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3.1 Expected-utility payoffs

A game in strategic form does not always have a Nash equilibrium in which each player de-
terministically chooses one of his strategies. However, players may instead randomly select
from among thespure strategies with certain probabilities. Randomizing one’s own choice

in this way is called anixedstrategy. A profile of mixed strategies is calledn&ed equi-
librium if no player can gain on average by unilateral deviation. Nash showed in 1951 that
any finite strategic-form game has a mixed equilibrium (J. F. Nash (1951), Non-cooperative
gamesAnnals of MathematicS4, pp. 286—295). We will show how Nash proved this theo-
rem in Section 3.7 below.

Average (that isexpectedlpayoffs must be considered because the outcome of the game
may be random. This requires that each payoff in the game represents an “expected utility”,
in the sense that the payoffs can be weighted with probabilities in order to represent the
player’s preference for a random outcome.
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Figure 3.1 One-player decision problem to decide betweemplyandcheat demonstrat-
ing expected-utility payoffs. With these numbers, the player is indifferent.

As an example, Figure 3.1 shows a game with a single player who can decidepdy
with a regulation, to buy a parking permit, or theatotherwise. The payoff when she
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chooses to comply is 0. Cheating involves a 10 percent chance of getting caught and having
to pay a penalty, stated as the negative payd®0, and otherwise a 90 percent chance of
gaining a payoff of 10. With these numbers, cheating leads to a random outcome with
an expected payoff 0.9 x 10+ 0.1 x (—90), which is zero, so that the player is exactly
indifferent between her two available moves.

If the payoffs are monetary amounts, each payoff unit standing for a dollar, say, one
would not necessarily assume suchsk neutralityon the part of the player. In practice,
decision-makers are typicallysk averse meaning they prefer the safe payoff of O to the
gamble with an expectation of 0.

In a game-theoretic model with random outcomes, as in the game above, the payoff is
not necessarily to be interpreted as money. Rather, the player’s attitude towards risk is incor-
porated into the payoff figure as well. To take our example, the player faces a punishment or
reward when cheating, depending on whether she is caught or not. Suppose that the player’s
decision only depends on the probability of being caught, which is 0.1 in Figure 3.1, so that
she would cheat if that probability was zero. Moreover, set the reward for cheating arbi-
trarily to 10 units, as in the figure above, and suppose that being caught has clearly defined
consequences for the player, like regret and losing money and time. Then there must be a
certain probability of getting caught where the player in the above game is indifferent, say 4
percent. This determines the utilityu, say, for “getting caught” by the equation

0=0.96x 10+ 0.04 x (—u)

which states equal expected utility for the choicemplyandcheat This equation is equiv-
alent tou=9.6/0.04= 240 That s, in the above game, the negative utiit§Owould have

to be replaced by-240to reflect the player’s attitude towards the risk of getting caught. With
that payoff, she will now prefer to comply if the probability of getting caught stays at 0.1.

The point of this consideration is to show that payoffs exist, and can be constructed,
that represent player’s preference for a risky outcome, as measured by the resqdgoted
payoftf These payoffs do not have to represent money. The existence of such expected-utility
payoffs depends on a certain consistency of the player when facing choices with random
outcomes. This can be formalized, but the respective theory, known asithideumann—
Morgensterraxioms for expected utility, is omitted here for brevity.

In practice, the risk attitude of a player may not be known. A game-theoretic analy-
sis should be carried out for different choices of the payoff parameters in order to test how
much they influence the results. Often, these parameters represent the “political” features of
a game-theoretic model, those most sensitive to subjective judgement, compared to the more
“technical” part of a solution. In particular, there are more involved variants of the inspec-
tion game discussed in the next section. In those more complicated models, the technical
part often concerns the optimal usage of limited inspection resources, like maximizing the
probability of catching a player who wants to cheat. This, in turn, may imply a “political
decision” when to declare that the inspectee has actually cheated. Such models and practi-
cal issues are discussed in the book by R. Avenhaus and M. Ctypliance Quantified
Cambridge University Press, 1996.



3.2 Example: Compliance inspections

Suppose a consumer purchases a license for a software package, agreeing to certain restric-
tions on its use. The consumer has an incentive to violate these rules. The vendor would like
to verify that the consumer is abiding by the agreement, but doing so requires inspections
which are costly. If the vendor does inspect and catches the consumer cheating, the vendor
can demand a large penalty payment for the noncompliance.
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Figure 3.2. Inspection game between a software vendor (player I) and consumer (player Il).

Figure 3.2 shows possible payoffs for such an inspection game. The standard outcome,
defining the reference payoff zero to both vendor (player I) and consumer (player Il), is that
the vendor choosd3on't inspectand the consumer choosesctamply Without inspection,
the consumer prefers theatsince that gives her payoffO, with resulting negative pay-
off —10to the vendor. The vendor may also deciddnspect If the consumer complies,
inspection leaves her paydifunchanged, while the vendor incurs a cost resulting in a neg-
ative payoff—1. If the consumer cheats, however, inspection will result in a heavy penalty
(payoff —90for player Il) and still create a certain amount of hassle for player | (pay6§f

In all cases, player | would strongly prefer if player 1l complied, but this is outside of
player I's control. However, the vendor prefers to inspect if the consumer cheats{since
better than-10), indicated by the downward arrow on the right in Figure 3.2. If the vendor
always preferredon't inspect then this would be a dominating strategy and be part of a
(unique) equilibrium where the consumer cheats.

The circular arrow structure in Figure 3.2 shows that this game has no equilibrium in
pure strategies. If any of the players settles on a deterministic choiceD(ii# inspectby
player I), the best reponse of the other player would be unique @neatby player I1), to
which the original choice wouldot be a best reponse (player | prefénspectwhen the
other player choosesheat against which player Il in turn prefers e@mply. The strategies
in a Nash equilibrium must be best responses to each other, so in this game this fails to hold
for any pure strategy profile.



What should the players do in the game of Figure 3.2? One possibility is that they prepare
for the worst, that is, choosenaax-minstrategy. A max-min strategy maximizes the player’s
worst payoff against all possible choices of the opponent. The max-min strategy for player |
is to Inspect(where the vendor guarantees himself paye6), and for player Il it is to
comply(which guarantees her paydlf. However, this is not a Nash equilibrium and hence
not a stable recommendation to the two players, since player | could switch his strategy and
improve his payoff.

A mixed strategyf player | in this game is tinspectonly with a certain probability. In
the context of inspections, randomizing is also a practical approach that reduces costs. Even
if an inspection is not certain, a sufficiently high chance of being caught should deter from
cheating, at least to some extent.

The following considerations show how to find the probability of inspection that will
lead to an equilibrium. If the probability of inspection is very low, for example one percent,
then player Il receives (irrespective of that probability) pay®flor comply and payoff
0.99x 10+ 0.01x (—90) = 9, which is bigger than zero, faheat Hence, player Il will still
cheat, just as in the absence of inspection.

If the probability of inspection is much higher, for examplg, then the expected payoff
for cheatis 0.8 x 10+ 0.2 x (—90) = —10, which is less than zero, so that player Il prefers to
comply If the inspection probability is either too low or too high, then player Il has a unique
best response. As shown above, such a pure strategy cannot be part of an equilibrium.

Hence, the only case where player Il herself could possibly randomize between her strate-
gies is if both strategies give her the same payoff, that is, if shreliferent As stated and
proved formally in Theorem 3.1 below, it is never optimal for a player to assign a positive
probability to a pure strategy that is inferior, given what the other players are doing. It is not
hard to see that player Il is indifferent if and only if player | inspects with probability 0.1,
since then the expected payoff fdneatis 0.9 x 10+ 0.1 x (—90) = 0, which is then the
same as the payoff fmomply

With this mixed strategy of player Don't inspectwith probability 0.9 andnspectwith
probability 0.1), player Il is indifferent between her strategies. Hence, shaizdhem (that
is, play them randomly) without losing payoff. The only case where, in turn, the original
mixed strategy of player | is a best response is if player | is indifferent. According to the
payoffs in Figure 6, this requires player Il to choasemplywith probability 0.8 andctheat
with probability 0.2. The expected payoffs to player | are thendon’t inspect0.8 x 0+
0.2 x (—10) = —2, and forlnspect0.8 x (—1) +0.2 x (—6) = —2, so that player | is indeed
indifferent, and his mixed strategy is a best response to the mixed strategy of player II.

This defines the only Nash equilibrium of the game. It uses mixed strategies and is
therefore called anixedequilibrium. The resulting expected payoffs ar2 for player | and
O for player II.

The preceding analysis shows that the game in Figure 3.2 has a mixed equilibrium, where
the players choose their pure strategies according to certain probabilities. These probabilities
have several noteworthy features.



First, the equilibrium probability of 0.1 fanspectmakes player Il indifferent between
complyandcheat As explained in Section 3.1 above, this requires payoffs texpected
utilities.

Secondly, mixing seems paradoxical when the player is indifferent in equilibrium. If
player II, for example, can equally wetbmplyor cheat why should she gamble? In par-
ticular, she coulccomplyand get payoff zero for certain, which is simpler and safer. The
answer is that precisely because there is no incentive to choose one strategy over the other, a
player can mix, and only in that case there can be an equilibrium. If player Il veauigbly
for certain, then the only optimal choice of player IDen’t inspect making the choice of
complying not optimal, so this is not an equilibrium.

The least intuitive aspect of mixed equilibrium is that the probabilities depend on the
opponent’s payoffand not on the player’s own payoffs (as long as the qualitative preference
structure, represented by the arrows, remains intact). For example, one would expect that
raising the penalty-90in Figure 3.2 for being caught lowers the probability of cheating in
equilibrium. In fact, it does not. What does change is the probability of inspection, which is
reduced until the consumer is indifferent.

3.3 Bimatrix games

In the following, we discuss mixed equilibria for general games in strategic form. We always
assume that each player has only a finite number of given pure strategies. In order to simplify
notation, we consider the case of two players. Many definitions and results carry over without
difficulty to the case of more than two players.

Recall that a game in strategic form is specified by a finite set of “pure” strategies for each
player, and a payoff for each player for eathategy profile which is a tuple of strategies,
one for each player. The game is played by each player independently and simultaneously
choosing one strategy, whereupon the players receive their respective payoffs.

For two players, a game in strategic form is also calldihaatrix game(A,B). Here, A
andB are two payoff matrices. By definition, they have equal dimensions, that is, they are
bothm x n matrices, havingn rows andn columns. Than rows are the pure strategiesf
player | and then columns are the pure strategiesf player Il. For a row, wherel <i<m,
and columnj, wherel < j <n, the matrix entry ofA is & as payoff to player I, and the
matrix entry ofB is bjj as payoff to player II.

Usually, we depict such a game as a table withows andn columns, so that each cell
of the table corresponds to a pure strategy fiair), and we enter both payofts; andbj;
in that cell,a;; in the lower-left corner, preferably written in red if we have colours at hand,
andbjj in the upper-right corner of the cell, displayed in blue. The “red” numbers are then
the entries of the matriR, the “blue” numbers those of the matix It does not matter if we
take two matrice®\ andB, or a single table where each cell has two entries (the respective
components of andB).

A mixed strategyis a randomized strategy of a player. It is defined as a probability
distribution on the set of pure strategies of that player. This is played as an “active ran-
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domization”: Using a lottery device with the given probabilities, the player picks each pure
strategy according to its probability. When a player plays according to a mixed strategy, the
other player is not supposed to know the outcome of the lottery. Rather, it is assumed that the
opponent knows that the strategy chosen by the player is a random event, and bases his or her
decision on the resulting distribution of payoffs. The payoffs are then “weighted with their
probabilities” to determine thexpected payoffwhich represents the player’s preference, as
explained in Section 3.1.

A pure strategy is a special mixed strateyamely, consider a pure strategyf player I.
Then the mixed strategythat selects with probability one and any other pure strategy with
probability zero is effectively the same as the pure strategipcex chooses with certainty.
The resulting expected payoff is the same as the pure strategy payoff, since any unplayed
strategy has probability zero and hence does not affect the expected payoff, and the pure
strategyi is weighted with probability one.

3.4 Matrix notation for expected payoffs

Unless specified otherwise, we assume that in the two-player game under consideration,
player | hagn strategies and player Il hasstrategies. The pure strategies of player I, which

are themrows of the bimatrix game, are denotediby 1,...,m, and the pure strategies of
player Il, which are theé columns of the bimatrix game, are denotedjby 1,...,n.

A mixed strategy is determined by the probabilities that it assigns to the player’s pure
strategies. For player I, a mixed strateggan therefore be identified with the-tuple of
probabilities(x1, X2, ..., Xm) that it assigns to the pure strategieg,...,m of player I. We
can therefore consideras an element afispace (writtelR™). We assume that the vector
with m components is eow vector that is, al x m matrix with a single row andh columns.

This will allow us to write expected payoffs in a short way.

A mixed strategyy of player Il is ann-tuple of probabilitiesy; for playing the pure
strategiesj = 1,...,n. That is,y is an element oR". We writey as acolumn vector as
(Y1,Y2,...,¥n) |, that is, the row vectofys,y», ...,yn) transposed Transposition in general
applies to any matrix. The transpoBeé of the payoff matrixB, for example, is the x m
matrix where the entry in rowy and columni is bjj, since transposition means exchanging
rows and columns. A column vector withcomponents is therefore considered asnanl
matrix; transposition gives a row vectorla n matrix.

Normally, all vectors are considered as column vector®®s@s equal toR"*1, the set
of all n x 1 matrices withn rows and one column. We have made an exception in defining a
mixed strategy of player | as a row vector. Whether we mean row or column vectors will
be clear from the context.

Suppose that player | uses the mixed strategyd that player Il uses the mixed strat-
egyy. With these conventions, we can now succinctly express the expected payoff to player |
asxAy, and the expected payoff to player dBy.

In order to see this, recall that tiheatrix productCD of two matrice<C andD is defined
when the number of columns @Gfis equal to the number of rows &f. Thatis,Cisapxq
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matrix, andD is aq x r matrix. The produc€D is then ap x r matrix with entryzﬂzlcikdk]—
in row i and columnj, wherecy anddy; are the respective entries GfandD. Matrix
multiplication is associative, that is, for anothrex s matrix E the matrix producCDE is a
p x s matrix, which can be computed either(&D)E or asC(DE).

For mixed strategiesandy, we readkAyandxByas matrix products. This works because
X, considered as a matrix, is of dimensibr m, bothA andB are of dimensiom x n, andy
is of dimensiom. The result is d x 1 matrix, that is, a single real number.

It is best to think ofkAybeing computed ag Ay), that is, as the product of a row vector
that hasm components with a column vectdy that hagm components. (The matrix product
of two such vectors is also known as thealar productof these two vectors.) The column
vectorAy hasmrows. We denote the entry éfy in row i by (Ay); for each rowi. It is given

by
n
(AY)i = > ajy; forl<i<m. 1)
=1

That is, the entriea;j of row i of player I's payoff matrixA are multiplied with the probabil-
itiesy; of their columns, s@Ay); is the expected payoff to player | when playing io@ne
can also think of; as a linear coefficient of thgh column of the matriXA. That is,Ayis the
linear combination of the column vectors Af each multiplied with its probability under
This linear combinatio\y is a vector of expected payoffs, with one expected paj/yji
for each row.

FurthermorexAyis the expected payoff to player | when the playersxiaady, since

X(Ay) = _ZXi(AY)i = ZX| _Zlaij yj = Z _Zl<xi yi)aij - )
i= i=1 j= i=1j=

Because the players choose their pure stratagaesl j independently, the probability that
they choose the pure strategy pairj) is the produck; y; of these probabilities, which is the
coefficient of the payofé;; in (2).

Analogously,xBy is the expected payoff to player Il when the players use the mixed
strategiex andy. Here, it is best to read this @=B)y. The vectorxB, as the product of a
1 x mwith anmx n matrix, is al x n matrix, that is, a row vector. Each column of that row
corresponds to a strategyf player Il, forl < j < n. We denote the respective column entry
by (xB);. Itis given by ™ ; x; bjj, which is the scalar product efwith the jth column ofB.
That is,(xB); is the expected payoff to player Il when player | playend player Il plays the
pure strategyj. If these numbers are multiplied with the column probabiligeand added
up, then the result is the expected payoff to player I, which in analogy to (2) is given by

(XBly =3 (xB);y; = ,Zl <;X~ bij) yi=y _;(Xa yi)bij , (3)

=1 j=1i

which is the expected payoff to player Il.



3.5 Convex combinations and mixed strategy sets

It is useful to regard mixed strategy vectors as geometric objects. A mixed stratH#gy
player | assigns probabilitieg to the pure strategiesThe pure strategies, in turn, are special
mixed strategies, namely the unit vectorsRR, for example(1,0,0), (0,1,0), (0,0,1) if
m= 3. The mixed strategyxi,Xz,Xs) is then a linear combination of the pure strategies,
namelyx; - (1,0,0) + x2 - (0,1,0) + x3- (0,0,1), where the linear coefficients are just the
probabilities. Such a linear combination is callecbavexcombination since the coefficients
sum to one and are nonnegative.

{(X+ply—x) | peR}

0

Figure 3.3 The line through the points andy is given by the pointx+ p(y — x) where
p € R. Examples are poird for p = 0.6, pointb for p= 1.5, and pointc when
p = —0.4. The line segment connectingandy results wherp is restricted to
0O<p<l

Figure 3.3 shows two points andy, here in the plane, but the picture may also be
regarded as a suitable view of the situation in a higher-dimensional space. The line that goes
through the pointx andy is obtained by adding to the poirt regarded as a vector, any
multiple of the difference/— x. The resulting vectox+ p- (y —x), for p € R, givesx when
p =0, andy whenp = 1. Figure 3.3 gives some examplasb, c of other points. When
0 < p <1, like for point a, the resulting points give thine segmenjoining x andy. If
p > 1, then one obtains points on the line througéindy on the other side of relative tox,
like the pointb in Figure 3.3. Fomp < 0, the corresponding point, likein Figure 3.3, is on
that line but on the other side gfrelative toy.

The expressiox+ p(y — X) can be rewritten a&l — p)x+ py, where the given points
andy appear only once. This expression (With- p as the coefficient of the first vector and
p of the second) shows how the line segment joinirtg y corresponds to the real interval
[0, 1] for the possible values gf, with the endpoints 0 and 1 of the interval corresponding to
the endpointx andy, respectively, of the line segment.

In general, a convex combination of poirgs z, ...,z in some space is given as any
linear combinatiorps - z1 + p2-  + - - - + Pk - Z Where the linear coefficientss, ..., px are
nonnegative and sum to one. The previously discussed case correspandsxoz, =y,
p1=1-p,andp; = p<[0,1].



A set of points is calledonvexf it contains with any pointg;, z», . . . , Z also their convex
combinations. Equivalently, one can show that a set is convex if it contains with any two
points also the line segment joining these two points; one can then obtain combinatkons of
points fork > 2 by iterating convex combinations of only two points.

The coefficients in a convex combination can also be regarded as probabilities, and con-
versely, a probability distribution on a finite set can be seen as a convex combination of the
unit vectors.

In a two-player game witim pure strategies for player | amgpure strategies for player I,
we denote the sets of mixed strategies of the two playeds agdY, respectively:

m
X={(X1,.--,Xm) | X > 0for1<i<m, lei:1},
i=

4
n
Y={(1,-,¥n) " |yj=0fori<j<n, §yj=1}.

=

For consistency with Section 3.4, we assume tKatontains row vectors and column
vectors, but this is not an important concern.

©01) /JX
(0,0) (1,0) &

x,* (100)

Figure 3.4 Examples of player I's mixed strategy s€wwhenm= 2 (left) andm= 3 (right),
as the set of convex combinations of the unit vectors.

Examples ofX are shown in Figure 3.4. Whan= 2, thenX is just the line segment
joining (1,0) to (0,1). If m= 3, thenX is a triangle, given as the set of convex combinations
of the unit vectors, which are the vertices of the triangle.

It is easily verified that in generaX andY are convex sets.

3.6 The best response condition

A mixed strategy equilibrium is a profile of mixed strategies such that no player can improve
his expected payoff by unilaterally changing his own strategy. In a two-player game, an



equilibrium is a pair(x,y) of mixed strategies such thatis a best response toand vice
versa. That is, player | cannot get a better expected payoffxAgby choosing any other
strategy tharx, and player Il cannot improve her expected pay@y by changingy.

It seems not easy to decidexifs a best response yaamong all possible mixed strategies,
that is, if x maximizesxAyfor all x in X, sinceX is an infinite set. However, the following
theorem, known as thieest response conditipshows how to recognize this. This theorem
is not difficult but important to understand. We discuss it afterwards.

Theorem 3.1 (Best response condition.).etx andy be mixed strategies of player | and I,
respectively. Theris a best response toif and only if for all pure strategiesof player I,

X >0 = (Ay)i = max{(Ay)k | 1 <k <m}. (5)

Proof. Recall that(Ay); is theith component oAy, which is the expected payoff to player |
when playing row, according to (1). Lett = max{ (Ay)k | 1 < k <m}, which is the maximum
of these expected payoffs for thare strategies of player I. Then

m

Ay 3 X (A = 3 X (U= (U= (A)) = 3 xu= 5 (0= (Ay)

-, ©)
=u- 3 x(u- (A

Since for any pure strategy bothx and the difference of the maximum payaofiand the
payoff (Ay); for row i is nonnegative, the sut™; xi(u— (Ay);) is also nonnegative, so that
XAy < u. The expected payo®Ay achieves the maximum if and only if that sum is zero,
that is, ifx; > 0 implies (Ay); = u, as claimed. O

Consider the phraseis a best response 0 in the preceding theorem. This means that
among all mixed strategies i of player I, x gives maximum expected payoff to player I.
However, the pure best responseyta (5) only deal with the pure strategies of player I.
Each such pure strategy corresponds to airofithe payoff matrix. In that row, the payoffs
gjj are multiplied with the column probabilitieg, and the sum over all columns gives the
expected payoffAy)i for the pure strategy according to (1). This pure strategy is a best
response if and only if no other row gives a higher payoff.

The first point of the theorem is that the condition whether a pure strategy is a best
response or not is very easy to check, as one only has to computedkpected payoffs
(Ay); for i =1,....,m. For example, if player | has three pure strategias=(3), and the
expected payoffs in (1) ardy)1 = 4, (Ay)2 = 4, and (Ay)z = 3, then only the first two
strategies are pure best responses. If these expected payoffs are 3, 5, and 3, then only the
second strategy is a best response. Clearly, at least one pure best response exists, since the
numbergAy)k in (5) have their maximuna for at least on&. The theorem states that only
pure best responsemay have positive probabilitg if x is to be a best responseyo

A second consequence of Theorem 3.1, used also in its proof, is that a mixed strategy
can never give a higher payoff than the best pure strategy. This is intuitive since “mixing”
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amounts t@veraging which is an average weighted with the probabilities, in the way that the
overall expected payo#Ayin (6) is obtained from those in (1) by multiplying (weighting)
each row with weightx; and summing over all rowss as shown in (2). Consequently, any
pure best responseo y is also a mixed best response, so the maximumAgffor x € X is

the same as whenis restricted to the unit vectors R™ that represent the pure strategies of
player I.

3.7 Existence of mixed equilibria

In this section, we give the original proof of John Nash from 1951 that shows that any
game with a finite number of players, and finitely many strategies per player, has a mixed
equilibrium. This proof uses the following theorem about continuous functions.

Theorem 3.2 (Brouwer’s Fixed Point Theorem)Let S be a subset of some spaké€ that
is convex and compaétand letf be a continuous function fro®to S. Thenf has at least
onefixed point that is, a pointsin Sso thatf(s) =s.

Theorem 3.3 (Nash [1951].)Every finite game has at least one equilibrium in mixed strate-
gies.

Proof. We will give the proof for two players, to simplify notation. It extends in the same
manner to any finite number of players. The Sehat is used in the present context is the
product of the sets of mixed strategies of the players. X.@ndY be the sets of mixed
strategies of player | and player Il as in (4), andJet X x Y.

Then the functiorf: S— Sthat we are going to construct maps a pair of mixed strategies
(x,y) to another paiff (x,y) = (X,y). Intuitively, a mixed strategy probability (of player I,
similarly y; of player Il) is changed t&;, such that it will decrease if the pure strategloes
worse than the average of all pure strategies. In equilibrium, all pure strategies of a player
that have positive probability do equally well, so no sub-optimal pure strategy can have a
probability that is reduced further. This means that the mixed strategies do not change, so
this is indeed equivalent to the fixed point propgptyy) = (X,y) = f(X,y).

In order to definef as described, consider the following functignsX x Y — R™ and
W: X xY — R" (we do not worry whether these vectors are row or column vectors; it suffices
thatR™ containsm-tuples of real numbers, and similaf®" containsn-tuples). For each
pure strategy of player I, letxi(x,y) be theith component ofx(x,y), and for each pure
strategyj of player Il, lety;(x,y) be thejth component off(x,y). The functionsy and
are defined by

Xi(x,y) = max{0, (Ay)i —xAy},  j(x,y) = max{0, (xB)j — xBy},

for 1 <i<mandl< j <n. Recall that(Ay); is the expected payoff to player | agairyst
when he uses the pure stratégand that(xB); is the expected payoff to player Il against

1n this context, a set is compact if it is closed (containing any points near the set) and bounded.
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when she uses the pure stratggyMoreover,xAy andxBy are the overall expected payoffs
to player | and player Il, respectively. So the differeriég); — xAyis positive if the pure
strategyi gives more than the averagdy againsty, zero if it gives the same payoff, and
negative if it gives less. The tergi(x,y) is this difference, except that it is replaced by zero
if the difference is negative. The terg;(x,y) is defined analogously. Thug,(x,y) is a
nonnegative vector iiR™, andy(x,y) is a nonnegative vector iR". The functionsy andy

are continuous.

The pair of vectorgx,y) is now changed by replacingby x+ x(x,y) in order to get
X, andy by y+ (/(x,y) to gety. Both sums are nonnegative. The only problem is that in
general, these new vectors are no longer probabilities since their components do not sum to
one. For that purpose, they are “re-normalized” by the following functiori®™ — R™ and
s:R" — R", defined by their components ands;, that is,r(x) = (r(x),...,rm(x)), and
s(y) = (s1(y), -, s(Y)):
X Yi

Sk Xk S k-1 Yk

Clearly, ifx, > 0for 1 <i<mandyy ;X > 0, thenr(x) is defined and is a probability
distribution, that is, an element of the mixed strategyXseAnalogouslys(y) € Y.

The functionf: X — Y is now defined by

f(xy) = (rx+x(xy)), sy+w(xy))).

What is a fixed pointx,y) of that function, so thaf (x,y) = (x,y)? Consider the smallest
pure strategy payoffAy); againsty, that is,(Ay); = ming(Ay)x. Then(Ay); < xAy, which is
proved analogously to (6), so the compongiik,y) of x(X,y) is zero. This means that the
respective ternx; + xi(x,y) is equal tox;. Conversely, consider some other pure stralegy
of player | that gets the maximum paydffly), = max (Ay)x. If that payoff is better than
the averageAy, then clearlyy;(x,y) > 0, so thatq + xi(X,y) > x. Sincexk(x,y) > 0 for

all k, this impliesy i ; (X« + Xk(x,y)) > 1, which is the denominator in the re-normalization
with rin r(x+ x(x,y)). This re-normalization will novdecreasehe value ofx; for the pure
strategyi with (Ay); < XAy, so the relative weight; of the pure strategy decreases, or is
unchanged ik = 0. But (Ay); > xAycan only occur if there is some sub-optimal strategy
(with (Ay); < xAy< (Ay)) that has positive probabilitg, which can be used instead of the
strategyi that gives minimum expected paydfy);. In that caset (x+ x(X,y)) is not equal

to x, so thatf (x,y) # (X,y).

Analogously, if ¢y(x,y) has some component that is positive, then the respective pure
strategy of player Il has a better payoff thaBy, soy # s(y+ ¢(x,y)) and (x,y) is not a
fixed point of f. In that casey is also not a best responsexto

Hence, the functiorf has a fixed pointx,y) if and only if both x (x,y) andg(x,y) are
zero in all components. But that means tkayis the maximum possible payaffiax (Ay);
againsty, andxByis the maximum possible payaffiax;(xB); against, that is,x andy are
mutual best responses. The fixed poiixty) are therefore exactly the Nash equilibria of the
game. L]

ri(Xl,--->Xm) Sj(y]-?"‘?yn):
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