
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-3, NO. 2, MARCH 1977

Proving the Correctness of Multiprocess Programs

LESLIE LAMPORT

Abstract-The inductive assertion method is generalized to permit
formal, machine-verifiable proofs of correctness for multiprocess pro-
grams. Individual processes are represented by ordinary flowcharts,
and no special synchronization mechanisms are assumed, so the method
can be applied to a large class of multiprocess programs. A correctness
proof can be designed together with the program by a hierarchical pro-
cess of stepwise refinement, making the method practical for larger
programs. The resulting proofs tend to be natural formalizations of
the informal proofs that are now used.

Index Terms-Assertions, concufrent programming, correctness, mul-
tiprocessing, synchronization.

I. INTRODUCTION
T HE prevalence of programming errors has led to an inter-

est in proving the correctness of programs. Two types of
proof have been used: formal and informal. A formal proof is
one which is sufficiently detailed, and carried out in a suffi-
ciently precise formal system, so that it can be checked by a
computer. An informal proof is one which is rigorous enough
to convince an intelligent, skeptical human, and is usually done
in the style of "journal mathematics proofs."
The need for correctness proofs is especially great with

multiprocess programs. The asynchronous execution of several
processes leads to an enormous number of possible execution
sequences, and makes exhaustive testing impossible. A multi-
process program which has not been proved to be correct will
probably have subtle errors, resulting in occasional mysterious
program failures.
We have written several multiprocess algorithms to solve

synchronization problems, and have given informal proofs of
their correctness. Although the proofs were simple and con-
vincing, they were ultimately based on the method of consid-
ering all possible execution sequences. This method is not
well-suited for formal proofs. Other formal methods seemed
either too difficult to be practical, or else were not applicable
because they were based upon special synchronization
primitives.
In this paper, we present a simple generalization of Floyd's

inductive assertion method [91 which seems to be practical for
proving the correctness of multiprocess programs. Using it, we
have been able to translate our informal correctness proofs
into formal ones. We feel that it can provide the basis for a
general system for proving the correctness of most types of
multiprocess programs.
Programs are simply represented by ordinary flowcharts, and

Manuscript received August 1, 1975; revised April 1, 1976.
The author is with Massachusetts Computer Associates, Inc., Wake-

field, MA 01880.

no particular synchronization primitive is assumed. Any de-
sired primitive can easily be represented. The method is prac-
tical for larger programs because the proof can be designed to-
gether with the program by a hierarchical process of stepwise
refinement.
To prove the correctness of a program, one must prove two

essentially different types of properties about it, which we
call safety and liveness properties.1 A safety property is one
which states that something will not happen. For example,
the partial correctness of a single process program is a safety
property. It states that if the program is started with the cor-
rect input, then it cannot stop if it does not produce'the cor-
rect output. A liveness property is one which states that some-
thing must happen. An example of a liveness property is the
statement that a program will terminate if its input is correct.
The techniques used to prove safety and liveness are quite

different from one another. They are therefore described in
separate sections. Each of these two sections begins with an
informal description of the, technique in terms of a simple
example, then gives a formal exposition, and concludes with a
longer example. For a short introduction, the reader can omit
all but the first parts of these sections. A final section dis-
cusses some general aspects of the method, including its appli-
cability and its relation to previous work.

II. SAFETY
The Producer/Consumer Example
Before describing our formal axiom system, we illustrate the

basic proof procedure with a simple example. The producer/
consumer problem has been 'used to illustrate different syn-
chronization primitives. [5], [101. It consists of a producer
process which puts messages into a buffer and a consumer
process which removes the messages. We assume that the buf-
fer can hold at most b messages, b > 1. The processes must be
synchronized so the producer does not try to put a message
into the buffer if there is no room for it, and the consumer
does not try to remove a message that has not yet been
produced.
We will give a very simple solution which uses no compli-

cated synchronization primitive, and might thus be more effi-
cient than the solutions described in [51, [101. Although we
have not seen precisely this algorithm in pnnt before, it has
undoubtedly been discovered countless times by programmers
implementing buffered input/output.
In our solution, we let k be a constant greater than b, and

let s and r be integer variables assuming values between 0 and

1These terms are not equivalent to their counterparts in Petri net
theory, but they are used to describe somewhat similar properties.

125

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1977

s-r mod k false

----3

Ms # ms+1 -- <_s-r mod k<b

Fig: 1. Producer/consumer program.

k- 1. We assume that initially s r and the buffer is empty.
The algorithm is given below. (It is easier to understand by
first letting k = oo. Then s represents the number of messages
sent by the producer, and r represents the number of messages
received by the consumer.)
Producer:

L: if s - r mod k = b then goto L fi;
put message in buffer;
s s+1 mod k;
goto L;

Consumer:
L: if s - r mod k Othen goto L fi;

take message from buffer;
r r+l modk;
goto L;

We assume that reading and setting-the variables r and s are

indivisible operations. (The algorithm is easily modified to be
correct under the weaker assumption A of [14], but the cor-

rectness proof is more complicated.) By choosing k to be a

multiple of b, the buffer can be implemented as an array
B [0: b - I. The producer simply puts each new message into
B[s mod b], and the consumer takes each message from
B[rmod bl. However, proving this would complicate the
proof, and it is left as an exercise for the interested reader.
The only correctness property we will prove is that the pro-
ducer never puts a message into a full buffer, and the con-

sumer never takes one from an empty buffer.

We represent the, two processes with the flowcharts of
Fig. 1. For now, the reader should ignore the expressions at-
tached to the arcs and consider only the nodes and the arcs.

Note that each arc is'numbered. We have represented the op-

erations of sending and receiving a message by incrementing
the fictitious variables ms and mr, respectively. We assume

that initially ms mr.

Each node of the flowchart -is assumed to represent an in-

divisible operation. We assume that initially a token is placed
on arc I of each process. The program is executed by arbi-
trarily choosing one of the processes and executing one step
of that process, where a step consists of moving the token
through one node onto another arc and changing the values of
the variables in the obvious way. For now, we allow execu-

tions which always choose to execute the same process. Such
executions must be disallowed to prove liveness properties,
but they do not affect safety.
For simplicity, we have represented the producer's entire

Algol statement s := s+1 as a single flowchart box. We could
have more faithfully represented an actual implementation by
splitting it into the two assignments temp +- s + I and
s +- temp. However, it is easy to see that this would make no
essential difference because s is not set by the consumer. We
have also represented the if statement by a single decision box.
We can do this by pretending that the entire execution of the
statement occurs when the value of r is read. Similar remarks
apply to the consumer.

126

Producer:

nc. s-r mod k<b

Consumer:

Oes-r mod k.:np -

LAMPORT: CORRECTNESS OF MULTIPROCESS PROGRAMS

P A (n,ss-r mod ksb)

Let n equal ms - mr. Then n obviously represents the num-
ber of messages in the buffer. To prove the desired safety
property, we must prove that 0< n < b holds throughout the
execution of the program. We define the functions np and nc
as follows.

n - 1 if the producer's token is on arc 4

np =

n otherwise

{n + 1 if the consumer's token is on arc 4

nc =

n otherwise

An assertion is a logical function of program variables and
token positions. An assertion is said to be invariant if it is
always true during execution of the program. We want to
prove that the assertion 0 < n < b is invariant for our producer/
consumer program.
An interpretation of a program is an assignment of an asser-

tion to each arc of the flowchart. Fig. 1 gives an interpretation
of our producer/consumer program. We say that the program
is in a legitimate state if each token is on an arc whose asser-

tion is true.2 The interpretation is said to be invariant if the
program always remains in a legitimate state throughout its
execution.
To prove the correctness of our program, we will prove that

the interpretation of Fig. 1 is invariant. This is done by verify-
ing the following two conditions: 1) the program's initial state
is legitimate, and 2) if the program is in a legitimate state, then
any execution step leaves it in a legitimate state. An interpre-
tation which satisfies condition 2) is said to be consistent.
Since we start the program with each token on arc 1 and

s-r = n = 0, it is easy to see that condition 1) is satisfied. The
proof of condition 2) is done in two steps. First, we show that
the interpretation of each process is consistent, i.e., we show
that for each process: if the process' token is on an arc whose
assertion is true and an execution step moves that token, then
it is moved to an arc whose assertion is now true.

21t would be more precise to say that the variables and tokens are in
a legitimate state, but for brevity we simply say that the program is in a
legitimate state.

The proof that an interpretation of a single process is consis-
tent is done essentially the same way as described by Floyd in
[9] for a single process program. For each flowchart node, we
prove that if the token is on an input arc of the node whose
assertion is true, then executing the node moves the token to
an output arc whose assertion is then true.
Proving the consistency of the producer's interpretation

therefore requires verifying a consistency condition for each
node of its flowchart. Verifying the condition for the decision
box is simple, e.g., if the token is on arc 1 or 2 and nc <
s-r mod k S b, then execution of the decision node moves the
token to arc 3 only if s-r mod k b. This implies that nc <
s-r mod k < b, so the assertion on arc 3 is then true. Verifying
the consistency condition for the ms assignment node is also
simple, since executing it increases nc by one and does not
change s or r.

To prove the consistency condition for the s assignment
node, we need the following result from number theory: if
s-r mod k <k-1,then (s+1 mod k)- rmod k= (s-rmod k) +
1. Since we have assumed that b < k, this easily implies the
required consistency condition.
We have thus shown that the producer's interpretation is

consistent. A similar proof establishes the consistency of the
consumer's interpretation. However, the consistency of each
process' interpretation does not by itself imply the consistency
of the entire program's interpretation. There still remains the
possibility that an assertion attached to an arc was true when
the process' token was moved to the arc, but was made false
by the execution of the other process. The second step in
proving the consistency of the interpretation is to show that
this cannot happen.
Let P denote one ofthe assertions attached to the consumer's

flowchart. We must show that if P is true, then it cannot be
made false by executing one step of the producer. In that
case, we say that P is monotone under the producer. To prove

this, it suffices to show that if the producer's token is on an

arc whose assertion is true, and P is true, then executing the
producer's next flowchart node will leave P true. This is shown
by proving the consistency of the interpretation of the pro-

ducer shown in Fig. 2, which is formed by andingP with each
assertion of the producer's original interpretation. If the inter-
pretation of Fig. 2 is consistent, then we say that P is mono-

P A (nc:s-r mod k

Kb) -___

Fig. 2. Interpretation of producer for monotonicity proof.

127

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1977

Assignment Node:

Decision Node:

ICD

Fig. 3. Flowchart nodes.

tone under the interpretation of the producer shown in Fig. 1.
The second step in proving the consistency of the program's
interpretation therefore consists of proving that each assertion
in the consumer's interpretation is monotone under the pro-

ducer's interpretation, and vice-versa.
At this point, we urge the reader not to form any conclusion

about how practical this step is for larger programs. This will
be discussed later.
We now prove that each assertion P attached to the con-

sumer's flowchart is monotone under the producer's interpre-
tation. Instead of doing this separately for each of the three
different assertions in the consumer's interpretation, we will
do it all in one step by proving the monotonicity of the fol-
lowing assertion P for arbitrary constants u and v: 0 <
(s-r mod k) +u <np + v.

To prove this, we must prove the consistency of the inter-
pretation in Fig. 2 for this choice ofP. As before, this requires
proving consistency at each flowchart node. Since we have
already proved the consistency of the producer's original inter-
pretation, we must only show that if the assertion on the input
arc of the node is true, then executing the box leaves P true.

The proof of consistency at the decision box is trivial. The
consistency condition for the ms assignment box follows from
the observation that by the definition of np, executing this
node leaves np unchanged. The consistency at the s assignment
node follows from the fact that executing it increments both
s-rmodkandnp by one.

,To complete the proof that the program's interpretation is
consistent, we must prove that each assertion in the producer's
interpretation is monotone under the consumer's interpreta-
tion. The proof is similar to the one we just did, and is left to
the reader.
We now use the invariance of the program's interpretation

to prove the invariance of the assertion 0S n < b. From the
producer's interpretation,_ we see that regardless of which arc
the producer's token is on, we must have n, < b. Hence, the
assertion n, < b is invariant. Similarly, the consumer's inter-
pretation shows that 0 < np is invariant. Since np S n < n,
by definition, the invariance of these two assertions implies
that 0 < n < b is invariant. This completes our correctness
proof.

The Formalism
We now formalize the method of proof used in our example.

First, we formally define what a program is, and introduce
some notation.
Definition 1: A program H1 consists of a value set X, a finite

collection or processes H1,- , fIN, and an initial assertion
AO. Each process is a directed graph composed of the two
types of nodes shown in Fig. 3, where f: X- X and p: X
{true, false} are multivalued functions and n > 1. We let Ik
denote the set of arcs of flk, and let r denote rP X X rN.
An assertion A is a single-valued function A X X Fr
{true, false}. LI
The value set X denotes the set of all possible values of the

vector x of program variables. Iff(x) has more than one value
for the current value of x, then executing the assignment node
consists of setting x to any arbitrary one of those values. Simi-
larly, if p(x) has two values, then executing the decision node
may move the token to either of its output arcs. Thus, we are
allowing our processes to be nondeterministic.
The assumption that n> 1 means that each node has at least

one input arc. An assignment node always has one output arc,
and a decision node always has two.
We can think of P as the set of all possible ways to place one

token on an arc of each process. The state of the program at
any time during its execution is described by an element of

128

LAMPORT: CORRECTNESS OF MULTIPROCESS PROGRAMS

X X r. The initial assertion AO specifies the possible initial
states of the program.
We explicitly note two things we are not assuming about the

program:
1) We do not assume X to be a finite set. The vector x may

be composed of infinitely many component variables, and a
variable can have an infinite set of possible values.
2) We do not assume that every arc joins two nodes. An arc

is called an exit (entry) arc if it is not an input (output) arc of
any node. A process may have entry or exit arcs.
We will state some simple axioms about invariant assertions.

We could define an execution of the program HI in the obvious
way as a sequence of elements ofX X r, and then define an as-
sertion to be invariant if it has the value true for every element
of every execution. We could then prove that invariant asser-
tions satisfy our axioms. However, this would be a tedious
exercise in proving the obvious. Instead, we will consider our
axioms to provide a definition of invariance. This will make it
unnecessary to introduce formally the concept of an execution.
We let A, V, D, -,-denote the usual logical operations and,

or, implication, negation, and equivalence. If Ct is a set, then
A(dI(Vd) denotes the logical and (or) of all the elements of (t.
(Ld will be either a subset of {true, false} or else a set of asser-
tions.) We define AO tnre andV) afalse for the empty set
-.
Definition 2: A Hk-assertion Ak is an assertion which is in-

dependent of rlk'S token position-i.e., such that the value of
A(x, yl, , yN) does not depend upon the value of yk. If

is any assertion, and a is an arc of Ik, then A(k) is the
Hlk-assertion defined by A(c)(x, yl,..*, YN) = A(x, yl,*
Yk-i'1 kYk +i-.*.*, YN). For any assertion A and any multi-
valued function f: X -* X, the assertion A of is defined by
A o f(x,) =A{A (z, y) : z = f(x)}. We letirk : XX r-Irk
denote the obvious projection mapping. E
Note that frk = ct denotes the mapping which takes (x, y)

into the Boolean value ITk(X,) = ct, i.e., irk = ct is the assertion
which is true iff (if and only if) rlk'S token is on arc ax. Simi-
larly, if A is any set of arcs in rk, then 7Tk E A is the assertion
which is true iff Ik's token is on some arc in A.
We assume some formal system for proving theorems which

includes the propositional calculus. To prove correctness, it
must be capable of proving useful theorems about the pro-
gram's value set X. However, the details of the system will not
concem us.
We let F [5] denote that f is a provable theorem in our for-

mal system. An assertion A is considered to represent the
theorem V(x, y) EXX r : A (x, y) = true. We therefore write
F [A] or F [A (x, y)] to denote that this theorem is provable.
Note that the theorem A(a) is equivalent to V(x, y) E 7r-1 (a):
A (x,) = true.
We let IF [A] or IF [A (x, 7y) denote that the assertion A is

invariant.
Definition 3: a) An interpretation Ik of the process Ik is a

mapping winch assigns to each arc a E rk a Hk-assertion Ik4.
The interpretation is said to be consistent at a node of Ilk if
the appropnate one of the following conditions is satisfied,
where the notation is as in Fig. 3 and Ik is defined to be the
assertionV{Ik : a = ti, * * *, n.

assignment node: IF [Ik Iko f]
decision node: F[(IkAp DIk)

A (Ik A -p D Ik4)].
The interpretation Ik is consistent if it is consistent at every
node of Ilk.
b) An assertion A is said to be monotone under Ik if the

interpretation A A Ik, which assigns to each arc a E rk the as-
sertion A() A Ik, is consistent.

c) An interpretation I of the program HI consists of an inter-
pretation Ik of each process nk of H. The interpretation I is
consistent if: i) each Ik is consistent, and ii) for each i and k
with j# k and every (3 E rI, the assertion I4 A (7r; = 3) is mono-
tone under Ik. The interpretation I is invariant if it is consis-
tentandF[AODA {(Tk= O)D4Ik:allk,andallaErk}]. o
Part a) of the definition is a straightforward formalization of

the informal definition used in the above example. In part b),
the use of the assertions A (a) allows us to make use of the(k) t aeueo h
knowledge of nk'S token position. This is illustrated by con-
sidering how the proof of the monotonicity ofP in our exam-
ple is formalized. The assertion P(c) is obtained fromP by re-
placing nc by n if a* 4 and by n- if a= 4. In part c), prov-
ing the monotonicity ofIP A (ir = ,B) is easier than proving the
monotonicity of I because we can use the knowledge of H1's
token position. This was not necessary in our example. Ob-
serve that this makes the monotonicity condition trivial at a
node of f1k if its input assertion Ik implies that ir1 = a is false.
Instead of requiring the consistency condition at a node to

be provable, we have made the weaker requirement that it be
invariant. This allows us to assume the truth of assertions
which have already been proved to be invariant. We could ac-
tually replace "IF" by "F" in this definition, and then prove
the original weaker definition as a metatheorem.3 We will not
bother to do this.
Having made our definitions, we can now state our two

axioms.

SI: For any assertions A and B,
a) if F [A], then 1 [A].
b) ifIF[A] and IF [A D B], then 1[B]. O

S2: If I is an invariant interpretation, then for all k and all
aEErk: IF[rk=a)DIk']. E

These two simple axioms are sufficient to provide a formal
foundation for proving safety properties of programs. How-
ever, it is convenient to have some other theorems which can
be used to simplify the proofs. We now state a few such theo-
rems. Their proofs are simple and are omitted.
Theorem 1: Let I be an invariant interpretation of the

program H and let A be an assertion. If for some k and all
E rk: IF[(IkQA (k =t)) DA],then IF[Al. O
The next theorem is what makes our method practical for

larger programs. It is stated somewhat informally to make it

3A metatheorem is a theorem about a formal system. Unlike a theo-
rem in the system, it could become false if another axiom is added to
the system.

129

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1977

easier to understand. We leave the rigorous formal statement
of part a) to the reader.
Theorem 2: Let Ik be a consistent interpretation of process

Ik and letA be any assertion.
a) To prove that A is monotone under Ik, it suffices to

prove that the interpretation A AIk is consistent at each node
whose execution can change the value ofA.

b) Let A C rk. To prove that the assertion (Irk E A) DA
is monotone under Ik, it suffices to prove that the interpreta-
tion [(irk E A) DA I A Ik is consistent at each node which has
an element ofA as an output arc.

Before stating the next theorem, we need the following
definition.
Definition 4: An assertion A is said to be monotone if there

is an invariant interpretation I of HI such that A is monotone
under each Ik.
TWheorem 3: If an assertion A is monotone and F [A0 D Al,

then IF[A].
To prove the following theorem, we need to be able to prove

that for any set of assertions d: if F (A] for eachA E Li, then
F (Ad] and F [VLJ] Thus, if the theorem is to be true for in-
finite sets of assertions, then our formal proof system must be
stronger than the simple predicate calculus.
Theorem 4: Let (3 be a set of assertions and Ik an interpre-

tation of a process Uk

invariant
If eachA E d is monotone

monotone under Hl

invariant
then Ad and V'It are also monotone },

monotone under 1k

Subroutines

The basic method of proving the safety of a program is to
prove a certain interpretation I to be invariant. This requires
proving that IP A (7r) is monotone under I'k for all i, k,
with j + k and ,B E rP, which requires proving a consistency
condition for each node of Hk. If the program has 0(m) nodes
and arcs, this seems to imply that 0(m2) individual proofs are

needed to prove I invariant. If this were true, then our method
would be impractical for large programs. To be practical, the
number ofoperations must be an approximately linear function
of the program size.
We will see that in practice using Theorem 2 enables us to

prove the monotonicity of I; A (7r =) under Ik by proving
consistency conditions for only a small number of nodes.
Hence, only 0(m) proofs are needed. This is true for essen-

tially the same reason that large programs can be written in the
first place. If designing one step of a program required con-

sideration of all other steps, then the effort of writing a pro-
gram would grow as the square of its size, making large pro-

grams impractical. However, large programs can be designed,
and their proofs of correctness designed along with them.
What makes this possible is the method of designing by step-
wise refinement. In order to discuss this method for our flow-
chart programs, we introduce some terminology. (In the fol-

lowing definition, a "subroutine" should be thought of as an
open subroutine.)
Definition 5: A subroutine of a process 1k is a subgraph

composed of a nonempty set of nodes together with all the
arcs of Ik attached to those nodes. A decomposition of Hk
into subroutines is defined in the obvious way to be a directed
graph whose nodes are subroutines of Ik such that each node
of 11k belongs to exactly one subroutine. A decomposition of
the program H1 consists of a decomposition of each process Ik
of Hl. A decomposition 2 of H is a refinement of a decomposi-
tion E if , can be obtained in the obvious way by decompos-
ing Y. E
The coarsest decomposition of a process Hk is the trivial

graph containing a single node, fonned by decomposing fHk
into one subroutine. The finest decomposition consists of Hk
itself, and is formed by decomposing Ilk into subroutines each
containing a single node.
To design a program, one designs a sequence of decomposi-

tions starting with the coarsest one and proceeding through
successively finer decompositions until reaching the finest de-
composition: the complete program. At each stage, one has
both a decomposition and a specification of what each of its
subroutine nodes is to do. To go to the next stage, one uses
the specification of each node to refine it into simpler subrou-
tine nodes. The refinement of each subroutine must only
depend upon the refinement of a small number of other sub-
routines; otherwise the design procedure becomes too difficult.
With our method, the programmer designs his formal proof

along with the program by designing an appropriate invariant
interpretation. At each stage, he attaches assertions to the arcs
of the decomposition. These assertions may not be fully speci-
fied, since the value set X need not be completely defined
until later. In the next stage of the design, in which the pro-
grammer refines this decomposition, these assertions are more
fully specified, and assertions are attached to the newly intro-
duced arcs.
The programmer designs each refinement so that at the final

stage, the interpretation of the complete program will be con-
sistent. To show that this can be done in a hierarchical manner
which makes it practical for larger programs, we will describe
how the method is used in solving a more difficult problem.

The Bakery Algorithm
As our example, we will show how the solution to the mu-

tual exclusion problem given in (131 could be constructed.
Assume that we have N processes, each with a critical section.
The problem is to find an algorithm which guarantees that at
most one of the processes is in its critical section at any time.
The other conditions which must be satisfied will not concern
us here.
The first stage decomposition of each process is shown in

Fig. 4. Note that subroutines are denoted by boxes drawn
with dashed lines. Each subroutine is numbered, and we en-
close its number in a box to denote the set of all arcs of the
subroutine except its entry and exit arcs. Thus, irk E [j
means that process ILk is inside its critical section. We assume
that initially, each process' token is in subroutine 8.
This decomposition is rather trivial. Subroutines 4 and 8 are

130

131LAMPORT: CORRECTNESS OF MULTIPROCESS PROGRAMS

2

PROLOGUE

L _

A(Ek:=. NJ ----3

r 4--- 14

CRITICAL I
SECTION

r ~Eki i 1. NI-.-j,S -6
EPILOGUE

Dk ---- 7

REST OF
PROCESS

LS - T
Fig. 4. Stage 1 decomposition of Ilk,

given. Our problem is to design subroutines 2 and 6. To prove
correctness, we must show that two different processes cannot
both be in subroutine 4 at the same time. We will do this by
proving the invariance of an interpretation containing the indi-
cated assertions, where Dk and Ek, will be defined later. We
assume that Dk is also attached to all arcs of subroutine 8, and
A{Ek,:j = i,* ,N} is attached to all arcs in subroutine 4.
The idea is to define Eki so that if j*k, then Ek; A/Ek \A
7rrk E r A ir 4E [I-false. The invariance of the interpreta-
tion will imply that Ilk and HIl cannot both be in their critical
sections.
We will use the following idea for our solution. Let each

process Hk have a variable n [k] which is initially zero. Before
entering its critical section, Hk sets n [k] to some number
greater than the value of n [j] for all j * k. It then waits until
for each j#k with n[j] >0: either n[k] <n[]j or
n [k] = n [i] and k <j whereupon it enters its critical section.
Let us define the predicate k .. / to equal (O<n [k] <
n [jl) V(0 = n [j] < n [k]) V (n [kI = n [j] A k 6 j). (Note that
6< is a total ordering of { 1, * N}.) Then lk waits until
k 6Sj for all j before entering its critical section.
This leads us to the stage 2 decomposition shown in Fig. 5,

in which we have decomposed subroutine 2 and more precisely
specified subroutine 6. In subroutine 6, we are allowing the
possibility that setting n [k] to zero may be a complex opera-
tion. Note the numbering of the subroutines and arcs in the
decomposition of subroutine 2. In our notation for sets of
arcs, we have 2.1 U {2.2}U 2
We have defined Dk (n[k] = 0). Our first thought is to

let Ek, be the assertion (n [k] > 0) A (k AS j). However, this
is not monotone under HI1 because Hli might have decided to
choose a value for n lj] which would make j << k, but not yet
have set n[] to this value. Hence, we could initially have

2.1I
choose n k] > n[j]

for all j

n[k I > 0 2, 2

r----
wait until k << j 12.3

for all j
L.

AtEkj: 1, N}j---- 3

-1

4
CRITICAL
SECTION

A(EkJ j = ..N ----

r-16
n[k] =0

n k]0 --- 7

r - - - -18
REST OF
PROCESS

Fig. 5. Stage 2 decomposition of Ilk-

n [1] 0 and k <<j, but then k <<j becomes false after n [i]
is set.to its new value. Therefore, we must let Ek, be an asser-
tion which states that n [k] >0 and either k 66j or else HIj is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1977

n[k] > 12.2

IfltJ>O ~7J2.2 -- 12.3.1
-'I for jk :=1 until N

do exit

---- NEk) ,*.N
(n(k] > O) AAEk j<Jk 2.3.2

kj~ ~~~~~~~~~ k

2.3.3
wait until II I

jk I
not choosing

nt jkI]

Skj A A {Ekj k}<k1 2. 3.4

2.3.5
wait until

k 9 jik
L_

AfEkj i < ik} 2.3.6

Fig. 6. Stage 3 decomposition of subroutine 2.3.

currently choosing a value of n [j which will make k . j.
This assertion will be monotone under HIi.
In the next stage, we decompose subroutine 2.3 as shown in

Fig. 6. (The subscript k indicates that the variable jk is only
used by Hk.) After Ilk executes subroutine 2.3.3, it then
knows that any: subsequently chosen value of n [likI must be
greater than n [k] -until flk completes its critical section and
resets n [k} to zero.
Let Rk, be an assertion which states that n [k] > 0 and if H

is not changing the value of n [j], then k ij. Let Sk, be an
assertion which states that n [k] >0 and if I is choosing a
new value of n[fl] , then it will choose one greater than the cur-
rent value of n [k]. (We will specify Rk; and Sk, more pre-
cisely later.) We define Ek,-Rk1 A Skj. Our idea of why the
program works is embodied by the interpretation of subrou-
tine 2.3 shown in Fig. 6.
The next stage of the design procedure is to further specify

subroutines 2.1 and 2.3.3. In Fig. 7 we have decomposed sub-
routine 2.1, introducing the Boolean array cf. The variable
cf[k] is initially false, and is modified only in subroutines
2.1.1 and 2.1.5. We then define Rk, and Ski as follows:

Rk, n [k] >01 A[(r 2.1.3 U) D (k..j)]

Skj[n [k] > 0] (rj E .1.)DTkj].

(Note that we have taken into consideration the fact that n [j]
might assume arbitrary values while HI executes subroutine 6.)
We will define Tk, to be a function of process HI's local vari-
ables. If Tk, = true, it will mean that either n [k] has not yet
been read by subroutine 2.1.3 of IH1, or else its current value

n[k]0= |

nF) ---

2.1.1
cff k] true

n k JO ---- 2.1.2

r - -

I n[k : l+maximum(nr1], 2. 1. 3
nN])

nEk] >O ---- 2.1.4

12.1.5
cf[k false

n[k > O 2.2

Fig. 7. Stage 4 decomposition of subroutine 2.1.

was read. We can now describe subroutine 2.3.3 a's a "wait
until cf[j] = false" operation.
At this stage, we have described our program to the same

132

LAMPORT: CORRECTNESS OF MULTIPROCESS PROGRAMS

Fig. 8. The final program.

level of detail as its Algol representation in [13] and have es-
sentially designed an informal proof of correctness. This proof
involves showing that our "partial interpretation" of 11 is in-
variant, and is done by proving consistency at each subroutine
node and monotonicity of each assertion attached to flk under
every other process HlI. Theorems 2 and 4 imply that to verify
the monotonicity conditions, it suffices to prove that Rk; iS
monotone under subroutine 6, and Rk, and Ek/ are monotone
under subroutine 2.1.3 of Hi. Note that there are just three
monotonicity conditions to be proved, despite the fact that
the 11 arcs and 9 nodes of our flowchart imply 99 monoton-
icity conditions.
This informal proof of correctness must be done in order to

check our design and make sure that it can be completed to a
correct program. It is very similar to the proof of Assertion 2
of [131 . The latter proof involves sequences of events. We
have essentially translated its ideas into assertions which must
be true at different points in the flowchart.
At this stage, the further refinement of our design is quite

straightforward. Each subroutine can be designed indepen-
dently of any other subroutines. The final program is shown
in Fig. 8. Its initial assertion is

A{(rk EFm)A (n[k] =O0)A(-cf[k]): 1 k.N}.
Observe that setting the value of cf[k] or n [k] is represented

by a two-step procedure. The variable is first set to the tran-
sient value '?'. We assume that if the variable is read by another
process while its value is '?', then the read operation may
return any integral value. Hence, any function of these
variables is a multivalued function, and our program is
nondeterministic.

This program represents an implementation in which the
operations of reading and writing a variable may overlap, in
which case no assumption is made about the value returned
by the read. We assume that concurrent read operations to a
variable do not interfere with one another. Concurrent write
operations are impossible in this program.
Note that if n [U] = '?', then the expression n [j] assumes all

integral values. Hence, the predicate n [j] > 0 (which is a sub-
expression of the predicate k <<j) is multivalued and equals
both true and false. However, the assertion n [i] > 0 is false,
as is the assertion n [j] = 0.
The program still has flowchart nodes which require several

operations when implemented by any real processor-for ex-
ample, the "k AA ik" decision node. However, the implemen-
tation of each node requires at most one read to one variable
which can be set by another process. It is easy to see that this
allows us to consider these nodes to be indivisible operations.
We can now define the assertion Tk/ as follows:

Tkj- ([(irj E {2.1.3.2, 2.1.3.3}) A (ji > k)]
D [n [jj] > n [k] I)A ([7r1E {2.1.3.4, 2.1.3.5})

A(j1>k)] D [t,> n[k]])A([(irj= 2.1.3.6)
A (j >k)] D [n[j,i n[k]])-

The complete interpretation is defined by attaching assertions
to the arcs as indicated below:

arcs 1,2.1.1,2.1.2,7,8: n[k] =0
arcs 2.1.3.1, 6: true
arcs 2.1.3.4, 2.1.3.5: (jk > k) D(tk >O)

133

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1977

arcs 2.1.3.2, 2.1.3.3: (Ik > k) D (n [k] >0)
arc 2.1.3.6: (ik > k) D (n [k] >0)
arcs 2.1.4 - 2.3.1.1: n[k] >0
arcs2.3.1.2-2.3.3: (n[k] >0)AA{Ek,*1 .I<Ik}
arcs 2.3.4, 2.3.5: Skik A{Eki :1I<j<ik}
arc 2.3.6: A{EkI: 1.1<Ik}
arcs3-5: A {Ekl: Ij-N}.

It is a straightforward task to prove the invariance of this
interpretation. We must assume that subroutines 4 and 8 of
Hk do not change the values of n, cf,ji, or ti for i = k. Proving
the required consistency conditions is then tedious but quite
simple, except for the consistency of the "Cf[jkI" decision
node. For this, we must first prove that for all k, the assertion
-cf[k] D (7Tk (2.1.3) is invariant. This is easily done by
proving that attaching this assertion to all arcs of the flowchart
gives an invariant interpretation.
Note that Theorem 2 reduces the number of monotonicity

conditions to be verified from a possible 418 (22 arcs, 19
nodes) to only 11.

Discussion of the Proof
Our example showed how the program and the proof can be

designed together in a top-down hierarchical fashion. At each
stage, our proof required that the following conditions be satis-
fied by each subroutine: 1) the assertions attached to its input
and output arcs are consistent, and 2) certain assertions are
monotone under that subroutine. We then checked that our
design was correct by showing that the informally defined sub-
routines satisfied these conditions. We can also regard these
conditions as part of the formal specification of the subrou-
tine. This idea can be developed into a design methodology
for large programming projects, but it is beyond the scope of
this paper to do so.
Observe that much of the bookkeeping in our design proce-

dure can be automated-for example, keeping track of the
monotonicity conditions. Automatic theorem provers can also
do most of the work in proving the invariance of the final in-
terpretation, since most of the consistency conditions that
must be proved are very simple. However, designing the inter-
pretation required considerable human ingenuity. Like most
simple proofs, this one was hard to make simple.
Designing multiprocess programs and proving them to be

correct is a difficult art. We do not claim that our method
makes it easy. With this example, we have tried to show that
the method makes formal correctness proofs feasible. Using
automated aids to handle the simple drudgery, constructing
and verifying this formal proof would not have been much
harder than writing a careful informal proof.
The reader may feel that our proof was too difficult for such

a short program. However, although it is short, the algorithm
is quite subtle. This is indicated by the fact that it implements
mutual exclusion without assuming any hardware implemented
mutual exclusion. Hence, even so simple an assertion as
n [k] = 0 turned out to require careful definition.

Its subtlety means that the algorithm is more complex than
it appears. If we were to try to prove it correct by a brute
force analysis of all possible program states, then its complex-

ity would manifest itself in the enormous number of cases we
would have to consider. For example, not only can the value
of n [k] become arbitrarily large, but n (j], n [k], and n [j] -
n [k] can all become arbitrarily large if j * k and N> 3. (We
do not know if this is true forN = 3.)
We have spent considerable time studying this algorithm,

trying to find an easy way to modify it so n [k] need only as-
sume a finite number of values. We have been consistently
frustrated by the amazing number of possible execution se-
quences. This experience has led us to conclude that it would
be impractical to try to prove the algorithm correct by ex-
haustive case analysis.

Another Property of the Program

There is one safety property of the bakery algorithm proved
in [13] which we have not mentioned: processes enter their
critical sections on a first come, first served basis. More pre-
cisely, if fk reaches arc 2.2 before HI enters subroutine 2.1,
then f1k will enter its critical section before fHI does. For the
sake of completeness, we now indicate how this is proved.
The correctness property is phrased in terms of sequences of

events, so it cannot be directly expressed as the invariance of
an assertion. The obvious method is to introduce some ficti-
tious variables, including a "clock" which is incremented each
time it is read. A process reads the "clock" at the beginning
and end of subroutine 2.1, and by using the "times" read we
can define an assertion whose invariance implies the desired
property.
However, there is an easier way. It suffices to prove that if

we reach a state with flk'S token on arc 2.2 and Hl 's token
between arcs 7 and 1, then rk must reach arc 6 before fHI can
enter its critical section. To do this, we simply delete arc 6
from fk and show that then fj can never enter its critical sec-
tion. Let us therefore define a new program in which all pro-
cesses except Hk are the same as before, and Hk consists only
of subroutines 2.3 and 4. We define an interpretation of this
new program by attaching the same assertions to the arcs as
before. The initial assertion is that irk = 2.2, 7rj GE m U
L8I1 U 1 , and every process' token is on an arc whose asser-
tion is true.
The invariance of the interpretation is an easy consequence

of the invariance of the interpretation of our original program
and our initial assertion. The invariance of the assertion Ek,
then follows easily from Theorem 3. Using the fact that
H[(ir, E 4j) D[-(EkjAEjk)] (since Hk no longer changes
n [k]), we can prove that 11- [7rj f F4] which is the desired
result.

III. LIVENESS

Introduction

We now turn to the proof of liveness properties of programs.
Recall that a liveness property is one which states that some-
thing must happen. For example, in the bakery algorithm we
want to prove that if a process' token reaches arc 1, then that
process will eventually enter its critical section.
We defined an execution of a flowchart program to be a se-

134

LAMPORT: CORRECTNESS OF MULTIPROCESS PROGRAMS

quence of steps, where each step consists of moving a single
process' token from one arc through a node to another arc
(possibly the same one). A process is halted if its token reaches
an exit arc. So far, we have allowed executions which can pre-
vent anything from happening-for example, executions of the
bakery program in which some process' token sits forever on
an arc of its critical section. Obviously, no other process will
ever enter its critical section in such an execution. To prove
liveness properties, we must rule out executions which "freeze"
a process in this way.
Let a legitimate execution be one in which every process

that does not halt has its token moved infinitely many times.
For assertions A and B, we let A ---) B mean that if a legiti-
mate execution reaches a state in which A is true, then it will
subsequently reach a state in which B is true. (The assertion
B might later become false.) To prove liveness properties, we
will prove that A -._-- B for the appropriate assertions A and
B. Note that the relation '---- is transitively closed (A B
and B - r.-*C imply A ---+ C) and reflexive (A -+A).

The Producer/Consumer Program
To illustrate our method, we return to the producer/con-

sumer program of Fig. 1. We will show that no deadlock can
occur, so the producer and consumer never stop sending and
receiving messages. More precisely, we prove that ms and mr
become arbitrarily large. Since we have already proved that
1.[O.ms-mr.b], it suffices to prove that ms+mr be-
comes arbitrarily large.
Let Pm denote the assertion ms + mr = m. We will prove

that Ao - -'0-Pm for every nonnegative integer m. Since Pt is
true initially, by the transitivity of the -- -) relation it suffices
to prove that Pm- Pm,j for all m.
Consider the following diagram.

Pm A (n >0) Pm A (n = 0)

Pm /A (n > u)A (7rp # 4) Pm A (n =) /\((c # 4)

Pm+1
where rrp and irc denote the locations of the producer's and
consumer's tokens, respectively. Suppose that for each asser-
tion in this diagram, we can show that if it is true, then one of
the assertions beneath it must subsequently become true.
Then this implies that Pm Pmm+1 because if Pm is true,
then one of the two top assertions Pm A (n > 0), Pm A (n = 0)
must be true.
We have split the problem of proving Pm --Pm+j into

proving four other --- --o relations: one for every assertion in
the diagram except Pm+1' We illustrate the method by
proving one of these relations-namely, [Pm A (n >0) A
(irep 4)] Pm+l. To do this, we assume that Pm A
(n > 0) A (i,p # 4) is initially true, but that Pm+l never be-
comes true, and we obtain a contradiction.
We first generalize our definition of an interpretation to one

which attaches two assertions to a single arc: an input assertion
which should be true if the token is initially placed on the arc,
and an output assertion which should be true if the token is

Producer:

Q

Consumer:

Q

Q

Fig. 9. Generalized interpretation of producer/consumer program.

moved onto the arc during the program execution. The basic
idea is to find such an interpretation satisfying the following
conditions:

1)
a) If Pm A (n > 0) A (7rp # 4) is true, then the token of

each process must lie on an arc whose input assertion is
true.

b) The invariance of -Pml implies that this interpreta-
tion is consistent.

2) The consumer's token must eventually reach an arc whose
output assertion is the constant assertion false.

This yields the necessary contradiction, since 1) implies that
each process' token is always on an arc whose assertion is true,
and 2) implies that the consumer's token must reach an arc
whose assertion is false.
We will use the interpretation shown in Fig. 9, where Q de-

notes the assertion Pm A (n > 0) A (r1p = 4). All arcs have
their input and-output assertions equal, except for arcs 1 and
4 of the consumer. Each of those arcs has the input assertion
Q and the output assertion false.

It is easy to see that this interpretation satisfies condition
1 a). We next show that it satisfies 1 b). The consistency of the
producer's interpretation is easy to verify. Note that the proof

135

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1977

of the consistency at the ms assignment node uses the hypoth-
esis that 'Pm+i is invariant, i.e., the producer's token cannot
reach arc 4 unless Pm+1 becomes true. To prove the consis-
tency of the consumer's interpretation, the only nontrivial
condition to verify is the one for the decision node. We first
observe that the invariance of the interpretation of Fig. 1 im-
plies that the assertion (irp * 4) D (n, < s - r mod k) is invari-
ant. Using this and the fact that (sr, E { 1, 2}) D (n = ne), we
can easily prove consistency at the consumer's decision node.
Proving the monotonicity conditions for the attached asser-

tions is now trivial. Hence, condition lb) is satisfied. Condi-
tion 2) is clearly satisfied, since every loop in the consumer's
flowchart contains arc 1 or 4. Thus, our proof thatQ
Pm+1 is completed.
We have proved one of the required four - - relations for

the assertion diagram. The proofs of the remaining three rela-
tions are similar.

The Formalism
We now formalize the method used in the above example.
Definition 6: A generalized interpretation Ik of a process

11k is a mapping which assigns to each arc a E r* an input rk-
assertion iIk and an output Hk-assertion oIk such that
F [oIk D jIkI]. The definitions of consistency and monoton-
icity are the same as in Definition 3, except that in the consis-
tency conditions for a node, the input assertions are used for
the node's input arcs and the output assertions for its output
arcs.
A generalized interpretation I of a program Hl consists of a

generalized interpretation Ik of each process Hk. It is consis-
tent if: i) each Ik is consistent, and ii) for each j and k with
j # k and every ,B E Fj i A (7r1 =) is monotone under Ik.

We will onily need generalized interpretations for which each
oIk equals either iIk or false.
Definition 7: A set of arcs A of a process Hl is called an inev-

itable set if for some process Hk: i) every closed path in flk
contains an arc in A, and ii) A contains all the exit arcs of Hk.

O
We now state some simple axioms for the relation - . We

could define - ---) in terms of executions as indicated before,
and then prove that it satisfies the axioms. As with S1 and S2,
we will not bother to do this, but will consider our axioms to
define the relation --0.
LI: Let A and B be assertions about a program H, and let I

be a generalized interpretation of 11. If
1) by assuming IF [-B] we can prove that

a) IF [A DA{(1rk = a) D Ik: all k, and all aEk}I
b) I is consistent

2) {a : k =false} is an inevitable set.
Then A - -4B. U
L2:

a) The relation - --) is transitively closed.
b) If d is a [finite] set of assertions, and A B for

eachA E (3, then VWP---*B. o
We have indicated two possible choices for axiom L2, de-

pending upon whether or not (I is assumed to be finite. These
two choices give slightly different meanings to the relation

This will be discussed later. In practice, one will seldom
use L2 for infinite sets of assertions.
Axiom LI is stated in terms of a proof by contradiction. It

might be more elegant to restate the axiom in terms of a posi-
tive proof. However, proofs by contradictions seem to be eas-
ier in practice. Rather than considering all the things that
might happen, we can simply postulate that none of them do
happen and obtain a contradiction.
The following theorems are consequences of the axioms, and

are useful in proofs. We will not bother to prove them.
Theorem S: If F[A D BI, then A--- B.
Theorem 6: If IF [-C] implies A - B, thenA - B V C.

U
Theorem 7: If C is monotone and IF [C] implies A-*B,

thenA ACBAC. U
The following definition abstracts the property of the posi-

tive integers which is used in "counting down" proofs.
Definition 8: Let (I be a set with an irreflexive partial order-

ing<. For any A E Qf, we define aA to be {B E d : B<A}.
The set d is called well-founded if for each A E (a, dA is a
finite set. U
The following theorem generalizes the "assertion diagram"

method used in the producer/consumer example. It is an easy
consequence of L2, and its proof is omitted. The hypothesis
that d is finite is needed if only the weaker form of L2 is as-
sumed. Note that any finite partially ordered set is well-
founded.
Theorem 8: Let (a be a [finite] well-founded set of asser-

tions, and B any assertion. If A - B V V(A for all A E a,
then Vd--B. U
Proofs of liveness properties can be designed in a hierarchical

manner along with the program. This is done by designing the
set of assertions a of Theorem 8 by successive refinement.
With each step of the design process, the elements of (I are de-
composed as the union of other assertions. This is made more
precise by the following definition.
Definition 9: Let d and (' be partially ordered sets of asser-

tions. We say that Li' is a refinement of (d if there exists a sur-
jective, order-preserving, single-valued mapping 7r: a3' a
such that A = VsT-1 (A) for each A E (R. U

It is easy to see that the refinement (d' satisfies the hypothe-
sis of Theorem 8 only if d does. Hence, we can design a for-
mal proof by successively refining informal proofs.

The Bakery Program
To illustrate the hierarchical design of a liveness proof, we

return to the bakery program and its design process shown in
Figs. 4-8. The basic liveness property we want to prove is that
any process which reaches arc 1 of its flowchart must even-
tually enter its critical section. Since we have already proved
that processes enter their critical sections on a first come, first
served basis, we will simplify our task by proving the following
property: if some process is in subroutine 2, then some process
must subsequently be in its critical section.
Before doing this, we introduce some notation. For any set

A of arcs, we let y(A) = {k : 1rk E A}. For example, y(W)
represents the set of processes in their critical sections. If m
and n are arc numbers, then |7m: n | denotes the set of all arcs

136

LAMPORT: CORRECTNESS OF MULTIPROCESS PROGRAMS

numbered from m through n. Referring to Fig. 7, we have
1: 2.1.3 = {1} U L2-1.1 u {2.1.2} U 2.1.3 . We also let

Ndenote {1, * ,N}.
We can now state our desired liveness property as follows:

[y(1)#] [-y()*4)]. The methodofproof
is to construct an appropriate set d of assertions with Vd-
[,y(,21)), and then apply Theorem 8. By Theorem 6,it
suffices to assume that 1F [y(3)= 4] and then prove that
A. VaA for every A C d. Therefore, we will assume
throughout this proof that 1F ['y([ii) = ¢
We first consider the stage 1 decomposition of the program

shown in Fig. 4. Since a process in subroutine 6 might prevent
any other process from entering its critical section, we want to
show that all processes must eventually leave subroutine 6. To
do this, we make the following definitions:

A(S)-[y(A1)44/\[y(56)CSI, forSCN
(i() {A (S) : S C N}
A (S)cA (S') iff S c S'.

Lemma 1:
a) For each k: the assertions irk CEiiIi2 and irk

5: 6 are monotone.
b) For all S CN the assertion A (S) is monotone.
Proof.:
a) The monotonicity of each of these assertions is easily

proved by attaching it to every arc of the flowchart,
and then using the assumption that 1 ['y(3:) =4]
to prove that this interpretation is consistent.

b) This follows from part a) and Theorem 4, since A (S)
V{(Irk 1):kCEN} A A{irk l5:j :k CS}.

Lemma 2: Assume that for each k: [irk E 5]
[7rk =7]. If S#4), then A (S)-+A (S') for some S' S.

Proof: Let k C S. By definition of A (S), we have
[(A(S) A A(S - {k})) D (irk)] and 1-[(A(S) A
A(S - {k})) D (irk E 5 :6)] . Applying Theorem 5, the

hypothesis, and L2 b), we easily show that A (S)----
[Ik 5]. Since A(S)A [7rk 5:6 A(S -{k}),
Lemma 1 b) and Theorem 7 imply A (S)-.-*A (S - {k}). O
Note how defining A(S) by the condition y(5)CS

rather than 'y(5) = S simplified the proof of Lemma 2.
When trying to apply Theorem 8, it is often easier if we define
d so that A <A' impliesA DA'.
To use Lemma 2, we will have to show later that [irk E
5:6] .'-. [irk = 7] . This must wait until a later stage of

the design when subroutine 6 is more fully specified. In fact,
this condition can be considered to be part of the specification
of subroutine 6.
Since VW ([)IY(J))0], Lemma 2 shows that to

complete our proof, we need only prove that A (4) ----false.
To do this, we must decompose A (f). Using the idea that
either a process must enter its critical section or else another
process must enter subroutine 2, we make the following
definitions:

R (T)--A(t)AfTCv(II)

(2) = {A(S): S*01} U {B(T): T*0}

B(T)<A (S) for all S, T

B(T')<B(T) iff T T'.

Since A(4)=V{B(T) :-T=A}, we need only prove that
B(T)..0-V{B(T'): T$ T'} for all T#0 . This will require
a further decomposition of B(T).
We next turn to the stage 2 decomposition of the program

shown in Fig. 5. We expect any process in subroutine 2.1 to
leave that subroutine and enter subroutine 2.3. This leads us
to make the following definitions.

B(T, U)-B(T)A [UC y(12.2: 2.3)]

(3) = {A (S): S # 0} U {B(T, U): UC T and T#4}

B(T, U)<A (S) for all S, T, U

B(T', U')<B(T, U) iff: i) T c T' or ii) T= T'and U c U'.

Lemma 3: For all T, U with U C T: B(T, U) is monotone.
Proof: The proof is similar to that of Lemma 1 b). We

first prove that [irk El 2.2 : 2.3 1 is monotone for all k, then
express B(T, U) in terms of these assertions and the ones of
Lemma 1 a). The details are left to the reader. El
Lemma 4: Assume that for all k: [Irk E [1: 2.1].-

[irk = 2.21. If U c T, then B(T, U) ---*B(T, U') for some U'
with U c U'.

Proof: Let k E T - U. Then Lemma 3, Theorem 7, and
the hypothesis imply [irk E | : 2.1 1 A B(T, U)--4
[1Tk = 2.3] A B(T, U). But [irk E 1 2.1 1 A B(T, U)-
B(T, U) and [rk = 2.2] AB(T, U) DB(T, UU fk}). Hence,
Theorem 5 and L2 a) imply B(T, U) ---B(T, UU {k}). E
The condition [7rkE1C LI]-.- --)[1rTk= 2.2] must be

proved later, and becomes part of the specification of subrou-
tine 2.1. All that remains to be shown is that B(T, T)- --*
J(3()T T This requires decomposing the assertions B(T, T).
The essential idea is that if y(12.2 :2.31) = T and no more
processes enter subroutine 2, then the process Hk with k AA j
for all j G T must enter its critical section. We therefore make
the following definitions.

B(T, T, k) B(T, T) AA {k]: /j T}
(4) = {A(S) : S#4)} U {B(T, U): Uc T}

U {B(T,T,k) : TO4),kCT}.
A 5B(T, T, k) iffA B(T, T), for any A CE

Observe that TOO implies B(T, T) V{B(T, T, k): k C T}
since A{k .<.j : CE T} must be 'true for some k C T. There-
fore, 4 is a refinement of 3
Lemma 5: For each T # 4, k E T: IF BVV(T,T,k)] im-

plies that
a) B(T, T, k) is monotone
b) IF [B(T, T, k) D (a(1:2.1 A)= A)A{k < j EN}].
Proof: LetQ-V WTk)* ThenQ-A

T C U' C T' and T# T'}. Therefore, Q A B(T, T, k) implies
'y(2.2: 2.3) (l:2)=T, soy(1: 2.1)=].Also,
B(T, T, k) implies (5: 6)=4. Since we are assuming
IF [-Y(3 :4) =], we have therefore proved that IF [QI
implies

137

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1977

(*) IF[B(T,T,k)D(y(1:2.1)=,Y(t ij1)=b)I.

It is easy to prove part a) by attaching B(T, T, k) to each
arc of the flowchart, and then using (*) to prove that this
interpretation is consistent. To prove part b), we first observe
that II-[B(T, T, k) D (n [k] > 0)] and IF [(Qri :6) D
(n [j] = 0)] . Since F [(n [k] > 0) A (n [j] = 0) D (k < j)],
part b) follows easily from (*). C1
Lemma 6: Assume that for all k: if IF[('(1: 2.1)) A

Al{k <jj :jEN}],then [1rk E 12.2: 2.3 I '. rk= 3]-.
Then for all T 0 and k E T: B(T, T, k) P-4V 4T T, k)

Proof: By Theorems 6 and 7 and Lemma 5, it suffices to
assume that IF [V(V4(TT,k)] and IF [B(T, T, k)], and then
prove that B(T, T, k) - - -ofalse. Lemma 5 then implies that
1F [A{k<<j: jEN }]. We nowhave

B(T, T, k) 1(rkE 2.2 : 2.3] (by Theorem 5)

[7Tk E 122 : 2.31] [1r k = 3] (by hypothesis)
[Irk = 3] false (by Theorem 5 and IF [y(3 : 4) =

By the transitivity of---4, this proves the lemma.
Combining Lemmas 2, 4, and 6, we see that Theorem 8 ap-

plied to (4) proves the desired liveness property-if the fol-
lowing conditions are satisfied:

1) TkE 5 -1|-- [Trk =7]
2) [ITk E_ II 2.11]-[1Tk =2.21
3) F [((y 1: 2.11)=) AA{k..j: jEN}] implies

[7Tk E= F2.2 : 2.3-]j 17Tk =31 .

To prove these conditions, we have to tum to the final pro-
gram of Fig. 8. The proof of 1) requires a trivial application
of Ll. The prosf of 2) is done with the following sequence
of steps:

a) [kE 1: 2.1 I- [-k- 2.1 1.
b) IF [rk 2.1.3) DV{7rk E2.1.3)

A(jk =i) : iEN} V((rTk = 2.1.3.2)A(jk =N+ 1))]
c) if 1 < i < N, then [(kE 2.13)A (jk = i)

_*[(rk = 2.1.3.2) t\ (ik = i + 01)
d) [7k =2.1.3.21 A\[jk =N+ I I [ITk = 2.21.

Step b) is a safety property which is easily proved by the
methods described before, and the other steps are easily
proved using LI. By L2 and Theorem 5, they prove 2).
The proof of 3) is similar to that of 2), except that it re-

quires the additional step of proving the following trivial safety
property:

IF(zlK.1A)=O)DAf-cfU;] :PEN}].

Discussion of the Proof
Let us consider the informal reasoning underlying the above

proof.: We must assume that no process is ever in its critical
section, and then derive a contradiction. We first observe that
this assumption implies that all processes must leave subrou-
tine 6 (Lemmas 1 and 2). Next, we see that we may further
assume that no more processes enter subroutine 2.1, so even-
tually there will be no processes in that subroutine (Lemmas 3
and 4). We cannot suppose all processes will eventually reach

subroutine 2, since a process may remain forever in subroutine
8. Finally, we show that if subroutines 2.1 and 6 are empty,
then the process Hk with k ..<j for all j must eventually enter
its critical section (Lemmas 5 and 6).
This reasoning assumes certain properties of the subroutines

2.1, 2.3, and 6: namely, the properties formalized in condi-
tions I)-3). The proofs of these conditions were quite straight-
forward, and were essentially the same as the usual proofs of
termination for sequential programs. Of course, the formal
proofs that we sketched required a considerable amount of
detail for such simple results. However, that was because we
had to reduce everything to our fundamental axioms LI and
L2. A few basic theorems-e.g., that a process must eventually
exit from a loop-free subroutine-would greatly simplify the
proofs. There is no real difficulty in constructing complete
formal proofs of conditions 1)-3).
The situation is not quite as satisfactory with the rest of the

proof. If we consider Lemmas 1-6 and their proofs to consti-
tute a very rigorous informal correctness proof, then it is
doubtful that this proof inspires any more confidence in the
program than the simple informal reasoning upon which it was
based. We can also consider our proof to be a sketch for a
complete formal proof. It is certainly rigorous enough to be
formalized, but it would be rather tedious to do so without
help from an automated proof verifier. A general-purpose
proof verifier would have to be quite sophisticated in order to
provide this help.
Fortunately, a sophisticated verifier should not be necessary.

Examining the proofs of the lemmas shows that they follow a
similar pattern. Further experience constructing liveness
proofs should enable us to ritualize the procedure. It would
then be possible to design a relatively unsophisticated auto-
mated system to aid in constructing the proofs and to verify
them.
Observe that we never assumed that a process which enters

its critical section must eventually leave it. We very carefully
formulated our liveness property so that assumption was un-
necessary. Of course, the complete program would undoubt-
edly be considered incorrect if a process remained forever in
its critical section. However, we were really only interested in
proving the correctness of subroutines 2 and 6.

Real Time Considerations
We now examine the meaning of the relation in terms

of program execution times. Let us assume that each process
has a run time clock which is advanced by a positive quantity
every time one of its nodes is executed. (This quantity may
depend upon the node and the values of variables.) Let us also
assume a single real time clock which is arbitrarily advanced,
but must always run at least as fast as each process' run time
clock. This represents our intuitive idea of how processes are
actually executed by real machines.
Let us now make the further assumption that there are posi-

tive constants T, T1, * * *, TN such that whenever the real time
clock advances at least T units of time, each process rlk's run
time clock will advance by at least Tk units. For processes
being executed by separate physical processors, this means that
the ratio of the execution speeds of any two processors is

138

LAMPORT: CORRECTNESS OF MULTIPROCESS PROGRAMS

bounded. For processes implemented by time-sharing a single
processor, this represents a reasonably weak fairness condition
on the scheduler. (Processes which are in a "waiting loop" can
be considered to be running even though they are not actually
executed.) We will call the Tk, T and the execution times of
the nodes the implementation parameters.
We now define the relation A--A B to mean that if A is

true, then B will become true within t units of real time, where
0< t <oo. If t = O0, then B will eventually become true, but it
could take an arbitrarily long time. We can restate axioms LI
and L2 for the relation - - -. We can modify LI by changing
its conclusion to A -"-- B, where t is a finite number which is
an obvious but complicated function of the topology of the
flowcharts, the inevitable set of hypothesis 2), and the imple-
mentation parameters. Axiom L2 can be restated as follows:
L2':

a) A ABandB)CimplyA C.
tA

b) If A ----.B for all A C , then V(d tB, where t=
SUp {tA :ACE }.

Note that in part b), if Q is an infinite set, then t can equal oo

even if each tA is finite. A We also need the additional axiom
thatA tB impliesA - B for all t' > t.
When designing real programs, it is not sufficient to prove

that something must eventually happen. One wants to prove
that it must happen within some reasonable length of time.
By proving the appropriate relation A B, we prove that
what we want to have happen will happen within time t, pro-
vided the implementation parameters are satisfied. This
method might be useful in designing programs with real time
response requirements. However, it is not clear whether such a
simple approach can successfully represent the complexities of
a real implementation.
The difference between the strong and weak forms of axiom

L2 can now be described by the following result. (The weak
form assumes Li is finite.)
Metatheorem:

00

a) A---B under the strong form of L2 iffA - - B.
t

b) A- --B under the weak form of L2 iffA---)B for
some t <0. O

A rigorous proof of this result would be long and unreward-
ing, so we will not bother to prove it. Note that the value of t
in part b) depends upon the implementation parameters, but
its existence does not.
We will illustrate this metatheorem with the single process

program of Fig. 10. We want to prove that if n > 0, then the
program will eventually halt, i.e., we- want to prove that
[n > 0] ----4 [rr = 3] . It is easy to prove, using the weak form
of L2, that for any i>0: [n = i] [r= 3]. However,we
need the strong form of L2-(with Li = {n = i : i > 0}) to con-
clude that [n >01 -O-] [Tr = 3]. We cannot prove this using
only the weak form of L2 because although n >0 implies that
the process eventually reaches arc 3, it can take an arbitrarily
long time to do so. Hence, [n >0] O]t4 [7r = 3] holds only
for t = oo.
As we have already stated, the strong form of L2 is rarely

j2 3

n .-n-

Fig. 10. A single process program.

needed. Even in programs such as our bakery algorithm in
which the value set X is infinite (n [k] can become arbitrarily
large), we still only need the weak form of L2.

IV. FURTHER REMARKS
Applicability
Our multiprocess flowchart programs are sufficiently general

to allow a convenient representation of most single-site multi-
process systems.4 The only apparent lack of generality is the
assumption of a fixed number of processes. However, the cre-
ation and destruction of processes can be represented by hav-
ing processes leave and enter waiting loops. Since the actual
number of processes need not be specified (our bakery pro-
gram was proved correct for any N), this is a satisfactory ap-
proach. Another approach will be described below.

It seems possible to represent any desired correctness prop-
erty as either the invariance of an assertion, or a relation of the
form A B. This may require the introduction of fictitious
variables.
Our formalism does not rely upon any particular form of

interprocess synchronization. Indeed, we easily represented
the bakery algorithm in which no a priori synchronization
mechanism was assumed. This means that the programmer
can choose the type of synchronization most appropriate to
his problem, and is not forced to introduce unnecessary syn-
chronizing operations in order to prove the correctness of his
program. A good example of a problem that can and must be
solved without costly synchronization is given in [8] .
Any desired synchronization primitive can easily be repre-

sented. For example, Fig. 11 shows one possible representa-
tion of the semaphore operations P(s) and V(s) in a process
fk* Although the formalism requires that the semaphore
primitives be represented by busy waiting, they need not ac-
tually be implemented in this way. The representation is a
formal specification of these primitives. Having to provide

4They are probably not suitable for distributed networks of
processors.

139

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1977

Fig. 11. Representation of the semaphore operations.

such a specification quickly leads one to realize that the usual
informal description does not completely define the semaphore
primitives.
The method of hierarchical decomposition allows the pro-

grammer to prove the correctness of as detailed a description
of the program as he desires. To obtain a formal proof, he
must reach a level of detail at which each individual node can

be considered to be an indivisible operation. Any subroutine
{sets used~which no variables which may be concurrently set
usesj set1

by another process can be considered an indivisible operation.
Hence, a single flowchart node may represent a complex oper-

ation. For example, in many applications of the mutual exclu-
sion problem, the critical section can be represented by a single
assignment node.
A subroutine which can be represented as an indivisible oper-

ation may also be further decomposed. By Theorem 2, the
proof of correctness of this decomposition becomes indepen-
dent of the rest of the program, and is essentially the same as

the correctness proof for a sequential program as described in
[9]. The decomposition can be carried down to the lowest
level of detail at which a process maintains its identity. This
level is usually that of the individual instruction in some pro-

gramming language.
When proving the correctness of a program, there are two

things that must be verified which are external to our

formalism:
1) The flowchart program must be a correct representation

of the actual program.
2) The formal correctness properties that we prove really do

imply that the program will exhibit the desired behavior.
We may view the total system as a hierarchy of virtual ma-

chines. The highest level machine is the one seen by the user;
the lowest level one consists of the logical design of the hard-

ware. Each level of the hierarchy is a separate multiprocess
program which implements one virtual machine in terms of
the next lower level one. Condition 1) states that the program
is correctly implemented by the lower level virtual machine,
and condition 2) states that it correctly implements the next
higher level machine. Hence, 1) and 2) state the correctness of
the "coupling" of the program to the other levels of virtual
machines. We know of no satisfactory way to formally prove
the correctness of this coupling, although a first step has been
taken in [3]. For now, this must be proved informally. In
any case, correctness of the lowest level coupling (the correct
implementation of the hardware design) and of the highest
level coupling (the satisfaction of the user's desires) can never
be formally proved.

An Experiment
Upon discussing our method with others, we were asked how

long it takes actually to construct a correctness proof. Our ex-
perience with the above proofs did not provide an answer for
two reasons: we were already quite familiar with the algorithms
before we started, and we worked very hard to make the proofs
as simple and elegant as possible. We therefore decided to con-
struct correctness proofs for the solutions to the problem
given by Courtois, Heymans, and Parnas in [7]. These were
algorithms we had only casually read before.
We first proved the fundamental safety properties of the al-

gorithm. We did this by writing down the appropriate inter-
pretation, and informally checking the conditions needed to
prove its invariance. (Essentially the same proof works for
both of their solutions.) Starting from when we began exam-
ining the algorithms, this took about 1 3 hours.4
We next sketched a proof of the following liveness property

of their second solution: if a writer wants to write, then some
writer will eventually enter its writing section.5 The level of
detail in this sketch was analogous to specifying the set of as-
sertions (d (4) and the statements of Lemmas 1-6 and condi-
tions l)-3) in our liveness proof for the bakery algorithm, but
not writing down the proofs of the lemmas or the conditions.
Starting from when we chose our informal liveness property,
this took about 1- hours.
Of course, most people would take longer to construct these

proofs than we did. One can expect to take at least twice as
long in his first attempt at this type of formal proof. He
should not even make the attempt until he is sure he could
write a rigorous informal proof. However, these times do in-
dicate what can be expected from one who is experienced at
writing informal proofs and has some practice with our formal
method.

Extensions to the Method
There are two ways to extend our method: by specialization

and by generalization. We begin with specialization. Our for-
malism placed no restriction on the value set X. A useful ex-
tension would be to formally define some sort of structure on
S. For example, we can assume that X is a product of the

5This requires a different defnition of the semaphore operations than
the one described in Fig. 11.

140

LAMPORT: CORRECTNESS OF MULTIPROCESS PROGRAMS

value sets of the component variables. We could then formally
define local variables. Such a structure would make it possible
to give a simple formal statement of Theorem 2.
Another reason for placing a structure onX is to allow us to fork

formalize the concept of a closed subroutine. This would en-
able one to use a library subroutine without having to prove it
correct every time it is used. The specification of the subrou-
tine would contain certain theorems which would permit a for-
mal correctness proof for the program without having to de-
compose the subroutine. These theorems would be of two s k b tk * c
kinds: i) safety properties stated by sufficient conditions on
the assertions to guarantee the existence of a consistent inter-
pretation of the subroutine, and ii) liveness properties stating
conditions which guarantee termination. For example, the
P(s) semaphore operation could be represented by a subrou-
tine whose specification consists of the following two theo-
rems: i) a consistent interpretation is obtained if the output join
assertion is implied by the conjunction of s > 0 and the input
assertion with s- 1 substituted for s, and ii) if s > 0 and some
process is inside a P(s) subroutine, then some process will
eventually exit from a P(s) subroutine. By defining an appro-
priate structure on X, these ideas can be formalized. a sk +tk
Another useful specialization would be to restrict the type

of flowcharts allowed. Arbitrary flowchart processes were the
natural setting for describing the formalism. However, pro-
gress in structured programming has shown that they are not Fig. 12. Representation of a b + c.
the best way to think about programs. Of course, our method
of designing by successive refinement is the essence of struc-
tured programming. However, it would be better to have
another method of representing processes which would more translation of the Algol statement a := b + c where the fetches
forcefully encourage a properly structured design, and would of b and c are not ordered. Executing the fork node places a
exhibit the structure in the final program. Such a representa- token on each of its output arcs. Execution of the join node
tion just requires a change of syntax, and is irrelevant to our can only take place when there is a token on each input arc,
basic formalism. However, this does not diminish its impor- and it replaces these tokens by a single token on the output
tance for a practical programming tool. arc.
We now consider some possible generalizations of our for- Incorporating fork and join nodes into our formalism is dis-

malism. First, it would be trivial to combine our two types of armingly simple. The consistency conditions for these nodes
flowchart nodes into a single more general one: an assignment are simple and obvious. We need only change Definition 3 c)
node having an arbitrary number of exit arcs. This would al- so that for an interpretation I to be consistent, If A (T1. = ,B)
low the P(s) operation in Fig. 11 to be represented by a single must be monotone under Ik for all j, k including i = k.6 Al-
node with two input and two output arcs. The necessary mod- though this seems like a minor change, it tums out to be disas-
ification to our definitions should be obvious. trous. It destroys the conceptual separation of the processes,
Another possible generalization is to allow recursive subrou- making the design of a proof much more difficult.

tines. A recursive subroutine is represented by a flowchart Fortunately, there is no problem if the fork and join nodes
containing one or more nodes which represent another instance are used in a properly disciplined fashion. We can restrict
of the entire subroutine. Our methods cannot prove the con- their use to the type of structure shown in Fig. 13, in which
sistency of a single interpretation of such a flowchart or a a process splits into concurrently executed subprocesses. The
single -- relation. However, we can use our methods com- subprocesses can in tum split into subprocesses, and so on.
bined with mathematical induction to prove theorems of the This yields a hierarchical tree structure of processes and their
type described above about the subroutine. Working out the subprocesses. In the definition of a consistent interpretation,
details is a formidable task which we will not even contemplate an assertion attached to an arc of a process need not be mono-
here. tone under the interpretation of that process or of any pro-
Probably the most significant generalization is to allow the cesses above or below it in the tree of processes. The definition

creation and destruction of processes. Equating a process with of an inevitable set (Definition 7) must also be modified. The
a token (rather than a flowchart), this is easily done by defin- details are easy and are left to the reader.
ing new nodes which create and destroy tokens. These nodes,
called fork and join nodes, were first defined in [6]. Their 6The assertion wri = ,now means that at least one of rI's tokens is on
meaning is illustrated by Fig. 12, which shows a very precise arc ,.

141

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1977

r-- --I r --

SUBPROCESS SUBPROCESS

L _ j
nI _J

n~~~o

Fig. 13. Subprocess structure.

Comparison with Previous Methods
There have been several methods previously proposed for

proving the correctness of multiprocess programs. They can

be divided into two general classes: very general formal meth-
ods, and less general, usually less formal approaches. The ear-

lier general methods such as [2] represented the multiprocess
program as a single nondeterministic sequential program. This
approach is unsatisfactory because it uses a very unnatural rep-

resentation. The later formal methods of Ashcroft [1] and
Keller [12] permitted explicit representation of multiple pro-

cesses, where a process can be identified with a movable token
on a directed graph.
Our method of proving safety properties can be viewed as a

special case of the methods of Ashcroft and Keller. Although
this may seem to diminish the significance of our method, it is
precisely its more specific nature which makes the method use-

ful. All methods of proving safety can be viewed as special
cases of the following theorem: if F: S -* S is multivalued
function, D C S, and F(D) C D, then F'(D) C D for all n >0
(where Fn denotes the composition of F with itself n times).
We merely let F be the function which takes the current pro-

gram state into its next state. However, its generality renders
this theorem useless because it tells us very little about how to
construct a proof for an actual program. By being more spe-
cific than Ashcroft and Keller, we have provided a method
which gives more guidance to the programmer. We have not
found the greater generality of these other methods to offer
any significant advantage to compensate for their lack of
guidance.
We differ considerably from Ashcroft and Keller in our

method of proving liveness properties. Liveness is not consid-
ered at all by Ashcroft. Keller's concept of liveness is a weaker
one than ours, and essentially states that some condition never

becomes impossible. For example, it would consider a mutual
exclusion condition to be suitably "live" so long as a waiting
process always retained the possibility of entering its critical

section-even though it might also be possible for it to wait
forever. Although such a liveness property is often adequate
in practice, there always lurks the possibility that some unfore-
seen "resonance"- phenomenon in the implementation might
make a process wait much longer than seemed likely.
Other proof procedures have been proposed which are more

specific than ours, and assume some type of synchronization
primitive (4], [10], [11], [15]. The basic reason for their
assumptions is to insure that data cannot be accessed by one
process while they might be modified by another process. It
seems to have been generally accepted that this was necessary
in order to allow a correctness proof (5, p. 241] . Such meth-
ods obviously cannot be used to design the lower level virtual
machines-the ones which implement the synchronizing primi-
tives. However, they can be useful for designing the higher
level ones. Fortunately, these methods can all be carried out
in terms of our formalism. They just require using the appro-
priate synchronizing primitives and process structuring tech-
niques when designing the multiprocess flowchart programs.
It seems useful to have a simple common formalism upon
which to base these different methods.
After writing the initial version of this paper, we learned of

the recent work of Owicki [16], [17]. Her method of proving
safety properties is very similar to ours. Apart from syntactic
details, the basic difference between her method and ours is
that she uses assertions which may depend only on variable
values, and not on token positions. The restriction requires
the use of fictitious variables in most proofs. We find it more
elegant to use assertions about token positions rather than in-
troducing extraneous variables, but that is a matter of taste.
Owicki does not prove liveness properties. Instead, she proves
that programs written in terms of a special await condition
primitive cannot become deadlocked by having all processes
waiting at the same time.

CONCLUSIONS

We have presented a method for constructing formal,
machine-verifiable proofs of correctness for multiprocess pro-
grams. It allows a reasonably simple formalization of informal
proofs, and is practical for proving the correctness of the short
algorithms commonly published in joumals. With the type of
automated aids which can now be built, the method should
provide the basis for a system for designing and machine-
verifying large real programs. This is because the program and
its proof can be designed together in a top-down, hierarchical
fashion. Even without the automated aids needed to carry out
the proof at the levels of greatest detail, the method provides
an informal proof of the correctness of the higher level design.
Since the method does not rely upon any synchronizing

primitive, it can be used for any kind of multiprocess program-
even the lowest layers of an operating system. The proof pro-
cedure does not require the introduction of any unnecessary
synchronization into the program.
Although the method makes correctness proofs practical, it

does not make them easy. Designing proofs is still a poorly
understood art. Good proofs, like good programs, cannot be
produced by bad programmers.

142

AF

LAMPORT: CORRECTNESS OF MULTIPROCESS PROGRAMS

REFERENCES
[1] E. A. Ashcroft, "Proving assertions about parallel programs," J.

Comput. Syst. Sci.,vol. 10,pp. 110-135,Jan. 1975.
[2] E. A. Ashcroft and Z. Manna, "Formalization of properties of

parallel programs," Machine Intelligence, vol. 6, Edinburgh Univ.
Press, 1970.

[3] G. Belpaire and J. P. Wilmotte, "Correctness of realization of
levels of abstraction in operating systems," in Operating Systems,
E. Gelenbe and C. Kaiser, Eds., Lecture Notes in Computer Sci-
ence 16. New York: Springer Verlag, 1974.

[4] P. Brinch Hansen, "A comparison of two synchronizing con-
cepts," Acta Informatica, vol. 1, pp. 190-199, 1972.

[5] P. Brinch Hansen, "Concurrent programming concepts," Com-
puting Surveys, vol. 5, pp. 223-245, Dec. 1973.

[6] M. E. Conway, "A multiprocessor system design," in 1963 Fall
Joint Comput. Conf., AFIPS Conf Proc., vol. 23. Washington,
DC: Spartan Press, 1963, pp. 139-146.

[7] P. J. Courtois, F. Heymans, and D. L. Parnas, "Concurrent con-
trol with 'readers' and 'writers'," Commun. Ass. Comput. Mach.,
vol. 14,pp. 667-668, Oct. 1971.

[8] E. W. Dijkstra et al., "On-the fly garbage collection: An exercise
in cooperation," Burroughs Corporation, Rep. EWD595, sub-
mitted for publication.

[9] R. W. Floyd, "Assigning meanings to programs," in Proc. Symp.
Appl. Math., vol. 19, Amer. Math. Soc., pp. 19-32,1967.

[10] A. N. Habermann, "Synchronization of communicating pro-
cesses," Commun. Ass. Comput. Mach., vol. 15, pp. 177-184,
Mar. 1970.

[11] C. A. R. Hoare, "Parallel programming-An axiomatic approach,"
Stanford A. I. Lab., Memo AIM-219, Oct. 1973.

[12] R. M. Keller, "Formal verification of parallel programs," Com-
mun. Ass. Comput. Mach., vol. 19, pp. 371-384, July 1976.

[13] L. Lamport, "A new solution of Dijkstra's concurrent program-
ming problem," Commun. Ass. Comput. Mach., vol. 17, pp. 453-
455, Aug. 1974.

[14] -, "On concurrent reading and writing," Massachusetts Com-
puter Associates, Inc., CA-7409-0511, Sept. 1974, to be pub-
lished in Commun. Ass. Comput. Mach.

[15] K. N. Levitt, "The application of program-proving techniques to
the verification of synchronization processes," in 1972 Fall Joint
Comput. Conf, AFIPS Conf. Proc., vol. 41. Montvale, NJ:
AFIPS Press, 1972, pp. 33-47.

[16] S. Owicki, "Axiomatic proof techniques for parallel programs,"
Ph.D. dissertation, Comell University, Ithaca, NY, Aug. 1975.

[17] S. Owicki and D. Gries, "An axiomatic proof technique for paral-
lel programs," to be published in Acta Informatica.

Leslie Lamport received the B.S. degree from
the Massachusetts Institute of Technology,
Cambridge, MA, and the M.S. and Ph.D. degrees
from Brandeis University, Waltham, MA, all in
pure mathematics.
He has been employed by the Mitre Corpora-

tion and Marlboro College, and is currently a
Senior Analyst at Massachusetts Computer As-
sociates, Inc., Wakefield, MA. His primary re-
search interest is in the theoretical aspects of
concurrent multiprocessing.

143

