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Abstract. This paper provides an overview of research and development activities in the field of autonomous
agents and multi-agent systems. It aims to identify key concepts and applications, and to indicate how they relate
to one-another. Some historical context to the field of agent-based computing is given, and contemporary research
directions are presented. Finally, a range of open issues and future challenges are highlighted.
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1. Introduction

Autonomous agents and multi-agent systems represent a new way of analysing, design-
ing, and implementing complex software systems. The agent-based view offers a power-
ful repertoire of tools, techniques, and metaphors that have the potential to considerably
improve the way in which people conceptualise and implement many types of software.
Agents are being used in an increasingly wide variety of applications — ranging from
comparatively small systems such as personalised email filters to large, complex, mission
critical systems such as air-traffic control. At first sight, it may appear that such extremely
different types of system can have little in common. And yet this is not the case: in both,
the key abstraction used is that of an agent. It is the naturalness and ease with which such a
variety of applications can be characterised in terms of agents that leads researchers and de-
velopers to be so excited about the potential of the approach. Indeed, several observers feel
that certain aspects of agents are being dangerously over-hyped, and that unless this stops
soon, agents will suffer a similar backlash to that experienced by the Artificial Intelligence
(AI) community in the 1980s [96, 156].

Given this degree of interest and level of activity, in what is a comparatively new and
multi-disciplinary subject, it is not surprising that the field of agent-based computing can
appear chaotic and incoherent. The purpose of this paper is therefore to try and impose
some order and coherence. We thus aim to tease out the common threads that together
make up the agent tapestry. Our purpose is not to provide a detailed review of the field, we
leave this to others (for example, [154, 11, 74, 111, 158]). Rather than present an in-depth
analysis and critique of the field, we instead briefly introduce the key issues, and indicate
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how they are inter-related. Where appropriate, references to more detailed treatments are
provided.

Before we can embark on our discussion, we first have to define what we mean by such
terms as “agent”, “agent-based system” and “multi-agent system”. Unfortunately, we im-
mediately run into difficulties, as some key concepts in the field lack universally accepted
definitions. In particular, there is no real agreement even on the core question of exactly
what an agent is (see [52] for a discussion). Of course, this need not be a serious obstacle
to progress, (the AI community has made progress without having a universally accepted
definition of intelligence, for example). Nevertheless, we feel it is worth spending some
time on the issue, otherwise the terms we use will come to lose all meaning. For us,
then, an agent is a computer system, situated in some environment, that is capable of flex-
ible autonomous action in order to meet its design objectives (this definition is adapted
from [158]). There are thus three key concepts in our definition: situatedness, autonomy,
and flexibility.

Situatedness, in this context, means that the agent receives sensory input from its en-
vironment and that it can perform actions which change the environment in some way.
Examples of environments in which agents may be situated include the physical world or
the Internet. Such situatedness may be contrasted with the notion of disembodied intel-
ligence that is often found in expert systems. For example, MYCIN, the paradigm expert
system [134], did not interact directly with any environment. It received information not
via sensors, but through a user acting as a middle man. In the same way, it did not act on
any environment, but rather it gave feedback or advice to a third party.

Autonomy is a difficult concept to pin down precisely, but we mean it simply in the sense
that the system should be able to act without the direct intervention of humans (or other
agents), and that it should have control over its own actions and internal state. Others use
it in a stronger sense, to mean systems that are capable of learning from experience [125,
p35].

Of course, situated, autonomous computer systems are not a new development. There
are many examples of such systems in existence. Examples include:

# any process control system, which must monitor a real-world environment and per-
form actions to modify it as conditions change (typically in real time) — such systems
range from the very simple (for example, thermostats) to the extremely complex (for
example, nuclear reactor control systems);

# software daemons, which monitor a software environment and perform actions to mod-
ify the environment as conditions change — a simple example is the UNIX xbiff pro-
gram, which monitors a user’s incoming email and obtains their attention by displaying
an icon when new, incoming email is detected.

While the above are certainly examples of situated, autonomous systems, we would not
consider them to be agents since they are not capable of flexible action in order to meet
their design objectives. By flexible, we mean that the system is [158]:

# responsive: agents should perceive their environment and respond in a timely fashion
to changes that occur in it;
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# pro-active: agents should not simply act in response to their environment, they should
be able to exhibit opportunistic, goal-directed behaviour and take the initiative where
appropriate;

# social: agents should be able to interact, when appropriate, with other artificial agents
and humans in order to complete their own problem solving and to help others with
their activities.

While other researchers emphasise different aspects of agency (including, for example,
mobility or adaptability) we believe that these four properties are the essence of agent-
hood. Naturally, some agents will have additional characteristics, and for certain types of
applications, some attributes will be more important than others. However, we believe that
it is the presence of all the attributes in a single software entity that provides the power of
the agent paradigm and which distinguishes agent systems from related software paradigms
— such as object-oriented systems, distributed systems, and expert systems (see [156] for
a discussion).

With the basic building block notion of an agent in place, we can define more of our
terminology. By an agent-based system, we mean one in which the key abstraction used
is that of an agent. In principle, an agent-based system might be conceptualised in terms
of agents, but implemented without any software structures corresponding to agents at
all. We can draw a parallel with object-oriented software, where it is entirely possible
to design a system in terms of objects, but to implement it without the use of an object-
oriented software environment. But this would at best be unusual, and at worst, counter-
productive. A similar situation exists with agent technology; we therefore expect an agent-
based system to be both designed and implemented in terms of agents.

As we have defined it, an agent-based system may contain one or more agents. There are
cases in which a single agent solution is appropriate. A good example, as we shall see later
in this article, is the class of systems known as expert assistants, wherein an agent acts as an
expert assistant to a user attempting to use a computer to carry out some task. However, the
multi-agent case — where the system is designed and implemented as several interacting
agents — is arguably more general and more interesting from a software engineering stand-
point. Multi-agent systems are ideally suited to representing problems that have multiple
problem solving methods, multiple perspectives and/or multiple problem solving entities.
Such systems have the traditional advantages of distributed and concurrent problem solv-
ing, but have the additional advantage of sophisticated patterns of interactions. Examples
of common types of interactions include: cooperation (working together towards a com-
mon aim); coordination (organising problem solving activity so that harmful interactions
are avoided or beneficial interactions are exploited); and negotiation (coming to an agree-
ment which is acceptable to all the parties involved). It is the flexibility and high-level
nature of these interactions which distinguishes multi-agent systems from other forms of
software and which provides the underlying power of the paradigm.

The remainder of this article is structured as follows. Section 2 focuses on individual
agents, providing some background to the concepts involved, indicating the key issues that
are being addressed, and highlighting some likely future directions for research and devel-
opment. Section 3 presents a similar discussion for multi-agent systems. Section 4 draws
together the two strands. It discusses some exemplar agent-based applications and pro-
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vides some pointers to the likely future direction of applied agent work. Finally, section 5
presents some conclusions.

2. Autonomous Agents

The purpose of this section is to identify the various threads of work that have resulted
in contemporary research and development activities in agent-based systems. We begin,
in section 2.1, by identifying some key developments in the history and pre-history of the
autonomous agents area, up to and including current systems. In section 2.2, we then
identify some of the key issues and future research directions in autonomous agents.

2.1. History

Current interest in autonomous agents did not emerge from a vacuum. Researchers and
developers from many different disciplines have been talking about closely related issues
for some time. The main contributors are:

# artificial intelligence [125];

# object-oriented programming [10] and concurrent object-based systems [2, 4];

# human-computer interface design [97].

2.1.1. Artificial Intelligence. Undoubtedly the main contributor to the field of autonomous
agents is artificial intelligence. Ultimately, AI is all about building intelligent artifacts,
and if these artifacts sense and act in some environment, then they can be considered as
agents [125]. Despite the fact that agency can thus be seen to be central to the study of
AI, until the 1980s comparatively little effort within the AI community was directed to the
study of intelligent agents. The primary reason for this apparently strange state of affairs
was that AI researchers had historically tended to focus on the various different compo-
nents of intelligent behaviour (learning, reasoning, problem solving, vision understanding
and so on) in isolation. The expectation was that progress was more likely to be made
with these aspects of intelligent behaviour if they were studied individually, and that the
synthesis of these components to create an integrated agent would be straightforward. By
the early 1970s, this assumption seems to have been implicit within most mainstream AI
research. During this period, the area of research activity most closely connected with that
of autonomous agents was AI planning [5].

AI planning research is the sub-field of AI that concerns itself with knowing what to
do: what action to perform. Ultimately, an agent is just a system that performs actions in
some environment, and so it is not surprising that AI planning research should be closely
involved in the study of agents. The AI planning paradigm traces its origins to Newell and
Simon’s GPS system [108], but is most commonly associated with the STRIPS planning
system ([45]) and its descendents (such as [23, 155]). A typical STRIPS-style planning
system will have at least the following components:
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# a symbolic model of the agent’s environment, typically represented in some limited
subset of first-order predicate logic;

# a symbolic specification of the actions available to the agent, typically represented in
terms of PDA (pre-condition, delete, add) lists, which specify both the circumstances
under which an action may be performed and the effects of that action;

# a planning algorithm, which takes as input the representation of the environment, a set
of action specifications, and a representation of a goal state, and produces as output a
plan — essentially, a program — which specifies how the agent can act so as to achieve
the goal.

Thus, planning systems decide how to act from first principles. That is, in order to satisfy
a goal, they first formulate an entirely new plan or program for that goal. A planning
systems would thus continually execute a cycle of picking a goal φ1, generating a plan π
for φ1, executing π, picking a new goal φ2, and so on. Crucially, such planning is based
entirely around symbolic representations and reasoning.

Attention in AI planning research during the 1970s and early 1980s focussed primarily
on the representations required for actions, and the planning algorithms themselves. Of
particular concern was the demonstrated efficiency of the planning algorithm. With simu-
lated micro-world examples (such as the well-known blocks world), STRIPS-style planning
algorithms appear to give reasonable performance. However, it was rapidly discovered
that such techniques do not scale to realistic scenarios. In particular, such algorithms were
predicated on the assumption of calculative rationality [126]. The calculative rationality
assumption may be informally defined as follows. Suppose we have some agent f , which
will accept an observation of the world as input, do some computation, and sometime later
generate an action output. Then f is said to enjoy the property of calculative rationality if
the action it gives as output would be optimal if performed at the time f began its decision-
making. Algorithms that have the property of calculative rationality by this definition will
be guaranteed to make the best decision possible — but they will not necessarily make it
in time to be of any use. Calculative rationality tends to arise in circumstances where the
decision about which action to perform is made by an unconstrained search over the space
of all possible decisions. The size of such search spaces are inherently exponential in the
complexity of the task to be solved. As a consequence, search-based techniques tend to be
impractical if results are required in any fixed time bound. Building on the burgeoning area
of algorithmic complexity analysis that emerged in the late 1960s and 1970s, a number of
theoretical results appeared in the 1980s which indicated that first-principles planning is
not a viable option for agents that operate in such time-constrained environments. The best
known of these results is due to David Chapman, who demonstrated that in many circum-
stances, first-principles planning is undecidable [23]. So, building reactive agents, that can
respond to changes in their environment in time for these responses to be useful, is not
likely to be possible using first-principles planning techniques.

The apparent failure of early AI planning techniques to scale up to real-world problems,
together with the complexity results of Chapman and others, led many researchers to ques-
tion the viability of symbolic reasoning approaches to planning in particular and AI in
general. The problem of deploying such algorithms in real-world systems also prompted
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researchers to turn to the somewhat neglected issue of agent design. During the mid 1980s,
an increasing number of these researchers began to question the assumptions upon which
traditional symbolic AI approaches to agency are based. In particular, some researchers
began to express grave reservations about whether symbolic AI, and in particular the logi-
cist tradition in symbolic AI, was ultimately viable. Arguably the best-known of these
critics was Rodney Brooks, who in a series of papers presented a number of objections
to the symbolic AI model, and sketched out an alternative research program, which has
been variously known as behavioural AI, reactive AI, or situated AI [15, 17, 16]. In these
papers, Brooks emphasised several aspects of intelligent behaviour that he suggested were
neglected by traditional approaches to agency and AI. In particular, he suggested that intel-
ligent, rational behaviour is not an attribute of disembodied systems like theorem provers
or traditional expert systems like MYCIN, but rather that intelligence is a product of the in-
teraction between an agent and its environment. In addition, Brooks emphasised the view
that intelligent behaviour emerges from the interaction of various simpler behaviours.

As part of his research program, Brooks developed the subsumption architecture, an
agent control architecture that employed no symbolic representations or reasoning at all.
Broadly speaking, a subsumption architecture agent is a collection of task accomplishing
behaviours. Each behaviour is a finite state machine that continually maps perceptual in-
put to action output. In some implemented versions of the subsumption architecture, this
mapping is achieved via “situation � action” rules, which simply determine an action to
perform on the basis of the agent’s current state. However, in Brooks’ implementations, be-
haviours were somewhat more sophisticated than this, for example allowing for feedback
from previous decisions. The main point is that these behaviours do no symbolic reason-
ing (and no search). While each behaviour is generating suggestions with respect to which
action to perform, the overall decision about which action to perform is determined by in-
teractions between the behaviours. Behaviours can interact in several ways. For example,
one behaviour can “suppress” the output of another. Typically, the behaviours are organ-
ised into a layered hierarchy, with lower layers representing less abstract behaviours (e.g.,
obstacle avoidance in physically embodied agents), and higher layers representing more
abstract behaviours. Developing agents that exhibit coherent overall behaviour is a process
of carefully developing and experimenting with new behaviours, usually by placing the
agent in its environment and observing the results.

Despite its apparent simplicity, the subsumption architecture has nevertheless been demon-
strated in several impressive applications (see, e.g., [137]). However, there are also a num-
ber of disadvantages with the subsumption architecture and its relatives:

# If agents do not employ models of their environment, then they must have sufficient
information available in their local environment for them to determine an acceptable
action.

# Since purely reactive agents make decisions based on local information, (i.e., infor-
mation about the agent’s current state), it is difficult to see how such decision making
could take into account non-local information — it must inherently take a “short term”
view.

# It is difficult to see how purely reactive agents can be designed that learn from experi-
ence, and improve their performance over time.
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Figure 1. Layered Agent Architectures

# A major selling point of purely reactive systems is that overall behaviour emerges from
the interaction of the component behaviours when the agent is placed in its environ-
ment. But the very term “emerges” suggests that the relationship between individual
behaviours, environment, and overall behaviour is not understandable. This necessar-
ily makes it very hard to engineer agents to fulfill specific tasks. Ultimately, there is
no principled methodology for building such agents: one must use a laborious process
of experimentation, trial, and error to engineer an agent.

# While effective agents can be generated with small numbers of behaviours (typically
less that ten layers), it is much harder to build agents that contain many layers. The
dynamics of the interactions between the different behaviours become too complex to
understand.

By the early 1990s, most researchers accepted that reactive architectures are well-suited
to certain domains and problems, but less well-suited to others. In fact, for most prob-
lems, neither a purely deliberative (e.g., first-principles planner) architecture nor a purely
reactive architecture is appropriate. For such domains, an architecture is required that in-
corporates aspects of both. As a result, a number of researchers began to investigate hybrid
architectures, which attempted to marry the best aspects of both deliberative and reactive
approaches. Typically, these architectures were realised as a number of software layers.
The layers may be arranged vertically (so that only one layer has access to the agent’s sen-
sors and effectors) or horizontally (so that all layers have access to sensor input and action
output); see Figure 1.

As in the subsumption architecture, (see above), layers are arranged into a hierarchy, with
different levels in the hierarchy dealing with information about the environment at different
levels of abstraction. Most architectures find three layers sufficient. Thus at the lowest level
in the hierarchy, there is typically a “reactive” layer, which makes decisions about what to
do based on raw sensor input. Often, this layer is implemented using techniques rather
similar to Brooks’ subsumption architecture (thus it is itself implemented as a hierarchy
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of task accomplishing behaviours, where these behaviours are task-accomplishing finite
state machines). The middle layer layer typically abstracts away from raw sensor input
and deals with a knowledge level view of the agent’s environment [107], typically making
use of symbolic representations. The uppermost level of the architecture tends to deal with
the social aspects of the environment — it has a social knowledge level view [80]. We thus
typically find representations of other agents in this layer — their goals, beliefs, and so
on. In order to produce the global behaviour of the agent, these layers interact with one-
another; the specific way that the layers interact differs from architecture to architecture. In
some approaches (such as TOURING MACHINES [43, 44]), each layer is itself constantly
producing suggestions about what action to perform. In this case, mediation between these
layers in order to ensure that the overall behaviour of the agent is coherent and consistent
becomes an issue. In TOURING MACHINES this mediation is achieved by a control sub-
system that determines which layer should have overall control of the agent. The control
subsystem in TOURING MACHINES is implemented as a set of rules, which can refer to the
actions proposed by each layer. A similar idea is used in INTERRAP [104, 103]. Another
similar architecture for autonomous agents is 3T [8].

A final tradition in the area of agent architectures is that of practical reasoning agents [14].
Practical reasoning agents are those whose architecture is modelled on or inspired by a the-
ory of practical reasoning in humans. By practical reasoning, we simply mean the kind of
pragmatic reasoning that we use to decide what to do. Practical reasoning has long been an
area of study by philosophers, who are interested in developing theories that can account
for human behaviour. Typically, theories of practical reasoning make use of a folk psy-
chology, whereby behaviour is understood by the attribution of attitudes such as beliefs,
desires, intentions, and so on. Human behaviour can be thought of as arising through the
interaction of such attitudes. Practical reasoning architectures are modelled on theories of
such interactions. Probably the best-known and most influential type of practical reason-
ing architecture is the so-called belief-desire-intention (BDI) model [14, 57]. As the name
indicates, BDI agents are characterised by a “mental state” with three components: beliefs,
desires, and intentions. Intuitively, beliefs correspond to information that the agent has
about its environment. Desires represent “options” available to the agent — different pos-
sible states of affairs that the agent may choose to commit to. Intentions represent states
of affairs that the agent has chosen and has committed resources to. An agent’s practical
reasoning involves repeatedly updating beliefs from information in the environment, decid-
ing what options are available, “filtering” these options to determine new intentions, and
acting on the basis of these intentions. The philosophical foundations of the BDI model
are to be found in Bratman’s account of the role that intentions play in human practical
reasoning [12]. A number of BDI agent systems have been implemented, the best-known
of which is probably the Procedural Reasoning System (PRS) [57]. Researchers interested
in practical reasoning architectures have developed a number of logical theories of BDI

systems [120, 121]. Closely related to this work on practical reasoning agent architectures
is Shoham’s proposal for agent-oriented programming, a multi-agent programming model
in which agents are explicitly programmed in terms of mentalistic notions such as belief
and desire [133].
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2.1.2. Object and Concurrent Object Systems. Object-oriented programmers often fail
to see anything novel or new in the idea of agents. When one stops to consider the relative
properties of agents and objects, this is perhaps not surprising. Objects are defined as
computational entities that encapsulate some state, are able to perform actions, or methods
on this state, and communicate by message passing.

While there are obvious similarities, there are also significant differences between agents
and objects. The first is in the degree to which agents and objects are autonomous. Recall
that the defining characteristic of object-oriented programming is the principle of encapsu-
lation — the idea that objects can have control over their own internal state. In program-
ming languages like JAVA, we can declare instance variables (and methods) to be private,
meaning they are only accessible from within the object. (We can of course also declare
them public, meaning that they can be accessed from anywhere, and indeed we must do
this for methods so that they can be used by other objects. But the use of public instance
variables is generally considered poor programming style.) In this way, an object can be
thought of as exhibiting autonomy over its state: it has control over it. But an object does
not exhibit control over it’s behaviour. That is, if a method m is made available for other
objects to invoke, then they can do so whenever they wish; the object has no control over
whether or not that method is executed. Of course, an object must make methods available
to other objects, or else we would be unable to build a system out of them. This is not
normally an issue, because if we build a system, then we design the objects that go in it,
and they can thus be assumed to share a “common goal”. But in many types of multi-agent
system, (in particular, those that contain agents built by different organisations or individ-
uals), no such common goal can be assumed. It cannot be taken for granted that an agent
i will execute an action (method) a just because another agent j wants it to — a may not
be in the best interests of i. We thus do not think of agents as invoking methods upon
one-another, but rather as requesting actions to be performed. If j requests i to perform
a, then i may perform the action or it may not. The locus of control with respect to the
decision about whether to execute an action is thus different in agent and object systems.
In the object-oriented case, the decision lies with the object that invokes the method. In
the agent case, the decision lies with the agent that receives the request. The distinction
between objects and agents can be summarised in the following slogan: Objects do it for
free; agents do it for money.

Note that there is nothing to stop us implementing agents using object-oriented tech-
niques. For example, we can build some kind of decision making about whether to execute
a method into the method itself, and in this way achieve a stronger kind of autonomy for
our objects. However, the point is that autonomy of this kind is not a component of the
basic object-oriented model.

The second important distinction between object and agent systems is with respect to
the notion of flexible (reactive, pro-active, social) autonomous behaviour. The standard
object model has nothing whatsoever to say about how to build systems that integrate these
types of behaviour. Again, one could argue that we can build object-oriented programs
that do integrate these types of behaviour. But this argument misses the point, which is
that the standard object-oriented programming model has nothing to do with these types of
behaviour.
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The third important distinction between the standard object model and our view of agent
systems is that agents are each considered to have their own thread of control — in the
standard object model, there is a single thread of control in the system. Of course, a lot
of work has recently been devoted to concurrency in object-oriented programming. For
example, the JAVA language provides built-in constructs for multi-threaded programming.
There are also many programming languages available (most of them admittedly proto-
types) that were specifically designed to allow concurrent object-based programming [4].
But such languages do not capture the idea we have of agents as autonomous entities.
Note, however, that active objects come quite close to our concept of autonomous agents
— though not agents capable of flexible autonomous behaviour [10, p91].

2.1.3. Human-Computer Interfaces Currently, when we interact with a computer via a
user interface, we are making use of an interaction paradigm known as direct manipulation.
Put simply, this means that a computer program (a word processor, for example) will only
do something if we explicitly tell it to. This makes for very one-way interaction. It would
be desirable, therefore, to have computer programs that in certain circumstances could take
the initiative, rather than wait for the user to spell out exactly what they wanted to do. This
leads to the view of computer programs as cooperating with a user to achieve a task, rather
than acting simply as servants. A program capable of taking the initiative in this way would
in effect be operating as a semi-autonomous agent. Such agents are sometimes referred to
as expert assistants, or more whimsically as digital butlers.

One of the key figures in the development of agent-based interfaces has been Nicholas
Negroponte. His vision of agents at the interface was set out in Being Digital [106]:

“The ‘agent’ answers the phone, recognizes the callers, disturbs you when appro-
priate, and may even tell a white lie on your behalf. The same agent is well trained
in timing, versed in finding opportune moments, and respectful of idiosyncrasies.
” (p150)

“If you have somebody who knows you well and shares much of your information,
that person can act on your behalf very effectively. If your secretary falls ill, it
would make no difference if the temping agency could send you Albert Einstein.
This issue is not about IQ. It is shared knowledge and the practice of using it in
your best interests.” (p151)

“Like an army commander sending a scout ahead . . . you will dispatch agents
to collect information on your behalf. Agents will dispatch agents. The process
multiplies. But [this process] started at the interface where you delegated your
desires.” (p158)

The main application of such agents to date has been in the area of information manage-
ment systems, particularly email managers and active new readers [97] and active world-
wide web browsers [94]. In section 4.1.2, we discuss such applications in more detail.
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2.2. Issues and Future Directions

The area of agent architectures, particularly layered, or hybrid architectures, and practical
reasoning architectures, continues to be an area of considerable research effort within the
agent field. For example, there is ongoing work to investigate the appropriateness of vari-
ous architectures for different environment types. It turns out to be quite hard to evaluate
one agent architecture against another, although some suggestions have been made as to
how this might be done in a neutral way [118].

Finally, if agent technology, of the kind described in this section, is to move from the
research lab to the office of the everyday computer worker, then serious attention must
be given to development environments and programming languages for such systems. To
date, most architectures have been implemented in a rather ad hoc manner. Programming
languages and tools for agents would present the developer with a layer of abstraction over
such architectures. Shoham’s AGENT0 is one attempt to build such a language [133], as is
the CONGOLOG language described in [89], and the Concurrent METATEM programming
language [47]. APRIL is another such language, which provides the developer with a set of
software tools for implementing MAS [99].

3. Multi-Agent Systems

Traditionally, research into systems composed of multiple agents was carried out under the
banner of Distributed Artificial Intelligence (DAI), and has historically been divided into
two main camps [9]: Distributed Problem Solving (DPS) and Multi-Agent Systems (MAS).
More recently, the term “multi-agent systems” has come to have a more general meaning,
and is now used to refer to all types of systems composed of multiple (semi-)autonomous
components.

Distributed problem solving (DPS) considers how a particular problem can be solved by a
number of modules (nodes), which cooperate in dividing and sharing knowledge about the
problem and its evolving solutions. In a pure DPS system, all interaction strategies are in-
corporated as an integral part of the system. In contrast, research in MAS is concerned with
the behavior of a collection of possibly pre-existing autonomous agents aiming at solving a
given problem. A MAS can be defined as a loosely coupled network of problem solvers that
work together to solve problems that are beyond the individual capabilities or knowledge
of each problem solver [39]. These problem solvers — agents — are autonomous and may
be heterogeneous in nature. The characteristics of MAS are:

# each agent has incomplete information, or capabilities for solving the problem, thus
each agent has a limited viewpoint;

# there is no global system control;

# data is decentralized; and

# computation is asynchronous.

Some reasons for the increasing interest in MAS research include: the ability to provide ro-
bustness and efficiency; the ability to allow inter-operation of existing legacy systems; and
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the ability to solve problems in which data, expertise, or control is distributed. Although
MAS provide many potential advantages, they also face many difficult challenges. Below,
we present problems inherent in the design and implementation of MAS (this list includes
both problems first posed in [9] and some we have added):

1. How to formulate, describe, decompose, and allocate problems and synthesize results
among a group of intelligent agents?

2. How to enable agents to communicate and interact? What communication languages
and protocols to use? What and when to communicate?

3. How to ensure that agents act coherently in making decisions or taking action, accom-
modating the nonlocal effects of local decisions and avoiding harmful interactions?

4. How to enable individual agents to represent and reason about the actions, plans, and
knowledge of other agents in order to coordinate with them? How to reason about the
state of their coordinated process (e.g., initiation and completion)?

5. How to recognize and reconcile disparate viewpoints and conflicting intentions among
a collection of agents trying to coordinate their actions?

6. How to effectively balance local computation and communication? More generally,
how to manage allocation of limited resources?

7. How to avoid or mitigate harmful overall system behavior, such as chaotic or oscilla-
tory behavior?

8. How to engineer and constrain practical MAS systems? How to design technology
platforms and development methodologies for MAS?

Solutions to these problems are of course intertwined [54]. For example, different mod-
eling schemes for an individual agent may constrain the range of effective coordination
regimes; different procedures for communication and interaction have implications for be-
havioral coherence; different problem and task decompositions may yield different inter-
actions.

From this backdrop, we provide some historical context for the field (section 3.1), discuss
contemporary work in distributed problem solving (section 3.2) and multi-agent systems
(section 3.3), and finally, we discuss some open issues (section 3.4).

3.1. History

In 1980 a group of AI researchers held the first DAI workshop at MIT to discuss issues con-
cerning intelligent problem solving with systems consisting of multiple problem solvers. It
was decided that Distributed AI was not concerned with low level parallelism issues, such
as how to distribute processing over different machines, or how to parallelize centralized
algorithms, but rather with issues of how intelligent problem solvers could coordinate ef-
fectively to solve problems. From these beginnings, the DAI field has grown into a major
international research area.
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3.1.1. Actors One of the first models of multi agent problem solving was the actors
model [2, 3]. Actors were proposed as universal primitives of concurrent computation.
Actors are self-contained, interactive autonomous components of a computing system that
communicate by asynchronous message passing. The basic actor primitives are:

# create: creating an actor from a behavior description and a set of parameters, possibly
including existing actors;

# send: sending a message to an actor;

# become: changing an actor’s local state.

Actor models are a natural basis for many kinds of concurrent computation. However, as
noted in [9] actor models, along with other DAI models, face the issue of coherence. The
low-level granularity of actors also poses issues relating to the composition of actor behav-
iors in larger communities, and achievement of higher level performance goals with only
local knowledge. These issues were addressed in [68] where an overview of Open Systems
Science and its challenges were presented, and where an organizational architecture called
ORG was proposed that included new features and extensions of the Actor model to support
organizing large scale work.

3.1.2. Task Allocation through the Contract Net Protocol The issue of flexible alloca-
tion of tasks to multiple problem solvers (nodes) received attention early on in the history
of DAI [33]. Davis and Smith’s work resulted in the well-known Contract Net Protocol.
In this protocol, agents can dynamically take two roles: manager or contractor. Given a
task to perform, an agent first determines whether it can break it into subtasks that could be
performed concurrently. It employs the Contract Net Protocol to announce the tasks that
could be transferred, and requests bids from nodes that could perform any of these tasks.
A node that receives a task announcement replies with a bid for that task, indicating how
well it thinks it can perform the task. The contractor collects the bids and awards the task
to the best bidder. Although the Contract Net was considered by Smith and Davis (as well
as many subsequent DAI researchers) to be a negotiation technique, it is really a coordi-
nation method for task allocation. The protocol enables dynamic task allocation, allows
agents to bid for multiple tasks at a time, and provides natural load balancing (busy agents
need not bid). Its limitations are that it does not detect or resolve conflicts, the manager
does not inform nodes whose bids have been refused, agents cannot refuse bids, there is no
pre-emption in task execution (time critical tasks may not be attended to), and it is com-
munication intensive. To rectify some of its shortcoming, a number of extensions to the
basic protocol have been proposed, for example [128].

3.1.3. Some Early Applications

Air Traffic Control: Cammarata [21] studied cooperation strategies for resolving con-
flicts among plans of a group of agents. They applied these strategies to an air-traffic
control domain, in which the aim is to enable each agent (aircraft) to construct a flight
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plan that will maintain a safe distance with each aircraft in its vicinity and satisfy ad-
ditional constraints (such as reaching its destination with minimal fuel consumption).
Agents involved in a potentially conflicting situation (e.g., aircraft becoming too close
according to their current flight path) choose one of the agents involved in the conflict
to resolve it. The chosen agent acts as a centralized planner to develop a multi-agent
plan that specifies the conflict-free flight paths that the agents will follow. The de-
cision of which agent will do the planning is based on different criteria, for example,
most-informed agent, or more-constrained agent. The authors carried out experimental
evaluations to compare plans made by agents that were chosen using different criteria.

The Distributed Vehicle Monitoring Task (DVMT): In this domain, a set of agents are
distributed geographically, and each is capable of sensing some portion of an overall
area to be monitored. As vehicles move through its sensed area, each agent detects
characteristic sounds from those vehicles at discrete time intervals. By analyzing the
combination of sounds heard from a particular location at a specific time, an agent can
develop interpretations of what vehicles might have created these sounds. By analyz-
ing temporal sequences of vehicle interpretations, and using knowledge about mobility
constraints of different vehicles, the agent can generate tentative maps of vehicle move-
ments in its area. By communicating tentative maps to one another, agents can obtain
increased reliability and avoid redundant tracking in overlapping regions [38].

Blackboards: The DVMT, along with other early MAS applications use the blackboard
systems for coordination. Put crudely, a blackboard is simply a shared data struc-
ture [40]. Agents can use a blackboard to communicate by simply writing on the data
structure. Early DVMT work by Lesser and Corkill [30] used two blackboards, one
for data and the other for agents’ goals. In the MINDS project, Huhns et al also used
two specialized blackboards [73]. The MINDS project was a distributed information re-
trieval system, in which agents shared both knowledge and tasks in order to cooperate
in retrieving documents for users. Hayes-Roth proposed a more elaborate blackboard
structure, with three interacting sub-agents for perception, control and reasoning [64].

3.2. Cooperative Multi-Agent Interactions

As interest increases in applications that use cooperative agents working towards a com-
mon goal, and as more agents are built that cooperate as teams, (such as in virtual train-
ing [143], Internet-based information integration [35], ROBOCUP robotic and synthetic
soccer [149], and interactive entertainment [66]), so it becomes more important to under-
stand the principles that underpin cooperation.

As discussed in section 2.1, planning for a single agent is a process of constructing a
sequence of actions considering only goals, capabilities and environmental constraints.
Planning in a MAS environment, on the other hand, considers in addition the constraints
that the other agents’ activities place on an agent’s choice of actions, the constraints that
an agent’s commitments to others place on its own choice of actions and the unpredictable
evolution of the world caused by other, un-modeled agents.

Most early work in DAI dealt with groups of agents pursuing common goals (e.g., [90,
38, 21, 91]). Agent interactions were guided by cooperation strategies meant to improve



� � ����� � ��� ��� ��
���������� � � �����������������	����!��
� � ����� � � �

their collective performance. In this light, early work on distributed planning took the ap-
proach of complete planning before action. To produce a coherent plan, the agents must
be able to recognize subgoal interactions and either avoid them or else resolve them. For
instance, work by Georgeff [55] included a synchroniser agent to recognize and resolve
such interactions. Other agents send this synchroniser their plan; the synchroniser exam-
ines plans for critical regions in which, for example, contention for resources could cause
them to fail. The synchroniser then inserted synchronization messages (akin to operating
systems semaphores) to ensure mutual exclusion. In the work by Cammarata on air traffic
control (see section 3.1.3) the synchronizing agent was dynamically assigned according to
different criteria, and could alter its plan to remove the interaction (avoid collision).

Another significant approach to resolving sub-problem interdependencies is the “Func-
tionally Accurate Model (FA/C)” [91]. In the FA/C model, agents do not need to have all
the necessary information locally to solve their sub-problems, but instead interact through
the asynchronous, coroutine exchange of partial results. Starting with the FA/C model, a
series of sophisticated distributed control schemes for agent coordination were developed,
such as use of static meta-level information specified by an organizational structure, and the
use of dynamic meta-level information developed in Partial Global Planning (PGP) [38].

Partial Global Planning is a flexible approach to coordination that does not assume any
particular distribution of sub-problems, expertise or other resources, but instead allows
nodes to coordinate themselves dynamically [38]. Agent interactions take the form of
communicating plans and goals at an appropriate level of abstraction. These communica-
tions enable a receiving agent to form expectations about the future behavior of a sending
agent, thus improving agent predictability and network coherence [38]. Since agents are
cooperative, the recipient agent uses the information in the plan to adjust its own local plan-
ning appropriately, so that the common planning goals (and planning effectiveness criteria)
are met. Besides their common PGP’s, agents also have some common knowledge about
how and when to use PGPs. Decker [34] addressed some of the limitations of the PGP by
creating a generic PGP-based framework called TAEMS to handle issues of real-time (e.g.,
scheduling to deadlines) and meta-control (e.g., to obviate the need to do detailed planning
at all possible node interactions).

Another research direction in cooperative multi-agent planning has been directed towards
modeling teamwork explicitly. This is particularly helpful in dynamic environments, where
team members may fail or where they may be presented with new opportunities. In such
situations, it is necessary that teams monitor their performance and reorganize based on
their current situation.

The joint intentions framework [93] is a natural extension to the practical reasoning
agents paradigm discussed in section 2.1.1. It focuses on characterising a team’s men-
tal state, called a joint intention (see e.g., [77] for survey). A team jointly intends a team
action if the team members are jointly committed to completing the team action, while
mutually believing they were doing it. A joint commitment is defined as a joint persistent
goal. To enter into a joint commitment, all team members must establish appropriate mu-
tual beliefs and commitments. This is done through an exchange of request and confirm
speech acts [28]. The commitment protocol synchronizes the team, in that all members
simultaneously enter into a joint commitment towards a team task. In addition, all team
members must consent, via confirmation, to the establishment of a joint commitment goal
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— thus a joint commitment goal is not established if a team member refuses. In this case,
negotiation could be used, though how this might be done remains an open issue.

The SharedPlan model [60, 61] is based on a different mental attitude: intending that an
action be done [13]. “Intending that” concerns a group’s joint activity or a collaborator’s
actions. The concept is defined via a set of axioms that guide a team mate to take action,
or enter into communication that enables or facilitates its team mates to perform assigned
tasks. COLLAGEN [122] is a prototype toolkit that has its origins in the SharedPlan model,
and which has been applied to building a collaborative interface agent that helps with air
travel arrangements. Jennings [79] presented a framework called joint responsibility based
on a joint commitment to a team’s joint goal and a joint recipe commitment to a common
recipe. This model was implemented in the GRATE* system [78], and applied to the domain
of electricity transport management.

Tambe [144] presents a model of teamwork called STEAM (Shell for TEAMwork), based
on enhancements to the Soar architecture [109], plus a set of about 300 domain independent
Soar rules. Based on the teamwork operationalized in STEAM, three teams have been
implemented, two that operate in a commercially available simulation for military training
and a third in ROBOCUP synthetic soccer. STEAM uses a hybrid approach that combines
joint intentions with partial SharedPlans.

3.3. Self-Interested Multi Agent Interactions

The notion of interactions among self-interested agents has been centered around negotia-
tion. Negotiation is seen as a method for coordination and conflict resolution (e.g., resolv-
ing goal disparities in planning, resolving constraints in resource allocation, resolving task
inconsistencies in determining organizational structure). Negotiation has also been used as
a metaphor for communication of plan changes, task allocation, or centralized resolution of
constraint violations. Hence, negotiation is almost as ill-defined as the notion of “agent”.

We give here what we consider to be the main characteristics of negotiation, that are
necessary for developing applications in the real world. These are: (a) the presence
of some form of conflict that must be resolved in a decentralized manner, by (b) self-
interested agents, under conditions of (c) bounded rationality, and (d) incomplete infor-
mation. Furthermore, the agents communicate and iteratively exchange proposals and
counter-proposals.

The PERSUADER system by Sycara [141, 140] and work by Rosenschein [123, 124] rep-
resent the first work by DAI researchers on negotiation among self-interested agents. The
two approaches differ in their assumptions, motivations, and operationalization. The work
of Rosenschein was based on game theory. Utility is the single issue that agents consider,
and agents are assumed to be omniscient. Utility values for alternative outcomes are rep-
resented in a payoff matrix that is common knowledge to both parties in the negotiation.
Each party reasons about and chooses the alternative that will maximize its utility. Despite
the mathematical elegance of game theory, game theoretic models suffer from restrictive
assumptions that limit their applicability to realistic problems1. Real world negotiations
are conducted under uncertainty, involve multiple criteria rather than a single utility di-
mension, the utilities of the agents are not common knowledge but are instead private, and
the agents are not omniscient.
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The PERSUADER is an implemented system that operates in the domain of labor negotia-
tion [139]. It involves three agents (a union, a company, and a mediator), and is inspired by
human negotiation. It models the iterative exchange of proposals and counter-proposals in
order for the parties to reach agreement. The negotiation involves multiple issues, such as
wages, pensions, seniority, subcontracting, and so on. Each agent’s multi-dimensional util-
ity model is private (rather than common) knowledge. Belief revision to change the agents’
utilities so that agreement can be reached is achieved via persuasive argumentation [141].
In addition, case-based learning techniques are also incorporated into the model.

Work by Kraus [86], focuses on the role of time in negotiation. Using a distributed
mechanism, agents negotiate and can reach efficient agreements without delays. It is also
shown that the individual approach of each agent towards the negotiation time affects (and
may even determine) the final agreement that is reached.

As electronic commerce is rapidly becoming a reality, the need for negotiation tech-
niques that take into consideration the complexities of the real world, such as incomplete
information, multiple negotiation issues, negotiation deadlines, and the ability to break
contracts will be critically needed. Work in non-binding contracts includes [127] where de-
commitment penalties were introduced into the Contract Net Protocol, and the ADEPT sys-
tem, in which a penalty for contract violation was built into the negotiation agreement [82].

Another important aspect of successful interaction for self-interested agents is the ability
to adapt behaviour to changing circumstances (see [138] for a survey). However, learn-
ing in a multi-agent environment is complicated by the fact that as other agents learn, the
environment effectively changes. Moreover, other agents’ actions are often not directly
observable, and the action taken by the learning agent can strongly bias the range of be-
haviors that are encountered. Hu and Wellman [69] characterize an agent’s belief process
in terms of conjectures about the effect of their actions. A conjectural equilibrium is then
defined, in which all agents’ expectations are realized, and each agent responds optimally
to its expectations. They present a multi-agent system where an agent builds a model of the
response of others. Their experimental results show that depending on the starting point,
the agent may be better or worse off than had it not attempted to learn a model of the other
agents.

In [159] the Bazaar negotiation model was presented, which included multi-agent learn-
ing through agent interactions. The benefits of learning, if any, on the individual utilities
of agents, as well as the overall (joint) system utility were examined. The experimental
results suggest that: (a) when all agents learn, the joint system utility is near optimal and
agents’ individual utilities are very similar; (b) when no agent learns the agents’ individual
utilities are almost equal but the joint utility is very low (much lower than in the “all agents
learn” condition); and (c) when only one agent learns, its individual utility increases at the
expense of both the individual utility of the other agents as well as the overall joint utility
of the system (i.e., only one agent learning has a harmful overall effect) [159, 160].

3.4. Issues and Future Directions

One of the most important driving forces behind MAS research and development is the
Internet: agents are populating the Internet at an increasingly rapid pace. These agents
invariably need to interact with one-another in order to meet their designer’s objectives.
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In such open environments, agents that would like to coordinate with each other (either
cooperate or negotiate, for example) face two major challenges: first, they must be able to
find each other (in an open environment, agents might appear and disappear unpredictably),
and once they have done that, they must be able to inter-operate.

To address the issue of finding agents in an open environment like the Internet, middle
agents [88] have been proposed. Each agent advertises it capability to some middle agent.
A number of different agent types have been identified, including matchmakers or yellow
page agents (that match advertisements to requests for advertised capabilities), blackboard
agents (that collect requests), and brokers (that process both). In preliminary experiments
[36], it was seen that the behaviors of each type of middle-agent have certain performance
characteristics. For example, while brokered systems are more vulnerable to certain fail-
ures, they are also able to cope more quickly with a rapidly fluctuating agent work-force.
Middle agents are advantageous since they allow a system to operate robustly in the face
of agent appearance and disappearance, and intermittent communications.

To allow agents to inter-operate, a number of agent communication languages have been
designed [98, 135, 49]. These provide a set of performatives based on speech acts [132].
Though such performatives can characterize message types, efficient languages to express
message content that allows agents to “understand” each other have not been effectively
demonstrated. Thus the ontology problem — that of how can agents share meaning — is
still open [62].

Another critical issue is effective allocation of limited resources to multiple agents. For
example, we have all experienced large time lags in response to Internet queries because of
network congestion. Economics-based mechanisms have been utilized in MAS to address
problems of resource allocation (the central theme of economic research) [102, 128, 71].
Economics-based approaches, and market mechanisms in particular, are becoming increas-
ingly attractive to MAS researchers both because of the ready availability of underlying for-
mal models, but also because of their potential applicability in Internet-based commerce.
In such approaches, agents are assumed to be self-interested utility maximizers. The areas
where economics-based approaches have been applied to MAS research to date are: (a)
resource allocation; (b) task allocation; and (c) negotiation. In markets, agents that control
scarce resources (labor, raw materials, goods, money) agree to share by exchanging some
of their respective resources to achieve some common goal. Resources are exchanged with
or without explicit prices. Markets assume that exchange prices are publicly known. In
auctions, there is a central auctioneer through which coordination happens. Hence the
agents need only exchange minimal amounts of information.

Self interested agents, by definition, simply choose a course of action which maximizes
their own utility. In a society of self-interested agents, it is desired that if each agent maxi-
mizes it local utility, then the whole society exhibits desirable behavior — in other words,
locally good behavior implies globally good behavior. The goal is to design mechanisms
for self-interested agents such that if agents follow these mechanisms, the overall system
behavior will be acceptable. This is called mechanism design [7]. There are, however,
many problems facing such a society of self-interested agents. First, agents might overuse
and hence congest a shared resource, such as a communications network. This problem
is called the tragedy of the commons [63]. The problem of the tragedy of commons is
usually solved by pricing or taxing schemes. Second, a society of self-interested computa-
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tional agents can exhibit oscillatory or chaotic behavior [72, 145]. Complex behavior can
be exhibited by very simple computational ecosystems. Experimental results indicate that
imperfect knowledge suppresses oscillatory behavior at the expense of reducing perfor-
mance. In addition, enhancing the decision-making abilities of some of the individuals in
the system can either improve or severely degrade overall system performance. Moreover,
systems can remain in non-optimal meta-stable states for long periods before reaching a
globally optimal state. In [145] a similar problem is considered. Two approaches are eval-
uated, corresponding to heterogeneous preferences and heterogeneous transaction costs.
Empirically, the transaction cost case is shown to provide stability with near optimal pay-
offs under certain conditions. The final problem with self-interested systems is that agents
might be untruthful or deceitful in order to increase their individual utility. This may have
harmful effect on the whole society. Mechanism design techniques have been reported that
make it beneficial for agents to report the truth [105].

4. Applications

Agent technology is rapidly breaking out of universities and research labs, and is begin-
ning to be used to solve real-world problems in a range of industrial and commercial ap-
plications. Fielded applications exist today, and new systems are being developed at an
increasingly rapid rate. Against this background, the purpose of this section is twofold.
First, it aims to identify the main areas where agent-based approaches are currently being
used and to provide pointers to some exemplar systems within these areas (section 4.1).
Secondly, it aims to anticipate likely future directions of applied agent work and to high-
light open issues which need to be addressed if this technology is to fulfill its full potential
(section 4.2).

4.1. Key Domains and Exemplar Systems

To date, the main areas in which agent-based applications have been reported are as fol-
lows: manufacturing, process control, telecommunication systems, air traffic control, traf-
fic and transportation management, information filtering and gathering, electronic com-
merce, business process management, entertainment and medical care. Whilst a compre-
hensive review of all the systems in all of these areas is beyond the scope of this paper
(see [22, 83, 114]), we attempt to outline some of the key systems in these areas.

4.1.1. Industrial Applications Industrial applications of agent technology were among
the first to be developed, and today, agents are being applied in a wide range of industrial
systems:

Manufacturing: Parunak [148] describes the YAMS system (Yet Another Manufacturing
System), which applies the Contract Net Protocol (see above) to manufacturing control.
The basic problem can be described as follows. A manufacturing enterprise is mod-
elled as a hierarchy of workcells. There will, for example, be workcells for milling,
lathing, grinding, painting, and so on. These workcells are further grouped into flexible
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manufacturing systems (FMS), each of which provides a functionality such as assem-
bly, paint spraying, buffering of products, and so on. A collection of such FMSs is
grouped into a factory. A single company or organisation may have many different
factories, though these factories may duplicate functionality and capabilities. The goal
of YAMS is to efficiently manage the production process at these plants. This pro-
cess is defined by some constantly changing parameters, such as the products to be
manufactured, available resources, time constraints, and so on. In order to achieve
this enormously complex task, YAMS adopts a multi-agent approach, where each fac-
tory and factory component is represented as an agent. Each agent has a collection of
plans, representing its capabilities. The contract net protocol allows tasks (i.e., pro-
duction orders) to be delegated to individual factories, and from individual factories
down to FMSs, and then to individual work cells. Other systems in this area include
those for: configuration design of manufacturing products [32], collaborative design
[31, 115], scheduling and controlling manufacturing operations [50, 112, 116, 136],
controlling a manufacturing robot [113], and determining production sequences for a
factory [26, 157].

Process Control: Process control is a natural application for agents, since process con-
trollers are themselves autonomous reactive systems. It is not surprising, therefore,
that a number of agent-based process control applications should have been developed.
The best known of these is ARCHON, a software platform for building multi-agent sys-
tems, and an associated methodology for building applications with this platform [81].
ARCHON has been applied in several process control applications, including electric-
ity transportation management (the application is in use in northern Spain [29]), and
particle accelerator control [117]. ARCHON also has the distinction of being one of
the world’s earliest field-tested multi-agent systems. Other agent-based process con-
trol systems have been written for monitoring and diagnosing faults in nuclear power
plants [150], spacecraft control [131, 76], climate control [27] and steel coil processing
control [101].

Telecommunications: Telecommunication systems are large, distributed networks of in-
terconnected components which need to be monitored and managed in real-time. In
what is a fiercely competitive market, telecommunication companies and service providers
aim to distinguish themselves from their competitors by providing better, quicker or
more reliable services. To achieve this differentiation, they are increasingly turning
to state-of-the-art software techniques including agent-based approaches. In one such
application, [59], negotiating agents are used to tackle the feature interaction prob-
lem. Features in a telecommunication system provide added functionality on top of the
basic communication (e.g., call forwarding and caller-id). As new features are being
added to the phone network at an ever increasing rate, it is becoming correspond-
ingly more difficult to determine which features interact with, and are inconsistent
with, which other features. Therefore, the traditional approach of analysing services
at design time and hard-wiring in solutions for all possible interaction permutations is
doomed to failure. Given this situation, Griffeth and Velthuijsen [59] decided to adopt
a different strategy and tackle the problem on an as-needed basis at run-time. They
did this by employing negotiating agents to represent the different entities who are in-
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terested in the set up of a call. When conflicts are detected, the agents negotiate with
one another to resolve them so that an acceptable call configuration is established.
Other problems for which agent-based systems have been constructed include: net-
work control [129, 152], transmission and switching [110], service management [19]
and network management [1, 41, 53, 119]. See [153] for a comprehensive review of
this area.

Air Traffic Control: Ljunberg and Lucas [95] describe a sophisticated agent-realised air
traffic control system known as OASIS. In this system, which is undergoing field trials
at Sydney airport in Australia, agents are used to represent both aircraft and the various
air-traffic control systems in operation. The agent metaphor thus provides a useful and
natural way of modelling real-world autonomous components. As an aircraft enters
Sydney airspace, an agent is allocated for it, and the agent is instantiated with the
information and goals corresponding to the real-world aircraft. For example, an aircraft
might have a goal to land on a certain runway at a certain time. Air traffic control agents
are responsible for managing the system. OASIS is implemented using a belief-desire-
intention system called DMARS [56].

Transportation Systems: The domain of traffic and transportation management is well
suited to an agent-based approach because of its geographically distributed nature. For
example, [18] describe a multi-agent system for implementing a future car pooling
application. Here there are two types of agent: one representing the customers who
require or who can offer transportation, and one representing the stations where cus-
tomers congregate in order to be picked up. Customer agents inform relevant stations
of their requirements (when and where they want to go) and the station agent deter-
mines whether their requests can be accommodated and, if so, which car they should
be booked into. Other applications in this area are described in [46].

4.1.2. Commercial Applications While industrial applications tend to be highly-complex,
bespoke systems which operate in comparatively small niche areas, commercial applica-
tions, especially those concerned with information management, tend to be oriented much
more towards the mass market.

Information Management: As the richness and diversity of information available to us
in our everyday lives has grown, so the need to manage this information has grown.
The lack of effective information management tools has given rise to what is collo-
quially known as the information overload problem. Put simply, the sheer volume of
information available to us via the Internet and World-Wide Web (WWW) represents
a very real problem. The potential of this resource is enormous, but the reality is often
disappointing. There are many reasons for this. Both human factors (such as users
getting bored or distracted) and organisational factors (such as poorly organised pages
with no semantic mark-up) conspire against users attempting to use the resource in a
systematic way. We can characterise the information overload problem in two ways:

# Information filtering: Every day, we are presented with enormous amounts of
information (via email and usenet news, for example), only a tiny proportion of
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which is relevant or important. We need to be able to sort the wheat from the chaff,
and focus on the information we need.

# Information gathering: The volume of information available prevents us from ac-
tually finding information to answer specific queries. We need to be able to obtain
information that meets our requirements, even if this information can only be col-
lected from a number of different sites.

One important contributing factor to information overload is almost certainly that an
end user is required to constantly direct the management process. But there is in prin-
ciple no reason why such searches should not be carried out by agents, acting au-
tonomously to search the web on behalf of some user. The idea is so compelling that
many projects are directed at doing exactly this — indeed this is probably the single
most active area for agent applications. Two typical projects are:

# Maxims is an electronic mail filtering agent which “learns to prioritise, delete,
forward, sort, and archive mail messages on behalf of a user” [97, p35]. It works
by “looking over the shoulder” of a user as he or she works with their email reading
program, and uses every action the user performs as a lesson. Maxims constantly
makes internal predictions about what a user will do with a message. If these
predictions turn out to be inaccurate, then Maxims keeps them to itself. But when
it finds it is having a useful degree of success in its predictions, it starts to make
suggestions to the user about what to do.

# The WARREN financial portfolio management system, is a multi-agent system that
integrates information finding and filtering in the context of supporting a user
manage her financial portfolio. The system consists of agents that cooperatively
self-organize to monitor and track stock quotes, financial news, financial analysts
reports, and company earnings reports in order to appraise the portfolio owner of
the evolving financial picture. The agents not only answer relevant queries but
also continuously monitor available information resources for the occurrence of
interesting events (e.g., a particular stock has gone up past a threshold) and alert
the portfolio manager agent or the user.

Other applications in this area include: WEBMATE [25], a personal assistant that learns
user interests and on the basis of these compiles a personal newspaper, a personal
assistant agent for automating various user tasks on a computer desktop [20], a home
page finder agent [42], a web browsing assistant [94] and an expert locator agent [85].

Electronic Commerce: Currently, commerce is almost entirely driven by human interac-
tions; humans decide when to buy goods, how much they are willing to pay, and so
on. But in principle, there is no reason why some commerce cannot be automated.
By this, we mean that some commercial decision making can be placed in the hands
of agents. Although widespread electronic commerce is likely to lie some distance in
the future, an increasing amount of trade is being undertaken by agents. As an ex-
ample, [24] describes a simple “electronic marketplace” called Kasbah. This system
realises the marketplace by creating “buying” and “selling” agents for each good to be
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purchased or sold respectively. Commercial transactions then take place by the inter-
actions of these agents. Other commerce applications include BargainFinder [87] an
agent which discovers the cheapest CDs, Jango [37] a personal shopping assistant able
to search on-line stores for product availability and price information, MAGMA [147] a
virtual marketplace for electronic commerce, and several agent-based interactive cata-
logues [130, 142].

Business Process Management: Company managers make informed decisions based on
a combination of judgement and information from many departments. Ideally, all rel-
evant information should be brought together before judgement is exercised. However
obtaining pertinent, consistent and up-to-date information across a large company is
a complex and time consuming process. For this reason, organisations have sought
to develop a number of IT systems to assist with various aspects of the management
of their business processes. Project ADEPT [82] tackles this problem by viewing a
business process as a community of negotiating, service providing agents. Each agent
represents a distinct role or department in the enterprise and is capable of providing
one or more services. Agents who require a service from another agent enter into a
negotiation for that service to obtain a mutually acceptable price, time, and degree of
quality. Successful negotiations result in binding agreements between agents. Other
application in this area include a system for supply chain management [51], a sys-
tem for managing heterogeneous workflows [75] and a system of mobile agents for
inter-organisational workflow management [100].

4.1.3. Entertainment Applications The leisure industry is often not taken seriously by
the computer science community. Leisure applications are frequently seen as somehow
peripheral to the “serious” applications of computers. And yet leisure applications such
as computer games can be extremely challenging and lucrative. Agents have an obvious
role in computer games, interactive theatre, and related virtual reality applications: such
systems tend to be full of semi-autonomous animated characters, which can naturally be
implemented as agents.

Games: Grand and Cliff [58] built the highly successful Creatures game using agent tech-
niques. Creatures provides a rich, simulated environment containing a number of syn-
thetic agents that a user can interact with in real-time. The agents are intended to be
sophisticated pets whose development is shaped by their experiences during their life-
time. Wavish et al., [151] also describe several applications of agent technology to
computer games.

Interactive Theatre and Cinema: By interactive theatre and cinema, we mean a system
that allows a user to play out a role analogous to those played by real, human actors in
plays or films, interacting with artificial, computer characters that have the behavioural
characteristics of real people. Agents that play the part of humans in theatre-style
applications are often known as believable agents – software programs “that provide
the illusion of life, thus permitting [an] audience’s suspension of disbelief” [6]. A
number of projects have been set up to investigate the development of such agents [146,
65, 92, 48]).
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4.1.4. Medical Applications Medical informatics is a major growth area in computer
science: new applications are being found for computers every day in the health industry.
It is not surprising, therefore, that agents should be applied in this domain. Two of the
earliest applications are in the areas of patient monitoring and health care.

Patient Monitoring: The GUARDIAN system [67] is intended to help manage patient care
in the Surgical Intensive Care Unit (SICU). The system was motivated by two concerns:
first, that the patient care model in a SICU is essentially that of a team, where a col-
lection of experts with distinct areas of expertise cooperate to organise patient health
care; and second, that one of the most important factors in good SICU patient health
care is the adequate sharing of information between members of the critical care team.
In particular, specialists tend to have very little opportunity to monitor the minute-by-
minute status of a patient; this task tends to fall to nurses, who, in contrast, often do
not have the expertise to interpret the information they obtain in the way that an appro-
priate expert would. The GUARDIAN system distributes the SICU patient monitoring
function among a number of agents, of three different types: perception/action agents
— responsible for the interface between GUARDIAN and the world, mapping raw sen-
sor input into a usable symbolic form, and translating action requests from Guardian
into raw effector control commands; reasoning agents - responsible for organising the
system’s decision making process; and control agents — of which there will only ever
be one, with overall, top-level control of the system. These agents are organised into
hierarchies, and the system as a whole is closely based on the blackboard model of
control.

Health Care: A prototypical agent-based distributed medical care system is described
in [70]. This system is designed to integrate the patient management process, which
typically involves many individuals. For example, a general practitioner may suspect
that a patient has breast cancer, but this suspicion cannot be confirmed or rejected
without the assistance of a hospital specialist. If the specialist confirms the hypothesis,
then a care programme must be devised for treating the patient, involving the resources
of other individuals. The system allows a natural representation of this process, with
agents mapped onto the individuals and, potentially, organisations involved in the pa-
tient care process.

4.2. Future Directions

The aforementioned systems can be considered as the first wave of agent-based applica-
tions. In addition to providing solutions to meet real-world needs, they demonstrate that
agent-based systems are a useful and powerful solution technology2. That is, the con-
ception of (multiple) autonomous problem solvers interacting in various ways to achieve
individual and system goals is a useful software engineering abstraction (just as objects
and abstract data types are). The abstraction is useful to the extent that it enables software
engineers to do more or to do things more cheaply.

However, these developments also show that designing and building agent systems is
difficult. They have all the problems associated with building traditional distributed, con-
current systems, and have the additional difficulties which arise from having flexible and
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sophisticated interactions between autonomous problem solving components. For these
reasons, most extant agent system applications are built by, or in consultation with, de-
signers and developers who are themselves active in the agent research community. Whilst
this may suffice for a niche software technology, we feel agents have the potential to be
far more ubiquitous than this. Indeed, we firmly believe that agent technology has the
potential to enter the mainstream of software engineering solutions (in the same way that
object-oriented technology has). However for this to occur, it must be possible for profes-
sional software engineers to design and build multi-agent systems. The big question then
becomes one of how this is achieved.

At this time, there are two major technical impediments to the widespread adoption of
agent technology: (i) the lack of a systematic methodology enabling designers to clearly
specify and structure their applications as multi-agent systems; and (ii) the lack of widely
available industrial-strength multi-agent system toolkits. The former means that most ex-
tant applications have been designed in a fairly ad hoc manner — either by borrowing a
methodology (typically an object-oriented one) and trying to shoe-horn it to the multi-agent
context or by working without a methodology and designing the system based on intuition
and past experience. Clearly this situation is unsatisfactory. What is required is a sys-
tematic means of analysing the problem, of working out how it can be best structured as a
multi-agent system, and then determining how the individual agents can be structured. The
latter impediment means that most multi-agent system projects expend significant develop-
ment effort building up basic infrastructure before the main thrust of agent and inter-agent
development can commence. Again, this is an unsustainable position. The position can be
alleviated to a certain extent by exploiting existing technologies (such as CORBA) as and
where appropriate — rather than re-inventing the wheel as often happens at the moment.
However, we believe that still greater support is needed for the process of building agent-
level features. Thus, a toolkit (or a flexible set of tools) is required, providing facilities for:
specifying an agent’s problem solving behaviour, specifying how and when agents should
interact, and visualising and debugging the problem solving behaviour of the agents and of
the entire system.

The other major impediment to the widespread adoption of agent technology has a social
as well as a technical aspect. For individuals to be comfortable with the idea of delegating
tasks to agents, they must first trust them. Both individuals and organisations will thus
need to become more accustomed and confident with the notion of autonomous software
components, if they are to become widely used. Users have to gain confidence in the agents
that work on their behalf, and this process can take time. During this period, the agent must
strike balance between continually seeking guidance (and needlessly distracting the user)
and never seeking guidance (and exceeding its authority). Put crudely, an agent must know
its limitations.

5. Concluding Remarks

The field of autonomous agents and multi-agent systems is a vibrant and rapidly expanding
area of research and development. It represents a melting pot of ideas originating from such
areas as distributed computing, object-oriented systems, software engineering, artificial
intelligence, economics, sociology, and organisational science. At its core is the concept
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of autonomous agents interacting with one another for their individual and/or collective
good. This basic conceptual framework has become common currency in a range of closely
related disciplines, and offers a natural and powerful means of analysing, designing, and
implementing a diverse range of software solutions.

Over the past two decades, a number of significant conceptual advances have been made
in both the design and implementation of individual autonomous agents, and in the way
in which they interact with one another. Moreover, these technologies are now beginning
to find their way into commercial products and real-world software solutions. However,
despite the obvious potential, there are a number of fundamental research and development
issues which remain. As we have indicated, these issues cover the whole gamut of the
agents field, and only when robust and scalable solutions have been found will the full
potential of agent-based systems be realised.

Notes

1. It should be noted that some recent game theoretic models are directly motivated by considerations of drop-
ping or relaxing some of these assumptions. Although there has been interesting progress reported in the
literature (e.g., [84]), the fundamental framework and methodology of game theory remains almost the same
and it might be too early to tell whether these new results will reshape the current game theoretic framework.

2. This is true even though most implemented systems use techniques which are towards the simpler end of
those reported in the literature.
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