
Data Mining for Intelligent Web Caching

Francesco Bonchi Fosca Giannotti Giuseppe Manco Chiara Renso
CNUCE-CNR – Institute of Italian National Research Council

Via Alfieri 1, 56010 Ghezzano (PI) Italy
E-mail: �f.bonchi,f.giannotti, g.manco, c.renso�@cnuce.cnr.it

Mirco Nanni Dino Pedreschi Salvatore Ruggieri
Department of Computer Science, University of Pisa

Corso Italia 40, 56125 Pisa, Italy
E-mail: �nnanni,pedre,ruggieri�@di.unipi.it

Abstract

The paper presents a vertical application of data ware-
housing and data mining technology: intelligent web
caching. We introduce several ways to construct intelligent
web caching algorithms that employ predictive models of
web requests; the general idea is to extend the LRU pol-
icy of web and proxy servers by making it sensible to web
access models extracted from web log data using data min-
ing techniques. Two approaches have been studied in par-
ticular, one based on association rules and another based
on decision trees. The experimental results of the new al-
gorithms show substantial improvement over existing LRU-
based caching techniques, in terms ofhit rate, i.e., the frac-
tion of web documents directly retrieved in the cache. We
designed and developed a prototypical system, which sup-
ports data warehousing of web log data, extraction of data
mining models and simulation of the web caching algo-
rithms, around an architecture that integrates the various
phases in the knowledge discovery process. The system sup-
ports a systematic evaluation and benchmarking of the pro-
posed algorithms with respect to existing caching strategies.

1 Introduction

If data mining is aimed at discovering regularities and
patterns hidden in data, the emerging area of web mining is
aimed at discovering regularities and patterns in the struc-
ture and content of web resources, as well as in the way web
resources are accessed and used [3, 4, 5].

In this paper we describe one particular data/web mining
application based on data warehouse technology: the devel-
opment of an intelligent web caching architecture, capable

of adapting its behavior on the basis of the access patterns
of the clients/users. Such usage patterns, or models, are ex-
tracted from the historical access data recorded in log files,
by means of data mining techniques.

More precisely, the idea is to extend the LRU (least re-
cently used) cache replacement policy adopted by web and
proxy servers by making it sensible to web access models,
extracted from web log data. To this end, we introduce sev-
eral ways to construct intelligent web caching algorithms
that employ predictive models of web requests. The goal
of these algorithms is to maximize the so-called hit rate,
namely the percentage of requested web entities that are re-
trieved directly in cache, without requesting them back to
the origin server.

If compared with the many alternatives and variations
to LRU caching presented in the literature, and briefly dis-
cussed later, our approach has a unique feature: its adap-
tiveness to changes in the usage patterns, which are rather
natural in the web. This is due to the fact that the proposed
caching strategies are parametric w.r.t. the data mining mod-
els, which can be recomputed periodically in order to keep
track of the recent past.

As a final step in the knowledge discovery process, we
designed a reference web caching model as a means to eval-
uate the models extracted by data mining. The architecture,
which emulates a cache, and is parametric to the replace-
ment strategy, supports the evaluation and comparison of
the various replacement policies, according to the hit rate.

The overall process, from log data acquisition to model
extraction up to evaluation by the web cache architecture,
is formalized and implemented within a database manage-
ments system, Microsoft’s SQL Server 2000, using the DTS
technology – Data Transformation Services.



2 Towards Intelligent Web caching

2.1 Web caching

It is recognized that deploying caching in the world wide
web can improve the net traffic in several ways. In partic-
ular, it can reduce the bandwidth consumption, the network
latencyperceived by the client and the server load. More-
over, it can improve the network reliabilityperceived by the
client, since in case of temporary unavailability of the net-
work connection or of the server services, the local caches
temporarily replace the server.

Web caching, however, poses several issues which risk
to reduce its apply-ability and effectiveness, such as consis-
tency, dynamic objectsand several security and legal issues.

Evaluation measures and techniques. In order to eval-
uate the quality of a web caching system, several measures
can be applied, depending on which resource we are focus-
ing on – usually the bottleneck of the system under con-
sideration. The most commonly used criteria are basically
the following three: Hit rate, i.e. the ratio of requests ful-
filled by the cache, and then not handled by the web servers,
Weighted hit rate, i.e. the ratio of bytes served to the client
by the cache, and Latency, i.e. the time that an end-user
waits for retrieving a resource.

Following a common approach, in this work we choose
to evaluate our novel caching strategies by simulating them
over a set of collected logs from a server. Results of exper-
imentations will be presented in terms of hit rates.

Traditional caching strategies. Several caching algo-
rithms have been developed so far, characterized by the re-
placement strategy they implement, i.e. the criteria they fol-
low in selecting the objects to evict from the cache when it
is full. Among them, we present the following three, which
will be referred in the rest of the paper: the LRU strategy,
which orders objects by last access time, and removes first
those with the older value; the SLRUstrategy, which sorts
objects by the product �� � ����, �� being the number
of requests received since the last access to the object, and
removes first the entities with higher values; eventually, an-
other strategy which we call ORCL (ORaCLe strategy), a
modification of SLRU such that, at each time, the weight
of an entity is ��� � ����, where ��� is the number of
requests that will be received until the next access to the ob-
ject (of course, the ORCL strategy can be simulated only on
historical data).

2.2 A reference model for intelligent caching

Traditional caching strategies can be modeled by consid-
ering entities in cache as belonging to a priority queue. In
this way, the cache replacement strategy coincides with the
priority queue weight assignment policy.

We call a policy that exploit knowledge extracted from
past requests a DataMiningWeightModel. Of course,
when the weight assignment policy is a fixed policy, then
it boils down to traditional caching strategies, i.e. our def-
inition is conservative. The generic model for intelligent
caching strategies is reported in Figure 1.

PriorityQueue Cache;
DataMiningWeightModel DMM;
CacheEntry t, t fresh;
long hits = 0;

1. DMM.build();
2. loop forever �
3. do �
4. get request(t);
5. if (Cache.contains freshcopy(t)) �
6. hits += 1 ;
7. whits += t.bytes sent to client ;
8. Cache.update(t, DMM);
9. � else �
10. Cache.delete(t);
11. Retrieve freshcopy(t, t fresh);
12. Cache.push(t fresh, DMM);
13. while (Cache.size > Cache.maxsize)
14. Cache.pop();
15. �
16. � while (���������);
17. DMM.updatemodel();
18. �

Figure 1. Intelligent caching reference model

First of all (line 1), an initial data mining model DMM
is built on past data. Then (line 2) the following cycle is
repeated forever.

For a requested entity t, if the cache contains the en-
tity and it is fresh (line 5), then the entity is returned to the
client and this case is considered as a hit (line 6). Also, the
bytes sent back to the client are counted for the weighted hit
rate measure.The weight of the entity in cache, and possi-
bly the weights of other elements in cache, is updated (line
8) according to the weight assignment policy expressed by
DMM.

On the contrary, if the entity is not in cache or it is stale,
(line 9), we have a miss. The entity is deleted from the
cache (line 10) and a fresh version is retrieved and pushed
into the cache (lines 11-12). The push method consists
of assigning a weight to the entity and, possibly, updating
the weights of other elements in cache. If the inclusion
makes the cache exceeding the maximum size, then entities
are popped out from the cache accordingly to their weights
(lines 13-14).

Finally, the data mining model DMM may be periodically
updated when some ���	�
��� becomes false (line 16), e.g.
at fixed time intervals or when the cache performance de-
creases. We model such an update by the method update-
model (line 17).



3 A data mart of web log data

The availability of a data warehouse may serve multiple
purposes by providing a consistent and reliable repository
of data over long periods of time. In addition, a data mart
contains a subset of the data warehouse that is of value to a
specific group of users, e.g. for data mining analysis. We
have developed a data mart for web logs to support intel-
ligent caching strategies. The data mart is populated start-
ing from a web log data warehouse or, more simply, from
raw web/proxy server log files that we assume containing
some very basic fields. The data mart population consists
of a number of preprocessing and coding steps that perform
data selection, cleaning and transformation. Also, the data
mart population computes additional derived fields for each
transaction that are well-suited for input to data mining al-
gorithms.

The data mart has been implemented as a relational
database, using Microsoft SQL Server 2000 Beta 2 [7]. In-
terestingly, also the processes of populating the data mart
is formalized and automated within the SQL Server 2000
framework.

The processes of data preparation and data mart pop-
ulation have been designed using SQL Server 2000 Data
Transformation Services (DTS), a tool that allows to specify
import / export / transformations processes of data through
text files, databases or applications. Such processes con-
cern several tasks, the main ones being: URL normaliza-
tion, fields extraction, hash coding (for dealing with strings
in a easier and more efficient way), approximating the size
of entities on the origin server, computing the time distance
among requests and consequently computing the user ses-
sions (for this last task, the so called reference length ap-
proach[2] was followed).

4 Deploying the reference model with data
mart data

In this section two instantiations of the general intelligent
caching model are presented, the first one based on associ-
ation rules, and the second one based on decision trees. For
each of them, a brief introduction to the general mining task
is given, followed by the description of its application to the
caching strategy, a summary of the results of experimental
simulations, and eventually an overview of the data mining
modeling process.

4.1 Association rules

In general, given a database of transactions, each com-
posed of a set of items, we define an association rule[1] as
an expression of the form � � � ����, where � and �

are sets of items; � is the supportof the rules, defined as the
rate of transactions containing all items in � and all items
in �; � is the confidenceof the rule, defined as the ratio
of � with the rate of transactions containing �. In proba-
bilistic terms, � approximates the probability that all items
in the rule appear together in a transaction, while � approx-
imates the (conditional) probability that items in � appear
given that items in � appear. Usually, minimum thresholds
are specified for for support and confidence, in order to con-
sider only significant rules.

In the application domain under consideration, items cor-
respond to web resources, while transactions correspond to
user sessions. Thereby, a rule such as ���� � ����, infor-
mally means that if ���� appears in a user session, ���� too
is expected to appear in the same session, though possibly
in reverse order and not consecutively.

In our approach we keep the LRU criteria for assigning
priorities, while the overall strategy is extendedby modify-
ing the priorities of the entities already in cache as reaction
to the new incoming requests.

First of all, a set of association rules is extracted from
a training dataset, obtained from past log data. Thereby, if
at some time an URL � and � � � is in the set of rules
previously extracted, then we predict that the URL � too
will be requested soon. This suggests that if � is already in
cache, its eviction should be delayed: we accomplish that
by increasing assigning to � the priority it would have if it
was requested immediately after �, so that it moves to the
top of the queue.

The workload (named NatPort) is split into a two days
training set and a two days validation set: the first two days
of log data have been used for extracting association rules
over user sessions, with minimum support and minimum
confidence thresholds respectively equal to 0.3125% and
20%. The resulting extended LRU strategy has been sim-
ulated over the last two days log data.

Figure 2(a) shows some of the results obtained by sim-
ulating an LRU cache and an association-based extended
LRU. Performances are plotted for different sizes of the
simulated cache, from 0.2 Mbytes to 102.4 Mbytes (corre-
sponding respectively to the ������� and ��	� of the web
server size), with exponential growth.

The two curves have a similar shape, and, as expected,
converge as the cache size grows. The graph reveals a sig-
nificant hits improvement of our approach over the standard
LRU for all cache sizes, ranging from an absolute gain 1 of

����� (for the smallest cache) to 
����� (for the largest
cache).

1Here and in the rest of the paper, absolute gainand absolute improve-
mentstand for the difference between two hits rates, so that the absolute
gain of a ��� hits rate over a �� one is a ����.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4

H
it 

R
at

e

Cache Size

Ass Rules
LRU

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4

H
it 

R
at

e

Cache Size (Mb)

LRU
ORCL

S2

(a) (b)

Figure 2. NatPort: Hit rates w.r.t. Cache Size for the (a) association- and the (b) decision tree-based
strategies

4.2 Decision trees

Decision trees induction concerns the construction of a
model – a classifier – that describes a discrete attribute,
called the class, of an entity in terms of other attributes of an
object, called the observed attributesor features. The model
is constructed for a set of objects (called training set) whose
class values are known, and can be used to predict the un-
known class value of objects in another set.

The central idea of this section is to approximate the
ORCL strategy, presented in Section 2.1. Since such strat-
egy needs to known the next access distance– i.e., the dis-
tance between each request and the next one for the same
URL – a classifier is trained that for every URL requested is
able to predictsuch distance. Such value is therefore chosen
as the class variable, and since it is a continuous attribute,
we will actually use a discretization of its values into a set
of a few discrete values. The observed attributes that can
be used to build a classifier are those available by a cache at
transaction time. Such a tree is a data mining modelthat can
be used in an intelligent caching system in order to assign a
weight to an entity.

Among the most popular classification algorithms (see
[6] for a survey), we use decision trees as the classification
model for our analysis. In particular, in our experiments
we use EC4.5 [9], an efficient implementation of the well-
known C4.5 [8] decision tree algorithm.

The general strategy described in Section 2.2 is to be in-
stantiated by making choices about observed attributes, dis-
cretization of the next access distanceand weight assign-
ments.

A first choice is concerned with the selection of a set of
observed attributes, i.e. of the attributes used to construct
the decision tree, among those ones available at the time of

URL request. The strategy described in this paper, called
S2, restricts to consider the following basic fields: the size
of the requested entities, the directory depth of the requested
URL, and the hour part of the date as continuous attributes;
the file extension and the main directory of the requested
URL as discrete attributes. Moreover, a discretization for
the next access distancehas to be chosen, deciding the num-
ber of classes and how to discretize values into intervals. We
experimented discretization into 4 classes.

Following the intuition of approximating the ORCL
strategy, we adopt a weight assignment function that cor-
rects the LRU weight by adding a displacement that is re-
lated to the priority of the request in an ORCL strategy, i.e.
a displacement of the form�����
 ������ 
����������,
for some inversely proportional functions �� and ��.

As for the association based LRU extension described
in the previuos section, the decision tree classifier is built
over a two days training set extracted from the NatPort
workload, and the performance of the S2 strategy is com-
puted by simulation over the two days validation set. The
performance of strategies S2, LRU and ORCL is com-
pared in terms of hit rate in Figure 2(b). The hit rate ex-
hibits an impressive improvement of S2 w.r.t. LRU: con-
sistently around 25% absolute improvement. The simu-
lation of ORCL achieved by S2 is rather impressive: the
gain between LRU and S2 is consistently 50% through 75%
of the gain between LRU and off-line, theoretical strategy
ORCL. The achieved hit rate outperforms also other tradi-
tional strategies, not reported here for the lack of space.



5 Conclusions

We have presented two approaches to enhance LRU-
based web caching with data mining models built on histor-
ical data, mainly aimed at increasing the hit rate. Also, the
design of a suitable data mart has been presented, together
the main problems that such design must solve. The ap-
proaches differ for the kind of data mining model adopted:
association rules and decision trees.

The performance figures of the developed methods, com-
pared with LRU from one side and the theoretical off-line
strategy ORCL from the other side, indicate substantial in-
crease in the hit rate: the decision-tree strategy S2 out-
performs all best fixed strategies (LFU, LRUMIN, SLRU);
moreover, in principle, S2 can be combined with the orthog-
onal association-rule strategy, in such a way that further en-
hancements may be achieved.

Although further extensive benchmarking is required,
there is a strong indication that data mining-based caching
yields systematically enhanced hit and weighted hit rates,
due its adaptiveness to recent history; we believe that
adaptiveness is indeed the reason that makes our approach
preferable to any fixed caching strategy.

Directions for further research include: the completion
of the benchmarking phasewith log data from various web
and proxy servers, as well as synthesized data with various
artificial distributions; the combinationof the association-
rule and the decision-tree approach into one; to investigate
other possible metrics to optimize, and other possible strate-
gies to start with; considering approaches based on cluster-
ing.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of
the Twentieth International Conference on Very Large
Databases, pages 487–499, Santiago, Chile, 1994.

[2] R. Cooley, B. Mobasher, and J. Srivastava. Grouping
web page references into transactions for mining world
wide web browsing patterns. In Proc. of the 1997 IEEE
Knowledge and Data Engineering Exchange Workshop
(KDEX-97), November 1997.

[3] O. Etzioni. The world-wide web: quagmire or gold
mine? Communications of the ACM, 39:65–68, 1996.

[4] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, San Mateo, CA, 2000.

[5] R. Kosala and H. Blockeel. Web mining research: A
survey. ACM SIGKDD Explorations, 2(1):1–15, 2000.

[6] T.S. Lim, W.Y. Loh, and Y.S. Shih. A compari-
son of prediction accuracy, complexity, and training
time of thirthy-tree old and new classification algo-
rithms. Machine Learning Journal, 1999. To appear,
http://www.Recursive-Partitioning.com/datasets.html.

[7] MicroSoft Corporation. MicroSoft SQL Server 2000.
http://www.microsoft.com/sql.

[8] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

[9] S. Ruggieri. Efficient C4.5. IEEE Trans. on Knowledge
and Data Engineering, 2001. To appear, http://www-
kdd.di.unipi.it.


