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Lecture 
Genetic Programming

CIS 412 Artificial Intelligence
Umass, Dartmouth

Genetic programming

• One of the central problems in computer science is how 
to make computers solve problems without being 
explicitly programmed to do so.

• Genetic programming offers a solution through the 
evolution of computer programs by methods of natural 
selection.

• In fact, genetic programming is an extension of the  
conventional genetic algorithm, but the goal of genetic 
programming is not just to evolve a bitstring
representation of some problem but the computer code 
that solves the problem.

GP

• Genetic programming is a recent development in the area of 
evolutionary computation. It was greatly stimulated in the 1990s by 
John Koza.

• According to Koza, genetic programming searches the space of 
possible computer programs for a program that is highly fit for 
solving the problem at hand.

• Any computer program is a sequence of operations (functions) 
applied to values (arguments), but different programming languages 
may include different types of statements and operations, and have 
different syntactic restrictions.

LISP as a GP language

• GP manipulates programs by applying 
genetic operators.

• Programming language should permit a 
computer program to be manipulated as 
data and the newly created data to be 
executed as a program. 

• LISP was chosen as the main language 
for genetic programming.

LISP structure

• LISP has a highly symbol-oriented structure. Its 
basic data structures are atoms and lists.

• An atom is the smallest indivisible element of the 
LISP syntax. The number 21, the symbol X and 
the string “This is a string” are examples of LISP 
atoms. 

• A list is an object composed of atoms and/or 
other lists. LISP lists are written as an ordered 
collection of items inside a pair of parentheses.

S-expressions

• (− (* A B) C)

• Both atoms and lists are called 
symbolic expressions or S-
expressions. In LISP, all data 
and all programs are S-
expressions. 

• This gives LISP the ability to 
operate on programs as if they 
were data. 

• Any LISP S-expression can 
be depicted as a rooted point-
labeled tree with ordered 
branches.



2

GP algorithm steps

• Five preparatory steps:
• 1. Determine the set of terminals.
• 2. Select the set of primitive functions.
• 3. Define the fitness function.
• 4. Decide on the parameters for controlling the 

run.
• 5. Choose the method for designating a result of
• the run.

GP example

Performance measure - fitness

• We use a number of different fitness cases. The fitness 
cases for the Pythagorean Theorem are represented by 
the samples of right triangles in Table. These fitness 
cases are chosen at random over a range of values of 
variables a and b.

GP algorithm steps

GP algorithm steps GP algorithm steps
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GP run Two parental s-expressions -
crossover

Two offspring s-expressions Mutation in GP - original

Mutation in GP - result Fitness history of the best s-
expression
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Example: Wall-Following Robot

• Program Representation in GP
Functions

AND (x, y) = 0 if x = 0; else y
OR (x, y) = 1 if x = 1; else y
NOT (x) = 0 if x = 1; else 1
IF (x, y, z) = y if x = 1; else z

Terminals
Actions: move the robot one cell to each direction

{north, east, south, west}
Sensory input: its value is 0 whenever the corresponding 
cell is free for the robot to occupy; otherwise, 1.

• {n, ne, e, se, s, sw, w, nw}

A WallA Wall--Following ProgramFollowing Program

Evolving a Wall-Following Robot

• Experimental Setup
Population size: 5,000
Fitness measure: the number of cells next to the 
wall that are visited during 60 steps

Perfect score (320) 
• One Run (32) × 10 randomly chosen starting points

Termination condition: found perfect solution
Selection: tournament selection

• Creating Next Generation
500 programs (10%) are copied directly into next 
generation.

Tournament selection
• 7 programs are randomly selected from the population 5,000.
• The most fit of these 7 programs is chosen.

4,500 programs (90%) are generated by crossover.
A mother and a father are each chosen by tournament 
selection.
A randomly chosen subtree from the father replaces a 
randomly selected subtree from the mother.

In this example, mutation was not used.

Two Parents Programs and Their ChildTwo Parents Programs and Their Child Generation 0

• the most fit program (fitness = 92)
Starting in any cell, this program moves east until it reaches a cell next to the 
wall; then it moves north until it can move east again or it moves west and 
gets trapped in the upper-left cell.
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Generation 2

The most fit program (fitness = 117)
Smaller than the best one of generation 0, but it 
does get stuck in the lower-right corner.

Generation 6

The most fit program (fitness = 163)
Following the wall perfectly but still gets stuck in 
the bottom-right corner.

Generation 10

The most fit program (fitness = 320)
Following the wall around clockwise and moves south 
to the wall if it doesn’t start next to it.

Fitness Curve

• Fitness as a function of generation number
The progressive (but often small) improvement from 
generation to generation

Main advantage of GP Advantages of GP vs GA
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Summary Applications of EC

• Numerical, Combinatorial Optimization
• System Modeling and Identification
• Planning and Control
• Engineering Design
• Data Mining 
• Machine Learning
• Artificial Life

Advantages of EC

• No presumptions about problem space
• Widely applicable
• Low development & application costs
• Easy to incorporate other methods
• Solutions are interpretable (unlike NN)
• Can be run interactively, accommodate 

user proposed solutions
• Provide many alternative solutions

Disadvantages of EC

• No guarantee for optimal solution within 
finite time

• Weak theoretical basis
• May need parameter tuning
• Often computationally expensive, i.e. slow


