Today at a glance
- Decision trees for classification and prediction
 - example of football predictions
 - choice of attributes
 - attribute sensitivity
 - decision trees – what’s good, what’s bad
- The reality of decision trees
 - the size matters? …. Again?!
 - splitting rules – problems and solutions
- Attributes
 - continuous values
 - missing values
- Pruning

What defines a data mining task?
- Task-relevant data
- Kinds of knowledge to be mined
 - characterization,
 - discrimination,
 - association,
 - Classification/prediction,
 - clustering
- Domain (background) knowledge
 - Concept hierarchies – support multiple levels of abstraction
 - User beliefs – support identification of expected/unexpected patterns
- Experimental design (includes interestingness measures)
 - Presentation & visualization of discovered patterns
- Analysis of results

Data classification
- Two step process
 - Build model
 - Use model to classify new inputs
- Some terms
 - Training samples
 - Attributes
 - Supervised vs unsupervised learning
- Comparison criteria for algorithms
 - Predictive accuracy
 - Speed
 - Robustness
 - Scalability
 - Interpretability

Classification vs. Prediction
- Classification – predict class labels
 - Example: Classification of manufactured objects as defective or not defective.
- Prediction – predict continuous values
 - Example: Given velocity and current location, predict location after a given amount of time t.

Decision trees – prediction example
Football game prediction system
- Predict the outcome of a football game (will our team win or lose).
- Decision factors - location, weather, team record, opponent record.
- Decision factor values -

<table>
<thead>
<tr>
<th>Location</th>
<th>Weather</th>
<th>Own Record</th>
<th>Opponent Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Rain</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Away</td>
<td>Cold</td>
<td>Average</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Hot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solutions - win or lose
Prediction example

<table>
<thead>
<tr>
<th>Week</th>
<th>Locat.</th>
<th>Weath</th>
<th>Own r</th>
<th>Opp. r</th>
<th>Own</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Home</td>
<td>Hot</td>
<td>Good</td>
<td>Good</td>
<td>Win</td>
</tr>
<tr>
<td>2</td>
<td>Home</td>
<td>Rain</td>
<td>Good</td>
<td>Averg.</td>
<td>Win</td>
</tr>
<tr>
<td>3</td>
<td>Away</td>
<td>Moder.</td>
<td>Good</td>
<td>Averg.</td>
<td>Loss</td>
</tr>
<tr>
<td>4</td>
<td>Home</td>
<td>Hot</td>
<td>Good</td>
<td>Poor</td>
<td>Win</td>
</tr>
<tr>
<td>5</td>
<td>Away</td>
<td>Cold</td>
<td>Good</td>
<td>Good</td>
<td>Loss</td>
</tr>
<tr>
<td>6</td>
<td>Away</td>
<td>Hot</td>
<td>Averg.</td>
<td>Averg.</td>
<td>Loss</td>
</tr>
<tr>
<td>7</td>
<td>Home</td>
<td>Moder.</td>
<td>Averg.</td>
<td>Good</td>
<td>Loss</td>
</tr>
<tr>
<td>8</td>
<td>Away</td>
<td>Cold</td>
<td>Poor</td>
<td>Averg.</td>
<td>Win</td>
</tr>
</tbody>
</table>

Prediction test

<table>
<thead>
<tr>
<th>Week</th>
<th>Location</th>
<th>Weath</th>
<th>Own Rec.</th>
<th>Opp. Rec.</th>
<th>Pred.</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Home</td>
<td>Hot</td>
<td>Poor</td>
<td>Poor</td>
<td>No-Data</td>
<td>Win</td>
</tr>
<tr>
<td>10</td>
<td>Home</td>
<td>Modera</td>
<td>Good</td>
<td>Average</td>
<td>Loss</td>
<td>Win</td>
</tr>
<tr>
<td>11</td>
<td>Away</td>
<td>Cold</td>
<td>Good</td>
<td>Good</td>
<td>Win</td>
<td>Win</td>
</tr>
<tr>
<td>12</td>
<td>Home</td>
<td>Hot</td>
<td>Good</td>
<td>Average</td>
<td>Win</td>
<td>Loss</td>
</tr>
<tr>
<td>13</td>
<td>Home</td>
<td>Modera</td>
<td>Good</td>
<td>Average</td>
<td>Loss</td>
<td>Win</td>
</tr>
<tr>
<td>14</td>
<td>Away</td>
<td>Cold</td>
<td>Good</td>
<td>Average</td>
<td>Win</td>
<td>Loss</td>
</tr>
<tr>
<td>15</td>
<td>Home</td>
<td>Cold</td>
<td>Average</td>
<td>Good</td>
<td>Loss</td>
<td>Loss</td>
</tr>
<tr>
<td>16</td>
<td>Away</td>
<td>Modera</td>
<td>Poor</td>
<td>Poor</td>
<td>Loss</td>
<td>Loss</td>
</tr>
</tbody>
</table>

Sensitivity study - location

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Good</td>
<td>Hot</td>
<td>Good</td>
<td>Good</td>
<td>Win</td>
<td>Win</td>
</tr>
<tr>
<td>2</td>
<td>Average</td>
<td>Rain</td>
<td>Good</td>
<td>Average</td>
<td>Win</td>
<td>Win</td>
</tr>
<tr>
<td>3</td>
<td>Average</td>
<td>Moderate</td>
<td>Good</td>
<td>Average</td>
<td>Loss</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>Average</td>
<td>Hot</td>
<td>Good</td>
<td>Poor</td>
<td>Win</td>
<td>Win</td>
</tr>
<tr>
<td>5</td>
<td>Good</td>
<td>Cold</td>
<td>Good</td>
<td>Good</td>
<td>Loss</td>
<td>?</td>
</tr>
<tr>
<td>6</td>
<td>Good</td>
<td>Hot</td>
<td>Average</td>
<td>Average</td>
<td>Less</td>
<td>Less</td>
</tr>
<tr>
<td>7</td>
<td>Poor</td>
<td>Moderate</td>
<td>Good</td>
<td>Average</td>
<td>Loss</td>
<td>Less</td>
</tr>
<tr>
<td>8</td>
<td>Poor</td>
<td>Cold</td>
<td>Poor</td>
<td>Average</td>
<td>Win</td>
<td>?</td>
</tr>
<tr>
<td>9</td>
<td>Average</td>
<td>Hot</td>
<td>Average</td>
<td>Poor</td>
<td>Loss</td>
<td>Loss</td>
</tr>
<tr>
<td>10</td>
<td>Average</td>
<td>Moderate</td>
<td>Good</td>
<td>Average</td>
<td>Win</td>
<td>Win</td>
</tr>
<tr>
<td>11</td>
<td>Good</td>
<td>Cold</td>
<td>Good</td>
<td>Average</td>
<td>Loss</td>
<td>Less</td>
</tr>
<tr>
<td>12</td>
<td>Good</td>
<td>Hot</td>
<td>Good</td>
<td>Average</td>
<td>Loss</td>
<td>?</td>
</tr>
<tr>
<td>13</td>
<td>Average</td>
<td>Moderate</td>
<td>Good</td>
<td>Average</td>
<td>Win</td>
<td>?</td>
</tr>
<tr>
<td>14</td>
<td>Average</td>
<td>Cold</td>
<td>Good</td>
<td>Average</td>
<td>Loss</td>
<td>Less</td>
</tr>
<tr>
<td>15</td>
<td>Poor</td>
<td>Cold</td>
<td>Average</td>
<td>Good</td>
<td>Loss</td>
<td>Less</td>
</tr>
<tr>
<td>16</td>
<td>Average</td>
<td>Moderate</td>
<td>Average</td>
<td>Poor</td>
<td>Loss</td>
<td>Less</td>
</tr>
</tbody>
</table>

Decision trees – good and bad

- Discovers rules from examples - potential unknown rules could be induced.
- Avoids knowledge elicitation problems - system knowledge can be acquired through past examples.
- Can produce new knowledge.
- Can uncover critical decision factors.
- Can eliminate irrelevant decision factors.
- Can uncover contradictions.

- Difficult to choose good decision factors.
- Difficult to understand rules.
- Applicable only for classification problems.
Today at a glance

- Decision trees for classification and prediction
- Example of football predictions
- Choice of attributes
- Attribute sensitivity
- Decision trees – what’s good, what’s bad
- The reality of decision trees
 - The size matters? … Again?!?
 - Splitting rules – problems and solutions
- Attributes
 - Continuous values
 - Missing values
- Pruning

A simple decision tree

A Real decision tree

The top-down procedure

- A.K.A. Recursive Partitioning
 - Find “best” attribute test to install at root
 - Split data on root test
 - Find “best” attribute tests to install at each new node
 - Split data on new tests
 - Repeat until:
 - All nodes are pure
 - All nodes contain fewer than k cases
 - Distributions at nodes indistinguishable from chance
 - Tree reaches predetermined max depth
 - No more attributes to test

Splitting rules

- Information Gain = reduction in entropy due to splitting on an attribute
- Entropy = expected number of bits needed to encode the class of a randomly drawn + or – example using the optimal info-theory coding

\[
\text{Entropy} = -p_+ \log_2 p_+ - p_- \log_2 p_-
\]

\[
\text{Gain}(S, A) = \text{Entropy}(S) - \sum_{v \in \text{Values}(A)} \frac{|S_v|}{|S|} \text{Entropy}(S_v)
\]
Potential problems?

- Problem with Node Purity and Information Gain:
 - prefer attributes with many values
 - extreme cases:
 - Social Security Numbers
 - patient ID’s

Potential solution

\[
\text{GainRatio} \left(S, A \right) = \text{Entropy} \left(S \right) - \sum_{v \in \text{Values}(A)} \frac{S_v}{S} \log_2 \frac{S_v}{S}
\]

Information gain

Gain ratio

Gain ratio for equal sized n-Way Splits

Info gain vs. Gain ratio

GINI index

\[
\text{GINI}_{node}(Node) = 1 - \sum_{c \in \text{classes}} \left[p(c) \right]^2
\]

\[
\text{GINI}_{split}(A) = \sum_{v \in \text{Values}(A)} \frac{|S_v|}{|S|} \text{GINI}(N_v)
\]
Today at a glance

- Decision trees for classification and prediction
 - example of football predictions
 - choice of attributes
 - attribute sensitivity
 - decision trees – what’s good, what’s bad
- The reality of decision trees
 - the size matters? …. Again?!
 - splitting rules – problems and solutions
- Attributes
 - continuous values
 - missing values
- Pruning

Continuous values

- Overfitting

Pre-pruning

- Evaluate splits before installing them:
 - don’t install splits that don’t look worthwhile
 - when no worthwhile splits to install, done
- Seems right, but:
 - hard to properly evaluate split without seeing what splits would follow it (use lookahead?)
 - some attributes useful only in combination with other attributes
 - suppose no single split looks good at root node?

Post-pruning

- Grow decision tree to full depth (no pre-pruning)
- Prune-back full tree by eliminating splits that do not appear to be warranted statistically
- Use train set, or an independent prune/test set, to evaluate splits
- Stop pruning when remaining splits all appear to be warranted
- Alternate approach: convert to rules, then prune rules

Goal of pruning

- Optimal
 - Maximum expected accuracy (test set)
 - Minimum size tree
 - Minimum depth tree
 - Fewest attributes tested
 - Easiest to understand
- Test order not always important for accuracy
 - Sometimes random splits perform well

Advantages of decision trees

- TDIDT is relatively fast, even with large data sets (10^6) and many attributes (10^3)
 - advantage of recursive partitioning: only process all cases at root
- Small-medium size trees usually intelligible
- Can be converted to rules
- TDIDT does feature selection
- TDIDT often yields compact models
- Decision tree representation is understandable

Decision trees are intelligible

Well, a correction

Not all Decision trees are intelligible.
Predicting probabilities with trees

- Small Tree
 - few leaves
 - few discrete probabilities

- Large Tree
 - many leaves
 - few cases per leaf
 - few discrete probabilities
 - probability estimates based on small/noisy samples

Probability estimation trees

- Smooth large trees
 - correct estimates from small samples at leaves

- Average many trees
 - average of many things each with a few discrete values is more continuous
 - averages improve quality of estimates

- Both

Weaknesses of Decision trees

- Large or complex trees can be just as unintelligible as other models
- Trees don’t easily represent some basic concepts such as M-of-N, parity …
- Don’t handle real-valued parameters as well as Booleans
- If model depends on summing contribution of many different attributes, DTs probably won’t do well
- DTs that look very different can be same/similar
- Usually poor for predicting continuous values
- Propositional (as opposed to 1st order)
- Recursive partitioning: run out of data fast as descend tree

Popular Decision tree packages

- ID3 (ID4, ID5, …) [Quinlan]
 - research code with many variations introduced to test new ideas
- CART: Classification and Regression Trees [Breiman]
 - best known package to people outside machine learning
 - 1st chapter of CART book is a good introduction to basic issues
- C4.5 (C5.0) [Quinlan]
 - most popular package in machine learning community
 - both decision trees and rules
- IND (INDuce) [Buntine]
 - decision trees for Bayesians (good at generating probabilities)
 - available from NASA Ames for use in U.S.

And Last But Not Least When to Use Decision Trees

- Model intelligibility is important
- Problem does not depend on many features
 - modest subset of features contains relevant info
 - not vision
- Speed of learning is important
- Linear combinations of features not critical
- Medium to large training sets

Thank you !!!