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3.1 Expected-utility payoffs

A game in strategic form does not always have a Nash equilibrium in which each player de-
terministically chooses one of his strategies. However, players may instead randomly select
from among thesepurestrategies with certain probabilities. Randomizing one’s own choice
in this way is called amixedstrategy. A profile of mixed strategies is called amixed equi-
librium if no player can gain on average by unilateral deviation. Nash showed in 1951 that
any finite strategic-form game has a mixed equilibrium (J. F. Nash (1951), Non-cooperative
games.Annals of Mathematics54, pp. 286–295). We will show how Nash proved this theo-
rem in Section 3.7 below.

Average (that is,expected) payoffs must be considered because the outcome of the game
may be random. This requires that each payoff in the game represents an “expected utility”,
in the sense that the payoffs can be weighted with probabilities in order to represent the
player’s preference for a random outcome.
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Figure 3.1 One-player decision problem to decide betweencomplyandcheat, demonstrat-
ing expected-utility payoffs. With these numbers, the player is indifferent.

As an example, Figure 3.1 shows a game with a single player who can decide tocomply
with a regulation, to buy a parking permit, or tocheatotherwise. The payoff when she
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chooses to comply is 0. Cheating involves a 10 percent chance of getting caught and having
to pay a penalty, stated as the negative payoff−90, and otherwise a 90 percent chance of
gaining a payoff of 10. With these numbers, cheating leads to a random outcome with
an expected payoff of0.9× 10+ 0.1× (−90), which is zero, so that the player is exactly
indifferent between her two available moves.

If the payoffs are monetary amounts, each payoff unit standing for a dollar, say, one
would not necessarily assume such arisk neutralityon the part of the player. In practice,
decision-makers are typicallyrisk averse, meaning they prefer the safe payoff of 0 to the
gamble with an expectation of 0.

In a game-theoretic model with random outcomes, as in the game above, the payoff is
not necessarily to be interpreted as money. Rather, the player’s attitude towards risk is incor-
porated into the payoff figure as well. To take our example, the player faces a punishment or
reward when cheating, depending on whether she is caught or not. Suppose that the player’s
decision only depends on the probability of being caught, which is 0.1 in Figure 3.1, so that
she would cheat if that probability was zero. Moreover, set the reward for cheating arbi-
trarily to 10 units, as in the figure above, and suppose that being caught has clearly defined
consequences for the player, like regret and losing money and time. Then there must be a
certain probability of getting caught where the player in the above game is indifferent, say 4
percent. This determines the utility−u, say, for “getting caught” by the equation

0 = 0.96×10+0.04× (−u)

which states equal expected utility for the choicescomplyandcheat. This equation is equiv-
alent tou= 9.6/0.04= 240. That is, in the above game, the negative utility−90would have
to be replaced by−240to reflect the player’s attitude towards the risk of getting caught. With
that payoff, she will now prefer to comply if the probability of getting caught stays at 0.1.

The point of this consideration is to show that payoffs exist, and can be constructed,
that represent player’s preference for a risky outcome, as measured by the resultingexpected
payoff. These payoffs do not have to represent money. The existence of such expected-utility
payoffs depends on a certain consistency of the player when facing choices with random
outcomes. This can be formalized, but the respective theory, known as thevon Neumann–
Morgensternaxioms for expected utility, is omitted here for brevity.

In practice, the risk attitude of a player may not be known. A game-theoretic analy-
sis should be carried out for different choices of the payoff parameters in order to test how
much they influence the results. Often, these parameters represent the “political” features of
a game-theoretic model, those most sensitive to subjective judgement, compared to the more
“technical” part of a solution. In particular, there are more involved variants of the inspec-
tion game discussed in the next section. In those more complicated models, the technical
part often concerns the optimal usage of limited inspection resources, like maximizing the
probability of catching a player who wants to cheat. This, in turn, may imply a “political
decision” when to declare that the inspectee has actually cheated. Such models and practi-
cal issues are discussed in the book by R. Avenhaus and M. Canty,Compliance Quantified,
Cambridge University Press, 1996.
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3.2 Example: Compliance inspections

Suppose a consumer purchases a license for a software package, agreeing to certain restric-
tions on its use. The consumer has an incentive to violate these rules. The vendor would like
to verify that the consumer is abiding by the agreement, but doing so requires inspections
which are costly. If the vendor does inspect and catches the consumer cheating, the vendor
can demand a large penalty payment for the noncompliance.
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Figure 3.2. Inspection game between a software vendor (player I) and consumer (player II).

Figure 3.2 shows possible payoffs for such an inspection game. The standard outcome,
defining the reference payoff zero to both vendor (player I) and consumer (player II), is that
the vendor choosesDon’t inspectand the consumer chooses tocomply. Without inspection,
the consumer prefers tocheatsince that gives her payoff10, with resulting negative pay-
off −10 to the vendor. The vendor may also decide toInspect. If the consumer complies,
inspection leaves her payoff0 unchanged, while the vendor incurs a cost resulting in a neg-
ative payoff−1. If the consumer cheats, however, inspection will result in a heavy penalty
(payoff−90for player II) and still create a certain amount of hassle for player I (payoff−6).

In all cases, player I would strongly prefer if player II complied, but this is outside of
player I’s control. However, the vendor prefers to inspect if the consumer cheats (since−6 is
better than−10), indicated by the downward arrow on the right in Figure 3.2. If the vendor
always preferredDon’t inspect, then this would be a dominating strategy and be part of a
(unique) equilibrium where the consumer cheats.

The circular arrow structure in Figure 3.2 shows that this game has no equilibrium in
pure strategies. If any of the players settles on a deterministic choice (likeDon’t inspectby
player I), the best reponse of the other player would be unique (herecheatby player II), to
which the original choice wouldnot be a best reponse (player I prefersInspectwhen the
other player choosescheat, against which player II in turn prefers tocomply). The strategies
in a Nash equilibrium must be best responses to each other, so in this game this fails to hold
for any pure strategy profile.
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What should the players do in the game of Figure 3.2? One possibility is that they prepare
for the worst, that is, choose amax-minstrategy. A max-min strategy maximizes the player’s
worst payoff against all possible choices of the opponent. The max-min strategy for player I
is to Inspect(where the vendor guarantees himself payoff−6), and for player II it is to
comply(which guarantees her payoff0). However, this is not a Nash equilibrium and hence
not a stable recommendation to the two players, since player I could switch his strategy and
improve his payoff.

A mixed strategyof player I in this game is toInspectonly with a certain probability. In
the context of inspections, randomizing is also a practical approach that reduces costs. Even
if an inspection is not certain, a sufficiently high chance of being caught should deter from
cheating, at least to some extent.

The following considerations show how to find the probability of inspection that will
lead to an equilibrium. If the probability of inspection is very low, for example one percent,
then player II receives (irrespective of that probability) payoff0 for comply, and payoff
0.99×10+0.01×(−90) = 9, which is bigger than zero, forcheat. Hence, player II will still
cheat, just as in the absence of inspection.

If the probability of inspection is much higher, for example0.2, then the expected payoff
for cheatis 0.8×10+0.2×(−90) =−10, which is less than zero, so that player II prefers to
comply. If the inspection probability is either too low or too high, then player II has a unique
best response. As shown above, such a pure strategy cannot be part of an equilibrium.

Hence, the only case where player II herself could possibly randomize between her strate-
gies is if both strategies give her the same payoff, that is, if she isindifferent. As stated and
proved formally in Theorem 3.1 below, it is never optimal for a player to assign a positive
probability to a pure strategy that is inferior, given what the other players are doing. It is not
hard to see that player II is indifferent if and only if player I inspects with probability 0.1,
since then the expected payoff forcheat is 0.9× 10+ 0.1× (−90) = 0, which is then the
same as the payoff forcomply.

With this mixed strategy of player I (Don’t inspectwith probability 0.9 andInspectwith
probability 0.1), player II is indifferent between her strategies. Hence, she canmix them (that
is, play them randomly) without losing payoff. The only case where, in turn, the original
mixed strategy of player I is a best response is if player I is indifferent. According to the
payoffs in Figure 6, this requires player II to choosecomplywith probability 0.8 andcheat
with probability 0.2. The expected payoffs to player I are then forDon’t inspect0.8×0+
0.2× (−10) =−2, and forInspect0.8× (−1)+0.2× (−6) =−2, so that player I is indeed
indifferent, and his mixed strategy is a best response to the mixed strategy of player II.

This defines the only Nash equilibrium of the game. It uses mixed strategies and is
therefore called amixedequilibrium. The resulting expected payoffs are−2 for player I and
0 for player II.

The preceding analysis shows that the game in Figure 3.2 has a mixed equilibrium, where
the players choose their pure strategies according to certain probabilities. These probabilities
have several noteworthy features.
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First, the equilibrium probability of 0.1 forInspectmakes player II indifferent between
complyandcheat. As explained in Section 3.1 above, this requires payoffs to beexpected
utilities.

Secondly, mixing seems paradoxical when the player is indifferent in equilibrium. If
player II, for example, can equally wellcomplyor cheat, why should she gamble? In par-
ticular, she couldcomplyand get payoff zero for certain, which is simpler and safer. The
answer is that precisely because there is no incentive to choose one strategy over the other, a
player can mix, and only in that case there can be an equilibrium. If player II wouldcomply
for certain, then the only optimal choice of player I isDon’t inspect, making the choice of
complying not optimal, so this is not an equilibrium.

The least intuitive aspect of mixed equilibrium is that the probabilities depend on the
opponent’s payoffsand not on the player’s own payoffs (as long as the qualitative preference
structure, represented by the arrows, remains intact). For example, one would expect that
raising the penalty−90 in Figure 3.2 for being caught lowers the probability of cheating in
equilibrium. In fact, it does not. What does change is the probability of inspection, which is
reduced until the consumer is indifferent.

3.3 Bimatrix games

In the following, we discuss mixed equilibria for general games in strategic form. We always
assume that each player has only a finite number of given pure strategies. In order to simplify
notation, we consider the case of two players. Many definitions and results carry over without
difficulty to the case of more than two players.

Recall that a game in strategic form is specified by a finite set of “pure” strategies for each
player, and a payoff for each player for eachstrategy profile, which is a tuple of strategies,
one for each player. The game is played by each player independently and simultaneously
choosing one strategy, whereupon the players receive their respective payoffs.

For two players, a game in strategic form is also called abimatrix game(A,B). Here,A
andB are two payoff matrices. By definition, they have equal dimensions, that is, they are
bothm×n matrices, havingm rows andn columns. Them rows are the pure strategiesi of
player I and then columns are the pure strategiesj of player II. For a rowi, where1≤ i ≤m,
and columnj, where1≤ j ≤ n, the matrix entry ofA is ai j as payoff to player I, and the
matrix entry ofB is bi j as payoff to player II.

Usually, we depict such a game as a table withm rows andn columns, so that each cell
of the table corresponds to a pure strategy pair(i, j), and we enter both payoffsai j andbi j

in that cell,ai j in the lower-left corner, preferably written in red if we have colours at hand,
andbi j in the upper-right corner of the cell, displayed in blue. The “red” numbers are then
the entries of the matrixA, the “blue” numbers those of the matrixB. It does not matter if we
take two matricesA andB, or a single table where each cell has two entries (the respective
components ofA andB).

A mixed strategyis a randomized strategy of a player. It is defined as a probability
distribution on the set of pure strategies of that player. This is played as an “active ran-
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domization”: Using a lottery device with the given probabilities, the player picks each pure
strategy according to its probability. When a player plays according to a mixed strategy, the
other player is not supposed to know the outcome of the lottery. Rather, it is assumed that the
opponent knows that the strategy chosen by the player is a random event, and bases his or her
decision on the resulting distribution of payoffs. The payoffs are then “weighted with their
probabilities” to determine theexpected payoff, which represents the player’s preference, as
explained in Section 3.1.

A pure strategy is a special mixed strategy.Namely, consider a pure strategyi of player I.
Then the mixed strategyx that selectsi with probability one and any other pure strategy with
probability zero is effectively the same as the pure strategyi, sincex choosesi with certainty.
The resulting expected payoff is the same as the pure strategy payoff, since any unplayed
strategy has probability zero and hence does not affect the expected payoff, and the pure
strategyi is weighted with probability one.

3.4 Matrix notation for expected payoffs

Unless specified otherwise, we assume that in the two-player game under consideration,
player I hasmstrategies and player II hasn strategies. The pure strategies of player I, which
are them rows of the bimatrix game, are denoted byi = 1, . . . ,m, and the pure strategies of
player II, which are then columns of the bimatrix game, are denoted byj = 1, . . . ,n.

A mixed strategy is determined by the probabilities that it assigns to the player’s pure
strategies. For player I, a mixed strategyx can therefore be identified with them-tuple of
probabilities(x1,x2, . . . ,xm) that it assigns to the pure strategies1,2, . . . ,m of player I. We
can therefore considerx as an element ofm-space (writtenRm). We assume that the vectorx
with mcomponents is arow vector, that is, a1×mmatrix with a single row andmcolumns.
This will allow us to write expected payoffs in a short way.

A mixed strategyy of player II is ann-tuple of probabilitiesy j for playing the pure
strategiesj = 1, . . . ,n. That is,y is an element ofRn. We write y as acolumn vector, as
(y1,y2, . . . ,yn)>, that is, the row vector(y1,y2, . . . ,yn) transposed. Transposition in general
applies to any matrix. The transposeB> of the payoff matrixB, for example, is then×m
matrix where the entry in rowj and columni is bi j , since transposition means exchanging
rows and columns. A column vector withn components is therefore considered as ann×1
matrix; transposition gives a row vector, a1×n matrix.

Normally, all vectors are considered as column vectors, soRn is equal toRn×1, the set
of all n×1 matrices withn rows and one column. We have made an exception in defining a
mixed strategyx of player I as a row vector. Whether we mean row or column vectors will
be clear from the context.

Suppose that player I uses the mixed strategyx and that player II uses the mixed strat-
egyy. With these conventions, we can now succinctly express the expected payoff to player I
asxAy, and the expected payoff to player I asxBy.

In order to see this, recall that thematrix productCD of two matricesC andD is defined
when the number of columns ofC is equal to the number of rows ofD. That is,C is a p×q
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matrix, andD is aq× r matrix. The productCD is then ap× r matrix with entry∑q
k=1cikdk j

in row i and column j, wherecik and dk j are the respective entries ofC and D. Matrix
multiplication is associative, that is, for anotherr×s matrix E the matrix productCDE is a
p×smatrix, which can be computed either as(CD)E or asC(DE).

For mixed strategiesx andy, we readxAyandxByas matrix products. This works because
x, considered as a matrix, is of dimension1×m, bothA andB are of dimensionm×n, andy
is of dimensionn. The result is a1×1 matrix, that is, a single real number.

It is best to think ofxAybeing computed asx(Ay), that is, as the product of a row vectorx
that hasmcomponents with a column vectorAy that hasmcomponents. (The matrix product
of two such vectors is also known as thescalar productof these two vectors.) The column
vectorAy hasm rows. We denote the entry ofAy in row i by (Ay)i for each rowi. It is given
by

(Ay)i =
n

∑
j=1

ai j y j for 1≤ i ≤m. (1)

That is, the entriesai j of row i of player I’s payoff matrixA are multiplied with the probabil-
ities y j of their columns, so(Ay)i is the expected payoff to player I when playing rowi. One
can also think ofy j as a linear coefficient of thejth column of the matrixA. That is,Ay is the
linear combination of the column vectors ofA, each multiplied with its probability undery.
This linear combinationAy is a vector of expected payoffs, with one expected payoff(Ay)i

for each rowi.

Furthermore,xAy is the expected payoff to player I when the players usex andy, since

x(Ay) =
m

∑
i=1

xi(Ay)i =
m

∑
i=1

xi

n

∑
j=1

ai j y j =
m

∑
i=1

n

∑
j=1

(xi y j)ai j . (2)

Because the players choose their pure strategiesi and j independently, the probability that
they choose the pure strategy pair(i, j) is the productxi y j of these probabilities, which is the
coefficient of the payoffai j in (2).

Analogously,xBy is the expected payoff to player II when the players use the mixed
strategiesx andy. Here, it is best to read this as(xB)y. The vectorxB, as the product of a
1×m with anm×n matrix, is a1×n matrix, that is, a row vector. Each column of that row
corresponds to a strategyj of player II, for1≤ j ≤ n. We denote the respective column entry
by (xB) j . It is given by∑m

i=1xi bi j , which is the scalar product ofx with the jth column ofB.
That is,(xB) j is the expected payoff to player II when player I playsx and player II plays the
pure strategyj. If these numbers are multiplied with the column probabilitiesy j and added
up, then the result is the expected payoff to player II, which in analogy to (2) is given by

(xB)y =
n

∑
j=1

(xB) j y j =
n

∑
j=1

(
m

∑
i=1

xi bi j

)
y j =

n

∑
j=1

m

∑
i=1

(xi y j)bi j , (3)

which is the expected payoff to player II.
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3.5 Convex combinations and mixed strategy sets

It is useful to regard mixed strategy vectors as geometric objects. A mixed strategyx of
player I assigns probabilitiesxi to the pure strategiesi. The pure strategies, in turn, are special
mixed strategies, namely the unit vectors inRm, for example(1,0,0), (0,1,0), (0,0,1) if
m = 3. The mixed strategy(x1,x2,x3) is then a linear combination of the pure strategies,
namelyx1 · (1,0,0) + x2 · (0,1,0) + x3 · (0,0,1), where the linear coefficients are just the
probabilities. Such a linear combination is called aconvexcombination since the coefficients
sum to one and are nonnegative.

{x+ p(y−x) | p∈ R}
0

y
b

a
x

c

Figure 3.3 The line through the pointsx andy is given by the pointsx+ p(y− x) where
p∈ R. Examples are pointa for p = 0.6, pointb for p = 1.5, and pointc when
p = −0.4. The line segment connectingx andy results whenp is restricted to
0≤ p≤ 1.

Figure 3.3 shows two pointsx and y, here in the plane, but the picture may also be
regarded as a suitable view of the situation in a higher-dimensional space. The line that goes
through the pointsx andy is obtained by adding to the pointx, regarded as a vector, any
multiple of the differencey−x. The resulting vectorx+ p · (y−x), for p∈ R, givesx when
p = 0, andy when p = 1. Figure 3.3 gives some examplesa, b, c of other points. When
0≤ p≤ 1, like for point a, the resulting points give theline segmentjoining x andy. If
p > 1, then one obtains points on the line throughx andy on the other side ofy relative tox,
like the pointb in Figure 3.3. Forp < 0, the corresponding point, likec in Figure 3.3, is on
that line but on the other side ofx relative toy.

The expressionx+ p(y− x) can be rewritten as(1− p)x+ py, where the given pointsx
andy appear only once. This expression (with1− p as the coefficient of the first vector and
p of the second) shows how the line segment joiningx to y corresponds to the real interval
[0,1] for the possible values ofp, with the endpoints 0 and 1 of the interval corresponding to
the endpointsx andy, respectively, of the line segment.

In general, a convex combination of pointsz1,z2, . . . ,zk in some space is given as any
linear combinationp1 · z1 + p2 · z2 + · · ·+ pk · zk where the linear coefficientsp1, . . . , pk are
nonnegative and sum to one. The previously discussed case corresponds toz1 = x, z2 = y,
p1 = 1− p, andp2 = p∈ [0,1].
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A set of points is calledconvexif it contains with any pointsz1,z2, . . . ,zk also their convex
combinations. Equivalently, one can show that a set is convex if it contains with any two
points also the line segment joining these two points; one can then obtain combinations ofk
points fork > 2 by iterating convex combinations of only two points.

The coefficients in a convex combination can also be regarded as probabilities, and con-
versely, a probability distribution on a finite set can be seen as a convex combination of the
unit vectors.

In a two-player game withmpure strategies for player I andn pure strategies for player II,
we denote the sets of mixed strategies of the two players byX andY, respectively:

X = {(x1, . . . ,xm) | xi ≥ 0 for 1≤ i ≤m,
m

∑
i=1

xi = 1},

Y = {(y1, . . . ,yn)> | y j ≥ 0 for 1≤ j ≤ n,
n

∑
j=1

y j = 1}.
(4)

For consistency with Section 3.4, we assume thatX contains row vectors andY column
vectors, but this is not an important concern.

x
1

x
2

(0,0) (1,0)

(0,1)
X

x
2

x
3

x
1

(0,0,1)

(0,1,0)

(1,0,0)

X

(0,0,0)

Figure 3.4 Examples of player I’s mixed strategy setX whenm= 2 (left) andm= 3 (right),
as the set of convex combinations of the unit vectors.

Examples ofX are shown in Figure 3.4. Whenm= 2, thenX is just the line segment
joining (1,0) to (0,1). If m= 3, thenX is a triangle, given as the set of convex combinations
of the unit vectors, which are the vertices of the triangle.

It is easily verified that in general,X andY are convex sets.

3.6 The best response condition

A mixed strategy equilibrium is a profile of mixed strategies such that no player can improve
his expected payoff by unilaterally changing his own strategy. In a two-player game, an
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equilibrium is a pair(x,y) of mixed strategies such thatx is a best response toy and vice
versa. That is, player I cannot get a better expected payoff thanxAyby choosing any other
strategy thanx, and player II cannot improve her expected payoffxByby changingy.

It seems not easy to decide ifx is a best response toy among all possible mixed strategies,
that is, if x maximizesxAy for all x in X, sinceX is an infinite set. However, the following
theorem, known as thebest response condition, shows how to recognize this. This theorem
is not difficult but important to understand. We discuss it afterwards.

Theorem 3.1 (Best response condition.)Let x andy be mixed strategies of player I and II,
respectively. Thenx is a best response toy if and only if for all pure strategiesi of player I,

xi > 0 =⇒ (Ay)i = max{(Ay)k | 1≤ k≤m}. (5)

Proof. Recall that(Ay)i is theith component ofAy, which is the expected payoff to player I
when playing rowi, according to (1). Letu= max{(Ay)k |1≤ k≤m}, which is the maximum
of these expected payoffs for thepurestrategies of player I. Then

xAy=
m

∑
i=1

xi (Ay)i =
m

∑
i=1

xi (u− (u− (Ay)i) =
m

∑
i=1

xi u−
m

∑
i=1

xi (u− (Ay)i)

= u−
m

∑
i=1

xi (u− (Ay)i).
(6)

Since for any pure strategyi, bothxi and the difference of the maximum payoffu and the
payoff (Ay)i for row i is nonnegative, the sum∑m

i=1xi(u− (Ay)i) is also nonnegative, so that
xAy≤ u. The expected payoffxAyachieves the maximumu if and only if that sum is zero,
that is, ifxi > 0 implies(Ay)i = u, as claimed.

Consider the phrase “x is a best response toy” in the preceding theorem. This means that
among all mixed strategies inX of player I,x gives maximum expected payoff to player I.
However, the pure best responses toy in (5) only deal with the pure strategies of player I.
Each such pure strategy corresponds to a rowi of the payoff matrix. In that row, the payoffs
ai j are multiplied with the column probabilitiesy j , and the sum over all columns gives the
expected payoff(Ay)i for the pure strategyi according to (1). This pure strategy is a best
response if and only if no other row gives a higher payoff.

The first point of the theorem is that the condition whether a pure strategy is a best
response or not is very easy to check, as one only has to compute them expected payoffs
(Ay)i for i = 1, . . . ,m. For example, if player I has three pure strategies (m = 3), and the
expected payoffs in (1) are(Ay)1 = 4, (Ay)2 = 4, and (Ay)3 = 3, then only the first two
strategies are pure best responses. If these expected payoffs are 3, 5, and 3, then only the
second strategy is a best response. Clearly, at least one pure best response exists, since the
numbers(Ay)k in (5) have their maximumu for at least onek. The theorem states that only
pure best responsesi may have positive probabilityxi if x is to be a best response toy.

A second consequence of Theorem 3.1, used also in its proof, is that a mixed strategy
can never give a higher payoff than the best pure strategy. This is intuitive since “mixing”
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amounts toaveraging, which is an average weighted with the probabilities, in the way that the
overall expected payoffxAy in (6) is obtained from those in (1) by multiplying (weighting)
each rowi with weightxi and summing over all rowsi, as shown in (2). Consequently, any
pure best responsei to y is also a mixed best response, so the maximum ofxAy for x∈ X is
the same as whenx is restricted to the unit vectors inRm that represent the pure strategies of
player I.

3.7 Existence of mixed equilibria

In this section, we give the original proof of John Nash from 1951 that shows that any
game with a finite number of players, and finitely many strategies per player, has a mixed
equilibrium. This proof uses the following theorem about continuous functions.

Theorem 3.2 (Brouwer’s Fixed Point Theorem)Let Sbe a subset of some spaceRN that
is convex and compact,1 and let f be a continuous function fromSto S. Thenf has at least
onefixed point, that is, a points in Sso that f (s) = s.

Theorem 3.3 (Nash [1951].)Every finite game has at least one equilibrium in mixed strate-
gies.

Proof. We will give the proof for two players, to simplify notation. It extends in the same
manner to any finite number of players. The setS that is used in the present context is the
product of the sets of mixed strategies of the players. LetX andY be the sets of mixed
strategies of player I and player II as in (4), and letS= X×Y.

Then the functionf :S→ Sthat we are going to construct maps a pair of mixed strategies
(x,y) to another pairf (x,y) = (x,y). Intuitively, a mixed strategy probabilityxi (of player I,
similarly y j of player II) is changed toxi , such that it will decrease if the pure strategyi does
worse than the average of all pure strategies. In equilibrium, all pure strategies of a player
that have positive probability do equally well, so no sub-optimal pure strategy can have a
probability that is reduced further. This means that the mixed strategies do not change, so
this is indeed equivalent to the fixed point property(x,y) = (x,y) = f (x,y).

In order to definef as described, consider the following functionsχ:X×Y→ Rm and
ψ:X×Y→Rn (we do not worry whether these vectors are row or column vectors; it suffices
thatRm containsm-tuples of real numbers, and similarlyRn containsn-tuples). For each
pure strategyi of player I, letχi(x,y) be theith component ofχ(x,y), and for each pure
strategyj of player II, letψ j(x,y) be the jth component ofψ(x,y). The functionsχ andψ
are defined by

χi(x,y) = max{0,(Ay)i−xAy}, ψ j(x,y) = max{0,(xB) j −xBy},
for 1≤ i ≤ m and1≤ j ≤ n. Recall that(Ay)i is the expected payoff to player I againsty
when he uses the pure strategyi, and that(xB) j is the expected payoff to player II againstx

1In this context, a set is compact if it is closed (containing any points near the set) and bounded.
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when she uses the pure strategyj. Moreover,xAyandxByare the overall expected payoffs
to player I and player II, respectively. So the difference(Ay)i − xAy is positive if the pure
strategyi gives more than the averagexAy againsty, zero if it gives the same payoff, and
negative if it gives less. The termχi(x,y) is this difference, except that it is replaced by zero
if the difference is negative. The termψ j(x,y) is defined analogously. Thus,χ(x,y) is a
nonnegative vector inRm, andψ(x,y) is a nonnegative vector inRn. The functionsχ andψ
are continuous.

The pair of vectors(x,y) is now changed by replacingx by x+ χ(x,y) in order to get
x, andy by y+ ψ(x,y) to gety. Both sums are nonnegative. The only problem is that in
general, these new vectors are no longer probabilities since their components do not sum to
one. For that purpose, they are “re-normalized” by the following functionsr :Rm→Rm and
s : Rn→ Rn, defined by their componentsr i andsj , that is,r(x) = (r1(x), . . . , rm(x)), and
s(y) = (s1(y), . . . ,sn(y)):

r i(x1, . . . ,xm) =
xi

∑m
k=1xk

, sj(y1, . . . ,yn) =
y j

∑n
k=1yk

.

Clearly, if xi ≥ 0 for 1≤ i ≤ m and∑m
k=1xk > 0, thenr(x) is defined and is a probability

distribution, that is, an element of the mixed strategy setX. Analogously,s(y) ∈Y.

The functionf :X→Y is now defined by

f (x,y) =
(
r(x+ χ(x,y)), s(y+ψ(x,y))

)
.

What is a fixed point(x,y) of that function, so thatf (x,y) = (x,y)? Consider the smallest
pure strategy payoff(Ay)i againsty, that is,(Ay)i = mink(Ay)k. Then(Ay)i ≤ xAy, which is
proved analogously to (6), so the componentχi(x,y) of χ(x,y) is zero. This means that the
respective termxi + χi(x,y) is equal toxi . Conversely, consider some other pure strategyl
of player I that gets the maximum payoff(Ay)l = maxl (Ay)k. If that payoff is better than
the averagexAy, then clearlyχl (x,y) > 0, so thatxl + χl (x,y) > xl . Sinceχk(x,y) ≥ 0 for
all k, this implies∑m

k=1(xk + χk(x,y)) > 1, which is the denominator in the re-normalization
with r in r(x+ χ(x,y)). This re-normalization will nowdecreasethe value ofxi for the pure
strategyi with (Ay)i ≤ xAy, so the relative weightxi of the pure strategyi decreases, or is
unchanged ifxi = 0. But (Ay)l > xAycan only occur if there is some sub-optimal strategyi
(with (Ay)i ≤ xAy< (Ay)l ) that has positive probabilityxi , which can be used instead of the
strategyi that gives minimum expected payoff(Ay)i . In that case,r(x+ χ(x,y)) is not equal
to x, so thatf (x,y) 6= (x,y).

Analogously, ifψ(x,y) has some component that is positive, then the respective pure
strategy of player II has a better payoff thanxBy, so y 6= s(y+ ψ(x,y)) and(x,y) is not a
fixed point of f . In that case,y is also not a best response tox.

Hence, the functionf has a fixed point(x,y) if and only if bothχ(x,y) andψ(x,y) are
zero in all components. But that means thatxAy is the maximum possible payoffmaxi(Ay)i

againsty, andxBy is the maximum possible payoffmaxj(xB) j againstx, that is,x andy are
mutual best responses. The fixed points(x,y) are therefore exactly the Nash equilibria of the
game.
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