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Abstract 

Object-Z is an extension of the formal  specification 
language Z, augmenting the class concept as a struc- 
turing facility. This paper introduces and discusses a 
structural mapping sys tem f r o m  Object-Z to the pro- 
gramming language C++, and reports on its imple- 
mentat ion o n  UNIX. The structural mapping trans- 
lates an Object-Z specification consisting of classes 
into class interfaces of C++ such as  data members 
and prototypes of member functions. Thus it is  not 
intended as a code generation system, but rather as  a 
tool for analyzing specification (including syntax and 
type checking) and for aiding a software developer in 
obtaining code. Through the implementation of the 
mapping sys tem several language features of Object-Z 
and C++ concerning object-orientation are clarified. 

1 Introduction 

The formal specification language Z is gaining pop- 
ularity, and is accessible in several textbooks [9]. 
Object-Z is based 011 Z, augmenting the class concept 
as a structuring facility [3], [ll]. Object-orientation 
in formal specification is one of the active research 
areas in software engineering [2], [ll]. The program- 
ming language C++ is one of the more popular object- 
oriented languages [4]. 

This paper discusses a structural mapping system 
from Object-Z to C++. The idea of structural map- 
ping was initially proposed by Rafsanjani and Col- 
will [SI. The structural mapping translates classes 
of an Object-Z specification into classes (more pre- 
cisely, class interfaces) of C++ such as data members 
and headers of member functions. Thus i t  is not in- 
tended as a code generation system, but rather as a 
tool for analyzing specification (including syntax and 
type checking) and for aiding a software developer in 
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obtaining code from specification. We consider that 
the usefulness of such a mapping system is fairly ob- 
vious as a tool for developing both specification and 
code. 

In [SI the basic rules of the mapping were described, 
which were obtained through case studies. Their rules 
seem natural in regard to the language facilities of 
Object-Z and C++, and we employ their rules. We 
have implemented the major part of the mapping sys- 
tem, on which we report here. The implementation 
helped us to understand several subtle points of the 
mapping, especially those related to types and classes. 

Our main contributions in this work are practical. 
Our implementation of a mapping system on Unix 
utilizes well-established compiling techniques for pro- 
gramming languages, with tools lex and yacc. Main 
points of the implementation are the treatment of 
generic parameters for generic schemas and classes, 
and that of state variables and member functions un- 
der inheritance. The implementation is still an ongo- 
ing project. 

In the next section 2 we briefly review the languages 
Object-Z and C++. Section 3 offers a simple example 
of Object-Z specification and its mapping in C++. In 
section 4 we discuss the rules of structural mapping 
from Object-Z to C++, especially those related to 
types, predefined symbols of Z,  and class inheritance. 
In section 5 several important points of the implemen- 
tation of the mapping system are shown. Concluding 
remarks and future work are in section 6. Finally, in 
appendix two more examples of the mapping are in- 
cluded. 

2 Object-2 and C++ 

We here assume the reader the basic knowledge of 
Z, Object-Z and C++. However, we very briefly re- 
view and summarize some of their important language 
features mainly concerning object-orientation, which 
will be needed for our realization of a mapping sys- 
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tem. 

2.1 Object-Z 

Object-Z is an extension of Z,  augmenting the class 
concept as a structuring facility. The structure of an 
Object-Z class is as Fig. 1, having as components con- 
stants, types, state sclieinas and operation schema of 
Z. The concept of (multiple) class inheritance is avail- 
able by specifying base classes. 

inherited classes 
type definitions 

constants 

predicates 

operation 

in? : some type 
out!  : some type 

state variables) 

I predicates I- history invariant 

Figure 1: Objec t -Z  specification 

Notice in this form that there are small differences 
between the forms of schema in a class of Object-Z 
and those of Z. Firstly, a state schema in an Object- 
Z class does not have a schema name. Secondly, the 
form of an initialization schema is different from Z. 
And thirdly, in the A notation in operation schemas 
(which indicates the change of values of states by the 
operation), each state to be modified is specified in 
Object-Z, while in  Z the state schema name is specified 
in a A list. 

The semantics of Z and Object-Z is based on math- 
ematical set theory, and objects and classes are treated 
as (named) sets. 

In order to realize polymorphism in Object-Z, de- 
fine an object as follows: Obj :l C .  Then, one can as- 

sign to Obj not only objects of class C but also those 
of classes derived from C. Let D be a class derived 
from C, and let Op be the single name of the opera- 
tions each belonging to C and D. Then, the operation 
0 b j . O p  of the object bound a t  the time of execution 
is automatically selected. 

2.2 c++ 
The programming language C++ is an extension 

of C, and many 1angua.ge fcatrires mainly related to 
object-oriented paradigm are added [4]. 

There are three parts in the members of a class of 
C++ concerning accessibility to these from outside: 
public, protected and private .  And also, one can con- 
trol the accessibility in a derived class when inheriting 
the members of a base class, using the same keywords 
public, protected and private.  So that there are several, 
somewhat complicated, combinations of controling the 
accessibility of members in a class. And it also has a 
friend feature. 

A pointer to  an object of a derived class can be co- 
erced to that pointing to the object of a base class, 
and vice versa. Especially, if one declares a member 
function of a base class to be virtual, when this func- 
tion is called, the actual member function in a derived 
class is selected according to the class to which the 
object belongs, and thus polymorphism is realized. 

Multiple inheritance is realized by declaring a base 
class to be a virtual base class. 

2.3 Object models of Object-Z and C++ 

Rafsanjani and Colwill [8] clarified the essence and 
differences of the class concepts of the languages 
Object-Z and C++, summarizing these as stated in 
the above, and discussed object models of these two 
languages. 

Concerning the hiding of members of a class, these 
two languages differ. The present version of Object-Z 
h a  no hiding facility and every member of a class is 
public, although it seems that discussion concerning 
this is going on. On the other hand, C++ has notably 
complicated hiding facility for members of a class as 
stated before. 

3 Structural Mapping and I ts  Example 

3.1 Structural mapping 

Structural mapping translates an Object-Z specifi- 
cation into class interfaces of c++ programs. In gen- 
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eral, automatic code generation from specifications is 
a strongly desirable tool for software development, but 
in the case of Z and Object-Z i t  is not an easy task to 
construct such a tool. The automatic transformation 
from predicates on state variables and operations to 
code essentially needs some kinds of theorem proving 
techniques. 

Our argurnent licre is t l in l  Llie niltoiliatic gcner- 
ation of only class interfaces of code are sufficiently 
useful when translating specification to code by hand. 
Even in the specification phase it may be argued that 
declarations of states, operations and their types are 
essentially more important than fully specifying their 
conditions and invariants. 

The byproducts of a mapping system are lexi- 
cal, syntax and type checking facilities of specifica- 
tions. These static checking are important tools, and 
Spivey’s fuzz is such an example for Z [IO]. 

3.2 An example of mapping 

As an illustration of structural mapping, we here 
give an example of an Object-Z specification and its 
corresponding C++ code of declarations generated by 
our mapping system. 

In the following are shown a specification of a birth- 
day book, which is originally written in Z ( [ 9 ] ,  chap. 1) 
and is slightly modified in order to conform to Object- 
Z syntax. A class BirthdayBook is introduced which 
contains a state schema and three operation schemas. 
This is mapped to a C++ class, consisting of class in- 
terfaces, i . e .  declarations of data members and head- 
ers of member functions of the class. 

Brief explanations for some crucial points are in 
order. Classes Power and PFun (actually, templates) 
are prepared in C++ as a class library for realizing the 
Object-Z operators related t,o power sets and partial 
functions, respectively. In these classes other related 
Z symbols and operators like dom and # are prepared. 

Note that all member functions (corresponding to 
Object-Z operations) are declared as virtual functions 
in C++. Also note the suffixes “-q” and “_x” of the 
parameters of the operations AddBirthday and the 
others. They correspond to  the decorations “ ? ” and 
“ ! ” of variables in operation schemas of Object-Z. 

In Appendix of this paper there are given two more 
examples of Object-Z specifications and the results of 
their mappings in C++. The first one shows a generic 
class S t a c k [ T ] ,  its derived class IndezedS tack[X] ,  and 
the mapping of these two classes (this example of spec- 
ification is taken from [3]). The second example is the 
mapping of multiple inherit.aiice among classes. 

[ N A M E ,  D A T E ]  

- Birthda yBook 

known : P N A M E  
birthday : N A M E  -I+ D A T E  

I known = dom birih.rlny 
L 

- AddBirthday 
A( known, birthday) 
name? : N A M E  
date? : D A T E  

name? known 
birthday’ = birthday U {name? H date?) 

FindBirthday 
name? : N A M E  
date! : D A T E  

Remind 
today? : D A T E  
cards! : P N A M E  

known I birthday( n) = today?} 

#include “GlobalDef s. h” 
class BirthdayBookC 
protected: 
//DeclPart 
Power< NAHE > known; 
PFun< NAME, DATE > birthday: 

BirthdayBookO : 

BirthdayBook(BirthdayBook& the-BirthdayBook); 

virtual -BirthdayBookO; 

Birthday Book& 

public : 

// Null Constructor 

// Copy Constructor 

// Destructor 

operator = (BirthdayBookk the-Birthdaylook); 
// Assignment Operator 

virtual void 

virtual void 

virtual void 

AddBirthday(NAME& name-q. DATF2 date-q); 

FindBirthday(NAI4Ek name-q, DATE& date-x); 

Remind(DATEt today-q, Power< NAME >& cards-x) ; 
1; 
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We have also tested, as a larger example, an Object- 
Z specification of the so-called Library Problem, devel- 
oped in [GI, [7]. (This problem is originally in “Prob- 
lem Set for the Fourth Int. Workshop on Software 
Specification and Design, Moriterey, USA, 1987.”) 

4 Structural Mapping 

4.1 Basic rules 

In [8] Rafsanjani and Colwill stated basic rules 
for the structural mapping from Object-Z to C++, 
which were obtained through their three case stud- 
ies of rewriting Object-Z specifications to C++ code 
by hand. Since the rules seem natural and straight- 
forward in regard to the current language facilities of 
Object-Z and C++ concerning object-orientation, we 
employ them. They axe as follows (item G is new). 

1. Constants and state variables in a class are 
mapped into tlie protected part of a C++ class. 

2. All inheritances in Object-Z are mapped to  public 
inheritances of C++. 

3. In the case of multiple inheritance, a base class is 
mapped to  a virtual base class of C++. 

4.  Operations in Object-Z classes are mapped to vir- 
tual functions in C++. The ret,iirn values of the 
functions are of type void, and their parameters 
are passed by reference. 

5. For each class of C++, a null constructor, a copy 
constructor, a destructor, an assignment opera- 
tor, and invariants for constants are always sup- 
plied. 

6. Constructors for types of constants are always 
supplied. 

In item 1 t,he intention is that data members of a 
C++ class be encapsulated from outside, but in some 
cases it would be more preferable to map constant and 
state variables of an Object.-Z class to the public part 
of a C++ class. 

4.2 Types 

The type system of Object-Z (or Z) is based on 
set theory, utilizing the set construction operations 
of power set, Cartesian product, function space and 
schema types. This is semantically clear. However, 

power set and function space do not have direct coun- 
terparts in C++. 

Moreover, all of these are generic. But genericity 
itself can be realized in C++ by the template con- 
struct. The generic symbol of power set is realized as 
a predefined class in C++, as 

template < c l a s s  T> c l a s s  Power 
Thus, our solution for realizing these type construc- 

tion methods in C++ is simple; we map each of these 
type constructions tlircctly to a (template) class of 
C++. There are of course many ramifications of ac- 
tually realizing these classes in C++, which differ to 
each other in simplicity and efficiency. Some examples 
of class realization of function space are found in 161. 
Apart from a mapping system, such a class library for 
Z operations s e e m  important and desirable. 

4.3 Inheritance 

Object-Z allows multiple inheritance (like Fig. 2) ,  
and it should be realized in the mapping. In multiple 
inheritance in Object-Z specification, one has to deter- 
mine a common ancestor class as a base class, starting 
from the far ends of derived classes. This procedure 
also applies in the case of multiple inheritance among 
generic classes. Appendix B shows an example of map- 
ping for the case of multiple inheritance as Fig. 2. 

Figure 2: Multiple inlieritarice 

When a class is an instance of a generic class, we 
must take into account the actual types for generic 
parameters. When determining a common ancestor 
class, instances of a generic class having exactly the 
same actual parameters of types are considered iden- 
tical. Thus in this case we need a procedure for type 
equivalence checking in Object-Z. 

In the example of derived class IndezedStack in Ap- 
pendix A the member functions Push and Pop in the 
corresponding class in C++ have the correct param- 
eters though they are omitted in their specifications. 
Redefinition of operations in inheritance should also 
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be treated. In the case of inheritance in Appendix 
A no overloading occurs, so that we simply adopt as 
definition that of a base class. 

preprocessing and scanning 

5 Implementation of a Mapping Sys- 
t en1 

5.1 Source format of Object-2 specifica- 
tion 

We must choose a machine-readable format of 
Object-Z specifications for a mapping system. As a 
source text we here employ LaTeX source. I t  may 
contain plain texts other than proper Object-Z speci- 
ficatioiis as iiiforinal explaiiatioiis. 

The reason that we employ LaTeX forinat should be 
obvious. Tex style files for 2 and Object-2 are already 
available, which can handle special symbols of Z and 
vertical and horizontal lines for boxes. 

Z uses style file “fuzz.sty” [lo], and Object-Z uses 
“oz.sty” [5] .  These two use almost the same sym- 
bol names of Z. However, some symbols have different 
names in the two style files; the power set symbol P 
is \power in fuzz.sty, while it is \pset in oz.sty. But 
these differences can be easily absorbed in the scan- 
ning phase of the mapping process (explained later). 

We found that an environment for a generic class 
of Object-Z is not included in oz.sty, so that we have 
prepared another style file “0~2.~ty ,”  which the speci- 
fication writer should add. Thus, when preparing an 
Object-Z specification for the mapping system, one 
has to write in LaTeX: 

\document style [fuzz , oz ,0221 
.............. 

5.2 General plan of implementation 

We use for preprocessing and scanning the lexical 
analyzer generator lex. And we also use for syntax 
analysis and transformation the syntax analyzer gen- 
erator yacc. (Actually we used flex and bison, instead 
of lex and yacc, respectively.) Semantical functions 
for manipulating a name table and generating C++ 
code segment are written in C++. 

In the current implementation of the mapping sys- 
tem the sizes of source code are approximately: 300 
lines of lex text, 1,100 lines of yacc text, and 2,100 
lines of semantic functions in C++. 

The mapping process is as iii Fig. 3. 

\documentstyle[fuzz,oz,oz2] {article) 
\begin{document) 

informal explanations 
\begin{class){Stack) 
AbeginIaxdef 1 

\end{axdef) 
....................... 
....................... 

\end{ c 1 as 8 )  

....................... 
\end{document) 

parsing 

I 

mapping from Object-Z to C++ 

I 
t 

I 
class Stack 1 

................................ 
1 :  

................................ 

Figure 3: Mapping 

5.3 Preprocessing and scanning 

As preprocessing for mapping, some parts in input 
specifications are removed, which are the following. 

1. LaTeX commands such as \documentstyle{) 
and \begin(document). 

2. Informal verbal explanations other than Object- 
Z specification. In LaTeX form they are 
the parts that are not within environments 
such as \begin(class) . .  .\end(class) and 
\beginked3 ... \endbed). 

3. Comments within specifications. 
They are in \comment(. . .), \comment*(. . .), 
and \begin{zpar) . . .  \end{zpar). 
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4. Newline symbols (\\) that specify infix operators. 

At the preprocessing phase all of these in the above 
are removed by lex. 

5.4 Name table and related data struc- 
t ures 

All the names appearing in an input specification in 
Object-Z are recorded in the name table. The struc- 
ture of the name table is as in Fig. 4.  For efficiency 
all the namcs can be accessed tlirougli a hashtable. 

Global names (especially class names) are pre- 
served in a linear list in the order they appear in the 
source specification (in order to  check the scope of 
the names). Thus global names can be accessed both 
through a linear list and by hashing. Local names 
in classes and schemas are regarded as attributes of a 
global name of a class or a schema they belong to, and 
are linked in a list starting from a global name. 

j mild i 

through Fig. 8 the contents of the entries of three par- 
ticular kinds. The class GenClassAtr is derived from 
ClassAtr, which in turn is derived from SymbolAtr. 

We also show here an important structure BCNode 
in Fig. 9 which is used to maintain base classes of a 
class. 

( ? , I ,  ' C I C . )  

pointor IO clns IO whid  it belonns 

pointer for liiu lilt 
SymbolAV SymlblNuI 

Figure 6: Structure of SymbolAtr 

lis1 of typsdcf and mm 

" a n t a  

Figure 7: Structure of ClassAtr 

Figure 4: Structure of name table 

Figure 8: Structure of GeiiClassAtr 

Figure 5: Classes of iiairie table entries 
5.5 Parsing and mapping 

There are several kinds of entries (class names, state 
names, operation names, . . .) in the name table. We 
classify and describe these in C++ as a class hier- 
archy as in Fig. 5. We show for reference in Fig. 6 

We here show fragments of yacc texts parse.y in or- 
der to give the feeling of parsing and mapping. They 
include a part of syntax of Object-Z specification, and 
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17 
pointer to base clprw 18 

19 
20 

BCN&* next a d u ~  types for generic parameten 21 
22 

ClarrAtr* bass 

Type** rlual-&%T 

oointer lo next bue clau 

I Ini tBox 
I OpBox 

{current-class-)  
insert-memberfunction 

($<symbol- l is t>l)  ;I  

Figure 9: Structure of I3CNode 

6 Concluding Remarks 
also the semantic functions for actual mapping for 
each syntactic construct. The syntax rules of Z and 
Object-Z are taken from [9] and [3], respectively. 

List 1 is the syntactic element ClassBox. In this 
part a class name entry is entered into the name table, 
and also the result of mapping is printed. 

List 1 ClassBox in Darse.v 

1 ClassBox : BGNCLS LB Ident  RB 
2 {cur ren t -c lass  
3 = new ClassAtr 
4 ($<symbol_l is t>3):)  
5 ClassFie ld  ClassBoxTail 
6 {current_class->Print(O); 
7 id-table.insert(current-class); 
8 c u r r e n t - c l a s s  = NULL;) 
9 I e r r o r  ENDCLS NL 
10 {yyerror ("c lass  error \n 'O ; 
11 c u r r e n t - c l a s s  = NULL: yyer rok; )  

We have implemented a prototype version of a map- 
ping system from Object-Z to C++. Our experi- 
ence shows that the mapping system is a useful tool, 
when checking and analyzing Object-Z specification 
and rewriting specifications to C++ code. 

The implementation of the mapping system is an 
on-going project, and several features of Object-Z (or 
rather Z) are yet unimplemented. These are: renam- 
ing, and several predefined function and relation sym- 
bols as a C++ class library. Also, our system lacks 
in some useful features in Object-Z and Z, especially 
those concerning schema calculus and specification re- 
finement. The relationship between these Z features 
and structural mapping is left to be investigated, both 
theoretically and practically. 
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Appendix. 

A Generic Class Stack 

I m a x : N  

items : seq T 

I #items 6 max 

INIT 
items = () 

Push 
A( i tems)  
item? : T 

A( i tems)  
i tem! : T 

i tems # ( )  r items = ( i t e m ! )  items‘ 

- IndesedStack [,U] 
Stack[ XI 

items # ( )  j index E dom items 

SetIndex 
A( index) 
n? : NI 

n? E dom items c index‘ = n? 

Push 

index # 1 j index’ = index - 1 

#inc lude  “GlobalDef s .h“ 
templa te  < class T > 
class Stack{ 
p r o t e c t e d :  
//AxiomPart 

//DeclPart 

p u b l i c  : 

unsigned i n t  max; 

Seq< T > i t ems;  

S t a c k 0  ; 
Stack(Stack< T >& the-Stack) ; 
Stack(unsigned i n t &  the-max); 
v i r t u a l  - S t a c k 0  ; 
Stack& 

i n t  inv(unsigned i n t &  the-max); 
opera tor  = (Stack< T >& the-Stack) ;  

v i r t u a l  vo id  Push(T& item-q); 
v i r t u a l  void Pop(T& item-x) ; 

j ;  

t empla te  < c l a s s  X > 
class IndexedStack : p u b l i c  Stack< X >{ 
p r o t e c t e d :  
/ /DeclPart  

p u b l i c  : 
unsigned i n t  index;  

I n d e x e d S t a c k o ;  
IndexedSt ack 

IndexedSt ack (unsigned i n t  & the-max) ; 
v i r t u a l  -1ndexedStackO ; 

(IndexedStack< X >& the-IndexedStack);  
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IndexedStackt operator 

int inv(unsigned int& the-max) ; 
= (Indexadstack< X >& the-IndexedStack); 

virtual void SetIndex(unsigned intk n-q); 
virtual void Push(X& item-q) ; 
virtual void Pop(XP item-x) ; 

1: 

B Multiple Inheritance 

Derived-1 

r,?rpSchm-Dl 

Derived-3 
Derived-1 
Der ived2  

OpSchm-Da 

#include "GlobalDef s. h" 
class Base{ 
protected: 
public: 
Base0 ; 
Base(Base& the-Base); 
virtual 'Base0 ; 
Base& operator 

= (Base& the-Base); 
virtual void OpSchm-BO; 

1; 

class Derived-1 : virtual public Base< 
protected: 
public : 
Derived-10 ; 
Derived-l(Derived-l& the-Derived-1); 
virtual -Derived-lO; 
Derived-it operator 

virtual void OpSchm-DlO ; 
= (Derived-lt the-Derived-1); 

1: 
class Derived-:! : virtual public Base{ 
protected: 
public: 
Derived-20 ; 
Derived-P(Derived-2P the-Derived-2); 
virtual 'Derived-20 ; 
Derived,2& operator 

virtual void OpSchm_D20; 
= (Derived-2t the-Derived-2); 

1; 
class Derived-3 

protected: 
public : 

: public Derived-1, public Derived-24 

Derived-30 ; 
Derived_3(Derived_B& the-Derived-3); 
virtual -Derived-dO ; 
Derived-3P operator 

virtual void OpSchm_D30 ; 
= (Derived-30 the-Derived-3); 

1 ;  
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