
TouringMachines: Autonomous Agents
with Attitudes

�

Innes A. Ferguson
�

Computer Laboratory, University of Cambridge
New Museums Site, Cambridge CB2 3QG
England, UK. Internet: iaf@cl.cam.ac.uk

Technical Report 250 – April 1992

Abstract
It is becoming widely accepted that neither purely reactive nor purely

deliberative control techniques are capable of producing the range of be-
haviours required of intelligent robotic agents in dynamic, unpredictable,
multi-agent worlds. We present a new architecture for controlling au-
tonomous, mobile agents – building on previous work addressing reac-
tive and deliberative control methods. The proposed multi-layered con-
trol architecture allows a resource-bounded, goal-directed agent to react
promptly to unexpected changes in its environment; at the same time it
enables the agent to reason predictively about potential conflicts by con-
structing and projecting theories which hypothesise other agents’ goals
and intentions.

The line of research adopted is very much a pragmatic one. A sin-
gle, common architecture has been implemented which, being extensively
parametrized, allows an experimenter to study functionally- and
behaviourally-diverse agent configurations. A principal aim of this re-
search is to understand the role different functional capabilities play in
constraining an agent’s behaviour under varying environmental condi-
tions. To this end, we have constructed an experimental testbed compris-
ing a simulated multi-agent world in which a variety of agent configura-
tions and behaviours have been investigated. Some experience with the
new control architecture is described.

�
This paper expands on the author’s article “TouringMachines: Autonomous Agents with

Attitudes” which appears in IEEE Computer, 25(5), May, 1992.
�
Contact address as from September 1992: Bell-Northern Research Ltd. P.O. Box 3511,

Station C, Ottawa, Ont., Canada K1Y 4H7. Internet: uiiferg@bnr.ca.

1

1 Introduction
As operating environments such as automated factories, nuclear power plants,
and space stations continue to grow in complexity, it will become increas-
ingly more difficult to control these with centralised scheduling policies which

are both robust to unexpected events and flexible at dealing with operational
changes that might occur over time. One solution to this problem which has
growing appeal is to distribute the control and scheduling of operations to a
number of intelligent, task-achieving computational or robotic agents.

�

Most
of today’s robotic agents, however, are limited to performing a relatively small
range of well-defined, pre-programmed or human-assisted tasks.

In order to survive and thrive in complex, real-world domains, future agents
will need to be made considerably more robust and flexible than they are at
present. Such domains are likely to be populated by multiple agents, each
pursuing any number of tasks. Because agents will have incomplete knowl-
edge about the world and will compete for shared and limited resources, it is
inevitable that some of their goals will conflict. In real-world domains agents
will typically perform complex tasks requiring some degree of attention to be
paid to computational resource bounds, temporal deadlines, and the impact
their shorter-term actions might be having on their longer-term goals. On the
other hand, time won’t stop or slow down for them to deliberate upon all possi-
ble courses of action for every world state. Intelligent agents will thus require
a range of skills to respond promptly to unexpected events, while simultane-
ously being able to carry out pre-programmed tasks and resolve unexpected
conflicts in a timely and efficient manner.

In this article we present a new multi-layered, integrated architecture for
controlling autonomous, mobile agents or TouringMachines which combines
capabilities for producing a range of reactive and deliberative behaviours in
dynamic, unpredictable domains. This new approach is influenced on the
one hand by recent work on reactive and behaviour-based agent architectures
[Bro86, Fir87, Kae87], and on the other by more traditional AI endeavours
such as planning, diagnostic theory formation [PGA86], resource-bounded rea-
soning [BIP88, HR90], and cognitive modelling of propositional attitudes such
as beliefs, desires, and intentions [BIP88, GI89, Bra90].

Our research adopts a fairly pragmatic approach toward understanding
how complex, dynamic environments might constrain on the design of agents
and, conversely, how different functional capabilities within agents might com-
bine to generate different behaviours. To evaluate the TouringMachine archi-
tecture we have implemented a multi-agent simulation testbed. By varying

�

For our purposes, we shall consider an agent to be any autonomous, goal-directed, com-
putational process capable of robust and flexible interaction with its environment.

2

parameters constraining agents’ functional capabilities (e.g. sensing charac-
teristics, attentional powers, degree of reactivity, world modelling powers) or
parameters characterising the environment itself (e.g. number of agents and
obstacles, ratio of CPU time to simulated-world time), we can study a number
of tradeoffs vis-à-vis how much reacting, planning, and predicting resource-
bounded agents should be doing in order to behave rationally with respect to
their goals.

�

In many ways, our approach to evaluating agent designs resem-
bles the empirical approaches used in the DVMT [LC83], Phoenix [CGHH89],
MICE [DM89], and Tileworld [PR90] projects.

In our example domain we consider one or more agents, each with the task
of following a different route from some starting location to some goal loca-
tion within certain time bounds and/or spatial constraints. Each agent starts
with some geographical knowledge of the world (e.g. locations of paths and
path intersections), but has no prior knowledge regarding other agents’ loca-
tions or goals or static obstacles it might encounter along its route. An agent
can communicate its intentions to turn or overtake by signalling – much like
a driver does in a car – and can only consume up to some fixed number of

computational resources per unit of simulated world time. We consider this
domain interesting because it presents our agents with a series of challenges
including having to cope with multi-agent interactions, unpredictability, un-
certainty, resource-constrained tasks, and environmental change. Before dis-
cussing specifics of the TouringMachine architecture, its implementation, and

its simulation testbed, we consider some important requirements for intelli-
gent agency.

2 Intelligent Agency
In recent years there has been considerable growth of interest in the design of
intelligent agent architectures for dynamic, unpredictable domains. One pop-
ular design approach – whose resulting architectures we’ll call deliberative –
attempts to endow agents with sophisticated control by embedding in these
a number of general AI capabilities such as means-end reasoning, epistemic
modelling [BIP88], plan recognition [Woo90], or natural language understand-
ing [VB90].

�

Influenced principally by the fruits of classical AI planning re-
�

The definition of rational behaviour used here is borrowed from Bratman et al. [BIP88,
page 349] and corresponds to “the production of actions that further the goals of an agent,
based upon [its] conception of the world.”

�

More generally, by deliberative we mean that the agent possesses reasonably explicit rep-
resentations of its own beliefs and goals that it uses in deciding which action it should take
at a given time. Conversely, by non-deliberative (see below), we mean that the agent’s goals
are implicitly embedded or pre-compiled into the agent’s structure by its designer.

3

search, deliberative architectures have been designed both to handle complex
goals (e.g. those involving action-at-a-distance, resource constraints, or mul-
tiple agents) and to operate flexibly in unpredictable or novel situations (e.g.
by performing contingency planning or analogical reasoning). This general-
ity, however, exacts a price; by virtue of having to maintain complete, up-to-
date world models, deliberative architectures can be resource-intensive and
are usually slow at making critical decisions in real-time situations.

Breaking with the traditionally held belief that
���������
	�����

architectures are
required to produce intelligent agent behaviours, a number of non-deliberative
(e.g. reactive [Fir87], situated [AC87, Mae90], and behaviour-based [Bro86,
Kae87]) architectures have recently been proposed. These architectures are
characterised by a more direct coupling of perception to action, increased de-
centralisation of control, and relative simplicity of design. Because they per-
form localised search, the time spent deciding which action to effect in any
given situation can be minimised. At the same time, however, these archi-
tectures run the risk of generating sub-optimal action sequences precisely be-
cause they operate with minimal memory or state information [Fir87]. Also,
because non-deliberative agents are essentially hardwired to effect a particu-
lar action sequence in each given situation, they can be ineffective when con-
fronted with situations which are either novel or which do not provide imme-
diate access to the complete set of environmental stimuli needed for deter-
mining subsequent action sequences. Indeed, as other researchers have noted
[GI89, Mae90, Kir91], there has been little evidence to date to suggest that
pure non-deliberative architectures are capable of handling multiple, complex,
resource-bounded goals in any sophisticated manner. Like their deliberative
cousins, non-deliberative agents will require that their environments be rea-
sonably cooperative if they are to achieve their goals satisfactorily [Bro86].

Operating in the real world means having to deal with multiple events at
several levels of granularity – both in time and space. So, while agents must
remain reactive in order to survive, some amount of strategic or predictive
decision-making will be required if agents are to handle complex goals while
keeping their long-term options open. Agents, however, cannot be expected
to model their surroundings in every detail as there will simply be too many
events to consider, a large number of which will be of little or no relevance
anyway. Not surprisingly, it is becoming widely accepted that neither purely
reactive nor purely deliberative control techniques are capable of producing
the range of robust, flexible behaviours desired of future intelligent agents.
What is required, in effect, is an architecture that can cope with uncertainty,
react to unforeseen events, and recover dynamically from poor decisions. All
of this, of course, on top of accomplishing whatever tasks it was originally
assigned to do.

4

Control

Action
Effectors

Sensors

Reactive Layer (R)

Planning Layer (P)

(M)

Framework

Modelling Layer

Figure 1: The TouringMachine architecture.

3 TouringMachines
To operate successfully in our chosen multi-agent domain, an autonomous
robotic agent must be both robust and flexible – it must be capable of car-
rying out its intended goals in dynamic, unpredictable environments. To do
this, we believe, the agent must be capable of exhibiting a range of differ-
ent behaviours. First, it will need to be reactive to deal with events which it
might not have had sufficient time or resources to consider. Secondly, since

the agent’s main task, in our case, will be to get from some starting location
to some target location in some specified time, it should be capable of rational,

resource-bounded, goal-directed behaviour. And thirdly, since it will inhabit
a world populated by other entities (about which very little will be known in
advance) it must be able to reason about what events are taking place around
it, determine what effect these events could have on its own goals and, where
possible, predict what is likely to happen in the near future so as to be bet-
ter informed when choosing and effecting subsequent actions. Because these
skills have such disparate characteristics and requirements, the most sensi-
ble way of realizing them, it would seem, is as separate activity-producing be-
haviours in a layered framework. We have adopted this approach in designing
and implementing TouringMachines.

TouringMachines comprise three concurrently-operating, independently
motivated, activity-producing layers: a reactive layer

�
, a planning layer � ,

and a reflective-predictive or modelling layer � (see Figure 1). Each mod-

5

Action
Effectors

Sensors Planning Layer (P)

Clock
Reactive Layer (R)

(M)

Context-activated
Control Rules

Modelling Layer

Figure 2: A TouringMachine’s mediating control framework.

els the agent’s world at a different level of abstraction and each is endowed
with different task-oriented capabilities. The TouringMachine framework is,
in fact, hybrid, as it may incorporate several functional or horizontal facul-
ties within a given task-achieving or vertical layer. For example, hypothetical
reasoning and focus of attention are both realized in layer � .

The main principle behind vertical decomposition is to create activity-
producing subsystems each of which directly connects perception to action and
which can independently decide if it should or should not act in a given world
situation. Frequently, however, one layer’s proposed actions will conflict with
those of another: a layer is an approximate machine and thus its abstracted
world model is necessarily incomplete. Because of this, layers need to be me-
diated by an enveloping control framework if the agent, as a single whole, is
to behave appropriately in each different world situation.

Implemented as a combination of inter-layer message-passing and context-
activated, domain-specific control rules (see Figure 2), the control framework’s

mediation enables each layer to examine data from other layers, inject new
data into them, or even remove data from the layers. (The term data here
covers sensed input to and action output from layers, the contents of inter-
layer messages, as well as certain rules or plans residing within layers.) This
has the effect of altering, when required, the normal flow of data in the affected
layer(s). So, for example, the reactive rule in layer

�
to prevent an agent from

straying over lane markings can, with the appropriate control rule present, be
overridden should the agent embark on a plan to overtake the agent in front

6

of it.
Inputs to and outputs from layers are generated in a synchronous fashion,

with the context-activated control rules being applied to these inputs and out-
puts at each synchronisation point. The rules, thus, act as filters between the

agent’s sensors and its internal layers, and between its layers and its action
effectors. Mediation remains active at all times and is largely

� ��������� � ��� � �	� �
to

the layers: each layer acts as if it alone were controlling the agent, remaining
largely unaware of any

��
 ��� � �� � � � � � ���
– either by other layers or by the rules of

the control framework – with its own inputs and outputs. The overall control
framework embodies a scheduling regime which, while striving to service the
agent’s high-level tasks (e.g. �����������������������) is sensitive also to its low-level,
high-priority behaviours such as avoiding kerbs or obstacles.

The TouringMachine layered framework is strongly influenced by Brooks’
subsumption architecture [Bro86]. This comprises several concurrently-
operating, task-achieving behaviours which are implemented as fixed-topology

networks of finite-state machines along with various registers and timers.
Layers communicate via fixed-length messages over

���
 � � � �
and are mediated

by suppression and inhibition mechanisms which can alter the flow of inter-
layer messages to produce the correct action for the situation at hand.

Besides several technical differences, the main distinction between the two
architectures is that TouringMachines store and manipulate explicit represen-
tations of, among other things, propositional attitudes such as beliefs, desires,
and intentions in order to perform such cognitive tasks as reflection and pre-
diction (see below). Brooks’ agents have not to date been used to solve such
high-level tasks, and it’s not at all clear whether his architecture could be
scaled up indefinitely without ever resorting to the use of internal represen-

tations [Kir91].
Most designs for integrated agent architectures share the common aim of

enabling autonomous agents to interact flexibly and robustly in more or less
dynamic environments. The brevity of the current description of Touring-
Machines belies the numerous design, implementational, performance, and
(even) philosophical issues which have to be considered and traded-off when
creating a new control architecture. Establishing when and how an agent
should reason versus act, deciding which goals or behaviours should be ex-
plicitly planned for or embedded in the agent’s structure, are open questions,
the answers to which depend heavily on the agent’s specific task requirements

and environmental influences. At the risk of over-simplifying the argument,
we believe the main strength of TouringMachines lies in their ability to operate
flexibly in dynamic environments while interacting with and reasoning about
other agents with complex goals and intentions. A surprisingly small number
of previous architectures have addressed, and more importantly, investigated,

7

issues pertaining to coordination in multi-agent environments. Where these
issues have been considered, the agents involved were either given relatively
simple goals [AC87, SH88] or operated with little autonomy under the con-
trol of a supervisory agent [CGHH89]. Also, by modelling agents’ desires and
intentions in a more principled way and by not requiring that all actions be
generated by a planning module, we believe TouringMachines are more pow-
erful and robust than Wood’s AUTODRIVE agents [Woo90]. Our approach
to multi-agent coordination also differs from that of Durfee and Montgomery
by placing more emphasis on the autonomous modelling capabilities required
by complex agents, rather than on the mechanisms and protocols needed by
agents to communicate and exchange information about their goals [DM90].
Again, achieving the right balance between modelling and communicating
is a complex issue which, although worthy of further investigation, has not
been addressed at present. The following sections describe each layer in more
detail.

�

3.1 Layer
�

(reactive)

The purpose of this layer is to provide an agent with fast, reactive capabilities
for coping with events its higher layers haven’t previously planned for or mod-
elled. A typical event, for example, would be the sudden appearance of some
hitherto unseen agent or obstacle. Layer

�
provides the agent with a series of

situation-action rules for avoiding obstacles, walls, kerbs or other agents, and
for preventing it from straying over path lane markings (see Figure 3). Thus
for example, the two rules for avoiding collisions with other agents are:

������������� ���	��
���� � �� ����������� �������������
������������ �����
����������� ����� � �������!�#"$����������� ����� ���!
����%�����!� �����

 ������������������� ���&����������'
 ���%� ���!�(" FrontalAgentThreshold

�������
��������) ����� ���������������*���
������������ FrontalAvoidanceVelocity �

����������+,� ���	��
 ����-�'� ���.�*����� �����/���
����&�����0� �����
����������� ������� �������!�#12����������� ����� ���!
����&�����!� �����

������������'������� ���&�����������'
 ���&� ���!�(" RearAgentThreshold

�������
�������) ���� ���������������*���'
������������ RearAvoidanceVelocity �

where FrontalAgentThreshold, FrontalAvoidanceVelocity, RearAgent-
Threshold, and RearAvoidanceVelocity are parameters associated with

3
Due to space restrictions much detail will, in fact, be omitted and presented elsewhere

[Fer92].

8

Figure 3: Appropriate situation-action rules can enable an agent to avoid obstacles and

kerbs, prevent it from straying over lane markings, and, when no other events require

attention, adjust the agent’s orientation to one of four orthogonal directions (0
�
, 90

�
, 180

�
,

or 270
�
).

the agent ���
����&� ��� . As we shall see below, an agent can be made variably
reactive or inert by choosing appropriate values for such parameters.

Rules are stimulated solely and directly by input they receive from the
agent’s sensors. When a given rule fires, an appropriate action (������&)����
��������������� or �������)��������!������� ���!� ���) is sent to the agent’s effectors, subject, of
course, to

� � �
� � ��� � 	 �
by the agent’s mediating control framework.

�
Clearly, ac-

tions effected at this level cannot be guaranteed to be rational since rules are
memoryless and fire on the agent’s sensory information alone. Consequently,

each time a reactive rule fires, layer � (modelling) must be flagged (sent a
message by layer

�
) so that it can assess whether the resulting unplanned

state change will require further processing. In particular, layer � will need
to determine if any actions effected by layer

�
are likely to prevent the agent

from achieving its planned tasks.
�
Several reactive rules could fire simultaneously but only one is allowed to submit its cor-

responding action; currently the rule triggered by the (spatially) nearest environmental stim-
ulus is chosen. Other selection policies may be considered in the future.

9

3.2 Layer
�

(planning)

The purpose of this layer is to generate and execute plans. Since an agent’s
main task typically involves relocating to some destination within certain pre-
specified time bounds, it makes sense for the agent to do some amount of for-

ward planning before setting out (e.g. � ��������� � � ������������� , � ���������'� � �����������&
����

 �������). In essence, we take Bratman’s view [BIP88] that plans are useful for
constraining the amount of subsequent deliberation an agent will need to per-
form. Nevertheless, since the agent is very likely to encounter other entities
unexpectedly, complete, detailed plans are undesirable if replanning is to be
kept to a minimum. Layer � , therefore, is realized as a hierarchical, partial
planner which can interleave plan formation and execution, and defer commit-
ting to specific subplan execution methods or temporal orderings of subplans

until absolutely necessary. Also, since TouringMachines have limited com-
putational resources, the planner is embedded; in other words, it is designed
so that its operation can regularly be pre-empted and its state suspended for
subsequent use [Kae91]. The plan elaboration scheme employed is akin to
the partial elaboration method of PRS [GI89] and the lazy skeletal expansion
scheme used in Phoenix agents [CGHH89]. These in turn appear to operate in
a manner similar to NASL’s control scheme for interleaving plan generation
and execution [McD90].

The planner manipulates and instantiates template plans or schemata
which it retrieves from a schema library (Figure 4). Schemata are procedu-
ral structures consisting of a body, a set of preconditions, a set of applicability
conditions (e.g. temporal ordering constraints), a set of postconditions, and
an associated cost in terms of computational resources. Schemata are either
primitive or composite. Primitive schemata can either submit physical ac-
tions to be effected (e.g. ��� ���������������&)���� ,
��-)���������������) or perform various arith-
metic or geometric calculations (e.g. ��������� ����� ����
��������'����)���!��
���� �0���). Compos-
ite schemata trigger library searches and subplan expansion. The planner
also has access to a database of topological facts about its task domain.

The planner uses a fixed, combined earliest-first depth-first search strat-
egy for constructing single-agent plans. Apart from occasionally generating
sensory acts to determine the location of, say, some particular landmark, the
planner remains largely

��� �	� � ��� ���
of what’s going on around it. In particular,

it does not consider what other agents are doing, this task being left to layer
� which, in effect, is the only part of the agent that has any reasoned view of
what other events are taking place in the world. So, while the planner is capa-
ble of some limited backtracking (e.g. to try an alternative execution method
if the one initially chosen has failed or to try to re-satisfy a given applicabil-
ity condition), initiation of dynamic (re-)planning (e.g.
 ������������������)&���) is the

10

Topological
World Map

Planner

Schema
Library

Effectors
Action

Goal
Stack

Focus of
Attention

Sensors,

Other Layers

Resource
Monitor,

Hierarchical

Figure 4: Top-level view of layer
�

.

responsibility of layer � . Layer � , then, is able to take on new intentions and
abandon old ones if layer � so dictates. In this manner, layer � keeps abreast
of changes in the agent’s environment.

3.3 Layer � (modelling)

The main purpose of layer � is to provide an agent with reflective and pre-
dictive capabilities. The agent realizes such capabilities by constructing cog-
nitive models of world entities, including itself, which it uses as a platform for
explaining observed behaviours and making predictions about possible future
behaviours. � The potential gain in this approach is that by making successful
predictions about entities’ activities the agent should be able to detect poten-
tial goal conflicts earlier on. This would then enable it to make changes to its
own plans in a more effective manner than if it were to wait for these conflicts
to materialise. Goal conflicts can occur within the agent itself (e.g. the agent’s
projected time of arrival at its destination exceeds its original deadline or the
agent’s layer

�
effects an action which alters the agent’s trajectory) or in re-

lation to another agent (e.g. the agent’s trajectory intersects that of another
agent). Associated with the different goal conflicts that are known to the agent
are a set of conflict-resolution strategies which, once adopted, typically result
in the agent taking some action (e.g. accelerate by some amount to ensure the

�
We assume TouringMachines can readily identify various physical properties of world

entities such as type, size, Cartesian location, speed, acceleration, orientation, and signalled
communications. This concords with most other simulated agent environments [CGHH89,
DM90, PR90, SH88, VB90, Woo90].

11

Effectors
Action

Library
Model

Conflict
Resolution
Strategies

Focus of
Attention Detection

Conflict
Model

Formation &
Projection

Sensors,
Resource Monitor,

Other Layers

Figure 5: Top-level view of layer
�

.

task deadline can still be met) or adopting some new intention (e.g. stop at the
intersection to give way to an approaching agent).

Functions made available to the agent through this layer (see Figure 5) in-
clude a heuristic focus of attention module for creating closures within which
to perform inferencing and a goal conflict detection/resolution facility for deal-
ing with intra- and inter-agent conflicts. Like every module in the Touring-
Machine architecture, each function in layer � is resource-bounded. Because
everything from sensing an object to inferring another agent’s intentions has
an associated cost measured in domain-specific computational resource units,

and because each agent can only use a given number of these resources per
unit of world time (after which the agent’s three layers must submit their
results for possible action taking), we can guarantee an upper-bound on the
agent’s inter-operation latencies [HR90] and thus ensure a degree of reactivity
in the agent as a whole.

The structures used by an agent to model an entity’s behaviour are time-
indexed 4-tuples of the form ���������
	����� , where � is the entity’s Configuration,
namely, ��������� -location, speed, acceleration, orientation, and signalled commu-
nications; � is the set of Beliefs ascribed to the entity; 	 is its ascribed list of
prioritised goals or Desires; and � is its ascribed plan or Intention structure. �
Using the terminology of Covrigaru and Lindsay [CL91], a TouringMachine’s
desires can either be achievable – with well-defined initial and final condi-

tions (e.g. � ��������������
 �!� � ���'�����), or homeostatic – to be achieved continuously
�
Plan ascription or recognition has been realized in TouringMachines as a process of sci-

entific theory formation which employs an abductive reasoning methodology similar to that of
the Theorist default/diagnostic reasoning system [PGA86].

12

over time (e.g. �������� ������������
������!
). The models used by an agent are, in fact,
filled-in instances of model templates which the agent obtains from a Model

Library (Figure 5). While all templates have the same basic 4-way structure,
they could be made to differ in such aspects as the depth of information that
can be represented or reasoned about (e.g. a particular template’s � compo-
nent might dictate that modelled beliefs are to be treated as hypothetical),
initial default values provided, and cost. The last of these will subsequently
be taken into account each time the agent makes an inference from the chosen
model.

Reasoning from a model of an entity essentially involves looking for dis-
crepancies between the entity’s actual behaviour and that predicted by its
model or, in the case of a self-model, between the agent’s actual behaviour
and that desired by the agent. Predictions are formed by temporally project-
ing those parameters that make up the modelled entity’s configuration vector
� , in the context of the current world situation and the entity’s ascribed in-
tentions. Noticing a discrepancy between actual and predicted (or desired)
behaviours, however, need not on every occasion force the agent into a whole-
sale revision of its

� � � 	 � � � model. This is because associated with each of the
parameters of a model’s � -vector are upper- and lower-bounds whose sizes
can be chosen by the testbed user. The agent doing the modelling, then, will
become

� ��� � � � ��� �
only if the entity’s observed configuration parameters fall

outside the corresponding � -vector bounds in its model of the entity. Clearly,
different settings for these parameter bounds will affect both the amount of
environmental change perceptible to the agent and the amount of time the
agent will need to spend revising its models. Studying such tradeoffs in Tour-
ingMachines is a focus of current study. Achieving the optimal level of sensi-
tivity to environmental change has also been recognised as a critical issue in
Sanborn and Hendler’s Traffic World system [SH88] and – through the use of

plan-monitoring envelopes – in the Phoenix project [CGHH89].

4 The TouringWorld Experimental Testbed
To validate TouringMachines, we have implemented our control architecture
in SICStus Prolog and are experimenting with it in a simulated 2-dimensional
world – the TouringWorld – occupied by, among other things, other Touring-
Machines, obstacles, walls, paths, and assorted information signs. World dy-
namics are realized by a discrete event simulator which incorporates a plau-
sible world updater for enforcing

� � � � 	
 � �
 ���
notions of time and motion, and

which creates the illusion of concurrent world activity through appropriate
action scheduling. Other processes handled by the simulator include a facil-

13

ity for tracing scenario parameters, a statistics-gathering package for agent
performance analysis, and several text and graphics windows for displaying
output.

Our testbed also provides a scenario definition facility which allows us to
generate scenario instances from a fairly rich collection of agent- and
environment-level parameters. So, for example, we can configure a Touring-

Machine to be variably reactive by altering parameters defining such things as
the distribution of computational resources within its three control layers, the
amount of forward planning it performs, the sensitivity of its reactive rules, or
the frequency with which it senses or models the world. In a similar fashion,
we can experiment with a TouringMachine’s tolerance to environmental uncer-
tainty by adjusting its sensing horizon, by tightening its initial goal deadline,
by populating its world with many other fast-moving agents, or by varying the
ratio of CPU to simulated world time used in the scenario. This last one af-
fects the amount of time the TouringMachine has to deliberate between clock
ticks.

In Figure 6, for instance, we can see the effect on the agent’s behaviour of
modifying the size of the bounds used to constrain allowable deviations from
the parameter

���������
	����
, the agent’s desired heading. With wider bounds the

agent fails to notice any discrepancy in its orientation and so does not take
any corrective action; on the other hand, resolving goal discrepancies comes at
a price in terms of computational resources, so finding the right size of bounds

will typically require empirical validation. Figure 7 shows a pair of agents
arriving at a light-controlled intersection. The two TouringMachines coordi-
nate their activities by reasoning about actual and potential interactions be-
tween world entities, in this case, each other and the two sets of traffic lights.

Agents ascribe intentions or plans to other agents as a way of explaining cur-
rent and predicting future behaviour. By reasoning about the relationship
between these hypothesised plans and each agent’s goals, an agent can detect
and resolve conflicts between entities before the situation can get out of hand
(i.e. before the agent is prevented from achieving one of its goals). Again, suc-
cess at predictive conflict resolution – in this particular domain – can be seen
to depend on a number of internal agent parameters such as over what dis-
tance and how often sensing is performed, and how far into the future each
agent projects for potential collisions.

The TouringMachine testbed has been designed to enable controlled, re-
peatable experimentation and to facilitate the creation of diverse agent sce-
narios for subsequent user analysis. Based on a number of single- and multi-
agent experiments which we have performed, we are satisfied that our agents

can behave robustly in the presence of unexpected obstacles while success-
fully accomplishing time-constrained, relocation-type goals. Just as we have

14

Figure 6: With the bounds around the parameter
� ����� �
	 � �

set to +/-40
�

(left-hand frame),

the agent covers more distance and so takes longer (1.5 time units) to arrive at its target

than when its bounds are set to +/-0
�

(right-hand frame).

witnessed the strong influence environmental and task constraints can have
on an agent’s behaviour, we have also been convinced by the added value
gained from causal modelling when agents with complex intentions are re-
quired to coordinate their activities with other agents in an effective and effi-

cient manner. But this is just the beginning. Ultimately, through the design
and analysis of more complex scenarios, we hope to gain more insight into
the behavioural ecology – to use Cohen’s terminology [CGHH89] – of Tour-
ingMachines. In other words, we are interested in studying, and eventually
discovering general rules that describe, the relationships and tradeoffs that
exist between an agent’s design (in other words, the particular configuration

of its functional capabilities and knowledge sources), its environment, and the
repertoire of demonstrable behaviours that the agent is capable of. So, for ex-
ample, we are interested in understanding how well a given TouringMachine
configuration might perform across a wide range of environments and also

how the behaviours of different configurations of TouringMachines compare
when placed in a single common environment. Some criteria with which to

15

Figure 7: By reasoning about the interactions between themselves and the relevant traffic

lights, the two agents coordinate their activities accordingly: in the left-hand frame, the

chevron-shaped agent has stopped at its red light and the round agent has proceeded

into the intersection; once the chevron-shaped agent’s light has turned green (right-hand

frame), it sets off to complete its initially intended task.

evaluate the performance of our agents have already been employed and in-
clude, among others, resource consumption and utilisation, wasted planning
effort (e.g. amount of backtracking or replanning required), number of suc-
cessful/unsuccessful actions effected, ratio of successful to unsuccessful model-
based predictions, and delay in arriving at a target destination.

5 Conclusions
We have presented a new control architecture for resource-bounded, goal-
directed, mobile agents operating in dynamic, multi-agent environments. Our
layered, activity-producing architecture integrates both deliberative and non-
deliberative control features enabling a TouringMachine to produce a range of
reactive, goal-oriented, reflective, and predictive behaviours as demanded by
the agent’s goals and environmental situation. This empowers agents to deal

16

robustly and flexibly with events and tasks at different levels of granularity
(e.g. avoiding collisions, accomplishing complex, resource-bounded goals, and
predicting the behaviour of other agents with equally complex goals). We have
also briefly described a feature-rich simulation testbed within which we have
started to study design-behaviour-environment tradeoffs.

By using a highly parametrized, layered architecture and testbed we have
benefited greatly in terms of our effort to design, implement, and test a se-

ries of different agent configurations. Our experience so far has demonstrated
that TouringMachines can be configured to behave with a high degree of ro-

bustness and flexibility in dynamic situations. The work presented here is
ongoing: future work will consider the implementation of a fourth layer

�

to assist the agent in self-tuning or learning internal parameters, as well as
experimenting with a variety of heterogeneous agent configurations in multi-

agent settings. Making an agent tune its own parameters is non-trivial as
optimal parameter values are to a large extent task- and situation-specific,

thus requiring that the agent be able to classify different operational contexts.
Handling heterogeneous agents will require that agents be able to model and
predict the behaviour of agents whose beliefs or goals differ substantially from
their own (e.g. obeying versus not obeying traffic regulations). At present only

agents’ intentions or plans are hypothesised and subject to revision; beliefs
and goals are assumed identical (although target destinations and goal dead-
lines can differ). A more general modelling layer would need to deal with the
possibility that unexpected behaviours are the result of fellow agents having
substantially different

��
 ���
 � � � �
from the observer. We believe these investi-

gations will provide us with further clues about how best to design dynamic,
rational, autonomous agents.

6 Acknowledgements
This work was supported by a Bell-Northern Research Postgraduate Scholar-
ship and a CVCP Overseas Research Student Award. I would like to thank
William Clocksin, Julia Galliers, Han Reichgelt, and Jane Dunlop for their
helpful advice and support, and Barney Pell for many fruitful and enjoyable
discussions.

References
[AC87] Philip E. Agre and David Chapman. Pengi: An implementation

of a theory of activity. In Proceedings Conference of the American
Association for Artificial Intelligence, pages 268–272, 1987.

17

[BIP88] Michael E. Bratman, David J. Israel, and Martha E. Pollack.
Plans and resource-bounded practical reasoning. Computational
Intelligence, 4(4):349–355, November 1988.

[Bra90] Michael E. Bratman. What is intention? In P.R. Cohen, J. Mor-
gan, and M.E. Pollack, editors, Intentions in Communication. MIT
Press: Cambridge MA, 1990.

[Bro86] Rodney A. Brooks. A robust layered control system for a mo-
bile robot. IEEE Journal of Robotics and Automation, 2(1):14–23,
1986.

[CGHH89] Paul R. Cohen, Michael L. Greenberg, David M. Hart, and Adele E.
Howe. Trial by fire: Understanding the design requirements for

agents in complex environments. AI Magazine, 10(3):32–48, 1989.

[CL91] Arie A. Covrigaru and Robert K. Lindsay. Deterministic au-
tonomous agents. AI Magazine, 12(3):110–117, 1991.

[DM89] Edmund H. Durfee and Thomas A. Montgomery. MICE: A flexible
testbed for intelligent coordination experiments. In Proceedings
Ninth Workshop on Distributed Artificial Intelligence, Rosario Re-
sort, Eastsound, WA, 1989.

[DM90] Edmund H. Durfee and Thomas A. Montgomery. A hierarchical
protocol for coordinating multiagent behaviours. In Proceedings
Conference of the American Association for Artificial Intelligence,
pages 86–93, 1990.

[Fer92] Innes A. Ferguson. TouringMachines: An Architecture for Dy-
namic, Rational, Mobile Agents. PhD thesis, Computer Labora-
tory, University of Cambridge, Cambridge, UK, 1992. Forthcom-
ing.

[Fir87] James R. Firby. An investigation into reactive planning in complex
domains. In Proceedings Conference of the American Association
for Artificial Intelligence, pages 202–206, 1987.

[GI89] Michael P. Georgeff and François Felix Ingrand. Decision-making
in embedded reasoning systems. In Proceedings International
Joint Conference on Artificial Intelligence, pages 972–978, 1989.

[HR90] Barbara Hayes-Roth. Architectural foundations for real-time per-
formance in intelligent agents. The Journal of Real-Time Systems,
2:99–125, 1990.

18

[Kae87] Leslie Pack Kaelbling. An architecture for intelligent reactive sys-
tems. In M.P. Georgeff and A.L. Lansky, editors, Reasoning about
Actions and Plans - Proceedings 1986 Workshop, pages 395–410.
Morgan Kaufmann Publishers Inc: Los Altos, CA, 1987.

[Kae91] Leslie Pack Kaelbling. Specifying complex behaviours for com-
puter agents. In Luc Steels and Barbara Smith, editors, Proceed-
ings Eighth Conference on Artificial Intelligence and the Simula-
tion of Behaviour. Springer-Verlag: London, UK, 1991.

[Kir91] David Kirsh. Today the earwig, tomorrow man? Artificial Intelli-
gence, 47:161–184, 1991.

[LC83] Victor R. Lesser and Daniel D. Corkill. The distributed vehicle
monitoring testbed: A tool for investigating distribution. AI Mag-
azine, 4(3):15–33, 1983.

[Mae90] Pattie Maes. Situated agents can have goals. Robotics and Au-
tonomous Systems, 6(1&2):49–70, 1990.

[McD90] Drew McDermott. Planning and acting. In James Allen, James
Hendler, and Austin Tate, editors, Readings in Planning, pages
225–244. Morgan Kaufmann Publishers Inc: San Mateo, CA,
1990.

[PGA86] David L. Poole, Randy G. Goebel, and Romas Aleliunas. Theorist:
A logical reasoning system for defaults and diagnosis. Research
Report CS-86-06, University of Waterloo, Waterloo, Ont., Febru-
ary 1986.

[PR90] Martha E. Pollack and Marc Ringuette. Introducing the Tileworld:
Experimentally evaluating agent architectures. In Proceedings
Conference of the American Association for Artificial Intelligence,
pages 183–189, 1990.

[SH88] J. Sanborn and J. Hendler. A model of reaction for planning in
dynamic environments. International Journal of Artificial Intelli-
gence in Engineering, 3(2):95–102, 1988.

[VB90] Steven Vere and Timothy Bickmore. A basic agent. Computational
Intelligence, 6(1):41–60, 1990.

[Woo90] Sharon Wood. Planning in a Rapidly Changing Environment. PhD
thesis, University of Sussex, Brighton, UK, 1990.

19

