
A Mapping System from Object-Z to C++

M. Fukagawa T. Hikita * H. Yamazaki
Dept. of Computer Science

Meiji University
Higashimita, Tama-ku, Kawasaki 214, Japan

Abstract

Object-Z is an extension of the formal specification
language Z, augmenting the class concept as a struc-
turing facility. This paper introduces and discusses a
structural mapping sys tem f r o m Object-Z to the pro-
gramming language C++, and reports on its imple-
mentat ion o n UNIX. The structural mapping trans-
lates an Object-Z specification consisting of classes
into class interfaces of C++ such as data members
and prototypes of member functions. Thus it is not
intended as a code generation system, but rather as a
tool for analyzing specification (including syntax and
type checking) and for aiding a software developer in
obtaining code. Through the implementation of the
mapping sys tem several language features of Object-Z
and C++ concerning object-orientation are clarified.

1 Introduction

The formal specification language Z is gaining pop-
ularity, and is accessible in several textbooks [9].
Object-Z is based 011 Z, augmenting the class concept
as a structuring facility [3], [ll]. Object-orientation
in formal specification is one of the active research
areas in software engineering [2], [ll]. The program-
ming language C++ is one of the more popular object-
oriented languages [4].

This paper discusses a structural mapping system
from Object-Z to C++. The idea of structural map-
ping was initially proposed by Rafsanjani and Col-
will [SI. The structural mapping translates classes
of an Object-Z specification into classes (more pre-
cisely, class interfaces) of C++ such as data members
and headers of member functions. Thus i t is not in-
tended as a code generation system, but rather as a
tool for analyzing specification (including syntax and
type checking) and for aiding a software developer in

*e-mail: hi kita@cs.mei ji.ac.jp
f ~ u r m i t ~ y , IiitacIii SofLware Eii8i1iccring, LLCI.

obtaining code from specification. We consider that
the usefulness of such a mapping system is fairly ob-
vious as a tool for developing both specification and
code.

In [SI the basic rules of the mapping were described,
which were obtained through case studies. Their rules
seem natural in regard to the language facilities of
Object-Z and C++, and we employ their rules. We
have implemented the major part of the mapping sys-
tem, on which we report here. The implementation
helped us to understand several subtle points of the
mapping, especially those related to types and classes.

Our main contributions in this work are practical.
Our implementation of a mapping system on Unix
utilizes well-established compiling techniques for pro-
gramming languages, with tools lex and yacc. Main
points of the implementation are the treatment of
generic parameters for generic schemas and classes,
and that of state variables and member functions un-
der inheritance. The implementation is still an ongo-
ing project.

In the next section 2 we briefly review the languages
Object-Z and C++. Section 3 offers a simple example
of Object-Z specification and its mapping in C++. In
section 4 we discuss the rules of structural mapping
from Object-Z to C++, especially those related to
types, predefined symbols of Z, and class inheritance.
In section 5 several important points of the implemen-
tation of the mapping system are shown. Concluding
remarks and future work are in section 6. Finally, in
appendix two more examples of the mapping are in-
cluded.

2 Object-2 and C++

We here assume the reader the basic knowledge of
Z, Object-Z and C++. However, we very briefly re-
view and summarize some of their important language
features mainly concerning object-orientation, which
will be needed for our realization of a mapping sys-

220
0-8186-6960-4 $04.00 0 1994 IEEE

1

http://ji.ac.jp

tem.

2.1 Object-Z

Object-Z is an extension of Z, augmenting the class
concept as a structuring facility. The structure of an
Object-Z class is as Fig. 1, having as components con-
stants, types, state sclieinas and operation schema of
Z. The concept of (multiple) class inheritance is avail-
able by specifying base classes.

inherited classes
type definitions

constants

predicates

operation

in? : some type
out! : some type

state variables)

I predicates I- history invariant

Figure 1: Objec t -Z specification

Notice in this form that there are small differences
between the forms of schema in a class of Object-Z
and those of Z. Firstly, a state schema in an Object-
Z class does not have a schema name. Secondly, the
form of an initialization schema is different from Z.
And thirdly, in the A notation in operation schemas
(which indicates the change of values of states by the
operation), each state to be modified is specified in
Object-Z, while in Z the state schema name is specified
in a A list.

The semantics of Z and Object-Z is based on math-
ematical set theory, and objects and classes are treated
as (named) sets.

In order to realize polymorphism in Object-Z, de-
fine an object as follows: Obj :l C . Then, one can as-

sign to Obj not only objects of class C but also those
of classes derived from C. Let D be a class derived
from C, and let Op be the single name of the opera-
tions each belonging to C and D. Then, the operation
0 b j . O p of the object bound a t the time of execution
is automatically selected.

2.2 c++
The programming language C++ is an extension

of C, and many 1angua.ge fcatrires mainly related to
object-oriented paradigm are added [4].

There are three parts in the members of a class of
C++ concerning accessibility to these from outside:
public, protected and private . And also, one can con-
trol the accessibility in a derived class when inheriting
the members of a base class, using the same keywords
public, protected and private. So that there are several,
somewhat complicated, combinations of controling the
accessibility of members in a class. And it also has a
friend feature.

A pointer to an object of a derived class can be co-
erced to that pointing to the object of a base class,
and vice versa. Especially, if one declares a member
function of a base class to be virtual, when this func-
tion is called, the actual member function in a derived
class is selected according to the class to which the
object belongs, and thus polymorphism is realized.

Multiple inheritance is realized by declaring a base
class to be a virtual base class.

2.3 Object models of Object-Z and C++

Rafsanjani and Colwill [8] clarified the essence and
differences of the class concepts of the languages
Object-Z and C++, summarizing these as stated in
the above, and discussed object models of these two
languages.

Concerning the hiding of members of a class, these
two languages differ. The present version of Object-Z
h a no hiding facility and every member of a class is
public, although it seems that discussion concerning
this is going on. On the other hand, C++ has notably
complicated hiding facility for members of a class as
stated before.

3 Structural Mapping and I ts Example

3.1 Structural mapping

Structural mapping translates an Object-Z specifi-
cation into class interfaces of c++ programs. In gen-

22 1

eral, automatic code generation from specifications is
a strongly desirable tool for software development, but
in the case of Z and Object-Z i t is not an easy task to
construct such a tool. The automatic transformation
from predicates on state variables and operations to
code essentially needs some kinds of theorem proving
techniques.

Our argurnent licre is t l in l Llie niltoiliatic gcner-
ation of only class interfaces of code are sufficiently
useful when translating specification to code by hand.
Even in the specification phase it may be argued that
declarations of states, operations and their types are
essentially more important than fully specifying their
conditions and invariants.

The byproducts of a mapping system are lexi-
cal, syntax and type checking facilities of specifica-
tions. These static checking are important tools, and
Spivey’s fuzz is such an example for Z [IO].

3.2 An example of mapping

As an illustration of structural mapping, we here
give an example of an Object-Z specification and its
corresponding C++ code of declarations generated by
our mapping system.

In the following are shown a specification of a birth-
day book, which is originally written in Z ([9] , chap. 1)
and is slightly modified in order to conform to Object-
Z syntax. A class BirthdayBook is introduced which
contains a state schema and three operation schemas.
This is mapped to a C++ class, consisting of class in-
terfaces, i . e . declarations of data members and head-
ers of member functions of the class.

Brief explanations for some crucial points are in
order. Classes Power and PFun (actually, templates)
are prepared in C++ as a class library for realizing the
Object-Z operators related t,o power sets and partial
functions, respectively. In these classes other related
Z symbols and operators like dom and # are prepared.

Note that all member functions (corresponding to
Object-Z operations) are declared as virtual functions
in C++. Also note the suffixes “-q” and “_x” of the
parameters of the operations AddBirthday and the
others. They correspond to the decorations “ ? ” and
“ ! ” of variables in operation schemas of Object-Z.

In Appendix of this paper there are given two more
examples of Object-Z specifications and the results of
their mappings in C++. The first one shows a generic
class S t a c k [T] , its derived class IndezedS tack[X] , and
the mapping of these two classes (this example of spec-
ification is taken from [3]). The second example is the
mapping of multiple inherit.aiice among classes.

[N A M E , D A T E]

- Birthda yBook

known : P N A M E
birthday : N A M E -I+ D A T E

I known = dom birih.rlny
L

- AddBirthday
A(known, birthday)
name? : N A M E
date? : D A T E

name? known
birthday’ = birthday U {name? H date?)

FindBirthday
name? : N A M E
date! : D A T E

Remind
today? : D A T E
cards! : P N A M E

known I birthday(n) = today?}

#include “GlobalDef s. h”
class BirthdayBookC
protected:
//DeclPart
Power< NAHE > known;
PFun< NAME, DATE > birthday:

BirthdayBookO :

BirthdayBook(BirthdayBook& the-BirthdayBook);

virtual -BirthdayBookO;

Birthday Book&

public :

// Null Constructor

// Copy Constructor

// Destructor

operator = (BirthdayBookk the-Birthdaylook);
// Assignment Operator

virtual void

virtual void

virtual void

AddBirthday(NAME& name-q. DATF2 date-q);

FindBirthday(NAI4Ek name-q, DATE& date-x);

Remind(DATEt today-q, Power< NAME >& cards-x) ;
1;

222

We have also tested, as a larger example, an Object-
Z specification of the so-called Library Problem, devel-
oped in [GI, [7]. (This problem is originally in “Prob-
lem Set for the Fourth Int. Workshop on Software
Specification and Design, Moriterey, USA, 1987.”)

4 Structural Mapping

4.1 Basic rules

In [8] Rafsanjani and Colwill stated basic rules
for the structural mapping from Object-Z to C++,
which were obtained through their three case stud-
ies of rewriting Object-Z specifications to C++ code
by hand. Since the rules seem natural and straight-
forward in regard to the current language facilities of
Object-Z and C++ concerning object-orientation, we
employ them. They axe as follows (item G is new).

1. Constants and state variables in a class are
mapped into tlie protected part of a C++ class.

2. All inheritances in Object-Z are mapped to public
inheritances of C++.

3. In the case of multiple inheritance, a base class is
mapped to a virtual base class of C++.

4. Operations in Object-Z classes are mapped to vir-
tual functions in C++. The ret,iirn values of the
functions are of type void, and their parameters
are passed by reference.

5. For each class of C++, a null constructor, a copy
constructor, a destructor, an assignment opera-
tor, and invariants for constants are always sup-
plied.

6. Constructors for types of constants are always
supplied.

In item 1 t,he intention is that data members of a
C++ class be encapsulated from outside, but in some
cases it would be more preferable to map constant and
state variables of an Object.-Z class to the public part
of a C++ class.

4.2 Types

The type system of Object-Z (or Z) is based on
set theory, utilizing the set construction operations
of power set, Cartesian product, function space and
schema types. This is semantically clear. However,

power set and function space do not have direct coun-
terparts in C++.

Moreover, all of these are generic. But genericity
itself can be realized in C++ by the template con-
struct. The generic symbol of power set is realized as
a predefined class in C++, as

template < c l a s s T> c l a s s Power
Thus, our solution for realizing these type construc-

tion methods in C++ is simple; we map each of these
type constructions tlircctly to a (template) class of
C++. There are of course many ramifications of ac-
tually realizing these classes in C++, which differ to
each other in simplicity and efficiency. Some examples
of class realization of function space are found in 161.
Apart from a mapping system, such a class library for
Z operations s e e m important and desirable.

4.3 Inheritance

Object-Z allows multiple inheritance (like Fig. 2) ,
and it should be realized in the mapping. In multiple
inheritance in Object-Z specification, one has to deter-
mine a common ancestor class as a base class, starting
from the far ends of derived classes. This procedure
also applies in the case of multiple inheritance among
generic classes. Appendix B shows an example of map-
ping for the case of multiple inheritance as Fig. 2.

Figure 2: Multiple inlieritarice

When a class is an instance of a generic class, we
must take into account the actual types for generic
parameters. When determining a common ancestor
class, instances of a generic class having exactly the
same actual parameters of types are considered iden-
tical. Thus in this case we need a procedure for type
equivalence checking in Object-Z.

In the example of derived class IndezedStack in Ap-
pendix A the member functions Push and Pop in the
corresponding class in C++ have the correct param-
eters though they are omitted in their specifications.
Redefinition of operations in inheritance should also

223

be treated. In the case of inheritance in Appendix
A no overloading occurs, so that we simply adopt as
definition that of a base class.

preprocessing and scanning

5 Implementation of a Mapping Sys-
t en1

5.1 Source format of Object-2 specifica-
tion

We must choose a machine-readable format of
Object-Z specifications for a mapping system. As a
source text we here employ LaTeX source. I t may
contain plain texts other than proper Object-Z speci-
ficatioiis as iiiforinal explaiiatioiis.

The reason that we employ LaTeX forinat should be
obvious. Tex style files for 2 and Object-2 are already
available, which can handle special symbols of Z and
vertical and horizontal lines for boxes.

Z uses style file “fuzz.sty” [lo], and Object-Z uses
“oz.sty” [5] . These two use almost the same sym-
bol names of Z. However, some symbols have different
names in the two style files; the power set symbol P
is \power in fuzz.sty, while it is \pset in oz.sty. But
these differences can be easily absorbed in the scan-
ning phase of the mapping process (explained later).

We found that an environment for a generic class
of Object-Z is not included in oz.sty, so that we have
prepared another style file “0~2.~ty ,” which the speci-
fication writer should add. Thus, when preparing an
Object-Z specification for the mapping system, one
has to write in LaTeX:

\document style [fuzz , oz ,0221
..............

5.2 General plan of implementation

We use for preprocessing and scanning the lexical
analyzer generator lex. And we also use for syntax
analysis and transformation the syntax analyzer gen-
erator yacc. (Actually we used flex and bison, instead
of lex and yacc, respectively.) Semantical functions
for manipulating a name table and generating C++
code segment are written in C++.

In the current implementation of the mapping sys-
tem the sizes of source code are approximately: 300
lines of lex text, 1,100 lines of yacc text, and 2,100
lines of semantic functions in C++.

The mapping process is as iii Fig. 3.

\documentstyle[fuzz,oz,oz2] {article)
\begin{document)

informal explanations
\begin{class){Stack)
AbeginIaxdef 1

\end{axdef)
.......................
.......................

\end{ c 1 as 8)

.......................
\end{document)

parsing

I

mapping from Object-Z to C++

I
t

I
class Stack 1

................................
1 :

................................

Figure 3: Mapping

5.3 Preprocessing and scanning

As preprocessing for mapping, some parts in input
specifications are removed, which are the following.

1. LaTeX commands such as \documentstyle{)
and \begin(document).

2. Informal verbal explanations other than Object-
Z specification. In LaTeX form they are
the parts that are not within environments
such as \begin(class) . . .\end(class) and
\beginked3 ... \endbed).

3. Comments within specifications.
They are in \comment(. . .), \comment*(. . .),
and \begin{zpar) . . . \end{zpar).

224

1

4. Newline symbols (\\) that specify infix operators.

At the preprocessing phase all of these in the above
are removed by lex.

5.4 Name table and related data struc-
t ures

All the names appearing in an input specification in
Object-Z are recorded in the name table. The struc-
ture of the name table is as in Fig. 4. For efficiency
all the namcs can be accessed tlirougli a hashtable.

Global names (especially class names) are pre-
served in a linear list in the order they appear in the
source specification (in order to check the scope of
the names). Thus global names can be accessed both
through a linear list and by hashing. Local names
in classes and schemas are regarded as attributes of a
global name of a class or a schema they belong to, and
are linked in a list starting from a global name.

j mild i

through Fig. 8 the contents of the entries of three par-
ticular kinds. The class GenClassAtr is derived from
ClassAtr, which in turn is derived from SymbolAtr.

We also show here an important structure BCNode
in Fig. 9 which is used to maintain base classes of a
class.

(? , I , ' C I C .)

pointor IO clns IO whid it belonns

pointer for liiu lilt
SymbolAV SymlblNuI

Figure 6: Structure of SymbolAtr

lis1 of typsdcf and mm

" a n t a

Figure 7: Structure of ClassAtr

Figure 4: Structure of name table

Figure 8: Structure of GeiiClassAtr

Figure 5: Classes of iiairie table entries
5.5 Parsing and mapping

There are several kinds of entries (class names, state
names, operation names, . . .) in the name table. We
classify and describe these in C++ as a class hier-
archy as in Fig. 5. We show for reference in Fig. 6

We here show fragments of yacc texts parse.y in or-
der to give the feeling of parsing and mapping. They
include a part of syntax of Object-Z specification, and

225

17
pointer to base clprw 18

19
20

BCN&* next a d u ~ types for generic parameten 21
22

ClarrAtr* bass

Type** rlual-&%T

oointer lo next bue clau

I Ini tBox
I OpBox

{current-class-)
insert-memberfunction

($<symbol- l is t>l) ;I

Figure 9: Structure of I3CNode

6 Concluding Remarks
also the semantic functions for actual mapping for
each syntactic construct. The syntax rules of Z and
Object-Z are taken from [9] and [3], respectively.

List 1 is the syntactic element ClassBox. In this
part a class name entry is entered into the name table,
and also the result of mapping is printed.

List 1 ClassBox in Darse.v

1 ClassBox : BGNCLS LB Ident RB
2 {cur ren t -c lass
3 = new ClassAtr
4 ($<symbol_l is t>3):)
5 ClassFie ld ClassBoxTail
6 {current_class->Print(O);
7 id-table.insert(current-class);
8 c u r r e n t - c l a s s = NULL;)
9 I e r r o r ENDCLS NL
10 {yyerror ("c lass error \n 'O ;
11 c u r r e n t - c l a s s = NULL: yyer rok;)

We have implemented a prototype version of a map-
ping system from Object-Z to C++. Our experi-
ence shows that the mapping system is a useful tool,
when checking and analyzing Object-Z specification
and rewriting specifications to C++ code.

The implementation of the mapping system is an
on-going project, and several features of Object-Z (or
rather Z) are yet unimplemented. These are: renam-
ing, and several predefined function and relation sym-
bols as a C++ class library. Also, our system lacks
in some useful features in Object-Z and Z, especially
those concerning schema calculus and specification re-
finement. The relationship between these Z features
and structural mapping is left to be investigated, both
theoretically and practically.

Acknowledgements

I We thank K . Ishihata, S. Sano, and the referees for 12

helpful comments on the manuscript.
In List 2 constants, state variables and operations

are entered into the name table as attributes of the
class they belong to. References

List 2 ClassField and Statement in parse.y

1 ClassFie ld : Statement
2 I C l a s s F i e l d Statement 261, Springer-Verlag, 1990.

[l] D. Duke and R. Duke, "Towards a semantics for
Object-Z," in YD.M'S0: VDM.and Z : Form-a1 Methods
in Software Development, LNCS, Vol. 428, pp. 244-

I e r r o r NL
[2] R. Duke, "Integrating formal methods with object-

oriented software engineering," Proc. Joint Conf. on
Software Engineering '93, pp. 3-10, 1993.

Cyyerror ("St i tement e r ror \n") ;
yyerrok ;

7 Statement : /* empty */ NL [3] R. Duke, P. King, G. Rose and G. Smith, "The
8 Object-Z Specification Language: Version 1," T R 91-
9 I AxiomBox 1 , Dept. of Comput.ing Science, Univ. of Queensland,
10 {current-class-> Australia, 1991.
11
12
13
14
15
16

inser t -axiomdata
($<symbol- l i s t> l) ;)

I StateBox

[4] M. A. Ellis and B. Stroustrup, The Annotated C f +
Reference Manual, Addison-Wesley, 1990.

Icur ren t -c lass -> [5] P. King, "Printing Z and Object-Z LaTeX documents,"
Dept. of Computing Science, Univ. of Queensland, i n s e r t - s t a t e d a t a

($<symbol- l i s t> l) ;) Australia, 1990.

226

H. Miyazaki, I<. Yatsu, M. Soineya, S. Yamasaki and
K . Kakelii, “The library problem (in Japanese),” i n
Deduct ive U c rival io t i of I’rogt-a ~ J I S , p re1 in1 in ar y report,
pp. 239-362, Information Promotion Agency, Japan,
1992.

H. Miyazaki, K. Yatsu, S. Yamada, II. Aniano, H. Shi-
bata , T. Hikita and H. Isliima, “Application of Object-
Z to the library system (in Japanese),” in Deductive
Derivation of Programs, pp. 51-221, Information Pro-
motion Agency, Japan, 1993.

G.-H. B. Rafsanjani and S. J . Colwill, “From Object-Z
to C++: A structural niappiiig,” i n Z User Workshop,
London 1992, pp. 166-179, Springer-Verlag, 1993.

J . M. Spivey, The Z Notation: A Reference hIanua1,
Prentice Hall, 1989; 2nd ed., 1992.

[lo] J. M. Spivey, “The fuzz Manual,” 2nd ed., 1992.

[ll] S. Stepney, R. Barden and D. Cooper, eds., Object
Orientation in Z, Springer-Verlag, 1992.

Appendix.

A Generic Class Stack

I m a x : N

items : seq T

I #items 6 max

INIT
items = ()

Push
A(i tems)
item? : T

A(i tems)
i tem! : T

i tems # () r items = (i t e m !) items‘

- IndesedStack [,U]
Stack[XI

items # () j index E dom items

SetIndex
A(index)
n? : NI

n? E dom items c index‘ = n?

Push

index # 1 j index’ = index - 1

#inc lude “GlobalDef s .h“
templa te < class T >
class Stack{
p r o t e c t e d :
//AxiomPart

//DeclPart

p u b l i c :

unsigned i n t max;

Seq< T > i t ems;

S t a c k 0 ;
Stack(Stack< T >& the-Stack) ;
Stack(unsigned i n t & the-max);
v i r t u a l - S t a c k 0 ;
Stack&

i n t inv(unsigned i n t & the-max);
opera tor = (Stack< T >& the-Stack) ;

v i r t u a l vo id Push(T& item-q);
v i r t u a l void Pop(T& item-x) ;

j ;

t empla te < c l a s s X >
class IndexedStack : p u b l i c Stack< X >{
p r o t e c t e d :
/ /DeclPart

p u b l i c :
unsigned i n t index;

I n d e x e d S t a c k o ;
IndexedSt ack

IndexedSt ack (unsigned i n t & the-max) ;
v i r t u a l -1ndexedStackO ;

(IndexedStack< X >& the-IndexedStack);

227

I

IndexedStackt operator

int inv(unsigned int& the-max) ;
= (Indexadstack< X >& the-IndexedStack);

virtual void SetIndex(unsigned intk n-q);
virtual void Push(X& item-q) ;
virtual void Pop(XP item-x) ;

1:

B Multiple Inheritance

Derived-1

r,?rpSchm-Dl

Derived-3
Derived-1
Der ived2

OpSchm-Da

#include "GlobalDef s. h"
class Base{
protected:
public:
Base0 ;
Base(Base& the-Base);
virtual 'Base0 ;
Base& operator

= (Base& the-Base);
virtual void OpSchm-BO;

1;

class Derived-1 : virtual public Base<
protected:
public :
Derived-10 ;
Derived-l(Derived-l& the-Derived-1);
virtual -Derived-lO;
Derived-it operator

virtual void OpSchm-DlO ;
= (Derived-lt the-Derived-1);

1:
class Derived-:! : virtual public Base{
protected:
public:
Derived-20 ;
Derived-P(Derived-2P the-Derived-2);
virtual 'Derived-20 ;
Derived,2& operator

virtual void OpSchm_D20;
= (Derived-2t the-Derived-2);

1;
class Derived-3

protected:
public :

: public Derived-1, public Derived-24

Derived-30 ;
Derived_3(Derived_B& the-Derived-3);
virtual -Derived-dO ;
Derived-3P operator

virtual void OpSchm_D30 ;
= (Derived-30 the-Derived-3);

1 ;

228

