
 1

CIS 481: Parallel & Distributed Software Systems

University of Massachusetts Dartmouth

Instructor: Dr. Haiping Xu

Handout

One-Lane Bridge Example

Monitor Bridge {

 int nN = 0, nS = 0;

 cond oktogosouth, oktogonorth;

 procedure go_north_request() {

 while (nS > 0) wait(oktogonorth);

 nN = nN + 1;

 }

 procedure go_north_done() {

 nN = nN – 1;

 if (nN == 0) signal_all(oktogosouth);

 }

 procedure go_south_request() {

 while (nN > 0) wait(oktogosouth);

 nS = nS + 1;

 }

 procedure go_south_done() {

 nS = nS – 1;

 if (nS == 0) signal_all(oktogosouth);

 }

}

To convert the above monitor to a server process using asynchronous message passing, we first

need to define the required types and channels.

type op_kind = enum(GOSOUTHREQ, GOSOUTHDONE, GONORTHREQ, GONORTHDONE);

chan request(int clientID, op_kind kind);

chan reply[n]();

Note that a client process / a car process should work as follows:

process NorthBoundCar[i = 0 to k-1]

 while (true) {

 send request(i, GONORTHREQ); // non-blocking

 receive reply[i](); // blocking

 cross the bridge …

 send request(i, GONORTHDONE); // non-blocking

 receive reply[i]; // blocking

 }

}

The definition of the SouthBoundCar process is similar.

 2

process BridgeServer {

 int nN = 0, nS = 0;

 int clientID, op_kind kind;

 queue northpending, southpending;

 while (true) {

 receive request(clientID, kind);

 switch(kind) {

 case GONORTHREQ:

 if (nS > 0) insert(northpending, clientID);

 else {

 nN = nN + 1;

 send reply[clientID]();

 }

 break;

 case GONORTHDONE:

 nN = nN – 1;

 send reply[clientID]();

 if (nN == 0) {

 while (!empty(southpending)) {

 remove(southpending, clientID);

 nS = nS + 1;

 send reply[cliendID]();

 }

 }

 break;

 case GOSOUTHREQ:

 …

 case GOSOUTHDONE:

 …

 }

}

Notes:

1. The last northbound car passing the bridge is responsible for notifying all waiting/delayed

southbound car.

2. In the case of GONORTHDONE, remove(southpending, clientID) removes the front

item of the southpending queue and assign it to variable ClientID, so the variable

clientID now contains the ID of a southbound car. Note that ClientID previously

contains the ID of a northbound car.

3. The ID of a southbound car is inserted to the southpending queue in the case of

GOSOUTHREQ, when condition(nN > 0) is true.

