Lecture
Genetic Programming

Genetic programming

CIS 412 Artificial Intelligence
Umass, Dartmouth

* One of the central problems in computer science is how
to make computers solve problems without being
explicitly programmed to do so.

» Genetic programming offers a solution through the
evolution of computer programs by methods of natural
selection.

* In fact, genetic programming is an extension of the
conventional genetic algorithm, but the goal of genetic
programming is not just to evolve a bitstring
representation of some problem but the computer code
that solves the problem.

GP

LISP as a GP language

« Genetic programming is a recent development in the area of
evolutionary computation. It was greatly stimulated in the 1990s by
John Koza.

« According to Koza, genetic programming searches the space of
possible computer programs for a program that is highly fit for
solving the problem at hand.

« Any computer program is a sequence of operations (functions)
applied to values (arguments), but different programming languages
may include different types of statements and operations, and have
different syntactic restrictions.

* GP manipulates programs by applying
genetic operators.

* Programming language should permit a
computer program to be manipulated as
data and the newly created data to be
executed as a program.

e LISP was chosen as the main language
for genetic programming.

LISP structure

S-expressions

* LISP has a highly symbol-oriented structure. Its
basic data structures are atoms and lists.

» An atom is the smallest indivisible element of the
LISP syntax. The number 21, the symbol X and
the string “This is a string” are examples of LISP
atoms.

» Alist is an object composed of atoms and/or
other lists. LISP lists are written as an ordered
collection of items inside a pair of parentheses.

(-(AB)C)

» Both atoms and lists are called
symbolic expressions or S-
expressions. In LISP, all data
and all programs are S-
expressions.

« This gives LISP the ability to
operate on programs as if they
were data.

* Any LISP S-expression can
be depicted as a rooted point-
labeled tree with ordered
branches.

GP algorithm steps

 Five preparatory steps:

* 1. Determine the set of terminals.

2. Select the set of primitive functions.
3. Define the fitness function.

* 4. Decide on the parameters for controlling the
run.

+ 5. Choose the method for designating a result of
o the run.

Performance measure - fithess

* We use a number of different fitness cases. The fitness
cases for the Pythagorean Theorem are represented by
the samples of right triangles in Table. These fitness
cases are chosen at random over a range of values of
variables a and b.

Side a | Skle b] Hypotemse ¢ " Side a] Side b] Hypotemse ¢ |

3 5 5830052 12 10 156204599
& 14 16.124513 21 6 218403350
18 2 18110770 4 5.062258
32 11 33837849 16 24 28 E44410
4 3 5000000 2 9 9.219545

GP algorithm steps

Define the fitness function. A fitness function evaluates how
well a particular computer program can solve the
problem. For our problem, the fitness of the
computer program can be measured by the error
between the actual result produced by the program
and the correct result given by the fitness case.

GP example

Pythagores’ Theorem

The theorem says that the hypotenuse, ¢, of a right triangle with
short sides a and b s given by

c=va+ b2

A\

The aim of genetic programming is to find a program that
matches with this theorem.

GP algorithm steps

Step 1: Determine the set of terminals. The terminals
correspond to the inputs of the computer program
to be discovered. Our program takes two inputs, a
and b.

Step 2: Select the set of primitive functions. The functions
can be presented by standard arithmetic
operations, standard programming operations,
standard mathematical functions, logical functions
or domain-specific functions. Our program will use
four standard arithmetic operations +, —, « and +,
and one mathematical function | /.

GP algorithm steps

Step 4: Decide on the parameters for controlling the run.
For controlling a run, genetic programming uses
the same primary parameters as those used for
GAs. They include the population size and the
maximum number of generations to be run.

Step 5: Choose the method for designating a result of the run.
It is common practice in genetic programming to
designate the best-so-far generated program as
the result of a run.

GP run

Two parental s-expressions -
crossover

Once these five steps are complete, a run can be made. |

@ The run of genetic programming starts with a random
generation of an initial population of computer programs.

@ Each program is composed of functions +, —, =, = and /.
and terminals a and b.

In the initial population, all computer programs usually have
poor fitness, but some individuals are more fit than others.]

reproduction, so a fitter computer program is more likely to

Just as a fitter chromosome is more likely to be selected for
survive by copying itself into the next generation. J

(/ (= (sgre (+ (* @ &) (= a B))) a) (* a b)) (+ (= (sgrt (= (* b B) @) B) (sqre a BY))

Two offspring s-expressions

Mutation in GP - original

(2)

(= (sgri (+ (* a @) {—a B)) a) (sqrei—(* BBy a))) (+(—(*a b) B) (sqrt ([a B)Y)

Mutation in GP - result

Fitness history of the best s-
expression

(/ (+ (sgre (+ (v a a) (—a b)) a) (» a b)) (+ (= {sqet (= (* b b) a)) a) (sgre { a b))

100

80 |
L3
w60
-
-
=
[

20 |

1 1 1
2 i 2 3 3
Generations Best of generation

Example: Wall-Following Robot

A Wall-Following Program

* Program Representation in GP |

+ Functions —% & ,,e
= AND (x, y) =0if x = 0; else y [levl s (oo

=OR(x,y)=1ifx=1;elsey

= NOT (x)=0ifx=1; else 1

= IF(x,y,z)=yifx=1;else z

+ Terminals

= Actions: move the robot one cell to each direction
{north, east, south, west}

= Sensory input: its value is 0 whenever the corresponding
cell is free for the robot to occupy; otherwise, 1.

« {n, ne, e, se, s, sw, w, nw}

(IF (AND (OR (n) (ne)) (NOT (e}))
(east)
(IF (AND (OR (e) (se)) (NOT (s)))
(south)
(IF (AND (OR (s) (sw)) (NOT ()))
(vwest)
{north))))

Evolving a Wall-Following Robot

» Experimental Setup
+ Population size: 5,000
+ Fitness measure: the number of cells next to the
wall that are visited during 60 steps

= Perfect score (320)
+ One Run (32) x 10 randomly chosen starting points

+ Termination condition: found perfect solution
+ Selection: tournament selection

« Creating Next Generation
+ 500 programs (10%) are copied directly into next
generation.
= Tournament selection
« 7 programs are randomly selected from the population 5,000.
+ The most fit of these 7 programs is chosen.
+ 4,500 programs (90%) are generated by crossover.
= A mother and a father are each chosen by tournament
selection.
= A randomly chosen subtree from the father replaces a
randomly selected subtree from the mother.

+ In this example, mutation was not used.

Two Parents Programs and Their Child

Generation 0

Randomly chosen
crossover points

Mother program Father program Child program

= Starting in any cell, this program moves east until it reaches a cell next to the
wall; then it moves north until it can move east again or it moves west and
gets trapped in the upper-left cell.

(AND (NOT (NOT (IF CIF 0

(rorth) (sast))
(IF (vest) (0) (south))
(OR (IF (o) (e (1))
20T (s4)))
(NOT (HOT (a0zth))))))
(IF (R (NOT (AND (IF (o) (north)(e))
(N3 (south) (1))
(GR (OR (O (s))
(R ()(e))
AN CIF (uest) (no) (se))
CF (1) @ @N)
(OR (NOT_(AND (NOT (ne)) (IF (east)(s) (a))))
(OR (NOT (IF Caw) (oast) (5)3)
CAD (IP G G (1)

T T
=)

0 e ol [(R (s (w0
[(GR QHOT CIF (OB (n) ()

R (0 (se))
(R (1) (east))))

(OR (AND (OR (1}(ne))
WD (o) (ease))}

(IF Q0T (wosz))

(AND (west) (east))
QF (L >

Generation 2

Generation 6

* The most fit program (fitness = 117)

= Smaller than the best one of generation 0, but it
does get stuck in the lower-right corner.

(NOT (AND (IF (ne)
(IF (se)(south)(east))
(north))
(NOT (NOT (e})3))

* The most fit program (fitness = 163)

= Following the wall perfectly but still gets stuck in
the bottom-right corner.

(IF (AND (NOT (e))
(IF (&){s) ()}
(OR (IF (1) (e)(south))
(IF (north) (east) (aw)))
(IF (OR (AND (0)(north)}
(AND (e)(IF (e)
QF (se) (south) (east))
(nortn))))

(AND (e)
(NOT (IF (s)(sw)(e))))
(OR (CR (AND (nw)(east))
(west))
(w))))

Generation 10

Fithess Curve

* The most fit program (fitness = 320)
= Following the wall around clockwise and moves south
to the wall if it doesn’t start next to it.

(IF (IF (IF (se)(0){(nel)
(OR (se) (east))
(IF (OR (AND (e} (0))
(sw))
(OR (sw) (0))
(AND (NOT (NOT (AND (s)(se))))
(se))3)

I (IF (@)
| (OR (north)
(NOT (NOT (s))))
(west))

(NOT (NOT (NOT (AND (IF (NOT (south))

(se)

[¢N)

(NOT (2)))2)))

Fitness as a function of generation number

= The progressive (but often small) improvement from
generation to generation

350
300
250

200 /

150 =

Fitness

100 +—
50
0

0 1 2 3 4 5 6 7 8 910
Generation number

Main advantage of GP

Advantages of GP vs GA

Genetic programming applies the evolutionary approach.
However, genetic programming is no longer breeding bit strings
that represent coded solutions but complete computer
programs that solve a particular problem.

@ The fundamental difficulty of GAs lies in the problem
representation, that is, in the fixed-length coding. A poor
representation limits the power of a GA, and even worse,
may lead to a false solution.

@ A fixed-length coding is rather artificial. As it cannot
provide a dynamic variability in length, such a coding often
causes considerable redundancy and reduces the
efficiency of genetic search. In contrast, genetic
programming uses high-level building blocks of variable
length. Their size and complexity can change during
breeding.

Summary

Applications of EC

@ GP is an extension of the conventional genetic algorithm

@ The goal of genetic programming is not simply to evolve a
bit-string representation of some problem but the computer
code that solves that problem.

@ GP creates computer programs as the solution, whereas
GA's create a string of binary numbers as the solution.

* Numerical, Combinatorial Optimization
» System Modeling and Identification

* Planning and Control

» Engineering Design

» Data Mining

» Machine Learning

« Artificial Life

Advantages of EC

Disadvantages of EC

* No presumptions about problem space
* Widely applicable

» Low development & application costs

» Easy to incorporate other methods

» Solutions are interpretable (unlike NN)

» Can be run interactively, accommodate
user proposed solutions

* Provide many alternative solutions

* No guarantee for optimal solution within
finite time

* Weak theoretical basis

* May need parameter tuning

« Often computationally expensive, i.e. slow

