CIS 560: Theoretical Computer Science Fall 2009
Dr. Haiping Xu

Lecture Notes

Chapter 1: Regular Languages

- DFA vs. NFA, design of DFA and NFA, conversion of NFA to DFA
- Moore-Mealy machines (concept only) [handout]

- regular expressions, conversion of regular expression to NFA

- conversion of DFA/NFA to regular expression (through GNFA)

- closure properties of regular languages (how to prove the properties)
- non-regular languages, pumping lemma for regular languages

- Myhill-Nerode Theorem (concept only) [handout]

Chapter 2: Context-Free Languages

- definition of CFG, ambiguous grammar, design of CFG

- conversion of CFG to Chomsky normal form (CNF)

- definition of pushdown automaton (PDA), design of PDA

- conversion of CFG to PDA (conversion of PDA to CFG is not required)
- closure properties of context-free language (how to prove the properties)
- pumping lemma for context-free languages

- CYK algorithm (membership testing for CFL) [handout]

Chapter 3: The Church-Turing Thesis

- definition of Turing machine, Turing-recognizable, Turing decidable

- design of TM (draw the state diagram of a TM)

- variants of Turing machines (enumerator is not required)

- Church-Turing Thesis (concept only)

- 3levels of TM description (formal, implementation-level, and high-level)
- configuration of TM, computation of TM (sequence of configurations)

- closure properties of Turing recognizable (decidable) languages

- Minsky’s Theorem (concept only)

Chapter 4: Decidability

- acceptance problems: Apga, Anra, Arex> Acra, Atm, €tc.

- emptiness testing problems: Epga, Exra, Erex, Ecrg, ETum, €tc.

- equivalence testing problems: EQpra, EQpra-rex, EQcrg, EQmwm, etc.

- decidable languages: Apga, Acrg, Epra, Ecrg, EQpra, etc.

- Ay is not decidable (proof not required), but it is Turing-recognizable

Page 1 of 3

Dr. Haiping Xu, UMass Dartmouth CIS 560: Theoretical Computer Science

Chapter 5: Reducibility

- the halting problem HALTy, is not decidable, but it is Turing-recognizable

- undecidable languages: Arwm, Erm, EQcrg, EQry, etc.

- Apu is Turing-recognizable, but it is not co-Turing-recognizable

- Emmis not Turing-recognizable, but it is co-Turing-recognizable

- EQcrg is not Turing-recognizable, but it is co-Turing-recognizable

- EQmu is neither Turing-recognizable nor co-Turing-recognizable

- definition of mapping reducibility, proof of A <, B by designing TM F that computes the
reducing function of Ato B

- two ways to prove HAL Tty is undecidable: proof by contradiction — a solution to
HALTy gives a solution to Ary; proof by mapping reducibility, i.e., Arm <m HALT v

IfA<yB,

(1) B is decidable => A is decidable (Theorem 5.22, p. 208)

(2) A is undecidable => B is undecidable (Corollary 5.23, p. 208)

(3) B is Turing-reognizable => A is Turing-recognizable (Theorem 5.28, p. 209)

(4) A is not Turing-recognizable => B is not Turing-recognizable (Corollary 5.29, p. 209)

Chapter 7: Time Complexity

- definition of time complexity or running time of a TM

- Big-O notation, polynomial bounds, exponential bounds

- the class P and NP, proof of a language in P or NP

- closure properties of P and NP languages

- polynomial time mapping reducibility, proof of A <, B by designing TM F that computes
the reducing function of A to B in polynomial time

- definition of NP-complete problems

- examples of NP-complete problems: SAT, 3SAT, CLIQUE

- additional NP-complete problems: SUBSET-SUM, HAMPATH, VERTEX-COVER (proof
idea only, detailed proof for these problems are not required)

- two ways to prove a language is NP-complete (by definition and by Theorem 7.36)

IfA<, B,
(1)Bisin P=>Aisin P (Theorem 7.31, p. 273)
(2) A is NP-complete and B is in NP => B is NP-complete (Theorem 7.36, p. 276)

Note: In the above, “concept only” implies that the related concept will only appear in
“True/False” questions; while “not required” implies that the mentioned concept/proof will not
appear in the exam.

Page 2 of 3

Dr. Haiping Xu, UMass Dartmouth CIS 560: Theoretical Computer Science

Language examples in different classes of languages

Turing-recognizable

Turing-decidable

* Apra *Emv

*A

context-free

regular
0*1* * @b [n=0}

°E
o (wHW | W e {0, 1}%) Qero

*EQmm
¢ EQTM

P =NP?

Turing-decidable

* Acrg

context-free

e {a"v"c" | n>0}

* {am"|In>0}

e {w#w | w e {0, 1}*}

The class of Context-free languages — P < NP < The class of Turing-decidable languages

Page 3 of 3

	CIS 560: Theoretical Computer Science Fall 2009
	Dr. Haiping Xu
	Lecture Notes

	Chapter 1: Regular Languages
	Chapter 2: Context-Free Languages
	Chapter 3: The Church-Turing Thesis
	Chapter 4: Decidability
	Chapter 5: Reducibility
	Chapter 7: Time Complexity

