Lecture Notes

Chapter 1: Regular Languages

- DFA vs. NFA, design of DFA and NFA, conversion of NFA to DFA
- Moore-Mealy machines (concept *only*) [handout]
- regular expressions, conversion of regular expression to NFA
- conversion of DFA/NFA to regular expression (through GNFA)
- closure properties of regular languages (how to prove the properties)
- non-regular languages, pumping lemma for regular languages
- Myhill-Nerode Theorem (concept *only*) [handout]

Chapter 2: Context-Free Languages

- definition of CFG, ambiguous grammar, design of CFG
- conversion of CFG to Chomsky normal form (CNF)
- definition of pushdown automaton (PDA), design of PDA
- conversion of CFG to PDA (conversion of PDA to CFG is not required)
- closure properties of context-free language (how to prove the properties)
- pumping lemma for context-free languages
- CYK algorithm (membership testing for CFL) [handout]

Chapter 3: The Church-Turing Thesis

- definition of Turing machine, Turing-recognizable, Turing decidable
- design of TM (draw the state diagram of a TM)
- variants of Turing machines (enumerator is *not* required)
- Church-Turing Thesis (concept *only*)
- 3 levels of TM description (formal, implementation-level, and high-level)
- configuration of TM, computation of TM (sequence of configurations)
- closure properties of Turing recognizable (decidable) languages
- Minsky's Theorem (concept *only*)

Chapter 4: Decidability

- acceptance problems: A_{DFA} , A_{NFA} , A_{REX} , A_{CFG} , A_{TM} , etc.
- emptiness testing problems: E_{DFA} , E_{NFA} , E_{REX} , E_{CFG} , E_{TM} , etc.
- equivalence testing problems: EQ_{DFA} , $EQ_{DFA-REX}$, EQ_{CFG} , EQ_{TM} , etc.
- decidable languages: A_{DFA} , A_{CFG} , E_{DFA} , E_{CFG} , EQ_{DFA} , etc.
- A_{TM} is *not* decidable (proof *not* required), but it is Turing-recognizable

Chapter 5: Reducibility

- the halting problem $HALT_{TM}$ is *not* decidable, but it is Turing-recognizable
- undecidable languages: A_{TM} , E_{TM} , EQ_{CFG} , EQ_{TM} , etc.
- A_{TM} is Turing-recognizable, but it is *not* co-Turing-recognizable
- E_{TM} is *not* Turing-recognizable, but it is co-Turing-recognizable
- *EQ*_{CFG} is *not* Turing-recognizable, but it is co-Turing-recognizable
- EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable
- definition of mapping reducibility, proof of $A \leq_m B$ by designing TM *F* that computes the reducing function of *A* to *B*
- two ways to prove $HALT_{TM}$ is undecidable: proof by contradiction a solution to $HALT_{TM}$ gives a solution to A_{TM} ; proof by mapping reducibility, i.e., $A_{TM} \leq_m HALT_{TM}$

If $A \leq_m B$,

- (1) *B* is decidable => *A* is decidable (Theorem 5.22, p. 208)
- (2) A is undecidable $\Rightarrow B$ is undecidable (Corollary 5.23, p. 208)
- (3) *B* is Turing-reognizable \Rightarrow *A* is Turing-recognizable (Theorem 5.28, p. 209)
- (4) A is not Turing-recognizable => B is not Turing-recognizable (Corollary 5.29, p. 209)

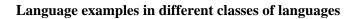
Chapter 7: Time Complexity

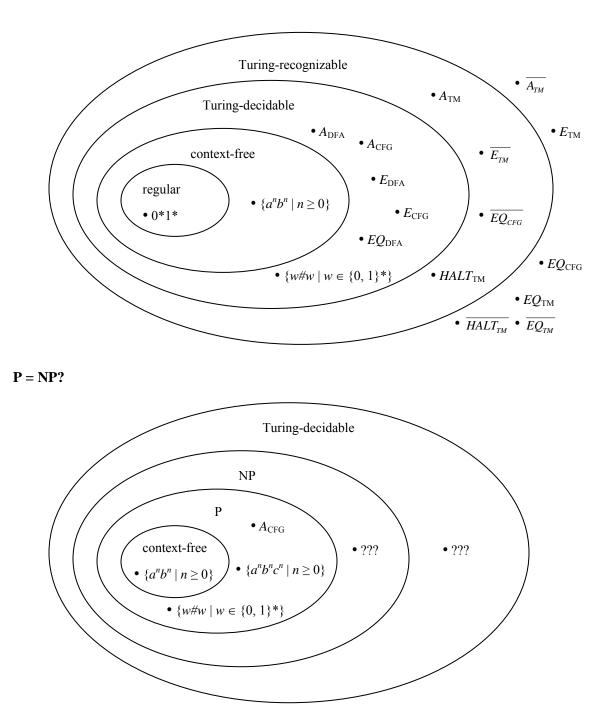
- definition of time complexity or running time of a TM
- Big-O notation, polynomial bounds, exponential bounds
- the class P and NP, proof of a language in P or NP
- closure properties of P and NP languages
- polynomial time mapping reducibility, proof of $A \leq_p B$ by designing TM *F* that computes the reducing function of *A* to *B* in polynomial time
- definition of NP-complete problems
- examples of NP-complete problems: SAT, 3SAT, CLIQUE
- additional NP-complete problems: *SUBSET-SUM*, *HAMPATH*, *VERTEX-COVER* (proof idea *only*, detailed proof for these problems are *not* required)
- two ways to prove a language is NP-complete (by definition and by Theorem 7.36)

If $A \leq_p B$,

- (1) B is in P => A is in P (Theorem 7.31, p. 273)
- (2) A is NP-complete and B is in NP => B is NP-complete (Theorem 7.36, p. 276)

Note: In the above, "concept *only*" implies that the related concept will only appear in "True/False" questions; while "*not* required" implies that the mentioned concept/proof will not appear in the exam.





The class of Context-free languages $\subset P \subseteq NP \subseteq$ The class of Turing-decidable languages