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We consider a parallel Algol-like language, combining procedures with shared-variable parallelism.
Procedures permit encapsulation of common parallel programming idioms. Local variables provide
a way to restrict interference between parallel commands. The combination of local variables, pro-
cedures, and parallelism supports a form of concurrent object-oriented programming. We provide a
denotational semantics for this language, simultaneously adapting possible worlds to the parallel setting
and generalizing transition traces to the procedural setting. This semantics supports reasoning about
safety and liveness properties of parallel programs, and validates a number of natural laws of program
equivalence based on noninterference properties of local variables. The semantics also validates fami-
liar laws of functional programming. We also provide a relationally parallel semantics. This semantics
supports standard methods of reasoning about representational independence, adapted to shared-
variable programs. The clean design of the programming language and its semantics shows that pro-
cedures and shared-variable parallelism can be combined smoothly. C© 2002 Elsevier Science (USA)

1. INTRODUCTION

The programming language Algol 60 has had a major influence on the theory and practice of language
design and implementation [10]. Algol shows how to combine imperative programming with an essen-
tially functional procedure mechanism, without destroying the validity of laws of program equivalence
familiar from functional programming. Moreover, procedures and local variables in Algol can be used
to support an “object-oriented” style of programming. Although Algol itself is no longer widely used, an
idealized form of the language has stimulated a great deal of innovative research [10]. Idealized Algol,
as characterized by Reynolds [14], augments a simple sequential imperative language with a procedure
mechanism based on the simply typed call-by-name λ-calculus; procedure definitions, recursion, and
the conditional construct are uniformly applicable to all phrase types. Reynolds identified these features
as embodying the essence of Algol.

Although Algol 60 and Idealized Algol are sequential programming languages the utility of procedures
and local variables is certainly not limited to the sequential setting. Nowadays there is much interest
in parallel programming, because of the potential for implementing efficient parallel algorithms by
concurrent processes designed to cooperate in solving a common task. In this paper we focus on one of
the most widely known paradigms of parallel programming, the shared-variable model, in which parallel
commands (or “threads”) interact by reading and writing to shared memory. The use of procedures in such
a language permits encapsulation of common parallel programming idioms. Local variable declarations
provide a way to delimit the scope of interference: a local variable of one process is not shared by any
other process and is therefore unaffected by the actions of other processes running concurrently.

To illustrate the use of procedures as a means of encapsulation, a procedure for implementing mutual
exclusion [2] with a binary semaphore can be written (in sugared form) as:

procedure mutex(n1, c1, n2, c2);
boolean s;
begin

s := true;
while true do (n1; await s then s := false; c1; s := true)

‖while true do (n2; await s then s := false; c2; s := true)
end

Here c1 and c2 are parameters representing “critical” regions of code, and n1 and n2 represent non-
critical code. The local boolean variable s represents the semaphore. The correctness of this procedure,
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i.e., the fact that the two critical regions are never concurrently active, relies on the inaccessibility of s
to the procedure’s arguments.

For another example suppose two “worker” processes must each repeatedly execute a piece of code,
can and should run concurrently, but need to stay in phase with each other so that at each stage the two
workers are executing the same iteration. If the parameters c0 and c1 represent the two workers’ code,
one way to achieve this execution pattern is represented by the following procedure:

procedure workers (c0, c1); while true do (c0 ‖ c1)

However, this program structure incurs the repeated overhead caused by thread creation and deletion
each time the loop body is executed. Although this defect does not affect the correctness of the procedure
it might be preferable for pragmatic reasons to design a program that creates two perpetually active
threads, constrained to ensure that the threads stay in phase with each other. One way to achieve this,
known as barrier synchronization [2], uses a pair of local boolean variables equipped with a simple
synchronization strategy:

procedure barrier (c0, c1);
boolean flag0, flag1;
procedure synch (x, y); (x := true; await y; y := false);
begin

flag0 := false; flag1 := false;
while true do (c0; synch ( flag0, flag1))

‖while true do (c1; synch ( flag1, flag0))
end

The correctness of this implementation relies on locality of the flag variables: in a call of barrier the
code bound to c0 and c1 cannot access the flags. The procedures workers and barrier are equivalent, in
that for all possible arguments c0 and c1 the two procedure calls exhibit identical behaviors.

The combination of procedures, local variables, and parallelism also supports a form of concurrent
object-oriented programming. An object is typically described informally as having some private (or
local) state and providing methods for accessing and updating that state. For example a one-place integer
buffer can be represented as a local integer variable (holding the buffer’s current contents) together with
two local boolean variables (used as semaphores), with put and get methods that follow the semaphore
protocol:

integer data; boolean full, empty;
procedure put(x);

begin
await ¬full then full := true;
data := x ; empty := false

end;
procedure get(y);

begin
await ¬empty then empty := true;
y := data; full := false

end;
full := false; empty := true;
P( put, get)

Here P is a free procedure identifier representing the rest of the program and the fact that its arguments
include put and get but not data, full, or empty prevents unconstrained access to the local state of the
buffer. Note that P may invoke its arguments repeatedly, perhaps concurrently, and the buffer behaves
in proper FIFO manner no matter what P does.
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It is well known that parallel programs can be hard to reason about, because of the potential for
undesirable interference between commands running in parallel. One might expect this problem to be
exacerbated by the inclusion of procedures. Indeed, semantic accounts of shared-variable languages in
the literature typically do not encompass procedures; the (usually implicit) attitude seems to be that
concurrency is already difficult enough to handle by itself. Similarly, existing models for sequential Al-
gol [9, 11, 14] do not handle parallelism, presumably because of the difficulty even in the sequential set-
ting of modeling “local” state accurately [4]. Nevertheless it seems intuitive that Algol-style procedures
and parallelism are orthogonal concepts, so that one ought to be able to design a programming language
incorporating both seamlessly.1 This is the rationale behind our design of an idealized parallel Algol,
blending a shared-variable parallel language with the λ-calculus while remaining faithful to Reynolds’
ideals.

Even for sequential Algol the combination of procedures and local variables causes well known
semantic problems for traditional, location-based store models [4]. Such models typically fail to validate
certain intuitive laws of program equivalence which express non-interference or “locality” properties
of local variables, such as the law

new[int] x in P = P,

when P is a free variable of type comm (representing a command). Intuitively, introducing a local
variable x and never using it should have no effect, so that whatever the interpretation of P the two phrases
should be indistinguishable; however, in a simple location-based semantics the presence of command
meanings whose effect depends on the contents of specific locations will cause this equivalence to
break. For similar reasons a traditional location-based semantics cannot be used to prove correctness
of the mutex procedure or the buffer implementation given above; for example, the mutex procedure
can violate mutual exclusion when applied to arguments that happen to affect the location bound
to s.

A more satisfactory semantics for a sequential Algol-like language was proposed by Reynolds and
Oles [11, 14], based on a category of “possible worlds”: a world W represents a set of “allowed states”;
morphisms between worlds represent “expansions” corresponding to the declaration of new variables;
types denote functors from the category of worlds to a category of domains and continuous functions;
and well-typed phrases denote natural transformations between such functors. A command meaning at
world W is a partial function from W to W . Naturality guarantees that a phrase behaves “uniformly”
with respect to expansions between worlds, thereby enforcing locality constraints and validating laws
such as the one discussed above.

The parallel setting requires a more sophisticated semantic structure because of the potential for
interference between parallel commands. We adapt the “transition traces” semantics of [3], modeling a
command at world W as a set of finite and infinite traces, a subset of (W × W )∞. The trace semantics
given in [3] covers a simple shared-variable parallel language, without procedures, with while-loops
as the only means of recursion, assuming a single global set of states. This semantics was carefully
designed to incorporate the assumption of fairness [12]. It is far from obvious that this kind of trace
semantics can be generalized in a manner consistent with Reynolds’ idealization, to include a general
procedure mechanism, and a conditional construct and recursion at all types. Similarly, it is not evident
that the possible worlds approach can be made to work for a parallel language. We show here that these
approaches can indeed be combined. The resulting semantics models parallelism at an appropriate level
of abstraction to permit compositional reasoning about safety and liveness properties of programs. Our
categorical recasting of [3] permits an improved treatment of local variables, which were modeled in
a rather ad hoc manner in the earlier paper. The semantics for the λ-calculus fragment of the language
is completely standard, based as usual on the cartesian closed structure of the underlying category. The
fact that we are able to adapt traces to the functor category setting supports the claim that procedures

1 We use the term “orthogonal” informally, to convey the idea that the semantics of procedural and parallel constructs can
be given more or less in isolation of each other and combined in a modular manner. The addition of parallelism to a sequential
Algol-like language does not invalidate elementary laws of equivalence from functional programming, such as the β-law, and the
addition of procedures to a simple shared-variable language does not break elementary semantic equivalences involving parallel
composition.
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and parallelism are orthogonal. Like Reynolds’ semantics for sequential Algol, our semantics can be
viewed as bringing out the stack discipline implicit in the procedure mechanism.2

Since we are interested in proving liveness and safety properties of parallel programs it is vital to
deal accurately with infinite traces. Recursion is the primary cause of infinite behavior, and special care
is required to get the semantics of recursive programs right. In our setting it is not appropriate to regard
divergence as “catastrophic,” as is done in several models of CSP [18]. It is equally wrong to equate all
forms of divergence, as in a conventional least-fixed-point semantics for sequential programs, which
typically uses a single distinguished semantic value ⊥ to represent non-termination. For example we
must distinguish between a program that loops forever without changing the state and a program that
keeps incrementing a variable repeatedly, since they satisfy different safety and liveness properties.
Instead we provide a more refined treatment of recursion, making use of a fundamental “constructivity”
property of programs to ensure that non-termination is modeled appropriately.3 A least-fixed-point
semantics for our language would capture only the finite behaviors of programs and would therefore be
unsuitable for liveness analysis. We use instead a greatest-fixed-point semantics that models both finite
and infinite aspects of a program’s behavior.

As we have remarked earlier, our possible worlds semantics of Parallel Algol validates familiar laws
of functional programming, as well as familiar laws of shared-variable programming, and equivalences
based on locality properties. When applied to the examples listed earlier it produces the intended results;
for instance, the workers and barrier procedures are indeed semantically equivalent. However, just as
for the Reynolds–Oles possible worlds model of sequential Idealized Algol, certain laws of program
equivalence still fail to hold, because of the presence in the model of certain insufficiently well-behaved
elements. These equivalences typically embody the principle of “representational independence” famil-
iar from structured programming methodology: a program using an “object” (perhaps a member of some
abstract data type) should behave the same way regardless of the object’s implementation, provided
its abstract properties are the same. Such equivalences are usually established by relational reasoning,
typically involving some kind of invariant property that holds between the states of two programs that
use alternative implementations. These problems led O’Hearn and Tennent to propose a “relationally
parametric” semantics for sequential Idealized Algol [9], building on foundations laid in [15]. In this
semantics a type denotes a parametric functor from worlds to domains, and phrases denote paramet-
ric natural transformations between such functors. The parametricity constraints enforce the kind of
relation-preserving properties needed to establish equivalences involving representation independence.
We show how to construct a relationally parametric semantics for Parallel Algol, generalizing the
O’Hearn-Tennent model to the parallel setting. We thus obtain a semantics that validates reasoning
methods based on representation independence, as adapted to deal with shared-variable programs. This
yields a powerful methodology for proving the correctness of concurrent objects.

2. SYNTAX

2.1. Types and Type Environments

The type structure of our language is conventional [14]: datatypes representing the set of integers
and the set of booleans; phrase types built from expressions, variables, and commands, using product
and arrow. We use τ as a meta-variable ranging over the set of datatypes and θ to range over the set of
phrase types, as specified by the following abstract grammar:

θ :: = exp[τ ] | var[τ ] | comm | (θ → θ ′) | θ × θ ′

τ :: = int | bool

For convenience we also introduce auxiliary phrase types atom[τ ] (“atomic expressions” of type τ ) and
atom (“atomic commands”).

2 Since each parallel component in a program activates and deactivates storage in a stack-like manner independent of the other
components it would be more accurate to say that our semantics brings out the “cactus stack” discipline.

3 This is reminiscent of the role played by an analogous constructivity property in justifying the treatment of recursion in
various semantics of CSP [18].
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Let ι range over the set of identifiers. A type environment π is a finite partial function from identifiers
to types. We write dom(π ) for the domain of π , i.e., the finite set of identifiers for which π specifies a
type. Let (π | ι : θ ) be the type environment that agrees with π except that it maps ι to θ .

2.2. Phrases and Type Judgments

A type judgment of form π � P : θ is interpreted as saying that phrase P has type θ in type environment
π . A judgment is valid iff it can be proven from the axioms and rules in Fig. 1. The syntax used here for
phrases is essentially a simply typed λ-calculus with product types, combined with a shared-variable
parallel language over ground type comm. We omit the rules dealing with phrases of type var[τ ] and
exp[τ ], except to remark that the language contains the usual arithmetic and boolean operations. Note
that, in the spirit of Algol, the conditional construction if B then P1 else P2 and recursion rec ι. P are
available at all phrase types.

We restrict the use of a “conditional atomic action,” denoted await B then P , to cases where P is
“atomic.” We suppress the syntactic rules for atomic expressions and atomic commands, noting simply
that atomic expressions are built from constants, identifiers, and primitive integer and boolean operations
and that an atomic command is a finite sequence of assignments involving atomic expressions, or skip.
This syntactic constraint is common [2], guaranteeing that an atomic command always terminates, so
that it is feasible to implement this construct as an indivisible action without incurring deadlock. This
limitation does not significantly constrain the expressive power of our language. We use await B as an
abbreviation for await B then skip.

π � skip : comm

π � X : var[τ ] π � E : exp[τ ]

π � X := E : comm
π � P1 : comm π � P2 : comm

π � P1; P2 : comm

π � P1 : comm π � P2 : comm
π � P1‖P2 : comm

π � P : exp[bool] π � P1 : θ π � P2 : θ

π � if P then P1 else P2 : θ

π � B : exp[bool] π � P : atom
π � await B then P : comm

π � B : exp[bool] π � P : comm
π � while B do P : comm
π, ι : var[τ ] � P : comm
π � new[τ ]ι in P : comm

π � ι : π (ι) when ι ∈ dom(π )

π � P : θ0 × θ1

π � fst P : θ0

π � P : θ0 × θ1

π � snd P : θ1

π � P0 : θ0 π � P1 : θ1

π � 〈P0, P1〉 : θ0 × θ1

π, ι : θ � P : θ

π � rec ιP : θ

π, ι : θ � P : θ ′

π � λι : θ.P : (θ → θ ′)

π � P : θ → θ ′ π � Q : θ

π � P(Q) : θ ′

FIG. 1. Type judgments.
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In addition, for convenience, we add the following rule; this allows us to elide the otherwise necessary
projection for extracting the R-value of a variable:

π � P : var[τ ]

π � P : exp[τ ]
.

In displaying examples of programs it is often convenient to use a sugared form of syntax. For
instance, we may write

integer z;
begin P end

for new[int] z in P . Similarly we may write

procedure f (x); P0;
begin P end

instead of (λ f.P)(rec f.λx .P0). With this convention it is straightforward to desugar the exam-
ples discussed earlier into the formal syntax described here. When f does not occur free in P0 the
desugaring can go a little further: when the procedure is not recursive this notation corresponds to
(λ f.P)(λx .P0).

3. POSSIBLE WORLDS

The category W of possible worlds [11] has as objects countable sets, called “worlds” or “store
shapes,” representing sets of allowed states. We let Vint = {. . . , −1, 0, 1, . . .} and Vbool = {tt, ff}.
Intuitively, the world Vτ consists of states representing a single storage cell capable of holding a value
of data type τ . We will use V, W, X, and decorated versions such as W ′, as meta-variables ranging over
Ob(W).

The morphisms from W to W ′ are pairs h = ( f, Q) where f is a function from W ′ to W and Q is an
equivalence relation on W ′ such that the restriction of f to each equivalence class of Q is a bijection
with W :

• ∀x ′, y′.(x ′ Qy′ & f x ′ = f y′ ⇒ x ′ = y′);
• ∀x ∈ W.∀y′ ∈ W ′.∃x ′.(x ′ Qy′ & f x ′ = x).

We will use the notation [w′]Q for the equivalence class of w′, and we will write fw′ : [w′]Q → W for
the corresponding restriction of f and f −1

w′ : W → W ′ for its inverse.
Intuitively, when ( f, Q) : W → W ′, we think of W ′ as a set of “large” states extending the “small”

states of W with extra storage structure; f extracts the small state embedded inside a large state, and Q
identifies two large states when they have the same extra structure. We will often find it convenient to
blur the distinction between a relation Q on a set W ′ and its graph, i.e., the set {(x ′, y′) | x ′ Qy′}.

The identity morphism on W is the pair (idW , W × W ), where idW is the identity function on the set
W . For each pair of objects W and V there is an “expansion” morphism −× V : W → W × V , given by

− × V = (fst : W × V → W, Q), where

Q = {((w0, v), (w1, v)) | w0, w1 ∈ W & v ∈ V }.

Intuitively an expansion of form − × Vτ models the effect (on the shape of the store) of a single local
variable declaration.

The composition of morphisms h = ( f, Q) : W → W ′ and h′ = (g, R) : W ′ → W ′′, which we write
as h; h′ : W → W ′′, is the pair given by:

( f ◦ g, {(z0, z1) ∈ R | (gz0, gz1) ∈ Q}).
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It is easy to check that this pair satisfies the requirements listed above, so that this does indeed define a
valid morphism.

As Oles has shown [11], every morphism of worlds is an expansion composed with an isomorphism.
Of particular relevance are structural isomorphisms reflecting the commutativity and associativity of
cartesian product. For all worlds W, X, Y let the functions

swapW,X : W × X → X × W

assocW,X,Y : W × (X × Y ) → (W × X ) × Y

be the obvious natural isomorphisms. Equipped with the appropriate universal equivalence relation, so
that there is a single equivalence class, these functions become isomorphisms in the category of worlds.
For instance,

(swapW,X , (W × X ) × (W × X ))

is an isomorphism from X × W to W × X . The composition of an expansion from W to W × V1

with an expansion from W × V1 to (W × V1) × V2 yields the same result as an expansion from W to
W × (V1 × V2), up to associativity. Thus the nature of morphisms in this category captures the essence
of local variable declarations in a clean and simple manner, and facilitates a “location-free” treatment
of storage.

4. SEMANTICS OF TYPES

Each type θ will be interpreted as a functor [[θ ]] from W to the category D of domains and continuous
functions. As shown by Oles [11], the category whose objects consist of such functors, with natural
transformations as morphisms, is cartesian closed. We will use the categorical product and exponen-
tiation in this ccc to interpret product types θ0 × θ1 and arrow types θ0 → θ1, respectively. The main
differences between our parallel interpretation and the model developed by Oles and Reynolds concern
the functorial treatment of the ground types comm and exp[τ ].

4.1. Atomic Commands

Atomic commands are given a conventional interpretation, along lines familiar from the sequential
setting, slightly simplified because atomic phrases always terminate. At world W an atomic command
denotes a total function from W to W . The corresponding functor is:

[[atom]]W = W → W

[[atom]]( f, Q) = λγ. λw′. f −1
w′ (γ ( f w′)).

For example, [[atom]](− × Vτ )γ (w, v) = (γw, v) for all γ ∈ W → W and all w ∈ W, v ∈ Vτ .

4.2. Commands

We interpret the type comm using “transition traces” [3], but instead of assuming a single global state
set we parameterize our definitions in terms of worlds. For each world W , [[comm]]W will consist of sets
of traces over W . A finite trace (w0, w

′
0)(w1, w

′
1) · · · (wn, w

′
n) of a command represents a terminating

computation from state w0 to w′
n , during which the state was changed externally n times (by interference

from another command running in parallel), the i th interruption changing the state from w′
i−1 to wi . An

infinite trace 〈(wn, w
′
n)〉∞n=0 represents an infinite execution, again assuming repeated interference.

When A is a set, we write A∗ for the set of finite sequences over A, A+ for the set of nonempty
finite sequences over A, Aω for the set of (countably) infinite sequences over A, and A∞ = A+ ∪ Aω.
Clearly, each of these operations extends to a functor (on Set), the morphism part being the appropriate
“map” operation, which applies a function to each element of a sequence. Concatenation is extended
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to infinite traces in the usual way: αβ = α when α is infinite. The empty sequence, denoted ε, is a
unit for concatenation. We extend concatenation, and finite and infinite iteration, to trace sets and to
relations over traces, in the obvious componentwise manner; for instance, when R, S ⊆ A∞ × A∞,
we let

R · S = {(α0β0, α1β1) | (α0, α1) ∈ R & (β0, β1) ∈ S}.

Using this notation, then, a command denotes a subset of (W × W )∞. However, as in [3], we let
a step (w, w′) in a trace represent a finite sequence of atomic actions, rather than a single atomic
action. The trace set of a command is therefore closed under two natural operations: stuttering and
mumbling.4 Intuitively, stuttering involves the insertion of “idling” steps of the form (w, w) into a trace,
while mumbling involves the collapsing of adjacent steps of the form (w, w′)(w′, w′′) into a single step
(w, w′′). We formalize this as follows.

We define relations stutA, mumA ⊆ (A × A)+ × (A × A)+ by:

stutA = {(αβ, α(a, a)β) | a ∈ A & αβ ∈ (A × A)+}
mumA = {(α(a, a′)(a′, a′′)β, α(a, a′′)β) | αβ ∈ (A × A)∗ & a, a′, a′′ ∈ A}.

Let idleA = {(α, α) | α ∈ (A × A)∞} denote the identity relation on (A × A)∞. We then extend these
relations to arbitrary traces, defining the relations stut∞A , mum∞

A ⊆ (A × A)∞ × (A × A)∞ by:5

stut∞A = stut∗A · idleA ∪ stutωA

mum∞
A = mum∗

A · idleA ∪ mumω
A.

We say that a set T of traces over W is closed if

α ∈ T & (α, β) ∈ stut∞W ⇒ β ∈ T ;

α ∈ T & (α, β) ∈ mum∞
W ⇒ β ∈ T .

We write T † for the closure of T , that is, the smallest closed set of traces containing T as a subset.
Let ℘†((W × W )∞) denote the set of closed sets of traces over W , ordered by set inclusion. This

forms a domain, in fact a complete lattice, with least element { }, greatest element the set (W × W )∞ of
all traces, and lubs given by unions. For a morphism h = ( f, Q) : W → W ′, [[comm]]h should convert
a set c of traces over W to the set of traces over W ′ that “project back” via f to a trace in c and respect
the equivalence relation Q in each step. We therefore define

[[comm]]W = ℘†((W × W )∞),

[[comm]]( f, Q)c = {α′ | map( f × f )α′ ∈ c & α′ respects Q}.

It is straightforward to check that this is indeed a functor.
The case when the morphism h is an expansion from W to W × V is worth particular attention. When

c is a trace set over W , [[comm]](− × V )c is the trace set over W × V consisting of traces that look like

4 The use of closed sets of traces guarantees full abstraction for the simple shared-variable language [3]. The closure conditions
correspond, respectively, to reflexivity and transitivity of the →∗ relation in a conventional operational semantics.

5 Equivalently, these relations can be characterized as the greatest fixed points of the monotone functionals

F(R) = idleA ∪ stutA · R
G(R) = idleA ∪ mumA · R,

which operate on the complete lattice of relations over traces, ordered by set inclusion.
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a trace of c augmented with stuttering in the V -component:

[[comm]](− × V )c = {((w0, v0), (w′
0, v0)) · · · ((wn, vn), (w′

n, vn)) |
(w0, w

′
0) · · · (wn, w

′
n) ∈ c & ∀i ≤ n. vi ∈ V }

∪ {((w0, v0), (w′
0, v0)) · · · ((wn, vn), (w′

n, vn)) · · · |
(w0, w

′
0) · · · (wn, w

′
n) · · · ∈ c & ∀i ≥ 0. vi ∈ V }.

This is as intended: c represents the meaning of a command that affects the part of the store represented
by W , and when we expand the shape of the store to W × V the extra structure represented by the V
component should not be affected by the command’s behavior.

Note that if c is a closed set of traces so is [[comm]]hc. Moreover, the definition of [[comm]]h is
also applicable to a general trace set, and it is easy to see that for any set c of traces [[comm]]h(c†) =
([[comm]]hc)†, so that the action of [[comm]] on morphisms interacts smoothly with closure. In addi-
tion [[comm]]h interacts simply with concatenation and iteration: [[comm]]h(T1 · T2) = [[comm]]hT1 ·
[[comm]]hT2, and hence [[comm]]h(T +) = ([[comm]]hT )+, and similarly for infinite iteration. These
observations are sometimes helpful in calculations.

4.3. Atomic Expressions

For atomic expressions again the interpretation is simple. At world W an atomic expression of type
τ denotes a total function from W to Vτ :

[[atom[τ ]]]W = W → Vτ

[[atom[τ ]]]( f, Q) = λe. e ◦ f.

4.4. Expressions

For expression types exp[τ ] we use traces, since expressions can be used in nonatomic contexts.
However, since we assume that expression evaluation does not cause side-effects, we can employ a
slightly simpler form of trace than was used for commands. We also allow for possible nontermination
and for the possibility that expression evaluation may be nondeterministic.

A finite trace of the form (w0w1 . . . wn, v) represents an evaluation of an expression during which the
state is changed as indicated, terminating with the result v. It suffices to allow such cases only when n is
finite, since we assume fair interaction between an expression and its environment: it is impossible for
the environment to interrupt infinitely often in a finite amount of time. On the other hand, if an expression
evaluation fails to terminate the state may be changed arbitrarily many times during evaluation, and no
result value is obtained; we represent such a case as an infinite trace 〈wn〉∞n=0 in W ω. Note in particular
that the trace wω represents divergence when evaluated in state w without interference.

Thus we will model the meaning of an expression of type τ at world W as a subset e of W +×Vτ ∪ W ω,
closed under the obvious analogues of stuttering and mumbling.6 Let ℘†(W + × Vτ ∪ W ω) denote the
collection of closed sets of expression traces, ordered by inclusion. Accordingly, we define

[[exp[τ ]]]W = ℘†(W + × Vτ ∪ W ω)

[[exp[τ ]]]( f, Q)e = {(ρ ′, v) | (map fρ ′, v) ∈ e} ∪ {ρ ′ ∈ W ′ω | map fρ ′ ∈ e}.

Again, functoriality is easy to check.

6 For instance, for all ρ, σ ∈ W ∗ and all v ∈ Vτ , w ∈ W , (ρσ, v) ∈ e ⇒ (ρwσ, v) ∈ e, and (ρwwσ, v) ∈ e ⇒ (ρwσ, v) ∈ e. Simi-
larly for infinite expression traces.
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4.5. Product Types

We interpret product types in the standard way, as products of the corresponding functors:

[[θ × θ ′]]W = [[θ ]]W × [[θ ′]]W

[[θ × θ ′]]h = [[θ ]]h × [[θ ′]]h.

4.6. Arrow Types

We interpret arrow types using functor exponentiation, as in [9]. The domain [[θ → θ ′]]W consists
of the families p(−) of functions, indexed by morphisms from W , such that whenever h : W → W ′,
p(h) : [[θ ]]W ′ → [[θ ′]]W ′, and whenever h′ : W ′ → W ′′, p(h) ; [[θ ′]]h′ = [[θ ]]h′; p(h ; h′). This unifor-
mity condition amounts to commutativity of the following diagram, for all W ′, W ′′, h : W → W ′ and
h′ : W ′ → W ′′:

[[θ ]]W ′′ [[θ ′]]W ′′

[[θ ]]W ′ [[θ ′]]W ′

❄

[[θ ]]h′

✲p(h)

❄

[[θ ′]]h′

✲
p(h ; h′)

The domain [[θ → θ ′]]W is ordered by

p(−) � q(−) ⇔ ∀W ′. ∀h : W → W ′. p(h) � q(h),

the obvious parametrized version of the pointwise ordering. It is easy to check that with this ordering
[[θ → θ ′]]W is indeed a domain, assuming that [[θ ′]] is a functor from worlds to domains.

The morphism part of [[θ → θ ′]] is defined by:

[[θ → θ ′]](h : W → W ′)p = λh′ : W ′ → W ′′. p(h ; h′).

This kind of λ-abstraction for denoting indexed families is a convenient notational abuse.

4.7. Variables

For variables we give an “object-oriented” semantics, in the style of Reynolds and Oles. A variable
of type τ is a pair consisting of an “acceptor” (which accepts a value of type τ and returns a command)
and an expression value. This is modeled by:

[[var[τ ]]]W = (Vτ → [[comm]]W ) × [[exp[τ ]]]W

[[var[τ ]]]h = λ(a, e).(λv.[[comm]]h(av), [[exp[τ ]]]he).

This formulation is exactly as in [11], although the underlying interpretations of comm and exp[τ ] are
different.

5. SEMANTICS OF PHRASES

A type environment π determines a functor [[π ]] as an indexed product. A member u of [[π ]]W is an
environment mapping identifiers to values of the appropriate type: if π (ι) = θ then uι ∈ [[θ ]]W .

When π � P : θ is a valid judgement, P denotes a natural transformation [[P]] from [[π ]] to [[θ ]]. That
is, for all environments u ∈ [[π ]]W , whenever h : W → W ′, [[θ ]]h([[P]]W u) = [[P]]W ′([[π ]]hu). This is
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expressed by commutativity of the following diagram for all W ′ and all h : W → W ′:

[[π ]]W ′

[[π ]]W [[θ ]]W

[[θ ]]W ′✲
[[P]]W ′

❄

[[θ ]]h

✲[[P]]W

❄

[[π ]]h

We provide a denotational description of the semantics, beginning with the definitions for the simple
shared-variable language constructs, adapting the definitions of [3] to the functor-category setting. In
the following semantic clauses, assume that π � P : θ and u ranges over [[π ]]W . In each case naturality
is easy to verify, assuming naturality for the meanings of immediate subphrases.

5.1. Expressions

We omit the semantic clauses for expressions, except for two representative cases to illustrate the use
of expression traces.

• The expression 1 always evaluates to the corresponding integer value, even if the state changes
during evaluation:

[[1]]W u = {(w, 1) | w ∈ W }† = {(ρ, 1) | ρ ∈ W +}.

• The following clause specifies that addition is sequential and evaluates its arguments from left
to right:

[[E1 + E2]]W u = {(ρ1ρ2, v1 + v2) | (ρ1, v1) ∈ [[E1]]W u & (ρ2, v2) ∈ [[E2]]W u}†
∪ {ρ1ρ2 | ∃v1. (ρ1, v1) ∈ [[E1]]W u & ρ2 ∈ [[E2]]W u ∩ W ω}†
∪ {ρ ∈ W ω | ρ ∈ [[E1]]W u}†.

Note that this interpretation invalidates algebraic laws such as E1 + E2 = E2 + E1, which hold in
sequential Algol but fail in the parallel setting with this nonatomic sequential form of addition. Other
interpretations are also possible, such as a parallel nonatomic form of addition for which the commutative
law does hold.

Let �W : W → W × W denote the diagonal function: �W (w) = (w, w). This may be used to coerce
expression traces into command-like traces in cases (such as assignment, or conditional) where a
command has a subphrase of expression type.

5.2. Atomic Commands and Expressions

The semantics of atomic phrases is standard, essentially as in the Reynolds–Oles semantics of expres-
sions and commands in sequential Algol. The main difference is that atomic phrases always terminate,
so that we work with total functions rather than partial. When convenient we will identify the function
denoted by an atomic phrase with its graph, and we will also regard this graph as a set of “singleton”
traces, viewing for example a pair (w, w′) as a command trace of length 1.

• Whenever π � P : atom we have [[P]]W u ∈ W → W . For example, when P1 and P2 are atomic
commands we define

[[P1; P2]]W u = [[P2]]W u ◦ [[P1]]W u.
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• Whenever π � E : atom[τ ] and u ∈ [[π ]]W we have [[E]]W u ∈ W → Vτ . For example, when
E1 and E2 are atomic expressions

[[E1 + E2]]W u = {(w, v1 + v2) | (w, v1) ∈ [[E1]]W u & (w, v2) ∈ [[E2]]W u}.

Obviously atomic addition is commutative.

Note that atomic commands are also commands: when π � P : atom is valid, so is π � P : comm.
The atomic semantics of P is related to its trace semantics in the expected way : the atomic semantics
of P is determined by the traces of length 1. Thus

[[P : atom]]W u = {(w, w′) | (w, w′) ∈ [[P : comm]]W u}.

A similar relationship holds for atomic expressions:

[[E : atom[τ ]]]W u = {(w, v) | (w, v) ∈ [[E : exp[τ ]]]W u}.

5.3. Skip

skip has only finite traces consisting of stuttering steps:

[[skip]]W u = {(w, w) | w ∈ W }†
= {(w0, w0)(w1, w1) · · · (wn, wn) | n ≥ 0 & ∀i.wi ∈ W }
= {(w, w) | w ∈ W }+.

To show naturality of this definition, consider a morphism ( f, Q) : W → W ′. We have

[[comm]]( f, Q)([[skip]]W u) = [[comm]]( f, Q){(w, w) | w ∈ W }+
= ([[comm]]( f, Q){(w, w) | w ∈ W })+
= {(w′, w′) | w′ ∈ W ′}+
= [[skip]]W ′([[π ]]( f, Q)u)

because f puts each Q-class in bijection with W and stuttering steps obviously project back to stuttering
steps.

5.4. Assignment

We specify a nonatomic interpretation for assignment, in which the source expression is evaluated
first:

[[X := E]]W u = {(map�W ρ)β | (ρ, v) ∈ [[E]]W u & β ∈ fst([[X ]]W u)v}†
∪ {map�W ρ | ρ ∈ [[E]]W u ∩ W ω}†.

Note the use of map �W to convert expression traces into command-like traces.
For instance, the assignment x := x + 1, interpreted at world W × Vint in an environment u in which

x corresponds to the Vint component of state, has the traces

[[x := x + 1]](W × Vint)u = {((w0, v0), (w0, v0))((w1, v1), (w1, v0 + 1)) | w0, w1 ∈ W & v0, v1 ∈ Vint}†,

showing the potential for interruption after evaluation of the source expression x + 1 but before the
update to the target variable. Closure under mumbling implies that the command also has traces of the
form ((w, v), (w, v + 1)), representing execution without interruption. In addition, closure permits
the insertion of finitely many stuttering steps.
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5.5. Sequential Composition

Sequential composition corresponds to concatenation of traces:

[[P1; P2]]W u = {α1α2 | α1 ∈ [[P1]]W u & α2 ∈ [[P2]]W u}†.

It is convenient to introduce a semantic sequencing construct: for arbitrary trace sets T1 and T2 we define
T1; T2 = (T1 · T2)†. Thus [[P1; P2]]W u = [[P1]]W u; [[P2]]W u.

Naturality of this definition follows because for all trace sets T1 and T2 over W and all morphisms
h : W → W ′ we have [[comm]]h(T1; T2) = ([[comm]]hT1); ([[comm]]hT2).

5.6. Parallel Composition

Parallel composition of commands corresponds to fair interleaving of traces. For each set A we define
the following subsets of A∞ × A∞ × A∞,

bothA = {(α, β, αβ), (α, β, βα) | α, β ∈ A+}
oneA = {(α, ε, α), (ε, α, α) | α ∈ A∞}

fairmergeA = both∗
A · oneA ∪ bothω

A,

where ε represents the empty sequence and we use the obvious extension of the concatenation operation
on traces to sets of triples of traces:

t0 · t1 = {(α0α1, β0β1, γ0γ1) | (α0, β0, γ0) ∈ t0 & (α1, β1, γ1) ∈ t1}.

Similarly we use the obvious extensions of the Kleene iteration operators on traces. Thus, for instance,
both∗

A is the set of all triples obtained by concatenating together a finite sequence of triples from bothA.7

Intuitively, fairmergeW×W is the set of triples (α, β, γ ) of traces over W such that γ is a fair merge
of α and β. Note that fairmerge satisfies the following “natural” property: for all functions f : A → B,

(α, β, γ ) ∈ fairmergeA ⇒ (map f α, map fβ, map f γ ) ∈ fairmergeB .

We then define

[[P1 ‖ P2]]W u = {α | ∃(α1, α2, α) ∈ fairmergeW×W · α1 ∈ [[P1]]W u & α2 ∈ [[P2]]W u}†.

Again it will be convenient to introduce a semantic parallel composition operator: for trace sets T1 and
T2 over W let T1 ‖ T2 = {α | ∃(α1, α2, α) ∈ fairmergeW×W . α1 ∈ T1 & α2 ∈ T2}†. Naturality of [[P1 ‖ P2]]
follows from naturality of [[P1]] and [[P2]], since

[[comm]]h(T1 ‖ T2) = ([[comm]]hT1) ‖ ([[comm]]hT2),

for all trace sets T1, T2 over W and all morphisms h : W → W ′.

5.7. Local Variables

A trace of new[τ ] ι in P at world W should be constructed from an execution of P in the expanded
world W × Vτ , with ι bound to a fresh variable of type τ , during which P may change this variable’s
value but no other command has access to it. Only the changes to the W -component of the world should
be reflected in the overall trace. We say that a trace is interference-free iff for each pair of consecutive
steps (wn, w

′
n) and (wn+1, w

′
n+1) in the trace we have w′

n = wn+1. Thus the traces of new[τ ] ι in P in

7 Equivalently fairmergeA can be characterized as the greatest fixed point of the monotone function F(t) = bothA · t ∪ oneA on
the complete lattice ℘(A∞ × A∞ × A∞). The least fixed point of this functional is the subset of triples (α, β, γ ) from fairmergeA
in which one or both of α and β is finite. The greatest fixed point also includes the cases where α and β are both infinite.
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world W and environment u should have the form map(fst × fst)α, where α is a trace of P in world
W × Vτ (and suitably adjusted environment) such that map(snd × snd)α is interference-free:

[[new[τ ] ι in P]]W u = {map(fst × fst)α | α ∈ [[P]](W × Vτ )([[π ]](− × Vτ )u | ι : (a, e)) &

map(snd × snd)α interference-free},

where the “fresh variable” (a, e) ∈ [[var[τ ]]](W × Vτ ) is defined by:

a = λv′ : Vτ .{((w, v), (w, v′)) | w ∈ W & v ∈ Vτ }†
e = {((w, v), v) | w ∈ W & v ∈ Vτ }†.

5.8. Conditional

For conditional phrases we define by induction on θ , for t ∈ [[exp[bool]]]W and p1, p2 ∈ [[θ ]]W , an
element if t then p1 else p2 of [[θ ]]W.

• For θ = exp[τ ], if t then p1 else p2 is

{ρρ1 | (ρ,tt) ∈ t & ρ1 ∈ p1}† ∪
{ρρ2 | (ρ,ff) ∈ t & ρ2 ∈ p2}† ∪
{ρ | ρ ∈ t ∩ W ω}.

• For θ = comm, if t then p1 else p2 is

{(map�W ρ)α1 | (ρ,tt) ∈ t & α1 ∈ p1}† ∪
{(map�W ρ)α2 | (ρ,ff) ∈ t & α2 ∈ p2}† ∪
{map�W ρ | ρ ∈ t ∩ W ω}.

• For θ = (θ0 → θ1), (if t then p1 else p2)(−) is the indexed family given by

(if t then p1 else p2)(h) = λp. if [[exp[bool]]]ht then p1(h)p else p2(h)p.

• For θ = var[τ ] we define

if t then (a1, e1) else (a2, e2) = (λv : Vτ . if t then a1v else a2v, if t then e1 else e2).

We then define

[[if B then P1 else P2]]W u = if [[B]]W u then [[P1]]W u else [[P2]]W u.

Naturality is easy to check, by induction on the type.

5.9. Conditional Atomic Action

We give a “busy wait” interpretation to an await command: if the test expression B evaluates to tt
it executes the body P without allowing interference; if the test evaluates to ff it waits and tries again;
if evaluation of the test diverges so does the await command.

[[await B then P]]W u = {(w, w′) ∈ [[P]]W u | (w,tt) ∈ [[B]]W u}†
∪ {(w, w) | (w,ff) ∈ [[B]]W u}ω ∪ {(w, w)ω | wω ∈ [[B]]W u}†.

Recall that P is assumed to be an atomic command, so that [[P]]W u is a total function from W to W
whose graph determines a set of singleton traces that represent interference-free executions of P. In
particular [[await true then P]]W u = ([[P : atom]]W u)†.



132 STEPHEN BROOKES

If the test expression B always terminates, as is common, for example when B is atomic, the third
part of the clause becomes vacuously empty.

5.10. While-Loops

The traces of while B do C are obtained by iteration. Define

[[B]]ttW u = {map�W ρ | (ρ,tt) ∈ [[B]]W u} ∪ {map�W ρ | ρ ∈ [[B]]W u ∩ W ω}
[[B]]ffW u = {map�W ρ | (ρ,ff) ∈ [[B]]W u} ∪ {map�W ρ | ρ ∈ [[B]]W u ∩ W ω}.

Then we define

[[while B do C]]W u = ([[B]]ttW u; [[C]]W u)∗; [[B]]ffW u ∪ ([[B]]ttW u; [[C]]W u)ω.

This trace set can also be characterized as the closure of the greatest fixed point of the functional

F(t) = [[B]]ttW u · [[C]]W u · t ∪ [[B]]ffW u,

which operates on the complete lattice of arbitrary trace sets over W , ordered by set inclusion. Note that
this functional is “constructive,” in the intuitive sense that for each n ≥ 0, the first n + 1 steps of traces
in F(t) are uniquely determined by the first n steps of traces in t , because of the “stuttering” caused by
evaluating B.

The need to take the closure only after constructing the fixed point is shown by the special case of
the loop while true do skip. This command does nothing but stutter forever, so that we would expect

[[while true do skip]]W u = {(w, w) | w ∈ W }ω.

Both the iterative formula given above and the greatest fixed point of F agree with this. However, the
closure-preserving functional

G(t) = [[B]]ttW u; [[C]]W u; t ∪ [[B]]ffW u,

interpreted on closed trace sets, coincides with the identity function when B is true and C is skip.
The greatest fixed point of G is therefore the set of all traces over W , which does not agree with the
operational characterization.

Notice also that taking the least fixed point of F would yield only the finite traces of the loop, ignoring
any potential for infinite iteration.

5.11. Recursion

The above discussion of while-loops showed the need to take the greatest fixed point of a functional
on arbitrary trace sets and pointed out the role of stuttering in ensuring that divergence is modeled
accurately. Similar needs arise in interpreting more general recursive programs.

Consider for example the command rec ι.ι, which simply diverges without ever changing the state,
no matter how its environment tries to interfere. Its trace set should therefore consist of the infinite
stuttering sequences, exactly as for the divergent loop considered above:

[[rec ι.ι]]W u = {(w, w) | w ∈ W }ω.

This trace set is not the greatest fixed point of the identity function on [[comm]]W, as might be suggested
by the syntactic form of the command. Instead it can be characterized as (the closure of) the greatest
fixed point of the functional

F = λc.{(w, w)α | w ∈ W & α ∈ c},
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operating on the complete lattice [comm]W = ℘((W × W )∞) of arbitrary trace sets; intuitively, the
extra initial stutter mimics an operational step in which the recursion is unwound. Obviously any fixed
point of F contains only infinite traces; moreover the initial stutter inserted by F permits a proof by
induction that for all n ≥ 0 and all trace sets c the first n steps of each trace in Fn(c) are stutters. Thus
the greatest fixed point of F is

⋂∞
n=0 Fn((W × W )∞) = {(w, w) | w ∈ W }ω as claimed. This trace set

is already closed under stuttering and mumbling, so it belongs to [[comm]]W = ℘†((W × W )∞). We
can therefore define [[rec ι.ι]]W u = νF . To show naturality of this definition let h : W → W ′ and let
F ′ be the functional on [comm]W ′ given by

F ′ = λc′.{(w′, w′)α′ | w′ ∈ W ′ & α′ ∈ c′},

so that [[rec ι.ι]]W ′([[π ]]hu) = νF ′ = {(w′, w′) | w′ ∈ W ′}ω. We have

[[comm]]h(νF) = [[comm]]h({(w, w) | w ∈ W }ω)

= ([[comm]]h{(w, w) | w ∈ W })ω
= {(w′, w′) | w′ ∈ W ′}ω
= νF ′,

as required for naturality. Note, however, that the successive pairs of approximations to these fixed
points are not naturally related. For instance, when h = ( f, Q) : W → W ′ is a nontrivial expansion
morphism, so that Q has more than one equivalence class,

[[comm]]h((W × W )∞) = {α′ ∈ (W ′ × W ′)∞ | α′ respects Q}
"= (W ′ × W ′)∞.

Nevertheless, the stutters induced by F and F ′ support a proof by induction that for all n ≥ 0 the first
n steps of Fn((W × W )∞) and F ′n((W ′ × W ′)∞) are naturally related, and in the limit we get full
naturality.

The discussion above relies crucially on the fact that [comm]W is a complete lattice, so that the
existence of the relevant fixed point is guaranteed by Tarski’s theorem [19]. However, the generalization
to all types is not so straightforward, since the domain [θ → θ ′]W does not possess a top element.
We can see this as follows, by considering the special case of [comm → comm]W . The obvious
order-theoretic candidate for top of this domain is the family top(−) such that for all h : W → W ′,

top(h) = λc′ : [comm]W ′. (W ′ × W ′)∞.

However, as was shown above, [comm]h does not preserve top; hence this family lacks the naturality
property required for membership in [comm → comm]W . Furthermore, the obvious natural candidate
for tophood, i.e., the family top(−) given by

top(h) = λc′ : [comm]W ′. [comm]h((W × W )∞),

is not even the order-theoretic top among the natural elements, since it does not dominate the identity
family id(h) = λc′ : [comm]W ′. c′.

Nevertheless [comm → comm]W is clearly a subdomain of the complete lattice 〈comm → comm〉W
consisting of the arbitrary families p(−) such that for all h : W → W ′, p(h) : [comm]W ′ → [comm]W ′,
i.e., the lattice obtained by relaxing the naturality requirement. The top element of this lattice is clearly
the family top(−) introduced above. A recursive phrase of this type determines a continuous functional
F on this lattice. For example, consider the divergent phrase rec ι.ι : comm → comm. Intuitively
this should denote, at world W , the procedure meaning which causes infinite stuttering whenever it is
called:

[rec ι.ι : comm → comm]W u = λh : W → W ′. λc′.{(w′, w′) | w′ ∈ W ′}ω.
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This can be characterized as (the closure of) the greatest fixed point of the functional

F = λp.λh.λc′.{(w′, w′)α′ | w′ ∈ W ′ & α′ ∈ phc′},

operating on the lattice 〈comm → comm〉W . Note that the successive approximants Fn(top) to the fixed
point are not natural and thus do not qualify for membership in [comm → comm]W . Nevertheless for
each n ≥ 0 it can be seen intuitively that Fn(top) is natural “for n steps,” and in the limit we achieve full
naturality. Thus νF ∈ [comm → comm]W , as required for this construction to make sense. Moreover,
this definition is natural, since whenever h : W → W ′ we have

[[comm → comm]]h([rec ι.ι]W u) = λh′ : W ′ → W ′′. [rec ι.ι]W u(h; h′)
= λh′ : W ′ → W ′′. {(w′′, w′′) | w′′ ∈ W ′′}ω
= [rec ι.ι]W ′([π ]hu).

We can generalize the above discussion to more general recursive phrases as follows.
Each type θ denotes a functor [θ ] from worlds to domains, defined as for [[θ ]] except that we omit the

use of closure. For each n ≥ 0, and each morphism h : W → W ′, we define a chain of approximations
[θ ]nh : [θ ]W → [θ ]W ′ whose limit is [θ ]h. For example,

[comm]n( f, Q)c = {α′ | map( f × f )α′ ∈ c & α′ respects Q for n steps}.

The semantic definitions given for [[−]] can be systematically adjusted, by dropping the use of the
closure operator (−)†, yielding a semantics [−] based on arbitrary trace sets. For example, the semantic
clause for sequential composition becomes [P1; P2]W u = [P1]W u · [P2]W u, with u interpreted as an
environment based on arbitrary trace sets. When π � P : θ is valid, [P] is a natural transformation from
[π ] to [θ ]. Moreover, [P] is nondestructive,8 in the sense that, whenever π � P : θ is valid, for all n ≥ 0
and all h : W → W ′ we have

[P]W ′ ◦ [π ]nh � [θ ]nh ◦ [P]W.

We generalize the idea of inserting an extra initial stutter to all types, inductively, obtaining for each
type θ a natural transformation stutθ from [θ ] to [θ ]. At ground types this is straightforward, as described
above for commands; at arrow types we transform a procedure meaning so as to cause an extra stutter
to occur each time the procedure is called. For example,

stutcommW c = {(w, w)α | w ∈ W & α ∈ c}
stutθ→θ ′ W p = λh : W → W ′. stutθ ′ W ′ ◦ (ph).

We then have, for all n, all h : W → W ′, and all θ ,

stutθ W ′ ◦ [θ ]nh = [θ ]n+1h ◦ stutθ W.

Hence when π � P : θ is valid the natural transformation stutθ ◦ [P] is constructive, in that for all n,
and all h : W → W ′,

(stutθ W ′ ◦ [P]W ′) ◦ [π ]nh � [θ ]n+1h ◦ (stutθ W ◦ [P]W ),

making precise the informal notion of constructivity alluded to earlier.
When π � rec ι.P : θ is valid, so that π, ι : θ � P : θ is also valid, and u ∈ [π ]W , the function

F = λp : 〈θ〉W. stutθ W ([P]W (u | ι : p))

8 Again this terminology is reminiscent of a related notion used in models of CSP[18].
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is a continuous map on the complete lattice 〈θ〉W ⊇ [θ ]W , and restricts to a function from [θ ]W to
[θ ]W . Its greatest fixed point νF belongs to [θ ]W . We therefore take

[rec ι.P]W u = νp.stutθ W ([P]W (u | ι : p).

This definition is natural, in that [θ ]h([rec ι.P]W u) = [rec ι.P]W ′([π ]hu) whenever h : W → W ′.
To show naturality, let h : W → W ′ and let F ′ be given by

F ′ = λp′ : [θ ]W ′.stutθ W ′([P]W ([[π ]]hu | ι : p′)),

so that [rec ι.P]W ′([π ]hu) = νF ′. We must show that [θ ]h(νF) = νF ′. We argue as follows.

• By definition of F ′, naturality of P , naturality of stutθ , and the fixed point property, we have

F ′([θ ]h(νF)) = stutθ W ′([P]W ′([π ]hu | ι : [θ ]h(νF)))

= stutθ W ′([θ ]h([P]W ′([π, ι : θ ]h(u | ι : νF))))

= [θ ]h(stutθ W ([P]W (u | ι : νF)))

= [θ ]h(νF),

so that [θ ]h(νF) is a fixed point of F ′. Hence [θ ]h(νF) � νF ′.
• For the converse inequality let top and top′ be the greatest elements of 〈θ〉W and 〈θ〉W ′,

respectively. We show first by induction that for all k ≥ 0 we have

F ′k(top′) � [θ ]0h(Fk(top)),

from which it follows that νF ′ � [θ ]0h(νF). Then we show, using the fixed point property and
constructivity of stutθ ◦ [P], that whenever νF ′ � [θ ]nh(νF) we have

νF ′ = F ′(νF ′) � F ′([θ ]nh(νF))

� [θ ]n+1h(F(νF))

= [θ ]n+1h(νF).

Thus by induction we have for all n ≥ 0, νF ′ � [θ ]nh(νF), and hence νF ′ � [θ ]h(νF) as required.

We can generalize the closure operator (−)† to all types inductively, obtaining for each type θ a
natural transformation θ † : [θ ] → [[θ ]]. For example, comm†W is just the closure operator on trace sets
over W , exactly as before; and closure at an arrow type is defined by

(θ → θ ′)†W p = λh : W → W ′. λx : [[θ ]]W ′. θ ′†W ′(phx).

Whenever π � P : θ is valid, [P] respects closure, in that for all u0, u1 ∈ [π ]W ,

π †W (u0) = π †W (u1) ⇒ θ †([P]W u0) = θ †W ([P]W u1).

In other words, the closure of [P]W u depends only on the closure of u. Thus it makes sense to define

[[rec ι.P]]W u† = θ †W ([rec ι.P]W u),

where u is any environment in [π ]W with closure u†.
Indeed with this as the interpretation of recursion the closed trace sets semantic function [[−]] can be

obtained as the quotient of [−]: whenever π � P : θ is valid, we have [[P]]W (π †u) = θ †W ([P]W u).
Since closure “absorbs” initial stuttering, i.e., for all types θ we have θ † ◦ stutθ = θ †, the validity of the
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usual unrolling rule for recursive phrases follows:

[[rec ι.P]]W u† = θ †W (νp. stutθ W ([P]W (u | ι : p)))

= θ †W (stutθ W ([P]W (u | ι : [rec ι.P]W u)))

= θ †W ([P](u | ι : [rec ι.P]W u))

= [[P]]W (u† | ι : [[rec ι.P]]W u).

The Appendix contains further details.
It is easy to check that this semantics for recursion does indeed prescribe the operationally expected

meanings for the divergent phrase rec ι.ι, at type comm and at type comm → comm. Similarly the
meaning ascribed to the divergent integer expression rec n.n + 1 at world W is W ω, again consistent
with operational intuition: no matter what state changes may occur as the result of parallel activity the
expression evaluation never stops.

It is also easy to verify that the meaning given to

rec ι. if B then C ; ι else skip

coincides with the semantics given earlier for the loop while B do C , when ι does not occur free in C .

5.12. λ-Calculus

The semantic clauses for identifiers, abstraction, and application are standard:

[[ι]]W u = uι

[[λι : θ.P]]W uh = λa : [[θ ]]W ′.[[P]]W ′([[π ]]hu | ι : a)

[[P(Q)]]W u = [[P]]W u(idW )([[Q]]W u),

where, in the clause for abstraction, h ranges over morphisms from W to W ′. The clauses for pairing
and projections are also standard, using the cartesian structure of the functor category:

[[〈P0, P1〉]]W u = ([[P0]]W u, [[P1]]W u)

[[fst P]]W u = fst([[P]]W u)

[[snd P]]W u = snd([[P]]W u).

6. REASONING ABOUT PROGRAM BEHAVIOR

The semantics validates a number of natural laws of program equivalence, including (when ι does
not occur free in P ′):

new[τ ] ι in P ′ = P ′

new[τ ] ι in (P ‖ P ′) = (new[τ ] ι in P) ‖ P ′

new[τ ] ι in (P; P ′) = (new[τ ] ι in P); P ′.

Similarly the semantics validates laws such as the following, which show that the order in which local
variables are declared is irrelevant:

new[τ1] ι1 in new[τ2] ι2 in P = new[τ2] ι2 in new[τ1] ι1 in P

new[τ ] ι1 in new[τ ] ι2 in P(ι1, ι2) = new[τ ] ι1 in new[τ ] ι2 in P(ι2, ι1).

These laws amount to naturality (of the meaning of P) with respect to the natural isomorphism of worlds
(W × Vτ1 ) × Vτ2 and (W × Vτ2 ) × Vτ1 , this being a composition of suitably chosen swap and assoc
isomorphisms as discussed earlier.
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The semantics also validates familiar laws of functional programming, such as β-equivalence and
the usual recursion law

(λι : θ.P)P ′ = P[P ′/ι]

rec ι.P = P[rec ι.P/ι],

where P[P ′/ι] is the phrase obtained by replacing every free occurrence of ι in P by P ′, with renaming
when necessary to avoid capture. In fact these equivalences follow easily from the semantic definitions
when combined with the following substitution theorem: whenever π � P : θ is valid, π (ι) = θ ′ and
π � P ′ : θ ′ is valid, and u ∈ [[π ]]W ,

[[P[P ′/ι]]]W u = [[P]]W (u | ι : [[P ′]]W u).

As usual the substitution theorem may be proved by structural induction on the derivation of π � P : θ .
Similarly the model validates laws relating the conditional construct with functional abstraction and

application:

(if B then P1 else P2)(P) = if B then P1(P) else P2(P)

λι : θ.if B then P1 else P2 = if B then λι : θ.P1 else λι : θ.P2 if ι not free in B,

and the semantics validates laws familiar from imperative programming, such as

(if B then X1 else X2) := E = if B then X1 := E else X2 := E

while B do C = if B then C ; while B do C else skip

skip‖C = C‖skip = C

skip; C = C ; skip = C

Our semantics also equates while true do skip and await false then skip, because of the busy-wait
interpretation of conditional atomic actions.

The semantics supports compositional reasoning about safety and liveness properties. For instance,
it is possible to show the correctness of the mutual exclusion procedure discussed earlier and to show
the equivalence of the workers and barrier procedures.

For a more complex example involving parallelism, consider the following implementation of a
synchronization “object,” generalizing the barrier synchronization example mentioned earlier:

boolean flag0, flag1;

procedure synch(x, y); (x := true; await y; y := false);

flag0 := false; flag1 := false;

P(synch( flag0, flag1), synch( flag1, flag0))

Here P is a free identifier of type (comm × comm → comm). Since P is a nonlocal identifier, the only
way for this phrase to access the flag variables is by one of the two prepackaged ways to call synch.
Intuitively, the behavior of this phrase should remain identical if we use a “dualized” implementation
of the flags, interchanging the roles of the two truth values. Thus, this phrase should be equivalent to

boolean flag0, flag1;

procedure synch(x, y); (x := false; await ¬y; y := true);

flag0 := true; flag1 := true;

P(synch( flag0, flag1), synch( flag1, flag0))

This is an example of the principle of representation independence. Our semantics for Parallel Algol
validates this equivalence, by virtue of the existence of an isomorphism of worlds that relates the two
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implementations. To be specific, for all worlds W there is an isomorphism

dual : W × Vbool → W × Vbool

dual = (λ(w, b).(w, ¬b), (W × Vbool)2)

Naturality of the meaning of P with respect to this isomorphism is enough to establish the desired
equivalence. Note that this is an equivalence between two terms containing a free identifier. In essence,
no matter how the “rest” of the program is filled in, provided it is only allowed access to the two flags
by calling one of the supplied procedures, the two implementations are indistinguishable. For example,
if we substitute for P the procedure

λ(left, right). (while true do (c0; left) ‖ while true do (c1; right))

we recover the barrier synchronization example discussed earlier.
This synchronizer object works well in the above context, but less satisfactorily in cases where several

threads can compete. For example, consider what can happen if we use for P the procedure

λ(left, right).(left; c0) ‖ (left; c1) ‖ (right; c2; right; c3)

with the intention that the resulting program be equivalent to

((c0 ‖ c2); (c1 ‖ c3)) or ((c1 ‖ c2); (c0 ‖ c3)),

where or is interpreted as nondeterministic choice.9 Intuitively this equivalence may fail because it
is possible for two threads concurrently to execute synch( flag0, flag1) to completion, leading to the
simultaneous parallel activity of c0, c1, and c2.

A more robust synchronizer can be defined as follows, using a conditional atomic action to guarantee
mutual exclusion between such competitor threads:

boolean flag0, flag1;

procedure synch(x, y); (await ¬x then x := true; await y then y := false);

flag0 := false; flag1 := false;

P(synch( flag0, flag1), synch( flag1, flag0))

When P is instantiated as above the resulting program does behave as intended. This more sophisticated
synchronizer object also has an equivalent dualized version (in which false and true are interchanged
systematically).

Although the above semantics validates many laws of program equivalence related to locality in par-
allel programming, there remain equivalences for which we can give convincing informal justification,
yet which are not valid in this model. Consider for example the phrase

new[int] x in (x := 0; P(x := x + 1)),

where P is a free identifier of type comm → comm. No matter how P is instantiated this should have the
same effect as P(skip). As observed by O’Hearn and Tennent, this equivalence holds for the sequential
language yet is not validated by the sequential possible worlds semantics. Indeed, the equivalence should
still hold in the parallel setting, because the two phrases obviously treat the nonlocal part of the state
the same way. This argument may be formalized by establishing an invariant relationship between the
states arising during executions of the two phrases; however, the preservation of this invariant does not
follow immediately from naturality of [[P]].

9 It is straightforward to add this construct to the programming language. The corresponding semantic clause is simply
[[P1 or P2]]W u = [[P1]]W u ∪ [[P2]]W u.
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Similarly, and exactly as in the Reynolds–Oles semantics of Idealized Algol, our semantics typically
fails to support proofs of representation independence involving non-isomorphic representations. This
is illustrated by the following example, adapted from [9]. Consider an abstract “switch” object, initially
“off,” with two capabilities which can be thought of as a method for turning the switch “on” and a test
to see if the switch has been turned on. One implementation uses a boolean variable:

boolean z;
procedure flick; (z := true);
procedure on; return z;

z := false;
P( flick, on)

Another implementation uses an integer variable, and treats all positive integers as “on,” zero as “off”:

integer z;
procedure flick; (z := z + 1);
procedure on; return (z > 0);

z := 0;
P( flick, on)

Intuitively, even if P is allowed to use parallelism, and even though assignment is not assumed to be
atomic, these two phrases will always be equivalent. Yet the possible worlds semantics fails to validate
this equivalence. Informally an argument supporting the equivalence can be given, by establishing an
invariant relation between the states produced during execution of the two phrases. The problem is that
naturality is not a sufficiently stringent requirement on phrase denotations, since it does not imply the
kind of relation-preserving properties necessary to justify equivalences such as this.

For an example exploiting parallelism, we remark that there is also a non-isomorphic implementation
of our synchronizer object, in which flags take on successive integer values and the parity of a flag is
used to indicate availability:

integer flag0, flag1;

procedure synch(x, y); (await even(x) then x := x + 1; await odd(y) then y := y + 1);

flag0 := 0; flag1 := 0;

P(synch ( flag0, flag1),

synch( flag1, flag0))

The equivalence of this and the above robust synchronizer cannot be proven in the model given so far.

7. RELATIONAL PARAMETRICITY

In response to this inadequacy O’Hearn and Tennent [9] formulated a more refined semantics for
Idealized Algol embodying relational parametricity, in which values of procedure type are constrained
by certain relation-preservation properties that guarantee good behavior. This parametric model of
Idealized Algol then supports relational reasoning of the kind needed to establish program equivalences
based on representation independence. We will show how to generalize their approach to the shared-
variable setting. We first summarize some background material from [9].

7.1. Relations between Worlds

We introduce a category whose objects are relations R between worlds; we write R : W ↔ W ′

or R ⊆ W × W ′. For each world W we let �W : W ↔ W denote the identity relation on W ; i.e.,
�W = {(w, w) | w ∈ W }.
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A morphism from R : W0 ↔ W1 to S : X0 ↔ X1 is a pair (h0 : W0 → X0, h1 : W1 → X1) of mor-
phisms in W, such that, letting h0 = ( f0, Q0) and h1 = ( f1, Q1),

• for all (x0, x1) ∈ S, ( f0x0, f1x1) ∈ R;

• for all (x0, x1) ∈ S, x ′
0 ∈ X0 and x ′

1 ∈ X1, if (x ′
0, x0) ∈ Q0 & (x ′

1, x1) ∈ Q1 then (x ′
0, x ′

1) ∈ S.

Loosely, we refer to these properties as saying that h0 and h1 respect R and S. We represent such a
morphism in the following diagrammatic form:

W1

W0

✻
R

❄
X1

X0

✻
S

❄

✲h0

✲
h1

The identity morphism from R to R corresponds to the diagram

W1

W0

✻
R

❄
W1

W0

✻
R

❄

✲idW0

✲
idW1

Composition in this category of relations is defined in the obvious way, building on composition in
the category of worlds: when (h0, h1) : R ↔ R′ and (h′

0, h′
1) : R′ ↔ R′′ the composite morphism is

(h0, h1); (h′
0, h′

1) = (h0; h′
0, h1; h′

1).

7.2. Parametric Functors and Natural Transformations

For each type θ we define a parametric functor [[θ ]] from worlds to domains, i.e., a functor [[θ ]] from
W to D equipped with an action on relations, such that:

• whenever R : W0 ↔ W1, [[θ ]]R : [[θ ]]W0 ↔ [[θ ]]W1;

• for all W , [[θ ]]�W = �[[θ ]]W ;

• whenever

W1

W0

✻
R

❄
X1

X0

✻
S

❄

✲h0

✲
h1

holds then so does

[[θ ]]W1

[[θ ]]W0

✻
[[θ ]]R

❄
[[θ ]]X1,

[[θ ]]X0

✻
[[θ ]]S

❄

✲[[θ ]]h0

✲
[[θ ]]h1



THE ESSENCE OF PARALLEL ALGOL 141

by which we mean that

(d0, d1) ∈ [[θ ]]R ⇒ ([[θ ]]h0d0, [[θ ]]h1d1) ∈ [[θ ]]S.

The first two conditions above say that [[θ ]] constitutes a “relator” [5, 1]. The last condition is a para-
metricity constraint.

When π � P : θ is valid [[P]] is a parametric natural transformation from [[π ]] to [[θ ]], i.e., a natural
transformation obeying the following parametricity constraints: whenever R : W0 ↔ W1, (u0, u1) ∈ [[π ]]
R ⇒ ([[P]]W0u0, [[P]]W1u1) ∈ [[θ ]]R. This property may be expressed in diagram form as follows:

[[π ]]W1

[[π ]]W0 [[θ ]]W0

[[θ ]]W1
✲

[[P]]W1

❄

[[θ ]]R

✻

✲[[P]]W0

❄

[[π ]]R

✻

Parametric natural transformations compose in the usual pointwise manner. The category having all
parametric functors from W to D as objects, and all parametric natural transformations as morphisms,
is cartesian closed [9].

Hence we may use the cartesian closed structure of this category in a perfectly standard way to
interpret the λ-calculus fragment of our language, exactly along the lines developed in [9]. To adapt
these ideas to the parallel setting, we must give trace-theoretic interpretations to types comm, var[τ ],
and exp[τ ]. We give details of only comm and exp[τ ], the definitions for var[τ ] then being derivable.
We also suppress the details of atomic types, since their treatment is standard.

7.3. Commands

We define [[comm]]W and [[comm]]h as before. To define [[comm]]R : [[comm]]W0 ↔ [[comm]]W1,
when R : W0 ↔ W1, let map(R) be the obvious extension of R to traces of the same length, so that
map(R) ⊆ W ∞

0 × W ∞
1 . We then define

(c0, c1)∈ [[comm]]R ⇔
(∀α0 ∈ c0. ∀ρ1. (map fst α0, ρ1) ∈ map(R) ⇒
∃α1∈ c1. map fst α1 = ρ1 & (map snd α0, map snd α1) ∈ map(R))

& (∀α1∈ c1. ∀ρ0. (ρ0, map fst α1) ∈ map(R) ⇒
∃α0∈ c0. map fst α0 = ρ0 & (map snd α0, map snd α1) ∈ map(R)).

This is intended to capture the following intuition: [[comm]]R relates two command meanings iff,
whenever started in states related by R and interrupted in related ways, the commands respond in
related ways. This, informally, expresses the idea that a trace set represents a (nondeterministic) state-
transformation “extended in time.”

It is straightforward to verify that [[comm]] is indeed a parametric functor. In particular, since map�W

is the identity relation on W ∞, and two traces α0 and α1 over W ×W are equal iff map fst α0 = map fst α1

and map snd α0 = map snd α1, it is easy to see that

(c0, c1) ∈ [[comm]]�W ⇔ c0 = c1,

as required. Now suppose (h0, h1) : R → S and (c0, c1) ∈ [[comm]]R. We must show that

([[comm]]h0c0, [[comm]]h1c1) ∈ [[comm]]S.

This follows by a routine calculation, using the fact that the morphisms h0 and h1 respect the relations
R and S.
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As an example to illustrate this definition, suppose x is a variable of data type int corresponding to
the Vint component in states of shape W ×Vint. Let c0 and c1 be the trace sets corresponding to x := x +1
and x := x − 1, respectively; i.e.,

c0 = {((w0, v0), (w0, v0))((w1, v1), (w1, v0 + 1)) | w0, w1 ∈ W & v0, v1 ∈ Vint}†
c1 = {((w0, v0), (w0, v0))((w1, v1), (w1, v0 − 1)) | w0, w1 ∈ W & v0, v1 ∈ Vint}†.

Let R be the relation on W × Vint given by

(w, v)R(w′, v′) ⇔ w = w′ & v = −v′.

Then (c0, c1) ∈ [[comm]]R.
As a further example, let c ∈ [[comm]]W and define the relation R : W ↔ W × V by

wR(w′, v) ⇔ w = w′.

Then (c, [[comm]](− × V )c) ∈ [[comm]]R.
Note also that the above definition of [[comm]]R makes sense even when applied to arbitrary trace

sets; i.e., closure is not crucial for the definition. Clearly we have

(c0, c1) ∈ [[comm]]R ⇒ (c†0, c†1) ∈ [[comm]]R.

We also have

(p0, q0) ∈ [[comm]]R & (p1, q1) ∈ [[comm]]R ⇒ (p0; p1, q0; q1) ∈ [[comm]]R

(p0, q0) ∈ [[comm]]R & (p1, q1) ∈ [[comm]]R ⇒ (p0 ‖ p1, q0 ‖ q1) ∈ [[comm]]R

so that sequential and parallel composition (and hence also iteration) interact smoothly with the action
of [[comm]] on relations.

7.4. Expressions

For expressions, we define [[exp[τ ]]]W and [[exp[τ ]]]h as before. When R : W0 ↔ W1 we define

(e0, e1) ∈ [[exp[τ ]]]R ⇔
(∀ρ0 ∈ e0 ∩ W ω. ∀ρ1. (ρ0, ρ1) ∈ map(R) ⇒ ρ1 ∈ e1

& ∀(ρ0, v) ∈ e0. ∀ρ1. (ρ0, ρ1) ∈ map(R) ⇒ (ρ1, v) ∈ e1)

& (∀ρ1 ∈ e1 ∩ W ω. ∀ρ0. (ρ0, ρ1) ∈ map(R) ⇒ ρ0 ∈ e0

& ∀(ρ1, v) ∈ e1. ∀ρ0. (ρ0, ρ1) ∈ map(R) ⇒ (ρ0, v) ∈ e0).

Intuitively, two expression meanings are related if when evaluated in related ways they both terminate
with the same answer or both fail to terminate.

As an example, suppose again that x is a variable of type int corresponding to the Vint component in
states of shape W × Vint. Using the same relation as before, so that

(w, v)R(w′, v′) ⇔ w = w′ & v = −v′,

and assuming that u is a suitable environment, we have

([[x]](W × Vint)u, [[−x]](W × Vint)u) ∈ [[exp[int]]]R.



THE ESSENCE OF PARALLEL ALGOL 143

7.5. Semantic Definitions

The possible worlds semantics given above can be adapted to the parametric setting, provided we show
that each phrase denotes a parametric natural transformation. This is straightforward, using structural
induction. For instance, it is easy to see that when R : W ↔ W ′, parametricity of [[skip]] amounts to
the fact that

({(w, w) | w ∈ W }†, {(w′, w′) | w′ ∈ W ′}†) ∈ [[comm]]R,

which holds obviously. Similarly, for the parallel construct the parametricity of [[P1 ‖ P2]] follows from
parametricity of [[P1]] and [[P2]], since interleaving of trace sets respects [[comm]]R.

Recursion again requires a careful treatment. We define [[rec ι.P]] as the closure of [rec ι.P], making
use of a parametric version of the semantics [−] based on arbitrary trace sets, defined as before but
with suitable modifications to fit the relational setting. Also as before, we recover the closed trace set
semantics [[−]] as the quotient of [−] with respect to the equivalence induced by taking closure. We again
define [rec ι.P]W u = νp.stutθ W ([P]W (u | ι : p)), where the fixed point is taken over the complete
lattice 〈θ〉W extending [θ ]W . The proof that this fixed point belongs to the subset [θ ]W , and that this
semantic definition is natural, depends as before on constructivity and on naturality of [P]. We also
need to show that this is a parametric definition, i.e., for all R : W0 ↔ W1, whenever (u0, u1) ∈ [π ]R,

([rec ι.P]W0u0, [rec ι.P]W1u1) ∈ [θ ]R.

Let F0 and F1 be given by:

F0(p0) = stutθ W0([P]W0(u0 | ι : p0)),

F1(p1) = stutθ W1([P]W1(u1 | ι : p1)).

By assumption on P , whenever (p0, p1) ∈ [θ ]R it follows that (F0(p0), F1(p1)) ∈ [θ ]R. Consequently
the functional F : [θ ]W0 × [θ ]W1 → [θ ]W0 × [θ ]W1 given by

F(p0, p1) = (F0(p0), F1(p1))

is a continuous function on a complete lattice, and maps the subset [θ ]R into itself. Let top0 and top1
be the top elements of 〈θ〉W0 and 〈θ〉W1, respectively. One can then show, by induction on n, that for
all n ≥ 0 we have (Fn

0 (top0), Fn
1 (top1) ∈ [θ ]R. From this it follows easily that (νF0, νF1) ∈ [θ ]R, as

required, by an obvious completeness property of [θ ]R.

7.6. Examples of Parametric Reasoning

In addition to the laws and examples listed earlier, the relationally parametric semantics also validates
the problematic equivalence discussed above:

new[int] ι in (ι := 0; P(ι := ι + 1)) = P(skip),

where P is a free identifier of type comm → comm. This can be shown with the help of the relation
R : W ↔ W × Vint given by

wR(w′, v) ⇔ w = w′ ∈ W & v ∈ Vint.

It is easy to show that when u is a suitable environment in [[π ]]W and u′ binds ι to the “fresh variable”
corresponding to the Vint component of state we get

([[skip]]W u, [[ι := ι + 1]](W × Vint)u
′) ∈ [[comm]]R.

The desired result follows by parametricity of [[P]].
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Similarly, the parametric semantics validates the following equivalence,

new[int] ι in (ι := 1; P(ι)) = P(1),

when P is a free identifier of type exp[int] → comm.
Recall that we showed earlier that, when u is an environment in which x denotes the variable

corresponding to the Vint component in states of shape W × Vint, and R is the relation

(w, v)R(w′, v′) ⇔ w = w′ & v = −v′,

we have

([[x := x + 1]](W × Vint)u, [[x := x − 1]](W × Vint)u) ∈ [[comm]]R

([[x]](W × Vint)u, [[−x]](W × Vint)u) ∈ [[exp[int]]]R.

It follows by parametricity that

new[int] x in (x := 0; P(x := x + 1)) = new[int] x in (x := 0; P(x := x − 1)),

whenever P is a free identifier of type comm → comm. Similarly,

new[int] x in (x := 0; P(x, x := x + 1)) = new[int] x in (x := 0; P(x, x := x − 1))

when P is a free identifier of type (exp[int] × comm → comm). This example shows the equivalence
in the parallel setting of two implementations of an abstract “counter.” An analogous result was shown
for the sequential setting by O’Hearn and Tennent [9], but the validation of such equivalences in parallel
contexts requires our more detailed semantic model.

To illustrate the subtle differences between sequential and parallel settings, consider the following
phrase

new[int] x in (x := 0; P(x/2, x := x + 2)),

which amounts to yet another representation for an abstract counter and is equivalent to both versions
discussed above. In sequential Algol it is also equivalent to

new[int] x in (x := 0; P(x/2, x := x + 1; x := x + 1)),

but this equivalence fails in the parallel model. The reason lies in the inequivalence of x := x+1; x := x+
1 and x := x + 2 and the ability, by looking at the value of x in the intermediate state, to detect the
difference.

Despite this example, the phrases

new[int] x in (x := 0; P(x := x + 1; x := x + 1))

and

new[int] x in (x := 0; P(x := x + 2))

are equivalent in sequential Algol and in parallel Algol, even though x := x +1; x := x +1 and x := x +2
are not semantically equivalent in the parallel model; no matter how P uses its argument, the only
differences involve the local variable, whose value is ignored. To establish the equivalence, one can use
the relation R : W ↔ W × Vint given by (w, (w′, z)) ∈ R ⇔ w = w′.
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In contrast the phrases

new[int] x in

(x := 0; P(x := x + 1; x := x + 1);

if even(x) then diverge else skip)

and

new[int] x in

(x := 0; P(x := x + 2);

if even(x) then diverge else skip),

where diverge is a divergent command, are equivalent in sequential but not in parallel Algol. For
example if P is λc. c ‖ c the first phrase has an execution in which each argument thread reads x as 0,
then each sets x to 1, and the two final increments occur sequentially, leaving x with the value 3 and
causing termination; the other phrase, however, must diverge. The relation

(w, (w′, z)) ∈ R ⇔ w = w′ & even(z)

works for the sequential model but not for the parallel.
Indeed, in sequential Algol, the phrase

new[int] x in

(x := 0; P(x := x + 2);

if even(x) then diverge else skip)

discussed above is equivalent to diverge. This is because the semantics of a command is taken to
be a state transformation, and no matter how many times P calls its argument the value of the local
variable x stays even, causing the phrase to diverge. This equivalence fails for parallel Algol, because
our semantics “observes” intermediate states during execution. Instead the phrase is equivalent to
P(skip); diverge.

In the O’Hearn–Tennent model if x = 0 then f (x) else 1 and if x = 0 then f (0) else 1 fail to be
semantically equivalent, because the model includes procedure meanings that violate the irreversibility
of state change [9], yet the phrases behave identically in all sequential contexts. In contrast the equiv-
alence should (and does) fail in our parallel model, because expression evaluation need not be atomic.
For example, if f is λy.y and the phrase is evaluated in parallel with a command that may change the
value of x from 0 to 2, the first case might yield the result 2.

The two dual implementations of synchronizers discussed earlier can be proven equivalent by an easy
argument involving parametricity. Let X = (W × Vbool) × Vbool, and define the relation R : X ↔ X by

((w, b1), b2)R((w′, b′
1), b′

2) ⇔ w = w′& b1 = ¬b′
1 & b2 = ¬b′

2.

The crucial step is to show that, when u is an environment binding flag0 and flag1 to variables corre-
sponding to the intended components of state,

([[synch( flag0, flag1)]]Xu, [[synch( flag1, flag0)]]Xu) ∈ [[comm]]R.

The desired equivalence then follows immediately.
The equivalence of boolean-based synchronizer and the parity-based version can be shown by means

of the relation R : W × Vbool ↔ W × Vint given by

(w, b)R(w′, n) ⇔ w = w′& (b = even(n)).
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The two non-isomorphic implementations of a “switch,” discussed earlier, can be proved equivalent
using the relation R : W × Vbool ↔ W × Vint given by

(w, b)R(w′, v) ⇔ w = w′ & b = (v > 0).

8. CONCLUSIONS

We have shown how to give semantic models for a parallel Algol-like language. The semantic
models combine ideas from the theory of sequential Algol (possible worlds, relational parametric-
ity) with ideas from the theory of shared-variable parallelism (transition traces) in a rather appealing
manner which, we believe, supports the intuition that shared-variable parallelism and call-by-name
procedures are orthogonal. We have shown that certain laws of program equivalence familiar from
shared-variable programming remain valid when the language is expanded to include procedures; and
certain laws of equivalence familiar from functional programming remain valid when parallelism is
added. Although we do not claim a full conservative extension property, these results suggest that our
language Parallel Algol combines functional and shared-variable programming styles in a disciplined
and well-behaved manner. We have discussed a variety of examples intended to show the utility of the
language and the ability of our semantics to support rigorous arguments about the correctness proper-
ties of programs. Our parametric model offers a formal and general way to reason about “concurrent
objects.”

The trace semantics [[−]] was designed carefully to incorporate closure as a basic property of the
trace set of a command; each step in a trace represents the effect of a finite (possibly empty) sequence of
atomic actions, and an entire trace records a fair interaction between a command and its environment.
Given a conventional operational semantics, in which the transition relation → describes the effect of a
single atomic action, the closed trace set semantics is based on →∗, the reflexive, transitive closure of
the transition relation. We also introduced an auxiliary semantics [−] based on arbitrary (not necessarily
closed) trace sets, in which each step represents the effect of a single atomic action, so that this semantics
is based directly on the one-step transition relation. Clearly [−] is a more concrete semantics than [[−]],
distinguishing for example between skip and skip; skip. We therefore prefer [[−]], which identifies these
two commands and validates many laws of program equivalence that fail in the step-by-step semantics.
Nevertheless the step-by-step semantics is a key ingredient in understanding recursion. Indeed, note that
the single-step transition relation → can be used to define both →∗ and →ω (the divergence predicate),
whereas →∗ by itself does not determine →ω. It is not surprising, therefore, that we needed to make a
detour. The relationship between the two semantic frameworks is simple: the closed trace set semantics
can be obtained by taking the quotient of the step-by-step semantics under closure equivalence.

Our semantics inherit both the advantages and the limitations of the corresponding sequential models
and of the trace model for the simple shared-variable language. At ground type comm we retain the
analogue of the full abstraction properties of [3]: two commands have the same meaning if and only
if they may be interchanged in all contexts without affecting the behavior of the overall program. The
extra discriminatory power provided by the λ-calculus facilities does not affect this. However, like their
sequential forebears, our models still include procedure values that violate the irreversibility of state
change [8], preventing full abstraction at higher types. Recent work of Reddy [13], and of O’Hearn and
Reynolds [8], incorporating ideas from linear logic, appears to handle irreversibility for sequential Algol;
we conjecture that similar ideas may also work for the parallel language, with suitable generalization;
this will be the topic of further research.

Shared-variable programs are typically designed to include parallel components intended to coop-
erate, but semantically there is little distinction between cooperation and interference: both amount to
patterns of interactive state change, and the only pragmatic distinction concerns whether the state changes
are beneficial or detrimental to the achievement of some common goal, such as the satisfaction of
some safety or liveness property. As we have shown, local variables can be used to limit the scope
of interference between parallel components of a program, thus providing a form of “syntactic control
of interference,” somewhat in the spirit of [16, 17]. It would be interesting to see if this earlier work on
syntactic control of interference in the sequential setting, together with related developments [6, 7, 20],
can be adapted to the shared-variable parallel setting.
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APPENDIX

Here we provide some of the details behind the step-by-step semantics [−] and summarize some of
the relevant properties, each of which can be proved by structural induction.

• For each type θ , the functor [θ ] from worlds to domains is given by:
[comm]W = ℘((W × W )∞)

[comm]( f, Q) = λc.{α′ | map( f × f )α′ ∈ c & α′ respects Q}
[comm]n( f, Q) = λc.{α′ | map( f × f )α′ ∈ c & α′ respects Q for n steps}

[exp[τ ]]W = ℘((W + × Vτ ) ∪ W ω)
[exp[τ ]]h = λe.{(ρ ′, v) | (map fρ, v) ∈ e} ∪ {ρ ′ | map fρ ′ ∈ e ∩ W ω}
[exp[τ ]]nh = [exp[τ ]]h

[var[τ ]]W = (Vτ → [comm]W ) × [exp[τ ]]W

[var[τ ]]h = λ(a, e).(λv.[comm]h(av), [exp[τ ]]he)

[var[τ ]]nh = λ(a, e).(λv.[comm]nh(av), [exp[τ ]]nhe)

[θ × θ ′] = [θ ] × [θ ′]
[θ × θ ′]h = [θ ]h × [θ ′]h
[θ × θ ′]nh = [θ ]nh × [θ ′]nh

[θ → θ ′]W = {p(−) | ∀h : W → W ′. p(h) : [θ ]W ′ → [θ ′]W ′ &

∀h′ : W ′ → W ′′. [θ ′]h′ ◦ ph = p(h; h′) ◦ [θ ]h′ &

∀n ≥ 0. [θ ′]nh′ ◦ ph % p(h; h′) ◦ [θ ]nh′}
[θ → θ ′]hp = λh′ : W ′ → W ′′.p(h; h′)
[θ → θ ′]nh = [θ → θ ′]h

The ordering on [comm]W and on [exp[τ ]]W is set inclusion, and this is extended componentwise and
pointwise to other types as appropriate.

For each type θ and morphism h, [θ ]h is the limit of the [θ ]nh, in that for all n ≥ 0, [θ ]n+1h � [θ ]nh,
and [θ ]h = &∞

n=0[θ ]nh.

• For each type θ the functor 〈θ〉 from worlds to the category of complete lattices and continuous
functions is given by:

〈comm〉 = [comm]

〈exp[τ ]〉 = [exp[τ ]]

〈var[τ ]〉W = [var[τ ]]

〈θ × θ ′〉 = 〈θ〉 × 〈θ ′〉
〈θ → θ ′〉W = {p(−) | ∀h : W → W ′. p(h) : 〈θ〉W ′ → 〈θ ′〉W ′}

In each case the action of 〈θ〉 on morphisms is defined exactly as for [θ ].
For each world W and each type θ the domain [θ ]W is a subset of 〈θ〉W .

• For each type θ the natural transformation stutθ from [θ ] to [θ ] is defined by:

stutcommW c = {(w, w)α | w ∈ W & α ∈ c}
stutexp[τ ]W e = {(wρ, v) | w ∈ W & (ρ, v) ∈ e} ∪ {wρ | w ∈ W & ρ ∈ e ∩ W ω}
stutvar[τ ]W (a, e) = (λv.stutcommW (av), stutexp[τ ]W e)

stutθ×θ ′ = stutθ × stutθ ′

stutθ→θ ′ W p = λh : W → W ′. stutθ ′ W ′ ◦ (ph)
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These definitions also make sense as natural transformations from 〈θ〉 to 〈θ〉.
• Whenever π � P : θ is valid, [P] : [π ] →̇ [θ ] is defined as follows, by structural induction:

[1]W u = {(w, 1) | w ∈ W }
[E1 + E2]W u =

{(ρ1ρ2, v1 + v2) | (ρ1, v1) ∈ [E1]W u & (ρ2, v2) ∈ [E2]W u}
∪ {ρ1ρ2 | ∃v1. (ρ1, v1) ∈ [E1]W u & ρ2 ∈ [E2]W u ∩ W ω}
∪ {ρ ∈ W ω | ρ ∈ [E1]W u}

[skip]W u = {(w, w) | w ∈ W }
[X := E]W u =

{(map�W ρ)β | (ρ, v) ∈ [E]W u & β ∈ fst([X ]W u)v}
∪ {map�W ρ | ρ ∈ [E]W u ∩ W ω}

[if B then P1 else P2]W u = if [B]W u then [P1]W u else [P2]W u

[while B do P]W u = ([B]ttW u · [P]W u)∗ · [B]ffW u ∪ ([B]ttW u · [P]W u)ω

[P1; P2]W u = [P1]W u · [P2]W u

[P1‖P2]W u = {α | ∃α1 ∈ [P1]W u, α2 ∈ [P2]W u. (α, α1, α2) ∈ fairmergeW }
[new[τ ] ι in P]W u = {map(fst × fst)α |

α ∈ [P](W × Vτ )([π ](− × Vτ )u | ι : (a, e)) &

map(snd × snd)α interference-free}
[rec ι.P]W u = νp : 〈θ〉W. stutθ W ([P]W (u | ι:p))

In the clause for local variable declarations the “fresh variable” (a, e) ∈ [var[τ ]](W × Vτ ) is defined by:

a = λv′:Vτ .{((w, v), (w, v′)) | w ∈ W & v ∈ Vτ }
e = {((w, v), v) | w ∈ W & v ∈ Vτ }.

Nondestructivity of [P], and the corresponding constructivity of stutθ ◦ [P], is needed to show that the
fixed point used to interpret [rec ι.P]W u belongs to [θ ]W , and to show naturality.

• For each type θ we define a natural equivalence relation closθ on [θ ]:

closcommW = {(c0, c1) | c†0 = c†1}
closexp[τ ]W = {(e0, e1) | e†0 = e†1}
closvar[τ ]W = {

((a0, e0), (a1, e1))
∣∣ ∀v. (a0v, a1v) ∈ closcommW & (e0, e1) ∈ closexp[τ ]W

}

closθ×θ ′ W = {((x0, y0), (x1, y1)) | (x0, x1) ∈ closθ W & (x1, y1) ∈ closθ ′ W }
closθ→θ ′ W = {(p0, p1) | ∀h : W → W ′. ∀(x0, x1) ∈ closθ W ′. (p0hx0, p1hx1) ∈ closθ ′ W ′}

For each θ and W , closθ W is an equivalence relation on [θ ]W , and

∀h : W → W ′. ∀(x0, x1) ∈ closθ W. ([θ ]hx0, [θ ]hx1) ∈ closθ W ′.

• Whenever π � P : θ is valid,

(u0, u1) ∈ closπ W ⇒ ([P]W u0, [P]W u1) ∈ closθ W.
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• For all types θ , the natural transformation θ † : [θ ] →̇ [[θ ]] is given by:

comm†W c = c†

exp[τ ]†W e = e†

var[τ ]†(a, e) = (λv. comm†W (av), exp[τ ]†W e)

(θ × θ ′)†W (p0, p1) = (θ †W p0, θ
′†W p1)

(θ → θ ′)†W p = λh : W → W ′. λx : [[θ ]]W ′. θ ′†W ′(phx).

The connection between θ † and closθ is expressed by:

closθ W = {(p0, p1) | θ † p0 = θ † p1}.
Moreover, for all types θ , θ † ◦ stutθ = θ †.

• When π � P : θ is valid, [[P]]W (π †u) = θ †W ([P]W u).

ACKNOWLEDGMENTS

The work from which this paper grew began during a visit (July-September 1995) to the Isaac Newton Institute for the
Mathematical Sciences (Cambridge, England), as part of a research program on semantics of computation. An early version
appeared in the Proceedings of the 11th Annual IEEE Conference on Logic in Computer Science (IEEE Computer Society
Press, 1996) and was later incorporated as a chapter in volume 2 of Algol-like Languages, edited by Peter O’Hearn and Bob
Tennent. Thanks to Peter O’Hearn, John Reynolds, Edmund Robinson, Pino Rosolini, Philip Scott, Bob Tennent, and Glynn
Winskel for helpful discussions and comments. This work was sponsored in part by the Office of Naval Research, under Grant
N00014-95-1-0567, and in part by the National Science Foundation, under Grant CCR-9412980.

REFERENCES

1. Abramsky, S., and Jensen, T. P. (1991), A relational approach to strictness analysis for higher-order polymorphic functions,
in “Conf. Record 18th ACM Symposium on Principles of Programming Languages,” pp. 49–54. Assoc. Comput. Mach.,
New York.

2. Andrews, G. R. (1991), “Concurrent Programming: Principles and Practice,” Benjamin-Cummings, Redwood City, CA.
3. Brookes, S. (1993), Full abstraction for a shared variable parallel language, in “Proc. 8th Annual IEEE Symposium on Logic

in Computer Science,” June, pp. 98–109. IEEE Computer Society Press, Los Alamitos, CA.
4. Halpern, J. Y., Meyer, A. R., and Trakhtenbrot, B. A. (1983), The semantics of local storage, or What makes the free list

free? in “ACM Symposium on Principles of Programming Languages,” pp. 245–257.
5. Mitchell, J. C., and Scedrov, A. (1993), Notes on sconing and relators, in “Computer Science Logic ’92, Selected Papers”

(E. Boerger, Ed.), Lecture Notes in Computer Science, Vol. 702, pp. 352–378. Springer-Verlag, Berlin.
6. O’Hearn, P. W. (1993), A model for syntactic control of interference, Math. Structures Comput. Sci. 3(4), 435–465.
7. O’Hearn, P. W., Power, A. J., Takeyama, M., and Tennent, R. D. (1995), Syntactic control of interference revisited, in

“Proceedings of 11th Conference on Mathematical Foundations of Programming Semantics,” Elsevier Science, Amsterdam.
8. O’Hearn, P. W., and Reynolds, J. C. (2000), From Algol to polymorphic linear lambda-calculus, J. Assoc. Comput. Mach.

47(1), 167–223.
9. O’Hearn, P. W., and Tennent, R. D. (1995), Parametricity and local variables, J. Assoc. Comput. Mach. 42(3), 658–709.

10. O’Hearn, P. W., and Tennent, R. D. (1997), “Algol-like Languages,” Birkhäuser, Basel.
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