
CIS 560: Theoretical Computer Science Fall 2009
Dr. Haiping Xu

Lecture Notes

Chapter 1: Regular Languages

- DFA vs. NFA, design of DFA and NFA, conversion of NFA to DFA
- Moore-Mealy machines (concept only) [handout]
- regular expressions, conversion of regular expression to NFA
- conversion of DFA/NFA to regular expression (through GNFA)
- closure properties of regular languages (how to prove the properties)
- non-regular languages, pumping lemma for regular languages
- Myhill-Nerode Theorem (concept only) [handout]

Chapter 2: Context-Free Languages

- definition of CFG, ambiguous grammar, design of CFG
- conversion of CFG to Chomsky normal form (CNF)
- definition of pushdown automaton (PDA), design of PDA
- conversion of CFG to PDA (conversion of PDA to CFG is not required)
- closure properties of context-free language (how to prove the properties)
- pumping lemma for context-free languages
- CYK algorithm (membership testing for CFL) [handout]

Chapter 3: The Church-Turing Thesis

- definition of Turing machine, Turing-recognizable, Turing decidable
- design of TM (draw the state diagram of a TM)
- variants of Turing machines (enumerator is not required)
- Church-Turing Thesis (concept only)
- 3 levels of TM description (formal, implementation-level, and high-level)
- configuration of TM, computation of TM (sequence of configurations)
- closure properties of Turing recognizable (decidable) languages
- Minsky’s Theorem (concept only)

Chapter 4: Decidability

- acceptance problems: ADFA, ANFA, AREX, ACFG, ATM, etc.
- emptiness testing problems: EDFA, ENFA, EREX, ECFG, ETM, etc.
- equivalence testing problems: EQDFA, EQDFA-REX, EQCFG, EQTM, etc.
- decidable languages: ADFA, ACFG, EDFA, ECFG, EQDFA, etc.
- ATM is not decidable (proof not required), but it is Turing-recognizable

 Page 1 of 3

Dr. Haiping Xu, UMass Dartmouth CIS 560: Theoretical Computer Science

Chapter 5: Reducibility

- the halting problem HALTTM is not decidable, but it is Turing-recognizable
- undecidable languages: ATM, ETM, EQCFG, EQTM, etc.
- ATM is Turing-recognizable, but it is not co-Turing-recognizable
- ETM is not Turing-recognizable, but it is co-Turing-recognizable
- EQCFG is not Turing-recognizable, but it is co-Turing-recognizable
- EQTM is neither Turing-recognizable nor co-Turing-recognizable
- definition of mapping reducibility, proof of A ≤m B by designing TM F that computes the

reducing function of A to B
- two ways to prove HALTTM is undecidable: proof by contradiction – a solution to

HALTTM gives a solution to ATM; proof by mapping reducibility, i.e., ATM ≤m HALTTM

If A ≤m B,
(1) B is decidable => A is decidable (Theorem 5.22, p. 208)
(2) A is undecidable => B is undecidable (Corollary 5.23, p. 208)
(3) B is Turing-reognizable => A is Turing-recognizable (Theorem 5.28, p. 209)
(4) A is not Turing-recognizable => B is not Turing-recognizable (Corollary 5.29, p. 209)

Chapter 7: Time Complexity

- definition of time complexity or running time of a TM
- Big-O notation, polynomial bounds, exponential bounds
- the class P and NP, proof of a language in P or NP
- closure properties of P and NP languages
- polynomial time mapping reducibility, proof of A ≤p B by designing TM F that computes

the reducing function of A to B in polynomial time
- definition of NP-complete problems
- examples of NP-complete problems: SAT, 3SAT, CLIQUE
- additional NP-complete problems: SUBSET-SUM, HAMPATH, VERTEX-COVER (proof

idea only, detailed proof for these problems are not required)
- two ways to prove a language is NP-complete (by definition and by Theorem 7.36)

If A ≤p B,
(1) B is in P => A is in P (Theorem 7.31, p. 273)
(2) A is NP-complete and B is in NP => B is NP-complete (Theorem 7.36, p. 276)

Note: In the above, “concept only” implies that the related concept will only appear in
“True/False” questions; while “not required” implies that the mentioned concept/proof will not
appear in the exam.

 Page 2 of 3

Language examples in different classes of languages

Turing-recognizable
• TMA

• ATM
Turing-decidable

 Page 3 of 3

P = NP?

The class of Context-free languages ⊂ P ⊆ NP ⊆ The class of Turing-decidable languages

NP

P

context-free

• {anbn | n ≥ 0}

• ???

Turing-decidable

• ACFG

• ???

• {w#w | w ∈ {0, 1}*}

• {anbncn | n ≥ 0}

• ADFA
context-free

regular
• {anbn | n ≥ 0}

• 0*1*

• ACFG

• EDFA

• ECFG

• EQDFA

• {w#w | w ∈ {0, 1}*}

• CFGEQ

• TME

• EQCFG

• EQTM

• TMEQ

• HALTTM

• TMHALT

Dr. Haiping Xu, UMass Dartmouth CIS 560: Theoretical Computer Science

• ETM

	CIS 560: Theoretical Computer Science Fall 2009
	Dr. Haiping Xu
	Lecture Notes

	Chapter 1: Regular Languages
	Chapter 2: Context-Free Languages
	Chapter 3: The Church-Turing Thesis
	Chapter 4: Decidability
	Chapter 5: Reducibility
	Chapter 7: Time Complexity

