminal work by Dr.
Egenhofer1 and colleagues have names associated with them. Spatial uses the
following names:

■ DISJOINT -- The boundaries and interiors do not intersect.

■ TOUCH --The boundaries intersect but the interiors do not.

■ OVERLAPBDYDISJOINT --The interior of one object intersects the boundary
and interior of the other object but the two boundaries do not intersect. This

1 Dr. Max Egenhofer, University of Maine, Orono.

A
B

A Touch B The 9-intersection matrix

i

e

eib

b 1 0 1

0 0 1

1 1 1

A

B

1-18 Oracle8i Spatial User’s Guide and Reference

Spatial Relations and Filtering
relation occurs, for example, when a line originates outside a polygon and ends
inside that polygon.

■ OVERLAPBDYINTERSECT -- The boundaries and interiors of the two objects
intersect.

■ EQUAL -- The two objects have the same boundary and interior.

■ CONTAINS -- The interior and boundary of one object is completely
contained in the interior of the other.

■ COVERS --The interior of one object is completely contained in the interior of
the other and their boundaries intersect.

■ INSIDE -- The opposite of CONTAINS. A INSIDE B implies B CONTAINS A.

■ COVEREDBY -- The opposite of COVERS. A COVEREDBY B implies
B COVERS A

■ ANYINTERACT -- The objects are non-disjoint.

The other secondary filter, WITHIN_DISTANCE, determines if two spatial objects,
A and B, are within a Euclidean distance of one another. First it constructs a
distance buffer, Db, around the reference object B. It then checks that A and Db are
non-disjoint.The distance buffer of an object consists of all points within the given
distance from that object. Figure 1–11 shows the distance buffers for point, line, and
area objects. Notice how the buffer is rounded near the corners of the objects.
Spatial Concepts 1-19

Partitioned Point Data
Figure 1–11 Distance Buffers for Points, Lines, and Polygons

1.8 Partitioned Point Data
Point data, unlike line and polygon data, has the unique characteristic of always
using only one tile per point. There are cases where this difference can be exploited.

Spatial has an enhanced spatial indexing mechanism capable of handling very
large data sets consisting of complex geometries. For applications handling point
data sets that are several tens of gigabytes or larger, further performance gains can
be achieved by using Oracle8i table partitioning features.

Table partitioning is available only with the Partitioning Option of Oracle8i
Enterprise Edition. If the Partitioning Option is available to you, the preferred
method is to use Oracle8i table partitioning in conjunction with spatial indexing
(using the relational model). See the Oracle8i Concepts guide for a description of
Oracle8i Partitioning. See Section A.2.6.3 for a description of a sample script that
uses table partitioning with point data.

A previous release of Spatial Data Option (from which the current Spatial product
has evolved) utilized its own version of table partitioning instead of spatial
indexing. Appendix C briefly describes the deprecated partitioning scheme for
those customers with legacy point data sets. While this feature is still enabled in the
current release, it may be removed in the future.
1-20 Oracle8i Spatial User’s Guide and Reference

Part I

Object-Relational Model

Oracle8i Spatial supports two models for representing geometries: relational and
object-relational. The two models are mutually exclusive. See Section A.1 for a
description of how to choose the model best suited for your application.

You do not need prior knowledge of the relational model to use the new
object-relational model.

This part of the User’s Guide and Reference contains the following chapters,
describing the object-relational model:

■ Chapter 2, "The Object-Relational Schema"

■ Chapter 3, "Loading and Indexing Spatial Object Types"

■ Chapter 4, "Querying Spatial Data"

■ Chapter 5, "Indexing Statements for Object Relational Model"

■ Chapter 6, "Tuning Functions and Procedures for Object-Relational Model"

■ Chapter 7, "Geometry Functions for Object-Relational Model"

■ Chapter 8, "Migration Procedures"

■ Chapter 9, "Spatial Operators"

The Object-Relational S
2

The Object-Relational Schema

The object-relational implementation of Oracle8i Spatial consists of a set of object
data types, an index method type, and operators on these types. A geometry is
stored as an object, in a single row, in a column of type SDO_GEOMETRY. Spatial
index creation and maintenance is done using basic DDL (CREATE, ALTER,
DROP) and DML (INSERT, UPDATE, DELETE) statements.

2.1 Object-Relational Data Structures
In the Spatial object-relational model, a single SDO_GEOMETRY object replaces the
rows and columns in a <layername>_SDOGEOM table of the relational model.

The geometric description of a spatial object is stored in a single row, in a single
column of object type SDO_GEOMETRY in a user-defined table. The table does not
require the "_SDOGEOM" suffix anymore. Because the SDO_GEOMETRY type
does not have an SDO_GID attribute, any table that has a column of type SDO_
GEOMETRY must have another column, or set of columns, that defines a unique
primary key for that table. Tables of this sort are sometimes referred to as geometry
tables.

Oracle8i Spatial defines the object type SDO_GEOMETRY as:

CREATE TYPE sdo_geometry AS OBJECT (
 SDO_GTYPE NUMBER,
 SDO_SRID NUMBER,
 SDO_POINT SDO_POINT_TYPE,
 SDO_ELEM_INFO MDSYS.SDO_ELEM_INFO_ARRAY,
 SDO_ORDINATES MDSYS.SDO_ORDINATE_ARRAY);
chema 2-1

Object-Relational Data Structures
The attributes of the SDO_GEOMETRY object type have the following semantics:

■ SDO_GTYPE - Indicates the type of the geometry. Valid geometry types
correspond to those specified in the Geometry Object Model for the OGIS Simple
Features for SQL specification (with the exception of Surfaces.) The numeric
values differ from those given in the OGIS specification, but there is a direct
correspondence between the names and semantics where applicable. Table 2–1
shows the valid SDO_GTYPE values.

Values 8-99 are reserved for future use. The enumeration of types shown in
Table 2–1 is recommended, however, Spatial does not check or enforce all
geometry consistency constraints. Spatial does check the following constraints:

– For SDO_GTYPEs 1 and 5, any subelement not of ETYPE 1 is ignored.

– For SDO_GTYPEs 2 and 6, any subelement not of ETYPE 2 or 4 is ignored.

– For SDO_GTYPEs 3 and 7, any subelement not of ETYPE 3 or 5 is ignored.

The SDO_GEOM.VALIDATE_GEOMETRY() function may be used to evaluate
the consistency of a single geometry object or all the instances of SDO_
GEOMETRY in a specified feature table.

■ SDO_SRID- Is reserved for future use. This attribute is intended to be a foreign
key in a spatial reference system definition table.

1 For a polygon with holes, enter the exterior boundary first, followed by any interior boundaries.
2 All polygons in the collection must be disjoint.

Table 2–1 Valid SDO_GTYPE Values

Value Geometry Type Description

0 UNKNOWN_
GEOMETRY

Spatial ignores this geometry.

1 POINT Geometry contains one point.

2 LINESTRING Geometry contains one line string.

3 POLYGON Geometry contains one polygon with or without
holes1.

4 Collection Geometry is a heterogeneous collection of elements.2

5 MULTIPOINT Geometry has multiple points.

6 MULTILINESTRING Geometry has multiple line strings.

7 MULTIPOLYGON Geometry has multiple, disjoint polygons (more than
one exterior boundary).
2-2 Oracle8i Spatial User’s Guide and Reference

Object-Relational Data Structures
■ SDO_POINT - Is an object type with attributes X, Y, and Z, all of type NUMBER.
If the SDO_ELEM_INFO and SDO_ORDINATES arrays are both null, and the
SDO_POINT attribute is non-null, then the X and Y values are considered to be
the coordinates for a point geometry. Otherwise the SDO_POINT attribute is
ignored by Spatial. You should store points in the SDO_POINT attribute for
optimal storage.

■ SDO_ELEM_INFO - Is a varying length array of numbers. This attribute lets you
know how to interpret the ordinates stored in the SDO_ORDINATES attribute.

Each triplet set of numbers conveys information about one geometry element,
and a geometry may contain many elements. If a geometry has one element,
then the SDO_ELEM_INFO array has three numbers; if the geometry has two
elements, then the array has six numbers, and so on. Each triplet set is
interpreted as follows:

1. SDO_STARTING_OFFSET -- Indicates the offset within the SDO_
ORDINATES array where the first ordinate for this element is stored.
Offset values start at 1 and not at 0. Thus the first ordinate for the first
element will be at SDO_GEOMETRY.SDO_ORDINATES(1).

2. SDO_ETYPE - Indicates the type of the element. Valid values are 0 through
5.

SDO_ETYPEs 1, 2, and 3, are considered simple elements. They are defined
by a single triplet entry in the SDO_ELEMINFO array. SDO_ETYPEs 4 and
5 are considered compound elements. They contain at least one header
triplet with a series of triplet values that belong to the compound element.

The elements of a compound element are contiguous. The last point of a
subelement in a compound element is the first point of the next
subelement. The point is not repeated.

3. SDO_INTERPRETATION - Means one of two things, depending on
whether or not SDO_ETYPE is a compound element.

If SDO_ETYPE is a compound element (4 or 5), this field specifies how
many subsequent triplet values are part of the element.

If the SDO_ETYPE is not a compound element (1, 2, or 3), the interpretation
attribute determines how the sequence of ordinates for this element is
interpreted. For example, a line string or polygon boundary may be made
up of a sequence of connected straight line segments or circular arcs.

A description of valid SDO_ETYPE and SDO_INTERPRETATION value
pairs is given in Table 2–2.
The Object-Relational Schema 2-3

Object-Relational Data Structures
If a geometry consists of more than one element, then the last ordinate for an
element is always one less than the starting offset for the next element. The last
element in the geometry is described by the ordinates from its starting offset to
the end of the SDO_ORDINATES varying length array.

For compound elements (SDO_ETYPEs 4 and 5), a set of N triplets (one per
subelement) is used to describe the element. It is important to remember that
subelements of a compound element are contiguous. The last point of a
subelement is the first point of the next subelement. For subelements 1 through
N-1, the end point of one subelement is the same as the starting point of the
next subelement. The starting point for subelements 2...N-2 is the same as the
end point of subelement 1...N-1. The last ordinate of subelement N is either the
starting offset-1 of the next element in the geometry, or the last ordinate in the
SDO_ORDINATES varying length array.

The current size of a varying length array can be determined by using the
function varray_variable.Count() in PL/SQL or OCIColSize() in Oracle Call
Interface (OCI).

The semantics of each SDO_ETYPE element and the relationship between the
SDO_ELEM_INFO and SDO_ORDINATES varying length arrays for each of
these SDO_ETYPE elements is given in Table 2–2.

Table 2–2 Values and Semantics in SDO_ELEM_INFO

SDO_
ETYPE

SDO_
INTERPRETATION Meaning

0 0 Unsupported element type. Ignored by the Spatial functions
and procedures.

1 1 Point type.

1 N > 1 Point cluster with N points.

2 1 Line string whose vertices are connected by straight line
segments.

2 2 Line string made up of a connected sequence of circular arcs.

Each circular arc is described using three coordinates: the
arc’s starting point, any point on the arc, and the arc’s end
point. The coordinates for a point designating the end of one
arc and the start of the next arc are not repeated. For
example, five coordinates are used to describe a line string
made up of two connected circular arcs. Points 1, 2, and 3
define the first arc, and points 3, 4, and 5 define the second
arc, where point 3 is only stored once.
2-4 Oracle8i Spatial User’s Guide and Reference

Object-Relational Data Structures
3 1 Simple polygon whose vertices are connected by straight line
segments.

3 2 Polygon made up of a connected sequence of circular arcs
that closes on itself. The end point of the last arc is the same
as the start point of the first arc.

Each circular arc is described using three coordinates: the
arc’s start point, any point on the arc, and the arc’s end point.
The coordinates for a point designating the end of one arc
and the start of the next arc are not repeated. For example,
five coordinates are used to describe a polygon made up of
two connected circular arcs. Points 1, 2, and 3 define the first
arc, and points 3, 4, and 5 define the second arc. The
coordinates for points 1 and 5 must be the same, and point 3
is not repeated.

3 3 Rectangle type. A bounding rectangle such that only two
points, the lower-left and the upper-right, are required to
describe it.

3 4 Circle type. Described by three points, all on the
circumference of the circle.

4 N > 1 Line string with some vertices connected by straight line
segments and some by circular arcs. The value, N, in the
Interpretation column specifies the number of contiguous
subelements that make up the line string.

The next N triplets in the SDO_ELEM_INFO array describe
each of these subelements. The subelements can only be of
SDO_ETYPE 2. The last point of a subelement is the first
point of the next subelement, and must not be repeated.

See Section 2.2 and Figure 2–2 for an example of a geometry
using this type.

Table 2–2 Values and Semantics in SDO_ELEM_INFO (Cont.)

SDO_
ETYPE

SDO_
INTERPRETATION Meaning
The Object-Relational Schema 2-5

Geometry Examples Using the Object-Relational Model
■ SDO_ORDINATES - Is a varying length array (1048576) of NUMBER type that
stores the coordinate values that make up the boundary of a spatial object. This
array must always be used in conjunction with the SDO_ELEM_INFO varying
length array. The values in the array are ordered by dimension. For example, a
polygon, whose boundary has four 2-dimensional points, is stored as {X1, Y1,
X2, Y2, X3, Y3, X4, Y4, X1, Y1}. If the points are 3-dimensional, then they are
stored as {X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, X4, Y4, Z4, X1, Y1, Z1}. Spatial
index creation, operators, and functions ignore the Z values because this
release of the product supports only 2-dimensional spatial objects. The number
of dimensions associated with each point is stored as metadata in the SDO_
GEOM_METADATA table, described in Section 2.3.

The values in the SDO_ORDINATES array must all be valid and non-null.
There are no special values used to delimit elements in a multi-element
geometry. The start and end points for the sequence describing a specific
element are determined by the STARTING_OFFSET values for that element
and the next element in the SDO_ELEM_INFO array as explained previously.
The offset values start at 1. SDO_ORDINATES(1) is the first ordinate of the first
point of the first element.

2.2 Geometry Examples Using the Object-Relational Model
Figure 2–1 illustrates a geometry with two elements. The inner element in this
example is treated as a void (a hole).

5 N > 1 Simple polygon with some vertices connected by straight
line segments and some by circular arcs. The value, N, in the
Interpretation column specifies the number of contiguous
subelements that make up the polygon.

The next N triplets in the SDO_ELEM_INFO array describe
each of these subelements. The subelements can only be of
SDO_ETYPE 2. The end point of a subelement is the start
point of the next subelement and must not be repeated. The
start and end points of the polygon must be the same.

See Section 2.2 and Figure 2-3 for an example of a geometry
using this type.

Table 2–2 Values and Semantics in SDO_ELEM_INFO (Cont.)

SDO_
ETYPE

SDO_
INTERPRETATION Meaning
2-6 Oracle8i Spatial User’s Guide and Reference

Geometry Examples Using the Object-Relational Model
Figure 2–1 Geometry with a Hole

In Figure 2–2, consider a crescent-shaped object represented as a compound line
string made up of one straight line segment and one circular arc. Four points are
required to represent this shape. Points 1 and 2 describe the straight line segment
and points 2, 3, and 4 describe the circular arc. The SDO_ELEM_INFO array
contains 3 triplets for this compound line string. These are {(1,4,2), (1,2,1), (3,2,2)}.
The SDO_ORDINATES array contains (X1,Y1, X2, Y2, X3, Y3, X4,Y4).

(12,24) (15,24)

(15,15)(12,15)

(11,40) (19,40)

(25,35)

(25,15)

(20,10)(10,10)

P1=(6,15)

P8=(6,25)

Geometry OBJ_1:

SDO_GTYPE = 3
SDO_SRID = NULL

SDO_ELEM_INFO = (1,3,1,19,3,1)
SDO_ORDINATES = (6,15,10,10,20,10,
 25,15,25,35,19,40,
 11,40,6,25,6,15,
 12,15,15,15,15,24,
 12,24,12,15))

SDO_POINT = NULL

SDO_GEOMETRY Column = (
The Object-Relational Schema 2-7

Geometry Examples Using the Object-Relational Model
Figure 2–2 Compound Element

The first triplet indicates that this element is a compound line string made up of
two line strings, which are described with the next two triplets.

The second triplet indicates that the line string is made up of straight line segments
and that the ordinates for this line string start at offset 1. The end point of this line
string is determined by the starting offset of the second line string, 3 in this
instance. Assuming the vertices are 2-dimensional, the coordinates for the end
point of the first line string are at ordinates 3 and 4.

The third triplet indicates that the second line string is made up of circular arcs
with ordinates starting at offset 3. The end point of this line string is determined by
the starting offset of the next element or the current length of the SDO_
ORDINATES array, if this is the last element.

In Figure 2-3, consider an ice cream cone shaped object represented as a compound
polygon made up of one straight line segment and one circular arc. Five points are
required to represent this shape. Points 1, 2, and 3 describe one acute angle shaped
line string, and points 3, 4, and 5 describe the circular arc. Points 1 and 5 are the
same point. The SDO_ELEM_INFO array contains three triplets for this compound
line string. These triplets are {(1,5,2), (1,2,1), (5,2,2)}.

x1,y1

x2,y2

x3,y3

x4,y41

2

3

4

NU-3746A-AI
2-8 Oracle8i Spatial User’s Guide and Reference

Geometry Metadata Structure
Figure 2–3 Compound Polygon

The first triplet indicates that this element is a compound line string made up of
two line strings, which are described using the next two triplets.

The second triplet indicates that the line string is made up of straight line segments
and that the ordinates for this line string start at offset 1. The end point of this line
string is determined by the starting offset of the second line string, 5 in this
instance. Assuming the vertices are 2-dimensional, the coordinates for the end
point of the first line string are at ordinates 5 and 6.

The third triplet indicates that the second line string is made up of circular arcs
with ordinates starting at offset 5. The end point of this line string is determined by
the starting offset of the next element or the current length of the SDO_
ORDINATES array, if this is the last element.

2.3 Geometry Metadata Structure
The geometry metadata describing the dimensions, lower and upper bounds, and
tolerance in each dimension must be stored as a single entry in a table named SDO_
GEOM_METADATA created in your schema and defined as follows:

Create Table SDO_GEOM_METADATA (
 TABLE_NAME VARCHAR2(30),
 COLUMN_NAME VARCHAR2(30),
 DIMINFO MDSYS.SDO_DIM_ARRAY);

x1,y1
x5,y5

x4,y4

x3,y3

x2,y2

1,5

2

3

4

NU-3747A-AI
The Object-Relational Schema 2-9

Geometry Metadata Structure
There should be one table with the previous name and layout created in the schema
of each user having tables with a column, or columns, of type SDO_GEOMETRY.
For example, if user Herman has tables named Roads, Parks, and Rivers, each with
a column named theGeometry of type SDO_GEOMETRY, then there must be three
entries in the table herman.sdo_geom_metadata. The user, or application, is
responsible for populating and maintaining the data in this table.

The SDO_GEOM_METADATA.TABLE_NAME column contains the name of a
feature table, such as Roads or Parks, that has a column of type SDO_GEOMETRY.
The name of this column, of type SDO_GEOMETRY, is stored in the feature table in
the SDO_GEOM_METADATA.COLUMN_NAME column. For the tables Roads
and Parks, this column is called theGeometry, and therefore the SDO_GEOM_
METADATA table should contain rows (Roads, theGeometry, SomeDimInfo1) and
(Parks, theGeometry, SomeDimInfo2). The SDO_GEOM_METADATA.DIMINFO
row is a varying length array of an object type, ordered by dimension, and has one
entry per dimension. The row is defined as follows:

Create Type SDO_DIM_ARRAY as VARRAY(4) of SDO_DIM_ELEMENT;

where SDO_DIM_ELEMENT is defined as:

Create Type SDO_DIM_ELEMENT as OBJECT (
 SDO_DIMNAME VARCHAR2(64),
 SDO_LB NUMBER NOT NULL,
 SDO_UB NUMBER NOT NULL,
 SDO_TOLERANCE NUMBER NOT NULL);

The SDO_DIM_ARRAY instance is of size N if there are N-dimensions. That is,
SDO_GEOM_METADATA.DIMINFO contains 2 SDO_DIM_ELEMENT instances
for 2-dimensional geometries, or 3 for 3-dimensional geometries, and so on. Each
SDO_DIM_ELEMENT instance in the array must have valid (not NULL) values for
the SDO_LB, SDO_UB, and SDO_TOLERANCE attributes.

Spatial assumes that the varying length array is ordered by dimension, and
therefore, in the Roads and Parks tables, SomeDimInfo1 is the SDO_DIM_
ELEMENT for the first dimension and SomeDimInfo2 is the SDO_DIM_ELEMENT
for the second dimension. It is imperative that the DIMINFO varying length array
is ordered by dimension in the same way the ordinates for the points in SDO_
ORDINATES varying length array are ordered. That is, if the SDO_ORDINATES
varying length array contains {X1, Y1, ..., Xn, Yn}, then SomeDimInfo1 must define
the X dimension and SomeDimInfo2 must define the Y dimension.

Section 3.1.2 contains examples that show the use of the SDO_GEOMETRY and
SDO_DIM_ARRAY types. These examples demonstrate how various geometry
2-10 Oracle8i Spatial User’s Guide and Reference

Spatial Index-Related Structure
objects are represented, and how a feature table and the SDO_GEOM_METADATA
table are populated with the data for those objects.

2.4 Spatial Index-Related Structure
This section describes the structure of the tables containing the spatial index data
and metadata. Concepts and usage notes for spatial indexing are explained in
Section 1.6. Both the spatial index data and metadata are stored in tables created
and maintained by the spatial indexing routines. These tables are created in the
same schema as the owner of the feature (underlying) table with a spatial index
created on a column of type SDO_GEOMETRY.

2.4.1 Spatial Index Tables
There is one metadata view per schema (user), named SDO_INDEX_METADATA,
and one index data table per spatially indexed column in that schema. Thus if user
Herman has five feature tables, each with a spatial index on their respective SDO_
GEOMETRY typed column, then Herman’s schema has one SDO_INDEX_
METADATA view and five tables containing spatial index data. The index data
table names are not created by adding the " _SDOINDEX" suffix to the layer name.
Instead, the index data table is named using the user-specified index name and a
suffix that indicates the spatial index type (fixed or hybrid, as defined in
Section 1.6) and the values of the relevant index parameters.

The SDO_INDEX_METADATA view contains the following columns whose type
and purpose are shown in Table 2–3.

Table 2–3 Columns in an SDO_INDEX_METADATA View

Column Name Data Type Purpose

SDO_LEVEL NUMBER The fixed tiling level at which to tile all objects
in the feature table.

SDO_NUMTILES NUMBER Suggested number of tiles per object that
should be used to approximate the shape.

SDO_MAXLEVEL NUMBER The maximum level for any tile for any object.
It will always be greater than the SDO_LEVEL
value.

SDO_COMMIT_INTERVAL NUMBER The number of geometries (rows) to process,
during index creation, before committing the
insertion of spatial index entries into the
SDOINDEX table. See Appendix A for a
discussion of the use of this parameter.
The Object-Relational Schema 2-11

Spatial Index-Related Structure
2.4.2 Spatial Index Data Dictionary View
The index data table will have some or all of the columns shown in Table 2–4.

SDO_INDEX_TABLE VARCHAR2 Name of the SDOINDEX table.

SDO_TABLESPACE VARCHAR2 Same as in the basic SQL CREATE TABLE
statement. Tablespace in which to create the
SDOINDEX table.

SDO_INITIAL_EXTENT NUMBER Same as in SQL CREATE TABLE statement.

SDO_NEXT_EXTENT NUMBER Same as in SQL CREATE TABLE statement.

SDO_PCTINCREASE NUMBER Same as in SQL CREATE TABLE statement.

SDO_MIN_EXTENTS NUMBER Same as in SQL CREATE TABLE statement.

SDO_MAX_EXTENTS NUMBER Same as in SQL CREATE TABLE statement.

SDO_FIXED_METADATA RAW If applicable, this column contains the
metadata portion of the SDO_GROUPCODE or
SDO_CODE for a fixed-level index.

SDO_INDEX_COORDSYS VARCHAR2 Reserved for future use.

SDO_INDEX_PRIMARY NUMBER Indicates if this is a primary or secondary
index. 1 = primary, 2 = secondary.

SDO_INDEX_OWNER VARCHAR2 The owner of the index.

SDO_INDEX_NAME VARCHAR2 The name of the index.

SDO_TSNAME VARCHAR2 The schema name of the SDO_INDEX_TABLE.

SDO_COLUMN_NAME VARCHAR2 The column name on which this index is built.

Table 2–4 Columns in a Spatial Index Data Table

Column Name Data Type Purpose

SDO_ROWID RAW Row ID of a row in a feature table containing the
indexed object.

SDO_CODE RAW Index entry for the object in the row identified by SDO_
ROWID.

SDO_MAXCODE RAW Padded SDO_CODE column.

SDO_GROUPCODE RAW Index entry at level SDO_LEVEL.

Table 2–3 Columns in an SDO_INDEX_METADATA View (Cont.)

Column Name Data Type Purpose
2-12 Oracle8i Spatial User’s Guide and Reference

Usage Notes
The columns, SDO_ROWID and SDO_CODE, are always present. The remaining
columns are present only when the selected index type is HYBRID, which is the
recommended indexing for the object-relational model.

2.5 Usage Notes
Stored procedures, provided with Spatial release 8.1, assume the existence of the
following schema objects: instances of SDO_GEOMETRY and SDO_DIM_ARRAY
objects and the metadata table SDO_GEOM_METADATA in the user’s schema.
While specific instances of the SDO_GEOM_METADATA view may contain
additional columns, they are required to contain the columns described in
Table 2–3 with the same column names and data types.

SDO_META RAW Metadata portion of the SDO_CODE for a hybrid index.

Table 2–4 Columns in a Spatial Index Data Table (Cont.)

Column Name Data Type Purpose
The Object-Relational Schema 2-13

Usage Notes
2-14 Oracle8i Spatial User’s Guide and Reference

Loading and Indexing Spatial Objec
3

Loading and Indexing Spatial Object Types

This chapter describes how to load spatial data into a database, including storing
the data in a table with a column of type SDO_GEOMETRY and creating a spatial
index for it.

The following steps will enable you to efficiently query spatial data:

1. Load data into column of type SDO_GEOMETRY

2. Create spatial indexes on columns of type SDO_GEOMETRY

3.1 Load Process
The process of loading data can be classified into two categories:

■ Bulk loading of data

This process is used to load large volumes of data into the database and uses
SQL*Loader1 utility to load the data.

■ Transactional inserts

This process is used to insert relatively small amounts of data into the database
using the INSERT statement in SQL.

3.1.1 Bulk Loading
Bulk loading can import large amounts of ASCII data into an Oracle database. Bulk
loading is accomplished with the SQL*Loader utility.

1 See Oracle8i Utilities for information on SQL*Loader.
t Types 3-1

Load Process
3.1.1.1 Bulk Loading the SDO_GEOMETRY Object
The following example assumes a table called POLY_4PT was created as follows:

CREATE TABLE POLY_4PT (GID VARCHAR2(32)
 GEOMETRY MDSYS.SDO_GEOMETRY);

Assume that the ASCII data consists of a file with delimited columns and separate
rows fixed by the limits of the table with the following format:

geometry rows: GID, GEOMETRY

The coordinates in the geometry column represent roads for a region. Example 3–1
shows the control file for loading the roads and attributes.

Example 3–1 Control File for a Bulk Load

LOAD DATA INFILE *
INTO TABLE POLY_4PT
REPLACE
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
TRAILING NULLCOLS
(
gid char(6),
geometry COLUMN OBJECT
(sdo_gtype INTEGER EXTERNAL,
 sdo_srid INTEGER EXTERNAL,
 isnull FILLER CHAR,
 SDO_POINT COLUMN OBJECT NULLIF geometry.isnull="pt"
 (X INTEGER EXTERNAL,
 Y INTEGER EXTERNAL,
 Z INTEGER EXTERNAL),
 SDO_ELEM_INFO VARRAY terminated by ';'
 (SDO_ORDINATES char(38)),
 SDO_ORDINATES VARRAY terminated by ':'
 (SDO_ORDINATES char(38))))
begindata
1,3,,pt,,,,1,3,1; -122.4215,37.7862, -122.422,37.7869, -122.421,37.789,
-122.42,37.7866, -122.4215,37.7862:
2,3,,pt,,,,1,3,1; -122.4019,37.8052, -122.4027,37.8055, -122.4031,37.806,
-122.4012,37.8052, -122.4019,37.8052:
3,3,,pt,,,,1,3,1; -122.426,37.803, -122.4242,37.8053, -122.42355,37.8044,
-122.4235,37.8025, -122.426,37.803:
3-2 Oracle8i Spatial User’s Guide and Reference

Load Process
3.1.1.2 Bulk Loading Point-Only Data in the SDO_GEOMETRY Object
Example 3–2 shows a control file for loading a table with point data.

Example 3–2 Control File for a Bulk Load of Point-Only Data

LOAD DATA INFILE *
INTO TABLE POINT
REPLACE
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
TRAILING NULLCOLS
(
gid char(6),
geometry COLUMN OBJECT
(sdo_gtype INTEGER EXTERNAL,
 sdo_srid INTEGER EXTERNAL,
 SDO_POINT COLUMN OBJECT
 (X INTEGER EXTERNAL,
 Y INTEGER EXTERNAL,
 Z INTEGER EXTERNAL),
 is_null1 FILLER CHAR,
 SDO_ELEM_INFO VARRAY terminated by ';' NULLIF geometry.is_null1="v1"
 (SDO_ORDINATES char(38)),
 is_null2 FILLER CHAR,
 SDO_ORDINATES VARRAY terminated by ':'
 NULLIF geometry.is_null2="v2"
 (SDO_ORDINATES char(38))))
begindata
1,1,,-122.4215,37.7862,,v1,;v2,:
2,1,,-122.4019,37.8052,,v1,;v2,:
3,1,,-122.426,37.803,,v1,;v2,:
4,1,,-122.4171,37.8034,,v1,;v2,:
5,1,,-122.416151,37.8027228,,v1,;v2,:

3.1.2 Transactional Insert Using SQL
Oracle8i Spatial uses standard Oracle8i tables that can be accessed or loaded with
standard SQL syntax. This section contains examples of transactional inserts into
columns of type SDO_GEOMETRY. Note that SQL statements in Oracle8i have a
limit of 999 arguments. Therefore, you cannot create variable-length arrays of more
than 999 elements using transactional INSERT statements.
Loading and Indexing Spatial Object Types 3-3

Load Process
3.1.2.1 Polygon with Hole
The geometry to be stored is a polygon with a hole, as shown in Figure 3–1. The
coordinate values for elements 1 and 2 are:

Element 1= [P1(6,15), P2(10,10), P3(20,10), P4(25,15), P5(25,35), P6(19,40),
 P7(11,40), P8(6,25), P1(6,15)]
Element 2= [H1(12,15), H2(15,24)]

Figure 3–1 Example Geometry OBJ_1

This example assumes that table PARKS was created as follows:

CREATE TABLE PARKS (NAME VARCHAR2(32),
 SHAPE MDSYS.SDO_GEOMETRY);

The SQL statement for inserting the data for geometry OBJ_1 is:

INSERT INTO PARKS
 VALUES (’OBJ_1’, MDSYS.SDO_GEOMETRY(3, NULL,NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,3,1, 19,3,3),
 MDSYS.SDO_ORDINATE_ARRAY(6,15, 10,10, 20,10, 25,15, 25,35,
 19,40, 11,40, 6,25, 6,15, 12,15, 15,24)));

The SDO_GEOMETRY() object type takes values and constructors for its attributes
SDO_GTYPE, SDO_ELEM_INFO, and SDO_ORDINATES. The SDO_GTYPE is 3,
and the SDO_ELEM_INFO has 2 triplet values because there are 2 elements.
Element 1 starts at offset 1, is of ETYPE 3, and its interpretation value is 1 because
the points are connected by straight line segments. Element 2 starts at offset 19, is of
ETYPE 3, and has an interpretation value of 3 (a rectangle). The SDO_ORDINATES

H2

H1

P7 P6

P5

P4

P3P2

P1

P8

Element 1

Element 2 (Hole)

Geometry OBJ_1:
3-4 Oracle8i Spatial User’s Guide and Reference

Load Process
varying length array has 22 values with SDO_ORDINATES(1...18) describing
element 1 and SDO_ORDINATES(19...22) describing element 2.

Assume that two dimensions are named X and Y, their bounds are 0 to 100, and the
tolerance for both dimensions is 0.005. The SQL statement for loading the
SDO_GEOM_METADATA table is:

INSERT INTO SDO_GEOM_METADATA
 VALUES (’PARKS’, ’SHAPE’,
 MDSYS.SDO_DIM_ARRAY(MDSYS.SDO_DIM_ELEMENT(’X’, 0, 100, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 100, 0.005)));

3.1.2.2 Compound Line String
A compound line string is a connected sequence of straight line segments and
circular arcs. Figure 3–2 is an example of a compound line string. The coordinate
values for points P1..P7 that describe the line string OBJ_2 are:

OBJ_2 = [P1(15,10), P2(25,10), P3(30,5), P4(38,5), P5(38,10),
 P6(35,15), P7(25,20)]

The SQL statement for inserting this compound line string in a feature table
ROADS(GID Varchar2, Shape MDSYS.SDO_GEOMETRY) is:

INSERT INTO ROADS VALUES (’OBJ_2’, MDSYS.SDO_GEOMETRY(2, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,4,2, 1,2,1, 9, 2, 2),
 MDSYS.SDO_ORDINATE_ARRAY(15,10, 25,10, 30,5, 38,5, 38,10, 35,15, 25,20)));

The SDO_GEOMETRY() object type takes values and constructors for its attributes
GTYPE, SDO_ELEM_INFO, and SDO_ORDINATES. The GTYPE is 2, the SDO_
ELEM_INFO has nine values because there are two subelements for the compound
line string. The first subelement starts at offset 1, is of ETYPE 2, and its
interpretation value is 1 because the points are connected by straight line segments.
Similarly, subelement 2 has a starting offset of 9. That is, the first ordinate value is
SDO_ORDINATES(9), is of ETYPE 2, and has an interpretation value of 2 because
the points describe a circular arc. The SDO_ORDINATES varying length array has
14 values, with SDO_ORDINATES(1..10) describing subelement 1, and SDO_
ORDINATES(9..14) describing subelement 2.
Loading and Indexing Spatial Object Types 3-5

Load Process
Figure 3–2 Line String Consisting of Arcs and Straight Line Segments

Assume that two dimensions are named X and Y, their bounds are 0 to 100, and
tolerance for both dimensions is 0.005. The SQL statement to insert the metadata
into the SDO_GEOM_METADATA table is:

INSERT INTO SDO_GEOM_METADATA VALUES (’ROADS’, ’SHAPE’,
 MDSYS.SDO_DIM_ARRAY(MDSYS.SDO_DIM_ELEMENT(’X’, 0, 100, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 100, 0.005)));

3.1.2.3 Compound Polygon
A compound polygon’s boundary is a connected sequence of straight line segments
and circular arcs, whose first point is equal to its last point. Figure 3–3 is an
example of a compound polygon. The coordinate values for points P1 to P8 that
describe the polygon OBJ_3 are:

OBJ_3 = [P1(20,30), P2(11,30), P3(7,22), P4(7,15), P5(11,10), P6(21,10),
 P7(27,30), P8(25,27), P1(20,30)]

This example assumes the PARKS table was created as follows:

CREATE TABLE PARKS (GID VARCHAR2(32), SHAPE MSSYS.SDO_GEOMETRY);

The SQL statement for inserting this compound polygon is:

INSERT INTO PARKS VALUES (’OBJ_3’, MDSYS.SDO_GEOMETRY(3, NULL,NULL
 MDSYS.SDO_ELEM_INFO_ARRAY(1,5,2, 1,2,1, 13,2,2),
 MDSYS.SDO_ORDINATE_ARRAY(20,30, 11,30, 7,22, 7,15, 11,10, 21,10, 27,30,
 25,27, 20,30)));

P7

P6

P5

P4P3

P2P1

Geometry OBJ_2:
3-6 Oracle8i Spatial User’s Guide and Reference

Load Process
The SDO_GEOMETRY() object type takes values and constructors for its attributes
SDO_GTYPE, SDO_ELEM_INFO, and SDO_ORDINATES. The SDO_GTYPE is 3,
the SDO_ELEM_INFO has 3 triplet values. The first triplet (1,5,2) identifies the
element as a compound polygon (ETYPE 5) with two subelements. The first
subelement starts at offset 1, is of ETYPE 2, and its interpretation value is 1 because
the points are connected by straight line segments. Subelement 2 has a starting
offset of 13, is of ETYPE 2, and has an interpretation value of 2 because the points
describe a circular arc. The SDO_ORDINATES varying length array has 18 values,
with SDO_ORDINATES(1...14) describing subelement 1, and SDO_
ORDINATES(13...18) describing subelement 2.

Figure 3–3 Compound Polygon

This example assumes the PARKS table was created as follows:

CREATE TABLE PARKS (GID VARCHAR2(32), SHAPE MSSYS.SDO_GEOMETRY);

Assume that two dimensions are named X and Y, their bounds are 0 to 100, and
tolerance for both dimensions is 0.005. The SQL statement to insert the metadata
into the SDO_GEOM_METADATA table is:

INSERT INTO SDO_GEOM_METADATA VALUES (’PARKS’, ’SHAPE’,
 MDSYS.SDO_DIM_ARRAY(MDSYS.SDO_DIM_ELEMENT(’X’, 0, 100, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 100, 0.005)));

3.1.2.4 Compound Polygon with Holes
A compound polygon’s boundary is a connected sequence of straight line segments
and circular arcs. Figure 3–4 is an example of a geometry that contains a compound

P8

P7

P6P5

P4

P3

P2

Geometry OBJ_3:

P1
Loading and Indexing Spatial Object Types 3-7

Load Process
polygon with a hole (or void.) The coordinate values for points P1 to P8 (Element 1)
and C1 to C3 (Element 2) that describe the geometry OBJ_4 are:

Element 1 = [P1(20,30), P2(11,30), P3(7,22), P4(7,15), P5(11,10), P6(21,10),
 P7(27,30), P8(25,27), P1(20,30)]
Element 2 = [C1(10,17), C2(15,22), C3(20,17)]

This example assumes the table PARKS has been created as follows:

CREATE TABLE PARKS (GID VARCHAR2(32), SHAPE MSSYS.SDO_GEOMETRY);

The SQL statement for inserting this compound polygon with holes is:

INSERT INTO Parks VALUES (’OBJ_4’, MDSYS.SDO_GEOMETRY(3, NULL,NULL
 MDSYS.SDO_ELEM_INFO_ARRAY(1,5,2, 1,2,1, 13,2,2, 19,3,4),
 MDSYS.SDO_ORDINATE_ARRAY(20,30, 11,30, 7,22, 7,15, 11,10, 21,10, 27,30,
 25,27, 20,30, 10,17, 15,22, 20,17)));

The SDO_GEOMETRY() object type takes values and constructors for its attributes
SDO_GTYPE, SDO_ELEM_INFO, and SDO_ORDINATES. The GTYPE is 3, the
SDO_ELEM_INFO has four triplet values. The first 3 triplet values represent
element 1. The first triplet (1,5,2) identifies this element as a compound element
with two subelements. The values in SDO_ELEM_INFO(1...9) pertain to element 1,
while SDO_ELEM_INFO(10...12) are for element 2.

The first subelement starts at offset 1, is of ETYPE 2, and its interpretation is 1
because the points are connected by straight line segments. Subelement 2 has a
starting offset of 13, is of ETYPE 2, and has an interpretation value of 2 because the
points describe a circular arc. The fourth triplet (19,3,4) represents element 2.
Element 2 starts at offset 19, is of ETYPE 3, and its interpretation value is 4,
indicating that it is a circle. The SDO_ORDINATES varying length array has 24
values, with SDO_ORDINATES(1...14) describing subelement 1, SDO_
ORDINATES(13...18) describing subelement 2, and SDO_ORDINATES(19...24)
describing element 2.
3-8 Oracle8i Spatial User’s Guide and Reference

Index Creation
Figure 3–4 Compound Polygon with a Hole

Assume that two dimensions are named X and Y, their bounds are 0 to 100, and
tolerance for both dimensions is 0.005. The SQL statement to insert the metadata
into the SDO_GEOM_METADATA table is:

INSERT INTO sdo_geom_METADATA VALUES (’PARKS’, ’SHAPE’,
 MDSYS.SDO_DIM_ARRAY(MDSYS.SDO_DIM_ELEMENT(’X’, 0, 100, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 100, 0.005)));

3.1.2.5 Transactional Insert of Point-Only Data
A point-only geometry can be inserted with the following statement:

INSERT INTO PARKS VALUES (’OBJ_PT’,
 MDSYS.SDO_GEOMETRY(1,NULL,
 MDSYS.SDO_POINT(20,30,NULL),
 NULL, NULL)
);

3.2 Index Creation
Once data has been loaded into the spatial tables through either bulk or
transactional loading, a spatial index must be created on the tables for efficient
access to the data. This is done by approximating geometries with tiles. For each
geometry, you will have a set of tiles that fully cover the geometry.

P8

P7

P6P5

P4

P3

P2

Geometry OBJ_4:

P1

Element 1

Element 1

C1 C3

C2

Element 1

Element 2

Subelement 2

Subelement 1
Loading and Indexing Spatial Object Types 3-9

Index Creation
3.2.1 Determining Index Creation Behavior
Spatial provides two methods for spatial indexing, fixed and hybrid. Hybrid
indexing is recommended for the Spatial object-relational model. If specified
correctly, it will provide better selectivity and spatial join performance for most
data sets and application scenarios.

The tessellation algorithm used by the CREATE INDEX and index maintenance
routines on INSERT, or UPDATE, is determined by the SDO_LEVEL and SDO_
NUMTILES values supplied by the user in the PARAMETERS clause of the
CREATE INDEX statement.They are interpreted as follows:

The CREATE INDEX routine for spatial indexing has the same semantics as a
standard SQL CREATE INDEX statement. An explicit commit is executed after the
tessellation of all the geometries in a geometry column.

Because spatial index creation operates as a single transaction, it may require a
sizable amount of rollback space. To reduce the amount of rollback space required
you can supply the SDO_COMMIT_INTERVAL parameter in the CREATE INDEX
statement. This will perform a database commit after every N geometries are
indexed, where N is a user-defined value.

If the index creation does not complete for any reason, the index is invalid and
must be dropped with the DROP INDEX <index_name> [FORCE] statement.

3.2.2 Spatial Indexing with Fixed-Size Tiles
Oracle recommends using hybrid indexing when indexing a geometry using the
object-relational model. Because fixed indexing is an integral part of hybrid
indexing, it is important to understand the information in this section. Hybrid
indexing is discussed in Section 3.2.3.

SDO_LEVEL SDO_NUMTILES Action

Not specified. Not specified. Error.

>= 1 Not specified. Fixed indexing, (indexing with fixed-size tiles).

>= 1 >= 1 Hybrid indexing with fixed-size and
variable-sized tiles. The SDO_LEVEL column
defines the fixed tile size. The SDO_NUMTILES
column defines the number of variable tiles to
generate per geometry.

Not specified. >= 1 Not supported.
3-10 Oracle8i Spatial User’s Guide and Reference

Index Creation
While not the preferred method, you can use fixed-size tiles to index the
object-relational model. The fixed-size tile algorithm is expressed as a level
referring to the number of tessellations performed. To use fixed-size tile indexing,
omit the SDO_NUMTILES parameter and set the SDO_LEVEL value to the desired
tiling level. The relationship between the tiling level and the resulting size of the
tiles depends on the domain of the layer.

The domain used for indexing is defined by the upper and lower boundaries of
each dimension stored in the DIMINFO column of the SDO_GEOM_METADATA
table, which contains an entry for the table and geometry column to spatially index.
A typical domain could be -180 to 180 degrees for longitude1, and -90 to 90 degrees
for latitude, as represented in Figure 3–5.

Figure 3–5 Sample Domain

If the SDO_LEVEL column is set to 1, then the tiles created by the indexing
mechanism are the same size as tiles at the first level of tessellation. Each tile would
be 180 degrees by 90 degrees as shown in Figure 3–6.

1 The transference of the domain onto a sphere or Mercator projection is left up to an
application. Spatial treats the domain as a flat Cartesian grid.

-180 180

90

-90
Loading and Indexing Spatial Object Types 3-11

Index Creation
Figure 3–6 Fixed-Size Tiling at Level 1

The formula for the number of fixed-size tiles in a domain is 4n where n is the
number of tessellations, stored in the SDO_LEVEL column. In reality, tiles are only
generated where geometries exist, and not necessarily for the whole domain.
Figure 3–7 shows fixed-size tiling at level 2. In this figure, each tile is 90 degrees by
45 degrees.

Figure 3–7 Fixed-Size Tiling at Level 2

The size of a tile can be determined by applying the following formula to each
dimension:

length = (upper_bound - lower_bound) / 2 ^ sdo_level

The length refers to the length of the tile along the specified dimension. Applying
this formula to the tiling shown in Figure 3–7 yields the following sizes:

length for dimension X = (180 - (-180)) / 2̂ 2
 = (360) / 4

-180 0 180

90

-90

 0

-180 -90 0 90 180

90

-90

 0
3-12 Oracle8i Spatial User’s Guide and Reference

Index Creation
 = 90
length for dimension Y = (90 - (-90)) / 2̂ 2
 = (180) / 4
 = 45

At level 2 the tiles are 90x45 degrees in size. As the number of levels increases, the
tiles become smaller and smaller. Smaller tiles provide a more precise fit of the tiles
over the geometry being indexed. However, because the number of tiles generated
is unbounded, you must take into account the performance implications of using
higher levels. The SDO_TUNE.ESTIMATE_TILING_LEVEL() function can be
used to determine an appropriate level for indexing with fixed-size tiles. See
Chapter 14 for a description of this function.

Besides the performance aspects related to selecting a fixed-size tile, tessellating the
geometry into fixed-size tiles might have benefits related to the type of data being
stored, such as using tiles sized to represent 1-acre farm plots, city blocks, or
individual pixels on a display. Data modeling is an important part any database
design, and is essential in a spatial database where the data often represents actual
physical locations.

In Example 3–3, assume that data has been loaded into a table called ROADS, and
the SDO_GEOM_METADATA has an entry for ROADS. GEOMETRY. Use the
following SQL statement to create a fixed index named ROADS_FIXED on ROADS_
GEOMETRY.

Example 3–3 Create a Fixed Index

CREATE INDEX ROADS_FIXED ON ROADS(GEOMETRY) INDEXTYPE IS MDSYS.SPATIAL_INDEX
 PARAMETERS(’SDO_LEVEL = 8’);

The value in SDO_LEVEL is used while tessellating objects. Increasing the level
results in smaller tiles and better geometry approximations. See the description of
the ESTIMATE_TILING_LEVEL() function in Chapter 14 for information on
estimating the tiling level in several different ways.

3.2.3 Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles
This section describes hybrid indexing, which uses both fixed-size and
variable-sized tiles as a spatial indexing mechanism. For each geometry, you will
have a set of fixed-size tiles that fully cover the geometry, and a set of
variable-sized tiles that fully cover the geometry.The terms hybrid indexing, hybrid
tiling, and hybrid tessellation are used interchangeably in this section.
Loading and Indexing Spatial Object Types 3-13

Index Creation
To use hybrid tiling, the SDO_LEVEL and SDO_NUMTILES keywords in the
PARAMETERS clause must contain valid values. Both SDO_LEVEL and SDO_
NUMTILES must be greater than 1.

The SDO_NUMTILES value determines the number of variable tiles that will be
used to fully cover a geometry being indexed. Typically this value is small. For
points, SDO_NUMTILES is always one. For other element types, you might set
SDO_NUMTILES to a value around 8. The larger the SDO_NUMTILES parameter,
the better the tiles will approximate the geometry being covered. This improves the
selectivity of the primary filter, but also increases the number of index entries per
geometry (see Section 4.2.1 and Section 4.2.2 for a discussion of primary and
secondary filters). The SDO_NUMTILES value should be larger for long, linear
spatial entities, such as major highways or rivers, than it would be for area-related
spatial entities such as county or state boundaries.

The SDO_LEVEL value determines the size of the fixed tiles used to fully cover the
geometry being indexed. Setting the proper SDO_LEVEL value may appear more
like art than science. Performing some simple data analysis and testing puts the
process back in the realm of science. One approach would be use the SDO_
TUNE.ESTIMATE_TILING_LEVEL() function to determine an appropriate
starting SDO_LEVEL value, and then compare the performance with slightly
higher or lower values. This, and other techniques, are described in Appendix A,
"Tuning Tips and Sample SQL Scripts".

As in Example 3–3, assume that the ROADS table has been loaded. Use the
following statement to create the spatial index on ROADS.GEOMETRY:

CREATE INDEX ROADS_FIXED ON ROADS(GEOMETRY)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX PARAMETERS(’SDO_LEVEL = 6, SDO_NUMTILES=12’);
3-14 Oracle8i Spatial User’s Guide and Reference

Querying Spati
4

Querying Spatial Data

This chapter describes how the structures of an object-relational model Spatial
layer are used to resolve spatial queries and spatial joins. For the sake of clarity, the
examples all use fixed-size tiling, but hybrid indexing is actually recommended for
the object model.

4.1 Query Model
Spatial uses a two-tier query model to resolve spatial queries and spatial joins. The
term is used to indicate that two distinct operations are performed in order to
resolve queries. If both operations are performed, the exact result set is returned.

The two operations are referred to as primary and secondary filter operations.

■ The primary filter permits fast selection of candidate records to pass along to
the secondary filter. The primary filter uses geometry approximations (or index
tiles) to reduce computational complexity and is considered a lower cost filter.

■ The secondary filter applies exact computational geometry to the result set of
the primary filter. These exact computations yield the exact answer to a query.
The secondary filter operations are computationally more expensive, but they
are applied only to the relatively small result set returned from the primary
filter.

4.2 Spatial Query
 An important concept in the spatial data model is that each geometry is
represented by a set of exclusive and exhaustive tiles. This means that no tiles
overlap each other (exclusive), and the tiles fully cover the object (exhaustive).
al Data 4-1

Spatial Query
Consider the following layer containing several objects in Figure 4–1. Each object is
labeled with its SDO_GID. The relevant tiles are labeled with ‘Tn’.

Figure 4–1 Tessellated Layer with Multiple Objects

1243

1013

T1 T2 T7

T3 T4

T6T5

61

T8 T9

501

12
4-2 Oracle8i Spatial User’s Guide and Reference

Spatial Query
A typical spatial query is to request all objects that lie within a defined fence or
window. A query window is shown in Figure 4–2 by the dotted-line box. A
dynamic query window refers to a fence that is not defined in the database, but
that must be defined prior to using it.

Figure 4–2 Tessellated Layer with a Query Window

1243

12

1013

T1 T2 T7

T3 T4

T6T5

61

T8 T9

501
Querying Spatial Data 4-3

Spatial Query
4.2.1 Primary Filter
Spatial release 8.1 provides a new operator named SDO_FILTER(). This
implements the primary filter portion of the two-step process involved in the
product’s query processing model. The primary filter uses the index data only to
determine a set of candidate object pairs that may interact. The syntax is as follows:

SDO_FILTER(geometry1 MDSYS.SDO_GEOMETRY, geometry2 MDSYS.SDO_GEOMETRY,
 params VARCHAR2)

Where:

■ geometry1 is a column of type MDSYS.SDO_GEOMETRY in a table.
Geometry1 must be spatially indexed.

■ geometry2 is an object of type MDSYS.SDO_GEOMETRY. Geometry2
may or may not come from a table. If it comes from a table, it may or may
not be spatially indexed.

■ params is a a quoted string of keyword value pairs that determine the
behavior of the operator. See the SDO_FILTER operator in Chapter 9 for a
list of parameters.

The following examples perform a primary filter operation only. They will return
all the geometries shown in Figure 4–2 that have an index tile in common with one
of the index tiles that approximates the query window: tiles T1, T2, T2, and T4. The
result of the following examples are geometries with IDs 1013, 1243, 12, and 501.

As mentioned previously, these examples are performed with fixed-size tiles,
which is not the recommended indexing method for the object model. If hybrid
indexing was used, the selectivity would improve.

Example 4–1 performs a primary filter operation without inserting the query
window into a table. The window will be indexed in memory and performance will
be very good.

Example 4–1 Primary Filter with a Temporary Query Window

SELECT A.Feature_ID FROM TARGET A
 WHERE mdsys.sdo_filter(A.shape, mdsys.sdo_geometry(3,NULL,NULL,
 mdsys.sdo_elem_info(1,3,3),
 mdsys.sdo_ordinates(x1,y1, x2,y2)),
 ’querytype=window’) = ’TRUE’;

Note that (x1,y1) and (x2,y2) are the lower left and upper right corners of the query
window.
4-4 Oracle8i Spatial User’s Guide and Reference

Spatial Query
In Example 4–2, a transient instance of type SDO_GEOMETRY was constructed for
the query window instead of specifying the window parameters in the query itself.

Example 4–2 Primary Filter with a Transient Instance of the Query Window

SELECT A.Feature_ID FROM TARGET A
 WHERE mdsys.sdo_filter(A.shape, :theWindow,’querytype=window’) = ‘TRUE’;

Example 4–31 assumes the query window was inserted into a table called
WINDOWS, with an ID of ’WINS_1’.

Example 4–3 Primary Filter with a Stored Query Window

SELECT A.Feature_ID FROM TARGET A, WINDOWS B
 WHERE B.ID= ’WIN_1’ AND
 mdsys.sdo_filter(A.shape, B.shape,’querytype=window’) = ‘TRUE’;

If the B.shape column is not spatially indexed, the SDO_FILTER() operator indexes
the query window in memory and performance is very good.

If the B.shape column is spatially indexed with the same SDO_LEVEL value as the
A.shape column, the SDO_FILTER() operator reuses the existing index, and
performance is very good or better.

If the B.shape column is spatial indexed with a different SDO_LEVEL value than
the A.shape column, the SDO_FILTER() operator reuses the existing index, but
performance degrades.

4.2.2 Primary and Secondary Filter
The SDO_RELATE() operator performs both the primary and secondary filter
stages when processing a query. The syntax of the operator is as follows:

 SDO_RELATE(geometry1 MDSYS.SDO_GEOMETRY,
 geometry2 MDSYS.SDO_GEOMETRY,
 params VARCHAR2)

Where:

1 A limitation in SQLPLUS may result in an error if Example 4–3 is run in SQLPLUS. This
error results when both tables are indexed, and it can occur with any Spatial operator
(primary or secondary filter). The error does not occur with any other interface than
SQLPLUS. The limitation will be fixed in a future release.
Querying Spatial Data 4-5

Spatial Query
■ geometry1 is a column of type MDSYS.SDO_GEOMETRY in a feature
table T1 and is spatially indexed.

■ geometry2 is a column of type MDSYS.SDO_GEOMETRY in a feature
table T2. It may or may not have a spatial index built for it. T2 may also be
the same table as T1.

■ params is a quoted string of keyword value pairs that determines the
behavior of the operator. See the SDO_RELATE operator in Chapter 9 for a
list of parameters.

The following examples perform both primary and secondary filter operations.
They return all the geometries in Figure 4–2 that lie within or overlap the query
window. The result of these examples is objects 1243 and 1013.

Example 4–4 performs both primary and secondary filter operations without
inserting the query window into a table. The window will be indexed in memory
and performance will be very good.

Example 4–4 Secondary Filter Using a Temporary Query Window

SELECT A.Feature_ID FROM TARGET A
 WHERE mdsys.sdo_relate(A.shape, mdsys.sdo_geometry(3,NULL,NULL,
 mdsys.sdo_elem_info(1,3,3),
 mdsys.sdo_ordinates(x1,y1, x2,y2)),
 ’mask=anyinteract querytype=window’) = ’TRUE’;

Note that (x1,y1) and (x2,y2) are the lower left and upper right corners of the query
window.

Example 4–5 assumes the query window was inserted into a table called
WINDOWS, with an ID of ’WINS_1’.

Example 4–5 Secondary Filter Using a Stored Query Window

SELECT A.Feature_ID FROM TARGET A, WINDOWS B
 WHERE B.ID= ’WIN_1’ AND
 mdsys.sdo_relate(A.shape, B.shape,
 ’mask=anyinteract querytype=window’) = ‘TRUE’;

If the B.shape column is not spatially indexed, the SDO_RELATE() operator
indexes the query window in memory and performance is very good.

If the B.shape column is spatially indexed with the same SDO_LEVEL value as the
A.shape column, the SDO_RELATE() operator reuses the existing index, and
performance is very good or better.
4-6 Oracle8i Spatial User’s Guide and Reference

Spatial Query
If the B.shape column is spatial indexed with a different SDO_LEVEL value than
the A.shape column, the SDO_RELATE() operator reuses the existing index, but
performance degrades.

4.2.3 Within Distance Operator
The SDO_WITHIN_DISTANCE() operator is used to determine the set of objects in
a table that are within N Euclidean distance units from a reference object
aRefGeom. The reference object may be a transient or persistent instance of
MDSYS.SDO_GEOMETRY (such as a temporary query fence or a permanent
geometry stored in the database.) The syntax is as follows:

SDO_WITHIN_DISTANCE(geometry1 MDSYS.SDO_GEOMETRY,
 aRefGeom MDSYS.SDO_GEOMETRY,
 params VARCHAR2)

Where:

■ T1.Col is a column of type MDSYS.SDO_GEOMETRY in a table.
Geometry1 must be spatially indexed.

■ aRefGeom is an instance of type MDSYS.SDO_GEOMETRY

■ params is a a quoted string of keyword value pairs that determines the
behavior of the operator. See the SDO_WITHIN_DISTANCE operator in
Chapter 9 for a list of parameters.

The following example selects any objects within 1.35 distance units from the query
window:

SELECT A.Feature_ID
FROM TARGET A
WHERE MDSYS.SDO_WITHIN_DISTANCE(A.shape, :theWindow, ’distance=1.35’) = ’TRUE’;

The distance units are based on the geometry coordinate system in use. If your data
consists of latitude and longitude pairs, then one distance unit corresponds to the
length of one degree. For city, county, state, and even country-wide applications,
this is probably acceptable. Unfortunately, one degree of longitude at the equator is
much different than one degree at the poles. As mentioned previously, the Spatial
product treats the coordinate space as a flat Cartesian grid. It currently does not
take projections into account. Projections are left up to the application.

This operator is not suitable for performing spatial joins. That is, a query like ‘Find
all parks that are within 10 distance units from coastlines’ will not be processed as
an index-based spatial join of the COASTLINES and PARKS tables. Instead, it will
Querying Spatial Data 4-7

Spatial Join
be processed as a nested loop query in which each COASTLINE instance is in turn
a reference object that is buffered, indexed, and evaluated against the PARKS table.
Thus the SDO_WITHIN_DISTANCE() operation is performed N times if there are
N rows in the COASTLINES table.

There is an efficient way to accomplish a spatial join that involves buffering all the
geometries of a layer. This method does not use the SDO_WITHIN_DISTANCE()
operator. First, create a new table COSINE_BUFS as follows:

CREATE TABLE cosine_bufs UNRECOVERABLE AS
 SELECT SDO_BUFFER (A.SHAPE, B.DIMINFO, 1.35)
 FROM COSINE A, SDO_GEOM_METADATA B
 WHERE TABLE_NAME=’COSINES’ AND COLUMN_NAME=’SHAPE’;

Next, create a spatial index on the SHAPE column of COSINE_BUFS. Then you can
perform the following query:

SELECT a.gif, b.gid FROM parks A cosine_bufs B
 WHERE SDO_Relate(A.shape, B.shape, ’mask=ANYINTERACT querytype=JOIN’) =’TRUE’;

4.3 Spatial Join
A spatial join is the same as a regular join except that the predicate involves a
spatial operator. In Spatial, a spatial join takes place when you compare all the
geometries of one layer to all the geometries of another layer. This is unlike a query
window that only compares a single geometry to all geometries of a layer.

Spatial joins can be used to answer questions such as, “which highways cross
national parks?”

The following table structures illustrate how the join would be accomplished for
this example:

PARKS(GID VARCHAR2(32), SHAPE MDSYS.SDO_GEOMETRY)
HIGHWAYS(GID VARCHAR2(32), SHAPE MDSYS.SDO_GEOMETRY)

The primary filter would identify pairs of PARK GIDs and HIGHWAY GIDs that
interact in their index entries. The query that performs the PRIMARY filter join is:

SELECT A.GID, B.GID
 FROM PARKS A, HIGHWAYS B
 WHERE mdsys.sdo_filter(A.shape, B.shape, ’querytype = join’) = ’TRUE’;
4-8 Oracle8i Spatial User’s Guide and Reference

Spatial Join
The original question, asking about highways that cross national parks, requires
the secondary filter operator because we need to find the exact relation between
highways and parks.

The query that performs this join using both PRIMARY and SECONDARY filters is:

SELECT A.GID, B.GID
 FROM parks A, highwaysB
 WHERE mdsys.sdo_relate(A.shape, B.shape,
 ’mask = ANYINTERACT querytype = join’);
Querying Spatial Data 4-9

Spatial Join
4-10 Oracle8i Spatial User’s Guide and Reference

Indexing Statements for Object Relationa
5

Indexing Statements for Object Relational

Model

This chapter describes the statements used when working with the spatial object
data type. The statements are listed in Table 5–1.

Table 5–1 Spatial Index Creation and Usage Statements

Statement Description

ALTER INDEX Alter a spatial index on a column of type
MDSYS.SDO_GEOMETRY.

ALTER INDEX REBUILD Rebuild a spatial index on a column of type
MDSYS.SDO_GEOMETRY.

ALTER INDEX RENAME TO Change the name of a spatial index on a column
of type MDSYS.SDO_GEOMETRY.

CREATE INDEX Create a spatial index on a column of type
MDSYS.SDO_GEOMETRY.

DROP INDEX Delete a spatial index on a column of type
MDSYS.SDO_GEOMETRY
l Model 5-1

ALTER INDEX
ALTER INDEX

Purpose
This statement alters specific parameters for a spatial index or rebuilds a spatial
index.

Syntax
ALTER INDEX [schema.]index PARAMETERS (‘index_params [physical_storage_params]’)

Keywords and Parameters

INDEX_PARAMS Allows you to change the type, (fixed or hybrid), and characteristics
of the spatial index.

Keyword Description

add_index Specifies the name of the new index table to add.
Data type is VARCHAR2.

delete_index Specifies the name of the index table to delete. You can only delete
index tables that were created with the ALTER INDEX add_index
statement. The primary index table cannot be deleted with this
parameter. To delete the primary index table, use DROP INDEX.
Data type is VARCHAR2.

sdo_level Specifies the desired fixed-size tiling level.
Data type is NUMBER.

sdo_numtiles Specifies the number of variable-sized tiles to be used in tessellating
an object.
Data type is NUMBER.

sdo_maxlevel Specifies the maximum tiling level. This parameter determines the
tiling resolution. It must be greater than the sdo_level minimum tiling
level. Modifying the default value is not recommended.
Data type is NUMBER.
Default is 32.

sdo_commit_
interval

Specifies the number of underlying table rows that are processed
between commit intervals for the index data. The default behavior
commits the index data only after all rows in the underlying table
have been processed. See the Usage Notes for further details.
Data type is NUMBER.
5-2 Oracle8i Spatial User’s Guide and Reference

ALTER INDEX
Prerequisites
■ You must have EXECUTE privileges on the index type and its implementation

type.

■ The spatial index to be altered is not marked in-progress.

Usage Notes
This statement is used to change the parameters of an existing index. This is the
only way you can add or build multiple indexes on the same column.

PHYSICAL_
STORAGE_
PARAMS

Determines the storage parameters used for altering the spatial index
data table. A spatial index data table is a standard Oracle table with a
prescribed format. Not all physical_storage_params that are allowed
in the STORAGE clause of a CREATE TABLE statement are
supported. The following is a list of the supported subset.

Keyword Description

tablespace Specifies the tablespace in which the index data table is created. This
parameter is the same as TABLESPACE in the STORAGE clause of a
CREATE TABLE statement.

initial Is the same as INITIAL in the STORAGE clause of a CREATE TABLE
statement.

next Is the same as NEXT in the STORAGE clause of a CREATE TABLE
statement.

minextents Is the same as MINEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

maxextents Is the same as MAXEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

pctincrease Is the same as PCTINCREASE in the STORAGE clause of a CREATE
TABLE statement.

btree_initial Is the same as INITIAL in the STORAGE clause of a CREATE INDEX
statement in the case of a standard btree index.

btree_next Is the same as NEXT in the STORAGE clause of a CREATE INDEX
statement in the case of a standard btree index.

btree_pctincrease Is the same as PCTINCREASE in the STORAGE clause of a CREATE
INDEX statement in the case of a standard btree index.
Indexing Statements for Object Relational Model 5-3

ALTER INDEX
Examples
ALTER INDEX qtree PARAMETERS (’add_index=HYBRID_INDEX
 sdo_numtiles=8
 initial=100M
 next=1M
 pctincrease=0
 btree_initial=5M
 btree_next=1M
 btree_pctincrease=0’);

Related Topics
■ ALTER INDEX REBUILD

■ ALTER INDEX RENAME TO
5-4 Oracle8i Spatial User’s Guide and Reference

ALTER INDEX REBUILD
ALTER INDEX REBUILD

Purpose
This function rebuilds a spatial index.

Syntax
ALTER INDEX [schema.]index REBUILD
 [PARAMETERS (‘rebuild_params [physical_storage_params]’)]

Keywords and Parameters

REBUILD_
PARAMS

Specifies in a command string the index parameters to use in
rebuilding the spatial index.

Keyword Description

rebuild_index Specifies the name of the spatial index table to be rebuilt.
Data type is VARCHAR2.

sdo_level Specifies the desired fixed-size tiling level.
Data type is NUMBER.

sdo_numtiles Specifies the number of variable-sized tiles to be used in tessellating
an object.
Data type is NUMBER.

sdo_maxlevel Specifies the maximum tiling level. This parameter determines the
tiling resolution. It must be greater than the sdo_level minimum tiling
level. Modifying the default value is not recommended.
Data type is NUMBER.
Default is 32.

sdo_commit_
interval

Specifies the number of underlying table rows that are processed
between commit intervals for the index data. The default behavior is
that a commit of the index data is done only after all rows in the
underlying table have been processed. See the Usage Notes for
further details.
Data type is NUMBER.

layer_gtype Specifies special processing for point data.

If the layer you are indexing is all points, set the parameter to
’POINT’ for optimal performance.
Data type is VARCHAR2.
Indexing Statements for Object Relational Model 5-5

ALTER INDEX REBUILD
Prerequisites
■ You must have EXECUTE privileges on the index type and its implementation

type.

■ The spatial index to be altered is not marked in-progress.

Usage Notes
■ sdo_commit_interval: An ALTER INDEX REBUILD ‘rebuild_params’

statement will rebuild the index using supplied parameters. Spatial index
creation involves creating and inserting index data, for each row in the
underlying table column being spatially indexed, into a table with a prescribed
format. The default, or normal, operation is that all rows in the underlying
table are processed before the insertion of index data is committed. This
requires adequate rollback segment space.

PHYSICAL_
STORAGE_
PARAMS

Determines the storage parameters used for rebuiding the spatial
index data table. A spatial index data table is a regular Oracle table
with a prescribed format. Not all physical_storage_params that are
allowed in the STORAGE clause of a CREATE TABLE statement are
supported. The following is a list of the supported subset.

Keyword Description

tablespace Specifies the tablespace in which the index data table is created. Same
as ‘TABLESPACE’ in the STORAGE clause of a CREATE TABLE
statement.

initial Is the same as INITIAL in the STORAGE clause of a CREATE TABLE
statement.

next Is the same as NEXT in the STORAGE clause of a CREATE TABLE
statement.

minextents Is the same as MINEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

maxextents Is the same as MAXEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

pctincrease Is the same as PCTINCREASE in the STORAGE clause of a CREATE
TABLE statement.

btree_initial Is the same as INITIAL in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index.

btree_next Is the same as NEXT in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index.

btree_pctincrease Is the same as PCTINCREASE in the STORAGE clause of a CREATE
INDEX statement in the case of a standard B-tree index.
5-6 Oracle8i Spatial User’s Guide and Reference

ALTER INDEX REBUILD
■ You may choose to perform commits of index data after every N rows of the
underlying table have been processed. This is done by specifying that sdo_
commit_interval = N. The potential complication is that if there is an error
during index rebuild and periodic commits have taken place, then the spatial
index will be in an inconsistent state. The only recovery option is to use DROP
INDEX (possibly with the FORCE option) and CREATE INDEX statements
after ensuring that the various tablespaces are the required size and any other
error conditions have been removed.

■ This command does not remember any previous index parameters. All
parameters should be specified for the index you want to rebuild.

Examples
The following example builds oldindex with an SDO_LEVEL = 12 and SDO_
NUMTILES = NULL.

ALTER INDEX oldindex REBUILD PARAMETERS(’sdo_level = 12’);

Related Topics
■ CREATE INDEX

■ DROP INDEX
Indexing Statements for Object Relational Model 5-7

ALTER INDEX RENAME TO
ALTER INDEX RENAME TO

Purpose
This statement alters the name of a spatial index.

Syntax
ALTER INDEX [schema.]index RENAME TO <new_index_name>

Keywords and Parameters

Prerequisites
■ You must have EXECUTE privileges on the index type and its implementation

type.

■ The spatial index to be altered is not marked in-progress.

Usage Notes
None.

Examples
The following example renames the index ‘oldindex’ to ‘newindex’.

ALTER INDEX oldindex RENAME TO newindex ;

Related Topics
■ CREATE INDEX

■ DROP INDEX

new_index_name Specifies the new name of the index.
5-8 Oracle8i Spatial User’s Guide and Reference

CREATE INDEX
CREATE INDEX

Purpose
This statement creates a spatial index on a column of type MDSYS.SDO_
GEOMETRY.

Syntax
CREATE INDEX [schema.]<index_name> ON [schema.]<tableName> (column)

 INDEXTYPE IS MDSYS.SPATIAL_INDEX

 [PARAMETERS ‘index_params [physical_storage_params]’);

Keywords and Parameters

INDEX_PARAMS Determine the type, fixed or hybrid, and characteristics of the spatial
index.

Keyword Description

sdo_level Specifies the desired fixed-size tiling level.
Data type is NUMBER.

sdo_numtiles Specifies the number of variable-sized tiles to be used in tessellating
an object
Data type is NUMBER.

sdo_maxlevel Specifies the maximum tiling level. This parameter determines the
tiling resolution. It must be set greater than the sdo_level minimum
tiling level. Modifying the default value is not recommended.
Data type is NUMBER.
Default is 32.

sdo_commit_
interval

Specifies the number of underlying table rows that are processed
between commit intervals for the index data. The default behavior is
that a commit of the index data is done only after all rows in the
underlying table have been processed. See the Usage Notes for
further details.
Data type is NUMBER.

layer_gtype Specifies special processing for point data.

If the layer you are indexing is all points, set this parameter to
’POINT’ for optimal performance.
Data type is VARCHAR2.
Indexing Statements for Object Relational Model 5-9

CREATE INDEX
Prerequisites
■ All the current SQL CREATE INDEX prerequisites apply.

■ You must have EXECUTE privilege on the index type and its implementation
type.

■ The SDO_GEOM_METADATA table must contain an entry with the
dimensions and coordinate boundary information for the table column to be
spatially indexed.

Usage Notes
■ Other options available for regular indexes (such as ASC and DESC) are not

applicable for spatial indexes.

PHYSICAL_
STORAGE_
PARAMS

Determines the storage parameters used for creating the spatial index
data table. A spatial index data table is a regular Oracle table with a
prescribed format. Not all physical_storage_params that are allowed
in the STORAGE clause of a CREATE TABLE statement are
supported. The following is a list of the supported subset.

Keyword Description

tablespace Specifies the tablespace in which the index data table is created. Same
as ‘TABLESPACE’ in the STORAGE clause of a CREATE TABLE
statement.

initial Is the same as INITIAL in the STORAGE clause of a CREATE TABLE
statement.

next Is the same as NEXT in the STORAGE clause of a CREATE TABLE
statement.

minextents Is the same as MINEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

maxextents Is the same as MAXEXTENTS in the STORAGE clause of a CREATE
TABLE statement.

pctincrease Is the same as PCTINCREASE in the STORAGE clause of a CREATE
TABLE statement.

btree_initial Is the same as INITIAL in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index.

btree_next Is the same as NEXT in the STORAGE clause of a CREATE INDEX
statement in the case of a standard B-tree index.

btree_pctincrease Is the same as PCTINCREASE in the STORAGE clause of a CREATE
INDEX statement in the case of a standard B-tree index.
5-10 Oracle8i Spatial User’s Guide and Reference

CREATE INDEX
■ The index_params string must contain valid values for either SDO_LEVEL or
both SDO_LEVEL and SDO_NUMTILES.

■ DEFAULT VALUES:

– sdo_numtiles must be supplied with a value greater than or equal to one to
perform hybrid indexing. If this parameter is not supplied, indexing with
fixed-size tiles is performed.

– sdo_commit_interval does not allow spatial data to be committed at
intervals. Insertion of spatial index data is committed only at the end of the
index creation process. That is, it is committed after all rows in the
underlying table have been processed.

– sdo_maxlevel equals 32. Modification is not recommended.

■ SDO_LEVEL must be greater than zero and less than SDO_MAXLEVEL

■ The value passed to SDO_NUMTILES is considered a recommendation. In
some cases, this value may be overwritten by the indexing algorithm.

■ sdo_commit_interval: Spatial index creation involves creating and inserting
index data for each row in the underlying table column being spatially indexed
into a table with a prescribed format. The default, or normal, operation is that
all rows in the underlying table are processed before the insertion of index data
is committed. This requires adequate rollback segment space.

■ You may choose to commit index data after every N rows of the underlying
table have been processed. This is done by specifying sdo_commit_interval =
N. The potential complication is that if there is an error during the rebuilding
of the index, and the spatial index data was periodically committed, then the
spatial index will be in an inconsistent state. The only recovery option is to use
DROP INDEX and CREATE INDEX statements after ensuring that the various
tablespaces are the required size, and any other error conditions have been
removed.

■ Interpretation of SDO_LEVEL and SDO_NUMTILES value combinations are
shown in Table 5–2.

Table 5–2 SDO_LEVEL and SDO_NUMTILE Combinations

SDO_LEVEL SDO_NUMTILES Type of Spatial Index

Not specified. Not specified. Error.

>= 1 Not specified. Fixed indexing, (indexing with fixed-size
tiles).
Indexing Statements for Object Relational Model 5-11

CREATE INDEX
■ If a TABLESPACE name is provided in the parameters clause, the user
(underlying table owner) must have appropriate privileges for that tablespace.

■ If the CREATE INDEX statement fails because of an invalid geometry, the
ROWID of the failed geometry is returned in an error message along with the
reason for the failure.

■ If the CREATE INDEX statement fails for any reason, then the DROP INDEX
statement must be used to clean up the partially built index and associated
metadata. If DROP INDEX does not work, add the FORCE parameter and try
again.

Related Topics
■ ALTER INDEX

■ DROP INDEX

>= 1 >= 1 Hybrid indexing with fixed-size and
variable-sized tiles. The SDO_LEVEL
column defines the fixed tile size. The
SDO_NUMTILES column defines the
number of variable tiles to generate per
geometry.

Not specified. >= 1 Not supported.

Table 5–2 SDO_LEVEL and SDO_NUMTILE Combinations (Cont.)

SDO_LEVEL SDO_NUMTILES Type of Spatial Index
5-12 Oracle8i Spatial User’s Guide and Reference

DROP INDEX
DROP INDEX

Purpose
This statement deletes a spatial index.

Syntax
DROP INDEX [schema.]index [FORCE]

Keywords and Parameters

Prerequisites
You must have EXECUTE privileges on the index type and its implementation type.

Usage Notes
Use DROP INDEX indexname FORCE to clean up after a failure in the CREATE
INDEX statement.

Examples
1. DROP INDEX oldindex

2. DROP INDEX oldindex FORCE

Related Topics
■ CREATE INDEX

FORCE Causes the spatial index to be deleted from
the system tables even if the index is marked
in-progress or some other error condition
occurs.
Indexing Statements for Object Relational Model 5-13

DROP INDEX
5-14 Oracle8i Spatial User’s Guide and Reference

Tuning Functions and Procedures for Object-Relationa
6

Tuning Functions and Procedures for

Object-Relational Model

This chapter contains descriptions of the tuning functions and procedures shown in
Table 6–1.

Table 6–1 Tuning Functions and Procedures

Function/Procedure Description

SDO_TUNE.AVERAGE_MBR Calculates the average minimum bounding rectangle
for geometries in a layer.

SDO_TUNE.ESTIMATE_INDEX_
PERFORMANCE

Estimates the spatial index selectivity.

SDO_TUNE.ESTIMATE_TILING_
LEVEL

Determines an appropriate tiling level for creating
fixed-size index tiles.

SDO_TUNE.ESTIMATE_TILING_
TIME

Estimates the tiling time for a layer, in seconds.

SDO_TUNE.EXTENT_OF Determines the minimum bounding rectangle of the
data in a layer.

SDO_TUNE.HISTOGRAM_
ANALYSIS

Calculates statistical histograms for a spatial layer.

SDO_TUNE.MIX_INFO Calculates geometry type information for a spatial
layer, such as the percentage of each geometry type.
l Model 6-1

SDO_TUNE.AVERAGE_MBR
SDO_TUNE.AVERAGE_MBR

Purpose
This function calculates the average minimum bounding rectangle (MBR) for all
geometries in a column of type SDO_GEOMETRY.

Syntax
SDO_TUNE.AVERAGE_MBR (table_name, column_name, width, height)

Keywords and Parameters

Returns
The function returns the width and height of the average MBR for all geometries in
a geometry table.

Data types for height and width are NUMBER.

Usage Notes
This function calculates the average MBR by keeping track of the maximum and
minimum X and Y values for all geometries in a geometry table.

table_name Specifies the name of the geometry table to
examine.
Data type is VARCHAR2.

column_name Specifies the name of the geometry object column
to examine.
Data type is VARCHAR2.

width Returns the width of the average MBR.
Data type is OUT NUMBER.

height Returns the height of the average MBR.
Data type is OUT NUMBER.
6-2 Oracle8i Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE

Purpose
This function estimates the spatial index performance such as query selectivity and
window query time for a column of type SDO_GEOMETRY.

Syntax
SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE (table_name, column_name, sample_ratio,
 tiling_level, num_tiles, window_object, tiling_time, filter_time, query_time)

Keywords and Parameters

table_name Specifies the name of the geometry table to examine.
Data type is VARCHAR2.

column_name Specifies the name of the geometry object column to examine.
Data type is VARCHAR2.

sample_ratio Specifies the size ratio between the original layer and the
sample layer to be generated.
Data type is INTEGER.
Default is 20.

tiling_level Specifies the spatial index level at which the layer is to be
tessellated.
Data type is INTEGER.

num_tiles Specifies the number of tiles for variable or hybrid tessellation.
Data type is INTEGER.

window_object Specifies the name of the spatial layer in which the query
window is stored.
Data type is VARCHAR2.

tiling_time Returns the estimated tiling time in seconds.
Data type is OUT NUMBER.

filter_time Returns the estimated spatial index filter time in seconds.
Data type is OUT NUMBER.

query_time Returns the estimated query window time in seconds.
Data type is OUT NUMBER.
Tuning Functions and Procedures for Object-Relational Model 6-3

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
Returns
The function returns a number between 0.0 and 1.0 representing estimated spatial
index selectivity. Data type is NUMBER.

The function also returns the estimated tiling time, filter time, and query time. Data
type for these variables is NUMBER.

Usage Notes
■ A larger selectivity number indicates better selectivity. A selectivity of 0.0

indicates an error.

■ A larger sample_ratio means faster but less accurate estimation.
6-4 Oracle8i Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TILING_LEVEL
SDO_TUNE.ESTIMATE_TILING_LEVEL

Purpose
This function estimates the appropriate sdo_level to use when indexing with
hybrid or fixed-size tiles.

Syntax
MDSYS.SDO_TUNE.ESTIMATE_TILING_LEVEL (table_name, column_name, maxtiles,
 type_of_estimate)

Keywords and Parameters

Returns
The function returns an integer representing the level to use when creating a spatial
index for the specified layer. The function returns NULL if the data is inconsistent.

Usage Notes
None.

table_name Specifies the name of the geometry table.
Data type is VARCHAR2.

column_name Specifies the name of the geometry column to examine.
Data type is VARCHAR2.

maxtiles Specifies the maximum number of tiles that can be used to index the
rectangle defined by the type_of_estimate parameter.
Data type is INTEGER.

type_of_estimate Indicates by keyword one of three different models. Specify the type of
estimate with one of the following keywords:

• LAYER_EXTENT -- Use the rectangle defined by your coordinate
system.

• ALL_GID_EXTENT -- Use the minimum bounding rectangle that
encompasses all the geometric objects in the column. This estimate is
recommended for most applications with a maxtiles of 10,000.

• AVG_GID_EXTENT -- Use a rectangle representing the average size
of the individual geometric objects within the column. This option
performs the most analysis of the three types.

Data type is VARCHAR2.
Tuning Functions and Procedures for Object-Relational Model 6-5

SDO_TUNE.ESTIMATE_TILING_LEVEL
Related Topics
■ MDSYS.SDO_TUNE.EXTENT_OF

■ Section A.2.2, "Understanding the Tiling Level"

■ Section A.2.4, "Visualizing the Spatial Index (Drawing Tiles)"
6-6 Oracle8i Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TILING_TIME
SDO_TUNE.ESTIMATE_TILING_TIME

Purpose
This function provides the estimated time to tessellate a column of type
SDO_GEOMETRY.

Syntax
SDO_TUNE.ESTIMATE_TILING_TIME (table_name, column_name, sample_ratio, tiling_level,
 num_tiles)

Keywords and Parameters

Returns
This function returns the estimated tiling time in seconds. A return of 0 indicates an
error.

Data type is NUMBER.

Usage Notes
None.

table_name Specifies the name of the geometry table to examine.
Data type is VARCHAR2.

column_name Specifies the name of the geometry object column to examine.
Data type is VARCHAR2.

sample_ratio Specifies the size ratio between the original layer and the sample layer to
be generated.
Data type is INTEGER.
Default is 20.

tiling_level Specifies the spatial index level at which the layer is to be tessellated.
Data type is INTEGER.

num_tiles Specifies the number of tiles for variable or hybrid tessellation.
Data type is INTEGER.
Tuning Functions and Procedures for Object-Relational Model 6-7

SDO_TUNE.EXTENT_OF
SDO_TUNE.EXTENT_OF

Purpose
This function determines the extent of all geometries in a column of type
SDO_GEOMETRY.

Syntax
SDO_TUNE.EXTENT_OF (table_name, column_name)

Keywords and Parameters

Returns
This function returns a geometry object representing the minimum bounding
rectangle for all geometric data in a column. The function returns NULL if the data
is inconsistent.

Usage Notes
None.

Related Topics
SDO_TUNE.ESTIMATE_TILING_LEVEL() function

table_name Specifies the name of the geometry table.
Data type is VARCHAR2.

column_name Specifies the name of the geometry column to examine.
Data type is VARCHAR2.
6-8 Oracle8i Spatial User’s Guide and Reference

SDO_TUNE.HISTOGRAM_ANALYSIS
SDO_TUNE.HISTOGRAM_ANALYSIS

Purpose
This procedure generates statistical histograms based on columns of type
SDO_GEOMETRY.

Syntax
SDO_TUNE.HISTOGRAM_ANALYSIS (table_name, column_name, result_table, type_of_histogram,
 max_value, intervals)

Keywords and Parameters

Returns
The procedure populates the result table with statistical histograms for a geometry
table.

Usage Notes
■ Prior to calling this procedure, create the result table as follows:

CREATE TABLE histogram (value NUMBER, count NUMBER);

table_name Specifies the name of the geometry table to examine.
Data type is VARCHAR2.

column_name Specifies the name of the geometry column to examine.
Data type is VARCHAR2.

result_table Specifies the name of the result table where the histogram will be stored.
Data type is VARCHAR2.

type_of_histogram Specifies one of three types of histograms:

• TILES_VS_LEVEL (default)

• GEOMS_VS_AREA

• GEOMS_VS_VERTICES

Data type is VARCHAR2.

max_value Specifies the upper limit of the histogram.
Data type is NUMBER.

intervals Specifies the number of intervals between 0 and max_value.
Data type is INTEGER.
Tuning Functions and Procedures for Object-Relational Model 6-9

SDO_TUNE.HISTOGRAM_ANALYSIS
■ The following types of histograms are available:

TILES_VS_LEVEL Provides the number of tiles at different spatial index
levels. This histogram is used to evaluate the spatial
index that is already built on the data set layer.

GEOMS_VS_AREA Provides the number of geometries in different size
ranges. The shape of this histogram could be helpful in
choosing a proper index type and index level.

GEOMS_VS_VERTICES Provides a histogram of the geometry count against the
number of vertices. This histogram could help
determine if spatial index selectivity is important for the
layer. Because the number of vertices determines the
performance of the secondary filter, selectivity of the
primary filter could be crucial for layers that contain
many complicated geometries.
6-10 Oracle8i Spatial User’s Guide and Reference

SDO_TUNE.MIX_INFO
SDO_TUNE.MIX_INFO

Purpose
This procedure provides the number of geometries of each type stored in a column
of type SDO_GEOMETRY.

Syntax
SDO_TUNE.MIX_INFO (table_name, column_name)

Keywords and Parameters

Returns
The procedure calculates geometry type information for the table. It calculates the
number of geometries of different types, as well as the percentages of points, line
strings, polygons, and complex geometries.

Usage Notes
None.

table_name Specifies the name of the geometry table to examine.
Data type is VARCHAR2.

column_name Specifies the name of the geometry column to examine.
Data type is VARCHAR2.
Tuning Functions and Procedures for Object-Relational Model 6-11

SDO_TUNE.MIX_INFO
6-12 Oracle8i Spatial User’s Guide and Reference

Geometry Functions for Object-Relational
7

Geometry Functions for Object-Relational

Model

This chapter contains descriptions of the geometry functions shown in Table 7–1.

Table 7–1 Geometric Functions for the Object-Relational Model

Function Description

SDO_GEOM.AREA Computes the area of a two-dimensional
polygon.

SDO_GEOM.LENGTH Computes the length or perimeter of a
geometry.

SDO_GEOM.RELATE Determines how two objects interact.

SDO_GEOM.SDO_BUFFER Generates a buffer polygon around a geometry.

SDO_GEOM.SDO_POLY_DIFFERENCE Generates a polygon representing the
difference between two geometries.

SDO_GEOM.SDO_POLY_INTERSECTION Generates a polygon representing the
intersection of two geometries.

SDO_GEOM.SDO_POLY_UNION Generates a polygon representing the
combination of two geometries.

SDO_GEOM.SDO_POLY_XOR Generates a polygon representing the
symmetric difference between two geometries.

SDO_GEOM.VALIDATE_GEOMETRY Determines if a geometry is valid.

SDO_GEOM.VALIDATE_LAYER Determines if all the geometries stored in a
column are valid.

SDO_GEOM.WITHIN_DISTANCE Determines if two geometries are within a
specified Euclidean distance from one another.
 Model 7-1

SDO_GEOM.AREA
SDO_GEOM.AREA

Purpose
This function computes the area of a two-dimensional polygon.

Syntax
SDO_GEOM.AREA (geometry, dim_array)

Keywords and Parameters

Returns
This function returns the area of a polygon.

Data type is NUMBER.

Usage Notes
This function works with any polygon, including polygons with holes.

Related Topics
None.

geometry Specifies the geometry object to analyze.
Data type is MDSYS.SDO_GEOMETRY.

dim_array Specifies the dimensional information array, usually selected
from the SDO_GEOM_METADATA table.
Data type is MDSYS.SDO_DIM_ARRAY.
7-2 Oracle8i Spatial User’s Guide and Reference

SDO_GEOM.LENGTH
SDO_GEOM.LENGTH

Purpose
This function computes the length or perimeter of a geometry.

Syntax
SDO_GEOM.LENGTH (geometry, dim_array)

Keywords and Parameters

Returns
This function returns the length or perimeter of an object.

Data type is NUMBER.

Usage Notes
If the input polygon contains one or more holes, this function calculates the
perimeters of the exterior boundary and all of the holes. It returns the sum of all the
perimeters.

Related Topics
None.

geometry Specifies the geometry object to analyze.
Data type is MDSYS.SDO_GEOMETRY.

dim_array Specifies the dimensional information array, usually selected
from the SDO_GEOM_METADATA table.
Data type is MDSYS.SDO_DIM_ARRAY.
Geometry Functions for Object-Relational Model 7-3

SDO_GEOM.RELATE
SDO_GEOM.RELATE

Purpose
This function examines two geometry objects to determine their spatial relationship.

Syntax
SDO_GEOM.RELATE (geometry1, dim_array1, mask, geometry2, dim_array2)

Keywords and Parameters

Returns
The MDSYS.SDO_GEOM.RELATE() function can return three types of answers:

1. If you pass a mask listing one or more relationships, the function returns the
name of the relationship if it is true for the pair of geometries. If all of the
relationships are false, the procedure returns FALSE.

2. If you pass the DETERMINE keyword in the mask, the function returns the one
relationship keyword that best matches the geometries. DETERMINE can only
be used when SDO_GEOM.RELATE() is in the SELECT clause of the SQL
statement.

3. If you pass the ANYINTERACT keyword in the mask, the function returns
TRUE if the two geometries are not disjoint.

The data type is VARCHAR2.

Usage Notes
The following relationships can be tested:

■ ANYINTERACT - Returns TRUE if the objects are not disjoint.

geometry1,
geometry2

Specifies the geometry objects to compare.
Data type is MDSYS.SDO_GEOMETRY.

dim_array1,
dim_array2

Specifies the dimensional information array, usually selected
from the SDO_GEOM_METADATA table.
Data type is MDSYS.SDO_DIM_ARRAY.

mask Specifies a list of relationships to check. See the list of keywords
in the Usage Notes.
7-4 Oracle8i Spatial User’s Guide and Reference

SDO_GEOM.RELATE
■ CONTAINS - Returns CONTAINS if the second object is entirely within the
first object and the object boundaries do not touch; otherwise, returns
FALSE.

■ COVEREDBY - Returns COVEREDBY if the first object is entirely within
the second object and the object boundaries touch at one or more points;
otherwise, returns FALSE.

■ COVERS - Returns COVERS if the second object is entirely within the first
object and the boundaries touch in one or more places; otherwise, returns
FALSE.

■ DISJOINT - Returns DISJOINT if the objects have no common boundary or
interior points; otherwise, returns FALSE.

■ EQUAL - Returns EQUAL if the objects share every point of their
boundaries and interior, including any holes in the objects; otherwise,
returns FALSE.

■ INSIDE - Returns INSIDE if the first object is entirely within the second
object and the object boundaries do not touch; otherwise, returns FALSE.

■ OVERLAPBDYDISJOINT - Returns OVERLAPBDYDISJOINT if the objects
overlap, but their boundaries do not interact; otherwise, returns FALSE.

■ OVERLAPBDYINTERSECT - Returns OVERLAPBDYINTERSECT if the
objects overlap, and their boundaries intersect in one or more places;
otherwise, returns FALSE.

■ TOUCH - Returns TOUCH if the two objects share a common boundary
point, but no interior points; otherwise, returns FALSE.

Mask values can be combined using a logical Boolean operator OR. For example,
‘INSIDE + TOUCH’ returns either ’INSIDE’, ’TOUCH’, or ’FALSE’ depending on
the outcome of the test.

Related Topics
 None.
Geometry Functions for Object-Relational Model 7-5

SDO_GEOM.SDO_BUFFER
SDO_GEOM.SDO_BUFFER

Purpose
This function generates a buffer polygon around a geometry object.

Syntax
SDO_GEOM.SDO_BUFFER (geometry, dim_array, distance)

Keywords and Parameters

Returns
This function returns a geometry object representing the buffer polygon.

Data type is MDSYS.SDO_GEOMETRY.

Usage Notes
This function creates a rounded buffer around a point, line, or polygon. The buffer
within a void is also rounded, and is the same distance from the inner boundary as
the outer buffer is from the outer boundary. See Figure 1–11 for an illustration.

Related Topics
■ SDO_TUNE.EXTENT_OF

■ SDO_GEOM.SDO_POLY_DIFFERENCE

■ SDO_GEOM.SDO_POLY_INTERSECTION

■ SDO_GEOM.SDO_POLY_UNION

■ SDO_GEOM.SDO_POLY_XOR

geometry Specifies the geometry objects to compare.
Data type is MDSYS.SDO_GEOMETRY.

dim_array Specifies the dimensional information array, usually selected
from the SDO_GEOM_METADATA table.
Data type is MDSYS.SDO_DIM_ARRAY.

distance Specifies the Euclidean distance value.
Data type is NUMBER.
7-6 Oracle8i Spatial User’s Guide and Reference

SDO_GEOM.SDO_POLY_DIFFERENCE
SDO_GEOM.SDO_POLY_DIFFERENCE

Purpose
This function computes the difference (A minus B) of two polygon objects.

Syntax
SDO_GEOM.SDO_POLY_DIFFERENCE (geometry1, dim_array1, geometry2, dim_array2)

Keywords and Parameters

Returns
This function returns a geometry object representing the difference of two polygon
objects.

Data type is MDSYS.SDO_GEOMETRY.

Usage Notes
None.

Related Topics
■ SDO_GEOM.SDO_POLY_BUFFER

■ SDO_GEOM.SDO_POLY_INTERSECTION

■ SDO_GEOM.SDO_POLY_UNION

■ SDO_GEOM.SDO_POLY_XOR

geometry1,
geometry2

Specifies the geometry objects to compare.
Data type is MDSYS.SDO_GEOMETRY.

dim_array1,
dim_array2

Specifies the dimensional information array, usually selected
from the SDO_GEOM_METADATA table.
Data type is MDSYS.SDO_DIM_ARRAY.
Geometry Functions for Object-Relational Model 7-7

SDO_GEOM.SDO_POLY_INTERSECTION
SDO_GEOM.SDO_POLY_INTERSECTION

Purpose
This function computes the intersection of two polygon objects.

Syntax
SDO_GEOM.SDO_POLY_INTERSECTION (geometry1, dim_array1, geometry2, dim_array2)

Keywords and Parameters

Returns
This function returns a geometry object representing the intersection (A and B) of
two polygon objects.

Data type is MDSYS.SDO_GEOMETRY.

Usage Notes
None.

Related Topics
■ SDO_GEOM.SDO_POLY_BUFFER

■ SDO_GEOM.SDO_POLY_DIFFERENCE

■ SDO_GEOM.SDO_POLY_UNION

■ SDO_GEOM.SDO_POLY_XOR

geometry1,
geometry2

Specifies the geometry objects to compare.
Data type is MDSYS.SDO_GEOMETRY.

dim_array1,
dim_array2

Specifies the dimensional information array, usually selected
from the SDO_GEOM_METADATA table.
Data type is MDSYS.SDO_DIM_ARRAY.
7-8 Oracle8i Spatial User’s Guide and Reference

SDO_GEOM.SDO_POLY_UNION
SDO_GEOM.SDO_POLY_UNION

Purpose
This function computes the union of two polygon objects.

Syntax
SDO_GEOM.SDO_POLY_UNION (geometry1, dim_array1, geometry2, dim_array2)

Keywords and Parameters

Returns
This function returns a geometry object representing the union (A or B) of two
polygon objects.

Data type is MDSYS.SDO_GEOMETRY.

Usage Notes
None.

Related Topics
■ SDO_GEOM.SDO_POLY_BUFFER

■ SDO_GEOM.SDO_POLY_DIFFERENCE

■ SDO_GEOM.SDO_POLY_INTERSECTION

■ SDO_GEOM.SDO_POLY_XOR

geometry1,
geometry2

Specifies the geometry objects to compare.
Data type is MDSYS.SDO_GEOMETRY.

dim_array1,
dim_array2

Specifies the dimensional information array, usually selected
from the SDO_GEOM_METADATA table.
Data type is MDSYS.SDO_DIM_ARRAY.
Geometry Functions for Object-Relational Model 7-9

SDO_GEOM.SDO_POLY_XOR
SDO_GEOM.SDO_POLY_XOR

Purpose
This function computes the symmetric difference of two polygon objects.

Syntax
SDO_GEOM.SDO_POLY_XOR (geometry1, dim_array1, geometry2, dim_array2)

Keywords and Parameters

Returns
This function returns a geometry object representing the symmetric difference (A
xor B) of two polygon objects.

Data type is MDSYS.SDO_GEOMETRY.

Usage Notes
None.

Related Topics
■ SDO_GEOM.SDO_POLY_BUFFER

■ SDO_GEOM.SDO_POLY_DIFFERENCE

■ SDO_GEOM.SDO_POLY_INTERSECTION

■ SDO_GEOM.SDO_POLY_UNION

geometry1,
geometry2

Specifies the geometry objects to compare.
Data type is MDSYS.SDO_GEOMETRY.

dim_array1,
dim_array2

Specifies the dimensional information array, usually selected
from the SDO_GEOM_METADATA table.
Data type is MDSYS.SDO_DIM_ARRAY.
7-10 Oracle8i Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_GEOMETRY
SDO_GEOM.VALIDATE_GEOMETRY

Purpose
This function provides a consistency check for valid geometry types. The function
checks the representation of the geometry from the tables against the element
definitions.

 Syntax
SDO_GEOM.VALIDATE_GEOMETRY (geometry, dim_array)

Keywords and Parameters

Returns
This function returns:

■ TRUE if the geometry is valid.

■ FALSE if the geometry fails for some unknown reason.

■ An Oracle error message number based on the specific reason the geometry
in invalid.

Data type is VARCHAR2.

Usage Notes
This function checks for the following:

■ Polygons have at least four points, which includes the point that closes the
polygon. (The last point is the same as the first.)

■ Line strings have at least two points.

■ In a heterogeneous collection (SDO_GTYPE 4) or multipolygon (SDO_GTYPE
7), all polygons are disjoint.

geometry Specifies the geometry object to test.
Data type is MDSYS.SDO_GEOMETRY.

dim_array Specifies the dimensional information array, usually selected
from the SDO_GEOM_METADATA table.
Data type is MDSYS.SDO_DIM_ARRAY.
Geometry Functions for Object-Relational Model 7-11

SDO_GEOM.VALIDATE_GEOMETRY
Example
The following example tests a geometry stored in a table my_geometry_table with
one column called "geometry" and another column called "my_id," which is the
primary key:

SELECT mdsys.sdo_geom.validate_geometry (a.geometry, b.diminfo)
 FROM abi_81_hy a,
 sdo_geom_metadata b
 WHERE a.gid = 1
 AND b.table_name = 'MY_GEOMETRY_TABLE'
 AND b.column_name = 'GEOMETRY';

Related Topics
None.
7-12 Oracle8i Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_LAYER
SDO_GEOM.VALIDATE_LAYER

Purpose
This function examines a geometry column to determine if the stored geometries
follow the defined rules for geometry objects.

 Syntax
SDO_GEOM.VALIDATE_LAYER (table_name, column_name, pkey_column, result_table_name)

Keywords and Parameters

Returns
This function populates the result table with validation results.

Usage Notes
■ An empty result table must be created prior to calling this function. The format

of the result table is: (sdo_gid number, result varchar2(10)).

■ This function returns TRUE in the result table if a geometry is valid. If it is
invalid, the result column for that geometry (the pkey_column corresponds to
the SDO_GID) contains an Oracle error message number. You can then look up
this error message to determine the cause of the failure.

■ This function checks for the following:

– Polygons have at least four points, which includes the point that closes the
polygon. (The last point is the same as the first.)

– Line strings have at least two points.

table_name Specifies the name of the geometry object table.
Data type is VARCHAR2.

column_name Specifies the name of the geometry object column to examine.
Data type is VARCHAR2.

pkey_column Specifies the primary key column. This can be the rowid, or any
other primary key.
Data type is VARCHAR2.

result_table_name Specifies the name of the result table.
Data type is VARCHAR2.
Geometry Functions for Object-Relational Model 7-13

SDO_GEOM.VALIDATE_LAYER
– In a heterogeneous collection (SDO_GTYPE 4) or multipolygon (SDO_
GTYPE 7), all polygons are disjoint.

Related Topics
None.
7-14 Oracle8i Spatial User’s Guide and Reference

SDO_GEOM.WITHIN_DISTANCE
SDO_GEOM.WITHIN_DISTANCE

Purpose
This function determines if two spatial objects are within some specified Euclidean
distance from each other.

Syntax
SDO_GEOM.WITHIN_DISTANCE (geometry1, dim_array1, distance, geometry2, dim_array2)

Keywords and Parameters

Returns
This function returns TRUE for object pairs that are within the specified distance,
and FALSE otherwise.

Usage Notes
The distance between two extended objects (for example, nonpoint objects such as
lines and polygons) is defined as the minimum distance between these two objects.
Thus the distance between two adjacent polygons is zero.

Related Topics
None.

geometry1,
geometry2

Specifies the geometry objects to compare.
Data type is MDSYS.SDO_GEOMETRY.

dim_array1,
dim_array2

Specifies the dimensional information array, usually selected
from the SDO_GEOM_METADATA table.
Data type is MDSYS.SDO_DIM_ARRAY.

distance Specifies the Euclidean distance value.
Data type is NUMBER.
Geometry Functions for Object-Relational Model 7-15

SDO_GEOM.WITHIN_DISTANCE
7-16 Oracle8i Spatial User’s Guide and Reference

Migration Proc
8

Migration Procedures

The procedures described in this chapter let you upgrade geometry tables from
previous releases of Spatial Cartridge or Spatial Data Option.

This chapter contains descriptions of the migration procedures shown in Table 8–1.

Table 8–1 Migration Procedures

Procedure Description

SDO_MIGRATE.TO_734 Migrate tables from Spatial Data Option 7.3.3 to
Spatial Data Option 7.3.4 and Spatial Cartridge
8.0.4 format.

SDO_MIGRATE.TO_81X Migrate tables from Spatial Data Option 7.3.4 or
Spatial Cartridge 8.0.4 to Oracle8i Spatial.

SDO_MIGRATE.OGIS_METADATA_
FROM

Generate a temporary table used when
migrating OGIS metadata tables.

SDO_MIGRATE.OGIS_METADATA_TO Read a temporary table used when migrating
OGIS metadata tables.
edures 8-1

SDO_MIGRATE.TO_734
SDO_MIGRATE.TO_734

Purpose
This procedure migrates data from a previous release of Spatial Data Option to
release 7.3.4.

Syntax
SDO_MIGRATE.TO_734 (schema_name, layername, tessellation, param)

Keywords and Parameters

Usage Notes
The value of the param argument is evaluated relative to the value of the
tessellation argument. If tessellation is FIXED, then param is the SDO_LEVEL
value. If tessellation is VARIABLE, then param is the SDO_NUMTILES value.

Examples
For fixed-size tessellation:

SQL> execute sdo_migrate.to_734(’HERMAN’, ’ROADS’, ’FIXED’, 10);

For variable-sized tessellation:

SQL> execute sdo_migrate_to_734(’HERMAN’, ’ROADS’, ’VARIABLE’,4);

schema_name Specifies the schema name of the owner of the layer.
Data type is VARCHAR2.

layername Specifies the name of the layer.
Data type is VARCHAR2.

tessellation Specifies the type of indexing used, either FIXED or VARIABLE.
Data type is VARCHAR2.

param Specifies the SDO_LEVEL or SDO_NUMTILES value.
Data type is NUMBER.
8-2 Oracle8i Spatial User’s Guide and Reference

SDO_MIGRATE.TO_81X
SDO_MIGRATE.TO_81X

Purpose
This procedure migrates data from a previous release of Spatial Cartridge or Spatial
Data Option to Oracle8i Spatial (release 8.1.5.)

Syntax
SDO_MIGRATE.TO_81X (old_layername, new_tablename geom_column, GID_column,
 layer_gtype, update_flag)

Keywords and Parameters

Usage Notes
Consider the following when using this procedure:

■ The new table must be created prior to calling this procedure.

old_layername Specifies the name of the old layer.
Data type is VARCHAR2.

new_tablename Specifies the name of the new table to which you are migrating
the data.
Data type is VARCHAR2.

GID_column Specifies the name of the column in which to store the GID from
the old table.
Data type is NUMBER.

geom_column Specifies the column name in the new table where the geometry
object will be inserted.
Data type is SDO_GEOMETRY.

layer_gtype If the layer you are migrating is composed soley of point data, set
this parameter to ’POINT’ for optimal performance.
Data type is VARCHAR2.
Default is ’NOTPOINT’.

update_flag Specifies special processing for point data.

If you are migrating the layer into an existing populated attribute
table, set this parameter to ’UPDATE’.
Data type is VARCHAR2.
Default is ’INSERT’.
Migration Procedures 8-3

SDO_MIGRATE.TO_81X
■ This procedure converts from Spatial Data Option release 7.3.4, or from Spatial
Cartridge releases 8.0.4 and 8.0.5.

■ There is no implicit commit when using this procedure. You must commit the
migration explicitly.

■ If any of the migration steps fails, nothing is migrated for the layer.

■ The old_layername is the underlying layername, without the _SDOGEOM
suffix.

■ An SDO_GEOM_METADATA table is required in the user’s schema.

■ The old SDO_GID is stored in GID_column.

Examples
Insert point-only data into new rows:

execute sdo_migrate.to_81x('raptor', 'raptor', 'sdo_gid', 'feature', 'point');

Insert nonpoint data into new rows:

execute sdo_migrate.to_81x('BTU', 'BTU', 'sdo_gid', 'feature');

Update point-only data into existing rows:

execute sdo_migrate.to_81x('raptor', 'raptor', 'sdo_gid', 'feature',
 'point', 'update');

Update nonpoint data into existing rows:

execute sdo_migrate.to_81x('BTU', 'BTU', 'sdo_gid', 'feature',
 'notpoint', 'update');
8-4 Oracle8i Spatial User’s Guide and Reference

SDO_MIGRATE.OGIS_METADATA_FROM
SDO_MIGRATE.OGIS_METADATA_FROM

Purpose
This procedure is called at the source database when migrating from one 8.1.5
database to another 8.1.5 database. The procedure migrates OGIS metadata entries
from schemas owned by mdsys.

Syntax
SDO_MIGRATE.OGIS_METADATA_FROM

Keywords and Parameters
None.

Usage Notes
Consider the following when using this procedure:

■ The tables involved are strictly maintained by the user, and not by Spatial.
Details are available in the sdocat.sql file and the OpenGIS specification.

■ Call this procedure once before migrating the data, and it will generate a
temporary table called SDO_GC_MIG. Export the temporary table to the new
database and call SDO_MIGRATE.OGIS_METADATA_TO to restore the data.
Migration Procedures 8-5

SDO_MIGRATE.OGIS_METADATA_TO
SDO_MIGRATE.OGIS_METADATA_TO

Purpose
This procedure is used at the destination database when migrating from one 8.1.5
database to another 8.1.5 database. The procedure migrates OGIS metadata entries
from schemas owned by mdsys.

Syntax
SDO_MIGRATE.OGIS_METADATA_TO

Keywords and Parameters
None.

Usage Notes
Consider the following when using this procedure:

■ The tables involved are strictly maintained by the user, and not by Spatial.
Details are available in the sdocat.sql file and the OpenGIS specification.

■ Call this procedure once after migrating the data. See SDO_MIGRATE.OGIS_
METADATA_FROM.
8-6 Oracle8i Spatial User’s Guide and Reference

Spatial Op
9

Spatial Operators

This chapter describes the operators used when working with the spatial object
data type. The operators are listed in Table 9–1.

Table 9–1 Spatial Usage Operators

Operator Description

SDO_FILTER Specifies which geometries may interact
with a given geometry.

SDO_RELATE Determines whether or not two geometries
interact in a specified way.

SDO_WITHIN_DISTANCE Determines if two geometries are within a
specified Euclidean distance from one
another.
erators 9-1

SDO_FILTER
SDO_FILTER

Purpose
This operator uses the spatial index to identify either the set of spatial objects that
may spatially interact with a given object (such as an area-of-interest,) or pairs of
spatial objects that might spatially interact. Objects spatially interact if they are not
disjoint. This operator performs only a primary filter operation.

Syntax
SDO_FILTER(geometry1, geometry2, params) ;

Keywords and Parameters

geometry1 Specifies a geometry column in a table. The column must be spatially indexed.
Data type is MDSYS.SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a geometry.
(Specified using a bind variable or SDO_GEOMETRY constructor.)
Data type is MDSYS.SDO_GEOMETRY.

PARAMS Determines the behavior of the operator. Data type is VARCHAR2.

Keyword Description

querytype Specifies valid query types: JOIN or WINDOW. This is a required parameter.

WINDOW implies that geometry2 should be considered a dynamic (transient)
area-of-interest. Use WINDOW when you want to compare a single geometry
(geometry2) to all the geometries in a column (geometry1).

JOIN implies that the second argument refers to a table column that must have
a spatial index built on it. Use JOIN when you want to compare all the
geometries of a column to all the geometries of another column.

idxtab1 Not supported in this release. Specifies the name of the index, if there are
multiple spatial indexes, for geometry1.

idxtab2 Not supported in this release. Specifies the name of the index table (if there are
multiple spatial indexes) for geometry2. Only valid for ’querytype = JOIN.’

layer_gtype Specifies special processing for point data.

If the columns you are comparing are comprised soley of point data, set this
parameter to ’POINT’ for optimal performance.
Data type is VARCHAR2.
Default is ’NOTPOINT’.
9-2 Oracle8i Spatial User’s Guide and Reference

SDO_FILTER
Returns
The expression SDO_FILTER(arg1, arg2, arg3) = ‘TRUE’ evaluates to TRUE for
object pairs that are non-disjoint and FALSE otherwise.

Usage Notes
■ The operator must always be used in a WHERE clause and the condition that

includes the operator should be an expression of the form SDO_FILTER(arg1,
arg2, arg3) = ‘TRUE’.

■ If the querytype is ’WINDOW’, geometry2 can come from a table or be a
transient SDO_GEOMETRY object (such as a bind variable or SDO_
GEOMETRY constructor). If geometry2 is transient, it is indexed in memory.

If geometry2 comes from a table column that is not spatially indexed,
geometry2 is indexed in memory.

If geometry2 comes from a table column that is spatially indexed, geometry2
will reuse its index. Performance will degrade if geometry2 is not indexed with
the same sdo_level parameter as geometry1.

Examples
1. SELECT A.gid

 FROM Polygons A, query_polys B
 WHERE B.gid = 1
 AND SDO_FILTER(A.Geometry, B.Geometry, ’querytype = WINDOW’) = ’TRUE’;

2. SELECT A.gid
 FROM Polygons A, query_polys B
 WHERE SDO_FILTER(A.Geometry, B.Geometry, ’querytype = JOIN’) = ’TRUE’;

3. Select A.Gid
 FROM Polygons A
 WHERE SDO_FILTER(A.Geometry, :aGeom, ’querytype=WINDOW’) = ’TRUE’;

4. Select A.Gid
 FROM Polygons A
 WHERE SDO_FILTER(A.Geometry, mdsys.sdo_geometry(3,NULL,NULL,
 mdsys.sdo_elem_info(1,3,3),
 mdsys.sdo_ordinates(x1,y1,x2,y2)),
 ’querytype=WINDOW’) = ’TRUE’;

Related Topics
SDO_RELATE
Spatial Operators 9-3

SDO_RELATE
SDO_RELATE

Purpose
This operator uses the spatial index to identify either the set of spatial objects that
have a particular spatial interaction with a given object such as an area-of-interest,
or pairs of spatial objects that have a particular spatial interaction.

This operator performs both primary and secondary filter operations.

Syntax
SDO_RELATE(geometry1, geometry2, params) ;

Keywords and Parameters

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is MDSYS.SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is MDSYS.SDO_GEOMETRY.

PARAMS Determines the behavior of the operator.
Data type is VARCHAR2.

Keyword Description

mask Specifies the topological relation of interest. This is a required parameter.

Valid values are one or more of {TOUCH, OVERLAP, EQUAL, INSIDE,
COVEREDBY, CONTAINS, COVERS, ANYINTERACT} in the
9-intersection pattern. Multiple masks are combined with a the logical
Boolean operator OR as follows: ’mask=(inside+touch)’. See Section 1.7
for an explanation of the 9-intersection relationship pattern.

querytype Valid query types are: JOIN or WINDOW. This is a required parameter.

WINDOW implies that geometry2 should be considered a dynamic
(transient) area-of-interest. Use WINDOW when you want to compare a
single geometry (geometry2) to all the geometries in a column
(geometry1).

JOIN implies that the second argument refers to a table column that must
have a spatial index built on it. Use JOIN when you want to compare all
the geometries of a column to all the geometries of another column.
9-4 Oracle8i Spatial User’s Guide and Reference

SDO_RELATE
Returns
The expression SDO_RELATE(geometry1,geometry2, ‘mask = <some_mask_val>
querytype = <some_querytype>’) = ‘TRUE’ evaluates to TRUE for object pairs that
have the topological relationship specified by <some_mask_val> and FALSE
otherwise.

Usage Notes
■ The operator must always be used in a WHERE clause, and the condition that

includes the operator should be an expression of the form SDO_RELATE(arg1,
arg2, ‘mask = <some_mask_val> querytype = <some_querytype>’) = ‘TRUE’.

■ If the query type is ’WINDOW’, geometry2 can come from a table or be a
transient SDO_GEOMETRY object (such as a bind variable or SDO_
GEOMETRY constructor). If geometry2 is transient, it is indexed in memory.

If geometry2 comes from a table column that is not spatially indexed,
geometry2 is indexed in memory.

If geometry2 comes from a table column that is spatially indexed, geometry2
will re-use its index. Performance will degrade if geometry2 is not indexed
with the same sdo_level parameter as geometry1.

■ Unlike the SDO_GEOM.RELATE function, DISJOINT and DETERMINE masks
are not allowed in the relationship mask. This is because SDO_RELATE uses
the spatial index to find candidates that may interact, and the information to
satisfy DISJOINT or DETERMINE is not present in the index.

Examples
1. SELECT A.gid

 FROM Polygons A, query_polys B

idxtab1 Not supported in this release. Specifies the name of the index, if there are
multiple spatial indexes, for geometry1.

idxtab2 Not supported in this release. Specifies the name of the index, if there are
multiple spatial indexes, for geometry2. Only valid for ’querytype =
JOIN’.

layer_gtype Specifies special processing for point data.

If the columns you are comparing are composed soley of point data, set
this parameter to ’POINT’ for optimal performance.
Data type is VARCHAR2.
Default is ’NOTPOINT’.
Spatial Operators 9-5

SDO_RELATE
 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 ’mask=ANYINTERACT querytype = WINDOW’) = ’TRUE’;

2. SELECT A.gid
 FROM Polygons A, query_polys B
 WHERE SDO_RELATE(A.Geometry, B.Geometry,
 ’mask=ANYINTERACT querytype = JOIN’) = ’TRUE’;

3. Select A.Gid
 FROM Polygons A
 WHERE SDO_RELATE(A.Geometry, :aGeom, ’mask=ANYINTERACT querytype=WINDOW’)
 = ’TRUE’;

4. Select A.Gid
 FROM Polygons A
 WHERE SDO_RELATE(A.Geometry, mdsys.sdo_geometry(3,NULL,NULL,
 mdsys.sdo_elem_info(1,3,3),
 mdsys.sdo_ordinates(x1,y1,x2,y2)),
 ’mask=ANYINTERACT querytype=WINDOW’) = ’TRUE’;

Related Topics
■ SDO_FILTER

■ SDO_WITHIN_DISTANCE

■ SDO_GEOM.RELATE()
9-6 Oracle8i Spatial User’s Guide and Reference

SDO_WITHIN_DISTANCE
SDO_WITHIN_DISTANCE

Purpose
This operator uses the spatial index to identify the set of spatial objects that are
within some specified Euclidean distance of a given object (such as an area or
point-of-interest.)

Syntax
SDO_WITHIN_DISTANCE(T.column, aGeom, params) ;

Keywords and Parameters

T.column Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is MDSYS.SDO_GEOMETRY.

aGeom Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is MDSYS.SDO_GEOMETRY.

PARAMS Determines the behavior of the operator.
Data type is VARCHAR2.

Keyword Description

distance Specifies the Euclidean distance value. This is a required parameter.
Data type is NUMBER.

idxtab1 Not supported in this release. Specifies the name of the index if there
are multiple spatial index tables for geometry1.

querytype Set ’querytype=FILTER’ to perform only a primary filter operation. If
querytype is not specified, both primary and secondary filter
operations are performed (default).
Data type is VARCHAR2.

layer_gtype Specifies special processing for point data.

If the columns you are comparing are composed soley of point data,
set this parameter to ’POINT’ for optimal performance.
Data type is VARCHAR2.
Default is ’NOTPOINT’.
Spatial Operators 9-7

SDO_WITHIN_DISTANCE
Returns
The expression SDO_WITHIN_DISTANCE(arg1, arg2, arg3) = ‘TRUE’ evaluates to
TRUE for object pairs that are within the specified distance, and FALSE otherwise.

Usage Notes
■ Distance between two extended objects (nonpoint objects such as lines and

polygons) is defined as the minimum distance between these two objects. The
distance between two adjacent polygons is zero.

■ The operator must always be used in a WHERE clause and the condition that
includes the operator should be an expression of the form:

 SDO_WITHIN_DISTANCE(arg1, arg2, ’distance = <some_dist_val>’) = ‘TRUE’

■ T.column must have a spatial index built on it.

■ SDO_WITHIN_DISTANCE() is not supported for spatial joins. See
Section 4.2.3 for a discussion on how to perform a spatial join within-distance
operation.

Examples
1. SELECT A.GID

 FROM POLYGONS A
 WHERE
 SDO_WITHIN_DISTANCE(A.Geometry, :aGeom, ’distance = 10’) = ’TRUE’ ;

2. SELECT A.GID
 FROM POLYGONS A
 WHERE
 SDO_WITHIN_DISTANCE(A.Geometry, mdsys.sdo_geometry(3,NULL,NULL,
 mdsys.sdo_elem_info(1,3,3),
 mdsys.sdo_ordinates(x1,y1,x2,y2)),
 ’distance = 10’) = ’TRUE’ ;

3. SELECT A.GID
 FROM POLYGONS A, Query_Points B
 WHERE B.GID = 1 AND
 SDO_WITHIN_DISTANCE(A.Geometry, B.Geometry, ’distance = 10’) = ’TRUE’ ;

Related Topics
■ SDO_RELATE

■ SDO_FILTER
9-8 Oracle8i Spatial User’s Guide and Reference

Part II

Relational Model

Oracle8i Spatial supports two models for representing geometries: relational and
object-relational. The two models are mutually exclusive. See Appendix A for a
description of how to choose the model best suited for your application.

This part of the User’s Guide and Reference contains the following chapters,
describing the relational model:

■ Chapter 10, "The Relational Schema"

■ Chapter 11, "Loading Spatial Data"

■ Chapter 12, "Querying Spatial Data"

■ Chapter 13, "Administrative Functions and Procedures"

■ Chapter 14, "Tuning Functions and Procedures"

■ Chapter 15, "Geometry Functions and Procedures"

■ Chapter 16, "Window Functions and Procedures"

The Relational S
10

The Relational Schema

Prior to release 8.1, the Spatial product always used four database tables to store
and index spatial data. This database structure is modeled on the first of three
Open GIS Features for SQL Implementation options, namely, using numeric SQL
types for geometry storage. This schema is different from the new spatial objects
model introduced in Spatial release 8.1 and described in Part II of this guide.
However there are still some advantages, discussed in Section A.1, to using this
model.

10.1 Database Structures for the Relational Implementation
The four tables, used to store and index geometry, are collectively referred to as a
layer. A template SQL script is provided to facilitate the creation of these tables. See
Section A.3.2, "crlayer.sql Script" for details.

Table 10–1 through Table 10–4 describe the schema of a Spatial layer.

Table 10–1 <layername>_SDOLAYER

Table 10–2 <layername>_SDODIM Table or View

1 SDO_MAXLEVEL is an optional column.
2 SDO_COORDSYS is an optional column.

SDO_ORDCNT SDO_LEVEL SDO_NUMTILES SDO_MAXLEVEL 1 SDO_COORDSYS2

<number> <number> <number> <number> <varchar>

SDO_DIMNUM SDO_LB SDO_UB SDO_TOLERANCE SDO_DIMNAME

<number> <number> <number> <number> <varchar>
chema 10-1

Database Structures for the Relational Implementation
Table 10–3 <layername>_SDOGEOM Table or View

Table 10–4 <layername>_SDOINDEX Table

The columns of each table are defined as follows:

<layername>_SDOLAYER:
■ SDO_ORDCNT - The SDO_ORDCNT column is the total number of

ordinates per row in the <layername>_SDOGEOM table. That is, the total
number of data value columns, and not the number of points or
coordinates. SDO_ORDCNT should not be multiplied by the total number
of dimensions per coordinate as it is already a total.

■ SDO_LEVEL - The SDO_LEVEL column stores the number of times the tiles
that interact with a geometry should be decomposed. It is the termination
criteria for fixed tiling. Use the SDO_TUNE.ESTIMATE_TILING_LEVEL
procedure to determine an appropriate tiling level for your data.

■ SDO_NUMTILES - The SDO_NUMTILES column is the number of
variable-sized tiles used to tessellate each object in the <layername>_
SDOGEOM table. This column must be set to NULL when using fixed-size
tiles.

■ SDO_MAXLEVEL - The SDO_MAXLEVEL column indicates the maximum
level to which a variable-sized tile can be decomposed. It is the termination
criteria for the variable component of hybrid tiling.

■ SDO_COORDSYS - The SDO_COORDSYS column is optional; where you
can indicate the name of the coordinate system, using a standard such as
POSC or OGIS.

1 SDO_MAXCODE is not required for the recommended fixed-size tile indexing algorithm.
2 SDO_GROUPCODE is not required for the recommended fixed-size tile indexing algorithm.

SDO_GID SDO_ESEQ SDO_ETYPE SDO_SEQ SDO_X1 SDO_Y1 ... SDO_Xn SDO_Yn

<number> <number> <number> <number> <number> <number> ... <number> <number>

SDO_GID SDO_CODE SDO_MAXCODE 1 SDO_GROUPCODE 2 SDO_META

<number> <raw> <raw> <raw> <raw>
10-2 Oracle8i Spatial User’s Guide and Reference

Database Structures for the Relational Implementation
<layername>_SDODIM:
■ SDO_DIMNUM - The SDO_DIMNUM column is the dimension to which this

row refers, starting with 1 and increasing.

■ SDO_LB - The SDO_LB column is the lower bound of the ordinate in this
dimension. For example, if the dimension is latitude, the lower bound
would be -90.

■ SDO_UB - The SDO_UB column is the upper bound of the ordinate in this
dimension. For example, if the dimension is latitude, the upper bound
would be 90.

■ SDO_TOLERANCE - The SDO_TOLERANCE column is the distance two
points can be apart and still be considered the same due to round-off
errors. Tolerance must be greater than zero. If you want zero tolerance,
enter a number such as 0.00005, where the number of zeroes to the right of
the decimal point matches the precision of your data. The extra 5 will
round up to your last decimal digit.

■ SDO_DIMNAME - The SDO_DIMNAME column is used for the usual name
applied to this dimension, such as longitude, latitude, X or Y.

<layername>_SDOGEOM:
■ SDO_GID - The SDO_GID column is a unique numeric identifier for each

geometry in a layer.

■ SDO_ESEQ - The SDO_ESEQ column enumerates each element in a
geometry, that is, the Element SEQuence number.

■ SDO_ETYPE - The SDO_ETYPE column is the geometric primitive type of
the element. For this release of Spatial, the valid values are SDO_
GEOM.POINT_TYPE, SDO_GEOM.LINESTRING_TYPE, or SDO_
GEOM.POLYGON_TYPE (ETYPE values 1, 2, and 3, respectively). The
SDO_ETYPE values 4 and 5, supported in the object-relational schema, are
not supported. Setting the ETYPE to zero indicates that this element should
be ignored. See Section A.2.8 for information on ETYPE=0.

■ SDO_SEQ - The SDO_SEQ column records the order (the SEQuence
number) of each row of data making up the element.

■ SDO_X1 - X value of the first coordinate.

■ SDO_Y1 - Y value of the first coordinate.

■ SDO_Xn - X value of the Nth coordinate.
The Relational Schema 10-3

Database Structures for the Relational Implementation
■ SDO_Yn - Y value of the Nth coordinate.

<layername>_SDOINDEX:
■ SDO_GID - The SDO_GID column is a unique numeric identifier for each

geometry in a layer. This can be thought of as a foreign key back to the
<layername>_SDOGEOM table.

■ SDO_CODE- The SDO_CODE column is the bit-interleaved ID of a tile that
covers SDO_GID. This column should be created as type RAW(255).

■ SDO_MAXCODE - The SDO_MAXCODE column describes a variable-sized
logical tile, which is the smallest tile (with the longest tile ID) in the current
quadrant. The SDO_MAXCODE column is SDO_CODE padded out one
place farther than the longest allowable code name for this index. This
column is not used for fixed-size tiles.

■ SDO_GROUPCODE -The SDO_GROUPCODE column is a prefix of SDO_
CODE. It represents a variable-sized tile at level <layername>_
SDOLAYER.SDO_LEVEL that contains or is equal to the tile represented by
SDO_CODE. This column is not used for fixed-size tiles.

■ SDO_META- The SDO_META column is not required for spatial queries. It
provides information necessary to find the bounds of a tile. See
Section A.2.4 for one possible use of this column.

Spatial provides stored procedures that assume the existence of the layer schema as
described in this section. While layer tables may contain additional columns, they
are required to contain at least the columns described in this section with the same
column names and data types.

Figure 10–1 illustrates how a geometry is stored in the database using Spatial and
the OGIS V1 schema model. The geometry to be stored is a complex polygon with a
hole in it.
10-4 Oracle8i Spatial User’s Guide and Reference

Database Structures for the Relational Implementation
Figure 10–1 Complex Polygon

<layername>_SDOLAYER

<layername>_SDODIM

<layername>_SDOGEOM

SDO_ORDCNT
(number)

4

SDO_
DIMNUM
(number)

SDO_LB
(number)

SDO_UB
(number)

SDO_
TOLERANCE
(number)

SDO_
DIMNAME
(varchar)

1 0 100 .05 X axis

2 0 100 .05 Y axis

SDO_GID
(number)

SDO_ESEQ
(number)

SDO_ETYPE
(number)

SDO_SEQ
(number)

SDO_X1
(number)

SDO_Y1
(number)

SDO_X2
(number)

SDO_Y2
(number)

1013 0 3 0 P1(X) P1(Y) P2(X) P2(Y)

1013 0 3 1 P2(X) P2(Y) P3(X) P3(Y)

1013 0 3 2 P3(X) P3(Y) P4(X) P4(Y)

1013 0 3 3 P4(X) P4(Y) P5(X) P5(Y)

1013 0 3 4 P5(X) P5(Y) P6(X) P6(Y)

G2 G3

G4G1

P3 P4

P5

P6

P7P8

P1

P2

Element 0

Element 1 (Hole)

Geometry 1013:
The Relational Schema 10-5

Database Structures for the Relational Implementation
In this example, the <layername>_SDOGEOM table is shown as an 8-column table
with 4 ordinates per row. In actual usage, Spatial supports N-wide1 tables. The
coordinates for the outer polygon in this example could have been loaded into a
single row containing values for coordinates P1 to P8, and then repeating P1 to
close the polygon. The coordinates would be stored in the SDO_X1 and SDO_Y1
through SDO_X9 and SDO_Y9 columns.

The data in the <layername>_SDOINDEX table is described in further detail
Section 1.6, “Indexing Methods”. The SDOINDEX table contains entries of the form
[SDO_GID, SDO_CODE] where each SDO_CODE represents a tile that interacts
with a geometry identified by SDO_GID. For a given SDO_GID value, there may be
one or more SDO_CODEs. Each SDO_CODE value may be associated with one or
more SDO_GIDs.

1 A <layername>_SDOGEOM table can have up to 1000 columns. The maximum number
of data columns is 1000, minus 4 for the other required spatial columns, and minus any
other user-defined columns. For polygons and line strings, storing 16 to 20 ordinates per
row is suggested for performance reasons, but not required. The objective is to minimize
the number of NULLs stored in the <layername>_SDOGEOM table.

1013 0 3 5 P6(X) P6(Y) P7(X) P7(Y)

1013 0 3 6 P7(X) P7(Y) P8(X) P8(Y)

1013 0 3 7 P8(X) P8(Y) P1(X) P1(Y)

1013 1 3 0 G1(X) G1(Y) G2(X) G2(Y)

1013 1 3 1 G2(X) G2(Y) G3(X) G3(Y)

1013 1 3 2 G3(X) G3(Y) G4(X) G4(Y)

1013 1 3 3 G4(X) G4(Y) G1(X) G1(Y)

SDO_GID
(number)

SDO_ESEQ
(number)

SDO_ETYPE
(number)

SDO_SEQ
(number)

SDO_X1
(number)

SDO_Y1
(number)

SDO_X2
(number)

SDO_Y2
(number)
10-6 Oracle8i Spatial User’s Guide and Reference

Loading Spatia
11

Loading Spatial Data

This chapter describes how to load spatial data into a database, including storing
the data in a table and creating a spatial index for it. This chapter refers to the
relational Spatial model only.

11.1 Load Model
There are two steps involved in loading raw data into a spatial database such that it
can be queried efficiently:

1. Loading the data into spatial tables

2. Creating or updating the index on the spatial tables

Table 11–1 through Table 11–4 show the format of the tables or views needed to
store and index spatial data. Note that these tables show the relational schema.

Table 11–1 <layername>_SDOLAYER Table

Table 11–2 <layername>_SDODIM Table or View

SDO_ORDCNT SDO_LEVEL SDO_NUMTILES SDO_MAXLEVEL SDO_COORDSYS

<number> <number> <number> <number> <varchar>

SDO_DIMNUM SDO_LB SDO_UB SDO_TOLERANCE SDO_DIMNAME

<number> <number> <number> <number> <varchar>
l Data 11-1

Load Process
Table 11–3 <layername>_SDOGEOM Table or View

Table 11–4 <layername>_SDOINDEX Table

11.2 Load Process
The process of loading data can be classified into two categories:

■ Bulk loading of data

This process is used to load large volumes of data into the database and uses
SQL*Loader to load the data.

■ Transactional inserts

This process is used to insert relatively small amounts of data into the database
and is analogous to the INSERT statement in SQL.

11.2.1 Bulk Loading
Bulk loading can be used to import large amounts of legacy or ASCII data into a
spatial database. Bulk loading is accomplished using SQL*Loader1.

Example 11–1 shows the format of the raw data and control file that would be
required to load the data into the SDOGEOM table with the layer name ROADS.
You can choose any format of ASCII data as long you can write a SQL*Loader
control file to load that data into the tables.

Assume that the ASCII data consists of a file with delimited columns, and separate
rows fixed by the limits of the table with the format shown in Example 11–1:

Example 11–1 Raw Data Format

geometry rows: GID, ESEQ, ETYPE, SEQ, LON1, LAT1, LON2, LAT2

1 See the Oracle8i Utilities User’s Guide for information on SQL*Loader.

SDO_GID SDO_ESEQ SDO_ETYPE SDO_SEQ SDO_X1 SDO_Y1 ... SDO_Xn SDO_Yn

<number> <number> <number> <number> <number> <number> ... <number> <number>

SDO_GID SDO_CODE SDO_MAXCODE SDO_GROUPCODE SDO_META

<number> <raw> <raw> <raw> <raw>
11-2 Oracle8i Spatial User’s Guide and Reference

Load Process
The coordinates in the geometry rows represent the end points of line segments,
which taken together, represent a polygon. Example 11–2 shows the control file for
loading the data into the geometry table.

Example 11–2 Control File to Load Data into the Geometry Table

LOAD DATA INFILE *
INTO TABLE ROADS_SDOGEOM
FIELDS TERMINATED BY WHITESPACE TRAILING NULLCOLS
(SDO_GID INTEGER EXTERNAL,
SDO_ESEQ INTEGER EXTERNAL,
SDO_ETYPE INTEGER EXTERNAL,
SDO_SEQ INTEGER EXTERNAL,
SDO_X1 FLOAT EXTERNAL,
SDO_Y1 FLOAT EXTERNAL,
SDO_X2 FLOAT EXTERNAL,
SDO_Y2 FLOAT EXTERNAL)

BEGINDATA
1 0 3 0 -122.401200 37.805200 -122.401900 37.805200
1 0 3 1 -122.401900 37.805200 -122.402400 37.805500
1 0 3 2 -122.402400 37.805500 -122.403100 37.806000
1 0 3 3 -122.403100 37.806000 -122.404400 37.806800
1 0 3 4 -122.404400 37.806800 -122.401200 37.805200
1 1 3 0 -122.405900 37.806600 -122.407549 37.806394
1 1 3 1 -122.407549 37.806394 -122.408300 37.806300
1 1 3 2 -122.408300 37.806300 -122.409100 37.806200
1 1 3 3 -122.409100 37.806200 -122.405900 37.806600
2 0 2 0 -122.410800 37.806000 -122.412300 37.805800
2 0 2 1 -122.412300 37.805800 -122.414100 37.805600
2 0 2 2 -122.414100 37.805600 -122.412300 37.805800
2 0 2 3 -122.412300 37.805800 -122.410800 37.806000
3 0 1 0 -122.567474 38.643564
3 0 1 1 -126.345345 39.345345

Note that table ROADS_SDOGEOM exists in the schema before attempting the
load.

In Example 11–3, the data resides in a single flat file and the data set consists of
point, line string, and polygon data. The data uses fixed-position columns and
overloaded table rows.

Example 11–3 Raw Data Format

SDO_GID SDO_ESEQ SDO_ETYPE SDO_SEQ SDO_X1 SDO_Y1 SDO_X2 SDO_Y2
Loading Spatial Data 11-3

Load Process
The corresponding control file for this format of input data is shown in
Example 11–4

Example 11–4 Control File to Load from a Single Flat File

LOAD DATA INFILE *
INTO TABLE NEW_SDOGEOM
(SDO_GID POSITION (1:5) INTEGER EXTERNAL,
SDO_ESEQ POSITION (7:10) INTEGER EXTERNAL,
SDO_ETYPE POSITION (12:15) INTEGER EXTERNAL,
SDO_SEQ POSITION (17:21) INTEGER EXTERNAL,
SDO_X1 POSITION (23:35) FLOAT EXTERNAL,
SDO_Y1 POSITION (37:48) FLOAT EXTERNAL,
SDO_X2 POSITION (50:62) FLOAT EXTERNAL,
SDO_Y2 POSITION (64:75) FLOAT EXTERNAL)

BEGINDATA
1 0 3 0 -122.401200 37.805200 -122.401900 37.805200
1 0 3 1 -122.401900 37.805200 -122.402400 37.805500
1 0 3 2 -122.402400 37.805500 -122.403100 37.806000
1 0 3 3 -122.403100 37.806000 -122.404400 37.806800
1 0 3 4 -122.404400 37.806800 -122.401200 37.805200
1 1 3 0 -122.405900 37.806600 -122.407549 37.806394
1 1 3 1 -122.407549 37.806394 -122.408300 37.806300
1 1 3 2 -122.408300 37.806300 -122.409100 37.806200
1 1 3 3 -122.409100 37.806200 -122.405900 37.806600
2 0 2 0 -122.410800 37.806000 -122.412300 37.805800
2 0 2 1 -122.412300 37.805800 -122.414100 37.805600
2 0 2 2 -122.414100 37.805600 -122.412300 37.805800
2 0 2 3 -122.412300 37.805800 -122.410800 37.806000
3 0 1 0 -122.567474 38.643564
3 0 1 1 -126.345345 39.345345

11.2.2 Transactional Insert Using SQL
Spatial uses standard Oracle8i tables that can be accessed or loaded with standard
SQL syntax. Example 11–5 loads data for a geometry (GID 17) consisting of a
polygon with four sides that contains both a hole and a point. Notice that the first
coordinate of the polygon (5, 20) is repeated at the end to close the polygon.

Example 11–5 Transactional Insert

INSERT INTO SAMPLE_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
11-4 Oracle8i Spatial User’s Guide and Reference

Load Process
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (17, 0, 3, 0, 5, 20, 5, 30, 10, 30, 10, 20, 5, 20);

 -- hole
INSERT INTO SAMPLE_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (17, 1, 3, 0, 8, 21, 8, 24, 9, 24, 9, 21, 8, 21);

 -- point
INSERT INTO SAMPLE_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1)
 VALUES (17, 2, 1, 0, 9, 29);

The SQL INSERT statement inserts one row of data per call. In Example 11–5, the
table had enough columns to store the polygon in a single row. However, if your
table had fewer columns (or your polygon had more points), you would have to
perform multiple inserts in order to match the table structure; the data would not
wrap automatically to the next row. To load a large geometry, repeat the SDO_GID,
SDO_ESEQ, and SDO_ETYPE, and increment the SDO_SEQ for each line as shown
in Example 11–6.

Example 11–6 Transactional Insert for a Large Geometry

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (18, 0, 3, 0, 1, 15, 1, 16, 2, 17, 3, 17, 4, 18);

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (18, 0, 3, 1, 4, 18, 5, 18, 6, 19, 7, 18, 6, 17);

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (18, 0, 3, 2, 6, 17, 7, 16, 7, 15, 6, 14, 7, 13);

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (18, 0, 3, 3, 7, 13, 6, 12, 5, 13, 4, 13, 3, 14);
Loading Spatial Data 11-5

Index Creation
INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3, SDO_
Y3)
 VALUES (18, 0, 3, 4, 3, 14, 2, 14, 1, 15);

11.3 Index Creation
Once data has been loaded into the spatial tables through either bulk or
transactional loading, a spatial index needs to be created on the tables for efficient
access to the data.

Create an Oracle table called <layername>_SDOINDEX as follows:

SQL> create table <layername>_SDOINDEX
 2 (
 3 SDO_GID number,
 4 SDO_CODE raw(255)
 5);

For a bulk load, you can call the SDO_ADMIN.POPULATE_INDEX() procedure
once to tessellate the geometry table and add the generated tiles to the spatial index
table. The argument to this procedure is simply the name of the layer. The level to
which the geometry should be tessellated and whether to use the fixed or the
hybrid indexing technique is determined by values in the <layername>_
SDOLAYER table.

 If data is updated in or deleted from a specific geometry table, you can call SDO_
ADMIN.UPDATE_INDEX() to update the index for one SDO_GID. The arguments
to this procedure are the name of the layer and the SDO_GID of the designated
geometry.

See Chapter 13, "Administrative Functions and Procedures" for a complete
description of the SDO_ADMIN.POPULATE_INDEX() and SDO_ADMIN.UPDATE_
INDEX() procedures.

11.3.1 Choosing a Tessellation Algorithm
Spatial provides two methods for spatial indexing, fixed and hybrid. Fixed
indexing is recommended for the relational Spatial model.

Which tessellation algorithm is used by the SDO_ADMIN.POPULATE_INDEX() and
SDO_ADMIN.UPDATE_INDEX() procedures is determined by the values of the
11-6 Oracle8i Spatial User’s Guide and Reference

Index Creation
SDO_LEVEL and SDO_NUMTILES columns in the <layername>_SDOLAYER table
as shown inTable 11–5.

11.3.2 Spatial Indexing with Fixed-Size Tiles
Oracle recommends using fixed-size cover tiles for indexing a geometry stored
using the relational model.

The fixed-size tile algorithm is expressed as a level referring to the number of
tessellations performed. To use fixed-size tile indexing, set the SDO_NUMTILES
column in the <layername>_SDOLAYER table to NULL and the SDO_LEVEL
column to the desired tiling level. The relationship between the tiling level and the
resulting size of the tiles is dependent on the domain of the layer.

The domain used for indexing is defined by the upper and lower boundaries of
each dimension stored in the <layername>_SDODIM table. A typical domain in a
GIS application could be -90 to 90 degrees for latitude, and -180 to 180 degrees for
longitude1, as represented in Figure 11–1.

1 The transference of the domain onto a sphere or Mercator projection is left to GIS (or
other) application programmers. Spatial treats the domain as a conventional X by Y
rectangle.

Table 11–5 Choosing a Tessellation Algorithm

SDO_LEVEL SDO_NUMTILES Action

NULL NULL Error.

>= 1 NULL Fixed indexing with fixed-size tiles
(recommended).

>= 1 >= 1 Hybrid indexing with fixed-size and
variable-sized tiles. The SDO_LEVEL column
defines the fixed tile size. The SDO_NUMTILES
column defines the number of tiles to generate per
geometry.

NULL >= 1 Not supported.
Loading Spatial Data 11-7

Index Creation
Figure 11–1 Sample GIS Domain

If the SDO_LEVEL column is set to 1, then the tiles created by the indexing
mechanism are the same size as tiles at the first level of tessellation. Each tile would
be 180 degrees by 90 degrees as shown in Figure 11–2.

Figure 11–2 Fixed-Size Tiling at Level 1

The formula for the number of fixed-size tiles is 4n where n is the number of
tessellations, stored in the SDO_LEVEL column. Figure 11–3 shows fixed-size tiling
at level 2. In this figure, each tile is 90 degrees by 45 degrees.

-180 180

90

-90

-180 0 180

90

-90

 0
11-8 Oracle8i Spatial User’s Guide and Reference

Index Creation
Figure 11–3 Fixed-Size Tiling at Level 2

The size of a tile can be determined by applying the following formula to each
dimension:

length = (upper_bound - lower_bound) / 2 ^ sdo_level

The length refers to the length of the tile along the specified dimension. Applying
this formula to the tiling shown in Figure 11–3 yields the following sizes:

length for dimension X = (180 - (-180)) / 2̂ 2
 = (360) / 4
 = 90
length for dimension Y = (90 - (-90)) / 2̂ 2
 = (180) / 4
 = 45

Thus, at level 2 the tiles are 90x45 degrees in size. As the number of levels increases,
the tiles become smaller and smaller. Smaller tiles provide a more precise fit of the
tiles over the geometry being indexed. However, because the number of tiles
generated is unbounded, you must take into account the performance implications
of using higher levels. The SDO_TUNE.ESTIMATE_TILING_LEVEL() function
can be used to determine an appropriate level for indexing with fixed-size tiles. See
Chapter 14 for a description of this procedure.

Besides the performance aspects related to selecting a fixed-size tile, tessellating the
geometry into fixed-size tiles might have benefits related to the type of data being
stored, such as using tiles sized to represent 1-acre farm plots, city blocks, or
individual pixels on a display. Data modeling is an important part any database
design, and is essential in a spatial database where the data often represents actual
physical locations.

-180 -90 0 90 180

90

-90

 0
Loading Spatial Data 11-9

Index Creation
In the following example, assume that data has been loaded into a layer called
ROADS, and you want to create a spatial index on that data. This is accomplished
by first creating a table ROADS_SDOINDEX and invoking the following procedure:

sdo_admin.populate_index(’ROADS’);

The value in the SDO_LEVEL column of the ROADS_SDOLAYER table can be used
as a tuning parameter while tessellating objects. Increasing the level increases the
number of tiles to provide a more precise fit of the tiles over the object. See the
description of the ESTIMATE_TILING_LEVEL() function in Chapter 14 for
information on estimating the tiling level in several different ways.

After the SDO_ADMIN.POPULATE_INDEX() procedure has been called to fill the
spatial index, you should also create a concatenated index using the SDO_CODE
and SDO_GID columns. The concatenated index helps the join to the <layername>_
SDOGEOM table during a query. The SDO_GID values from the primary filter will
come from the index instead of from the table.

If a geometry with an SDO_GID 5944 has been added to the spatial tables, update
the index with the following procedure:

sdo_admin.update_index(’ROADS’, 5944);

Like the CREATE INDEX statement in SQL, the SDO_ADMIN.POPULATE_INDEX()
procedure performs an implicit commit. The SDO_ADMIN.UPDATE_INDEX()
procedure, however, does not. Therefore, SDO_ADMIN.UPDATE_INDEX()
transactions can be rolled back.

The SDO_ADMIN.POPULATE_INDEX() procedure operates as a single transaction.
To reduce the amount of rollback space required to execute this procedure, you can
write a routine that loops and calls SDO_ADMIN.UPDATE_INDEX(). See
Section A.3.1, "cr_spatial_index.sql Script" for more information.

11.3.3 Hybrid Spatial Indexing with Fixed-Size and Variable-Sized Tiles
This section describes a variation on the linear quadtree (Morton encoding) scheme
that uses both fixed-size and variable-sized tiles as a spatial indexing mechanism.
the terms hybrid indexing, hybrid tiling, and hybrid tessellation will be used
interchangeably in this section. Spatial indexing with purely variable-sized tiles is
not recommended for production systems and is not supported in this release.

To use hybrid tiling, the SDO_LEVEL and SDO_NUMTILES columns in the
<layername>_SDOLAYER table must contain valid values. That is, both SDO_
LEVEL and SDO_NUMTILES must be greater than one.
11-10 Oracle8i Spatial User’s Guide and Reference

Index Creation
The SDO_NUMTILES column determines the number of tiles that will be used to
cover a geometry being indexed. Typically, this value is small, such as 4 or 8 tiles.
However, the larger the number of tiles, the better the tiles will fit the geometry
being covered. This increases the selectivity of the primary filter, but also increases
the number of index entries per geometry (See Section 12.3.2 and Section 12.3.3 for
a discussion of primary and secondary filters.) The SDO_NUMTILES value should
be larger for long linear spatial entities, such as major highways or rivers, than for
area-based spatial entities such as county or state boundaries.

The SDO_LEVEL column determines the size of the fixed tiles used in hybrid
indexing. Setting the proper SDO_LEVEL value may appear more like art than
science. Performing some simple data analysis and testing, however, puts the
process back in the realm of science. One approach would be use the SDO_
TUNE.ESTIMATE_TILING_LEVEL() function to determine an appropriate
starting SDO_LEVEL value, and then compare the performance with slightly
higher or lower values. This, and other techniques, are described in Appendix A.

Assume that the ROADS layer has already been loaded. Furthermore, assume that
the there is one row with valid values for the ROADS_SDOLAYER.SDO_LEVEL
and ROADS_SDOLAYER.SDO_NUMTILES columns. To create the spatial index on
ROADS, first create a table ROADS_SDOINDEX with appropriate columns:

SQL> create table <layername>_SDOINDEX
 2 (
 3 SDO_GID number,
 4 SDO_CODE raw(255),
 5 SDO_GROUPCODE raw(255),
 6 SDO_MAXCODE raw(20),
 7 SDO_META raw(255),
 8);

Then, invoke SDO_ADMIN.POPULATE_INDEX(’ROADS’) to build the spatial
index.

After the SDO_ADMIN.POPULATE_INDEX() procedure has been called to fill the
spatial index, you should also create a concatenated index on the SDO_CODE and
SDO_GID columns. The concatenated index helps the join to the
<layername>_SDOGEOM table during a query. The SDO_GID values from the
primary filter will come from the index instead of from the table.

If a geometry with an SDO_GID 5944 has been added to the spatial tables, update
the index with the following procedure:

sdo_admin.update_index(’ROADS’, 5944);
Loading Spatial Data 11-11

Index Creation
Like the CREATE INDEX statement in SQL, the SDO_ADMIN.POPULATE_INDEX()
procedure performs an implicit commit. The SDO_ADMIN.UPDATE_INDEX()
procedure, however, does not. Therefore, SDO_ADMIN.UPDATE_INDEX()
transactions can be rolled back.

The SDO_ADMIN.POPULATE_INDEX() procedure operates as a single transaction.
To reduce the amount of rollback space required to execute this procedure, you can
write a routine that loops and calls SDO_ADMIN.UPDATE_INDEX(). See
Section A.3.1, "cr_spatial_index.sql Script" for more information.
11-12 Oracle8i Spatial User’s Guide and Reference

Querying Spati
12

Querying Spatial Data

This chapter describes how the structures of a Spatial layer are used to resolve
spatial queries and spatial joins. For the sake of clarity, the examples all use fixed
tiling. This chapter refers to the relational Spatial model only.

12.1 Query Model
Spatial uses a two-tier query model to resolve spatial queries and spatial joins. The
term is used to indicate that two distinct operations are performed in order to
resolve queries. The output of both operations yields the exact result set.

The two operations are referred to as primary and secondary filter operations.

■ The primary filter permits fast selection of a small number of candidate records
to pass along to the secondary filter. The primary filter uses approximations in
order to reduce computational complexity and is considered a lower cost filter.

■ The secondary filter applies exact computational geometry to the result set of
the primary filter. These exact computations yield the final answer to a query.
The secondary filter operations are computationally more expensive, but they
are applied only to the relatively small result set from the primary filter.

12.2 Spatial Index Data Structures
An important concept in the spatial data model is that each element is represented
in the <layername>_SDOINDEX table by a set of exclusive and exhaustive tiles.
This means that no tiles overlap each other (exclusive), and that the tiles fully cover
the object (exhaustive).

Consider the following layer containing several objects in Figure 12–1. Each object
is labeled with its SDO_GID. The relevant tiles are labeled with ‘Tn’.
al Data 12-1

Spatial Index Data Structures
Figure 12–1 Tessellated Layer with Multiple Objects

The Spatial layer tables would have the following information stored in them for
these geometries as shown in Table 12–1, Table 12–2, and Table 12–3.

1243

1013

T1 T2 T7

T3 T4

T6T5

61

T8 T9

501

12
12-2 Oracle8i Spatial User’s Guide and Reference

Spatial Index Data Structures
Table 12–1 <layername>_SDOLAYER

Table 12–2 <layername>_SDOGEOM

SDO_
ORDCNT
(number)

SDO_LEVEL
(number)

SDO_NUMTILES
(number)

4 2 NULL

SDO_GID
(number)

SDO_
ESEQ
(number)

SDO_
ETYPE
(number)

SDO_SEQ
(number)

SDO_X1
(number)

SDO_Y1
(number)

SDO_X2
(number)

SDO_Y2
(number)

1013 0 3 0 P1(X) P1(Y) P2(X) P2(Y)

1013 0 3 1 P2(X) P2(Y) P3(X) P3(Y)

1013 0 3 2 P3(X) P3(Y) P4(X) P4(Y)

1013 0 3 3 P4(X) P4(Y) P5(X) P5(Y)

1013 0 3 4 P5(X) P5(Y) P6(X) P6(Y)

1013 0 3 5 P6(X) P6(Y) P7(X) P7(Y)

1013 0 3 6 P7(X) P7(Y) P8(X) P8(Y)

1013 0 3 7 P8(X) P8(Y) P1(X) P1(Y)

1013 1 3 0 G1(X) G1(Y) G2(X) G2(Y)

1013 1 3 1 G2(X) G2(Y) G3(X) G3(Y)

1013 1 3 2 G3(X) G3(Y) G4(X) G4(Y)

1013 1 3 3 G4(X) G4(Y) G1(X) G1(Y)

501 0 3 0 A1(X) A1(Y) A2(X) A2(Y)

501 0 3 1 A2(X) A2(Y) A3(X) A3(Y)

501 0 3 2 A3(X) A3(Y) A4(X) A4(Y)

501 0 3 3 A4(X) A4(Y) A1(X) A1(Y)

1243 0 3 0 B1(X) B1(Y) B2(X) B2(Y)

1243 0 3 1 B2(X) B2(Y) B3(X) B3(Y)

1243 0 3 2 B3(X) B3(Y) B1(X) B1(Y)

12 0 2 0 D1(X) D1(Y) D2(X) D2(Y)

61 0 3 0 C1(X) C1(Y) C2(X) C2(Y)

61 0 3 1 C2(X) C2(Y) C3(X) C3(Y)

61 0 3 2 C3(X) C3(Y) C4(X) C4(Y)

61 0 3 3 C4(X) C4(Y) C5(X) C5(Y)

61 0 3 4 C5(X) C5(Y) C1(X) C1(Y)
Querying Spatial Data 12-3

Spatial Query
Table 12–3 <layername>_SDOINDEX

12.3 Spatial Query
A typical spatial query is to request all objects that lie within a defined fence or
window. A query window is shown in Figure 12–2 by the dotted-line box. A
dynamic query window refers to a fence that is not defined in the database, but
that must be defined and indexed prior to using it.

SDO_GID
(number)

SDO_CODE
(raw)

1013 T1

1013 T2

1013 T3

1013 T4

501 T2

501 T7

1243 T3

1243 T4

1243 T5

1243 T6

12 T3

12 T4

61 T8

61 T9
12-4 Oracle8i Spatial User’s Guide and Reference

Spatial Query
Figure 12–2 Tessellated Layer with a Query Window

12.3.1 Dynamic Query Window
If a query window does not already exist in the database, you must first insert it

1243

12

1013

T1 T2 T7

T3 T4

T6T5

61

T8 T9

501
Querying Spatial Data 12-5

Spatial Query
and create an index for it. Because not all Oracle users necessarily have insert
privileges, Spatial includes the SDO_WINDOW PL*SQL package. See Chapter 16,
"Window Functions and Procedures", for more information.

The SDO_WINDOW package is not automatically installed when you install
Spatial. This allows a DBA to control the schema under which this package
operates. Choose an Oracle user who has insert privilege and compile the SDO_
WINDOW package under that user. For example, you could choose the mdsys
Oracle user:

sqlplus mdsys/password
SQL> @$ORACLE_HOME/md/admin/sdowin.sql
SQL> @$ORACLE_HOME/md/admin/prvtwin.plb

After compiling, the routines are available for use. When you call a routine in this
package, and the routine performs an INSERT operation, the insert will occur
under the mdsys schema. Note that it is not a requirement to use the mdsys
account. You can select any Oracle user with insert privileges.

If you need to perform other INSERT, UPDATE, or DELETE operations, and you
cannot guarantee that the user of your application has those privileges, you can
write your own PL*SQL package similar to the SDO_WINDOW package. You will
have to compile your package under a user with the required database privileges.

12.3.2 Primary Filter Query
To resolve the window query shown in Figure 12–2, build a layer for the query
fence if it is not already defined:

SQL> EXECUTE MDSYS.SDO_WINDOW.CREATE_WINDOW_LAYER (fencelayer, DIMNUM1, LB1,
UB1, TOLERANCE1, DIMNAME1, DIMNUM2, LB2, UB2, TOLERANCE2, DIMNAME2);

Next, insert the ordinates for the query fence into the layer tables:

SQL> EXECUTE DBMS_OUTPUT.PUTLINE(MDSYS.SDO_WINDOW.BUILD_WINDOW_FIXED(comp_user,
 fencelayer, SDO_ETYPE, TILE_SIZE, X1,Y1, X2,Y2, X3,Y3, X4,Y4, X1,Y1));

Query SDO_LEVEL from the <fencelayer>_SDOLAYER table to pass the correct
TILE_SIZE to the SDO_WINDOW.BUILD_WINDOW_FIXED() procedure.

Now you can construct a query that joins the index of the query window to the
appropriate layer index and determines all elements that have these tiles in
common. The following SQL query form is used:

SELECT DISTINCT A.SDO_GID
12-6 Oracle8i Spatial User’s Guide and Reference

Spatial Query
FROM <layer1>_SDOINDEX A, <fencelayer>_SDOINDEX B
WHERE A.SDO_CODE = B.SDO_CODE
 AND B.SDO_GID = {GID returned from SDO_WINDOW.BUILD_WINDOW_FIXED};

The result set of this query is the primary filter set. In this case, the result set is:

 { 1013,501,1243,12 }

12.3.3 Secondary Filter Query
The secondary filter performs exact geometry calculations of the tiles selected by
the primary filter. The following example shows the primary and secondary filters:

SELECT SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3, SDO_Y3, SDO_X4, SDO_Y4
FROM <layer1>_SDOGEOM,
(
SELECT SDO_GID GID1
 FROM (
 SELECT DISTINCT A.SDO_GID
 FROM <layer1>_SDOINDEX A,
 <fencelayer>_SDOINDEX B
 WHERE A.SDO_CODE = B.SDO_CODE
 AND B.SDO_GID = {GID returned from SDO_WINDOW.BUILD_WINDOW_FIXED}

)
 WHERE SDO_GEOM.RELATE(’<layer1>’, SDO_GID, ’ANYINTERACT’, ’<fence>’, 1) =
’TRUE’
)
WHERE SDO_GID = GID1;

This query would return all the geometry IDs that lie within or overlap the
window. In this example, the results of the secondary filter would be:

{1243,1013}

The example in this section uses the SDO_GEOM.RELATE() secondary filter. For
better performance, use the overloaded version of this function which explicitly
lists the coordinates of the query window whenever possible. See Chapter 15,
"Geometry Functions and Procedures", for details on using this function.
Querying Spatial Data 12-7

Spatial Join
12.4 Spatial Join
A spatial join is the same as a regular join except that the predicate involves a
spatial operator. In Spatial, a spatial join takes place between two layers;
specifically, two <layername>_SDOINDEX tables are joined.

Spatial joins can be used to answer questions such as, “which highways cross
national parks?”

This query could be resolved by joining a layer that stores national park geometries
with one that stores highway geometries. Figure 12–3 illustrates how the join
would be accomplished for this example using the OGIS V1 schema model.

Figure 12–3 Spatial Join of Two Layers

The PRIMARY filter would identify pairs of park GIDs and highway GIDs that
cross in the index. The query that performs the primary filter join (assuming
fixed-size tile indexing) is as follows:

SELECT DISTINCT A.SDO_GID,B.SDO_GID
 FROM PARKS_SDOINDEX A, HIGHWAYS_SDOINDEX B
 WHERE A.SDO_CODE = B.SDO_CODE

User

Defined

Attribute

Tables

Spatial

Data

PARKS_SDOINDEX:

CODE

Structures

PARKS:

PARKS_SDODIM:

PARKS_SDOGEOM:

GID

DIM LB UB

NAME GID CAMPSITE# ...

HIGHWAYS:

HIGHWAYS_SDODIM:

ESEQ ETYPE SEQ X1

HIGHWAYS_SDOGEOM:

HIGHWAYS_SDOINDEX:

GID

NAME GID WIDTH ...

MAX CODEGID MAX

Y1 GID ESEQ ETYPE SEQ X1 Y1

TOL NAME DIM LB UB TOL NAME
12-8 Oracle8i Spatial User’s Guide and Reference

Spatial Join
The result set of the primary filter must be passed through the secondary filter to
get the exact set of parks/highways GID pairs that cross. The full query is shown in
the following example:

Suppose the original query had asked, “which 4-lane highways cross national
parks?” You could modify the preceding SQL statement to join back to the
HIGHWAYS table where HIGHWAYS.WIDTH=4. This combination of spatial and
relational attributes in a single query is one of the essential reasons for using
Spatial.

SELECT DISTINCT GID_B
 FROM (
 SELECT /*+ index(a PARKS_SDOINDEX_SDO_CODE_INDEX)
 index(b HIGHWAYS_SDOINDEX_SDO_CODE_INDEX)
 use_nl(a b)
 no_merge */
 DISTINCT A.SDO_GID GID_A, B.SDO_CODE GID_B
 FROM PARKS_SDOINDEX A, HIGHWAYS_SDOINDEX B
 WHERE A.SDO_CODE = B.SDO_CODE
)
 WHERE SDO_GEOM.RELATE (’PARKS’, GID_A,
 ’ANYINTERACT’,
 ’HIGHWAYS’, GID_B) <> ’FALSE’;

Primary

Secondary

Filter

Filter
Querying Spatial Data 12-9

Spatial Join
12-10 Oracle8i Spatial User’s Guide and Reference

Administrative Functions and Proce
13

Administrative Functions and Procedures

The SDO_ADMIN procedures create and maintain spatial structures in the
database, and are used to perform the following tasks:

■ Tessellate entries in a geometry table and place them in a spatial index table

■ Verify spatial index information

This chapter contains descriptions of the administrative functions and procedures
used for working with spatially indexed geometric data. This chapter refers to the
relational Spatial model only.

Table 13–1 lists the administrative functions and procedures for working with
spatially indexed geometry-based data.

Table 13–1 Administrative Procedures for Spatially Indexed Data

Procedure or Function Description

SDO_ADMIN.POPULATE_INDEX Generates a spatial index for the geometry table
using either a set number of tiles, or a fixed-size tile.

SDO_ADMIN.POPULATE_INDEX_FIXED Generate a spatial index using fixed-size tiles. This is
a deprecated procedure.

SDO_ADMIN.POPULATE_INDEX_FIXED_
POINTS

Generates a spatial index using fixed-size tiles for a
layer composed solely of point data.

SDO_ADMIN.SDO_CODE_SIZE Determines the required sizes for SDO_CODE and
SDO_MAXCODE.

SDO_ADMIN.SDO_VERSION Returns the release number of the installed version
of the Spatial option.

SDO_ADMIN.UPDATE_INDEX Updates the spatial index based on changes to the
geometry table.
dures 13-1

SDO_ADMIN.UPDATE_INDEX_FIXED Updates a spatial index with fixed-size tiles. This is
a deprecated procedure.

SDO_ADMIN.VERIFY_LAYER Checks for the existence of geometry and spatial
index tables.

Table 13–1 Administrative Procedures for Spatially Indexed Data (Cont.)

Procedure or Function Description
13-2 Oracle8i Spatial User’s Guide and Reference

SDO_ADMIN.POPULATE_INDEX
SDO_ADMIN.POPULATE_INDEX

Purpose
This procedure tessellates a list of geometric objects created by selecting all the
entries in the geometry table that do not have corresponding entries in the spatial
index table.

This procedure can generate either fixed-size or variable-sized tiles depending on
values stored in the <layername>_SDOLAYER table.

Syntax
SDO_ADMIN.POPULATE_INDEX (layername)

Keywords and Parameters

Usage Notes
Consider the following when using this procedure:

■ The <layername>_SDOINDEX table must be created prior to calling this
procedure. Use the SQL CREATE TABLE statement to create the spatial index
table.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

■ This procedure generates either fixed-size or variable-sized tiles depending on
values stored in the <layername>_SDOLAYER table as follows:

layername Specifies the name of the data set layer. The layer name is used to construct
the names of the geometry and spatial index tables.
Data type is VARCHAR2.

SDO_LEVEL SDO_NUMTILES Action

NULL NULL Error.

>= 1 NULL Perform fixed-size tiling (recommended for
relational model).
Administrative Functions and Procedures 13-3

SDO_ADMIN.POPULATE_INDEX
■ If the <layername>_SDOINDEX table is empty, the procedure selects all the
geometries in the geometry table and generates index entries for them. If the
index table is not empty, the procedure determines which entries in the
geometry table do not have index entries, and generates them.

■ SDO_ADMIN.POPULATE_INDEX() behaves similarly to the CREATE INDEX
statement in SQL. An implicit commit is executed after the procedure is called.

■ SDO_ADMIN.POPULATE_INDEX() operates as a single transaction. To reduce
the amount of rollback required to execute this procedure, you can write a
routine that loops and calls SDO_ADMIN.UPDATE_INDEX() repeatedly. See
Section A.3.1, "cr_spatial_index.sql Script" for more information.

Example 13–1 tessellates all the geometric objects in the LAYER1_SDOGEOM table
and adds the generated tiles to the LAYER1_SDOINDEX table.

Example 13–1 Populate an Index

SQL> EXECUTE SDO_ADMIN.POPULATE_INDEX(’layer1’);
SQL> COMMIT;

Related Topics
■ SDO_ADMIN.UPDATE_INDEX() procedure

>= 1 >= 1 Perform hybrid indexing. The SDO_LEVEL
column defines the partition bucket size. The
SDO_NUMTILES column defines the number
of tiles to generate per geometry.

Note: hybrid indexing is for experimentation
purposes only in the relational model..

NULL >= 1 Not supported.

SDO_LEVEL SDO_NUMTILES Action
13-4 Oracle8i Spatial User’s Guide and Reference

SDO_ADMIN.POPULATE_INDEX_FIXED
SDO_ADMIN.POPULATE_INDEX_FIXED

Purpose
This procedure is provided for compatibility with Spatial Cartridge release 8.0.3
tables, but it has been replaced by enhanced features in the SDO_
ADMIN.POPULATE_INDEX() procedure, in order to support schema changes as
shown in Section 10.1.

This procedure tessellates a list of geometric objects created by selecting all the
entries in the geometry table that do not have corresponding entries in the spatial
index table. This procedure can also tessellate all the geometric objects in a
geometry table or view and add the tiles to the spatial index table.

Use this procedure to tessellate the geometries into fixed-size tiles.

Syntax
SDO_ADMIN.POPULATE_INDEX_FIXED (layername, tile_size, [synch_flag,] [sdo_tile_flag,]
 [sdo_maxcode_flag])

Keywords and Parameters

layername Specifies the name of the data set layer. The layer name is used to construct
the name of the geometry and spatial index tables.
Data type is VARCHAR2.

tile_size Specifies the number of tessellations required to achieve the desired tile size
(see the Usage Notes).
Data type is INTEGER.

synch_flag Specifies whether to tessellate every geometric object in the geometry table,
or only those that do not have corresponding entries in the spatial index
table. If TRUE, only those geometric objects in the geometry table that do not
have any corresponding tiles in the spatial index table are tessellated. If
FALSE, all the geometric objects in the geometry table are tessellated and
new tiles are simply added to the spatial index table.
Default value is TRUE.
Data type is BOOLEAN.

sdo_tile_flag For internal use only. Not supported in this release.
Default value is FALSE.
Administrative Functions and Procedures 13-5

SDO_ADMIN.POPULATE_INDEX_FIXED
Usage Notes

Consider the following when using this procedure:

■ The SQL CREATE TABLE statement is used to create the spatial index table,
<layername>_SDOINDEX, prior to calling this procedure.

■ The layer is tessellated into equal-sized tiles based on the number passed in the
tile_size parameter. The value of tile_size specifies how many times to
tessellate the layer. See Section 11.3.2, "Spatial Indexing with Fixed-Size Tiles".

■ For performance reasons, set the synch_flag to FALSE when the spatial index
table contains zero rows.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

■ SDO_ADMIN.POPULATE_INDEX_FIXED() behaves similarly to the CREATE
INDEX statement in SQL. An implicit commit is executed after the procedure is
called.

■ SDO_ADMIN.POPULATE_INDEX_FIXED() operates as a single transaction. To
reduce the amount of rollback required to execute this procedure, you can
write a routine that loops and calls SDO_ADMIN.UPDATE_INDEX_FIXED()
repeatedly. See Section A.3.1, "cr_spatial_index.sql Script" for more information.

Example 13–2 tessellates all the geometric objects in the LAYER1_SDOGEOM table
using fixed-size tiles, and adds the generated tiles to the LAYER1_SDOINDEX table.

sdo_
maxcode_flag

Specifies whether or not the SDO_MAXCODE column is populated. If TRUE,
SDO_MAXCODE is populated. If FALSE, the column is not populated. Set
this flag to FALSE for the recommended fixed-size tiling.
Default value is TRUE.
Data type is BOOLEAN.

Note: This procedure is likely to be removed in a future release of
Spatial.
13-6 Oracle8i Spatial User’s Guide and Reference

SDO_ADMIN.POPULATE_INDEX_FIXED
Example 13–2 Populate an Index with Fixed-Size Tiles

SQL> EXECUTE SDO_ADMIN.POPULATE_INDEX_FIXED(’layer1’,4,FALSE,FALSE,FALSE);

Related Topics
■ SDO_ADMIN.UPDATE_INDEX_FIXED() procedure

■ SDO_TUNE.ESTIMATE_TILING_LEVEL() function
Administrative Functions and Procedures 13-7

SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS
SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS

Purpose
This procedure builds an index with fixed-size tiles for a geometry layer consisting
solely of point data. Because a point is indexed using a single tile, special
optimizations are possible.

Syntax
SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS (layername, sdo_tile_flag, commit_count)

Keywords and Parameters

Usage Notes
Consider the following when using this procedure:

■ The <layername>_SDOLAYER, <layername>_SDOGEOM, and <layername>_
SDODIM tables must be populated prior to calling this procedure.

■ The <layername>_SDOINDEX table must be created prior to calling this
procedure. Use the SQL CREATE TABLE statement to create the spatial index
table.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

■ If the <layername>_SDOINDEX table is empty, the procedure selects all the
geometries in the geometry table and generates index entries for them. If the
index table is not empty, the procedure determines which entries in the
geometry table do not have index entries, and generates them.

layername Specifies the name of the data set layer.
Data type is VARCHAR2.

sdo_tile_flag Specifies whether or not to generate the SDO_TILE column.
Default value is FALSE.
Data type is BOOLEAN.

commit_count Specifies how many points to index before updating and committing the
data.
Default value is 50.
Data type is NUMBER.
13-8 Oracle8i Spatial User’s Guide and Reference

SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS
Example 13–3 tessellates all the points in the LAYER1_SDOGEOM table and adds
the generated tiles to the LAYER1_SDOINDEX table. This example commits after
every 100 points.

Example 13–3 Populate an Index with Fixed-Size Tiles Based on Point Data

SQL> EXECUTE SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS(’layer1’, FALSE, 100);

Related Topics
■ SDO_ADMIN.UPDATE_INDEX() procedure
Administrative Functions and Procedures 13-9

SDO_ADMIN.SDO_CODE_SIZE
SDO_ADMIN.SDO_CODE_SIZE

Purpose
This function determines the size that the SDO_MAXCODE column should be in
the <layername>_SDOINDEX table.

Syntax
SDO_ADMIN.SDO_CODE_SIZE (layername)

Keywords and Parameters

Returns
This function returns the required size in bytes for the SDO_MAXCODE column.
Data type is INTEGER.

Usage Notes
The SDO_CODE column is used to store the bit-interleaved cell ID of a tile that
covers a geometry. The SDO_MAXCODE column is SDO_CODE padded out one
place farther than the longest allowable code name for the index. Both columns are
defined as RAW data types, with a maximum of 255 bytes. Use the SDO_ADMIN.
SDO_CODE_SIZE() function to fine-tune the size of the column.

Always declare the SDO_CODE column to raw(255).

Related Topics
None.

layername Specifies the name of the data set layer.
Data type is VARCHAR2.
13-10 Oracle8i Spatial User’s Guide and Reference

SDO_ADMIN.SDO_VERSION
SDO_ADMIN.SDO_VERSION

Purpose
This function returns the current installed version of Spatial.

Syntax
SDO_ADMIN.SDO_VERSION

Keywords and Parameters
None.

Returns
This function returns a string describing the version of Spatial installed on the local
system.
Data type is VARCHAR2.

Usage Notes
The following version strings can be returned by this procedure:

8.0.5.0.0
8.1.0.0.0
8.1.3.0.0
8.1.5.0.0

This information is useful in when migrating data between systems, or when
upgrading. See Appendix B for more information about migration.

Related Topics
None.
Administrative Functions and Procedures 13-11

SDO_ADMIN.UPDATE_INDEX
SDO_ADMIN.UPDATE_INDEX

Purpose
This procedure tessellates a single geometric object in a geometry table or view and
adds the tiles to the spatial index table. If the object already exists and has index
entries, those entries are deleted and replaced by the newly generated tiles.

Syntax
SDO_ADMIN.UPDATE_INDEX (layername, GID)

Keywords and Parameters

Usage Notes
Considert the following when using this procedure:

■ The <layername>_SDOINDEX table must exist prior to calling this procedure.
Use the SQL CREATE TABLE statement to create the spatial index table.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

■ The values of the SDO_LEVEL and SDO_NUMTILES columns must be set in
the <layername>_SDOLAYER table before calling this procedure. This
procedure generates either fixed-size or hybrid tiles depending on values
stored in the <layername>_SDOLAYER table as follows:

layername Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry table.
Data type is VARCHAR2.

GID Specifies the geometric object identifier.
Data type is NUMBER.

SDO_LEVEL SDO_NUMTILES Action

NULL NULL Error.

>= 1 NULL Perform indexing with fixed-size tiles
(recommended for the relational model).
13-12 Oracle8i Spatial User’s Guide and Reference

SDO_ADMIN.UPDATE_INDEX
■ SDO_ADMIN.UPDATE_INDEX() does not perform an implicit commit after it
executes and therefore the transaction can be rolled back.

Example 13–4 tessellates the polygon for geometry 25 and adds the generated tiles
to the LAYER1_SDOINDEX table.

Example 13–4 Update an Index

SQL> EXECUTE SDO_ADMIN.UPDATE_INDEX(’layer1’, 25);
SQL> COMMIT;

Related Topics
■ SDO_ADMIN.POPULATE_INDEX() procedure

>= 1 >= 1 Perform hybrid indexing. The SDO_LEVEL
column defines the partition bucket size. The
SDO_NUMTILES column defines the number
of tiles to generate per geometry.
Note: hybrid indexing is for experimentation
purposes only in the relational model.

NULL >= 1 Not supported.

SDO_LEVEL SDO_NUMTILES Action
Administrative Functions and Procedures 13-13

SDO_ADMIN.UPDATE_INDEX_FIXED
SDO_ADMIN.UPDATE_INDEX_FIXED

Purpose
This procedure is provided for compatibility with Spatial Cartridge release 8.0.3
tables, but it has been replaced by enhanced features in the SDO_ADMIN.UPDATE_
INDEX() procedure to support schema changes as shown in Section 10.1.

This procedure tessellates a single geometric object in a geometry table or view and
adds the fixed-sized tiles to the spatial index table. By default, these tiles will
replace existing ones for the same geometry; or optionally, existing tiles can be left
alone.

Syntax
SDO_ADMIN.UPDATE_INDEX_FIXED (layername, GID, tile_size, [replace_flag,] [sdo_tile_flag] [sdo_
maxcode_flag])

Keywords and Parameters

layername Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry table.
Data type is VARCHAR2.

GID Specifies the geometric object identifier.
Data type is NUMBER.

tile_size Specifies the number of tessellations required to achieve the desired
fixed-size tiles. Each tessellation subdivides the tiles from the
previous level into four smaller tiles.
Data type is INTEGER.

replace_flag Specifies whether or not to delete tiles for the GID before adding new
ones. If TRUE, tiles are deleted prior to inserting new entries into the
spatial index table. If FALSE, new tiles are simply added to the spatial
index table.
Default value is TRUE.
Data type is BOOLEAN.

sdo_tile_flag For internal use only. Not supported in this release.
Default value is FALSE.
Data type is BOOLEAN.
13-14 Oracle8i Spatial User’s Guide and Reference

SDO_ADMIN.UPDATE_INDEX_FIXED
Usage Notes

Consider the following when using this procedure:

■ For performance reasons, set the replace_flag to FALSE when the spatial index
table contains no entries for the specified GID.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

■ SDO_ADMIN.UPDATE_INDEX_FIXED() does not perform an implicit commit
after it executes and therefore this transaction can be rolled back.

Example 13–5 tessellates the polygon for geometry 25 and adds the generated tiles
to the LAYER1_SDOINDEX table.

Example 13–5 Update an Index with Fixed-Size Tiles

SQL> EXECUTE SDO_ADMIN.UPDATE_INDEX_FIXED (’layer1’,25,4,FALSE,FALSE,FALSE);

Related Topics
■ SDO_ADMIN.POPULATE_INDEX_FIXED() procedure

■ SDO_TUNE.ESTIMATE_TILING_LEVEL() function

sdo_maxcode_flag Specifies whether or not the SDO_MAXCODE column is populated. If
TRUE, SDO_MAXCODE is populated. If FALSE, the column is not
populated. Set this flag to FALSE for the recommended indexing with
fixed-size tiles.
Default value is TRUE.
Data type is BOOLEAN.

Note: This procedure is likely to be removed in a future release of
Spatial.
Administrative Functions and Procedures 13-15

SDO_ADMIN.VERIFY_LAYER
SDO_ADMIN.VERIFY_LAYER

Purpose
This procedure checks for the existence of the geometry and spatial index tables.

Syntax
SDO_ADMIN.VERIFY_LAYER (layername,[maxtiles])

Keywords and Parameters

Usage Notes
If this procedure does not find the geometry and spatial index tables, it generates
the following error: SDO 13113 (Oracle table does not exist.)

Example 13–6 verifies the LAYER1 data set layer.

Example 13–6 Verify a Layer

SQL> EXECUTE SDO_ADMIN.VERIFY_LAYER(’layer1’);

Related Topics
None.

layername Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry and spatial index tables.
Data type is VARCHAR2.

maxtiles For internal use only. Not supported in this release.
13-16 Oracle8i Spatial User’s Guide and Reference

Tuning Functions and Proce
14

Tuning Functions and Procedures

This chapter contains descriptions of the tuning functions and procedures shown in
Table 14–1. This chapter refers to the relational Spatial model only.

Table 14–1 Tuning Functions and Procedures

Function/Procedure Description

SDO_TUNE.AVERAGE_MBR Calculates the average minimum bounding
rectangle for geometries in a layer.

SDO_TUNE.ESTIMATE_INDEX_
PERFORMANCE

Estimates the spatial index selectivity.

SDO_TUNE.ESTIMATE_TILING_LEVEL Determines an appropriate tiling level for
creating fixed-size index tiles.

SDO_TUNE.ESTIMATE_TILING_TIME Estimates the tiling time for a layer, in seconds.

SDO_TUNE.EXTENT_OF Determines the minimum bounding rectangle
of the data in a layer.

SDO_TUNE.HISTOGRAM_ANALYSIS Calculates statistical histograms for a spatial
layer.

SDO_TUNE.MIX_INFO Calculates geometry type information for a
spatial layer, such as the percentage of each
geometry type.
dures 14-1

SDO_TUNE.AVERAGE_MBR
SDO_TUNE.AVERAGE_MBR

Purpose
This function calculates the average minimum bounding rectangle (MBR) for all
geometries in a layer.

Syntax
SDO_TUNE.AVERAGE_MBR (layername, width, height)

Keywords and Parameters

Returns
The function returns the width and height of the average MBR for all geometries in
a layer.

Data types for height and width are NUMBER.

Usage Notes
This function calculates the average MBR by keeping track of the maximum and
minimum X and Y values for all geometries in a layer.

layername Specifies the name of the data set layer to
examine.
Data type is VARCHAR2.

width Returns the width of the average MBR.
Data type is OUT NUMBER.

height Returns the height of the average MBR.
Data type is OUT NUMBER.
14-2 Oracle8i Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE

Purpose
This function estimates the spatial index performance such as query selectivity and
window query time for a layer.

Syntax
SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE (layername, sample_ratio, tiling_level,
 num_tiles, window_layer, window_gid, tiling_time, filter_time, query_time)

Keywords and Parameters

Returns
The function returns a number between 0.0 and 1.0 representing estimated spatial
index selectivity. Data type is NUMBER.

layername Specifies the name of the data set layer to examine.
Data type is VARCHAR2.

sample_ratio Specifies the size ratio between the original layer and the sample
layer to be generated.
Data type is INTEGER.
Default is 20.

tiling_level Specifies the spatial index level at which the layer is to be tessellated.
Data type is INTEGER.

num_tiles Specifies the number of tiles for variable or hybrid tessellation.
Data type is INTEGER.

window_layer Specifies the name of the spatial layer in which the window geometry
is stored.
Data type is VARCHAR2.

window_gid Specifies the window geometry ID.
Data type is NUMBER.

tiling_time Returns the estimated tiling time in seconds.
Data type is OUT NUMBER

filter_time Returns the estimated spatial index filter time in seconds.
Data type is OUT NUMBER

query_time Returns the estimated window query time in seconds.
Data type is OUT NUMBER.
Tuning Functions and Procedures 14-3

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
The function also returns the estimated tiling time, filter time, and query time. Data
type for these variables is NUMBER.

Usage Notes
■ A larger selectivity number indicates better selectivity. A selectivity of 0.0

indicates an error.

■ A larger sample_ratio means faster but less accurate estimation.
14-4 Oracle8i Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TILING_LEVEL
SDO_TUNE.ESTIMATE_TILING_LEVEL

Purpose
This function estimates the appropriate tiling level to use when indexing with
fixed-size tiles.

Syntax
SDO_TUNE.ESTIMATE_TILING_LEVEL (layername, maxtiles, type_of_estimate)

Keywords and Parameters

Returns
The function returns an integer representing the level to use when creating a spatial
index for the specified layer.

Usage Notes
The SDO_ADMIN.POPULATE_INDEX() and SDO_ADMIN.UPDATE_INDEX()
procedures are used to create or update the spatial index using fixed-size or hybrid
indexing. Store the value returned by the SDO_TUNE.ESTIMATE_TILING_
LEVEL() function in the SDO_LEVEL column of the <layername>_SDOLAYER
table prior to building the spatial index.

layername Specifies the name of the data set layer to examine.
Data type is VARCHAR2.

maxtiles Specifies the maximum number of tiles that can be used to index the
rectangle defined by the type_of_estimate parameter.
Data type is INTEGER.

type_of_estimate Indicates by keyword one of three different models. Specify the type
of estimate with one of the following keywords:

• LAYER_EXTENT -- Use the rectangle defined by your coordinate
system.

• ALL_GID_EXTENT -- Use the minimum bounding rectangle that
encompasses all the geometric objects within the layer. Recom-
mended for most applications with a maxtiles of 10,000.

• AVG_GID_EXTENT -- Use a rectangle representing the average
size of the individual geometries within the layer. This option
performs the most extensive analysis of the three types.
Tuning Functions and Procedures 14-5

SDO_TUNE.ESTIMATE_TILING_LEVEL
The maxtiles parameter specifies the maximum number of tiles that should be used
to define a grid covering the rectangular extent of interest. This extent could be:

■ Defined in the <layername>_SDODIM table which defines the bounds of the
coordinate system

■ Defined by the minimum and maximum coordinates for the given data set (as
returned by the SDO_TUNE.EXTENT_OF() procedure)

■ Defined by computing the average bounds of the objects in the
<layername>_SDOGEOM table

The code shown in Example 14–1 generates a recommendation based on the extent
of the defined coordinate system (-90 to +90 latitude and -180 to +180 longitude).
This example returns a level whose tiles are not smaller than one-degree cells.

Example 14–1 Recommended Tile Level for One-Degree Lat/Lon Cells

set serveroutput on
declare
 tiling_level integer;
begin
 tiling_level := mdsys.sdo_tune.estimate_tiling_level(’WORLD_CITIES’,
 360*180, ’LAYER_EXTENT’);
 dbms_output.put_line(’VALUE is ’|| tiling_level);
end;

For most applications, however, it is more effective to call the SDO_
TUNE.ESTIMATE_TILING_LEVEL() function using the ALL_GID_EXTENT
estimate type with a maxtiles of 10,000. In Example 14–2, assume the data set
consists of block groups for San Francisco and that the <layername>_SDODIM
table defines the extent to be one that covers all of California. Because the data set
is localized to a small subregion of this extent, ALL_GID_EXTENT is the
appropriate estimate type. The recommended tiling level in this case will be such
that at most, 10,000 tiles will be required to completely cover the extent of San
Francisco block groups.

Example 14–2 Recommended Tile Level Based on the GIDs of All Geometries

set serveroutput on
declare
 tiling_level integer;
begin
 tiling_level:= mdsys.sdo_tune.estimate_tiling_level(’SF_BLOCK_GROUPS’,
 10000, ’ALL_GID_EXTENT’);
14-6 Oracle8i Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TILING_LEVEL
 dbms_output.put_line(’VALUE is’ ,|| tiling_level);
end;

The third type of estimate helps determine the tiling level that should be used such
that on average, the maxtiles parameter defines the number of tiles to cover the
extent of a single geometry in the layer. This estimate type requires the most
computation of the three because the bounding rectangle of every geometry is used
in calculating the average extent. In Example 14–3, eight tiles on average are used
to cover any block group in San Francisco.

Example 14–3 Recommended Tile Level Based on Average Extent of All Geometries

set serveroutput on
declare
 tiling_level integer;
begin
 tiling_level := mdsys.sdo_tune.estimate_tiling_level(’SF_BLOCK_GROUPS’, 8,
 ’AVG_GID_EXTENT’);
 dbms_output.put_line(’Tiling level value is ’ || tiling_level);
end;

Related Topics
■ SDO_ADMIN.POPULATE_INDEX

■ SDO_ADMIN.UPDATE_INDEX

■ SDO_TUNE.EXTENT_OF

■ Section A.2.2, "Understanding the Tiling Level"

■ Section A.2.4, "Visualizing the Spatial Index (Drawing Tiles)"
Tuning Functions and Procedures 14-7

SDO_TUNE.ESTIMATE_TILING_TIME
SDO_TUNE.ESTIMATE_TILING_TIME

Purpose
This function returns the estimated time to tessellate a layer.

Syntax
SDO_TUNE.ESTIMATE_TILING_TIME (layername, sample_ratio, tiling_level, num_tiles)

Keywords and Parameters

Returns
This function returns the estimated tiling time in seconds. A return of 0 indicates an
error.

Data type is NUMBER.

Usage Notes
None.

layername Specifies the name of the data set layer to
examine.
Data type is VARCHAR2.

sample_ratio Specifies the size ratio between the original layer
and the sample layer to be generated.
Data type is INTEGER.
Default is 20.

tiling_level Specifies the spatial index level at which the layer
is to be tessellated.
Data type is INTEGER.

num_tiles Specifies the number of tiles for variable or
hybrid tessellation.
Data type is INTEGER.
14-8 Oracle8i Spatial User’s Guide and Reference

SDO_TUNE.EXTENT_OF
SDO_TUNE.EXTENT_OF

Purpose
This function determines the extent of all geometries in a layer.

Syntax
SDO_TUNE.EXTENT_OF (layername, min_X, max_X, min_Y, max_Y)

Keywords and Parameters

Returns
This function returns the coordinates of the minimum bounding rectangle for all
geometric data in a layer. The data type is NUMBER for the four return values.

Usage Notes
None.

Related Topics
■ SDO_TUNE.ESTIMATE_TILING_LEVEL() function

layername Specifies the name of the data set layer. The layer
name is used to construct the name of the
geometry and spatial index tables.
Data type is VARCHAR2.

min_X Minimum X value of the bounding rectangle.
Data type is NUMBER.

max_X Maximum X value of the bounding rectangle.
Data type is NUMBER.

min_Y Minimum Y value of the bounding rectangle.
Data type is NUMBER.

max_Y Maximum Y value of the bounding rectangle.
Data type is NUMBER.
Tuning Functions and Procedures 14-9

SDO_TUNE.HISTOGRAM_ANALYSIS
SDO_TUNE.HISTOGRAM_ANALYSIS

Purpose
This procedure generates statistical histograms based on a layer.

Syntax
SDO_TUNE.HISTOGRAM_ANALYSIS (layername, result_table, type_of_histogram,
 max_value, intervals)

Keywords and Parameters

Returns
The procedure populates the result table with statistical histograms for a spatial
layer.

Usage Notes
■ You must create the result table prior to calling this procedure. The table has

the following format:

CREATE TABLE histogram (value NUMBER, count NUMBER);

layername Specifies the name of the spatial data set layer to examine.
Data type is VARCHAR2.

result_table Specifies the name of the result table where the histogram will
be stored.
Data type is VARCHAR2.

type_of_histogram Specifies one of three types of histograms:

• TILES_VS_LEVEL (default)

• GEOMS_VS_AREA

• GEOMS_VS_VERTICES

Data type is VARCHAR2.

max_value Specifies the upper limit of the histogram.
Data type is NUMBER.

intervals Specifies the number of intervals between 0 and max_value.
Data type is INTEGER.
14-10 Oracle8i Spatial User’s Guide and Reference

SDO_TUNE.HISTOGRAM_ANALYSIS
■ The following types of histograms are available:

TILES_VS_LEVEL Provides the number of tiles at different spatial index
levels. This histogram is used to evaluate the spatial
index that is already built on the layer.

GEOMS_VS_AREA Provides the number of geometries in different size
ranges. The shape of this histogram could be helpful in
choosing a proper index type and index level.

GEOMS_VS_VERTICES Provides a histogram of the geometry count against the
number of vertices. This histogram could help
determine if spatial index selectivity is important for the
layer. Because the number of vertices determines the
performance of the secondary filter, selectivity of the
primary filter could be crucial for layers that contain
many complicated geometries.
Tuning Functions and Procedures 14-11

SDO_TUNE.MIX_INFO
SDO_TUNE.MIX_INFO

Purpose
This function provides the number of geometries of each type stored in the layer.

Syntax
SDO_TUNE.MIX_INFO (layername)

Keywords and Parameters

Returns
This function calculates geometry type information for the layer. It returns the
number of geometries of different type, as well as the percentages of points, line
strings, polygons, and complex geometries.

Usage Notes
None.

layername Specifies the name of the spatial data set layer to
examine.
Data type is VARCHAR2.
14-12 Oracle8i Spatial User’s Guide and Reference

Geometry Functions and Proce
15

Geometry Functions and Procedures

This chapter contains descriptions of the geometric functions and procedures
shown in Table 15–1. This chapter refers to the relational Spatial model only.

Table 15–1 Geometric Functions and Procedures

Function/Procedure Description

SDO_GEOM.RELATE Determines how two objects interact.

SDO_GEOM.VALIDATE_GEOM Determines if a geometry is valid.

SDO_GEOM.VALIDATE_LAYER Determines if all geometries in a layer are valid.
dures 15-1

SDO_GEOM.RELATE
SDO_GEOM.RELATE

Purpose
This function examines two geometry objects to determine their spatial
relationship. It is available in two forms. See the Usage Notes for more information.

Syntax
SDO_GEOM.RELATE (layername1, SDO_GID1, mask, [layername2,] SDO_GID2)

SDO_GEOM.RELATE (layername1, SDO_GID1, mask, X_tolerance, Y_tolerance,
 SDO_ETYPE, num_ordinates, X_ordinate1, Y_ordinate1 [,...,Xn, Yn]
 [,SDO_ETYPE, num_ordinates, X_ordinate1, Y_ordinate1 [,...,Xn, Yn]])

Keywords and Parameters

layername1,
layername2

Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry and spatial index tables.
Data type is VARCHAR2.

SDO_GID1,
SDO_GID2

Specifies the geometry object identifier.
Data type is NUMBER.

mask Specifies a list of relationships to check. See the list of keywords in the
Usage Notes.

X_tolerance,

Y_tolerance

Specifies the distance two points can be apart and still be considered
the same due to rounding errors. Tolerance must be greater than zero.
If you want zero tolerance, enter a number such as 0.000005, where
the number of zeros to the right of the decimal point matches the
precision of your data.
Data type is NUMBER.

SDO_ETYPE Specifies the type of geometry element.
Data type is INTEGER, corresponding to the following constants:

 1 SDO_GEOM.POINT_TYPE

 2 SDO_GEOM.LINESTRING_TYPE

 3 SDO_GEOM.POLYGON_TYPE
15-2 Oracle8i Spatial User’s Guide and Reference

SDO_GEOM.RELATE
Returns
The SDO_GEOM.RELATE() function can return three types of answers:

1. If you pass a mask listing one or more relationships, the function returns the
name of the relationship if it is true for the pair of geometries. If all of the
relationships are false, the function returns FALSE.

2. If you pass the DETERMINE keyword in the mask, the function returns the one
relationship keyword that best matches the geometries. DETERMINE can only
be used when SDO_GEOM.RELATE() is in the SELECT clause of the SQL
statement.

3. If you pass the ANYINTERACT keyword in the mask, the function returns
TRUE if the two geometries are not disjoint.

The data type is VARCHAR2.

Usage Notes
Use the first form of the function to examine two stored geometric objects.

Use the second form of the function to compare a stored object against a
user-defined object. You can specify up to 123 vertices for a single-element
geometry. If the geometry has multiple elements, the total number of arguments
passed, including SDO_ETYPE, num_ordinates, and the list of vertex coordinates,
cannot exceed 255 values.

The following relationships can be tested:

■ ANYINTERACT - Returns TRUE if the objects are not disjoint.

■ CONTAINS - Returns CONTAINS if the second object is entirely within the
first object and the object boundaries do not touch; otherwise, returns
FALSE.

■ COVEREDBY - Returns COVEREDBY if the first object is entirely within
the second object and the object boundaries touch at one or more points;
otherwise, returns FALSE.

num_ordinates Specifies the number of ordinates for this element. Data type is
NUMBER.

X_ordinateN,

Y_ordinateN

Specifies the X and Y values of a vertex (coordinate pair) in a
geometry.
Data type is NUMBER.
Geometry Functions and Procedures 15-3

SDO_GEOM.RELATE
■ COVERS - Returns COVERS if the second object is entirely within the first
object and the boundaries touch in one or more places; otherwise, returns
FALSE.

■ DISJOINT - Returns DISJOINT if the objects have no common boundary or
interior points; otherwise, returns FALSE.

■ EQUAL - Returns EQUAL if the objects share every point of their
boundaries and interior, including any holes in the objects; otherwise,
returns FALSE.

■ INSIDE - Returns INSIDE if the first object is entirely within the second
object and the object boundaries do not touch; otherwise, returns FALSE.

■ OVERLAPBDYDISJOINT - Returns OVERLAPBDYDISJOINT if the objects
overlap, but their boundaries do not interact; otherwise, returns FALSE.

■ OVERLAPBDYINTERSECT - Returns OVERLAPBDYINTERSECT if the
objects overlap, and their boundaries intersect in one or more places;
otherwise, returns FALSE.

■ TOUCH - Returns TOUCH if the two objects share a common boundary
point, but no interior points; otherwise, returns FALSE.

Mask values can be combined using the logical Boolean operator OR. For example,
‘INSIDE + TOUCH’ returns either ’INSIDE’, ’TOUCH’, or ’FALSE’ depending on
the outcome of the test.

Related Topics
None.
15-4 Oracle8i Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_GEOM
SDO_GEOM.VALIDATE_GEOM

Purpose
This function provides a consistency check for valid geometry types. The function
checks the representation of the geometry from the tables against the element
definitions.

 Syntax
SDO_GEOM.VALIDATE_GEOM (layername,SDO_GID)

Keywords and Parameters

Returns
This function returns one of the following:

■ TRUE if the geometry is valid.

■ FALSE if the geometry is invalid for some unknown reason.

■ An Oracle error number indicating the problem with the geometry.

The data type is VARCHAR2.

Usage Notes
This function checks for the following:

■ Polygons have at least three points and must be closed

■ Line strings must have at least two points

■ When an SDO_ESEQ spans multiple rows, the last point of the previous row is
the first point on the next row

layername Specifies the name of the data set layer. The layer name is used to
construct the name of the geometry and spatial index tables.
Data type is VARCHAR2.

SDO_GID Specifies the geometric object identifier.
Data type is NUMBER.
Geometry Functions and Procedures 15-5

SDO_GEOM.VALIDATE_GEOM
Related Topics
None.
15-6 Oracle8i Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_LAYER
SDO_GEOM.VALIDATE_LAYER

Purpose
This function examines a layer to determine if the stored geometries follow the
defined rules for geometric objects.

 Syntax
SDO_GEOM.VALIDATE_LAYER (layername, result_table)

Keywords and Parameters

Returns
This function fills the result table with validation results.

Usage Notes
Create an empty result table prior to calling this function. The format of the result
table is: (sdo_gid number, result varchar2).

This function checks for the following:

■ Polygons have at least three points and must be closed

■ Line strings must have at least two points

■ When an SDO_ESEQ spans multiple rows, the last point of the previous row is
the first point on the next row

Related Topics
None.

layername Specifies the name of the layer to examine.
Data type is VARCHAR2.

result_table Specifies the name of the result table.
Data type is VARCHAR2.
Geometry Functions and Procedures 15-7

SDO_GEOM.VALIDATE_LAYER
15-8 Oracle8i Spatial User’s Guide and Reference

Window Functions and Proc
16

Window Functions and Procedures

If a query window does not already exist in the database, you must first insert it
and create an index for it. The SDO_WINDOW functions and procedures are used
to create temporary geometry objects to be used in comparisons with stored
geometries. You can create query windows with any number of coordinates.

Because not all Oracle users may have insert privileges, the SDO_WINDOW
package is not automatically installed when you install Spatial. This allows a DBA
to control the schema under which these functions and procedures operate. Choose
an Oracle user who has insert privilege and compile the SDO_WINDOW package
under that user. For example, you could choose the mdsys Oracle user:

% sqlplus mdsys/password
SQL> @$ORACLE_HOME/md/admin/sdowin.sql
SQL> @$ORACLE_HOME/md/admin/prvtwin.plb

This chapter contains descriptions of the window functions and procedures listed
in Table 16–1.This chapter refers to the relational Spatial model only.

Table 16–1 Window Functions and Procedures

Function/Procedures Description

SDO_WINDOW.BUILD_WINDOW Builds a query window geometric object.

SDO_WINDOW.BUILD_WINDOW_FIXED Builds a query window using fixed-size tiles.

SDO_WINDOW.CLEAN_WINDOW Removes the tables used for a query window.

SDO_WINDOW.CLEANUP_GID Removes the query window without removing the
tables.

SDO_WINDOW.CREATE_WINDOW_LAYER Creates the tables needed for a query window layer.
edures 16-1

SDO_WINDOW.BUILD_WINDOW
SDO_WINDOW.BUILD_WINDOW

Purpose
This function builds the window for the query and returns an SDO_GID that serves
as a handle. The window is tessellated into hybrid tiles. Hybrid indexing is not
recommended for the relational Spatial model.

 Syntax
SDO_WINDOW.BUILD_WINDOW(comp_name, layername, SDO_ETYPE, SDO_NUMTILES,
 X1, Y1, [...Xn, Yn])

Keywords and Parameters

Returns
This function returns the SDO_GID of the new geometry. The data type is
NUMBER.

comp_name Specifies the name of the user who compiled this package. This user
must have appropriate privileges to read and write into the database.
Data type is VARCHAR2.

layername Specifies the name of the window layer into which the coordinates will
be inserted.
Data type is VARCHAR2.

SDO_ETYPE Specifies the type of geometry element.
Data type is INTEGER, corresponding to the following constants:

 1 or SDO_GEOM.POINT_TYPE

 2 or SDO_GEOM.LINESTRING_TYPE

 3 or SDO_GEOM.POLYGON_TYPE

SDO_NUMTILES Value must be NULL for Spatial release 8.0.4 and later.
 Data type is NUMBER.

X ordinateN,

Y ordinateN

Specifies the X and Y values of a vertex (coordinate pair) in a geometry.
Up to 125 pairs may be added in a single call.
Data type is NUMBER.
16-2 Oracle8i Spatial User’s Guide and Reference

SDO_WINDOW.BUILD_WINDOW
Usage Notes
This function inserts the coordinates into the <layername>_SDOGEOM table,
tessellates the geometry (creates the index), and returns a unique SDO_GID
corresponding to the geometry.

You do not need special privileges to execute this function. However, the user who
compiles it does need appropriate privileges to read and write into the database.

When working with Spatial release 8.0.3 tables, the SDO_NUMTILES parameter
indicates the number of tiles into which the window should be tessellated. For
release 8.0.4 or later, the function reads that information automatically from the
<layername>_SDOLAYER table.

Related Topics
SDO_WINDOW.BUILD_WINDOW_FIXED() function
Window Functions and Procedures 16-3

SDO_WINDOW.BUILD_WINDOW_FIXED
SDO_WINDOW.BUILD_WINDOW_FIXED

Purpose
This function builds the window for the query and returns an SDO_GID that serves
as a handle. The window is tessellated into fixed-size tiles.

 Syntax
SDO_WINDOW.BUILD_WINDOW_FIXED (comp_name, layername, SDO_ETYPE, SDO_TILESIZE,
 X1, Y1, [...Xn, Yn])

Keywords and Parameters

Returns
This function returns the SDO_GID of the new geometry. Data type is NUMBER.

Usage Notes
This function inserts the coordinates into the <layername>_SDOGEOM table,
tessellates the geometry (creates the index), and returns a unique SDO_GID
corresponding to the geometry.

comp_name Specifies the name of the user who compiled this package. This user
must have appropriate privileges to read and write into the database.
Data type is VARCHAR2.

layername Specifies the name of the window layer into which the coordinates will
be inserted.
Data type is VARCHAR2.

SDO_ETYPE Specifies the type of geometry element.
Data type is INTEGER, corresponding to the following constants:

 1 or SDO_GEOM.POINT_TYPE

 2 or SDO_GEOM.LINESTRING_TYPE

 3 or SDO_GEOM.POLYGON_TYPE

SDO_TILESIZE Specifies the number of tessellations required to achieve the desired
fixed-size tiles.
Data type is NUMBER.

X ordinateN,

Y ordinateN

Specifies the X and Y values of a vertex (coordinate pair) in a geometry.
Up to 125 pairs may be added in a single call.
Data type is NUMBER.
16-4 Oracle8i Spatial User’s Guide and Reference

SDO_WINDOW.BUILD_WINDOW_FIXED
You do not need special privileges to execute this function. However, the user who
compiles it does need appropriate privileges to read and write into the database.

Query SDO_LEVEL from the <layername>_SDOLAYER table to pass the correct
SDO_TILE_SIZE value to this function.

Related Topics
None.
Window Functions and Procedures 16-5

SDO_WINDOW.CLEAN_WINDOW
SDO_WINDOW.CLEAN_WINDOW

Purpose
This procedure removes the four tables created in the layer for the query window.

 Syntax
SDO_WINDOW.CLEAN_WINDOW (layername);

Keywords and Parameters

Usage Notes
Typically, you would build a layer once, and then build multiple windows and
perform multiple queries using that layer. After finishing all queries, you can
execute the SDO_WINDOW.CLEAN_WINDOW() procedure to remove the tables.

Related Topics
SDO_WINDOW.CLEANUP_GID

layername Specifies the name of the window layer that must
be removed.
Data type is VARCHAR2.
16-6 Oracle8i Spatial User’s Guide and Reference

SDO_WINDOW.CLEANUP_GID
SDO_WINDOW.CLEANUP_GID

Purpose
This procedure removes the query window from the layer tables.

 Syntax
SDO_WINDOW.CLEANUP_GID (layername, SDO_GID);

Keywords and Parameters

Usage Notes
Typically, you would create a query layer once, and then build multiple query
windows and perform multiple queries using that layer. The SDO_WINDOW.
CLEANUP_GID() procedure removes a single query window from the layer. Use
this procedure to avoid the overhead of removing and re-creating the tables
repeatedly.

After finishing all queries, you can execute the SDO_WINDOW.CLEAN_
WINDOW()procedure to remove the tables.

Related Topics
SDO_WINDOW.CLEAN_WINDOW()

layername Specifies the name of the window layer associated
with the query window.
Data type is VARCHAR2.

SDO_GID Specifies the geometric object identifier of the
query window.
Data type is NUMBER.
Window Functions and Procedures 16-7

SDO_WINDOW.CREATE_WINDOW_LAYER
SDO_WINDOW.CREATE_WINDOW_LAYER

Purpose
This procedure creates the necessary tables that constitute a layer used for defining
a query window.

 Syntax
SDO_WINDOW.CREATE_WINDOW_LAYER (layername, SDO_LEVEL, SDO_NUMTILES,
 SDO_DIMNUM1, SDO_LB1, SDO_UB1, SDO_TOLERANCE1, SDO_DIMNAME1,
 SDO_DIMNUM2, SDO_LB2, SDO_UB2, SDO_TOLERANCE2, SDO_DIMNAME2)

Keywords and Parameters

Usage Notes
Because the <layername>_SDODIM table is initialized with the dimension and the
bound information, only those queries that are in the same dimension should be
queried against this layer. If you wish to issue a query with respect to a different
dimension, you must create a new layer.

layername Specifies the name of the window layer to be created. The layer
name is used to construct the four tables associated with the layer.
Data type is VARCHAR2.

SDO_LEVEL Specifies the number of times the layer should be tessellated during
the indexing phase.
Data type is INTEGER.

SDO_NUMTILES Specifies the number of tiles to generate during indexing.
Data type is INTEGER.

SDO_DIMNUM1,
SDO_DIMNUM2

Specifies the number of the dimension, starting with 1.
Data type is NUMBER.

SDO_LB1, SDO_UB1,
SDO_LB2, SDO_UB2

Specifies the lower and upper bounds of this dimension.
Data type is NUMBER.

SDO_TOLERANCE1,
SDO_TOLERANCE2

Specifies the allowable variance of ordinate values within each
dimension.
Data type is NUMBER.

SDO_DIMNAME1,
SDO_DIMNAME2

Specifies the name of the dimension.
Data type is VARCHAR2.
16-8 Oracle8i Spatial User’s Guide and Reference

SDO_WINDOW.CREATE_WINDOW_LAYER
Related Topics
None.
Window Functions and Procedures 16-9

SDO_WINDOW.CREATE_WINDOW_LAYER
16-10 Oracle8i Spatial User’s Guide and Reference

Tuning Tips and Sample SQL Scr
A

Tuning Tips and Sample SQL Scripts

This appendix provides supplemental information to aid in setup, maintenance,
and tuning of a spatial database. The scripts and tuning suggestions provided are
intended as guidelines that can be adapted to the specific needs of your database.

A.1 Selecting a Spatial Model
This section describes how to select the best model to fit your needs. Basically, the
object-relational model is preferable in cases where replication and distributed
databases are not required.

A.1.1 Benefits of the Object-Relational Model
The following are some of the benefits to using the new object-relational model, as
described in Part I of this guide:

■ Additional geometry types: arcs, circles, compound polygons, compound line
strings, and optimized rectangles are supported.

■ Index and query ease of use improved.

■ Indexing is maintained by the Oracle database server.

■ Geometries modeled in a single row, single column.

■ Performance is improved.

A.1.2 Benefits of the Relational Model
The following are some of the benefits to using the relational model, as described in
Part II of this guide:

■ Database replication is supported.
ipts A-1

Tuning Tips
■ Distributed database is supported.

■ Table partitioning and parallel index loading are supported.

When Oracle introduces replication and distributed support for objects in a future
release, there will be no benefits to using the relational model.

A.2 Tuning Tips
The following information can be used as a guideline for tuning a spatial database.
Unless otherwise specified, the following sections refer to both the object-relational
and relational models.

A.2.1 Data Modeling
Data modeling is very important when designing a spatial database. You should
group geometries into layers based on the similarity of their attributes. Assume
your data model uses line strings to represent both roads and rivers. The attributes
of a road and the attributes of a river are different. Therefore, these geometries
should be modeled in two different layers.

In practice, however, if the user of your application will always ask to see both the
roads and rivers in a particular region (area of interest), then it may be appropriate
to model roads and rivers in the same layer with a common set of attributes.

It is equally important to understand how the data in the various layers will be
queried. If the user of your application is interested in querying the data based on a
relationship between the layers, then you should index the layers with the same
fixed-size tiling level. For example, a query such as, "Which roads cross rivers?" can
achieve better performance if the roads and rivers layers are tiled at the same level.

A.2.2 Understanding the Tiling Level
The following example explains how tiling is used in Spatial.

Assume you want all the roads (line strings) that overlap a county boundary
(polygon) in a spatial database containing 10 million roads. Ignoring Spatial
features for a moment, in purely mathematical terms, the problem translates into
comparing all the line segments that make up each road, to the line segments and
area of the county boundary to see if there is any intersection. This
geometry-to-geometry comparison is very expensive.

Spatial simplifies this calculation by approximating each geometry with tiles. The
primary filter in Spatial translates the problem to show all the roads that have a tile
A-2 Oracle8i Spatial User’s Guide and Reference

Tuning Tips
equal to a tile that approximates the polygon. The result of this is a superset of the
final answer.

The secondary filter (a true geometry-to-geometry comparison) can now be
applied to the candidates that returned from the Spatial primary filter, instead of to
every road in the database.

Picking the correct tile size for fixed-size tiling is one of the most important factors
in attaining good performance. If the tile size you select is too small, you could end
up generating thousands of tiles per geometry. Also, the process of tiling a query
window may become very time consuming.

At the same time, you do not want to choose tiles that are too big. This would
defeat the purpose of the Spatial primary filter. If the tiles are too big, then too
many geometries are returned from the primary filter and are sent to the more
costly secondary filter.

Keep in mind that the tile size you choose should also depend on if the query
window (area of interest) is already defined in the database. If the query window is
defined in the database, (that is, if the spatial tables and spatial indexes already
exist), then you should choose a smaller tile size. Assume the State layer and the
Highway layer are already defined in the database. You could perform a spatial
join query such as, "which interstate highways go through the state?" without
incurring the overhead of tiling because the query window is already defined in the
database. If, on the other hand, you are creating the query window dynamically,
you have to factor in the time it takes to define and index the query window. In this
case, you should choose a larger tile size to reduce the time it takes to define and
index the query window.

Oracle recommends running the SDO_TUNE.ESTIMATE_TILING_LEVEL()
function on your data set to get an initial tiling level estimate. This may not be your
final answer, but it will be a good level to start your analysis. In general, it is also
recommended that you take a random sample of your data and check the query
performance at different levels of tiling. This would give an indication of what is
the best tiling level for the total data set.

A.2.3 Database Sizing
Properly choosing rollback segments and tablespaces is important for getting good
performance from Spatial. Therefore, it is very important to read the Oracle8i
Administrator’s Guide and understand the concepts of tablespaces and rollbacks.

Here are some general guidelines to consider:
Tuning Tips and Sample SQL Scripts A-3

Tuning Tips
■ Always make sure that you have enough rollback space to create a spatial
index.

■ Create separate tablespaces for data layers, indexes, and rollback segments.

■ Properly define initial extents, next extents, and pctincrease for data layer
tables.

■ Define the initial extent as small as possible when you create the SDO_GEOM_
METADATA table in the object-relational model, or the <layername>_
SDOLAYER and the <layername>_SDODIM tables in the relational model.
These tables contain a few rows each and a small initial extent will reduce the
amount of wasted space.

■ Use the SDO_GEOM.VALIDATE_GEOMETRY() procedure to ensure correctness
of geometries in the data sets. Entering incorrect data may lead to unexpected
behavior in index creation and in the SDO_GEOM.RELATE() functions.

■ Visualizing the indexing tiles, as described in Section A.2.4, can lead to a
greater understanding of the tuning process with respect to the size of the tiles.

The following guidelines refer to only the relational model:

■ Always build a B-tree index on the SDO_GID column of the <layername>_
SDOGEOM table before attempting to call the SDO_ADMIN.POPULATE_
INDEX_FIXED() , SDO_ADMIN.UPDATE_INDEX_FIXED(), SDO_
ADMIN.POPULATE_INDEX() , or SDO_ADMIN.UPDATE_INDEX() procedure.

■ For fixed-size tiling, always build a B-tree index on the SDO_CODE column of
the <layername>_SDOINDEX table before trying any queries using this table.

■ Always build a B-tree index on the SDO_GID column of the <layername>_
SDOINDEX table if individual SDO_GIDs will be used as query windows for
other Spatial layers.

■ For variable-sized tiling, always build a B-tree index on the SDO_
GROUPCODE column of the <layername>_SDOINDEX table before trying any
queries using this table.

A.2.4 Visualizing the Spatial Index (Drawing Tiles)
To select an appropriate tiling level, it may help to visualize the tiles covering your
geometries. Through visualization, you can determine how many tiles are used for
each object, the size of the tiles, and how well the edges of your geometry are
covered. The basic algorithm is:

1. Select the edges of the tiles represented by the index entries.
A-4 Oracle8i Spatial User’s Guide and Reference

Tuning Tips
2. Plot the tiles on a two-dimensional grid.

3. Plot your geometries on the same grid.

A.2.4.1 Drawing Tiles from the Object-Relational Model
Two Spatial internal functions have been made visible in order to describe the tiles.
These functions were part of a previous release of Oracle Spatial Data Option, and
are currently reserved for internal use only. The functions are not recommended for
general use, except for this visualization example. Use the following syntax for the
internal functions:

hhcellbndry (sdo_code || sdo_meta, sdo_dimnum, sdo_lb, sdo_ub,
 hhlength(sdo_code || sdo_meta) {’MIN’ | ’MAX’})

In the following examples, the dimension boundaries were assumed to be -180 to
180, and -90 and 90. Also, an index named TEST_INDEX_HL2N6 and a table
named TEST are used in the examples.

The SQL queries shown in Example A–1 and Example A–2 can be used to decode
all the index entries in a <layername>_SDOINDEX table. The examples return the
coordinates of the lower-left and upper-right corners of each tile.

Example A–1 View Fixed-Size Tiles for All Geometries

 SELECT HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 1,-180.0, 180.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), 'MIN') min_x,
 HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 1,-180.0, 180.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), 'MAX') max_x,
 HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 2, -90.0, 90.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), 'MIN') min_y,
 HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 2, -90.0, 90.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), 'MAX') max_y
 FROM (SELECT distinct sdo_groupcode, sdo_fixed_meta
 FROM TEST_INDEX_HL2N6$ a,
 SDO_INDEX_METADATA b
 WHERE b.sdo_table_name = 'TEST');

Example A–2 View Variable-Sized Tiles for All Geometries

 SELECT HHCELLBNDRY(sdo_code || sdo_meta, 1,-180.0, 180.0,
 HHLENGTH(sdo_code || sdo_meta), 'MIN') min_x,
 HHCELLBNDRY(sdo_code || sdo_meta, 1,-180.0, 180.0,
 HHLENGTH(sdo_code || sdo_meta), 'MAX') max_x,
 HHCELLBNDRY(sdo_code || sdo_meta, 2, -90.0, 90.0,
 HHLENGTH(sdo_code || sdo_meta), 'MIN') min_y,
Tuning Tips and Sample SQL Scripts A-5

Tuning Tips
 HHCELLBNDRY(sdo_code || sdo_meta, 2, -90.0, 90.0,
 HHLENGTH(sdo_code || sdo_meta), 'MAX') max_y
 FROM (SELECT distinct sdo_code, sdo_meta
 FROM TEST_INDEX_HL2N6$ a);

The SQL queries shown in Example A–3 and Example A–4 can be used to decode
the index entries for a specific geometry stored in a <layername>_SDOINDEX table.

Example A–3 View Fixed-Size Tiles for One Geometry

 SELECT HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 1,-180.0, 180.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), 'MIN') min_x,
 HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 1,-180.0, 180.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), 'MAX') max_x,
 HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 2, -90.0, 90.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), 'MIN') min_y,
 HHCELLBNDRY(sdo_groupcode || sdo_fixed_meta, 2, -90.0, 90.0,
 HHLENGTH(sdo_groupcode || sdo_fixed_meta), 'MAX') max_y
 FROM (SELECT distinct sdo_groupcode, sdo_fixed_meta
 FROM TEST_INDEX_HL2N6$ a,
 SDO_INDEX_METADATA b
 WHERE b.sdo_table_name = 'TEST'
 AND a.sdo_rowid = 'AAAA59AAFAADzAZAAA');

Example A–4 View Variable-Sized Tiles for One Geometry

 SELECT HHCELLBNDRY(sdo_code || sdo_meta, 1,-180.0, 180.0,
 HHLENGTH(sdo_code || sdo_meta), 'MIN') min_x,
 HHCELLBNDRY(sdo_code || sdo_meta, 1,-180.0, 180.0,
 HHLENGTH(sdo_code || sdo_meta), 'MAX') max_x,
 HHCELLBNDRY(sdo_code || sdo_meta, 2, -90.0, 90.0,
 HHLENGTH(sdo_code || sdo_meta), 'MIN') min_y,
 HHCELLBNDRY(sdo_code || sdo_meta, 2, -90.0, 90.0,
 HHLENGTH(sdo_code || sdo_meta), 'MAX') max_y
 FROM TEST_INDEX_HL2N6$
 WHERE sdo_rowid = 'AAAA59AAFAADzAZAAA';

A.2.4.2 Drawing Tiles from the Relational Model
The spatial index is represented internally as a linear quadtree. The structure used
to represent the linear quadtree is composed of two components: a data component
and a metadata component. The data component of the linear quadtree is stored in
the SDO_CODE column, and the metadata component is stored in the SDO_META
column.
A-6 Oracle8i Spatial User’s Guide and Reference

Tuning Tips
The SDO_META column is not required for spatial queries. However, by
combining the SDO_META column with the SDO_CODE column, the tiles of any
geometry or of the entire data set can be decoded. This capability allows the tiles to
be visualized.

Two Spatial internal functions have been made visible in order to describe the tiles.
These functions were part of a previous release of Oracle Spatial Data Option, and
are currently reserved for internal use only. The functions are not recommended for
general use, except for this visualization example. Use the following syntax for the
internal functions:

hhcellbndry (sdo_code || sdo_meta, sdo_dimnum, sdo_lb, sdo_ub,
 hhlength(sdo_code || sdo_meta) {’MIN’ | ’MAX’})

In the following examples, the dimension boundaries were assumed to be -180 to
180, and -90 and 90. The dimensional information is stored in the <layername>_
SDODIM table.

If you used SDO_ADMIN.UPDATE_INDEX_FIXED() or SDO_ADMIN.POPULATE_
INDEX_FIXED() to generate your spatial index, replace "sdo_code || sdo_meta"
with sdo_tile in the SQL statements that follow.

The SQL query shown in Example A–5 can be used to decode all the index entries
in a <layername>_SDOINDEX table. The example returns the coordinates of the
lower-left and upper-right corners of each tile.

Example A–5 View Fixed-Sized Tiles for All Geometries Using the Relational Model

SELECT hhcellbndry (sdo_code || sdo_meta, 1, -180.000000000, 180.000000000,
 hhlength (sdo_code || sdo_meta), 'MIN') min_x,
 hhcellbndry (sdo_code || sdo_meta, 1, -180.000000000, 180.000000000,
 hhlength (sdo_code || sdo_meta), 'MAX') max_x,
 hhcellbndry (sdo_code || sdo_meta, 2, -90.000000000, 90.000000000,
 hhlength (sdo_code || sdo_meta), 'MIN') min_y,
 hhcellbndry (sdo_code || sdo_meta, 2, -90.000000000, 90.000000000,
 hhlength (sdo_code || sdo_meta), 'MAX') max_y
FROM (SELECT DISTINCT sdo_code, sdo_meta FROM <layername>_sdoindex);

The SQL query shown Example A–6 in can be used to decode the index entries for
a specific geometry stored in a <layername>_SDOINDEX table:
Tuning Tips and Sample SQL Scripts A-7

Tuning Tips
Example A–6 View Fixed-Size Tiles for a Specific Geometry Using the Relational
Model

SELECT hhcellbndry (sdo_code || sdo_meta, 1, -180.000000000, 180.000000000,
 hhlength (sdo_code || sdo_meta), 'MIN') min_x,
 hhcellbndry (sdo_code || sdo_meta, 1, -180.000000000, 180.000000000,
 hhlength (sdo_code || sdo_meta), 'MAX') max_x,
 hhcellbndry (sdo_code || sdo_meta, 2, -90.000000000, 90.000000000,
 hhlength (sdo_code || sdo_meta), 'MIN') min_y,
 hhcellbndry (sdo_code || sdo_meta, 2, -90.000000000, 90.000000000,
 hhlength (sdo_code || sdo_meta), 'MAX') max_y
FROM <layername>_sdoindex
WHERE sdo_gid = <geometry id>;

See Section A.4.2.3 for another method of viewing tiles.

A.2.5 Performing Secondary Filter Queries and the Redo Log
When the Oracle database server processes SQL statements that require sorting,
such as statements containing an ORDER BY or DISTINCT clause, the Oracle
server stores the result set in a temporary storage area. The result set is then sorted.
If the SORT_AREA_SIZE is insufficient for holding the result set in memory, then
some data may be written to disk and an entry is written in the redo log.

The RELATE() secondary filter issues SQL statements internally that contain
DISTINCT and ORDER BY clauses. If the SORT_AREA_SIZE initialization
parameter is too small for processing the secondary filters, then some sorting may
occur on disk, which causes entries to be written in the redo log. This may affect
performance. For better performance, increase the SORT_AREA_SIZE parameter to
force sorting to occur in memory.

A.2.6 Tuning Point Data with the Relational Model
Point data, unlike line and polygon data, has the unique characteristic of
containing one tile per point. This section describes how to improve the
performance of queries on point data.

A.2.6.1 Efficient Queries for Relational Point Data
When querying point data with a rectangular query window, you can take
advantage of the nature of these geometries to improve performance.

A rectangle can be defined by its lower-left and upper-right coordinates (Xmin,
Ymin and Xmax, Ymax). A point has a single set of coordinates (Px, Py). When
A-8 Oracle8i Spatial User’s Guide and Reference

Tuning Tips
your area-of-interest is a rectangle, instead of using the SDO_
GEOM.RELATE()function in the secondary filter, you can use simple SQL
comparison operators as follows:

SELECT sdo_gid, sdo_x1, sdo_y1
FROM cities_sdogeom,
 (SELECT a.sdo_gid gid1
 FROM cities_sdoindex a,
 window_sdoindex b
 WHERE b.sdo_gid = [area of interest id]
 AND a.sdo_code = b.sdo_code)
 WHERE sdo_gid = gid1
 AND sdo_x1 BETWEEN Xmin AND Xmax
 AND sdo_y1 BETWEEN Ymin AND Ymax ;

The DISTINCT clause is not necessary in the primary filter of the query because a
point contains only a single tile in the spatial index.

A.2.6.2 Efficient Schema for Relational Point Layers
Because a point is always referenced by only one tile in a spatial index, for
additional performance, you can place the columns normally found in the
<layername>_SDOINDEX table in the <layername>_SDOGEOM table. This will
save you the cost of joining the <layername>_SDOINDEX and <layername>_
SDOGEOM tables.

You still need to create an updatable view for the <layername>_SDOINDEX table
that selects the appropriate columns from the <layername>_SDOGEOM table. This
is because functions such as SDO_ADMIN.UPDATE_INDEX_FIXED() and SDO_
ADMIN.POPULATE_INDEX_FIXED() expect a <layername>_SDOINDEX table to
exist. Create the view using "instead of" triggers for insert, delete, and update such
that the appropriate columns in the <layername>_SDO_GEOM table are updated.
The following example shows how to use "instead of" triggers:

CREATE OR REPLACE TRIGGER mytrig INSTEAD OF INSERT ON points_sdoindex
 REFERENCING new AS n
 FOR EACH ROW
 BEGIN
 UPDATE points_sdogeom SET points_sdogeom.sdo_code = :n.sdo_gid;
 END;
CREATE OR REPLACE TRIGGER mydeltrig INSTEAD OF DELETE ON points_sdoindex
 REFERENCING old AS n
 FOR EACH ROW
 BEGIN
 UPDATE points_sdogeom SET points_sdogeom.sdo_code = NULL
Tuning Tips and Sample SQL Scripts A-9

Tuning Tips
 WHERE points_sdogeom.sdo_gid = :n.sdo_gid;
 END;

The following example shows a window query of a layer containing point data
when the window layer contains one rectangle:

SELECT sdo_gid, sdo_x1, sdo_y1
FROM points_sdogeom a,
 window_sdoindex b
WHERE b.sdo_gid = [area of interest id]
 AND a.sdo_code = b.sdo_code)
 AND sdo_x1 BETWEEN Xmin AND Xmax
 AND sdo_y1 BETWEEN Ymin AND Ymax;

A.2.6.3 Script for Using Table Partitioning with Relational Point Data
Because point data is always indexed using a single tile, it is well suited for
partitioning. The following script shows an example of using the Oracle8i
partitioning feature with Spatial point data:

ORACLE_HOME/MD/demo/examples/scripts/partition_points.sql

A.2.7 Tuning Spatial Join Queries Using the Relational Model
There are some helpful hints you can place in your spatial join queries to improve
performance. The remainder of this section describes some of the hints you can use.
For more information on hints, see Oracle8i Tuning.

A.2.7.1 Using the NO_MERGE, INDEX, and USE_NL Hints
A spatial join takes place between two layers. When the two layers being joined are
line or polygon layers, the spatial join query contains two DISTINCT clauses: one
in the inner SELECT clause and the other in the outer SELECT clause. The Oracle
optimizer ignores the inner DISTINCT clause to save on the cost of sorting.
However, if the inner DISTINCT clause is ignored, the secondary filter gets
called many more times than it needs to be. This can have a significant impact on
performance because the secondary filter is an expensive operation. Use the NO_
MERGE hint to prevent the optimizer from ignoring the inner DISTINCT clause.

In a spatial join, all the tiles from one layer are compared to all the tiles from
another layer. The Oracle database server performs a full table scan on one
<layername>_SDOINDEX table, (preferably the smaller of the two), and an index
lookup on the other <layername>_SDOINDEX table. Use the INDEX and USE_NL
A-10 Oracle8i Spatial User’s Guide and Reference

Tuning Tips
hints to force the optimizer to perform the full table scan on the smaller of the two
<layername>_SDOINDEX tables being compared.

 The following example shows a spatial join between line (road) and polygon
(county) data. The query answers the question, "Which counties intersect major
roads?"

SELECT /*+ cost
 ordered use_nl(COUNTY_sdogeom)
 index (COUNTY_sdogeom NAME_OF_SDO_GID_INDEX)
 */
 COUNTY_sdogeom.SDO_GID,
 COUNTY_sdogeom.SDO_ESEQ,
 COUNTY_sdogeom.SDO_SEQ,
 COUNTY_sdogeom.SDO_X1,COUNTY_sdogeom.SDO_Y1,
 COUNTY_sdogeom.SDO_X2,COUNTY_sdogeom.SDO_Y2,
 COUNTY_sdogeom.SDO_X3,COUNTY_sdogeom.SDO_Y3,
 COUNTY_sdogeom.SDO_X4,COUNTY_sdogeom.SDO_Y4,
 COUNTY_sdogeom.SDO_X5,COUNTY_sdogeom.SDO_Y5,
 COUNTY_sdogeom.SDO_X6,COUNTY_sdogeom.SDO_Y6,
 COUNTY_sdogeom.SDO_X7,COUNTY_sdogeom.SDO_Y7,
 COUNTY_sdogeom.SDO_X8,COUNTY_sdogeom.SDO_Y8
FROM (SELECT DISTINCT gid_a gid1
 FROM (SELECT /*+ index (a NAME_OF_SDO_CODE_INDEX)

index (b NAME_OF_SDO_CODE_INDEX)
use_nl (a b)
no_merge */

 DISTINCT a.sdo_gid gid_a,
 b.sdo_gid gid_b
 FROM COUNTY_SDOINDEX a,
 MAJOR_ROAD_SDOINDEX b
 WHERE a.sdo_code = b.sdo_code)
 WHERE sdo_geom.relate('COUNTY', gid_a, 'ANYINTERACT',
 'MAJOR_ROAD',gid_b) <> 'FALSE'),
 COUNTY_sdogeom
WHERE COUNTY_sdogeom.sdo_gid = gid1;

A.2.7.2 Spatial Join Queries with Point Layers
The following example shows a spatial join between line (road) and point (street
address) data. The query answers the question, "which addresses are on a major
road?"

SELECT /*+ cost
 ordered use_nl (STREET_ADDRESS_sdogeom)
 index (STREET_ADDRESS_sdogeom NAME_OF_SDO_GID_INDEX)
Tuning Tips and Sample SQL Scripts A-11

Tuning Tips
 */
 STREET_ADDRESS_sdogeom.SDO_GID,
 STREET_ADDRESS_sdogeom.SDO_X1,
 STREET_ADDRESS_sdogeom.SDO_Y1
FROM (SELECT DISTINCT gid_a gid1
 FROM (SELECT /*+ index (a NAME_OF_SDO_CODE_INDEX)
 index (b NAME_OF_SDO_CODE_INDEX)
 use_nl (a b) */
 a.sdo_gid gid_a,
 b.sdo_gid gid_b
 FROM STREET_ADDRESS_SDOINDEX a,
 MAJOR_ROAD_SDOINDEX b
 WHERE a.sdo_code = b.sdo_code)
 WHERE sdo_geom.relate('STREET_ADDRESS', gid_a, 'ANYINTERACT',
 'MAJOR_ROAD',gid_b) <> 'FALSE'),
 COUNTY_sdogeom
WHERE COUNTY_sdogeom.sdo_gid = gid1;

The inner DISTINCT clause is not necessary for spatial joins where one of the
layers contains point data. Therefore, the NO_MERGE hint is not necessary. This is
because points contain only one tile in the spatial index.

The following example shows a spatial join between polygon (county) and point
(street address) data. The query generates a report that displays how many
addresses are associated with each county.

If you can assume that each street address is associated with a single county, you
can significantly speed up this query. Because points contain only a single tile in
the spatial index, any street address tile that matches only one county tile in the
primary filter does not need to go through the expensive secondary filter.

SELECT county_gid, count(street_gid)
FROM (SELECT poly.sdo_gid county_gid, street.sdo_gid street_gid
 FROM STREET_ADDRESS_sdoindex street,
 (SELECT sdo_code county_sdo_code,
 count(sdo_gid) interacts
 FROM CENSUS_COUNTY_sdoindex
 GROUP by sdo_code
) counts,
 CENSUS_COUNTY_sdoindex poly
 WHERE street.sdo_code = counts.county_sdo_code
 AND poly.sdo_code = street.sdo_code
 AND (counts.interacts = 1
 OR
 sdo_geom.relate('STREET_ADDRESS', street.sdo_gid,
A-12 Oracle8i Spatial User’s Guide and Reference

Tuning Tips
 'ANYINTERACT',
 'CENSUS_COUNTY',poly.sdo_gid) <> 'FALSE'
)
)
GROUP BY county_gid;

A.2.8 Using Customized Geometry Types in the Relational Model
The relational spatial model supports three geometry types: points, lines, and
polygons. If your data contains another type, such as a circle or arc, then you must
choose the supported type that best approximates your desired type (or upgrade to
the object-relational model.) For example, in the relational model, a circle can be
defined as a multisided polygon. Obviously, the more coordinates in the element,
the better the approximation will be.

Although customized types are not supported, you do not have to lose your
knowledge of the type. After storing the approximated element, create another
element in that geometry with ETYPE=0. Spatial ignores elements of ETYPE=0. You
can then write your own routines to handle your specialized geometry type.

A.2.9 Partitioning Spatial Data Using the Relational Model
The Oracle8i partitioning feature lets you spread out your spatial data and create
spatial indexes in a very controlled manner. Such control allows a database
administrator to isolate data that may be causing I/O performance issues. Note
that this optimization works only for the relational implementation.

The most obvious way to partition relational spatial data is to base the partitions on
the geometry ID (GID) column. Select the full list of available GIDs in a given layer
and sort them to produce an ordered list. Next, examine the list to determine
whether or not the GIDs would provide a good set of balanced partitions. In cases
where one or two GIDs dominate the layer, partitioning by GID will not yield a
balanced distribution. In such cases, you may want to consider adding a new
alphanumeric column to the layer, and use this column to create balanced
partitions. Although this requires an extra effort, it may result in significant
performance improvements.

For more information, including examples and sample parsing times, see the online
text file: ORACLE_HOME/md/demo/examples/scripts/parallel.doc.
Tuning Tips and Sample SQL Scripts A-13

Tuning Tips
A.2.10 Parallel Loading and Indexing of Spatial Data Using the Relational Model
On a multiprocessor system, you can use parallel execution to improve both
loading times and spatial index creation times. Note that this optimization works
only for the relational implementation.

When using partitioned tables, as described in Section A.2.9, you can achieve
further performance gains by loading and indexing geometries in parallel. The
partitioned tables can be loaded by selecting from non-partitioned source tables, or
using the SQL*Loader utility. Parallel threads (one for each partition,) can be
submitted to load the partitioned table. For information on parallel loading, see the
description of the SQL*Loader utility in Oracle8i Utilities.

You can also create spatial indexes in parallel by creating a number of views or
layers. Create each layer with a range of GIDs, with corresponding <layername>_
SDOLAYER and <layername>_SDODIM tables. For example, the following
statements create the necessary views for the first 300 GIDs in a table:

CREATE VIEW a_sdogeom AS SELECT * FROM a_sdogeom
 WHERE sdo_gid BETWEEN 1 and 100;
CREATE VIEW a_sdodim AS SELECT * FROM a_sdodim;
CREATE VIEW a_sdolayer AS SELECT * FROM a_sdolayer;

Next, create the index table as a partitioned table. Create a partition for each range
of GIDs for which you created a view.

CREATE INDEX a_sdoindex
 (sdo_gid NUMBER,
 sdo_code RAW(255),
 sdo_meta RAW(255))
INITRANS 4
STORAGE (initial 2M
 next 1M
 pctincrease 0
 freelist groups 12
 freelists 19)
PARTITION BY RANGE (sdo_gid)
(PARTITION a_idx1 VALUES LESS THAN (300)
 TABLESPACE sdo_data
 .
 .
 .);

To create the index, submit SDO_ADMIN.POPULATE_INDEX() commands for each
of the partitions. The threads will independently build their corresponding indexes,
A-14 Oracle8i Spatial User’s Guide and Reference

Scripts for Spatial Indexing Using the Relational Model
with significant performance improvements over the non-partitioned,
single-threaded model.

For more information, including examples and sample parsing times, see the online
text file: ORACLE_HOME/md/demo/examples/scripts/parallel.doc.

A.3 Scripts for Spatial Indexing Using the Relational Model
Spatial provides sample SQL script files to show how to use dynamic SQL in a
PL/SQL block to create layer tables for spatially indexed data. The scripts are
available after installation in the ORACLE_HOME/md/admin directory.

The following sections describe the cr_spatial_index.sql and crlayer.sql scripts.

A.3.1 cr_spatial_index.sql Script
The cr_spatial_index.sql script file shows an example of updating the spatial index
for a layer, and executing a commit after every 50 GIDs have been entered.

The procedures SDO_ADMIN.POPULATE_INDEX() and SDO_ADMIN.POPULATE_
INDEX_FIXED() operate as a single transaction. To reduce the amount of rollback
required to execute these procedures, you can write a routine similar to that in cr_
spatial_index.sql. This script loops and calls SDO_ADMIN.UPDATE_INDEX_
FIXED() for each GID, committing after every 50 GIDs.

-- cr_spatial_index.sql
--
-- Note: if geometries do not span more than 1 row, you can remove
-- the DISTINCT qualifier from the SELECT statement.
--
declare
 cursor c1 is SELECT DISTINCT sdo_gid from POLYGON_SDOGEOM;
 gid number;
 i number;
begin
 i := 0;
 for r in c1 loop
 begin
 gid:= r.sdo_gid;
 sdo_admin.update_index_fixed(’POLYGON’, gid, 15, FALSE, FALSE, FALSE);
 exception when others then
 dbms_output.put_line(’error for gid’||to_char(gid)||’: ’||SQLERRM);
 end;
 i:= i + 1;
Tuning Tips and Sample SQL Scripts A-15

Tools and Related Products
 if i = 50 then
 commit;
 i:= 0;
 end if;
 end loop;
commit;
end;
/

When you call the SDO_ADMIN.UPDATE_INDEX_FIXED() procedure for a large
data set, you may get a "snapshot too old" error message from the Oracle server.
You can avoid this error by creating more or larger rollback segments. You can also
try to increase the number of GIDs before committing the transaction.

A.3.2 crlayer.sql Script
The crlayer.sql script file is a template used to create all the tables for a layer and
populate the metadata in the <layername>_SDODIM and <layername>_
SDOLAYER tables.

A.4 Tools and Related Products
The following sections describe sample programs and related products that, while
not required for the storage or maintenance of spatial data, can make those tasks
simpler.

A.4.1 Oracle8i interMedia Locator
Oracle8i interMedia Locator is a related product that supports online internet-based
geocoding facilities for locator applications and proximity queries.

A.4.1.1 Geocoding Support
Geocoding is the process for converting a non-standardized street address or
postal code into a standardized address (optionally certified by the USPS), with
latitude and longitude information. In addition, census information such as block
groups, postal carrier routes, and block codes can be retrieved as a result of this
process.

Note: The cr_spatial_index.sql script is not available in your
ORACLE_HOME/md/admin directory after installation. You must
create this script yourself.
A-16 Oracle8i Spatial User’s Guide and Reference

Tools and Related Products
The interMedia Locator option provides an interface to the online geocoding
service provided by Qualitative Marketing Service, Inc. (QMS). You can use
PL/SQL stored procedure functions to geocode an address, and record and fetch all
the information into two predefined objects from the QMS Web site. The first object
is of type SDO_GEOMETRY, and it contains the spatial longitude and latitude
information stored as point data. The second object returned is GEOCODE_
RESULT which contains text fields of a standardized address and other fields
mentioned previously such as postal carrier route or block code.

For more information about this online service, see the following Web site:

http://www.centrus-software.com/oracle

For more information about interMedia Locator, see Oracle8i interMedia Locator
User’s Guide and Reference.

A.4.1.2 Compatibility with Spatial Objects
interMedia Locator is a subset of Oracle8i Spatial and, therefore, is completely
compatible with Spatial objects. The index uses the same set of metadata tables, for
instance. One difference is that interMedia Locator locates only points, while
Spatial supports multiple geometry types.

The LOCATOR_WITHIN_DISTANCE() operator is similar to the SDO_
GEOM.WITHIN_DISTANCE() operator.

The interMedia Locator version of the WITHIN_DISTANCE operator takes a new
parameter in the last string: units=[mile,meter,ft] . This allows you to search
by units. The functionality in the Spatial version is only an estimation on the
surface of the earth, and not exact distance or driving distance.

A.4.1.3 Sample Locator Code
Sample scripts are available in the following directory after you install Oracle8i
interMedia Locator:

$ORACLE_HOME/md/demo/geocoder

To migrate data between products, type ocimig , and prompts will guide you
through the process, which is similar to using SQL*Loader or the export/import
utilities.
Tuning Tips and Sample SQL Scripts A-17

Tools and Related Products
A.4.2 Spatial Viewer on UNIX/Motif for Relational Model
A sample geometry viewer, sdodemo, is available for UNIX systems using a Motif
interface. This viewer displays geometries stored using the relational model.

A.4.2.1 Installation and Setup
The following steps are required to set up and run the Motif application:

1. Set the environment variables:

setenv MD_VIEWER <full_pathname>/sdo_motif_demo/src
setenv XENVIRONMENT $MD_VIEWER/app-defaults/resource_file
alias sdodemo $MD_VIEWER/bin/demo

2. Run the following as mdsys:

$ORACLE_HOME/md/admin/sdowin.sql
$ORACLE_HOME/md/admin/prvtwin.plb
$MD_VIEWER/sql_scripts/my_window.sql
$MD_VIEWER/sql_scripts/my_win.sql

3. If you are using a Sun Solaris system, a compiled version of $MD_
VIEWER/bin/demo has been shipped with Spatial. Go to step 4.

If you are using a UNIX operating system other than Solaris, you need to
recompile the viewer. A makefile is included only for Sun Solaris systems. You
may need to make some system-specific modifications.

cd $MD_VIEWER
make -f makefile8.sun clean
make -f makefile8.sun

4. Create an alias for the sample program:

alias sdodemo $MD_VIEWER/bin/demo

5. Run the sample program:

sdodemo

A.4.2.2 Connecting to a Database and Viewing Geometries
When you run the sample sdodemo program, you will be prompted for an Oracle
user name, password, and alias if the database resides on a remote machine.
A-18 Oracle8i Spatial User’s Guide and Reference

Tools and Related Products
Two windows will pop up, one where geometries are drawn, and a second with
several buttons. Click the CHOOSE LAYER button and select a layer.

The extent of the map will initially be the values stored in the <layername>_
SDODIM table for the current layer. You can then click the ZOOM TO EXTENT
button, and the map extent will be set to the true extent of your data. Note that the
time it takes to perform ZOOM TO EXTENT depends on the amount of data in
your <layername>_SDOGEOM table.

A.4.2.3 Using the Sample Viewer
The text for all queries is displayed in the UNIX shell where you are running the
sdodemo program.

There are three radio buttons at the top of the control panel. These buttons
determine which query is executed when you click the PERFORM QUERY button:

■ PRIM & SEC - performs a primary and secondary filter.

■ PRIMARY FILTER ONLY - performs a primary filter only query.

■ DRAW ALL - selects everything in the <layername>_SDOGEOM table. This
does not perform a spatial query.

To perform a spatial query:

1. Click either the PRIM & SEC or the PRIMARY FILTER ONLY radio button.

2. Click either SELECT BOX, SELECT CIRCLE, or SELECT POLYGON, and draw
the area of interest on the map.

3. Click the PERFORM QUERY button, and the geometries will display on the
base map.

You can look at individual geometries by clicking the SHOW GIDS button. You can
also click the SHOW ALL TILES button to look at index tiles. This can help you
tune your spatial index. See Section A.2.4 for another method of drawing tiles.

A.4.3 Spatial Visualizer on Windows NT for the Object-Relational Model
The Spatial Visualizer is a sample program used to demonstrate two things. First, it
is an example of using dynamic linking libraries to wrap Oracle Call Interface
(OCI) and Spatial functions into C++ classes. Second, the program provides a
simple visualizer that can display Spatial objects.
Tuning Tips and Sample SQL Scripts A-19

Tools and Related Products
A.4.3.1 Compiling and Running the Sample Program
To compile the Spatial Visualizer sample program, first unzip the following file into
your work directory: ORACLE_HOME/md/demos/NT/DEMO_Visualizer.zip.
This creates the following subdirectories:

■ include - contains header files

■ bin and lib - contain output files

■ SDOConnCur - contains a project for creating a dynamic link library (DLL)

■ VisualSDO - contains another project for creating an executable (EXE) file

Next, make sure your Visual C++ IDE has the correct directory settings for using
OCI and common header files. To ensure this, click Tools... Options... Directories,
and then perform the following tasks:

1. Click ’Include files’ to add the OCI include path (for example,
C:\ORANT\OCI80\include) and the common include path for your projects
(for example, Myprojects\include).

2. Click ’Library files’ to add the OCI library path (for example,
C:\ORANT\OCI80\lib\msvc) and the common library path for your projects
(for example, Myprojects\lib).

3. Type ’SDOConnCur\SDOConnCur.dsw’ and click Open to compile
SDOConnCur.dll.

4. Type ’VisualSDO\VisualSDO.dsw’ and click Open to create VisualSDO.exe.

A.4.3.2 Usage Notes
Consider the following when using this sample program:

■ ’SDOConnCur’: This project creates a DLL (SDOConnCur.dll) to wrap OCI and
SDO functions into C++ classes, so that users of this DLL can benefit from
Oracle Call Interface (OCI) without knowing how to make OCI calls.

■ 'VisualSDO’: This project creates an executable file (VisualSDO.exe) based on
SDOConnCur.dll. It is a simple visualizer that can display Oracle8i Spatial
geometry objects.

■ All the files and directories under ORACLE_HOME/md/demos/NT are
components of the Spatial Visualizer demonstration program. They should be
used for demonstration purposes only.

■ The workspaces are created with Visual C++ 6.0, and might not be compatible
with previous versions.
A-20 Oracle8i Spatial User’s Guide and Reference

Tools and Related Products
■ The ZIP file (DEMO_Visualizer.zip) contains all the contents under this
directory. Due to system dependencies, copy the ZIP file only to a Windows NT
system.
Tuning Tips and Sample SQL Scripts A-21

Tools and Related Products
A-22 Oracle8i Spatial User’s Guide and Reference

Installation, Compatibility, and Migration Iss
B

Installation, Compatibility, and Migration

Issues

This appendix provides information concerning installation, compatibility, and
migration between various Oracle Spatial product releases.

Beginning with Spatial Data Option 7.3.3, all interfaces are supported in each
subsequent release. A spatial application built for and using the 7.3.3 spatial data
option interfaces will work with an 8.0.4, 8.0.5, or 8.1.3 database server. The
implementations of these interfaces have changed and therefore PL/SQL packages
from older versions of the spatial cartridge will not work with newer versions of
the Oracle database server. Therefore, you must upgrade both server and Spatial at
the same time if you wish to use older spatial applications with new Oracle8i
releases.

Spatial must always be synchronized with the Oracle database server on upgrade
or downgrade. In both cases, Spatial must be re-installed.

B.1 Introduction
Spatial release 8.1 requires Oracle8i Enterprise Edition and the Objects Option.
Spatial release 8.1 has been redesigned to use various Oracle8i object and
extensibility features. Many of the features this option depends on are new in
release 8.1 of the database server. Therefore, there are many compatibility and
migration issues that need to addressed in this release of Spatial. This appendix
outlines the database and application compatibility issues.

Database compatibility issues exist because the product uses extensible indexing
and object types in 8.1, and therefore if an 8.1 database instance is downgraded to
8.0.5, then the spatial objects must be deleted and re-created. In this case, the data
must be exported and imported into 8.0.5. This, and other requirements, result in
ues B-1

Installation Details
application incompatibility. An 8.1 Spatial application will likely use the new
spatial operators and therefore will not work with an 8.0.5 instance unless it can
identify the Spatial version and dynamically change its spatial queries.

An upgrade or downgrade of the database server version requires a corresponding
upgrade or downgrade of Spatial. If an 8.0.5 server is upgraded to 8.1, Spatial also
has to be upgraded. The reason has to do with using dynamic SQL in PL/SQL, and
Invoker's Rights in 8.1. Similarly, if an 8.1 server is downgraded, Spatial must be
downgraded too. Lastly, if an 8.1 server is running in 8.0 compatibility mode, then
Spatial will experience various failures unless it is reconfigured for 8.0.5. You can
reconfigure the product by running the downgrade script: c813d805.sql.

In summary:

■ Spatial release and the Oracle database server release must match

■ Upgrade and downgrade scripts must be run when upgrading or downgrading
between 8.0.5 and 8.1

■ Spatial will work in 8.0 compatibility mode for an 8.1 database server if and
only if the downgrade script is run and users or applications only attempt to
use the relational implementation of the product

B.2 Installation Details
To install Spatial, the script catmd.sql in the ORACLE_HOME/md/admin directory
must be run as user mdsys. The mdsys user should be created with the set of
privileges listed in ORACLE_HOME/MD/mdprivs.sql, and with both default and
temporary tablespace.

 Installation of Spatial requires that the COMPATIBLE init.ora parameter is set to
8.1.0.0.0 or higher. This is required for the creation and definition of Spatial index
types and operators. Thus, if the database was created with a compatibility
parameter value of 8.0.x.x.x, the DBA must shut down the database and restart
with COMPATIBLE=8.1.x.x.x.

B.2.1 Changing from 8.1 to 8.0 Compatibility Mode
If Spatial has been installed and the database compatibility needs to be reset to
8.0.x.x.x from 8.1.x.x.x, then do the following:

1. Determine if there is any user data that contains instances of the type
MDSYS.SDO_GEOMETRY. That is, determine if any user table has a column of
type MDSYS.SDO_GEOMETRY and has data in it.
B-2 Oracle8i Spatial User’s Guide and Reference

Compatibility Details
2. If there are instances, delete all spatial indexes on these columns. Delete the
data in these columns or delete these columns and tables. If there are no
instances, go on to the next step.

3. Run the script c813d805.sql in ORACLE_HOME/md/admin. This will delete
all spatial objects that require 8.1 compatibility. That is, all the object-relational
implementation objects for Oracle8i Spatial will be deleted. The relational
implementation available in release 8.0.x.x.x will remain installed and
accessible.

4. While connected as SYSTEM, enter the following:

 ALTER DATABASE RESET COMPATIBILITY
 SHUTDOWN
 Change the init.ora parameter COMPATIBLE=8.1.0.0.0
 STARTUP

After running ORACLE_HOME/MD/c813d805.sql, resetting the database
comptability to 8.1.x.x.x from 8.0.x.x.x requires running the script ORACLE_
HOME/MD/c805u813.sql to re-install and enable the object-relational
implementation of Spatial.

B.3 Compatibility Details
All releases of the Spatial product provide a set of predefined spatial data types,
topological operators such as RELATE(), and a spatial indexing mechanism. The
Oracle8i Spatial release differs from previous ones in that it:

■ Uses object types (a varray-based type called SDO_GEOMETRY to store
ordinates)

■ Supports new spatial data types, namely arcs and circles

■ Has new spatial operators (SDO_WITHIN_DISTANCE) and functions, SDO_
POLY_UNION, SDO_BUFFER, SDO_POLY_INTERSECT, and SDO_POLY_XOR

■ Utilizes Dynamic SQL in PL/SQL

■ Allows Invoker's Rights

■ Tessellates a geometry as a whole rather than an element at a time

All interfaces preceding Oracle8i are maintained, but the package bodies have been
changed to use the above features. Thus for Oracle8i, the Spatial packages must be
reinstalled to use these interfaces even if the compatibility parameter is set to 8.0.
Installation, Compatibility, and Migration Issues B-3

Data Migration Issues
No data migration is needed and the 7.3.4/8.0.4 spatial applications will work
without modification. Any OCI-specific migration issues must be handled in the
same manner as they would have to be for any OCI application.

The 7.3.4/8.0.4 to 8.1.3 upgrade requirements are the same. Upgrade both Oracle8i
and Spatial. Perform all the necessary steps for an upgrade. Your spatial
applications will continue to work as before.

Downgrading from 8.0.5 or earlier releases to a previous release of the server and
Spatial requires no special steps specific to the Spatial implementation. However,
this situation is different for Oracle8i. In Oracle8i, Spatial uses objects and
extensible indexing. Therefore, it creates Oracle8i specific database objects that are
not compatible with previous releases of the database server. When you
downgrade the server and Spatial from Oracle8i to 8.0.5, a spatial-specific
downgrade script must be executed to remove all the spatial geometry type,
indexmethod type, and spatial operator definitions.

B.4 Data Migration Issues
Beginning with 7.3.3, all subsequent releases can work with spatial data from
previous releases. That is no data migration is required. The situation is different in
Oracle8i because Spatial now allows two storage mechanisms. If you want the
features specific to Oracle8i, such as extensible indexing and spatial operators, then
you must migrate your spatial data from the 7.3.3 columns-of-numbers style to the
SDO_GEOMETRY storage scheme. Spatial provides a stored procedure and sample
code that demonstrates one way of migrating data and metadata.

Migrating data on downgrades is more complex. Spatial provides OCI
demonstration programs to read SDO_GEOMETRY instances and store them in an
8.0.5 spatial schema for comparable data. The demo also addresses issues related to
the changes in the way metadata is stored in Oracle8i compared to previous
releases. The complexity arises from the following:

■ From 7.3.4 onward, Spatial has an UNSUPPORTED_GEOMETRY type that is
always used in conjunction with a bounding box or polygon, used for indexing
purposes, which encloses the spatial object. This did not exist in release 7.3.3.

■ From 8.1.3 onward, Spatial supports arcs, circles, arc strings, and geometries
made up of a mixture of arc and line segments.

You cannot store arcs and circles in any release earlier than Oracle8i. And you
cannot use data from a 7.3.4 or later spatial layer in 7.3.3 if it contains instances of
type UNSUPPORTED_GEOMETRY (etype=0).
B-4 Oracle8i Spatial User’s Guide and Reference

Partitioning Legacy Point
C

Partitioning Legacy Point Data

Spatial has undergone an architectural change, beginning with the 7.3.3 release.
The emphasis on partitioned tables has been replaced by the improved spatial
indexing features.

Spatial provides the essential functions, procedures, and scripts for using and
managing both spatially indexed data and partitioned point data. The information
in this appendix is relevant only to users who have not yet migrated to the new
data model. For all other users, spatial indexing is preferred and recommended.

C.1 Overview
Partitioning is a technique where data is loaded into tables that automatically
subdivide when a predefined maximum size is reached. During subdivision, data
is moved from the parent partition to the child partitions and the parent partition is
deleted. Storage parameters for child partitions are inherited from the root partition
and can be changed at any time.

A partitioned table has a partition key that is an HHCODE column created by
encoding multidimensional point data using the SDO_ENCODE() function. In the
partitioning process, at each subdivision, data is subdivided into 2n partitions
where n is the number of dimensions encoded in the HHCODE column. You can
encode up to 32 dimensions using Spatial.

Note: The functions described in this appendix will be removed
in a future release.
 Data C-1

Partitioning Process
C.2 Partitioning Process
This guide does not attempt to provide the information necessary for fully utilizing
table partitioning for point data. Existing users who need to use this method
should continue to use their Spatial Data Option 7.3.2 documentation. The
following is a high-level description of the partitioning process:

1. Start with an Oracle8i table containing multidimensional point data. For
example, columns of X and Y coordinate data from a blueprint or map.

2. Create a table or view from the original Oracle8i table containing the columns
you want, plus a new HHCODE column.

An HHCODE column is a new data type used to encode multiple dimensions
into a unique orderable value. HHCODE is not a point, but rather a bounded
cell representing an object space in as many dimensions as have been defined.
An HHCODE data type is defined as RAW(255).

3. Create the HHCODE data type by encoding multiple dimensions into a single
value using the SDO_ENCODE() function. The HHCODE data type will be
used as the partition key.

4. Register a partitioned table in the Spatial data dictionary using the SDO_
ADMIN.REGISTER_PARTITION_INFO() procedure. This procedure takes the
name of a table, the name of the partition key column, and the maximum
number of records you want stored in a partition before it subdivides.

5. Call the SDO_ADMIN.PARTITION() procedure with the name of the table or
view containing the partition key column and the tablespace in which the
partitions should be created. In this step, the data is partitioned based on
dimensions encoded in the HHCODE column.

6. If the underlying table has constraints, grants, or triggers, the owner needs to
use the SDO_ADMIN.PROPAGATE_GRANTS() procedure to set those properties
on the partitions.

7. To add more partitioned point data, load the data into a table, and call SDO_
ADMIN.PARTITION() again. The dimensions encoded in the HHCODE
column must have the same boundaries to be loaded into the existing
partitioned table.

8. After you have added data multiple times, or after adding or deleting a large
amount of data, there may be partitions that exceed the high-water mark or
there may be partitions that can be merged. Call the SDO_
ADMIN.REPARTITION() procedure to reorganize the partitioned table.
C-2 Oracle8i Spatial User’s Guide and Reference

Scripts for the Deprecated Partitioned Point Data Model
Repartitioning is a computation-intensive task that should be performed only
when necessary.

C.3 Scripts for the Deprecated Partitioned Point Data Model
This section describes the following scripts:

■ altpart.sql

■ drppart.sql

■ sdogrant.sql

Although the scripts described in this section are available, the recommended
approach is to use Oracle8i partitioning and spatial indexing.

C.3.1 altpart.sql Script
The altpart.sql script file shows how to use dynamic SQL in a PL/SQL procedure to
modify all partitions of a Spatial partitioned table.

The Spatial data dictionary view used in this SQL script requires that a registered
Spatial partitioned table is specified. If the table is not registered, you can use the
USER_TABLES view to select all the partitioned tables from the user’s schema. To
use the USER_TABLES view, enter the following syntax:

SQL> SELECT TABLENAME FROM user_tables WHERE TABLENAME LIKE
2> ’% tablename _P%’;

C.3.2 drppart.sql Script
The drppart.sql script file shows how to use dynamic SQL in a PL/SQL procedure
to drop (remove) all partitions of a Spatial partitioned table. After running this
procedure, you must run the SDO_ADMIN.DROP_PARTITION_INFO() procedure.

The Spatial data dictionary view used in this SQL script requires that a registered
Spatial partitioned table is specified. If the table is not registered, you can use the
USER_TABLES view to select all the partitioned tables from the user’s schema. To
use the USER_TABLES view, use the following syntax:

SQL> SELECT TABLENAME FROM user_tables WHERE TABLENAME LIKE
2> ’% tablename _P%’;
Partitioning Legacy Point Data C-3

Administrative Functions for the Deprecated Model
C.3.3 sdogrant.sql Script
The sdogrant.sql script file contains an administrative procedure, PROPAGATE_
GRANTS(), which is used after calling the SDO_ADMIN.PARTITION() or SDO_
ADMIN.REPARTITION() procedures.

This procedure must first be compiled by running the sdogrant.sql file. The
PROPAGATE_GRANTS() procedure is callable only by the user who compiled it.

C.4 Administrative Functions for the Deprecated Model
Table C–1 lists the procedures that can be used with partitioned point data. These
procedures are neither required nor compatible with the geometry-based data
format.

Table C–1 Administrative Procedures for Partitioned Point Data

Procedure Data Structure Description

SDO_ADMIN.ALTER_HIGH_WATER_MARK Partitioned points Alters the high-water mark of a partitioned table.

SDO_ADMIN.DROP_PARTITION_INFO Partitioned points Removes a partitioned table.

SDO_ADMIN.PARTITION Partitioned points Places data into partitioned tables.

SDO_ADMIN.PROPAGATE_GRANTS Partitioned points Propagates the grants on the registered underlying
table to the various partitions.

SDO_ADMIN.REGISTER_PARTITION_
INFO

Partitioned points Creates a partitioned spatial table.

SDO_ADMIN.REPARTITION Partitioned points Reorganizes a table based on the sorted values of the
data contained within it.

SDO_ADMIN.VERIFY_PARTITIONS Partitioned points Checks for the existence of a table.
C-4 Oracle8i Spatial User’s Guide and Reference

SDO_ADMIN.ALTER_HIGH_WATER_MARK
SDO_ADMIN.ALTER_HIGH_WATER_MARK

Purpose
This procedure alters the high-water mark of a partitioned spatial table. The
high-water mark defines how many records can be stored in a partition before it
subdivides. The table must exist and be registered in the Spatial data dictionary.

This procedure is for use only with partitioned point data.

Syntax
SDO_ADMIN.ALTER_HIGH_WATER_MARK (tablename, high_water_mark)

Keywords and Parameters

Usage Notes
None.

The following example changes the high-water mark to 5000 records for the table1
partitioned spatial table:

SQL> EXECUTE SDO_ADMIN.ALTER_HIGH_WATER_MARK(’table1’, 5000);

Related Topics
■ SDO_ADMIN.REPARTITION() procedure

■ altpart.sql sample SQL script file

tablename Specifies the name of the partitioned table.
Data type is VARCHAR2.

high_water_mark Specifies the new high-water mark for the table.
Data type is INTEGER.
Partitioning Legacy Point Data C-5

SDO_ADMIN.DROP_PARTITION_INFO
SDO_ADMIN.DROP_PARTITION_INFO

Purpose
This procedure removes a partitioned spatial table from the Spatial data dictionary.
The table must exist and must be registered in the Spatial data dictionary.

This procedure is used only with partitioned point data.

Syntax
SDO_ADMIN.DROP_PARTITION_INFO (tablename)

Keywords and Parameters

Usage Notes
This procedure does not remove the spatial table and its associated partition tables
from the user’s schema. For a description of how to remove a partitioned spatial
table from the user’s schema, see the drppart.sql sample SQL script file described
in Section C.3.2.

The following example removes the table1 table from the Spatial data dictionary:

SQL> EXECUTE SDO_ADMIN.DROP_PARTITION_INFO(’table1’);

Related Topics
■ drppart.sql sample SQL script file

tablename Specifies the name of the partitioned table.
Data type is VARCHAR2.
C-6 Oracle8i Spatial User’s Guide and Reference

SDO_ADMIN.PARTITION
SDO_ADMIN.PARTITION

Purpose
This procedure places data into partitioned tables based on the sorted order of
encoded dimensional values.

This procedure is used only with partitioned point data.

Syntax
SDO_ADMIN.PARTITION (owner.source_table, tablename, parallel, guess, plummet_flag
[,tablespace])

Keywords and Parameters

owner.source_table Specifies the Oracle8i table or view of the table containing the
partition key column.
Data type is VARCHAR2.

tablename Specifies the name of the table to partition.
Data type is VARCHAR2.

parallel Specifies the degree of parallelism for an operation on a single
instance.
Data type is INTEGER.

guess Specifies the estimated largest common level of all the potential
partitions to be created from data in the source_table. The common
level of a partition is the number of levels of resolution of the
common HHCODE for the partition.
Data type is INTEGER.

plummet_flag Specifies if the common HHCODE for all the potential partitions to be
created from data in the source_table contains the maximum possible
common level. If TRUE, the common HHCODE for each potential
partition contains the maximum possible common level. If FALSE, the
common HHCODE for each potential partition contains the minimum
possible common level.
Default value is FALSE.
Data type is BOOLEAN.

tablespace Specifies the tablespace in which the partitions should be created.
Default is the tablespace of the underlying table.
Partitioning Legacy Point Data C-7

SDO_ADMIN.PARTITION
Usage Notes
Consider the following when using this procedure:

■ The maximum size of the partitioned tables is determined by the high-water
mark of the partitioned spatial table.

■ To perform this procedure, first load the original data into an Oracle8i table
using a utility such as SQL*Loader. After the data is loaded, encode the data
using the appropriate combination of Spatial data conversion functions. The
encoded data is used as the partition key column. The partition key column is
provided as either a column in the Oracle8i table or as a view of that table.

■ For more information on specifying the degree of parallelism, see the Oracle8i
Tuning manual.

The following example partitions the table1 partitioned spatial table with data
contained in the source1 table:

SQL> EXECUTE SDO_ADMIN.PARTITION(’source1’,’table1’,1,10,FALSE);

Related Topics
■ SDO_ADMIN.REGISTER_PARTITION_INFO() procedure
C-8 Oracle8i Spatial User’s Guide and Reference

SDO_ADMIN.PROPAGATE_GRANTS
SDO_ADMIN.PROPAGATE_GRANTS

Purpose
This procedure is used to propagate the grants on the underlying table to the
partitions.

This procedure is used only with partitioned point data.

Syntax
SDO_ADMIN.PROPAGATE_GRANTS (tablename)

Keywords and Parameters

Usage Notes
This procedure is used after calls to SDO_ADMIN.PARTITION() or SDO_
ADMIN.REPARTITION() . It must be called by the owner of the partition.

This procedure must be compiled prior to use. See Section C.3.3.

The following example propagates grants from the TABLE1 partitioned spatial
table:

SQL> EXECUTE SDO_ADMIN.PROPAGATE_GRANTS(’TABLE1’);

Related Topics
■ SDO_ADMIN.PARTITION() procedure

■ SDO_ADMIN.REPARTITION() procedure

tablename Specifies the name of the partitioned table.
Data type is VARCHAR2.
Partitioning Legacy Point Data C-9

SDO_ADMIN.REGISTER_PARTITION_INFO
SDO_ADMIN.REGISTER_PARTITION_INFO

Purpose
This procedure creates a partitioned spatial table entry in the Spatial data
dictionary, and defines the partition key column and the high-water mark for the
table.

This procedure is used only with partitioned point data.

Syntax
SDO_ADMIN.REGISTER_PARTITION_INFO (tablename, column, high_water_mark)

Keywords and Parameters

Usage Notes
The SQL CREATE TABLE statement is used to create the partitioned spatial table,
with the partition key column defined as RAW(255), prior to calling this procedure.

The following example registers the TABLE1 partitioned spatial table:

SQL> EXECUTE SDO_ADMIN.REGISTER_PARTITION_INFO(’table1’,
2> ’hhcolumn’, 1000);

Related Topics
■ SDO_ADMIN.PARTITION() procedure

tablename Specifies the name of the partitioned table.
Data type is VARCHAR2.

column Specifies the name of the partition key column for the table.
Data type is VARCHAR2.

high_water_mark Specifies the number of records to store in a partition before the
partition subdivides.
Data type is INTEGER.
C-10 Oracle8i Spatial User’s Guide and Reference

SDO_ADMIN.REPARTITION
SDO_ADMIN.REPARTITION

Purpose
This procedure reorganizes a partitioned spatial table based on the sorted order of
encoded dimensional values already contained in it. The table must exist and must
be registered in the Spatial data dictionary.

This procedure is used only with partitioned point data.

Syntax
SDO_ADMIN.REPARTITION (tablename, parallel, [tablespace])

Keywords and Parameters

Usage Notes
Consider the following when using this procedure:

■ The tablespace variable is optional. If you do not supply a tablespace name, the
partitions are created in the same tablespace as the registered partition table.

■ The maximum size of the reorganized partition tables is determined by the
high-water mark of the partitioned spatial table.

The following example repartitions the table1 partitioned spatial table:

SQL> EXECUTE SDO_ADMIN.REPARTITION(’table1’, 1);

Related Topics
■ SDO_ADMIN.ALTER_HIGH_WATER_MARK() procedure

tablename Specifies the name of the partitioned table.
Data type is VARCHAR2.

parallel Specifies the degree of parallelism for an operation on a single instance.
Data type is INTEGER.

tablespace Specifies the name of the tablespace in which to create the partition.
Data type is VARCHAR2.
Partitioning Legacy Point Data C-11

SDO_ADMIN.VERIFY_PARTITIONS
SDO_ADMIN.VERIFY_PARTITIONS

Purpose
This procedure checks if the partitioned spatial table exists, if it is registered in the
Spatial data dictionary, and if the partition key column exists as defined in the
Spatial data dictionary.

This procedure is used only with partitioned point data.

Syntax
SDO_ADMIN.VERIFY_PARTITIONS (tablename)

Keywords and Parameters

Usage Notes
This procedure can generate the following errors depending on the results of the
verification:

■ SDO 13113 (Oracle table does not exist)

■ SDO 13108 (spatial table not found)

■ SDO 13111 (spatial table has no partition key defined)

■ SDO 13129 (HHCODE column not found)

The following example verifies the table1 partitioned spatial table:

SQL> EXECUTE SDO_ADMIN.VERIFY_PARTITIONS(’table1’);

Related Topics
■ SDO_ADMIN.REGISTER_PARTITION_INFO() procedure

tablename Specifies the name of the table.
Data type is VARCHAR2.
C-12 Oracle8i Spatial User’s Guide and Reference

Data Functions
C.5 Data Functions
The functions described in this section are not required for creating or maintaining
a spatial database, however, they are provided for convenience in working with
legacy data in partitioned point data tables. They are used with SQL SELECT,
INSERT, UPDATE, and DELETE statements to perform the following:

■ Generate dimensions from bounded, hierarchical, or date data values

■ Encode and decode dimensions

■ Retrieve bounded, hierarchical, or date data values from dimensions

When using these functions in basic SQL statements, use the form:
SDO_<function>. When using the functions inside a PL/SQL block, use a period (.)
instead of the underscore (_).

This section contains descriptions of the spatial functions listed in Table C–2.

Table C–2 Partitioned Point Data Functions

Function Purpose

SDO_BVALUETODIM Creates a dimension from bounded data values.

SDO_COMPARE Evaluates the relationship between two objects
described by HHCODEs.

SDO_DATETODIM Creates a dimension from an Oracle DATE data
type.

SDO_DECODE Extracts a single dimension from an HHCODE.

SDO_ENCODE Creates an HHCODE by combining dimensions to
describe an area or point.

SDO_TO_BVALUE Extracts a bounded data value from a dimension.

SDO_TO_DATE Extracts an Oracle DATE data type from a
dimension.
Partitioning Legacy Point Data C-13

SDO_BVALUETODIM
SDO_BVALUETODIM

Purpose
This function creates a dimension from a bounded value, which is a value
contained in a set of values expressed as a lower boundary and an upper boundary.

Syntax
SDO_BVALUETODIM (value, lower_boundary, upper_boundary, decimal_scale)

Keywords and Parameters

Returns
This function returns a dimension. The data type is RAW.

Usage Notes
 The following example shows the SDO_BVALUETODIM() function:

SQL> INSERT INTO sourcetable1 (SAMPLENAME,DATA_PT)
2> VALUES (’SAMPLE1’,SDO_ENCODE(SDO_BVALUETODIM(10,-100,100,7),
3> SDO_BVALUETODIM(20,-100,100,7));

Related Topics
■ SDO_ENCODE() function

■ SDO_TO_BVALUE() function

value Specifies the value for the particular dimension.
Data type is NUMBER.

lower_boundary Specifies the lower boundary of the dimension range.
Data type is NUMBER.

upper_boundary Specifies the upper boundary of the dimension range.
Data type is NUMBER.

decimal_scale Specifies the number of digits to the right of the decimal point.
Data type is NUMBER.
C-14 Oracle8i Spatial User’s Guide and Reference

SDO_COMPARE
SDO_COMPARE

Purpose
This function evaluates the relationship between an area or point described by an
HHCODE and another HHCODE, or a range of HHCODEs expressed as an upper
bound and lower bound.

Syntax
SDO_COMPARE (hhcode_expression, {hhcode_expression | lower_bound_HHCODE,upper_bound_
HHCODE})

Keywords and Parameters

Returns
This function returns one of the following keywords:

■ ENCLOSES

■ EQUAL

■ INSIDE

■ OUTSIDE

■ OVERLAP

The data type is VARCHAR2.

Usage Notes
The following example selects all points that fall within the given
multidimensional range:

SQL> SELECT SDO_GID FROMlayer1 _SDOINDEX WHERE
2> SDO_COMPARE(SDO_MAXCODE,

hhcode_expression Specifies an expression that evaluates to an HHCODE.
Data type is RAW.

lower_bound_HHCODE Specifies the lower bound HHCODE expression.
Data type is RAW.

upper_bound_HHCODE Specifies the upper bound HHCODE expression.
Data type is RAW.
Partitioning Legacy Point Data C-15

SDO_COMPARE
3> SDO_ENCODE(5,5),
4> SDO_ENCODE(25,25))=’INSIDE’;

The following example selects GIDs based on interaction between their spatial
index tiles:

SQL> SELECT SDO_GID FROMlayer1 _SDOINDEX A, layer2 _SDOINDEX B
2> WHERE SDO_COMPARE(A.SDO_CODE,B.SDO_CODE) != ’OUTSIDE’;

Related Topics
■ SDO_GEOM.RELATE() function
C-16 Oracle8i Spatial User’s Guide and Reference

SDO_DATETODIM
SDO_DATETODIM

Purpose
This function creates a dimension from an Oracle DATE data type. The component
number determines the level of resolution of the date in the dimension.

Syntax
SDO_DATETODIM (date [, component])

Keywords and Parameters

Returns
This function returns a dimension. The data type is RAW.

Usage Notes
You must use a valid Oracle date format string.

The following example shows the SDO_DATETODIM() function:

SQL> INSERT INTO sourcetable1 (SAMPLENAME,DATA_PT)
2> VAUES(’SAMPLE1’,SDO_ENCODE(SDO_DATETODIM(TO_DATE(’19-Jul-96’),
3> SDO_BVALUETODIM(100,-1000,1000,7)));

date Specifies the calendar date.
Data type is DATE.

component Specifies the level of resolution. The component
number values are defined as follows:

1 accurate to year
2 accurate to month
3 accurate to day
4 accurate to hour
5 accurate to minute
6 accurate to second

The default value is 6.
Data type is INTEGER.
Partitioning Legacy Point Data C-17

SDO_DATETODIM
Related Topics
■ SDO_ENCODE() function

■ SDO_TO_DATE() function
C-18 Oracle8i Spatial User’s Guide and Reference

SDO_DECODE
SDO_DECODE

Purpose
This function extracts a single dimension from an HHCODE.

Syntax
SDO_DECODE (hhcode_expression, dimension_number)

Keywords and Parameters

Returns
This function returns a dimension. The data type is RAW.

Usage Notes
The SDO_DECODE() function is called once for each dimension to be decoded.

The following example shows the SDO_DECODE() function:

SQL> SELECT
2> SDO_TO_BVALUE(SDO_DECODE(DATA_PT,1),1,6),
3> SDO_TO_BVALUE(SDO_DECODE(DATA_PT,2),-100,100),
4> SDO_TO_DATE(SDO_DECODE(DATA_PT,3))
5> FROM sourcetable1 WHERE SAMPLENAME=’SAMPLE1’;

Related Topics
■ SDO_TO_BVALUE() function

■ SDO_TO_DATE() function

hhcode_expression Specifies an expression that evaluates to an HHCODE.
Data type is RAW.

dimension_number Specifies the dimension number to extract.
Data type is INTEGER.
Partitioning Legacy Point Data C-19

SDO_ENCODE
SDO_ENCODE

Purpose
This function combines dimensions to create the HHCODE that describes an area
or point.

Syntax
SDO_ENCODE (dimension1[,dimension2 ...])

Keywords and Parameters

Returns
This function returns an HHCODE. The data type is RAW.

Usage Notes
Consider the following when using this function:

■ When encoding dimensions, the order of the dimensions in the parameter list
must be consistent for all rows within the table.

■ This function can encode up to 32 dimensions.

The following example shows the SDO_ENCODE() function:

SQL> INSERT INTO sourcetable1 (SAMPLENAME,DATA_PT)
2> VALUES (’SAMPLE1’,SDO_ENCODE(SDO_BVALUETODIM(50,-100, 100, 10),
3> SDO_BVALUETODIM(30,-100,100,10),
4> SDO_DATETODIM(TO_DATE(’05-Jul-96’),3)));

Related Topics
■ SDO_BVALUETODIM() function

■ SDO_DATETODIM() function

dimension Specifies an expression created by the SDO_BVALUETODIM or SDO_
DATETODIM functions.
Data type is RAW.
C-20 Oracle8i Spatial User’s Guide and Reference

SDO_TO_BVALUE
SDO_TO_BVALUE

Purpose
This function returns the original bounded data value of a dimension.

Syntax
SDO_TO_BVALUE (dimension, lower_boundary, upper_boundary)

Keywords and Parameters

Returns
This function returns a bounded data value. The data type is NUMBER.

Usage Notes
This function returns a number that is the value for a dimension within the
specified range. This is not necessarily the range for which the dimension was
originally created.

The following example shows the SDO_TO_BVALUE() function:

SQL> SELECT (SDO_TO_BVALUE(SDO_DECODE(DATA_PT,2),-100,100)
2> FROM sourcetable1 WHERE SAMPLENAME=’SAMPLE1’;

Related Topics
■ SDO_DECODE() function

■ SDO_BVALUETODIM() function

dimension Specifies the dimension.
Data type is RAW.

lower_boundary Specifies the lower boundary of the dimension range.
Data type is NUMBER.

upper_boundary Specifies the upper boundary of the dimension range.
Data type is NUMBER.
Partitioning Legacy Point Data C-21

SDO_TO_DATE
SDO_TO_DATE

Purpose
This function returns the original date value of a dimension.

Syntax
SDO_TO_DATE (dimension)

Keywords and Parameters

Returns
This function returns an Oracle DATE data type.

Usage Notes
The following example shows the SDO_TO_DATE() function:

SQL> SELECT SDO_TO_DATE(SDO_DECODE(DATA_PT,3))
2> FROM sourcetable1 WHERE SAMPLENAME=’SAMPLE1’;

Related Topics
■ SDO_DATETODIM() function

■ SDO_DECODE() function

dimension Specifies the dimension.
Data type is RAW.
C-22 Oracle8i Spatial User’s Guide and Reference

Data Dictionary
C.6 Data Dictionary
The Spatial data dictionary is a set of tables owned by the database user mdsys. An
extension to the Oracle8i data dictionary, it automatically maintains information
about spatial tables, columns, and partitions. The Spatial data dictionary is created
during the installation process. All nonspatial attribute information is maintained
in the Oracle8i data dictionary.

The Spatial data dictionary has public views that provide extensive information
about spatial tables. This section contains descriptions of the views that are
available.

The following views are publicly available:

■ ALL_MD_COLUMNS

■ ALL_MD_DIMENSIONS

■ ALL_MD_EXCEPTIONS

■ ALL_MD_LOADER_ERRORS

■ ALL_MD_PARTITIONS

■ ALL_MD_TABLES

■ ALL_MD_TABLESPACES

■ DBA_MD_COLUMNS

■ DBA_MD_DIMENSIONS

■ DBA_MD_EXCEPTIONS

■ DBA_MD_LOADER_ERRORS

■ DBA_MD_PARTITIONS

■ DBA_MD_TABLES

■ DBA_MD_TABLESPACES

■ USER_MD_COLUMNS

Note: Only the partitioned point routines use the Spatial data
dictionary.
Partitioning Legacy Point Data C-23

Data Dictionary
■ USER_MD_DIMENSIONS

■ USER_MD_EXCEPTIONS

■ USER_MD_LOADER_ERRORS

■ USER_MD_PARTITIONS

■ USER_MD_TABLES

■ USER_MD_TABLESPACES

ALL_MD_COLUMNS
 Returns a list of all columns that are part of spatial tables.

WARNING: Do not delete or modify any of the tables in the
mdsys account. This corrupts the Spatial data dictionary.

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

COLUMN_NAME name of the column

DATA_TYPE data type of the column

DATA_LENGTH length of the column in bytes

DATA_PRECISION scale for NUMBER data type, binary precision for
FLOAT data type, and NULL for all other data types

DATA_SCALE digits to right of decimal point in an HHCODE column or a
number

NDIM number of dimensions in the HHCODE column
(It is NULL for all other data types.)

MAX_LEVEL maximum number of levels in the column

NULLABLE indicates if column allows NULL values

PARTITION_KEY indicates if column is the partition key column; only one is
allowed per partitioned table

COLUMN_ID sequence number of the column as created

DEFAULT_LENGTH length of the default value for the column
C-24 Oracle8i Spatial User’s Guide and Reference

Data Dictionary
ALL_MD_DIMENSIONS
Returns a list of all dimensions that are part of HHCODE columns.

ALL_MD_EXCEPTIONS
Contains information about spatial tables that should be removed (dropped) as a
result of some failed operation, such as a failed load.

NUM_DISTINCT number of distinct values in each column of the table

LOW_VALUE lowest value for tables with three or fewer rows
(It is the second-lowest value in the column for tables with more
than three rows.)

HIGH_VALUE highest value for tables with three or fewer rows
(It is the second-highest value in the column for tables with
more than three rows.)

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

COLUMN_NAME name of the column

DIMENSION_NAME name of the dimension

DIMENSION_NUMBER dimension number

LOWER_BOUND lower boundary of the dimension range

UPPER_BOUND upper boundary of the dimension range

SCALE scale of the dimension

RECURSION_LEVEL number of levels encoded in the HHCODE column

Column Description

OWNER owner of the object

NAME object name

OPERATION operation during which the failure occurred

CCHH common code HHCODE

Column Description
Partitioning Legacy Point Data C-25

Data Dictionary
ALL_MD_LOADER_ERRORS
 Contains the current status of a file that was loaded into a table using SD*Loader.

ALL_MD_PARTITIONS
 Returns a list of all the partitioned tables that are part of a user-accessible spatial
table.

 ALL_MD_TABLES
Returns a list of all the user-accessible spatial tables.

Column Description

OWNER owner of the object

MD_TABLE_NAME spatial table name

FILENAME SLF file name

ROWS_LOADED number of rows loaded before failure

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

PARTITION_TABLE_NAME name of the partitioned table

CLASS class of partition: NODE or LEAF

COMMON_LEVEL number of levels of resolution of the common HHCODE
column for the partition

COMMON_HHCODE common HHCODE substring for the partition

OFFLINE_STATUS status of partition: ONLINE or OFFLINE

ARCHIVE_DATE date of last archive

Column Description

OWNER owner of the table

MD_TABLE_NAME name of the spatial table

CLASS class of table: PARTITIONED or NON-PARTITIONED

PTAB_SEQ number of last partitioned table created
C-26 Oracle8i Spatial User’s Guide and Reference

Data Dictionary
ALL_MD_TABLESPACES
Returns a list of all tablespaces used by spatial tables.

DBA_MD_COLUMNS
 Returns a list of all columns that are part of Spatial tables.

HIGH_WATER_MARK maximum number of rows that can be inserted into a
partitioned table

OFFLINE_PATH complete path name to directory where the table is archived

COUNT_MODE count mode for estimating number of rows in a partition:
ESTIMATE or EXACT

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

TABLESPACE_NAME name of tablespace

SEQUENCE sequence number

STATUS status of tablespace: ACTIVE or INACTIVE

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

COLUMN_NAME name of the column

DATA_TYPE data type of the column

DATA_LENGTH length of the column in bytes

DATA_PRECISION scale for NUMBER data type, binary precision for FLOAT data
type, and NULL for all other data types

DATA_SCALE digits to right of decimal point in an HHCODE column or a
number

NDIM number of dimensions in the HHCODE column
(It is NULL for all other data types.)

MAX_LEVEL maximum number of levels in the column

Column Description
Partitioning Legacy Point Data C-27

Data Dictionary
DBA_MD_DIMENSIONS
Returns a list of all dimensions that are a part of spatial tables.

NULLABLE indicates if column allows NULL values

PARTITION_KEY indicates if column is the partition key column; only one is
allowed per partitioned table

COLUMN_ID sequence number of the column as created

DEFAULT_LENGTH length of the default value for the column

NUM_DISTINCT number of distinct values in each column of the table

LOW_VALUE lowest value for tables with three or fewer rows
(It is the second-lowest value in the column for tables with more
than three rows.)

HIGH_VALUE highest value for tables with three or fewer rows
(It is the second-highest value in the column for tables with
more than three rows.)

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

COLUMN_NAME name of the column

DIMENSION_NAME name of the dimension

DIMENSION_NUMBER dimension number

LOWER_BOUND lower boundary of the dimension range

UPPER_BOUND upper boundary of the dimension range

SCALE scale of the dimension

RECURSION_LEVEL number of levels encoded in the HHCODE column

Column Description
C-28 Oracle8i Spatial User’s Guide and Reference

Data Dictionary
DBA_MD_EXCEPTIONS
Contains information about spatial tables that should be removed (dropped) as a
result of some failed operation, such as a failed load.

DBA_MD_LOADER_ERRORS
Contains the current status of a file that was loaded into a table using SD*Loader.

DBA_MD_PARTITIONS
Returns a list of all the partitioned tables.

Column Description

OWNER owner of the object

NAME object name

OPERATION operation during which the failure occurred

CCHH common code HHCODE

Column Description

OWNER owner of the table where the error occurred

MD_TABLE_NAME spatial table name

FILENAME SLF file name

ROWS_LOADED number of rows loaded before failure

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

PARTITION_TABLE_NAME name of the partitioned table

CLASS class of partition: NODE or LEAF

COMMON_LEVEL number of levels of resolution of the common HHCODE
column for the partition

COMMON_HHCODE common HHCODE substring for the partition

OFFLINE_STATUS status of partition: ONLINE or OFFLINE

ARCHIVE_DATE date of last archive
Partitioning Legacy Point Data C-29

Data Dictionary
DBA_MD_TABLES
Returns a list of all the spatial tables.

DBA_MD_TABLESPACES
Returns a list of all tablespaces used by spatial tables.

USER_MD_COLUMNS
Returns a list of all the HHCODE columns that are part of tables owned by the user.

Column Description

OWNER owner of the table

MD_TABLE_NAME name of the spatial table

CLASS class of table: PARTITIONED or NON-PARTITIONED

PTAB_SEQ number of last partitioned table created

HIGH_WATER_MARK maximum number of rows that can be inserted into a
partitioned table

OFFLINE_PATH complete path name to directory where the table is archived

COUNT_MODE count mode for estimating number of rows in a partition:
ESTIMATE or EXACT

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

TABLESPACE_NAME name of tablespace

SEQUENCE sequence number

STATUS status of tablespace: ACTIVE or INACTIVE

Column Description

MD_TABLE_NAME name of the spatial table

COLUMN_NAME name of the spatial table

DATA_TYPE data type of the column

DATA_LENGTH length of the column in bytes
C-30 Oracle8i Spatial User’s Guide and Reference

Data Dictionary
USER_MD_DIMENSIONS
Returns a list of all dimensions that are part of HHCODE columns owned by the
user.

DATA_PRECISION scale for NUMBER data type, binary precision for
FLOAT data type, and NULL for all other data types

DATA_SCALE digits to right of the decimal point in an HHCODE column or a
number

NDIM number of dimensions in the HHCODE column
(It is NULL for all other data types.)

MAX_LEVEL maximum number of levels in the column

NULLABLE indicates if column allows NULL values

PARTITION_KEY indicates if column is the partition key column; only one
allowed per partitioned table

COLUMN_ID sequence number of the column as created

DEFAULT_LENGTH length of the default value for the column

NUM_DISTINCT number of distinct values in each column of the table

LOW_VALUE lowest value for tables with three or fewer rows
(It is the second-lowest value in the column for tables with more
than three rows.)

HIGH_VALUE highest value for tables with three or fewer rows
(It is the second-highest value in the column for tables with
more than three rows.)

Column Description

MD_TABLE_NAME name of the spatial table

COLUMN_NAME name of the column

DIMENSION_NAME name of the dimension

DIMENSION_NUMBER dimension number

LOWER_BOUND lower boundary of dimension range

UPPER_BOUND upper boundary of dimension range

SCALE scale of the dimension

Column Description
Partitioning Legacy Point Data C-31

Data Dictionary
USER_MD_EXCEPTIONS
Contains information about spatial tables that should be removed (dropped) as a
result of some failed operation, such as a failed load.

USER_MD_LOADER_ERRORS
Contains the current status of a file that was loaded into a table using SD*Loader.

USER_MD_PARTITIONS
Returns a list of all the partitioned tables that are part of spatial tables owned by
the user.

RECURSION_LEVEL number of levels encoded in the HHCODE column

Column Description

NAME object name

OPERATION operation during which the failure occurred

CCHH common code HHCODE

Column Description

MD_TABLE_NAME spatial table name

FILENAME SLF file name

ROWS_LOADED number of rows loaded before failure

Column Description

MD_TABLE_NAME name of the spatial table

PARTITION_TABLE_NAME name of the partition

CLASS class of partition: NODE or LEAF

COMMON_LEVEL number of levels of resolution of the common HHCODE
column for the partition

COMMON_HHCODE common HHCODE substring for the partition

OFFLINE_STATUS status of partition: ONLINE or OFFLINE

ARCHIVE_DATE date of last archive

Column Description
C-32 Oracle8i Spatial User’s Guide and Reference

Messages and Codes
USER_MD_TABLES
 Returns a list of all the spatial tables owned by the user.

USER_MD_TABLESPACES
 Returns a list of all tablespaces used by spatial tables.

C.7 Messages and Codes
MDSQL-00001: partition is OFFLINE

Cause: An MDSQL operation was attempted on a partition that is OFFLINE.

Action: Restore the partition and try the operation again.

MDSQL-00002: PK is out of bounds
Cause: The partition key for the record being inserted belongs in another
partition.

Action: Insert the record into the correct partition. The correct partition can be
identified using the GET_PARTITION_NAME() function.

MDSQL-00003: updates that move the PK are not supported

Column Description

MD_TABLE_NAME name of the spatial table

CLASS class of table: PARTITIONED or NON-PARTITIONED

PTAB_SEQ number of last sequence created

HIGH_WATER_MARK maximum number of rows that can be inserted into
a partitioned table

OFFLINE_PATH complete path name to directory where the table is archived

COUNT_MODE count mode for estimating number of rows in a partition:
ESTIMATE or EXACT

Column Description

MD_TABLE_NAME name of the spatial table

TABLESPACE_NAME name of tablespace

SEQUENCE sequence number

STATUS status of the tablespace: ACTIVE or INACTIVE
Partitioning Legacy Point Data C-33

Messages and Codes
Cause: The update of the partition key would result in the record belonging
to another partition.

Action: Use the MD_DML.MOVE_RECORD() procedure to update the parti-
tion key and move the record to the correct partition.
C-34 Oracle8i Spatial User’s Guide and Reference

Glossary

area

An extent or region of dimensional space.

attribute

Descriptive information characterizing a geographical feature such as a point, line,
or area.

attribute data

Nondimensional data that provides additional descriptive information about
multidimensional data, for example a class or feature such as a bridge or a road.

boundary

1. The lower or upper extent of the range of a dimension, expressed by a numeric
value.

2. The line representing the outline of a polygon.

Cartesian coordinate system

A coordinate system in which the location of a point in n-dimensional space is
defined by distances from the point to the reference plane. Distances are measured
parallel to the planes intersecting a given reference plane.

contain

To describe a geometric relationship where one object encompasses another and the
inner object does not touch any boundaries of the outer. The outer object contains
the inner object. See also inside.
Glossary-1

coordinate

A set of values uniquely defining a point in an n-dimensional coordinate system.

coordinate system

A reference system for the unique definition for the location of a point in
n-dimensional space.

cover

To describe a geometric relationship in which one object encompasses another and
the inner object touches the boundary of the outer object in one or more places.

data dictionary

A repository of information about data. A data dictionary stores relational
information on all the objects in a database.

decompose

To separate or resolve into constituent parts or elements, or into simpler
compounds.

dimensional data

Data that has one or more dimensional components and is described by multiple
values.

disjoint

A geometric relationship where two objects do not interact in any way. Two disjoint
objects do not share any element or piece of their geometry.

equal

A geometric relationship in which two objects are considered to represent the same
geometric figure. The two objects must be composed of the same number of points,
however, the ordering of the points defining the two objects’ geometries may differ
(clockwise or counter-clockwise).

extent

A rectangle bounding a map, the size of which is determined by the minimum and
maximum map coordinates.

feature

An object with a distinct set of characteristics in a spatial database.
Glossary-2

geographical information system

A computerized database management system used for the capture, conversion,
storage, retrieval, analysis, and display of spatial data.

geographically referenced data

See spatiotemporal data.

georeferenced data

See spatiotemporal data.

GIS

See geographical information system.

grid

A data structure composed of points located at the nodes of an imaginary grid. The
spacing of the nodes is constant in both the horizontal and vertical directions.

HHCODE

A data type representing the intersection point of multiple dimensions. It encodes
these multiple dimensions into a unique, linear value. The HHCODE data types
were used for both spatial indexing and partitioned point data in previous releases
of Spatial.

high-water mark

Expressed in number of records and associated with the deprecated Spatial
partitioned table structure, it defines the maximum number of records to store in a
table before decomposing another level. The high-water mark determines the
maximum size of a partition within the Spatial table. Partitioned tables were an
alternative to spatial indexing.

hole

A polygon can include subelements that negate sections of its interior. For example,
consider a polygon representing a map of a buildable land with an inner polygon
(a hole) representing where a lake is located.

homogeneous

Spatial data of one feature type such as points, lines, or regions.
Glossary-3

hyperspatial data

In mathematics, any space comprising more than the three standard x, y, and z
dimensions, also referred to as multidimensional data.

index

Identifier that is not part of a database and used to access stored information.

inside

To describe a geometric relationship where one object is surrounded by a larger
object and the inner object does not touch the boundary of the outer. The smaller
object is inside the larger. See also contain.

key

A field in a database used to obtain access to stored information.

keyword

Synonym for reserved word.

latitude

North/South position of a point on the Earth defined as the angle between the
normal to the Earth’s surface at that point and the plane of the equator.

line

A geometric object represented by a series of points, or inferred as existing between
two coordinate points.

longitude

East/West position of a point on the Earth defined as the angle between the plane
of a reference meridian and the plane of a meridian passing through an arbitrary
point.

multidimensional data

See hyperspatial data.

partition

1. The spatial table that contains data only for a unique bounded n-dimensional
space.

2. The process of grouping data into partitions that maintain the dimensional
organization of the data.
Glossary-4

partition key column

The primary HHCODE column that is used to dimensionally partition the data.
One HHCODE data type column must be identified as the partition key for the
table to be registered as partitionable in the Spatial data dictionary. There can be
only one partition key per spatial table. Note that this is only used for the
deprecated partitioned point data model, and not for spatially indexed data.

partitioned table

The spatial logical table structure that contains one or more partitions. Use
partitioned tables only if you are dealing with a very large amount of legacy point
data (over 50 gigabytes).

polygon

A class of spatial objects having a nonzero area and perimeter, and representing a
closed boundary region of uniform characteristics.

proximity

A measure of inter-object distance.

query

A set of conditions or questions that form the basis for the retrieval of information
from a database.

query window

Area within which the retrieval of spatial information and related attributes is
performed.

RDBMS

See Relational Database Management System.

recursion

A process, function, or routine that executes continuously until a specified
condition is met.

region

An extent or area of multidimensional space.
Glossary-5

Relational Database Management System (RDBMS)

A computer program designed to store and retrieve shared data. In a relational
system, data is stored in tables consisting of one or more rows, each containing the
same set of columns. Oracle8i is an object-relational database management system.
Other types of database systems are called hierarchical or network database
systems.

resolution

The number of subdivision levels of data.

scale

1. The number of digits to the right of the decimal point in a number representing
the level of resolution of an HHCODE.

2. The ratio of the distance on a map, photograph, or image to the corresponding
image on the ground, all expressed in the same units.

SD*Converter

A utility used with previous releases of Spatial Data Option to prepare data for
loading into spatial tables. Loading is now accomplished through SQL*Loader.

SLF

See Spatial Load Format.

sort

The operation of arranging a set of items according to a key that determines the
sequence and precedence of items.

spatial

A generic term used to reference the mathematical concept of n-dimensional data.

spatial data

Data that is referenced by its location in n-dimensional space. The position of
spatial data is described by multiple values. See also hyperspatial data.

spatial database

A database containing information indexed by location.

spatial data model

A model of how objects are located on a spatial context.
Glossary-6

Spatial data dictionary

An extension of the Oracle8i data dictionary. It keeps track of the number of
partitions created in a spatial table. The Spatial data dictionary is owned by user
mdsys. The data dictionary is used only by the deprecated partitioned point
routines.

spatial data structures

A class of data structures designed to store spatial information and facilitate its
manipulation.

Spatial Load Format (SLF)

The format used to load data into spatial tables in a previous release of Spatial Data
Option. Loading is now accomplished with the standard SQL*Loader.

spatial query

A query that includes criteria for which selected features must meet location
conditions.

spatiotemporal data

Data that contains time and/or location components as one of its dimensions, also
referred to as geographically referenced data or georeferenced data.

SQL*Loader

A utility to load formatted data into spatial tables.

tessellation

The process of covering a geometry with rectangular tiles without gaps or overlaps.

tiling

See tessellation.

touch

To describe a geometric relationship where two objects share a common point on
their boundaries, but their interiors do not intersect.
Glossary-7

Glossary-8

Index

A
administrative procedures, 13-1
ALTER INDEX, 5-2

REBUILD, 5-5
RENAME TO, 5-8

ALTER_HIGH_WATER_MARK, C-5
altering partitions, C-3
altpart.sql, C-3
ANYINTERACT, 7-4, 15-3
arcs, A-13
AREA, 7-2
area, 7-2, Glossary-1
attribute, Glossary-1
AVERAGE_MBR, 6-2, 14-2

B
boundary, Glossary-1
bounded data, C-21
bounded value, C-14
buffer area, 7-6
BUILD_WINDOW, 16-2
BUILD_WINDOW_FIXED, 16-4
bulk loading, 3-1, 11-2

C
Cartesian, Glossary-1
circle, 2-5, A-13
CLEAN_WINDOW, 16-6
CLEANUP_GID, 16-7
consistency check, 7-11, 15-5
CONTAINS, 7-5, 15-3, Glossary-1

control file, 11-2
coordinate, Glossary-2
coordinate system, Glossary-2
COVEREDBY, 7-5, 15-3
COVERS, 7-5, 15-4, Glossary-2
cr_spatial_index.sql, A-15
CREATE INDEX, 5-9
CREATE_WINDOW_LAYER, 16-8
creating layer tables, A-16
crlayer.sql, A-16
customized geometry types, A-13

D
data, Glossary-2
data dictionary, 2-12, C-23, Glossary-7
data model, 1-4, A-2
DATE data type, C-17, C-22
decompose, Glossary-2
difference, 7-7
dimensional, Glossary-2
disjoint, 7-5, 15-4, Glossary-2
displaying geometries, A-18, A-19
distance, 7-15
DROP INDEX, 5-13
DROP_PARTITION_INFO, C-6
dropping partitions, C-3
drppart.sql, C-3
dynamic query window, 4-3, 12-4

E
element, 1-5
ENCLOSES, C-15
Index-1

encoding dimensions, C-20
EQUAL, 7-5, 15-4, C-15, Glossary-2
error messages, xix
ESTIMATE_INDEX_PERFORMANCE, 6-3, 14-3
ESTIMATE_TILING_LEVEL, 6-5, 14-5
ESTIMATE_TILING_TIME, 6-7, 14-8
extent, 6-8, 14-9, Glossary-2
EXTENT_OF, 6-8, 14-9
extracting a dimension, C-19

F
feature, Glossary-2
filter, 12-6
fixed indexing, 1-9
fixed-size tiles, 3-10, 11-7, 13-5, 13-14

G
geocoding, A-16
Geographical Information System, Glossary-3
geometric primitive, 1-3
geometry types, 1-3

custom, A-13
object-relational, 2-2
relational, 10-3

georeferenced, Glossary-3
GIS, 1-2, Glossary-3
grants, C-4, C-9
grid, Glossary-3

H
HHCODE, Glossary-3
high water mark, C-5, Glossary-3
HISTOGRAM_ANALYSIS, 6-9, 14-10
hole in a polygon, Glossary-3
homogeneous, Glossary-3
hybrid indexing, 1-14
hyperspatial, Glossary-4

I
index, 13-3, 13-5, 13-12, 13-14, Glossary-4
index creation, 3-9, 11-6

in parallel, A-14
inserting spatial data, 11-4
INSIDE, 7-5, 15-4, C-15
interaction, 7-4, 15-3
interMedia Locator, A-16
intersection, 7-8

K
key, Glossary-4
keyword, Glossary-4

L
latitude, Glossary-4
layer, 1-6, A-16

validating, 7-13
LENGTH, 7-3
line, 2-5, Glossary-4

length, 7-3
line data, 1-5
loading process, 3-1, 11-2

in parallel, A-14
location, 1-2
longitude, Glossary-4

M
migration

OGIS, 8-5, 8-6
to Oracle7, 8-2
to Oracle8, 8-3

minimum bounding rectangle, 6-2, 6-8, 14-2, 14-9
MIX_INFO, 6-11, 14-12

O
object-relational model

schema, 2-1
operators

SDO_FILTER, 9-2
SDO_RELATE, 9-4
SDO_WITHIN_DISTANCE, 9-7

OUTSIDE, C-15
OVERLAP, C-15
Index-2

OVERLAPBDYDISJOINT, 7-5, 15-4
OVERLAPBDYINTERSECT, 7-5, 15-4

P
parallel load, A-14
partition, C-7, Glossary-4, Glossary-5
partition key, C-1
partitioned table, C-1, C-3, C-6, C-7, C-10,

Glossary-5
partitioned tables, 1-20, A-13
plotting tiles, A-4
PL/SQL, C-13
point data, 1-5, 13-8, A-8
polygon, 2-5, Glossary-5

area of, 7-2
polygon data, 1-5
POPULATE_INDEX, 13-3
POPULATE_INDEX_FIXED, 13-5
POPULATE_INDEX_FIXED_POINTS, 13-8
primary filter, 12-6
primitive, 1-3
PROPAGATE_GRANTS, C-9
proximity, Glossary-5

Q
query, 1-6, Glossary-5
query window, 4-3, 12-4, Glossary-5

R
RDBMS, Glossary-5, Glossary-6
rectangle, 2-5
recursion, Glossary-5
region, Glossary-5
REGISTER_PARTITION_INFO, C-10
RELATE, 7-4, 15-2
relational model

schema, 10-1
REPARTITION, C-11
resolution, Glossary-6

S
sample program, A-18, A-19
scale, Glossary-6
schema, 10-1

object-relational model, 2-1
relational model, 10-1

SD*Converter, Glossary-6
SD*Loader, Glossary-7
SDO_BUFFER, 7-6
SDO_BVALUETODIM, C-14
SDO_CODE_SIZE, 13-10
SDO_COMPARE, C-15
SDO_DATETODIM, C-17
SDO_DECODE, C-19
SDO_ENCODE, C-20
SDO_FILTER operator, 9-2
SDO_POLY_DIFFERENCE, 7-7
SDO_POLY_INTERSECTION, 7-8
SDO_POLY_UNION, 7-9
SDO_POLY_XOR, 7-10
SDO_RELATE operator, 9-4
SDO_TO_BVALUE, C-21
SDO_TO_DATE, C-22
SDO_VERSION, 13-11
SDO_WITHIN_DISTANCE operator, 9-7
sdogrant.sql, C-4
secondary filter, 12-7
server partitioning, C-1
SLF, Glossary-7
sort, Glossary-6
spatial data model, Glossary-6
spatial data structures, Glossary-7

object-relational model, 2-1
relational model, 10-1

spatial database, Glossary-6
sizing, A-3

spatial index, 3-9, 11-6, 13-12, 13-14
performance, 6-3, 14-3

spatial indexing
fixed, 1-9
hybrid, 1-14

spatial join, 4-8, 12-8, A-10
Spatial Load Format, Glossary-7
spatial query, 4-3, 12-4, Glossary-7
Index-3

spatiotemporal, Glossary-7
SQL script, A-15, C-3
SQL*Loader, 3-1, 11-2

T
table partitioning, 1-20, C-1
tessellation, 1-9, 11-6, 13-3, 13-5, 13-12, 13-14,

Glossary-7
tile, 1-8, 4-1, 12-1
tiling, 6-5, 13-14, 14-5, A-2, Glossary-7
TOUCH, 7-5, 15-4, Glossary-7
transactional insert, 3-3, 11-4
two-tier query, 1-6, 4-1, 12-1

U
union, 7-9
UPDATE_INDEX, 13-12
UPDATE_INDEX_FIXED, 13-14

V
VALIDATE_GEOMETRY, 7-11, 15-5
VALIDATE_LAYER, 7-13
VERIFY_LAYER, 13-16
VERIFY_PARTITIONS, C-12
visualizing geometries, A-18, A-19
visualizing tiles, A-4, A-19

W
WITHIN_DISTANCE, 7-15
Index-4

	PDF Directory
	Send Us Your Comments
	Preface
	1 Spatial Concepts
	1.1� What Is the Spatial Product?
	1.2� Introduction to Spatial Data
	1.3� Geometric Types for Relational and Object-Rel...
	1.4� Data Model
	1.4.1� Element
	1.4.2� Geometry
	1.4.3� Layer

	1.5� Query Model
	1.6� Indexing Methods
	1.6.1� Tessellation of a Layer During Indexing
	1.6.2� Fixed Indexing
	1.6.3� Hybrid Indexing

	1.7� Spatial Relations and Filtering
	1.8� Partitioned Point Data

	Part I� Object-Relational Model
	2 The Object-Relational Schema
	2.1� Object-Relational Data Structures
	2.2� Geometry Examples Using the Object-Relational...
	2.3� Geometry Metadata Structure
	2.4� Spatial Index-Related Structure
	2.4.1� Spatial Index Tables
	2.4.2� Spatial Index Data Dictionary View

	2.5� Usage Notes

	3 Loading and Indexing Spatial Object Types
	3.1� Load Process
	3.1.1� Bulk Loading
	3.1.2� Transactional Insert Using SQL

	3.2� Index Creation
	3.2.1� Determining Index Creation Behavior
	3.2.2� Spatial Indexing with Fixed-Size Tiles
	3.2.3� Hybrid Spatial Indexing with Fixed-Size and...

	4 Querying Spatial Data
	4.1� Query Model
	4.2� Spatial Query
	4.2.1� Primary Filter
	4.2.2� Primary and Secondary Filter
	4.2.3� Within Distance Operator

	4.3� Spatial Join

	5 Indexing Statements for Object Relational Model
	ALTER INDEX
	ALTER INDEX REBUILD
	ALTER INDEX RENAME TO
	CREATE INDEX
	DROP INDEX

	6 Tuning Functions and Procedures for Object-Relat...
	SDO_TUNE.AVERAGE_MBR
	SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
	SDO_TUNE.ESTIMATE_TILING_LEVEL
	SDO_TUNE.ESTIMATE_TILING_TIME
	SDO_TUNE.EXTENT_OF
	SDO_TUNE.HISTOGRAM_ANALYSIS
	SDO_TUNE.MIX_INFO

	7 Geometry Functions for Object-Relational Model
	SDO_GEOM.AREA
	SDO_GEOM.LENGTH
	SDO_GEOM.RELATE
	SDO_GEOM.SDO_BUFFER
	SDO_GEOM.SDO_POLY_DIFFERENCE
	SDO_GEOM.SDO_POLY_INTERSECTION
	SDO_GEOM.SDO_POLY_UNION
	SDO_GEOM.SDO_POLY_XOR
	SDO_GEOM.VALIDATE_GEOMETRY
	SDO_GEOM.VALIDATE_LAYER
	SDO_GEOM.WITHIN_DISTANCE

	8 Migration Procedures
	SDO_MIGRATE.TO_734
	SDO_MIGRATE.TO_81X
	SDO_MIGRATE.OGIS_METADATA_FROM
	SDO_MIGRATE.OGIS_METADATA_TO

	9 Spatial Operators
	SDO_FILTER
	SDO_RELATE
	SDO_WITHIN_DISTANCE

	Part II� Relational Model
	10 The Relational Schema
	10.1� Database Structures for the Relational Imple...

	11 Loading Spatial Data
	11.1� Load Model
	11.2� Load Process
	11.2.1� Bulk Loading
	11.2.2� Transactional Insert Using SQL

	11.3� Index Creation
	11.3.1� Choosing a Tessellation Algorithm
	11.3.2� Spatial Indexing with Fixed-Size Tiles
	11.3.3� Hybrid Spatial Indexing with Fixed-Size an...

	12 Querying Spatial Data
	12.1� Query Model
	12.2� Spatial Index Data Structures
	12.3� Spatial Query
	12.3.1� Dynamic Query Window
	12.3.2� Primary Filter Query
	12.3.3� Secondary Filter Query

	12.4� Spatial Join

	13 Administrative Functions and Procedures
	SDO_ADMIN.POPULATE_INDEX
	SDO_ADMIN.POPULATE_INDEX_FIXED
	SDO_ADMIN.POPULATE_INDEX_FIXED_POINTS
	SDO_ADMIN.SDO_CODE_SIZE
	SDO_ADMIN.SDO_VERSION
	SDO_ADMIN.UPDATE_INDEX
	SDO_ADMIN.UPDATE_INDEX_FIXED
	SDO_ADMIN.VERIFY_LAYER

	14 Tuning Functions and Procedures
	SDO_TUNE.AVERAGE_MBR
	SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
	SDO_TUNE.ESTIMATE_TILING_LEVEL
	SDO_TUNE.ESTIMATE_TILING_TIME
	SDO_TUNE.EXTENT_OF
	SDO_TUNE.HISTOGRAM_ANALYSIS
	SDO_TUNE.MIX_INFO

	15 Geometry Functions and Procedures
	SDO_GEOM.RELATE
	SDO_GEOM.VALIDATE_GEOM
	SDO_GEOM.VALIDATE_LAYER

	16 Window Functions and Procedures
	SDO_WINDOW.BUILD_WINDOW
	SDO_WINDOW.BUILD_WINDOW_FIXED
	SDO_WINDOW.CLEAN_WINDOW
	SDO_WINDOW.CLEANUP_GID
	SDO_WINDOW.CREATE_WINDOW_LAYER

	A Tuning Tips and Sample SQL Scripts
	A.1� Selecting a Spatial Model
	A.1.1� Benefits of the Object-Relational Model
	A.1.2� Benefits of the Relational Model

	A.2� Tuning Tips
	A.2.1� Data Modeling
	A.2.2� Understanding the Tiling Level
	A.2.3� Database Sizing
	A.2.4� Visualizing the Spatial Index (Drawing Tile...
	A.2.5� Performing Secondary Filter Queries and the...
	A.2.6� Tuning Point Data with the Relational Model...
	A.2.7� Tuning Spatial Join Queries Using the Relat...
	A.2.8� Using Customized Geometry Types in the Rela...
	A.2.9� Partitioning Spatial Data Using the Relatio...
	A.2.10� Parallel Loading and Indexing of Spatial D...

	A.3� Scripts for Spatial Indexing Using the Relati...
	A.3.1� cr_spatial_index.sql Script
	A.3.2� crlayer.sql Script

	A.4� Tools and Related Products
	A.4.1� Oracle8i interMedia Locator
	A.4.2� Spatial Viewer on UNIX/Motif for Relational...
	A.4.3� Spatial Visualizer on Windows NT for the Ob...

	B Installation, Compatibility, and Migration Issue...
	B.1� Introduction
	B.2� Installation Details
	B.2.1� Changing from 8.1 to 8.0 Compatibility Mode...

	B.3� Compatibility Details
	B.4� Data Migration Issues

	C Partitioning Legacy Point Data
	C.1� Overview
	C.2� Partitioning Process
	C.3� Scripts for the Deprecated Partitioned Point ...
	C.3.1� altpart.sql Script
	C.3.2� drppart.sql Script
	C.3.3� sdogrant.sql Script

	C.4� Administrative Functions for the Deprecated M...
	C.5� Data Functions
	C.6� Data Dictionary
	C.7� Messages and Codes

	Glossary
	Index

